Science.gov

Sample records for aedes aegypti adults

  1. Effects of intraspecific larval competition on adult longevity in the mosquitoes Aedes aegypti and Aedes albopictus

    PubMed Central

    LOUNIBOS, L. P.

    2009-01-01

    Larval competition is common in container-breeding mosquitoes. The impact of competition on larval growth has been thoroughly examined and findings that larval competition can lead to density-dependent effects on adult body size have been documented. The effects of larval competition on adult longevity have been less well explored. The effects of intraspecific larval densities on the longevity of adults maintained under relatively harsh environmental conditions were tested in the laboratory by measuring the longevity of adult Aedes aegypti (L.) and Aedes albopictus (Skuse) (Diptera: Culicidae) that had been reared under a range of larval densities and subsequently maintained in high- or low-humidity regimes (85% or 35% relative humidity [RH], respectively) as adults. We found significant negative effects of competition on adult longevity in Ae. aegypti, but not in Ae. albopictus. Multivariate analysis of variance suggested that the negative effect of the larval environment on the longevity of Ae. aegypti adults was most strongly associated with increased development time and decreased wing length as adults. Understanding how larval competition affects adult longevity under a range of environmental conditions is important in establishing the relationship between models of mosquito population regulation and epidemiological models of vector-borne disease transmission. PMID:19239615

  2. Larval nutritional stress affects vector immune traits in adult yellow fever mosquito Aedes aegypti (Stegomyia aegypti).

    PubMed

    Telang, A; Qayum, A A; Parker, A; Sacchetta, B R; Byrnes, G R

    2012-09-01

    We report key physiological traits that link larval nutritional experience to adult immune status in the yellow fever mosquito Aedes aegypti L. (Stegomyia aegypti) (Diptera: Culicidae). Many lines of defence make up the innate immune system of mosquitoes. Among defences, the epithelium-lined midgut is the first barrier, circulating haemocytes are cellular components of innate immunity and, when triggered, the Toll and Imd pathways signal production of antimicrobial peptides (AMP) as part of humoral defences. We quantified three lines of defence in Ae. aegypti in response to larval nutritional stress, and our data show that important female immune functions are modified by the larval rearing environment. Adult midgut basal lamina thickness was not affected by larval nutrient stress as has been observed in another Aedes sp. However, nutrient stresses experienced by larvae lead to a reduced number of haemocytes in females. Transcripts of Spaetzle (upstream regulator of Toll pathway that leads to induction of AMPs) and some immune-related genes were less abundant in stressed larvae but showed increased expression in females derived from stressed larvae. Results indicate a potential for compensation by the humoral branch for a reduced cellular branch of innate immunity in adults in response to larval nutrient stress.

  3. Synthesis and larvicidal and adult topical activity of some hydrazide-hydrazone derivatives against Aedes aegypti

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A series of novel hydrazide-hydrazone derivatives were synthesized and evaluated for their larvicidal and adult topical activity against Aedes aegypti. The proposed structures of all the synthesized compounds were confirmed using elemental analysis, UV, IR, 1H-NMR, 13C-NMR and mass spectroscopy. Com...

  4. Exposure to chikungunya virus and adult longevity in Aedes aegypti (L.) and Aedes albopictus (Skuse).

    PubMed

    Reiskind, Michael H; Westbrook, Catherine J; Lounibos, L Philip

    2010-06-01

    Chikungunya virus (CHIKV) recently emerged as a global threat to public health through its adaptation to the cosmopolitan mosquito Aedes albopictus Skuse. Aedes albopictus is highly susceptible to the emergent strain of CHIKV, relative to the historical vector of CHIKV, Aedes aegypti (L.). We hypothesized that the high susceptibility of Ae. albopictus to CHIKV may have a cost in terms of longevity and fecundity among infected vs non-infected mosquitoes, relative to Ae. aegypti. We performed a longevity experiment comparing Ae. aegypti and Ae. albopictus exposed to the emergent strain of CHIKV (LR-2006OPY1). We found a small but significant decrease in longevity of Ae. albopictus, but not Ae. aegypti, in response to exposure to CHIKV. We did not observe significant differences in numbers of eggs laid by either species in response to exposure. Longevity and body titer of infected Ae. albopictus were significantly negatively correlated, such that individuals that lived longer had lower viral body titers when they died. The cost of exposure, while not high, suggests there may be physiological constraints in the evolution of viral infectiousness in its insect vector.

  5. Novel estimates of Aedes aegypti (Diptera: Culicidae) population size and adult survival based on Wolbachia releases.

    PubMed

    Ritchie, Scott A; Montgomery, Brian L; Hoffmann, Ary A

    2013-05-01

    The size of Aedes aegypti (L.) mosquito populations and adult survival rates have proven difficult to estimate because of a lack of consistent quantitative measures to equate sampling methods, such as adult trapping, to actual population size. However, such estimates are critical for devising control methods and for modeling the transmission of dengue and other infectious agents carried by this species. Here we take advantage of recent releases of Wolbachia-infected Ae. aegypti coupled with the results of ongoing monitoring to estimate the size of adult Ae. aegypti populations around Cairns in far north Queensland, Australia. Based on the association between released adults infected with Wolbachia and data from Biogents Sentinel traps, we show that data from two locations are consistent with population estimates of approximately 5-10 females per house and daily survival rates of 0.7-0.9 for the released Wolbachia-infected females. Moreover, we estimate that networks of Biogents Sentinel traps at a density of one per 15 houses capture around 5-10% of the adult population per week, and provide a rapid estimate of the absolute population size of Ae. aegypti. These data are discussed with respect to release rates and monitoring in future Wolbachia releases and also the levels of suppression required to reduce dengue transmission.

  6. Methoprene effects on survival and reproductive performance of adult female and male Aedes aegypti.

    PubMed

    Brabant, Peter Joseph; Dobson, Stephen L

    2013-12-01

    Methoprene is a juvenile hormone analog commonly used for the control of mosquito larvae. It acts through interference with normal metamorphosis, resulting in mortality prior to and during adult emergence. Methoprene is not commonly used for the control of adult mosquitoes, due to an absence of acute effects. Here, we have evaluated for chronic effects caused by the exposure of adult Aedes aegypti mosquitoes to methoprene. We applied methoprene to adults, both through 1) topical application to the abdomen and 2) as an aerosol, examining for treatment effects on ovary development, adult longevity, and fecundity. The results demonstrate that relatively high doses are required to affect adult survivorship. In contrast, significant impacts on both fecundity and egg hatch were observed in females treated at the lower dosages. We discuss the results in relation to autocidal strategies for mosquito control in which the release of fecund females is to be avoided.

  7. Rhamnolipids: solution against Aedes aegypti?

    PubMed Central

    Silva, Vinicius L.; Lovaglio, Roberta B.; Von Zuben, Claudio J.; Contiero, Jonas

    2015-01-01

    Aedes aegypti mosquitoes are the primary transmitters of dengue fever, urban yellow fever, and chikungunya viruses. This mosquito has developed resistance to the insecticides currently used to control their populations. These chemical insecticides are harmful to the environment and can have negative effects on human health. Rhamnolipids are environmentally compatible biological surfactants, but their insecticidal activity has not been extensively studied. The present study evaluated the potential larvicidal, insecticidal, and repellent activities of rhamnolipids against A. aegypti. At concentrations of 800, 900, and 1000 mg/L, rhamnolipids eliminated all mosquito larvae in 18 h and killed 100% of adults at 1000 mg/L. According to the results it may be conclude that rhamnolipids should be applied to control larvae and mosquitos besides present the repellency activity against A. aegypti. PMID:25762986

  8. Microevolution of Aedes aegypti.

    PubMed

    Louise, Caroline; Vidal, Paloma Oliveira; Suesdek, Lincoln

    2015-01-01

    Scientific research into the epidemiology of dengue frequently focuses on the microevolution and dispersion of the mosquito Aedes aegypti. One of the world's largest urban agglomerations infested by Ae. aegypti is the Brazilian megalopolis of Sao Paulo, where >26,900 cases of dengue were reported until June 2015. Unfortunately, the dynamics of the genetic variability of Ae. aegypti in the Sao Paulo area have not been well studied. To reduce this knowledge gap, we assessed the morphogenetic variability of a population of Ae. aegypti from a densely urbanised neighbourhood of Sao Paulo. We tested if allelic patterns could vary over a short term and if wing shape could be a predictor of the genetic variation. Over a period of 14 months, we examined the variation of genetic (microsatellites loci) and morphological (wing geometry) markers in Ae. aegypti. Polymorphisms were detected, as revealed by the variability of 20 microsatellite loci (115 alleles combined; overall Fst = 0.0358) and 18 wing landmarks (quantitative estimator Qst = 0.4732). These levels of polymorphism are higher than typically expected to an exotic species. Allelic frequencies of the loci changed over time and temporal variation in the wing shape was even more pronounced, permitting high reclassification levels of chronological samples. In spite of the fact that both markers underwent temporal variation, no correlation was detected between their dynamics. We concluded that microevolution was detected despite the short observational period, but the intensities of change of the markers were discrepant. Wing shape failed from predicting allelic temporal variation. Possibly, natural selection (Qst>Fst) or variance of expressivity of wing phenotype are involved in this discrepancy. Other possibly influential factors on microevolution of Ae. aegypti are worth searching. Additionally, the implications of the rapid evolution and high polymorphism of this mosquito vector on the efficacy of control methods have

  9. Using adult mosquitoes to transfer insecticides to Aedes aegypti larval habitats.

    PubMed

    Devine, Gregor J; Perea, Elvira Zamora; Killeen, Gerry F; Stancil, Jeffrey D; Clark, Suzanne J; Morrison, Amy C

    2009-07-14

    Vector control is a key means of combating mosquito-borne diseases and the only tool available for tackling the transmission of dengue, a disease for which no vaccine, prophylaxis, or therapeutant currently exists. The most effective mosquito control methods include a variety of insecticidal tools that target adults or juveniles. Their successful implementation depends on impacting the largest proportion of the vector population possible. We demonstrate a control strategy that dramatically improves the efficiency with which high coverage of aquatic mosquito habitats can be achieved. The method exploits adult mosquitoes as vehicles of insecticide transfer by harnessing their fundamental behaviors to disseminate a juvenile hormone analogue (JHA) between resting and oviposition sites. A series of field trials undertaken in an Amazon city (Iquitos, Peru) showed that the placement of JHA dissemination stations in just 3-5% of the available resting area resulted in almost complete coverage of sentinel aquatic habitats. More than control mortality occurred in 95-100% of the larval cohorts of Aedes aegypti developing at those sites. Overall reductions in adult emergence of 42-98% were achieved during the trials. A deterministic simulation model predicts amplifications in coverage consistent with our observations and highlights the importance of the residual activity of the insecticide for this technique.

  10. Sensitivity of Aedes aegypti adults (Diptera: Culicidae) to the vapors of Eucalyptus essential oils.

    PubMed

    Lucia, Alejandro; Licastro, Susana; Zerba, Eduardo; Gonzalez Audino, Paola; Masuh, Hector

    2009-12-01

    Vapors of essential oils extracted from various species of Eucalyptus (E. gunnii, E. tereticornis, E. grandis, E. camaldulensis, E. dunnii, E. cinerea, E. saligna, E. sideroxylon, E. globulus ssp. globulus, E. globulus ssp. maidenii, E. viminalis and the hybrids E. grandisxE. tereticornis and E. grandisxE. camaldulensis) and their major components were found to be toxic to Aedes aegypti adults, the yellow fever mosquito. An aliquot of each oil was placed in a cylindrical test chamber and the number of knocked-down mosquitoes was recorded as function of time. Knockdown time 50% was then calculated. Results showed that E. viminalis had the fastest knockdown time at of 4.2 min, on the same order as dichlorvos, a standard knockdown agent. A correlation was observed between the content of 1,8-cineole in the Eucalyptus essential oils and the corresponding toxic effect. The correlation between KT(50) values and calculated vapor pressures of the essential oil components showed that the fumigant activity of simple organic compounds in insects is correlated with their volatility.

  11. Aedes aegypti (L.) and Aedes albopictus (Skuse) in Singapore City

    PubMed Central

    Ho, B. C.; Chan, K. L.; Chan, Y. C.

    1971-01-01

    Fluctuations in the adult Ae. aegypti and Ae. albopictus populations and their relationship to rainfall were studied by weekly collections from a number of stations in the city. Aedes aegypti populations generally fluctuated with the rainfall, with multiple peaks, except in the middle of the year when there was no increase in rainfall at the time of the peak in population. It is suggested that other regulating factors, in addition to rainfall, also determine the fluctuations of this species. Aedes albopictus also fluctuated, with three peaks in a year, and these bore a close relationship to rainfall. In one area, both larvae and adults of Ae. albopictus were studied simultaneously. The larval populations were investigated by exposing tin cans in the field. The population peaks of larvae were found to precede those of adults by almost exactly 2 months. It is suggested that each adult population peak represents the cumulative effect of more than one generation of mosquitos. PMID:5316747

  12. Insecticidal activity of isobutylamides derived from Piper nigrum against adult of two mosquito species, Culex pipiens pallens and Aedes aegypti.

    PubMed

    Park, Il-Kwon

    2012-01-01

    The insecticidal activity of Piper nigrum fruit-derived piperidine alkaloid (piperine) and N-isobutylamide alkaloids (pellitorine, guineensine, pipercide and retrofractamide A) against female adults of Culex pipiens pallens and Aedes aegypti was examined. On the basis of 24-h LD(50) values, the compound most toxic to female C. pipiens pallens was pellitorine (0.4 µg/♀) followed by guineensine (1.9 µg/♀), retrofractamide A (2.4 µg/♀) and pipercide (3.2 µg/♀). LD(50) value of chlorpyrifos was 0.03 µg/♀. Against female A. aegypti, the insecticidal activity was more pronounced in pellitorine (0.17 µg/♀) than in retrofractamide A (1.5 µg/♀), guineensine (1.7 µg/♀), and pipercide (2.0 µg/♀). LD(50) value of chlorpyrifos was 0.0014 µg/♀.

  13. Structure-Activity Relationship Studies on Natural Eremophilanes from Inula helenium as Toxicants Against Aedes aegypti Larvae and Adults

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An Aedes aegypti larval toxicity bioassay was performed on compounds representing many classes of natural compounds including polyacetylenes, phytosterols, flavonoids, sesquiterpenoids, and triterpenoids. Among these compounds studies, two eudesmanolides, alantolactone and isoalantolactone, showed l...

  14. Impact of inter- and intra-specific competition among larvae on larval, adult, and life-table traits of Aedes aegypti and Aedes albopictus females.

    PubMed

    Noden, Bruce H; O'Neal, Paul A; Fader, Joseph E; Juliano, Steven A

    2016-04-01

    Few studies have taken a comprehensive approach of measuring the impact of inter- and intra-specific larval competition on adult mosquito traits. In this study, the impact of competition Aedes aegypti and A. albopictus was quantified over the entire life of a cohort.Competitive treatments affected hatch-to-adult survivorship and development time to adulthood of females for both species, but affected median wing length of females only for A. albopictus. Competitive treatments had no significant effect on the median adult female longevity nor were there any effects on other individual traits related to bloodfeeding and reproductive success.Analysis of life table traits revealed no effect of competitive treatment on net reproductive rate (R0) but there were significant effects on cohort generation time (Tc) and cohort rate of increase (r) for both species.Inter-specific and intra-specific competition among Aedes larvae may produce individual and population-level effects that are manifest in adults; however, benign conditions may enable resulting adults to compensate for some impacts of competition, particularly those affecting blood feeding success, fecundity, and net reproductive rate, R0. The effect of competition, therefore, affects primarily larva - to - adult survivorship and larval development time, which in turn impact the cohort generation time, Tc and ultimately cohort rate of increase, r.The lack of effects of larval rearing environment on adult longevity suggests that effects on vectorial capacity due to longevity may be limited if adults have easy access to sugar and blood meals.

  15. Repellency of essential oils of Cryptomeria japonica (Pinaceae) against adults of the mosquitoes Aedes aegypti and Aedes albopictus (Diptera:Culicidae).

    PubMed

    Gu, Hui-Jing; Cheng, Sen-Sung; Lin, Chun-Ya; Huang, Chin-Gi; Chen, Wei-June; Chang, Shang-Tzen

    2009-12-09

    The purpose of this study was to investigate the repellent activities of essential oils from Cryptomeria japonica (sugi) against adults of mosquitoes Aedes aegypti and Aedes albopictus . Comparison of essential oils from four different plant parts of C. japonica revealed that essential oil from its leaf exhibited the best repellent activity against mosquitoes. To understand the relationship between volatile organic compounds and repellent activity, the solid-phase microextraction (SPME) method was employed to analyze volatile organic compounds of leaf essential oil. The SPME fiber was coated with divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS). The major volatile organic compounds in the cage were 3-carene, alpha-terpinene, limonene, gamma-terpinene, and terpinolene at 0 min. Results demonstrated that (-)-terpinen-4-ol was the major volatile organic compound adsorbed by SPME fiber during repellent assays. Furthermore, the repellent activities of six compounds against adults of the mosquitoes were evaluated, and the results revealed that (-)-terpinen-4-ol exhibited the best repellent activity against A. aegypti and A. albopictus.

  16. [Recommendations for the surveillance of Aedes aegypti].

    PubMed

    Barrera, Roberto

    2016-09-01

    Diseases caused by arboviruses transmitted by Aedes aegypti, such as dengue, chikungunya and Zika, continue to rise in annual incidence and geographic expansion. A key limitation for achieving control of A. aegypti has been the lack of effective tools for monitoring its population, and thus determine what control measures actually work. Surveillance of A. aegypti has been based mainly on immature indexes, but they bear little relation to the number of mosquito females, which are the ones capable of transmitting the viruses. The recent development of sampling techniques for adults of this vector species promises to facilitate surveillance and control activities. In this review, we present the various monitoring techniques for this mosquito, along with a discussion of their usefulness, and recommendations for improved entomological surveillance.

  17. Multi-scale analysis of the associations among egg, larval and pupal surveys and the presence and abundance of adult female Aedes aegypti (Stegomyia aegypti) in the city of Merida, Mexico.

    PubMed

    Manrique-Saide, P; Coleman, P; McCall, P J; Lenhart, A; Vázquez-Prokopec, G; Davies, C R

    2014-09-01

    Despite decades of research, there is still no agreement on which indices of Aedes aegypti (Stegomyia aegypti) (Diptera: Culicidae) presence and abundance better quantify entomological risk for dengue. This study reports the results of a multi-scale, cross-sectional entomological survey carried out in 1160 households in the city of Merida, Mexico to establish: (a) the correlation between levels of Ae. aegypti presence and abundance detected with aspirators and ovitraps; (b) which immature and egg indices correlate with the presence and abundance of Ae. aegypti females, and (c) the correlations amongst traditional Aedes indices and their modifications for pupae at the household level and within medium-sized geographic areas used for vector surveillance. Our analyses show that ovitrap positivity was significantly associated with indoor adult Ae. aegypti presence [odds ratio (OR) = 1.50; P = 0.03], that the presence of pupae is associated with adult presence at the household level (OR = 2.27; P = 0.001), that classic Aedes indices are informative only when they account for pupae, and that window screens provide a significant level of protection against peridomestic Ae. aegypti (OR = 0.59; P = 0.02). Results reinforce the potential of using both positive collections in outdoor ovitraps and the presence of pupae as sensitive indicators of indoor adult female presence.

  18. Adult survivorship of the dengue mosquito Aedes aegypti varies seasonally in central Vietnam.

    PubMed

    Hugo, Leon E; Jeffery, Jason A L; Trewin, Brendan J; Wockner, Leesa F; Nguyen, Thi Yen; Nguyen, Hoang Le; Nghia, Le Trung; Hine, Emma; Ryan, Peter A; Kay, Brian H

    2014-02-01

    The survival characteristics of the mosquito Aedes aegypti affect transmission rates of dengue because transmission requires infected mosquitoes to survive long enough for the virus to infect the salivary glands. Mosquito survival is assumed to be high in tropical, dengue endemic, countries like Vietnam. However, the survival rates of wild populations of mosquitoes are seldom measured due the difficulty of predicting mosquito age. Hon Mieu Island in central Vietnam is the site of a pilot release of Ae. aegypti infected with a strain of Wolbachia pipientis bacteria (wMelPop) that induces virus interference and mosquito life-shortening. We used the most accurate mosquito age grading approach, transcriptional profiling, to establish the survival patterns of the mosquito population from the population age structure. Furthermore, estimations were validated on mosquitoes released into a large semi-field environment consisting of an enclosed house, garden and yard to incorporate natural environmental variability. Mosquito survival was highest during the dry/cool (January-April) and dry/hot (May-August) seasons, when 92 and 64% of Hon Mieu mosquitoes had survived to an age that they were able to transmit dengue (12 d), respectively. This was reduced to 29% during the wet/cool season from September to December. The presence of Ae. aegypti older than 12 d during each season is likely to facilitate the observed continuity of dengue transmission in the region. We provide season specific Ae. aegypti survival models for improved dengue epidemiology and evaluation of mosquito control strategies that aim to reduce mosquito survival to break the dengue transmission cycle.

  19. Desiccation resistance in Aedes aegypti and Aedes albopictus eggs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Causative influences that impact the separation of Aedes aegypti and Aedes albopictus populations in different geographic areas were determined. The eggs of Ae. albopictus and Ae. aegypti collected from McAllen and Brownsville, Texas, and laboratory populations of these two species were subjected t...

  20. RNAi-mediated gene knockdown and in vivo diuresis assay in adult female Aedes aegypti mosquitoes.

    PubMed

    Drake, Lisa L; Price, David P; Aguirre, Sarah E; Hansen, Immo A

    2012-07-14

    This video protocol demonstrates an effective technique to knockdown a particular gene in an insect and conduct a novel bioassay to measure excretion rate. This method can be used to obtain a better understanding of the process of diuresis in insects and is especially useful in the study of diuresis in blood-feeding arthropods that are able to take up huge amounts of liquid in a single blood meal. This RNAi-mediated gene knockdown combined with an in vivo diuresis assay was developed by the Hansen lab to study the effects of RNAi-mediated knockdown of aquaporin genes on Aedes aegypti mosquito diuresis. The protocol is setup in two parts: the first demonstration illustrates how to construct a simple mosquito injection device and how to prepare and inject dsRNA into the thorax of mosquitoes for RNAi-mediated gene knockdown. The second demonstration illustrates how to determine excretion rates in mosquitoes using an in vivo bioassay.

  1. Impact of inter- and intra-specific competition among larvae on larval, adult, and life-table traits of Aedes aegypti and Aedes albopictus females

    PubMed Central

    Noden, Bruce H.; O’Neal, Paul A.; Fader, Joseph E.; Juliano, Steven A.

    2015-01-01

    Few studies have taken a comprehensive approach of measuring the impact of inter- and intra-specific larval competition on adult mosquito traits. In this study, the impact of competition Aedes aegypti and A. albopictus was quantified over the entire life of a cohort.Competitive treatments affected hatch-to-adult survivorship and development time to adulthood of females for both species, but affected median wing length of females only for A. albopictus. Competitive treatments had no significant effect on the median adult female longevity nor were there any effects on other individual traits related to bloodfeeding and reproductive success.Analysis of life table traits revealed no effect of competitive treatment on net reproductive rate (R0) but there were significant effects on cohort generation time (Tc) and cohort rate of increase (r) for both species.Inter-specific and intra-specific competition among Aedes larvae may produce individual and population-level effects that are manifest in adults; however, benign conditions may enable resulting adults to compensate for some impacts of competition, particularly those affecting blood feeding success, fecundity, and net reproductive rate, R0. The effect of competition, therefore, affects primarily larva – to - adult survivorship and larval development time, which in turn impact the cohort generation time, Tc and ultimately cohort rate of increase, r.The lack of effects of larval rearing environment on adult longevity suggests that effects on vectorial capacity due to longevity may be limited if adults have easy access to sugar and blood meals. PMID:27141149

  2. Estimation of Aedes aegypti (Diptera: Culicidae) population size and adult male survival in an urban area in Panama.

    PubMed

    Neira, Marco; Lacroix, Renaud; Cáceres, Lorenzo; Kaiser, Paul E; Young, Josue; Pineda, Lleysa; Black, Isaac; Sosa, Nestor; Nimmo, Derric; Alphey, Luke; McKemey, Andrew

    2014-11-01

    Traditional mosquito control strategies rely heavily on the use of chemical insecticides. However, concerns about the efficiency of traditional control methods, environmental impact and emerging pesticide resistance have highlighted the necessity for developing innovative tools for mosquito control. Some novel strategies, including release of insects carrying a dominant lethal gene (RIDL®), rely on the sustained release of modified male mosquitoes and therefore benefit from a thorough understanding of the biology of the male of the species. In this report we present the results of a mark-release-recapture study aimed at: (i) establishing the survival in the field of laboratory-reared, wild-type male Aedes aegypti and (b) estimating the size of the local adult Ae. aegypti population. The study took place in Panama, a country where recent increases in the incidence and severity of dengue cases have prompted health authorities to evaluate alternative strategies for vector control. Results suggest a life expectancy of 2.3 days for released male mosquitoes (confidence interval: 1.78-2.86). Overall, the male mosquito population was estimated at 58 males/ha (range 12-81 males/ha), which can be extrapolated to an average of 0.64 pupae/person for the study area. The practical implications of these results are discussed.

  3. Estimation of Aedes aegypti (Diptera: Culicidae) population size and adult male survival in an urban area in Panama

    PubMed Central

    Neira, Marco; Lacroix, Renaud; Cáceres, Lorenzo; Kaiser, Paul E; Young, Josue; Pineda, Lleysa; Black, Isaac; Sosa, Nestor; Nimmo, Derric; Alphey, Luke; McKemey, Andrew

    2014-01-01

    Traditional mosquito control strategies rely heavily on the use of chemical insecticides. However, concerns about the efficiency of traditional control methods, environmental impact and emerging pesticide resistance have highlighted the necessity for developing innovative tools for mosquito control. Some novel strategies, including release of insects carrying a dominant lethal gene (RIDL®), rely on the sustained release of modified male mosquitoes and therefore benefit from a thorough understanding of the biology of the male of the species. In this report we present the results of a mark-release-recapture study aimed at: (i) establishing the survival in the field of laboratory-reared, wild-type male Aedes aegypti and (b) estimating the size of the local adult Ae. aegypti population. The study took place in Panama, a country where recent increases in the incidence and severity of dengue cases have prompted health authorities to evaluate alternative strategies for vector control. Results suggest a life expectancy of 2.3 days for released male mosquitoes (confidence interval: 1.78-2.86). Overall, the male mosquito population was estimated at 58 males/ha (range 12-81 males/ha), which can be extrapolated to an average of 0.64 pupae/person for the study area. The practical implications of these results are discussed. PMID:25410991

  4. Stage-Structured Population Dynamics of AEDES AEGYPTI

    NASA Astrophysics Data System (ADS)

    Yusoff, Nuraini; Budin, Harun; Ismail, Salemah

    Aedes aegypti is the main vector in the transmission of dengue fever, a vector-borne disease affecting world population living in tropical and sub-tropical countries. Better understanding of the dynamics of its population growth will help in the efforts of controlling the spread of this disease. In looking at the population dynamics of Aedes aegypti, this paper explored the stage-structured modeling of the population growth of the mosquito using the matrix population model. The life cycle of the mosquito was divided into five stages: eggs, larvae, pupae, adult1 and adult2. Developmental rates were obtained for the average Malaysian temperature and these were used in constructing the transition matrix for the matrix model. The model, which was based only on temperature, projected that the population of Aedes aegypti will blow up with time, which is not realistic. For further work, other factors need to be taken into account to obtain a more realistic result.

  5. Indoor development of Aedes aegypti in Germany, 2016

    PubMed Central

    Kampen, Helge; Jansen, Stephanie; Schmidt-Chanasit, Jonas; Walther, Doreen

    2016-01-01

    In spring 2016, a German traveller returning from Martinique cultivated imported plant offsets in her home, and accidentally bred Aedes aegypti. Thirteen adult mosquito specimens submitted for identification and the traveller were tested for Zika, dengue and chikungunya virus infections, with negative results. The detection of Ae. aegypti by the ‘Mueckenatlas’ project demonstrates the value of this passive surveillance scheme for potential public health threats posed by invasive mosquitoes in Germany. PMID:27918261

  6. Effects of natal habitat odour, reinforced by adult experience, on choice of oviposition site in the mosquito Aedes aegypti.

    PubMed

    Hamilton, C E; Beresford, D V; Sutcliffe, J F

    2011-12-01

    The effects of natal experience on the oviposition behaviour of adult female mosquitoes were investigated in the laboratory using Aedes aegypti (L.) (Diptera: Culicidae). 'Treatment' mosquitoes were exposed to a dilute repellent (inducing stimulus) in their breeding water (aquatic stages) and/or in the air (adults) during various combinations of life stages [larval only (L regime); larval and pupal (LP regime); larval, pupal and emergent adult (LPE regime); larval, pupal, emergent adult and adult (LPEA regime); pupal, emergent adult and adult (PEA regime); adult only (A regime)]. 'Control' mosquitoes were raised in an identical manner, but were not exposed to the inducing stimulus. The oviposition behaviour of treatment and control females was assessed in an oviposition assay that presented a choice of water with or without the inducing stimulus. Of the 435 mosquitoes tested in the experiment, 176 were non-distributors (i.e. laid all of their eggs in only one of the choices). Treatment females (distributors plus non-distributors) reared in the presence of the inducing stimulus throughout their lives (LPEA regime) showed a significant preference for the oviposition option containing the inducing stimulus (24/36 females) compared with corresponding controls (5/39 females). Distributors reared under the LPEA and PEA regimes also showed this preference (6/6 treatment vs. 2/29 control females, and 13/18 treatment vs. 7/23 control females, respectively). Females that had been exposed to the inducing stimulus as either immatures or adults only showed no preference for, and some showed an aversion to, the treatment oviposition option. This is interpreted as evidence for a natal habitat preference induction (NHPI) in this species, albeit one that requires extensive reinforcement in the adult stage. This adult experience-reinforced NHPI (AER-NHPI) is discussed in terms of its adaptive significance for container breeders, the possible timing mechanism and sensory basis of

  7. Workbook on Identification of Aedes Aegypti Larvae.

    ERIC Educational Resources Information Center

    Pratt, Harry D.; And Others

    This self-instructional booklet is designed to enable yellow fever control workers to identify the larvae of "Aedes aegypti." The morphological features of mosquito larvae are illustrated in this partially programed text, and the distinguishing features of "A. aegypti" indicated. A glossary is included. (AL)

  8. On the analysis of parasite effect for Aedes aegypti and Aedes albopictus population

    NASA Astrophysics Data System (ADS)

    Kallista, Meta; Aldila, Dipo; Nuraini, Nuning; Soewono, Edy

    2014-03-01

    It has been reported in some countries that the population of Aedes aegypti has been significantly reduced by the invasion of Aedes albopictus. There has been a hypothesis explaining this phenomenon of which investigated the influence of parasites pathogenesis to the competition between these two mosquito species in the fields. Ascogregarina taiwanensis and Ascogregarina culicis are known as parasites that infect Aedes albopictus and Aedes aegypti, respectively. Several studies have concluded that Ascogregarina taiwanensis caused high fatality for Aedes aegypti larvae, but Ascogregarina culicis was not pathogenic to Aedes albopictus larvae. Therefore, Ascogregarina taiwanensis may contribute to reduce the number of populations Aedes aegypti in the fields. Inspired by these facts, a mathematical model depicting interaction between parasites and mosquitoes is constructed in this paper. In this model are included six dynamic mosquito compartments, i.e. egg, larvae, infected larvae, adult, infected adult and one dynamic compartment for parasite. Derivation of the existence criteria and the stability analysis of parasite-free equilibrium as well as the basic offspring for the model are presented. Numerical simulations for sensitivity analysis indicating the invasive species for variation parameters are shown.

  9. Effect of temperature on the population dynamics of Aedes aegypti

    NASA Astrophysics Data System (ADS)

    Yusoff, Nuraini; Tokachil, Mohd Najir

    2015-10-01

    Aedes aegypti is one of the main vectors in the transmission of dengue fever. Its abundance may cause the spread of the disease to be more intense. In the study of its biological life cycle, temperature was found to increase the development rate of each stage of this species and thus, accelerate the process of the development from egg to adult. In this paper, a Lefkovitch matrix model will be used to study the stage-structured population dynamics of Aedes aegypti. In constructing the transition matrix, temperature will be taken into account. As a case study, temperature recorded at the Subang Meteorological Station for year 2006 until 2010 will be used. Population dynamics of Aedes aegypti at maximum, average and minimum temperature for each year will be simulated and compared. It is expected that the higher the temperature, the faster the mosquito will breed. The result will be compared to the number of dengue fever incidences to see their relationship.

  10. New Records of Aedes aegypti In Southern Oklahoma, 2016.

    PubMed

    Bradt, David L; Bradley, Kristy K; Hoback, W Wyatt; Noden, Bruce H

    2017-03-01

    Aedes aegypti is an important subtropical vector species and is predicted to have a limited year-round distribution in the southern United States. Collection of the species has not been officially verified in Oklahoma since 1940. Adult mosquitoes were collected in 42 sites across 7 different cities in Oklahoma using 3 different mosquito traps between May and September 2016. Between July and September 2016, 88 Ae. aegypti adults were collected at 18 different sites in 4 different cities across southern Oklahoma. Centers for Disease Control and Prevention mini light traps baited with CO2 attracted the highest numbers of Ae. aegypti individuals compared to Biogents (BG)-Sentinel(®) traps baited with Biogents (BG)-lure and octenol and Centers for Disease Control and Prevention gravid traps baited with Bermuda grass-infused water. The discovery of Ae. aegypti mosquitoes within urban/exurban areas in Oklahoma is important from an ecological as well as a public health perspective.

  11. Investigation of relationships between Aedes aegypti egg, larvae, pupae, and adult density indices where their main breeding sites were located indoors.

    PubMed

    Romero-Vivas, Claudia M E; Falconar, Andrew K I

    2005-03-01

    Aedes aegypti (L.) density indices obtained in a dengue fever (DF) endemic area were compared. One hundred and twenty premises, in an urban area of Colombia where dengue type-1 and type-2 virus cocirculated, were randomly selected and sampled for 7 months. The geometric mean monthly numbers (density index, DI) of Ae. aegypti eggs (ODI), 4th instar larvae (LDI), pupae (PDI), and adults (ADI) were calculated based on the use of ovitraps, nets, and manual aspirators, respectively. A negative temporal correlation was observed between the LDI and the ODI (r = -0.83, df = 5, and P < 0.01). Positive temporal correlations were only observed between the LDI and the PDI (r = 0.90, df = 5, and P < 00.5) and the Breteau and House indices (r = 0.86, df = 5, and P < 0.01). No other correlations were found between these indices and any of the other density indices or the incidence of suspected DF cases in residents, the temperature, the rainfall, or seasonal fluctuations. Our results were, therefore, probably due to the most productive Ae. aegypti breeding sites (large water containers) being located indoors within this study area. The number of adult female Ae. aegypti/person (n = 0.5) and pupae/person (n = 11) in our study area were lower and dramatically higher than the transmission thresholds previously reported for adult and pupae, respectively. Because there were confirmed DF cases during the study period, the transmission threshold based on the Ae. aegypti pupae was clearly more reliable. We found that the mean ovitrap premise index (OPI) was 98.2% during this study and that the mean larval (L-4th instars) premise index (LPI) was 59.2%, and therefore we suggest that the OPI and LPI would be more sensitive methods to gauge the effectiveness of A. aegypti control programs.

  12. Global genetic diversity of Aedes aegypti.

    PubMed

    Gloria-Soria, Andrea; Ayala, Diego; Bheecarry, Ambicadutt; Calderon-Arguedas, Olger; Chadee, Dave D; Chiappero, Marina; Coetzee, Maureen; Elahee, Khouaildi Bin; Fernandez-Salas, Ildefonso; Kamal, Hany A; Kamgang, Basile; Khater, Emad I M; Kramer, Laura D; Kramer, Vicki; Lopez-Solis, Alma; Lutomiah, Joel; Martins, Ademir; Micieli, Maria Victoria; Paupy, Christophe; Ponlawat, Alongkot; Rahola, Nil; Rasheed, Syed Basit; Richardson, Joshua B; Saleh, Amag A; Sanchez-Casas, Rosa Maria; Seixas, Gonçalo; Sousa, Carla A; Tabachnick, Walter J; Troyo, Adriana; Powell, Jeffrey R

    2016-11-01

    Mosquitoes, especially Aedes aegypti, are becoming important models for studying invasion biology. We characterized genetic variation at 12 microsatellite loci in 79 populations of Ae. aegypti from 30 countries in six continents, and used them to infer historical and modern patterns of invasion. Our results support the two subspecies Ae. aegypti formosus and Ae. aegypti aegypti as genetically distinct units. Ae. aegypti aegypti populations outside Africa are derived from ancestral African populations and are monophyletic. The two subspecies co-occur in both East Africa (Kenya) and West Africa (Senegal). In rural/forest settings (Rabai District of Kenya), the two subspecies remain genetically distinct, whereas in urban settings, they introgress freely. Populations outside Africa are highly genetically structured likely due to a combination of recent founder effects, discrete discontinuous habitats and low migration rates. Ancestral populations in sub-Saharan Africa are less genetically structured, as are the populations in Asia. Introduction of Ae. aegypti to the New World coinciding with trans-Atlantic shipping in the 16th to 18th centuries was followed by its introduction to Asia in the late 19th century from the New World or from now extinct populations in the Mediterranean Basin. Aedes mascarensis is a genetically distinct sister species to Ae. aegypti s.l. This study provides a reference database of genetic diversity that can be used to determine the likely origin of new introductions that occur regularly for this invasive species. The genetic uniqueness of many populations and regions has important implications for attempts to control Ae. aegypti, especially for the methods using genetic modification of populations.

  13. Oviposition-altering and ovicidal potentials of five essential oils against female adults of the dengue vector, Aedes aegypti L.

    PubMed

    Warikoo, Radhika; Wahab, Naim; Kumar, Sarita

    2011-10-01

    The oviposition deterrence and ovicidal potential of five different essential oils, peppermint oil (Mentha piperita), basil oil (Ocimum basilicum), rosemary oil (Rosemarinus officinalis), citronella oil (Cymbopogon nardus), and celery seed oil (Apium graveolens), were assessed against female adults of the dengue vector, Aedes aegypti L. Multiple concentration tests were carried out where cups containing 1 mL of different concentrations (100%, 10%, 1%, 0.1%) of the oils and 199 mL of water were used for oviposition. The number of eggs laid and the larvae hatched in each cup were scored to evaluate the oviposition deterrent and ovicidal potentials of the oils. Our investigations revealed that the addition of 100% oil (pure oil) caused complete oviposition deterrence except in A. graveolens which resulted in 75% effective repellency. The use of 10% oil resulted in the maximum deterrence of 97.5% as shown by the M. piperita oil while other oils caused 36-97% oviposition deterrence as against the control. The oviposition medium with 1% oil showed decreased deterrent potential with 30-64% effective repellency, the M. piperita oil being exceptional. However, as the concentrations of the oil were reduced further to 0.1%, the least effective oil observed was A. graveolens (25% ER). Also, the M. piperita oil showed much reduced activity (40%) as compared to the control, while the other oils exhibited 51-58% repellency to oviposition. The studies on the ovicidal effects of these oils revealed that the eggs laid in the water with 100% essential oils did not hatch at all, whereas when 10% oils were used, only the R. officinalis oil resulted in 28% egg hatch. At lower concentrations (1%), the oils of M. piperita, O. basilicum, and C. nardus showed complete egg mortality while those of A. graveolens and R. officinalis resulted in 71% and 34% egg hatches, respectively. When used at 0.1%, the O. basilicum oil was found to be the only effective oil with 100% egg mortality, whereas

  14. The heterodimeric glycoprotein hormone, GPA2/GPB5, regulates ion transport across the hindgut of the adult mosquito, Aedes aegypti.

    PubMed

    Paluzzi, Jean-Paul; Vanderveken, Mark; O'Donnell, Michael J

    2014-01-01

    A family of evolutionarily old hormones is the glycoprotein cysteine knot-forming heterodimers consisting of alpha- (GPA) and beta-subunits (GPB), which assemble by noncovalent bonds. In mammals, a common glycoprotein hormone alpha-subunit (GPA1) pairs with unique beta-subunits that establish receptor specificity, forming thyroid stimulating hormone (GPA1/TSHβ) and the gonadotropins luteinizing hormone (GPA1/LHβ), follicle stimulating hormone (GPA1/FSHβ), choriogonadotropin (GPA1/CGβ). A novel glycoprotein heterodimer was identified in vertebrates by genome analysis, called thyrostimulin, composed of two novel subunits, GPA2 and GPB5, and homologs occur in arthropods, nematodes and cnidarians, implying that this neurohormone system existed prior to the emergence of bilateral metazoans. In order to discern possible physiological roles of this hormonal signaling system in mosquitoes, we have isolated the glycoprotein hormone genes producing the alpha- and beta-subunits (AedaeGPA2 and AedaeGPB5) and assessed their temporal expression profiles in the yellow and dengue-fever vector, Aedes aegypti. We have also isolated a putative receptor for this novel mosquito hormone, AedaeLGR1, which contains features conserved with other glycoprotein leucine-rich repeating containing G protein-coupled receptors. AedaeLGR1 is expressed in tissues of the alimentary canal such as the midgut, Malpighian tubules and hindgut, suggesting that this novel mosquito glycoprotein hormone may regulate ionic and osmotic balance. Focusing on the hindgut in adult stage A. aegypti, where AedaeLGR1 was highly enriched, we utilized the Scanning Ion-selective Electrode Technique (SIET) to determine if AedaeGPA2/GPB5 modulated cation transport across this epithelial tissue. Our results suggest that AedaeGPA2/GPB5 does indeed participate in ionic and osmotic balance, since it appears to inhibit natriuresis and promote kaliuresis. Taken together, our findings imply this hormone may play an important

  15. Laboratory evaluation of the response of Aedes aegypti and Aedes albopictus uninfected and infected with dengue virus to deet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Laboratory studies were conducted to compare the response of Aedes aegypti (L.) and Aedes albopictus (Skuse) adults, uninfected and infected with four serotypes of dengue virus, to a repellent containing 5% deet. The results showed that mosquitoes infected with the four serotypes of dengue respond i...

  16. Dynamics of Aedes aegypti and Culex quinquefasciatus in septic tanks.

    PubMed

    Mackay, Andrew J; Amador, Manuel; Diaz, Annette; Smith, Josh; Barrera, Roberto

    2009-12-01

    Aedes aegypti and Culex quinquefasciatus were found in large numbers emerging from septic tanks in southern Puerto Rico during the dry season. Previous studies suggested that Ae. aegypti uses subterranean aquatic habitats only during dry periods when surface containers do not have water. This research investigated whether septic tanks are alternative aquatic habitats that this mosquito uses during unfavorable times of the year, or whether Ae. aegypti uses this aquatic habitat throughout the year. To assess temporal change, exit traps were used to collect mosquitoes emerging from septic tanks in Playa/Playita, southern Puerto Rico, from November 2006 to October 2007. We also investigated the hypotheses that (1) the production of Ae. aegypti in septic tanks was larger than in surface containers and (2) adult mosquitoes emerging from septic tanks were larger than those emerging from surface containers. This study demonstrated that unsealed septic tanks produced large numbers of Ae. aegypti and Cx. quinquefasciatus throughout the year, without any significant relationship with rainfall. The number of adult Ae. aegypti emerging per day from septic tanks in each community was 3 to 9 times larger than those produced in surface containers. It was also demonstrated that Ae. aegypti emerging from septic tanks were significantly larger than those emerging from surface container habitats. It is recommended that dengue prevention programs include regular inspection and maintenance of septic tanks in communities lacking sewerage.

  17. Sampling biases of the BG-sentinel trap with respect to physiology, age, and body size of adult Aedes aegypti (Diptera: Culicidae).

    PubMed

    Ball, Tamara S; Ritchie, Scott R

    2010-07-01

    Currently, Aedes aegypti (L.) control strategies are being developed that involve manipulation of the vector at the adult stage (e.g., the use of the bacterial endosymbiont Wolbachia to shorten the life span of the vector population). These novel strategies demand adult sampling methods to measure changes in population size, structure (age, sex ratio), and, ultimately, the success of the program. Each sampling method presents certain biases. Once these biases are defined, methods used to estimate population size and structure can be calibrated accordingly, resulting in more accurate and complex estimates of the vector population. A series of mark-release-recapture experiments with adult Ae. aegypti were conducted in a large outdoor flight cage and an indoor setting in far north Queensland, Australia. The biases of the BG-Sentinel trap (BGS) were investigated across several categories, as follows: 1) mosquito age; 2) sex; 3) physiological status; and 4) body size. Biases were not detected across age groups or body sizes. A significant bias was detected across physiological groups: nulliparous females were recaptured at a significantly lower rate than all other groups except blood-fed parous females, which were also recaptured at a low rate by the BGS. Males were recaptured at a higher rate than all groups, but only a significant difference in recapture rates was observed between males and nulliparous females. Previous studies show that the BGS is a highly effective tool for Ae. aegypti surveillance. The BGS proves to be a reliable tool in Ae. aegypti surveillance with consistent sampling outcomes. The sampling bias of the BGS is measurable and can be used to generate more accurate estimates of the adult population and its attributes.

  18. Vertical Transmission of Zika Virus in Aedes aegypti Mosquitoes

    PubMed Central

    Thangamani, Saravanan; Huang, Jing; Hart, Charles E.; Guzman, Hilda; Tesh, Robert B.

    2016-01-01

    Previous experimental studies have demonstrated that a number of mosquito-borne flavivirus pathogens are vertically transmitted in their insect vectors, providing a mechanism for these arboviruses to persist during adverse climatic conditions or in the absence of a susceptible vertebrate host. In this study, designed to test whether Zika virus (ZIKV) could be vertically transmitted, female Aedes aegypti and Aedes albopictus were injected with ZIKV, and their F1 adult progeny were tested for ZIKV infection. Six of 69 Ae. aegypti pools, comprised of a total of 1,738 F1 adults, yielded ZIKV upon culture, giving a minimum filial infection rate of 1:290. In contrast, none of 803 F1 Ae. albopictus adults (32 pools) yielded ZIKV. The MFIR for Ae. aegypti was comparable to MFIRs reported for other flaviviruses in mosquitoes, including dengue, Japanese encephalitis, yellow fever, West Nile, and St. Louis encephalitis viruses. The results suggest that vertical transmission may provide a potential mechanism for the virus to survive during adverse conditions. PMID:27573623

  19. Oviposition Habitat Selection of Dengue Vectors, Aedes aegypti and Aedes albopictus in Response to Fish Predator

    PubMed Central

    Zuharah, Wan Fatma; Fadzly, Nik; Wei, Wilson Ong Kang; Hashim, Zarul Hazrin

    2016-01-01

    To understand the effects of fish predator’s kairomones on Aedes mosquitoes’ oviposition, we established an experiment using gravid Aedes females. Kairomones concentrations were established using Hampala macrolepidota. One individual fish was placed inside containers with varying water levels (1 L, 5 L, and 10 L of water). The fish were kept in the containers for 24 hours and were removed immediately at the start of each trial in order to have the kairomones remnants. Twenty gravid adult females of Aedes aegypti and Aedes albopictus were allowed to lay eggs on oviposition site with various treatments: (1) control without any kairomones; (2) kairomone remnant in 1 L of water; (3) kairomone remnant in 5 L of water; and (4) kairomone remnant in 10 L of water. There are significant differences between the numbers of eggs laid by both Aedes species for each different treatment (F = 9.131, df = 16, p<0.001). However, fewer eggs were laid by Ae. albopictus compared to Ae. aegypti in the presence of kairomone remnants. This suggested that Ae. albopictus are significantly affected by the kairomones itself and have ability to detect the residual kairomone presence from H. macrolepidota. PMID:27965749

  20. Aedes aegypti resistance to temephos in Argentina.

    PubMed

    Seccacini, Emilia; Lucia, Alejandro; Zerba, Eduardo; Licastro, Susana; Masuh, Hector

    2008-12-01

    Monitoring of resistance of Aedes aegypti to temephos was implemented in the provinces of Formosa and Misiones, Argentina, as a response to the need to improve the vigilance for the dengue vector in areas of high risk of dengue. Eggs collected in each locality were reared, and susceptibility to temephos was assayed using larval bioassays. A weak decrease in susceptibility of larvae to temephos was observed in Clorinda and Puerto Iguazú, indicating an incipient resistance with a resistance ratio of 3. No control failures have been observed yet, and this program should allow the early detection of a real problem in our country.

  1. Prevalence of Aedes aegypti Linnaeus and Aedes albopictus Skuse in Koderma, Jharkhand.

    PubMed

    Singh, R K; Dhiman, R C; Dua, V K

    2011-09-01

    Entomological survey was carried out in different localities of Koderma district of Jharkhand with a view to study the prevalence, distribution and stratification of areas for Aedes mosquito species. A total of 233 houses were covered during house to house larval and adult survey. Aedes breeding could be detected in 157 houses. In all, a total of 942 domestic water containers were searched, out of which 461 were found positive. The overall house index(HI) container index(CI) breteau index(B1) and pupal index(PI) were 67.38%, 48.94%, 197.85% and 79.4%, respectively. The survey revealed that Aedes aegypti Linnaeus and Aedes albopictus Skuse are well established in Koderma with most of the areas showing high adult and larval indices. The preventive strategy needs to be directed towards minimizing the breeding potential of Aedes and water management practice by individuals along with implementation of urban bye-laws as well as IEC activities to contain Aedes breeding in future.

  2. Mosquito attractant blends to trap host seeking Aedes aegypti.

    PubMed

    Mathew, Nisha; Ayyanar, Elango; Shanmugavelu, Sabesan; Muthuswamy, Kalyanasundaram

    2013-03-01

    Aedes aegypti is the key vector of three important arboviral diseases -dengue, yellow fever and chikungunya. To identify volatile chemicals which could be used in odour based traps for Aedes mosquito surveillance, a few synthetic compounds and compound blends have been evaluated in an indigenously designed olfactometer. A total of 24 compounds and seven compound blends were screened against unfed adult female Ae. aegypti mosquitoes for attraction and compared with control group. The attractancy or repellency index of the test material to mosquitoes was calculated and rated them as class-1, class-2 and class-3 with rating values ranging 1-15, 16-33 and 34-100 respectively. Out of the 24 compounds tested, six were showing significant attractancy (P < 0.05) and among that 1-octene-3-ol showed maximum attractancy with a rating value of 57.81. Sixteen compounds showed significant repellency (P < 0.05) and among that with a rating value of 72.47, 1-hexene-3-ol showed strong repellent action against Ae. aegypti. All the seven blends showed significant mosquito attractancy (P < 0.05) and among that with a rating of 62.08 Myristic acid, Lactic acid and CO(2) blend exhibited first-rate mosquito attractancy.

  3. Effect of Quorum Sensing by Staphylococcus epidermidis on the Attraction Response of Female Adult Yellow Fever Mosquitoes, Aedes aegypti aegypti (Linnaeus) (Diptera: Culicidae), to a Blood-Feeding Source

    PubMed Central

    Zhang, Xinyang; Crippen, Tawni L.; Coates, Craig J.; Wood, Thomas K.; Tomberlin, Jeffery K.

    2015-01-01

    Aedes aegypti, the principal vector of yellow fever and dengue fever, is responsible for more than 30,000 deaths annually. Compounds such as carbon dioxide, amino acids, fatty acids and other volatile organic compounds (VOCs) have been widely studied for their role in attracting Ae. aegypti to hosts. Many VOCs from humans are produced by associated skin microbiota. Staphyloccocus epidermidis, although not the most abundant bacteria according to surveys of relative 16S ribosomal RNA abundance, commonly occurs on human skin. Bacteria demonstrate population level decision-making through quorum sensing. Many quorum sensing molecules, such as indole, volatilize and become part of the host odor plum. To date, no one has directly demonstrated the link between quorum sensing (i.e., decision-making) by bacteria associated with a host as a factor regulating arthropod vector attraction. This study examined this specific question with regards to S. epidermidis and Ae. aegypti. Pairwise tests were conducted to examine the response of female Ae. aegypti to combinations of tryptic soy broth (TSB) and S. epidermidis wildtype and agr- strains. The agr gene expresses an accessory gene regulator for quorum sensing; therefore, removing this gene inhibits quorum sensing of the bacteria. Differential attractiveness of mosquitoes to the wildtype and agr- strains was observed. Both wildtype and the agr- strain of S. epidermidis with TSB were marginally more attractive to Ae. aegypti than the TSB alone. Most interestingly, the blood-feeder treated with wildtype S. epidermidis/TSB attracted 74% of Ae. aegypti compared to the agr- strain of S. epidermidis/TSB (P ≤ 0.0001). This study is the first to suggest a role for interkingdom communication between host symbiotic bacteria and mosquitoes. This may have implications for mosquito decision-making with regards to host detection, location and acceptance. We speculate that mosquitoes “eavesdrop” on the chemical discussions occurring

  4. Effect of Quorum Sensing by Staphylococcus epidermidis on the Attraction Response of Female Adult Yellow Fever Mosquitoes, Aedes aegypti aegypti (Linnaeus) (Diptera: Culicidae), to a Blood-Feeding Source.

    PubMed

    Zhang, Xinyang; Crippen, Tawni L; Coates, Craig J; Wood, Thomas K; Tomberlin, Jeffery K

    2015-01-01

    Aedes aegypti, the principal vector of yellow fever and dengue fever, is responsible for more than 30,000 deaths annually. Compounds such as carbon dioxide, amino acids, fatty acids and other volatile organic compounds (VOCs) have been widely studied for their role in attracting Ae. aegypti to hosts. Many VOCs from humans are produced by associated skin microbiota. Staphyloccocus epidermidis, although not the most abundant bacteria according to surveys of relative 16S ribosomal RNA abundance, commonly occurs on human skin. Bacteria demonstrate population level decision-making through quorum sensing. Many quorum sensing molecules, such as indole, volatilize and become part of the host odor plum. To date, no one has directly demonstrated the link between quorum sensing (i.e., decision-making) by bacteria associated with a host as a factor regulating arthropod vector attraction. This study examined this specific question with regards to S. epidermidis and Ae. aegypti. Pairwise tests were conducted to examine the response of female Ae. aegypti to combinations of tryptic soy broth (TSB) and S. epidermidis wildtype and agr- strains. The agr gene expresses an accessory gene regulator for quorum sensing; therefore, removing this gene inhibits quorum sensing of the bacteria. Differential attractiveness of mosquitoes to the wildtype and agr- strains was observed. Both wildtype and the agr- strain of S. epidermidis with TSB were marginally more attractive to Ae. aegypti than the TSB alone. Most interestingly, the blood-feeder treated with wildtype S. epidermidis/TSB attracted 74% of Ae. aegypti compared to the agr- strain of S. epidermidis/TSB (P ≤ 0.0001). This study is the first to suggest a role for interkingdom communication between host symbiotic bacteria and mosquitoes. This may have implications for mosquito decision-making with regards to host detection, location and acceptance. We speculate that mosquitoes "eavesdrop" on the chemical discussions occurring between

  5. Field validation of the gravid Aedes trap (GAT) for collection of Aedes aegypti (Diptera: Culicidae).

    PubMed

    Ritchie, Scott A; Buhagiar, Tamara S; Townsend, Michael; Hoffmann, Ary; Van Den Hurk, Andrew F; McMahon, Jamie L; Eiras, Alvaro E

    2014-01-01

    Current surveillance methods for adult Aedes aegypti (L.) are expensive, require electrical power (e.g., the BG-Sentinel trap, BGS), are labor intensive (aspirators), or require difficult to use and costly adhesives (sticky ovitraps). Field trials were conducted in Cairns (Australia) to compare the efficacy of the newly designed Gravid Aedes Trap (GAT) against existing sticky ovitraps (MosquiTRAP and double sticky ovitrap) and the BGS. Latin square design trials confirmed that alarge GAT using a 9.2-liters bucket treated with Mortein Barrier Outdoor Surface Spray ([AI] 0.3 g/kg imiprothrin and 0.6 g/kg deltamethrin) outperformed a smaller 1.2-liters GAT and collected, on average, 3.7x and 2.4X more female Ae. aegypti than the MosquiTRAP and double sticky ovitrap, respectively. Field trials showed that the GAT collected 10-50% less female Ae. aegypti than the BGS trap but 30% more gravid mosquitoes than the BGS. Trials using the BGS and the GAT indicated that there was no difference in capture rates between female Ae. aegypti uninfected and infected with the wMel strain of Wolbachia, and wMel infection rates were nearly identical at >90% to field captured Ae. aegypti. The potential for the GAT to be used for dengue virus surveillance was also demonstrated with dengue virus type 3 RNA detected in five-sixths and six-sixths pools ofAe. aegypti stored in a GAT held at 28 degreeC and 60% relative humidity for 7 and 14 d, respectively. Mosquito knock down in GATs treated with Mortein surface spray set in 30, 70, and 99% shade was comparable for up to 2 mo, with only approximately 10% of adults escaping. The GAT is therefore a useful tool for capturing adult Ae. aegypti and may be suitable for other container-inhabiting species such as Aedes albopictus (Skuse) and Culex quinquefasciatus Say. The low cost and practicality of operation make the GAT suitable for vector surveillance and projects requiring monitoring of mosquitoes for Wolbachia and arboviruses, especially in

  6. Truck-mounted area-wide application of pyriproxyfen targeting Aedes aegypti and Aedes albopictus in northeast Florida

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was conducted to determine the efficacy of truck-mounted ULV applications of pyriproxyfen against Aedes aegypti larvae in artificial water containers and wild adult Ae. albopictus populations in an urban setting. The study was conducted over a 3 ½ month period (Jun – Oct 2012), during wh...

  7. The effect of photoperiod on life history and blood-feeding activity in Aedes albopictus and Aedes aegypti (Diptera: Culicidae).

    PubMed

    Costanzo, K S; Schelble, S; Jerz, K; Keenan, M

    2015-06-01

    Several studies have examined how climatic variables such as temperature and precipitation may affect life history traits in mosquitoes that are important to disease transmission. Despite its importance as a seasonal cue in nature, studies investigating the influence of photoperiod on such traits are relatively few. This study aims to investigate how photoperiod alters life history traits, survival, and blood-feeding activity in Aedes albopictus (Skuse) and Aedes aegypti (Linnaeus). We performed three experiments that tested the effects of day length on female survival, development time, adult size, fecundity, adult life span, and propensity to blood feed in Ae. albopictus and Ae. aegypti. Each experiment had three photoperiod treatments: 1) short-day (10L:14D), 2) control (12L:12D), and 3) long-day (14L:10D). Aedes albopictus adult females were consistently larger in size when reared in short-day conditions. Aedes aegypti adult females from short-day treatments lived longer and were more likely to take a blood meal compared to other treatments. We discuss how species-specific responses may reflect alternative strategies evolved to increase survival during unfavorable conditions. We review the potential impacts of these responses on seasonal transmission patterns, such as potentially increasing vectorial capacity of Ae. aegypti during periods of shorter day lengths.

  8. Burchellin: study of bioactivity against Aedes aegypti

    PubMed Central

    2014-01-01

    Background The dengue mosquito Aedes aegypti Linnaeus, 1762 is a widespread insect pest of serious medical importance. Since no effective vaccine is available for treating dengue, the eradication or control of the main mosquito vector is regarded as essential. Since conventional insecticides have limited success, plants may be an alternative source of larvicidal agents, since they contain a rich source of bioactive chemicals. The aim of this study was to evaluate the larvicidal activity of the neolignan burchellin isolated from Ocotea cymbarum (Lauraceae), a plant from the Amazon region, against third instar larvae of A. aegypti. Methods Burchellin obtained from O. cymbarum was analyzed. The inhibitory activity against A. aegypti eggs and larvae and histological changes in the digestive system of treated L3 larvae were evaluated. In addition, nitric oxide synthase activity and nitric oxide levels were determined, and cytotoxicity bioassays performed. Results The data showed that burchellin interfered with the development cycle of the mosquito, where its strongest toxic effect was 100% mortality in larvae (L3) at concentrations ≥ 30 ppm. This compound did not show target cell toxicity in peritoneal macrophages from BALB/c mice, and proved to have molecular stability when dissolved in water. The L3 and L4 larvae treated with the compound showed cellular destruction and disorganization, cell spacing, and vacuolization of epithelial cells in small regions of the midgut. Conclusion The neolignan burchellin proved to be a strong candidate for a natural, safe and stable phytolarvicidal to be used in population control of A. aegypti. PMID:24713267

  9. Pyrethroid resistance in Aedes aegypti and Aedes albopictus: Important mosquito vectors of human diseases.

    PubMed

    Smith, Letícia B; Kasai, Shinji; Scott, Jeffrey G

    2016-10-01

    Aedes aegypti and A. albopictus mosquitoes are vectors of important human disease viruses, including dengue, yellow fever, chikungunya and Zika. Pyrethroid insecticides are widely used to control adult Aedes mosquitoes, especially during disease outbreaks. Herein, we review the status of pyrethroid resistance in A. aegypti and A. albopictus, mechanisms of resistance, fitness costs associated with resistance alleles and provide suggestions for future research. The widespread use of pyrethroids has given rise to many populations with varying levels of resistance worldwide, albeit with substantial geographical variation. In adult A. aegypti and A. albopictus, resistance levels are generally lower in Asia, Africa and the USA, and higher in Latin America, although there are exceptions. Susceptible populations still exist in several areas of the world, particularly in Asia and South America. Resistance to pyrethroids in larvae is also geographically widespread. The two major mechanisms of pyrethroid resistance are increased detoxification due to P450-monooxygenases, and mutations in the voltage sensitive sodium channel (Vssc) gene. Several P450s have been putatively associated with insecticide resistance, but the specific P450s involved are not fully elucidated. Pyrethroid resistance can be due to single mutations or combinations of mutations in Vssc. The presence of multiple Vssc mutations can lead to extremely high levels of resistance. Suggestions for future research needs are presented.

  10. The Genetics of Chemoreception in the Labella and Tarsi of Aedes aegypti

    DTIC Science & Technology

    2014-01-01

    The genetics of chemoreception in the labella and tarsi of Aedes aegypti Jackson T. Sparks, Jonathan D. Bohbot, Joseph C. Dickens* United States...labella and tarsi of both sexes of adult Ae. aegypti and discuss their possible roles in the physiology and behavior of this important disease vector...Recently, Ionotropic Receptors have also been shown to play a role in DEET avoidance in D. melanogaster (Kain et al., 2013), highlighting the need to

  11. Reappearance of Aedes aegypti (Diptera: Culicidae) in Lima, Peru.

    PubMed

    Andrade, C S; Cáceres, A G; Vaquerizo, A; Ibañez-Bernal, S; Cachay, L S

    2001-07-01

    We report here the reappearance of Aedes aegypti in the Rimac district, and summarize the history of this mosquito species in Peru since its first detection in 1852. On March 17 2000 were found Ae. aegypti and Culex quinquefasciatus in Mariscal Castilla town, Flor de Amancaes, San Juan de Amancaes, El Altillo and Santa Rosa in the Rimac district, Lima Province.

  12. Age-Stage, Two-Sex Life Table Characteristics of Aedes albopictus and Aedes Aegypti in Penang Island, Malaysia.

    PubMed

    Maimusa, Hamisu A; Ahmad, Abu Hassan; Kassim, Nur Faeza A; Rahim, Junaid

    2016-03-01

    The life table developmental attributes of laboratory colonies of wild strains of Aedes albopictus and Aedes aegypti were analyzed and compared based on the age-stage, two-sex life table. Findings inclusive in this study are: adult preoviposition periods, total preoviposition period, mean intrinsic rate of increase (r), mean finite rate of increase (λ), net reproductive rates (R0), and mean generation time (T). The total preadult development time was 9.47 days for Ae. albopictus and 8.76 days for Ae. aegypti. The life expectancy was 19.01 days for Ae. albopictus and 19.94 days for Ae. aegypti. Mortality occurred mostly during the adult stage. The mean development time for each stage insignificantly correlated with temperature for Ae. albopictus (r  =  -0.208, P > 0.05) and (r  =  -0.312, P > 0.05) for Ae. aegypti. The population parameters suggest that Ae. albopictus and Ae. aegypti populations are r-strategists characterized by a high r, a large R0, and short T. This present study provides the first report to compare the life parameters of Ae. albopictus and Ae. aegypti strains from Penang island, Malaysia.

  13. Vertical Transmission of Zika Virus by Aedes aegypti and Ae. albopictus Mosquitoes.

    PubMed

    Ciota, Alexander T; Bialosuknia, Sean M; Ehrbar, Dylan J; Kramer, Laura D

    2017-05-15

    To determine the potential role of vertical transmission in Zika virus expansion, we evaluated larval pools of perorally infected Aedes. aegypti and Ae. albopictus adult female mosquitoes; ≈1/84 larvae tested were Zika virus-positive; and rates varied among mosquito populations. Thus, vertical transmission may play a role in Zika virus spread and maintenance.

  14. Toxicity of Cephalaria species and their individual constituents against Aedes aegypti

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crude acetone and ethanol extracts of the aerial parts of 21 Cephalaria species collected from Turkey were investigated for larvicidal and adult topical activity against Aedes aegypti. The ethanol extracts from C. elazigensis var. purpurea, C. anatolica, and C. elmaliensis possessed the highest mort...

  15. Functional Development of the Octenol Response in Aedes aegypti

    PubMed Central

    Bohbot, Jonathan D.; Durand, Nicolas F.; Vinyard, Bryan T.; Dickens, Joseph C.

    2013-01-01

    Attraction of female Aedes aegypti mosquitoes to 1-octen-3-ol (octenol), CO2, lactic acid, or ammonia emitted by vertebrate hosts is not only contingent on the presence of odorants in the environment, but is also influenced by the insect’s physiological state. For anautogenous mosquito species, like A. aegypti, newly emerged adult females neither respond to host odors nor engage in blood-feeding; the bases for these behaviors are poorly understood. Here we investigated detection of two components of an attractant blend emitted by vertebrate hosts, octenol, and CO2, by female A. aegypti mosquitoes using electrophysiological, behavioral, and molecular approaches. An increase in sensitivity of octenol olfactory receptor neurons (ORNs) was correlated with an increase in odorant receptor gene (Or) expression and octenol-mediated attractive behavior from day 1 to day 6 post-emergence. While the sensitivity of octenol ORNs was maintained through day 10, behavioral responses to octenol decreased as did the ability of females to discriminate between octenol and octenol + CO2. Our results show differing age-related roles for the peripheral receptors for octenol and higher order neural processing in the behavior of female mosquitoes. PMID:23471139

  16. Detection of Aedes aegypti, Aedes albopictus, and Aedes koreicus in the Area of Sochi, Russia.

    PubMed

    Ganushkina, Ludmila A; Patraman, Ivan V; Rezza, Giovanni; Migliorini, Luigi; Litvinov, Serguei K; Sergiev, Vladimir P

    2016-01-01

    Following the identification of Aedes (Ae.) aegypti in the Sochi area in Russia at the beginning of 2000, entomological surveys were conducted during the summers of 2007, 2011, and 2012, leading to the identification of Ae. albopictus and Ae. koreicus. These findings highlight Russia as being the only country in the World Health Organization European Region with a documented presence of both Ae. aegypti and Ae. albopictus mosquitoes. Both mosquito species are found on the coasts of the Black Sea. Control measures are needed to reduce the possible risks of importing exotic vector-borne infections, such as dengue and chikungunya.

  17. Aedes aegypti (L.) and Aedes albopictus (Skuse) in Singapore City

    PubMed Central

    Chan, K. L.; Chan, Y. C.; Ho, B. C.

    1971-01-01

    There is a current belief stemming from statements made in the literature that Ae. aegypti is displacing Ae. albopictus in a number of cities of South-East Asia and in Calcutta, India. A critical review of these works showed that either the observations were inconclusive or the methods of collection were biased for one or the other species. Extensive surveys of the larval habitats of the two species in Singapore showed that the sharing of breeding habitats was uncommon in both urban and rural areas. In the laboratory, Ae. aegypti took a slightly shorter time to complete its development from egg-hatching to adult emergence. It is concluded that information available at present is insufficient to interpret the Ae. aegypti—Ae. albopictus population balance resulting from interspecific competition in Singapore. The pattern of distribution of the two species is unlikely to be the result of competitive displacement; it is, rather, probable that this pattern results from factors that favour the rapid increase and spread of one species over the other. It is suggested that Ae. aegypti in the city is favoured by rapid and extensive urbanization and by the higher fecundity and shorter life cycle of the species. PMID:5316748

  18. Indoor Resting Behavior of Aedes aegypti (Diptera: Culicidae) in Acapulco, Mexico.

    PubMed

    Dzul-Manzanilla, Felipe; Ibarra-López, Jésus; Bibiano Marín, Wilbert; Martini-Jaimes, Andrés; Leyva, Joel Torres; Correa-Morales, Fabián; Huerta, Herón; Manrique-Saide, Pablo; Prokopec, Gonzalo Vazquez M

    2016-12-22

    The markedly anthropophilic and endophilic behaviors of Aedes aegypti (L.) make it a very efficient vector of dengue, chikungunya, and Zika viruses. Although a large body of research has investigated the immature habitats and conditions for adult emergence, relatively few studies have focused on the indoor resting behavior and distribution of vectors within houses. We investigated the resting behavior of Ae. aegypti indoors in 979 houses of the city of Acapulco, Mexico, by performing exhaustive indoor mosquito collections to describe the rooms and height at which mosquitoes were found resting. In total, 1,403 adult and 747 female Ae. aegypti were collected, primarily indoors (98% adults and 99% females). Primary resting locations included bedrooms (44%), living rooms (25%), and bathrooms (20%), followed by kitchens (9%). Aedes aegypti significantly rested below 1.5 m of height (82% adults, 83% females, and 87% bloodfed females); the odds of finding adult Ae. aegypti mosquitoes below 1.5 m was 17 times higher than above 1.5 m. Our findings provide relevant information for the design of insecticide-based interventions selectively targeting the adult resting population, such as indoor residual spraying.

  19. Bioefficacy of crude extract of Cyperus aromaticus (Family: Cyperaceae ) cultured cells, against Aedes aegypti and Aedes albopictus mosquitoes

    PubMed Central

    Kamiabi, Fatemeh; Jaal, Zairi; Keng, Chan Lai

    2013-01-01

    Objective To evaluate the growth inhibition activity of the crude extract of Cyperus aromaticus (C. aromaticus) cultured cells against the 3rd instar larvae of Aedes aegypti (Linn.) and Aedes albopictus Skuse (Ae. albopictus) under laboratory conditions, and determine the sublethal effects (EI50) of the crude extract of C. aromaticus cultured cells on some biological and morphological parameters of both Aedes mosquito species during two generations as well. Methods The cell suspension cultures of C. aromaticus were activated from five callus lines (P4, Pa, Z1, Z6 and Ml) derived from the root explants of in vitro plantlets. The cultured cells were extracted in chloroform and used as plant material for the present study. For detection of juvenile hormone III, the crude extracts were analyzed by HPLC. Then the crude extracts of the three C. aromaticus cultured cell lines which contained varied amounts of juvenile hormone III [high level (P4 cell line), medium level (Z1 cell line) and low level (Ml cell line)] were tested against Aedes mosquito species. Laboratory evaluation was performed against late third instar larvae of the Vector Control Research Unit strains of Ae. aegypti and Ae. albopictus using the standard WHO method. The effects of EI50 of the C. aromaticus cultured P4 cells on fecundity, fertility, growth period, sex ratio, adult size and longevity of Aedes mosquitoes were assessed. Results Bioassay tests presented the remarkable growth inhibition activity of the crude extracts of C. aromaticus cultured cells against the two Aedes mosquitoes. Between the two mosquito species, Ae. albopictus was more susceptible to the crude extracts with lower EI50 values. EI50 of the crude extract of C. aromaticus cultured cells (P4) increased the sterility indices in the parental generation females in both Aedes mosquito species. A significant delay in the pupal formation and adult emergence were observed in the parental generation of the both mosquito species. The sex

  20. Mathematical model of temephos resistance in Aedes aegypti mosquito population

    NASA Astrophysics Data System (ADS)

    Aldila, D.; Nuraini, N.; Soewono, E.; Supriatna, A. K.

    2014-03-01

    Aedes aegypti is the main vector of dengue disease in many tropical and sub-tropical countries. Dengue became major public concern in these countries due to the unavailability of vaccine or drugs for dengue disease in the market. Hence, the only way to control the spread of DF and DHF is by controlling the vectors carrying the disease, for instance with fumigation, temephos or genetic manipulation. Many previous studies conclude that Aedes aegypti may develop resistance to many kind of insecticide, including temephos. Mathematical model for transmission of temephos resistance in Aedes aegypti population is discussed in this paper. Nontrivial equilibrium point of the system and the corresponding existence are shown analytically. The model analysis have shown epidemiological trends condition that permits the coexistence of nontrivial equilibrium is given analytically. Numerical results are given to show parameter sensitivity and some cases of worsening effect values for illustrating possible conditions in the field.

  1. Developmental neurogenetics of sexual dimorphism in Aedes aegypti

    PubMed Central

    Duman-Scheel, Molly; Syed, Zainulabeuddin

    2015-01-01

    Sexual dimorphism, a poorly understood but crucial aspect of vector mosquito biology, encompasses sex-specific physical, physiological, and behavioral traits related to mosquito reproduction. The study of mosquito sexual dimorphism has largely focused on analysis of the differences between adult female and male mosquitoes, particularly with respect to sex-specific behaviors related to disease transmission. However, sexually dimorphic behaviors are the products of differential gene expression that initiates during development and therefore must also be studied during development. Recent technical advancements are facilitating functional genetic studies in the dengue vector Aedes aegypti, an emerging model for mosquito development. These methodologies, many of which could be extended to other non-model insect species, are facilitating analysis of the development of sexual dimorphism in neural tissues, particularly the olfactory system. These studies are providing insight into the neurodevelopmental genetic basis for sexual dimorphism in vector mosquitoes. PMID:26949699

  2. Comparison of BG-Sentinel® Trap and Oviposition Cups for Aedes aegypti and Aedes albopictus Surveillance in Jacksonville, Florida, USA.

    PubMed

    Wright, Jennifer A; Larson, Ryan T; Richardson, Alec G; Cote, Noel M; Stoops, Craig A; Clark, Marah; Obenauer, Peter J

    2015-03-01

    The BG-Sentinel® (BGS) trap and oviposition cups (OCs) have both proven effective in the surveillance of Aedes species. This study aimed to determine which of the 2 traps could best characterize the relative population sizes of Aedes albopictus and Aedes aegypti in an urban section of Jacksonville, FL. Until 1986, Ae. aegypti was considered the dominant container-breeding species in urban northeastern Florida. Since the introduction of Ae. albopictus, Ae. aegypti has become almost completely extirpated. In 2011, a resurgence of Ae. aegypti was detected in the urban areas of Jacksonville; thus this study initially set out to determine the extent of Ae. aegypti reintroduction to the area. We determined that the BGS captured a greater number of adult Ae. aegypti than Ae. albopictus, while OCs did not monitor significantly different numbers of either species, even in areas where the BGS traps suggested a predominance of one species over the other. Both traps were effective at detecting Aedes spp.; however, the BGS proved more diverse by detecting over 20 other species as well. Our results show that in order to accurately determine vectorborne disease threats and the impact of control operations on these 2 species, multiple trapping techniques should be utilized when studying Ae. aegypti and Ae. albopictus population dynamics.

  3. Characteristics of the spatial pattern of the dengue vector, Aedes aegypti, in Iquitos, Peru.

    PubMed

    Getis, Arthur; Morrison, Amy C; Gray, Kenneth; Scott, Thomas W

    2003-11-01

    We determine the spatial pattern of Aedes aegypti and the containers in which they develop in two neighborhoods of the Amazonian city of Iquitos, Peru. Four variables were examined: adult Ae. aegypti, pupae, containers positive for larvae or pupae, and all water-holding containers. Adults clustered strongly within houses and weakly to a distance of 30 meters beyond the household; clustering was not detected beyond 10 meters for positive containers or pupae. Over short periods of time restricted flight range and frequent blood-feeding behavior of Ae. aegypti appear to be underlying factors in the clustering patterns of human dengue infections. Permanent, consistently infested containers (key premises) were not major producers of Ae. aegypti, indicating that larvaciding strategies by themselves may be less effective than reduction of mosquito development sites by source reduction and education campaigns. We conclude that entomologic risk of human dengue infection should be assessed at the household level at frequent time intervals.

  4. Geographic distribution of Aedes aegypti and Aedes albopictus collected from used tires in Vietnam.

    PubMed

    Higa, Yukiko; Yen, Nguyen Thi; Kawada, Hitoshi; Son, Tran Hai; Hoa, Nguyen Thuy; Takagi, Masahiro

    2010-03-01

    The spatial distribution of Aedes aegypti and Aedes albopictus in environmental and geographical zones, e.g., urban-rural, coastal-mountainous, and north-south, was investigated throughout Vietnam. Immature stages were collected from used tires along roads. The effects of regions, seasons, and the degree of urbanization on the density and the frequency were statistically analyzed. Aedes aegypti predominated in the southern and central regions, while Ae. albopictus predominated in the northern region, which may be related to climatic conditions (temperature and rainfall). Larval collection from used tires may be suitable to assess rapidly the current distribution of dengue mosquitoes for estimating health risks and implementing vector control measures.

  5. Aedes cadherin mediates the in vivo toxicity of the Cry11Aa toxin to Aedes aegypti

    PubMed Central

    Aimanova, Karlygash G.; Gill, Sarjeet S.

    2014-01-01

    Cadherin plays an important role in the toxicity of Bacillus thuringiensis Cry proteins. We previously cloned a full-length cadherin from Aedes aegypti larvae and reported this protein binds Cry11Aa toxin from B. thuringiensis subsp. israelensis with high affinity, ≈ 16.7 nM. Based on these results, we investigated if Aedes cadherin is involved in the in vivo toxicity of Cry11Aa toxin to Ae. aegypti. We established a mosquito cell line stably expressing the full-length Aedes cadherin and transgenic mosquitoes with silenced Aedes cadherin expression. Cells expressing the Aedes cadherin showed increased sensitivity to Cry11Aa toxin. Cry11Aa toxin at 400 nM killed approximately 37% of the cells in 3 h. Otherwise, transgenic mosquitoes with silenced Aedes cadherin expression showed increased tolerance to Cry11Aa toxin. Furthermore, cells expressing Aedes cadherin triggered Cry11Aa oligomerization. These results show the Aedes cadherin plays a pivotal role in Cry11Aa toxicity to Ae. aegypti larvae by mediating Cry11Aa oligomerization. However, since high toxicity was not obtained in cadherin-expressing cells, an additional receptor may be needed for manifestation of full toxicity. Moreover, cells expressing Aedes cadherin were sensitive to Cry4Aa and Cry11Ba but not Cry4Ba. However transgenic mosquitoes with silenced Aedes cadherin expression showed no tolerance to Cry4Aa, Cry4Ba, and Cry11Ba toxins. These results suggest that while Aedes cadherin may mediate Cry4Aa and Cry11Ba toxicity, this cadherin but is not the main receptor of Cry4Aa, Cry4Ba and Cry11Ba toxin in Ae. aegypti. PMID:25064814

  6. Aedes cadherin mediates the in vivo toxicity of the Cry11Aa toxin to Aedes aegypti.

    PubMed

    Lee, Su-Bum; Chen, Jianwu; Aimanova, Karlygash G; Gill, Sarjeet S

    2015-06-01

    Cadherin plays an important role in the toxicity of Bacillus thuringiensis Cry proteins. We previously cloned a full-length cadherin from Aedes aegypti larvae and reported this protein binds Cry11Aa toxin from B. thuringiensis subsp. israelensis with high affinity, ≈16.7nM. Based on these results, we investigated if Aedes cadherin is involved in the in vivo toxicity of Cry11Aa toxin to Ae. aegypti. We established a mosquito cell line stably expressing the full-length Aedes cadherin and transgenic mosquitoes with silenced Aedes cadherin expression. Cells expressing the Aedes cadherin showed increased sensitivity to Cry11Aa toxin. Cry11Aa toxin at 400nM killed approximately 37% of the cells in 3h. Otherwise, transgenic mosquitoes with silenced Aedes cadherin expression showed increased tolerance to Cry11Aa toxin. Furthermore, cells expressing Aedes cadherin triggered Cry11Aa oligomerization. These results show the Aedes cadherin plays a pivotal role in Cry11Aa toxicity to Ae. aegypti larvae by mediating Cry11Aa oligomerization. However, since high toxicity was not obtained in cadherin-expressing cells, an additional receptor may be needed for manifestation of full toxicity. Moreover, cells expressing Aedes cadherin were sensitive to Cry4Aa and Cry11Ba, but not Cry4Ba. However transgenic mosquitoes with silenced Aedes cadherin expression showed no tolerance to Cry4Aa, Cry4Ba, and Cry11Ba toxins. These results suggest that while Aedes cadherin may mediate Cry4Aa and Cry11Ba toxicity, this cadherin but is not the main receptor of Cry4Aa, Cry4Ba and Cry11Ba toxin in Ae. aegypti.

  7. Septic tanks as larval habitats for the mosquitoes Aedes aegypti and Culex quinquefasciatus in Playa-Playita, Puerto Rico.

    PubMed

    Burke, R; Barrera, R; Lewis, M; Kluchinsky, T; Claborn, D

    2010-06-01

    Adult Aedes aegypti (Linnaeus) (Diptera: Culicidae) were previously recovered from emergence traps on septic tanks in southeastern Puerto Rico. In this study we quantified immature mosquito abundance and its relationship with structural variables of the septic tanks and chemical properties of the water containing raw sewage. A miniaturized floating funnel trap was used to sample 89 septic tanks for larvae in the Puerto Rican community of Playa-Playita. Aedes aegypti larvae were recovered from 18% of the sampled tanks (10.3 larvae per septic tank per day). Larval presence was positively associated with cracking of the septic tank walls and uncovered access ports. Larval abundance was positively associated with cracking of the septic tank walls and larger tank surface areas, and inversely associated with the total dissolved solids (TDS). Culex quinquefasciatus (Say) larvae were also recovered from 74% of the septic tanks (129.6 larvae per septic tank per day). Larval presence was negatively associated with TDS in the water and larval abundance was positively associated with cracking of the septic tank walls. A screened, plastic emergence trap was used to sample 93 septic tanks within the community for Ae. aegypti and Cx. quinquefasciatus adults. Aedes aegypti adults were recovered from 49% of the sampled tanks (8.7 adults per septic tank per day) and Cx. quinquefasciatus adults were recovered from 97% of the sampled tanks (155.5 adults per septic tank per day). Aedes aegypti adult presence was positively associated with cracking, uncapped openings and septic water pH. The Ae. aegypti adult counts were positively associated with cracking and inversely associated with TDS and conductivity. This study marks the first published record of the recovery of Ae. aegypti larvae from holding tanks containing raw sewage in the Caribbean region. Our study indicates that Ae. aegypti larvae are present in sewage water and that septic tanks have at least the potential to maintain

  8. On the Seasonal Occurrence and Abundance of the Zika Virus Vector Mosquito Aedes Aegypti in the Contiguous United States

    PubMed Central

    Monaghan, Andrew J.; Morin, Cory W.; Steinhoff, Daniel F.; Wilhelmi, Olga; Hayden, Mary; Quattrochi, Dale A.; Reiskind, Michael; Lloyd, Alun L.; Smith, Kirk; Schmidt, Chris A.; Scalf, Paige E.; Ernst, Kacey

    2016-01-01

    Introduction: An ongoing Zika virus pandemic in Latin America and the Caribbean has raised concerns that travel-related introduction of Zika virus could initiate local transmission in the United States (U.S.) by its primary vector, the mosquito Aedes aegypti. Methods: We employed meteorologically driven models for 2006-2015 to simulate the potential seasonal abundance of adult Aedes aegypti for fifty cities within or near the margins of its known U.S. range. Mosquito abundance results were analyzed alongside travel and socioeconomic factors that are proxies of viral introduction and vulnerability to human-vector contact.     Results: Meteorological conditions are largely unsuitable for Aedes aegypti over the U.S. during winter months (December-March), except in southern Florida and south Texas where comparatively warm conditions can sustain low-to-moderate potential mosquito abundance. Meteorological conditions are suitable for Aedes aegypti across all fifty cities during peak summer months (July-September), though the mosquito has not been documented in all cities. Simulations indicate the highest mosquito abundance occurs in the Southeast and south Texas where locally acquired cases of Aedes-transmitted viruses have been reported previously. Cities in southern Florida and south Texas are at the nexus of high seasonal suitability for Aedes aegypti and strong potential for travel-related virus introduction. Higher poverty rates in cities along the U.S.-Mexico border may correlate with factors that increase human exposure to Aedes aegypti.     Discussion: Our results can inform baseline risk for local Zika virus transmission in the U.S. and the optimal timing of vector control activities, and underscore the need for enhanced surveillance for Aedes mosquitoes and Aedes-transmitted viruses. PMID:27066299

  9. The influence of diet on the use of near-infrared spectroscopy to determine the age of female Aedes aegypti mosquitoes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Interventions targeting adult mosquitoes are used to combat transmission of vector-borne diseases, including dengue. Without available vaccines, targeting the primary vector, Aedes aegypti, is essential to prevent transmission. Older mosquitoes (>/='7 days) are of greatest epidemiological significan...

  10. Pyrethroid resistance is widespread among Florida populations of Aedes aegypti

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aedes aegypti is an efficient vector of a number of diseases that affect man and is of increasing concern because of the reemergence of dengue and recent identification of locally acquired chikungunya in Florida. Pesticide resistance in this species has been demonstrated in several neighboring coun...

  11. A review on symmetries for certain Aedes aegypti models

    NASA Astrophysics Data System (ADS)

    Freire, Igor Leite; Torrisi, Mariano

    2015-04-01

    We summarize our results related with mathematical modeling of Aedes aegypti and its Lie symmetries. Moreover, some explicit, group-invariant solutions are also shown. Weak equivalence transformations of more general reaction diffusion systems are also considered. New classes of solutions are obtained.

  12. Influence of the Length of Storage on Aedes aegypti (Diptera: Culicidae) Egg Viability.

    PubMed

    Brown, Heidi E; Smith, Caitlin; Lashway, Stephanie

    2016-12-22

    Aedes aegypti (L.) is one of the most important arboviral vectors worldwide. Vector control is targeted at immature and adult stages; however, eggs are resistant to desiccation and may repopulate treated areas long after treatment ceases. We investigated the effect of age on Ae. aegypti egg hatching rates using newly colonized populations (F2) from an arid region. We found a strongly negative association where older eggs had lower hatch rates. The capacity of eggs to survive for long periods of time has implications on mosquito control. In addition, the accumulation of eggs in containers should be accounted for in abundance modeling efforts where populations may grow rapidly early in the season.

  13. Shifting Patterns of Aedes aegypti Fine Scale Spatial Clustering in Iquitos, Peru

    PubMed Central

    LaCon, Genevieve; Morrison, Amy C.; Astete, Helvio; Stoddard, Steven T.; Paz-Soldan, Valerie A.; Elder, John P.; Halsey, Eric S.; Scott, Thomas W.; Kitron, Uriel; Vazquez-Prokopec, Gonzalo M.

    2014-01-01

    Background Empiric evidence shows that Aedes aegypti abundance is spatially heterogeneous and that some areas and larval habitats produce more mosquitoes than others. There is a knowledge gap, however, with regards to the temporal persistence of such Ae. aegypti abundance hotspots. In this study, we used a longitudinal entomologic dataset from the city of Iquitos, Peru, to (1) quantify the spatial clustering patterns of adult Ae. aegypti and pupae counts per house, (2) determine overlap between clusters, (3) quantify the temporal stability of clusters over nine entomologic surveys spaced four months apart, and (4) quantify the extent of clustering at the household and neighborhood levels. Methodologies/Principal Findings Data from 13,662 household entomological visits performed in two Iquitos neighborhoods differing in Ae. aegypti abundance and dengue virus transmission was analyzed using global and local spatial statistics. The location and extent of Ae. aegypti pupae and adult hotspots (i.e., small groups of houses with significantly [p<0.05] high mosquito abundance) were calculated for each of the 9 entomologic surveys. The extent of clustering was used to quantify the probability of finding spatially correlated populations. Our analyses indicate that Ae. aegypti distribution was highly focal (most clusters do not extend beyond 30 meters) and that hotspots of high vector abundance were common on every survey date, but they were temporally unstable over the period of study. Conclusions/Significance Our findings have implications for understanding Ae. aegypti distribution and for the design of surveillance and control activities relying on household-level data. In settings like Iquitos, where there is a relatively low percentage of Ae. aegypti in permanent water-holding containers, identifying and targeting key premises will be significantly challenged by shifting hotspots of Ae. aegypti infestation. Focusing efforts in large geographic areas with historically

  14. Neuropeptidomics of the Mosquito Aedes Aegypti

    DTIC Science & Technology

    2010-01-01

    and PK in different ganglia, differential posttranslational pro- cessing of CAPA-PVK-2 in Ae. aegypti tissues was observed. The N-terminally blocked...secretory cells (X cells) is separate and posterior to the CC, and axons from these cells extend to the CC. In female An. gambiae and Ae. aegypti , these...Expression of a gene encoding AKH-2 was characterized in Ae. aegypti .19 Native AKH-2 was resolved by HPLC from head extracts of female An. gambiae in

  15. Insecticidal and Repellent Activity of Siparuna guianensis Aubl. (Negramina) against Aedes aegypti and Culex quinquefasciatus

    PubMed Central

    Aguiar, Raimundo Wagner Souza; dos Santos, Suetonio Fernandes; da Silva Morgado, Fabricio; Ascencio, Sergio Donizeti; de Mendonça Lopes, Magnólia; Viana, Kelvinson Fernandes; Didonet, Julcemar; Ribeiro, Bergmann Morais

    2015-01-01

    This study investigated the toxic effects of essential oils isolated from Siparuna guianensis against Aedes aegypti, Culex quinquefasciatus (eggs, larvae, pupae, and adult) and Aedes albopictus (C6/36) cells. The oviposition-deterring activity, egg viability, and repellence activity in the presence of different essential oils concentrations were determined. The essential oils showed high toxicity to all developmental stages of A. aegypti and C. quinquefasciatus. Furthermore, the oils also showed high repellent activity towards the adult stage of mosquitoes (0.025 to 0.550 μg/cm2 skin conferred 100% repellence up to 120 min) and in contact with cultured insect cells (C6/36) induced death possibly by necrosis. The results presented in this work show the potential of S. guianensis essential oils for the development of an alternative and effective method for the natural control of mosquitoes in homes and urban areas. PMID:25646797

  16. Aedes aegypti D7 Saliva Protein Inhibits Dengue Virus Infection

    PubMed Central

    Conway, Michael J.; Londono-Renteria, Berlin; Troupin, Andrea; Watson, Alan M.; Klimstra, William B.; Fikrig, Erol; Colpitts, Tonya M.

    2016-01-01

    Aedes aegypti is the primary vector of several medically relevant arboviruses including dengue virus (DENV) types 1–4. Ae. aegypti transmits DENV by inoculating virus-infected saliva into host skin during probing and feeding. Ae. aegypti saliva contains over one hundred unique proteins and these proteins have diverse functions, including facilitating blood feeding. Previously, we showed that Ae. aegypti salivary gland extracts (SGEs) enhanced dissemination of DENV to draining lymph nodes. In contrast, HPLC-fractionation revealed that some SGE components inhibited infection. Here, we show that D7 proteins are enriched in HPLC fractions that are inhibitory to DENV infection, and that recombinant D7 protein can inhibit DENV infection in vitro and in vivo. Further, binding assays indicate that D7 protein can directly interact with DENV virions and recombinant DENV envelope protein. These data reveal a novel role for D7 proteins, which inhibits arbovirus transmission to vertebrates through a direct interaction with virions. PMID:27632170

  17. Resistance of Aedes aegypti to temephos and adaptive disadvantages

    PubMed Central

    Diniz, Morgana Michele Cavalcanti de Souza Leal; Henriques, Alleksandra Dias da Silva; Leandro, Renata da Silva; Aguiar, Dalvanice Leal; Beserra, Eduardo Barbosa

    2014-01-01

    OBJECTIVE To evaluate the resistance of Aedes aegypti to temephos Fersol 1G (temephos 1% w/w) associated with the adaptive disadvantage of insect populations in the absence of selection pressure. METHODS A diagnostic dose of 0.28 mg a.i./L and doses between 0.28 mg a.i./L and 1.40 mg a.i./L were used. Vector populations collected between 2007 and 2008 in the city of Campina Grande, state of Paraíba, were evaluated. To evaluate competition in the absence of selection pressure, insect populations with initial frequencies of 20.0%, 40.0%, 60.0%, and 80.0% resistant individuals were produced and subjected to the diagnostic dose for two months. Evaluation of the development of aquatic and adult stages allowed comparison of the life cycles in susceptible and resistant populations and construction of fertility life tables. RESULTS No mortality was observed in Ae. aegypti populations subjected to the diagnostic dose of 0.28 mg a.i./L. The decreased mortality observed in populations containing 20.0%, 40.0%, 60.0%, and 80.0% resistant insects indicates that temephos resistance is unstable in the absence of selection pressure. A comparison of the life cycles indicated differences in the duration and viability of the larval phase, but no differences were observed in embryo development, sex ratio, adult longevity, and number of eggs per female. CONCLUSIONS The fertility life table results indicated that some populations had reproductive disadvantages compared with the susceptible population in the absence of selection pressure, indicating the presence of a fitness cost in populations resistant to temephos. PMID:25372168

  18. Aedes aegypti in Córdoba Province, Argentina.

    PubMed

    Avilés, G; Cecchini, R; Harrington, M E; Cichero, J; Asis, R; Rios, C

    1997-09-01

    In 1955, the area infested by Aedes aegypti in Argentina was estimated as 1,500,000 km2; and in 1963, the species was considered to be eradicated from Argentina. In 1995, the Argentine Ministry of Health reported reinfestation by Ae. aegypti. During 1994-95, the Ministry of Health of Córdoba Province, Zoonosis Department, established a surveillance system for Ae. aegypti in Córdoba Province, Argentina. This report is a summary of results obtained thus far. In total, 74 localities in Córdoba Province were sampled during August 1994-April 1996, resulting in 5 positives (6.7%): Villa María city, Villa Nueva, and Córdoba city in 1995, and Juarez Celman and Jesús María in 1996. In Villa María and Villa Nueva, Ae. aegypti was present until June 1995 (autumn) and reappeared in December 1995. In Córdoba city, Ae. aegypti was eliminated from the only positive house in May 1995, but it reappeared in March 1996. Reappearance of Ae. aegypti in this temperate area in early summer may have been due to the survival of individuals during winter and not to reintroduction during summertime. The last previous active surveillance for Ae. aegypti in Córdoba Province was carried out more than 30 years ago.

  19. Serratia odorifera a Midgut Inhabitant of Aedes aegypti Mosquito Enhances Its Susceptibility to Dengue-2 Virus

    PubMed Central

    Apte-Deshpande, Anjali; Paingankar, Mandar; Gokhale, Mangesh D.; Deobagkar, Dileep N.

    2012-01-01

    Mosquito midgut plays a crucial role in its vector susceptibility and pathogen interaction. Identification of the sustainable microflora of the midgut environment can therefore help in evaluating its contribution in mosquito-pathogen interaction and in turn vector competence. To understand the bacterial diversity in the midgut of Aedes aegypti mosquitoes, we conducted a screening study of the gut microbes of these mosquitoes which were either collected from fields or reared in the laboratory “culture-dependent” approach. This work demonstrated that the microbial flora of larvae and adult Ae. aegypti midgut is complex and is dominated by Gram negative proteobacteria. Serratia odorifera was found to be stably associated in the midguts of field collected and laboratory reared larvae and adult females. The potential influence of this sustainable gut microbe on DENV-2 susceptibility of this vector was evaluated by co-feeding S. odorifera with DENV-2 to adult Ae. aegypti females (free of gut flora). The observations revealed that the viral susceptibility of these Aedes females enhanced significantly as compared to solely dengue-2 fed and another gut inhabitant, Microbacterium oxydans co-fed females. Based on the results of this study we proposed that the enhancement in the DENV-2 susceptibility of Ae. aegypti females was due to blocking of prohibitin molecule present on the midgut surface of these females by the polypeptide of gut inhabitant S. odorifera. PMID:22848375

  20. Spatial clustering of Aedes aegypti related to breeding container characteristics in Coastal Ecuador: implications for dengue control.

    PubMed

    Schafrick, Nathaniel H; Milbrath, Meghan O; Berrocal, Veronica J; Wilson, Mark L; Eisenberg, Joseph N S

    2013-10-01

    Mosquito management within households remains central to the control of dengue virus transmission. An important factor in these management decisions is the spatial clustering of Aedes aegypti. We measured spatial clustering of Ae. aegypti in the town of Borbón, Ecuador and assessed what characteristics of breeding containers influenced the clustering. We used logistic regression to assess the spatial extent of that clustering. We found strong evidence for juvenile mosquito clustering within 20 m and for adult mosquito clustering within 10 m, and stronger clustering associations for containers ≥ 40 L than those < 40 L. Aedes aegypti clusters persisted after adjusting for various container characteristics, suggesting that patterns are likely attributable to short dispersal distances rather than shared characteristics of containers in cluster areas. These findings have implications for targeting Ae. aegypti control efforts.

  1. Identification of germline transcriptional regulatory elements in Aedes aegypti

    NASA Astrophysics Data System (ADS)

    Akbari, Omar S.; Papathanos, Philippos A.; Sandler, Jeremy E.; Kennedy, Katie; Hay, Bruce A.

    2014-02-01

    The mosquito Aedes aegypti is the principal vector for the yellow fever and dengue viruses, and is also responsible for recent outbreaks of the alphavirus chikungunya. Vector control strategies utilizing engineered gene drive systems are being developed as a means of replacing wild, pathogen transmitting mosquitoes with individuals refractory to disease transmission, or bringing about population suppression. Several of these systems, including Medea, UDMEL, and site-specific nucleases, which can be used to drive genes into populations or bring about population suppression, utilize transcriptional regulatory elements that drive germline-specific expression. Here we report the identification of multiple regulatory elements able to drive gene expression specifically in the female germline, or in the male and female germline, in the mosquito Aedes aegypti. These elements can also be used as tools with which to probe the roles of specific genes in germline function and in the early embryo, through overexpression or RNA interference.

  2. Sodium Channel Mutations and Pyrethroid Resistance in Aedes aegypti

    PubMed Central

    Du, Yuzhe; Nomura, Yoshiko; Zhorov, Boris S.; Dong, Ke

    2016-01-01

    Pyrethroid insecticides are widely used to control insect pests and human disease vectors. Voltage-gated sodium channels are the primary targets of pyrethroid insecticides. Mutations in the sodium channel have been shown to be responsible for pyrethroid resistance, known as knockdown resistance (kdr), in various insects including mosquitoes. In Aedes aegypti mosquitoes, the principal urban vectors of dengue, zika, and yellow fever viruses, multiple single nucleotide polymorphisms in the sodium channel gene have been found in pyrethroid-resistant populations and some of them have been functionally confirmed to be responsible for kdr in an in vitro expression system, Xenopus oocytes. This mini-review aims to provide an update on the identification and functional characterization of pyrethroid resistance-associated sodium channel mutations from Aedes aegypti. The collection of kdr mutations not only helped us develop molecular markers for resistance monitoring, but also provided valuable information for computational molecular modeling of pyrethroid receptor sites on the sodium channel. PMID:27809228

  3. EFFICACY OF THAI NEEM OIL AGAINST AEDES AEGYPTI (L.) LARVAE.

    PubMed

    Silapanuntakul, Suthep; Keanjoom, Romnalin; Pandii, Wongdyan; Boonchuen, Supawadee; Sombatsiri, Kwanchai

    2016-05-01

    Trees with larvicidal activity may be found in Thailand. We conducted this study to evaluate the efficacy and length of efficacy of Thai neem (Azadirachta siamensis) oil emulsion and an alginate bead of Thai neem oil formulation against early fourth stage Aedes aegypti larvae using a dipping test. The Thai neem oil emulsion had significantly greater larvicidal activity than the alginate bead formulation at 12 to 60 hours post-exposure (p < 0.01). The Thai neem oil formulation resulted in 100% mortality among the early fourth stage Aedes aegypti larvae at 48 hours, while the alginate bead formulation resulted in 98% larval mortality at 84 hours and 100% mortality at 96 hours. The mean larval mortality using the Thai neem oil emulsion dropped to < 25% by 12 days and with the alginate beads dropped to < 25% by 15 days of exposure.

  4. [Ecology of Aedes aegypti and Aedes albopictus in the Americas and disease transmission].

    PubMed

    Rey, Jorge R; Lounibos, Philip

    2015-01-01

    The recent range expansion of the mosquito Aedes albopictus has been associated in some areas by declines in abundance or local elimination of Aedes aegypti, but the two species still coexist in large regions of the Americas. We offer a summary of the possible mechanisms responsible for the abundance and displacement pattern observed and of their significance in terms of disease transmission. Among these mechanisms we may mention the competition for limiting resources, the differences in the ability to withstand starvation, the apparent competition through differential effects of the parasite Ascogregarina taiwanensis, and the inhibition of Ae. aegypti egg development by Ae. albopictus larvae. Habitat segregation has been proposed as a mechanism promoting the coexistence of the two species through avoidance of direct competition. Aedes aegypti predominates in urban areas, Ae. albopictus in rural ones, and both species coexist in the suburbs. There is also evidence that in certain areas, habitat segregation in terms of distance from the coast can influence the distribution of both species. Another possible cause of the rapid disappearance of Ae. aegypti is reproductive interference between the species. According to this hypothesis, asymmetric effects of interspecific mating favor Ae. albopictus. This type of reproductive interference can result in the elimination of sympatric populations of the affected species and can be one of the major causes for the swiftness with which Ae. aegypti disappeared from some places in the Americas following invasions by Ae. albopictus.

  5. Morphological and genetic variability within Aedes aegypti in Niakhar, Senegal.

    PubMed

    Paupy, Christophe; Brengues, Cécile; Ndiath, Ousmane; Toty, Céline; Hervé, Jean-Pierre; Simard, Frédéric

    2010-05-01

    Aedes aegypti (Linné, 1762) is a major vector of arboviruses such as Yellow Fever, Dengue and Chikungunya. In Africa, where the species exhibits major variations in morphology, ecology, behavior and vector competence, two subspecies have been described: a light form, named Ae. aegypti aegypti (Aaa) with highly domestic and anthropophilic habits and a cosmotropical distribution; and a dark form, referred to as Ae. aegypti formosus (Aaf), which is endemic to Africa and thrives in sylvan environments. In East Africa, both forms were described to occur in sympatry whereas only Aaf was reported from Central/West Africa. However, recent findings suggest Aaa was also common in Senegal. Here, we report on a longitudinal survey of morphological and genetic variability of Ae. aegypti sampled in the rural environment of Niakhar, Senegal. In agreement with recent findings, most of specimens we analyzed were classified as Aaa suggesting typical Aaf was scarce in the studied area. Among Aaa, significant temporal variations in abdominal pale scales pattern were detected. Depending on the season and the nature of larval breeding places, the specimens (particularly females) tend to segregate in two main morphological groups. Microsatellite-based estimates of genetic differentiation did not provide any clear evidence that the two groups were genetically distinct. Overall, these results improve our understanding of the diversity of Ae. aegypti in West Africa, where data are crucially lacking.

  6. Similarity solutions for systems arising from an Aedes aegypti model

    NASA Astrophysics Data System (ADS)

    Freire, Igor Leite; Torrisi, Mariano

    2014-04-01

    In a recent paper a new model for the Aedes aegypti mosquito dispersal dynamics was proposed and its Lie point symmetries were investigated. According to the carried group classification, the maximal symmetry Lie algebra of the nonlinear cases is reached whenever the advection term vanishes. In this work we analyze the family of systems obtained when the wind effects on the proposed model are neglected. Wide new classes of solutions to the systems under consideration are obtained.

  7. Intraspecific Competition and Population Dynamics of Aedes aegypti

    NASA Astrophysics Data System (ADS)

    Paixão, C. A.; Charret, I. C.; Lima, R. R.

    2012-04-01

    We report computational simulations for the evolution of the population of the dengue vector, Aedes aegypti mosquitoes. The results suggest that controlling the mosquito population, on the basis of intraspecific competition at the larval stage, can be an efficient mechanism for controlling the spread of the epidemic. The results also show the presence of a kind of genetic evolution in vector population, which results mainly in increasing the average lifespan of individuals in adulthood.

  8. First report of Stegomyia aegypti (= Aedes aegypti) in Mexico City, Mexico.

    PubMed

    Kuri-Morales, P; Correa-Morales, F; González-Acosta, C; Sánchez-Tejeda, G; Dávalos-Becerril, E; Fernanda Juárez-Franco, M; Díaz-Quiñonez, A; Huerta-Jimenéz, H; Mejía-Guevara, M D; Moreno-García, M; González-Roldán, J F

    2017-01-20

    Stegomyia aegypti (= Aedes aegypti) (Diptera: Culicidae) is a species of mosquito that is currently widespread in Mexico. Historically, the mosquito has been distributed across most tropical and subtropical areas lower than 1700 m a.s.l. Currently, populations that are found at higher altitudes in regions with cold and dry climates suggest that these conditions do not limit the colonization and population growth of S. aegypti. During a survey of mosquitoes in September 2015, larvae of S. aegypti mosquitoes were found in two different localities in Mexico City, which is located at about 2250 m a.s.l. Mexico City is the most populous city in Mexico and has inefficient drainage and water supply systems. These factors may result in the provision of numerous larval breeding sites. Mosquito monitoring and surveillance are now priorities for the city.

  9. Chemicals isolated from Justicia adhatoda Linn reduce fitness of the mosquito, Aedes aegypti L.

    PubMed

    Thanigaivel, Annamalai; Senthil-Nathan, Sengottayan; Vasantha-Srinivasan, Prabhakaran; Edwin, Edward-Sam; Ponsankar, Athirstam; Selin-Rani, Selvaraj; Pradeepa, Venkatraman; Chellappandian, Muthiah; Kalaivani, Kandaswamy; Abdel-Megeed, Ahmed; Narayanan, Raman; Murugan, Kadarkarai

    2017-04-01

    Extracts from Justicia adhatoda L. (Acanthaceae) strongly reduced the fitness of the mosquito, Aedes aegypti Linn. The methanolic extracts inhibited several enzymes responsible for protecting insects from oxidative and other damage, including glutathione-S-transferase, superoxide dismutase, cytochrome P450, and α- and β-esterases. They increased repellency (maximum repellency at 100 ppm) in host-seeking adult females using the "arm-in cage assay." Histopathological examination showed the extracts led to serious midgut cell damage. Justicia adhatoda extracts led to reduced fecundity and oviposition of gravid females compared to controls. The extracts led to substantially reduced A. aegypti survival. We infer that the extracts have potential to reduce pathogen transmission by suppressing population growth of A. aegypti, and possibly other mosquito species.

  10. The global compendium of Aedes aegypti and Ae. albopictus occurrence

    NASA Astrophysics Data System (ADS)

    Kraemer, Moritz U. G.; Sinka, Marianne E.; Duda, Kirsten A.; Mylne, Adrian; Shearer, Freya M.; Brady, Oliver J.; Messina, Jane P.; Barker, Christopher M.; Moore, Chester G.; Carvalho, Roberta G.; Coelho, Giovanini E.; van Bortel, Wim; Hendrickx, Guy; Schaffner, Francis; Wint, G. R. William; Elyazar, Iqbal R. F.; Teng, Hwa-Jen; Hay, Simon I.

    2015-07-01

    Aedes aegypti and Ae. albopictus are the main vectors transmitting dengue and chikungunya viruses. Despite being pathogens of global public health importance, knowledge of their vectors’ global distribution remains patchy and sparse. A global geographic database of known occurrences of Ae. aegypti and Ae. albopictus between 1960 and 2014 was compiled. Herein we present the database, which comprises occurrence data linked to point or polygon locations, derived from peer-reviewed literature and unpublished studies including national entomological surveys and expert networks. We describe all data collection processes, as well as geo-positioning methods, database management and quality-control procedures. This is the first comprehensive global database of Ae. aegypti and Ae. albopictus occurrence, consisting of 19,930 and 22,137 geo-positioned occurrence records respectively. Both datasets can be used for a variety of mapping and spatial analyses of the vectors and, by inference, the diseases they transmit.

  11. Larvicidal activity of Tagetes erecta against Aedes aegypti.

    PubMed

    Marques, Márcia M M; Morais, Selene M; Vieira, Icaro G P; Vieira, Mariano G S; Raquel, Ana; Silva, A; De Almeida, Raimundo Rafael; Guedes, Maria Izabel F

    2011-06-01

    The aim of this study was to evaluate the activity of essential oil from Tagetes erecta against 3rd instars of Aedes aegypti and to determine the amounts of larvicidal thiophenes in all plant tissues. The oil obtained by steam distillation and analyzed by gas chromatography/mass spectrometry showed 14 compounds. The main compounds were piperitone (45.72%), D-limonene (9.67%), and piperitenone (5.89%). The essential oil was active against larvae of Ae. aegypti, with LC50 of 79.78 microg/ml and LC90 of 100.84 microg/ml. The larvicidal thiophene contents were higher in the roots and flowers as demonstrated by high-performance liquid chromatography analysis. Thus, T. erecta constitutes a good source of varied compounds showing larvicidal activity against Ae. aegypti.

  12. Evidence for Aedes aegypti (Diptera: Culicidae) Oviposition on Boats in the Peruvian Amazon.

    PubMed

    Guagliardo, Sarah Anne; Morrison, Amy C; Luis Barboza, Jose; Wesson, Dawn M; Ponnusamy, Loganathan; Astete, Helvio; Vazquez-Prokopec, Gonzalo; Kitron, Uriel

    2015-07-01

    Dengue vector Aedes aegypti L. is invading peri-urban and rural areas throughout Latin America. Our previous research in the Peruvian Amazon has shown that river boats are heavily infested with immature and adult Ae. aegypti mosquitoes, likely playing a major role in their long-distance dispersal and successful invasion. However, the presence of immature mosquitoes provides no information about the timing of oviposition, and whether it took place in the boats. Here, we used baited ovitraps deployed on river boats to test the hypothesis that Ae. aegypti oviposition occurs during boat travel. We deployed 360 ovitraps on 60 different barges during August and October of 2013, and February 2014 (with 20 barges sampled during each month). We found that Ae. aegypti mosquitoes in 22 individual ovitraps from 15 of the 60 barges (premise index 25%) across all sampling dates. Further, the distribution of Ae. aegypti egg abundance was highly aggregated: 2.6% of traps (N=7) were responsible for 71.8% of eggs found, and 1.5% of traps (N=4) were responsible for all (100%) of the larvae found. Similarly, 5% of boats were responsible for the 71.47% of eggs. Our results provide strong evidence that Ae. aegypti oviposition commonly occurs during boat travel. Baited ovitraps could represent a cost-effective means of monitoring and controlling mosquito populations on boats.

  13. Integrated proteomic and transcriptomic analysis of the Aedes aegypti eggshell

    PubMed Central

    2014-01-01

    Background Mosquito eggshells show remarkable diversity in physical properties and structure consistent with adaptations to the wide variety of environments exploited by these insects. We applied proteomic, transcriptomic, and hybridization in situ techniques to identify gene products and pathways that participate in the assembly of the Aedes aegypti eggshell. Aedes aegypti population density is low during cold and dry seasons and increases immediately after rainfall. The survival of embryos through unfavorable periods is a key factor in the persistence of their populations. The work described here supports integrated vector control approaches that target eggshell formation and result in Ae. aegypti drought-intolerant phenotypes for public health initiatives directed to reduce mosquito-borne diseases. Results A total of 130 proteins were identified from the combined mass spectrometric analyses of eggshell preparations. Conclusions Classification of proteins according to their known and putative functions revealed the complexity of the eggshell structure. Three novel Ae. aegypti vitelline membrane proteins were discovered. Odorant-binding and cysteine-rich proteins that may be structural components of the eggshell were identified. Enzymes with peroxidase, laccase and phenoloxidase activities also were identified, and their likely involvements in cross-linking reactions that stabilize the eggshell structure are discussed. PMID:24707823

  14. Effect of triflumuron, a chitin synthesis inhibitor, on Aedes aegypti, Aedes albopictus and Culex quinquefasciatus under laboratory conditions

    PubMed Central

    2013-01-01

    Background Resistance to traditional insecticides represents a threat to the control of disease vectors. The insect growth regulators (IGR) are a potential alternative to control mosquitoes, including resistant populations. The chitin synthesis inhibitors (CSI) are IGRs, which interfere with the insect molting process and represent one major class of compounds against Aedes aegypti populations resistant to the larvicide organophosphate temephos. In the present study, we evaluated the efficacy of the CSI triflumuron on Culex quinquefasciatus, Aedes albopictus and against several Ae. aegypti field populations. Methods The efficacy of triflumuron, against Cx. quinquefasciatus and Ae. albopictus was evaluated with laboratory strains through dose–response assays. Additionaly, this CSI was tested against seven Ae. aegypti field populations exhibiting distinct resistance levels to both temephos and the pyrethroid deltamethrin. Aedes aegypti populations were exposed to both a dose that inhibits 99% of the adult emergence of mosquitoes from the susceptible reference strain, Rockefeller, (EI99 = 3.95 μg/L) and the diagnostic dose (DD), corresponding to twice the EI99. Results Our results indicate that triflumuron was effective in emergence inhibition (EI) of Cx. quinquefasciatus (EI50= 5.28 μg/L; EI90= 12.47 μg/L) and Ae. albopictus (EI50= 1.59 μg/L; EI90= 2.63 μg/L). Triflumuron was also effective against seven Ae. aegypti Brazilian populations resistant to both temephos and deltamethrin. Exposure of all the Ae. aegypti populations to the triflumuron EI99 of the susceptible reference strain, Rockefeller, resulted in complete inhibition of adult emergence, suggesting no cross-resistance among traditional insecticides and this CSI. However, a positive correlation between temephos resistance and tolerance to triflumuron was observed. Conclusion The results suggest that triflumuron represents a potential tool for the control of disease vectors in public

  15. Determination of dengue virus serotypes in individual Aedes aegypti mosquitoes in Colombia.

    PubMed

    Romero-Vivas, C M; Leake, C J; Falconar, A K

    1998-07-01

    Adult Aedes aegypti mosquitoes were collected in Puerto Triunfo, central Colombia, where dengue is endemic, during a six month period. Viral infection within the head of each individual mosquito was identified by an immunofluorescent assay (IFA) using a flavivirus-specific monoclonal antibody. The dengue virus serotype, present in each flavivirus-positive specimen, was then determined in portions of the remaining thorax using IFAs with serotype-specific monoclonal antibodies. Among 2065 female Aedes aegypti collected and tested, twenty-four flavivirus-positive individuals were found (minimum infection rate 11.6%), three identified as dengue type-1 and twenty-one as dengue type-2 virus. This was consistent with the isolation of only these two serotypes of dengue virus from dengue fever patients within this town. No vertical transmission of dengue virus could be detected in 1552 male Aedes aegypti collected. This method is inexpensive, simple, rapid to perform and suitable for use in developing countries to identify and distinguish different serotypes of dengue virus in their vectors during eco-epidemiological investigations.

  16. Neuropeptidomics of the mosquito Aedes aegypti

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Neuropeptidomic data were collected on the mosquito Ae. aegypti which is considered the most tractable mosquito species for physiological and endocrine studies. The data were solely obtained by direct mass spectrometric profiling, including tandem fragmentation, of selected tissues from single speci...

  17. Genetics and morphology of Aedes aegypti (Diptera: Culicidae) in septic tanks in Puerto Rico.

    PubMed

    Somers, Gerard; Brown, Julia E; Barrera, Roberto; Powell, Jeffrey R

    2011-11-01

    Dengue viruses, primarily transmitted by the mosquito Aedes aegypti (L.), affect an estimated 50-100 million people yearly. Traditional approaches to control mosquito population numbers, such as the use of pesticides, have had only limited success. Atypical mosquito behavior may be one reason why current vector control efforts have been less efficacious than expected. In Puerto Rico, for example, adult Ae. aegypti have been observed emerging from septic tanks. Interestingly, adults emerging from septic tanks are larger on average than adults collected from surface containers. To determine whether adults colonizing septic tanks constitute a separate Ae. aegypti population, we used 12 previously validated microsatellite loci to examine adult mosquitoes collected from both septic tanks and surface containers, but found no evidence to suggest genetic differentiation. Size differences between septic tank and surface mosquitoes were reduced when nutrient levels were held constant across experimental groups. Despite the absence of evidence suggesting a genetic difference between experimental groups in this study, Ae. aegypti emerging from septic tanks may still represent a more dangerous phenotype and should be given special consideration when developing vector control programs and designing public health interventions in the future.

  18. Effect of Temperature on the Vector Efficiency of Aedes aegypti for Dengue 2 Virus

    DTIC Science & Technology

    1986-06-26

    VECTOR EFFICIENCY OF AEDES AEGYPTI FOR DENGUE 2 VIRUS DOUGLAS M. WATTS,* DONALD S. BURKE,** BRUCE A. HARRISON,-/- RICHARD E. WHITMIRE,* AND ANANDA...the ability of Aedes aegypti to transmit dengue (DEN) 2 virus to rhesus monkeys was assessed as a possible explanation for the seasonal variation...in the incidence of dengue hemorrhagic fever in Bangkok, Thailand. In two laboratory experiments, a Bangkok strain of Ae. aegypti was allowed to feed

  19. Comparison of the insecticide susceptibilities of laboratory strains of Aedes aegypti and Aedes albopictus.

    PubMed

    Gómez, Andrea; Seccacini, Emilia; Zerba, Eduardo; Licastro, Susana

    2011-12-01

    A susceptible strain of Aedes albopictus derived from the Gainesville strain (Florida, USA) was established in our laboratory. The larvicidal efficacies of the neurotoxic insecticides temephos, permethrin and the pure cis and trans-permethrin isomers and the microbial insecticide Bacillus thuringiensis israelensis (Bti) against Ae. albopictus were estimated and compared to a susceptible strain of Aedes aegypti. The larvicidal effect of insect growth regulator pyriproxyfen was also evaluated in both mosquito strains. The median lethal concentration/median emergency inhibition values for Ae. aegypti and Ae. albopictus, respectively, were: temephos, 3.058 and 6.632 ppb, permethrin, 3.143 and 4.933 ppb, cis-permethrin, 4.457 and 10.068 ppb, trans-permethrin, 1.510 and 3.883 ppb, Bti, 0.655 and 0.880 ppb and pyriproxyfen, 0.00774 and 0.01642 ppb. Ae. albopictus was more tolerant than Ae. aegypti to all six larvicides evaluated. The order of susceptibility for Ae. aegypti was pyriproxyfen > Bti > trans-permethrin > temephos > permethrin > cis-permethrin and for Ae. albopictus was pyriproxyfen > Bti > trans-permethrin > permethrin > temephos > cis-permethrin. Because both species can be found together in common urban, suburban and rural breeding sites, the results of this work provide baseline data on the susceptibility of Ae. albopictus to insecticides commonly used for controlling Ae. aegypti in the field.

  20. Differentiation of Aedes aegypti and Aedes notoscriptus (Diptera: Culicidae) eggs using scanning electron microscopy.

    PubMed

    Faull, Katherine J; Williams, Craig R

    2016-05-01

    Aedes notoscriptus and Aedes aegypti are both peri-domestic, invasive container-breeding mosquitoes. While the two potential arboviral vectors are bionomically similar, their sympatric distribution in Australia is limited. In this study, analyses of Ae. aegypti and Ae. notoscriptus eggs were enabled using scanning electron microscopy. Significant variations in egg length to width ratio and outer chorionic cell field morphology between Ae. aegypti and Ae. notoscriptus enabled distinction of the two species. Intraspecific variations in cell field morphology also enabled differentiation of the separate populations of both species, highlighting regional and global variation. Our study provides a comprehensive comparative analysis of inter- and intraspecific egg morphological and morphometric variation between two invasive container-breeding mosquitoes. The results indicate a high degree of intraspecific variation in Ae. notoscriptus egg morphology when compared to the eggs of Ae. aegypti. Comparative morphological analyses of Ae. aegypti and Ae. notoscriptus egg attributes using SEM allows differentiation of the species and may be helpful in understanding egg biology in relation to biotope of origin.

  1. Susceptibility of Florida Aedes aegypti and Aedes albopictus to dengue viruses from Puerto Rico.

    PubMed

    Alto, Barry W; Smartt, Chelsea T; Shin, Dongyoung; Bettinardi, David; Malicoate, Jolene; Anderson, Sheri L; Richards, Stephanie L

    2014-12-01

    Locally acquired dengue cases in the continental U.S. are rare. However, outbreaks of dengue-1 during 2009, 2010, and 2013 in Florida and dengue-1 and -2 in Texas suggest vulnerability to transmission. Travel and commerce between Puerto Rico and the U.S. mainland is common, which may pose a risk for traveler-imported dengue cases. Mosquitoes were collected in Florida and used to evaluate their susceptibility to dengue viruses (DENV) from Puerto Rico. Aedes aegypti and Ae. albopictus were susceptible to virus infection with DENV-1 and -2. No significant differences were observed in rates of midgut infection or dissemination between Ae. aegypti or Ae. albopictus for DENV-1 (6-14%). Aedes aegypti was significantly more susceptible to midgut infection with DENV-2 than Ae. albopictus (Ae. aegypti, ∼28%; Ae. albopictus, ∼9%). The dissemination rate with dengue-2 virus for Ae. aegypti (23%) was greater than Ae. albopictus (0%), suggesting that Ae. albopictus is not likely to be an important transmitter of the DENV-2 isolate from Puerto Rico. These results are discussed in light of Florida's vulnerability to DENV transmission.

  2. Insecticide susceptibility of the dengue vector, Aedes aegypti (L.) in Metropolitan Bangkok.

    PubMed

    Komalamisra, Narumon; Srisawat, Raweewan; Phanbhuwong, Theerawit; Oatwaree, Sompis

    2011-07-01

    Mosquito larvae were collected from the houses of dengue infected patients in Bangkok, Thailand from 55 sites (36 out of the 50 districts of Metropolitan Bangkok). Aedes aegypti larvae were tested against temephos using WHO bioassay techniques. Adult mosquitoes were tested for susceptibility to permethrin, deltamethrin, cyfluthrin, malathion and DDT using WHO diagnostic doses. Most of the larvae tested were susceptible to temephos. Only few specimens were resistant to temephos. Most adult mosquitoes were highly susceptible to malathion. Deltamethrin resistance was seen in 6 districts of Bangkok. Variable levels of susceptibility were seen with cyfluthrin. Most of the specimens showed resistance to permethrin and all specimens were resistant to DDT.

  3. Ecological Modeling of Aedes aegypti (L.) Pupal Production in Rural Kamphaeng Phet, Thailand

    PubMed Central

    Aldstadt, Jared; Koenraadt, Constantianus J. M.; Fansiri, Thanyalak; Kijchalao, Udom; Richardson, Jason; Jones, James W.; Scott, Thomas W.

    2011-01-01

    Background Aedes aegypti (L.) is the primary vector of dengue, the most important arboviral infection globally. Until an effective vaccine is licensed and rigorously administered, Ae. aegypti control remains the principal tool in preventing and curtailing dengue transmission. Accurate predictions of vector populations are required to assess control methods and develop effective population reduction strategies. Ae. aegypti develops primarily in artificial water holding containers. Release recapture studies indicate that most adult Ae. aegypti do not disperse over long distances. We expect, therefore, that containers in an area of high development site density are more likely to be oviposition sites and to be more frequently used as oviposition sites than containers that are relatively isolated from other development sites. After accounting for individual container characteristics, containers more frequently used as oviposition sites are likely to produce adult mosquitoes consistently and at a higher rate. To this point, most studies of Ae. aegypti populations ignore the spatial density of larval development sites. Methodology Pupal surveys were carried out from 2004 to 2007 in rural Kamphaeng Phet, Thailand. In total, 84,840 samples of water holding containers were used to estimate model parameters. Regression modeling was used to assess the effect of larval development site density, access to piped water, and seasonal variation on container productivity. A varying-coefficients model was employed to account for the large differences in productivity between container types. A two-part modeling structure, called a hurdle model, accounts for the large number of zeroes and overdispersion present in pupal population counts. Findings The number of suitable larval development sites and their density in the environment were the primary determinants of the distribution and abundance of Ae. aegypti pupae. The productivity of most container types increased significantly as

  4. Detritus type alters the outcome of interspecific competition between Aedes aegypti and Aedes albopictus (Diptera: Culicidae).

    PubMed

    Murrell, Ebony G; Juliano, Steven A

    2008-05-01

    Many studies of interspecific competition between Aedes albopictus (Skuse) and Aedes aegypti (L.) (Diptera: Culicidae) larvae show that Ae. albopictus are superior resource competitors to Ae. aegypti. Single-species studies indicate that growth and survival of Ae. albopictus and Ae. aegypti larvae are affected by the type of detritus present in containers, which presumably affects the amount and quality of microorganisms that the mosquito larvae consume. We tested whether different detritus types alter the intensity of larval competition by raising 10 different density/species combinations of Ae. albopictus and Ae. aegypti larvae under standard laboratory conditions, with one of four detritus types (oak, pine, grass, or insect) provided as a nutrient base. Intraspecific competitive effects on survival were present with all detritus types. Ae. albopictus survivorship was unaffected by interspecific competition in all treatments. Negative interspecific effects on Ae. aegypti survivorship were present with three of four detritus types, but absent with grass. Estimated finite rate of increase (lambda') was lower with pine detritus than with any other detritus type for both species. Furthermore, Ae. aegypti lambda' was negatively affected by high interspecific density in all detritus types except grass. Thus, our experiment confirms competitive asymmetry in favor of Ae. albopictus with oak, pine, or insect detritus, but also demonstrates that certain detritus types may eliminate interspecific competition among the larvae of these species, which may allow for stable coexistence. Such variation in competitive outcome with detritus type may help to account for observed patterns of coexistence/exclusion of Ae. albopictus and Ae. aegypti in the field.

  5. Heat Sensitivity of wMel Wolbachia during Aedes aegypti Development.

    PubMed

    Ulrich, Jill N; Beier, John C; Devine, Gregor J; Hugo, Leon E

    2016-07-01

    The wMel strain of Wolbachia bacteria is known to prevent dengue and Zika virus transmission in the mosquito vector Aedes aegypti. Accordingly, the release of wMel-infected A. aegypti in endemic regions has been recommended by the World Health Organization as a potential strategy for controlling dengue and Zika outbreaks. However, the utility of this approach could be limited if high temperatures in the aquatic habitats where A. aegypti develop are detrimental to Wolbachia. We exposed wMel-infected A. aegypti eggs and larvae to fluctuating daily temperatures of 30-40°C for three, five, or seven days during their development. We found that Wolbachia levels in females emerging from heat treatments were significantly lower than in the controls that had developed at 20-30°C. Notably, seven days of high temperatures starting at the egg stage reduced Wolbachia levels in emerging females to less than 0.1% of the wMel control levels. However, after adult females returned to 20-30°C for 4-7 days, they experienced differing degrees of Wolbachia recovery. Our findings suggest that the spread of Wolbachia in wild A. aegypti populations and any consequent protection from dengue and Zika viruses might be limited in ecosystems that experience periods of extreme heat, but Wolbachia levels recover partially after temperatures return to normal.

  6. Heat Sensitivity of wMel Wolbachia during Aedes aegypti Development

    PubMed Central

    Beier, John C.; Devine, Gregor J.; Hugo, Leon E.

    2016-01-01

    The wMel strain of Wolbachia bacteria is known to prevent dengue and Zika virus transmission in the mosquito vector Aedes aegypti. Accordingly, the release of wMel-infected A. aegypti in endemic regions has been recommended by the World Health Organization as a potential strategy for controlling dengue and Zika outbreaks. However, the utility of this approach could be limited if high temperatures in the aquatic habitats where A. aegypti develop are detrimental to Wolbachia. We exposed wMel-infected A. aegypti eggs and larvae to fluctuating daily temperatures of 30–40°C for three, five, or seven days during their development. We found that Wolbachia levels in females emerging from heat treatments were significantly lower than in the controls that had developed at 20–30°C. Notably, seven days of high temperatures starting at the egg stage reduced Wolbachia levels in emerging females to less than 0.1% of the wMel control levels. However, after adult females returned to 20–30°C for 4–7 days, they experienced differing degrees of Wolbachia recovery. Our findings suggest that the spread of Wolbachia in wild A. aegypti populations and any consequent protection from dengue and Zika viruses might be limited in ecosystems that experience periods of extreme heat, but Wolbachia levels recover partially after temperatures return to normal. PMID:27459519

  7. Nepenthes ampullaria (Nepenthaceae) Pitchers Are Unattractive to Gravid Aedes aegypti and Aedes albopictus (Diptera: Culicidae).

    PubMed

    Chou, Lee Yiung; Dykes, Gary A; Wilson, Robyn F; Clarke, Charles M

    2016-02-01

    Nepenthes pitcher plants are colonized by a variety of specialized arthropods. As Aedes mosquitoes are container breeders, Nepenthes pitchers are a potential candidate oviposition site for vector species, such as Aedes aegypti (L.) and Aedes albopictus (Skuse). However, Aedes spp. are not commonly encountered in Nepenthes pitchers, and the environment inside the pitchers of some species is lethal to them. One exception is Nepenthes ampullaria Jack, whose pitchers are known to be colonized by Ae. albopictus on very rare occasions. Given that Ae. albopictus larvae can survive in N. ampullaria pitcher fluids, we sought to determine why pitcher colonization is rare, testing the hypothesis that gravid Aedes mosquitoes are deterred from ovipositing into container habitats that have similar characteristics to N. ampullaria pitchers. Using plastic ovitraps of different sizes, colors, and with different types of fluids (based on the characteristics of N. ampullaria pitchers), we compared oviposition rates by Aedes mosquitoes in urban and rural areas within the geographical range of N. ampullaria near Kuala Lumpur, Malaysia. Ovitraps that were black and large (>250-ml capacity) accumulated significantly more eggs than ovitraps that were smaller, or green in color. In terms of size and color, small, green ovitraps are analogous to N. ampullaria pitchers, indicating that these pitchers are not particularly attractive to gravid Ae. albopictus. Although Aedes spp. are capable of colonizing N. ampullaria pitchers, the pitchers are relatively unattractive to gravid females and do not represent a significant habitat for larvae of dengue vectors at present.

  8. Aedes aegypti (Diptera: Culicidae) Longevity and Differential Emergence of Dengue Fever in Two Cities in Sonora, Mexico.

    PubMed

    Ernst, Kacey C; Walker, Kathleen R; Reyes-Castro, Pablo; Joy, Teresa K; Castro-Luque, A Lucia; Diaz-Caravantes, Rolando E; Gameros, Mercedes; Haenchen, Steven; Hayden, Mary H; Monaghan, Andrew; Jeffrey-Guttierez, Eileen; Carrière, Yves; Riehle, Michael R

    2017-01-01

    Dengue virus, primarily transmitted by the Aedes aegypti (L.) mosquito, has rapidly expanded in geographic extent over the past several decades. In some areas, however, dengue fever has not emerged despite established Ae. aegypti populations. The reasons for this are unclear and have sometimes been attributed to socio-economic differences. In 2013 we compared Ae. aegypti adult density and population age structure between two cities in Sonora, Mexico: Hermosillo, which has regular seasonal dengue virus transmission, and Nogales, which has minimal transmission. Larval and pupal abundance was greater in Nogales, and adult density was only higher in Hermosillo during September. Population age structure, however, was consistently older in Hermosillo. This difference in longevity may have been one factor that limited dengue virus transmission in Nogales in 2013, as a smaller proportion of Ae. aegypti females survived past the extrinsic incubation period.

  9. Aedes aegypti (Diptera: Culicidae) Longevity and Differential Emergence of Dengue Fever in Two Cities in Sonora, Mexico.

    PubMed

    Ernst, Kacey C; Walker, Kathleen R; Reyes-Castro, Pablo; Joy, Teresa K; Castro-Luque, A Lucia; Diaz-Caravantes, Rolando E; Gameros, Mercedes; Haenchen, Steven; Hayden, Mary H; Monaghan, Andrew; Jeffrey-Guttierez, Eileen; Carrière, Yves; Riehle, Michael R

    2016-09-02

    Dengue virus, primarily transmitted by the Aedes aegypti (L.) mosquito, has rapidly expanded in geographic extent over the past several decades. In some areas, however, dengue fever has not emerged despite established Ae. aegypti populations. The reasons for this are unclear and have sometimes been attributed to socio-economic differences. In 2013 we compared Ae. aegypti adult density and population age structure between two cities in Sonora, Mexico: Hermosillo, which has regular seasonal dengue virus transmission, and Nogales, which has minimal transmission. Larval and pupal abundance was greater in Nogales, and adult density was only higher in Hermosillo during September. Population age structure, however, was consistently older in Hermosillo. This difference in longevity may have been one factor that limited dengue virus transmission in Nogales in 2013, as a smaller proportion of Ae. aegypti females survived past the extrinsic incubation period.

  10. Adulticidal Activity of Olea vera, Linum usitatissimum and Piper nigera against Anopheles stephensi and Aedes aegypti under Laboratory Conditions

    PubMed Central

    Nawaz, R; Rathor, H Rashid; Bilal, H; Hassan, SA; Khan, I Akram

    2011-01-01

    Background: There are several plant extractions which are being used for mosquito control. The aim of this study was to evaluate the efficacy of Olea vera, Linum usitatissimum and Piper nigera against Anopheles stephensi and Aedes aegypti under laboratory conditions. Methods: These tests were carried out using WHO recommended bioassay method for adult mosquitoes. Results: The extracts from black pepper was more effective as adulticide with lowest LC50 values (2.26% and 8.4%) against Aedes aegypti and Anopheles stephensi after 24 h of exposure while after 48h (1.56% and 5.11%) respectively. In terms of LC90 value black pepper was best with (8.66% and 30.1%) against Ae. aegypti and An. stephensi after 24 h of exposure while after 48h (4.59% and 17.3%) respectively. In terms of LT50 black pepper took 15 h to kill 50% tested population of Ae. aegypti while against An. stephensi it took more than 2 days. In terms of percentage mortality black pepper kill 84% of the population of Ae. aegypti and 44.75% of the An. stephensi population. Conclusion: Black pepper showed best results in term of LC50, LC90, LT50 and percentage mortality against Ae. aegypti and An. stephensi. Our study suggested that the plant extracts have potential to kill adult mosquitoes, are environment friendly and can be used for the control of mosquitoes. PMID:22808413

  11. Seasonal Differences in Density But Similar Competitive Impact of Aedes albopictus (Skuse) on Aedes aegypti (L.) in Rio de Janeiro, Brazil.

    PubMed

    Camara, Daniel Cardoso Portela; Codeço, Claudia Torres; Juliano, Steven A; Lounibos, L Philip; Riback, Thais Irene Souza; Pereira, Glaucio Rocha; Honorio, Nildimar Alves

    2016-01-01

    Previous studies have shown that the negative effects of density of Ae. albopictus on Ae. aegypti exceed those of Ae. aegypti on Ae. albopictus for population growth, adult size, survivorship, and developmental rate. This competitive superiority has been invoked to explain the displacement of Ae. aegypti by Ae. albopictus in the southeastern USA. In Brazil, these species coexist in many vegetated suburban and rural areas. We investigated a related, but less-well-studied question: do effects of Ae. albopictus on Ae. aegypti larval development and survival occur under field conditions at realistic densities across multiple seasons in Brazil? We conducted additive competition experiments in a vegetated area of Rio de Janeiro where these species coexist. We tested the hypothesis that Ae. aegypti (the focal species, at a fixed density) suffers negative effects on development and survivorship across a gradient of increasing densities of Ae. albopictus (the associate species) in three seasons. The results showed statistically significant effects of both season and larval density on Ae. aegypti survivorship, and significant effects of season on development rate, with no significant season-density interactions. Densities of Aedes larvae in these habitats differed among seasons by a factor of up to 7x. Overall, Spring was the most favorable season for Ae. aegypti survivorship and development. Results showed that under natural conditions the negative competitive effects of Ae. albopictus on Ae. aegypti were expressed primarily as lower survivorship. Coexistence between Ae. aegypti and Ae. albopictus in vegetated areas is likely affected by seasonal environmental differences, such as detrital resource levels or egg desiccation, which can influence competition between these species. Interactions between these Aedes are important in Brazil, where both species are well established and widely distributed and vector dengue, Zika and chikungunya viruses.

  12. Seasonal Differences in Density But Similar Competitive Impact of Aedes albopictus (Skuse) on Aedes aegypti (L.) in Rio de Janeiro, Brazil

    PubMed Central

    Camara, Daniel Cardoso Portela; Codeço, Claudia Torres; Juliano, Steven A.; Lounibos, L. Philip; Riback, Thais Irene Souza; Pereira, Glaucio Rocha; Honorio, Nildimar Alves

    2016-01-01

    Previous studies have shown that the negative effects of density of Ae. albopictus on Ae. aegypti exceed those of Ae. aegypti on Ae. albopictus for population growth, adult size, survivorship, and developmental rate. This competitive superiority has been invoked to explain the displacement of Ae. aegypti by Ae. albopictus in the southeastern USA. In Brazil, these species coexist in many vegetated suburban and rural areas. We investigated a related, but less-well-studied question: do effects of Ae. albopictus on Ae. aegypti larval development and survival occur under field conditions at realistic densities across multiple seasons in Brazil? We conducted additive competition experiments in a vegetated area of Rio de Janeiro where these species coexist. We tested the hypothesis that Ae. aegypti (the focal species, at a fixed density) suffers negative effects on development and survivorship across a gradient of increasing densities of Ae. albopictus (the associate species) in three seasons. The results showed statistically significant effects of both season and larval density on Ae. aegypti survivorship, and significant effects of season on development rate, with no significant season-density interactions. Densities of Aedes larvae in these habitats differed among seasons by a factor of up to 7x. Overall, Spring was the most favorable season for Ae. aegypti survivorship and development. Results showed that under natural conditions the negative competitive effects of Ae. albopictus on Ae. aegypti were expressed primarily as lower survivorship. Coexistence between Ae. aegypti and Ae. albopictus in vegetated areas is likely affected by seasonal environmental differences, such as detrital resource levels or egg desiccation, which can influence competition between these species. Interactions between these Aedes are important in Brazil, where both species are well established and widely distributed and vector dengue, Zika and chikungunya viruses. PMID:27322537

  13. Mass trapping with MosquiTRAPs does not reduce Aedes aegypti abundance

    PubMed Central

    Degener, Carolin Marlen; de Ázara, Tatiana Mingote Ferreira; Roque, Rosemary Aparecida; Rösner, Susanne; Rocha, Eliseu Soares Oliveira; Kroon, Erna Geessien; Codeço, Cláudia Torres; Nobre, Aline Araújo; Ohly, Jörg Johannes; Geier, Martin; Eiras, Álvaro Eduardo

    2015-01-01

    The objective of this study was to evaluate the effectiveness of Aedes aegypti mass trapping using the sticky trap MosquiTRAP (MQT) by performing a cluster randomised controlled trial in Manaus, state of Amazonas, Brazil. After an initial questionnaire and baseline monitoring of adult Ae. aegypti abundance with BG-Sentinel (BGS) traps in six clusters, three clusters were randomly assigned to the intervention arm where each participating household received three MQTs for mass trapping during 17 months. The remaining three clusters (control arm) did not receive traps. The effect of mass trapping on adult Ae. aegypti abundance was monitored fortnightly with BGS traps. During the last two months of the study, a serological survey was conducted. After the study, a second questionnaire was applied in the intervention arm. Entomological monitoring indicated that MQT mass trapping did not reduce adult Ae. aegypti abundance. The serological survey indicated that recent dengue infections were equally frequent in the intervention and the control arm. Most participants responded positively to questions concerning user satisfaction. According to the results, there is no evidence that mass trapping with MQTs can be used as a part of dengue control programs. The use of this sticky trap is only recommendable for dengue vector monitoring. PMID:25946154

  14. Mass trapping with MosquiTRAPs does not reduce Aedes aegypti abundance.

    PubMed

    Degener, Carolin Marlen; de Ázara, Tatiana Mingote Ferreira; Roque, Rosemary Aparecida; Rösner, Susanne; Rocha, Eliseu Soares Oliveira; Kroon, Erna Geessien; Codeço, Cláudia Torres; Nobre, Aline Araújo; Ohly, Jörg Johannes; Geier, Martin; Eiras, Álvaro Eduardo

    2015-06-01

    The objective of this study was to evaluate the effectiveness of Aedes aegypti mass trapping using the sticky trap MosquiTRAP (MQT) by performing a cluster randomised controlled trial in Manaus, state of Amazonas, Brazil. After an initial questionnaire and baseline monitoring of adult Ae. aegypti abundance with BG-Sentinel (BGS) traps in six clusters, three clusters were randomly assigned to the intervention arm where each participating household received three MQTs for mass trapping during 17 months. The remaining three clusters (control arm) did not receive traps. The effect of mass trapping on adult Ae. aegypti abundance was monitored fortnightly with BGS traps. During the last two months of the study, a serological survey was conducted. After the study, a second questionnaire was applied in the intervention arm. Entomological monitoring indicated that MQT mass trapping did not reduce adult Ae. aegypti abundance. The serological survey indicated that recent dengue infections were equally frequent in the intervention and the control arm. Most participants responded positively to questions concerning user satisfaction. According to the results, there is no evidence that mass trapping with MQTs can be used as a part of dengue control programs. The use of this sticky trap is only recommendable for dengue vector monitoring.

  15. Experimental transmission of Mayaro virus by Aedes aegypti.

    PubMed

    Long, Kanya C; Ziegler, Sarah A; Thangamani, Saravanan; Hausser, Nicole L; Kochel, Tadeusz J; Higgs, Stephen; Tesh, Robert B

    2011-10-01

    Outbreaks of Mayaro fever have been associated with a sylvatic cycle of Mayaro virus (MAYV) transmission in South America. To evaluate the potential for a common urban mosquito to transmit MAYV, laboratory vector competence studies were performed with Aedes aegypti from Iquitos, Peru. Oral infection in Ae. aegypti ranged from 0% (0/31) to 84% (31/37), with blood meal virus titers between 3.4 log(10) and 7.3 log(10) plaque-forming units (PFU)/mL. Transmission of MAYV by 70% (21/30) of infected mosquitoes was shown by saliva collection and exposure to suckling mice. Amount of viral RNA in febrile humans, determined by real-time polymerase chain reaction, ranged from 2.7 to 5.3 log(10) PFU equivalents/mL. Oral susceptibility of Ae. aegypti to MAYV at titers encountered in viremic humans may limit opportunities to initiate an urban cycle; however, transmission of MAYV by Ae. aegypti shows the vector competence of this species and suggests potential for urban transmission.

  16. Argonaute 2 Suppresses Japanese Encephalitis Virus Infection in Aedes aegypti.

    PubMed

    Sasaki, Toshinori; Kuwata, Ryusei; Hoshino, Keita; Isawa, Haruhiko; Sawabe, Kyoko; Kobayashi, Mutsuo

    2017-01-24

    There are three main innate immune mechanisms against viruses in mosquitoes. Infection with the flavivirus dengue virus is controlled by RNA interference (RNAi) and the JAK-STAT and Toll signaling pathways. This study showed that another flavivirus, Japanese encephalitis virus (JEV), did not invade the salivary glands of Aedes aegypti and that this may be a result of the innate immune resistance to the virus. Argonaute 2 (Ago2) plays a critical role in the RNAi pathway. To understand the mechanism of JEV resistance, we focused on Ago2 as a possible target of JEV. Here, we show that the expression of MyD88 (a mediator of Toll signaling) and Ago2 mRNAs was induced by JEV in the salivary glands of Ae. aegypti mosquitoes and that Ago2, JAK, and domeless (DOME) mRNAs were induced by JEV in the bodies of Ae. aegypti mosquitoes. Double-stranded (ds) Ago2 RNA enhanced JEV infection, and the virus was detected in salivary glands by immunofluorescence assay. In contrast, MyD88 dsRNA had no effect on JEV infection. These data suggest that Ago2 plays a crucial role in mediating the innate immune response of Ae. aegypti to JEV in a manner similar to that employed by dengue virus.

  17. Targeted genome editing in Aedes aegypti using TALENs.

    PubMed

    Aryan, Azadeh; Myles, Kevin M; Adelman, Zach N

    2014-08-15

    The Culicine mosquito, Aedes aegypti, is both a major vector of arthropod-borne viruses (arboviruses) and a genetic model organism for arbovirus transmission. TALE nucleases (TALENs), a group of artificial enzymes capable of generating site-specific DNA lesions, consist of a non-specific FokI endonuclease cleavage domain fused to an engineered DNA binding domain specific to a target site. While TALENs have become an important tool for targeted gene disruption in a variety of organisms, application to the mosquito genome is a new approach. We recently described the use of TALENs to perform heritable genetic disruptions in A. aegypti. Here, we provide detailed methods that will allow other research laboratories to capitalize on the potential of this technology for understanding mosquito gene function. We describe target site selection, transient embryo-based assays to rapidly assess TALEN activity, embryonic microinjection and downstream screening steps to identify target site mutations.

  18. Evidence of Polyandry for Aedes aegypti in Semifield Enclosures

    PubMed Central

    Helinski, Michelle E. H.; Valerio, Laura; Facchinelli, Luca; Scott, Thomas W.; Ramsey, Janine; Harrington, Laura C.

    2012-01-01

    Female Aedes aegypti are assumed to be primarily monandrous (i.e., mate only once in their lifetime), but true estimates of mating frequency have not been determined outside the laboratory. To assess polyandry in Ae. aegypti with first-generation progeny from wild mosquitoes, stable isotope semen-labeled males (15N or 13C) were allowed to mate with unlabeled females in semifield enclosures (22.5 m3) in a dengue-endemic area in southern Mexico. On average, 14% of females were positive for both labels, indicating that they received semen from more than one male. Our results provide evidence of a small but potentially significant rate of multiple mating within a 48-hour period and provide an approach for future open-field studies of polyandry in this species. Polyandry has implications for understanding mosquito ecology, evolution, and reproductive behavior as well as genetic strategies for mosquito control. PMID:22492148

  19. Linkage map for Aedes aegypti using restriction fragment length polymorphisms.

    PubMed

    Severson, D W; Mori, A; Zhang, Y; Christensen, B M

    1993-01-01

    We report construction of a genetic linkage map for the mosquito, Aedes aegypti, based on restriction fragment length polymorphisms (RFLPs). The map consists of 50 DNA markers that identify 53 loci covering 134 map units across three linkage groups. Determination of linkage associations between RFLP markers and several mutant marker loci allowed for partial integration of the RFLP markers with an existing classical genetic linkage map for A. aegypti. The RFLP markers include 42 random cDNA clones, three random genomic DNA clones, and five cDNA clones of known genes. We discuss the influence of autosomal sex determination, characteristic of culicine mosquitoes, in relation to its observed influence on segregation ratios. This has important ramifications for future efforts to identify quantitative trait loci associated with the ability of these mosquitoes to transmit various pathogens and parasites to man and other animals.

  20. Genome sequence of Aedes aegypti, a major arbovirus vector.

    PubMed

    Nene, Vishvanath; Wortman, Jennifer R; Lawson, Daniel; Haas, Brian; Kodira, Chinnappa; Tu, Zhijian Jake; Loftus, Brendan; Xi, Zhiyong; Megy, Karyn; Grabherr, Manfred; Ren, Quinghu; Zdobnov, Evgeny M; Lobo, Neil F; Campbell, Kathryn S; Brown, Susan E; Bonaldo, Maria F; Zhu, Jingsong; Sinkins, Steven P; Hogenkamp, David G; Amedeo, Paolo; Arensburger, Peter; Atkinson, Peter W; Bidwell, Shelby; Biedler, Jim; Birney, Ewan; Bruggner, Robert V; Costas, Javier; Coy, Monique R; Crabtree, Jonathan; Crawford, Matt; Debruyn, Becky; Decaprio, David; Eiglmeier, Karin; Eisenstadt, Eric; El-Dorry, Hamza; Gelbart, William M; Gomes, Suely L; Hammond, Martin; Hannick, Linda I; Hogan, James R; Holmes, Michael H; Jaffe, David; Johnston, J Spencer; Kennedy, Ryan C; Koo, Hean; Kravitz, Saul; Kriventseva, Evgenia V; Kulp, David; Labutti, Kurt; Lee, Eduardo; Li, Song; Lovin, Diane D; Mao, Chunhong; Mauceli, Evan; Menck, Carlos F M; Miller, Jason R; Montgomery, Philip; Mori, Akio; Nascimento, Ana L; Naveira, Horacio F; Nusbaum, Chad; O'leary, Sinéad; Orvis, Joshua; Pertea, Mihaela; Quesneville, Hadi; Reidenbach, Kyanne R; Rogers, Yu-Hui; Roth, Charles W; Schneider, Jennifer R; Schatz, Michael; Shumway, Martin; Stanke, Mario; Stinson, Eric O; Tubio, Jose M C; Vanzee, Janice P; Verjovski-Almeida, Sergio; Werner, Doreen; White, Owen; Wyder, Stefan; Zeng, Qiandong; Zhao, Qi; Zhao, Yongmei; Hill, Catherine A; Raikhel, Alexander S; Soares, Marcelo B; Knudson, Dennis L; Lee, Norman H; Galagan, James; Salzberg, Steven L; Paulsen, Ian T; Dimopoulos, George; Collins, Frank H; Birren, Bruce; Fraser-Liggett, Claire M; Severson, David W

    2007-06-22

    We present a draft sequence of the genome of Aedes aegypti, the primary vector for yellow fever and dengue fever, which at approximately 1376 million base pairs is about 5 times the size of the genome of the malaria vector Anopheles gambiae. Nearly 50% of the Ae. aegypti genome consists of transposable elements. These contribute to a factor of approximately 4 to 6 increase in average gene length and in sizes of intergenic regions relative to An. gambiae and Drosophila melanogaster. Nonetheless, chromosomal synteny is generally maintained among all three insects, although conservation of orthologous gene order is higher (by a factor of approximately 2) between the mosquito species than between either of them and the fruit fly. An increase in genes encoding odorant binding, cytochrome P450, and cuticle domains relative to An. gambiae suggests that members of these protein families underpin some of the biological differences between the two mosquito species.

  1. Variation in Aedes aegypti Mosquito Competence for Zika Virus Transmission.

    PubMed

    Roundy, Christopher M; Azar, Sasha R; Rossi, Shannan L; Huang, Jing H; Leal, Grace; Yun, Ruimei; Fernandez-Salas, Ildefonso; Vitek, Christopher J; Paploski, Igor A D; Kitron, Uriel; Ribeiro, Guilherme S; Hanley, Kathryn A; Weaver, Scott C; Vasilakis, Nikos

    2017-04-01

    To test whether Zika virus has adapted for more efficient transmission by Aedes aegypti mosquitoes, leading to recent urban outbreaks, we fed mosquitoes from Brazil, the Dominican Republic, and the United States artificial blood meals containing 1 of 3 Zika virus strains (Senegal, Cambodia, Mexico) and monitored infection, dissemination, and virus in saliva. Contrary to our hypothesis, Cambodia and Mexica strains were less infectious than the Senegal strain. Only mosquitoes from the Dominican Republic transmitted the Cambodia and Mexica strains. However, blood meals from viremic mice were more infectious than artificial blood meals of comparable doses; the Cambodia strain was not transmitted by mosquitoes from Brazil after artificial blood meals, whereas 61% transmission occurred after a murine blood meal (saliva titers up to 4 log 10 infectious units/collection). Although regional origins of vector populations and virus strain influence transmission efficiency, Ae. aegypti mosquitoes appear to be competent vectors of Zika virus in several regions of the Americas.

  2. Variation in Aedes aegypti Mosquito Competence for Zika Virus Transmission

    PubMed Central

    Roundy, Christopher M.; Azar, Sasha R.; Rossi, Shannan L.; Huang, Jing H.; Leal, Grace; Yun, Ruimei; Fernandez-Salas, Ildefonso; Vitek, Christopher J.; Paploski, Igor A.D.; Kitron, Uriel; Ribeiro, Guilherme S.; Hanley, Kathryn A.

    2017-01-01

    To test whether Zika virus has adapted for more efficient transmission by Aedes aegypti mosquitoes, leading to recent urban outbreaks, we fed mosquitoes from Brazil, the Dominican Republic, and the United States artificial blood meals containing 1 of 3 Zika virus strains (Senegal, Cambodia, Mexico) and monitored infection, dissemination, and virus in saliva. Contrary to our hypothesis, Cambodia and Mexica strains were less infectious than the Senegal strain. Only mosquitoes from the Dominican Republic transmitted the Cambodia and Mexica strains. However, blood meals from viremic mice were more infectious than artificial blood meals of comparable doses; the Cambodia strain was not transmitted by mosquitoes from Brazil after artificial blood meals, whereas 61% transmission occurred after a murine blood meal (saliva titers up to 4 log10 infectious units/collection). Although regional origins of vector populations and virus strain influence transmission efficiency, Ae. aegypti mosquitoes appear to be competent vectors of Zika virus in several regions of the Americas. PMID:28287375

  3. Aedes aegypti Larvicidal Sesquiterpene Alkaloids from Maytenus oblongata.

    PubMed

    Touré, Seindé; Nirma, Charlotte; Falkowski, Michael; Dusfour, Isabelle; Boulogne, Isabelle; Jahn-Oyac, Arnaud; Coke, Maïra; Azam, Didier; Girod, Romain; Moriou, Céline; Odonne, Guillaume; Stien, Didier; Houël, Emeline; Eparvier, Véronique

    2017-02-24

    Four new sesquiterpene alkaloids (1-4) with a β-dihydroagrofuran skeleton and a new triterpenoid (5) were isolated from an ethyl acetate extract of Maytenus oblongata stems. Their structures were elucidated using 1D and 2D NMR spectroscopy as well as MS and ECD experiments. The M. oblongata stem EtOAc extract and the pure compounds isolated were tested for larvicidal activity against Aedes aegypti under laboratory conditions, and compounds 2 and 3 were found to be active.

  4. A new tent trap for monitoring the daily activity of Aedes aegypti and Aedes albopictus.

    PubMed

    Casas Martínez, Mauricio; Orozco Bonilla, Arnoldo; Muñoz Reyes, Miguel; Ulloa García, Armando; Bond, J Guillermo; Valle Mora, Javier; Weber, Manuel; Rojas, Julio C

    2013-12-01

    In this study, we designed a new tent trap; the BioDiVector (BDV) tent trap, consisting of two rectangular tents that use human bait without endangering the technical personnel. The daily activity pattern of Aedes aegypti and Aedes albopictus in intra, peri, and extradomiciliary sites was studied in an endemic area of dengue in southern Mexico by using the BDV tent trap. Totals of 3,128 individuals of Ae. aegypti and 833 Ae. albopictus were captured. More Ae. aegypti males than females were caught, while the opposite was true with Ae. albopictus. The activity of both mosquito species was affected by the interaction between the collection site and time of day. In general, more individuals of both mosquito species were captured at the extradomicillary sites than at the peri and intradomicillary sites. Mosquitoes showed two peaks of activity, one in the morning and the other in the afternoon, but in general this only occurred at the extradomicillary sites, whereas no peak of activity was observed at the intra and peridomicillary sites. Overall, Ae. aegypti had a higher indirect biting rate than Ae. albopictus. Finally, due to its efficiency, simplicity, and low cost, we suggest the use of this innovative tool for entomological surveillance, bionomics and vector incrimination studies in geographical areas where dengue and other arboviruses are present.

  5. Population structure of the mosquito Aedes aegypti (Stegomyia aegypti) in Pakistan.

    PubMed

    Rasheed, S B; Boots, M; Frantz, A C; Butlin, R K

    2013-12-01

    Eleven microsatellite markers were used to determine the genetic population structure and spread of Aedes aegypti (Stegomyia aegypti) (Diptera: Culicidae) in Pakistan using mosquitoes collected from 13 different cities. There is a single genetic cluster of Ae. aegypti in Pakistan with a pattern of isolation by distance within the population. The low level of isolation by distance suggests the long-range passive dispersal of this mosquito, which may be facilitated by the tyre trade in Pakistan. A decrease in genetic diversity from south to north suggests a recent spread of this mosquito from Karachi. A strong negative correlation between genetic distance and the quality of road connections shows that populations in cities connected by better road networks are less differentiated, which suggests the human-aided passive dispersal of Ae. aegypti in Pakistan. Dispersal on a large spatial scale may facilitate the strategy of introducing transgenic Ae. aegypti or intracellular bacteria such as Wolbachia to control the spread of dengue disease in Pakistan, but it also emphasizes the need for simple measures to control container breeding sites.

  6. Behavioral responses of two dengue virus vectors, Aedes aegypti and Aedes albopictus (Diptera: Culicidae), to DUET TM and its components

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ultralow volume (ULV) droplets of DUET TM, prallethrin and sumithrin at a sublethal dose were applied to unfed (non bloodfed) and bloodfed female Aedes aegypti Linn. and Aedes albopictus (Skuse) in a wind tunnel. Control spray droplets only contained inactive ingredients. Individual mosquitoes wer...

  7. Field evaluation of a lethal ovitrap for the control of Aedes aegypti (Diptera: Culicidae) in Thailand.

    PubMed

    Sithiprasasna, Ratana; Mahapibul, Pradith; Noigamol, Chumnong; Perich, Michael J; Zeichner, Brian C; Burge, Bob; Norris, Sarah L W; Jones, James W; Schleich, Sonya S; Coleman, Russell E

    2003-07-01

    In 1999 and 2000 we evaluated a lethal ovitrap (LO) for the control of Aedes aegypti (L.) in three villages in Ratchaburi Province, Thailand. Two blocks of 50 houses (a minimum of 250 m apart) served as treatment and control sites in each village, with each house in the treatment area receiving 10 LOs. Thirty houses in the center of each treatment and control block were selected as sampling sites, with larval and adult mosquito sampling initiated when LOs were placed. Sampling was conducted weekly in 10 of the 30 houses at each site, with each block of 10 houses sampled every third week. Sampling continued for 30 wk. Efficacy of the LO was evaluated by determining number of containers with larvae and/or pupae per house and number of adult mosquitoes collected inside each house. In 1999, the LO had a negligible impact on all measures of Ae. aegypti abundance that were assessed; however, fungal contamination of insecticide-impregnated strips may have been responsible for the low efficacy. In 2000, significant suppression was achieved based on changes in multiple entomologic criteria (containers with larvae, containers with pupae, and number of adult Ae. aegypti); however, control was not absolute and neither immature nor adult Ae. aegypti were ever eliminated completely. We conclude that the LO can reduce adult Ae. aegypti populations in Thailand; however, efficacy of the LO is lower than desired due primarily to the high number of alternative oviposition sites. LO efficacy may be improved when used as part of an integrated control program that places emphasis on reduction of adjacent larval habitats. Further studies are required to assess this issue.

  8. Growth and development of Aedes aegypti larvae at limiting food concentrations.

    PubMed

    Levi, Tal; Ben-Dov, Eitan; Shahi, Preeti; Borovsky, Dov; Zaritsky, Arieh

    2014-05-01

    Mosquitoes have a complex life-cycle with dramatic changes in shape, function, and habitat. Aedes aegypti was studied by growing individual larvae at different concentrations of a defined rich food source. At higher food concentrations, rate of larval growth was faster, but the time required for 4th instar larvae to molt into the pupal stage was unexpectedly extended. These opposite tendencies resulted in constant times from hatching to pupation and up to adult eclosion at permissive food concentrations. The results demonstrate that nutritional conditions of 4th instar larvae impact initiation of the first metamorphic molt.

  9. Sub-lethal metal stress response of larvae of Aedes aegypti.

    PubMed

    Perez, Mario H; Noriega, Fernando G

    2014-06-01

    Aedes aegypti (Diptera: Culicidae) has adapted to urban environments; the urbanisation process provides suitable habitats for this disease vector subsequently increasing the probability of the transmission of pathogens in high-density environments. Urban environments provide metal stressed larval habitats. However, little is known about the physiological cost of metal stress or how this might affect the performance of this mosquito species. This study aims to characterise the sub-lethal physiological consequences of metal stress in Aedes aegypti. Various parameters of mosquito physiology under larval metal stress are assessed including larval metallothionein expression and the effects of larval metal stress on adult performance and their progeny. Results show that environmentally relevant larval metal stress compromises larval and adult development and performance, and results in larval metal tolerance along with an increase in lipid consumption. These performance costs are coupled to a dramatic increase in metallothionein expression in the midgut. Metal stress results in lowered adult body mass and neutral storage lipids at emergence, starvation tolerance, fecundity and starvation tolerance of offspring compared to non-metal stressed individuals. Ironically, larval metal stress results in increased adult longevity. Together, these findings indicate that even low levels of environmentally relevant larval metal stress have considerable physiological consequences for this important disease vector.

  10. Territorial analysis of Aedes aegypti distribution in two Colombian cities: a chorematic and ecosystem approach.

    PubMed

    Fuentes-Vallejo, Mauricio; Higuera-Mendieta, Diana Rocío; García-Betancourt, Tatiana; Alcalá-Espinosa, Lucas Andrés; García-Sánchez, Diana; Munévar-Cagigas, David Alejandro; Brochero, Helena Luisa; González-Uribe, Catalina; Quintero, Juliana

    2015-03-01

    A territorial analysis of Aedes aegypti density was conducted in two Colombian cities using an ecosystem and chorematic approach. Entomological and behavioral data (by cluster) and information on the urban context were used to analyze the relationship between territorial structures and dynamics and vector density. The results were represented in graphic (chorematic) models. Arauca showed higher vector density than Armenia. Higher density was related to unplanned urbanization, flood-prone areas, low socioeconomic strata, household water tanks, higher temperature, and recall of control measures for adult mosquitos. Zones with low density indices coincided with diverse socioeconomic, ecological, and behavioral conditions. The study found a relationship between territorial structures and dynamics and vector density in both Arauca and Armenia, where the interaction between ecological and social systems shape areas with high and low A. aegypti density.

  11. Investigating the Potential Range Expansion of the Vector Mosquito Aedes aegypti in Mexico with NASA Earth Science Remote Sensing Results

    NASA Astrophysics Data System (ADS)

    Crosson, W. L.; Eisen, L.; Estes, M. G.; Estes, S. M.; Hayden, M.; Lozano-Fuentes, S.; Monaghan, A. J.; Moreno Madriñán, M. J.; Ochoa, C.; Quattrochi, D.; Tapia, B.; Welsh-Rodriguez, C. M.

    2012-12-01

    In tropical and sub-tropical regions, the mosquito Aedes aegypti is the major vector for the virus causing dengue, a serious public health issue in these areas. Through ongoing NSF- and NASA-funded studies, field surveys of Aedes aegypti and an integrated modeling approach are being used to improve our understanding of the potential range of the mosquito to expand toward heavily populated high elevation areas such as Mexico City under various climate change and socio-economic scenarios. This work serves three primary objectives: (1) Employ NASA remotely-sensed data to supplement the environmental monitoring and modeling component of the project. These data -- for example, surface temperature, precipitation, vegetation indices, soil moisture and elevation -- are critical for understanding the habitat necessary for mosquito survival and abundance; (2) Implement training sessions to instruct scientists and students from Mexico and the U.S. on how to use remote sensing and implement the NASA SERVIR Regional Visualization and Monitoring System; (3) Employ the SERVIR framework to optimize the dissemination of key project results in order to increase their societal relevance and benefits in developing climate adaptation strategies. Field surveys of larval, pupal and adult Aedes aegypti, as well as detailed physical and social household characteristics, were conducted in the summers of 2011and 2012 at geographic scales from the household to the community along a transect from sea level to 2400 m ASL. These data are being used in models to estimate Aedes aegypti habitat suitability. In 2011, Aedes aegypti were identified at an elevation of over 2150 m in Puebla, the highest elevation at which this species has been observed.

  12. Investigating the Potential Range Expansion of the Vector Mosquito Aedes Aegypti in Mexico with NASA Earth Science Remote Sensing Results

    NASA Technical Reports Server (NTRS)

    Crosson, W. L.; Estes, M. G.; Estes, S. M.; Hayden, M.; Monaghan, A. J.; Eisen, L.; Lozano-Fuentes, S.; Ochoa, C.; Tapia, B.; Welsh-Rodriquez, C. M.; Quattrochi, D.; MorenoMadrinan, M. J.

    2012-01-01

    In tropical and sub ]tropical regions, the mosquito Aedes aegypti is the major vector for the virus causing dengue, a serious public health issue in these areas. Through ongoing NSF- and NASA-funded studies, field surveys of Aedes aegypti and an integrated modeling approach are being used to improve our understanding of the potential range of the mosquito to expand toward heavily populated high elevation areas such as Mexico City under various climate change and socio ]economic scenarios. This work serves three primary objectives: (1) Employ NASA remotely-sensed data to supplement the environmental monitoring and modeling component of the project. These data-- for example, surface temperature, precipitation, vegetation indices, soil moisture and elevation-- are critical for understanding the habitat necessary for mosquito survival and abundance; (2) Implement training sessions to instruct scientists and students from Mexico and the U.S. on how to use remote sensing and implement the NASA SERVIR Regional Visualization and Monitoring System; (3) Employ the SERVIR framework to optimize the dissemination of key project results in order to increase their societal relevance and benefits in developing climate adaptation strategies. Field surveys of larval, pupal and adult Aedes aegypti, as well as detailed physical and social household characteristics, were conducted in the summers of 2011and 2012 at geographic scales from the household to the community along a transect from sea level to 2400 m ASL. These data are being used in models to estimate Aedes aegypti habitat suitability. In 2011, Aedes aegypti were identified at an elevation of over 2150 m in Puebla, the highest elevation at which this species has been observed.

  13. Dengue virus detection in Aedes aegypti larvae from southeastern Brazil.

    PubMed

    Cecílio, Samyra Giarola; Júnior, Willer Ferreira Silva; Tótola, Antônio Helvécio; de Brito Magalhães, Cíntia Lopes; Ferreira, Jaqueline Maria Siqueira; de Magalhães, José Carlos

    2015-06-01

    The transmission of dengue, the most important arthropod-borne viral disease in Brazil, has been intensified over the past decades, along with the accompanying expansion and adaptation of its Aedes vectors. In the present study, we mapped dengue vectors in Ouro Preto and Ouro Branco, Minas Gerais, by installing ovitraps in 32 public schools. The traps were examined monthly between September, 2011 through July, 2012 and November, 2012 to April, 2013. The larvae were reared until the fourth stadium and identified according to species. The presence of dengue virus was detected by real time PCR and agarose gel electrophoresis. A total of 1,945 eggs was collected during the 17 months of the study. The Ovitrap Positivity Index (OPI) ranged from 0 to 28.13% and the Eggs Density Index (EDI) ranged from 0 to 59.9. The predominant species was Aedes aegypti, with 84.9% of the hatched larvae. Although the collection was low when compared to other ovitraps studies, vertical transmission could be detected. Of the 54 pools, dengue virus was detected in four Ae. aegypti pools.

  14. The Sublethal Effects of the Entomopathic Fungus Leptolegnia chapmanii on Some Biological Parameters of the Dengue Vector Aedes aegypti

    PubMed Central

    Pelizza, S.A.; Scorsetti, A.C.; Tranchida, M.C.

    2013-01-01

    The mosquito Aedes aegypti (L.) (Diptera: Culicidae) is the primary vector of dengue in the Americas. The use of chemical insecticides is recommended during outbreaks of dengue in order to reduce the number of adult mosquitoes; however, because Ae. aegypti is highly synanthropic, the use of insecticides in densely populated areas is a dangerous practice. Leptolegnia chapmanii Seymour (Straminipila: Peronosporomycetes) is an entomopathogenic microorganism that has demonstrated marked pathogenicity toward the larvae of a number of mosquito species, with little or no effect on non-target insects. Therefore, the purpose of this study was to determine the sublethal effects of L. chapmanii on fecundity, number of gonotrophic cycles, fertility, and relationship between wing length and fecundity in Ae. aegypti females. Ae. aegypti females that survived infection with L. chapmanii laid fewer eggs, had a smaller number of gonotrophic cycles, had shorter wings, and were less fertile than controls. This is the first study on the sublethal effects experienced by specimens of Ae. aegypti that survived infection with zoospores of L. chapmanii. Although field studies should be carried out, the results obtained in this study are encouraging because the high and rapid larval mortality caused by L. chapmanii coupled with the reduction of reproductive capacity in Ae. aegypti females seem to cause a significant reduction in the number of adults in the mid and long term, thereby reducing the health risks associated with Ae. aegypti. PMID:23901823

  15. Vector Competence of Aedes aegypti and Aedes polynesiensis Populations from French Polynesia for Chikungunya Virus

    PubMed Central

    Richard, Vaea; Paoaafaite, Tuterarii; Cao-Lormeau, Van-Mai

    2016-01-01

    Background From October 2014 to March 2015, French Polynesia experienced for the first time a chikungunya outbreak. Two Aedes mosquitoes may have contributed to chikungunya virus (CHIKV) transmission in French Polynesia: the worldwide distributed Ae. aegypti and the Polynesian islands-endemic Ae. polynesiensis mosquito. Methods To investigate the vector competence of French Polynesian populations of Ae. aegypti and Ae. polynesiensis for CHIKV, mosquitoes were exposed per os at viral titers of 7 logs tissue culture infectious dose 50%. At 2, 6, 9, 14 and 21 days post-infection (dpi), saliva was collected from each mosquito and inoculated onto C6/36 mosquito cells to check for the presence of CHIKV infectious particles. Legs and body (thorax and abdomen) of each mosquito were also collected at the different dpi and submitted separately to viral RNA extraction and CHIKV real-time RT-PCR. Results CHIKV infection rate, dissemination and transmission efficiencies ranged from 7–90%, 18–78% and 5–53% respectively for Ae. aegypti and from 39–41%, 3–17% and 0–14% respectively for Ae. polynesiensis, depending on the dpi. Infectious saliva was found as early as 2 dpi for Ae. aegypti and from 6 dpi for Ae. polynesiensis. Our laboratory results confirm that the French Polynesian population of Ae. aegypti is highly competent for CHIKV and they provide clear evidence for Ae. polynesiensis to act as an efficient CHIKV vector. Conclusion As supported by our findings, the presence of two CHIKV competent vectors in French Polynesia certainly contributed to enabling this virus to quickly disseminate from the urban/peri-urban areas colonized by Ae. aegypti to the most remote atolls where Ae. polynesiensis is predominating. Ae. polynesiensis was probably involved in the recent chikungunya outbreaks in Samoa and the Cook Islands. Moreover, this vector may contribute to the risk for CHIKV to emerge in other Polynesian islands like Fiji, and more particularly Wallis where there

  16. Larval development of Aedes aegypti and Aedes albopictus in peri-urban brackish water and its implications for transmission of arboviral diseases.

    PubMed

    Ramasamy, Ranjan; Surendran, Sinnathamby N; Jude, Pavilupillai J; Dharshini, Sangaralingam; Vinobaba, Muthuladchumy

    2011-11-01

    Aedes aegypti (Linnaeus) and Aedes albopictus Skuse mosquitoes transmit serious human arboviral diseases including yellow fever, dengue and chikungunya in many tropical and sub-tropical countries. Females of the two species have adapted to undergo preimaginal development in natural or artificial collections of freshwater near human habitations and feed on human blood. While there is an effective vaccine against yellow fever, the control of dengue and chikungunya is mainly dependent on reducing freshwater preimaginal development habitats of the two vectors. We show here that Ae. aegypti and Ae. albopictus lay eggs and their larvae survive to emerge as adults in brackish water (water with <0.5 ppt or parts per thousand, 0.5-30 ppt and >30 ppt salt are termed fresh, brackish and saline respectively). Brackish water with salinity of 2 to 15 ppt in discarded plastic and glass containers, abandoned fishing boats and unused wells in coastal peri-urban environment were found to contain Ae. aegypti and Ae. albopictus larvae. Relatively high incidence of dengue in Jaffna city, Sri Lanka was observed in the vicinity of brackish water habitats containing Ae. aegypti larvae. These observations raise the possibility that brackish water-adapted Ae. aegypti and Ae. albopictus may play a hitherto unrecognized role in transmitting dengue, chikungunya and yellow fever in coastal urban areas. National and international health authorities therefore need to take the findings into consideration and extend their vector control efforts, which are presently focused on urban freshwater habitats, to include brackish water larval development habitats.

  17. Functional genetic characterization of salivary gland development in Aedes aegypti

    PubMed Central

    2013-01-01

    Background Despite the devastating global impact of mosquito-borne illnesses on human health, very little is known about mosquito developmental biology. In this investigation, functional genetic analysis of embryonic salivary gland development was performed in Aedes aegypti, the dengue and yellow fever vector and an emerging model for vector mosquito development. Although embryonic salivary gland development has been well studied in Drosophila melanogaster, little is known about this process in mosquitoes or other arthropods. Results Mosquitoes possess orthologs of many genes that regulate Drosophila melanogaster embryonic salivary gland development. The expression patterns of a large subset of these genes were assessed during Ae. aegypti development. These studies identified a set of molecular genetic markers for the developing mosquito salivary gland. Analysis of marker expression allowed for tracking of the progression of Ae. aegypti salivary gland development in embryos. In Drosophila, the salivary glands develop from placodes located in the ventral neuroectoderm. However, in Ae. aegypti, salivary marker genes are not expressed in placode-like patterns in the ventral neuroectoderm. Instead, marker gene expression is detected in salivary gland rudiments adjacent to the proventriculus. These observations highlighted the need for functional genetic characterization of mosquito salivary gland development. An siRNA- mediated knockdown strategy was therefore employed to investigate the role of one of the marker genes, cyclic-AMP response element binding protein A (Aae crebA), during Ae. aegypti salivary gland development. These experiments revealed that Aae crebA encodes a key transcriptional regulator of the secretory pathway in the developing Ae. aegypti salivary gland. Conclusions The results of this investigation indicated that the initiation of salivary gland development in Ae. aegypti significantly differs from that of D. melanogaster. Despite these differences

  18. Comprehensive DNA methylation analysis of the Aedes aegypti genome

    PubMed Central

    Falckenhayn, Cassandra; Carneiro, Vitor Coutinho; de Mendonça Amarante, Anderson; Schmid, Katharina; Hanna, Katharina; Kang, Seokyoung; Helm, Mark; Dimopoulos, George; Fantappié, Marcelo Rosado; Lyko, Frank

    2016-01-01

    Aedes aegypti mosquitoes are important vectors of viral diseases. Mosquito host factors play key roles in virus control and it has been suggested that dengue virus replication is regulated by Dnmt2-mediated DNA methylation. However, recent studies have shown that Dnmt2 is a tRNA methyltransferase and that Dnmt2-dependent methylomes lack defined DNA methylation patterns, thus necessitating a systematic re-evaluation of the mosquito genome methylation status. We have now searched the Ae. aegypti genome for candidate DNA modification enzymes. This failed to reveal any known (cytosine-5) DNA methyltransferases, but identified homologues for the Dnmt2 tRNA methyltransferase, the Mettl4 (adenine-6) DNA methyltransferase, and the Tet DNA demethylase. All genes were expressed at variable levels throughout mosquito development. Mass spectrometry demonstrated that DNA methylation levels were several orders of magnitude below the levels that are usually detected in organisms with DNA methylation-dependent epigenetic regulation. Furthermore, whole-genome bisulfite sequencing failed to reveal any evidence of defined DNA methylation patterns. These results suggest that the Ae. aegypti genome is unmethylated. Interestingly, additional RNA bisulfite sequencing provided first evidence for Dnmt2-mediated tRNA methylation in mosquitoes. These findings have important implications for understanding the mechanism of Dnmt2-dependent virus regulation. PMID:27805064

  19. Cost effectiveness of Aedes aegypti control programmes: participatory versus vertical.

    PubMed

    Baly, A; Toledo, M E; Boelaert, M; Reyes, A; Vanlerberghe, V; Ceballos, E; Carvajal, M; Maso, R; La Rosa, M; Denis, O; Van der Stuyft, P

    2007-06-01

    We conducted an economic appraisal of two strategies for Aedes aegypti control: a vertical versus a community-based approach. Costs were calculated for the period 2000-2002 in three pilot areas of Santiago de Cuba where a community intervention was implemented and compared with three control areas with routine vertical programme activities. Reduction in A. aegypti foci was chosen as the measure of effectiveness. The pre-intervention number of foci (614 vs. 632) and economical costs for vector control (US$243746 vs. US$263486) were comparable in the intervention and control areas. During the intervention period (2001-2002), a 13% decrease in recurrent costs for the health system was observed. Within the control areas, these recurrent relative costs remained stable. The number of A. aegypti foci in the pilot areas and the control areas fell by 459 and 467, respectively. The community-based approach was more cost effective from a health system perspective (US$964 vs. US$1406 per focus) as well as from society perspective (US$1508 vs. US$1767 per focus).

  20. Comprehensive DNA methylation analysis of the Aedes aegypti genome.

    PubMed

    Falckenhayn, Cassandra; Carneiro, Vitor Coutinho; de Mendonça Amarante, Anderson; Schmid, Katharina; Hanna, Katharina; Kang, Seokyoung; Helm, Mark; Dimopoulos, George; Fantappié, Marcelo Rosado; Lyko, Frank

    2016-11-02

    Aedes aegypti mosquitoes are important vectors of viral diseases. Mosquito host factors play key roles in virus control and it has been suggested that dengue virus replication is regulated by Dnmt2-mediated DNA methylation. However, recent studies have shown that Dnmt2 is a tRNA methyltransferase and that Dnmt2-dependent methylomes lack defined DNA methylation patterns, thus necessitating a systematic re-evaluation of the mosquito genome methylation status. We have now searched the Ae. aegypti genome for candidate DNA modification enzymes. This failed to reveal any known (cytosine-5) DNA methyltransferases, but identified homologues for the Dnmt2 tRNA methyltransferase, the Mettl4 (adenine-6) DNA methyltransferase, and the Tet DNA demethylase. All genes were expressed at variable levels throughout mosquito development. Mass spectrometry demonstrated that DNA methylation levels were several orders of magnitude below the levels that are usually detected in organisms with DNA methylation-dependent epigenetic regulation. Furthermore, whole-genome bisulfite sequencing failed to reveal any evidence of defined DNA methylation patterns. These results suggest that the Ae. aegypti genome is unmethylated. Interestingly, additional RNA bisulfite sequencing provided first evidence for Dnmt2-mediated tRNA methylation in mosquitoes. These findings have important implications for understanding the mechanism of Dnmt2-dependent virus regulation.

  1. Formulas of components of citronella oil against mosquitoes (Aedes aegypti).

    PubMed

    Hsu, Wey-Shin; Yen, Jui-Hung; Wang, Yei-Shung

    2013-01-01

    The mosquito Aedes aegypti is an epidemic vector of several diseases such as dengue fever and yellow fever. Several pesticides are used to control the mosquito population. Because of their frequent use, some mosquitoes have developed resistance. In this study, we used the Y-tube olfactometer to test essential oils of Cymbopogon species and screened specific formulas of components as repellents against Ae. aegypti. At 400 μL, the extracted oil of citronella grass (Cymbopogon nardus) and myrcene produced a low-active response by inhibiting mosquito host-seeking activity. Citronella grass, lemon grass (Cymbopogon citratus), citral and myrcene also produced a low-treatment response to repellents, for more potential to affect host-seeking behavior. Furthermore, the mixture of citral, myrcene, and citronellal oil (C:M:Ci = 6:4:1) greatly affected and inhibited host-seeking behavior (76% active response; 26% treatment response with 40 μL; 42.5%, 18% with 400 μL; and 19%, 23% with 1000 μL). As compared with the result for N,N-diethyl-3-methylbenzamide (DEET; 44%, 22% with 400 μL), adjusting the composition formulas of citronella oil had a synergistic effect, for more effective repellent against Ae. aegypti.

  2. Differential Susceptibilities of Aedes aegypti and Aedes albopictus from the Americas to Zika Virus

    PubMed Central

    Vazeille, Marie; Yebakima, André; Girod, Romain; Goindin, Daniella; Dupont-Rouzeyrol, Myrielle; Lourenço-de-Oliveira, Ricardo; Failloux, Anna-Bella

    2016-01-01

    Background Since the major outbreak in 2007 in the Yap Island, Zika virus (ZIKV) causing dengue-like syndromes has affected multiple islands of the South Pacific region. In May 2015, the virus was detected in Brazil and then spread through South and Central America. In December 2015, ZIKV was detected in French Guiana and Martinique. The aim of the study was to evaluate the vector competence of the mosquito spp. Aedes aegypti and Aedes albopictus from the Caribbean (Martinique, Guadeloupe), North America (southern United States), South America (Brazil, French Guiana) for the currently circulating Asian genotype of ZIKV isolated from a patient in April 2014 in New Caledonia. Methodology/Principal Findings Mosquitoes were orally exposed to an Asian genotype of ZIKV (NC-2014-5132). Upon exposure, engorged mosquitoes were maintained at 28°±1°C, a 16h:8h light:dark cycle and 80% humidity. 25–30 mosquitoes were processed at 4, 7 and 14 days post-infection (dpi). Mosquito bodies (thorax and abdomen), heads and saliva were analyzed to measure infection, dissemination and transmission, respectively. High infection but lower disseminated infection and transmission rates were observed for both Ae. aegypti and Ae. albopictus. Ae. aegypti populations from Guadeloupe and French Guiana exhibited a higher dissemination of ZIKV than the other Ae. aegypti populations examined. Transmission of ZIKV was observed in both mosquito species at 14 dpi but at a low level. Conclusions/Significance This study suggests that although susceptible to infection, Ae. aegypti and Ae. albopictus were unexpectedly low competent vectors for ZIKV. This may suggest that other factors such as the large naïve population for ZIKV and the high densities of human-biting mosquitoes contribute to the rapid spread of ZIKV during the current outbreak. PMID:26938868

  3. Discriminating lethal concentrations and efficacy of six pyrethroids for control of Aedes aegypti in Thailand.

    PubMed

    Juntarajumnong, Waraporn; Pimnon, Sunthorn; Bangs, Michael J; Thanispong, Kanutcharee; Chareonviriyaphap, Theeraphap

    2012-03-01

    Establishing baseline insecticide discriminating doses is crucial in accurately determining susceptibility status and changing temporal patterns of physiological response in mosquito populations. Pyrethroids are the predominant chemicals used for controlling adult Aedes aegypti and Ae. albopictus, both vectors of dengue viruses, in Thailand. Presently, only 2 pyrethroids, permethrin and lambda-cyhalothrin, have published diagnostic dose rates for monitoring Ae. aegypti. This study established the diagnostic lethal concentrations for 6 different pyrethroids available in Thailand for dengue vector control. United States Department of Agriculture insecticide-susceptible strain of Ae. aegypti was used to establish the baseline concentrations for subsequent susceptibility testing of field populations. Our findings showed lower discriminating concentrations for lambda-cyhalothrin and permethrin than those recommended by the World Health Organization (WHO), at 2.5- and 1.7-fold lower dosing, respectively. The susceptibility status of 3 different geographical populations of field-collected Ae. aegypti were tested using the standard WHO procedures. All 3 field strains demonstrated varying levels of physiological resistance to each compound. We conclude that establishing the baseline diagnostic concentration of an insecticide is of paramount importance in accurately determining the susceptibility status in field-collected mosquitoes. If possible, discriminating doses should be established for all insecticides and test assays run concurrently with a known susceptible strain for more accurate monitoring of resistance in mosquito populations in Thailand.

  4. Insecticidal and Repellent Activity of Several Plant-Derived Essential Oils Against Aedes aegypti.

    PubMed

    Castillo, Ruth M; Stashenko, Elena; Duque, Jonny E

    2017-03-01

    We examined the pupicidal, adulticidal, repellent, and oviposition-deterrent activities of essential oils (EOs) from Lippia alba, L. origanoides, Eucalyptus citriodora, Cymbopogon citratus, Cymbopogon flexuosus, Citrus sinensis , Cananga odorata , Swinglea glutinosa, and Tagetes lucida plants against Aedes aegypti under laboratory conditions. Pupicidal and adulticidal activities were assessed at exploratory concentrations of 250, 310, and 390 parts per million (ppm); and 30, 300, and 1,000 ppm, respectively. The greatest pupicidal activity was exhibited at 390 ppm with a 24-h exposure by L. origanoides, and 390 ppm with a 48-h exposure by Citrus sinensis . Lippia origanoides killed all adult mosquitoes at 300 ppm after 120 min of exposure. Only L. origanoides and E. citriodora EOs, applied at 1,000 ppm to human skin, produced the greatest repellency (100%) to host-seeking Ae. aegypti after 2 min of exposure; the repellency decreased between 12% and 10% after 15 min. Complete oviposition deterrence by gravid Ae. aegypti was observed for E. citriodora EOs at 200 ppm with an oviposition activity index of -1.00. These results confirm that the EOs assessed in this study have insecticidal, repellent, and oviposition-deterrent activities against the dengue vector, Ae. aegypti.

  5. Transcript profiling of the meiotic drive phenotype in testis of Aedes aegypti using suppressive subtractive hybridization.

    PubMed

    Shin, Dongyoung; Jin, Lizhong; Lobo, Neil F; Severson, David W

    2011-09-01

    The meiotic drive gene in Aedes aegypti is tightly linked with the sex determination locus on chromosome 1, and causes highly male-biased sex ratios. We prepared cDNA libraries from testes from the Ae. aegypti T37 strain (driving) and RED strain (non-driving), and used suppressive subtraction hybridization techniques to enrich for T37 testes-specific transcripts. Expressed sequence tags (ESTs) were obtained from a total of 2784 randomly selected clones from the subtracted T37 (subT37) library as well as the primary libraries for each strain (pT37 and pRED). Sequence analysis identified a total of 171 unique genes in the subT37 library and 299 unique genes among the three libraries. The majority of genes enriched in the subT37 library were associated with signal transduction, development, reproduction, metabolic process and cell cycle functions. Further, as observed with meiotic drive systems in Drosophila and mouse, a number of these genes were associated with signaling cascades that involve the Ras superfamily of regulatory small GTPases. Differential expression of several of these genes was verified in Ae. aegypti pupal testes using qRT-PCR. This study increases our understanding of testes gene expression enriched in adult males from the meiotic drive strain as well as insights into the basic testes transcriptome in Ae. aegypti.

  6. Environmental and Genetic Factors Determine Whether the Mosquito Aedes aegypti Lays Eggs without a Blood Meal

    PubMed Central

    Ariani, Cristina V.; Smith, Sophia C. L.; Osei-Poku, Jewelna; Short, Katherine; Juneja, Punita; Jiggins, Francis M.

    2015-01-01

    Some mosquito strains or species are able to lay eggs without taking a blood meal, a trait named autogeny. This may allow populations to persist through times or places where vertebrate hosts are scarce. Autogenous egg production is highly dependent on the environment in some species, but the ideal conditions for its expression in Aedes aegypti mosquitoes are unknown. We found that 3.2% of females in a population of Ae. aegypti from Kenya were autogenous. Autogeny was strongly influenced by temperature, with many more eggs laid at 28°C compared with 22°C. Good nutrition in larval stages and feeding on higher concentrations of sugar solution during the adult stage both result in more autogenous eggs being produced. The trait also has a genetic basis, as not all Ae. aegypti genotypes can lay autogenously. We conclude that Ae. aegypti requires a favorable environment and a suitable genotype to be able to lay eggs without a blood meal. PMID:25646251

  7. Spatial and Temporal Variation in Aedes aegypti and Aedes albopictus (Diptera: Culicidae) Numbers in the Yogyakarta Area of Java, Indonesia, With Implications for Wolbachia Releases.

    PubMed

    Tantowijoyo, W; Arguni, E; Johnson, P; Budiwati, N; Nurhayati, P I; Fitriana, I; Wardana, S; Ardiansyah, H; Turley, A P; Ryan, P; O'Neill, S L; Hoffmann, A A

    2016-01-01

    of mosquito vector populations, particularly through Wolbachia endosymbionts. The success of these strategies depends on understanding the dynamics of vector populations. In preparation for Wolbachia releases around Yogyakarta, we have studied Aedes populations in five hamlets. Adult monitoring with BioGent- Sentinel (BG-S) traps indicated that hamlet populations had different dynamics across the year; while there was an increase in Aedes aegypti (L.) and Aedes albopictus (Skuse) numbers in the wet season, species abundance remained relatively stable in some hamlets but changed markedly (>2 fold) in others. Local rainfall a month prior to monitoring partly predicted numbers of Ae. aegypti but not Ae. albopictus. Site differences in population size indicated by BG-S traps were also evident in ovitrap data. Egg or larval collections with ovitraps repeated at the same location suggested spatial autocorrelation (<250 m) in the areas of the hamlets where Ae. aegypti numbers were high. Overall, there was a weak negative association (r<0.43) between Ae. aegypti and Ae. albopictus numbers in ovitraps when averaged across collections. Ae. albopictus numbers in ovitraps and BG-S traps were positively correlated with vegetation around areas where traps were placed, while Ae. aegypti were negatively correlated with this feature. These data inform intervention strategies by defining periods when mosquito densities are high, highlighting the importance of local site characteristics on populations, and suggesting relatively weak interactions between Ae. aegypti and Ae. albopictus. They also indicate local areas within hamlets where consistently high mosquito densities may influence Wolbachia invasions and other interventions.

  8. Productivity and population density estimates of the dengue vector mosquito Aedes aegypti (Stegomyia aegypti) in Australia.

    PubMed

    Williams, C R; Johnson, P H; Ball, T S; Ritchie, S A

    2013-09-01

    New mosquito control strategies centred on the modifying of populations require knowledge of existing population densities at release sites and an understanding of breeding site ecology. Using a quantitative pupal survey method, we investigated production of the dengue vector Aedes aegypti (L.) (Stegomyia aegypti) (Diptera: Culicidae) in Cairns, Queensland, Australia, and found that garden accoutrements represented the most common container type. Deliberately placed 'sentinel' containers were set at seven houses and sampled for pupae over 10 weeks during the wet season. Pupal production was approximately constant; tyres and buckets represented the most productive container types. Sentinel tyres produced the largest female mosquitoes, but were relatively rare in the field survey. We then used field-collected data to make estimates of per premises population density using three different approaches. Estimates of female Ae. aegypti abundance per premises made using the container-inhabiting mosquito simulation (CIMSiM) model [95% confidence interval (CI) 18.5-29.1 females] concorded reasonably well with estimates obtained using a standing crop calculation based on pupal collections (95% CI 8.8-22.5) and using BG-Sentinel traps and a sampling rate correction factor (95% CI 6.2-35.2). By first describing local Ae. aegypti productivity, we were able to compare three separate population density estimates which provided similar results. We anticipate that this will provide researchers and health officials with several tools with which to make estimates of population densities.

  9. Imidacloprid impairs the post-embryonic development of the midgut in the yellow fever mosquito Stegomyia aegypti (=Aedes aegypti).

    PubMed

    Fernandes, K M; Gonzaga, W G; Pascini, T V; Miranda, F R; Tomé, H V V; Serrão, J E; Martins, G F

    2015-09-01

    The mosquito Stegomyia aegypti (=Aedes aegypti) (Diptera: Culicidae) is a vector for the dengue and yellow fever viruses. As blood digestion occurs in the midgut, this organ constitutes the route of entry of many pathogens. The effects of the insecticide imidacloprid on the survival of St. aegypti were investigated and the sub-lethal effects of the insecticide on midgut development were determined. Third instar larvae were exposed to different concentrations of imidacloprid (0.15, 1.5, 3.0, 6.0 and 15.0 p.p.m.) and survival was monitored every 24 h for 10 days. Midguts from imidacloprid-treated insects at different stages of development were dissected and processed for analyses by transmission electron microscopy, immunofluorescence microscopy and terminal deoxynucleotidyl transferase dUTP nick-end labelling (TUNEL) assays. Imidacloprid concentrations of 3.0 and 15.0 p.p.m. were found to affect midgut development similarly. Digestive cells of the fourth instar larvae (L4) midgut exposed to imidacloprid had more multilamellar bodies, abundantly found in the cell apex, and more electron-lucent vacuoles in the basal region compared with those from untreated insects. Moreover, imidacloprid interfered with the differentiation of regenerative cells, dramatically reducing the number of digestive and endocrine cells and leading to malformation of the midgut epithelium in adults. The data demonstrate that imidacloprid can reduce the survival of mosquitoes and thus indicate its potentially high efficacy in the control of St. aegypti populations.

  10. Relish2 mediates bursicon homodimer-induced prophylactic immunity in the mosquito Aedes aegypti.

    PubMed

    Zhang, Hongwei; Dong, Shengzhang; Chen, Xi; Stanley, David; Beerntsen, Brenda; Feng, Qili; Song, Qisheng

    2017-02-22

    Bursicon is a neuropeptide hormone consisting of two cystine-knot proteins (burs α and burs β), responsible for cuticle tanning and other developmental processes in insects. Recent studies show that each bursicon subunit forms homodimers that induce prophylactic immunity in Drosophila melanogaster. Here, we investigated the hypothesis that bursicon homodimers act in prophylactic immunity in insects, and possibly arthropods, generally, using the mosquito, Aedes aegypti. We found that burs α and burs β are expressed in larvae, pupae and newly emerged adults. Treating newly emerged Ae. aegypti and D. melanogaster adults with recombinant bursicon (r-bursicon) heterodimer led to cuticle tanning in both species. Treating larvae and adults with r-bursicon homodimers led to up-regulation of five anti-microbial peptide (AMP) genes, noting the possibility that bursicon heterodimers also lead to up-regulation of these genes can not been excluded. The induced AMPs effectively suppressed the growth of bacteria in vitro. RNAi knock-down of the transcriptional factor Relish2 abolished the influence of r-bursicon homodimers on AMP production. We infer the bursicon homodimers induce expression of AMP genes via Relish2 in Ae. aegypti, as prophylactic immunity to protect mosquitoes during the vulnerable stages of each molt.

  11. Relish2 mediates bursicon homodimer-induced prophylactic immunity in the mosquito Aedes aegypti

    PubMed Central

    Zhang, Hongwei; Dong, Shengzhang; Chen, Xi; Stanley, David; Beerntsen, Brenda; Feng, Qili; Song, Qisheng

    2017-01-01

    Bursicon is a neuropeptide hormone consisting of two cystine-knot proteins (burs α and burs β), responsible for cuticle tanning and other developmental processes in insects. Recent studies show that each bursicon subunit forms homodimers that induce prophylactic immunity in Drosophila melanogaster. Here, we investigated the hypothesis that bursicon homodimers act in prophylactic immunity in insects, and possibly arthropods, generally, using the mosquito, Aedes aegypti. We found that burs α and burs β are expressed in larvae, pupae and newly emerged adults. Treating newly emerged Ae. aegypti and D. melanogaster adults with recombinant bursicon (r-bursicon) heterodimer led to cuticle tanning in both species. Treating larvae and adults with r-bursicon homodimers led to up-regulation of five anti-microbial peptide (AMP) genes, noting the possibility that bursicon heterodimers also lead to up-regulation of these genes can not been excluded. The induced AMPs effectively suppressed the growth of bacteria in vitro. RNAi knock-down of the transcriptional factor Relish2 abolished the influence of r-bursicon homodimers on AMP production. We infer the bursicon homodimers induce expression of AMP genes via Relish2 in Ae. aegypti, as prophylactic immunity to protect mosquitoes during the vulnerable stages of each molt. PMID:28225068

  12. Development and evaluation of a pyriproxyfen-treated device to control the dengue vector, Aedes aegypti (L.) (Diptera:Culicidae).

    PubMed

    Ponlawat, Alongkot; Fansiri, Thanyalak; Kurusarttra, Somwang; Pongsiri, Arissara; McCardle, Patrick W; Evans, Brian P; Evans, Brain P; Richardson, Jason H

    2013-03-01

    The resurgence of dengue fever and the chikungunya epidemic make the control of Aedes aegypti mosquitoes, the vectors of these diseases, critically important. We developed and evaluated an Ae. aegypti control device that is visually-attractive to mosquitoes. This pyriproxyfen-treated device was evaluated for its impact on Ae. aegypti egg production and population dynamics in dengue-endemic areas in Thailand. The device consists of a "high rise" shaped ovitrap/ resting station covered with black cotton cloth. The device is easily collapsible and transportable. Ae. aegypti are generally drawn towards darker, shadier areas making this device physically attractive as a resting station to mosquitoes of all physiological stages. The results show this device suppressed Ae. aegypti populations after it was introduced into a village. The observed effect was primarily the result of the Ae. aegypti exposure to pyriproxyfen shortly after adult emergence or after taking a blood meal resulting in decreased egg production. We believe the device may be further improved physically and the formulation should be replaced to provide even better efficacy for controlling Ae. aegypti mosquito, populations.

  13. Toxicity and Physiological Actions of Carbonic Anhydrase Inhibitors to Aedes aegypti and Drosophila melanogaster

    PubMed Central

    Francis, Sheena A. M.; Taylor-Wells, Jennina; Gross, Aaron D.; Bloomquist, Jeffrey R.

    2016-01-01

    The physiological role of carbonic anhydrases in pH and ion regulation is crucial to insect survival. We examined the toxic and neurophysiological effects of five carbonic anhydrase inhibitors (CAIs) against Aedes aegypti. The 24 h larvicidal toxicities followed this rank order of potency: dichlorphenamide > methazolamide > acetazolamide = brinzolamide = dorzolamide. Larvicidal activity increased modestly in longer exposures, and affected larvae showed attenuated responses to probing without overt tremors, hyperexcitation, or convulsions. Acetazolamide and dichlorphenamide were toxic to adults when applied topically, but were of low potency and had an incomplete effect (<50% at 300 ng/mosquito) even after injection. Dichlorphenamide was also the most toxic compound when fed to adult mosquitoes, and they displayed loss of posture and occasionally prolonged fluttering of the wings. Co-exposure with 500 ng of the synergist piperonyl butoxide (PBO) increased the toxicity of dichlorphenamide ca. two-fold in feeding assays, indicating that low toxicity was not related to oxidative metabolism. Dichlorphenamide showed mild depolarizing and nerve discharge actions on insect neuromuscular and central nervous systems, respectively. These effects were increased in low buffer salines, indicating they were apparently related to loss of pH control in these tissues. Overall, sulfonamides displayed weak insecticidal properties on Aedes aegypti and are weak lead compounds. PMID:28025488

  14. Evaluation of novel insecticides for control of dengue vector Aedes aegypti (Diptera: Culicidae).

    PubMed

    Paul, Ayesa; Harrington, Laura C; Scott, Jeffrey G

    2006-01-01

    Insecticides are one of the major tools for controlling vector populations and for reducing the transmission of human pathogens. However, there are few new insecticides being developed and marketed for vector control. Herein, we report on the toxicity of six novel insecticides to both adult and larval Aedes aegypti (L). and the toxicity of three novel insect growth regulators (IGRs) to larvae. Four insecticides were highly or moderately toxic to larvae with LC50 values of 16 (chlorfenapyr), 70 (hydramethylnon), 79 (indoxacarb), and 84 ng/ml (imidacloprid). Diafenthiuron and chlorfenapyr were moderately toxic to adult mosquitoes with LC50 values of 13 and 92 ng/cm2, respectively. Imidacloprid was strongly synergized by piperonyl butoxide (PBO) in Ae. aegypti adults, suggesting that neonicotinoids are intrinsically very toxic to adult mosquitoes (in the absence of detoxification). The effect of PBO on the toxicity in adults and larvae was considerably different, both in terms of the insecticides that were synergized (or antagonized for chlorfenapyr versus adults) and in terms of the degree of synergism. This result implies that the cytochrome P450s involved in metabolism of these insecticides are different between adults and larvae. Pyriproxyfen was confirmed as a potent IGR (EC50 of 0.0017 ng/ml) for mosquitoes, although tebufenozide lacked activity. The potential for use of these materials in mosquito control is discussed.

  15. Vector Competence of French Polynesian Aedes aegypti and Aedes polynesiensis for Zika Virus

    PubMed Central

    Richard, Vaea; Paoaafaite, Tuterarii; Cao-Lormeau, Van-Mai

    2016-01-01

    Background In 2013–2014, French Polynesia experienced for the first time a Zika outbreak. Two Aedes mosquitoes may have contributed to Zika virus (ZIKV) transmission in French Polynesia: the worldwide distributed Ae. aegypti and the Polynesian islands-endemic Ae. polynesiensis mosquito. Methodology/Principal Findings To evaluate their vector competence for ZIKV, mosquitoes were infected per os at viral titers of 7 logs tissue culture infectious dose 50%. At several days post-infection (dpi), saliva was collected from each mosquito and inoculated onto C6/36 mosquito cells to check for the presence of ZIKV infectious particles. Legs and body of each mosquito were also collected and submitted separately to RNA extraction and ZIKV RT-PCR. In Ae. aegypti the infection rate was high as early as 6 dpi and the dissemination efficiency get substantial from 9 dpi while the both rates remained quite low in Ae. polynesiensis. The transmission efficiency was poor in Ae. aegypti until 14 dpi and no infectious saliva was found in Ae. polynesiensis at the time points studied. Conclusions/Significance In our experimental conditions, the late ability of the French Polynesian Ae. aegypti to transmit ZIKV added by the poor competence of Ae. polynesiensis for this virus suggest the possible contribution of another vector for the propagation of ZIKV during the outbreak, in particular in remote islands where Ae. polynesiensis is predominating. PMID:27654962

  16. Metabolic fate of [14C]-labeled meal protein amino acids in Aedes aegypti mosquitoes.

    PubMed

    Zhou, Guoli; Flowers, Matthew; Friedrich, Kenneth; Horton, James; Pennington, James; Wells, Michael A

    2004-04-01

    We developed a method to follow the metabolic fate of [(14)C]-labeled Euglena gracilis protein amino acids in Aedes aegypti mosquitoes under three different adult nutritional regimes. Quantitative analysis of blood meal protein amino acid metabolism showed that most of the carbon of the amino acids was either oxidized to CO(2) or excreted as waste. Under the three different adult nutritional regimes, no significant differences in the metabolism of amino acids were found, which indicated that the female A. aegypti mosquitoes possess a substantial capacity of maintaining metabolic homeostasis during a gonotrophic cycle. The amount of maternal glycogen and lipid after egg laying were significantly lower in the mosquitoes that underwent a partial starvation before a blood meal and/or starvation after the blood meal. The content of egg lipid or protein or the number of eggs laid did not show a significant difference among the three different regimes, which indicates that stable fecundity of A. aegypti under the partial starvation before a blood meal and/or starvation after the blood meal seemed to result from a trade-off between current fecundity and future survival after the eggs laid. The methods described in this paper can be applied to a wide range of questions about the effects of environmental conditions on the utilization of blood meal amino acids.

  17. Developmental and Environmental Regulation of AaeIAP1 Transcript in Aedes aegypti

    DTIC Science & Technology

    2008-01-01

    swine fever virus IAP ho- molog is a late structural polypeptide. Virology 214: 670Ð 674. Christophers, S. R. 1960. Aedes aegypti (L.) the yellow fever...Aedes triseriatusmosquitoes. Insect Mol. Biol. 11: 431Ð442. Chacon,M. R., F. Almazan,M. L. Nogal, E. Vinuela, and J. F. Rodriguez. 1995. The African

  18. Repellents Inhibit P450 Enzymes in Stegomyia (Aedes) aegypti

    PubMed Central

    Jaramillo Ramirez, Gloria Isabel; Logan, James G.; Loza-Reyes, Elisa; Stashenko, Elena; Moores, Graham D.

    2012-01-01

    The primary defence against mosquitoes and other disease vectors is often the application of a repellent. Despite their common use, the mechanism(s) underlying the activity of repellents is not fully understood, with even the mode of action of DEET having been reported to be via different mechanisms; e.g. interference with olfactory receptor neurones or actively detected by olfactory receptor neurones on the antennae or maxillary palps. In this study, we discuss a novel mechanism for repellence, one of P450 inhibition. Thirteen essential oil extracts from Colombian plants were assayed for potency as P450 inhibitors, using a kinetic fluorometric assay, and for repellency using a modified World Health Organisation Pesticide Evaluations Scheme (WHOPES) arm-in cage assay with Stegomyia (Aedes) aegypti mosquitoes. Bootstrap analysis on the inhibition analysis revealed a significant correlation between P450-inhibition and repellent activity of the oils. PMID:23152795

  19. Transstadial Effects of Bti on Traits of Aedes aegypti and Infection with Dengue Virus

    PubMed Central

    Alto, Barry W.; Lord, Cynthia C.

    2016-01-01

    Most mosquito control efforts are primarily focused on reducing the adult population size mediated by reductions in the larval population, which should lower risk of disease transmission. Although the aim of larviciding is to reduce larval abundance and thus recruitment of adults, nonlethal effects on adults are possible, including transstadial effects on phenotypes of adults such as survival and pathogen infection and transmission. In addition, the mortality induced by control efforts may act in conjunction with other sources of mosquito mortality in nature. The consequences of these effects and interactions may alter the potential of the population to transmit pathogens. We tested experimentally the combined effects of a larvicide (Bacillus thuringiensis ssp. israelensis, Bti) and competition during the larval stages on subsequent Aedes aegypti (Linnaeus) traits, population performance, and susceptibility to dengue-1 virus infection. Ae. aegypti that survived exposure to Bti experienced accelerated development, were larger, and produced more eggs with increasing amounts of Bti, consistent with competitive release among surviving mosquitoes. Changing larval density had no significant interactive effect with Bti treatment on development and growth to adulthood. Larval density, but not Bti or treatment interaction, had a strong effect on survival of adult Ae. aegypti females. There were sharper declines in cumulative daily survival of adults from crowded than uncrowded larval conditions, suggesting that high competition conditions of larvae may be an impediment to transmission of dengue viruses. Rates of infection and dengue-1 virus disseminated infections were found to be 87±13% and 88±12%, respectively. There were no significant treatment effects on infection measurements. Our findings suggest that larvicide campaigns using Bti may reduce the number of emerged adults, but survivors will have a fitness advantage (growth, development, enhanced production of eggs

  20. Spatial and temporal patterns of abundance of Aedes aegypti L. (Stegomyia aegypti) and Aedes albopictus (Skuse) [Stegomyia albopictus (Skuse)] in southern Florida.

    PubMed

    Reiskind, M H; Lounibos, L P

    2013-12-01

    Invasion by mosquito vectors of disease may impact the distribution of resident mosquitoes, resulting in novel patterns of vectors and concomitant risk for disease. One example of such an impact is the invasion by Aedes albopictus (Skuse) [Stegomyia albopictus (Skuse)] (Diptera: Culicidae) of North America and this species' interaction with Aedes aegypti L. (Stegomyia aegypti L). We hypothesized that Ae. aegypti would be found in urban, coastal areas that experience hotter and drier conditions, whereas Ae. albopictus would be more commonly found in suburban and rural areas that are cooler and wetter. In addition, we hypothesized that Ae. aegypti would be more abundant early in the wet season, whereas Ae. albopictus would be more abundant later in the wet season. Urban areas were drier, hotter and contained more Ae. aegypti than suburban or rural areas. Aedes aegypti was relatively more abundant early in the wet season, whereas Ae. albopictus was more abundant in both the late wet season and the dry season. The spatial patterns of inter- and intraspecific encounters between these species were also described. The distribution of these mosquitoes is correlated with abiotic conditions, and with temperature, humidity and the relative availability of rain-filled containers. Understanding the ecological determinants of species distribution can provide insight into the biology of these vectors and important information for their appropriate control.

  1. Cumulative mortality of Aedes aegypti larvae treated with compounds

    PubMed Central

    Torres, Sandra Maria; da Cruz, Nadine Louise Nicolau; Rolim, Vitor Pereira de Matos; Cavalcanti, Maria Inês de Assis; Alves, Leucio Câmara; da Silva, Valdemiro Amaro

    2014-01-01

    OBJECTIVE To evaluate the larvicidal activity of Azadirachta indica, Melaleuca alternifolia, carapa guianensis essential oils and fermented extract of Carica papaya against Aedes aegypti (Linnaeus, 1762) (Diptera: Culicidae). METHODS The larvicide test was performed in triplicate with 300 larvae for each experimental group using the third larval stage, which were exposed for 24h. The groups were: positive control with industrial larvicide (BTI) in concentrations of 0.37 ppm (PC1) and 0.06 ppm (PC2); treated with compounds of essential oils and fermented extract, 50.0% concentration (G1); treated with compounds of essential oils and fermented extract, 25.0% concentration (G2); treated with compounds of essential oils and fermented extract, 12.5% concentration (G3); and negative control group using water (NC1) and using dimethyl (NC2). The larvae were monitored every 60 min using direct visualization. RESULTS No mortality occurred in experimental groups NC1 and NC2 in the 24h exposure period, whereas there was 100% mortality in the PC1 and PC2 groups compared to NC1 and NC2. Mortality rates of 65.0%, 50.0% and 78.0% were observed in the groups G1, G2 and G3 respectively, compared with NC1 and NC2. CONCLUSIONS The association between three essential oils from Azadirachta indica, Melaleuca alternifolia, Carapa guianensis and fermented extract of Carica papaya was efficient at all concentrations. Therefore, it can be used in Aedes aegypti Liverpool third larvae stage control programs. PMID:25119939

  2. Interspecific Cross-Mating Between Aedes aegypti and Aedes albopictus Laboratory Strains: Implication of Population Density on Mating Behaviors.

    PubMed

    Marcela, P; Hassan, A Abu; Hamdan, A; Dieng, H; Kumara, T K

    2015-12-01

    Mating behavior between Aedes aegypti and Ae. albopictus, established colony strains were examined under laboratory conditions (30-cm(3) screened cages) for 5 consecutive days. The effect of selected male densities (30, 20, 10) and female density (20) on the number of swarming, mating pairs, eggs produced, and inseminated females were evaluated. Male densities significantly increased swarming behavior, mating pairs, and egg production of heterospecific females, but female insemination was reduced. Aedes aegypti males mate more readily with heterospecific females than do Ae. albopictus males. The current study suggests that Ae. aegypti males were not species-specific in mating, and if released into the field as practiced in genetically modified mosquito techniques, they may mate with both Ae. aegypti and Ae. albopictus females, hence reducing populations of both species by producing infertile eggs.

  3. Aedes aegypti Global Suitability Maps Using a Water Container Energy Balance Model for Dengue Risk Applications

    NASA Astrophysics Data System (ADS)

    Steinhoff, D.

    2015-12-01

    Dengue infections are estimated to total nearly 400 million per year worldwide, with both the geographic range and the magnitude of infections having increased in the past 50 years. The primary dengue vector mosquito Aedes aegypti is closely associated with humans. It lives exclusively in urban and semi-urban areas, preferentially bites humans, and spends its developmental stages in artificial water containers. Climate regulates the development of Ae. aegypti immature mosquitoes in artificial containers. Potential containers for Ae. aegypti immature development include, but are not limited to, small sundry items (e.g., bottles, cans, plastic containers), buckets, tires, barrels, tanks, and cisterns. Successful development of immature mosquitoes from eggs to larvae, pupae, and eventually adults is largely dependent on the availability of water and the thermal properties of the water in the containers. Recent work has shown that physics-based approaches toward modeling container water properties are promising for resolving the complexities of container water dynamics and the effects on immature mosquito development. An energy balance container model developed by the author, termed the Water Height And Temperature in Container Habitats Energy Model (WHATCH'EM), solves for water temperature and height for user-specified containers with readily available weather data. Here we use WHATCH'EM with NASA Earth Science products used as input to construct global suitability maps based on established water temperature ranges for immature Ae. aegypti mosquitoes. A proxy for dengue risk is provided from habitat suitability, but also population estimates, as Ae. aegypti is closely associated with human activity. NASA gridded Global Population of the World data is used to mask out rural areas with low dengue risk. Suitability maps are illustrated for a variety of containers (size, material, color) and shading scenarios.

  4. The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations.

    PubMed

    Walker, T; Johnson, P H; Moreira, L A; Iturbe-Ormaetxe, I; Frentiu, F D; McMeniman, C J; Leong, Y S; Dong, Y; Axford, J; Kriesner, P; Lloyd, A L; Ritchie, S A; O'Neill, S L; Hoffmann, A A

    2011-08-24

    Dengue fever is the most important mosquito-borne viral disease of humans with more than 50 million cases estimated annually in more than 100 countries. Disturbingly, the geographic range of dengue is currently expanding and the severity of outbreaks is increasing. Control options for dengue are very limited and currently focus on reducing population abundance of the major mosquito vector, Aedes aegypti. These strategies are failing to reduce dengue incidence in tropical communities and there is an urgent need for effective alternatives. It has been proposed that endosymbiotic bacterial Wolbachia infections of insects might be used in novel strategies for dengue control. For example, the wMelPop-CLA Wolbachia strain reduces the lifespan of adult A. aegypti mosquitoes in stably transinfected lines. This life-shortening phenotype was predicted to reduce the potential for dengue transmission. The recent discovery that several Wolbachia infections, including wMelPop-CLA, can also directly influence the susceptibility of insects to infection with a range of insect and human pathogens has markedly changed the potential for Wolbachia infections to control human diseases. Here we describe the successful transinfection of A. aegypti with the avirulent wMel strain of Wolbachia, which induces the reproductive phenotype cytoplasmic incompatibility with minimal apparent fitness costs and high maternal transmission, providing optimal phenotypic effects for invasion. Under semi-field conditions, the wMel strain increased from an initial starting frequency of 0.65 to near fixation within a few generations, invading A. aegypti populations at an accelerated rate relative to trials with the wMelPop-CLA strain. We also show that wMel and wMelPop-CLA strains block transmission of dengue serotype 2 (DENV-2) in A. aegypti, forming the basis of a practical approach to dengue suppression.

  5. Origin of the Dengue Fever Mosquito, Aedes aegypti, in California

    PubMed Central

    Gloria-Soria, Andrea; Brown, Julia E.; Kramer, Vicki; Hardstone Yoshimizu, Melissa; Powell, Jeffrey R.

    2014-01-01

    Dengue fever is among the most widespread vector-borne infectious diseases. The primary vector of dengue is the Aedes aegypti mosquito. Ae. aegypti is prevalent in the tropics and sub-tropics and is closely associated with human habitats outside its native range of Africa. While long established in the southeastern United States of America where dengue is re-emerging, breeding populations have never been reported from California until the summer of 2013. Using 12 highly variable microsatellite loci and a database of reference populations, we have determined that the likely source of the California introduction is the southeastern United States, ruling out introductions from abroad, from the geographically closer Arizona or northern Mexico populations, or an accidental release from a research laboratory. The power to identify the origin of new introductions of invasive vectors of human disease relies heavily on the availability of a panel of reference populations. Our work demonstrates the importance of generating extensive reference databases of genetically fingerprinted human-disease vector populations to aid public health efforts to prevent the introduction and spread of vector-borne diseases. PMID:25077804

  6. Effect of Photoperiod On Permethrin Resistance In Aedes aegypti.

    PubMed

    Villanueva, O Karina; Ponce, Gustavo; Lopez, Beatriz; Gutierrez, Selene M; Rodriguez, Iram P; Reyes, Guadalupe; Saavedra, Karla J; Black, William C; Garcia, Julian; Beaty, Barry; Eisen, Lars; Flores, Adriana E

    2016-12-01

    Living organisms have been exposed to light-dark cycles that allowed them to adapt to different ecological niches. Circadian cycles affect hormone release, metabolism, and response to xenobiotic compounds. Current studies have shown that insect susceptibility to toxic agents depends on circadian cycles, mainly because the biochemical processes involved in detoxification and responses to oxidative stress are modulated by this process. The goal of this study was to determine the effect of photoperiod on resistance to permethrin in Aedes aegypti . Collections of Ae. aegypti from 4 locations in Yucatan, southern Mexico, were subjected to 2 different photoperiod schemes: dark (0 h light:24 h dark) and natural photoperiod (12 h light:12 h dark). The comparison of both photoperiods was evaluated with respect to permethrin resistance using bottle bioassays and by monitoring the possible mechanism related such as enzymatic activity and by the frequency of 2 knockdown resistance mutations in the voltage-dependent sodium channel gene (V1016I and F1534C). The susceptible strain was used as a reference. The mosquitoes in dark photoperiod showed a reduction in resistance to the pyrethroid. The α-esterases and glutathione S-transferase enzymatic activities showed lower levels in the dark photoperiod, and the frequencies of V1016I knockdown resistance mutation showed significant difference between photoperiod schemes.

  7. Inhibition of Zika virus by Wolbachia in Aedes aegypti

    PubMed Central

    Caragata, Eric Pearce; Dutra, Heverton Leandro Carneiro; Moreira, Luciano Andrade

    2016-01-01

    Through association with cases of microcephaly in 2015, Zika virus (ZIKV) has transitioned from a relatively unknown mosquito-transmitted pathogen to a global health emergency, emphasizing the need to improve existing mosquito control programs to prevent future disease outbreaks. The response to Zika must involve a paradigm shift from traditional to novel methods of mosquito control, and according to the World Health Organization should incorporate the release of mosquitoes infected with the bacterial endosymbiont Wolbachia pipientis. In our recent paper [Dutra, HLC et al., Cell Host & Microbe 2016] we investigated the potential of Wolbachia infections in Aedes aegypti to restrict infection and transmission of Zika virus recently isolated in Brazil. Wolbachia is now well known for its ability to block or reduce infection with a variety of pathogens in different mosquito species including the dengue (DENV), yellow fever, and chikungunya viruses, and malaria-causing Plasmodium, and consequently has great potential to control mosquito-transmitted diseases across the globe. Our results demonstrated that the wMel Wolbachia strain in Brazilian Ae. aegypti is a strong inhibitor of ZIKV infection, and furthermore appears to prevent transmission of infectious viral particles in mosquito saliva, which highlights the bacterium’s suitability for more widespread use in Zika control. PMID:28357366

  8. Regulation of Antimicrobial Peptides in Aedes aegypti Aag2 Cells.

    PubMed

    Zhang, Rudian; Zhu, Yibin; Pang, Xiaojing; Xiao, Xiaoping; Zhang, Renli; Cheng, Gong

    2017-01-01

    Antimicrobial peptides (AMPs) are an important group of immune effectors that play a role in combating microbial infections in invertebrates. Most of the current information on the regulation of insect AMPs in microbial infection have been gained from Drosophila, and their regulation in other insects are still not completely understood. Here, we generated an AMP induction profile in response to infections with some Gram-negative, -positive bacteria, and fungi in Aedes aegypti embryonic Aag2 cells. Most of the AMP inductions caused by the gram-negative bacteria was controlled by the Immune deficiency (Imd) pathway; nonetheless, Gambicin, an AMP gene discovered only in mosquitoes, was combinatorially regulated by the Imd, Toll and JAK-STAT pathways in the Aag2 cells. Gambicin promoter analyses including specific sequence motif deletions implicated these three pathways in Gambicin activity, as shown by a luciferase assay. Moreover, the recognition between Rel1 (refer to Dif/Dorsal in Drosophila) and STAT and their regulatory sites at the Gambicin promoter site was validated by a super-shift electrophoretic mobility shift assay (EMSA). Our study provides information that increases our understanding of the regulation of AMPs in response to microbial infections in mosquitoes. And it is a new finding that the A. aegypti AMPs are mainly regulated Imd pathway only, which is quite different from the previous understanding obtained from Drosophila.

  9. Regulation of Antimicrobial Peptides in Aedes aegypti Aag2 Cells

    PubMed Central

    Zhang, Rudian; Zhu, Yibin; Pang, Xiaojing; Xiao, Xiaoping; Zhang, Renli; Cheng, Gong

    2017-01-01

    Antimicrobial peptides (AMPs) are an important group of immune effectors that play a role in combating microbial infections in invertebrates. Most of the current information on the regulation of insect AMPs in microbial infection have been gained from Drosophila, and their regulation in other insects are still not completely understood. Here, we generated an AMP induction profile in response to infections with some Gram-negative, -positive bacteria, and fungi in Aedes aegypti embryonic Aag2 cells. Most of the AMP inductions caused by the gram-negative bacteria was controlled by the Immune deficiency (Imd) pathway; nonetheless, Gambicin, an AMP gene discovered only in mosquitoes, was combinatorially regulated by the Imd, Toll and JAK-STAT pathways in the Aag2 cells. Gambicin promoter analyses including specific sequence motif deletions implicated these three pathways in Gambicin activity, as shown by a luciferase assay. Moreover, the recognition between Rel1 (refer to Dif/Dorsal in Drosophila) and STAT and their regulatory sites at the Gambicin promoter site was validated by a super-shift electrophoretic mobility shift assay (EMSA). Our study provides information that increases our understanding of the regulation of AMPs in response to microbial infections in mosquitoes. And it is a new finding that the A. aegypti AMPs are mainly regulated Imd pathway only, which is quite different from the previous understanding obtained from Drosophila. PMID:28217557

  10. Origin of the dengue fever mosquito, Aedes aegypti, in California.

    PubMed

    Gloria-Soria, Andrea; Brown, Julia E; Kramer, Vicki; Hardstone Yoshimizu, Melissa; Powell, Jeffrey R

    2014-01-01

    Dengue fever is among the most widespread vector-borne infectious diseases. The primary vector of dengue is the Aedes aegypti mosquito. Ae. aegypti is prevalent in the tropics and sub-tropics and is closely associated with human habitats outside its native range of Africa. While long established in the southeastern United States of America where dengue is re-emerging, breeding populations have never been reported from California until the summer of 2013. Using 12 highly variable microsatellite loci and a database of reference populations, we have determined that the likely source of the California introduction is the southeastern United States, ruling out introductions from abroad, from the geographically closer Arizona or northern Mexico populations, or an accidental release from a research laboratory. The power to identify the origin of new introductions of invasive vectors of human disease relies heavily on the availability of a panel of reference populations. Our work demonstrates the importance of generating extensive reference databases of genetically fingerprinted human-disease vector populations to aid public health efforts to prevent the introduction and spread of vector-borne diseases.

  11. Natural transovarial dengue virus infection rate in both sexes of dark and pale forms of Aedes aegypti from an urban area of Bangkok, Thailand.

    PubMed

    Thongrungkiat, Supatra; Wasinpiyamongkol, Ladawan; Maneekan, Pannamas; Prummongkol, Samrerng; Samung, Yudthana

    2012-09-01

    Transovarial dengue virus infection status of two forms of adult Aedes aegypti (dark or Ae. aegypti type form and pale or form queenslandensis), reared from field-collected larval and pupal stages, was determined by one-step RT-PCR and dengue viral serotype by nested-PCR. Natural transovarial transmission (TOT) of dengue virus was detected in the two Ae. aegypti forms, and in both adult males and females. Male Ae. aegypti had a higher rate of TOT dengue virus infection than female. The overall minimum infection rate among the male and female populations was 19.5 and 12.3 per 1,000 mosquitoes, respectively. All four dengue serotypes were detected in mosquito samples, with DEN-4 being the predominant serotype. Thus, both male and female Ae. aegypti have influences on the epidemiology of dengue virus transmission.

  12. Evaluation of the inhibition of egg laying, larvicidal effects, and bloodfeeding success of Aedes aegypti exposed to permethrin- and bifenthrin-treated military tent fabric.

    PubMed

    Frances, S P; Huggins, R L; Cooper, R D

    2008-12-01

    Laboratory studies were conducted to evaluate the effects of treating military canvas tent fabric with bifenthrin and permethrin on the survival of the eggs and larvae of Aedes aegypti. Gravid female Ae. aegypti were able to oviposit on tent canvas treated with either bifenthrin or permethrin. However, none of the eggs laid on treated canvas hatched, and no larvae added to water in treated trays survived. Low residual concentrations of bifenthrin and permethrin on treated canvas prevented the development of eggs and larvae of Ae. aegypti. Inhibition of bloodfeeding was shown when Ae. aegypti adults were exposed to lower concentrations (10-50% of operational concentrations) of bifenthrin- and permethrin-treated canvas tent fabric. These experiments have shown that military tent canvas treated with either bifenthrin or permethrin can reduce the development of Ae. aegypti eggs and larvae and reduce bloodfeeding success of adults.

  13. Biosynthesis of Aedes aegypti lipophorin and gene expression of its apolipoproteins.

    PubMed

    van Heusden, M C; Thompson, F; Dennis, J

    1998-10-01

    The biosynthesis of lipophorin of the yellow fever mosquito, Aedes aegypti, was investigated. Fat bodies were incubated in vitro with radiolabeled methionine and cysteine, and radiolabeled proteins secreted into the medium were analyzed by density gradient ultracentrifugation, SDS-PAGE and fluorography. Lipophorin was synthesized in the fat body and secreted into the medium. Its density was 1.114 g/ml, similar to that of lipophorin circulating in hemolymph. Three peptides of a tryptic digest of apolipophorin II were sequenced and degenerate oligonucleotide primers were designed based on the amino acid sequences. With these primers, a cDNA product of 1.2 kb was amplified by RT-PCR using as template RNA extracted from adult female mosquitoes 24 h after ingestion of a blood meal. This cDNA was cloned, sequenced and used as a probe for Northern blot analysis, which revealed that the apoproteins of lipophorin were coded for by a single mRNA of approximately 10 kb. The expression of the apolipophorins was induced by blood feeding. From the data presented we concluded that Aedes aegypti lipophorin is synthesized in the fat body and that the expression of its apolipophorins is induced by blood feeding.

  14. Gene flow pattern among Aedes aegypti populations in Mexico.

    PubMed

    de Lourdes Muñoz, Maria; Mercado-Curiel, Ricardo F; Diaz-Badillo, Alvaro; Pérez Ramirez, Gerardo; Black, William C

    2013-03-01

    Patterns of gene flow vary greatly among Aedes aegypti populations throughout Mexico. The populations are panmictic along the Pacific coast, isolated by distance in northeast Mexico, and exhibit moderate gene flow across the Yucatan peninsula. Nine Ae. aegypti collections from 6 cities in Oaxaca, Mexico, were taken to examine the local patterns of gene flow. Genetic variation was examined in a 387-bp region of the nicotinamide adenine dinucleotide dehydrogenase subunit 4 mitochondrial gene (ND4) using single-strand conformation polymorphism analysis, and 3 haplotypes were detected. Cluster analysis on the linearized FST genetic distances failed to group collections in geographic proximity. Regression analysis of linear or road distances on linearized F(ST) indicated that proximal collections were as diverse as distant collections across an approximately 800-km range. The geographical distribution of the Mexican mosquito haplotype frequencies was determined for the ND4 sequences from 524 individuals from Oaxaca (this study) and 2,043 individuals from our previous studies. Herein, we report on yet another pattern dominated by genetic drift among 9 Ae. aegypti collections from 6 cities in Oaxaca, Mexico, and compare it to those reported in other regions of Mexico. Molecular analysis of variance showed that there was as much genetic variation among collections 4 km apart as there was among all collections. The numbers of haplotypes and the amount of genetic diversity among the collections from Oaxaca were much lower than detected in previous studies in other regions of Mexico and may reflect the effects of control efforts or adaptations to the altitudinal limits (1,500 m) of the species in Mexico. The geographical distribution of mosquito haplotypes in Mexico is also reported. Furthermore, based on the distribution of the mosquito haplotypes in America, we suggest that mosquito dispersion is very efficient, most likely due to commercial transportation.

  15. [Aedes aegypti and Aedes albopictus in bromeliads grown in the Bauru Municipal Botanical Gardens, São Paulo, Brazil].

    PubMed

    Oliveira, Viviane Camila de; Almeida, Luiz Carlos de

    2017-01-23

    The aim of this study was to observe the occurrence of mosquito larvae, especially Aedes aegypti and Aedes albopictus, in the tanks and axillae of bromeliads at the Bauru Municipal Botanical Gardens, São Paulo, Brazil, highlighting the epidemiological implications for the use of these plants. The majority of the larvae belonged to mosquitos from genus Culex, with only occasional findings of A. aegypti and A. albopictus. The use of screens for protection of the plants, exposure to sunlight, and larger amounts of water in the tanks may have influenced the occurrence and grouping of larvae.

  16. Implications of saline concentrations for the performance and competitive interactions of the mosquitoes Aedes aegypti (Stegomyia aegypti) and Aedes albopictus (Stegomyia albopictus).

    PubMed

    Yee, D A; Himel, E; Reiskind, M H; Vamosi, S M

    2014-03-01

    Aedes albopictus (Stegomyia albopictus) (Diptera: Culicidae) has probably supplanted Aedes aegypti (Stegomyia aegypti) throughout most of its historical range in the U.S.A., although Ae. aegypti still exists in large coastal cities in southern Florida. We measured salt concentrations in field containers along an axis perpendicular to the coast and examined intraspecific outcomes in these species under different salt concentrations in a factorial study using varying intra- and interspecific densities in different conditions of salinity to order to determine if salt could mitigate the documented competitive superiority of Ae. albopictus. Salt in field containers declined away from the coast, with maximal values similar to our lower salt concentrations. Egg hatching and short-term survival of pupae and late instars were not affected by salt concentrations; survival of early instars of both species decreased at higher concentrations. In high salt conditions, Ae. aegypti achieved higher survival. In the longterm experiment, both species displayed longer development times. Salt did not affect interactions for either species; Ae. aegypti survived in the highest salt conditions, regardless of density. The tolerance of Ae. aegypti to high salt concentrations may allow it to use coastal containers, although because salt did not mediate interspecific interactions between Ae. aegypti and Ae. albopictus, the ultimate effects of salt on the coexistence of these species or exclusion of either species remain unknown.

  17. Widespread evidence for interspecific mating between Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in nature.

    PubMed

    Bargielowski, I E; Lounibos, L P; Shin, D; Smartt, C T; Carrasquilla, M C; Henry, A; Navarro, J C; Paupy, C; Dennett, J A

    2015-12-01

    Aedes aegypti and Aedes albopictus, two important vectors of the dengue and chikungunya viruses to humans, often come in contact in their invasive ranges. In these circumstances, a number of factors are thought to influence their population dynamics, including resource competition among the larval stages, prevailing environmental conditions and reproductive interference in the form of satyrization. As the distribution and abundance of Ae. aegypti and Ae. albopictus have profound epidemiological implications, understanding the competitive interactions that influence these patterns in nature is important. While evidence for resource competition and environmental factors had been gathered from the field, the evidence for reproductive interference, though strongly inferred through laboratory trials, remained sparse (one small-scale field trial). In this paper we demonstrate that low rates (1.12-3.73%) of interspecific mating occur in nature among populations of these species that have co-existed sympatrically from 3 to 150yrs. Finally this report contributes a new species-specific primer set for identifying the paternity of sperm extracted from field collected specimens.

  18. Effect of Aedes aegypti exposure to spatial repellent chemicals on BG-Sentinel™ trap catches

    PubMed Central

    2013-01-01

    Background An integrated approach to reduce densities of adult Aedes aegypti inside homes is currently being evaluated under experimentally controlled field conditions. The strategy combines a spatial repellent (SR) treatment (applied indoors) with the Biogents Sentinel™ (BGS) mosquito trap positioned in the outdoor environment. In essence, when combined, the goal is to create a push-pull mechanism that will reduce the probability of human-vector contact. The current study measured BGS recapture rates of Ae. aegypti test cohorts that were exposed to either SR or control (chemical-free) treatments within experimental huts. The objective was to define what, if any, negative impact SR may have on BGS trap efficacy (i.e., reduced BGS collection). Methods Aedes aegypti females were exposed to SR compounds within experimental huts in the form of either treated fabric (DDT and transfluthrin) or mosquito coil (metofluthrin). Test cohorts were released within individual screen house cubicles, each containing 4 BGS traps, following SR exposure according to treatment. Two separate test cohorts were evaluated: (i) immediate release (IR) exposed from 06:00–12:00 hours and released at 12:00 hours and (ii) delayed release (DR) exposed from12:00–18:00 hours and released at 05:30 hours the following day. BGS recapture was monitored at 09:30, 13:30 and 15:30 hours and the cumulative recapture by time point quantified. Results Exposure of Ae. aegypti females to either DDT or metofluthrin did not significantly impact BGS capture as compared to cohorts of non-exposed females. This was true for both IR and DR exposure populations. IR cohorts exposed to transfluthrin resulted in significantly lower BGS recapture compared to matched controls but this effect was primarily due to high mosquito mortality during transfluthrin trials. Conclusion Our data indicate no more than minor and short-lived impacts (i.e., reduced attraction) on BGS trap catches following exposure to the

  19. Vertical infestation of the dengue vectors Aedes aegypti and Aedes albopictus in apartments in Kuala Lumpur, Malaysia.

    PubMed

    Roslan, Muhammad Aidil; Shafie, Aziz; Ngui, Romano; Lim, Yvonne Ai Lian; Sulaiman, Wan Yusoff Wan

    2013-12-01

    Dengue is a serious public health problem in Malaysia. The aim of this study was to compare the vertical infestation of Aedes population in 2 apartments in Kuala Lumpur with different status of dengue incidence (i.e., high-dengue-incidence area and area with no reported dengue cases). The study was also conducted to assess the relationship between environmental factors such as rainfall, temperature, and humidity and Aedes population that may influence Aedes infestation. Surveillance with a mosquito larvae trapping device was conducted for 28 continuous weeks (January to July 2012) in Vista Angkasa (VA) and Inderaloka (IL) apartments located in Kuala Lumpur, Malaysia. The results indicated that both Aedes spp. could be found from ground to higher floor levels of the apartments, with Aedes aegypti being more predominant than Ae. albopictus. Data based on mixed and single breeding of Aedes spp. on different floors did not show any significant difference. Both rainfall (R3; i.e., the amount of rainfall collected during the previous 3 wk before the surveillance period began) and RH data showed significant relationship with the number of Aedes larvae collected in VA and IL. No significant difference was found between the numbers of Aedes larvae in both study areas as well as maximum and minimum temperatures. Results also indicated adaptations of Ae. aegypti to the ecosystem at each elevation of high-rise buildings, with Ae. albopictus staying inside of apartment units.

  20. Seasonal Genetic Changes of Aedes aegypti (Diptera: Culicidae) Populations in Selected Sites of Cebu City, Philippines

    PubMed Central

    Sayson, S. L.; Gloria-Soria, A.; Powell, J. R.; Edillo, F. E.

    2015-01-01

    Aedes aegypti (L.) is the primary vector of dengue virus in the Philippines, where dengue is endemic. We examined the genetic changes of Ae. aegypti collected from three selected sites in Cebu city, Philippines, during the relatively wet (2011–2012) and dry seasons (2012 and 2013). A total of 493 Ae. aegypti adults, reared in the laboratory from field-collected larvae, were analyzed using 11 microsatellite loci. Seasonal variation was observed in allele frequencies and allelic richness. Average genetic differentiation (DEST = 0.018; FST = 0.029) in both dry seasons was higher, due to reduced Ne, than in the wet season (DEST=0.006; FST=0.009). Thus, average gene flow was higher in the wet season than in the dry seasons. However, the overall FST estimate (0.02) inclusive of the two seasons showed little genetic differentiation as supported by Bayesian clustering analysis. Results suggest that during the dry season the intense selection that causes a dramatic reduction of population size favors heterozygotes, leading to small pockets of mosquitoes (refuges) that exhibit random genetic differentiation. During the wet season, the genetic composition of the population is reconstituted by the expansion of the refuges that survived the preceding dry season. Source reduction of mosquitoes during the nonepidemic dry season is thus recommended to prevent dengue re-emergence in the subsequent wet season. PMID:26335470

  1. Seasonal Genetic Changes of Aedes aegypti (Diptera: Culicidae) Populations in Selected Sites of Cebu City, Philippines.

    PubMed

    Sayson, S L; Gloria-Soria, A; Powell, J R; Edillo, F E

    2015-07-01

    Aedes aegypti (L.) is the primary vector of dengue virus in the Philippines, where dengue is endemic. We examined the genetic changes of Ae. aegypti collected from three selected sites in Cebu city, Philippines, during the relatively wet (2011-2012) and dry seasons (2012 and 2013). A total of 493 Ae. aegypti adults, reared in the laboratory from field-collected larvae, were analyzed using 11 microsatellite loci. Seasonal variation was observed in allele frequencies and allelic richness. Average genetic differentiation (DEST=0.018; FST=0.029) in both dry seasons was higher, due to reduced Ne, than in the wet season (DEST=0.006; FST=0.009). Thus, average gene flow was higher in the wet season than in the dry seasons. However, the overall FST estimate (0.02) inclusive of the two seasons showed little genetic differentiation as supported by Bayesian clustering analysis. Results suggest that during the dry season the intense selection that causes a dramatic reduction of population size favors heterozygotes, leading to small pockets of mosquitoes (refuges) that exhibit random genetic differentiation. During the wet season, the genetic composition of the population is reconstituted by the expansion of the refuges that survived the preceding dry season. Source reduction of mosquitoes during the nonepidemic dry season is thus recommended to prevent dengue re-emergence in the subsequent wet season.

  2. Population Dynamics of Aedes aegypti and Dengue as Influenced by Weather and Human Behavior in San Juan, Puerto Rico

    PubMed Central

    Barrera, Roberto; Amador, Manuel; MacKay, Andrew J.

    2011-01-01

    Previous studies on the influence of weather on Aedes aegypti dynamics in Puerto Rico suggested that rainfall was a significant driver of immature mosquito populations and dengue incidence, but mostly in the drier areas of the island. We conducted a longitudinal study of Ae. aegypti in two neighborhoods of the metropolitan area of San Juan city, Puerto Rico where rainfall is more uniformly distributed throughout the year. We assessed the impacts of rainfall, temperature, and human activities on the temporal dynamics of adult Ae. aegypti and oviposition. Changes in adult mosquitoes were monitored with BG-Sentinel traps and oviposition activity with CDC enhanced ovitraps. Pupal surveys were conducted during the drier and wetter parts of the year in both neighborhoods to determine the contribution of humans and rains to mosquito production. Mosquito dynamics in each neighborhood was compared with dengue incidence in their respective municipalities during the study. Our results showed that: 1. Most pupae were produced in containers managed by people, which explains the prevalence of adult mosquitoes at times when rainfall was scant; 2. Water meters were documented for the first time as productive habitats for Ae. aegypti; 3. Even though Puerto Rico has a reliable supply of tap water and an active tire recycling program, water storage containers and discarded tires were important mosquito producers; 4. Peaks in mosquito density preceded maximum dengue incidence; and 5. Ae. aegypti dynamics were driven by weather and human activity and oviposition was significantly correlated with dengue incidence. PMID:22206021

  3. Population dynamics of Aedes aegypti and dengue as influenced by weather and human behavior in San Juan, Puerto Rico.

    PubMed

    Barrera, Roberto; Amador, Manuel; MacKay, Andrew J

    2011-12-01

    Previous studies on the influence of weather on Aedes aegypti dynamics in Puerto Rico suggested that rainfall was a significant driver of immature mosquito populations and dengue incidence, but mostly in the drier areas of the island. We conducted a longitudinal study of Ae. aegypti in two neighborhoods of the metropolitan area of San Juan city, Puerto Rico where rainfall is more uniformly distributed throughout the year. We assessed the impacts of rainfall, temperature, and human activities on the temporal dynamics of adult Ae. aegypti and oviposition. Changes in adult mosquitoes were monitored with BG-Sentinel traps and oviposition activity with CDC enhanced ovitraps. Pupal surveys were conducted during the drier and wetter parts of the year in both neighborhoods to determine the contribution of humans and rains to mosquito production. Mosquito dynamics in each neighborhood was compared with dengue incidence in their respective municipalities during the study. Our results showed that: 1. Most pupae were produced in containers managed by people, which explains the prevalence of adult mosquitoes at times when rainfall was scant; 2. Water meters were documented for the first time as productive habitats for Ae. aegypti; 3. Even though Puerto Rico has a reliable supply of tap water and an active tire recycling program, water storage containers and discarded tires were important mosquito producers; 4. Peaks in mosquito density preceded maximum dengue incidence; and 5. Ae. aegypti dynamics were driven by weather and human activity and oviposition was significantly correlated with dengue incidence.

  4. Bioefficacy of Mentha piperita essential oil against dengue fever mosquito Aedes aegypti L

    PubMed Central

    Kumar, Sarita; Wahab, Naim; Warikoo, Radhika

    2011-01-01

    Objective To assess the larvicidal and repellent potential of the essential oil extracted from the leaves of peppermint plant, Mentha piperita (M. piperita) against the larval and adult stages of Aedes aegypti (Ae. Aegypti). Methods The larvicidal potential of peppermint oil was evaluated against early fourth instar larvae of Ae. aegypti using WHO protocol. The mortality counts were made after 24 and 48 h, and LC50 and LC90 values were calculated. The efficacy of peppermint oil as mosquito repellent was assessed using the human-bait technique. The measured area of one arm of a human volunteer was applied with the oil and the other arm was applied with ethanol. The mosquito bites on both the arms were recorded for 3 min after every 15 min. The experiment continued for 3 h and the percent protection was calculated. Results The essential oil extracted from M. piperita possessed excellent larvicidal efficiency against dengue vector. The bioassays showed an LC50 and LC90 value of 111.9 and 295.18 ppm, respectively after 24 h of exposure. The toxicity of the oil increased 11.8% when the larvae were exposed to the oil for 48 h. The remarkable repellent properties of M. piperita essential oil were established against adults Ae. aegypti. The application of oil resulted in 100% protection till 150 min. After next 30 min, only 1-2 bites were recorded as compared with 8-9 bites on the control arm. Conclusions The peppermint essential oil is proved to be efficient larvicide and repellent against dengue vector. Further studies are needed to identify the possible role of oil as adulticide, oviposition deterrent and ovicidal agent. The isolation of active ingredient from the oil could help in formulating strategies for mosquito control. PMID:23569733

  5. Insecticide resistance in two Aedes aegypti (Diptera: Culicidae) strains from Costa Rica.

    PubMed

    Bisset, J A; Marín, R; Rodríguez, M M; Severson, D W; Ricardo, Y; French, L; Díaz, M; Pérez, O

    2013-03-01

    Dengue (family Flaviridae, genus Flavivirus, DENV) and dengue hemorrhagic fever (DHF) are presently important public health problems in Costa Rica. The primary strategy for disease control is based on reducing population densities of the main mosquito vector Aedes aegypti (L.) (Diptera: Culicidae). This is heavily dependent on use of chemical insecticides, thus the development of resistance is a frequent threat to control program effectiveness. The objective of this study was to determine the levels of insecticide resistance and the metabolic resistance mechanisms involved in two Ae. aegypti strains collected from two provinces (Puntarenas and Limon) in Costa Rica. Bioassays with larvae were performed according to World Health Organization guidelines and resistance in adults was measured through standard bottle assays. The activities of beta-esterases, cytochrome P450 monooxygenases, and glutathione S-transferases (GST), were assayed through synergists and biochemical tests, wherein the threshold criteria for each enzyme was established using the susceptible Rockefeller strain. The results showed higher resistance levels to the organophosphate (OP) temephos and the pyrethroid deltamethrin in larvae. The efficacy of commercial formulations of temephos in controlling Ae. aegypti populations was 100% mortality up to 11 and 12 d posttreatment with daily water replacements in test containers. Temephos and deltamethrin resistance in larvae were associated with high esterase activity, but not to cytochrome P450 monooxygenase or GST activities. Adult mosquitoes were resistant to deltamethrin, and susceptible to bendiocarb, chlorpyrifos, and cypermethrin. Because temephos and deltamethrin resistance are emerging at the studied sites, alternative insecticides should be considered. The insecticides chlorpyrifos and cypermethrin could be good candidates to use as alternatives for Ae. aegypti control.

  6. A comparison of larval, ovitrap and MosquiTRAP surveillance for Aedes (Stegomyia) aegypti

    PubMed Central

    de Resende, Marcelo Carvalho; Silva, Ivoneide Maria; Ellis, Brett R; Eiras, Álvaro Eduardo

    2013-01-01

    In Brazil, the entomological surveillance of Aedes (Stegomyia) aegypti is performed by government-mandated larval surveys. In this study, the sensitivities of an adult sticky trap and traditional surveillance methodologies were compared. The study was performed over a 12-week period in a residential neighbourhood of the municipality of Pedro Leopoldo, state of Minas Gerais, Brazil. An ovitrap and a MosquiTRAP were placed at opposite ends of each neighbourhood block (60 traps in total) and inspections were performed weekly. The study revealed significant correlations of moderate strength between the larval survey, ovitrap and MosquiTRAP measurements. A positive relationship was observed between temperature, adult capture measurements and egg collections, whereas precipitation and frequency of rainy days exhibited a negative relationship. PMID:24402144

  7. LABORATORY EVALUATION OF THE DEVELOPMENT OF Aedes aegypti IN TWO SEASONS: INFLUENCE OF DIFFERENT PLACES AND DIFFERENT DENSITIES

    PubMed Central

    Lopes, Tatiana Forte; Holcman, Marcia Moreira; Barbosa, Gerson Laurindo; Domingos, Maria de Fatima; Barreiros, Rosa Maria Oliveira Veiga

    2014-01-01

    Aedes aegypti is an important vector in Brazil being the main vector of the dengue-fever. This paper employs survival curves to describe the time in days from larvae to adult forms of Aedes aegypti raised, individually and collectively, and compares it during winter and spring when positioned inside and outside a laboratory. The study was conducted in São Vicente, a coastal city in Southeastern Brazil. The lowest water temperature in winter and in spring was 20 °C and the highest was 26 °C in spring. Higher and more stable temperatures were measured in the intra compared to the peri in both seasons. Consequently, larvae positioned in the intra resulted in the lowest median time to develop in the individual and collective experiment (nine and ten days, respectively). At least 25% of the larvae positioned in the intra in the individual experiment in the spring took only seven days to reach adulthood. Sex ratios and the median time development by sex did not show significant differences. These results indicate that efforts to control Aedes aegypti must be continuous and directed mainly to prevent the intra-domiciliary sites that can be infested in a week in order to reduce the human-vector contact. PMID:25229215

  8. Laboratory evaluation of the development of Aedes aegypti in two seasons: influence of different places and different densities.

    PubMed

    Lopes, Tatiana Forte; Holcman, Marcia Moreira; Barbosa, Gerson Laurindo; Domingos, Maria de Fatima; Barreiros, Rosa Maria Oliveira Veiga

    2014-01-01

    Aedes aegypti is an important vector in Brazil being the main vector of the dengue-fever. This paper employs survival curves to describe the time in days from larvae to adult forms of Aedes aegypti raised, individually and collectively, and compares it during winter and spring when positioned inside and outside a laboratory. The study was conducted in São Vicente, a coastal city in Southeastern Brazil. The lowest water temperature in winter and in spring was 20 °C and the highest was 26 °C in spring. Higher and more stable temperatures were measured in the intra compared to the peri in both seasons. Consequently, larvae positioned in the intra resulted in the lowest median time to develop in the individual and collective experiment (nine and ten days, respectively). At least 25% of the larvae positioned in the intra in the individual experiment in the spring took only seven days to reach adulthood. Sex ratios and the median time development by sex did not show significant differences. These results indicate that efforts to control Aedes aegypti must be continuous and directed mainly to prevent the intra-domiciliary sites that can be infested in a week in order to reduce the human-vector contact.

  9. New findings on the developmental process of Ascogregarina taiwanensis and Ascogregarina culicis in Aedes albopictus and Aedes aegypti.

    PubMed

    Roychoudhury, Sudipta; Kobayashi, Mutsuo

    2006-03-01

    Infection in different stages of larvae of Aedes aegypti and Ae. albopictus with Ascogregarina taiwanensis and A. culicis, respectively, revealed that the oocysts of Ascogregarina spp. are able to infect any instar and can complete their life cycle within 9.5 +/- 1 days. When early instars ingested oocysts, parasite development was synchronized to larval-pupal ecdysis and oocyst dissemination occurred at the time of adult emergence, oviposition, or both. The parasites also developed normally when infecting 2nd, 3rd, and early 4th instars and oocysts were released only during oviposition. The parasitic development stopped at the gamont stage when oocysts were ingested by late 4th instars (6 days old). The release of sporozoites in the midgut of any larval stage started within 45 min of oocyst ingestion. About 98% of oocysts of both A. taiwanensis and A. culicis were emptied within 2-3 h of their ingestion in their respective hosts. The oocysts of both species remained viable on desiccated filter paper stored at 27 degrees C and 65 +/- 5% relative humidity, indicating that the oocysts were resistant to dryness. The oocysts of A. culicis could survive up to 6 months, whereas those of A. taiwanensis survived up to 4 months. These biological characteristics relating to parasite development might enhance the distribution of Ascogregarina spp. widely in nature and facilitate the species to be considered for biological control of Aedes mosquitoes in the future.

  10. Aedes aegypti pharate 1st instar quiescence: a case for anticipatory reproductive plasticity.

    PubMed

    Perez, Mario H; Noriega, Fernando G

    2013-03-01

    Aedes aegypti mosquitoes use pharate 1st instar quiescence to cope with fluctuations in water availability hosting a fully developed 1st instar larvae within the chorion. The duration of this quiescence has been shown to affect larval fitness. This study sought to determine if an extended egg quiescence can elicit a plastic response resulting in an adult phenotype distinct from adults reared from short quiescence eggs. Our findings indicate that extended pharate 1st instar quiescence affects the performance and reproductive fitness of the adult female mosquito as well as the nutritional status of its progeny via maternal effects in an adaptive manner. This study demonstrates that phenotypic plasticity results as a consequence of the duration of pharate 1st instar quiescence and alternative phenotypes may exist for this mosquito with quiescence serving as a cue possibly signaling the environmental conditions that follow a dry period. These findings have implications for A. aegypti's success as a vector, geographic distribution, vector capacity and control.

  11. Aedes aegypti (Diptera: Culicidae) in Mauritania: First Report on the Presence of the Arbovirus Mosquito Vector in Nouakchott.

    PubMed

    Mint Lekweiry, Khadijetou; Ould Ahmedou Salem, Mohamed Salem; Ould Brahim, Khyarhoum; Ould Lemrabott, Mohamed Aly; Brengues, Cécile; Faye, Ousmane; Simard, Frédéric; Ould Mohamed Salem Boukhary, Ali

    2015-07-01

    Aedes aegypti L. (Diptera: Culicidae) is a major vector of yellow fever, dengue, and chikungunya viruses throughout tropical and subtropical areas of the world. Although the southernmost part of Mauritania along the Senegal river has long been recognized at risk of yellow fever transmission, Aedes spp. mosquitoes had never been reported northwards in Mauritania. Here, we report the first observation of Aedes aegypti aegypti (L.) and Aedes (Ochlerotatus) caspius (Pallas, 1771) in the capital city, Nouakchott. We describe the development sites in which larvae of the two species were found, drawing attention to the risk for emergence of arbovirus transmission in the city.

  12. A laboratory study of cyromazine on Aedes aegypti and Culex quinquefasciatus and its activity on selected predators of mosquito larvae.

    PubMed

    Nelson, F R; Holloway, D; Mohamed, A K

    1986-09-01

    In a laboratory study, the insect growth regulator, cyromazine, exerted a high level of biological activity on Aedes aegypti and Culex quinquefasciatus treated in the 4th larval instar. At 1.5 and 1.0 ppm this IGR produced 97 and 99% inhibition of emergence in adult Ae. aegypti, respectively. In Cx. quinquefasciatus, there was 99% inhibition at 1 ppm and complete inhibition at 1.5 ppm. The overall pupal mortality was higher than larval or adult stages of both species. This material induced different types of morphogenetic abnormalities in pupae and adults of the 2 species similar to those induced by other IGRs. However, most abnormalities were observed in the pupal stage. Adverse effects were not detected on the 4 mosquito predator species during the acute or posttreatment tests.

  13. Sublethal effects of atrazine and glyphosate on life history traits of Aedes aegypti and Aedes albopictus (Diptera: Culicidae).

    PubMed

    Bara, Jeffrey J; Montgomery, Allison; Muturi, Ephantus J

    2014-08-01

    Although exposure of mosquito larvae to agricultural chemicals such as herbicides is common and widespread, our understanding of how these chemicals affect mosquito ecology and behavior is limited. This study investigated how an environmentally relevant concentration of two herbicides, atrazine and glyphosate, affects mosquito life history traits. One hundred and fifty (150) first instar Aedes (Stegomyia) aegypti (L.) or Aedes (Stegomyia) albopictus (Skuse) larvae were reared in 1.6 L of live oak leaf (Quercus virginiana) infusion in the presence (5 mg/L) or absence (0 mg/L) of atrazine or glyphosate. The containers were monitored daily to determine the emergence rates, sex ratio, male and female emergence times, and female body size. Emergence rates of A. aegypti from atrazine treatment were significantly higher relative to either glyphosate or control treatments (A. aegypti: atrazine = 93 ± 6% (±95% CI), glyphosate = 82 ± 5%, control = 78 ± 5%), while emergence rates of A. albopictus in atrazine treatments were significantly higher than in glyphosate treatments but not in controls (A. albopictus: atrazine = 84 ± 5 %, glyphosate = 76 ± 4%, control = 78 ± 4%). For both mosquito species, a sex ratio distortion with male bias was observed in control and glyphosate treatments, but not in atrazine treatments (A. aegypti: atrazine = 0.90 ± 0.17 (±SE), glyphosate = 1.63 ± 0.21, control = 1.69 ± 0.26; A. albopictus: atrazine = 1.09 ± 0.08, glyphosate = 1.88 ± 0.12, control = 1.37 ± 0.11). Emergence times for both sexes of the two mosquito species were significantly longer in atrazine treatments compared to glyphosate or control treatments (A. aegypti: females: atrazine = 11.20 ± 0.50 (days ± 95 % CI), glyphosate = 9.71 ± 0.23, control = 9.87 ± 0.21; males: atrazine = 9.46 ± 0.27, glyphosate = 8.80 ± 0.25, control

  14. Evaluation of Insect Growth Regulators Against Field-Collected Aedes aegypti and Aedes albopictus (Diptera: Culicidae) from Malaysia.

    PubMed

    Lau, Koon Weng; Chen, Chee Dhang; Lee, Han Lim; Norma-Rashid, Yusoff; Sofian-Azirun, Mohd

    2015-03-01

    Susceptibility status of Aedes aegypti (L.) and Aedes albopictus Skuse larvae obtained from 12 states in Malaysia were evaluated against five insect growth regulators (IGRs), namely, pyriproxyfen, methoprene, diflubenzuron, cyromazine, and novaluron under laboratory conditions. Field populations of Ae. aegypti exhibited moderate resistance toward methoprene and low resistance toward pyriproxyfen, with resistance ratios of 12.7 and 1.4, respectively, but susceptibility to diflubenzuron, cyromazine, and novaluron. On the other hand, field populations of Ae. albopictus exhibited low resistance against diflubenzuron and novaluron, with resistance ratio of 2.1 and 1.0, respectively, but susceptibility to other tested IGRs. Our study concluded that the tested IGRs provide promising results and can be used to control field population of Ae. aegypti and Ae. albopictus, especially cyromazine. The use of IGR should be considered as an alternative when larvae develop resistance to conventional insecticides.

  15. Oviposition Site Selection by the Dengue Vector Aedes aegypti and Its Implications for Dengue Control

    PubMed Central

    Wong, Jacklyn; Stoddard, Steven T.; Astete, Helvio; Morrison, Amy C.; Scott, Thomas W.

    2011-01-01

    Background Because no dengue vaccine or antiviral therapy is commercially available, controlling the primary mosquito vector, Aedes aegypti, is currently the only means to prevent dengue outbreaks. Traditional models of Ae. aegypti assume that population dynamics are regulated by density-dependent larval competition for food and little affected by oviposition behavior. Due to direct impacts on offspring survival and development, however, mosquito choice in oviposition site can have important consequences for population regulation that should be taken into account when designing vector control programs. Methodology/Principal Findings We examined oviposition patterns by Ae. aegypti among 591 naturally occurring containers and a set of experimental containers in Iquitos, Peru. Using larval starvation bioassays as an indirect measure of container food content, we assessed whether females select containers with the most food for their offspring. Our data indicate that choice of egg-laying site is influenced by conspecific larvae and pupae, container fill method, container size, lid, and sun exposure. Although larval food positively influenced oviposition, our results did not support the hypothesis that females act primarily to maximize food for larvae. Females were most strongly attracted to sites containing immature conspecifics, even when potential competitors for their progeny were present in abundance. Conclusion/Significance Due to strong conspecific attraction, egg-laying behavior may contribute more to regulating Ae. aegypti populations than previously thought. If highly infested containers are targeted for removal or larvicide application, females that would have preferentially oviposited in those sites may instead distribute their eggs among other suitable, previously unoccupied containers. Strategies that kill mosquitoes late in their development (i.e., insect growth regulators that kill pupae rather than larvae) will enhance vector control by creating

  16. [Insecticide resistance mechanisms of Aedes aegypti (Diptera: Culicidae) from two Peruvian provinces].

    PubMed

    Bisset, Juan A; Rodríguez, María; Fernández, Ditter; Palomino, Miriam

    2007-01-01

    Insecticide resistance of Aedes aegypti larvae and adults from two Peruvian provinces, that is, Trujillo and Tumbes provinces, was conducted. High infestation indexes and extensive use of insecticides based on the Vector Surveillance and Control Strategy of the Ministry of Public Health prevailed in these places. Larval bioassays revealed susceptibility to organophosphorate insecticide called malathion in TRUJILLO strain, it being moderate to fention and fenitrotion and high to chlorpyriphos and temephos;however, TUMBES strain was susceptible to the evaluated organophosphorate compounds, except for fention, with moderate resistance. In the adult state, at the recommended dose, TRUJILLO strain showed resistence to DDT organochlorate insecticide and to pyrethoids called lambdacyalotrine and cyflutrine whereas TUMBES was resistant to DDT and to all assessed pyrethoids. None of them was resistant to chlorpiriphos in adult stage. By using synergists, the results showed that esterases and monooxigenases played an important role in the detected resistence to organophosphorate in Aedes larvae from TRUJILLO province. Biochemical assays yielded that increased activity of esterases was very frequent in TRUJILLO strain as was the case of glutathion transferase(GST) and modified acetylcholinesterase (AchR). On the other hand, the polyacrylamide gel electrophoresis allowed observing the prevalence of amplified activity of esterases A4 in TRUJILLO strain but not in TUMBES strain.

  17. Modeling dengue vector dynamics under imperfect detection: three years of site-occupancy by Aedes aegypti and Aedes albopictus in urban Amazonia.

    PubMed

    Padilla-Torres, Samael D; Ferraz, Gonçalo; Luz, Sergio L B; Zamora-Perea, Elvira; Abad-Franch, Fernando

    2013-01-01

    Aedes aegypti and Ae. albopictus are the vectors of dengue, the most important arboviral disease of humans. To date, Aedes ecology studies have assumed that the vectors are truly absent from sites where they are not detected; since no perfect detection method exists, this assumption is questionable. Imperfect detection may bias estimates of key vector surveillance/control parameters, including site-occupancy (infestation) rates and control intervention effects. We used a modeling approach that explicitly accounts for imperfect detection and a 38-month, 55-site detection/non-detection dataset to quantify the effects of municipality/state control interventions on Aedes site-occupancy dynamics, considering meteorological and dwelling-level covariates. Ae. aegypti site-occupancy estimates (mean 0.91; range 0.79-0.97) were much higher than reported by routine surveillance based on 'rapid larval surveys' (0.03; 0.02-0.11) and moderately higher than directly ascertained with oviposition traps (0.68; 0.50-0.91). Regular control campaigns based on breeding-site elimination had no measurable effects on the probabilities of dwelling infestation by dengue vectors. Site-occupancy fluctuated seasonally, mainly due to the negative effects of high maximum (Ae. aegypti) and minimum (Ae. albopictus) summer temperatures (June-September). Rainfall and dwelling-level covariates were poor predictors of occupancy. The marked contrast between our estimates of adult vector presence and the results from 'rapid larval surveys' suggests, together with the lack of effect of local control campaigns on infestation, that many Aedes breeding sites were overlooked by vector control agents in our study setting. Better sampling strategies are urgently needed, particularly for the reliable assessment of infestation rates in the context of control program management. The approach we present here, combining oviposition traps and site-occupancy models, could greatly contribute to that crucial aim.

  18. Transcriptome analysis of Aedes aegypti transgenic mosquitoes with altered immunity.

    PubMed

    Zou, Zhen; Souza-Neto, Jayme; Xi, Zhiyong; Kokoza, Vladimir; Shin, Sang Woon; Dimopoulos, George; Raikhel, Alexander

    2011-11-01

    The mosquito immune system is involved in pathogen-elicited defense responses. The NF-κB factors REL1 and REL2 are downstream transcription activators of Toll and IMD immune pathways, respectively. We have used genome-wide microarray analyses to characterize fat-body-specific gene transcript repertoires activated by either REL1 or REL2 in two transgenic strains of the mosquito Aedes aegypti. Vitellogenin gene promoter was used in each transgenic strain to ectopically express either REL1 (REL1+) or REL2 (REL2+) in a sex, tissue, and stage specific manner. There was a significant change in the transcript abundance of 297 (79 up- and 218 down-regulated) and 299 (123 up- and 176 down-regulated) genes in fat bodies of REL1+ and REL2+, respectively. Over half of the induced genes had predicted functions in immunity, and a large group of these was co-regulated by REL1 and REL2. By generating a hybrid transgenic strain, which ectopically expresses both REL1 and REL2, we have shown a synergistic action of these NF-κB factors in activating immune genes. The REL1+ immune transcriptome showed a significant overlap with that of cactus (RNAi)-depleted mosquitoes (50%). In contrast, the REL2+ -regulated transcriptome differed from the relatively small group of gene transcripts regulated by RNAi depletion of a putative inhibitor of the IMD pathway, caspar (35 up- and 140 down-regulated), suggesting that caspar contributes to regulation of a subset of IMD-pathway controlled genes. Infections of the wild type Ae. aegypti with Plasmodium gallinaceum elicited the transcription of a distinct subset of immune genes (76 up- and 25 down-regulated) relative to that observed in REL1+ and REL2+ mosquitoes. Considerable overlap was observed between the fat body transcriptome of Plasmodium-infected mosquitoes and that of mosquitoes with transiently depleted PIAS, an inhibitor of the JAK-STAT pathway. PIAS gene silencing reduced Plasmodium proliferation in Ae. aegypti, indicating the

  19. Solution structure of FK506-binding protein 12 from Aedes aegypti.

    PubMed

    Chakraborty, Goutam; Shin, Joon; Nguyen, Quoc Toan; Harikishore, Amaravadhi; Baek, Kwanghee; Yoon, Ho Sup

    2012-10-01

    Dengue remains one of the major public concerns as the virus eludes the immune response. Currently, no vaccines or antiviral therapeutics are available for dengue prevention or treatment. Immunosuppressive drug FK506 shows an antimalarial activity, and its molecular target, FK506-binding protein (FKBP), was identified in human Plasmodium parasites. Likewise, a conserved FKBP family protein has also been identified in Aedes aegypti (AaFKBP12), which is expected to play a similar role in the life cycle of Aedes aegypti, the primary vector of dengue virus infection. As FKBPs belong to a highly conserved class of immunophilin family and are involved in key biological regulations, they are considered as attractive pharmacological targets. In this study, we have determined the nuclear magnetic resonance solution structure of AaFKBP12, a novel FKBP member from Aedes aegypti, and presented its structural features, which may facilitate the design of potential inhibitory ligands against the dengue-transmitting mosquitoes.

  20. Larval Development of Aedes aegypti and Aedes albopictus in Peri-Urban Brackish Water and Its Implications for Transmission of Arboviral Diseases

    PubMed Central

    Ramasamy, Ranjan; Surendran, Sinnathamby N.; Jude, Pavilupillai J.; Dharshini, Sangaralingam; Vinobaba, Muthuladchumy

    2011-01-01

    Aedes aegypti (Linnaeus) and Aedes albopictus Skuse mosquitoes transmit serious human arboviral diseases including yellow fever, dengue and chikungunya in many tropical and sub-tropical countries. Females of the two species have adapted to undergo preimaginal development in natural or artificial collections of freshwater near human habitations and feed on human blood. While there is an effective vaccine against yellow fever, the control of dengue and chikungunya is mainly dependent on reducing freshwater preimaginal development habitats of the two vectors. We show here that Ae. aegypti and Ae. albopictus lay eggs and their larvae survive to emerge as adults in brackish water (water with <0.5 ppt or parts per thousand, 0.5–30 ppt and >30 ppt salt are termed fresh, brackish and saline respectively). Brackish water with salinity of 2 to 15 ppt in discarded plastic and glass containers, abandoned fishing boats and unused wells in coastal peri-urban environment were found to contain Ae. aegypti and Ae. albopictus larvae. Relatively high incidence of dengue in Jaffna city, Sri Lanka was observed in the vicinity of brackish water habitats containing Ae. aegypti larvae. These observations raise the possibility that brackish water-adapted Ae. aegypti and Ae. albopictus may play a hitherto unrecognized role in transmitting dengue, chikungunya and yellow fever in coastal urban areas. National and international health authorities therefore need to take the findings into consideration and extend their vector control efforts, which are presently focused on urban freshwater habitats, to include brackish water larval development habitats. PMID:22132243

  1. Use of the CDC Autocidal Gravid Ovitrap to Control and Prevent Outbreaks of Aedes aegypti (Diptera: Culicidae)

    PubMed Central

    Barrera, Roberto; Amador, Manuel; Acevedo, Veronica; Caban, Belkis; Felix, Gilberto; Mackay, Andrew J.

    2015-01-01

    Populations of Aedes aegypti (L.) can be managed through reductions in adult mosquito survival, number of offspring produced, or both. Direct adult mortality can be caused by the use of space sprays or residual insecticides to mosquito resting sites, and with a variety of residual insecticide-impregnated surfaces that are being tested, such as curtains, covers for water-storage vessels, bednets, and ovitraps. The fertility of Ae. aegypti populations can be reduced by the use of autocidal oviposition cups that prevent the development of mosquitoes inside the trap by mechanical means or larvicides, as well as by releasing sterile, transgenic, and para-transgenic mosquitoes. Survival and fertility can be simultaneously reduced by capturing gravid female Ae. aegypti with sticky gravid traps. We tested the effectiveness of the novel Centers for Disease Control and Prevention autocidal gravid ovitrap (CDC-AGO trap) to control natural populations of Ae. aegypti under field conditions in two isolated urban areas (reference vs. intervention areas) in southern Puerto Rico for 1 yr. There were significant reductions in the captures of female Ae. aegypti (53–70%) in the intervention area. The presence of three to four AGO control traps per home in 81% of the houses prevented outbreaks of Ae. aegypti, which would be expected after rains. Mosquito captures in BG-Sentinel and AGO traps were significantly and positively correlated, showing that AGO traps are useful and inexpensive mosquito surveillance devices. The use of AGO traps to manage Ae. aegypti populations is compatible with other control means such as source reduction, larviciding, adulticiding, sterile insect techniques, induced cytoplasmic incompatibility, and dominant lethal gene systems. PMID:24605464

  2. Use of the CDC autocidal gravid ovitrap to control and prevent outbreaks of Aedes aegypti (Diptera: Culicidae).

    PubMed

    Barrera, Roberto; Amador, Manuel; Acevedo, Veronica; Caban, Belkis; Felix, Gilberto; Mackay, Andrew J

    2014-01-01

    Populations ofAedes aegypti (L.) can be managed through reductions in adult mosquito survival, number of offspring produced, or both. Direct adult mortality can be caused by the use of space sprays or residual insecticides to mosquito resting sites, and with a variety of residual insecticide-impregnated surfaces that are being tested, such as curtains, covers for water-storage vessels, bednets, and ovitraps. The fertility ofAe. aegypti populations can be reduced by the use of autocidal oviposition cups that prevent the development of mosquitoes inside the trap by mechanical means or larvicides, as well as by releasing sterile, transgenic, and para-transgenic mosquitoes. Survival and fertility can be simultaneously reduced by capturing gravid female Ae. aegypti with sticky gravid traps. We tested the effectiveness of the novel Centers for Disease Control and Prevention autocidal gravid ovitrap (CDC-AGO trap) to control natural populations ofAe. aegypti under field conditions in two isolated urban areas (reference vs. intervention areas) in southern Puerto Rico for 1 yr. There were significant reductions in the captures of female Ae. aegypti (53-70%) in the intervention area The presence of three to four AGO control traps per home in 81% of the houses prevented outbreaks of Ae. aegypti, which would be expected after rains. Mosquito captures in BG-Sentinel and AGO traps were significantly and positively correlated, showing that AGO traps are useful and inexpensive mosquito surveillance devices. The use of AGO traps to manage Ae. aegypti populations is compatible with other control means such as source reduction, larviciding, adulticiding, sterile insect techniques, induced cytoplasmic incompatibility, and dominant lethal gene systems.

  3. First Report of Aedes aegypti Transmission of Chikungunya Virus in the Americas

    PubMed Central

    Díaz-González, Esteban E.; Kautz, Tiffany F.; Dorantes-Delgado, Alicia; Malo-García, Iliana R.; Laguna-Aguilar, Maricela; Langsjoen, Rose M.; Chen, Rubing; Auguste, Dawn I.; Sánchez-Casas, Rosa M.; Danis-Lozano, Rogelio; Weaver, Scott C.; Fernández-Salas, Ildefonso

    2015-01-01

    During a chikungunya fever outbreak in late 2014 in Chiapas, Mexico, entomovirological surveillance was performed to incriminate the vector(s). In neighborhoods, 75 households with suspected cases were sampled for mosquitoes, of which 80% (60) harbored Aedes aegypti and 2.7% (2) Aedes albopictus. A total of 1,170 Ae. aegypti and three Ae. albopictus was collected and 81 pools were generated. Although none of the Ae. albopictus pools were chikungunya virus (CHIKV)–positive, 18 Ae. aegypti pools (22.8%) contained CHIKV, yielding an infection rate of 32.3/1,000 mosquitoes. A lack of herd immunity in conjunction with high mosquito populations, poor vector control services in this region, and targeted collections in locations of human cases may explain the high infection rate in this vector. Consistent with predictions from experimental studies, Ae. aegypti appears to be the principal vector of CHIKV in southern Mexico, while the role of Ae. albopictus remains unknown. PMID:26416113

  4. First Report of Aedes aegypti Transmission of Chikungunya Virus in the Americas.

    PubMed

    Díaz-González, Esteban E; Kautz, Tiffany F; Dorantes-Delgado, Alicia; Malo-García, Iliana R; Laguna-Aguilar, Maricela; Langsjoen, Rose M; Chen, Rubing; Auguste, Dawn I; Sánchez-Casas, Rosa M; Danis-Lozano, Rogelio; Weaver, Scott C; Fernández-Salas, Ildefonso

    2015-12-01

    During a chikungunya fever outbreak in late 2014 in Chiapas, Mexico, entomovirological surveillance was performed to incriminate the vector(s). In neighborhoods, 75 households with suspected cases were sampled for mosquitoes, of which 80% (60) harbored Aedes aegypti and 2.7% (2) Aedes albopictus. A total of 1,170 Ae. aegypti and three Ae. albopictus was collected and 81 pools were generated. Although none of the Ae. albopictus pools were chikungunya virus (CHIKV)-positive, 18 Ae. aegypti pools (22.8%) contained CHIKV, yielding an infection rate of 32.3/1,000 mosquitoes. A lack of herd immunity in conjunction with high mosquito populations, poor vector control services in this region, and targeted collections in locations of human cases may explain the high infection rate in this vector. Consistent with predictions from experimental studies, Ae. aegypti appears to be the principal vector of CHIKV in southern Mexico, while the role of Ae. albopictus remains unknown.

  5. Intriguing olfactory proteins from the yellow fever mosquito, Aedes aegypti

    NASA Astrophysics Data System (ADS)

    Ishida, Yuko; Chen, Angela M.; Tsuruda, Jennifer M.; Cornel, Anthon J.; Debboun, Mustapha; Leal, Walter S.

    2004-09-01

    Four antennae-specific proteins (AaegOBP1, AaegOBP2, AaegOBP3, and AaegASP1) were isolated from the yellow fever mosquito, Aedes aegypti and their full-length cDNAs were cloned. RT-PCR indicated that they are expressed in female and, to a lesser extent, in male antennae, but not in control tissues (legs). AaegOBP1 and AaegOBP3 showed significant similarity to previously identified mosquito odorant-binding proteins (OBPs) in cysteine spacing pattern and sequence. Two of the isolated proteins have a total of eight cysteine residues. The similarity of the spacing pattern of the cysteine residues and amino acid sequence to those of previously identified olfactory proteins suggests that one of the cysteine-rich proteins (AaegOBP2) is an OBP. The other (AaegASP1) did not belong to any group of known OBPs. Structural analyses indicate that six of the cysteine residues in AaegOBP2 are linked in a similar pattern to the previously known cysteine pairing in OBPs, i.e., Cys-24 Cys-55, Cys-51 Cys-104, Cys-95 Cys-113. The additional disulfide bridge, Cys-38 Cys-125, knits the extended C-terminal segment of the protein to a predicted α2-helix. As indicated by circular dichroism (CD) spectra, the extra rigidity seems to prevent the predicted formation of a C-terminal α-helix at low pH.

  6. Evaluation of BG-sentinel trap trapping efficacy for Aedes aegypti (Diptera: Culicidae) in a visually competitive environment.

    PubMed

    Ball, Tamara S; Ritchie, Scott R

    2010-07-01

    The BG-Sentinel (BGS) trap uses visual and olfactory cues as well as convection currents to attract Aedes aegypti (L.). The impact of the visual environment on trapping efficacy of the BGS trap for Ae. aegypti was investigated. Four- to 5-d nulliparous female and male Ae. aegypti were released into a semicontrolled room to evaluate the effect of the presence, reflectance, and distribution of surrounding harborage sites on BGS trapping efficacy. Low-reflective (dark) harborage sites near the BGS had a negative effect on both male and nulliparous female recapture rates; however, a more pronounced effect was observed in males. The distribution (clustered versus scattered) of dark harborage sites did not significantly affect recapture rates in either sex. In a subsequent experiment, the impact of oviposition sites on the recapture rate of gravid females was investigated. Although gravid females went to the oviposition sites and deposited eggs, the efficacy of the BGS in recapturing gravid females was not compromised. Ae. aegypti sampling in the field will mostly occur in the urban environment, whereby the BGS will be among oviposition sites and dark harborage areas in the form of household items and outdoor clutter. In addition to understanding sampling biases of the BGS, estimations of the adult population size and structure can be further adjusted based on an understanding of the impact of dark harborage sites on trap captures. Outcomes from this suite of experiments provide us with important considerations for trap deployment and interpretation of Ae. aegypti samples from the BGS trap.

  7. Proteomic Identification of Dengue Virus Binding Proteins in Aedes aegypti Mosquitoes and Aedes albopictus Cells

    PubMed Central

    Muñoz, Maria de Lourdes; Limón-Camacho, Gustavo; Tovar, Rosalinda; Diaz-Badillo, Alvaro; Mendoza-Hernández, Guillermo; Black, William C.

    2013-01-01

    The main vector of dengue in America is the mosquito Aedes aegypti, which is infected by dengue virus (DENV) through receptors of midgut epithelial cells. The envelope protein (E) of dengue virus binds to receptors present on the host cells through its domain III that has been primarily recognized to bind cell receptors. In order to identify potential receptors, proteins from mosquito midgut tissue and C6/36 cells were purified by affinity using columns with the recombinant E protein domain III (rE-DIII) or DENV particles bound covalently to Sepharose 4B to compare and evaluate their performance to bind proteins including putative receptors from female mosquitoes of Ae. aegypti. To determine their identity mass spectrometric analysis of purified proteins separated by polyacrylamide gel electrophoresis was performed. Our results indicate that both viral particles and rE-DIII bound proteins with the same apparent molecular weights of 57 and 67 kDa. In addition, viral particles bound high molecular weight proteins. Purified proteins identified were enolase, beta-adrenergic receptor kinase (beta-ARK), translation elongation factor EF-1 alpha/Tu, and cadherin. PMID:24324976

  8. Identification of Aedes aegypti and its Respective Life Stages by Real-Time PCR

    DTIC Science & Technology

    2004-06-01

    RTO-MP-HFM-108 22 - 1 Identification of Aedes aegypti and its Respective Life Stages by Real - Time PCR James C. McAvin1*; Major David E...Stages by Real - Time PCR 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK...grade water Identification of Aedes aegypti and its Respective Life Stages by Real - Time PCR RTO-MP-HFM-108 22 - 3 for no template controls

  9. Autophagy and viral diseases transmitted by Aedes aegypti and Aedes albopictus.

    PubMed

    Carneiro, Leticia A M; Travassos, Leonardo H

    2016-03-01

    Despite a long battle that was started by Oswaldo Cruz more than a century ago, in 1903, Brazil still struggles to fight Aedes aegypti and Aedes albopictus, the mosquito vectors of dengue virus (DENV), Chikungynya virus (CHIKV) and Zika virus (ZIKV). Dengue fever has been a serious public health problem in Brazil for decades, with recurrent epidemic outbreaks occurring during summers. In 2015, until November, 1,534,932 possible cases were reported to the Ministry of Healthv. More recently, the less studied CHIKV and ZIKV have gained attention because of a dramatic increase in their incidence (around 400% for CHIKV) and the association of ZIKV infection with a 11-fold increase in the number of cases of microcephaly from 2014 to 2015 in northeast Brazil (1761 cases until December 2015). The symptoms of these three infections are very similar, which complicates the diagnosis. These include fever, headache, nausea, fatigue, and joint pain. In some cases, DENV infection develops into dengue hemorrhagic fever, a life threatening condition characterized by bleeding and decreases in platelet numbers in the blood. As for CHIKV, the most important complication is joint pain, which can last for months.

  10. Characterization of Carbonic Anhydrase 9 in the Alimentary Canal of Aedes aegypti and Its Relationship to Homologous Mosquito Carbonic Anhydrases

    PubMed Central

    Dixon, Daniel P.; Van Ekeris, Leslie; Linser, Paul J.

    2017-01-01

    In the mosquito midgut, luminal pH regulation and cellular ion transport processes are important for the digestion of food and maintenance of cellular homeostasis. pH regulation in the mosquito gut is affected by the vectorial movement of the principal ions including bicarbonate/carbonate and protons. As in all metazoans, mosquitoes employ the product of aerobic metabolism carbon dioxide in its bicarbonate/carbonate form as one of the major buffers of cellular and extracellular pH. The conversion of metabolic carbon dioxide to bicarbonate/carbonate is accomplished by a family of enzymes encoded by the carbonic anhydrase gene family. This study characterizes Aedes aegypti carbonic anhydrases using bioinformatic, molecular, and immunohistochemical methods. Our analyses show that there are fourteen Aedes aegypti carbonic anhydrase genes, two of which are expressed as splice variants. The carbonic anhydrases were classified as either integral membrane, peripheral membrane, mitochondrial, secreted, or soluble cytoplasmic proteins. Using polymerase chain reaction and Western blotting, one of the carbonic anhydrases, Aedes aegypti carbonic anhydrase 9, was analyzed and found in each life stage, male/female pupae, male/female adults, and in the female posterior midgut. Next, carbonic anhydrase 9 was analyzed in larvae and adults using confocal microscopy and was detected in the midgut regions. According to our analyses, carbonic anhydrase 9 is a soluble cytoplasmic enzyme found in the alimentary canal of larvae and adults and is expressed throughout the life cycle of the mosquito. Based on previous physiological analyses of adults and larvae, it appears AeCA9 is one of the major carbonic anhydrases involved in producing bicarbonate/carbonate which is involved in pH regulation and ion transport processes in the alimentary canal. Detailed understanding of the molecular bases of ion homeostasis in mosquitoes will provide targets for novel mosquito control strategies into the

  11. Characterization of Carbonic Anhydrase 9 in the Alimentary Canal of Aedes aegypti and Its Relationship to Homologous Mosquito Carbonic Anhydrases.

    PubMed

    Dixon, Daniel P; Van Ekeris, Leslie; Linser, Paul J

    2017-02-21

    In the mosquito midgut, luminal pH regulation and cellular ion transport processes are important for the digestion of food and maintenance of cellular homeostasis. pH regulation in the mosquito gut is affected by the vectorial movement of the principal ions including bicarbonate/carbonate and protons. As in all metazoans, mosquitoes employ the product of aerobic metabolism carbon dioxide in its bicarbonate/carbonate form as one of the major buffers of cellular and extracellular pH. The conversion of metabolic carbon dioxide to bicarbonate/carbonate is accomplished by a family of enzymes encoded by the carbonic anhydrase gene family. This study characterizes Aedes aegypti carbonic anhydrases using bioinformatic, molecular, and immunohistochemical methods. Our analyses show that there are fourteen Aedes aegypti carbonic anhydrase genes, two of which are expressed as splice variants. The carbonic anhydrases were classified as either integral membrane, peripheral membrane, mitochondrial, secreted, or soluble cytoplasmic proteins. Using polymerase chain reaction and Western blotting, one of the carbonic anhydrases, Aedes aegypti carbonic anhydrase 9, was analyzed and found in each life stage, male/female pupae, male/female adults, and in the female posterior midgut. Next, carbonic anhydrase 9 was analyzed in larvae and adults using confocal microscopy and was detected in the midgut regions. According to our analyses, carbonic anhydrase 9 is a soluble cytoplasmic enzyme found in the alimentary canal of larvae and adults and is expressed throughout the life cycle of the mosquito. Based on previous physiological analyses of adults and larvae, it appears AeCA9 is one of the major carbonic anhydrases involved in producing bicarbonate/carbonate which is involved in pH regulation and ion transport processes in the alimentary canal. Detailed understanding of the molecular bases of ion homeostasis in mosquitoes will provide targets for novel mosquito control strategies into the

  12. Physiological and Morphological Aspects of Aedes aegypti Developing Larvae: Effects of the Chitin Synthesis Inhibitor Novaluron

    PubMed Central

    Farnesi, Luana C.; Brito, José M.; Linss, Jutta G.; Pelajo-Machado, Marcelo; Valle, Denise; Rezende, Gustavo L.

    2012-01-01

    Population control of the dengue vector mosquito, Aedes aegypti, is difficult due to many reasons, one being the development of resistance to neurotoxic insecticides employed. The biosynthesis of chitin, a major constituent of insect cuticle, is a novel target for population control. Novaluron is a benzoylphenylurea (BPU) that acts as a chitin synthesis inhibitor, already used against mosquitoes. However, information regarding BPU effects on immature mosquito stages and physiological parameters related with mosquito larval development are scarce. A set of physiological parameters were recorded in control developing larvae and novaluron was administered continuously to Ae. aegypti larvae, since early third instar. Larval instar period duration was recorded from third instar until pupation. Chitin content was measured during third and fourth instars. Fourth instars were processed histochemically at the mesothorax region, stained with hematoxylin and eosin (HE) for assessment of internal tissues, and labeled with WGA-FITC to reveal chitinized structures. In control larvae: i) there is a chitin content increase during both third and fourth instars where late third instars contain more chitin than early fourth instars; ii) thoracic organs and a continuous cuticle, closely associated with the underlying epidermis were observed; iii) chitin was continuously present throughout integument cuticle. Novaluron treatment inhibited adult emergence, induced immature mortality, altered adult sex ratio and caused delay in larval development. Moreover, novaluron: i) significantly affected chitin content during larval development; ii) induced a discontinuous and altered cuticle in some regions while epidermis was often thinner or missing; iii) rendered chitin cuticle presence discontinuous and less evident. In both control and novaluron larvae, chitin was present in the peritrophic matrix. This study showed quantitatively and qualitatively evidences of novaluron effects on Ae

  13. Community-based control of Aedes aegypti by using Mesocyclops in southern Vietnam.

    PubMed

    Sinh Nam, Vu; Thi Yen, Nguyen; Minh Duc, Hoang; Cong Tu, Tran; Trong Thang, Vu; Hoang Le, Nguyen; Hoang San, Le; Le Loan, Luu; Que Huong, Vu Thi; Kim Khanh, Ly Huynh; Thuy Trang, Huynh Thi; Lam, Leonie Z Y; Kutcher, Simon C; Aaskov, John G; Jeffery, Jason A L; Ryan, Peter A; Kay, Brian H

    2012-05-01

    We previously reported a new community-based mosquito control strategy that resulted in elimination of Aedes aegypti (Linn.) in 40 of 46 communes in northern and central Vietnam, and with annual recurrent total costs (direct and indirect) of only $0.28-$0.89 international dollars per person. This control strategy was extended to four provinces in southern Vietnam in Long An and Hau Giang (2004-2007) and to Long An, Ben Tre, and Vinh Long (2005-2010). In a total of 14 communes with 124,743 residents, the mean ± SD of adult female Ae. aegypti was reduced from 0.93 ± 0.62 to 0.06 ± 0.09, and the reduction of immature Ae. aegypti averaged 98.8%. By the final survey, no adults could be collected in 6 of 14 communes, and one commune, Binh Thanh, also had no immature forms. Although the community-based programs also involved community education and clean-up campaigns, the prevalence of Mesocyclops in large water storage containers > 50 liters increased from 12.77 ± 8.39 to 75.69 ± 9.17% over periods of 15-45 months. At the conclusion of the study, no confirmed dengue cases were detected in four of the five communes for which diagnostic serologic analysis was performed. The rate of progress was faster in communes that were added in stages to the program but the reason for this finding was unclear. At the completion of the formal project, sustainability funds were set up to provide each commune with the financial means to ensure that community-based dengue control activities continued.

  14. Phylogeography of Aedes (Stegomyia) aegypti (L.) and Aedes (Stegomyia) albopictus (Skuse) (Diptera: Culicidae) based on mitochondrial DNA variations.

    PubMed

    Mousson, Laurence; Dauga, Catherine; Garrigues, Thomas; Schaffner, Francis; Vazeille, Marie; Failloux, Anna-Bella

    2005-08-01

    Aedes (Stegomyia) aegypti (l.) and Aedes (Stegomyia) albopictus (Skuse) are the most important vectors of the dengue and yellow-fever viruses. Both took advantage of trade developments to spread throughout the tropics from their native area: A. aegypti originated from Africa and a. albopictus from South-East Asia. We investigated the relationships between A. aegypti and A. albopictus mosquitoes based on three mitochondrial-DNA genes (cytochrome b, cytochrome oxidase I and NADH dehydrogenase subunit 5). Little genetic variation was observed for a. albopictus, probably owing to the recent spreading of the species via human activities. For A. aegypti, most populations from South America were found to be genetically similar to populations from South-East Asia (Thailand and Vietnam), except for one sample from Boa Vista (northern Amazonia), which was more closely related to samples from Africa (Guinea and Ivory Coast). This suggests that African populations of A. aegypti introduced during the slave trade have persisted in Boa Vista, resisting eradication campaigns.

  15. Coexistence of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in Peninsular Florida Two Decades After Competitive Displacements.

    PubMed

    Lounibos, L Philip; Bargielowski, Irka; Carrasquilla, María Cristina; Nishimura, Naoya

    2016-11-01

    The spread of Aedes albopictus (Skuse) eastward in the mid-1980s from its initial establishment in Houston, TX, was associated with rapid declines and local disappearances of Aedes aegypti (L.) in Gulf Coast states and Florida where annual larval surveillance during the early 1990s described temporal and spatial patterns of competitive displacements in cemeteries and tire shops. Approximately 20 yr later in 2013-2014, we re-visited former collection sites and sampled aquatic immatures of these two species from tire shops in 10 cities on State Route 441 and from 9 cemeteries from Lakeland to Miami in southwest Florida. In the recent samples Ae. aegypti was recovered from three central Florida cities where it had not been detected in 1994, but its northern limit on Rte. 441, Apopka, did not change. Other evidence, such as trends at a few cemeteries, suggested a moderate resurgence of this species since 1994. Cage experiments that exposed female progeny of Ae. aegypti from recent Florida collection sites to interspecific mating by Ae. albopictus males showed that females from coexistence sites had evolved resistance to cross-mating, but Ae. aegypti from sites with no Ae. albopictus were relatively susceptible to satyrization. Habitat classifications of collection sites were reduced by principal component (PC) analysis to four variables that accounted for > 99% of variances; PCs with strong positive loadings for tree cover and ground vegetation were associated with collection sites yielding only Ae. albopictus Within the coexistence range of the two species, the numbers of Ae. aegypti among total Aedes collected were strongly correlated in stepwise logistic regression models with two habitat-derived PCs, distance from the coast, and annual rainfall and mean maximum temperatures at the nearest weather station. Subtle increases in the range of Ae. aegypti since its previous displacements are interpreted in the context of the evolution of resistance to mating

  16. Morphometric changes associated with sex and development in the Malpighian tubules of Aedes aegypti.

    PubMed

    de Sousa, R C; Bicudo, H E

    2000-01-01

    The Malpighian tubules of Aedes aegypti showed significant differences in their diameters between male and female larvae, male and female pupae, male larvae and male adults and male pupae and male adults. In every case, female values were greater than in males. Measurements of mean nuclear areas of the principal and stellate cells from Malpighian tubules, taken in males and females during development, showed that this parameter in both types of cell was significantly greater in females than in male larvae, pupae and adult stages. In males, significant differences between developmental stages were observed only in comparison with the nuclear area of larvae and adults in the principal cells, but in females, every comparison between stages showed significant differences except between pupae and adults in stellate cells. The frequency distribution of nuclear area values, in development, for male stellate and principal cells, were mostly concentrated in the first seven classes among the 30 classes considered in every stage, while for females, the frequency dropped drastically in the same classes from larvae to pupae and adults, moving to classes of higher values. Considering the importance of Malpighian tubules in insect physiology, the meaning of the differences detected are discussed on the basis of different metabolic levels, between sexes and developmental stages.

  17. The wMel strain of Wolbachia Reduces Transmission of Zika virus by Aedes aegypti

    PubMed Central

    Aliota, Matthew T.; Peinado, Stephen A.; Velez, Ivan Dario; Osorio, Jorge E.

    2016-01-01

    Zika virus (ZIKV) is causing an explosive outbreak of febrile disease in the Americas. There are no effective antiviral therapies or licensed vaccines for this virus, and mosquito control strategies have not been adequate to contain the virus. A promising candidate for arbovirus control and prevention relies on the introduction of the intracellular bacterium Wolbachia into Aedes aegypti mosquitoes. This primarily has been proposed as a tool to control dengue virus (DENV) transmission; however, evidence suggests Wolbachia infections confer protection for Ae. aegypti against other arboviruses. At present, it is unknown whether or not ZIKV can infect, disseminate, and be transmitted by Wolbachia-infected Ae. aegypti. Using Ae. aegypti infected with the wMel strain of Wolbachia that are being released in Medellin, Colombia, we report that these mosquitoes have reduced vector competence for ZIKV. These results support the use of Wolbachia biocontrol as a multivalent strategy against Ae. aegypti-transmitted viruses. PMID:27364935

  18. Diversity of containers and buildings infested with Aedes aegypti in Puerto Iguazú, Argentina.

    PubMed

    Costa, Federico; Fattore, Gladys; Abril, Marcelo

    2012-09-01

    Aedes aegypti is the main domestic vector of the dengue virus. Control measures to prevent dengue transmission focus on the treatment and elimination of this vector's oviposition sites. There is limited biological information on Ae. aegypti in Argentina. The aim of this study was to characterize Ae. aegypti oviposition sites in the city of Puerto Iguazú, Argentina. We surveyed an area covering nine neighborhoods in 2005. We identified 191 premises as positive for Ae. aegypti, giving a general house index of 9.6%. Premises classified as residential and vacant lots presented the highest number of infested premises, with 9% and 22% respectively. The total number of surveyed containers was 29,600. The overall container index (CI) was 1.1. The most frequently infested containers were water tanks (CI = 37). These preliminary results suggest that vacant lots and water tanks provide suitable breeding areas and environmental conditions, improving the chances of Ae. aegypti survival in Puerto Iguazú.

  19. Transcriptome Sequencing Reveals Large-Scale Changes in Axenic Aedes aegypti Larvae

    PubMed Central

    Vogel, Kevin J.; Valzania, Luca; Coon, Kerri L.; Brown, Mark R.; Strand, Michael R.

    2017-01-01

    Mosquitoes host communities of microbes in their digestive tract that consist primarily of bacteria. We previously reported that Aedes aegypti larvae colonized by a native community of bacteria and gnotobiotic larvae colonized by only Escherichia coli develop very similarly into adults, whereas axenic larvae never molt and die as first instars. In this study, we extended these findings by first comparing the growth and abundance of bacteria in conventional, gnotobiotic, and axenic larvae during the first instar. Results showed that conventional and gnotobiotic larvae exhibited no differences in growth, timing of molting, or number of bacteria in their digestive tract. Axenic larvae in contrast grew minimally and never achieved the critical size associated with molting by conventional and gnotobiotic larvae. In the second part of the study we compared patterns of gene expression in conventional, gnotobiotic and axenic larvae by conducting an RNAseq analysis of gut and nongut tissues (carcass) at 22 h post-hatching. Approximately 12% of Ae. aegypti transcripts were differentially expressed in axenic versus conventional or gnotobiotic larvae. However, this profile consisted primarily of transcripts in seven categories that included the down-regulation of select peptidases in the gut and up-regulation of several genes in the gut and carcass with roles in amino acid transport, hormonal signaling, and metabolism. Overall, our results indicate that axenic larvae exhibit alterations in gene expression consistent with defects in acquisition and assimilation of nutrients required for growth. PMID:28060822

  20. Resistance Status to the Insecticides Temephos, Deltamethrin, and Diflubenzuron in Brazilian Aedes aegypti Populations

    PubMed Central

    Viana-Medeiros, Priscila Fernandes; Araújo, Simone Costa; Martins, Ademir J.; Lima, José Bento Pereira

    2016-01-01

    Insecticides are still largely applied in public health to control disease vectors. In Brazil, organophosphates (OP) and pyrethroids (PY) are used against Aedes aegypti for years. Since 2009 Insect Growth Regulators (IGR) are also employed in the control of larvae. We quantified resistance to temephos (OP), deltamethrin (PY), and diflubenzuron (IGR) of A. aegypti samples from 12 municipalities distributed throughout the country, collected between 2010 and 2012. High levels of resistance to neurotoxic insecticides were detected in almost all populations: RR95 to temephos varied between 4.0 and 27.1; the lowest RR95 to deltamethrin was 13.1, and values higher than 70.0 were found. In contrast, all samples were susceptible to diflubenzuron (RR95 < 2.3). Biochemical tests performed with larvae and adults discarded the participation of acetylcholinesterase, the OP target, and confirmed involvement of the detoxifying enzymes esterases, mixed function oxidases, and glutathione-S-transferases. The results obtained were discussed taking into account the public chemical control component and the increase in the domestic use of insecticides during dengue epidemic seasons in the evaluated municipalities. PMID:27419140

  1. Wolbachia Infections in Aedes aegypti Differ Markedly in Their Response to Cyclical Heat Stress

    PubMed Central

    Wiwatanaratanabutr, Itsanun; White, Vanessa L.; Hoffmann, Ary A.

    2017-01-01

    Aedes aegypti mosquitoes infected with Wolbachia bacteria are currently being released for arbovirus suppression around the world. Their potential to invade populations and persist will depend on interactions with environmental conditions, particularly as larvae are often exposed to fluctuating and extreme temperatures in the field. We reared Ae. aegypti larvae infected with different types of Wolbachia (wMel, wAlbB and wMelPop-CLA) under diurnal cyclical temperatures. Rearing wMel and wMelPop-CLA-infected larvae at 26–37°C reduced the expression of cytoplasmic incompatibility, a reproductive manipulation induced by Wolbachia. We also observed a sharp reduction in the density of Wolbachia in adults. Furthermore, the wMel and wMelPop-CLA infections were not transmitted to the next generation when mosquitoes were exposed to 26–37°C across all life stages. In contrast, the wAlbB infection was maintained at a high density, exhibited complete cytoplasmic incompatibility, and was transmitted from mother to offspring with a high fidelity under this temperature cycle. These findings have implications for the potential success of Wolbachia interventions across different environments and highlight the importance of temperature control in rearing. PMID:28056065

  2. Wolbachia Infections in Aedes aegypti Differ Markedly in Their Response to Cyclical Heat Stress.

    PubMed

    Ross, Perran A; Wiwatanaratanabutr, Itsanun; Axford, Jason K; White, Vanessa L; Endersby-Harshman, Nancy M; Hoffmann, Ary A

    2017-01-01

    Aedes aegypti mosquitoes infected with Wolbachia bacteria are currently being released for arbovirus suppression around the world. Their potential to invade populations and persist will depend on interactions with environmental conditions, particularly as larvae are often exposed to fluctuating and extreme temperatures in the field. We reared Ae. aegypti larvae infected with different types of Wolbachia (wMel, wAlbB and wMelPop-CLA) under diurnal cyclical temperatures. Rearing wMel and wMelPop-CLA-infected larvae at 26-37°C reduced the expression of cytoplasmic incompatibility, a reproductive manipulation induced by Wolbachia. We also observed a sharp reduction in the density of Wolbachia in adults. Furthermore, the wMel and wMelPop-CLA infections were not transmitted to the next generation when mosquitoes were exposed to 26-37°C across all life stages. In contrast, the wAlbB infection was maintained at a high density, exhibited complete cytoplasmic incompatibility, and was transmitted from mother to offspring with a high fidelity under this temperature cycle. These findings have implications for the potential success of Wolbachia interventions across different environments and highlight the importance of temperature control in rearing.

  3. Transcriptome Sequencing Reveals Large-Scale Changes in Axenic Aedes aegypti Larvae.

    PubMed

    Vogel, Kevin J; Valzania, Luca; Coon, Kerri L; Brown, Mark R; Strand, Michael R

    2017-01-01

    Mosquitoes host communities of microbes in their digestive tract that consist primarily of bacteria. We previously reported that Aedes aegypti larvae colonized by a native community of bacteria and gnotobiotic larvae colonized by only Escherichia coli develop very similarly into adults, whereas axenic larvae never molt and die as first instars. In this study, we extended these findings by first comparing the growth and abundance of bacteria in conventional, gnotobiotic, and axenic larvae during the first instar. Results showed that conventional and gnotobiotic larvae exhibited no differences in growth, timing of molting, or number of bacteria in their digestive tract. Axenic larvae in contrast grew minimally and never achieved the critical size associated with molting by conventional and gnotobiotic larvae. In the second part of the study we compared patterns of gene expression in conventional, gnotobiotic and axenic larvae by conducting an RNAseq analysis of gut and nongut tissues (carcass) at 22 h post-hatching. Approximately 12% of Ae. aegypti transcripts were differentially expressed in axenic versus conventional or gnotobiotic larvae. However, this profile consisted primarily of transcripts in seven categories that included the down-regulation of select peptidases in the gut and up-regulation of several genes in the gut and carcass with roles in amino acid transport, hormonal signaling, and metabolism. Overall, our results indicate that axenic larvae exhibit alterations in gene expression consistent with defects in acquisition and assimilation of nutrients required for growth.

  4. Natural vertical transmission of dengue viruses by Aedes aegypti in Bolivia

    PubMed Central

    Le Goff, G.; Revollo, J.; Guerra, M.; Cruz, M.; Barja Simon, Z.; Roca, Y.; Vargas Florès, J.; Hervé, J.P.

    2011-01-01

    The natural transmission of dengue virus from an infected female mosquito to its progeny, namely the vertical transmission, was researched in wild caught Aedes aegypti during an important outbreak in the town of Santa Cruz de la Sierra, Bolivia. Mosquitoes were collected at the preimaginal stages (eggs, larvae and pupae) then reared up to adult stage for viral detection using molecular methods. Dengue virus serotypes 1 and 3 were found to be co-circulating with significant higher prevalence in male than in female mosquitoes. Of the 97 pools of Ae. aegypti (n = 635 male and 748 female specimens) screened, 14 pools, collected in February-May in 2007, were found positive for dengue virus infection: five DEN-1 and nine DEN-3. The average true infection rate (TIR) and minimum infection rate (MIR) were respectively 1.08% and 1.01%. These observations suggest that vertical transmission of dengue virus may be detected in vectors at the peak of an outbreak as well as several months before an epidemic occurs in human population. PMID:21894270

  5. Rhythms and synchronization patterns in gene expression in the Aedes aegypti mosquito

    PubMed Central

    2011-01-01

    Background Aedes aegypti is arguably the most studied of all mosquito species in the laboratory and is the primary vector of both Dengue and Yellow Fever flaviviruses in the field. A large number of transcriptional studies have been made in the species and these usually report transcript quantities observed at a certain age or stage of development. However, circadian oscillation is an important characteristic of gene expression in many animals and plants, modulating both their physiology and behavior. Circadian gene expression in mosquito species has been previously reported but for only a few genes directly involved in the function of the molecular clock. Results Herein we analyze the transcription profiles of 21,494 messenger RNAs using an Ae. aegypti Agilent® microarray. Transcripts were quantified in adult female heads at 24 hours and then again at 72 hours and eight subsequent time points spaced four hours apart. We document circadian rhythms in multiple molecular pathways essential for growth, development, immune response, detoxification/pesticide resistance. Circadian rhythms were also noted in ribosomal protein genes used for normalization in reverse transcribed PCR (RT-PCR) to determine transcript abundance. We report pervasive oscillations and intricate synchronization patterns relevant to all known biological pathways. Conclusion These results argue strongly that transcriptional analyses either need to be made over time periods rather than confining analyses to a single time point or development stage or exceptional care needs to be made to synchronize all mosquitoes to be analyzed and compared among treatment groups. PMID:21414217

  6. Are vectors able to learn about their hosts? A case study with Aedes aegypti mosquitoes.

    PubMed

    Alonso, Wladimir J; Wyatt, Tristram D; Kelly, David W

    2003-07-01

    The way in which vectors distribute themselves amongst their hosts has important epidemiological consequences. While the role played by active host choice is largely unquestioned, current knowledge relates mostly to the innate response of vectors towards stimuli signalling the presence or quality of their hosts. Many of those cues, however, can be unpredictable, and therefore prevent the incorporation of the appropriate response into the vector's behavioural repertoire unless some sort of associative learning is possible. We performed a wide range of laboratory experiments to test the learning abilities of the mosquito, Aedes aegypti. Mosquitoes were exposed to choice procedures in (1) an olfactomenter and (2) a 'visual arena'. Our goal was to determine whether the mosquitoes were able to associate unconditional stimuli (blood feeding, human breath, vibration and electrical shock) with particular odours (citral, carvone, citronella oil and eugenol) and visual patterns (horizontal or vertical black bars) to which they had been previously observed to be responsive. We found no evidence supporting the hypothesis that associative learning abilities are present in adult Ae. aegypti. We discuss the possibilities that the assays employed were either inappropriate or insufficient to detect associative learning, or that associative learning is not possible in this species.

  7. Dynamics of Midgut Microflora and Dengue Virus Impact on Life History Traits in Aedes aegypti

    PubMed Central

    Hill, Casey L.; Sharma, Avinash; Shouche, Yogesh; Severson, David W.

    2014-01-01

    Significant morbidity and potential mortality following dengue virus infection is a re-emerging global health problem. Due to the limited effectiveness of current disease control methods, mosquito biologists have been searching for new methods of controlling dengue transmission. While much effort has concentrated on determining genetic aspects to vector competence, paratransgenetic approaches could also uncover novel vector control strategies. The interactions of mosquito midgut microflora and pathogens may play significant roles in vector biology. However, little work has been done to see how the microbiome influences the host's fitness and ultimately vector competence. Here we investigated the effects of the midgut microbial environment and dengue infection on several fitness characteristics among three strains of the primary dengue virus vector mosquito Aedes aegypti. This included comparisons of dengue infection rates of females with and without their normal midgut flora. According to our findings, few effects on fitness characteristics were evident following microbial clearance or with dengue virus infection. Adult survivorship significantly varied due to strain and in one strain varied due to antibiotic treatment. Fecundity varied in one strain due to microbial clearance by antibiotics but no variation was observed in fertility due to either treatment. We show here that fitness characteristics of Ae. aegypti vary largely between strains, including varying response to microflora presence or absence, but did not vary in response to dengue virus infection. PMID:25193134

  8. Natural vertical transmission of dengue viruses by Aedes aegypti in Bolivia.

    PubMed

    Le Goff, G; Revollo, J; Guerra, M; Cruz, M; Barja Simon, Z; Roca, Y; Vargas Florès, J; Hervé, J P

    2011-08-01

    The natural transmission of dengue virus from an infected female mosquito to its progeny, namely the vertical transmission, was researched in wild caught Aedes aegypti during an important outbreak in the town of Santa Cruz de la Sierra, Bolivia. Mosquitoes were collected at the preimaginal stages (eggs, larvae and pupae) then reared up to adult stage for viral detection using molecular methods. Dengue virus serotypes 1 and 3 were found to be co-circulating with significant higher prevalence in male than in female mosquitoes. Of the 97 pools of Ae. aegypti (n = 635 male and 748 female specimens) screened, 14 pools, collected in February-May in 2007, were found positive for dengue virus infection: five DEN-1 and nine DEN-3. The average true infection rate (TIR) and minimum infection rate (MIR) were respectively 1.08% and 1.01%. These observations suggest that vertical transmission of dengue virus may be detected in vectors at the peak of an outbreak as well as several months before an epidemic occurs in human population.

  9. Effects of sublethal concentrations of Vectobac on biological parameters of Aedes aegypti.

    PubMed

    Flores, Adriana E; Garcia, Gustavo Ponce; Badii, Mohammad H; Rodriguez Tovar, M A Luisa; Fernandez Salas, Ildefonso

    2004-12-01

    The effect of sublethal concentrations (30% lethal concentration [LC30] = 0.41 ppm, LC50 = 1.04 ppm, and LC70 = 2.60 ppm) of VectoBac 12 aqueous suspension (AS, Bacillus thuringiensis var. israelensis H-14, 600 ITU/mg) on life parameters of Aedes aegypti and its F1 progeny (not exposed) was assessed in laboratory tests. Based on the data, it was clear that concentrations of 0.41 ppm of VectoBac significantly shortened the duration of the developmental cycle of the exposed mosquitoes, but not that of the F1 (not exposed). Significant differences were found among the proportions of the age-specific survival between each toxic level, whereas the control did not differ from the treated individuals at the LC50 and LC70. The survival curves of the F1 showed significant differences among the different treatments and with the control. A significant effect was found on the fecundity of adults. Age-specific fecundity was markedly lower for the LC50 and LC70 treatments compared to the LC30 treatment and the control. In general, life parameters were affected inversely and significantly at higher concentrations of VectoBac, both in the exposed population of Ae. aegypti and in the F1 (not exposed).

  10. The risk of Aedes aegypti breeding and premises condition in South Mexico.

    PubMed

    Manrique-Saide, Pablo; Davies, Clive R; Coleman, Paul G; Che-Mendoza, Azael; Dzul-Manzanilla, Felipe; Barrera-Pérez, Mario; Hernández-Betancourt, Silvia; Ayora-Talavera, Guadalupe; Pinkus-Rendón, Miguel; Burciaga-Zúñiga, Pierre; Sánchez Tejeda, Gustavo; Arredondo-Jiménez, Juan I

    2013-12-01

    A recent innovation instrumented for the Dengue Prevention and Control program in Mexico is the use of the premises condition index (PCI) as an indicator of risk for the vector Aedes aegypti infestation in dengue-endemic localities of Mexico. This paper addresses whether further improvements for the dengue control program could be made if the prevalence and productivity of Ae. aegypti populations could be reliably predicted using PCI at the household level, as well as medium-sized neighborhoods. We evaluated the use of PCI to predict the infestation with Aedes aegypti (breeding sites and immature productivity) in Merida, Mexico. The study consisted of a cross-sectional survey based on a cluster-randomized sampling design. We analyzed the statistical association between Aedes infestation and PCI, the extent to which the 3 components of PCI (house maintenance, and tidiness and shading of the patio) contributed to the association between PCI and infestation and whether infestation in a given premises was also affected by the PCI of the surrounding ones. Premises with the lowest PCI had significantly lower Aedes infestation and productivity; and as PCI scores increased infestation levels also tended to increase. Household PCI was significantly associated with Ae. aegypti breeding, largely due to the effect of patio untidiness and patio shade. The mean PCI within the surroundings premises also had a significant and independent explanatory power to predict the risk for infestation, in addition to individual PCI. This is the 1st study in Mexico showing evidence that premises condition as measured by the PCI is related to Ae. aegypti breeding sites and immature productivity. Results suggest that PCI could be used to streamline surveys to inform control efforts at least where Ae. aegypti breeds outdoors, as in Merida. The effect of individual premises, neighborhood condition, and the risk of Aedes infestation imply that the risk for dengue vector infestation can only be

  11. Evaluation of a sampling methodology for rapid assessment of Aedes aegypti infestation levels in Iquitos, Peru.

    PubMed

    Morrison, A C; Astete, H; Chapilliquen, F; Ramirez-Prada, C; Diaz, Gloria; Getis, A; Gray, K; Scott, T W

    2004-05-01

    An epidemic of dengue during 2001 in Northwestern Peru reemphasized the need for efficient, accurate, and economical vector surveillance. Between November 1998 and January 1999, we carried out extensive entomological surveys in two neighborhoods of approximately 600 contiguous houses located in the Amazonian city of Iquitos, providing a unique opportunity to evaluate the Aedes aegypti (L.) rapid assessment survey strategy. Based on Pan American Health Organization recommendations, this strategy is used by the Peruvian Ministry of Health (MOH). In our analysis all household locations, including closed and unoccupied houses, were georeferenced and displayed in a geographic information system, which facilitated simulations of MOH surveys based on hypothetical systematic sampling transects. Larval, pupal, and adult mosquito indices were calculated for each simulation (n = 10) and compared with the indices calculated from the complete data set (n = 4). The range of indices calculated from simulations was moderately high, but included actual indices. For example, simulation ranges for house indices (HI, percentage of infested houses from complete survey) were 38-56% (45%), 36-42% (38%), 21-34% (30%), and 13-33% (27%) in four surveys. HI, Breteau index, pupae per hectare, adult index, and adults per hectare were more robust entomological indicators (coefficient of variation [CV]/mean = 0.1-2.9) than the container index, pupae per person, pupae per house, adults per person, and adults per house (CV/mean >20). Our results demonstrate that the MOH's Ae. aegypti risk assessment program provides reasonable estimates of indices based on samples from every house. However, it is critical that future studies investigate the association of these indices with rates of virus transmission to determine whether sampling variability will negatively impact the application of indices in a public health context.

  12. Experience- and age-mediated oviposition behaviour in the yellow fever mosquito Stegomyia aegypti (=Aedes aegypti).

    PubMed

    Ruktanonchai, N W; Lounibos, L P; Smith, D L; Allan, S A

    2015-09-01

    In repeated behaviours such as those of feeding and reproduction, past experiences can inform future behaviour. By altering their behaviour in response to environmental stimuli, insects in highly variable landscapes can tailor their behaviour to their particular environment. In particular, female mosquitoes may benefit from plasticity in their choice of egg-laying site as these sites are often temporally variable and clustered. The opportunity to adapt egg-laying behaviour to past experience also exists for mosquito populations as females typically lay eggs multiple times throughout their lives. Whether experience and age affect egg-laying (or oviposition) behaviour in the mosquito Stegomyia aegypti (=Aedes aegypti) (Diptera: Culicidae) was assessed using a wind tunnel. Initially, gravid mosquitoes were provided with a cup containing either repellent or well water. After ovipositing in these cups, the mosquitoes were blood-fed and introduced into a wind tunnel. In this wind tunnel, an oviposition cup containing repellent was placed in the immediate vicinity of the gravid mosquitoes. A cup containing well water was placed at the opposite end of the tunnel so that if the females flew across the chamber, they encountered the well water cup, in which they readily laid eggs. Mosquitoes previously exposed to repellent cups became significantly more likely to later lay eggs in repellent cups, suggesting that previous experience with suboptimal oviposition sites informs mosquitoes of the characteristics of nearby oviposition sites. These results provide further evidence that mosquitoes modify behaviour in response to environmental information and are demonstrated in a vector species in which behavioural plasticity may be ecologically and epidemiologically meaningful.

  13. Comparative efficacy of existing surveillance tools for Aedes aegypti in Western Kenya.

    PubMed

    Yalwala, Sancto; Clark, Jeffrey; Oullo, David; Ngonga, Daniel; Abuom, David; Wanja, Elizabeth; Bast, Joshua

    2015-12-01

    All traditional surveillance techniques for Aedes aegypti have been developed for the cosmopolitan domestic subspecies Ae. aegypti aegypti, and not the sylvatic subspecies, Ae. aegypti formosus. The predominant form in Western Kenya is Ae. aegypti formosus that is rarely associated with human habitations but is linked to transmission of sylvatic dengue virus strains. We compared five surveillance methods for their effectiveness in sampling Ae. aegypti formosus with the goal of determining a sustainable surveillance strategy in Kenya. The methods included larval and pupal surveys, oviposition trapping, BG-Sentinel trapping, resting boxes, and backpack aspirations. Larval and pupal surveys collected the highest number of Ae. aegypti formosus (51.3%), followed by oviposition traps (45.7%), BG-Sentinel traps (3.0%), and zero collected with either backpack aspiration or resting box collections. No Ae. aegypti formosus larvae or pupae were found indoors. The results indicate that oviposition traps and outdoor larval and pupal surveys were better surveillance methods for Ae. aegypti formosus in Western Kenya.

  14. Diminished reproductive fitness associated with the deltamethrin resistance in an Indian strain of dengue vector mosquito, Aedes aegypti L.

    PubMed

    Kumar, Sarita; Thomas, Anita; Samuel, Thomas; Sahgal, Arunima; Verma, Anita; Pillai, M K K

    2009-08-01

    The susceptible (SS) and resistant (DLR) strains of Aedes aegypti selected with deltamethrin and combination of deltamethrin and PBO (1:5) at the larval/adult stage were studied in the laboratory for their reproductive fitness in terms of fecundity, hatchability and longevity of gonotrophic cycles. The DLR strains exhibited 73-88% reduction in the duration of gonotrophic cycles as compared to their SS counterparts. There was a considerable decrease in egg production and hatchability rates in the selected strains of Ae. aegypti, as compared to that of the SS strain. Data indicate deltamethrin being an effective insecticide against Ae. aegypti and a possible correlation between the deltamethrin resistance and disadvantages during reproduction. The most drastic and significant effect was observed in DLR1b strains exhibiting 36.7% decrease in fecundity and 32.4% reduction in hatchability. Another important observation was diminished reproductive fitness in DLR2 strains. This suggests the usefulness of synergized deltamethrin selections in reducing the frequency of resistant individuals. A significant finding was to observe the reproductive disadvantage in adult-selected strains having negligible resistance to deltamethrin implicating the efficacy of deltamethrin as an adulticide rather than as a larvicide. Various probable reasons for the reduction in the reproductive potential and the possible resistance-management strategies of Ae. aegypti are discussed.

  15. The Impact of Selection with Diflubenzuron, a Chitin Synthesis Inhibitor, on the Fitness of Two Brazilian Aedes aegypti Field Populations

    PubMed Central

    Belinato, Thiago Affonso; Valle, Denise

    2015-01-01

    Several Aedes aegypti field populations are resistant to neurotoxic insecticides, mainly organophoshates and pyrethroids, which are extensively used as larvicides and adulticides, respectively. Diflubenzuron (DFB), a chitin synthesis inhibitor (CSI), was recently approved for use in drinking water, and is presently employed in Brazil for Ae. aegypti control, against populations resistant to the organophosphate temephos. However, tests of DFB efficacy against field Ae. aegypti populations are lacking. In addition, information regarding the dynamics of CSI resistance, and characterization of any potential fitness effects that may arise in conjunction with resistance are essential for new Ae. aegypti control strategies. Here, the efficacy of DFB was evaluated for two Brazilian Ae. aegypti populations known to be resistant to both temephos and the pyrethroid deltamethrin. Laboratory selection for DFB resistance was then performed over six or seven generations, using a fixed dose of insecticide that inhibited 80% of adult emergence in the first generation. The selection process was stopped when adult emergence in the diflubenzuron-treated groups was equivalent to that of the control groups, kept without insecticide. Diflubenzuron was effective against the two Ae. aegypti field populations evaluated, regardless of their resistance level to neurotoxic insecticides. However, only a few generations of DFB selection were sufficient to change the susceptible status of both populations to this compound. Several aspects of mosquito biology were affected in both selected populations, indicating that diflubenzuron resistance acquisition is associated with a fitness cost. We believe that these results can significantly contribute to the design of control strategies involving the use of insect growth regulators. PMID:26107715

  16. The Impact of Selection with Diflubenzuron, a Chitin Synthesis Inhibitor, on the Fitness of Two Brazilian Aedes aegypti Field Populations.

    PubMed

    Belinato, Thiago Affonso; Valle, Denise

    2015-01-01

    Several Aedes aegypti field populations are resistant to neurotoxic insecticides, mainly organophoshates and pyrethroids, which are extensively used as larvicides and adulticides, respectively. Diflubenzuron (DFB), a chitin synthesis inhibitor (CSI), was recently approved for use in drinking water, and is presently employed in Brazil for Ae. aegypti control, against populations resistant to the organophosphate temephos. However, tests of DFB efficacy against field Ae. aegypti populations are lacking. In addition, information regarding the dynamics of CSI resistance, and characterization of any potential fitness effects that may arise in conjunction with resistance are essential for new Ae. aegypti control strategies. Here, the efficacy of DFB was evaluated for two Brazilian Ae. aegypti populations known to be resistant to both temephos and the pyrethroid deltamethrin. Laboratory selection for DFB resistance was then performed over six or seven generations, using a fixed dose of insecticide that inhibited 80% of adult emergence in the first generation. The selection process was stopped when adult emergence in the diflubenzuron-treated groups was equivalent to that of the control groups, kept without insecticide. Diflubenzuron was effective against the two Ae. aegypti field populations evaluated, regardless of their resistance level to neurotoxic insecticides. However, only a few generations of DFB selection were sufficient to change the susceptible status of both populations to this compound. Several aspects of mosquito biology were affected in both selected populations, indicating that diflubenzuron resistance acquisition is associated with a fitness cost. We believe that these results can significantly contribute to the design of control strategies involving the use of insect growth regulators.

  17. Reproductive Incompatibility Involving Senegalese Aedes aegypti (L) Is Associated with Chromosome Rearrangements

    PubMed Central

    Dickson, Laura B.; Sharakhova, Maria V.; Timoshevskiy, Vladimir A.; Fleming, Karen L.; Caspary, Alex; Sylla, Massamba; Black, William C.

    2016-01-01

    Aedes aegypti, the primary vector of dengue, yellow fever and Zika flaviviruses, consists of at least two subspecies. Aedes aegypti (Aaa) is light in color, has pale scales on the first abdominal tergite, oviposits in artificial containers, and preferentially feeds on humans. Aedes aegypti formosus (Aaf), has a dark cuticle, is restricted to sub-Saharan Africa, has no pale scales on the first abdominal tergite and frequently oviposits in natural containers. Scale patterns correlate with cuticle color in East Africa but not in Senegal, West Africa where black cuticle mosquitoes display a continuum of scaling patterns and breed domestically indoors. An earlier laboratory study did not indicate any pre- or postzygotic barriers to gene flow between Aaa and Aaf in East Africa. However, similar attempts to construct F1 intercross families between Aaa laboratory strains and Senegal Ae. aegypti (SenAae) failed due to poor F1 oviposition and low F2 egg-to-adult survival. Insemination and assortative mating experiments failed to identify prezygotic mating barriers. Backcrosses were performed to test for postzygotic isolation patterns consistent with Haldane’s rule modified for species, like Aedes, that have an autosomal sex determining locus (SDL). Egg-pupal survival was predicted to be low in females mated to hybrid F1 males but average when a male mates with a hybrid F1 female. Survival was in fact significantly reduced when females mated to hybrid males but egg-pupal survival was significantly increased when males were mated to hybrid F1 females. These observations are therefore inconclusive with regards to Haldane’s rule. Basic cytogenetic analyses and Fluorescent In Situ Hybridization (FISH) experiments were performed to compare SenAae strains with the IB12 strain of Aaa that was used for genome sequencing and physical mapping. Some SenAae strains had longer chromosomes than IB12 and significantly different centromeric indices on chromosomes 1 and 3. DAPI staining

  18. Reproductive Incompatibility Involving Senegalese Aedes aegypti (L) Is Associated with Chromosome Rearrangements.

    PubMed

    Dickson, Laura B; Sharakhova, Maria V; Timoshevskiy, Vladimir A; Fleming, Karen L; Caspary, Alex; Sylla, Massamba; Black, William C

    2016-04-01

    Aedes aegypti, the primary vector of dengue, yellow fever and Zika flaviviruses, consists of at least two subspecies. Aedes aegypti (Aaa) is light in color, has pale scales on the first abdominal tergite, oviposits in artificial containers, and preferentially feeds on humans. Aedes aegypti formosus (Aaf), has a dark cuticle, is restricted to sub-Saharan Africa, has no pale scales on the first abdominal tergite and frequently oviposits in natural containers. Scale patterns correlate with cuticle color in East Africa but not in Senegal, West Africa where black cuticle mosquitoes display a continuum of scaling patterns and breed domestically indoors. An earlier laboratory study did not indicate any pre- or postzygotic barriers to gene flow between Aaa and Aaf in East Africa. However, similar attempts to construct F1 intercross families between Aaa laboratory strains and Senegal Ae. aegypti (SenAae) failed due to poor F1 oviposition and low F2 egg-to-adult survival. Insemination and assortative mating experiments failed to identify prezygotic mating barriers. Backcrosses were performed to test for postzygotic isolation patterns consistent with Haldane's rule modified for species, like Aedes, that have an autosomal sex determining locus (SDL). Egg-pupal survival was predicted to be low in females mated to hybrid F1 males but average when a male mates with a hybrid F1 female. Survival was in fact significantly reduced when females mated to hybrid males but egg-pupal survival was significantly increased when males were mated to hybrid F1 females. These observations are therefore inconclusive with regards to Haldane's rule. Basic cytogenetic analyses and Fluorescent In Situ Hybridization (FISH) experiments were performed to compare SenAae strains with the IB12 strain of Aaa that was used for genome sequencing and physical mapping. Some SenAae strains had longer chromosomes than IB12 and significantly different centromeric indices on chromosomes 1 and 3. DAPI staining was

  19. Controlling Aedes aegypti in Cryptic Environments with Manually Carried Ultra-Low Volume and Mist Blower Pesticide Applications.

    PubMed

    Harwood, James F; Helmey, Wendy L; Turnwall, Brent B; Justice, Kevin D; Farooq, Muhammed; Richardson, Alec G

    2016-09-01

    Because Aedes aegypti , a vector of dengue, chikungunya, and Zika viruses, exhibits resting and reproductive behaviors that present challenges to control them, pesticide application equipment available for vector control must be evaluated for their ability to control this species in a variety of cryptic environments. Five types of pesticide sprayers, representing 3 spray technologies (1 mister, 2 ultra-low volume [ULV] cold foggers, and 2 ULV thermal foggers), were evaluated for their ability to control adult and immature stages of Ae. aegypti in indoor and outdoor environments. Cages holding adult mosquitoes and larvae were placed in cryptic sites for indoor sprays and placed among dense vegetation for outdoor sprays. Adult and pupal mortality data were recorded following applications of a mixture of synergized pyrethrins and pyriproxyfen. We found that no single sprayer was best suited for controlling Ae. aegypti in indoor and outdoor environments, nor was one best for controlling adult and immature mosquitoes. Sprayers producing larger droplets (misters and cold foggers) were more effective in controlling immature mosquitoes indoors and outdoors. Thermal fogging was more effective in controlling adults indoors, whereas cold fogs and misters were more effective for outdoor control.

  20. Larvicidal and Growth-Inhibitory Activity of Entomopathogenic Bacteria Culture Fluids Against Aedes aegypti (Diptera: Culicidae).

    PubMed

    da Silva, João Luiz Rosa; Undurraga Schwalm, Fernanda; Eugênio Silva, Carlos; da Costa, Marisa; Heermann, Ralf; Santos da Silva, Onilda

    2017-01-06

    Dengue, Chikungunya, and Zika are important vector-borne diseases, and Aedes aegypti L. is their main transmitter. As the disease management is mainly based on mosquito control strategies, the search for alternative and cost-effective approaches is ongoing. The Gram-negative bacteria Xenorhabdus nematophila and Photorhabdus luminescens are symbiotically associated with entomopathogenic nematodes and are highly pathogenic for insect larvae. After we have recently confirmed the toxicity of these bacteria in Ae. aegypti larvae, we here evaluated the toxic activity of culture fluids on the development of this mosquito species. Larval susceptibility was assessed by exposing larvae to different concentrations of P. luminescens or X. nematophila culture fluids to confirm whether secondary metabolites might cause the mosquitos' death. Xenorhabdus nematophila culture fluid was more effective and stable during the mosquito pathogenicity bioassays compared to that of P. luminescens Larval mortality started a few hours after exposure of the insects to the fluids. Furthermore, the residual effect of larvicidal activity of X. nematophila fluid persisted at full efficiency for 4 d. Particularly, larval mortality was still higher than 50% for up to 8 d. Exposure of larvae to a sublethal dose of X. nematophila fluid delayed pupation as well as emergence of adult mosquitoes and caused cumulative larval mortality higher than 90% by day 14. Here, we describe for the first time the use of stable culture fluids and therefore secondary metabolites of P. luminescens and X. nematophila as a promising basis for the use as biopesticide for control of Ae. aegypti in the future.

  1. Undesirable Consequences of Insecticide Resistance following Aedes aegypti Control Activities Due to a Dengue Outbreak

    PubMed Central

    Maciel-de-Freitas, Rafael; Avendanho, Fernando Campos; Santos, Rosangela; Sylvestre, Gabriel; Araújo, Simone Costa; Lima, José Bento Pereira; Martins, Ademir Jesus; Coelho, Giovanini Evelim; Valle, Denise

    2014-01-01

    Background During a dengue outbreak with co-circulation of DENV-1 and -2 in the city of Boa Vista, one patient was diagnosed with DENV-4, a serotype supposed absent from Brazil for almost 30 years. The re-emergence of DENV-4 triggered the intensification of mechanical and chemical Aedes aegypti control activities in order to reduce vector density and avoid DENV-4 dissemination throughout the country. Methods/Principal Findings Vector control activities consisted of (a) source reduction, (b) application of diflubenzuron against larvae and (c) vehicle-mounted space spraying of 2% deltamethrin to eliminate adults. Control activity efficacy was monitored by comparing the infestation levels and the number of eggs collected in ovitraps before and after interventions, performed in 22 Boa Vista districts, covering an area of ∼80% of the city and encompassing 56,837 dwellings. A total of 94,325 containers were eliminated or treated with diflubenzuron. The most frequently positive containers were small miscellaneous receptacles, which corresponded to 59% of all positive breeding sites. Insecticide resistance to deltamethrin was assessed before, during and after interventions by dose-response bioassays adopting WHO-based protocols. The intense use of the pyrethroid increased fourfold the resistance ratio of the local Ae. aegypti population only six months after the beginning of vector control. Curiously, this trend was also observed in the districts in which no deltamethrin was applied by the public health services. On the other hand, changes in the resistance ratio to the organophosphate temephos seemed less influenced by insecticide in Boa Vista. Conclusions Despite the intense effort, mosquito infestation levels were only slightly reduced. Besides, the median number of eggs in ovitraps remained unaltered after control activity intensification. The great and rapid increase in pyrethroid resistance levels of natural Ae. aegypti populations is discussed in the context of

  2. Aedes aegypti salivary gland extract ameliorates experimental inflammatory bowel disease.

    PubMed

    Sales-Campos, Helioswilton; de Souza, Patricia Reis; Basso, Paulo José; Ramos, Anderson Daniel; Nardini, Viviani; Chica, Javier Emílio Lazo; Capurro, Margareth Lara; Sá-Nunes, Anderson; de Barros Cardoso, Cristina Ribeiro

    2015-05-01

    Current therapies for inflammatory bowel disease (IBD) are not totally effective, resulting in persistent and recurrent disease for many patients. Mosquito saliva contains immunomodulatory molecules and therein could represent a novel therapy for IBD. Here, we demonstrated the therapeutic activity of salivary gland extract (SGE) of Aedes aegypti on dextran sulfate sodium (DSS)-induced colitis. For this purpose, C57BL/6 male mice were exposed to 3% DSS in drinking water and treated with SGE at early (days 3-5) or late (days 5-8) time points, followed by euthanasia on days 6 and 9, respectively, for sample collection. The results showed an improvement in clinical disease outcome and postmortem scores after SGE treatment, accompanied by the systemic reduction in peripheral blood lymphocytes, with no impact on bone marrow and mesenteric lymph nodes cellularity or macrophages toxicity. Moreover, a local diminishment of IFN-γ, TNF-α, IL-1β and IL-5 cytokines together with a reduction in the inflammatory area were observed in the colon of SGE-treated mice. Strikingly, early treatment with SGE led to mice protection from a late DSS re-challenging, as observed by decreased clinical and postmortem scores, besides reduced circulating lymphocytes, indicating that the mosquito saliva may present components able to prevent disease relapse. Indeed, high performance liquid chromatography (HPLC) experiments pointed to a major SGE pool fraction (F3) able to ameliorate disease signs. In conclusion, SGE and its components might represent a source of important immunomodulatory molecules with promising therapeutic activity for IBD.

  3. Crystal structures of Aedes aegypti alanine glyoxylate aminotransferase.

    PubMed

    Han, Qian; Robinson, Howard; Gao, Yi Gui; Vogelaar, Nancy; Wilson, Scott R; Rizzi, Menico; Li, Jianyong

    2006-12-01

    Mosquitoes are unique in having evolved two alanine glyoxylate aminotransferases (AGTs). One is 3-hydroxykynurenine transaminase (HKT), which is primarily responsible for catalyzing the transamination of 3-hydroxykynurenine (3-HK) to xanthurenic acid (XA). Interestingly, XA is used by malaria parasites as a chemical trigger for their development within the mosquito. This 3-HK to XA conversion is considered the major mechanism mosquitoes use to detoxify the chemically reactive and potentially toxic 3-HK. The other AGT is a typical dipteran insect AGT and is specific for converting glyoxylic acid to glycine. Here we report the 1.75A high-resolution three-dimensional crystal structure of AGT from the mosquito Aedes aegypti (AeAGT) and structures of its complexes with reactants glyoxylic acid and alanine at 1.75 and 2.1A resolution, respectively. This is the first time that the three-dimensional crystal structures of an AGT with its amino acceptor, glyoxylic acid, and amino donor, alanine, have been determined. The protein is dimeric and adopts the type I-fold of pyridoxal 5-phosphate (PLP)-dependent aminotransferases. The PLP co-factor is covalently bound to the active site in the crystal structure, and its binding site is similar to those of other AGTs. The comparison of the AeAGT-glyoxylic acid structure with other AGT structures revealed that these glyoxylic acid binding residues are conserved in most AGTs. Comparison of the AeAGT-alanine structure with that of the Anopheles HKT-inhibitor complex suggests that a Ser-Asn-Phe motif in the latter may be responsible for the substrate specificity of HKT enzymes for 3-HK.

  4. Adulticidal and repellent properties of indigenous plant extracts against Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae).

    PubMed

    Govindarajan, Marimuthu; Sivakumar, Rajamohan

    2012-05-01

    Several diseases are associated to the mosquito-human interaction. Mosquitoes are the carriers of severe and well-known illnesses such as malaria, arboviral encephalitis, dengue fever, chikunguniya fever, West Nile virus, and yellow fever. These diseases produce significant morbidity and mortality in humans and livestock around the world. The adulticidal and repellent activities of crude hexane, ethyl acetate, benzene, chloroform, and methanol extracts of leaf of Eclipta alba and Andrographis paniculata were assayed for their toxicity against two important vector mosquitoes, viz., Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae). The adult mortality was observed after 24 h of exposure. All extracts showed moderate adulticide effects; however, the highest adult mortality was found in methanol extract of A. paniculata against the adults of C. quinquefasciatus and A. aegypti with the LC(50) and LC(90) values were 149.81, 172.37 ppm and 288.12, 321.01 ppm, respectively. The results of the repellent activity of hexane, ethyl acetate, benzene, chloroform, and methanol extract of E. alba and A. paniculata plants at three different concentrations of 1.0, 2.5, and 5.0 mg/cm(2) were applied on skin of forearm in man and exposed against adult female mosquitoes. In this observation, these two plant crude extracts gave protection against mosquito bites without any allergic reaction to the test person, and also, the repellent activity is dependent on the strength of the plant extracts. These results suggest that the leaf solvent plant extracts have the potential to be used as an ideal ecofriendly approach for the control of mosquitoes. This is the first report on the mosquito adulticidal and repellent activities of the reported E. alba and A. paniculata plants.

  5. Comparative study of four membranes for evaluation of new insect/arthropod repellents using Aedes aegypti

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Four different membranes: Baudruche; Hemotek, sausage, and silicone-based membrane were evaluated as human skin substitute for an in vitro repellent study using Aedes aegypti. No significant difference was observed in repellent activity (ED50) of DEET among the membranes. Sausage membrane was selec...

  6. Changes in host-seeking behavior of Puerto Rican Aedes aegypti (L.) following colonization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of colonization on host-seeking behavior of mosquitoes was examined by comparing attraction responses of newly colonized Aedes aegypti (L.) from field-collected eggs in Puerto Rico to that of the Gainesville (Florida) strain, originally from Orlando (Florida) and in colony since 1952. Fe...

  7. Wingbeat frequency-sweep and visual stimuli for trapping male Aedes aegypti

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Combinations of female wingbeat acoustic cues and visual cues were evaluated to determine their potential for use in male Aedes aegypti (L.) traps in peridomestic environments. A modified Centers for Disease control (CDC) light trap using a 350-500 Hz frequency-sweep broadcast from a speaker as an a...

  8. Ovicidal activity of Ageratina adenophora (Family: Asteraceae) against dengue vector, Aedes aegypti (Diptera: Culicidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To determine the ovicidal efficacy of different solvent leaf extracts of Ageratina adenophora against dengue vector Aedes aegypti . Methods: The ovicidal efficacy of the crude leaf extracts of A. adenophora with five different solvents (hexane, benzene, chloroform, ethyl acetate, methanol) and was ...

  9. Different Repellents for Aedes aegypti against Blood-Feeding and Oviposition

    PubMed Central

    Afify, Ali; Horlacher, Bérénice; Roller, Johannes; Galizia, C. Giovanni

    2014-01-01

    Methyl N,N-dimethyl anthranilate (MDA), ethyl anthranilate (EA) and butyl anthranilate (BA) were previously shown to repel Aedes aegypti mosquitoes from landing on human skin. However, the effect of these compounds on the orientation of flying mosquitoes in a choice situation and their effect on mosquito oviposition are not yet known. Here, we used a modified Y-tube olfactometer to test the effect of these compounds on the orientation of Aedes aegypti flying towards skin odor (human fingers), and we tested their effect on Aedes aegypti oviposition choice in a cage assay. In both behavioral situations we compared the effect to the well-documented repellent N,N-diethyl-meta-toluamide (DEET). MDA, EA, and DEET inhibited Aedes aegypti from flying towards skin odor while BA had no such effect. Conversely, MDA had no effect on oviposition while EA, BA, and DEET deterred oviposition, with the strongest effect observed for BA. Thus, we confirm that EA and DEET are generally repellent, while MDA is repellent only in a host-seeking context, and BA is deterrent only in an oviposition context. These compounds appear of potential use in mosquito control programs. PMID:25079819

  10. Ovicidal activity of Metarhizium brunneum (Mb F52) on dengue fever vector, Aedes aegypti

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ovicidal activity of Metarhizium brunneum F52 (Mb F52) grown from granules was evaluated against Aedes aegypti eggs over time. Survival of larvae from treated eggs was significantly less when compared with untreated eggs at 7, 10 and 14 days post treatment. Only 27 % of treated eggs produced vi...

  11. Aerial ULV application of Dibrom against Aedes aegypti in simulated urban and rural residences

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reaching endophilic Aedes aegypti mosquito vectors of dengue located in human residences with aerial ULV pesticide applications is a prominent complication in operational wide area public health mosquito control activities. We conducted separate trials with a military C-130 fixed wing aircraft fitte...

  12. The maxillary palp of aedes aegypti, a model of multisensory integration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Female yellow-fever mosquitoes, Aedes aegypti, are obligate blood-feeders and vectors of the pathogens that cause dengue fever, yellow fever and Chikungunya. This feeding behavior concludes a series of multisensory events guiding the mosquito to its host from a distance. The antennae and maxillary...

  13. Toxicity of Acalypha indica (Euphorbiaceae) and Achyranthes aspera (Amaranthaceae) leaf extracts to Aedes aegypti (Diptera: Culicidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alternative control technologies envisioned for the dengue vector Aedes aegypti L. (Diptera: Culicidae) include botanical insecticides, which are believed to pose little threat to the environment or to human health and may provide a practical substitute for synthetic insecticides. In this study, we...

  14. Gustatory receptor expression in the labella and legs of aedes aegypti

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The yellow-fever mosquito, Aedes aegypti, is a dangerous disease vector, infecting a growing number of people every year with dengue, yellow fever and chikungunya viruses. Contact chemoreception in mosquitoes influences a number of behaviors including host-selection, oviposition and feeding. While...

  15. Chikungunya Virus in Febrile Humans and Aedes aegypti Mosquitoes, Yucatan, Mexico

    PubMed Central

    Cigarroa-Toledo, Nohemi; Blitvich, Bradley J.; Cetina-Trejo, Rosa C.; Talavera-Aguilar, Lourdes G.; Baak-Baak, Carlos M.; Torres-Chablé, Oswaldo M.; Hamid, Md-Nafiz; Friedberg, Iddo; González-Martinez, Pedro; Alonzo-Salomon, Gabriela; Rosado-Paredes, Elsy P.; Rivero-Cárdenas, Nubia; Reyes-Solis, Guadalupe C.; Farfan-Ale, Jose A.; Garcia-Rejon, Julian E.

    2016-01-01

    Chikungunya virus (CHIKV) was isolated from 12 febrile humans in Yucatan, Mexico, in 2015. One patient was co-infected with dengue virus type 1. Two additional CHIKV isolates were obtained from Aedes aegypti mosquitoes collected in the homes of patients. Phylogenetic analysis showed that the CHIKV isolates belong to the Asian lineage. PMID:27347760

  16. Characterization of an Enantioselective Odorant Receptor in the Yellow Fever Mosquito Aedes aegypti

    DTIC Science & Technology

    2009-09-15

    Doolittle RE, Ladd TL, Proveaux AT (1977) Identification of the female Japanese beetle sex pheromone: Inhibition of male response by an enantiomer. Science...Characterization of an Enantioselective Odorant Receptor in the Yellow Fever Mosquito Aedes aegypti Jonathan D. Bohbot, Joseph C. Dickens* United...be differentially active at the physiological and behavioral levels. Only recently were enantioselective odorant receptors demonstrated in mammals

  17. Permethrin Induces Overexpression of Cytochrome c Oxidase Subunit 3 in Aedes aegypti

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using quantitative PCR (QPCR), the relative transcriptional levels of cytochrome c oxidase subunit 3 (CO3) were studied in Aedes aegypti (L.) in response to treatments with acetone, permethrin, or fipronil. The transcriptional levels of CO3 were significantly (p <0.05) higher in acetone-treated Ae. ...

  18. Infection with dengue-2 virus alters proteins in naturally expectorated saliva of Aedes aegypti mosquitoes

    PubMed Central

    2014-01-01

    Background Dengue virus (DENV) is responsible for up to approximately 300 million infections and an increasing number of deaths related to severe manifestations each year in affected countries throughout the tropics. It is critical to understand the drivers of this emergence, including the role of vector-virus interactions. When a DENV-infected Aedes aegypti mosquito bites a vertebrate, the virus is deposited along with a complex mixture of salivary proteins. However, the influence of a DENV infection upon the expectorated salivary proteome of its vector has yet to be determined. Methods Therefore, we conducted a proteomic analysis using 2-D gel electrophoresis coupled with mass spectrometry based protein identification comparing the naturally expectorated saliva of Aedes aegypti infected with DENV-2 relative to that of uninfected Aedes aegypti. Results Several proteins were found to be differentially expressed in the saliva of DENV-2 infected mosquitoes, in particular proteins with anti-hemostatic and pain inhibitory functions were significantly reduced. Hypothetical consequences of these particular protein reductions include increased biting rates and transmission success, and lead to alteration of transmission potential as calculated in our vectorial capacity model. Conclusions We present our characterizations of these changes with regards to viral transmission and mosquito blood-feeding success. Further, we conclude that our proteomic analysis of Aedes aegypti saliva altered by DENV infection provides a unique opportunity to identify pro-viral impacts key to virus transmission. PMID:24886023

  19. VERTICAL TRANSMISSION OF DENGUE VIRUS IN Aedes aegypti COLLECTED IN PUERTO IGUAZÚ, MISIONES, ARGENTINA

    PubMed Central

    Espinosa, Manuel; Giamperetti, Sergio; Abril, Marcelo; Seijo, Alfredo

    2014-01-01

    A finding of vertical transmission of the DEN 3 virus in male specimens of Aedes aegypti, collected in the 2009 fall-winter period, in Puerto Iguazú city, Misiones, Argentina, using the RT-PCR technique in a 15-specimen pool is reported. This result is analyzed within the context of the epidemiological situation of Argentina's northeast border. PMID:24626420

  20. Mosquito activity of a series of chalcones and 2-pyrazoline derivatives against Aedes aegypti

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aedes aegypti (L.) (Diptera: Culicidae) transmit pathogens to humans, leading to diseases such as yellow fever and dengue fever. Repellents and insecticides are two common interventions to reduce mosquito biting and thereby disease risk. However, overreliance on a chemical or class of chemicals c...

  1. Vertical transmission of dengue virus in Aedes aegypti collected in Puerto Iguazú, Misiones, Argentina.

    PubMed

    Espinosa, Manuel; Giamperetti, Sergio; Abril, Marcelo; Seijo, Alfredo

    2014-01-01

    A finding of vertical transmission of the DEN 3 virus in male specimens of Aedes aegypti, collected in the 2009 fall-winter period, in Puerto Iguazú city, Misiones, Argentina, using the RT-PCR technique in a 15-specimen pool is reported. This result is analyzed within the context of the epidemiological situation of Argentina's northeast border.

  2. Aedes aegypti (Diptera: culicidae) biting deterrence: structure-activity relationship of saturated and unsaturated fatty acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study we systematically evaluated for the first time the biting deterrent effects of a series of saturated and unsaturated fatty acids against Aedes aegypti [yellow fever mosquito (Diptera: Culicidae)] using the K & D bioassay system (Klun et al 2005). The saturated fatty acids (C6:0 to C16...

  3. Structure-Activity Relationships of 33 Carboxamides as Toxicants Against Female Aedes aegypti (Diptera: Culicidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aedes aegypti (L.) is the primary vector of both dengue and yellow fever. Use of insecticides is one of the primary ways to control this medically important insect pest. However, few new insecticides have been developed for mosquito control in recent years. As a part of our effort to search for new ...

  4. AN INSULIN-LIKE PEPTIDE REGULATES EGG MATURATION AND METABOLISM IN THE MOSQUITO AEDES AEGYPTI

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ingestion of vertebrate blood is essential for egg maturation and transmission of disease-causing parasites by female mosquitoes. Prior studies with the yellow fever mosquito, Aedes aegypti, indicated blood feeding stimulates egg production by triggering the release of hormones from MNCs in the mosq...

  5. Promising Aedes aegypti repellent chemotypes identified through integrated QSAE, virtual screening, synthesis, and bioassay

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Molecular field topology analysis, scaffold hopping, and molecular docking were used as complementary computational tools for the design of repellents for Aedes aegypti, the insect vector for yellow fever, West Nile fever, and dengue fever. A large number of analogues were evaluated by virtual scree...

  6. Different repellents for Aedes aegypti against blood-feeding and oviposition.

    PubMed

    Afify, Ali; Horlacher, Bérénice; Roller, Johannes; Galizia, C Giovanni

    2014-01-01

    Methyl N,N-dimethyl anthranilate (MDA), ethyl anthranilate (EA) and butyl anthranilate (BA) were previously shown to repel Aedes aegypti mosquitoes from landing on human skin. However, the effect of these compounds on the orientation of flying mosquitoes in a choice situation and their effect on mosquito oviposition are not yet known. Here, we used a modified Y-tube olfactometer to test the effect of these compounds on the orientation of Aedes aegypti flying towards skin odor (human fingers), and we tested their effect on Aedes aegypti oviposition choice in a cage assay. In both behavioral situations we compared the effect to the well-documented repellent N,N-diethyl-meta-toluamide (DEET). MDA, EA, and DEET inhibited Aedes aegypti from flying towards skin odor while BA had no such effect. Conversely, MDA had no effect on oviposition while EA, BA, and DEET deterred oviposition, with the strongest effect observed for BA. Thus, we confirm that EA and DEET are generally repellent, while MDA is repellent only in a host-seeking context, and BA is deterrent only in an oviposition context. These compounds appear of potential use in mosquito control programs.

  7. siRNA-Mediated Silencing of doublesex during Female Development of the Dengue Vector Mosquito Aedes aegypti

    PubMed Central

    Mysore, Keshava; Sun, Longhua; Tomchaney, Michael; Sullivan, Gwyneth; Adams, Haley; Piscoya, Andres S.; Severson, David W.; Syed, Zainulabeuddin; Duman-Scheel, Molly

    2015-01-01

    The development of sex-specific traits, including the female-specific ability to bite humans and vector disease, is critical for vector mosquito reproduction and pathogen transmission. Doublesex (Dsx), a terminal transcription factor in the sex determination pathway, is known to regulate sex-specific gene expression during development of the dengue fever vector mosquito Aedes aegypti. Here, the effects of developmental siRNA-mediated dsx silencing were assessed in adult females. Targeting of dsx during A. aegypti development resulted in decreased female wing size, a correlate for body size, which is typically larger in females. siRNA-mediated targeting of dsx also resulted in decreased length of the adult female proboscis. Although dsx silencing did not impact female membrane blood feeding or mating behavior in the laboratory, decreased fecundity and fertility correlated with decreased ovary length, ovariole length, and ovariole number in dsx knockdown females. Dsx silencing also resulted in disruption of olfactory system development, as evidenced by reduced length of the female antenna and maxillary palp and the sensilla present on these structures, as well as disrupted odorant receptor expression. Female lifespan, a critical component of the ability of A. aegypti to transmit pathogens, was also significantly reduced in adult females following developmental targeting of dsx. The results of this investigation demonstrate that silencing of dsx during A. aegypti development disrupts multiple sex-specific morphological, physiological, and behavioral traits of adult females, a number of which are directly or indirectly linked to mosquito reproduction and pathogen transmission. Moreover, the olfactory phenotypes observed connect Dsx to development of the olfactory system, suggesting that A. aegypti will be an excellent system in which to further assess the developmental genetics of sex-specific chemosensation. PMID:26544686

  8. siRNA-Mediated Silencing of doublesex during Female Development of the Dengue Vector Mosquito Aedes aegypti.

    PubMed

    Mysore, Keshava; Sun, Longhua; Tomchaney, Michael; Sullivan, Gwyneth; Adams, Haley; Piscoya, Andres S; Severson, David W; Syed, Zainulabeuddin; Duman-Scheel, Molly

    2015-11-01

    The development of sex-specific traits, including the female-specific ability to bite humans and vector disease, is critical for vector mosquito reproduction and pathogen transmission. Doublesex (Dsx), a terminal transcription factor in the sex determination pathway, is known to regulate sex-specific gene expression during development of the dengue fever vector mosquito Aedes aegypti. Here, the effects of developmental siRNA-mediated dsx silencing were assessed in adult females. Targeting of dsx during A. aegypti development resulted in decreased female wing size, a correlate for body size, which is typically larger in females. siRNA-mediated targeting of dsx also resulted in decreased length of the adult female proboscis. Although dsx silencing did not impact female membrane blood feeding or mating behavior in the laboratory, decreased fecundity and fertility correlated with decreased ovary length, ovariole length, and ovariole number in dsx knockdown females. Dsx silencing also resulted in disruption of olfactory system development, as evidenced by reduced length of the female antenna and maxillary palp and the sensilla present on these structures, as well as disrupted odorant receptor expression. Female lifespan, a critical component of the ability of A. aegypti to transmit pathogens, was also significantly reduced in adult females following developmental targeting of dsx. The results of this investigation demonstrate that silencing of dsx during A. aegypti development disrupts multiple sex-specific morphological, physiological, and behavioral traits of adult females, a number of which are directly or indirectly linked to mosquito reproduction and pathogen transmission. Moreover, the olfactory phenotypes observed connect Dsx to development of the olfactory system, suggesting that A. aegypti will be an excellent system in which to further assess the developmental genetics of sex-specific chemosensation.

  9. Evidence for natural vertical transmission of chikungunya viruses in field populations of Aedes aegypti in Delhi and Haryana states in India-a preliminary report.

    PubMed

    Jain, Jaspreet; Kushwah, Raja Babu S; Singh, Shashi S; Sharma, Anil; Adak, Tridibes; Singh, Om P; Bhatnagar, Raj Kamal; Subbarao, Sarala K; Sunil, Sujatha

    2016-10-01

    Aedes aegypti and Aedes albopictus are principal vectors for the transmission of chikungunya virus (CHIKV). India is a hub for both dengue and chikungunya infections and there are several reports of co-infection of dengue and chikungunya virus in the clinical scenario. The present pilot entomological survey was conducted to evaluate vertical transmission of CHIKV in Aedes field populations. Aedes immature (larvae and pupae) collection was done in 2012, over a period of six months from selected sites in Delhi and Haryana, India. The immatures collected were reared for adult emergence and species identification was done. A. aegypti male and female mosquitoes were separated and pooled collection spot-wise, RNA extracted and RT PCR performed to test for the presence of CHIKV in the pools. Container index (CI) and minimum infection rate (MIR) were estimated. From study areas that tested positive for CHIKV, adult collections were made and females upon feeding on uninfected blood in laboratory were allowed to lay eggs. The progeny that emerged from these field-collected mothers were tested for CHIKV presence. Our pilot survey showed the existence of A. aegypti population even during peak summer season in a few foci which eventually helped the mosquitoes to tide over adverse environmental conditions and with the start of rainfall, the population exploded within a short period of time. Immatures collected from field and progeny of adults collected from the field were CHIKV positive demonstrating the presence of vertical transmission of chikungunya virus in field population of A. aegypti. The present study further demonstrates the importance of identifying permanent breeding sites for proper Aedes species control.

  10. Leaking Containers: Success and Failure in Controlling the Mosquito Aedes aegypti in Brazil.

    PubMed

    Löwy, Ilana

    2017-04-01

    In 1958, the Pan American Health Organization declared that Brazil had successfully eradicated the mosquito Aedes aegypti, responsible for the transmission of yellow fever, dengue fever, chikungunya, and Zika virus. Yet in 2016 the Brazilian minister of health described the situation of dengue fever as "catastrophic." Discussing the recent epidemic of Zika virus, which amplified the crisis produced by the persistence of dengue fever, Brazil's president declared in January 2016 that "we are in the process of losing the war against the mosquito Aedes aegypti." I discuss the reasons for the failure to contain Aedes in Brazil and the consequences of this failure. A longue durée perspective favors a view of the Zika epidemic that does not present it as a health crisis to be contained with a technical solution alone but as a pathology that has the persistence of deeply entrenched structural problems and vulnerabilities.

  11. Chikungunya virus susceptibility & variation in populations of Aedes aegypti (Diptera: Culicidae) mosquito from India

    PubMed Central

    Gokhale, Mangesh D.; Paingankar, Mandar S.; Sudeep, Anakathil B.; Parashar, Deepti

    2015-01-01

    Background & objectives: Although having immense clinical relevance, yet only a few studies have been targeted to understand the chikungunya virus (CHIKV) susceptibility and growth in Aedes aegypti populations from India. This study was undertaken to investigate CHIKV susceptibility and growth kinetics in Ae. aegypti along with genetic heterogeneity of Ae. aegypti populations. Methods: Dose dependent CHIKV susceptibility and growth kinetic studies for three CHIKV strains reported from India were carried out in Ae. aegypti mosquito populations. The phenotypic variation and genetic heterogeneity in five Ae. aegypti populations were investigated using multivariate morphometrics and allozyme variation studies. Results: The dissemination and growth kinetics studies of the three CHIKV strains showed no selective advantage for a particular strain of CHIKV in Ae. aegypti. At 100 per cent infection rate, five geographic Ae. aegypti populations showed differences in dissemination to three CHIKV strains. Morphometric studies revealed phenotypic variation in all the studied populations. The allelic frequencies, F statistics, and Nei's genetic identity values showed that genetic differences between the populations were small, but significant. Interpretation & conclusions: The results obtained in this study suggest that genetic background of the vector strongly influences the CHIKV susceptibility in Ae. aegypti. PMID:26905240

  12. Multiple factors contribute to anautogenous reproduction by the mosquito Aedes aegypti.

    PubMed

    Gulia-Nuss, Monika; Elliot, Anne; Brown, Mark R; Strand, Michael R

    2015-11-01

    Aedes aegypti is an anautogenous mosquito that must blood feed on a vertebrate host to produce and lay a clutch of eggs. The rockpool mosquito, Georgecraigius atropalpus, is related to A. aegypti but is a facultatively autogenous species that produces its first clutch of eggs shortly after emerging without blood feeding. Consumption of a blood meal by A. aegypti triggers the release of ovary ecdysteroidogenic hormone (OEH) and insulin-like peptide 3 (ILP3) from the brain, which stimulate egg formation. OEH and ILP3 also stimulate egg formation in G. atropalpus but are released at eclosion independently of blood feeding. These results collectively suggest that blood meal dependent release of OEH and ILP3 is one factor that prevents A. aegypti from reproducing autogenously. Here, we examined two other factors that potentially inhibit autogeny in A. aegypti: teneral nutrient reserves and the ability of OEH and ILP3 to stimulate egg formation in the absence of blood feeding. Measures of nutrient reserves showed that newly emerged A. aegypti females had similar wet weights but significantly lower protein and glycogen reserves than G. atropalpus females when larvae were reared under identical conditions. OEH stimulated non-blood fed A. aegypti females to produce ecdysteroid hormone and package yolk into oocytes more strongly than ILP3. OEH also reduced host seeking and blood feeding behavior, yet females produced few mature eggs. Overall, our results indicate that multiple factors prevent A. aegypti from reproducing autogenously.

  13. Recent Changes in the Local Distribution of Aedes aegypti (Diptera: Culicidae) in South Florida, USA.

    PubMed

    Hopperstad, K A; Reiskind, M H

    2016-07-01

    Disease transmission is directly tied to the spatial distribution of disease vectors. The distribution of Aedes aegypti (L.) in the United States has diminished since the introduction of Aedes albopictus (Skuse) in the 1980s. However, Ae. aegypti persists in some urban areas, particularly in south Florida. The pattern of habitat segregation of these two species is well documented, but the consistency of this phenomenon over time is unknown. To examine the dynamics of the local distributions of these two species, we studied the spatial pattern of Ae. aegypti and Ae. albopictus over time at a fine landscape scale in Palm Beach County, FL. We compared patterns from 2006-2007 with their distributions in 2013, taking into account abiotic factors of microclimate and land cover. We found evidence for a local shift in Ae. aegypti distribution, but could not attribute this to changes in measured abiotic factors. Alternatively, the interaction between Ae. aegypti and Ae. albopictus that initially resulted Ae. aegypti decline may be being attenuated through natural selection. This study confirms the importance of monitoring the changing ranges of these two important vector species.

  14. Polygamy: the possibly significant behavior of Aedes aegypti and Aedes albopictus in relation to the efficient transmission of dengue virus.

    PubMed

    Choochote, W; Tippawangkosol, P; Jitpakdi, A; Sukontason, K L; Pitasawat, B; Sukontason, K; Jariyapan, N

    2001-12-01

    The polygamous behavior of male Aedes aegypti (L.) and Ae. albopictus (Skuse) was investigated by co-habiting a newly-emerged male and females in a 30 cm3 cage (1 male: 20 females) for up to 5 consecutive days. As determined by insemination rates, the results indicated that one Ae. aegypti and Ae. albopictus male could successfully mate with 1.10 (0-4), 4.10 (1-8), 5.40 (4-8), 5.10 (2-8), 5.15 (3-9) and 0.20 (0-3), 1.70 (0-3), 2.35 (1-4), 2.30 (0-4), 2.35 (1-4) Ae. aegypti and Ae. albopictus females, respectively on day 1,2,3,4 and 5 consecutively. The possibly significant role of their polygamy in relation to dengue virus transmission is discussed.

  15. Natural vertical transmission of dengue viruses in Aedes aegypti in selected sites in Cebu City, Philippines.

    PubMed

    Edillo, Frances E; Sarcos, Janet R; Sayson, Stephanie L

    2015-12-01

    We attempted to determine the vertical transmission of dengue virus (DENV) in Aedes aegypti in selected sites in Cebu City, Philippines. Mosquito sub-adults were collected monthly from households and the field during the wet-dry-wet season from November, 2011 to July, 2012 and were laboratory-reared to adults. Viral RNA extracts in mosquitoes were assayed by hemi-nested RT-PCR. Results showed that 62 (36.26%; n=679) out of 171 mosquito pools (n=2,871) were DENV+. The minimum infection rate (MIR) of DENV ranged from 0 in wet months to 48.22/1,000 mosquitoes in April, 2012 (mid-dry). DENVs were detected in larvae, pupae, and male and female adults, with DENV-4, DENV-3, and DENV-1, in that rank of prevalence. DENV-1 co-infected with either DENV-3 or -4 or with both in April, 2012; DENV-3 and -4 were present in both seasons. More DENV+ mosquitoes were collected from households than in field premises (p<0.001) and in the dry than in the wet season (p<0.05), with significant interaction (p<0.05) between sites and premises but no interaction between sites and seasons (p>0.05). By Generalized Linear Mixed models, the type of premises nested in sites and monthly total rainfall were significant predictors of monthly dengue cases (p<0.05) and not MIR, season, temperature, and relative humidity. Surveillance of DENV prevalence in Ae. aegypti and detecting their natural foci in the dry season provide an early warning signal of dengue outbreak.

  16. River Boats Contribute to the Regional Spread of the Dengue Vector Aedes aegypti in the Peruvian Amazon

    PubMed Central

    Guagliardo, Sarah Anne; Morrison, Amy C.; Barboza, Jose Luis; Requena, Edwin; Astete, Helvio; Vazquez-Prokopec, Gonzalo; Kitron, Uriel

    2015-01-01

    Background and Objectives The dramatic range expansion of the dengue vector Aedes aegypti is associated with various anthropogenic transport activities, but little is known about the underlying mechanisms driving this geographic expansion. We longitudinally characterized infestation of different vehicle types (cars, boats, etc.) to estimate the frequency and intensity of mosquito introductions into novel locations (propagule pressure). Methods Exhaustive adult and immature Ae. aegypti collections were performed on six different vehicle types at five ports and two bus/ taxi departure points in the Amazonian city of Iquitos, Peru during 2013. Aquatic vehicles included 32 large and 33 medium-sized barges, 53 water taxis, and 41 speed boats. Terrestrial vehicles sampled included 40 buses and 30 taxis traveling on the only highway in the region. Ae. aegypti adult infestation rates and immature indices were analyzed by vehicle type, location within vehicles, and sampling date. Results Large barges (71.9% infested) and medium barges (39.4% infested) accounted for most of the infestations. Notably, buses had an overall infestation rate of 12.5%. On large barges, the greatest number of Ae. aegypti adults were found in October, whereas most immatures were found in February followed by October. The vast majority of larvae (85.9%) and pupae (76.7%) collected in large barges were produced in puddles formed in cargo holds. Conclusions Because larges barges provide suitable mosquito habitats (due to dark, damp cargo storage spaces and ample oviposition sites), we conclude that they likely serve as significant contributors to mosquitoes’ propagule pressure across long distances throughout the Peruvian Amazon. This information can help anticipate vector population mixing and future range expansions of dengue and other viruses transmitted by Ae. aegypti. PMID:25860352

  17. Suppression of a Field Population of Aedes aegypti in Brazil by Sustained Release of Transgenic Male Mosquitoes.

    PubMed

    Carvalho, Danilo O; McKemey, Andrew R; Garziera, Luiza; Lacroix, Renaud; Donnelly, Christl A; Alphey, Luke; Malavasi, Aldo; Capurro, Margareth L

    2015-01-01

    The increasing burden of dengue, and the relative failure of traditional vector control programs highlight the need to develop new control methods. SIT using self-limiting genetic technology is one such promising method. A self-limiting strain of Aedes aegypti, OX513A, has already reached the stage of field evaluation. Sustained releases of OX513A Ae. aegypti males led to 80% suppression of a target wild Ae. aegypti population in the Cayman Islands in 2010. Here we describe sustained series of field releases of OX513A Ae. aegypti males in a suburb of Juazeiro, Bahia, Brazil. This study spanned over a year and reduced the local Ae. aegypti population by 95% (95% CI: 92.2%-97.5%) based on adult trap data and 81% (95% CI: 74.9-85.2%) based on ovitrap indices compared to the adjacent no-release control area. The mating competitiveness of the released males (0.031; 95% CI: 0.025-0.036) was similar to that estimated in the Cayman trials (0.059; 95% CI: 0.011-0.210), indicating that environmental and target-strain differences had little impact on the mating success of the OX513A males. We conclude that sustained release of OX513A males may be an effective and widely useful method for suppression of the key dengue vector Ae. aegypti. The observed level of suppression would likely be sufficient to prevent dengue epidemics in the locality tested and other areas with similar or lower transmission.

  18. Suppression of a Field Population of Aedes aegypti in Brazil by Sustained Release of Transgenic Male Mosquitoes

    PubMed Central

    Garziera, Luiza; Lacroix, Renaud; Donnelly, Christl A.; Alphey, Luke; Malavasi, Aldo; Capurro, Margareth L.

    2015-01-01

    The increasing burden of dengue, and the relative failure of traditional vector control programs highlight the need to develop new control methods. SIT using self-limiting genetic technology is one such promising method. A self-limiting strain of Aedes aegypti, OX513A, has already reached the stage of field evaluation. Sustained releases of OX513A Ae. aegypti males led to 80% suppression of a target wild Ae. aegypti population in the Cayman Islands in 2010. Here we describe sustained series of field releases of OX513A Ae. aegypti males in a suburb of Juazeiro, Bahia, Brazil. This study spanned over a year and reduced the local Ae. aegypti population by 95% (95% CI: 92.2%-97.5%) based on adult trap data and 81% (95% CI: 74.9-85.2%) based on ovitrap indices compared to the adjacent no-release control area. The mating competitiveness of the released males (0.031; 95% CI: 0.025-0.036) was similar to that estimated in the Cayman trials (0.059; 95% CI: 0.011 – 0.210), indicating that environmental and target-strain differences had little impact on the mating success of the OX513A males. We conclude that sustained release of OX513A males may be an effective and widely useful method for suppression of the key dengue vector Ae. aegypti. The observed level of suppression would likely be sufficient to prevent dengue epidemics in the locality tested and other areas with similar or lower transmission. PMID:26135160

  19. Reported Distribution of Aedes (Stegomyia) aegypti and Aedes (Stegomyia) albopictus in the United States, 1995-2016 (Diptera: Culicidae).

    PubMed

    Hahn, Micah B; Eisen, Rebecca J; Eisen, Lars; Boegler, Karen A; Moore, Chester G; McAllister, Janet; Savage, Harry M; Mutebi, John-Paul

    2016-06-09

    Aedes (Stegomyia) aegypti (L.) and Aedes (Stegomyia) albopictus (Skuse) transmit arboviruses that are increasing threats to human health in the Americas, particularly dengue, chikungunya, and Zika viruses. Epidemics of the associated arboviral diseases have been limited to South and Central America, Mexico, and the Caribbean in the Western Hemisphere, with only minor localized outbreaks in the United States. Nevertheless, accurate and up-to-date information for the geographical ranges of Ae. aegypti and Ae. albopictus in the United States is urgently needed to guide surveillance and enhance control capacity for these mosquitoes. We compiled county records for presence of Ae. aegypti and Ae. albopictus in the United States from 1995-2016, presented here in map format. Records were derived from the Centers for Disease Control and Prevention ArboNET database, VectorMap, the published literature, and a survey of mosquito control agencies, university researchers, and state and local health departments. Between January 1995 and March 2016, 183 counties from 26 states and the District of Columbia reported occurrence of Ae. aegypti, and 1,241 counties from 40 states and the District of Columbia reported occurrence of Ae. albopictus During the same time period, Ae. aegypti was collected in 3 or more years from 94 counties from 14 states and the District of Columbia, and Ae. albopictus was collected during 3 or more years from 514 counties in 34 states and the District of Columbia. Our findings underscore the need for systematic surveillance of Ae. aegypti and Ae. albopictus in the United States and delineate areas with risk for the transmission of these introduced arboviruses.

  20. Preliminary data on the performance of Aedes aegypti and Aedes albopictus immatures developing in water-filled tires in Rio de Janeiro.

    PubMed

    Honório, Nildimar Alves; Cabello, Pedro H; Codeço, Cláudia T; Lourenço-de-Oliveira, Ricardo

    2006-03-01

    A monthly survey of Aedes aegypti and Aedes albopictus immatures in discarded tires at a site in metropolitan Rio de Janeiro showed that Ae. albopictus was much more abundant in the rainy season, but Ae. aegypti abundance showed a less clear seasonal pattern. Pupal masses for Ae. albopictus showed a seasonal trend. In contrast, Ae. aegypti pupae did not show any clear trend in weight. Large Ae. albopictus pupae were found in the warmer months, when water volume was higher, pH lower and larval abundance lower. Further studies should be carried out to assess how seasonal variations in body size may impact vector competence of these species in Brazil.

  1. Atmospheric control of Aedes aegypti populations in Buenos Aires (Argentina) and its variability

    NASA Astrophysics Data System (ADS)

    de Garín, A.; Bejarán, R. A.; Carbajo, A. E.; de Casas, S. C.; Schweigmann, N. J.

    The mosquito Aedes aegypti is the main urban vector responsible for the transmission of dengue fever and dengue hemorrhagic fever. The city of Buenos Aires, Argentina, is located at the southern end of the world distribution of the species. The population abundance of Ae. aegypti is mainly regulated by environmental factors. We calculated the potential number of times that a female could lay eggs during its mean life expectancy, based on potential egg production and daily meteorological records. The model considers those variables implying physical hazard to the survival of Ae. aegypti, mosquito flying activity and oviposition. The results, obtained after calibration and validation of the model with field observations, show significant correlation (P<0.001) for different lags depending on the life stage. From these results, more favorable atmospheric conditions for Ae. aegypti reproduction (linked to the urban climatic change) can be observed. The climatic variability in the last decade resembles conditions at the end of 19th century.

  2. Dispersal of Male Aedes aegypti in a Coastal Village in Southern Mexico

    PubMed Central

    Valerio, Laura; Facchinelli, Luca; Ramsey, Janine M.; Scott, Thomas W.

    2012-01-01

    Most Aedes aegypti dispersal studies have focused on females because of their central role in dengue virus transmission. Only a few mark-release-recapture (MRR) studies provided insights into male Ae. aegypti dispersal. To fill this knowledge gap, we conducted five male Ae. aegypti MRR experiments in a coastal village in southern Mexico. Small and large male cohorts were marked with fluorescent dusts, released outside buildings, and recaptures were carried out by using backpack aspirators. Recapture rates ranged between 0.35% and 6.55% and median distance traveled was 12–166 meters. A statistically significant difference in median distance traveled with large males dispersing farther than small ones was detected only in one experiment (MRR5: U = 3.5, P < 0.01). Male dispersal data will be useful for constructing and estimating parameter values and validating models that will be used to plan the most effective release strategies for genetically modified male Ae. aegypti. PMID:22492152

  3. Use of an artificial bromeliad to show the importance of color value in restricting colonization of bromeliads by Aedes aegypti and Culex quinquefasciatus.

    PubMed

    Frank, J H

    1985-03-01

    An artificial bromeliad was developed which, painted and containing an infusion water, elicited ovipositional response by caged adult Aedes aegypti, Culex quinquefasciatus, Wyeomyia vanduzeei and Wy. mitchellii. Comparison was made of the ovipositional response of adults of the four mosquito species to artificial bromeliads painted black, white, dark green and deep blue. Adult Ae, aegypti and Wy. vanduzeei did not discriminate significantly between white, dark green and deep blue, but whereas Ae. aegypti showed a preference for black, Wy. vanduzeei showed an aversion to black. Adult Wy. mitchelli responded similarly to Wy. vanduzeei except that although deep blue was preferred to black, it elicited a significantly weaker response than did dark green and white. Adult Cx. quinquefasciatus responded similarly to Ae. aegypti but did not show a significant preference for black over dark green. The high color value (i.e., lightness) of natural bromeliad leaves is likely to deter oviposition by adult Ae. aegypti and Cx quinquefasciatus in favor of competing oviposition sites of lower color value.

  4. Mitochondrial physiology in the major arbovirus vector Aedes aegypti: substrate preferences and sexual differences define respiratory capacity and superoxide production.

    PubMed

    Soares, Juliana B R Correa; Gaviraghi, Alessandro; Oliveira, Marcus F

    2015-01-01

    Adult females of Aedes aegypti are facultative blood sucking insects and vectors of Dengue and yellow fever viruses. Insect dispersal plays a central role in disease transmission and the extremely high energy demand posed by flight is accomplished by a very efficient oxidative phosphorylation process, which take place within flight muscle mitochondria. These organelles play a central role in energy metabolism, interconnecting nutrient oxidation to ATP synthesis, but also represent an important site of cellular superoxide production. Given the importance of mitochondria to cell physiology, and the potential contributions of this organelle for A. aegypti biology and vectorial capacity, here, we conducted a systematic assessment of mitochondrial physiology in flight muscle of young adult A. aegypti fed exclusively with sugar. This was carried out by determining the activities of mitochondrial enzymes, the substrate preferences to sustain respiration, the mitochondrial bioenergetic efficiency and capacity, in both mitochondria-enriched preparations and mechanically permeabilized flight muscle in both sexes. We also determined the substrates preferences to promote mitochondrial superoxide generation and the main sites where it is produced within this organelle. We observed that respiration in A. aegypti mitochondria was essentially driven by complex I and glycerol 3 phosphate dehydrogenase substrates, which promoted distinct mitochondrial bioenergetic capacities, but with preserved efficiencies. Respiration mediated by proline oxidation in female mitochondria was strikingly higher than in males. Mitochondrial superoxide production was essentially mediated through proline and glycerol 3 phosphate oxidation, which took place at sites other than complex I. Finally, differences in mitochondrial superoxide production among sexes were only observed in male oxidizing glycerol 3 phosphate, exhibiting higher rates than in female. Together, these data represent a significant step

  5. Mitochondrial Physiology in the Major Arbovirus Vector Aedes aegypti: Substrate Preferences and Sexual Differences Define Respiratory Capacity and Superoxide Production

    PubMed Central

    Soares, Juliana B. R. Correa; Gaviraghi, Alessandro; Oliveira, Marcus F.

    2015-01-01

    Adult females of Aedes aegypti are facultative blood sucking insects and vectors of Dengue and yellow fever viruses. Insect dispersal plays a central role in disease transmission and the extremely high energy demand posed by flight is accomplished by a very efficient oxidative phosphorylation process, which take place within flight muscle mitochondria. These organelles play a central role in energy metabolism, interconnecting nutrient oxidation to ATP synthesis, but also represent an important site of cellular superoxide production. Given the importance of mitochondria to cell physiology, and the potential contributions of this organelle for A. aegypti biology and vectorial capacity, here, we conducted a systematic assessment of mitochondrial physiology in flight muscle of young adult A. aegypti fed exclusively with sugar. This was carried out by determining the activities of mitochondrial enzymes, the substrate preferences to sustain respiration, the mitochondrial bioenergetic efficiency and capacity, in both mitochondria-enriched preparations and mechanically permeabilized flight muscle in both sexes. We also determined the substrates preferences to promote mitochondrial superoxide generation and the main sites where it is produced within this organelle. We observed that respiration in A. aegypti mitochondria was essentially driven by complex I and glycerol 3 phosphate dehydrogenase substrates, which promoted distinct mitochondrial bioenergetic capacities, but with preserved efficiencies. Respiration mediated by proline oxidation in female mitochondria was strikingly higher than in males. Mitochondrial superoxide production was essentially mediated through proline and glycerol 3 phosphate oxidation, which took place at sites other than complex I. Finally, differences in mitochondrial superoxide production among sexes were only observed in male oxidizing glycerol 3 phosphate, exhibiting higher rates than in female. Together, these data represent a significant step

  6. Observations on possible competitive displacement between populations of Aedes aegypti Linnaeus and Aedes albopictus Skuse in Calcutta*

    PubMed Central

    Gilotra, Sushil K.; Rozeboom, Lloyd E.; Bhattacharya, N. C.

    1967-01-01

    The possibility of competitive displacement in Calcutta between Aedes aegypti, a known vector of arboviruses, and A. albopictus, a suspected vector, was explored by general collections of immature stages from all types of breeding-places and by exposing oviposition traps in tenement houses, and gardens in urban, suburban, and rural environments. A. aegypti was predominant in houses and tenements in urban areas, but A. albopictus was not excluded. Both species occurred in about equal densities in small urban gardens. In suburban and rural areas, A. albopictus was predominant, or the only one of the two species present. It readily entered houses for the purpose of oviposition, especially in the absence of A. aegypti. It is suggested that the two species are exhibiting the effect of competitive displacement, with A. aegypti being favoured in urban premises and A. albopictus in the outdoor environment of suburban and rural areas, while in small urban gardens there is a state of equilibrium in which the densities of the two populations are about equal. The possibility cannot be excluded that eradication of A. aegypti in the city might lead to an increase in the A. albopictus population in houses and tenement dwellings. PMID:5301385

  7. A Deep Insight into the Sialome of Male and Female Aedes aegypti Mosquitoes

    PubMed Central

    Ribeiro, José M. C.; Martin-Martin, Ines; Arcà, Bruno; Calvo, Eric

    2016-01-01

    Only adult female mosquitoes feed on blood, while both genders take sugar meals. Accordingly, several compounds associated with blood feeding (i.e. vasodilators, anti-clotting, anti-platelets) are found only in female glands, while enzymes associated with sugar feeding or antimicrobials (such as lysozyme) are found in the glands of both sexes. We performed de novo assembly of reads from adult Aedes aegypti female and male salivary gland libraries (285 and 90 million reads, respectively). By mapping back the reads to the assembled contigs, plus mapping the reads from a publicly available Ae. aegypti library from adult whole bodies, we identified 360 transcripts (including splice variants and alleles) overexpressed tenfold or more in the glands when compared to whole bodies. Moreover, among these, 207 were overexpressed fivefold or more in female vs. male salivary glands, 85 were near equally expressed and 68 were overexpressed in male glands. We call in particular the attention to C-type lectins, angiopoietins, female-specific Antigen 5, the 9.7 kDa, 12–14 kDa, 23.5 kDa, 62/34 kDa, 4.2 kDa, proline-rich peptide, SG8, 8.7 kDa family and SGS fragments: these polypeptides are all of unknown function, but due to their overexpression in female salivary glands and putative secretory nature they are expected to affect host physiology. We have also found many transposons (some of which novel) and several endogenous viral transcripts (probably acquired by horizontal transfer) which are overexpressed in the salivary glands and may play some role in tissue-specific gene regulation or represent a mechanism of virus interference. This work contributes to a near definitive catalog of male and female salivary gland transcripts from Ae. aegypti, which will help to direct further studies aiming at the functional characterization of the many transcripts with unknown function and the understanding of their role in vector-host interaction and pathogen transmission. PMID:26999592

  8. Effects of Irritant Chemicals on Aedes aegypti Resting Behavior: Is There a Simple Shift to Untreated "Safe Sites"?

    DTIC Science & Technology

    2011-07-26

    Effects of Irritant Chemicals on Aedes aegypti Resting Behavior: Is There a Simple Shift to Untreated ‘‘Safe Sites’’? Hortance Manda*, Luana M. Arce... aegypti to irritant and repellent chemicals that can be exploited to reduce man-vector contact. Maximum efficacy of interventions based on irritant...overall impact. Methods: Using a laboratory box assay, resting patterns of two population strains of female Ae. aegypti (THAI and PERU) were evaluated

  9. Human and environmental factors affecting Aedes aegypti distribution in an arid urban environment.

    PubMed

    Walker, Kathleen R; Joy, Teresa K; Ellers-Kirk, Christa; Ramberg, Frank B

    2011-06-01

    Aedes aegypti has reappeared in urban communities in the southwestern U.S.A. in the 1990s after a 40-year absence. In 2003 and 2004, a systematic survey was conducted throughout metropolitan Tucson, AZ, to identify human and environmental factors associated with Ae. aegypti distribution within an arid urban area. Aedes aegypti presence and abundance were measured monthly using the Centers for Disease Control and Prevention enhanced oviposition traps at sampling sites established in a grid at 3- to 4-km intervals across the city. Sampling occurred in the summer rainy season (July through September), the peak of mosquito activity in the region. Multiple regression analyses were conducted to determine relationships between mosquito density and factors that could influence mosquito distribution. House age was the only factor that showed a consistent significant association with Ae. aegypti abundance in both years: older houses had more mosquito eggs. This is the 1st study of Ae. aegypti distribution at a local level to identify house age as an explanatory factor independent of other human demographic factors. Further research into the reasons why mosquitoes were more abundant around older homes may help inform and refine future vector surveillance and control efforts in the event of a dengue outbreak in the region.

  10. Changing Domesticity of Aedes aegypti in Northern Peninsular Malaysia: Reproductive Consequences and Potential Epidemiological Implications

    PubMed Central

    Saifur, Rahman G. M.; Dieng, Hamady; Hassan, Ahmad Abu; Salmah, Md Rawi Che; Satho, Tomomitsu; Miake, Fumio; Hamdan, Ahmad

    2012-01-01

    Background The domestic dengue vector Aedes aegypti mosquitoes breed in indoor containers. However, in northern peninsular Malaysia, they show equal preference for breeding in both indoor and outdoor habitats. To evaluate the epidemiological implications of this peridomestic adaptation, we examined whether Ae. aegypti exhibits decreased survival, gonotrophic activity, and fecundity due to lack of host availability and the changing breeding behavior. Methodology/Principal Findings This yearlong field surveillance identified Ae. aegypti breeding in outdoor containers on an enormous scale. Through a sequence of experiments incorporating outdoors and indoors adapting as well as adapted populations, we observed that indoors provided better environment for the survival of Ae. aegypti and the observed death patterns could be explained on the basis of a difference in body size. The duration of gonotrophic period was much shorter in large-bodied females. Fecundity tended to be greater in indoor acclimated females. We also found increased tendency to multiple feeding in outdoors adapted females, which were smaller in size compared to their outdoors breeding counterparts. Conclusion/Significance The data presented here suggest that acclimatization of Ae. aegypti to the outdoor environment may not decrease its lifespan or gonotrophic activity but rather increase breeding opportunities (increased number of discarded containers outdoors), the rate of larval development, but small body sizes at emergence. Size is likely to be correlated with disease transmission. In general, small size in Aedes females will favor increased blood-feeding frequency resulting in higher population sizes and disease occurrence. PMID:22363516

  11. Effect of two commercial herbicides on life history traits of a human disease vector, Aedes aegypti, in the laboratory setting.

    PubMed

    Morris, Alexandra; Murrell, Ebony G; Klein, Talan; Noden, Bruce H

    2016-07-01

    Some mosquito species utilize the small niches of water that are abundant in farmland habitats. These niches are susceptible to effects from agricultural pesticides, many of which are applied aerially over large tracts of land. One principal form of weed control in agricultural systems involves the development of herbicide-tolerant crops. The impact of sub-agricultural levels of these herbicides on mosquito survival and life-history traits of resulting adults have not been determined. The aim of this study was to test the effect of two commercial herbicides (Beyond and Roundup) on the survivorship, eclosion time, and body mass of Aedes aegypti. First instar A. aegypti larvae were exposed to varying concentrations (270, 550 and 820 μg/m(2) of glyphosate and 0.74, 1.49, 2.24 μL imazamox/m(2)), all treatments being below recommended application rates, of commercial herbicides in a controlled environment and resulting adult mosquitoes were collected and weighed. Exposure to Roundup had a significant negative effect on A. aegypti survivorship at medium and high sub-agricultural application concentrations, and negatively affected adult eclosion time at the highest concentration. However, exposure to low concentrations of Beyond significantly increased A. aegypti survivorship, although adult female mass was decreased at medium sub-agricultural concentrations. These results demonstrate that low concentrations of two different herbicides, which can occur in rural larval habitats as a result of spray drift, can affect the same species of mosquito in both positive and negative ways depending on the herbicide applied. The effects of commercial herbicides on mosquito populations could have an important effect on disease transmission within agricultural settings, where these and other herbicides are extensively applied to reduce weed growth.

  12. [Biology and thermal exigency of Aedes aegypti (L.) (Diptera: Culicidae) from four bioclimatic localities of Paraíba].

    PubMed

    Beserra, Eduardo B; de Castro, Francisco P; dos Santos, José W; Santos, Tatiana da S; Fernandes, Carlos R M

    2006-01-01

    The present work aimed at estimating the thermal requirements for the development and the number of generations per year of Aedes aegypti (L.) under natural conditions. The life cycle of A. aegypti populations was studied at constant temperatures of 18, 22, 26, 30 and 34 degrees C, and 12 h photophase. The development period, egg viability and larval and pupal survival were evaluated daily as well as adult longevity and fecundity. The low threshold temperature of development (Tb) and the thermal constant (K) were determined. The number of generations per year in laboratory and field were also estimated. The favorable temperature to A. aegypti development is between 21 degrees C and 29 degrees C, and to longevity and fecundity is between 22 degrees C and 30 degrees C. The egg to adult basal temperature, thermal constant and the number of generations in field were, in order, 9.5, 8.5, 3.4, 7.1, 13.5 degrees C; 244.5, 273.9, 298.5, 280.9 and 161.8 degree-days; and 21.9, 23.8, 24.2, 21.1 and 22.1 generations in populations from Boqueirão, Brejo dos Santos, Campina Grande, Itaporanga and Remígio.

  13. [Influence of plant matter and NPK fertilizer on the biology of Aedes aegypti (Diptera: Culicidae)].

    PubMed

    Darriet, F; Zumbo, B; Corbel, V; Chandre, F

    2010-06-01

    In this laboratory study, we investigated the attractiveness of gravid Aedes aegypti females for aquatic habitats containing either NPK fertilizer or plant matter or a mixture of both. The development of larvae, adult emergence and weight of emerged adults were measured for each group and physicochemical analysis of water was made for the dosage of minerals and organic compounds. After 23 days experiment, NPK solution remained as attractive as the mixture of NPK + plant matter but did not ensure suitable development of larvae. The plant matter infusion showed less attractiveness for laying eggs than NPK but provided larvae with sufficient organic nutrients for their development. The combination of both NPK + plant matter provided the greatest attractiveness for gravid females and sufficient organic substance allowing mosquito larvae to grow. Physicochemical analyses of water containing NPK showed minerals only (NH4(+)+NO3(-)+P+K) whereas plant matter showed high content of carbon and nitrogen. The NPK + plant matter mixture contained both organic and minerals elements that favoured the proliferation of bacteria and then the development of mosquito larvae. These findings could lead to the development of new traps that could attract females mosquitoes and killed hatched larvae if mix with appropriate larvicides.

  14. Indirect effects of cigarette butt waste on the dengue vector Aedes aegypti (Diptera: Culicidae).

    PubMed

    Dieng, Hamady; Rajasaygar, Sudha; Ahmad, Abu Hassan; Rawi, Che Salmah Md; Ahmad, Hamdan; Satho, Tomomitsu; Miake, Fumio; Zuharah, Wan Fatma; Fukumitsu, Yuki; Saad, Ahmad Ramli; Abdul Hamid, Suhaila; Vargas, Ronald Enrique Morales; Ab Majid, Abdul Hafiz; Fadzly, Nik; Abu Kassim, Nur Faeza; Hashim, Nur Aida; Abd Ghani, Idris; Abang, Fatimah Bt; AbuBakar, Sazaly

    2014-02-01

    Despite major insecticide-based vector control programs, dengue continues to be a major threat to public health in urban areas. The reasons for this failure include the emergence of insecticide resistance and the narrowing of the spectrum of efficient products. Cigarette butts (CBs), the most commonly discarded piece of waste, also represent a major health hazard to human and animal life. CBs are impregnated with thousands of chemical compounds, many of which are highly toxic and none of which has history of resistance in mosquitoes. This study was performed to examine whether exposure to CB alters various biological parameters of parents and their progeny. We examined whether the mosquito changes its ovipositional behaviors, egg hatching, reproductive capacity, longevity and fecundity in response to CB exposure at three different concentrations. Females tended to prefer microcosms containing CBs for egg deposition than those with water only. There were equivalent rates of eclosion success among larvae from eggs that matured in CB and water environments. We also observed decreased life span among adults that survived CB exposure. Extracts of CB waste have detrimental effects on the fecundity and longevity of its offspring, while being attractive to its gravid females. These results altogether indicate that CB waste indirectly affect key adult life traits of Aedes aegypti and could conceivably be developed as a novel dengue vector control strategy, referring to previously documented direct toxicity on the larval stage. But this will require further research on CB waste effects on non-target organisms including humans.

  15. Oviposition response of Aedes aegypti mosquitoes to different concentrations of hay infusion in Trinidad, West Indies.

    PubMed

    Chadee, D D; Lakhan, A; Ramdath, W R; Persad, R C

    1993-09-01

    Ovitraps containing various concentrations of hay infusion and tap water were exposed weekly in the field for 15 wk to determine the oviposition patterns of Aedes aegypti. The results showed 10, 20, 60 and 80% hay infusions each attracted similar numbers of Ae. aegypti eggs oviposited and egg occurrences. No repellent effect was observed. In another field study, significantly more eggs and egg occurrences were collected from 25 and 50% hay infusions and tap water. The differences in these results from those of a previous study in Puerto Rico are discussed.

  16. Population genetic structure of the dengue mosquito Aedes aegypti in Venezuela.

    PubMed

    Herrera, Flor; Urdaneta, Ludmel; Rivero, José; Zoghbi, Normig; Ruiz, Johanny; Carrasquel, Gabriela; Martínez, José Antonio; Pernalete, Martha; Villegas, Patricia; Montoya, Ana; Rubio-Palis, Yasmin; Rojas, Elina

    2006-09-01

    The mosquito Aedes aegypti is the main vector of dengue in Venezuela. The genetic structure of this vector was investigated in 24 samples collected from eight geographic regions separated by up to 1160 km. We examined the distribution of a 359-basepair region of the NADH dehydrogenase subunit 4 mitochondrial gene among 1144 Ae. aegypti from eight collections. This gene was amplified by the polymerase chain reaction and tested for variation using single strand conformation polymorphism analysis. Seven haplotypes were detected throughout Venezuela and these were sorted into two clades. Significant differentiation was detected among collections and these were genetically isolated by distance.

  17. Finding Aedes aegypti in a natural breeding site in an urban zone, Sao Paulo, Southeastern Brazil

    PubMed Central

    Lima-Camara, Tamara Nunes; Urbinatti, Paulo Roberto; Chiaravalloti-Neto, Francisco

    2016-01-01

    ABSTRACT This is the description of how nine Aedes aegypti larvae were found in a natural breeding site in the Pinheiros neighborhood, city of Sao Paulo, SP, Southeastern Brazil. The record was conducted in December 2014, during an entomological surveillance program of dengue virus vectors, with an active search of potential breeding sites, either artificial or natural. Finding Ae. aegypti larvae in a tree hole shows this species’ ability to use both artificial and natural environments as breeding sites and habitats, which points towards the importance of maintaining continuous surveillance on this mosquito in all kinds of water-holding containers. PMID:26982959

  18. Intermolecular interaction of thiosemicarbazone derivatives to solvents and a potential Aedes aegypti target

    NASA Astrophysics Data System (ADS)

    da Silva, João Bosco P.; Hallwass, Fernando; da Silva, Aluizio G.; Moreira, Diogo Rodrigo; Ramos, Mozart N.; Espíndola, José Wanderlan P.; de Oliveira, Ana Daura T.; Brondani, Dalci José; Leite, Ana Cristina L.; Merz, Kenneth M.

    2015-08-01

    DFT calculations were used to access information about structure, energy and electronic properties of series of phenyl- and phenoxymethyl-(thio)semicarbazone derivatives with demonstrated activity against the larvae of Aedes aegypti in stage L4. The way as the thiosemicarbazone derivatives can interact with solvents like DMSO and water were analyzed from the comparison between calculated and experimental 1H NMR chemical shifts. The evidences of thiosemicarbazone derivatives making H-bond interaction to solvent have provide us insights on how they can interact with a potential A. aegypti's biological target, the Sterol Carrier Protein-2.

  19. Methods for TALEN evaluation, use, and mutation detection in the mosquito Aedes aegypti

    PubMed Central

    Basu, Sanjay; Aryan, Azadeh; Haac, Mary Etna; Myles, Kevin M.; Adelman, Zach N.

    2016-01-01

    The generation and study of transgenic Aedes aegypti mosquitoes provides an essential tool for elucidating the complex molecular biology of this important vector. Within the field, genetic manipulation has now surpassed the proof of principle stage and is now utilised in both applied and theoretical vector control strategies. The application of new instruments, technologies and techniques allows ever more controlled experiments to be conducted. In this text we describe microinjection of Ae. aegypti embryos in the context of evaluating and performing genomic editing with transcription activator-like effector nucleases (TALENs). PMID:26443221

  20. The Effects of Interspecific Courtship on the Mating Success of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) Males

    PubMed Central

    Bargielowski, Irka; Blosser, Erik; Lounibos, L. P.

    2015-01-01

    Satyrization, a form of asymmetric reproductive interference, has recently been shown to play a role in competitive displacements of Aedes aegypti (L.) by Aedes albopictus (Skuse). Furthermore, female Ae. aegypti from populations in sympatry with Ae. albopictus have evolved reproductive character displacement and changes in mating behavior to reduce interspecific mating. In this article, we examine evolutionary responses of males to interspecific mating and show that satyrization has also evoked reproductive character displacement in males. We demonstrate that the presence of heterospecific females negatively influences conspecific mating success in male Ae. aegypti, most likely due to misdirected courting or mating efforts, and that males of this species from populations in sympatry with Ae. albopictus have evolved to be less influenced by the presence of heterospecific females than their allopatric counterparts. Conversely, we suggest that the presence of conspecifics may, in some circumstances, increase interspecific mating. This study demonstrates that co-occurrences of these two invasive species may lead to evolution and adaptation of reproductive behaviors to changing circumstances. Understanding the processes driving development of mate choice preferences or avoidance mechanisms may help predict future changes in the distribution and abundance of insect vectors or pests. PMID:27418696

  1. Light-dependent effects of alpha-terthienyl in eggs, larvae, and pupae of mosquitoAedes aegypti.

    PubMed

    Kagan, J; Kagan, E; Patel, S; Perrine, D; Bindokas, V

    1987-03-01

    Alpha-terthienyl is toxic toAedes aegypti larvae in the dark, but its activity is much enhanced in the presence of ultraviolet light. The development of first-instar larvae treated with alpha-terthienyl and ultraviolet light was followed until the emergence of adults. The LC50 value for first instars was about 0.002 ppm. Practically all the larvae which survived 24 hr reached adulthood. Fourth-instar larvae were also sensitive to photochemical treatment. When their development into adults was followed, the LC50 value was 0.45 ppm. Contrary to earlier reports, alpha-terthienyl was also phototoxic in pupae, but not when the adults were about to emerge. The LC50 value was ca. 0.06 ppm for pupae which were 1 or 2 days old. This is the first example where the activity of a photoinsecticide has been demonstrated in pupae. Alpha-terthienyl did not affect the hatching of eggs.

  2. Detection of Chikungunya virus in Aedes aegypti during 2011 outbreak in Al Hodayda, Yemen.

    PubMed

    Zayed, Alia; Awash, Abdullah A; Esmail, Mohammed A; Al-Mohamadi, Hani A; Al-Salwai, Mostafa; Al-Jasari, Adel; Medhat, Iman; Morales-Betoulle, Maria E; Mnzava, Abraham

    2012-07-01

    In October 2010, the Ministry of Public Health and Population reported an outbreak of dengue-like acute febrile illness in Al Hodayda governorate. By January 2011, a total of 1542 cases had been recorded from 19 of the 26 districts in the governorate with 104 purportedly associated deaths. In response this event, in January 2011 entomological investigations aimed at identifying the primary vector and the epidemic associated etiological agent were carried out. Based on the reported cases and the progress of the outbreak in the governorate, mosquito collection was undertaken in two of the most recent outbreak areas; Al Khokha district (130km south of Al Hodayda) and Al Muneera district (100km north). Mosquito adults were collected from houses using BG-sentinel™ traps, aspiration of resting mosquitoes and knock-down spraying. Indoor and outdoor containers adjacent to the houses were inspected for larvae. Subsequently mosquito pools were analyzed by RT-PCR for detection of the four dengue virus serotypes (DENV-1, DENV-2, DENV-3, DENV-4), and for Chikungunya virus (CHIKV). Aedes aegypti was the dominant mosquito species collected. Four pools represent 40% of the tested pools, all containing adult female Ae. aegypti, were positive for CHIKV. Three CHIKV isolates were obtained from the RNA positive mosquito pools and identified by rRT-PCR. This finding marks the first record of CHIKV isolated from Ae. aegypti in Yemen. The larval container and Breteau indices in the visited localities surveyed were estimated at 53.8 and 100, respectively. The emergence of this unprecedented CHIKV epidemic in Al Hodayda is adding up another arboviral burden to the already existing vector-borne diseases. Considering the governorate as one focal port in the Red Sea region, the spread of the disease to other areas in Yemen and in neighboring countries is anticipated. Public health education and simple measures to detect and prevent mosquito breeding in water storage containers could prevent

  3. Characterization of an isopentenyl diphosphate isomerase involved in the juvenile hormone pathway in Aedes aegypti.

    PubMed

    Diaz, Miguel E; Mayoral, Jaime G; Priestap, Horacio; Nouzova, Marcela; Rivera-Perez, Crisalejandra; Noriega, Fernando G

    2012-10-01

    Isopentenyl diphosphate isomerase (IPPI) is an enzyme involved in the synthesis of juvenile hormone (JH) in the corpora allata (CA) of insects. IPPI catalyzes the conversion of isopentenyl pyrophosphate (IPP) to dimethylallyl pyrophosphate (DMAPP); afterward IPP and DMAPP condense in a head-to-tail manner to produce geranyl diphosphate (GPP), this head-to-tail condensation can be repeated, by the further reaction of GPP with IPP, yielding the JH precursor farnesyl diphosphate. An IPPI expressed sequence tag (EST) was obtained from an Aedes aegypti corpora-allata + corpora cardiaca library. Its full-length cDNA encodes a 244-aa protein that shows a high degree of similarity with type I IPPIs from other organisms, particularly for those residues that have important roles in catalysis, metal coordination and interaction with the diphosphate moiety of the IPP. Heterologous expression produced a recombinant protein that metabolized IPP into DMAPP; treatment of DMAPP with phosphoric acid produced isoprene, a volatile compound that was measured with an assay based on a solid-phase micro extraction protocol and direct analysis by gas chromatography. A. aegypti IPPI (AaIPPI) required Mg(2+) or Mn(2+) but not Zn(2+) for full activity and it was entirely inhibited by iodoacetamide. Real time PCR experiments showed that AaIPPI is highly expressed in the CA. Changes in AaIPPI mRNA levels in the CA in the pupal and adult female mosquito corresponded well with changes in JH synthesis (Li et al., 2003). This is the first molecular and functional characterization of an isopentenyl diphosphate isomerase involved in the production of juvenile hormone in the CA of an insect.

  4. Development of a mosquito attractant blend of small molecules against host-seeking Aedes aegypti.

    PubMed

    Saratha, R; Mathew, Nisha

    2016-04-01

    A mosquito's dependence on olfaction in the hunt for human host could be efficiently exploited to protect humans from mosquito bites. The present study is undertaken to make the most attractant compound blend for Aedes aegypti mosquitoes to lure them to traps. Eleven molecules (M1-M11) at different dilutions were screened for attractancy against non-blood-fed adult female mosquitoes in an olfactometer. The results showed that the attractancy was dependent on both the chemical nature of the molecule and the strength of the odor. Out of 11 molecules screened, 9 showed significant attractancy (P < 0.05) when tested individually. The attractancy was in the order of M11 > M7 > M6 > M10 > M9 > M3 > M2 > M1 > M4 with attractancy indices (AIs) 86.11, 55.93, 55.17, 54, 52.94, 52, 50, 43.64, and 32, respectively, at the optimum dilutions. Seven blends (I-VII) were made and were screened for attractancy against Ae. aegypti. All the blends showed significant attractancy (P < 0.05). The attractancy was in the order of blend VII > III > IV > I > VI > V > II with AIs 96.63, 89.19, 65, 57.89, 56.1, 47.13, and 44.44, respectively. Among the seven blends, blend VII with constituent molecules M6, M9, M10, and M11 is the most promising with an AI value of 96.63. This blend will be useful in luring the host-seeking mosquitoes to traps. The field efficacy of these attractant blends may be explored in the future.

  5. Evaluation of Household Bleach as an Ovicide for the Control of Aedes Aegypti

    PubMed Central

    Mackay, Andrew J.; Amador, Manuel; Felix, Gilberto; Acevedo, Veronica; Barrera, Roberto

    2015-01-01

    Accumulations of dormant eggs in container habitats allow Aedes aegypti populations to survive harsh environmental conditions and may frustrate control interventions directed at larval and adult life stages. While sodium hypochlorite solutions (NaOCl) have long been recognized as ovicides for use against dengue vectors, the susceptibility of eggs to spray applications has not been robustly evaluated on substrate materials representative of the most frequently utilized artificial container habitats. Experiments were performed under controlled and natural conditions by applying dilutions of household bleach (52.5 ppt NaOCl) as a spray to eggs on plastic, rubber, and concrete surfaces, with and without a smectite clay thickener. Laboratory assays identified the minimum NaOCl concentrations required to eliminate eggs on plastic (10 ppt), rubber (20 ppt) and concrete (20 ppt) surfaces. Addition of smectite clay reduced the minimum effective concentration to 10 ppt NaOCl for all 3 substrates. A minimum exposure period of 24 h was required to completely eliminate egg viability on concrete surfaces, even at the highest NaOCl concentration (52.5 ppt). Field experiments verified that spray application of a 1:3 dilution of household bleach mixed with smectite clay can reduce egg hatching by ≥ 99% in shaded and sun-exposed plastic containers. Similarly, 4:1 dilution of household bleach (with or without smectite clay) eliminated ≥ 98% of eggs from concrete surfaces in outdoor, water-filled drums. In this study, we propose a practical, effective and safe strategy for using household bleach to eliminate Ae. aegypti eggs in a range of artificial container habitats. PMID:25843179

  6. Assessing the Effects of Aedes aegypti kdr Mutations on Pyrethroid Resistance and Its Fitness Cost

    PubMed Central

    Brito, Luiz Paulo; Linss, Jutta G. B.; Lima-Camara, Tamara N.; Belinato, Thiago A.; Peixoto, Alexandre A.; Lima, José Bento P.; Valle, Denise; Martins, Ademir J.

    2013-01-01

    Pyrethroids are the most used insecticide class worldwide. They target the voltage gated sodium channel (NaV), inducing the knockdown effect. In Aedes aegypti, the main dengue vector, the AaNaV substitutions Val1016Ile and Phe1534Cys are the most important knockdown resistance (kdr) mutations. We evaluated the fitness cost of these kdr mutations related to distinct aspects of development and reproduction, in the absence of any other major resistance mechanism. To accomplish this, we initially set up 68 crosses with mosquitoes from a natural population. Allele-specific PCR revealed that one couple, the one originating the CIT-32 strain, had both parents homozygous for both kdr mutations. However, this pyrethroid resistant strain also presented high levels of detoxifying enzymes, which synergistically account for resistance, as revealed by biological and biochemical assays. Therefore, we carried out backcrosses between CIT-32 and Rockefeller (an insecticide susceptible strain) for eight generations in order to bring the kdr mutation into a susceptible genetic background. This new strain, named Rock-kdr, was highly resistant to pyrethroid and presented reduced alteration of detoxifying activity. Fitness of the Rock-kdr was then evaluated in comparison with Rockefeller. In this strain, larval development took longer, adults had an increased locomotor activity, fewer females laid eggs, and produced a lower number of eggs. Under an inter-strain competition scenario, the Rock-kdr larvae developed even slower. Moreover, when Rockefeller and Rock-kdr were reared together in population cage experiments during 15 generations in absence of insecticide, the mutant allele decreased in frequency. These results strongly suggest that the Ae. aegypti kdr mutations have a high fitness cost. Therefore, enhanced surveillance for resistance should be priority in localities where the kdr mutation is found before new adaptive alleles can be selected for diminishing the kdr deleterious

  7. Surveillance of Aedes aegypti: Comparison of House Index with Four Alternative Traps

    PubMed Central

    Codeço, Claudia T.; Lima, Arthur W. S.; Araújo, Simone C.; Lima, José Bento P.; Maciel-de-Freitas, Rafael; Honório, Nildimar A.; Galardo, Allan K. R.; Braga, Ima A.; Coelho, Giovanini E.; Valle, Denise

    2015-01-01

    Introduction The mosquito Aedes aegypti, vector of dengue, chikungunya and yellow fever viruses, is an important target of vector control programs in tropical countries. Most mosquito surveillance programs are still based on the traditional household larval surveys, despite the availability of new trapping devices. We report the results of a multicentric entomological survey using four types of traps, besides the larval survey, to compare the entomological indices generated by these different surveillance tools in terms of their sensitivity to detect mosquito density variation. Methods The study was conducted in five mid-sized cities, representing variations of tropical climate regimens. Surveillance schemes using traps for adults (BG-Sentinel, Adultrap and MosquiTRAP) or eggs (ovitraps) were applied monthly to three 1 km2 areas per city. Simultaneously, larval surveys were performed. Trap positivity and density indices in each area were calculated and regressed against meteorological variables to characterize the seasonal pattern of mosquito infestation in all cities, as measured by each of the four traps. Results The House Index was consistently low in most cities, with median always 0. Traps rarely produced null indices, pointing to their greater sensitivity in detecting the presence of Ae. aegypti in comparison to the larval survey. Trap positivity indices tend to plateau at high mosquito densities. Despite this, both indices, positivity and density, agreed on the seasonality of mosquito abundance in all cities. Mosquito seasonality associated preferentially with temperature than with precipitation even in areas where temperature variation is small. Conclusions All investigated traps performed better than the House Index in measuring the seasonal variation in mosquito abundance and should be considered as complements or alternatives to larval surveys. Choice between traps should further consider differences of cost and ease-of-use. PMID:25668559

  8. Evaluation of Household Bleach as an Ovicide for the Control of Aedes aegypti.

    PubMed

    Mackay, Andrew J; Amador, Manuel; Felix, Gilberto; Acevedo, Veronica; Barrera, Roberto

    2015-03-01

    Accumulations of dormant eggs in container habitats allow Aedes aegypti populations to survive harsh environmental conditions and may frustrate control interventions directed at larval and adult life stages. While sodium hypochlorite solutions (NaOCl) have long been recognized as ovicides for use against dengue vectors, the susceptibility of eggs to spray applications has not been robustly evaluated on substrate materials representative of the most frequently utilized artificial container habitats. Experiments were performed under controlled and natural conditions by applying dilutions of household bleach (52.5 ppt NaOCl) as a spray to eggs on plastic, rubber, and concrete surfaces, with and without a smectite clay thickener. Laboratory assays identified the minimum NaOCl concentrations required to eliminate eggs on plastic (10 ppt), rubber (20 ppt) and concrete (20 ppt) surfaces. Addition of smectite clay reduced the minimum effective concentration to 10 ppt NaOCl for all 3 substrates. A minimum exposure period of 24 h was required to completely eliminate egg viability on concrete surfaces, even at the highest NaOCl concentration (52.5 ppt). Field experiments verified that spray application of a 1∶3 dilution of household bleach mixed with smectite clay can reduce egg hatching by ≥ 99% in shaded and sun-exposed plastic containers. Similarly, 4∶1 dilution of household bleach (with or without smectite clay) eliminated ≥ 98% of eggs from concrete surfaces in outdoor, water-filled drums. In this study, we propose a practical, effective and safe strategy for using household bleach to eliminate Ae. aegypti eggs in a range of artificial container habitats.

  9. Assessing the effects of Aedes aegypti kdr mutations on pyrethroid resistance and its fitness cost.

    PubMed

    Brito, Luiz Paulo; Linss, Jutta G B; Lima-Camara, Tamara N; Belinato, Thiago A; Peixoto, Alexandre A; Lima, José Bento P; Valle, Denise; Martins, Ademir J

    2013-01-01

    Pyrethroids are the most used insecticide class worldwide. They target the voltage gated sodium channel (NaV), inducing the knockdown effect. In Aedes aegypti, the main dengue vector, the AaNaV substitutions Val1016Ile and Phe1534Cys are the most important knockdown resistance (kdr) mutations. We evaluated the fitness cost of these kdr mutations related to distinct aspects of development and reproduction, in the absence of any other major resistance mechanism. To accomplish this, we initially set up 68 crosses with mosquitoes from a natural population. Allele-specific PCR revealed that one couple, the one originating the CIT-32 strain, had both parents homozygous for both kdr mutations. However, this pyrethroid resistant strain also presented high levels of detoxifying enzymes, which synergistically account for resistance, as revealed by biological and biochemical assays. Therefore, we carried out backcrosses between CIT-32 and Rockefeller (an insecticide susceptible strain) for eight generations in order to bring the kdr mutation into a susceptible genetic background. This new strain, named Rock-kdr, was highly resistant to pyrethroid and presented reduced alteration of detoxifying activity. Fitness of the Rock-kdr was then evaluated in comparison with Rockefeller. In this strain, larval development took longer, adults had an increased locomotor activity, fewer females laid eggs, and produced a lower number of eggs. Under an inter-strain competition scenario, the Rock-kdr larvae developed even slower. Moreover, when Rockefeller and Rock-kdr were reared together in population cage experiments during 15 generations in absence of insecticide, the mutant allele decreased in frequency. These results strongly suggest that the Ae. aegypti kdr mutations have a high fitness cost. Therefore, enhanced surveillance for resistance should be priority in localities where the kdr mutation is found before new adaptive alleles can be selected for diminishing the kdr deleterious

  10. Larvicidal and irritant activities of hexane leaf extracts of Citrus sinensis against dengue vector Aedes aegypti L.

    PubMed Central

    Warikoo, Radhika; Ray, Ankita; Sandhu, Jasdeep Kaur; Samal, Roopa; Wahab, Naim; Kumar, Sarita

    2012-01-01

    Objective To assess the larvicidal and irritant activities of the hexane extracts of leaves of Citrus sinensis (C. sinensis) against the early fourth instars and female adults of Aedes aegypti (Ae. aegypti). Methods The larvicidal potential of the prepared leaf extract was evaluated against early fourth instar larvae of Ae. aegypti using WHO protocol. The mortality counts were made after 24 h and LC50 and LC90 values were calculated. The efficacy of extract as mosquito irritant was assessed by contact irritancy assays. Extract-impregnated paper was placed on a glass plate over which a perspex funnel with a hole on the top was kept inverted. Single female adult, 3-day old unfed/blood-fed, was released inside the funnel. After 3 min of acclimatization time, the time taken for the first take-off and total number of flights undertaken during 15 min were scored. Results The citrus leaf extracts from hexane possessed moderate larvicidal efficiency against dengue vector. The bioassays resulted in an LC50 and LC90 value of 446.84 and 1 370.96 ppm, respectively after 24 h of exposure. However, the extracts were proved to be remarkable irritant against adults Ae. aegypti, more pronounced effects being observed on blood-fed females than unfed females. The extract-impregnated paper was thus proved to be 7–11 times more irritable as compared with the control paper. Conclusions The hexane extracts from C. sinensis leaves are proved to be reasonably larvicidal but remarkably irritant against dengue vector. Further studies are needed to identify the possible role of extract as adulticide, oviposition deterrent and ovicidal agent. The isolation of active ingredient from the extract could help in formulating strategies for mosquito control. PMID:23569887

  11. A Multipurpose, High-Throughput Single-Nucleotide Polymorphism Chip for the Dengue and Yellow Fever Mosquito, Aedes aegypti

    PubMed Central

    Evans, Benjamin R.; Gloria-Soria, Andrea; Hou, Lin; McBride, Carolyn; Bonizzoni, Mariangela; Zhao, Hongyu; Powell, Jeffrey R.

    2015-01-01

    The dengue and yellow fever mosquito, Aedes aegypti, contributes significantly to global disease burden. Genetic study of Aedes aegypti is essential to understanding its evolutionary history, competence as a disease vector, and the effects and efficacy of vector control methods. The prevalence of repeats and transposable elements in the Aedes aegypti genome complicates marker development and makes genome-wide genetic study challenging. To overcome these challenges, we developed a high-throughput genotyping chip, Axiom_aegypti1. This chip screens for 50,000 single-nucleotide polymorphisms present in Aedes aegypti populations from around the world. The array currently used genotypes 96 samples simultaneously. To ensure that these markers satisfy assumptions commonly made in many genetic analyses, we tested for Mendelian inheritance and linkage disequilibrium in laboratory crosses and a wild population, respectively. We have validated more than 25,000 of these markers to date, and expect this number to increase with more sampling. We also present evidence of the chip’s efficacy in distinguishing populations throughout the world. The markers on this chip are ideal for applications ranging from population genetics to genome-wide association studies. This tool makes rapid, cost-effective, and comparable genotype data attainable to diverse sets of Aedes aegypti researchers, from those interested in potential range shifts due to climate change to those characterizing the genetic underpinnings of its competence to transmit disease. PMID:25721127

  12. A Multipurpose, High-Throughput Single-Nucleotide Polymorphism Chip for the Dengue and Yellow Fever Mosquito, Aedes aegypti.

    PubMed

    Evans, Benjamin R; Gloria-Soria, Andrea; Hou, Lin; McBride, Carolyn; Bonizzoni, Mariangela; Zhao, Hongyu; Powell, Jeffrey R

    2015-02-26

    The dengue and yellow fever mosquito, Aedes aegypti, contributes significantly to global disease burden. Genetic study of Aedes aegypti is essential to understanding its evolutionary history, competence as a disease vector, and the effects and efficacy of vector control methods. The prevalence of repeats and transposable elements in the Aedes aegypti genome complicates marker development and makes genome-wide genetic study challenging. To overcome these challenges, we developed a high-throughput genotyping chip, Axiom_aegypti1. This chip screens for 50,000 single-nucleotide polymorphisms present in Aedes aegypti populations from around the world. The array currently used genotypes 96 samples simultaneously. To ensure that these markers satisfy assumptions commonly made in many genetic analyses, we tested for Mendelian inheritance and linkage disequilibrium in laboratory crosses and a wild population, respectively. We have validated more than 25,000 of these markers to date, and expect this number to increase with more sampling. We also present evidence of the chip's efficacy in distinguishing populations throughout the world. The markers on this chip are ideal for applications ranging from population genetics to genome-wide association studies. This tool makes rapid, cost-effective, and comparable genotype data attainable to diverse sets of Aedes aegypti researchers, from those interested in potential range shifts due to climate change to those characterizing the genetic underpinnings of its competence to transmit disease.

  13. Characterization of the oxysterol-binding protein gene family in the yellow fever mosquito, Aedes aegypti

    PubMed Central

    Fu, Qiang; Lynn-Miller, Ace; Lan, Que

    2011-01-01

    The oxysterol-binding protein (OSBP) and related proteins (ORPs) are sterol-binding proteins that may be involved in cellular sterol transportation, sterol metabolism and signal transduction pathways. Four ORP genes were cloned from Aedes aegypti. Based on amino acid sequence homology to human proteins, they are AeOSBP, AeORP1, AeORP8 and AeORP9. Splicing variants of AeOSBP and AeORP8 were identified. The temporal and spatial transcription patterns of members of the AeOSBP gene family through developmental stages and the gonotrophic cycle were profiled. AeORP1 transcription seemed to be head tissue-specific, whereas AeOSBP and AeORP9 expressions were induced by a blood meal. Furthermore, over-expression of AeORPs facilitated [3H]-cholesterol uptake in Aedes aegypti cultured Aag-2 cells. PMID:21699592

  14. Data documenting the potential distribution of Aedes aegypti in the center of Veracruz, Mexico.

    PubMed

    Estrada-Contreras, Israel; Sandoval-Ruiz, César A; Mendoza-Palmero, Fredy S; Ibáñez-Bernal, Sergio; Equihua, Miguel; Benítez, Griselda

    2017-02-01

    The data presented in this article are related to the research article entitled "Establishment of Aedes aegypti (L.) in mountainous regions in Mexico: Increasing number of population at risk of mosquito-borne disease and future climate conditions" (M. Equihua, S. Ibáñez-Bernal, G. Benítez, I. Estrada-Contreras, C.A. Sandoval-Ruiz, F.S. Mendoza-Palmero, 2016) [1]. This article provides presence records in shapefile format used to generate maps of potential distribution of Aedes aegypti with different climate change scenarios as well as each of the maps obtained in raster format. In addition, tables with values of potential distribution of the vector as well as the average values of probability of presence including data of the mosquito incidence along the altitudinal range.

  15. Image segmentation of ovitraps for automatic counting of Aedes Aegypti eggs.

    PubMed

    Mello, Carlos A B; dos Santos, Wellington P; Rodrigues, Marco A B; Candeias, Ana Lúcia B; Gusmão, Cristine M G

    2008-01-01

    The Aedes Aegypti mosquito is the vector of the most difficult public health problems in tropical and semi-tropical world: the epidemic proliferation of dengue, a viral disease that can cause human beings death specially in its most dangerous form, dengue haemorrhagic fever. One of the most useful methods for mosquito detection and surveillance is the ovitraps: special traps to collect eggs of the mosquito. It is very important to count the number of Aedes Aegypti eggs present in ovitraps. This counting is usually performed in a manual, visual and non-automatic form. This work approaches the development of automatic methods to count the number of eggs in ovitraps images using image processing, particularly color segmentation and mathematical morphology-based non-linear filters.

  16. Site-Specific Cassette Exchange Systems in the Aedes aegypti Mosquito and the Plutella xylostella Moth

    PubMed Central

    Haghighat-Khah, Roya Elaine; Scaife, Sarah; Martins, Sara; St John, Oliver; Matzen, Kelly Jean; Morrison, Neil; Alphey, Luke

    2015-01-01

    Genetically engineered insects are being evaluated as potential tools to decrease the economic and public health burden of mosquitoes and agricultural pest insects. Here we describe a new tool for the reliable and targeted genome manipulation of pest insects for research and field release using recombinase mediated cassette exchange (RMCE) mechanisms. We successfully demonstrated the established ΦC31-RMCE method in the yellow fever mosquito, Aedes aegypti, which is the first report of RMCE in mosquitoes. A new variant of this RMCE system, called iRMCE, combines the ΦC31-att integration system and Cre or FLP-mediated excision to remove extraneous sequences introduced as part of the site-specific integration process. Complete iRMCE was achieved in two important insect pests, Aedes aegypti and the diamondback moth, Plutella xylostella, demonstrating the transferability of the system across a wide phylogenetic range of insect pests. PMID:25830287

  17. Repellent activity of herbal essential oils against Aedes aegypti (Linn.) and Culex quinquefasciatus (Say.)

    PubMed Central

    Sritabutra, Duangkamon; Soonwera, Mayura

    2013-01-01

    Objective To determine the mosquito repellent activity of herbal essential oils against female Aedes aegypti and Culex quinquefasciatus. Methods On a volunteer's forearm, 0.1 mL of each essential oil was applied to 3 cm×10 cm of exposed skin. The protection time was recorded for 3 min after every 30 min. Results Essential oil from clove oil in olive oil and in coconut oil gave the longest lasting period of 76.50 min and 96.00 min respectively against Aedes aegypti. The citronella grass oil in olive oil, citronella grass oil in coconut oil and lemongrass oil in coconut oil exhibited protection against Culex quinquefasciatus at 165.00, 105.00, and 112.50 min respectively. Conclusions The results clearly indicated that clove, citronella and lemongrass oil were the most promising for repellency against mosquito species. These oils could be used to develop a new formulation to control mosquitoes.

  18. Laboratory evaluation of pyriproxyfen and spinosad, alone and in combination, against Aedes aegypti larvae.

    PubMed

    Darriet, Frederic; Corbel, Vincent

    2006-11-01

    In this study, the efficacy of pyriproxyfen and spinosad, alone and in combination, was evaluated against the dengue vector Aedes aegypti (L.). Larval bioassays were carried out on susceptible mosquito larvae to determine the concentration-mortality responses of mosquitoes exposed to each insecticide alone and in mixture. Synergism between pyriproxyfen and spinosad was determined by the calculation of a combination index (CI) by using the isobologram method. For pyriproxyfen, LC50 and LC95 were 1.1 x 10(-4) (1.0 x 10(-4)-1.1 x 10(-4)) and 3.2 x 10(-4) (2.9 x 10(-4)-3.6 x 10(-4)) mg/liter, respectively. Pyriproxyfen acted at very low concentrations by inhibiting the adult emergence of Ae. aegypti (97% inhibition rates at 3.3 x 10(-4) mg/liter). Spinosad activity was -500 times lower than that of pyriproxyfen against the Bora strain, with LC50 and LC95 values estimated at 0.055 (0.047-0.064) and 0.20 (0.15-0.27) mg/liter, respectively. A binary mixture of pyriproxyfen and spinosad was realized at the ratio 1:500 by considering the values of the LC50 obtained for each product. The LC50 and LC95 of the mixture were 0.019 (0.016 - 0.022) and 0.050 (0.040 - 0.065) mg/liter, respectively. The mixture combined both the larvicidal activity of spinosad and the juvenoid action of pyriproxyfen. From the LC70 to LC99 a significant synergism effect was observed between the two insecticides (CI ranged from 0.74 to 0.31). This strong synergism observed at high concentrations allows a reduction by five and nine-fold of pyriproxyfen and spinosad amounts to kill almost 100% mosquitoes. Combination of pyriproxyfen and spinosad may then represent a promising strategy to improve mosquito control in situations with insecticide-resistant Aedes dengue vectors.

  19. Mosquito-Borne Diseases and Omics: Salivary Gland Proteome of the Female Aedes aegypti Mosquito.

    PubMed

    Dhawan, Rakhi; Kumar, Manish; Mohanty, Ajeet Kumar; Dey, Gourav; Advani, Jayshree; Prasad, T S Keshava; Kumar, Ashwani

    2017-01-01

    The female Aedes aegypti mosquito is an important vector for several tropical and subtropical diseases such as dengue, chikungunya, and Zika and yellow fever. The disease viruses infect the mosquito and subsequently spread to the salivary glands after which the viruses can be transmitted to humans with probing or feeding by the mosquito. Omics systems sciences offer the opportunity to characterize vectors and can inform disease surveillance, vector control and development of innovative diagnostics, personalized medicines, vaccines, and insecticide targets. Using high-resolution mass spectrometry, we performed an analysis of the A. aegypti salivary gland proteome. The A. aegypti proteome resulted in acquisition of 83,836 spectra. Upon searches against the protein database of the A. aegypti, these spectra were assigned to 5417 unique peptides, belonging to 1208 proteins. To the best of our knowledge, this is the largest set of proteins identified in the A. aegypti salivary gland. Of note, 29 proteins were involved in immunity-related pathways in salivary glands. A subset of these proteins is known to interact with disease viruses. Another 15 proteins with signal cleavage site were found to be secretory in nature, and thus possibly playing critical roles in blood meal ingestion. These findings provide a baseline to advance our understanding of vector-borne diseases and vector-pathogen interactions before virus transmission in global health, and might therefore enable future design and development of virus-blocking strategies and novel molecular targets in the mosquito vector A. aegypti.

  20. Identification of Aedes aegypti and Its Respective Life Stages by Real-Time Polymerase Chain Reaction

    DTIC Science & Technology

    2004-12-01

    potential disease transmission risk and timely implementation of appropriate control measures, Aedes aegypti is the primary vector of dengue fever and...8217 Dengue fever is the most significant mosquito-borne viral disease today, with a risk comparable to that for malaria, i,e,, two-fifths of the world’s...human population, ’̂̂ Although malarial disease can be prevented by prophylaxis and yellow fever by immunization, dengue fever prophylaxis does not

  1. Mathematical model to assess the control of Aedes aegypti mosquitoes by the sterile insect technique.

    PubMed

    Esteva, Lourdes; Mo Yang, Hyun

    2005-12-01

    We propose a mathematical model to assess the effects of irradiated (or transgenic) male insects introduction in a previously infested region. The release of sterile male insects aims to displace gradually the natural (wild) insect from the habitat. We discuss the suitability of this release technique when applied to peri-domestically adapted Aedes aegypti mosquitoes which are transmissors of Yellow Fever and Dengue disease.

  2. [Presence of Aedes aegypti in Bromeliaceae and plant breeding places in Brazil].

    PubMed

    Cunha, Sergio P; Alves, João R Carreira; Lima, Milton M; Duarte, Jair R; de Barros, Luiz C V; da Silva, José L; Gammaro, Angelo T; Monteiro Filho, Orlando de S; Wanzeler, Amauri R

    2002-04-01

    The frequency of Bromeliaceae and other plant breeding places where Aedes aegypti can be found is reported during two consecutive operational cycles (focal treatment) in the city of Rio de Janeiro. These cycles took place from November 12 2000 to March 9 2001 and from March 12 2001 to June 15 2001. This study concentrates on the epidemiological implications resulting from the growing use of these plants as decorative living objects.

  3. Comparative role of Aedes albopictus and Aedes aegypti in the emergence of Dengue and Chikungunya in central Africa.

    PubMed

    Paupy, Christophe; Ollomo, Benjamin; Kamgang, Basile; Moutailler, Sara; Rousset, Dominique; Demanou, Maurice; Hervé, Jean-Pierre; Leroy, Eric; Simard, Frédéric

    2010-04-01

    Since its discovery in Nigeria in 1991, Aedes albopictus has invaded much of Central Africa, a region where Ae. aegypti also occurs. To assess the relationship between the invasion by Ae. albopictus and the recent emergence of dengue virus (DENV) and chikungunya virus (CHIKV), we undertook vector competence experiments on populations collected from Cameroon and conducted field investigations during concurrent epidemics of DENV and CHIKV in Gabon. Overall, infection and dissemination rates were not significantly different between Ae. albopictus and Ae. aegypti when exposed to titers of 10(8.1) mosquito infectious dose 50/mL and 10(7.5) plaque forming units/mL of DENV type 2 and CHIKV, respectively. Field investigations showed that Ae. albopictus readily bit man, was abundant, and outnumbered Ae. aegypti to a large extent in Gabon, particularly in suburban environments. Nevertheless, Ae. aegypti was predominant in the more urbanized central parts of Libreville. In this city, CHIKV and DENV were detected only in Ae. albopictus. These data strongly suggest that Ae. albopictus acted as the major vector of both viruses in Libreville in 2007, impacting on the epidemiology of DENV and CHIKV in this area.

  4. Potential of crude seed extract of celery, Apium graveolens L., against the mosquito Aedes aegypti (L.) (Diptera: Culicidae).

    PubMed

    Choochote, Wej; Tuetun, Benjawan; Kanjanapothi, Duangta; Rattanachanpichai, Eumporn; Chaithong, Udom; Chaiwong, Prasong; Jitpakdi, Atchariya; Tippawangkosol, Pongsri; Riyong, Doungrat; Pitasawat, Benjawan

    2004-12-01

    Crude seed extract of celery, Apium graveolens, was investigated for anti-mosquito potential, including larvicidal, adulticidal, and repellent activities against Aedes aegypti, the vector of dengue haemorrhagic fever. The ethanol-extracted A. graveolens possessed larvicidal activity against fourth instar larvae of Ae. aegypti with LD50 and LD95 values of 81.0 and 176.8 mg/L, respectively. The abnormal movement observed in treated larvae indicated that the toxic effect of A. graveolens extract was probably on the nervous system. In testing for adulticidal activity, this plant extract exhibited a slightly adulticidal potency with LD50 and LD95 values of 6.6 and 66.4 mg/cm2, respectively. It showed repellency against Ae. aegypti adult females with ED50 and ED95 values of 2.03 and 28.12 mg/cm2, respectively. It also provided biting protection time of 3 h when applied at a concentration of 25 g%. Topical application of the ethanol-extracted A. graveolens did not induce dermal irritation. No adverse effects on the skin or other parts of the body of human volunteers were observed during 3 mo of the study period or in the following 3 mo, after which time observations ceased. A. graveolens, therefore, can be considered as a probable source of some biologically active compounds used in the development of mosquito control agents, particularly repellent products.

  5. Ovicidal and Oviposition Deterrent Activities of Medicinal Plant Extracts Against Aedes aegypti L. and Culex quinquefasciatus Say Mosquitoes (Diptera: Culicidae)

    PubMed Central

    Reegan, Appadurai Daniel; Gandhi, Munusamy Rajiv; Paulraj, Micheal Gabriel; Ignacimuthu, Savarimuthu

    2014-01-01

    Objectives To evaluate the ovicidal and oviposition deterrent activities of five medicinal plant extracts namely Aegle marmelos (Linn.), Limonia acidissima (Linn.), Sphaeranthus indicus (Linn.), Sphaeranthus amaranthoides (burm.f), and Chromolaena odorata (Linn.) against Culex quinquefasciatus and Aedes aegypti mosquitoes. Three solvents, namely hexane, ethyl acetate, and methanol, were used for the preparation of extracts from each plant. Methods Four different concentrations—62.5 parts per million (ppm), 125 ppm, 250 ppm, and 500 ppm—were prepared using acetone and tested for ovicidal and oviposition deterrent activities. One-way analysis of variance (ANOVA) was used to determine the significance of the treatments and means were separated by Tukey's test of comparison. Results Among the different extracts of the five plants screened, the hexane extract of L. acidissima recorded the highest ovicidal activity of 79.2% and 60% at 500 ppm concentration against the eggs of Cx. quinquefasciatus and Ae. aegypti, respectively. Similarly, the same hexane extract of L. acidissima showed 100% oviposition deterrent activity at all the tested concentrations against Cx. quinquefasciatus and Ae. aegypti adult females. Conclusion It is concluded that the hexane extract of L. acidissima could be used in an integrated mosquito management program. PMID:25737834

  6. Detection of all four dengue serotypes in Aedes aegypti female mosquitoes collected in a rural area in Colombia

    PubMed Central

    Pérez-Castro, Rosalía; Castellanos, Jaime E; Olano, Víctor A; Matiz, María Inés; Jaramillo, Juan F; Vargas, Sandra L; Sarmiento, Diana M; Stenström, Thor Axel; Overgaard, Hans J

    2016-01-01

    The Aedes aegypti vector for dengue virus (DENV) has been reported in urban and periurban areas. The information about DENV circulation in mosquitoes in Colombian rural areas is limited, so we aimed to evaluate the presence of DENV in Ae. aegypti females caught in rural locations of two Colombian municipalities, Anapoima and La Mesa. Mosquitoes from 497 rural households in 44 different rural settlements were collected. Pools of about 20 Ae. aegypti females were processed for DENV serotype detection. DENV in mosquitoes was detected in 74% of the analysed settlements with a pool positivity rate of 62%. The estimated individual mosquito infection rate was 4.12% and the minimum infection rate was 33.3/1,000 mosquitoes. All four serotypes were detected; the most frequent being DENV-2 (50%) and DENV-1 (35%). Two-three serotypes were detected simultaneously in separate pools. This is the first report on the co-occurrence of natural DENV infection of mosquitoes in Colombian rural areas. The findings are important for understanding dengue transmission and planning control strategies. A potential latent virus reservoir in rural areas could spill over to urban areas during population movements. Detecting DENV in wild-caught adult mosquitoes should be included in the development of dengue epidemic forecasting models. PMID:27074252

  7. Robust heat-inducible gene expression by two endogenous hsp70-derived promoters in transgenic Aedes aegypti

    PubMed Central

    Carpenetti, Tiffany L. G.; Aryan, Azadeh; Myles, Kevin M.; Adelman, Zach N.

    2011-01-01

    Aedes aegypti is an important vector of the viruses that cause dengue fever, dengue hemorrhagic fever, and yellow fever. Reverse genetic approaches to the study of gene function in this mosquito have been limited by the lack of a robust inducible promoter to allow precise temporal control over a protein-encoding or hairpin RNA transgene. Likewise, investigations into the molecular and biochemical basis of vector competence would benefit from the ability to activate an anti-pathogen molecule at specific times during infection. We have characterized the ability of genomic sequences derived from two Ae. aegypti hsp70 genes to drive heat-inducible expression of a reporter in both transient and germline transformation contexts. AaHsp70-luciferase transcripts accumulated specifically after heat shock, and displayed a pattern of rapid induction and decay similar to endogenous AaHsp70 genes. Luciferase expression in transgenic Ae. aegypti increased by ∼25-50 fold in whole adults by four hours after heat-shock, with significant activity (∼20 fold) remaining at 24 hr. Heat-induced expression was even more dramatic in midgut tissues, with one strain showing a ∼2500-fold increase in luciferase activity. The AaHsp70 promoters described could be valuable for gene function studies as well as for the precise timing of the expression of anti-pathogen molecules. PMID:22142225

  8. Detection of all four dengue serotypes in Aedes aegypti female mosquitoes collected in a rural area in Colombia.

    PubMed

    Pérez-Castro, Rosalía; Castellanos, Jaime E; Olano, Víctor A; Matiz, María Inés; Jaramillo, Juan F; Vargas, Sandra L; Sarmiento, Diana M; Stenström, Thor Axel; Overgaard, Hans J

    2016-04-01

    The Aedes aegypti vector for dengue virus (DENV) has been reported in urban and periurban areas. The information about DENV circulation in mosquitoes in Colombian rural areas is limited, so we aimed to evaluate the presence of DENV in Ae. aegypti females caught in rural locations of two Colombian municipalities, Anapoima and La Mesa. Mosquitoes from 497 rural households in 44 different rural settlements were collected. Pools of about 20 Ae. aegypti females were processed for DENV serotype detection. DENV in mosquitoes was detected in 74% of the analysed settlements with a pool positivity rate of 62%. The estimated individual mosquito infection rate was 4.12% and the minimum infection rate was 33.3/1,000 mosquitoes. All four serotypes were detected; the most frequent being DENV-2 (50%) and DENV-1 (35%). Two-three serotypes were detected simultaneously in separate pools. This is the first report on the co-occurrence of natural DENV infection of mosquitoes in Colombian rural areas. The findings are important for understanding dengue transmission and planning control strategies. A potential latent virus reservoir in rural areas could spill over to urban areas during population movements. Detecting DENV in wild-caught adult mosquitoes should be included in the development of dengue epidemic forecasting models.

  9. In silico models for predicting vector control chemicals targeting Aedes aegypti.

    PubMed

    Devillers, J; Lagneau, C; Lattes, A; Garrigues, J C; Clémenté, M M; Yébakima, A

    2014-01-01

    Human arboviral diseases have emerged or re-emerged in numerous countries worldwide due to a number of factors including the lack of progress in vaccine development, lack of drugs, insecticide resistance in mosquitoes, climate changes, societal behaviours, and economical constraints. Thus, Aedes aegypti is the main vector of the yellow fever and dengue fever flaviviruses and is also responsible for several recent outbreaks of the chikungunya alphavirus. As for the other mosquito species, the A. aegypti control relies heavily on the use of insecticides. However, because of increasing resistance to the different families of insecticides, reduction of Aedes populations is becoming increasingly difficult. Despite the unquestionable utility of insecticides in fighting mosquito populations, there are very few new insecticides developed and commercialized for vector control. This is because the high cost of the discovery of an insecticide is not counterbalanced by the 'low profitability' of the vector control market. Fortunately, the use of quantitative structure-activity relationship (QSAR) modelling allows the reduction of time and cost in the discovery of new chemical structures potentially active against mosquitoes. In this context, the goal of the present study was to review all the existing QSAR models on A. aegypti. The homology and pharmacophore models were also reviewed. Specific attention was paid to show the variety of targets investigated in Aedes in relation to the physiology and ecology of the mosquito as well as the diversity of the chemical structures which have been proposed, encompassing man-made and natural substances.

  10. A novel autocidal ovitrap for the surveillance and control of Aedes aegypti.

    PubMed

    Barrera, Roberto; Mackay, Andrew J; Amador, Manuel

    2013-09-01

    We describe an inexpensive autocidal ovitrap for Aedes aegypti that uses cross-linked polyacrylamide (PAM) gel as the oviposition substrate. Aedes aegypti females readily laid eggs on PAM gel that had been hydrated with either hay infusion or water. Aedes aegypti larvae that hatched from their eggs desiccated on the surface of the PAM gel. We tested the effects of gel hydration, texture, and type of attractant on trap performance, and compared the capture rates of standard ovitraps with those of PAM gel ovitraps in the field. The results showed that the number of eggs did not vary over a range of gel hydration levels (40-100%) and that more eggs were recovered from ovitraps containing coarse gel than from those containing homogenized gel. The PAM gel hydrated with hay infusion was more attractive to gravid female mosquitoes than gel hydrated with water. In the field, the number of eggs recovered from autocidal ovitraps with PAM gel was similar to that recovered from standard ovitraps with hay infusion.

  11. In silico models for predicting vector control chemicals targeting Aedes aegypti

    PubMed Central

    Devillers, J.; Lagneau, C.; Lattes, A.; Garrigues, J.C.; Clémenté, M.M.; Yébakima, A.

    2014-01-01

    Human arboviral diseases have emerged or re-emerged in numerous countries worldwide due to a number of factors including the lack of progress in vaccine development, lack of drugs, insecticide resistance in mosquitoes, climate changes, societal behaviours, and economical constraints. Thus, Aedes aegypti is the main vector of the yellow fever and dengue fever flaviviruses and is also responsible for several recent outbreaks of the chikungunya alphavirus. As for the other mosquito species, the A. aegypti control relies heavily on the use of insecticides. However, because of increasing resistance to the different families of insecticides, reduction of Aedes populations is becoming increasingly difficult. Despite the unquestionable utility of insecticides in fighting mosquito populations, there are very few new insecticides developed and commercialized for vector control. This is because the high cost of the discovery of an insecticide is not counterbalanced by the ‘low profitability’ of the vector control market. Fortunately, the use of quantitative structure–activity relationship (QSAR) modelling allows the reduction of time and cost in the discovery of new chemical structures potentially active against mosquitoes. In this context, the goal of the present study was to review all the existing QSAR models on A. aegypti. The homology and pharmacophore models were also reviewed. Specific attention was paid to show the variety of targets investigated in Aedes in relation to the physiology and ecology of the mosquito as well as the diversity of the chemical structures which have been proposed, encompassing man-made and natural substances. PMID:25275884

  12. Coordinated changes in JH biosynthesis and JH hemolymph titers in Aedes aegypti mosquitoes.

    PubMed

    Hernández-Martínez, Salvador; Rivera-Perez, Crisalejandra; Nouzova, Marcela; Noriega, Fernando G

    2015-01-01

    Juvenile hormone III (JH) is synthesized by the corpora allata (CA) and plays a key role in mosquito development and reproduction. A decrease in JH titer during the last instar larvae allows pupation and metamorphosis to proceed. As the anti-metamorphic role of JH comes to an end, the CA of the late pupa once again synthesizes JH, which plays an essential role in orchestrating reproductive maturation. In spite of the importance of Aedes aegypti as a vector, a detailed study of the changes of JH hemolymph titers during the gonotrophic cycle has never been performed. In the present studies, using a high performance liquid chromatography coupled to a fluorescent detector (HPLC-FD) method, we measured changes in JH levels in the hemolymph of female mosquitoes during the pupal and adult stages. Our results revealed tightly concomitant changes in JH biosynthesis and JH hemolymph titers during the gonotrophic cycle of female mosquito. Feeding high sugar diets resulted in an increase of JH titers, and mating also modified JH titers in hemolymph. In addition these studies confirmed that JH titer in mosquitoes is fundamentally determined by the rate of biosynthesis in the CA.

  13. Juvenile hormone connects larval nutrition with target of rapamycin signaling in the mosquito Aedes aegypti.

    PubMed

    Shiao, Shin-Hong; Hansen, Immo A; Zhu, Jinsong; Sieglaff, Douglas H; Raikhel, Alexander S

    2008-01-01

    Anautogenous mosquitoes require blood meals to promote egg development. If adequate nutrients are not obtained during larval development, the resulting "small" sized adult mosquitoes require multiple blood meals for egg development; markedly increasing host-vector contacts and the likelihood of disease transmission. Nutrient-sensitive target of rapamycin (TOR) signaling is a key signaling pathway that links elevated hemolymph amino acid levels derived from the blood meal to the expression of yolk protein precursors in the fat body. Here we report that the blood-meal-induced activation of the TOR-signaling pathway and subsequent egg maturation depends on the accumulation of adequate nutritional reserves during larval development. We have established well-nourished, "standard" mosquitoes and malnourished, "small" mosquitoes as models to address this nutrient sensitive pathway. This regulatory mechanism involves juvenile hormone (JH), which acts as a mediator of fat body competence, permitting the response to amino acids derived from the blood meal. We demonstrate that treatment with JH results in recovery of the TOR molecular machinery, Aedes aegypti cationic amino acid transporter 2 (AaiCAT2), TOR, and S6 kinase (S6K), in fat bodies of small mosquitoes, enabling them to complete their first gonotrophic cycle after a single blood meal. These findings establish a direct link between nutrient reserves and the establishment of TOR signaling in mosquitoes.

  14. Aedes aegypti Control Through Modernized, Integrated Vector Management

    PubMed Central

    Yakob, Laith; Funk, Sebastian; Camacho, Anton; Brady, Oliver; Edmunds, W. John

    2017-01-01

    Introduction: In the context of the ongoing, unprecedented Zika virus outbreak in the Americas, the World Health Organization has expressed its support for developing and up-scaling three novel approaches to controlling the Aedes aegypti mosquito: the Sterile Insect Technique (SIT), the Release of Insects carrying Dominant Lethal genes (RIDL) and the release of Wolbachia-infected mosquitoes. Whereas the former two approaches are temporary insect population suppression strategies, Wolbachia infection is a self-sustaining, invasive strategy that uses inherited endosymbiotic bacteria to render natural mosquito populations arbovirus resistant. Methods: A mathematical model is parameterised with new, Brazilian field data informing the mating competitiveness of mass-reared, released insects; and simulations compare and contrast projections of vector control achieved with the alternative approaches. Results: Important disadvantages of Wolbachia and SIT are identified: both strategies result in mosquitoes ovipositing non-viable eggs and, by alleviating intense larval competition, can cause an overall increase in survival to the adult stage. However, it is demonstrated that strategically combining the suppression methods with Wolbachia can generate a sustained control while mitigating the risks of inadvertent exacerbation of the wild mosquito population. Discussion: This initial analysis demonstrates potential for good synergy when combining novel mosquito approaches in a modernized, integrated vector control programme. PMID:28286698

  15. The Drosophila melanogaster cinnabar gene is a cell autonomous genetic marker in Aedes aegypti (Diptera: Culicidae).

    PubMed

    Sethuraman, Nagaraja; O'Brochta, David A

    2005-07-01

    The cinnabar gene of Drosophila melanogaster (Meigen) encodes for kynurenine hydroxylase, an enzyme involved in ommochrome biosynthesis. This gene is commonly included as a visible genetic marker in gene vectors used to create transgenic Aedes aegypti (L.) that are homozygous for the khw allele, the mosquito homolog of cinnabar. Unexpectedly, the phenotype of cells expressing kynurenine hydroxylase in transgenic Ae. aegypti is cell autonomous as demonstrated by the recovery of insects heterozygous for the kynurenine hydroxylase transgene with mosaic eye color patterns. In addition, a transgenic gynandromorph was recovered in which one-half of the insect was expressing the kynurenine hydroxylase transgene, including one eye with red pigmentation, whereas the other half of the insect was homozygous khw and included a white eye. The cell autonomous behavior of cinnabar in transgenic Ae. aegypti is unexpected and increases the utility of this genetic marker.

  16. An evaluation of some Trinidadian plant extracts against larvae of Aedes aegypti mosquitoes.

    PubMed

    Mohammed, Azad; Chadee, Dave D

    2007-06-01

    In recent times, bioprospecting for plants that show bioactive properties has yielded many chemicals that can be used in controlling mosquitoes. Crude extracts of 4 terrestrial and 3 mangrove plants were assayed against 2-3 larval instars of Aedes aegypti. Among the plants tested, Cordia curassavica showed the highest levels of activity for all the extracts tested. Azadirachta indica showed the least activity, whereas the 2 cultivars of Mangifera indica showed substantial activity for the aqueous extracts. The mangrove species proved to be relatively nontoxic to Ae. aegypti larvae when compared to the terrestrial plants. The results of this study suggest that some common plants in Trinidad may be highly effective in controlling the urban vector of yellow fever and dengue fever, Ae. aegypti.

  17. Sustained, Area-Wide Control of Aedes aegypti Using CDC Autocidal Gravid Ovitraps

    PubMed Central

    Barrera, Roberto; Amador, Manuel; Acevedo, Verónica; Hemme, Ryan R.; Félix, Gilberto

    2014-01-01

    We have shown that the Centers for Disease Control and Prevention (CDC) autocidal gravid ovitraps (AGO trap) reduced the Aedes aegypti population and prevented mosquito outbreaks in southern Puerto Rico. After showing treatment efficacy for 1 year, we deployed three traps per home in an area that formerly did not have traps and in a site that served as the intervention area. Two new areas were selected as reference sites to compare the density of Ae. aegypti without traps. We monitored mosquitoes and weather every week in all four sites. The hypotheses were the density of Ae. aegypti in the former reference area converges to the low levels observed in the intervention area, and mosquito density in both areas having control traps is lower than in the new reference areas. Mosquito density in the former reference area decreased 79% and mosquito density in the new reference areas was 88% greater than in the intervention areas. PMID:25223937

  18. Effect of bioactive fractions of Citrullus vulgaris Schrad. leaf extract against Anopheles stephensi and Aedes aegypti.

    PubMed

    Mullai, K; Jebanesan, A; Pushpanathan, T

    2008-04-01

    The benzene extract of Citrullus vulgaris was tested against Anopheles stephensi and Aedes aegypti for the larvicidal activity and ovicidal properties. The crude benzene extract was found to be more effective against A. stephensi than A. aegypti. The LC50 values were 18.56 and 42.76 ppm respectively. The LC50 values for silica gel fractions (bioactive fractions I, II, III and IV) were 11.32, 14.12, 14.53 and 16.02 ppm respectively. The mean per cent hatchability of the egg rafts were observed after 48 h post treatment. The crude extract of benzene exerted 100% mortality at 250 ppm against A. stephensi and at 300 ppm against A. aegypti. The silica gel fractions I and II afforded 100% mortality at 100 ppm and III and IV exerted the hatchability rate of 4.9 and 5.3% at the same concentration against A. stephensi.

  19. Sustained, area-wide control of Aedes aegypti using CDC autocidal gravid ovitraps.

    PubMed

    Barrera, Roberto; Amador, Manuel; Acevedo, Verónica; Hemme, Ryan R; Félix, Gilberto

    2014-12-01

    We have shown that the Centers for Disease Control and Prevention (CDC) autocidal gravid ovitraps (AGO trap) reduced the Aedes aegypti population and prevented mosquito outbreaks in southern Puerto Rico. After showing treatment efficacy for 1 year, we deployed three traps per home in an area that formerly did not have traps and in a site that served as the intervention area. Two new areas were selected as reference sites to compare the density of Ae. aegypti without traps. We monitored mosquitoes and weather every week in all four sites. The hypotheses were the density of Ae. aegypti in the former reference area converges to the low levels observed in the intervention area, and mosquito density in both areas having control traps is lower than in the new reference areas. Mosquito density in the former reference area decreased 79% and mosquito density in the new reference areas was 88% greater than in the intervention areas.

  20. Attracted to the enemy: Aedes aegypti prefers oviposition sites with predator-killed conspecifics

    PubMed Central

    Albeny-Simoes, Daniel; Murrell, Ebony G.; Elliot, Simon L.; Andrade, Mateus R.; Lima, Eraldo; Juliano, Steven A.; Vilela, Evaldo F.

    2014-01-01

    Oviposition habitat choices of species with aquatic larvae is expected to be influenced by both offspring risk of mortality due to predation, and offspring growth potential. Aquatic predators may indirectly influence growth potential for prey by reducing prey density and, for filter feeding prey, by increasing bacterial food for prey via added organic matter (feces, partially eaten victims), creating the potential for interactive effects on oviposition choices. We tested the hypothesis that the mosquito Aedes aegypti preferentially oviposit in habitats with predatory Toxorhynchites larvae because of indirect effects of predation on chemical cues indicating bacterial abundance. We predicted that A. aegypti would avoid oviposition in sites with Toxorhynchites, but prefer to oviposit where bacterial food for larvae is abundant, and that predation by Toxorhynchites would increase bacterial abundances. Gravid A. aegypti were offered paired oviposition sites representing choices among: predator presence; the act of predation; conspecific density; dead conspecific larvae; and bacterial activity. Aedes aegypti preferentially oviposited in sites with T. theobaldi predation, and with killed conspecific larvae, but failed to detect preferences for other treatments. The antibiotic Tetracycline eliminated the strongest oviposition preference. Both predation by Toxorhynchites and killed larvae increased bacterial abundances, suggesting that oviposition attraction is cued by bacteria. Our results show the potential for indirect effects, like trophic cascades, to influence oviposition choices and community composition in aquatic systems. Our results suggest that predators like Toxorhynchites may be doubly beneficial as biocontrol agents because of the attraction of ovipositing mosquitoes to bacterial by-products of Toxorhynchites feeding. PMID:24590205

  1. Control of larval and egg development in Aedes aegypti with RNA interference against juvenile hormone acid methyl transferase.

    PubMed

    Van Ekert, Evelien; Powell, Charles A; Shatters, Robert G; Borovsky, Dov

    2014-11-01

    RNA interference (RNAi) is a powerful approach for elucidating gene functions in a variety of organisms, including mosquitoes and many other insects. Little has been done, however, to harness this approach in order to control adult and larval mosquitoes. Juvenile hormone (JH) plays a pivotal role in the control of reproduction in adults and metamorphism in larval mosquitoes. This report describes an approach to control Aedes aegypti using RNAi against JH acid methyl transferase (AeaJHAMT), the ultimate enzyme in the biosynthetic pathway of JH III that converts JH acid III (JHA III) into JH III. In female A. aegypti that were injected or fed jmtA dsRNA targeting the AeaJHAMT gene (jmtA) transcript, egg development was inhibited in 50% of the treated females. In mosquito larvae that were fed transgenic Pichia pastoris cells expressing long hair pin (LHP) RNA, adult eclosion was delayed by 3 weeks causing high mortality. Northern blot analyses and qPCR studies show that jmtA dsRNA causes inhibition of jmtA transcript in adults and larvae, which is consistent with the observed inhibition of egg maturation and larval development. Taken together, these results suggest that jmtA LHP RNA expressed in heat inactivated genetically modified P. pastoris cells could be used to control mosquito populations in the marsh.

  2. Genetic Diversity of Brazilian Aedes aegypti: Patterns following an Eradication Program

    PubMed Central

    Monteiro, Fernando A.; Shama, Renata; Martins, Ademir J.; Gloria-Soria, Andrea; Brown, Julia E.; Powell, Jeffrey R.

    2014-01-01

    Background Aedes aegypti is the most important vector of dengue fever in Brazil, where severe epidemics have recently taken place. Ae. aegypti in Brazil was the subject of an intense eradication program in the 1940s and 50s to control yellow fever. Brazil was the largest country declared free of this mosquito by the Pan-American Health Organization in 1958. Soon after relaxation of this program, Ae. aegypti reappeared in this country, and by the early 1980s dengue fever had been reported. The aim of this study is to analyze the present-day genetic patterns of Ae. aegypti populations in Brazil. Methodology/Principal Findings We studied the genetic variation in samples of 11 widely spread populations of Ae. aegypti in Brazil based on 12 well-established microsatellite loci. Our principal finding is that present-day Brazilian Ae. aegypti populations form two distinct groups, one in the northwest and one in the southeast of the country. These two groups have genetic affinities to northern South American countries and the Caribbean, respectively. This is consistent with what has been reported for other genetic markers such as mitochondrial DNA and allele frequencies at the insecticide resistance gene, kdr. Conclusions/Significance We conclude that the genetic patterns in present day populations of Ae. aegypti in Brazil are more consistent with a complete eradication of the species in the recent past followed by re-colonization, rather than the alternative possibility of expansion from residual pockets of refugia. At least two colonizations are likely to have taken place, one from northern South American countries (e.g., Venezuela) that founded the northwestern group, and one from the Caribbean that founded the southeastern group. The proposed source areas were never declared free of Ae. aegypti. PMID:25233218

  3. Comparative Susceptibility of Aedes albopictus and Aedes aegypti to Dengue Virus Infection After Feeding on Blood of Viremic Humans: Implications for Public Health.

    PubMed

    Whitehorn, James; Kien, Duong Thi Hue; Nguyen, Nguyet Minh; Nguyen, Hoa L; Kyrylos, Peter P; Carrington, Lauren B; Tran, Chau Nguyen Bich; Quyen, Nguyen Thanh Ha; Thi, Long Vo; Le Thi, Dui; Truong, Nguyen Thanh; Luong, Tai Thi Hue; Nguyen, Chau Van Vinh; Wills, Bridget; Wolbers, Marcel; Simmons, Cameron P

    2015-10-15

    Aedes albopictus is secondary to Aedes aegypti as a vector of dengue viruses (DENVs) in settings of endemicity, but it plays an important role in areas of dengue emergence. This study compared the susceptibility of these 2 species to DENV infection by performing 232 direct blood-feeding experiments on 118 viremic patients with dengue in Vietnam. Field-derived A. albopictus acquired DENV infections as readily as A. aegypti after blood feeding. Once infected, A. albopictus permitted higher concentrations of DENV RNA to accumulate in abdominal tissues, compared with A. aegypti. However, the odds of A. albopictus having infectious saliva were lower than the odds observed for A. aegypti (odds ratio, 0.70; 95% confidence interval, .52-.93). These results quantitate the susceptibility of A. albopictus to DENV infection and will assist parameterization of models for predicting disease risk in settings where A. albopictus is present.

  4. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus.

    PubMed

    Kraemer, Moritz U G; Sinka, Marianne E; Duda, Kirsten A; Mylne, Adrian Q N; Shearer, Freya M; Barker, Christopher M; Moore, Chester G; Carvalho, Roberta G; Coelho, Giovanini E; Van Bortel, Wim; Hendrickx, Guy; Schaffner, Francis; Elyazar, Iqbal R F; Teng, Hwa-Jen; Brady, Oliver J; Messina, Jane P; Pigott, David M; Scott, Thomas W; Smith, David L; Wint, G R William; Golding, Nick; Hay, Simon I

    2015-06-30

    Dengue and chikungunya are increasing global public health concerns due to their rapid geographical spread and increasing disease burden. Knowledge of the contemporary distribution of their shared vectors, Aedes aegypti and Aedes albopictus remains incomplete and is complicated by an ongoing range expansion fuelled by increased global trade and travel. Mapping the global distribution of these vectors and the geographical determinants of their ranges is essential for public health planning. Here we compile the largest contemporary database for both species and pair it with relevant environmental variables predicting their global distribution. We show Aedes distributions to be the widest ever recorded; now extensive in all continents, including North America and Europe. These maps will help define the spatial limits of current autochthonous transmission of dengue and chikungunya viruses. It is only with this kind of rigorous entomological baseline that we can hope to project future health impacts of these viruses.

  5. The relative importance and distribution of Aedes polynesiensis and Ae. aegypti larval habitats in Samoa.

    PubMed

    Samarawickrema, W A; Sone, F; Kimura, E; Self, L S; Cummings, R F; Paulson, G S

    1993-01-01

    In preparation for a Filariasis Control programme in Samoa, during 1978 monthly larval surveys of the vector mosquito Aedes polynesiensis were carried out in four study villages in the main island of Upolu. A more extensive survey of larval habitat distribution was then made in twenty-two villages of Upolu and eighteen of Savai'i island, to determine the importance of habitat types according to their abundance, volume of water and whether their productivity was permanent or seasonal. Ae.aegypti larval densities and habitat distribution were also monitored and the occurrence of predatory Toxorhynchites amboinensis larvae in northern Upolu was recorded from forty-one collections. Aedes Breteau and container indices fluctuated with the pattern of rainfall in two coastal villages and an inland bush village, but not in a coconut plantation community. The five main Aedes larval habitat types encountered were: 200 litre water-storage drums, discarded tins and bottles, coconut shells, automobile tyres and treeholes. Aedes immatures occurred perennially in drums and tree holes, but breeding discontinued in tins, bottles and coconut shells during the driest month of July. For Ae. polynesiensis in Upolu the Breteau and container indices of 104.5 +/- SD 80.9 and 35.3 +/- 12.4 respectively were significantly higher than those in Savai'i: 33.1 +/- 25.0 and 24.3 +/- 20.0 respectively. Likewise for Ae.aegypti the Breteau and container indices of 50.8 +/- 32.5 and 23.9 +/- 15.6, respectively, were also significantly higher than those in Savai'i: 12.7 +/- 17.1 and 9.4 +/- 13.2 respectively. Habitat types greater or lesser importance were determined by plotting the percentage of each type of cotnainer utilized for Aedes breeding against the percentage of ech type amongst all larva-positive containers. Ae.polynesiensis preferred tree-holes but not water-storage drums. Ae.aegypti preferred drums and tyres; mixed populations of larvae of both species were commonest in these two types of

  6. Toxicological Evaluation of Essential Oil From the Leaves of Croton argyrophyllus (Euphorbiaceae) on Aedes aegypti (Diptera: Culicidae) and Mus musculus (Rodentia: Muridae).

    PubMed

    Cruz, R C D; Silva, S L C E; Souza, I A; Gualberto, S A; Carvalho, K S; Santos, F R; Carvalho, M G

    2017-01-27

    Plant-derived essential oils can be used as insecticides for vector control. However, to establish their safety, it is necessary to perform toxicological studies. Herein, we evaluated the chemical composition and insecticidal activity of the essential oil from the leaves of Croton argyrophyllus on the third- and fourth-instar larvae and adult Aedes aegypti (L., 1762). We also evaluated the acute toxicity of the essential oil in adult female Mus musculus The lethal concentration 50 (LC50) and 90 (LC90) of C. argyrophyllus essential oil on larvae of Ae. aegypti were 0.31 and 0.70 mg ml(-1), respectively, and 5.92 and 8.94 mg ml(-1), respectively, on Ae. aegypti adults. The major components of the essential oil were spathulenol (22.80%), (E)-caryophyllene (15.41%), α-pinene (14.07%), and bicyclogermacrene (10.43%). It also displayed acute toxicity in adults of Mus musculus; the intraperitoneal and oral lethal dose 50 (LD50) were 2,000 mg kg(-1) and 2,500 mg kg(-1), respectively. The results showed that the essential oil from C. argyrophyllus leaves has insecticidal activity on Ae. aegypti larvae and adults at an average lethal concentration below the median lethal dose needed to cause acute toxicity in the common mouse.

  7. Parity and Longevity of Aedes aegypti According to Temperatures in Controlled Conditions and Consequences on Dengue Transmission Risks

    PubMed Central

    Goindin, Daniella; Delannay, Christelle; Ramdini, Cédric; Gustave, Joël; Fouque, Florence

    2015-01-01

    Background In Guadeloupe, Aedes aegypti mosquitoes are the only vectors of dengue and chikungunya viruses. For both diseases, vector control is the only tool for preventing epidemics since no vaccine or specific treatment is available. However, to efficiently implement control of mosquitoes vectors, a reliable estimation of the transmission risks is necessary. To become infective an Ae. aegypti female must ingest the virus during a blood meal and will not be able to transmit the virus during another blood-meal until the extrinsic incubation period is completed. Consequently the aged females will carry more infectious risks. The objectives of the present study were to estimate under controlled conditions the expectation of infective life for females and thus the transmission risks in relation with their reproductive cycle and parity status. Methodology/Principal Findings Larvae of Ae. aegypti were collected in central Guadeloupe and breed under laboratory conditions until adult emergence. The experiments were performed at constant temperatures (± 1.5°C) of 24°C, 27°C and 30°C on adults females from first generation (F1). Females were kept and fed individually and records of blood-feeding, egg-laying and survival were done daily. Some females were dissected at different physiological stages to observe the ovaries development. The data were analyzed to follow the evolution of parity rates, the number of gonotrophic cycles, the fecundity and to study the mean expectation of life and the mean expectation of infective life for Ae. aegypti females according to temperatures. The expectation of life varies with the parity rates and according to the temperatures, with durations from about 10 days at low parity rates at the higher temperature to an optimal duration of about 35 days when 70% of females are parous at 27°C. Infective life expectancy was found highly variable in the lower parous rates and again the optimal durations were found when more than 50% of females

  8. Insecticidal activity of Leptodactylus knudseni and Phyllomedusa vaillantii crude skin secretions against the mosquitoes Anopheles darlingi and Aedes aegypti

    PubMed Central

    2014-01-01

    Background Mosquitoes are important vectors of several diseases, including malaria and dengue, and control measures are mostly performed using chemical insecticides. Unfortunately, mosquito resistance to commonly applied insecticides is widespread. Therefore, a prospection for new molecules with insecticidal activity based on Amazon biodiversity using the anurans Leptodactylus knudseni and Phyllomedusa vaillantii was performed against the mosquito species Anopheles darlingi and Aedes aegypti. Methods The granular secretion from anuran skin was obtained by manual stimulation, and lethal concentrations (LCs) for larvicidal and adulticidal tests were calculated using concentrations from 1-100 ppm. The skin secretions from the anuran species tested caused significant mortality within the first 24 hours on adults and larvae, but differed within the mosquito species. Results The skin secretions from the anuran species tested caused significant mortality within the first 24 hours on adults and larvae, but differed within the mosquito species. The calculated LC50 of L. knudseni skin secretions against An. darlingi was 0.15 and 0.2 ppm for adults and larvae, respectively, but much higher for Ae. aegypti, i.e., 19 and 38 ppm, respectively. Interestingly, the calculated LCs50 of P. vaillantii against both mosquito species in adults were similar, 1.8 and 2.1 ppm, respectively, but the LC50 for An. darlingi larvae was much lower (0.4 ppm) than for Ae aegypti (2.1 ppm). Conclusions The present experiments indicate that skin secretions from L. knudseni and P. vaillantii contain bioactive molecules with potent insecticide activity. The isolation and characterization of skin secretions components will provide new insights for potential insecticidal molecules. PMID:25165469

  9. Genome Investigations of Vector Competence in Aedes aegypti to Inform Novel Arbovirus Disease Control Approaches.

    PubMed

    Severson, David W; Behura, Susanta K

    2016-10-30

    Dengue (DENV), yellow fever, chikungunya, and Zika virus transmission to humans by a mosquito host is confounded by both intrinsic and extrinsic variables. Besides virulence factors of the individual arboviruses, likelihood of virus transmission is subject to variability in the genome of the primary mosquito vector, Aedes aegypti. The "vectorial capacity" of A. aegypti varies depending upon its density, biting rate, and survival rate, as well as its intrinsic ability to acquire, host and transmit a given arbovirus. This intrinsic ability is known as "vector competence". Based on whole transcriptome analysis, several genes and pathways have been predicated to have an association with a susceptible or refractory response in A. aegypti to DENV infection. However, the functional genomics of vector competence of A. aegypti is not well understood, primarily due to lack of integrative approaches in genomic or transcriptomic studies. In this review, we focus on the present status of genomics studies of DENV vector competence in A. aegypti as limited information is available relative to the other arboviruses. We propose future areas of research needed to facilitate the integration of vector and virus genomics and environmental factors to work towards better understanding of vector competence and vectorial capacity in natural conditions.

  10. Oviposition and Embryotoxicity of Indigofera suffruticosa on Early Development of Aedes aegypti (Diptera: Culicidae).

    PubMed

    Vieira, Jeymesson Raphael Cardoso; Leite, Roberta Maria Pereira; Lima, Izabela Rangel; Navarro, Daniela do Amaral Ferraz; Bianco, Everson Miguel; Leite, Sônia Pereira

    2012-01-01

    Aqueous extract of Indigofera suffruticosa leaves obtained by infusion was used to evaluate the oviposition, its effect on development of eggs and larvae, and morphological changes in larvae of Aedes aegypti. The bioassays were carried out with aqueous extract in different concentrations on eggs, larvae, and female mosquitoes, and the morphological changes were observed in midgut of larvae. The extract showed repellent activity on A. aegypti mosquitoes, reducing significantly the egg laying by females with control substrate (343 (185-406)) compared with the treated substrate (88 (13-210)). No eclosion of A. aegypti eggs at different concentrations studied was observed. The controleclodedin 35%. At concentration of 250 μg/mL, 93.3% of larvae remained in the second instar of development and at concentrations of 500, 750, and 1000 μg/mL the inhibitory effect was lower with percentages of 20%, 53.3%, and 46.6%, respectively. Morphological changes like disruption on the peritrophic envelope (PE), discontinued underlying epithelium, increased gut lumen, and segments with hypertrophic aspects were observed in anterior region of medium midgut of larvae of A. aegypti. The results showed repellent activity, specific embryotoxicity, and general growth retardation in A. aegypti by medium containing aqueous extract of I. suffruticosa leaves.

  11. Population dynamics of Aedes aegypti from a dengue hyperendemic urban setting in Colombia.

    PubMed

    Ocampo, Clara B; Wesson, Dawn M

    2004-10-01

    This study evaluated if the Aedes aegypti population in the city of Cali, Colombia was composed of genetically distinct local populations with different levels of insecticide resistance and dengue vector competence. Insecticide resistance was assayed biochemically and was associated with varying levels of mixed-function oxidases and non-specific esterases. The genes encoding those enzymes were under selective pressure from insecticides used to suppress Ae. aegypti populations. Vector competence showed heterogeneity among the vector populations ranging from 19% to 60%. Population genetic analysis of random amplified polymorphic DNA-polymerase chain reaction products, expressed as genetic distance, Wright's F(st), and migration rate (Nm), demonstrated moderate genetic differentiation among Ae. aegypti from four sites (F(st) = 0.085). The results from all characteristics evaluated in the study demonstrated spatial and temporal variation between Ae. aegypti populations. At any specific time, the local populations of Ae. aegypti were genetically differentiated and unique with respect to insecticide resistance and vector competence. Both characteristics changed independently.

  12. QTL Mapping of Genome Regions Controlling Temephos Resistance in Larvae of the Mosquito Aedes aegypti

    PubMed Central

    Reyes-Solis, Guadalupe del Carmen; Saavedra-Rodriguez, Karla; Suarez, Adriana Flores; Black, William C.

    2014-01-01

    Introduction The mosquito Aedes aegypti is the principal vector of dengue and yellow fever flaviviruses. Temephos is an organophosphate insecticide used globally to suppress Ae. aegypti larval populations but resistance has evolved in many locations. Methodology/Principal Findings Quantitative Trait Loci (QTL) controlling temephos survival in Ae. aegypti larvae were mapped in a pair of F3 advanced intercross lines arising from temephos resistant parents from Solidaridad, México and temephos susceptible parents from Iquitos, Peru. Two sets of 200 F3 larvae were exposed to a discriminating dose of temephos and then dead larvae were collected and preserved for DNA isolation every two hours up to 16 hours. Larvae surviving longer than 16 hours were considered resistant. For QTL mapping, single nucleotide polymorphisms (SNPs) were identified at 23 single copy genes and 26 microsatellite loci of known physical positions in the Ae. aegypti genome. In both reciprocal crosses, Multiple Interval Mapping identified eleven QTL associated with time until death. In the Solidaridad×Iquitos (SLD×Iq) cross twelve were associated with survival but in the reciprocal IqxSLD cross, only six QTL were survival associated. Polymorphisms at acetylcholine esterase (AchE) loci 1 and 2 were not associated with either resistance phenotype suggesting that target site insensitivity is not an organophosphate resistance mechanism in this region of México. Conclusions/Significance Temephos resistance is under the control of many metabolic genes of small effect and dispersed throughout the Ae. aegypti genome. PMID:25330200

  13. Oviposition and Embryotoxicity of Indigofera suffruticosa on Early Development of Aedes aegypti (Diptera: Culicidae)

    PubMed Central

    Vieira, Jeymesson Raphael Cardoso; Leite, Roberta Maria Pereira; Lima, Izabela Rangel; Navarro, Daniela do Amaral Ferraz; Bianco, Everson Miguel; Leite, Sônia Pereira

    2012-01-01

    Aqueous extract of Indigofera suffruticosa leaves obtained by infusion was used to evaluate the oviposition, its effect on development of eggs and larvae, and morphological changes in larvae of Aedes aegypti. The bioassays were carried out with aqueous extract in different concentrations on eggs, larvae, and female mosquitoes, and the morphological changes were observed in midgut of larvae. The extract showed repellent activity on A. aegypti mosquitoes, reducing significantly the egg laying by females with control substrate (343 (185–406)) compared with the treated substrate (88 (13–210)). No eclosion of A. aegypti eggs at different concentrations studied was observed. The controleclodedin 35%. At concentration of 250 μg/mL, 93.3% of larvae remained in the second instar of development and at concentrations of 500, 750, and 1000 μg/mL the inhibitory effect was lower with percentages of 20%, 53.3%, and 46.6%, respectively. Morphological changes like disruption on the peritrophic envelope (PE), discontinued underlying epithelium, increased gut lumen, and segments with hypertrophic aspects were observed in anterior region of medium midgut of larvae of A. aegypti. The results showed repellent activity, specific embryotoxicity, and general growth retardation in A. aegypti by medium containing aqueous extract of I. suffruticosa leaves. PMID:21822443

  14. Evidence of limited polyandry in a natural population of Aedes aegypti.

    PubMed

    Richardson, Joshua B; Jameson, Samuel B; Gloria-Soria, Andrea; Wesson, Dawn M; Powell, Jeffrey

    2015-07-01

    The mosquito Aedes aegypti is a vector of yellow fever, dengue, and chikungunya. Control of the insect is crucial to stop the spread of dengue and chikungunya, so it is critically important to understand its mating behavior. Primarily, based on laboratory behavior, it has long been assumed that Ae. aegypti females mate once in their lifetime. However, multiple inseminations have been observed in semi-field and laboratory settings, and in closely related species. Here, we report the first evidence of polyandry in a natural population of Ae. aegypti. Female Ae. aegypti were captured around the New Orleans, LA, metropolitan area. They were offered a blood meal and allowed to lay eggs, which were reared to the third-instar larval stage. A parentage analysis using four microsatellite loci was performed. Out of 48 families, 3 showed evidence of multiple paternity. An expanded analysis of these three families found that one family group included offspring contributed by three fathers, and the other two included offspring from two fathers. This result establishes that polyandry can occur in a small proportion of Ae. aegypti females in a natural setting. This could complicate future genetic control efforts and has implications for sampling for population genetics.

  15. Local Evolution of Pyrethroid Resistance Offsets Gene Flow Among Aedes aegypti Collections in Yucatan State, Mexico

    PubMed Central

    Saavedra-Rodriguez, Karla; Beaty, Meaghan; Lozano-Fuentes, Saul; Denham, Steven; Garcia-Rejon, Julian; Reyes-Solis, Guadalupe; Machain-Williams, Carlos; Loroño-Pino, Maria Alba; Flores-Suarez, Adriana; Ponce-Garcia, Gustavo; Beaty, Barry; Eisen, Lars; Black, William C.

    2015-01-01

    The mosquito Aedes aegypti is the major vector of the four serotypes of dengue virus (DENV1–4). Previous studies have shown that Ae. aegypti in Mexico have a high effective migration rate and that gene flow occurs among populations that are up to 150 km apart. Since 2000, pyrethroids have been widely used for suppression of Ae. aegypti in cities in Mexico. In Yucatan State in particular, pyrethroids have been applied in and around dengue case households creating an opportunity for local selection and evolution of resistance. Herein, we test for evidence of local adaptation by comparing patterns of variation among 27 Ae. aegypti collections at 13 single nucleotide polymorphisms (SNPs): two in the voltage-gated sodium channel gene para known to confer knockdown resistance, three in detoxification genes previously associated with pyrethroid resistance, and eight in putatively neutral loci. The SNPs in para varied greatly in frequency among collections, whereas SNPs at the remaining 11 loci showed little variation supporting previous evidence for extensive local gene flow. Among Ae. aegypti in Yucatan State, Mexico, local adaptation to pyrethroids appears to offset the homogenizing effects of gene flow. PMID:25371186

  16. Genome Investigations of Vector Competence in Aedes aegypti to Inform Novel Arbovirus Disease Control Approaches

    PubMed Central

    Severson, David W.; Behura, Susanta K.

    2016-01-01

    Dengue (DENV), yellow fever, chikungunya, and Zika virus transmission to humans by a mosquito host is confounded by both intrinsic and extrinsic variables. Besides virulence factors of the individual arboviruses, likelihood of virus transmission is subject to variability in the genome of the primary mosquito vector, Aedes aegypti. The “vectorial capacity” of A. aegypti varies depending upon its density, biting rate, and survival rate, as well as its intrinsic ability to acquire, host and transmit a given arbovirus. This intrinsic ability is known as “vector competence”. Based on whole transcriptome analysis, several genes and pathways have been predicated to have an association with a susceptible or refractory response in A. aegypti to DENV infection. However, the functional genomics of vector competence of A. aegypti is not well understood, primarily due to lack of integrative approaches in genomic or transcriptomic studies. In this review, we focus on the present status of genomics studies of DENV vector competence in A. aegypti as limited information is available relative to the other arboviruses. We propose future areas of research needed to facilitate the integration of vector and virus genomics and environmental factors to work towards better understanding of vector competence and vectorial capacity in natural conditions. PMID:27809220

  17. Myco-synthesis of silver nanoparticles using Beauveria bassiana against dengue vector, Aedes aegypti (Diptera: Culicidae).

    PubMed

    Banu, A Najitha; Balasubramanian, C

    2014-08-01

    The efficacy of silver synthesized biolarvicide with the help of entomopathogenic fungus, Beauveria bassiana, was assessed against the different larval instars of dengue vector, Aedes aegypti. The silver nanoparticles were observed and characterized by a scanning electron microscope (SEM) and energy-dispersive X-ray (EDX). A surface plasmon resonance band was observed at 420 nm in UV-vis spectrophotometer. The characterization was confirmed by shape (spherical), size 36.88-60.93 nm, and EDX spectral peak at 3 keV of silver nanoparticles. The synthesized silver nanoparticles have been tested against the different larval instars of Ae. aegypti at different concentrations for a period of 24 h. Ae. aegypti larvae were found more susceptible to the synthesized silver nanoparticles. The LC50 and LC90 values are 0.79 and 1.09 ppm with respect to the Ae. aegypti treated with B. bassiana (Bb) silver nanoparticles (AgNPs). First and second instar larvae of Ae. aegypti have shown cent percent mortality while third and fourth instars found 50.0, 56.6, 70.0, 80.0, and 86.6 and 52.4, 60.0, 68.5, 76.0, and 83.3% mortality at 24 h of exposure in 0.06 and 1.00 ppm, respectively. It is suggested that the entomopathogenic fungus synthesized silver nanoparticles would be appropriate for environmentally safer and greener approach for new leeway in vector control strategy through a biological process.

  18. Global temperature constraints on Aedes aegypti and Ae. albopictus persistence and competence for dengue virus transmission

    PubMed Central

    2014-01-01

    Background Dengue is a disease that has undergone significant expansion over the past hundred years. Understanding what factors limit the distribution of transmission can be used to predict current and future limits to further dengue expansion. While not the only factor, temperature plays an important role in defining these limits. Previous attempts to analyse the effect of temperature on the geographic distribution of dengue have not considered its dynamic intra-annual and diurnal change and its cumulative effects on mosquito and virus populations. Methods Here we expand an existing modelling framework with new temperature-based relationships to model an index proportional to the basic reproductive number of the dengue virus. This model framework is combined with high spatial and temporal resolution global temperature data to model the effects of temperature on Aedes aegypti and Ae. albopictus persistence and competence for dengue virus transmission. Results Our model predicted areas where temperature is not expected to permit transmission and/or Aedes persistence throughout the year. By reanalysing existing experimental data our analysis indicates that Ae. albopictus, often considered a minor vector of dengue, has comparable rates of virus dissemination to its primary vector, Ae. aegypti, and when the longer lifespan of Ae. albopictus is considered its competence for dengue virus transmission far exceeds that of Ae. aegypti. Conclusions These results can be used to analyse the effects of temperature and other contributing factors on the expansion of dengue or its Aedes vectors. Our finding that Ae. albopictus has a greater capacity for dengue transmission than Ae. aegypti is contrary to current explanations for the comparative rarity of dengue transmission in established Ae. albopictus populations. This suggests that the limited capacity of Ae. albopictus to transmit DENV is more dependent on its ecology than vector competence. The recommendations, which we

  19. Real-time PCR Tests in Dutch Exotic Mosquito Surveys; Implementation of Aedes aegypti and Aedes albopictus Identification Tests, and the Development of Tests for the Identification of Aedes atropalpus and Aedes japonicus japonicus (Diptera: Culicidae).

    PubMed

    van de Vossenberg, B T L H; Ibáñez-Justicia, A; Metz-Verschure, E; van Veen, E J; Bruil-Dieters, M L; Scholte, E J

    2015-05-01

    Since 2009, The Netherlands Food and Consumer Product Safety Authority carries out surveys focusing on, amongst others, the presence of invasive mosquito species (IMS). Special attention is given to exotic container-breeding Aedes species Aedes aegypti (L.), Aedes albopictus (Skuse), Aedes atropalpus (Coquillett), and Aedes japonicus japonicus (Theobald). This study describes the implementation of real-time PCR tests described by Hill et al. (2008) for the identification of Ae. aegypti and Ae. albopictus, and the development of two novel real-time PCR tests for the identification of Ae. atropalpus and Ae. j. japonicus. Initial test showed that optimization of elements of the Ae. aegypti and Ae. albopictus tests was needed. Method validation tests were performed to determine if the implemented and newly developed tests are fit for routine diagnostics. Performance criteria of analytical sensitivity, analytical specificity, selectivity, repeatability, and reproducibility were determined. In addition, experiments were performed to determine the influence of environmental conditions on the usability of DNA extracted from mosquito specimens trapped in BG-Sentinel traps. The real-time PCR tests were demonstrated to be sensitive, specific, repeatable, reproducible, and are less prone to false negative results compared to partial cytochrome c oxidase I gene sequencing owing to the DNA fragmentation caused by environmental influences.

  20. Exon-Enriched Libraries Reveal Large Genic Differences Between Aedes aegypti from Senegal, West Africa, and Populations Outside Africa.

    PubMed

    Dickson, Laura B; Campbell, Corey L; Juneja, Punita; Jiggins, Francis M; Sylla, Massamba; Black, William C

    2017-02-09

    Aedes aegypti is one of the most studied mosquito species, and the principal vector of several arboviruses pathogenic to humans. Recently failure to oviposit, low fecundity, and poor egg-to-adult survival were observed when Ae. aegypti from Senegal (SenAae) West Africa were crossed with Ae. aegypti (Aaa) from outside of Africa, and in SenAae intercrosses. Fluorescent in situ hybridization analyses indicated rearrangements on chromosome 1, and pericentric inversions on chromosomes 2 and 3. Herein, high throughput sequencing (HTS) of exon-enriched libraries was used to compare chromosome-wide genetic diversity among Aaa collections from rural Thailand and Mexico, a sylvatic collection from southeastern Senegal (PK10), and an urban collection from western Senegal (Kaolack). Sex-specific polymorphisms were analyzed in Thailand and PK10 to assess genetic differences between sexes. Expected heterozygosity was greatest in SenAae FST distributions of 15,735 genes among all six pairwise comparisons of the four collections indicated that Mexican and Thailand collections are genetically similar, while FST distributions between PK10 and Kaolack were distinct. All four comparisons of SenAae with Aaa indicated extreme differentiation. FST was uniform between sexes across all chromosomes in Thailand, but were different, especially on the sex autosome 1, in PK10. These patterns correlate with the reproductive isolation noted earlier. We hypothesize that cryptic Ae. aegypti taxa may exist in West Africa, and the large genic differences between Aaa and SenAae detected in the present study have accumulated over a long period following the evolution of chromosome rearrangements in allopatric populations that subsequently cause reproductive isolation when these populations became sympatric.

  1. Exon-Enriched Libraries Reveal Large Genic Differences Between Aedes aegypti from Senegal, West Africa, and Populations Outside Africa

    PubMed Central

    Dickson, Laura B.; Campbell, Corey L.; Juneja, Punita; Jiggins, Francis M.; Sylla, Massamba; Black, William C.

    2016-01-01

    Aedes aegypti is one of the most studied mosquito species, and the principal vector of several arboviruses pathogenic to humans. Recently failure to oviposit, low fecundity, and poor egg-to-adult survival were observed when Ae. aegypti from Senegal (SenAae) West Africa were crossed with Ae. aegypti (Aaa) from outside of Africa, and in SenAae intercrosses. Fluorescent in situ hybridization analyses indicated rearrangements on chromosome 1, and pericentric inversions on chromosomes 2 and 3. Herein, high throughput sequencing (HTS) of exon-enriched libraries was used to compare chromosome-wide genetic diversity among Aaa collections from rural Thailand and Mexico, a sylvatic collection from southeastern Senegal (PK10), and an urban collection from western Senegal (Kaolack). Sex-specific polymorphisms were analyzed in Thailand and PK10 to assess genetic differences between sexes. Expected heterozygosity was greatest in SenAae. FST distributions of 15,735 genes among all six pairwise comparisons of the four collections indicated that Mexican and Thailand collections are genetically similar, while FST distributions between PK10 and Kaolack were distinct. All four comparisons of SenAae with Aaa indicated extreme differentiation. FST was uniform between sexes across all chromosomes in Thailand, but were different, especially on the sex autosome 1, in PK10. These patterns correlate with the reproductive isolation noted earlier. We hypothesize that cryptic Ae. aegypti taxa may exist in West Africa, and the large genic differences between Aaa and SenAae detected in the present study have accumulated over a long period following the evolution of chromosome rearrangements in allopatric populations that subsequently cause reproductive isolation when these populations became sympatric. PMID:28007834

  2. Identification of Aedes aegypti Long Intergenic Non-coding RNAs and Their Association with Wolbachia and Dengue Virus Infection

    PubMed Central

    Etebari, Kayvan; Asad, Sultan; Zhang, Guangmei; Asgari, Sassan

    2016-01-01

    Long intergenic non-coding RNAs (lincRNAs) are appearing as an important class of regulatory RNAs with a variety of biological functions. The aim of this study was to identify the lincRNA profile in the dengue vector Aedes aegypti and evaluate their potential role in host-pathogen interaction. The majority of previous RNA-Seq transcriptome studies in Ae. aegypti have focused on the expression pattern of annotated protein coding genes under different biological conditions. Here, we used 35 publically available RNA-Seq datasets with relatively high depth to screen the Ae. aegypti genome for lincRNA discovery. This led to the identification of 3,482 putative lincRNAs. These lincRNA genes displayed a slightly lower GC content and shorter transcript lengths compared to protein-encoding genes. Ae. aegypti lincRNAs also demonstrate low evolutionary sequence conservation even among closely related species such as Culex quinquefasciatus and Anopheles gambiae. We examined their expression in dengue virus serotype 2 (DENV-2) and Wolbachia infected and non-infected adult mosquitoes and Aa20 cells. The results revealed that DENV-2 infection increased the abundance of a number of host lincRNAs, from which some suppress viral replication in mosquito cells. RNAi-mediated silencing of lincRNA_1317 led to enhancement in viral replication, which possibly indicates its potential involvement in the host anti-viral defense. A number of lincRNAs were also differentially expressed in Wolbachia-infected mosquitoes. The results will facilitate future studies to unravel the function of lncRNAs in insects and may prove to be beneficial in developing new ways to control vectors or inhibit replication of viruses in them. PMID:27760142

  3. Mosquito larvicidal, ovicidal, and repellent properties of botanical extracts against Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus (Diptera: Culicidae).

    PubMed

    Govindarajan, M; Mathivanan, T; Elumalai, K; Krishnappa, K; Anandan, A

    2011-08-01

    Mosquito-borne diseases have an economic impact, including loss in commercial and labor outputs, particularly in countries with tropical and subtropical climates; however, no part of the world is free from vector-borne diseases. In mosquito control programs, botanical origin may have the potential to be used successfully as eggs, larvae, and adult. The larvicidal, ovicidal, and repellent activities of crude benzene and ethyl acetate extracts of leaf of Ervatamia coronaria and Caesalpinia pulcherrima were assayed for their toxicity against three important vector mosquitoes, viz., Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus (Diptera: Culicidae). The larval mortality was observed after 24 h of exposure. All extracts showed moderate larvicidal effects; however, the highest larval mortality was found in benzene extract of E. coronaria against the larvae of Anopheles Stephensi, Aedes aegypti, and Culex quinquefasciatus with the LC(50) and LC(90) values were 79.08, 89.59, and 96.15 ppm and 150.47, 166.04, and 174.10 ppm, respectively. Mean percent hatchability of the ovicidal activity was observed 48 h posttreatment. The percent hatchability was inversely proportional to the concentration of extract and directly proportional to the eggs. The leaf extract of E. coronaria was found to be most effective than Caesalpinia pulcherrima against eggs/egg rafts of three vector mosquitoes. For E. coronaria, the benzene extract exerted 300, 250, and 200 ppm against Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus, respectively. The results of the repellent activity of benzene and ethyl acetate extract of E. coronaria and Caesalpinia pulcherrima plants at three different concentrations of 1.0, 2.5, and 5.0 mg/cm(2) were applied on skin of fore arm in man and exposed against adult female mosquitoes. In this observation, these two plant crude extracts gave protection against mosquito bites without any allergic reaction to the test person, and also, the

  4. Evaluation of the present dengue situation and control strategies against Aedes aegypti in Cebu City, Philippines.

    PubMed

    Mahilum, Milagros M; Ludwig, Mario; Madon, Minoo B; Becker, Norbert

    2005-12-01

    The present dengue situation and methods to control Aedes aegypti larvae in Cebu City, Philippines, were evaluated for the development of an integrated community-based dengue control program. The study included the detection of dengue infection among Filipino patients, surveying mosquito breeding sites to determine larval population density of Aedes aegypti, an evaluation of public knowledge, attitude, and personal protection practices against dengue, and an evaluation of the efficacy of VectoBac DT/Culinex Tab tablets based on Bacillus thuringiensis israelensis against Ae. aegypti larvae. Of the 173 human sera samples that were assayed for dengue viruses, 94.9% were positive, 2.2% negative and 2.8% equivocal. Thirty households were randomly chosen per Barangay "Villages" (lowest level of formal local administration). Of the 489 breeding sites surveyed, 29.4% were infested with Ae. aegypti larvae, with discarded tires having the highest infestation rate (69.4%). A survey of people's knowledge, attitude, and practices for integrated community-based dengue control showed that 68.7% of the interviewees were aware that dengue is transmitted by mosquitoes, but only 4.3% knew that a virus was the cause of the disease. The efficacy of one and two tablets of VectoBac DT/Culinex Tab, based on Bacillus thuringiensis israelensis, was assessed against the larvae of Ae. aegypti exposed to sunshine and shaded water containers in semi-field and field tests. In semi-field tests, 100% mortality was achieved until the 18th and 30th day after the application of one and two tablets, respectively, in sun-exposed containers. In shaded containers, 100% mortality was observed until the 30th and 36th day after the application of one and two tablets, respectively. In field tests, the tablets were effective for approximately 3 weeks.

  5. Costs of Three Wolbachia Infections on the Survival of Aedes aegypti Larvae under Starvation Conditions.

    PubMed

    Ross, Perran A; Endersby, Nancy M; Hoffmann, Ary A

    2016-01-01

    The mosquito Aedes aegypti, the principal vector of dengue virus, has recently been infected experimentally with Wolbachia: intracellular bacteria that possess potential as dengue biological control agents. Wolbachia depend on their hosts for nutrients they are unable to synthesize themselves. Consequently, competition between Wolbachia and their host for resources could reduce host fitness under the competitive conditions commonly experienced by larvae of Ae. aegypti in the field, hampering the invasion of Wolbachia into natural mosquito populations. We assess the survival and development of Ae. aegypti larvae under starvation conditions when infected with each of three experimentally-generated Wolbachia strains: wMel, wMelPop and wAlbB, and compare their fitness to wild-type uninfected larvae. We find that all three Wolbachia infections reduce the survival of larvae relative to those that are uninfected, and the severity of the effect is concordant with previously characterized fitness costs to other life stages. We also investigate the ability of larvae to recover from extended food deprivation and find no effect of Wolbachia on this trait. Aedes aegypti larvae of all infection types were able to resume their development after one month of no food, pupate rapidly, emerge at a large size, and exhibit complete cytoplasmic incompatibility and maternal transmission. A lowered ability of Wolbachia-infected larvae to survive under starvation conditions will increase the threshold infection frequency required for Wolbachia to establish in highly competitive natural Ae. aegypti populations and will also reduce the speed of invasion. This study also provides insights into survival strategies of larvae when developing in stressful environments.

  6. Costs of Three Wolbachia Infections on the Survival of Aedes aegypti Larvae under Starvation Conditions

    PubMed Central

    Ross, Perran A.; Endersby, Nancy M.; Hoffmann, Ary A.

    2016-01-01

    The mosquito Aedes aegypti, the principal vector of dengue virus, has recently been infected experimentally with Wolbachia: intracellular bacteria that possess potential as dengue biological control agents. Wolbachia depend on their hosts for nutrients they are unable to synthesize themselves. Consequently, competition between Wolbachia and their host for resources could reduce host fitness under the competitive conditions commonly experienced by larvae of Ae. aegypti in the field, hampering the invasion of Wolbachia into natural mosquito populations. We assess the survival and development of Ae. aegypti larvae under starvation conditions when infected with each of three experimentally-generated Wolbachia strains: wMel, wMelPop and wAlbB, and compare their fitness to wild-type uninfected larvae. We find that all three Wolbachia infections reduce the survival of larvae relative to those that are uninfected, and the severity of the effect is concordant with previously characterized fitness costs to other life stages. We also investigate the ability of larvae to recover from extended food deprivation and find no effect of Wolbachia on this trait. Aedes aegypti larvae of all infection types were able to resume their development after one month of no food, pupate rapidly, emerge at a large size, and exhibit complete cytoplasmic incompatibility and maternal transmission. A lowered ability of Wolbachia-infected larvae to survive under starvation conditions will increase the threshold infection frequency required for Wolbachia to establish in highly competitive natural Ae. aegypti populations and will also reduce the speed of invasion. This study also provides insights into survival strategies of larvae when developing in stressful environments. PMID:26745630

  7. The Siren's Song: Exploitation of Female Flight Tones to Passively Capture Male Aedes aegypti (Diptera: Culicidae).

    PubMed

    Johnson, Brian J; Ritchie, Scott A

    2016-01-01

    The need to capture male mosquitoes has intensified recently as a result of a number of male-based sterile insect technique (SIT) and population-modification programs focused on Aedes aegypti (L.) having initiated field releases. Here, we report the results of the successful exploitation of the attraction of male Ae. aegypti to female flight tones to enhance male collections in nonmechanical passive (nonbattery powered) Gravid Aedes Traps (GAT). Prior to field studies, male attraction to female flight tones of 484 and 560 Hz, as well as to a male flight tone of 715 Hz, were assessed in a series of controlled release-recapture and semifield trials. These trials determined that a pure tone of 484 Hz was significantly more attractive to free-flying males than the other flight tones and enabled their collection in sound-baited GATs (ca. 95% capture rate after 2 h; 484 Hz at 65 dB). In contrast, gravid females were unresponsive to male or female flight tones and were evenly distributed among sound-baited and control GATs. Importantly, under normal field conditions sound-baited GATs (484 Hz at 70 dB) captured significantly more male Ae. aegypti per 24-h trap interval (1.3 ± 0.37) than controls (0.2 ± 0.13). Overall, sound-bated GATs captured approximately twice as many Ae. aegypti (male and female; 3.0 ± 0.68 per interval, 30 total) than controls (1.5 ± 0.56 per interval, 15 total). These results reveal that sound-baited GATs are a simple and effective surveillance tool for Ae. aegypti that would allow current male-based SIT and population-modification programs to effectively monitor males in their target populations.

  8. Germ band retraction as a landmark in glucose metabolism during Aedes aegypti embryogenesis

    PubMed Central

    2010-01-01

    Background The mosquito A. aegypti is vector of dengue and other viruses. New methods of vector control are needed and can be achieved by a better understanding of the life cycle of this insect. Embryogenesis is a part of A. aegypty life cycle that is poorly understood. In insects in general and in mosquitoes in particular energetic metabolism is well studied during oogenesis, when the oocyte exhibits fast growth, accumulating carbohydrates, lipids and proteins that will meet the regulatory and metabolic needs of the developing embryo. On the other hand, events related with energetic metabolism during A. aegypti embryogenesis are unknown. Results Glucose metabolism was investigated throughout Aedes aegypti (Diptera) embryonic development. Both cellular blastoderm formation (CBf, 5 h after egg laying - HAE) and germ band retraction (GBr, 24 HAE) may be considered landmarks regarding glucose 6-phosphate (G6P) destination. We observed high levels of glucose 6-phosphate dehydrogenase (G6PDH) activity at the very beginning of embryogenesis, which nevertheless decreased up to 5 HAE. This activity is correlated with the need for nucleotide precursors generated by the pentose phosphate pathway (PPP), of which G6PDH is the key enzyme. We suggest the synchronism of egg metabolism with carbohydrate distribution based on the decreasing levels of phosphoenolpyruvate carboxykinase (PEPCK) activity and on the elevation observed in protein content up to 24 HAE. Concomitantly, increasing levels of hexokinase (HK) and pyruvate kinase (PK) activity were observed, and PEPCK reached a peak around 48 HAE. Glycogen synthase kinase (GSK3) activity was also monitored and shown to be inversely correlated with glycogen distribution during embryogenesis. Conclusions The results herein support the hypothesis that glucose metabolic fate changes according to developmental embryonic stages. Germ band retraction is a moment that was characterized as a landmark in glucose metabolism during Aedes

  9. A model for the development of Aedes (Stegomyia) aegypti as a function of the available food.

    PubMed

    Romeo Aznar, Victoria; De Majo, María Sol; Fischer, Sylvia; Francisco, Diego; Natiello, Mario A; Solari, Hernán G

    2015-01-21

    We discuss the preimaginal development of the mosquito Aedes aegypti from the point of view of the statistics of developmental times and the final body-size of the pupae and adults. We begin the discussion studying existing models in relation to published data for the mosquito. The data suggest a developmental process that is described by exponentially distributed random times. The existing data show as well that the idea of cohorts emerging synchronously is verified only in optimal situations created at the laboratory but it is not verified in field experiments. We propose a model in which immature individuals progress in successive stages, all of them with exponentially distributed times, according to two different rates (one food-dependent and the other food-independent). This phenomenological model, coupled with a general model for growing, can explain the existing observations and new results produced in this work. The emerging picture is that the development of the larvae proceeds through a sequence of steps. Some of the steps depend on the available food. While food is in abundance, all steps can be thought as having equal duration, but when food is scarce, those steps that depend on food take considerably longer times. For insufficient levels of food, increase in larval mortality sets in. As a consequence of the smaller rates, the average pupation time increases and the cohort disperses in time. Dispersion, as measured by standard deviation, becomes a quadratic function of the average time indicating that cohort dispersion responds to the same causes than delays in pupation and adult emergence. During the whole developmental process the larva grows monotonically, initially at an exponential rate but later at decreasing rates, approaching a final body-size. Growth is stopped by maturation when it is already slow. As a consequence of this process, there is a slight bias favoring small individuals: Small individuals are born before larger individuals, although

  10. Isolation and identification of mosquito (Aedes aegypti ) biting deterrent fatty acids from male inflorescences of breadfruit (Artocarpus altilis (Parkinson) Fosberg).

    PubMed

    Jones, A Maxwell P; Klun, Jerome A; Cantrell, Charles L; Ragone, Diane; Chauhan, Kamlesh R; Brown, Paula N; Murch, Susan J

    2012-04-18

    Dried male inflorescences of breadfruit ( Artocarpus altilis , Moraceae) are burned in communities throughout Oceania to repel flying insects, including mosquitoes. This study was conducted to identify chemicals responsible for mosquito deterrence. Various crude extracts were evaluated, and the most active, the hydrodistillate, was used for bioassay-guided fractionation. The hydrodistillate and all fractions displayed significant deterrent activity. Exploratory GC-MS analysis revealed more than 100 distinctive peaks, and more than 30 compounds were putatively identified, including a mixture of terpenes, aldehydes, fatty acids, and aromatics. A systematic bioassay-directed study using adult Aedes aegypti females identified capric, undecanoic, and lauric acid as primary deterrent constituents. A synthetic mixture of fatty acids present in the most active fraction and individual fatty acids were all significantly more active than N,N-diethyl-m-toluamide (DEET). These results provide support for this traditional practice and indicate the potential of male breadfruit flowers and fatty acids as mosquito repellents.

  11. Mitochondrial Gene Cytochrome b Developmental and Environmental Expression in Aedes aegypti (Diptera: Culicidae)

    DTIC Science & Technology

    2009-11-01

    Experiments. Adult female (3- and 10- d-old) Ae. aegypti were treated topically with per- methrin/acetone at 2.5 105 g (high dose, HD) and 1.25 105...downwas recorded for each collection time point and at 24 h postpermethrin treatment (Supplemental Ta- ble 5). Heat-ShockExperiments.Ae. aegypti females ...Radiation Experiments. For the UV-radiation time course study, Ae. aegypti females (3, 10, and 17 d old)wereexposed toagermicidal lamp(30W,G30TB, General

  12. Larvicidal efficacy screening of Anacardaciae crude extracts on the dengue hemorrhagic vector, Aedes aegypti.

    PubMed

    Zuharah, W F; Fadzly, N; Ali, Y; Zakaria, R; Juperi, S; Asyraf, M; Dieng, H

    2014-06-01

    Vector-borne diseases are still rife because of the re-emergence of diseases transmitted by mosquitoes. The objective of this paper is to evaluate the larvicidal efficacy of crude leaf extract of Mangifera indica, Gluta renghas, and Melanochyla fasciculiflora against vector of dengue hemorrhagic fever, Aedes aegypti. These plant species are endemic species and widely distributed in Malaysian forests. Leaves of Ma. indica, G. renghas and M. fascculiflora were collected from Teluk Bahang National Park, Penang Malaysia. Fractions of leaves were segregated, air-dried, powdered and extracted using Soxhlet with methanol. The solvent was removed by using rotary evaporator to obtain the crude extract. Using WHO standard larval bioassay test method, third instar larvae of Aedes aegypti were exposed to concentration ranging from 200- 4500 ppm of methanol extract for all plant species. Larval mortality was observed after 24 hours exposure. The highest susceptibility and toxicity was recorded by Mangifera indica with the lowest concentration at 800 ppm followed by M. fasciculiflora and G. renghas. This indicates that crude plant extract is very effective in killing Ae. aegypti mosquitoes. This finding may lead to new low cost alternative, environmentally friendly method for mosquito control programs. To our knowledge, this is the first report on larvicidal bioefficacy from endemic Malaysian plants.

  13. Delivery of chitosan/dsRNA nanoparticles for silencing of wing development vestigial (vg) gene in Aedes aegypti mosquitoes.

    PubMed

    Ramesh Kumar, D; Saravana Kumar, P; Gandhi, M Rajiv; Al-Dhabi, Naif Abdullah; Paulraj, M Gabriel; Ignacimuthu, S

    2016-05-01

    RNA interference (RNAi) has been used as a gene silencing strategy by the introduction of long double stranded RNA (dsRNA) for the control of pest insects. The aim of the present study was to examine whether the expression of vg gene which is responsible for wing development, can be repressed by chitosan/dsRNA based nanoparticles in Aedes aegypti. The vestigial gene (vg) was amplified from adult mosquito and cloned in pLitmus28i vector. Genetically engineered recombinant plasmid was transformed into RNase III deficient strain for synthesis of bacterially expressed dsRNA. Nanoparticles were prepared via electrostatic interaction between cationic polymer chitosan and anionic nucleic acids (dsRNA). The formation of chitosan/dsRNAnanoparticles and their size were confirmed by Atomic force microscopy (AFM). Chitosan/dsRNA mediated knockdown of Enhanced Green Fluorescence Protein (EGFP) was demonstrated in Sf21 cells. Further, we tested whether such an approach could be used to target vg gene in Ae. aegypti. The results showed that chitosan/dsRNA caused significant mortality, delayed growth development and caused adult wing-malformation. A qRT-PCR analysis confirmed that the chitosan/dsRNA mediated transcriptional level was downregulated. Our findings suggest that vg gene intervention strategies through RNAi can emerge as viable option for pest control.

  14. [Larval density as related to life cycle, size and fecundity of Aedes (Stegomyia) aegypti (L.) (Diptera: Culicidae) in laboratory].

    PubMed

    Beserra, Eduardo B; Fernandes, Carlos R M; Ribeiro, Paulino S

    2009-01-01

    We focused on the evaluation of the influence that the larval density have on the life cycle, size and fecundity of Aedes aegypti (L.). The bioassays were conducted at 26 + or - 2 degrees Celsius and at 12h light. Five larval densities (200, 500, 750, 1000 and 1250 larvae/l) and two feeding systems (one with a fixed amount of 100 mg of food, and other with an amount of food proportional to the number of larvae/tray) were tested. Egg and larval development time and survivorship, sex ratio, longevity, fecundity and the size of adults were evaluated on a daily basis. The life cycle of A. aegypti was significantly affected by the density when offered 100 mg of food per tray. The period of larval development increased from 8.3 to 37.9 days whereas female fecundity and wing length decreased from 105.7 to 41.8 eggs/female and from 4.6 mm to 3.6 mm, respectively, by changing from a density of 200 to 1250 larvae/l. Significant differences of these variables were not detected when offering 1.9 mg of food per larvae, except for the size of the adults. Females emerged from rearing densities of 1250 larvae/l grew larger, with an average wing length of 5.2 mm.

  15. A parvo-like virus persistently infecting a C6/36 clone of Aedes albopictus mosquito cell line and pathogenic for Aedes aegypti larvae.

    PubMed

    Jousset, F X; Barreau, C; Boublik, Y; Cornet, M

    1993-08-01

    We have isolated and partially characterized from an apparently healthy C6/36 subclone of Aedes albopictus cell line a small icosahedral non-enveloped DNA virus, designated AaPV. This virus proved to be highly pathogenic for Aedes aegypti neonate larvae. Viral infection persisted for over 4 years in the cell culture without any cytopathic effect. Attempts to infect suckling mice, Drosophila melanogaster adults and Spodoptera littoralis larvae with AaPV were unsuccessful. Similarly, the AaPV failed to replicate in vertebrate and Drosophila cell lines. Virions, about 22 nm in diameter, had a buoyant density of 1.43 g/cm3 and contained three capsid polypeptides with molecular weights of 53, 41 and 40 kDa. A preliminary study of the viral genome indicated the presence of single-stranded DNA. By its biophysical and biochemical properties, this virus appears to be related to the genus Densovirus within the family Parvoviridae, but lacks serological relationships with the other members of this genus.

  16. Behavioral responses of catnip (Nepeta cataria) by two species of mosquitoes, Aedes aegypti and Anopheles harrisoni, in Thailand.

    PubMed

    Polsomboon, Suppaluck; Grieco, John P; Achee, Nicole L; Chauhan, Kamlesh R; Tanasinchayakul, Somchai; Pothikasikorn, Jinrapa; Chareonviriyaphap, Theeraphap

    2008-12-01

    An investigation of the biological effect of catnip oil (Nepeta cataria L.) on the behavioral response of field collected Aedes aegypti and Anopheles harrisoni was conducted using an automated excitorepellency test system. Aedes aegypti showed significantly higher escape rates from the contact chamber at 5% catnip oil compared to other concentrations (P < 0.05). With Anopheles harrisoni, a high escape response was seen at 2.5% catnip oil from the contact chamber, while in the noncontact chamber a higher escape response was observed at a concentration of 5%. Results showed that this compound exhibits both irritant and repellent actions.

  17. Sialic acid expression in the mosquito Aedes aegypti and its possible role in dengue virus-vector interactions.

    PubMed

    Cime-Castillo, Jorge; Delannoy, Philippe; Mendoza-Hernández, Guillermo; Monroy-Martínez, Verónica; Harduin-Lepers, Anne; Lanz-Mendoza, Humberto; Hernández-Hernández, Fidel de la Cruz; Zenteno, Edgar; Cabello-Gutiérrez, Carlos; Ruiz-Ordaz, Blanca H

    2015-01-01

    Dengue fever (DF) is the most prevalent arthropod-borne viral disease which affects humans. DF is caused by the four dengue virus (DENV) serotypes, which are transmitted to the host by the mosquito Aedes aegypti that has key roles in DENV infection, replication, and viral transmission (vector competence). Mosquito saliva also plays an important role during DENV transmission. In this study, we detected the presence of sialic acid (Sia) in Aedes aegypti tissues, which may have an important role during DENV-vector competence. We also identified genome sequences encoding enzymes involved in Sia pathways. The cDNA for Aedes aegypti CMP-Sia synthase (CSAS) was amplified, cloned, and functionally evaluated via the complementation of LEC29.Lec32 CSAS-deficient CHO cells. AedesCSAS-transfected LEC29.Lec32 cells were able to express Sia moieties on the cell surface. Sequences related to α-2,6-sialyltransferase were detected in the Aedes aegypti genome. Likewise, we identified Sia-α-2,6-DENV interactions in different mosquito tissues. In addition, we evaluated the possible role of sialylated molecules in a salivary gland extract during DENV internalization in mammalian cells. The knowledge of early DENV-host interactions could facilitate a better understanding of viral tropism and pathogenesis to allow the development of new strategies for controlling DENV transmission.

  18. Sialic Acid Expression in the Mosquito Aedes aegypti and Its Possible Role in Dengue Virus-Vector Interactions

    PubMed Central

    Cime-Castillo, Jorge; Delannoy, Philippe; Mendoza-Hernández, Guillermo; Monroy-Martínez, Verónica; Lanz-Mendoza, Humberto; Hernández-Hernández, Fidel de la Cruz; Cabello-Gutiérrez, Carlos; Ruiz-Ordaz, Blanca H.

    2015-01-01

    Dengue fever (DF) is the most prevalent arthropod-borne viral disease which affects humans. DF is caused by the four dengue virus (DENV) serotypes, which are transmitted to the host by the mosquito Aedes aegypti that has key roles in DENV infection, replication, and viral transmission (vector competence). Mosquito saliva also plays an important role during DENV transmission. In this study, we detected the presence of sialic acid (Sia) in Aedes aegypti tissues, which may have an important role during DENV-vector competence. We also identified genome sequences encoding enzymes involved in Sia pathways. The cDNA for Aedes aegypti CMP-Sia synthase (CSAS) was amplified, cloned, and functionally evaluated via the complementation of LEC29.Lec32 CSAS-deficient CHO cells. AedesCSAS-transfected LEC29.Lec32 cells were able to express Sia moieties on the cell surface. Sequences related to α-2,6-sialyltransferase were detected in the Aedes aegypti genome. Likewise, we identified Sia-α-2,6-DENV interactions in different mosquito tissues. In addition, we evaluated the possible role of sialylated molecules in a salivary gland extract during DENV internalization in mammalian cells. The knowledge of early DENV-host interactions could facilitate a better understanding of viral tropism and pathogenesis to allow the development of new strategies for controlling DENV transmission. PMID:25874215

  19. Aedes aegypti pupal/demographic surveys in southern Mexico: consistency and practicality.

    PubMed

    Arredondo-Jiménez, J I; Valdez-Delgado, K M

    2006-04-01

    In interventions aimed at the control of the immature stages of Aedes aegypti (L.), the principal vector of the dengue viruses, attempts are often made to treat or manage all larval habitats in households. When there are resource-constraints, however, a concentration of effort on the types of container that produce the most pupae may be required. Identification of these 'key' container types requires surveys of the immature stages and particularly - since these give the best estimates of the numbers of adults produced - of the numbers of pupae in local containers. Although there has been no clearly defined or standardized protocol for the sampling of Ae. aegypti pupae for many years, a methodology for 'pupal/demographic' surveys, which may allow the risk of dengue outbreaks in a given setting to be estimated, has been recently described. The consistency and practicality of using such surveys has now been investigated in three cities in the Mexican state of Chiapas, Mexico. Using a combination of 'quadrat'- and transect-sampling methods, 600 houses in each city were each sampled twice. Containers within each study household were searched for pupae and larvae. Although 107,297 containers, belonging to 26 categories, were observed, only 16,032 were found to contain water and 96% and 92% of these 'wet' containers contained no pupae and no third- or fourth-instar larvae, respectively. Although the random 'quadrat' sampling gave similar results to sampling along transects, there were statistically significant differences in the numbers of pupae according to container type and locality. The most important containers for pupal production were found to be large cement wash basins, which were present in almost every household investigated and from which 84% (10,257/12,271) of all pupae were collected. A focus on this class of container could serve as the basis of a targeted intervention strategy. When traditional Stegomyia indices were calculated they appeared to be

  20. Vector Competence of Aedes aegypti and Aedes vittatus (Diptera: Culicidae) from Senegal and Cape Verde Archipelago for West African Lineages of Chikungunya Virus

    PubMed Central

    Diagne, Cheikh T.; Faye, Oumar; Guerbois, Mathilde; Knight, Rachel; Diallo, Diawo; Faye, Ousmane; Ba, Yamar; Dia, Ibrahima; Faye, Ousmane; Weaver, Scott C.; Sall, Amadou A.; Diallo, Mawlouth

    2014-01-01

    To assess the risk of emergence of chikungunya virus (CHIKV) in West Africa, vector competence of wild-type, urban, and non-urban Aedes aegypti and Ae. vittatus from Senegal and Cape Verde for CHIKV was investigated. Mosquitoes were fed orally with CHIKV isolates from mosquitoes (ArD30237), bats (CS13-288), and humans (HD180738). After 5, 10, and 15 days of incubation following an infectious blood meal, presence of CHIKV RNA was determined in bodies, legs/wings, and saliva using real-time reverse transcription–polymerase chain reaction. Aedes vittatus showed high susceptibility (50–100%) and early dissemination and transmission of all CHIKV strains tested. Aedes aegypti exhibited infection rates ranging from 0% to 50%. Aedes aegypti from Cape Verde and Kedougou, but not those from Dakar, showed the potential to transmit CHIKV in saliva. Analysis of biology and competence showed relatively high infective survival rates for Ae. vittatus and Ae. aegypti from Cape Verde, suggesting their efficient vector capacity in West Africa. PMID:25002293

  1. Vector competence of Aedes aegypti and Aedes vittatus (Diptera: Culicidae) from Senegal and Cape Verde archipelago for West African lineages of chikungunya virus.

    PubMed

    Diagne, Cheikh T; Faye, Oumar; Guerbois, Mathilde; Knight, Rachel; Diallo, Diawo; Faye, Ousmane; Ba, Yamar; Dia, Ibrahima; Faye, Ousmane; Weaver, Scott C; Sall, Amadou A; Diallo, Mawlouth

    2014-09-01

    To assess the risk of emergence of chikungunya virus (CHIKV) in West Africa, vector competence of wild-type, urban, and non-urban Aedes aegypti and Ae. vittatus from Senegal and Cape Verde for CHIKV was investigated. Mosquitoes were fed orally with CHIKV isolates from mosquitoes (ArD30237), bats (CS13-288), and humans (HD180738). After 5, 10, and 15 days of incubation following an infectious blood meal, presence of CHIKV RNA was determined in bodies, legs/wings, and saliva using real-time reverse transcription-polymerase chain reaction. Aedes vittatus showed high susceptibility (50-100%) and early dissemination and transmission of all CHIKV strains tested. Aedes aegypti exhibited infection rates ranging from 0% to 50%. Aedes aegypti from Cape Verde and Kedougou, but not those from Dakar, showed the potential to transmit CHIKV in saliva. Analysis of biology and competence showed relatively high infective survival rates for Ae. vittatus and Ae. aegypti from Cape Verde, suggesting their efficient vector capacity in West Africa.

  2. Temporal and geographic patterns of Aedes aegypti (Diptera: Culicidae) production in Iquitos, Peru.

    PubMed

    Morrison, Amy C; Gray, Kenneth; Getis, Arthur; Astete, Helvio; Sihuincha, Moises; Focks, Dana; Watts, Douglas; Stancil, Jeffrey D; Olson, James G; Blair, Patrick; Scott, Thomas W

    2004-11-01

    Large-scale longitudinal cohort studies are necessary to characterize temporal and geographic variation in Aedes aegypti (L.) (Diptera: Culicidae) production patterns and to develop targeted dengue control strategies that will reduce disease. We carried out pupal/demographic surveys in a circuit of approximately 6,000 houses, 10 separate times, between January 1999 and August 2002 in the Amazonian city of Iquitos, Peru. We quantified the number of containers positive for Ae. aegypti larvae and/or pupae, containers holding pupae, and the absolute number of pupae by 4-mo sampling circuits and spatially by geographic area by using a geographic information system developed for the city. A total of 289,941 water-holding containers were characterized, of which 7.3% were positive for Ae. aegypti. Temporal and geographic variations were detected for all variables examined, and the relative importance of different container types for production of Ae. aegypti was calculated. Ae. aegypti larvae and pupae were detected in 64 types of containers. Consistent production patterns were observed for the lid status (lids: 32% wet containers, 2% pupal production), container location (outdoor: 43% wet containers, 85% pupal production), and method by which the container was filled with water (rain filled: 15% wet containers, 88.3% pupal production); these patterns were consistent temporally and geographically. We describe a new container category (nontraditional) that includes transient puddles, which were rare but capable of producing large numbers of pupae. Because of high variable pupal counts, four container categories (large tank, medium storage, miscellaneous, and nontraditional) should be targeted in addition to outdoor rain-filled containers that are not covered by a lid. The utility of targeted Ae. aegypti control is discussed, as well as the ability to achieve control objectives based on published but untested threshold values.

  3. Contact Irritant Responses of Aedes aegypti Using Sublethal Concentration and Focal Application of Pyrethroid Chemicals

    PubMed Central

    Manda, Hortance; Shah, Pankhil; Polsomboon, Suppaluck; Chareonviriyaphap, Theeraphap; Castro-Llanos, Fanny; Morrison, Amy; Burrus, Roxanne G.; Grieco, John P.; Achee, Nicole L.

    2013-01-01

    Background Previous studies have demonstrated contact irritant and spatial repellent behaviors in Aedes aegypti following exposure to sublethal concentrations of chemicals. These sublethal actions are currently being evaluated in the development of a push-pull strategy for Ae. aegypti control. This study reports on mosquito escape responses after exposure to candidate chemicals for a contact irritant focused push-pull strategy using varying concentrations and focal application. Methods Contact irritancy (escape) behavior, knockdown and 24 hour mortality rates were quantified in populations of female Ae. aegypti under laboratory conditions and validated in the field (Thailand and Peru) using experimental huts. Evaluations were conducted using varying concentrations and treatment surface area coverage (SAC) of three pyrethroid insecticides: alphacypermethrin, lambacyhalothrin and deltamethrin. Results Under laboratory conditions, exposure of Ae. aegypti to alphacypermethrin using the standard field application rate (FAR) resulted in escape responses at 25% and 50% SAC that were comparable with escape responses at 100% SAC. Significant escape responses were also observed at <100% SAC using ½FAR of all test compounds. In most trials, KD and 24 hour mortality rates were higher in mosquitoes that did not escape than in those that escaped. In Thailand, field validation studies indicated an early time of exit (by four hours) and 40% increase in escape using ½FAR of alphacypermethrin at 75% SAC compared to a matched chemical-free control. In Peru, however, the maximum increase in Ae. aegypti escape from alphacypermethrin-treated huts was 11%. Conclusions/Significance Results presented here suggest a potential role for sublethal and focal application of contact irritant chemicals in an Ae. aegypti push-pull strategy to reduce human–vector contact inside treated homes. However, the impact of an increase in escape response on dengue virus transmission is currently unknown

  4. Insecticidal action of sodium anacardate from Brazilian cashew nut shell liquid against Aedes aegypti.

    PubMed

    Farias, Davi F; Cavalheiro, Mariana G; Viana, Sayonara M; De Lima, Glauber P G; da Rocha-Bezerra, Lady Clarissa B; Ricardo, Nágila M P S; Carvalho, Ana F U

    2009-09-01

    Aedes aegypti is the major vector of 1 of the most concerning arboviruses of the world, the dengue fever. The only effective way of reducing the incidence of dengue fever is to control the vector mosquito, mainly by application of insecticides to its breeding places. This study was aimed at assessing the insecticidal activity of sodium anacardate, isolated from Brazilian cashew nut shell liquid (CNSL), against the eggs, 3rd instars or pupae of Ae. aegypti. In addition, the acute toxicity of sodium anacardate to mice was also investigated. Sodium anacardate showed toxicity against Ae. aegypti eggs (median effective concentration [EC50] = 162.93 +/- 29.93 microg/ml), larvae (median lethal concentration [LC50] = 55.47 +/- 3.0 microg/ml) and pupae (LC50 = 369.78 - 52.30 microg/ml). On the other hand, even at high dose (0.3 g/kg body weight), this compound did not cause any adverse effects on mice, suggesting that this compound is safe to mammals. Therefore, sodium anacardate may be a viable low-cost alternative to help combat Ae. aegypti.

  5. The Dengue Virus Mosquito Vector Aedes aegypti at High Elevation in México

    PubMed Central

    Lozano-Fuentes, Saul; Hayden, Mary H.; Welsh-Rodriguez, Carlos; Ochoa-Martinez, Carolina; Tapia-Santos, Berenice; Kobylinski, Kevin C.; Uejio, Christopher K.; Zielinski-Gutierrez, Emily; Monache, Luca Delle; Monaghan, Andrew J.; Steinhoff, Daniel F.; Eisen, Lars

    2012-01-01

    México has cities (e.g., México City and Puebla City) located at elevations > 2,000 m and above the elevation ceiling below which local climates allow the dengue virus mosquito vector Aedes aegypti to proliferate. Climate warming could raise this ceiling and place high-elevation cities at risk for dengue virus transmission. To assess the elevation ceiling for Ae. aegypti and determine the potential for using weather/climate parameters to predict mosquito abundance, we surveyed 12 communities along an elevation/climate gradient from Veracruz City (sea level) to Puebla City (∼2,100 m). Ae. aegypti was commonly encountered up to 1,700 m and present but rare from 1,700 to 2,130 m. This finding extends the known elevation range in México by > 300 m. Mosquito abundance was correlated with weather parameters, including temperature indices. Potential larval development sites were abundant in Puebla City and other high-elevation communities, suggesting that Ae. aegypti could proliferate should the climate become warmer. PMID:22987656

  6. Attracted to the enemy: Aedes aegypti prefers oviposition sites with predator-killed conspecifics.

    PubMed

    Albeny-Simões, Daniel; Murrell, Ebony G; Elliot, Simon L; Andrade, Mateus R; Lima, Eraldo; Juliano, Steven A; Vilela, Evaldo F

    2014-06-01

    Oviposition habitat choices of species with aquatic larvae are expected to be influenced by both offspring risk of mortality due to predation, and offspring growth potential. Aquatic predators may indirectly influence growth potential for prey by reducing prey density and, for filter-feeding prey, by increasing bacterial food for prey via added organic matter (feces, partially eaten victims), creating the potential for interactive effects on oviposition choices. We tested the hypothesis that the mosquito Aedes aegypti preferentially oviposits in habitats with predatory Toxorhynchites larvae because of indirect effects of predation on chemical cues indicating bacterial abundance. We predicted that A. aegypti would avoid oviposition in sites with Toxorhynchites, but prefer to oviposit where bacterial food for larvae is abundant, and that predation by Toxorhynchites would increase bacterial abundances. Gravid A. aegypti were offered paired oviposition sites representing choices among: predator presence; the act of predation; conspecific density; dead conspecific larvae; and bacterial activity. A. aegypti preferentially oviposited in sites with Toxorhynchites theobaldi predation, and with killed conspecific larvae, but failed to detect preferences for other treatments. The antibiotic tetracycline eliminated the strongest oviposition preference. Both predation by Toxorhynchites and killed larvae increased bacterial abundances, suggesting that oviposition attraction is cued by bacteria. Our results show the potential for indirect effects, like trophic cascades, to influence oviposition choices and community composition in aquatic systems. Our results suggest that predators like Toxorhynchites may be doubly beneficial as biocontrol agents because of the attraction of ovipositing mosquitoes to bacterial by-products of Toxorhynchites feeding.

  7. Larvicidal activity of some Euphorbiaceae plant extracts against Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae).

    PubMed

    Rahuman, A Abdul; Gopalakrishnan, Geetha; Venkatesan, P; Geetha, Kannappan

    2008-04-01

    Larvicidal activity of ethyl acetate, butanol, and petroleum ether extracts of five species of Euphorbiaceae plants, Jatropha curcas, Pedilanthus tithymaloides, Phyllanthus amarus, Euphorbia hirta, and Euphorbia tirucalli, were tested against the early fourth instar larvae of Aedes aegypti L. and Culex quinquefasciatus (Say). The larval mortality was observed after 24 h of exposure. All extracts showed low larvicidal effects; however, the highest larval mortality was found in petroleum ether extract. The LC50 value of petroleum ether extracts of J. curcas, P. tithymaloides, P. amarus, E. hirta, and E. tirucalli were 8.79, 55.26, 90.92, 272.36, and 4.25 ppm, respectively, against A. aegypti and 11.34, 76.61, 113.40, 424.94, and 5.52 ppm, respectively, against C quinquefasciatus. Of the various ratios tested, the petroleum ether extracts of J. curcas and E. tirucalli were observed to be more efficient than the other plant extracts. It is, therefore, suggested that E. tirucalli can be applied as an ideal potential larvicide against A. aegypti and C. quinquefasciatus. This is an ideal ecofriendly approach for the control of the dengue vector, A. aegypti, and the lymphatic filariasis vector, C. quinquefasciatus.

  8. Stormwater Drains and Catch Basins as Sources for Production of Aedes aegypti and Culex quinquefasciatus

    PubMed Central

    Arana-Guardia, Roger; Baak-Baak, Carlos M.; Loroño-Pino, María Alba; Machain-Williams, Carlos; Beaty, Barry J.; Eisen, Lars; García-Rejón, Julián E.

    2014-01-01

    We present data showing that structures serving as drains and catch basins for stormwater are important sources for production of the mosquito arbovirus vectors Aedes aegypti and Culex quinquefasciatus in Mérida City, México. We examined 1,761 stormwater drains – located in 45 different neighborhoods spread across the city – over dry and wet seasons from March 2012–March 2013. Of the examined stormwater drains, 262 (14.9%) held water at the time they were examined and 123 yielded mosquito immatures. In total, we collected 64,560 immatures representing nine species. The most commonly encountered species were Cx. quinquefasciatus (n=39,269) and Ae. aegypti (n=23,313). Ae. aegypti and Cx. quinquefasciatus were collected during all 11 months when we found water-filled stormwater drains, and both were found in stormwater drains located throughout Mérida City. We also present data for associations between structural characteristics of stormwater drains or water-related characteristics and the abundance of mosquito immatures. In conclusion, stormwater drains produce massive numbers of Ae. aegypti and Cx. quinquefasciatus across Mérida City, both in the wet and dry seasons, and represent non-residential development sites that should be strongly considered for inclusion in the local mosquito surveillance and control program. PMID:24582840

  9. Household Dengue Prevention Interventions, Expenditures, and Barriers to Aedes aegypti Control in Machala, Ecuador.

    PubMed

    Heydari, Naveed; Larsen, David A; Neira, Marco; Beltrán Ayala, Efraín; Fernandez, Prissila; Adrian, Jefferson; Rochford, Rosemary; Stewart-Ibarra, Anna M

    2017-02-16

    The Aedes aegypti mosquito is an efficient vector for the transmission of Zika, chikungunya, and dengue viruses, causing major epidemics and a significant social and economic burden throughout the tropics and subtropics. The primary means of preventing these diseases is household-level mosquito control. However, relatively little is known about the economic burden of Ae. aegypti control in resource-limited communities. We surveyed residents from 40 households in a high-risk community at the urban periphery in the city of Machala, Ecuador, on dengue perceptions, vector control interventions, household expenditures, and factors influencing purchasing decisions. The results of this study show that households spend a monthly median of US$2.00, or 1.90% (range: 0.00%, 9.21%) of their family income on Ae. aegypti control interventions. Households reported employing, on average, five different mosquito control and dengue prevention interventions, including aerosols, liquid sprays, repellents, mosquito coils, and unimpregnated bed nets. We found that effectiveness and cost were the most important factors that influence people's decisions to purchase a mosquito control product. Our findings will inform the development and deployment of new Ae. aegypti control interventions by the public health and private sectors, and add to prior studies that have focused on the economic burden of dengue-like illness.

  10. Multiple Modes of Action of the Squamocin in the Midgut Cells of Aedes aegypti Larvae

    PubMed Central

    de Paula, Sérgio Oliveira; Martins, Gustavo Ferreira; Zanuncio, José Cola

    2016-01-01

    Annonaceous acetogenins are botanical compounds with good potential for use as insecticides. In the vector, Aedes aegypti (L.) (Diptera: Culicidae), squamocin (acetogenin) has been reported to be a larvicide and cytotoxic, but the modes of action of this molecule are still poorly understood. This study evaluated the changes in the cell morphology, and in the expression of genes, for autophagy (Atg1 and Atg8), for membrane ion transporter V-ATPase, and for water channel aquaporin-4 (Aqp4) in the midgut of A. aegypti larvae exposed to squamocin from Annona mucosa Jacq. (Annonaceae). Squamocin showed cytotoxic action with changes in the midgut epithelium and digestive cells of A. aegypti larvae, increase in the expression for autophagy gene Atg1 and Atg8, decrease in the expression of V-ATPase, decrease in the expression of Aqp4 gene in LC20 and inhibition of Apq4 genes in the midgut of this vector in LC50. These multiple modes of action for squamocin are described for the first time in insects, and they are important because different sites of action of squamocin from A. mucosa may reduce the possibility of resistance of A. aegypti to this molecule. PMID:27532504

  11. Toxicity and Larvicidal Activity of Podophyllum-Based Lignans Against Aedes aegypti (Diptera: Culicidae).

    PubMed

    Maleck, Marise; Hollanda, Priscila de Oliveira; Serdeiro, Michele Teixeira; Soares, Renata Oliveira de Araújo; Honório, Nildimar Alves; Silva, Cláudia Gontijo

    2017-01-01

    Aedes aegypti L. (Diptera: Culicidae) is a mosquito species that has adapted to urban environments and is the main vector of dengue viruses. Because of the increasing incidence of dengue, a more environmentally acceptable insecticide needs to be found. Natural products have been and continue to be an important source of leading compounds that can be modified in order to develop new drugs. The lignan family of natural products includes compounds with a diverse spectrum of biological activity. Podophyllotoxin and its related lignans represent an exciting class of natural products that can be targeted at different types of biological activity and are therefore worth exploring further. This study had the aim of evaluating the larvicidal activity of an ethanolic extract from the rhizomes and roots of Podophyllum hexandrum (PM-3) and its isolated lignans, podophyllotoxone (1) and desoxypodophyllotoxin (2), on the larvae of the mosquito vector Ae. aegypti. The PM-3 extract and the compounds (1) and (2) were dissolved in a mixture of acetone and dimethylsulfoxide at final concentrations of 1, 10, 30, 50, 100, and 200 μg/ml. After dilution, the solutions were applied (μg/ml) to the larvae-rearing medium. Overall, the ethanolic extract from the rhizomes and roots of P. hexandrum and the compounds (1) and (2) showed larvicidal activity against the larvae of Ae. aegypti According to the results from this study, it can be concluded that podophyllotoxone (1) and desoxypodophyllotoxin (2) exhibited significant toxicity toward Ae. aegypti larvae.

  12. Behavioral Response of Aedes aegypti Mosquito towards Essential Oils Using Olfactometer

    PubMed Central

    Uniyal, Ashish; Tikar, Sachin N; Mendki, Murlidhar J; Singh, Ram; Shukla, Shakti V; Agrawal, Om P; Veer, Vijay; Sukumaran, Devanathan

    2016-01-01

    Background: Aedes aegypti mosquito is responsible for transmitting human diseases like dengue and chikungunya. Personal or space protection with insect repellents is a practical approach to reducing human mosquito contact, thereby minimizing disease transmission. Essential oils are natural volatile substances from plants used as protective measure against blood-sucking mosquitoes. Methods: Twenty-three essential oils were evaluated for their repellent effect against Ae. aegypti female mosquito in laboratory conditions using Y-tube olfactometer. Results: The essential oils exhibited varying degree of repellency. Litsea oil showed 50.31%, 60.2 %, and 77.26% effective mean repellency at 1 ppm, 10 ppm and 100 ppm respectively, while DEET exhibited 59.63%, 68.63%, 85.48% and DEPA showed 57.97%, 65.43%, and 80.62% repellency at respective above concentrations. Statistical analysis revealed that among the tested essential oils, litsea oil had effective repellency in comparison with DEET and DEPA against Ae. aegypti mosquito at all concentration. Essential oils, DEET and DEPA showed significant repellence against Ae. aegypti (P< 0.05) at all 3 concentration tested. Conclusion: Litsea oil exhibited effective percentage repellency similar to DEET and DEPA. The essential oils are natural plant products that may be useful for developing safer and newer herbal based effective mosquito repellents. PMID:27308295

  13. Microsatellite-based parentage analysis of Aedes aegypti (Diptera: Culicidae) using nonlethal DNA sampling.

    PubMed

    Wong, Jacklyn; Chu, Yui Yin; Stoddard, Steven T; Lee, Yoosook; Morrison, Amy C; Scott, Thomas W

    2012-01-01

    To track Aedes aegypti (L.) egg-laying behavior in the field in Iquitos, Peru, we developed methods for 1) sampling DNA from live mosquitoes and 2) high through-put parentage analysis using microsatellite markers. We were able to amplify DNA extracted from a single hind leg, but not from the pupal exuvia. Removal of a leg from teneral females caused no significant changes in female behavioral or life history traits (e.g., longevity, blood feeding frequency, fecundity, egg hatch rate, gonotrophic cycle length, or oviposition behavior). Using a panel of nine microsatellite markers and an exclusion-based software program, we matched offspring to parental pairs in 10 Ae. aegypti test families in which parents originated from natural development sites in Iquitos. By mating known individuals in the laboratory, retaining the male, sampling the female's DNA before release, and collecting offspring in the field, the technique we developed can be used to genotype large numbers of Ae. aegypti, reconstruct family relationships, and track the egg-laying behavior of individual Ae. aegypti in nature.

  14. Long-term spatio-temporal dynamics of the mosquito Aedes aegypti in temperate Argentina.

    PubMed

    Fischer, S; De Majo, M S; Quiroga, L; Paez, M; Schweigmann, N

    2017-04-01

    Buenos Aires city is located near the southern limit of the distribution of Aedes aegypti (Diptera: Culicidae). This study aimed to assess long-term variations in the abundance of Ae. aegypti in Buenos Aires in relation to changes in climatic conditions. Ae. aegypti weekly oviposition activity was analyzed and compared through nine warm seasons from 1998 to 2014, with 200 ovitraps placed across the whole extension of the city. The temporal and spatial dynamics of abundances were compared among seasons, and their relation with climatic variables were analyzed. Results showed a trend to higher peak abundances, a higher number of infested sites, and longer duration of the oviposition season through subsequent years, consistent with a long-term colonization process. In contrast, thermal favorability and rainfall pattern did not show a consistent trend of changes. The long-term increase in abundance, and the recently documented expansion of Ae. aegypti to colder areas of Buenos Aires province suggest that local populations might be adapting to lower temperature conditions. The steadily increasing abundances may have implications on the risk of dengue transmission.

  15. Toxicity and Larvicidal Activity of Podophyllum-Based Lignans Against Aedes aegypti (Diptera: Culicidae).

    PubMed

    Maleck, Marise; Hollanda, Priscila de Oliveira; Serdeiro, Michele Teixeira; Soares, Renata Oliveira de Araújo; Honório, Nildimar Alves; Silva, Cláudia Gontijo

    2016-08-25

    Aedes aegypti L. (Diptera: Culicidae) is a mosquito species that has adapted to urban environments and is the main vector of dengue viruses. Because of the increasing incidence of dengue, a more environmentally acceptable insecticide needs to be found. Natural products have been and continue to be an important source of leading compounds that can be modified in order to develop new drugs. The lignan family of natural products includes compounds with a diverse spectrum of biological activity. Podophyllotoxin and its related lignans represent an exciting class of natural products that can be targeted at different types of biological activity and are therefore worth exploring further. This study had the aim of evaluating the larvicidal activity of an ethanolic extract from the rhizomes and roots of Podophyllum hexandrum (PM-3) and its isolated lignans, podophyllotoxone (1) and desoxypodophyllotoxin (2), on the larvae of the mosquito vector Ae. aegypti. The PM-3 extract and the compounds (1) and (2) were dissolved in a mixture of acetone and dimethylsulfoxide at final concentrations of 1, 10, 30, 50, 100, and 200 μg/ml. After dilution, the solutions were applied (μg/ml) to the larvae-rearing medium. Overall, the ethanolic extract from the rhizomes and roots of P. hexandrum and the compounds (1) and (2) showed larvicidal activity against the larvae of Ae. aegypti According to the results from this study, it can be concluded that podophyllotoxone (1) and desoxypodophyllotoxin (2) exhibited significant toxicity toward Ae. aegypti larvae.

  16. Lethal ovitrap deployment for Aedes aegypti control: potential implications for non-target organisms.

    PubMed

    Long, Sharron A; Jacups, Susan P; Ritchie, Scott A

    2015-06-01

    In Australia, dengue control combines source reduction with lethal ovitraps to reduce Aedes aegypti populations during outbreaks. Lethal ovitraps are considered a sustainable and environmentally friendly method of controlling container-inhabiting mosquitoes, however, to-date, this claim has not been quantified. This study assesses the potential impact of lethal ovitraps on non-target organisms when used to control Ae. aegypti in tropical Australia. For retention of specimens, we substituted standard sticky ovitraps for lethal ovitraps. We collected 988 Ae. aegypti and 44,132 non-target specimens over 13 months from 16 sites. Although Ae. aegypti comprised only 2.2% of the total collection, they were were the eighth most dominant taxa collected, on the 93(rd) percentile. Of the non-target organisms, Collembola were the dominant taxa, 44.2%, with 36.8% and 10.5% Diptera and Hymenoptera, respectively. Of the Dipterans, 61% were family Phoridae. Lethal ovitraps were visited by 90 insect or invertebrate families in total. Ovitraps are attractive to Collembola, Phoridae, Sciaridae, Formicidae, and Culicidae, with minimal attraction by Apidae and other commonly monitored non-target organisms. For container-inhabiting mosquitoes, LOs are cost effective operationally, requiring minimal staff resources for placement and retrieval.

  17. Household Dengue Prevention Interventions, Expenditures, and Barriers to Aedes aegypti Control in Machala, Ecuador

    PubMed Central

    Heydari, Naveed; Larsen, David A.; Neira, Marco; Beltrán Ayala, Efraín; Fernandez, Prissila; Adrian, Jefferson; Rochford, Rosemary; Stewart-Ibarra, Anna M.

    2017-01-01

    The Aedes aegypti mosquito is an efficient vector for the transmission of Zika, chikungunya, and dengue viruses, causing major epidemics and a significant social and economic burden throughout the tropics and subtropics. The primary means of preventing these diseases is household-level mosquito control. However, relatively little is known about the economic burden of Ae. aegypti control in resource-limited communities. We surveyed residents from 40 households in a high-risk community at the urban periphery in the city of Machala, Ecuador, on dengue perceptions, vector control interventions, household expenditures, and factors influencing purchasing decisions. The results of this study show that households spend a monthly median of US$2.00, or 1.90% (range: 0.00%, 9.21%) of their family income on Ae. aegypti control interventions. Households reported employing, on average, five different mosquito control and dengue prevention interventions, including aerosols, liquid sprays, repellents, mosquito coils, and unimpregnated bed nets. We found that effectiveness and cost were the most important factors that influence people’s decisions to purchase a mosquito control product. Our findings will inform the development and deployment of new Ae. aegypti control interventions by the public health and private sectors, and add to prior studies that have focused on the economic burden of dengue-like illness. PMID:28212349

  18. Influence of plant abundance on nectar feeding by Aedes aegypti (Diptera: Culicidae) in southern Mexico.

    PubMed

    Martinez-Ibarra, J A; Rodriguez, M H; Arredondo-Jimenez, J I; Yuval, B

    1997-11-01

    The availability of flowering plants affected the sugar feeding rates of female Aedes aegypti (L.) in 4 areas of a small city in southern Mexico. The proportion of mosquitoes containing sugar varied from 8 to 21% in 4 areas in direct relation to blooming plant abundance. Human density was similar in the 4 areas (range, 3.9-5.4 per house), whereas the number of flowering plants per house increased on the outskirts (range, 3.1-5.4 plants per house). Equal proportions of sugar positive females were nulliparous or parous, indicating similar sugar feeding at any age. In addition, nearly 60% of positive females were at the Christophers stage II, indicating a greater need for flight fuel during the early stages of egg development. We conclude that Ae. aegypti feeds frequently on nectar and that this activity is modulated by nectar availability.

  19. Influence of breeding site availability on the oviposition behaviour of Aedes aegypti.

    PubMed

    Abreu, Filipe Vieira Santos de; Morais, Maira Moreira; Ribeiro, Sérvio Pontes; Eiras, Álvaro Eduardo

    2015-08-01

    Despite the importance of the mosquito Aedes aegypti in the transmission of arboviruses, such as yellow fever, Chikungunya fever and dengue fever, some aspects of their behaviour remain unknown. In the present study, the oviposition behaviour of Ae. aegypti females that were exposed to different densities of breeding sites (2, 4, 8 and 16) was evaluated in laboratory and semi-field conditions. The number of breeding sites that were used was proportional to the number available, but tended towards stabilisation. Females used four-six breeding sites on average, with a maximum of 11. A high percentage of eggs was observed in the water, along with the presence of a breeding site termed "favourite", which received at least 40% of the eggs. The results are discussed in ecological, evolutionary and epidemiological approaches.

  20. SEX DETERMINATION. A male-determining factor in the mosquito Aedes aegypti.

    PubMed

    Hall, Andrew Brantley; Basu, Sanjay; Jiang, Xiaofang; Qi, Yumin; Timoshevskiy, Vladimir A; Biedler, James K; Sharakhova, Maria V; Elahi, Rubayet; Anderson, Michelle A E; Chen, Xiao-Guang; Sharakhov, Igor V; Adelman, Zach N; Tu, Zhijian

    2015-06-12

    Sex determination in the mosquito Aedes aegypti is governed by a dominant male-determining factor (M factor) located within a Y chromosome-like region called the M locus. Here, we show that an M-locus gene, Nix, functions as an M factor in A. aegypti. Nix exhibits persistent M linkage and early embryonic expression, two characteristics required of an M factor. Nix knockout with clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 resulted in largely feminized genetic males and the production of female isoforms of two key regulators of sexual differentiation: doublesex and fruitless. Ectopic expression of Nix resulted in genetic females with nearly complete male genitalia. Thus, Nix is both required and sufficient to initiate male development. This study provides a foundation for mosquito control strategies that convert female mosquitoes into harmless males.

  1. Indoor volatiles of primary school classrooms in Tapachula, Chiapas, Mexico, are attractants to Aedes aegypti females.

    PubMed

    Torres Estrada, José Luis; Ríos Delgado, Silvany Mayoly; Takken, Willem

    2013-09-01

    We determined the behavioral response of Aedes aegypti females to volatile compounds collected in indoor primary school classrooms. Volatiles were collected from classrooms from 0800 through 1030 h and 1130 through 1400 h in urban and rural schools in Tapachula, Chiapas, Mexico. Female responses to volatiles were assessed in a Y-tube olfactometer. Chemical compounds were identified using gas chromatography-mass spectrometer analysis. Volatiles from both schools were attractive when compared against their control. When such volatiles were compared, those from the rural school were more attractive than the ones from the urban school. Chromatographic profiles were similar between schools; however, the rural school showed more compounds. Attraction of Ae. aegypti females toward volatiles of primary school classrooms might increase dengue transmission probabilities in those sites.

  2. Influence of breeding site availability on the oviposition behaviour of Aedes aegypti

    PubMed Central

    de Abreu, Filipe Vieira Santos; Morais, Maira Moreira; Ribeiro, Sérvio Pontes; Eiras, Álvaro Eduardo

    2015-01-01

    Despite the importance of the mosquito Aedes aegypti in the transmission of arboviruses, such as yellow fever, Chikungunya fever and dengue fever, some aspects of their behaviour remain unknown. In the present study, the oviposition behaviour of Ae. aegypti females that were exposed to different densities of breeding sites (2, 4, 8 and 16) was evaluated in laboratory and semi-field conditions. The number of breeding sites that were used was proportional to the number available, but tended towards stabilisation. Females used four-six breeding sites on average, with a maximum of 11. A high percentage of eggs was observed in the water, along with the presence of a breeding site termed “favourite”, which received at least 40% of the eggs. The results are discussed in ecological, evolutionary and epidemiological approaches. PMID:26154742

  3. Assessing the Feasibility of Controlling Aedes aegypti with Transgenic Methods: A Model-Based Evaluation

    PubMed Central

    Legros, Mathieu; Xu, Chonggang; Okamoto, Kenichi; Scott, Thomas W.; Morrison, Amy C.; Lloyd, Alun L.; Gould, Fred

    2012-01-01

    Suppression of dengue and malaria through releases of genetically engineered mosquitoes might soon become feasible. Aedes aegypti mosquitoes carrying a conditionally lethal transgene have recently been used to suppress local vector populations in small-scale field releases. Prior to releases of transgenic insects on a wider scale, however, most regulatory authorities will require additional evidence that suppression will be effective in natural heterogeneous habitats. We use a spatially explicit stochastic model of an Ae. aegypti population in Iquitos, Peru, along with an uncertainty analysis of its predictions, to quantitatively assess the outcome of varied operational approaches for releases of transgenic strains with conditional death of females. We show that population elimination might be an unrealistic objective in heterogeneous populations. We demonstrate that substantial suppression can nonetheless be achieved if releases are deployed in a uniform spatial pattern using strains combining multiple lethal elements, illustrating the importance of detailed spatial models for guiding genetic mosquito control strategies. PMID:23284949

  4. Repellence of essential oils of aromatic plants growing in Argentina against Aedes aegypti (Diptera: Culicidae).

    PubMed

    Gleiser, Raquel M; Bonino, Maria A; Zygadlo, Julio A

    2011-01-01

    Mosquitoes are vectors of pathogens to humans and domestic animals and may also have economical impacts. One approach to prevent mosquito-borne diseases is bite deterrence through the application of repellents. Currently, there is an interest to search for alternative bioactive products to the synthetic active ingredients most widely used in insect repellents. Repellence against Aedes aegypti of essential oils extracted from Acantholippia salsoloides, Aloysia catamarcensis, Aloysia polystachya, Lippia integrifolia, Lippia junelliana (Verbenaceae), Baccharis salicifolia, Euphatorium buniifolium, and Tagetes filifolia (Asteraceae) were assessed. Tests were conducted by alternatively exposing untreated and treated forehand to the mosquitoes and counting probing attempts. All essential oils tested were significantly repellent against A. aegypti when compared to untreated controls; L. junelliana was the most repellent and T. filifolia was the least based on the response of the mosquitoes to different concentrations of the essential oils (EO). Repellence may be attributed to the respective main components of each EO.

  5. Laboratory strains of Aedes aegypti are competent to Brazilian Zika virus.

    PubMed

    Costa-da-Silva, André Luis; Ioshino, Rafaella Sayuri; Araújo, Helena Rocha Corrêa de; Kojin, Bianca Burini; Zanotto, Paolo Marinho de Andrade; Oliveira, Danielle Bruna Leal; Melo, Stella Rezende; Durigon, Edison Luiz; Capurro, Margareth Lara

    2017-01-01

    The Zika virus outbreaks are unprecedented human threat in relation to congenital malformations and neurological/autoimmune complications. Since this virus has high potential to spread in regions presenting the vectors, improvement in mosquito control is a top priority. Thus, Aedes aegypti laboratory strains will be fundamental to support studies in different research fields implicated on Zika-mosquito interactions which are the basis for the development of innovative control methods. In this sense, our aim was to determine the main infection aspects of a Brazilian Zika strain in reference Aedes aegypti laboratory mosquitoes. We orally exposed Rockefeller, Higgs and Rexville mosquitoes to the Brazilian ZIKV (ZIKVBR) and qRT-PCR was applied to determine the infection, dissemination and detection rates of ZIKV in the collected saliva as well as viral levels in mosquito tissues. The three strains sustain the virus development but Higgs showed significantly lower viral loads in bodies at 14 days post-infection (dpi) and the lowest prevalences in bodies and heads. The Rockefeller strain was the most susceptible at 7 dpi but similar dissemination rates were observed at 14 dpi. Although variations exist, the ZIKVBR RNA shows detectable levels in saliva of the three strains at 14 dpi but is only detected in Rockefeller at 7 dpi. Moreover, saliva samples from the three strains were confirmed to be infectious when intrathoracically injected into mosquitoes. The ZIKVBR kinetics was monitored in Rockefeller mosquitoes and virus could be identified in the heads at 4 dpi but was more consistently detected late in infection. Our study presents the first evaluation on how Brazilian Zika virus behaves in reference Aedes aegypti strains and shed light on how the infection evolves over time. Vector competence and hallmarks of the ZIKVBR development were revealed in laboratory mosquitoes, providing additional information to accelerate studies focused on ZIKV-mosquito interactions.

  6. Laboratory strains of Aedes aegypti are competent to Brazilian Zika virus

    PubMed Central

    Ioshino, Rafaella Sayuri; de Araújo, Helena Rocha Corrêa; Kojin, Bianca Burini; Zanotto, Paolo Marinho de Andrade; Oliveira, Danielle Bruna Leal; Melo, Stella Rezende; Durigon, Edison Luiz

    2017-01-01

    The Zika virus outbreaks are unprecedented human threat in relation to congenital malformations and neurological/autoimmune complications. Since this virus has high potential to spread in regions presenting the vectors, improvement in mosquito control is a top priority. Thus, Aedes aegypti laboratory strains will be fundamental to support studies in different research fields implicated on Zika-mosquito interactions which are the basis for the development of innovative control methods. In this sense, our aim was to determine the main infection aspects of a Brazilian Zika strain in reference Aedes aegypti laboratory mosquitoes. We orally exposed Rockefeller, Higgs and Rexville mosquitoes to the Brazilian ZIKV (ZIKVBR) and qRT-PCR was applied to determine the infection, dissemination and detection rates of ZIKV in the collected saliva as well as viral levels in mosquito tissues. The three strains sustain the virus development but Higgs showed significantly lower viral loads in bodies at 14 days post-infection (dpi) and the lowest prevalences in bodies and heads. The Rockefeller strain was the most susceptible at 7 dpi but similar dissemination rates were observed at 14 dpi. Although variations exist, the ZIKVBR RNA shows detectable levels in saliva of the three strains at 14 dpi but is only detected in Rockefeller at 7 dpi. Moreover, saliva samples from the three strains were confirmed to be infectious when intrathoracically injected into mosquitoes. The ZIKVBR kinetics was monitored in Rockefeller mosquitoes and virus could be identified in the heads at 4 dpi but was more consistently detected late in infection. Our study presents the first evaluation on how Brazilian Zika virus behaves in reference Aedes aegypti strains and shed light on how the infection evolves over time. Vector competence and hallmarks of the ZIKVBR development were revealed in laboratory mosquitoes, providing additional information to accelerate studies focused on ZIKV-mosquito interactions

  7. Open Field Release of Genetically Engineered Sterile Male Aedes aegypti in Malaysia

    PubMed Central

    Raduan, Norzahira; Kwee Wee, Lim; Hong Ming, Wong; Guat Ney, Teoh; Rahidah A.A., Siti; Salman, Sawaluddin; Subramaniam, Selvi; Nordin, Oreenaiza; Hanum A.T., Norhaida; Angamuthu, Chandru; Marlina Mansor, Suria; Lees, Rosemary S.; Naish, Neil; Scaife, Sarah; Gray, Pam; Labbé, Geneviève; Beech, Camilla; Nimmo, Derric; Alphey, Luke; Vasan, Seshadri S.; Han Lim, Lee; Wasi A., Nazni; Murad, Shahnaz

    2012-01-01

    Background Dengue is the most important mosquito-borne viral disease. In the absence of specific drugs or vaccines, control focuses on suppressing the principal mosquito vector, Aedes aegypti, yet current methods have not proven adequate to control the disease. New methods are therefore urgently needed, for example genetics-based sterile-male-release methods. However, this requires that lab-reared, modified mosquitoes be able to survive and disperse adequately in the field. Methodology/Principal Findings Adult male mosquitoes were released into an uninhabited forested area of Pahang, Malaysia. Their survival and dispersal was assessed by use of a network of traps. Two strains were used, an engineered ‘genetically sterile’ (OX513A) and a wild-type laboratory strain, to give both absolute and relative data about the performance of the modified mosquitoes. The two strains had similar maximum dispersal distances (220 m), but mean distance travelled of the OX513A strain was lower (52 vs. 100 m). Life expectancy was similar (2.0 vs. 2.2 days). Recapture rates were high for both strains, possibly because of the uninhabited nature of the site. Conclusions/Significance After extensive contained studies and regulatory scrutiny, a field release of engineered mosquitoes was safely and successfully conducted in Malaysia. The engineered strain showed similar field longevity to an unmodified counterpart, though in this setting dispersal was reduced relative to the unmodified strain. These data are encouraging for the future testing and implementation of genetic control strategies and will help guide future field use of this and other engineered strains. PMID:22970102

  8. Susceptibility to insecticides and resistance mechanisms in Aedes aegypti from the Colombian Caribbean Region.

    PubMed

    Maestre-Serrano, Ronald; Gomez-Camargo, Doris; Ponce-Garcia, Gustavo; Flores, Adriana E

    2014-11-01

    We determined the susceptibility to insecticides and the biochemical and molecular mechanisms involved in resistance in nine populations of Aedes aegypti (L.) of the Colombian Caribbean region. Bioassays were performed on larvae for susceptibility to temephos and on adults to the insecticides malathion, fenitrothion, pirimiphos-methyl, permethrin, deltamethrin, λ-cyhalothrin and cyfluthrin. The resistance ratio (RR) for each insecticide in the populations was determined, using the susceptible Rockefeller strain as a susceptible control. Additionally, we evaluated the response of the populations to the diagnostic dose (DD) of the organochlorine pesticide DDT. The following biochemical mechanisms associated with resistance were studied: α-esterases, β-esterases, mixed-function oxidases (MFO), glutathione s-transferases (GST) and insensitive acetylcholinesterase (iAChE) as well as the presence of kdr I1,016 mutation and its frequency. All populations studied showed susceptibility to the organophosphates evaluated (RR < 5-fold), except for the Puerto Colombia and Soledad populations which showed high resistance (RR 15-fold) and moderate resistance (RR 5-fold) to temephos, respectively, and Sincelejo (Sucre) with moderate resistance to pirimiphos-methyl (RR 5-fold). All populations evaluated with DD of DDT were found to be resistant with 2-28% of mortality. Variability was observed in the resistance to pyrethroids: permethrin (RR 1.2- to 30.8-fold), deltamethrin RR 0.9- to 37.8-fold), λ-cyalothrin (RR 3.4- to 83-fold) and cyfluthrin (RR 0.3- to 33.8-fold). Incipiently α-esterases and MFO levels were found in the Valledupar population; MFO showed the same profile in Cienaga and GST in the Sincelejo population, all other populations showed unaltered profiles of the enzymes evaluated. The kdr I1,016 mutation was found in all populations evaluated with variability in its allelic and genotypic frequencies.

  9. Weather Variability Associated with Aedes (Stegomyia) aegypti (Dengue Vector) Oviposition Dynamics in Northwestern Argentina.

    PubMed

    Estallo, Elizabet L; Ludueña-Almeida, Francisco F; Introini, María V; Zaidenberg, Mario; Almirón, Walter R

    2015-01-01

    This study aims to develop a forecasting model by assessing the weather variability associated with seasonal fluctuation of Aedes aegypti oviposition dynamic at a city level in Orán, in northwestern Argentina. Oviposition dynamics were assessed by weekly monitoring of 90 ovitraps in the urban area during 2005-2007. Correlations were performed between the number of eggs collected weekly and weather variables (rainfall, photoperiod, vapor pressure of water, temperature, and relative humidity) with and without time lags (1 to 6 weeks). A stepwise multiple linear regression analysis was performed with the set of meteorological variables from the first year of study with the variables in the time lags that best correlated with the oviposition. Model validation was conducted using the data from the second year of study (October 2006- 2007). Minimum temperature and rainfall were the most important variables. No eggs were found at temperatures below 10 °C. The most significant time lags were 3 weeks for minimum temperature and rains, 3 weeks for water vapor pressure, and 6 weeks for maximum temperature. Aedes aegypti could be expected in Orán three weeks after rains with adequate min temperatures. The best-fit forecasting model for the combined meteorological variables explained 70 % of the variance (adj. R(2)). The correlation between Ae. aegypti oviposition observed and estimated by the forecasting model resulted in rs = 0.80 (P < 0.05). The forecasting model developed would allow prediction of increases and decreases in the Ae. aegypti oviposition activity based on meteorological data for Orán city and, according to the meteorological variables, vector activity can be predicted three or four weeks in advance.

  10. Effective disposal of nitrogen waste in blood-fed Aedes aegypti mosquitoes requires alanine aminotransferase

    PubMed Central

    Mazzalupo, Stacy; Isoe, Jun; Belloni, Virginia; Scaraffia, Patricia Y.

    2016-01-01

    To better understand the mechanisms responsible for the success of female mosquitoes in their disposal of excess nitrogen, we investigated the role of alanine aminotransferase (ALAT) in blood-fed Aedes aegypti. Transcript and protein levels from the 2 ALAT genes were analyzed in sucrose- and blood-fed A. aegypti tissues. ALAT1 and ALAT2 exhibit distinct expression patterns in tissues during the first gonotrophic cycle. Injection of female mosquitoes with either double-stranded RNA (dsRNA)-ALAT1 or dsRNA ALAT2 significantly decreased mRNA and protein levels of ALAT1 or ALAT2 in fat body, thorax, and Malpighian tubules compared with dsRNA firefly luciferase-injected control mosquitoes. The silencing of either A. aegypti ALAT1 or ALAT2 caused unexpected phenotypes such as a delay in blood digestion, a massive accumulation of uric acid in the midgut posterior region, and a significant decrease of nitrogen waste excretion during the first 48 h after blood feeding. Concurrently, the expression of genes encoding xanthine dehydrogenase and ammonia transporter (Rhesus 50 glycoprotein) were significantly increased in tissues of both ALAT1- and ALAT2-deficient females. Moreover, perturbation of ALAT1 and ALAT2 in the female mosquitoes delayed oviposition and reduced egg production. These novel findings underscore the efficient mechanisms that blood-fed mosquitoes use to avoid ammonia toxicity and free radical damage.—Mazzalupo, S., Isoe, J., Belloni, V., Scaraffia, P. Y. Effective disposal of nitrogen waste in blood-fed Aedes aegypti mosquitoes requires alanine aminotransferase. PMID:26310269

  11. Toxicity of spinosad to temephos-resistant Aedes aegypti populations in Brazil.

    PubMed

    Dos Santos Dias, Luciana; Macoris, Maria de Lourdes da Graça; Andrighetti, Maria Teresa Macoris; Otrera, Vanessa Camargo Garbeloto; Dias, Adriana Dos Santos; Bauzer, Luiz Guilherme Soares da Rocha; Rodovalho, Cynara de Melo; Martins, Ademir Jesus; Lima, José Bento Pereira

    2017-01-01

    The mosquito Aedes aegypti is the primary vector of different arboviruses and represents a major public health problem. Several Brazilian populations of Ae. aegypti have developed resistance to temephos, the most used organophosphate larvicide. New tools which are less harmful to the environment and safer for humans are becoming increasingly important to control this insect vector. Spinosad, an aerobic fermentation product of a soil actinobacteria, has a favorable environmental profile. It presents selective insecticide properties, a mechanism of action that differs from those of many synthetic chemical insecticides. The toxicity of spinosad and temephos to Aedes aegypti populations from Brazil, which were previously exposed to temephos, were investigated in this study. Larval susceptibility (LC50) to temephos varied from 3μg/L for Rockefeller up to 260 μg/L for Santana do Ipanema field derived population. Larval susceptibility (LC50) to spinosad varied from 23μg/L for Rockefeller up to 93μg/L for Marilia field derived population. In addition, a semi-field trial was performed to evaluate spinosad (NatularTM DT) initial efficacy and persistence toward four field-derived lineages and the Rockefeller lineage, used as an internal control. Spinosad was tested at 0.5mg active ingredient/L in 200L capacity water tanks. Mortality was recorded each 24 hours after exposition and tanks were further recolonized once per week with mortality being recorded daily for eight weeks. Spinosad provided a level equal or superior to 80% mortality during a seven to eight week evaluation period. The assessed populations did not present cross-resistance between spinosad and temephos in laboratory conditions. It demonstrates that spinosad may be a promising larvicide for the control of Ae. aegypti, especially for populations in which resistance to temephos has been detected.

  12. Toxicity of spinosad to temephos-resistant Aedes aegypti populations in Brazil

    PubMed Central

    dos Santos Dias, Luciana; Macoris, Maria de Lourdes da Graça; Andrighetti, Maria Teresa Macoris; Otrera, Vanessa Camargo Garbeloto; Dias, Adriana dos Santos; Bauzer, Luiz Guilherme Soares da Rocha; Rodovalho, Cynara de Melo; Martins, Ademir Jesus; Lima, José Bento Pereira

    2017-01-01

    The mosquito Aedes aegypti is the primary vector of different arboviruses and represents a major public health problem. Several Brazilian populations of Ae. aegypti have developed resistance to temephos, the most used organophosphate larvicide. New tools which are less harmful to the environment and safer for humans are becoming increasingly important to control this insect vector. Spinosad, an aerobic fermentation product of a soil actinobacteria, has a favorable environmental profile. It presents selective insecticide properties, a mechanism of action that differs from those of many synthetic chemical insecticides. The toxicity of spinosad and temephos to Aedes aegypti populations from Brazil, which were previously exposed to temephos, were investigated in this study. Larval susceptibility (LC50) to temephos varied from 3μg/L for Rockefeller up to 260 μg/L for Santana do Ipanema field derived population. Larval susceptibility (LC50) to spinosad varied from 23μg/L for Rockefeller up to 93μg/L for Marilia field derived population. In addition, a semi-field trial was performed to evaluate spinosad (NatularTM DT) initial efficacy and persistence toward four field-derived lineages and the Rockefeller lineage, used as an internal control. Spinosad was tested at 0.5mg active ingredient/L in 200L capacity water tanks. Mortality was recorded each 24 hours after exposition and tanks were further recolonized once per week with mortality being recorded daily for eight weeks. Spinosad provided a level equal or superior to 80% mortality during a seven to eight week evaluation period. The assessed populations did not present cross-resistance between spinosad and temephos in laboratory conditions. It demonstrates that spinosad may be a promising larvicide for the control of Ae. aegypti, especially for populations in which resistance to temephos has been detected. PMID:28301568

  13. Weather Variability Associated with Aedes (Stegomyia) aegypti (Dengue Vector) Oviposition Dynamics in Northwestern Argentina

    PubMed Central

    Estallo, Elizabet L.; Ludueña-Almeida, Francisco F.; Introini, María V.; Zaidenberg, Mario; Almirón, Walter R.

    2015-01-01

    This study aims to develop a forecasting model by assessing the weather variability associated with seasonal fluctuation of Aedes aegypti oviposition dynamic at a city level in Orán, in northwestern Argentina. Oviposition dynamics were assessed by weekly monitoring of 90 ovitraps in the urban area during 2005-2007. Correlations were performed between the number of eggs collected weekly and weather variables (rainfall, photoperiod, vapor pressure of water, temperature, and relative humidity) with and without time lags (1 to 6 weeks). A stepwise multiple linear regression analysis was performed with the set of meteorological variables from the first year of study with the variables in the time lags that best correlated with the oviposition. Model validation was conducted using the data from the second year of study (October 2006- 2007). Minimum temperature and rainfall were the most important variables. No eggs were found at temperatures below 10°C. The most significant time lags were 3 weeks for minimum temperature and rains, 3 weeks for water vapor pressure, and 6 weeks for maximum temperature. Aedes aegypti could be expected in Orán three weeks after rains with adequate min temperatures. The best-fit forecasting model for the combined meteorological variables explained 70 % of the variance (adj. R2). The correlation between Ae. aegypti oviposition observed and estimated by the forecasting model resulted in rs = 0.80 (P < 0.05). The forecasting model developed would allow prediction of increases and decreases in the Ae. aegypti oviposition activity based on meteorological data for Orán city and, according to the meteorological variables, vector activity can be predicted three or four weeks in advance. PMID:25993415

  14. How Much Does Inbreeding Reduce Heterozygosity? Empirical Results from Aedes aegypti.

    PubMed

    Powell, Jeffrey R; Evans, Benjamin R

    2017-01-11

    Deriving strains of mosquitoes with reduced genetic variation is useful, if not necessary, for many genetic studies. Inbreeding is the standard way of achieving this. Full-sib inbreeding the mosquito Aedes aegypti for seven generations reduced heterozygosity to 72% of the initial heterozygosity in contrast to the expected 13%. This deviation from expectations is likely due to high frequencies of deleterious recessive alleles that, given the number of markers studied (27,674 single nucleotide polymorphisms [SNPs]), must be quite densely spread in the genome.

  15. [Toxicity of isolates of Bacillus thuringiensis from Wroclaw against larvae of Aedes aegypti].

    PubMed

    Lonc, E; Kucińska, J; Rydzanicz, K

    2001-01-01

    Seven field isolates of Bacillus thuringiensis from the Lower Silesia, region of Poland, the Osola plain and phylloplane niches and soil samples from the Karkonosze National Park were tested in vitro for insecticidal activity against mosquito larvae Aedes aegypti. Both the spore/crystal mixture and pured crystals from B. thuringienis strains KpC1, KpF3 and OpQ3 (belonging to the first physiological group including the subspecies japonensis, yoso, jinghongiensis ) proved to be the most active against insects (61-65% of corrected mortality). The lowest toxicity (7-28% mortality) was caused by B. thuringiensis wratislaviensis strains (PO12 and 13).

  16. Promising Aedes aegypti Repellent Chemotypes Identified through Integrated QSAR, Virtual Screening, Synthesis, and Bioassay

    PubMed Central

    Oliferenko, Polina V.; Oliferenko, Alexander A.; Poda, Gennadiy I.; Osolodkin, Dmitry I.; Pillai, Girinath G.; Bernier, Ulrich R.; Tsikolia, Maia; Agramonte, Natasha M.; Clark, Gary G.; Linthicum, Kenneth J.; Katritzky, Alan R.

    2013-01-01

    Molecular field topology analysis, scaffold hopping, and molecular docking were used as complementary computational tools for the design of repellents for Aedes aegypti, the insect vector for yellow fever, chikungunya, and dengue fever. A large number of analogues were evaluated by virtual screening with Glide molecular docking software. This produced several dozen hits that were either synthesized or procured from commercial sources. Analysis of these compounds by a repellent bioassay resulted in a few highly active chemicals (in terms of minimum effective dosage) as viable candidates for further hit-to-lead and lead optimization effort. PMID:24039693

  17. Oral receptivity of Aedes aegypti from Cape Verde for yellow fever, dengue, and chikungunya viruses.

    PubMed

    Vazeille, Marie; Yébakima, André; Lourenço-de-Oliveira, Ricardo; Andriamahefazafy, Barrysson; Correira, Artur; Rodrigues, Julio Monteiro; Veiga, Antonio; Moreira, Antonio; Leparc-Goffart, Isabelle; Grandadam, Marc; Failloux, Anna-Bella

    2013-01-01

    At the end of 2009, 21,313 cases of dengue-3 virus (DENV-3) were reported in the islands of Cape Verde, an archipelago located in the Atlantic Ocean 570 km from the coast of western Africa. It was the first dengue outbreak ever reported in Cape Verde. Mosquitoes collected in July 2010 in the city of Praia, on the island of Santiago, were identified morphologically as Aedes aegypti formosus. Using experimental oral infections, we found that this vector showed a moderate ability to transmit the epidemic dengue-3 virus, but was highly susceptible to chikungunya and yellow fever viruses.

  18. Risk factors for the presence of Aedes aegypti and Aedes albopictus in domestic water-holding containers in areas impacted by the Nam Theun 2 hydroelectric project, Laos.

    PubMed

    Hiscox, Alexandra; Kaye, Angela; Vongphayloth, Khamsing; Banks, Ian; Piffer, Michele; Khammanithong, Phasouk; Sananikhom, Pany; Kaul, Surinder; Hill, Nigel; Lindsay, Steven W; Brey, Paul T

    2013-06-01

    We assessed risk factors for vectors of dengue and chikungunya viruses near a new hydroelectric project, Nam Theun 2, in Laos. Immature stages of Aedes aegypti were found only in sites within 40 km of the urban provincial capital, but Aedes albopictus was found throughout. Aedes aegypti pupae were most common in water storage jars (odds ratio [OR] = 4.72) and tires (OR = 2.99), and Ae. albopictus pupae were associated with tires in 2009 (OR = 10.87) and drums, tires, and jars in 2010 (drums OR = 3.05; tires OR = 3.45, jars OR = 6.59). Compared with water storage vessels, containers used for hygiene, cooking, and drinking were 80% less likely to harbor Ae. albopictus pupae in 2010 (OR = 0.20), and discarded waste was associated with a 3.64 increased odds of infestation. Vector control efforts should focus on source reduction of water storage containers, particularly concrete jars and tires.

  19. [Ecologic indexes in the surveillance system of Aedes aegypti (Diptera: Culicidae) in Cuba].

    PubMed

    Marquetti, M C; González, D; Aguilera, L; Navarro, A

    1999-01-01

    The ecological indexes called diversity (H') and equitability (J') of the mosquito species were determined in six of the most common reservoirs of the urban ecosystem in the Plaza de la Revolución municipality, City of Havana. Data analysis showed that according to the values of these indexes, the most dangerous reservoirs were tyres, larvitraps and artificial reservoirs in general. Reference is also made on the use of larvitraps in the surveillance system of Aedes aegypti and the detection and stabilization of mosquitoes such as Aedes mediovittatus and Culex migripalpus in the urban ecosystem. The variety of species ranged from 2 to 7 in the studied reservoirs which showed differences in the patterns of use of the resources in the urban ecosystem.

  20. Field sampling rate of BG-sentinel traps for Aedes aegypti (Diptera: Culicidae) in suburban Cairns, Australia.

    PubMed

    Johnson, P H; Spitzauer, V; Ritchie, S A

    2012-01-01

    Mini-mark-release-recapture experiments were conducted in suburban Cairns, Australia to establish the sampling rate of the Biogents-Sentinel (BGS) trap for adult Aedes aegypti (L.). Small cohorts of marked mosquitoes (30 females and 15 males) were released at typical Cairns residences, and the number of marked mosquitoes recaptured in the BGS trap after 24 h was recorded. The sampling rate was compared between two seasons and two common housing styles (high-set 'Queenslander-style' timber and low-set brick houses), between old gravid and young nulliparous females, and between mosquitoes released in different areas of a house. Overall, the BGS traps recaptured a mean (+/- SEM) of 24.6% (+/- 1.9) of the released marked female mosquitoes in 24 h. The mean recapture rate for females was significantly higher in the dry season (30.4% +/- 2.8) compared with the wet (18.8% +/- 2.2). The overall recapture rates did not differ significantly between the two house types, but variability between the individual premises was high. An overall mean of 18.2% (+/- 1.7) of males was collected. Recapture rates of young nullipars and older gravid females were similar. These recapture rates can be used to estimate the population density of Ae. aegypti females in north Queensland, although it will provide an underestimate as trap sample was largely representative of mosquitoes present in the same area as the trap, and not from other areas of the house.

  1. Dynamic expression of genes encoding subunits of inward rectifier potassium (Kir) channels in the yellow fever mosquito Aedes aegypti.

    PubMed

    Yang, Zhongxia; Statler, Bethanie-Michelle; Calkins, Travis L; Alfaro, Edna; Esquivel, Carlos J; Rouhier, Matthew F; Denton, Jerod S; Piermarini, Peter M

    2017-02-01

    Inward rectifier potassium (Kir) channels play fundamental roles in neuromuscular, epithelial, and endocrine function in mammals. Recent research in insects suggests that Kir channels play critical roles in the development, immune function, and excretory physiology of fruit flies and/or mosquitoes. Moreover, our group has demonstrated that mosquito Kir channels may serve as valuable targets for the development of novel insecticides. Here we characterize the molecular expression of 5 mRNAs encoding Kir channel subunits in the yellow fever mosquito, Aedes aegypti: Kir1, Kir2A-c, Kir2B, Kir2B', and Kir3. We demonstrate that 1) Kir mRNA expression is dynamic in whole mosquitoes, Malpighian tubules, and the midgut during development from 4th instar larvae to adult females, 2) Kir2B and Kir3 mRNA levels are reduced in 4th instar larvae when reared in water containing an elevated concentration (50mM) of KCl, but not NaCl, and 3) Kir mRNAs are differentially expressed in the Malpighian tubules, midgut, and ovaries within 24h after blood feeding. Furthermore, we provide the first characterization of Kir mRNA expression in the anal papillae of 4th instar larval mosquitoes, which indicates that Kir2A-c is the most abundant. Altogether, the data provide the first comprehensive characterization of Kir mRNA expression in Ae. aegypti and offer insights into the putative physiological roles of Kir subunits in this important disease vector.

  2. Large indoor cage study of the suppression of stable Aedes aegypti populations by the release of thiotepa-sterilised males

    PubMed Central

    Gato, René; Lees, Rosemary Susan; Bruzon, Rosa Y; Companioni, Ariamys; Menendez, Zulema; González, Aileen; Rodríguez, Misladys

    2014-01-01

    The sterile insect technique (SIT) is a promising pest control method in terms of efficacy and environmental compatibility. In this study, we determined the efficacy of thiotepa-sterilised males in reducing the target Aedes aegypti populations. Treated male pupae were released weekly into large laboratory cages at a constant ratio of either 5:1 or 2:1 sterile-to-fertile males. A two-to-one release ratio reduced the hatch rate of eggs laid in the cage by approximately a third and reduced the adult catch rate by approximately a quarter, but a 5:1 release drove the population to elimination after 15 weeks of release. These results indicate that thiotepa exposure is an effective means of sterilising Ae. aegypti and males thus treated are able to reduce the reproductive capacity of a stable population under laboratory conditions. Further testing of the method in semi-field enclosures is required to evaluate the mating competitiveness of sterile males when exposed to natural environmental conditions. If proven effective, SIT using thiotepa-sterilised males may be incorporated into an integrated programme of vector control to combat dengue in Cuba. PMID:24863972

  3. Large indoor cage study of the suppression of stable Aedes aegypti populations by the release of thiotepa-sterilised males.

    PubMed

    Gato, René; Lees, Rosemary Susan; Bruzon, Rosa Y; Companioni, Ariamys; Menendez, Zulema; González, Aileen; Rodríguez, Misladys

    2014-06-01

    The sterile insect technique (SIT) is a promising pest control method in terms of efficacy and environmental compatibility. In this study, we determined the efficacy of thiotepa-sterilised males in reducing the target Aedes aegypti populations. Treated male pupae were released weekly into large laboratory cages at a constant ratio of either 5:1 or 2:1 sterile-to-fertile males. A two-to-one release ratio reduced the hatch rate of eggs laid in the cage by approximately a third and reduced the adult catch rate by approximately a quarter, but a 5:1 release drove the population to elimination after 15 weeks of release. These results indicate that thiotepa exposure is an effective means of sterilising Ae. aegypti and males thus treated are able to reduce the reproductive capacity of a stable population under laboratory conditions. Further testing of the method in semi-field enclosures is required to evaluate the mating competitiveness of sterile males when exposed to natural environmental conditions. If proven effective, SIT using thiotepa-sterilised males may be incorporated into an integrated programme of vector control to combat dengue in Cuba.

  4. The queenslandensis and the type Form of the Dengue Fever Mosquito (Aedes aegypti L.) Are Genomically Indistinguishable

    PubMed Central

    Filipović, Igor; Callahan, Ashley G.; Stanford, Darren; Chan, Abigail; Lam-Phua, Sai Gek; Tan, Cheong Huat; Hoffmann, Ary Anthony

    2016-01-01

    Background The mosquito Aedes aegypti (L.) is a major vector of viral diseases like dengue fever, Zika and chikungunya. Aedes aegypti exhibits high morphological and behavioral variation, some of which is thought to be of epidemiological significance. Globally distributed domestic Ae. aegypti have often been grouped into (i) the very pale variety queenslandensis and (ii) the type form. Because the two color forms co-occur across most of their range, there is interest in understanding how freely they interbreed. This knowledge is particularly important for control strategies that rely on mating compatibilities between the release and target mosquitoes, such as Wolbachia releases and SIT. To address this question, we analyzed nuclear and mitochondrial genome-wide variation in the co-occurring pale and type Ae. aegypti from northern Queensland (Australia) and Singapore. Methods/Findings We typed 74 individuals at a 1170 bp-long mitochondrial sequence and at 16,569 nuclear SNPs using a customized double-digest RAD sequencing. 11/29 genotyped individuals from Singapore and 11/45 from Queensland were identified as var. queenslandensis based on the diagnostic scaling patterns. We found 24 different mitochondrial haplotypes, seven of which were shared between the two forms. Multivariate genetic clustering based on nuclear SNPs corresponded to individuals’ geographic location, not their color. Several family groups consisted of both forms and three queenslandensis individuals were Wolbachia infected, indicating previous breeding with the type form which has been used to introduce Wolbachia into Ae. aegypti populations. Conclusion Aedes aegypti queenslandensis are genomically indistinguishable from the type form, which points to these forms freely interbreeding at least in Australia and Singapore. Based on our findings, it is unlikely that the presence of very pale Ae. aegypti will affect the success of Aedes control programs based on Wolbachia-infected, sterile or RIDL

  5. The Efficacy of Some Commercially Available Insect Repellents for Aedes aegypti (Diptera: Culicidae) and Aedes albopictus (Diptera: Culicidae)

    PubMed Central

    Rodriguez, Stacy D.; Drake, Lisa L.; Price, David P.; Hammond, John I.; Hansen, Immo A.

    2015-01-01

    Reducing the number of host-vector interactions is an effective way to reduce the spread of vector-borne diseases. Repellents are widely used to protect humans from a variety of protozoans, viruses, and nematodes. DEET (N,N-Diethyl-meta-toluamide), a safe and effective repellent, was developed during World War II. Fear of possible side effects of DEET has created a large market for “natural” DEET-free repellents with a variety of active ingredients. We present a comparative study on the efficacy of eight commercially available products, two fragrances, and a vitamin B patch. The products were tested using a human hand as attractant in a Y-tube olfactometer setup with Aedes aegypti (Linnaeus) and Aedes albopictus (Skuse), both major human disease vectors. We found that Ae. albopictus were generally less attracted to the test subject’s hand compared with Ae, aegypti. Repellents with DEET as active ingredient had a prominent repellency effect over longer times and on both species. Repellents containing p-menthane-3,8-diol produced comparable results but for shorter time periods. Some of the DEET-free products containing citronella or geraniol did not have any significant repellency effect. Interestingly, the perfume we tested had a modest repellency effect early after application, and the vitamin B patch had no effect on either species. This study shows that the different active ingredients in commercially available mosquito repellent products are not equivalent in terms of duration and strength of repellency. Our results suggest that products containing DEET or p-menthane-3,8-diol have long-lasting repellent effects and therefore provide good protection from mosquito-borne diseases. PMID:26443777

  6. A Large Scale Biorational Approach Using Bacillus thuringiensis israeliensis (Strain AM65-52) for Managing Aedes aegypti Populations to Prevent Dengue, Chikungunya and Zika Transmission

    PubMed Central

    Pruszynski, Catherine A.; Hribar, Lawrence J.; Mickle, Robert; Leal, Andrea L.

    2017-01-01

    Background Aedes aegypti is a container-inhabiting mosquito and a vector of dengue, chikungunya, and Zika viruses. In 2009 several cases of autochthonous dengue transmission were reported in Key West, Florida, USA prompting a comprehensive response to control A. aegypti. In Key West, larvae of this mosquito develop in containers around human habitations which can be numerous and labor intensive to find and treat. Aerial applications of larvicide covering large areas in a short time can be an efficient and economical method to control A. aegypti. Bacillus thuringiensis israelensis (Bti) is a bacterial larvicide which is highly target specific and appropriate for wide area spraying over urban areas, but to date, there are no studies that evaluate aerial spraying of Bti to control container mosquitoes like A. aegypti. Methodology This paper examines the effectiveness of aerial larvicide applications using VectoBac® WG, a commercially available Bti formulation, for A. aegypti control in an urban setting in the USA. Droplet characteristics and spray drop deposition were evaluated in Key West, Florida, USA. The mortality of A. aegypti in containers placed under canopy in an urban environment was also evaluated. Efficacy of multiple larvicide applications on adult female A. aegypti population reduction was compared between an untreated control and treatment site. Conclusions Droplet characteristics showed that small droplets can penetrate through dense canopy to reach small containers. VectoBac WG droplets reached small containers under heavy canopy in sufficient amounts to cause > 55% mortality on all application days and >90% mortality on 3 of 5 application days while controls had <5% mortality. Aerial applications of VectoBac WG caused significant decrease in adult female populations throughout the summer and during the 38th week (last application) the difference in adult female numbers between untreated and treated sites was >50%. Aerial larvicide applications using

  7. Biglutaminyl-biliverdin IX alpha as a heme degradation product in the dengue fever insect-vector Aedes aegypti.

    PubMed

    Pereira, Luiza O R; Oliveira, Pedro L; Almeida, Igor C; Paiva-Silva, Gabriela O

    2007-06-12

    Hemoglobin digestion in the midgut of hematophagous animals results in the release of its prosthetic group, heme, which is a pro-oxidant molecule. Heme enzymatic degradation is a protective mechanism that has been described in several organisms, including plants, bacteria, and mammals. This reaction is catalyzed by heme oxygenase and results in formation of carbon monoxide, ferrous ion, and biliverdin IXalpha. During digestion, a large amount of a green pigment is produced and secreted into the intestinal lumen of Aedes aegypti adult females. In the case of another blood-sucking insect, the kissing-bug Rhodnius prolixus, we have recently shown that heme degradation involves a complex pathway that generates dicysteinyl-biliverdin IX gamma. The light absorption spectrum of the Aedes purified pigment was similar to that of biliverdin, but its mobility on a reverse-phase chromatography column suggested a compound less hydrophobic than biliverdin IXalpha. Structural characterization by ESI-MS revealed that the mosquito pigment is the alpha isomer of biliverdin bound to two glutamine residues by an amide bond. This biglutaminyl-biliverdin is formed by oxidative cleavage of the heme porphyrin ring followed by two subsequent additions of glutamine residues to the biliverdin IXalpha. The role of this pathway in the adaptation of this insect vector to a blood-feeding habit is discussed.

  8. Oviposition Responses of the Mosquitoes Aedes Aegypti and Aedes Albopictus to Experimental Plant Infusions in Laboratory Bioassays

    PubMed Central

    Ponnusamy, Loganathan; Xu, Ning; Böröczky, Katalin; Wesson, Dawn M.; Ayyash, Luma Abu; Schal, Coby; Apperson, Charles S.

    2013-01-01

    Attraction of the mosquitoes Aedes aegypti and Ae. albopictus to plant infusions was evaluated by using a modified sticky-screen bioassay that improved the resolution of mosquito responses to odorants. Under bioassay conditions, solid-phase microextraction-gas chromatographic analyses of the volatile marker chemical indole showed that odorants diffused from bioassay cups, forming a concentration gradient. Infusions were prepared by separately fermenting senescent leaves of eight plant species in well water. Plant infusions were evaluated over an 8-fold range of leaf biomass and/or a 28d fermentation period. The responses of gravid females of both mosquito species varied with the plant species and biomass of plant materials used to make infusions, and with the length of the fermentation period. Infusions made from senescent bamboo (Arundinaria gigantea) and white oak (Quercus alba) leaves were significantly attractive to both mosquitoes. In general, infusions prepared by using low biomass of plant material over a 7–14d fermentation period were most attractive to Ae. aegypti. In contrast, Ae. albopictus was attracted to infusions made using a wider range of plant biomass and over a longer fermentation period. Both mosquito species were more attracted to a non-sterile white oak leaf infusion than to white oak leaf infusion that was prepared using sterilized plant material and water, thus suggesting a role for microbial activity in the production of odorants that mediate the oviposition response of gravid mosquitoes. PMID:20521087

  9. The wMel Strain of Wolbachia Reduces Transmission of Chikungunya Virus in Aedes aegypti

    PubMed Central

    Aliota, Matthew T.; Walker, Emma C.; Uribe Yepes, Alexander; Dario Velez, Ivan; Christensen, Bruce M.; Osorio, Jorge E.

    2016-01-01

    Background New approaches to preventing chikungunya virus (CHIKV) are needed because current methods are limited to controlling mosquito populations, and they have not prevented the invasion of this virus into new locales, nor have they been sufficient to control the virus upon arrival. A promising candidate for arbovirus control and prevention relies on the introduction of the intracellular bacterium Wolbachia into Aedes aegypti mosquitoes. This primarily has been proposed as a tool to control dengue virus (DENV) transmission; however, evidence suggests Wolbachia infections confer protection for Ae. aegypti against CHIKV. Although this approach holds much promise for limiting virus transmission, at present our understanding of the ability of CHIKV to infect, disseminate, and be transmitted by wMel-infected Ae. aegypti currently being used at Wolbachia release sites is limited. Methodology/Principal Findings Using Ae. aegypti infected with the wMel strain of Wolbachia that are being released in Medellin, Colombia, we report that these mosquitoes have reduced vector competence for CHIKV, even with extremely high viral titers in the bloodmeal. In addition, we examined the dynamics of CHIKV infection over the course of four to seven days post feeding. Wolbachia-infected mosquitoes remained non-infective over the duration of seven days, i.e., no infectious virus was detected in the saliva when exposed to bloodmeals of moderate viremia, but CHIKV-exposed, wild type mosquitoes did have viral loads in the saliva consistent with what has been reported elsewhere. Finally, the presence of wMel infection had no impact on the lifespan of mosquitoes as compared to wild type mosquitoes following CHIKV infection. Conclusions/Significance These results could have an impact on vector control strategies in areas where Ae. aegypti are transmitting both DENV and CHIKV; i.e., they argue for further exploration, both in the laboratory and the field, on the feasibility of expanding this

  10. Screening of Methanolic Plant Extracts against Larvae of Aedes aegypti and Anopheles stephensi in Mysore

    PubMed Central

    Mohankumar, Thirumalapura Krishnaiah; Shivanna, Kumuda Sathigal; Achuttan, Vijayan Valiakottukal

    2016-01-01

    Background: Mosquitoes transmit serious human diseases, causing millions of death every year. Vector control is facing a threat due to the emergence of resistance to synthetic insecticides. Insecticides of botanical origin may serve as suitable alternative biocontrol techniques in the future. Nine different locally available medicinally important plants suspected to posse larvicidal property were screened against fourth instar larvae of Aedes aegypti and Anopheles stephensi to a series of concentrations of the methanolic extracts. Methods: Susceptibility tests on Ae. aegypti and An. stephensi were conducted using standard WHO methods. The larvae of two mosquito species were exposed to methanolic extracts and mortality counts were made after 24 hours of exposure as per WHO method. Larvae of Ae. aegypti were more susceptible than that of An. stephensi. Results: Among the nine plant species tested, Annona reticulata leaf extract was more effective against Ae. aegypti larvae with LC50 and LC90 values of 95.24 and 262.64 ppm respectively and against An. stephensi larvae 262.71 and 636.94 ppm respectively. The least efficacy was in Cosmos bipinnatus with LC50 and LC90 values of 442.6 and 1225.93 ppm against Ae. aegypti and LC50 and LC90 values of 840.69 and 1334.01 ppm of Thespesia populnea against An. stephensi. Conclusion: The crude methanolic extract of the An. reticulata with good larvicidal efficacy could be considered for further characterization to control mosquito vectors instead of chemical insecticides. High efficacy found in An. reticulata extract will be considered for further studies to isolate the bioactive compound. PMID:27308289

  11. Impact of Terminalia chebula Retz. against Aedes aegypti L. and non-target aquatic predatory insects.

    PubMed

    Thanigaivel, Annamalai; Vasantha-Srinivasan, Prabhakaran; Senthil-Nathan, Sengottayan; Edwin, Edward-Sam; Ponsankar, Athirstam; Chellappandian, Muthiah; Selin-Rani, Selvaraj; Lija-Escaline, Jalasteen; Kalaivani, Kandaswamy

    2017-03-01

    Aedes aegypti Linn is one of the most important mosquito species. The vectors are responsible for causing deadly diseases like dengue and dengue hemorrhagic fever. Several chemical pesticides used to control these dengue vectors caused severe toxic significances on human health and other non-target beneficial insects. Therefore the current investigation has been made to access the bio-efficacy of the crude seed extracts of T. chebula against the dengue vector Ae. aegypti. The GC-MS analysis of crude seed extracts of T. chebula identified nine chemical compounds with major peak area in the 1,2,3-Benzenetriol (61.96%), followed by Tridecanoic acid (09.55%). Ae. aegypti larvae showed dose dependent mortality rate was observed between the treatments. Prominent protection rate at greater concentrations of 100ppm and moderate protection at 75 and 50ppm was observed in the repellent assay. Lethal concentration (LC50 and LC90) of fourth instar larvae of Ae. aegypti was observed in 138 and 220ppm concentration respectively. Similarly, the seed extracts showed 100% adulticidal activity at the concentration of 400ppm at 30min of exposure time. Phytochemicals present in the seed extracts of T. chebula significantly affects the major portions of the midgut tissues of Ae. aegypti at the concentration of 100ppm. The toxicological evaluation of seed extracts also proved non-toxic towards the A. bouvieri and Tx. splendens aquatic predatory insects. Hence, the present result suggest that bio-rational plant derived T. chebula could be incorporated in the dengue vector control and have no adverse effects on non-target beneficial insects.

  12. Mesocyclops longisetus effects on survivorship of Aedes aegypti immature stages in car tyres.

    PubMed

    Manrique-Saide, P; Ibáñez-Bernal, S; Delfín-González, H; Parra Tabla, V

    1998-10-01

    The effect of the introduction of the entomophagous copepod Mesocyclops longisetus (Acuacultura F.C.B. strain) on the survival of Aedes aegypti immature stages in car tyres was evaluated under semi-natural conditions in the municipality of Merida, Yucatan, Mexico. Life tables were constructed for the immature stages of the mosquito in the presence and absence of M. longisetus, and the survival data were compared using log-linear models. The data set was adjusted using the GLIM statistical package and the quality of adjustment was evaluated with a chi-squared test. Survivorship curves were constructed for each treatment. In the absence of M. longisetus, the survivorship of Ae. aegypti immature stages averaged 9%. The highest mortality rate was observed during the fourth larval instar (54%) and the resulting survival pattern corresponded to a type II survivorship curve. The mortality rate of Ae. aegypti first-instar larvae (fifty per tyre) increased more than 200-fold in the presence of M. longisetus (twenty per tyre) and the highest mortality was during the first two larval instars, where it reached 98.9%, with a resulting survivorship of 0.2%. Overall mortality was sixfold greater in the presence of the copepod than in its absence. The survival pattern of immature stages of Ae. aegypti in the presence of the copepod corresponded to a type III survivorship curve. As M. longisetus was so effective against Ae. aegypti immature stages in tyres under seminatural conditions, its long-term effectiveness should be evaluated under socially and ecologically realistic field conditions in Mexico.

  13. Evaluation of Location-Specific Predictions by a Detailed Simulation Model of Aedes aegypti Populations

    PubMed Central

    Legros, Mathieu; Magori, Krisztian; Morrison, Amy C.; Xu, Chonggang; Scott, Thomas W.; Lloyd, Alun L.; Gould, Fred

    2011-01-01

    Background Skeeter Buster is a stochastic, spatially explicit simulation model of Aedes aegypti populations, designed to predict the outcome of vector population control methods. In this study, we apply the model to two specific locations, the cities of Iquitos, Peru, and Buenos Aires, Argentina. These two sites differ in the amount of field data that is available for location-specific customization. By comparing output from Skeeter Buster to field observations in these two cases we evaluate population dynamics predictions by Skeeter Buster with varying degrees of customization. Methodology/Principal Findings Skeeter Buster was customized to the Iquitos location by simulating the layout of houses and the associated distribution of water-holding containers, based on extensive surveys of Ae. aegypti populations and larval habitats that have been conducted in Iquitos for over 10 years. The model is calibrated by adjusting the food input into various types of containers to match their observed pupal productivity in the field. We contrast the output of this customized model to the data collected from the natural population, comparing pupal numbers and spatial distribution of pupae in the population. Our results show that Skeeter Buster replicates specific population dynamics and spatial structure of Ae. aegypti in Iquitos. We then show how Skeeter Buster can be customized for Buenos Aires, where we only had Ae. aegypti abundance data that was averaged across all locations. In the Argentina case Skeeter Buster provides a satisfactory simulation of temporal population dynamics across seasons. Conclusions This model can provide a faithful description of Ae. aegypti populations, through a process of location-specific customization that is contingent on the amount of data available from field collections. We discuss limitations presented by some specific components of the model such as the description of food dynamics and challenges that these limitations bring to model

  14. Spatial Patterns of High Aedes aegypti Oviposition Activity in Northwestern Argentina

    PubMed Central

    Estallo, Elizabet Lilia; Más, Guillermo; Vergara-Cid, Carolina; Lanfri, Mario Alberto; Ludueña-Almeida, Francisco; Scavuzzo, Carlos Marcelo; Introini, María Virginia; Zaidenberg, Mario; Almirón, Walter Ricardo

    2013-01-01

    Background In Argentina, dengue has affected mainly the Northern provinces, including Salta. The objective of this study was to analyze the spatial patterns of high Aedes aegypti oviposition activity in San Ramón de la Nueva Orán, northwestern Argentina. The location of clusters as hot spot areas should help control programs to identify priority areas and allocate their resources more effectively. Methodology Oviposition activity was detected in Orán City (Salta province) using ovitraps, weekly replaced (October 2005–2007). Spatial autocorrelation was measured with Moran’s Index and depicted through cluster maps to identify hot spots. Total egg numbers were spatially interpolated and a classified map with Ae. aegypti high oviposition activity areas was performed. Potential breeding and resting (PBR) sites were geo-referenced. A logistic regression analysis of interpolated egg numbers and PBR location was performed to generate a predictive mapping of mosquito oviposition activity. Principal Findings Both cluster maps and predictive map were consistent, identifying in central and southern areas of the city high Ae. aegypti oviposition activity. A logistic regression model was successfully developed to predict Ae. aegypti oviposition activity based on distance to PBR sites, with tire dumps having the strongest association with mosquito oviposition activity. A predictive map reflecting probability of oviposition activity was produced. The predictive map delimitated an area of maximum probability of Ae. aegypti oviposition activity in the south of Orán city where tire dumps predominate. The overall fit of the model was acceptable (ROC = 0.77), obtaining 99% of sensitivity and 75.29% of specificity. Conclusions Distance to tire dumps is inversely associated with high mosquito activity, allowing us to identify hot spots. These methodologies are useful for prevention, surveillance, and control of tropical vector borne diseases and might assist National Health

  15. Excito-repellency of essential oils against an Aedes aegypti (L.) field population in Thailand.

    PubMed

    Boonyuan, Wasana; Grieco, John P; Bangs, Michael J; Prabaripai, Atchariya; Tantakom, Siripun; Chareonviriyaphap, Theeraphap

    2014-06-01

    An investigation of the behavioral responses of Aedes aegypti (= Stegomyia aegypti) to various concentrations of essential oils (2.5, 5, and 10%) extracted from hairy basil (Ocimum americanum Linn), ginger (Zingiber officinale Roscoe), lemongrass (Cymbopogon citratus Stapf), citronella grass (Cymbopogon nardus Rendle), and plai (Zingiber cassumunar Roxb) were performed using an excito-repellency test chamber. Results showed that Ae. aegypti exhibited varying levels of escape response in both the contact and noncontact chambers in response to different essential oils. The magnitude of the behaviors changed in a dose-response fashion depending on the percent volume to volume concentration of oil used. A 2.5% concentration of hairy basil oil produced a significantly greater escape response compared to the other extracts at the same concentration (P< 0.05). Oils of ginger, lemongrass, and citronella produced stronger irritant and repellent responses at the median 5% concentration compared to the lowest and highest concentrations. There was marked suppression of escape for both contact and noncontact tests using 10% concentrations of hairy basil, lemongrass, and citronella, with high knockdown for all three oils after 30 min. Hairy basil and lemongrass had the highest insecticidal activity to Ae. aegypti, with LC50 values of 6.3 and 6.7 percent, respectively. We conclude that the essential oils from native plants tested, and likely many other extracts found in plants, have inherent repellent and irritant qualities that should to be screened and optimized for their behavior-modifying properties against Ae. aegypti and other biting arthropods of public health and pest importance.

  16. Genetic Diversity and Phylogeny of Aedes aegypti, the Main Arbovirus Vector in the Pacific

    PubMed Central

    Calvez, Elodie; Guillaumot, Laurent; Millet, Laurent; Marie, Jérôme; Bossin, Hervé; Rama, Vineshwaran; Faamoe, Akata; Kilama, Sosiasi; Teurlai, Magali; Mathieu-Daudé, Françoise; Dupont-Rouzeyrol, Myrielle

    2016-01-01

    Background The Pacific region is an area unique in the world, composed of thousands of islands with differing climates and environments. The spreading and establishment of the mosquito Aedes aegypti in these islands might be linked to human migration. Ae. aegypti is the major vector of arboviruses (dengue, chikungunya and Zika viruses) in the region. The intense circulation of these viruses in the Pacific during the last decade led to an increase of vector control measures by local health authorities. The aim of this study is to analyze the genetic relationships among Ae. aegypti populations in this region. Methodology/Principal Finding We studied the genetic variability and population genetics of 270 Ae. aegypti, sampled from 9 locations in New Caledonia, Fiji, Tonga and French Polynesia by analyzing nine microsatellites and two mitochondrial DNA regions (CO1 and ND4). Microsatellite markers revealed heterogeneity in the genetic structure between the western, central and eastern Pacific island countries. The microsatellite markers indicate a statistically moderate differentiation (FST = 0.136; P < = 0.001) in relation to island isolation. A high degree of mixed ancestry can be observed in the most important towns (e.g. Noumea, Suva and Papeete) compared with the most isolated islands (e.g. Ouvea and Vaitahu). Phylogenetic analysis indicated that most of samples are related to Asian and American specimens. Conclusions/Significance Our results suggest a link between human migrations in the Pacific region and the origin of Ae. aegypti populations. The genetic pattern observed might be linked to the island isolation and to the different environmental conditions or ecosystems. PMID:26799213

  17. Selective inhibitors of digestive enzymes from Aedes aegypti larvae identified by phage display.

    PubMed

    Soares, Tatiane Sanches; Soares Torquato, Ricardo Jose; Alves Lemos, Francisco Jose; Tanaka, Aparecida Sadae

    2013-01-01

    Dengue is a serious disease transmitted by the mosquito Aedes aegypti during blood meal feeding. It is estimated that the dengue virus is transmitted to millions of individuals each year in tropical and subtropical areas. Dengue control strategies have been based on controlling the vector, Ae. aegypti, using insecticide, but the emergence of resistance poses new challenges. The aim of this study was the identification of specific protease inhibitors of the digestive enzymes from Ae. aegypti larvae, which may serve as a prospective alternative biocontrol method. High affinity protein inhibitors were selected by all of the digestive serine proteases of the 4th instar larval midgut, and the specificity of these inhibitors was characterized. These inhibitors were obtained from a phage library displaying variants of HiTI, a trypsin inhibitor from Haematobia irritans, that are mutated in the reactive loop (P1-P4'). Based on the selected amino acid sequence pattern, seven HiTI inhibitor variants were cloned, expressed and purified. The results indicate that the HiTI variants named T6 (RGGAV) and T128 (WNEGL) were selected by larval trypsin-like (IC(50) of 1.1 nM) and chymotrypsin-like enzymes (IC(50) of 11.6 nM), respectively. The variants T23 (LLGGL) and T149 (GGVWR) inhibited both larval chymotrypsin-like (IC(50) of 4.2 nM and 29.0 nM, respectively) and elastase-like enzymes (IC(50) of 1.2 nM for both). Specific inhibitors were successfully obtained for the digestive enzymes of Ae. aegypti larvae by phage display. Our data also strongly suggest the presence of elastase-like enzymes in Ae. aegypti larvae. The HiTI variants T6 and T23 are good candidates for the development as a larvicide to control the vector.

  18. Raw sewage as breeding site to Aedes (Stegomyia) aegypti (Diptera, culicidae).

    PubMed

    Chitolina, R F; Anjos, F A; Lima, T S; Castro, E A; Costa-Ribeiro, M C V

    2016-12-01

    The selection of oviposition sites by females of Aedes (Stegomyia) aegypti is a key factor for the larval survival and egg dispersion and has a direct influence in vector control programs. In this study, we evaluated the aspects of reproductive physiology of Ae. aegypti mosquitoes tested in the presence of raw sewage. Ae. aegypti females were used in oviposition bioassays according to two methodologies: (i) choice assay, in which three oviposition substrates were offered in the same cage: treatment (raw sewage), positive control (distilled water) and negative control (1% sodium hypochlorite) and; (ii) no choice assay, in which only one substrate was available. The physicochemical and microbiological analysis of the raw sewage used in this study indicated virtually no levels of chlorine, low levels of dissolved oxygen and high levels of nitrogenous compounds as well as the presence of Escherichia coli and total fecal coliforms. After 72h of oviposition, the eggs were counted and there was no statistically significant difference (p>0.05) in the oviposition rate between raw sewage and positive control in both methodologies. In addition, females were dissected to evaluate egg-retention and also there were no appreciable differences in egg retention even when raw sewage was the only substrate offered. The data also showed that egg hatching and larvae development occurred normally in the raw sewage. Therefore, the present study suggests that Ae. aegypti can adapt to new sites and lay eggs in polluted water, such as the raw sewage. These findings are of particular importance for the control and surveillance programs against Ae. aegypti in countries where the conditions of poor infrastructure and lack of basic sanitation are still an issue.

  19. A leucokinin mimic elicits aversive behavior in mosquito Aedes aegypti (L.) and inhibits the sugar taste neuron

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insect kinins (leucokinins) are multifunctional peptides acting as neurohormones and neurotransmitters. In females of the mosquito vector Aedes aegypti (L.), aedeskinins are known to stimulate fluid secretion from the renal organs (Malpighian tubules) and hindgut contractions by activating a G prot...

  20. [Aedes (Stegomyia) aegypti (Linnaeus, 1762) breeding sites in native bromeliads in Vitória City, ES].

    PubMed

    Varejão, José Benedito Malta; Santos, Claudiney Biral dos; Rezende, Helder Ricas; Bevilacqua, Luiz Carlos; Falqueto, Aloísio

    2005-01-01

    Some insects that are vectors of human diseases have accompanied man in his migrations throughout the world and breed exclusively in the proximity of human dwellings. The mosquito Aedes aegypti has been responsible for epidemics of dengue in Brazil and its presence also constitutes a serious risk for future outbreaks of urban yellow fever. The failure of campaigns to eradicate this species justifies the search for alternative breeding sites, which may be beyond the reach of present control measures. In this study the occurrence of Aedes aegypti breeding sites in native bromeliads on rocky slopes was investigated in five areas of Vitória, capital of the Brazilian State of Espírito Santo, ES. Water contained in the bromeliads was collected with the aid of a suction apparatus to search for culicid larvae. The degree of infestation of buildings in adjacent urban areas was evaluated simultaneously. Culicid larvae were found in bromeliads in four of the five areas investigated, Aedes aegypti being present in two areas. The presence of breeding sites in bromeliads was not related to indices of infestation of buildings in adjacent areas. Further studies are necessary to define whether breeding sites in bromeliads constitute primary foci of Aedes aegypti, or are a consequence of high infestation levels in urban areas.

  1. Sterility introduced by release of genetically altered males to a domestic population of Aedes aegypti at the Kenya coast.

    PubMed

    McDonald, P T; Hausermann, W; Lorimer, N

    1977-05-01

    The release of males heterozygous for one or two sex-linked translocations was effective in introducing a high level of sterility into a domestic population of Aedes aegypti at a Rabai village. The effect of the releases continued for several weeks after the release period.

  2. Papyracillic acid and its derivatives as biting deterrents against Aedes aegypti(Diptera: Culicidae): structure–activity relationships

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aedes aegypti L. is the major vector of the arboviruses responsible for dengue fever, one of the most devastating human diseases. Papyracillic acid, the main phytotoxin produced by Ascochyta agropyrina var. nana, was evaluated in a preliminary screening together with other fungal phytotoxins, cyclo...

  3. Complete Genome Sequence of Chikungunya Virus Isolated from an Aedes aegypti Mosquito during an Outbreak in Yemen, 2011.

    PubMed

    Fahmy, Nermeen T; Klena, John D; Mohamed, Amr S; Zayed, Alia; Villinski, Jeffrey T

    2015-07-16

    Chikungunya virus is recognized as a serious public health problem. The complete genome was sequenced for a chikungunya virus isolated from the mosquito Aedes aegypti during a 2011 outbreak in Al Hodayda, Yemen, which resulted in significant human fatalities. Phylogenetic analysis demonstrated that this Yemeni isolate is most closely related to Indian Ocean strains of the east/central/south African genotype.

  4. Rapid and non-destructive detection and identification two strains of Wolbachia in Aedes aegypti by near-infrared spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We investigated the potential of using near-infrared spectroscopy (NIRS) to detect the presence of Wolbachia pipientis (wMel) in male and female laboratory-reared Aedes aegypti mosquitoes. The release of Wolbachia transinfected mosquitoes is likely to form a key component of disease control strategi...

  5. Gustatory receptor neuron responds to DEET and other insect repellents in the yellow fever mosquito, aedes aegypti

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Three gustatory receptor neurons were characterized for contact chemoreceptive sensilla on the labella of female yellow fever mosquitoes, Aedes aegypti. The neuron with the smallest amplitude spike responded to the feeding deterrent, quinine, as well as DEET and other insect repellents. Two other ...

  6. Physiological recordings and RNA sequencing of the gustatory appendages of the yellow-fever mosquito Aedes aegypti

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Electrophysiological recording of action potentials from sensory neurons of mosquitoes provides investigators a glimpse into the chemical perception of these disease vectors. We have recently identified a bitter sensing neuron in the labellum of female Aedes aegypti that responds to DEET and other ...

  7. Complete Genome Sequence of Chikungunya Virus Isolated from an Aedes aegypti Mosquito during an Outbreak in Yemen, 2011

    PubMed Central

    Klena, John D.; Mohamed, Amr S.; Zayed, Alia; Villinski, Jeffrey T.

    2015-01-01

    Chikungunya virus is recognized as a serious public health problem. The complete genome was sequenced for a chikungunya virus isolated from the mosquito Aedes aegypti during a 2011 outbreak in Al Hodayda, Yemen, which resulted in significant human fatalities. Phylogenetic analysis demonstrated that this Yemeni isolate is most closely related to Indian Ocean strains of the east/central/south African genotype. PMID:26184944

  8. How Diverse Detrital Environments Influence Nutrient Stoichiometry between Males and Females of the Co-Occurring Container Mosquitoes Aedes albopictus, Ae. aegypti, and Culex quinquefasciatus

    PubMed Central

    Yee, Donald A.; Kaufman, Michael G.; Ezeakacha, Nnaemeka F.

    2015-01-01

    Allocation patterns of carbon and nitrogen in animals are influenced by food quality and quantity, as well as by inherent metabolic and physiological constraints within organisms. Whole body stoichiometry also may vary between the sexes who differ in development rates and reproductive allocation patterns. In aquatic containers, such as tree holes and tires, detrital inputs, which vary in amounts of carbon and nitrogen, form the basis of the mosquito-dominated food web. Differences in development times and mass between male and female mosquitoes may be the result of different reproductive constraints, which could also influence patterns of nutrient allocation. We examined development time, survival, and adult mass for males and females of three co-occurring species, Aedes albopictus, Ae. aegypti, and Culex quinquefasciatus, across environments with different ratios of animal and leaf detritus. We quantified the contribution of detritus to biomass using stable isotope analysis and measured tissue carbon and nitrogen concentrations among species and between the sexes. Development times were shorter and adults were heavier for Aedes in animal versus leaf-only environments, whereas Culex development times were invariant across detritus types. Aedes displayed similar survival across detritus types whereas C. quinquefasciatus showed decreased survival with increasing leaf detritus. All species had lower values of 15N and 13C in leaf-only detritus compared to animal, however, Aedes generally had lower tissue nitrogen compared to C. quinquefasciatus. There were no differences in the C:N ratio between male and female Aedes, however, Aedes were different than C. quinquefasciatus adults, with male C. quinquefasciatus significantly higher than females. Culex quinquefasciatus was homeostatic across detrital environments. These results allow us to hypothesize an underlying stoichiometric explanation for the variation in performance of different container species under similar

  9. How Diverse Detrital Environments Influence Nutrient Stoichiometry between Males and Females of the Co-Occurring Container Mosquitoes Aedes albopictus, Ae. aegypti, and Culex quinquefasciatus.

    PubMed

    Yee, Donald A; Kaufman, Michael G; Ezeakacha, Nnaemeka F

    2015-01-01

    Allocation patterns of carbon and nitrogen in animals are influenced by food quality and quantity, as well as by inherent metabolic and physiological constraints within organisms. Whole body stoichiometry also may vary between the sexes who differ in development rates and reproductive allocation patterns. In aquatic containers, such as tree holes and tires, detrital inputs, which vary in amounts of carbon and nitrogen, form the basis of the mosquito-dominated food web. Differences in development times and mass between male and female mosquitoes may be the result of different reproductive constraints, which could also influence patterns of nutrient allocation. We examined development time, survival, and adult mass for males and females of three co-occurring species, Aedes albopictus, Ae. aegypti, and Culex quinquefasciatus, across environments with different ratios of animal and leaf detritus. We quantified the contribution of detritus to biomass using stable isotope analysis and measured tissue carbon and nitrogen concentrations among species and between the sexes. Development times were shorter and adults were heavier for Aedes in animal versus leaf-only environments, whereas Culex development times were invariant across detritus types. Aedes displayed similar survival across detritus types whereas C. quinquefasciatus showed decreased survival with increasing leaf detritus. All species had lower values of 15N and 13C in leaf-only detritus compared to animal, however, Aedes generally had lower tissue nitrogen compared to C. quinquefasciatus. There were no differences in the C:N ratio between male and female Aedes, however, Aedes were different than C. quinquefasciatus adults, with male C. quinquefasciatus significantly higher than females. Culex quinquefasciatus was homeostatic across detrital environments. These results allow us to hypothesize an underlying stoichiometric explanation for the variation in performance of different container species under similar

  10. A lethal ovitrap-based mass trapping scheme for dengue control in Australia: II. Impact on populations of the mosquito Aedes aegypti.

    PubMed

    Rapley, L P; Johnson, P H; Williams, C R; Silcock, R M; Larkman, M; Long, S A; Russell, R C; Ritchie, S A

    2009-12-01

    In Cairns, Australia, the impacts on Aedes aegypti L. (Diptera: Culicidae) populations of two types of 'lure & kill' (L&K) lethal ovitraps (LOs), the standard lethal ovitrap (SLO) and the biodegradable lethal ovitrap (BLO) were measured during three mass-trapping interventions. To assess the efficacy of the SLO, two interventions (one dry season and one wet season) were conducted in three discrete areas, each lasting 4 weeks, with the following treatments: (i) SLOs (>200 traps, approximately 4/premise), BG-sentinel traps (BGSs; approximately 15, 1/premise) and larval control (container reduction and methoprene treatment) and (ii) larval control alone, and (iii) untreated control. Female Ae. aegypti populations were monitored for 4 weeks pre- and post-treatment in all three areas using BGSs and sticky ovitraps (SOs) or non-lethal regular ovitraps (ROs). In the dry season, 206 SLOs and 15 BGSs set at 54 and 15 houses, respectively, caught and killed an estimated 419 and 73 female Ae. aegypti, respectively. No significant decrease in collection size of female Ae. aegypti could be attributed to the treatments. In the wet season, 243 SLOs and 15 BGSs killed approximately 993 and 119 female Ae. aegypti, respectively. The mean number of female Ae. aegypti collected after 4 weeks with SOs and BGSs was significantly less than the control (LSD post-hoc test). The third mass-trapping intervention was conducted using the BLO during the wet season in Cairns. For this trial, three treatment areas were each provided with BLOs (>500, approximately 4/premise) plus larval control, and an untreated control area was designated. Adult female Ae. aegypti were collected for 4 weeks pre- and post-treatment using 15 BGSs and 20 SOs. During this period, 53.2% of BLOs contained a total of 6654 Ae. aegypti eggs. Over the intervention period, collections of Ae. aegypti in the treatment areas were significantly less than in the control area for BGSs but not SOs. An influx of relatively large

  11. Microclimate and human factors in the divergent ecology of Aedes aegypti along the Arizona, U.S./Sonora, MX border.

    PubMed

    Hayden, Mary H; Uejio, Christopher K; Walker, Kathleen; Ramberg, Frank; Moreno, Rafael; Rosales, Cecilia; Gameros, Mercedes; Mearns, Linda O; Zielinski-Gutierrez, Emily; Janes, Craig R

    2010-08-01

    This study examined the association of human and environmental factors with the presence of Aedes aegypti, the vector for dengue fever and yellow fever viruses, in a desert region in the southwest United States and northwest Mexico. Sixty-eight sites were longitudinally surveyed along the United States-Mexico border in Tucson, AZ, Nogales, AZ, and Nogales, Sonora during a 3-year period. Aedes aegypti presence or absence at each site was measured three times per year using standard oviposition traps. Maximum and minimum temperature and relative humidity were measured hourly at each site. Field inventories were conducted to measure human housing factors potentially affecting mosquito presence, such as the use of air-conditioning and evaporative coolers, outdoor vegetation cover, and access to piped water. The results showed that Ae. aegypti presence was highly variable across space and time. Aedes aegypti presence was positively associated with highly vegetated areas. Other significant variables included microclimatic differences and access to piped water. This study demonstrates the importance of microclimate and human factors in predicting Ae. aegypti distribution in an arid environment.

  12. Mechanical transmission of Bacillus anthracis by stable flies (Stomoxys calcitrans) and mosquitoes (Aedes aegypti and Aedes taeniorhynchus).

    PubMed Central

    Turell, M J; Knudson, G B

    1987-01-01

    We evaluated the potential of stable flies, Stomoxys calcitrans, and two species of mosquitoes, Aedes aegypti and Aedes taeniorhynchus, to transmit Bacillus anthracis Vollum 1B mechanically. After probing on Hartley guinea pigs with a bacteremia of ca. 10(8.6) CFU of B. anthracis per ml of blood, individual or pools of two to four stable flies or mosquitoes were allowed to continue feeding on either uninfected guinea pigs or A/J mice. All three insect species transmitted lethal anthrax infections to both guinea pigs and mice. Both stable flies and mosquitoes transmitted anthrax, even when they were held at room temperature for 4 h after exposure to the bacteremic guinea pig before being allowed to continue feeding on the susceptible animals. This study confirms that blood-feeding insects can mechanically transmit anthrax and supports recent anecdotal reports of fly-bite-associated cutaneous human anthrax. The potential for flies to mechanically transmit anthrax suggests that fly control should be considered as part of a program for control of epizootic anthrax. PMID:3112013

  13. Socioeconomic and Ecological Factors Influencing Aedes aegypti Prevalence, Abundance, and Distribution in Dhaka, Bangladesh.

    PubMed

    Dhar-Chowdhury, Parnali; Haque, C Emdad; Lindsay, Robbin; Hossain, Shakhawat

    2016-06-01

    This study examined household risk factors and prevalence, abundance, and distribution of immature Aedes aegypti and Aedes albopictus, and their association with socioeconomic and ecological factors at urban zonal and household levels in the city of Dhaka, Bangladesh. During the 2011 monsoon, 826 households in 12 randomly selected administrative wards were surveyed for vector mosquitoes. Results revealed that the abundance and distribution of immature Ae. aegypti and Ae. albopictus, and pupae-per-person indices did not vary significantly among the zones with varied socioeconomic status. Of 35 different types of identified wet containers, 30 were infested, and among the 23 pupae-positive container types, nine were defined as the "most productive" for pupae including: disposable plastic containers (12.2% of 550), sealable plastic barrels (12.0%), tires (10.4%), abandoned plastic buckets (9.6%), flower tub and trays (8.5%), refrigerator trays (6.5%), plastic bottles (6.4%), clay pots (4.9%), and water tanks (1.6%). When the function of the containers was assessed, ornamental, discarded, and household repairing and reconstruction-related container categories were found significantly associated with the number of pupae in the households. The purpose of storing water and income variables were significant predictors of possession of containers that were infested by vector mosquitoes.

  14. Salinity responsive aquaporins in the anal papillae of the larval mosquito, Aedes aegypti.

    PubMed

    Akhter, Hina; Misyura, Lidiya; Bui, Phuong; Donini, Andrew

    2017-01-01

    The larvae of the mosquito, Aedes aegypti normally inhabit freshwater (FW) where they face dilution of body fluids by osmotic influx of water. In response, the physiological actions of the anal papillae result in ion uptake while the Malpighian tubules and rectum work in concert to excrete excess water. In an apparent paradox, the anal papillae express aquaporins (AQPs) and are sites of water permeability which, if AQPs are expressed by the epithelium, apparently exaggerates the influx of water from their dilute environment. Recently, naturally breeding populations of A. aegypti were found in brackish water (BW), an environment which limits the osmotic gradient. Given that salinization of FW is an emerging environmental issue and that these larvae would presumably need to adjust to these changing conditions, this study investigates the expression of AQPs in the anal papillae and their response to rearing in hypo-osmotic and near isosmotic conditions. Transcripts of all six Aedes AQP homologs were detectable in the anal papillae and the transcript abundance of three AQP homologs in the papillae was different between rearing conditions. Using custom made antibodies, expression of two of these AQP homologs (AQP4 and AQP5) was localized to the syncytial epithelium of the anal papillae. Furthermore, the changes in transcript abundance of these two AQPs between the rearing conditions, were manifested at the protein level. Results suggest that AQP4 and AQP5 play an important physiological role in larval responses to changes in environmental salinity.

  15. Efficacy of photodynamic therapy against larvae of Aedes aegypti: confocal microscopy and fluorescence-lifetime imaging

    NASA Astrophysics Data System (ADS)

    de Souza, L. M.; Pratavieira, S.; Inada, N. M.; Kurachi, C.; Corbi, J.; Guimarães, F. E. G.; Bagnato, V. S.

    2014-03-01

    Recently a few demonstration on the use of Photodynamic Reaction as possibility to eliminate larvae that transmit diseases for men has been successfully demonstrated. This promising tool cannot be vastly used due to many problems, including the lake of investigation concerning the mechanisms of larvae killing as well as security concerning the use of photosensitizers in open environment. In this study, we investigate some of the mechanisms in which porphyrin (Photogem) is incorporated on the Aedes aegypti larvae previously to illumination and killing. Larvae at second instar were exposed to the photosensitizer and after 30 minutes imaged by a confocal fluorescence microscope. It was observed the presence of photosensitizer in the gut and at the digestive tract of the larva. Fluorescence-Lifetime Imaging showed greater photosensitizer concentration in the intestinal wall of the samples, which produces a strong decrease of the Photogem fluorescence lifetime. For Photodynamic Therapy exposition to different light doses and concentrations of porphyrin were employed. Three different light sources (LED, Fluorescent lamp, Sun light) also were tested. Sun light and fluorescent lamp shows close to 100% of mortality after 24 hrs. of illumination. These results indicate the potential use of photodynamic effect against the LARVAE of Aedes aegypti.

  16. Mosquito larvicidal activity of seaweeds extracts against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus

    PubMed Central

    Ali, Mohamed Yacoob Syed; Ravikumar, Sundaram; Beula, Johanson Margaret

    2013-01-01

    Objective To identify the larvicidal activity of the seaweed extracts against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus Methods Seaweed extracts of Ulva lactuca, Caulerpa racemosa (C. racemosa), Sargassum microystum, Caulerpa scalpelliformis, Gracilaria corticata, Turbinaria decurrens, Turbinaria conoides and Caulerpa toxifolia were dissolved in DMSO to prepare a graded series of concentration. The test for the larvicidal effect of seaweeds against mosquitos larvae was conducted in accordance with the WHO standard method. Batches of 25 early 4th instar larvae of three mosquitoes were transferred to 250 mL enamel bowl containing 199 mL of distilled water and 1 mL of plant extracts (10-100 µg). Each experiment was conducted with triplicate with concurrent a control group. Results Among the seaweeds extract, C. racemosa showed toxicity against 4th instar larvae of Aedes aegypti, Culex quinquefasciatus, Anopheles stephensi with equivalent LC50 value (0.055 6±0.010 3) µg/mL, (0.067 5±0.136 0) µg/mL and (0.066 1±0.007 6) µg/mL, respectively. Conclusions The present study concluded that, the mosquito larvicidal property of C. racemosa might be the prospective alternative source to control the mosquitoes.

  17. Breeding Sites of Aedes aegypti: Potential Dengue Vectors in Dire Dawa, East Ethiopia

    PubMed Central

    Getachew, Dejene; Tekie, Habte; Gebre-Michael, Teshome; Balkew, Meshesha; Mesfin, Akalu

    2015-01-01

    Background and Objectives. Entomological survey was carried out from May-June to September-October 2014 to investigate the presence of dengue vectors in discarded tires and artificial water containers in houses and peridomestic areas. Methods. A cross-sectional immature stage survey was done indoors and outdoors in 301 houses. Mosquito larval sampling was conducted using pipette or dipper depending on container types. Larvae were identified morphologically and larval indices were also calculated. Results. A total of 750 containers were inspected, and of these 405 were positive for mosquito larvae. A total of 1,873 larvae were collected and morphologically identified as Aedes aegypti (n = 1580: 84.4%) and Culex (n = 293: 15.6%). The larval indices, house index, container index, and breteau index, varied from 33.3 to 86.2, from 23.2 to 73.9, and from 56.5 to 188.9, respectively. Conclusion. Aedes aegypti is breeding in a wide range of artificial containers. To control these mosquitoes, the integration of different methods should be taken into consideration. PMID:26435712

  18. Characterization of Aedes aegypti (Diptera: Culcidae) production sites in urban Nicaragua.

    PubMed

    Hammond, Samantha N; Gordon, Aubree L; Lugo, Emperatriz del C; Moreno, Gilberto; Kuan, Guillermina M; López, María M; López, Josefa D; Delgado, Marco A; Valle, Sonia I; Espinoza, Perla M; Harris, Eva

    2007-09-01

    To characterize the production patterns of the dengue virus vector Aedes aegypti (L.) (Diptera: Culcidae), pupal surveys were conducted in selected neighborhoods of two major cities in Nicaragua. In León, 833 houses were visited in July and September 2003, corresponding to the beginning and middle of