Science.gov

Sample records for aedes aegypti dengue

  1. Effect of Temperature on the Vector Efficiency of Aedes aegypti for Dengue 2 Virus

    DTIC Science & Technology

    1986-06-26

    VECTOR EFFICIENCY OF AEDES AEGYPTI FOR DENGUE 2 VIRUS DOUGLAS M. WATTS,* DONALD S. BURKE,** BRUCE A. HARRISON,-/- RICHARD E. WHITMIRE,* AND ANANDA...the ability of Aedes aegypti to transmit dengue (DEN) 2 virus to rhesus monkeys was assessed as a possible explanation for the seasonal variation...in the incidence of dengue hemorrhagic fever in Bangkok, Thailand. In two laboratory experiments, a Bangkok strain of Ae. aegypti was allowed to feed

  2. Aedes aegypti D7 Saliva Protein Inhibits Dengue Virus Infection

    PubMed Central

    Conway, Michael J.; Londono-Renteria, Berlin; Troupin, Andrea; Watson, Alan M.; Klimstra, William B.; Fikrig, Erol; Colpitts, Tonya M.

    2016-01-01

    Aedes aegypti is the primary vector of several medically relevant arboviruses including dengue virus (DENV) types 1–4. Ae. aegypti transmits DENV by inoculating virus-infected saliva into host skin during probing and feeding. Ae. aegypti saliva contains over one hundred unique proteins and these proteins have diverse functions, including facilitating blood feeding. Previously, we showed that Ae. aegypti salivary gland extracts (SGEs) enhanced dissemination of DENV to draining lymph nodes. In contrast, HPLC-fractionation revealed that some SGE components inhibited infection. Here, we show that D7 proteins are enriched in HPLC fractions that are inhibitory to DENV infection, and that recombinant D7 protein can inhibit DENV infection in vitro and in vivo. Further, binding assays indicate that D7 protein can directly interact with DENV virions and recombinant DENV envelope protein. These data reveal a novel role for D7 proteins, which inhibits arbovirus transmission to vertebrates through a direct interaction with virions. PMID:27632170

  3. Dengue virus detection in Aedes aegypti larvae from southeastern Brazil.

    PubMed

    Cecílio, Samyra Giarola; Júnior, Willer Ferreira Silva; Tótola, Antônio Helvécio; de Brito Magalhães, Cíntia Lopes; Ferreira, Jaqueline Maria Siqueira; de Magalhães, José Carlos

    2015-06-01

    The transmission of dengue, the most important arthropod-borne viral disease in Brazil, has been intensified over the past decades, along with the accompanying expansion and adaptation of its Aedes vectors. In the present study, we mapped dengue vectors in Ouro Preto and Ouro Branco, Minas Gerais, by installing ovitraps in 32 public schools. The traps were examined monthly between September, 2011 through July, 2012 and November, 2012 to April, 2013. The larvae were reared until the fourth stadium and identified according to species. The presence of dengue virus was detected by real time PCR and agarose gel electrophoresis. A total of 1,945 eggs was collected during the 17 months of the study. The Ovitrap Positivity Index (OPI) ranged from 0 to 28.13% and the Eggs Density Index (EDI) ranged from 0 to 59.9. The predominant species was Aedes aegypti, with 84.9% of the hatched larvae. Although the collection was low when compared to other ovitraps studies, vertical transmission could be detected. Of the 54 pools, dengue virus was detected in four Ae. aegypti pools.

  4. Susceptibility of Florida Aedes aegypti and Aedes albopictus to dengue viruses from Puerto Rico.

    PubMed

    Alto, Barry W; Smartt, Chelsea T; Shin, Dongyoung; Bettinardi, David; Malicoate, Jolene; Anderson, Sheri L; Richards, Stephanie L

    2014-12-01

    Locally acquired dengue cases in the continental U.S. are rare. However, outbreaks of dengue-1 during 2009, 2010, and 2013 in Florida and dengue-1 and -2 in Texas suggest vulnerability to transmission. Travel and commerce between Puerto Rico and the U.S. mainland is common, which may pose a risk for traveler-imported dengue cases. Mosquitoes were collected in Florida and used to evaluate their susceptibility to dengue viruses (DENV) from Puerto Rico. Aedes aegypti and Ae. albopictus were susceptible to virus infection with DENV-1 and -2. No significant differences were observed in rates of midgut infection or dissemination between Ae. aegypti or Ae. albopictus for DENV-1 (6-14%). Aedes aegypti was significantly more susceptible to midgut infection with DENV-2 than Ae. albopictus (Ae. aegypti, ∼28%; Ae. albopictus, ∼9%). The dissemination rate with dengue-2 virus for Ae. aegypti (23%) was greater than Ae. albopictus (0%), suggesting that Ae. albopictus is not likely to be an important transmitter of the DENV-2 isolate from Puerto Rico. These results are discussed in light of Florida's vulnerability to DENV transmission.

  5. Laboratory evaluation of the response of Aedes aegypti and Aedes albopictus uninfected and infected with dengue virus to deet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Laboratory studies were conducted to compare the response of Aedes aegypti (L.) and Aedes albopictus (Skuse) adults, uninfected and infected with four serotypes of dengue virus, to a repellent containing 5% deet. The results showed that mosquitoes infected with the four serotypes of dengue respond i...

  6. Origin of the Dengue Fever Mosquito, Aedes aegypti, in California

    PubMed Central

    Gloria-Soria, Andrea; Brown, Julia E.; Kramer, Vicki; Hardstone Yoshimizu, Melissa; Powell, Jeffrey R.

    2014-01-01

    Dengue fever is among the most widespread vector-borne infectious diseases. The primary vector of dengue is the Aedes aegypti mosquito. Ae. aegypti is prevalent in the tropics and sub-tropics and is closely associated with human habitats outside its native range of Africa. While long established in the southeastern United States of America where dengue is re-emerging, breeding populations have never been reported from California until the summer of 2013. Using 12 highly variable microsatellite loci and a database of reference populations, we have determined that the likely source of the California introduction is the southeastern United States, ruling out introductions from abroad, from the geographically closer Arizona or northern Mexico populations, or an accidental release from a research laboratory. The power to identify the origin of new introductions of invasive vectors of human disease relies heavily on the availability of a panel of reference populations. Our work demonstrates the importance of generating extensive reference databases of genetically fingerprinted human-disease vector populations to aid public health efforts to prevent the introduction and spread of vector-borne diseases. PMID:25077804

  7. Origin of the dengue fever mosquito, Aedes aegypti, in California.

    PubMed

    Gloria-Soria, Andrea; Brown, Julia E; Kramer, Vicki; Hardstone Yoshimizu, Melissa; Powell, Jeffrey R

    2014-01-01

    Dengue fever is among the most widespread vector-borne infectious diseases. The primary vector of dengue is the Aedes aegypti mosquito. Ae. aegypti is prevalent in the tropics and sub-tropics and is closely associated with human habitats outside its native range of Africa. While long established in the southeastern United States of America where dengue is re-emerging, breeding populations have never been reported from California until the summer of 2013. Using 12 highly variable microsatellite loci and a database of reference populations, we have determined that the likely source of the California introduction is the southeastern United States, ruling out introductions from abroad, from the geographically closer Arizona or northern Mexico populations, or an accidental release from a research laboratory. The power to identify the origin of new introductions of invasive vectors of human disease relies heavily on the availability of a panel of reference populations. Our work demonstrates the importance of generating extensive reference databases of genetically fingerprinted human-disease vector populations to aid public health efforts to prevent the introduction and spread of vector-borne diseases.

  8. Determination of dengue virus serotypes in individual Aedes aegypti mosquitoes in Colombia.

    PubMed

    Romero-Vivas, C M; Leake, C J; Falconar, A K

    1998-07-01

    Adult Aedes aegypti mosquitoes were collected in Puerto Triunfo, central Colombia, where dengue is endemic, during a six month period. Viral infection within the head of each individual mosquito was identified by an immunofluorescent assay (IFA) using a flavivirus-specific monoclonal antibody. The dengue virus serotype, present in each flavivirus-positive specimen, was then determined in portions of the remaining thorax using IFAs with serotype-specific monoclonal antibodies. Among 2065 female Aedes aegypti collected and tested, twenty-four flavivirus-positive individuals were found (minimum infection rate 11.6%), three identified as dengue type-1 and twenty-one as dengue type-2 virus. This was consistent with the isolation of only these two serotypes of dengue virus from dengue fever patients within this town. No vertical transmission of dengue virus could be detected in 1552 male Aedes aegypti collected. This method is inexpensive, simple, rapid to perform and suitable for use in developing countries to identify and distinguish different serotypes of dengue virus in their vectors during eco-epidemiological investigations.

  9. Vertical infestation of the dengue vectors Aedes aegypti and Aedes albopictus in apartments in Kuala Lumpur, Malaysia.

    PubMed

    Roslan, Muhammad Aidil; Shafie, Aziz; Ngui, Romano; Lim, Yvonne Ai Lian; Sulaiman, Wan Yusoff Wan

    2013-12-01

    Dengue is a serious public health problem in Malaysia. The aim of this study was to compare the vertical infestation of Aedes population in 2 apartments in Kuala Lumpur with different status of dengue incidence (i.e., high-dengue-incidence area and area with no reported dengue cases). The study was also conducted to assess the relationship between environmental factors such as rainfall, temperature, and humidity and Aedes population that may influence Aedes infestation. Surveillance with a mosquito larvae trapping device was conducted for 28 continuous weeks (January to July 2012) in Vista Angkasa (VA) and Inderaloka (IL) apartments located in Kuala Lumpur, Malaysia. The results indicated that both Aedes spp. could be found from ground to higher floor levels of the apartments, with Aedes aegypti being more predominant than Ae. albopictus. Data based on mixed and single breeding of Aedes spp. on different floors did not show any significant difference. Both rainfall (R3; i.e., the amount of rainfall collected during the previous 3 wk before the surveillance period began) and RH data showed significant relationship with the number of Aedes larvae collected in VA and IL. No significant difference was found between the numbers of Aedes larvae in both study areas as well as maximum and minimum temperatures. Results also indicated adaptations of Ae. aegypti to the ecosystem at each elevation of high-rise buildings, with Ae. albopictus staying inside of apartment units.

  10. Productivity and population density estimates of the dengue vector mosquito Aedes aegypti (Stegomyia aegypti) in Australia.

    PubMed

    Williams, C R; Johnson, P H; Ball, T S; Ritchie, S A

    2013-09-01

    New mosquito control strategies centred on the modifying of populations require knowledge of existing population densities at release sites and an understanding of breeding site ecology. Using a quantitative pupal survey method, we investigated production of the dengue vector Aedes aegypti (L.) (Stegomyia aegypti) (Diptera: Culicidae) in Cairns, Queensland, Australia, and found that garden accoutrements represented the most common container type. Deliberately placed 'sentinel' containers were set at seven houses and sampled for pupae over 10 weeks during the wet season. Pupal production was approximately constant; tyres and buckets represented the most productive container types. Sentinel tyres produced the largest female mosquitoes, but were relatively rare in the field survey. We then used field-collected data to make estimates of per premises population density using three different approaches. Estimates of female Ae. aegypti abundance per premises made using the container-inhabiting mosquito simulation (CIMSiM) model [95% confidence interval (CI) 18.5-29.1 females] concorded reasonably well with estimates obtained using a standing crop calculation based on pupal collections (95% CI 8.8-22.5) and using BG-Sentinel traps and a sampling rate correction factor (95% CI 6.2-35.2). By first describing local Ae. aegypti productivity, we were able to compare three separate population density estimates which provided similar results. We anticipate that this will provide researchers and health officials with several tools with which to make estimates of population densities.

  11. Proteomic Identification of Dengue Virus Binding Proteins in Aedes aegypti Mosquitoes and Aedes albopictus Cells

    PubMed Central

    Muñoz, Maria de Lourdes; Limón-Camacho, Gustavo; Tovar, Rosalinda; Diaz-Badillo, Alvaro; Mendoza-Hernández, Guillermo; Black, William C.

    2013-01-01

    The main vector of dengue in America is the mosquito Aedes aegypti, which is infected by dengue virus (DENV) through receptors of midgut epithelial cells. The envelope protein (E) of dengue virus binds to receptors present on the host cells through its domain III that has been primarily recognized to bind cell receptors. In order to identify potential receptors, proteins from mosquito midgut tissue and C6/36 cells were purified by affinity using columns with the recombinant E protein domain III (rE-DIII) or DENV particles bound covalently to Sepharose 4B to compare and evaluate their performance to bind proteins including putative receptors from female mosquitoes of Ae. aegypti. To determine their identity mass spectrometric analysis of purified proteins separated by polyacrylamide gel electrophoresis was performed. Our results indicate that both viral particles and rE-DIII bound proteins with the same apparent molecular weights of 57 and 67 kDa. In addition, viral particles bound high molecular weight proteins. Purified proteins identified were enolase, beta-adrenergic receptor kinase (beta-ARK), translation elongation factor EF-1 alpha/Tu, and cadherin. PMID:24324976

  12. Ovicidal activity of Ageratina adenophora (Family: Asteraceae) against dengue vector, Aedes aegypti (Diptera: Culicidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To determine the ovicidal efficacy of different solvent leaf extracts of Ageratina adenophora against dengue vector Aedes aegypti . Methods: The ovicidal efficacy of the crude leaf extracts of A. adenophora with five different solvents (hexane, benzene, chloroform, ethyl acetate, methanol) and was ...

  13. Global temperature constraints on Aedes aegypti and Ae. albopictus persistence and competence for dengue virus transmission

    PubMed Central

    2014-01-01

    Background Dengue is a disease that has undergone significant expansion over the past hundred years. Understanding what factors limit the distribution of transmission can be used to predict current and future limits to further dengue expansion. While not the only factor, temperature plays an important role in defining these limits. Previous attempts to analyse the effect of temperature on the geographic distribution of dengue have not considered its dynamic intra-annual and diurnal change and its cumulative effects on mosquito and virus populations. Methods Here we expand an existing modelling framework with new temperature-based relationships to model an index proportional to the basic reproductive number of the dengue virus. This model framework is combined with high spatial and temporal resolution global temperature data to model the effects of temperature on Aedes aegypti and Ae. albopictus persistence and competence for dengue virus transmission. Results Our model predicted areas where temperature is not expected to permit transmission and/or Aedes persistence throughout the year. By reanalysing existing experimental data our analysis indicates that Ae. albopictus, often considered a minor vector of dengue, has comparable rates of virus dissemination to its primary vector, Ae. aegypti, and when the longer lifespan of Ae. albopictus is considered its competence for dengue virus transmission far exceeds that of Ae. aegypti. Conclusions These results can be used to analyse the effects of temperature and other contributing factors on the expansion of dengue or its Aedes vectors. Our finding that Ae. albopictus has a greater capacity for dengue transmission than Ae. aegypti is contrary to current explanations for the comparative rarity of dengue transmission in established Ae. albopictus populations. This suggests that the limited capacity of Ae. albopictus to transmit DENV is more dependent on its ecology than vector competence. The recommendations, which we

  14. Oviposition Site Selection by the Dengue Vector Aedes aegypti and Its Implications for Dengue Control

    PubMed Central

    Wong, Jacklyn; Stoddard, Steven T.; Astete, Helvio; Morrison, Amy C.; Scott, Thomas W.

    2011-01-01

    Background Because no dengue vaccine or antiviral therapy is commercially available, controlling the primary mosquito vector, Aedes aegypti, is currently the only means to prevent dengue outbreaks. Traditional models of Ae. aegypti assume that population dynamics are regulated by density-dependent larval competition for food and little affected by oviposition behavior. Due to direct impacts on offspring survival and development, however, mosquito choice in oviposition site can have important consequences for population regulation that should be taken into account when designing vector control programs. Methodology/Principal Findings We examined oviposition patterns by Ae. aegypti among 591 naturally occurring containers and a set of experimental containers in Iquitos, Peru. Using larval starvation bioassays as an indirect measure of container food content, we assessed whether females select containers with the most food for their offspring. Our data indicate that choice of egg-laying site is influenced by conspecific larvae and pupae, container fill method, container size, lid, and sun exposure. Although larval food positively influenced oviposition, our results did not support the hypothesis that females act primarily to maximize food for larvae. Females were most strongly attracted to sites containing immature conspecifics, even when potential competitors for their progeny were present in abundance. Conclusion/Significance Due to strong conspecific attraction, egg-laying behavior may contribute more to regulating Ae. aegypti populations than previously thought. If highly infested containers are targeted for removal or larvicide application, females that would have preferentially oviposited in those sites may instead distribute their eggs among other suitable, previously unoccupied containers. Strategies that kill mosquitoes late in their development (i.e., insect growth regulators that kill pupae rather than larvae) will enhance vector control by creating

  15. Characteristics of the spatial pattern of the dengue vector, Aedes aegypti, in Iquitos, Peru.

    PubMed

    Getis, Arthur; Morrison, Amy C; Gray, Kenneth; Scott, Thomas W

    2003-11-01

    We determine the spatial pattern of Aedes aegypti and the containers in which they develop in two neighborhoods of the Amazonian city of Iquitos, Peru. Four variables were examined: adult Ae. aegypti, pupae, containers positive for larvae or pupae, and all water-holding containers. Adults clustered strongly within houses and weakly to a distance of 30 meters beyond the household; clustering was not detected beyond 10 meters for positive containers or pupae. Over short periods of time restricted flight range and frequent blood-feeding behavior of Ae. aegypti appear to be underlying factors in the clustering patterns of human dengue infections. Permanent, consistently infested containers (key premises) were not major producers of Ae. aegypti, indicating that larvaciding strategies by themselves may be less effective than reduction of mosquito development sites by source reduction and education campaigns. We conclude that entomologic risk of human dengue infection should be assessed at the household level at frequent time intervals.

  16. Oral receptivity of Aedes aegypti from Cape Verde for yellow fever, dengue, and chikungunya viruses.

    PubMed

    Vazeille, Marie; Yébakima, André; Lourenço-de-Oliveira, Ricardo; Andriamahefazafy, Barrysson; Correira, Artur; Rodrigues, Julio Monteiro; Veiga, Antonio; Moreira, Antonio; Leparc-Goffart, Isabelle; Grandadam, Marc; Failloux, Anna-Bella

    2013-01-01

    At the end of 2009, 21,313 cases of dengue-3 virus (DENV-3) were reported in the islands of Cape Verde, an archipelago located in the Atlantic Ocean 570 km from the coast of western Africa. It was the first dengue outbreak ever reported in Cape Verde. Mosquitoes collected in July 2010 in the city of Praia, on the island of Santiago, were identified morphologically as Aedes aegypti formosus. Using experimental oral infections, we found that this vector showed a moderate ability to transmit the epidemic dengue-3 virus, but was highly susceptible to chikungunya and yellow fever viruses.

  17. Evaluation of the present dengue situation and control strategies against Aedes aegypti in Cebu City, Philippines.

    PubMed

    Mahilum, Milagros M; Ludwig, Mario; Madon, Minoo B; Becker, Norbert

    2005-12-01

    The present dengue situation and methods to control Aedes aegypti larvae in Cebu City, Philippines, were evaluated for the development of an integrated community-based dengue control program. The study included the detection of dengue infection among Filipino patients, surveying mosquito breeding sites to determine larval population density of Aedes aegypti, an evaluation of public knowledge, attitude, and personal protection practices against dengue, and an evaluation of the efficacy of VectoBac DT/Culinex Tab tablets based on Bacillus thuringiensis israelensis against Ae. aegypti larvae. Of the 173 human sera samples that were assayed for dengue viruses, 94.9% were positive, 2.2% negative and 2.8% equivocal. Thirty households were randomly chosen per Barangay "Villages" (lowest level of formal local administration). Of the 489 breeding sites surveyed, 29.4% were infested with Ae. aegypti larvae, with discarded tires having the highest infestation rate (69.4%). A survey of people's knowledge, attitude, and practices for integrated community-based dengue control showed that 68.7% of the interviewees were aware that dengue is transmitted by mosquitoes, but only 4.3% knew that a virus was the cause of the disease. The efficacy of one and two tablets of VectoBac DT/Culinex Tab, based on Bacillus thuringiensis israelensis, was assessed against the larvae of Ae. aegypti exposed to sunshine and shaded water containers in semi-field and field tests. In semi-field tests, 100% mortality was achieved until the 18th and 30th day after the application of one and two tablets, respectively, in sun-exposed containers. In shaded containers, 100% mortality was observed until the 30th and 36th day after the application of one and two tablets, respectively. In field tests, the tablets were effective for approximately 3 weeks.

  18. The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations.

    PubMed

    Walker, T; Johnson, P H; Moreira, L A; Iturbe-Ormaetxe, I; Frentiu, F D; McMeniman, C J; Leong, Y S; Dong, Y; Axford, J; Kriesner, P; Lloyd, A L; Ritchie, S A; O'Neill, S L; Hoffmann, A A

    2011-08-24

    Dengue fever is the most important mosquito-borne viral disease of humans with more than 50 million cases estimated annually in more than 100 countries. Disturbingly, the geographic range of dengue is currently expanding and the severity of outbreaks is increasing. Control options for dengue are very limited and currently focus on reducing population abundance of the major mosquito vector, Aedes aegypti. These strategies are failing to reduce dengue incidence in tropical communities and there is an urgent need for effective alternatives. It has been proposed that endosymbiotic bacterial Wolbachia infections of insects might be used in novel strategies for dengue control. For example, the wMelPop-CLA Wolbachia strain reduces the lifespan of adult A. aegypti mosquitoes in stably transinfected lines. This life-shortening phenotype was predicted to reduce the potential for dengue transmission. The recent discovery that several Wolbachia infections, including wMelPop-CLA, can also directly influence the susceptibility of insects to infection with a range of insect and human pathogens has markedly changed the potential for Wolbachia infections to control human diseases. Here we describe the successful transinfection of A. aegypti with the avirulent wMel strain of Wolbachia, which induces the reproductive phenotype cytoplasmic incompatibility with minimal apparent fitness costs and high maternal transmission, providing optimal phenotypic effects for invasion. Under semi-field conditions, the wMel strain increased from an initial starting frequency of 0.65 to near fixation within a few generations, invading A. aegypti populations at an accelerated rate relative to trials with the wMelPop-CLA strain. We also show that wMel and wMelPop-CLA strains block transmission of dengue serotype 2 (DENV-2) in A. aegypti, forming the basis of a practical approach to dengue suppression.

  19. Rainfall, abundance of Aedes aegypti and dengue infection in Selangor, Malaysia.

    PubMed

    Li, C F; Lim, T W; Han, L L; Fang, R

    1985-12-01

    An epidemio-meteorotropic analytical study of Selangor, in the Southwest coast of Peninsular Malaysia, examines the monthly incidence of dengue for the period 1973-1982 to assess possible quantitative association with the monthly rainfall. The relationships between rainfall, abundance of A. aegypti and dengue infection during 1982 in Jinjang, a dengue-prone area in Selangor, were also examined. A quantitative association between rainfall and the number of dengue cases was found during the first wet period. The lag time between the onset of heavy rain and dengue outbreak was about two to three months. A 120% increase in the number of dengue cases was observed when the monthly rainfall was 300 mm or more. Positive associations were seen between the incidence of dengue and the Aedes house index and the Breteau index in Jinjang. The relationships between these three variables and rainfall suggest that the latter might have exerted its effect on dengue infection partly through the creation of more breeding sites for A. aegypti. Assessment of the importance of A. aegypti in the transmission of dengue in this locality was not possible because of the lack of adjustment for A. albopictus, the other known vector of dengue in the state, and for social and other environmental factors influencing infection rates. In spite of this and the interpretational problems common in aggregate studies, the present analyses have provided relatively strong statistical evidence of an association between rainfall and dengue outbreaks in Selangor, thereby indicating that it is a factor worthy of careful surveillance and monitoring.

  20. Population genetic structure of the dengue mosquito Aedes aegypti in Venezuela.

    PubMed

    Herrera, Flor; Urdaneta, Ludmel; Rivero, José; Zoghbi, Normig; Ruiz, Johanny; Carrasquel, Gabriela; Martínez, José Antonio; Pernalete, Martha; Villegas, Patricia; Montoya, Ana; Rubio-Palis, Yasmin; Rojas, Elina

    2006-09-01

    The mosquito Aedes aegypti is the main vector of dengue in Venezuela. The genetic structure of this vector was investigated in 24 samples collected from eight geographic regions separated by up to 1160 km. We examined the distribution of a 359-basepair region of the NADH dehydrogenase subunit 4 mitochondrial gene among 1144 Ae. aegypti from eight collections. This gene was amplified by the polymerase chain reaction and tested for variation using single strand conformation polymorphism analysis. Seven haplotypes were detected throughout Venezuela and these were sorted into two clades. Significant differentiation was detected among collections and these were genetically isolated by distance.

  1. Infection with dengue-2 virus alters proteins in naturally expectorated saliva of Aedes aegypti mosquitoes

    PubMed Central

    2014-01-01

    Background Dengue virus (DENV) is responsible for up to approximately 300 million infections and an increasing number of deaths related to severe manifestations each year in affected countries throughout the tropics. It is critical to understand the drivers of this emergence, including the role of vector-virus interactions. When a DENV-infected Aedes aegypti mosquito bites a vertebrate, the virus is deposited along with a complex mixture of salivary proteins. However, the influence of a DENV infection upon the expectorated salivary proteome of its vector has yet to be determined. Methods Therefore, we conducted a proteomic analysis using 2-D gel electrophoresis coupled with mass spectrometry based protein identification comparing the naturally expectorated saliva of Aedes aegypti infected with DENV-2 relative to that of uninfected Aedes aegypti. Results Several proteins were found to be differentially expressed in the saliva of DENV-2 infected mosquitoes, in particular proteins with anti-hemostatic and pain inhibitory functions were significantly reduced. Hypothetical consequences of these particular protein reductions include increased biting rates and transmission success, and lead to alteration of transmission potential as calculated in our vectorial capacity model. Conclusions We present our characterizations of these changes with regards to viral transmission and mosquito blood-feeding success. Further, we conclude that our proteomic analysis of Aedes aegypti saliva altered by DENV infection provides a unique opportunity to identify pro-viral impacts key to virus transmission. PMID:24886023

  2. Household Dengue Prevention Interventions, Expenditures, and Barriers to Aedes aegypti Control in Machala, Ecuador.

    PubMed

    Heydari, Naveed; Larsen, David A; Neira, Marco; Beltrán Ayala, Efraín; Fernandez, Prissila; Adrian, Jefferson; Rochford, Rosemary; Stewart-Ibarra, Anna M

    2017-02-16

    The Aedes aegypti mosquito is an efficient vector for the transmission of Zika, chikungunya, and dengue viruses, causing major epidemics and a significant social and economic burden throughout the tropics and subtropics. The primary means of preventing these diseases is household-level mosquito control. However, relatively little is known about the economic burden of Ae. aegypti control in resource-limited communities. We surveyed residents from 40 households in a high-risk community at the urban periphery in the city of Machala, Ecuador, on dengue perceptions, vector control interventions, household expenditures, and factors influencing purchasing decisions. The results of this study show that households spend a monthly median of US$2.00, or 1.90% (range: 0.00%, 9.21%) of their family income on Ae. aegypti control interventions. Households reported employing, on average, five different mosquito control and dengue prevention interventions, including aerosols, liquid sprays, repellents, mosquito coils, and unimpregnated bed nets. We found that effectiveness and cost were the most important factors that influence people's decisions to purchase a mosquito control product. Our findings will inform the development and deployment of new Ae. aegypti control interventions by the public health and private sectors, and add to prior studies that have focused on the economic burden of dengue-like illness.

  3. Household Dengue Prevention Interventions, Expenditures, and Barriers to Aedes aegypti Control in Machala, Ecuador

    PubMed Central

    Heydari, Naveed; Larsen, David A.; Neira, Marco; Beltrán Ayala, Efraín; Fernandez, Prissila; Adrian, Jefferson; Rochford, Rosemary; Stewart-Ibarra, Anna M.

    2017-01-01

    The Aedes aegypti mosquito is an efficient vector for the transmission of Zika, chikungunya, and dengue viruses, causing major epidemics and a significant social and economic burden throughout the tropics and subtropics. The primary means of preventing these diseases is household-level mosquito control. However, relatively little is known about the economic burden of Ae. aegypti control in resource-limited communities. We surveyed residents from 40 households in a high-risk community at the urban periphery in the city of Machala, Ecuador, on dengue perceptions, vector control interventions, household expenditures, and factors influencing purchasing decisions. The results of this study show that households spend a monthly median of US$2.00, or 1.90% (range: 0.00%, 9.21%) of their family income on Ae. aegypti control interventions. Households reported employing, on average, five different mosquito control and dengue prevention interventions, including aerosols, liquid sprays, repellents, mosquito coils, and unimpregnated bed nets. We found that effectiveness and cost were the most important factors that influence people’s decisions to purchase a mosquito control product. Our findings will inform the development and deployment of new Ae. aegypti control interventions by the public health and private sectors, and add to prior studies that have focused on the economic burden of dengue-like illness. PMID:28212349

  4. Dynamics of Midgut Microflora and Dengue Virus Impact on Life History Traits in Aedes aegypti

    PubMed Central

    Hill, Casey L.; Sharma, Avinash; Shouche, Yogesh; Severson, David W.

    2014-01-01

    Significant morbidity and potential mortality following dengue virus infection is a re-emerging global health problem. Due to the limited effectiveness of current disease control methods, mosquito biologists have been searching for new methods of controlling dengue transmission. While much effort has concentrated on determining genetic aspects to vector competence, paratransgenetic approaches could also uncover novel vector control strategies. The interactions of mosquito midgut microflora and pathogens may play significant roles in vector biology. However, little work has been done to see how the microbiome influences the host's fitness and ultimately vector competence. Here we investigated the effects of the midgut microbial environment and dengue infection on several fitness characteristics among three strains of the primary dengue virus vector mosquito Aedes aegypti. This included comparisons of dengue infection rates of females with and without their normal midgut flora. According to our findings, few effects on fitness characteristics were evident following microbial clearance or with dengue virus infection. Adult survivorship significantly varied due to strain and in one strain varied due to antibiotic treatment. Fecundity varied in one strain due to microbial clearance by antibiotics but no variation was observed in fertility due to either treatment. We show here that fitness characteristics of Ae. aegypti vary largely between strains, including varying response to microflora presence or absence, but did not vary in response to dengue virus infection. PMID:25193134

  5. Occurrence of Natural Vertical Transmission of Dengue-2 and Dengue-3 Viruses in Aedes aegypti and Aedes albopictus in Fortaleza, Ceará, Brazil

    PubMed Central

    Martins, Victor Emanuel Pessoa; Alencar, Carlos Henrique; Kamimura, Michel Tott; de Carvalho Araújo, Fernanda Montenegro; De Simone, Salvatore Giovanni; Dutra, Rosa Fireman; Guedes, Maria Izabel Florindo

    2012-01-01

    Background Aedes aegypti and Aedes albopictus perform an important role in the transmission of the dengue virus to human populations, particularly in the tropical and subtropical regions of the world. Despite a lack of understanding in relation to the maintenance of the dengue virus in nature during interepidemic periods, the vertical transmission of the dengue virus in populations of A. aegypti and A. albopictus appears to be of significance in relation to the urban scenario of Fortaleza. Methods From March 2007 to July 2009 collections of larvae and pupae of Aedes spp were carried out in 40 neighborhoods of Fortaleza. The collections yielded 3,417 (91%) A. aegypti mosquitoes and 336 (9%) A. albopictus mosquitoes. Only pools containing females, randomly chosen, were submitted to the following tests indirect immunofluorescence (virus isolation), RT-PCR/nested-PCR and nucleotide sequencing at the C-prM junction of the dengue virus genome. Results The tests on pool 34 (35 A. albopictus mosquitoes) revealed with presence of DENV-3, pool 35 (50 A. aegypti mosquitoes) was found to be infected with DENV-2, while pool 49 (41 A. albopictus mosquitoes) revealed the simultaneous presence of DENV-2 and DENV-3. Based on the results obtained, there was a minimum infection rate of 0.5 for A. aegypti and 9.4 for A. albopictus. The fragments of 192 bp and 152 bp related to DENV-3, obtained from pools 34 and 49, was registered in GenBank with the access codes HM130699 and JF261696, respectively. Conclusions This study recorded the first natural evidence of the vertical transmission of the dengue virus in populations of A. aegypti and A. albopictus collected in Fortaleza, Ceará State, Brazil, opening a discuss on the epidemiological significance of this mechanism of viral transmission in the local scenario, particularly with respect to the maintenance of these viruses in nature during interepidemic periods. PMID:22848479

  6. Adult survivorship of the dengue mosquito Aedes aegypti varies seasonally in central Vietnam.

    PubMed

    Hugo, Leon E; Jeffery, Jason A L; Trewin, Brendan J; Wockner, Leesa F; Nguyen, Thi Yen; Nguyen, Hoang Le; Nghia, Le Trung; Hine, Emma; Ryan, Peter A; Kay, Brian H

    2014-02-01

    The survival characteristics of the mosquito Aedes aegypti affect transmission rates of dengue because transmission requires infected mosquitoes to survive long enough for the virus to infect the salivary glands. Mosquito survival is assumed to be high in tropical, dengue endemic, countries like Vietnam. However, the survival rates of wild populations of mosquitoes are seldom measured due the difficulty of predicting mosquito age. Hon Mieu Island in central Vietnam is the site of a pilot release of Ae. aegypti infected with a strain of Wolbachia pipientis bacteria (wMelPop) that induces virus interference and mosquito life-shortening. We used the most accurate mosquito age grading approach, transcriptional profiling, to establish the survival patterns of the mosquito population from the population age structure. Furthermore, estimations were validated on mosquitoes released into a large semi-field environment consisting of an enclosed house, garden and yard to incorporate natural environmental variability. Mosquito survival was highest during the dry/cool (January-April) and dry/hot (May-August) seasons, when 92 and 64% of Hon Mieu mosquitoes had survived to an age that they were able to transmit dengue (12 d), respectively. This was reduced to 29% during the wet/cool season from September to December. The presence of Ae. aegypti older than 12 d during each season is likely to facilitate the observed continuity of dengue transmission in the region. We provide season specific Ae. aegypti survival models for improved dengue epidemiology and evaluation of mosquito control strategies that aim to reduce mosquito survival to break the dengue transmission cycle.

  7. Polygamy: the possibly significant behavior of Aedes aegypti and Aedes albopictus in relation to the efficient transmission of dengue virus.

    PubMed

    Choochote, W; Tippawangkosol, P; Jitpakdi, A; Sukontason, K L; Pitasawat, B; Sukontason, K; Jariyapan, N

    2001-12-01

    The polygamous behavior of male Aedes aegypti (L.) and Ae. albopictus (Skuse) was investigated by co-habiting a newly-emerged male and females in a 30 cm3 cage (1 male: 20 females) for up to 5 consecutive days. As determined by insemination rates, the results indicated that one Ae. aegypti and Ae. albopictus male could successfully mate with 1.10 (0-4), 4.10 (1-8), 5.40 (4-8), 5.10 (2-8), 5.15 (3-9) and 0.20 (0-3), 1.70 (0-3), 2.35 (1-4), 2.30 (0-4), 2.35 (1-4) Ae. aegypti and Ae. albopictus females, respectively on day 1,2,3,4 and 5 consecutively. The possibly significant role of their polygamy in relation to dengue virus transmission is discussed.

  8. Aedes aegypti Global Suitability Maps Using a Water Container Energy Balance Model for Dengue Risk Applications

    NASA Astrophysics Data System (ADS)

    Steinhoff, D.

    2015-12-01

    Dengue infections are estimated to total nearly 400 million per year worldwide, with both the geographic range and the magnitude of infections having increased in the past 50 years. The primary dengue vector mosquito Aedes aegypti is closely associated with humans. It lives exclusively in urban and semi-urban areas, preferentially bites humans, and spends its developmental stages in artificial water containers. Climate regulates the development of Ae. aegypti immature mosquitoes in artificial containers. Potential containers for Ae. aegypti immature development include, but are not limited to, small sundry items (e.g., bottles, cans, plastic containers), buckets, tires, barrels, tanks, and cisterns. Successful development of immature mosquitoes from eggs to larvae, pupae, and eventually adults is largely dependent on the availability of water and the thermal properties of the water in the containers. Recent work has shown that physics-based approaches toward modeling container water properties are promising for resolving the complexities of container water dynamics and the effects on immature mosquito development. An energy balance container model developed by the author, termed the Water Height And Temperature in Container Habitats Energy Model (WHATCH'EM), solves for water temperature and height for user-specified containers with readily available weather data. Here we use WHATCH'EM with NASA Earth Science products used as input to construct global suitability maps based on established water temperature ranges for immature Ae. aegypti mosquitoes. A proxy for dengue risk is provided from habitat suitability, but also population estimates, as Ae. aegypti is closely associated with human activity. NASA gridded Global Population of the World data is used to mask out rural areas with low dengue risk. Suitability maps are illustrated for a variety of containers (size, material, color) and shading scenarios.

  9. Aedes aegypti (Diptera: Culicidae) Longevity and Differential Emergence of Dengue Fever in Two Cities in Sonora, Mexico.

    PubMed

    Ernst, Kacey C; Walker, Kathleen R; Reyes-Castro, Pablo; Joy, Teresa K; Castro-Luque, A Lucia; Diaz-Caravantes, Rolando E; Gameros, Mercedes; Haenchen, Steven; Hayden, Mary H; Monaghan, Andrew; Jeffrey-Guttierez, Eileen; Carrière, Yves; Riehle, Michael R

    2017-01-01

    Dengue virus, primarily transmitted by the Aedes aegypti (L.) mosquito, has rapidly expanded in geographic extent over the past several decades. In some areas, however, dengue fever has not emerged despite established Ae. aegypti populations. The reasons for this are unclear and have sometimes been attributed to socio-economic differences. In 2013 we compared Ae. aegypti adult density and population age structure between two cities in Sonora, Mexico: Hermosillo, which has regular seasonal dengue virus transmission, and Nogales, which has minimal transmission. Larval and pupal abundance was greater in Nogales, and adult density was only higher in Hermosillo during September. Population age structure, however, was consistently older in Hermosillo. This difference in longevity may have been one factor that limited dengue virus transmission in Nogales in 2013, as a smaller proportion of Ae. aegypti females survived past the extrinsic incubation period.

  10. Aedes aegypti (Diptera: Culicidae) Longevity and Differential Emergence of Dengue Fever in Two Cities in Sonora, Mexico.

    PubMed

    Ernst, Kacey C; Walker, Kathleen R; Reyes-Castro, Pablo; Joy, Teresa K; Castro-Luque, A Lucia; Diaz-Caravantes, Rolando E; Gameros, Mercedes; Haenchen, Steven; Hayden, Mary H; Monaghan, Andrew; Jeffrey-Guttierez, Eileen; Carrière, Yves; Riehle, Michael R

    2016-09-02

    Dengue virus, primarily transmitted by the Aedes aegypti (L.) mosquito, has rapidly expanded in geographic extent over the past several decades. In some areas, however, dengue fever has not emerged despite established Ae. aegypti populations. The reasons for this are unclear and have sometimes been attributed to socio-economic differences. In 2013 we compared Ae. aegypti adult density and population age structure between two cities in Sonora, Mexico: Hermosillo, which has regular seasonal dengue virus transmission, and Nogales, which has minimal transmission. Larval and pupal abundance was greater in Nogales, and adult density was only higher in Hermosillo during September. Population age structure, however, was consistently older in Hermosillo. This difference in longevity may have been one factor that limited dengue virus transmission in Nogales in 2013, as a smaller proportion of Ae. aegypti females survived past the extrinsic incubation period.

  11. Insecticide susceptibility of the dengue vector, Aedes aegypti (L.) in Metropolitan Bangkok.

    PubMed

    Komalamisra, Narumon; Srisawat, Raweewan; Phanbhuwong, Theerawit; Oatwaree, Sompis

    2011-07-01

    Mosquito larvae were collected from the houses of dengue infected patients in Bangkok, Thailand from 55 sites (36 out of the 50 districts of Metropolitan Bangkok). Aedes aegypti larvae were tested against temephos using WHO bioassay techniques. Adult mosquitoes were tested for susceptibility to permethrin, deltamethrin, cyfluthrin, malathion and DDT using WHO diagnostic doses. Most of the larvae tested were susceptible to temephos. Only few specimens were resistant to temephos. Most adult mosquitoes were highly susceptible to malathion. Deltamethrin resistance was seen in 6 districts of Bangkok. Variable levels of susceptibility were seen with cyfluthrin. Most of the specimens showed resistance to permethrin and all specimens were resistant to DDT.

  12. Serratia odorifera a Midgut Inhabitant of Aedes aegypti Mosquito Enhances Its Susceptibility to Dengue-2 Virus

    PubMed Central

    Apte-Deshpande, Anjali; Paingankar, Mandar; Gokhale, Mangesh D.; Deobagkar, Dileep N.

    2012-01-01

    Mosquito midgut plays a crucial role in its vector susceptibility and pathogen interaction. Identification of the sustainable microflora of the midgut environment can therefore help in evaluating its contribution in mosquito-pathogen interaction and in turn vector competence. To understand the bacterial diversity in the midgut of Aedes aegypti mosquitoes, we conducted a screening study of the gut microbes of these mosquitoes which were either collected from fields or reared in the laboratory “culture-dependent” approach. This work demonstrated that the microbial flora of larvae and adult Ae. aegypti midgut is complex and is dominated by Gram negative proteobacteria. Serratia odorifera was found to be stably associated in the midguts of field collected and laboratory reared larvae and adult females. The potential influence of this sustainable gut microbe on DENV-2 susceptibility of this vector was evaluated by co-feeding S. odorifera with DENV-2 to adult Ae. aegypti females (free of gut flora). The observations revealed that the viral susceptibility of these Aedes females enhanced significantly as compared to solely dengue-2 fed and another gut inhabitant, Microbacterium oxydans co-fed females. Based on the results of this study we proposed that the enhancement in the DENV-2 susceptibility of Ae. aegypti females was due to blocking of prohibitin molecule present on the midgut surface of these females by the polypeptide of gut inhabitant S. odorifera. PMID:22848375

  13. Comparative Susceptibility of Aedes albopictus and Aedes aegypti to Dengue Virus Infection After Feeding on Blood of Viremic Humans: Implications for Public Health.

    PubMed

    Whitehorn, James; Kien, Duong Thi Hue; Nguyen, Nguyet Minh; Nguyen, Hoa L; Kyrylos, Peter P; Carrington, Lauren B; Tran, Chau Nguyen Bich; Quyen, Nguyen Thanh Ha; Thi, Long Vo; Le Thi, Dui; Truong, Nguyen Thanh; Luong, Tai Thi Hue; Nguyen, Chau Van Vinh; Wills, Bridget; Wolbers, Marcel; Simmons, Cameron P

    2015-10-15

    Aedes albopictus is secondary to Aedes aegypti as a vector of dengue viruses (DENVs) in settings of endemicity, but it plays an important role in areas of dengue emergence. This study compared the susceptibility of these 2 species to DENV infection by performing 232 direct blood-feeding experiments on 118 viremic patients with dengue in Vietnam. Field-derived A. albopictus acquired DENV infections as readily as A. aegypti after blood feeding. Once infected, A. albopictus permitted higher concentrations of DENV RNA to accumulate in abdominal tissues, compared with A. aegypti. However, the odds of A. albopictus having infectious saliva were lower than the odds observed for A. aegypti (odds ratio, 0.70; 95% confidence interval, .52-.93). These results quantitate the susceptibility of A. albopictus to DENV infection and will assist parameterization of models for predicting disease risk in settings where A. albopictus is present.

  14. The Dengue Virus Mosquito Vector Aedes aegypti at High Elevation in México

    PubMed Central

    Lozano-Fuentes, Saul; Hayden, Mary H.; Welsh-Rodriguez, Carlos; Ochoa-Martinez, Carolina; Tapia-Santos, Berenice; Kobylinski, Kevin C.; Uejio, Christopher K.; Zielinski-Gutierrez, Emily; Monache, Luca Delle; Monaghan, Andrew J.; Steinhoff, Daniel F.; Eisen, Lars

    2012-01-01

    México has cities (e.g., México City and Puebla City) located at elevations > 2,000 m and above the elevation ceiling below which local climates allow the dengue virus mosquito vector Aedes aegypti to proliferate. Climate warming could raise this ceiling and place high-elevation cities at risk for dengue virus transmission. To assess the elevation ceiling for Ae. aegypti and determine the potential for using weather/climate parameters to predict mosquito abundance, we surveyed 12 communities along an elevation/climate gradient from Veracruz City (sea level) to Puebla City (∼2,100 m). Ae. aegypti was commonly encountered up to 1,700 m and present but rare from 1,700 to 2,130 m. This finding extends the known elevation range in México by > 300 m. Mosquito abundance was correlated with weather parameters, including temperature indices. Potential larval development sites were abundant in Puebla City and other high-elevation communities, suggesting that Ae. aegypti could proliferate should the climate become warmer. PMID:22987656

  15. Oviposition Habitat Selection of Dengue Vectors, Aedes aegypti and Aedes albopictus in Response to Fish Predator

    PubMed Central

    Zuharah, Wan Fatma; Fadzly, Nik; Wei, Wilson Ong Kang; Hashim, Zarul Hazrin

    2016-01-01

    To understand the effects of fish predator’s kairomones on Aedes mosquitoes’ oviposition, we established an experiment using gravid Aedes females. Kairomones concentrations were established using Hampala macrolepidota. One individual fish was placed inside containers with varying water levels (1 L, 5 L, and 10 L of water). The fish were kept in the containers for 24 hours and were removed immediately at the start of each trial in order to have the kairomones remnants. Twenty gravid adult females of Aedes aegypti and Aedes albopictus were allowed to lay eggs on oviposition site with various treatments: (1) control without any kairomones; (2) kairomone remnant in 1 L of water; (3) kairomone remnant in 5 L of water; and (4) kairomone remnant in 10 L of water. There are significant differences between the numbers of eggs laid by both Aedes species for each different treatment (F = 9.131, df = 16, p<0.001). However, fewer eggs were laid by Ae. albopictus compared to Ae. aegypti in the presence of kairomone remnants. This suggested that Ae. albopictus are significantly affected by the kairomones itself and have ability to detect the residual kairomone presence from H. macrolepidota. PMID:27965749

  16. Persistence of dengue virus RNA in dried Aedes aegypti (Diptera: Culicidae) exposed to natural tropical conditions.

    PubMed

    Bangs, Michael J; Pudiantari, Ratna; Gionar, Yoyo R

    2007-01-01

    Aedes aegypti (L.) is the primary vector of dengue viruses, a group of four serotypic single-stranded RNA viruses. Dengue virus RNA can be readily detected in fresh or dried infected mosquitoes by using reverse transcriptase-polymerase chain reaction (RT-PCR). The current study examined the persistence and limit of dengue virus RNA detection in infected Ae. aegypti killed and exposed to natural ambient tropical conditions of temperature and humidity. Under relatively harsh conditions, dengue RNA retained sufficient integrity to be detected in dried mosquitoes up to 13 wk after exposure to relatively high ambient temperatures (26.3-31.7 degrees C) and relative humidity (49.4-69.9%). These findings confirm that the necessity for testing either fresh or frozen mosquitoes is not a prerequisite when using RT-PCR as the viral detection method, and under particular epidemiological circumstances it allows for a more convenient means of conducting vector-virus surveillance activities where collection methods and logistics may preclude immediate testing or access to a cold chain.

  17. Natural vertical transmission of dengue viruses by Aedes aegypti in Bolivia

    PubMed Central

    Le Goff, G.; Revollo, J.; Guerra, M.; Cruz, M.; Barja Simon, Z.; Roca, Y.; Vargas Florès, J.; Hervé, J.P.

    2011-01-01

    The natural transmission of dengue virus from an infected female mosquito to its progeny, namely the vertical transmission, was researched in wild caught Aedes aegypti during an important outbreak in the town of Santa Cruz de la Sierra, Bolivia. Mosquitoes were collected at the preimaginal stages (eggs, larvae and pupae) then reared up to adult stage for viral detection using molecular methods. Dengue virus serotypes 1 and 3 were found to be co-circulating with significant higher prevalence in male than in female mosquitoes. Of the 97 pools of Ae. aegypti (n = 635 male and 748 female specimens) screened, 14 pools, collected in February-May in 2007, were found positive for dengue virus infection: five DEN-1 and nine DEN-3. The average true infection rate (TIR) and minimum infection rate (MIR) were respectively 1.08% and 1.01%. These observations suggest that vertical transmission of dengue virus may be detected in vectors at the peak of an outbreak as well as several months before an epidemic occurs in human population. PMID:21894270

  18. Aedes aegypti from temperate regions of South America are highly competent to transmit dengue virus

    PubMed Central

    2013-01-01

    Background Aedes aegypti is extensively spread throughout South America where it has been responsible for large dengue epidemics during the last decades. Intriguingly, dengue transmission has not been reported in Uruguay and is essentially prevalent in subtropical northern Argentina which borders Uruguay. Methods We assessed vector competence for dengue virus (DENV) of Ae. aegypti populations collected in subtropical Argentina (Corrientes) as well as temperate Uruguay (Salto) and Argentina (Buenos Aires) in 2012 using experimental oral infections with DENV-2. Mosquitoes were incubated at 28°C and examined at 14 and 21 days p.i. to access viral dissemination and transmission. Batches of the Buenos Aires mosquitoes were also incubated at 15°C and 20°C. Results Although mosquitoes from temperate Uruguay and Argentina were competent to transmit DENV, those from subtropical Argentina were more susceptible, displaying the highest virus titters in the head and presenting the highest dissemination of infection and transmission efficiency rates when incubated at 28°C. Interestingly, infectious viral particles could be detected in saliva of mosquitoes from Buenos Aires exposed to 15°C and 20°C. Conclusions There is a potential risk of establishing DENV transmission in Uruguay and for the spread of dengue outbreaks to other parts of subtropical and temperate Argentina, notably during spring and summer periods. PMID:24373423

  19. Natural vertical transmission of dengue viruses by Aedes aegypti in Bolivia.

    PubMed

    Le Goff, G; Revollo, J; Guerra, M; Cruz, M; Barja Simon, Z; Roca, Y; Vargas Florès, J; Hervé, J P

    2011-08-01

    The natural transmission of dengue virus from an infected female mosquito to its progeny, namely the vertical transmission, was researched in wild caught Aedes aegypti during an important outbreak in the town of Santa Cruz de la Sierra, Bolivia. Mosquitoes were collected at the preimaginal stages (eggs, larvae and pupae) then reared up to adult stage for viral detection using molecular methods. Dengue virus serotypes 1 and 3 were found to be co-circulating with significant higher prevalence in male than in female mosquitoes. Of the 97 pools of Ae. aegypti (n = 635 male and 748 female specimens) screened, 14 pools, collected in February-May in 2007, were found positive for dengue virus infection: five DEN-1 and nine DEN-3. The average true infection rate (TIR) and minimum infection rate (MIR) were respectively 1.08% and 1.01%. These observations suggest that vertical transmission of dengue virus may be detected in vectors at the peak of an outbreak as well as several months before an epidemic occurs in human population.

  20. Population dynamics of Aedes aegypti from a dengue hyperendemic urban setting in Colombia.

    PubMed

    Ocampo, Clara B; Wesson, Dawn M

    2004-10-01

    This study evaluated if the Aedes aegypti population in the city of Cali, Colombia was composed of genetically distinct local populations with different levels of insecticide resistance and dengue vector competence. Insecticide resistance was assayed biochemically and was associated with varying levels of mixed-function oxidases and non-specific esterases. The genes encoding those enzymes were under selective pressure from insecticides used to suppress Ae. aegypti populations. Vector competence showed heterogeneity among the vector populations ranging from 19% to 60%. Population genetic analysis of random amplified polymorphic DNA-polymerase chain reaction products, expressed as genetic distance, Wright's F(st), and migration rate (Nm), demonstrated moderate genetic differentiation among Ae. aegypti from four sites (F(st) = 0.085). The results from all characteristics evaluated in the study demonstrated spatial and temporal variation between Ae. aegypti populations. At any specific time, the local populations of Ae. aegypti were genetically differentiated and unique with respect to insecticide resistance and vector competence. Both characteristics changed independently.

  1. Myco-synthesis of silver nanoparticles using Beauveria bassiana against dengue vector, Aedes aegypti (Diptera: Culicidae).

    PubMed

    Banu, A Najitha; Balasubramanian, C

    2014-08-01

    The efficacy of silver synthesized biolarvicide with the help of entomopathogenic fungus, Beauveria bassiana, was assessed against the different larval instars of dengue vector, Aedes aegypti. The silver nanoparticles were observed and characterized by a scanning electron microscope (SEM) and energy-dispersive X-ray (EDX). A surface plasmon resonance band was observed at 420 nm in UV-vis spectrophotometer. The characterization was confirmed by shape (spherical), size 36.88-60.93 nm, and EDX spectral peak at 3 keV of silver nanoparticles. The synthesized silver nanoparticles have been tested against the different larval instars of Ae. aegypti at different concentrations for a period of 24 h. Ae. aegypti larvae were found more susceptible to the synthesized silver nanoparticles. The LC50 and LC90 values are 0.79 and 1.09 ppm with respect to the Ae. aegypti treated with B. bassiana (Bb) silver nanoparticles (AgNPs). First and second instar larvae of Ae. aegypti have shown cent percent mortality while third and fourth instars found 50.0, 56.6, 70.0, 80.0, and 86.6 and 52.4, 60.0, 68.5, 76.0, and 83.3% mortality at 24 h of exposure in 0.06 and 1.00 ppm, respectively. It is suggested that the entomopathogenic fungus synthesized silver nanoparticles would be appropriate for environmentally safer and greener approach for new leeway in vector control strategy through a biological process.

  2. Larvicidal efficacy screening of Anacardaciae crude extracts on the dengue hemorrhagic vector, Aedes aegypti.

    PubMed

    Zuharah, W F; Fadzly, N; Ali, Y; Zakaria, R; Juperi, S; Asyraf, M; Dieng, H

    2014-06-01

    Vector-borne diseases are still rife because of the re-emergence of diseases transmitted by mosquitoes. The objective of this paper is to evaluate the larvicidal efficacy of crude leaf extract of Mangifera indica, Gluta renghas, and Melanochyla fasciculiflora against vector of dengue hemorrhagic fever, Aedes aegypti. These plant species are endemic species and widely distributed in Malaysian forests. Leaves of Ma. indica, G. renghas and M. fascculiflora were collected from Teluk Bahang National Park, Penang Malaysia. Fractions of leaves were segregated, air-dried, powdered and extracted using Soxhlet with methanol. The solvent was removed by using rotary evaporator to obtain the crude extract. Using WHO standard larval bioassay test method, third instar larvae of Aedes aegypti were exposed to concentration ranging from 200- 4500 ppm of methanol extract for all plant species. Larval mortality was observed after 24 hours exposure. The highest susceptibility and toxicity was recorded by Mangifera indica with the lowest concentration at 800 ppm followed by M. fasciculiflora and G. renghas. This indicates that crude plant extract is very effective in killing Ae. aegypti mosquitoes. This finding may lead to new low cost alternative, environmentally friendly method for mosquito control programs. To our knowledge, this is the first report on larvicidal bioefficacy from endemic Malaysian plants.

  3. Temporal genetic structure of major dengue vector Aedes aegypti from Manaus, Amazonas, Brazil.

    PubMed

    Mendonça, Barbara Alessandra Alves; de Sousa, Adna Cristina Barbosa; de Souza, Anete Pereira; Scarpassa, Vera Margarete

    2014-06-01

    In recent years, high levels of Aedes aegypti infestation and several dengue outbreaks with fatal outcome cases have been reported in Manaus, State of Amazonas, Brazil. This situation made it important to understand the genetic structure and gene flow patterns among the populations of this vector in Manaus, vital pieces of information for their management and development of new control strategies. In this study, we used nine microsatellite loci to examine the effect of seasonality on the genetic structure and gene flow patterns in Ae. aegypti populations from four urban neighborhoods of Manaus, collected during the two main rainy and dry seasons. All loci were polymorphic in the eight samples from the two seasons, with a total of 41 alleles. The genetic structure analyses of the samples from the rainy season revealed genetic homogeneity and extensive gene flow, a result consistent with the abundance of breeding sites for this vector. However, the samples from the dry season were significantly structured, due to a reduction of Ne in two (Praça 14 de Janeiro and Cidade Nova) of the four samples analyzed, and this was the primary factor influencing structure during the dry season. Genetic bottleneck analyses suggested that the Ae. aegypti populations from Manaus are being maintained continuously throughout the year, with seasonal reduction rather than severe bottleneck or extinction, corroborating previous reports. These findings are of extremely great importance for designing new dengue control strategies in Manaus.

  4. Engineering RNA interference-based resistance to dengue virus type 2 in genetically modified Aedes aegypti.

    PubMed

    Franz, Alexander W E; Sanchez-Vargas, Irma; Adelman, Zach N; Blair, Carol D; Beaty, Barry J; James, Anthony A; Olson, Ken E

    2006-03-14

    Mosquitoes (Aedes aegypti) were genetically modified to exhibit impaired vector competence for dengue type 2 viruses (DENV-2). We exploited the natural antiviral RNA interference (RNAi) pathway in the mosquito midgut by constructing an effector gene that expresses an inverted-repeat (IR) RNA derived from the premembrane protein coding region of the DENV-2 RNA genome. The A. aegypti carboxypeptidase A promoter was used to express the IR RNA in midgut epithelial cells after ingestion of a bloodmeal. The promoter and effector gene were inserted into the genome of a white-eye Puerto Rico Rexville D (Higgs' white eye) strain by using the nonautonomous mariner MosI transformation system. A transgenic family, Carb77, expressed IR RNA in the midgut after a bloodmeal. Carb77 mosquitoes ingesting an artificial bloodmeal containing DENV-2 exhibited marked reduction of viral envelope antigen in midguts and salivary glands after infection. DENV-2 titration of individual mosquitoes showed that most Carb77 mosquitoes poorly supported virus replication. Transmission in vitro of virus from the Carb77 line was significantly diminished when compared to control mosquitoes. The presence of DENV-2-derived siRNAs in RNA extracts from midguts of Carb77 and the loss of the resistance phenotype when the RNAi pathway was interrupted proved that DENV-2 resistance was caused by a RNAi response. Engineering of transgenic A. aegypti that show a high level of resistance against DENV-2 provides a powerful tool for developing population replacement strategies to control transmission of dengue viruses.

  5. A Multipurpose, High-Throughput Single-Nucleotide Polymorphism Chip for the Dengue and Yellow Fever Mosquito, Aedes aegypti

    PubMed Central

    Evans, Benjamin R.; Gloria-Soria, Andrea; Hou, Lin; McBride, Carolyn; Bonizzoni, Mariangela; Zhao, Hongyu; Powell, Jeffrey R.

    2015-01-01

    The dengue and yellow fever mosquito, Aedes aegypti, contributes significantly to global disease burden. Genetic study of Aedes aegypti is essential to understanding its evolutionary history, competence as a disease vector, and the effects and efficacy of vector control methods. The prevalence of repeats and transposable elements in the Aedes aegypti genome complicates marker development and makes genome-wide genetic study challenging. To overcome these challenges, we developed a high-throughput genotyping chip, Axiom_aegypti1. This chip screens for 50,000 single-nucleotide polymorphisms present in Aedes aegypti populations from around the world. The array currently used genotypes 96 samples simultaneously. To ensure that these markers satisfy assumptions commonly made in many genetic analyses, we tested for Mendelian inheritance and linkage disequilibrium in laboratory crosses and a wild population, respectively. We have validated more than 25,000 of these markers to date, and expect this number to increase with more sampling. We also present evidence of the chip’s efficacy in distinguishing populations throughout the world. The markers on this chip are ideal for applications ranging from population genetics to genome-wide association studies. This tool makes rapid, cost-effective, and comparable genotype data attainable to diverse sets of Aedes aegypti researchers, from those interested in potential range shifts due to climate change to those characterizing the genetic underpinnings of its competence to transmit disease. PMID:25721127

  6. A Multipurpose, High-Throughput Single-Nucleotide Polymorphism Chip for the Dengue and Yellow Fever Mosquito, Aedes aegypti.

    PubMed

    Evans, Benjamin R; Gloria-Soria, Andrea; Hou, Lin; McBride, Carolyn; Bonizzoni, Mariangela; Zhao, Hongyu; Powell, Jeffrey R

    2015-02-26

    The dengue and yellow fever mosquito, Aedes aegypti, contributes significantly to global disease burden. Genetic study of Aedes aegypti is essential to understanding its evolutionary history, competence as a disease vector, and the effects and efficacy of vector control methods. The prevalence of repeats and transposable elements in the Aedes aegypti genome complicates marker development and makes genome-wide genetic study challenging. To overcome these challenges, we developed a high-throughput genotyping chip, Axiom_aegypti1. This chip screens for 50,000 single-nucleotide polymorphisms present in Aedes aegypti populations from around the world. The array currently used genotypes 96 samples simultaneously. To ensure that these markers satisfy assumptions commonly made in many genetic analyses, we tested for Mendelian inheritance and linkage disequilibrium in laboratory crosses and a wild population, respectively. We have validated more than 25,000 of these markers to date, and expect this number to increase with more sampling. We also present evidence of the chip's efficacy in distinguishing populations throughout the world. The markers on this chip are ideal for applications ranging from population genetics to genome-wide association studies. This tool makes rapid, cost-effective, and comparable genotype data attainable to diverse sets of Aedes aegypti researchers, from those interested in potential range shifts due to climate change to those characterizing the genetic underpinnings of its competence to transmit disease.

  7. Comparative role of Aedes albopictus and Aedes aegypti in the emergence of Dengue and Chikungunya in central Africa.

    PubMed

    Paupy, Christophe; Ollomo, Benjamin; Kamgang, Basile; Moutailler, Sara; Rousset, Dominique; Demanou, Maurice; Hervé, Jean-Pierre; Leroy, Eric; Simard, Frédéric

    2010-04-01

    Since its discovery in Nigeria in 1991, Aedes albopictus has invaded much of Central Africa, a region where Ae. aegypti also occurs. To assess the relationship between the invasion by Ae. albopictus and the recent emergence of dengue virus (DENV) and chikungunya virus (CHIKV), we undertook vector competence experiments on populations collected from Cameroon and conducted field investigations during concurrent epidemics of DENV and CHIKV in Gabon. Overall, infection and dissemination rates were not significantly different between Ae. albopictus and Ae. aegypti when exposed to titers of 10(8.1) mosquito infectious dose 50/mL and 10(7.5) plaque forming units/mL of DENV type 2 and CHIKV, respectively. Field investigations showed that Ae. albopictus readily bit man, was abundant, and outnumbered Ae. aegypti to a large extent in Gabon, particularly in suburban environments. Nevertheless, Ae. aegypti was predominant in the more urbanized central parts of Libreville. In this city, CHIKV and DENV were detected only in Ae. albopictus. These data strongly suggest that Ae. albopictus acted as the major vector of both viruses in Libreville in 2007, impacting on the epidemiology of DENV and CHIKV in this area.

  8. Sialic acid expression in the mosquito Aedes aegypti and its possible role in dengue virus-vector interactions.

    PubMed

    Cime-Castillo, Jorge; Delannoy, Philippe; Mendoza-Hernández, Guillermo; Monroy-Martínez, Verónica; Harduin-Lepers, Anne; Lanz-Mendoza, Humberto; Hernández-Hernández, Fidel de la Cruz; Zenteno, Edgar; Cabello-Gutiérrez, Carlos; Ruiz-Ordaz, Blanca H

    2015-01-01

    Dengue fever (DF) is the most prevalent arthropod-borne viral disease which affects humans. DF is caused by the four dengue virus (DENV) serotypes, which are transmitted to the host by the mosquito Aedes aegypti that has key roles in DENV infection, replication, and viral transmission (vector competence). Mosquito saliva also plays an important role during DENV transmission. In this study, we detected the presence of sialic acid (Sia) in Aedes aegypti tissues, which may have an important role during DENV-vector competence. We also identified genome sequences encoding enzymes involved in Sia pathways. The cDNA for Aedes aegypti CMP-Sia synthase (CSAS) was amplified, cloned, and functionally evaluated via the complementation of LEC29.Lec32 CSAS-deficient CHO cells. AedesCSAS-transfected LEC29.Lec32 cells were able to express Sia moieties on the cell surface. Sequences related to α-2,6-sialyltransferase were detected in the Aedes aegypti genome. Likewise, we identified Sia-α-2,6-DENV interactions in different mosquito tissues. In addition, we evaluated the possible role of sialylated molecules in a salivary gland extract during DENV internalization in mammalian cells. The knowledge of early DENV-host interactions could facilitate a better understanding of viral tropism and pathogenesis to allow the development of new strategies for controlling DENV transmission.

  9. Sialic Acid Expression in the Mosquito Aedes aegypti and Its Possible Role in Dengue Virus-Vector Interactions

    PubMed Central

    Cime-Castillo, Jorge; Delannoy, Philippe; Mendoza-Hernández, Guillermo; Monroy-Martínez, Verónica; Lanz-Mendoza, Humberto; Hernández-Hernández, Fidel de la Cruz; Cabello-Gutiérrez, Carlos; Ruiz-Ordaz, Blanca H.

    2015-01-01

    Dengue fever (DF) is the most prevalent arthropod-borne viral disease which affects humans. DF is caused by the four dengue virus (DENV) serotypes, which are transmitted to the host by the mosquito Aedes aegypti that has key roles in DENV infection, replication, and viral transmission (vector competence). Mosquito saliva also plays an important role during DENV transmission. In this study, we detected the presence of sialic acid (Sia) in Aedes aegypti tissues, which may have an important role during DENV-vector competence. We also identified genome sequences encoding enzymes involved in Sia pathways. The cDNA for Aedes aegypti CMP-Sia synthase (CSAS) was amplified, cloned, and functionally evaluated via the complementation of LEC29.Lec32 CSAS-deficient CHO cells. AedesCSAS-transfected LEC29.Lec32 cells were able to express Sia moieties on the cell surface. Sequences related to α-2,6-sialyltransferase were detected in the Aedes aegypti genome. Likewise, we identified Sia-α-2,6-DENV interactions in different mosquito tissues. In addition, we evaluated the possible role of sialylated molecules in a salivary gland extract during DENV internalization in mammalian cells. The knowledge of early DENV-host interactions could facilitate a better understanding of viral tropism and pathogenesis to allow the development of new strategies for controlling DENV transmission. PMID:25874215

  10. Spatial clustering of Aedes aegypti related to breeding container characteristics in Coastal Ecuador: implications for dengue control.

    PubMed

    Schafrick, Nathaniel H; Milbrath, Meghan O; Berrocal, Veronica J; Wilson, Mark L; Eisenberg, Joseph N S

    2013-10-01

    Mosquito management within households remains central to the control of dengue virus transmission. An important factor in these management decisions is the spatial clustering of Aedes aegypti. We measured spatial clustering of Ae. aegypti in the town of Borbón, Ecuador and assessed what characteristics of breeding containers influenced the clustering. We used logistic regression to assess the spatial extent of that clustering. We found strong evidence for juvenile mosquito clustering within 20 m and for adult mosquito clustering within 10 m, and stronger clustering associations for containers ≥ 40 L than those < 40 L. Aedes aegypti clusters persisted after adjusting for various container characteristics, suggesting that patterns are likely attributable to short dispersal distances rather than shared characteristics of containers in cluster areas. These findings have implications for targeting Ae. aegypti control efforts.

  11. Biochemical evidence of efficacy of potash alum for the control of dengue vector Aedes aegypti (Linnaeus).

    PubMed

    Preet, Shabad; Sneha, A

    2011-06-01

    Aedes aegypti is the primary vector of dengue, yellow fever and chikungunya in India and other South East Asian countries, and novel insecticides for vector control are urgently needed. In the present investigation, efficacy of potash alum, a traditionally known double salt in Indian and Chinese medicine system, was tested against the larvae of dengue vector, A. aegypti. LC(50,) LC(90) and LC(99) values were recorded for various instar larvae where I instar larvae were found to be the most susceptible and IV instar larvae as the least susceptible one. The LC(50) values of crude and standard potash alum of various instar larvae ranged between 15.29 and 48.53 ppm and 20.50-65.10 ppm, respectively. Biochemical changes were also evidenced in IV instar A. aegypti larvae following a sublethal exposure for 24 h in the levels of various nutrient reserves and primary metabolites such as sugar, glycogen, lipids and proteins suggesting possible mode of action responsible for larval mortality. Sugar and glycogen concentrations were measured as 24.6 and 10.67 μg per five larvae in controls which were significantly (p<0.05) reduced by 32.11-93.98% and 39.26-94.47%, respectively, in larvae treated with crude alum. In controls, protein and lipid content were recorded as 210.74 and 94.71 μg per five larvae which dropped up to 26.53% and 25.5%, respectively, in larvae following treatment with crude alum. Moreover, drastic changes were also recorded for DNA content with 25.39-44.17% decrease in crude alum-treated larvae. It is evident from these results that potash alum, a fairly cheaper and readily available ecofriendly compound could be recommended as a potential chemical larvicide against dengue vector at mosquito breeding sites in the vicinity of human dwellings.

  12. Transstadial Effects of Bti on Traits of Aedes aegypti and Infection with Dengue Virus

    PubMed Central

    Alto, Barry W.; Lord, Cynthia C.

    2016-01-01

    Most mosquito control efforts are primarily focused on reducing the adult population size mediated by reductions in the larval population, which should lower risk of disease transmission. Although the aim of larviciding is to reduce larval abundance and thus recruitment of adults, nonlethal effects on adults are possible, including transstadial effects on phenotypes of adults such as survival and pathogen infection and transmission. In addition, the mortality induced by control efforts may act in conjunction with other sources of mosquito mortality in nature. The consequences of these effects and interactions may alter the potential of the population to transmit pathogens. We tested experimentally the combined effects of a larvicide (Bacillus thuringiensis ssp. israelensis, Bti) and competition during the larval stages on subsequent Aedes aegypti (Linnaeus) traits, population performance, and susceptibility to dengue-1 virus infection. Ae. aegypti that survived exposure to Bti experienced accelerated development, were larger, and produced more eggs with increasing amounts of Bti, consistent with competitive release among surviving mosquitoes. Changing larval density had no significant interactive effect with Bti treatment on development and growth to adulthood. Larval density, but not Bti or treatment interaction, had a strong effect on survival of adult Ae. aegypti females. There were sharper declines in cumulative daily survival of adults from crowded than uncrowded larval conditions, suggesting that high competition conditions of larvae may be an impediment to transmission of dengue viruses. Rates of infection and dengue-1 virus disseminated infections were found to be 87±13% and 88±12%, respectively. There were no significant treatment effects on infection measurements. Our findings suggest that larvicide campaigns using Bti may reduce the number of emerged adults, but survivors will have a fitness advantage (growth, development, enhanced production of eggs

  13. Bioefficacy of Mentha piperita essential oil against dengue fever mosquito Aedes aegypti L

    PubMed Central

    Kumar, Sarita; Wahab, Naim; Warikoo, Radhika

    2011-01-01

    Objective To assess the larvicidal and repellent potential of the essential oil extracted from the leaves of peppermint plant, Mentha piperita (M. piperita) against the larval and adult stages of Aedes aegypti (Ae. Aegypti). Methods The larvicidal potential of peppermint oil was evaluated against early fourth instar larvae of Ae. aegypti using WHO protocol. The mortality counts were made after 24 and 48 h, and LC50 and LC90 values were calculated. The efficacy of peppermint oil as mosquito repellent was assessed using the human-bait technique. The measured area of one arm of a human volunteer was applied with the oil and the other arm was applied with ethanol. The mosquito bites on both the arms were recorded for 3 min after every 15 min. The experiment continued for 3 h and the percent protection was calculated. Results The essential oil extracted from M. piperita possessed excellent larvicidal efficiency against dengue vector. The bioassays showed an LC50 and LC90 value of 111.9 and 295.18 ppm, respectively after 24 h of exposure. The toxicity of the oil increased 11.8% when the larvae were exposed to the oil for 48 h. The remarkable repellent properties of M. piperita essential oil were established against adults Ae. aegypti. The application of oil resulted in 100% protection till 150 min. After next 30 min, only 1-2 bites were recorded as compared with 8-9 bites on the control arm. Conclusions The peppermint essential oil is proved to be efficient larvicide and repellent against dengue vector. Further studies are needed to identify the possible role of oil as adulticide, oviposition deterrent and ovicidal agent. The isolation of active ingredient from the oil could help in formulating strategies for mosquito control. PMID:23569733

  14. Bromeliad-inhabiting mosquitoes in an urban botanical garden of dengue endemic Rio de Janeiro. Are bromeliads productive habitats for the invasive vectors Aedes aegypti and Aedes albopictus?

    PubMed Central

    Mocellin, Márcio Goulart; Simões, Taynãna César; do Nascimento, Teresa Fernandes Silva; Teixeira, Maria Lucia França; Lounibos, Leon Philip; de Oliveira, Ricardo Lourenço

    2012-01-01

    Immatures of both Aedes aegypti and Aedes albopictus have been found in water-holding bromeliad axils in Brazil. Removal of these plants or their treatment with insecticides in public and private gardens have been undertaken during dengue outbreaks in Brazil despite uncertainty as to their importance as productive habitats for dengue vectors. From March 2005-February 2006, we sampled 120 randomly selected bromeliads belonging to 10 species in a public garden less than 200 m from houses in a dengue-endemic neighborhood in Rio de Janeiro. A total of 2,816 mosquito larvae and pupae was collected, with an average of 5.87 immatures per plant per collection. Culex (Microculex) pleuristriatus and Culex spp of the Ocellatus Group were the most abundant culicid species, found in all species of bromeliads; next in relative abundance were species of the genus Wyeomyia. Only two individuals of Ae. aegypti (0.07%) and five of Ae. albopictus (0.18%) were collected from bromeliads. By contrast, immatures of Ae. aegypti were found in manmade containers in nearly 5% of nearby houses. These results demonstrate that bromeliads are not important producers of Ae. aegypti and Ae. albopictus and, hence, should not be a focus for dengue control. However, the results of this study of only one year in a single area may not represent outcomes in other urban localities where bromeliads, Ae. aegypti and dengue coincide in more disturbed habitats. PMID:20140379

  15. Tackling the growing threat of dengue: Phyllanthus niruri-mediated synthesis of silver nanoparticles and their mosquitocidal properties against the dengue vector Aedes aegypti (Diptera: Culicidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mosquitoes transmit pathogens that cause millions of human deaths each year. Dengue virus is transmitted to humans in tropical and subtropical areas by Aedes aegypti (Diptera: Culicidae). The use of synthetic insecticides to control this mosquito is accompanied by high operational costs and adverse...

  16. Breeding Sites of Aedes aegypti: Potential Dengue Vectors in Dire Dawa, East Ethiopia

    PubMed Central

    Getachew, Dejene; Tekie, Habte; Gebre-Michael, Teshome; Balkew, Meshesha; Mesfin, Akalu

    2015-01-01

    Background and Objectives. Entomological survey was carried out from May-June to September-October 2014 to investigate the presence of dengue vectors in discarded tires and artificial water containers in houses and peridomestic areas. Methods. A cross-sectional immature stage survey was done indoors and outdoors in 301 houses. Mosquito larval sampling was conducted using pipette or dipper depending on container types. Larvae were identified morphologically and larval indices were also calculated. Results. A total of 750 containers were inspected, and of these 405 were positive for mosquito larvae. A total of 1,873 larvae were collected and morphologically identified as Aedes aegypti (n = 1580: 84.4%) and Culex (n = 293: 15.6%). The larval indices, house index, container index, and breteau index, varied from 33.3 to 86.2, from 23.2 to 73.9, and from 56.5 to 188.9, respectively. Conclusion. Aedes aegypti is breeding in a wide range of artificial containers. To control these mosquitoes, the integration of different methods should be taken into consideration. PMID:26435712

  17. Dengue Virus Infection of Aedes aegypti Requires a Putative Cysteine Rich Venom Protein.

    PubMed

    Londono-Renteria, Berlin; Troupin, Andrea; Conway, Michael J; Vesely, Diana; Ledizet, Michael; Roundy, Christopher M; Cloherty, Erin; Jameson, Samuel; Vanlandingham, Dana; Higgs, Stephen; Fikrig, Erol; Colpitts, Tonya M

    2015-10-01

    Dengue virus (DENV) is a mosquito-borne flavivirus that causes serious human disease and mortality worldwide. There is no specific antiviral therapy or vaccine for DENV infection. Alterations in gene expression during DENV infection of the mosquito and the impact of these changes on virus infection are important events to investigate in hopes of creating new treatments and vaccines. We previously identified 203 genes that were ≥5-fold differentially upregulated during flavivirus infection of the mosquito. Here, we examined the impact of silencing 100 of the most highly upregulated gene targets on DENV infection in its mosquito vector. We identified 20 genes that reduced DENV infection by at least 60% when silenced. We focused on one gene, a putative cysteine rich venom protein (SeqID AAEL000379; CRVP379), whose silencing significantly reduced DENV infection in Aedes aegypti cells. Here, we examine the requirement for CRVP379 during DENV infection of the mosquito and investigate the mechanisms surrounding this phenomenon. We also show that blocking CRVP379 protein with either RNAi or specific antisera inhibits DENV infection in Aedes aegypti. This work identifies a novel mosquito gene target for controlling DENV infection in mosquitoes that may also be used to develop broad preventative and therapeutic measures for multiple flaviviruses.

  18. Alterations in the Aedes aegypti transcriptome during infection with West Nile, dengue and yellow fever viruses.

    PubMed

    Colpitts, Tonya M; Cox, Jonathan; Vanlandingham, Dana L; Feitosa, Fabiana M; Cheng, Gong; Kurscheid, Sebastian; Wang, Penghua; Krishnan, Manoj N; Higgs, Stephen; Fikrig, Erol

    2011-09-01

    West Nile (WNV), dengue (DENV) and yellow fever (YFV) viruses are (re)emerging, mosquito-borne flaviviruses that cause human disease and mortality worldwide. Alterations in mosquito gene expression common and unique to individual flaviviral infections are poorly understood. Here, we present a microarray analysis of the Aedes aegypti transcriptome over time during infection with DENV, WNV or YFV. We identified 203 mosquito genes that were ≥ 5-fold differentially up-regulated (DUR) and 202 genes that were ≥ 10-fold differentially down-regulated (DDR) during infection with one of the three flaviviruses. Comparative analysis revealed that the expression profile of 20 DUR genes and 15 DDR genes was quite similar between the three flaviviruses on D1 of infection, indicating a potentially conserved transcriptomic signature of flaviviral infection. Bioinformatics analysis revealed changes in expression of genes from diverse cellular processes, including ion binding, transport, metabolic processes and peptidase activity. We also demonstrate that virally-regulated gene expression is tissue-specific. The overexpression of several virally down-regulated genes decreased WNV infection in mosquito cells and Aedes aegypti mosquitoes. Among these, a pupal cuticle protein was shown to bind WNV envelope protein, leading to inhibition of infection in vitro and the prevention of lethal WNV encephalitis in mice. This work provides an extensive list of targets for controlling flaviviral infection in mosquitoes that may also be used to develop broad preventative and therapeutic measures for multiple flaviviruses.

  19. EFFICIENCY OF DENGUE SEROTYPE 2 VIRUS STRAINS TO INFECT AND DISSEMINATE IN AEDES AEGYPTI

    PubMed Central

    ARMSTRONG, PHILIP M.; RICO-HESSE, REBECA

    2011-01-01

    Dengue serotype 2 (DEN-2) viruses with the potential to cause dengue hemorrhagic fever have been shown to belong to the Southeast (SE) Asian genotype. These viruses appear to be rapidly displacing the American genotype of DEN-2 in the Western Hemisphere. To determine whether distinct genotypes of DEN-2 virus are better adapted to mosquito transmission, we classified 15 viral strains of DEN-2 phylogenetically and compared their ability to infect and disseminate in different populations of Aedes aegypti mosquitoes. Envelope gene nucleotide sequence analysis confirmed that six strains belonged to the American genotype and nine strains were of the SE Asian genotype. The overall rate of disseminated infection in mosquitoes from Texas was 27% for the SE Asian genotype versus 9% for the American genotype. This pattern of infection was similar in another population of mosquitoes sampled from southern Mexico (30% versus 13%). Together, these findings suggest that Ae. aegypti tends to be more susceptible to infection by DEN-2 viruses of the SE Asian genotype than to those of the American genotype, and this may have epidemiologic implications. PMID:12812340

  20. Heme Signaling Impacts Global Gene Expression, Immunity and Dengue Virus Infectivity in Aedes aegypti

    PubMed Central

    Bottino-Rojas, Vanessa; Talyuli, Octávio A. C.; Jupatanakul, Natapong; Sim, Shuzhen; Dimopoulos, George; Venancio, Thiago M.; Bahia, Ana C.; Sorgine, Marcos H.; Oliveira, Pedro L.; Paiva-Silva, Gabriela O.

    2015-01-01

    Blood-feeding mosquitoes are exposed to high levels of heme, the product of hemoglobin degradation. Heme is a pro-oxidant that influences a variety of cellular processes. We performed a global analysis of heme-regulated Aedes aegypti (yellow fever mosquito) transcriptional changes to better understand influence on mosquito physiology at the molecular level. We observed an iron- and reactive oxygen species (ROS)-independent signaling induced by heme that comprised genes related to redox metabolism. By modulating the abundance of these transcripts, heme possibly acts as a danger signaling molecule. Furthermore, heme triggered critical changes in the expression of energy metabolism and immune response genes, altering the susceptibility towards bacteria and dengue virus. These findings seem to have implications on the adaptation of mosquitoes to hematophagy and consequently on their ability to transmit diseases. Altogether, these results may also contribute to the understanding of heme cell biology in eukaryotic cells. PMID:26275150

  1. Aedes aegypti Control Strategies in Brazil: Incorporation of New Technologies to Overcome the Persistence of Dengue Epidemics

    PubMed Central

    Araújo, Helena R. C.; Carvalho, Danilo O.; Ioshino, Rafaella S.; Costa-da-Silva, André L.; Capurro, Margareth L.

    2015-01-01

    Dengue is considered to be the most important mosquito-borne viral disease in the world. The Aedes aegypti mosquito, its vector, is highly anthropophilic and is very well adapted to urban environments. Although several vaccine candidates are in advanced stages of development no licensed dengue vaccine is yet available. As a result, controlling the spread of dengue still requires that mosquitoes be targeted directly. We review the current methods of dengue vector control focusing on recent technical advances. We first examine the history of Brazil’s National Dengue Control Plan in effect since 2002, and we describe its establishment and operation. With the persistent recurrence of dengue epidemics, current strategies should be reassessed to bring to the forefront a discussion of the possible implementation of new technologies in Brazil’s mosquito control program. PMID:26463204

  2. Natural transovarial dengue virus infection rate in both sexes of dark and pale forms of Aedes aegypti from an urban area of Bangkok, Thailand.

    PubMed

    Thongrungkiat, Supatra; Wasinpiyamongkol, Ladawan; Maneekan, Pannamas; Prummongkol, Samrerng; Samung, Yudthana

    2012-09-01

    Transovarial dengue virus infection status of two forms of adult Aedes aegypti (dark or Ae. aegypti type form and pale or form queenslandensis), reared from field-collected larval and pupal stages, was determined by one-step RT-PCR and dengue viral serotype by nested-PCR. Natural transovarial transmission (TOT) of dengue virus was detected in the two Ae. aegypti forms, and in both adult males and females. Male Ae. aegypti had a higher rate of TOT dengue virus infection than female. The overall minimum infection rate among the male and female populations was 19.5 and 12.3 per 1,000 mosquitoes, respectively. All four dengue serotypes were detected in mosquito samples, with DEN-4 being the predominant serotype. Thus, both male and female Ae. aegypti have influences on the epidemiology of dengue virus transmission.

  3. Undesirable Consequences of Insecticide Resistance following Aedes aegypti Control Activities Due to a Dengue Outbreak

    PubMed Central

    Maciel-de-Freitas, Rafael; Avendanho, Fernando Campos; Santos, Rosangela; Sylvestre, Gabriel; Araújo, Simone Costa; Lima, José Bento Pereira; Martins, Ademir Jesus; Coelho, Giovanini Evelim; Valle, Denise

    2014-01-01

    Background During a dengue outbreak with co-circulation of DENV-1 and -2 in the city of Boa Vista, one patient was diagnosed with DENV-4, a serotype supposed absent from Brazil for almost 30 years. The re-emergence of DENV-4 triggered the intensification of mechanical and chemical Aedes aegypti control activities in order to reduce vector density and avoid DENV-4 dissemination throughout the country. Methods/Principal Findings Vector control activities consisted of (a) source reduction, (b) application of diflubenzuron against larvae and (c) vehicle-mounted space spraying of 2% deltamethrin to eliminate adults. Control activity efficacy was monitored by comparing the infestation levels and the number of eggs collected in ovitraps before and after interventions, performed in 22 Boa Vista districts, covering an area of ∼80% of the city and encompassing 56,837 dwellings. A total of 94,325 containers were eliminated or treated with diflubenzuron. The most frequently positive containers were small miscellaneous receptacles, which corresponded to 59% of all positive breeding sites. Insecticide resistance to deltamethrin was assessed before, during and after interventions by dose-response bioassays adopting WHO-based protocols. The intense use of the pyrethroid increased fourfold the resistance ratio of the local Ae. aegypti population only six months after the beginning of vector control. Curiously, this trend was also observed in the districts in which no deltamethrin was applied by the public health services. On the other hand, changes in the resistance ratio to the organophosphate temephos seemed less influenced by insecticide in Boa Vista. Conclusions Despite the intense effort, mosquito infestation levels were only slightly reduced. Besides, the median number of eggs in ovitraps remained unaltered after control activity intensification. The great and rapid increase in pyrethroid resistance levels of natural Ae. aegypti populations is discussed in the context of

  4. Natural vertical transmission of dengue viruses in Aedes aegypti in selected sites in Cebu City, Philippines.

    PubMed

    Edillo, Frances E; Sarcos, Janet R; Sayson, Stephanie L

    2015-12-01

    We attempted to determine the vertical transmission of dengue virus (DENV) in Aedes aegypti in selected sites in Cebu City, Philippines. Mosquito sub-adults were collected monthly from households and the field during the wet-dry-wet season from November, 2011 to July, 2012 and were laboratory-reared to adults. Viral RNA extracts in mosquitoes were assayed by hemi-nested RT-PCR. Results showed that 62 (36.26%; n=679) out of 171 mosquito pools (n=2,871) were DENV+. The minimum infection rate (MIR) of DENV ranged from 0 in wet months to 48.22/1,000 mosquitoes in April, 2012 (mid-dry). DENVs were detected in larvae, pupae, and male and female adults, with DENV-4, DENV-3, and DENV-1, in that rank of prevalence. DENV-1 co-infected with either DENV-3 or -4 or with both in April, 2012; DENV-3 and -4 were present in both seasons. More DENV+ mosquitoes were collected from households than in field premises (p<0.001) and in the dry than in the wet season (p<0.05), with significant interaction (p<0.05) between sites and premises but no interaction between sites and seasons (p>0.05). By Generalized Linear Mixed models, the type of premises nested in sites and monthly total rainfall were significant predictors of monthly dengue cases (p<0.05) and not MIR, season, temperature, and relative humidity. Surveillance of DENV prevalence in Ae. aegypti and detecting their natural foci in the dry season provide an early warning signal of dengue outbreak.

  5. Population Dynamics of Aedes aegypti and Dengue as Influenced by Weather and Human Behavior in San Juan, Puerto Rico

    PubMed Central

    Barrera, Roberto; Amador, Manuel; MacKay, Andrew J.

    2011-01-01

    Previous studies on the influence of weather on Aedes aegypti dynamics in Puerto Rico suggested that rainfall was a significant driver of immature mosquito populations and dengue incidence, but mostly in the drier areas of the island. We conducted a longitudinal study of Ae. aegypti in two neighborhoods of the metropolitan area of San Juan city, Puerto Rico where rainfall is more uniformly distributed throughout the year. We assessed the impacts of rainfall, temperature, and human activities on the temporal dynamics of adult Ae. aegypti and oviposition. Changes in adult mosquitoes were monitored with BG-Sentinel traps and oviposition activity with CDC enhanced ovitraps. Pupal surveys were conducted during the drier and wetter parts of the year in both neighborhoods to determine the contribution of humans and rains to mosquito production. Mosquito dynamics in each neighborhood was compared with dengue incidence in their respective municipalities during the study. Our results showed that: 1. Most pupae were produced in containers managed by people, which explains the prevalence of adult mosquitoes at times when rainfall was scant; 2. Water meters were documented for the first time as productive habitats for Ae. aegypti; 3. Even though Puerto Rico has a reliable supply of tap water and an active tire recycling program, water storage containers and discarded tires were important mosquito producers; 4. Peaks in mosquito density preceded maximum dengue incidence; and 5. Ae. aegypti dynamics were driven by weather and human activity and oviposition was significantly correlated with dengue incidence. PMID:22206021

  6. Population dynamics of Aedes aegypti and dengue as influenced by weather and human behavior in San Juan, Puerto Rico.

    PubMed

    Barrera, Roberto; Amador, Manuel; MacKay, Andrew J

    2011-12-01

    Previous studies on the influence of weather on Aedes aegypti dynamics in Puerto Rico suggested that rainfall was a significant driver of immature mosquito populations and dengue incidence, but mostly in the drier areas of the island. We conducted a longitudinal study of Ae. aegypti in two neighborhoods of the metropolitan area of San Juan city, Puerto Rico where rainfall is more uniformly distributed throughout the year. We assessed the impacts of rainfall, temperature, and human activities on the temporal dynamics of adult Ae. aegypti and oviposition. Changes in adult mosquitoes were monitored with BG-Sentinel traps and oviposition activity with CDC enhanced ovitraps. Pupal surveys were conducted during the drier and wetter parts of the year in both neighborhoods to determine the contribution of humans and rains to mosquito production. Mosquito dynamics in each neighborhood was compared with dengue incidence in their respective municipalities during the study. Our results showed that: 1. Most pupae were produced in containers managed by people, which explains the prevalence of adult mosquitoes at times when rainfall was scant; 2. Water meters were documented for the first time as productive habitats for Ae. aegypti; 3. Even though Puerto Rico has a reliable supply of tap water and an active tire recycling program, water storage containers and discarded tires were important mosquito producers; 4. Peaks in mosquito density preceded maximum dengue incidence; and 5. Ae. aegypti dynamics were driven by weather and human activity and oviposition was significantly correlated with dengue incidence.

  7. Climate Change Influences Potential Distribution of Infected Aedes aegypti Co-Occurrence with Dengue Epidemics Risk Areas in Tanzania

    PubMed Central

    Mweya, Clement N.; Kimera, Sharadhuli I.; Stanley, Grades; Misinzo, Gerald; Mboera, Leonard E. G.

    2016-01-01

    Background Dengue is the second most important vector-borne disease of humans globally after malaria. Incidence of dengue infections has dramatically increased recently, potentially due to changing climate. Climate projections models predict increases in average annual temperature, precipitation and extreme events in the future. The objective of this study was to assess the effect of changing climate on distribution of dengue vectors in relation to epidemic risk areas in Tanzania. Methods/Findings We used ecological niche models that incorporated presence-only infected Aedes aegypti data co-occurrence with dengue virus to estimate potential distribution of epidemic risk areas. Model input data on infected Ae. aegypti was collected during the May to June 2014 epidemic in Dar es Salaam. Bioclimatic predictors for current and future projections were also used as model inputs. Model predictions indicated that habitat suitability for infected Ae. aegypti co-occurrence with dengue virus in current scenarios is highly localized in the coastal areas, including Dar es Salaam, Pwani, Morogoro, Tanga and Zanzibar. Models indicate that areas of Kigoma, Ruvuma, Lindi, and those around Lake Victoria are also at risk. Projecting to 2020, we show that risk emerges in Mara, Arusha, Kagera and Manyara regions, but disappears in parts of Morogoro, Ruvuma and near Lake Nyasa. In 2050 climate scenario, the predicted habitat suitability of infected Ae. aegypti co-occurrence with dengue shifted towards the central and north-eastern parts with intensification in areas around all major lakes. Generally, model findings indicated that the coastal regions would remain at high risk for dengue epidemic through 2050. Conclusion/Significance Models incorporating climate change scenarios to predict emerging risk areas for dengue epidemics in Tanzania show that the anticipated risk is immense and results help guiding public health policy decisions on surveillance and control of dengue epidemics. A

  8. Odonate Nymphs: Generalist Predators and Their Potential in the Management of Dengue Mosquito, Aedes aegypti (Diptera: Culicidae)

    PubMed Central

    Akram, Waseem; Ali-Khan, Hafiz Azhar

    2016-01-01

    Background: Dengue is amongst the most serious mosquito-borne infectious disease with hot spots in tropical and subtropical parts of the world. Unfortunately, no licensed vaccine for the disease is currently available in medicine markets. The only option available is the management of dengue vector mosquito, Aedes aegypti (Diptera: Culicidae). Method: Predatory potential of five odonate nymphs namely Anax parthenope, Bradinopyga geminate, Ischnura forcipata, Rhinocypha quadrimaculata, and Orthetrum sabina were evaluated against the 4th instar larvae of the dengue vector mosquito, Aedes aegypti, under laboratory conditions. The consumption of the mosquito larvae was evaluated at three water volume levels viz., 1 liter, 2 liter and 3 liter. Results: The number of Ae. aegypti larvae consumed varied significantly among the five species, and at different levels of water volume (P< 0.01). However, the interaction between odonate nymphs and the water volumes was statistically non-significant (P> 0.05). Ischnura forcipata consumed the highest number of Ae. aegypti larvae (n=56) followed by A. parthenope (n=47) and B. geminate (n=46). The number of larvae consumed was decreased with increasing search area or water volume, and the highest predation was observed at 1-liter water volume. Conclusion: The odonate nymphs could be a good source of biological agents for the management of the mosquitoes at larval stages. PMID:27308283

  9. The Sublethal Effects of the Entomopathic Fungus Leptolegnia chapmanii on Some Biological Parameters of the Dengue Vector Aedes aegypti

    PubMed Central

    Pelizza, S.A.; Scorsetti, A.C.; Tranchida, M.C.

    2013-01-01

    The mosquito Aedes aegypti (L.) (Diptera: Culicidae) is the primary vector of dengue in the Americas. The use of chemical insecticides is recommended during outbreaks of dengue in order to reduce the number of adult mosquitoes; however, because Ae. aegypti is highly synanthropic, the use of insecticides in densely populated areas is a dangerous practice. Leptolegnia chapmanii Seymour (Straminipila: Peronosporomycetes) is an entomopathogenic microorganism that has demonstrated marked pathogenicity toward the larvae of a number of mosquito species, with little or no effect on non-target insects. Therefore, the purpose of this study was to determine the sublethal effects of L. chapmanii on fecundity, number of gonotrophic cycles, fertility, and relationship between wing length and fecundity in Ae. aegypti females. Ae. aegypti females that survived infection with L. chapmanii laid fewer eggs, had a smaller number of gonotrophic cycles, had shorter wings, and were less fertile than controls. This is the first study on the sublethal effects experienced by specimens of Ae. aegypti that survived infection with zoospores of L. chapmanii. Although field studies should be carried out, the results obtained in this study are encouraging because the high and rapid larval mortality caused by L. chapmanii coupled with the reduction of reproductive capacity in Ae. aegypti females seem to cause a significant reduction in the number of adults in the mid and long term, thereby reducing the health risks associated with Ae. aegypti. PMID:23901823

  10. Development and evaluation of a pyriproxyfen-treated device to control the dengue vector, Aedes aegypti (L.) (Diptera:Culicidae).

    PubMed

    Ponlawat, Alongkot; Fansiri, Thanyalak; Kurusarttra, Somwang; Pongsiri, Arissara; McCardle, Patrick W; Evans, Brian P; Evans, Brain P; Richardson, Jason H

    2013-03-01

    The resurgence of dengue fever and the chikungunya epidemic make the control of Aedes aegypti mosquitoes, the vectors of these diseases, critically important. We developed and evaluated an Ae. aegypti control device that is visually-attractive to mosquitoes. This pyriproxyfen-treated device was evaluated for its impact on Ae. aegypti egg production and population dynamics in dengue-endemic areas in Thailand. The device consists of a "high rise" shaped ovitrap/ resting station covered with black cotton cloth. The device is easily collapsible and transportable. Ae. aegypti are generally drawn towards darker, shadier areas making this device physically attractive as a resting station to mosquitoes of all physiological stages. The results show this device suppressed Ae. aegypti populations after it was introduced into a village. The observed effect was primarily the result of the Ae. aegypti exposure to pyriproxyfen shortly after adult emergence or after taking a blood meal resulting in decreased egg production. We believe the device may be further improved physically and the formulation should be replaced to provide even better efficacy for controlling Ae. aegypti mosquito, populations.

  11. Polyandry Depends on Postmating Time Interval in the Dengue Vector Aedes aegypti

    PubMed Central

    Degner, Ethan C.; Harrington, Laura C.

    2016-01-01

    Aedes aegypti is the primary vector of the dengue and chikungunya viruses. After mating, male seminal fluid molecules cause females to become unreceptive to a subsequent mating. This response is often assumed to be immediate and complete, but a growing body of evidence suggests that some females do mate more than once. It is unknown how quickly a female becomes unreceptive to a second mating. Furthermore, the degree to which she remains monandrous after laying several batches of eggs has not been rigorously tested. Therefore, we assessed the rates of polyandry in two sets of experiments using wild-type males and those with fluorescent sperm. The first experiment tested the likelihood of polyandry after postmating intervals of various durations. Most females became refractory to a second mating within 2 hours after mating, and rates of polyandry ranged from 24% immediately after mating to 3% at 20 hours after mating. The second experiment tested whether females were polyandrous after cycles of blood meals and oviposition. No re-insemination was found after one, three, or five such cycles. This study is the first to demonstrate that polyandrous behavior depends on the postmating interval. Our results will inform future applications that depend on an accurate knowledge of Ae. aegypti mating behavior, including models of gene flow, investigations of molecules that drive female mating behavior, and control strategies that deploy genetically modified mosquitoes into the field. PMID:26880776

  12. The Effect of Temperature on Wolbachia-Mediated Dengue Virus Blocking in Aedes aegypti.

    PubMed

    Ye, Yixin H; Carrasco, Alison M; Dong, Yi; Sgrò, Carla M; McGraw, Elizabeth A

    2016-04-01

    Dengue fever, caused by dengue virus (DENV), is endemic in more than 100 countries. The lack of effective treatment of patients and the suboptimal efficacies of the tetravalent vaccine in trials highlight the urgent need to develop alternative strategies to lessen the burden of dengue fever.Wolbachia pipientis, an obligate intracellular bacterium, is being developed as a biocontrol strategy against dengue because it limits the replication of the DENV in the mosquito vector,Aedes aegypti However, several recent studies have demonstrated the sensitivity of pathogens, vectors, and their symbionts to temperature. To understand how the tripartite interactions between the mosquito, DENV, and Wolbachia may change under different temperature regimes, we assessed the vector competence and transmission potential of DENV-infected mosquitoes reared at a common laboratory setting of a constant 25°C and at two diurnal temperature settings with mean of 25°C and 28°C and a fluctuating range of 8°C (±4°C). Temperature significantly affected DENV infection rate in the mosquitoes. Furthermore, temperature significantly influenced the proportion of mosquitoes that achieved transmission potential as measured by the presence of virus in the saliva. Regardless of the temperature regimes,Wolbachia significantly and efficiently reduced the proportion of mosquitoes achieving infection and transmission potential across all the temperature regimes studied. This work reinforces the robustness of the Wolbachia biocontrol strategy to field conditions in Cairns, Australia, and suggests that similar studies are required for local mosquito genotypes and field relevant temperatures for emerging field release sites globally.

  13. Indirect effects of cigarette butt waste on the dengue vector Aedes aegypti (Diptera: Culicidae).

    PubMed

    Dieng, Hamady; Rajasaygar, Sudha; Ahmad, Abu Hassan; Rawi, Che Salmah Md; Ahmad, Hamdan; Satho, Tomomitsu; Miake, Fumio; Zuharah, Wan Fatma; Fukumitsu, Yuki; Saad, Ahmad Ramli; Abdul Hamid, Suhaila; Vargas, Ronald Enrique Morales; Ab Majid, Abdul Hafiz; Fadzly, Nik; Abu Kassim, Nur Faeza; Hashim, Nur Aida; Abd Ghani, Idris; Abang, Fatimah Bt; AbuBakar, Sazaly

    2014-02-01

    Despite major insecticide-based vector control programs, dengue continues to be a major threat to public health in urban areas. The reasons for this failure include the emergence of insecticide resistance and the narrowing of the spectrum of efficient products. Cigarette butts (CBs), the most commonly discarded piece of waste, also represent a major health hazard to human and animal life. CBs are impregnated with thousands of chemical compounds, many of which are highly toxic and none of which has history of resistance in mosquitoes. This study was performed to examine whether exposure to CB alters various biological parameters of parents and their progeny. We examined whether the mosquito changes its ovipositional behaviors, egg hatching, reproductive capacity, longevity and fecundity in response to CB exposure at three different concentrations. Females tended to prefer microcosms containing CBs for egg deposition than those with water only. There were equivalent rates of eclosion success among larvae from eggs that matured in CB and water environments. We also observed decreased life span among adults that survived CB exposure. Extracts of CB waste have detrimental effects on the fecundity and longevity of its offspring, while being attractive to its gravid females. These results altogether indicate that CB waste indirectly affect key adult life traits of Aedes aegypti and could conceivably be developed as a novel dengue vector control strategy, referring to previously documented direct toxicity on the larval stage. But this will require further research on CB waste effects on non-target organisms including humans.

  14. Microevolution of Aedes aegypti.

    PubMed

    Louise, Caroline; Vidal, Paloma Oliveira; Suesdek, Lincoln

    2015-01-01

    Scientific research into the epidemiology of dengue frequently focuses on the microevolution and dispersion of the mosquito Aedes aegypti. One of the world's largest urban agglomerations infested by Ae. aegypti is the Brazilian megalopolis of Sao Paulo, where >26,900 cases of dengue were reported until June 2015. Unfortunately, the dynamics of the genetic variability of Ae. aegypti in the Sao Paulo area have not been well studied. To reduce this knowledge gap, we assessed the morphogenetic variability of a population of Ae. aegypti from a densely urbanised neighbourhood of Sao Paulo. We tested if allelic patterns could vary over a short term and if wing shape could be a predictor of the genetic variation. Over a period of 14 months, we examined the variation of genetic (microsatellites loci) and morphological (wing geometry) markers in Ae. aegypti. Polymorphisms were detected, as revealed by the variability of 20 microsatellite loci (115 alleles combined; overall Fst = 0.0358) and 18 wing landmarks (quantitative estimator Qst = 0.4732). These levels of polymorphism are higher than typically expected to an exotic species. Allelic frequencies of the loci changed over time and temporal variation in the wing shape was even more pronounced, permitting high reclassification levels of chronological samples. In spite of the fact that both markers underwent temporal variation, no correlation was detected between their dynamics. We concluded that microevolution was detected despite the short observational period, but the intensities of change of the markers were discrepant. Wing shape failed from predicting allelic temporal variation. Possibly, natural selection (Qst>Fst) or variance of expressivity of wing phenotype are involved in this discrepancy. Other possibly influential factors on microevolution of Ae. aegypti are worth searching. Additionally, the implications of the rapid evolution and high polymorphism of this mosquito vector on the efficacy of control methods have

  15. The queenslandensis and the type Form of the Dengue Fever Mosquito (Aedes aegypti L.) Are Genomically Indistinguishable

    PubMed Central

    Filipović, Igor; Callahan, Ashley G.; Stanford, Darren; Chan, Abigail; Lam-Phua, Sai Gek; Tan, Cheong Huat; Hoffmann, Ary Anthony

    2016-01-01

    Background The mosquito Aedes aegypti (L.) is a major vector of viral diseases like dengue fever, Zika and chikungunya. Aedes aegypti exhibits high morphological and behavioral variation, some of which is thought to be of epidemiological significance. Globally distributed domestic Ae. aegypti have often been grouped into (i) the very pale variety queenslandensis and (ii) the type form. Because the two color forms co-occur across most of their range, there is interest in understanding how freely they interbreed. This knowledge is particularly important for control strategies that rely on mating compatibilities between the release and target mosquitoes, such as Wolbachia releases and SIT. To address this question, we analyzed nuclear and mitochondrial genome-wide variation in the co-occurring pale and type Ae. aegypti from northern Queensland (Australia) and Singapore. Methods/Findings We typed 74 individuals at a 1170 bp-long mitochondrial sequence and at 16,569 nuclear SNPs using a customized double-digest RAD sequencing. 11/29 genotyped individuals from Singapore and 11/45 from Queensland were identified as var. queenslandensis based on the diagnostic scaling patterns. We found 24 different mitochondrial haplotypes, seven of which were shared between the two forms. Multivariate genetic clustering based on nuclear SNPs corresponded to individuals’ geographic location, not their color. Several family groups consisted of both forms and three queenslandensis individuals were Wolbachia infected, indicating previous breeding with the type form which has been used to introduce Wolbachia into Ae. aegypti populations. Conclusion Aedes aegypti queenslandensis are genomically indistinguishable from the type form, which points to these forms freely interbreeding at least in Australia and Singapore. Based on our findings, it is unlikely that the presence of very pale Ae. aegypti will affect the success of Aedes control programs based on Wolbachia-infected, sterile or RIDL

  16. Wolbachia-Based Dengue Virus Inhibition Is Not Tissue-Specific in Aedes aegypti

    PubMed Central

    Amuzu, Hilaria E.; McGraw, Elizabeth A.

    2016-01-01

    Background Dengue fever, caused by the dengue virus (DENV), is now the most common arbovirus transmitted disease globally. One novel approach to control DENV is to use the endosymbiotic bacterium, Wolbachia pipientis, to limit DENV replication inside the primary mosquito vector, Aedes aegypti. Wolbachia that is naturally present in a range of insects reduces the capacity for viruses, bacteria, parasites and fungi to replicate inside insects. Wolbachia’s mode of action is not well understood but may involve components of immune activation or competition with pathogens for limited host resources. The strength of Wolbachia-based anti DENV effects appear to correlate with bacterial density in the whole insect and in cell culture. Here we aimed to determine whether particular tissues, especially those with high Wolbachia densities or immune activity, play a greater role in mediating the anti DENV effect. Methodology/findings Ae. aegypti mosquito lines with and without Wolbachia (Wildtype) were orally fed DENV 3 and their viral loads subsequently measured over two time points post infection in the midgut, head, salivary glands, Malpighian tubules, fat body and carcass. We did not find correlations between Wolbachia densities and DENV loads in any tissue, nor with DENV loads in salivary glands, the endpoint of infection. This is in contrast with strong positive correlations between DENV loads in a range of tissues and salivary gland loads for Wildtype mosquitoes. Lastly, there was no evidence of a heightened role for tissues with known immune function including the fat body and the Malpighian tubules in Wolbachia’s limitation of DENV. Conclusion/significance We conclude that the efficacy of DENV blocking in Wolbachia infected mosquitoes is not reliant on any particular tissue. This work therefore suggests that the mechanism of Wolbachia-based antiviral effects is either systemic or acts locally via processes that are fundamental to diverse cell types. We further

  17. Prevention of dengue outbreaks through Aedes aegypti oviposition activity forecasting method.

    PubMed

    Estallo, Elizabet L; Ludueña-Almeida, Francisco F; Visintin, Andrés M; Scavuzzo, Carlos M; Introini, María V; Zaidenberg, Mario; Almirón, Walter R

    2011-05-01

    Dengue has affected the north provinces of Argentina, mainly Salta province. The 2009 outbreak, with 5 deaths and >27,000 infected, was the most important, and the first to extend into the central area of the country. This article includes research on seasonal Aedes aegypti abundance variation in Orán City (Salta province), and determination of the date of mosquito population increase and an estimation of the date of maximum rate of increase as well as the intrinsic rate of natural increase (r), to detect the optimal time to apply vector control measures. Between September 2005 and March 2007, ovitraps were randomly distributed in the city to collect Ae. aegypti eggs. The variation observed in the number of collected eggs was described by fitting a third-degree polynomial by the least square method, allowing to determine the time when population increase began (week 1), after the temperate and dry season. Eggs were collected throughout the year, with the highest variation in abundance during the warm and rainy season, and the maximum value registered in February 2007. The rate of increase of the number of eggs laid per week peaked between weeks 9 and 10 after the beginning of the population increase (week 1). Week 1 depends on temperature, it occurs after getting over the thermal threshold and the needed accumulation of 160 degree-day is reached. Consequently, week 1 changes depending on temperature. Peak abundance of eggs during 2005-2006 was recorded on week 15 (after week 1); during 2006-2007, the peak was observed on week 22. Estimation of the intrinsic rate of natural increase (r) of Ae. aegypti is useful not only to determine optimal time to apply vector control measures with better cost-benefit, but also to add an insecticide control strategy against the vector to diminish the possibility of resistance.

  18. Behavioral responses of two dengue virus vectors, Aedes aegypti and Aedes albopictus (Diptera: Culicidae), to DUET TM and its components

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ultralow volume (ULV) droplets of DUET TM, prallethrin and sumithrin at a sublethal dose were applied to unfed (non bloodfed) and bloodfed female Aedes aegypti Linn. and Aedes albopictus (Skuse) in a wind tunnel. Control spray droplets only contained inactive ingredients. Individual mosquitoes wer...

  19. The key breeding sites by pupal survey for dengue mosquito vectors, Aedes aegypti (Linnaeus) and Aedes albopictus (Skuse), in Guba, Cebu City, Philippines.

    PubMed

    Edillo, Frances E; Roble, Noel D; Otero, Nenito D

    2012-11-01

    We conducted this study to assess how well a pupal survey of dengue mosquito vectors, Aedes aegypti and Aedes albopictus, is able to target the most productive breeding sites. The study was carried out monthly during the rainy season (8 months) in 2008 in Cuba, Cebu City, Philippines. The hypotheses tested were: 1) most pupae of Ae. aegypti or Ae. albopictus were produced in a few types of breeding sites and 2) the most productive types of breeding sites for each species were the most abundant. Approximately 2,500 pupae were collected from 554 breeding sites in 279 houses. Thirty-eight point four percent of ten types of breeding sites were positive for Ae. aegypti, and 11.9% of nine types of sites were positive for Ae. albopictus. Plastic drums (40.2%), metal drums (29.6%), and plastic containers (10.5%) were the key sites for Ae. aegypti pupae, whereas bamboo stumps (28.5%), plastic drums (21.1%), and rubber tires (19.1%) were the key sites for Ae. albopictus. The most productive breeding sites for Ae. aegypti were common but not the most common for Ae. albopictus. These results are relevant for dengue vector control programs.

  20. [Genetic variability of Aedes aegypti determined by mitochondrial gene ND4 analysis in eleven endemic areas for dengue in Peru].

    PubMed

    Yáñez, Pamela; Mamani, Enrique; Valle, Jorge; García, María Paquita; León, Walter; Villaseca, Pablo; Torres, Dina; Cabezas, César

    2013-04-01

    In order to establish the genetic variability of Aedes aegypti determined by the analysis of the MT-ND4 gene, in eleven endemic regions for dengue in Peru, 51 samples of Ae. Aegypti were tested. The genetic variability was determined through the amplification and sequencing of a fragment of 336 base-pairs of MT ND4, the analysis of intra-specific phylogeny was conducted with the Network Ver. 4.6.10 program; and the phylogenetic analysis, with the Neighbor Joining distance method. The presence of five haplotypes of Ae. Aegypti grouped in two lineages was identified: the first one includes haplotypes 1, 3 and 5, and the second one comprises haplotypes 2 and 4. The geographic distribution of each of the haplotypes found is also shown. It is concluded that this variability is caused by the active migration of this vector and the human activity-mediated passive migration.

  1. Production of Infectious Dengue Virus in Aedes aegypti Is Dependent on the Ubiquitin Proteasome Pathway

    PubMed Central

    Choy, Milly M.; Sessions, October M.; Gubler, Duane J.; Ooi, Eng Eong

    2015-01-01

    Dengue virus (DENV) relies on host factors to complete its life cycle in its mosquito host for subsequent transmission to humans. DENV first establishes infection in the midgut of Aedes aegypti and spreads to various mosquito organs for lifelong infection. Curiously, studies have shown that infectious DENV titers peak and decrease thereafter in the midgut despite relatively stable viral genome levels. However, the mechanisms that regulate this decoupling of infectious virion production from viral RNA replication have never been determined. We show here that the ubiquitin proteasome pathway (UPP) plays an important role in regulating infectious DENV production. Using RNA interference studies, we show in vivo that knockdown of selected UPP components reduced infectious virus production without altering viral RNA replication in the midgut. Furthermore, this decoupling effect could also be observed after RNAi knockdown in the head/thorax of the mosquito, which otherwise showed direct correlation between infectious DENV titer and viral RNA levels. The dependence on the UPP for successful DENV production is further reinforced by the observed up-regulation of key UPP molecules upon DENV infection that overcome the relatively low expression of these genes after a blood meal. Collectively, our findings indicate an important role for the UPP in regulating DENV production in the mosquito vector. PMID:26566123

  2. Fitness costs of resistance to Bti toxins in the dengue vector Aedes aegypti.

    PubMed

    Paris, Margot; David, Jean-Philippe; Despres, Laurence

    2011-08-01

    Sustainable insect vector disease control strategies involve delaying the evolution of resistance to insecticides in natural populations. The evolutionary dynamics of resistance in the field is highly dependent on the fitness cost of resistance alleles. To successfully manage resistance evolution in target species, it is not only important to find evidence of fitness cost in resistant insects, but also to determine at which stage of the insect's life it is expressed. Here, we show that resistance costs to the bacterio-insecticide Bacillus thuringiensis subsp. israelensis (Bti) are expressed at all the life-stages of the dengue vector Aedes aegypti, including egg survival, larval development time, and female fecundity. We show that the storage of eggs for 4 months is long enough to counter-select resistance alleles. This suggests that Bti resistance is not likely to evolve in temperate climates where most mosquito species overwinter as eggs. In tropical regions with a rapid turn-over of generations, resistance alleles are likely to be counter-selected in only few generations without treatment through fitness costs expressed in terms of larval development time and female fecundity. We discuss the implications of our findings in terms of sustainable management strategies in light of the challenge of preserving the long-term efficiency of this environmentally safe anti-mosquito bio-insecticide.

  3. Mosquito Infestation and Dengue Virus Infection in Aedes aegypti Females in Schools in Mérida, México

    PubMed Central

    García-Rejón, Julián E.; Loroño-Pino, María Alba; Farfán-Ale, José Arturo; Flores-Flores, Luis F.; López-Uribe, Mildred P.; del Rosario Najera-Vazquez, Maria; Nuñez-Ayala, Guadalupe; Beaty, Barry J.; Eisen, Lars

    2011-01-01

    We determined abundance of Aedes aegypti mosquitoes and presence of dengue virus (DENV) in females collected from schools in Mérida, México, during 2008 and 2009. Backpack aspiration from 24 schools produced 468 females of Ae. aegypti and 1,676 females of another human biter, Culex quinquefasciatus. Ae. aegypti females were collected most commonly from classrooms followed by offices and bathrooms. Of these females, 24.7% were freshly fed. Examination of 118 pools of Ae. aegypti females (total of 415 females) for presence of DENV RNA produced 19 positive pools (16.1%). DENV-infected pools were detected from 11 (45.8%) of 24 schools and came from different room types, including classrooms, offices, and bathrooms. The overall rate of DENV infection per 100 Ae. aegypti females was 4.8. We conclude that schools in Mérida present a risk environment for students, teachers, and other personnel to be exposed to mosquitoes and bites of DENV-infected Ae. aegypti females. PMID:21363990

  4. Modeling the impact on virus transmission of Wolbachia-mediated blocking of dengue virus infection of Aedes aegypti.

    PubMed

    Ferguson, Neil M; Kien, Duong Thi Hue; Clapham, Hannah; Aguas, Ricardo; Trung, Vu Tuan; Chau, Tran Nguyen Bich; Popovici, Jean; Ryan, Peter A; O'Neill, Scott L; McGraw, Elizabeth A; Long, Vo Thi; Dui, Le Thi; Nguyen, Hoa L; Chau, Nguyen Van Vinh; Wills, Bridget; Simmons, Cameron P

    2015-03-18

    Dengue is the most common arboviral infection of humans and is a public health burden in more than 100 countries. Aedes aegypti mosquitoes stably infected with strains of the intracellular bacterium Wolbachia are resistant to dengue virus (DENV) infection and are being tested in field trials. To mimic field conditions, we experimentally assessed the vector competence of A. aegypti carrying the Wolbachia strains wMel and wMelPop after challenge with viremic blood from dengue patients. We found that wMelPop conferred strong resistance to DENV infection of mosquito abdomen tissue and largely prevented disseminated infection. wMel conferred less resistance to infection of mosquito abdomen tissue, but it did reduce the prevalence of mosquitoes with infectious saliva. A mathematical model of DENV transmission incorporating the dynamics of viral infection in humans and mosquitoes was fitted to the data collected. Model predictions suggested that wMel would reduce the basic reproduction number, R0, of DENV transmission by 66 to 75%. Our results suggest that establishment of wMelPop-infected A. aegypti at a high frequency in a dengue-endemic setting would result in the complete abatement of DENV transmission. Establishment of wMel-infected A. aegypti is also predicted to have a substantial effect on transmission that would be sufficient to eliminate dengue in low or moderate transmission settings but may be insufficient to achieve complete control in settings where R0 is high. These findings develop a framework for selecting Wolbachia strains for field releases and for calculating their likely impact.

  5. Evaluation of Simultaneous Transmission of Chikungunya Virus and Dengue Virus Type 2 in Infected Aedes aegypti and Aedes albopictus (Diptera: Culicidae).

    PubMed

    Nuckols, J T; Huang, Y-J S; Higgs, S; Miller, A L; Pyles, R B; Spratt, H M; Horne, K M; Vanlandingham, D L

    2015-05-01

    The simultaneous transmission of chikungunya virus (CHIKV) and dengue viruses (DENV) has been a major public health concern because of their sympatric distribution and shared mosquito vectors. Groups of Aedes aegypti (L.) and Aedes albopictus (Skuse) were orally infected with 1.5 × 10(5) PFU/ml of CHIKV and 3.2 × 10(6) FFU/ml of DENV-2 simultaneously or separately in inverse orders and evaluated for dissemination and transmission by qRT-PCR. Simultaneous dissemination of both viruses was detected for all groups in Ae. aegypti and Ae. albopictus while cotransmission of CHIKV and DENV-2 only occurred at low rates after sequential but not simultaneous infection.

  6. Factors influencing the seasonal abundance of Aedes (Stegomyia) aegypti and the control strategy of dengue and dengue haemorrhagic fever in Thanlyin Township, Yangon City, Myanmar.

    PubMed

    Oo, T T; Storch, V; Madon, M B; Becker, N

    2011-08-01

    From June 2006 to May 2007, mosquito surveys were conducted in Thanlyin Township, Yangon City, Myanmar, to determine factors influencing the abundance of Aedes aegypti (Stegomyia aegypti) during the rainy season. Both the biological and environmental factors were included in this study. Increase in the hatchability of egg, larval survival rate, the shortened larval life-span and increased pupation rates supplemented by rainfall (i.e. continuous flooding of the containers, stimulate the continuous hatching of eggs) were observed for correlation with the increase in population density of Ae. aegypti during the rainy season in the study area. Control strategy of Ae. aegypti to analyze the infestation in the community (study area) with larval Ae. aegypti, integrated management measures including health education, attitudes and practices regarding dengue and dengue haemorrhagic fever, transmission of the disease and possible preventive measures, reduction of breeding sites and testing the efficacy of Bacillus thuringiensis israelensis (B.t.i.) with respect to the reduction level of Ae. aegypti larvae in breeding sources, were taken into consideration.

  7. Larvicidal potential of silver nanoparticles synthesized from Leucas aspera leaf extracts against dengue vector Aedes aegypti.

    PubMed

    Suganya, Ganesan; Karthi, Sengodan; Shivakumar, Muthugounder S

    2014-05-01

    Vector-borne diseases caused by mosquitoes are one of the major economic and health problems in many countries. The Aedes aegypti mosquito is a vector of several diseases in humans like yellow fever and dengue. Vector control methods involving the use of chemical insecticides are becoming less effective due to development of insecticides resistance, biological magnification of toxic substances through the food chain, and adverse effects on environmental quality and non-target organisms including human health. Application of active toxic agents from plant extracts as an alternative mosquito control strategy was available from ancient times. These are nontoxic, easily available at affordable prices, biodegradable, and show broad-spectrum target-specific activities against different species of vector mosquitoes. Today, nanotechnology is a promising research domain which has wide-ranging application vector control programs. The present study investigates the larvicidal potential of solvent leaf extracts of Leucas aspera and synthesized silver nanoparticles using aqueous leaf extract against fourth instar larvae of Aedes aegypti. Larvae were exposed to varying concentrations of plant extracts and synthesized AgNPs for 24 h. The results were recorded from UV-Vis spectra, x-ray diffraction (XRD), Fourier transform infrared (FT-IR), and scanning electron microscopy (SEM), and were used to characterize and support the biosynthesis of silver nanoparticles. The formation of the AgNPs synthesized from the XRD spectrum compared with Bragg reflections can be indexed to the (111) orientations, respectively, confirmed the presence of AgNPs. The FT-IR spectra of AgNPs exhibited prominent peaks at 3,447.77; 2,923.30; and 1,618.66 cm(-1). The spectra showed sharp and strong absorption band at 1,618.66 cm(-1) assigned to the stretching vibration of (NH) C═O group. The band 1,383 developed for C═C and C═N stretching, respectively, and was commonly found in the proteins. SEM

  8. Ovicidal activity of Metarhizium brunneum (Mb F52) on dengue fever vector, Aedes aegypti

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ovicidal activity of Metarhizium brunneum F52 (Mb F52) grown from granules was evaluated against Aedes aegypti eggs over time. Survival of larvae from treated eggs was significantly less when compared with untreated eggs at 7, 10 and 14 days post treatment. Only 27 % of treated eggs produced vi...

  9. VERTICAL TRANSMISSION OF DENGUE VIRUS IN Aedes aegypti COLLECTED IN PUERTO IGUAZÚ, MISIONES, ARGENTINA

    PubMed Central

    Espinosa, Manuel; Giamperetti, Sergio; Abril, Marcelo; Seijo, Alfredo

    2014-01-01

    A finding of vertical transmission of the DEN 3 virus in male specimens of Aedes aegypti, collected in the 2009 fall-winter period, in Puerto Iguazú city, Misiones, Argentina, using the RT-PCR technique in a 15-specimen pool is reported. This result is analyzed within the context of the epidemiological situation of Argentina's northeast border. PMID:24626420

  10. Vertical transmission of dengue virus in Aedes aegypti collected in Puerto Iguazú, Misiones, Argentina.

    PubMed

    Espinosa, Manuel; Giamperetti, Sergio; Abril, Marcelo; Seijo, Alfredo

    2014-01-01

    A finding of vertical transmission of the DEN 3 virus in male specimens of Aedes aegypti, collected in the 2009 fall-winter period, in Puerto Iguazú city, Misiones, Argentina, using the RT-PCR technique in a 15-specimen pool is reported. This result is analyzed within the context of the epidemiological situation of Argentina's northeast border.

  11. Detection of all four dengue serotypes in Aedes aegypti female mosquitoes collected in a rural area in Colombia

    PubMed Central

    Pérez-Castro, Rosalía; Castellanos, Jaime E; Olano, Víctor A; Matiz, María Inés; Jaramillo, Juan F; Vargas, Sandra L; Sarmiento, Diana M; Stenström, Thor Axel; Overgaard, Hans J

    2016-01-01

    The Aedes aegypti vector for dengue virus (DENV) has been reported in urban and periurban areas. The information about DENV circulation in mosquitoes in Colombian rural areas is limited, so we aimed to evaluate the presence of DENV in Ae. aegypti females caught in rural locations of two Colombian municipalities, Anapoima and La Mesa. Mosquitoes from 497 rural households in 44 different rural settlements were collected. Pools of about 20 Ae. aegypti females were processed for DENV serotype detection. DENV in mosquitoes was detected in 74% of the analysed settlements with a pool positivity rate of 62%. The estimated individual mosquito infection rate was 4.12% and the minimum infection rate was 33.3/1,000 mosquitoes. All four serotypes were detected; the most frequent being DENV-2 (50%) and DENV-1 (35%). Two-three serotypes were detected simultaneously in separate pools. This is the first report on the co-occurrence of natural DENV infection of mosquitoes in Colombian rural areas. The findings are important for understanding dengue transmission and planning control strategies. A potential latent virus reservoir in rural areas could spill over to urban areas during population movements. Detecting DENV in wild-caught adult mosquitoes should be included in the development of dengue epidemic forecasting models. PMID:27074252

  12. Tree holes as larval habitats for Aedes aegypti in urban, suburban and forest habitats in a dengue affected area.

    PubMed

    Mangudo, C; Aparicio, J P; Gleiser, R M

    2015-12-01

    Aedes aegypti (L.) (Diptera: Culicidae), the main vector of dengue and urban yellow fever in the world, is highly adapted to the human environment. Artificial containers are the most common larval habitat for the species, but it may develop in tree holes and other phytotelmata. This study assessed whether tree holes in San Ramón de la Nueva Orán, a city located in subtropical montane moist forest where dengue outbreaks occur, are relevant as larval habitat for Ae. aegypti and if the species may be found in natural areas far from human habitations. Water holding tree holes were sampled during 3 years once a month along the rainy season using a siphon bottle, in urban and suburban sites within the city and in adjacent forested areas. Larvae and pupae were collected and the presence and volume of water in each tree hole were recorded. Finding Ae. aegypti in forested areas was an isolated event; however, the species was frequently collected from tree holes throughout the city and along the sampling period. Moreover, larvae were collected in considerably high numbers, stressing the importance of taking into account these natural cavities as potential reinfestation foci within dengue control framework.

  13. Detection of all four dengue serotypes in Aedes aegypti female mosquitoes collected in a rural area in Colombia.

    PubMed

    Pérez-Castro, Rosalía; Castellanos, Jaime E; Olano, Víctor A; Matiz, María Inés; Jaramillo, Juan F; Vargas, Sandra L; Sarmiento, Diana M; Stenström, Thor Axel; Overgaard, Hans J

    2016-04-01

    The Aedes aegypti vector for dengue virus (DENV) has been reported in urban and periurban areas. The information about DENV circulation in mosquitoes in Colombian rural areas is limited, so we aimed to evaluate the presence of DENV in Ae. aegypti females caught in rural locations of two Colombian municipalities, Anapoima and La Mesa. Mosquitoes from 497 rural households in 44 different rural settlements were collected. Pools of about 20 Ae. aegypti females were processed for DENV serotype detection. DENV in mosquitoes was detected in 74% of the analysed settlements with a pool positivity rate of 62%. The estimated individual mosquito infection rate was 4.12% and the minimum infection rate was 33.3/1,000 mosquitoes. All four serotypes were detected; the most frequent being DENV-2 (50%) and DENV-1 (35%). Two-three serotypes were detected simultaneously in separate pools. This is the first report on the co-occurrence of natural DENV infection of mosquitoes in Colombian rural areas. The findings are important for understanding dengue transmission and planning control strategies. A potential latent virus reservoir in rural areas could spill over to urban areas during population movements. Detecting DENV in wild-caught adult mosquitoes should be included in the development of dengue epidemic forecasting models.

  14. Replicate surveys of larval habitats of Aedes aegypti in relation to dengue haemorrhagic fever in Bangkok, Thailand*

    PubMed Central

    Tonn, R. J.; Sheppard, P. M.; MacDonald, W. W.; Bang, Y. H.

    1969-01-01

    Dengue haemorrhagic fever in Bangkok and Thonburi occurs principally during the wet season. The mosquito vector is Aedes aegypti. A study was made of the larval habitats of A. aegypti in 14 localities, at three different times of the year, to determine whether there were fluctuations in the A. aegypti population, as measured by the number of occupied habitats, which could be correlated with the incidence of the infection. The habitats were classified into 6 categories and a single larva was collected for identification from each one that was occupied. The number and percentage of occupied habitats of each category per 100 houses were analysed to determine whether there were differences between localities and between times of the year. Almost all the comparisons between localities were highly significant. There was evidence of slight changes in the number of occupied habitats from time to time, the chief increase being between the cool and the warm seasons and the chief decrease from the wet to the cool season, but it seems unlikely that outbreaks of dengue haemorrhagic fever can be explained by increases in A. aegypti densities during the wet season. PMID:5307596

  15. MicroRNA levels are modulated in Aedes aegypti following exposure to Dengue-2

    PubMed Central

    Campbell, Corey L.; Harrison, Thomas; Hess, Ann M.; Ebel, Gregory D.

    2014-01-01

    To define microRNA (miRNA) involvement during arbovirus infection of Aedes aegypti, we mined deep sequencing libraries of Dengue type 2 (DENV2) -exposed mosquitoes. Three biological replicates for each timepoint (2, 4, and 9 days post-exposure (dpe)) and treatment group allowed us to remove outliers associated with sample-to-sample variability. Using edgeR (R Bioconductor), designed for use with replicate deep sequencing data, we determined the log fold-change (logFC) of miRNA levels (18–23 nts). The number of significantly modulated miRNAs increased from 5 or fewer at 2 and 4 dpe to 23 unique miRNAs by 9 dpe. Putative miRNA targets were predicted by aligning miRNAs to the transcriptome, and the list was reduced to include the intersection of hits found using the Miranda, PITA, and TargetScan algorithms. To further reduce false positives, putative targets were validated by cross-checking them to mRNAs reported in recent DENV2 host response transcriptome reports; 4076 targets were identified. Of these, 464 gene targets have predicted miRNA binding sites in 3′UTRs. Context-specific target functional groups include proteins involved in transport, transcriptional regulation, mitochondrial function, chromatin modification and signal transduction processes known to be required for viral replication and dissemination. The miRNA response is placed in context with other vector host response studies by comparing the predicted targets to those of transcriptome studies. Together, these data are consistent with the hypothesis that profound and persistent changes to gene expression occur in DENV2-exposed mosquitoes. PMID:24237456

  16. Using RNA interference to develop dengue virus resistance in genetically modified Aedes aegypti.

    PubMed

    Travanty, Emily A; Adelman, Zach N; Franz, Alexander W E; Keene, Kimberly M; Beaty, Barry J; Blair, Carol D; James, Anthony A; Olson, Ken E

    2004-07-01

    Diseases caused by arthropod-borne viruses are significant public health problems, and novel methods are needed to control pathogen transmission. We hypothesize that genetic manipulation of Aedes aegypti mosquitoes can profoundly and permanently reduce vector competence and subsequent transmission of dengue viruses (DENV) to human hosts. We have identified RNA interference (RNAi) as a potential anti-viral, intracellular pathway in the vector that can be triggered by expression of virus-specific, double stranded RNAs (dsRNAs) to reduce vector competence to DENV. We identified DENV-derived RNA segments using recombinant Sindbis viruses to trigger RNAi, that when expressed in mosquitoes ablate homologous DENV replication and transmission. We also demonstrated that heritable expression of DENV-derived dsRNA in cultured mosquito cells can silence virus replication. We now have developed a number of transgenic mosquito lines that transcribe the effector dsRNA from constitutive promoters such as immediate early 1 (baculovirus) and polyubiquitin (Drosophila melanogaster). We have detected DENV-specific small interfering RNAs, the hallmark of RNAi, in at least one of these lines. Surprisingly, none of these lines expressed dsRNA in relevant tissues (e.g., midguts) that will ultimately affect transmission. A major challenge now is to express the effector dsRNA from tissue-specific promoters to allow RNAi to silence virus replication at critical sites in the vector such as midguts and salivary glands. If successful, this strategy has the advantage of harnessing a naturally occurring vector response to block DENV infection in a mosquito vector and profoundly affect virus transmission.

  17. A Sequence of Flushing and Drying of Breeding Habitats of Aedes aegypti (L.) Prior to the Low Dengue Season in Singapore

    PubMed Central

    Seidahmed, Osama M. E.; Eltahir, Elfatih A. B.

    2016-01-01

    In dengue-endemic areas, transmission shows both a seasonal and interannual variability. To investigate how rainfall impacts dengue seasonality in Singapore, we carried out a longitudinal survey in the Geylang neighborhood from August 2014 to August 2015. The survey comprised of twice-weekly random inspections to outdoor breeding habitats and continuous monitoring for positive ones. In addition, observations of rainstorms were collected. Out of 6824 inspected habitats, 67 contained Aedes aegypti, 11 contained Aedes albopictus and 24 contained Culex spp. The main outdoors habitat of Aedes aegypti was storm drains (54/67). We found that 80% of breeding sites in drains (43/54) were lost after intense rainstorms related to the wet phase of the Northeast monsoon (NE) between November 2014 and early January 2015. Subsequently, 95% (41/43) of these flushed drains had dried out during the dry phase of the NE in late January-February 2015. A return in the outdoor breeding of Aedes aegypti was observed after the onset of Southwest monsoon (SW) between May and August 2015. There was also a reduction in productivity of breeding habitats for larvae and pupae after the onset of the NE. In wet equatorial regions like Singapore, rainfall varies with the monsoons. A monsoon-driven sequence of flushing and drying shapes the outdoor seasonal abundance of Aedes aegypti. This finding can be used to optimize vector control strategies and better understand dengue in the context of climate change. PMID:27459322

  18. Larvicidal potential of silver nanoparticles synthesized from Leucas aspera leaf extracts against dengue vector Aedes aegypti.

    PubMed

    Suganya, Ganesan; Karthi, Sengodan; Shivakumar, Muthugounder S

    2014-03-01

    Vector-borne diseases caused by mosquitoes are one of the major economic and health problems in many countries. Aedes aegypti mosquito is a vector of several diseases in humans like yellow fever and dengue. Vector control methods involving use of chemical insecticides are becoming less effective due to the development of insecticides resistance, biological magnification of toxic substances through the food chain, and adverse effects on environmental quality and nontarget organisms including human health. Application of active toxic agents from plant extracts as an alternative mosquito control strategy was available from ancient times. These are nontoxic, easily available at affordable prices, biodegradable, and show broad-spectrum target-specific activities against different species of vector mosquitoes. Today, nanotechnology is a promising research domain which has a wide ranging application in vector control programs. The present study investigates the larvicidal potential of solvent leaf extracts of Leucas aspera and synthesized silver nanoparticles using aqueous leaf extract against fourth instar larvae of A. aegypti. Larvae were exposed to varying concentrations of plant extracts and synthesized AgNPs for 24 h. The results were recorded from UV-Vis spectra, X-ray diffraction (XRD), Fourier transform infrared (FTIR), and scanning electron microscopy (SEM), and were used to characterize and support the biosynthesis of silver nanoparticles. The formation of the synthesized AgNPs from the XRD spectrum compared with Bragg reflections can be indexed to the (111) orientations, respectively, confirmed the presence of AgNPs. The FTIR spectra of AgNPs exhibited prominent peaks at 3,447.77, 2,923.30, and 1,618.66 cm(-1). The spectra showed sharp and strong absorption band at 1,618.66 cm(-1) assigned to the stretching vibration of (NH) C═O group. The band 1,383 developed for C═C and C═N stretching, respectively, and was commonly found in the proteins. SEM analysis

  19. Modeling dengue vector dynamics under imperfect detection: three years of site-occupancy by Aedes aegypti and Aedes albopictus in urban Amazonia.

    PubMed

    Padilla-Torres, Samael D; Ferraz, Gonçalo; Luz, Sergio L B; Zamora-Perea, Elvira; Abad-Franch, Fernando

    2013-01-01

    Aedes aegypti and Ae. albopictus are the vectors of dengue, the most important arboviral disease of humans. To date, Aedes ecology studies have assumed that the vectors are truly absent from sites where they are not detected; since no perfect detection method exists, this assumption is questionable. Imperfect detection may bias estimates of key vector surveillance/control parameters, including site-occupancy (infestation) rates and control intervention effects. We used a modeling approach that explicitly accounts for imperfect detection and a 38-month, 55-site detection/non-detection dataset to quantify the effects of municipality/state control interventions on Aedes site-occupancy dynamics, considering meteorological and dwelling-level covariates. Ae. aegypti site-occupancy estimates (mean 0.91; range 0.79-0.97) were much higher than reported by routine surveillance based on 'rapid larval surveys' (0.03; 0.02-0.11) and moderately higher than directly ascertained with oviposition traps (0.68; 0.50-0.91). Regular control campaigns based on breeding-site elimination had no measurable effects on the probabilities of dwelling infestation by dengue vectors. Site-occupancy fluctuated seasonally, mainly due to the negative effects of high maximum (Ae. aegypti) and minimum (Ae. albopictus) summer temperatures (June-September). Rainfall and dwelling-level covariates were poor predictors of occupancy. The marked contrast between our estimates of adult vector presence and the results from 'rapid larval surveys' suggests, together with the lack of effect of local control campaigns on infestation, that many Aedes breeding sites were overlooked by vector control agents in our study setting. Better sampling strategies are urgently needed, particularly for the reliable assessment of infestation rates in the context of control program management. The approach we present here, combining oviposition traps and site-occupancy models, could greatly contribute to that crucial aim.

  20. The microbiome composition of Aedes aegypti is not critical for Wolbachia-mediated inhibition of dengue virus

    PubMed Central

    Audsley, Michelle D.; Ye, Yixin H.

    2017-01-01

    Background Dengue virus (DENV) is primarily vectored by the mosquito Aedes aegypti, and is estimated to cause 390 million human infections annually. A novel method for DENV control involves stable transinfection of Ae. aegypti with the common insect endosymbiont Wolbachia, which mediates an antiviral effect. However, the mechanism by which Wolbachia reduces the susceptibility of Ae. aegypti to DENV is not fully understood. In this study we assessed the potential of resident microbiota, which can play important roles in insect physiology and immune responses, to affect Wolbachia-mediated DENV blocking. Methodology/Findings The microbiome of Ae. aegypti stably infected with Wolbachia strain wMel was compared to that of Ae. aegypti without Wolbachia, using 16s rDNA profiling. Our results indicate that although Wolbachia affected the relative abundance of several genera, the microbiome of both the Wolbachia-infected and uninfected mosquitoes was dominated by Elizabethkingia and unclassified Enterobacteriaceae. To assess the potential of the resident microbiota to affect the Wolbachia-mediated antiviral effect, we used antibiotic treatment before infection with DENV by blood-meal. In spite of a significant shift in the microbiome composition in response to the antibiotics, we detected no effect of antibiotic treatment on DENV infection rates, or on the DENV load of infected mosquitoes. Conclusions/Significance Our findings indicate that stable infection with Wolbachia strain wMel produces few effects on the microbiome of laboratory-reared Ae. aegypti. Moreover, our findings suggest that the microbiome can be significantly altered without affecting the fundamental DENV blocking phenotype in these mosquitoes. Since Ae. aegypti are likely to encounter diverse microbiota in the field, this is a particularly important result in the context of using Wolbachia as a method for DENV control. PMID:28267749

  1. Human Antibody Response to Aedes aegypti Saliva in an Urban Population in Bolivia: A New Biomarker of Exposure to Dengue Vector Bites

    PubMed Central

    Doucoure, Souleymane; Mouchet, François; Cournil, Amandine; Le Goff, Gilbert; Cornelie, Sylvie; Roca, Yelin; Giraldez, Mabel Guerra; Simon, Zaira Barja; Loayza, Roxanna; Misse, Dorothée; Flores, Jorge Vargas; Walter, Annie; Rogier, Christophe; Herve, Jean Pierre; Remoue, Franck

    2012-01-01

    Aedes mosquitoes are important vectors of re-emerging diseases in developing countries, and increasing exposure to Aedes in the developed world is currently a source of concern. Given the limitations of current entomologic methods, there is a need for a new effective way for evaluating Aedes exposure. Our objective was to evaluate specific antibody responses to Aedes aegypti saliva as a biomarker for vector exposure in a dengue-endemic urban area. IgG responses to saliva were strong in young children and steadily waned with age. Specific IgG levels were significantly higher in persons living in sites with higher Ae. aegypti density, as measured by using entomologic parameters. Logistic regression showed a significant correlation between IgG to saliva and exposure level, independently of either age or sex. These results suggest that antibody responses to saliva could be used to monitor human exposure to Aedes bites. PMID:22848099

  2. River Boats Contribute to the Regional Spread of the Dengue Vector Aedes aegypti in the Peruvian Amazon

    PubMed Central

    Guagliardo, Sarah Anne; Morrison, Amy C.; Barboza, Jose Luis; Requena, Edwin; Astete, Helvio; Vazquez-Prokopec, Gonzalo; Kitron, Uriel

    2015-01-01

    Background and Objectives The dramatic range expansion of the dengue vector Aedes aegypti is associated with various anthropogenic transport activities, but little is known about the underlying mechanisms driving this geographic expansion. We longitudinally characterized infestation of different vehicle types (cars, boats, etc.) to estimate the frequency and intensity of mosquito introductions into novel locations (propagule pressure). Methods Exhaustive adult and immature Ae. aegypti collections were performed on six different vehicle types at five ports and two bus/ taxi departure points in the Amazonian city of Iquitos, Peru during 2013. Aquatic vehicles included 32 large and 33 medium-sized barges, 53 water taxis, and 41 speed boats. Terrestrial vehicles sampled included 40 buses and 30 taxis traveling on the only highway in the region. Ae. aegypti adult infestation rates and immature indices were analyzed by vehicle type, location within vehicles, and sampling date. Results Large barges (71.9% infested) and medium barges (39.4% infested) accounted for most of the infestations. Notably, buses had an overall infestation rate of 12.5%. On large barges, the greatest number of Ae. aegypti adults were found in October, whereas most immatures were found in February followed by October. The vast majority of larvae (85.9%) and pupae (76.7%) collected in large barges were produced in puddles formed in cargo holds. Conclusions Because larges barges provide suitable mosquito habitats (due to dark, damp cargo storage spaces and ample oviposition sites), we conclude that they likely serve as significant contributors to mosquitoes’ propagule pressure across long distances throughout the Peruvian Amazon. This information can help anticipate vector population mixing and future range expansions of dengue and other viruses transmitted by Ae. aegypti. PMID:25860352

  3. Vector competence of Aedes albopictus and Aedes aegypti (Diptera: Culicidae) for the DEN2-FJ10 and DEN2-FJ11 strains of the dengue 2 virus in Fujian, China.

    PubMed

    Guo, Xiao-Xia; Li, Chun-Xiao; Zhang, Ying-Mei; Xing, Dan; Dong, Yan-De; Zhang, Heng-Duan; Qin, Cheng-Feng; Zhao, Tong-Yan

    2016-09-01

    Dengue is an acute, emerging, infectious disease transmitted by Aedes mosquitoes that has become a serious global public health problem. The DEN2-FJ10 and DEN2-FJ11 strains of the dengue 2 virus were originally isolated from the serum of a patient with dengue fever in Fujian Province, China, in 1999. Our data provide the first assessment of the vector competence of Aedes mosquitoes with respect to the DEN2-FJ10 and DEN2-FJ11 strains of the dengue virus. There were significant differences in the replication rates of these two viral strains in Aedes albopictus and Aedes aegypti (P<0.05); replication of the DEN2-FJ10 strain was greater in Ae. aegypti than in Ae. albopictus 5 days post infection whereas replication of the DEN2-FJ11 was greater in Ae. albopictus than in Ae. aegypti 7 days post infection. The replicative ability of the DEN2-FJ11 strain was greater than that of the DEN2-FJ10 strain in infected Ae. albopictus. In infected Ae. aegypti, rapid proliferation of the DEN2-FJ10 strain occurred earlier than in the DEN2-FJ11 strain. There were no significant differences in the midgut and salivary gland infection rates of Ae. albopictus and Ae. aegypti with respect to either viral strain. Although the DEN2-FJ10 and DEN2-FJ11 strains differ in their virulence to neonatal rats, there was no significant difference in the ability of either Ae. albopictus or Ae. aegypti to transmit the DEN2-FJ10 and DEN2-FJ10 strains of the dengue 2 virus (P>0.05). In summary, our results indicate that Ae. albopictus and Ae. aegypti mosquitoes are moderately competent vectors of the DEN2-FJ10 and DEN2-FJ11 strains of the dengue virus and provide the first evidence of the effect of these two viral strains on the vector competence of mosquitoes in China.

  4. Vector competence of Aedes albopictus and Aedes aegypti (Diptera: Culicidae) for DEN2-43 and New Guinea C virus strains of dengue 2 virus.

    PubMed

    Guo, Xiao-Xia; Zhu, Xiao-Juan; Li, Chun-Xiao; Dong, Yan-De; Zhang, Ying-Mei; Xing, Dan; Xue, Rui-De; Qin, Cheng-Feng; Zhao, Tong-Yan

    2013-12-01

    The vector competence of Aedes albopictus and Aedes aegypti with regard to DEN2-43 and New Guinea C (NGC) virus strains of Dengue 2 viruses was assessed and compared. The infection and dissemination rate and distribution of DEN2-43 antigens in orally infected Ae. albopictus was investigated using the reverse transcription polymerase chain reaction and an indirect immunofluorescence assay. To better understand the initial infection, dissemination and transmission of these viral strains in vector mosquitoes, Ae. albopoictus and Ae. aegypti were fed an artificial blood meal containing either the DEN2-43 or NGC strain. There was no significant difference in the infection and dissemination rates of DEN2-43 and NGC virus strains in Ae. albopictus, however, Ae. aegypti was more susceptible to infection by NGC than DEN2-43 vrius strain. Ae. albopictus mosquitoes infected with the NGC strain developed a higher percentage of midgut infections than those infected with the DEN2-43 strain (t=2.893, df=7, P=0.024). Approximately 26.7% of midgut samples were positive for the NGC antigen 5 days after infection, and 80% of mosquitoes had infected midgets after 15 days. The NGC antigen first became evident in mosquito salivary glands on Day 5, and 40% of mosquitoes had infected salivary by Day 9. In contrast, the DEN2-43 antigen first became evident in salivary glands on Day 7. The infection rate of NGC and DEN2-43 virus strains in salivary glands were similar. These results indicate that Ae. albopictus and Ae. aegypti are moderately competent vectors for the DEN2-43 virus, which could provide basic data for the epidemiology study of dengue fever in China.

  5. Novel, Meso-Substituted Cationic Porphyrin Molecule for Photo-Mediated Larval Control of the Dengue Vector Aedes aegypti

    PubMed Central

    Lucantoni, Leonardo; Magaraggia, Michela; Lupidi, Giulio; Ouedraogo, Robert Kossivi; Coppellotti, Olimpia; Esposito, Fulvio; Fabris, Clara; Jori, Giulio; Habluetzel, Annette

    2011-01-01

    Background Control of the mosquito vector population is the most effective strategy currently available for the prevention of dengue fever and the containment of outbreaks. Photo-activated oxidants may represent promising tools for developing effective, safe and ecofriendly novel larvicides. The purpose of this study was to evaluate the potential of the synthetic meso-substituted porphyrin meso-tri(N-methylpyridyl), meso-mono(N-tetradecylpyridyl)porphine (C14) as a photoactivatable larvicide against the dengue vector Aedes (Stegomyia) aegypti. Methodology The photophysical and photochemical properties of the C14 molecule were assessed spectrophotometrically. Photomediated larvicidal efficacy, route of intake and site of action were determined on Ae. aegypti larvae by laboratory bioassays and fluorescence microscopy. Using powdered food pellet for laboratory rodents (a common larval food used in the laboratory) as a carrier for C14, loading-release dynamics, larvicidal efficacy and residual activity of the C14-carrier complex were investigated. Main Findings The C14 molecule was found to exert a potent photosensitizing activity on Ae. aegypti larvae. At irradiation intervals of 12 h and 1 h, at a light intensity of 4.0 mW/cm2, which is 50–100 times lower than that of natural sunlight, LC50 values of 0.1 µM (0.15 mg/l) and 0.5 µM (0.77 mg/l) were obtained, respectively. The molecule was active after ingestion by the larvae and caused irreversible, lethal damage to the midgut and caecal epithelia. The amphiphilic nature of C14 allowed a formulate to be produced that not only was as active against the larvae as C14 in solution, but also possessed a residual activity of at least two weeks, in laboratory conditions. Conclusions The meso-substituted synthetic porphyrin C14, thanks to its photo-sensitizing properties represents an attractive candidate for the development of novel photolarvicides for dengue vector control. PMID:22206031

  6. Larvicidal and irritant activities of hexane leaf extracts of Citrus sinensis against dengue vector Aedes aegypti L.

    PubMed Central

    Warikoo, Radhika; Ray, Ankita; Sandhu, Jasdeep Kaur; Samal, Roopa; Wahab, Naim; Kumar, Sarita

    2012-01-01

    Objective To assess the larvicidal and irritant activities of the hexane extracts of leaves of Citrus sinensis (C. sinensis) against the early fourth instars and female adults of Aedes aegypti (Ae. aegypti). Methods The larvicidal potential of the prepared leaf extract was evaluated against early fourth instar larvae of Ae. aegypti using WHO protocol. The mortality counts were made after 24 h and LC50 and LC90 values were calculated. The efficacy of extract as mosquito irritant was assessed by contact irritancy assays. Extract-impregnated paper was placed on a glass plate over which a perspex funnel with a hole on the top was kept inverted. Single female adult, 3-day old unfed/blood-fed, was released inside the funnel. After 3 min of acclimatization time, the time taken for the first take-off and total number of flights undertaken during 15 min were scored. Results The citrus leaf extracts from hexane possessed moderate larvicidal efficiency against dengue vector. The bioassays resulted in an LC50 and LC90 value of 446.84 and 1 370.96 ppm, respectively after 24 h of exposure. However, the extracts were proved to be remarkable irritant against adults Ae. aegypti, more pronounced effects being observed on blood-fed females than unfed females. The extract-impregnated paper was thus proved to be 7–11 times more irritable as compared with the control paper. Conclusions The hexane extracts from C. sinensis leaves are proved to be reasonably larvicidal but remarkably irritant against dengue vector. Further studies are needed to identify the possible role of extract as adulticide, oviposition deterrent and ovicidal agent. The isolation of active ingredient from the extract could help in formulating strategies for mosquito control. PMID:23569887

  7. Identification of Aedes aegypti Long Intergenic Non-coding RNAs and Their Association with Wolbachia and Dengue Virus Infection

    PubMed Central

    Etebari, Kayvan; Asad, Sultan; Zhang, Guangmei; Asgari, Sassan

    2016-01-01

    Long intergenic non-coding RNAs (lincRNAs) are appearing as an important class of regulatory RNAs with a variety of biological functions. The aim of this study was to identify the lincRNA profile in the dengue vector Aedes aegypti and evaluate their potential role in host-pathogen interaction. The majority of previous RNA-Seq transcriptome studies in Ae. aegypti have focused on the expression pattern of annotated protein coding genes under different biological conditions. Here, we used 35 publically available RNA-Seq datasets with relatively high depth to screen the Ae. aegypti genome for lincRNA discovery. This led to the identification of 3,482 putative lincRNAs. These lincRNA genes displayed a slightly lower GC content and shorter transcript lengths compared to protein-encoding genes. Ae. aegypti lincRNAs also demonstrate low evolutionary sequence conservation even among closely related species such as Culex quinquefasciatus and Anopheles gambiae. We examined their expression in dengue virus serotype 2 (DENV-2) and Wolbachia infected and non-infected adult mosquitoes and Aa20 cells. The results revealed that DENV-2 infection increased the abundance of a number of host lincRNAs, from which some suppress viral replication in mosquito cells. RNAi-mediated silencing of lincRNA_1317 led to enhancement in viral replication, which possibly indicates its potential involvement in the host anti-viral defense. A number of lincRNAs were also differentially expressed in Wolbachia-infected mosquitoes. The results will facilitate future studies to unravel the function of lncRNAs in insects and may prove to be beneficial in developing new ways to control vectors or inhibit replication of viruses in them. PMID:27760142

  8. Rhamnolipids: solution against Aedes aegypti?

    PubMed Central

    Silva, Vinicius L.; Lovaglio, Roberta B.; Von Zuben, Claudio J.; Contiero, Jonas

    2015-01-01

    Aedes aegypti mosquitoes are the primary transmitters of dengue fever, urban yellow fever, and chikungunya viruses. This mosquito has developed resistance to the insecticides currently used to control their populations. These chemical insecticides are harmful to the environment and can have negative effects on human health. Rhamnolipids are environmentally compatible biological surfactants, but their insecticidal activity has not been extensively studied. The present study evaluated the potential larvicidal, insecticidal, and repellent activities of rhamnolipids against A. aegypti. At concentrations of 800, 900, and 1000 mg/L, rhamnolipids eliminated all mosquito larvae in 18 h and killed 100% of adults at 1000 mg/L. According to the results it may be conclude that rhamnolipids should be applied to control larvae and mosquitos besides present the repellency activity against A. aegypti. PMID:25762986

  9. Lower survival rate, longevity and fecundity of Aedes aegypti (Diptera: Culicidae) females orally challenged with dengue virus serotype 2.

    PubMed

    Maciel-de-Freitas, R; Koella, J C; Lourenço-de-Oliveira, R

    2011-08-01

    As the pathogenic effects of a parasite on its hosts can strongly influence its epidemiology, we compared the life-histories of dengue virus serotype 2 (DENV-2)-infected and uninfected Aedes aegypti females. Unexposed mosquitoes lived longer than exposed ones, but those infected lived longer than exposed but negative (as assayed by Real-Time quantitative Reverse Transcription PCR [qRT-PCR]) mosquitoes. Infected mosquitoes from a long-established laboratory colony presented more viral RNA copies at death than those from the F1-generation of a field population from Rio de Janeiro. The mortality of infected colony-mosquitoes was independent of the number of viral RNA copies at death, whereas in the field population, longevity decreased with the number of viral RNA copies, suggesting that F1 of field mosquitoes are less tolerant to infection than the laboratory-colony. Infected females had a lower fecundity than controls. F1 of field mosquitoes were more likely to lay eggs than the colony; egg-laying success was strongly affected by mosquito age for both mosquito populations: from 49.28 in the first clutch to 20.7 in the fifth. Overall, DENV-2 reduced Aedes aegypti survival and fecundity, clearly affecting vectorial capacity and consequently transmission intensity.

  10. siRNA-Mediated Silencing of doublesex during Female Development of the Dengue Vector Mosquito Aedes aegypti

    PubMed Central

    Mysore, Keshava; Sun, Longhua; Tomchaney, Michael; Sullivan, Gwyneth; Adams, Haley; Piscoya, Andres S.; Severson, David W.; Syed, Zainulabeuddin; Duman-Scheel, Molly

    2015-01-01

    The development of sex-specific traits, including the female-specific ability to bite humans and vector disease, is critical for vector mosquito reproduction and pathogen transmission. Doublesex (Dsx), a terminal transcription factor in the sex determination pathway, is known to regulate sex-specific gene expression during development of the dengue fever vector mosquito Aedes aegypti. Here, the effects of developmental siRNA-mediated dsx silencing were assessed in adult females. Targeting of dsx during A. aegypti development resulted in decreased female wing size, a correlate for body size, which is typically larger in females. siRNA-mediated targeting of dsx also resulted in decreased length of the adult female proboscis. Although dsx silencing did not impact female membrane blood feeding or mating behavior in the laboratory, decreased fecundity and fertility correlated with decreased ovary length, ovariole length, and ovariole number in dsx knockdown females. Dsx silencing also resulted in disruption of olfactory system development, as evidenced by reduced length of the female antenna and maxillary palp and the sensilla present on these structures, as well as disrupted odorant receptor expression. Female lifespan, a critical component of the ability of A. aegypti to transmit pathogens, was also significantly reduced in adult females following developmental targeting of dsx. The results of this investigation demonstrate that silencing of dsx during A. aegypti development disrupts multiple sex-specific morphological, physiological, and behavioral traits of adult females, a number of which are directly or indirectly linked to mosquito reproduction and pathogen transmission. Moreover, the olfactory phenotypes observed connect Dsx to development of the olfactory system, suggesting that A. aegypti will be an excellent system in which to further assess the developmental genetics of sex-specific chemosensation. PMID:26544686

  11. siRNA-Mediated Silencing of doublesex during Female Development of the Dengue Vector Mosquito Aedes aegypti.

    PubMed

    Mysore, Keshava; Sun, Longhua; Tomchaney, Michael; Sullivan, Gwyneth; Adams, Haley; Piscoya, Andres S; Severson, David W; Syed, Zainulabeuddin; Duman-Scheel, Molly

    2015-11-01

    The development of sex-specific traits, including the female-specific ability to bite humans and vector disease, is critical for vector mosquito reproduction and pathogen transmission. Doublesex (Dsx), a terminal transcription factor in the sex determination pathway, is known to regulate sex-specific gene expression during development of the dengue fever vector mosquito Aedes aegypti. Here, the effects of developmental siRNA-mediated dsx silencing were assessed in adult females. Targeting of dsx during A. aegypti development resulted in decreased female wing size, a correlate for body size, which is typically larger in females. siRNA-mediated targeting of dsx also resulted in decreased length of the adult female proboscis. Although dsx silencing did not impact female membrane blood feeding or mating behavior in the laboratory, decreased fecundity and fertility correlated with decreased ovary length, ovariole length, and ovariole number in dsx knockdown females. Dsx silencing also resulted in disruption of olfactory system development, as evidenced by reduced length of the female antenna and maxillary palp and the sensilla present on these structures, as well as disrupted odorant receptor expression. Female lifespan, a critical component of the ability of A. aegypti to transmit pathogens, was also significantly reduced in adult females following developmental targeting of dsx. The results of this investigation demonstrate that silencing of dsx during A. aegypti development disrupts multiple sex-specific morphological, physiological, and behavioral traits of adult females, a number of which are directly or indirectly linked to mosquito reproduction and pathogen transmission. Moreover, the olfactory phenotypes observed connect Dsx to development of the olfactory system, suggesting that A. aegypti will be an excellent system in which to further assess the developmental genetics of sex-specific chemosensation.

  12. Downregulation of Aedes aegypti chromodomain helicase DNA binding protein 7/Kismet by Wolbachia and its effect on dengue virus replication

    PubMed Central

    Asad, Sultan; Hall-Mendelin, Sonja; Asgari, Sassan

    2016-01-01

    Dengue virus (DENV) is a mosquito-transmitted virus imposing a significant burden on human health around the world. Since current control strategies are not sufficient, there is an urgent need to find alternative methods to control DENV transmission. It has been demonstrated that introduction of Wolbachia pipientis in Aedes aegypti mosquitoes can impede DENV transmission with the mechanism(s) not fully understood. Recently, a number of studies have found the involvement of chromodomain DNA binding helicases in case of Human Immunodeficiency virus (HIV) and Influenza A virus infection. In this study, we have identified three chromodomain helicase DNA binding protein (CHD) genes in Ae. aegypti and looked at their response in the case of Wolbachia and DENV infections. Foremost amongst them we have found that AeCHD7/Kismet is significantly downregulated in the presence of Wolbachia infection only in female mosquitoes. Furthermore, AeCHD7 levels showed significant increase during DENV infection, and AeCHD7 depletion led to severe reduction in the replication of DENV. Our data have identified AeCHD7 as a novel Ae. aegypti host factor that is important for DENV replication, and Wolbachia downregulates it, which may contribute towards the mechanism(s) of limiting DENV replication. PMID:27827425

  13. Human impacts have shaped historical and recent evolution in Aedes aegypti, the dengue and yellow fever mosquito

    PubMed Central

    Brown, Julia E.; Evans, Benjamin R.; Zheng, Wei; Obas, Vanessa; Barrera-Martinez, Laura; Egizi, Andrea; Zhao, Hongyu; Caccone, Adalgisa; Powell, Jeffrey R.

    2013-01-01

    Though anthropogenic impacts are often considered harmful to species, human modifications to the landscape can actually create novel niches to which other species can adapt. These “domestication” processes are especially important in the context of arthropod disease vectors, where ecological overlap of vector and human populations may lead to epidemics. Here, we present results of a global genetic study of one such species, the dengue and yellow fever mosquito, Aedes aegypti, whose evolutionary history and current distribution have been profoundly shaped by humans. We used DNA sequences of four nuclear genes and 1504 SNP markers developed with RAD-tag sequencing to test the hypothesis that Ae. aegypti originated in Africa, where a domestic form arose and spread throughout the tropical and subtropical world with human trade and movement. Results confirmed African ancestry of the species, and supported a single subspeciation event leading to the pantropical domestic form. Additionally, genetic data strongly supported the hypothesis that human trade routes first moved domestic Ae. aegypti out of Africa into the New World, followed by a later invasion from the New World into Southeast Asia and the Pacific. These patterns of domestication and invasion are relevant to many species worldwide, as anthropogenic forces increasingly impact evolutionary processes. PMID:24111703

  14. Weather Variability Associated with Aedes (Stegomyia) aegypti (Dengue Vector) Oviposition Dynamics in Northwestern Argentina.

    PubMed

    Estallo, Elizabet L; Ludueña-Almeida, Francisco F; Introini, María V; Zaidenberg, Mario; Almirón, Walter R

    2015-01-01

    This study aims to develop a forecasting model by assessing the weather variability associated with seasonal fluctuation of Aedes aegypti oviposition dynamic at a city level in Orán, in northwestern Argentina. Oviposition dynamics were assessed by weekly monitoring of 90 ovitraps in the urban area during 2005-2007. Correlations were performed between the number of eggs collected weekly and weather variables (rainfall, photoperiod, vapor pressure of water, temperature, and relative humidity) with and without time lags (1 to 6 weeks). A stepwise multiple linear regression analysis was performed with the set of meteorological variables from the first year of study with the variables in the time lags that best correlated with the oviposition. Model validation was conducted using the data from the second year of study (October 2006- 2007). Minimum temperature and rainfall were the most important variables. No eggs were found at temperatures below 10 °C. The most significant time lags were 3 weeks for minimum temperature and rains, 3 weeks for water vapor pressure, and 6 weeks for maximum temperature. Aedes aegypti could be expected in Orán three weeks after rains with adequate min temperatures. The best-fit forecasting model for the combined meteorological variables explained 70 % of the variance (adj. R(2)). The correlation between Ae. aegypti oviposition observed and estimated by the forecasting model resulted in rs = 0.80 (P < 0.05). The forecasting model developed would allow prediction of increases and decreases in the Ae. aegypti oviposition activity based on meteorological data for Orán city and, according to the meteorological variables, vector activity can be predicted three or four weeks in advance.

  15. Weather Variability Associated with Aedes (Stegomyia) aegypti (Dengue Vector) Oviposition Dynamics in Northwestern Argentina

    PubMed Central

    Estallo, Elizabet L.; Ludueña-Almeida, Francisco F.; Introini, María V.; Zaidenberg, Mario; Almirón, Walter R.

    2015-01-01

    This study aims to develop a forecasting model by assessing the weather variability associated with seasonal fluctuation of Aedes aegypti oviposition dynamic at a city level in Orán, in northwestern Argentina. Oviposition dynamics were assessed by weekly monitoring of 90 ovitraps in the urban area during 2005-2007. Correlations were performed between the number of eggs collected weekly and weather variables (rainfall, photoperiod, vapor pressure of water, temperature, and relative humidity) with and without time lags (1 to 6 weeks). A stepwise multiple linear regression analysis was performed with the set of meteorological variables from the first year of study with the variables in the time lags that best correlated with the oviposition. Model validation was conducted using the data from the second year of study (October 2006- 2007). Minimum temperature and rainfall were the most important variables. No eggs were found at temperatures below 10°C. The most significant time lags were 3 weeks for minimum temperature and rains, 3 weeks for water vapor pressure, and 6 weeks for maximum temperature. Aedes aegypti could be expected in Orán three weeks after rains with adequate min temperatures. The best-fit forecasting model for the combined meteorological variables explained 70 % of the variance (adj. R2). The correlation between Ae. aegypti oviposition observed and estimated by the forecasting model resulted in rs = 0.80 (P < 0.05). The forecasting model developed would allow prediction of increases and decreases in the Ae. aegypti oviposition activity based on meteorological data for Orán city and, according to the meteorological variables, vector activity can be predicted three or four weeks in advance. PMID:25993415

  16. Potential for Extrinsic Incubation Temperature to Alter Interplay Between Transmission Potential and Mortality of Dengue-Infected Aedes aegypti

    PubMed Central

    Christofferson, Rebecca C.; Mores, Christopher N.

    2016-01-01

    The extrinsic incubation period is a critical component in the assessment of arboviral transmission potential. It defines the time it takes for a mosquito to become infectious following exposure to an arbovirus. Since this is a temporal process, the lifespan of a mosquito is intimately tied to the extrinsic incubation period and thus transmission potential of these viruses. Temperature is a known effector of both vector competence (the ability of a vector to transmit a pathogen) and mosquito mortality, but the interaction among temperature, vector competence, and mosquito mortality is not well characterized. Herein, we investigate this interaction for dengue virus, serotype 2, and its primary vector Aedes aegypti where we found that at 30 °C, infection and/or dissemination shortened the average lifespan of the mosquito and that when considering only mosquitoes with a disseminated infection, those incubated at 26 °C lived significantly longer. PMID:27478382

  17. Spatio-Temporal Distribution of Aedes aegypti (Diptera: Culicidae) Mitochondrial Lineages in Cities with Distinct Dengue Incidence Rates Suggests Complex Population Dynamics of the Dengue Vector in Colombia

    PubMed Central

    Jaimes-Dueñez, Jeiczon; Arboleda, Sair; Triana-Chávez, Omar; Gómez-Palacio, Andrés

    2015-01-01

    Background Aedes aegypti is the primary vector of the four serotypes of dengue virus (DENV1-4), Chikungunya and yellow fever virus to humans. Previous population genetic studies have revealed a particular genetic structure among the vector populations in the Americas that suggests differences in the ability to transmit DENV. In Colombia, despite its high epidemiologic importance, the genetic population structure and the phylogeographic depiction of Ae. aegypti, as well as its relationship with the epidemiologic landscapes in cities with heterogeneous incidence levels, remains unknown. We conducted a spatiotemporal analysis with the aim of determining the genetic structure and phylogeography of Colombian populations of Ae. aegypti among cities with different eco-epidemiologic characteristics with regard to DENV. Methods/Findings Mitochondrial cytochrome oxidase C subunit 1 (COI) - NADH dehydrogenase subunit 4 (ND4) genes were sequenced and analyzed from 341 adult mosquitoes collected during 2012 and 2013 in the Colombian cities of Bello, Riohacha and Villavicencio, which exhibit low, medium and high levels of incidence of DENV, respectively. The results demonstrated a low genetic differentiation over time and a high genetic structure between the cities due to changes in the frequency of two highly supported genetic groups. The phylogeographic analyses indicated that one group (associated with West African populations) was found in all the cities throughout the sampling while the second group (associated with East African populations) was found in all the samples from Bello and in only one sampling from Riohacha. Environmental factors such as the use of chemical insecticides showed a significant correlation with decreasing genetic diversity, indicating that environmental factors affect the population structure of Ae. aegypti across time and space in these cities. Conclusions Our results suggest that two Ae. aegypti lineages are present in Colombia; one that is

  18. Bromeliad-inhabiting mosquitoes in an urban botanical garden of dengue endemic Rio de Janeiro--are bromeliads productive habitats for the invasive vectors Aedes aegypti and Aedes albopictus?

    PubMed

    Mocellin, Márcio Goulart; Simões, Taynãna César; Nascimento, Teresa Fernandes Silva do; Teixeira, Maria Lucia França; Lounibos, Leon Philip; Oliveira, Ricardo Lourenço de

    2009-12-01

    Immatures of both Aedes aegypti and Aedes albopictus have been found in water-holding bromeliad axils in Brazil. Removal of these plants or their treatment with insecticides in public and private gardens have been undertaken during dengue outbreaks in Brazil despite uncertainty as to their importance as productive habitats for dengue vectors. From March 2005-February 2006, we sampled 120 randomly selected bromeliads belonging to 10 species in a public garden less than 200 m from houses in a dengue-endemic neighborhood in Rio de Janeiro. A total of 2,816 mosquito larvae and pupae was collected, with an average of 5.87 immatures per plant per collection. Culex (Microculex) pleuristriatus and Culex spp of the Ocellatus Group were the most abundant culicid species, found in all species of bromeliads; next in relative abundance were species of the genus Wyeomyia. Only two individuals of Ae. aegypti (0.07%) and five of Ae. albopictus(0.18%) were collected from bromeliads. By contrast, immatures of Ae. aegypti were found in manmade containers in nearly 5% of nearby houses. These results demonstrate that bromeliads are not important producers of Ae. aegypti and Ae. albopictus and, hence, should not be a focus for dengue control. However, the results of this study of only one year in a single area may not represent outcomes in other urban localities where bromeliads, Ae. aegypti and dengue coincide in more disturbed habitats.

  19. The effect of temperature and humidity on dengue virus propagation in Aedes aegypti mosquitos.

    PubMed

    Thu, H M; Aye, K M; Thein, S

    1998-06-01

    The effect of temperature and relative humidity on dengue virus propagation in the mosquito as one of the possible contributing factors to dengue hemorrhagic fever (DHF) outbreaks was studied. Ae. aegypti mosquitos were reared under standard conditions and inoculated intrathoracically with dengue virus. Virus propagation in the mosquitos was determined at the temperature and relative humidity of all 3 seasons of Yangon and for the simulated temperature and relative humidity of Singapore. The virus propagation was detected by direct fluorescent antibody technique (DFAT) with mosquito head squash and the virus titer was determined by plaque forming unit test (PFUT) in baby hamster kidney-21 cells. The results show that the infected mosquitos kept under the conditions of the rainy season and under the simulated conditions of Singapore had a significantly higher virus titer (p=<0.05) when compared with the other 2 seasons of Yangon. So it is thought that the temperature and relative humidity of the rainy season of Yangon and that of Singapore favors dengue virus propagation in the mosquito and is one of the contributing factors to the occurence of DHF outbreaks.

  20. Permethrin-Treated Clothing as Protection against the Dengue Vector, Aedes aegypti: Extent and Duration of Protection

    PubMed Central

    DeRaedt Banks, Sarah; Orsborne, James; Gezan, Salvador A.; Kaur, Harparkash; Wilder-Smith, Annelies; Lindsey, Steve W.; Logan, James G.

    2015-01-01

    Introduction Dengue transmission by the mosquito vector, Aedes aegypti, occurs indoors and outdoors during the day. Personal protection of individuals, particularly when outside, is challenging. Here we assess the efficacy and durability of different types of insecticide-treated clothing on laboratory-reared Ae. aegypti. Methods Standardised World Health Organisation Pesticide Evaluation Scheme (WHOPES) cone tests and arm-in-cage assays were used to assess knockdown (KD) and mortality of Ae. aegypti tested against factory-treated fabric, home-dipped fabric and microencapsulated fabric. Based on the testing of these three different treatment types, the most protective was selected for further analysis using arm-in cage assays with the effect of washing, ultra-violet light, and ironing investigated using high pressure liquid chromatography. Results Efficacy varied between the microencapsulated and factory dipped fabrics in cone testing. Factory-dipped clothing showed the greatest effect on KD (3 min 38.1%; 1 hour 96.5%) and mortality (97.1%) with no significant difference between this and the factory dipped school uniforms. Factory-dipped clothing was therefore selected for further testing. Factory dipped clothing provided 59% (95% CI = 49.2%– 66.9%) reduction in landing and a 100% reduction in biting in arm-in-cage tests. Washing duration and technique had a significant effect, with insecticidal longevity shown to be greater with machine washing (LW50 = 33.4) compared to simulated hand washing (LW50 = 17.6). Ironing significantly reduced permethrin content after 1 week of simulated use, with a 96.7% decrease after 3 months although UV exposure did not reduce permethrin content within clothing significantly after 3 months simulated use. Conclusion Permethrin-treated clothing may be a promising intervention in reducing dengue transmission. However, our findings also suggest that clothing may provide only short-term protection due to the effect of washing and ironing

  1. Biosynthesis of silver nanoparticles using Bacillus thuringiensis against dengue vector, Aedes aegypti (Diptera: Culicidae).

    PubMed

    Banu, A Najitha; Balasubramanian, C; Moorthi, P Vinayaga

    2014-01-01

    The present study reveals the larvicidal activity of silver nanoparticles (AgNPs) synthesized by Bacillus thuringiensis (Bt) against Aedes aegypti responsible for the diseases of public health importance. The Bt-AgNPs were characterized by using UV-visible spectrophotometer followed by scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX) spectroscopy. A surface plasmon resonance spectrum of AgNps was obtained at 420 nm. The particle sizes were measured through SEM imaging ranging from 43.52 to 142.97 nm. The Bt-AgNPs has also given a characteristic peak at 3 keV in EDX image. Interestingly, the mortality rendered by Bt-AgNPs was comparatively high than that of the control against third-instar larvae of A. aegypti (LC50 0.10 ppm and LC90 0.39 ppm) in all the tested concentrations, viz. 0.03, 0.06, 0.09, 0.12, and 0.15 ppm. Hence, Bt-AgNPs would be significantly used as a potent mosquito larvicide against A. aegypti.

  2. Transcriptome analysis of Aedes aegypti in response to mono-infections and co-infections of dengue virus-2 and chikungunya virus.

    PubMed

    Shrinet, Jatin; Srivastava, Pratibha; Sunil, Sujatha

    2017-02-01

    Chikungunya virus (CHIKV) and Dengue virus (DENV) spread via the bite of infected Aedes mosquitoes. Both these viruses exist as co-infections in the host as well as the vector and are known to exploit their cellular machinery for their replication. While there are studies reporting the changes in Aedes transcriptome when infected with DENV and CHIKV individually, the effect both these viruses have on the mosquitoes when present as co-infections is not clearly understood. In the present study, we infected Aedes aegypti mosquitoes with DENV and CHIKV individually and as co-infection through nanoinjections. We performed high throughput RNA sequencing of the infected Aedes aegypti to understand the changes in the Aedes transcriptome during the early stages of infection, i.e., 24 h post infection and compared the transcriptome profiles during DENV and CHIKV mono-infections with that of co-infections. We identified 190 significantly regulated genes identified in CHIKV infected library, 37 genes from DENV library and 100 genes from co-infected library and they were classified into different pathways. Our study reveal that distinct pathways and transcripts are being regulated during the three types of infection states in Aedes aegypti mosquitoes.

  3. Tackling the growing threat of dengue: Phyllanthus niruri-mediated synthesis of silver nanoparticles and their mosquitocidal properties against the dengue vector Aedes aegypti (Diptera: Culicidae).

    PubMed

    Suresh, Udaiyan; Murugan, Kadarkarai; Benelli, Giovanni; Nicoletti, Marcello; Barnard, Donald R; Panneerselvam, Chellasamy; Kumar, Palanisamy Mahesh; Subramaniam, Jayapal; Dinesh, Devakumar; Chandramohan, Balamurugan

    2015-04-01

    Mosquitoes are vectors of devastating pathogens and parasites, causing millions of deaths every year. Dengue is a mosquito-borne viral infection found in tropical and subtropical regions around the world. Recently, transmission has strongly increased in urban and semiurban areas, becoming a major international public health concern. Aedes aegypti (Diptera: Culicidae) is the primary vector of dengue. The use of synthetic insecticides to control Aedes mosquitoes lead to high operational costs and adverse nontarget effects. In this scenario, eco-friendly control tools are a priority. We proposed a novel method to synthesize silver nanoparticles using the aqueous leaf extract of Phyllanthus niruri, a cheap and nontoxic material. The UV-vis spectrum of the aqueous medium containing silver nanostructures showed a peak at 420 nm corresponding to the surface plasmon resonance band of nanoparticles. SEM analyses of the synthesized nanoparticles showed a mean size of 30-60 nm. EDX spectrum showed the chemical composition of the synthesized nanoparticles. XRD highlighted that the nanoparticles are crystalline in nature with face-centered cubic geometry. Fourier transform infrared spectroscopy (FTIR) of nanoparticles exhibited prominent peaks 3,327.63, 2,125.87, 1,637.89, 644.35, 597.41, and 554.63 cm(-1). In laboratory assays, the aqueous extract of P. niruri was toxic against larval instars (I-IV) and pupae of A. aegypti. LC50 was 158.24 ppm (I), 183.20 ppm (II), 210.53 ppm (III), 210.53 ppm (IV), and 358.08 ppm (pupae). P. niruri-synthesized nanoparticles were highly effective against A. aegypti, with LC50 of 3.90 ppm (I), 5.01 ppm (II), 6.2 ppm (III), 8.9 ppm (IV), and 13.04 ppm (pupae). In the field, the application of silver nanoparticles (10 × LC50) lead to A. aegypti larval reduction of 47.6%, 76.7% and 100%, after 24, 48, and 72 h, while the P. niruri extract lead to 39.9%, 69.2 % and 100 % of reduction, respectively. In adulticidal experiments, P. niruri extract

  4. Towards a Casa Segura: A Consumer Product Study of the Effect of Insecticide-Treated Curtains on Aedes aegypti and Dengue Virus Infections in the Home

    PubMed Central

    Loroño-Pino, María Alba; García-Rejón, Julián E.; Machain-Williams, Carlos; Gomez-Carro, Salvador; Nuñez-Ayala, Guadalupe; del Rosario Nájera-Vázquez, Maria; Losoya, Arturo; Aguilar, Lyla; Saavedra-Rodriguez, Karla; Lozano-Fuentes, Saul; Beaty, Meaghan K.; Black, William C.; Keefe, Thomas J.; Eisen, Lars; Beaty, Barry J.

    2013-01-01

    The home, or domicile, is the principal environment for transmission of dengue virus (DENV) between humans and mosquito vectors. Community-wide distribution of insecticide-treated curtains (ITCs), mimicking vector control program-driven interventions, has shown promise to reduce DENV infections. We conducted a Casa Segura consumer product intervention study in Mérida, Mexico to determine the potential to reduce intradomicillary DENV transmission through ITC use in individual homes. Dengue virus infections in mosquitoes and in humans were reduced in homes with ITCs in one of two study subareas. Overall, ITCs reduced intradomicillary DENV transmission; ITC homes were significantly less likely to experience multiple DENV infections in humans than NTC homes. Dengue virus–infected Aedes aegypti females were reduced within the ITC homes where curtain use was highest. Some homes yielded up to nine infected Ae. aegypti females. This study provides insights regarding best practices for Casa Segura interventions to protect homes from intradomicillary DENV transmission. PMID:23732254

  5. Dengue Virus-1 Infection Did Not Alter the Behavioral Response of Aedes aegypti (Diptera: Culicidae) to DEET.

    PubMed

    Sugiharto, Victor A; Murphy, Jittawadee R; Turell, Michael J; Olsen, Cara H; Stewart, V Ann; Colacicco-Mayhugh, Michelle G; Grieco, John P; Achee, Nicole L

    2016-05-01

    No licensed vaccine or antiviral drug against dengue virus (DENV) is available; therefore, most of the effort to prevent this disease is focused on reducing vector-host interactions. One of the most widely accepted methods of blocking vector-human contact is to use insect repellents to interfere with mosquito host-seeking behavior. Some arboviruses can replicate in the nervous system of the vector, raising the concern that arboviral infection may alter the insect behavioral response toward chemical stimuli. Three different Aedes aegypti (L.) mosquito cohorts: DENV-1-injected, diluent-injected, and uninjected were subjected to behavioral tests using a high-throughput screening system with 2.5% DEET and 0.14% DEET on 1, 4, 7, 10, 14, and 17 d postinjection. All test cohorts exhibited significant contact irritant or escape responses when they were exposed to 2.5% or 0.14% DEET. However, we found no biologically relevant irritancy response change in DENV-1-infected Ae. aegypti mosquitoes when they were exposed to DEET. Further studies evaluating the effects of other arboviral infections on insect repellents activity are necessary in order to provide better recommendation on the prevention of vector-borne disease transmission.

  6. Parity and Longevity of Aedes aegypti According to Temperatures in Controlled Conditions and Consequences on Dengue Transmission Risks

    PubMed Central

    Goindin, Daniella; Delannay, Christelle; Ramdini, Cédric; Gustave, Joël; Fouque, Florence

    2015-01-01

    Background In Guadeloupe, Aedes aegypti mosquitoes are the only vectors of dengue and chikungunya viruses. For both diseases, vector control is the only tool for preventing epidemics since no vaccine or specific treatment is available. However, to efficiently implement control of mosquitoes vectors, a reliable estimation of the transmission risks is necessary. To become infective an Ae. aegypti female must ingest the virus during a blood meal and will not be able to transmit the virus during another blood-meal until the extrinsic incubation period is completed. Consequently the aged females will carry more infectious risks. The objectives of the present study were to estimate under controlled conditions the expectation of infective life for females and thus the transmission risks in relation with their reproductive cycle and parity status. Methodology/Principal Findings Larvae of Ae. aegypti were collected in central Guadeloupe and breed under laboratory conditions until adult emergence. The experiments were performed at constant temperatures (± 1.5°C) of 24°C, 27°C and 30°C on adults females from first generation (F1). Females were kept and fed individually and records of blood-feeding, egg-laying and survival were done daily. Some females were dissected at different physiological stages to observe the ovaries development. The data were analyzed to follow the evolution of parity rates, the number of gonotrophic cycles, the fecundity and to study the mean expectation of life and the mean expectation of infective life for Ae. aegypti females according to temperatures. The expectation of life varies with the parity rates and according to the temperatures, with durations from about 10 days at low parity rates at the higher temperature to an optimal duration of about 35 days when 70% of females are parous at 27°C. Infective life expectancy was found highly variable in the lower parous rates and again the optimal durations were found when more than 50% of females

  7. Evaluation of novel insecticides for control of dengue vector Aedes aegypti (Diptera: Culicidae).

    PubMed

    Paul, Ayesa; Harrington, Laura C; Scott, Jeffrey G

    2006-01-01

    Insecticides are one of the major tools for controlling vector populations and for reducing the transmission of human pathogens. However, there are few new insecticides being developed and marketed for vector control. Herein, we report on the toxicity of six novel insecticides to both adult and larval Aedes aegypti (L). and the toxicity of three novel insect growth regulators (IGRs) to larvae. Four insecticides were highly or moderately toxic to larvae with LC50 values of 16 (chlorfenapyr), 70 (hydramethylnon), 79 (indoxacarb), and 84 ng/ml (imidacloprid). Diafenthiuron and chlorfenapyr were moderately toxic to adult mosquitoes with LC50 values of 13 and 92 ng/cm2, respectively. Imidacloprid was strongly synergized by piperonyl butoxide (PBO) in Ae. aegypti adults, suggesting that neonicotinoids are intrinsically very toxic to adult mosquitoes (in the absence of detoxification). The effect of PBO on the toxicity in adults and larvae was considerably different, both in terms of the insecticides that were synergized (or antagonized for chlorfenapyr versus adults) and in terms of the degree of synergism. This result implies that the cytochrome P450s involved in metabolism of these insecticides are different between adults and larvae. Pyriproxyfen was confirmed as a potent IGR (EC50 of 0.0017 ng/ml) for mosquitoes, although tebufenozide lacked activity. The potential for use of these materials in mosquito control is discussed.

  8. The role of male harassment on female fitness for the dengue vector mosquito Aedes aegypti.

    PubMed

    Helinski, Michelle E H; Harrington, Laura C

    2012-08-01

    Sexual harassment studies in insects suggest that females can incur several kinds of costs from male harassment and mating. Here, we examined direct and indirect costs of male harassment on components of female fitness in the predominantly monandrous mosquito Aedes aegypti. To disentangle the costs of harassment versus the costs of mating, we held females at a low or high density with males whose claspers were modified to prevent insemination, and compared these to females held with normal males and to those held with females or alone. A reduced longevity was observed when females were held under high density conditions with males or females, regardless if male claspers had been modified. There was no consistent effect of harassment on female fecundity. Net reproductive rate (R0) was higher in females held at low density with normal males compared to females held with males in the other treatments, even though only a small number of females showed direct evidence of remating. Indirect costs and benefits that were not due to harassment alone were observed. Daughters of females held with normal males at high density had reduced longevity compared to daughters from females held without conspecifics. However, their fitness (R0) was higher compared to females in all other treatments. Overall, our results indicate that A. aegypti females do not suffer a fitness cost from harassment of males when kept at moderate densities, and they suggest the potential for benefits obtained from ejaculate components.

  9. Differential Expression of Apoptosis Related Genes in Selected Strains of Aedes aegypti with Different Susceptibilities to Dengue Virus

    PubMed Central

    Ocampo, Clara B.; Caicedo, Paola A.; Jaramillo, Gloria; Ursic Bedoya, Raul; Baron, Olga; Serrato, Idalba M.; Cooper, Dawn M.; Lowenberger, Carl

    2013-01-01

    Aedes aegypti is the principal vector of Dengue viruses worldwide. We identified field collected insects with differential susceptibility to Dengue-2 virus (DENv-2) and used isofemale selection to establish susceptible and refractory strains based on midgut infection barriers. Previous experiments had identified higher expression of apoptosis-related genes in the refractory strain. To identify potential molecular mechanisms associated with DENv susceptibility, we evaluated the differential expression of Caspase-16, Aedronc, Aedredd, Inhibitor of apoptosis (AeIAP1) and one member of the RNAi pathway, Argonaute-2 in the midguts and fat body tissues of the selected strains at specific times post blood feeding or infection with DENv-2. In the refractory strain there was significantly increased expression of caspases in midgut and fatbody tissues in the presence of DENv-2, compared to exposure to blood alone, and significantly higher caspase expression in the refractory strain compared with the susceptible strain at timepoints when DENv was establishing in these tissues. We used RNAi to knockdown gene expression; knockdown of AeIAP1 was lethal to the insects. In the refractory strain, knockdown of the pro-apoptotic gene Aedronc increased the susceptibility of refractory insects to DENv-2 from 53% to 78% suggesting a contributing role of this gene in the innate immune response of the refractory strain. PMID:23593426

  10. Bioactivity of seagrass against the dengue fever mosquito Aedes aegypti larvae

    PubMed Central

    Ali, M Syed; Ravikumar, S; Beula, J Margaret

    2012-01-01

    Objective To identify the larvicidal activity of the seagrass extracts. Methods Seagrass extracts, Syringodium isoetifolium (S. isoetifolium), Cymodocea serrulata and Halophila beccarii, were dissolved in DMSO to prepare a graded series of concentration. Batches of 25 early 4th instars larvae of Aedes aegypti (Ae. aegypti) were transferred to 250 mL enamel bowl containing 199 mL of distilled water and 1 mL of plant extracts (0.01 mg – 0.1 mg). After 24 h the mortality rate was identified with the formulae [(% of test mortality – % of control mortality)/(100 – % of control mortality)] × 100. Each experiment was conducted with three replicates and a concurrent control group. A control group consisted of 1 mL of DMSO and 199 mL of distilled water only. Results : The root extract of S. isoetifolium showed maximum larvicidal activity with minimum concentration of extract of LC50= 0.0 604 ± 0.0 040)µg/mL with lower confidence limit (LCL) – upper confidence limit (UCL) = (0.051–0.071) and LC90=0.0 972µg/mL followed by leaf extract of S. isoetifolium showed LC50= (0.062 ± 0.005)µg/mL. The regression equation of root and leaf extract of S. isoetifolium for 4th instar larvae were Y= 4.909 + 1.32x (R2= 0.909) and Y= 2.066 + 1.21x (R2 =0.897) respectively. The results of the preliminary phytochemical constituents shows the presence of saponin, steroids, terpenoid, phenols, protein and sugars. Conclusions From the present study the ethanolic extracts of seagrass of S. isoetifolium possesses lead compound for development of larvicidal activity. PMID:23569973

  11. Green-synthesized silver nanoparticles as a novel control tool against dengue virus (DEN-2) and its primary vector Aedes aegypti.

    PubMed

    Sujitha, Vasu; Murugan, Kadarkarai; Paulpandi, Manickam; Panneerselvam, Chellasamy; Suresh, Udaiyan; Roni, Mathath; Nicoletti, Marcello; Higuchi, Akon; Madhiyazhagan, Pari; Subramaniam, Jayapal; Dinesh, Devakumar; Vadivalagan, Chithravel; Chandramohan, Balamurugan; Alarfaj, Abdullah A; Munusamy, Murugan A; Barnard, Donald R; Benelli, Giovanni

    2015-09-01

    Dengue is an arthropod-borne viral infection mainly vectored through the bite of Aedes mosquitoes. Recently, its transmission has strongly increased in urban and semi-urban areas of tropical and sub-tropical regions worldwide, becoming a major international public health concern. There is no specific treatment for dengue. Its prevention and control solely depends on effective vector control measures. In this study, we proposed the green-synthesis of silver nanoparticles (AgNP) as a novel and effective tool against the dengue serotype DEN-2 and its major vector Aedes aegypti. AgNP were synthesized using the Moringa oleifera seed extract as reducing and stabilizing agent. AgNP were characterized using a variety of biophysical methods including UV-vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and sorted for size categories. AgNP showed in vitro antiviral activity against DEN-2 infecting vero cells. Viral titer was 7 log10 TCID50/ml in control (AgNP-free), while it dropped to 3.2 log10 TCID50/ml after a single treatment with 20 μl/ml of AgNP. After 6 h, DEN-2 yield was 5.8 log10 PFU/ml in the control, while it was 1.4 log10 PFU/ml post-treatment with AgNP (20 μl/ml). AgNP were highly effective against the dengue vector A. aegypti, with LC50 values ranging from 10.24 ppm (I instar larvae) to 21.17 ppm (pupae). Overall, this research highlighted the concrete potential of green-synthesized AgNP in the fight against dengue and its primary vector A. aegypti. Further research on structure-activity relationships of AgNP against other dengue serotypes is urgently required.

  12. Suppressing dengue-2 infection by chemical inhibition of Aedes aegypti host factors.

    PubMed

    Kang, Seokyoung; Shields, Alicia R; Jupatanakul, Natapong; Dimopoulos, George

    2014-08-01

    Dengue virus host factors (DENV HFs) that are essential for the completion of the infection cycle in the mosquito vector and vertebrate host represent potent targets for transmission blocking. Here we investigated whether known mammalian DENV HF inhibitors could influence virus infection in the arthropod vector A. aegypti. We evaluated the potency of bafilomycin (BAF; inhibitor of vacuolar H+-ATPase (vATPase)), mycophenolic acid (MPA; inhibitor of inosine-5'-monophosphate dehydrogenase (IMPDH)), castanospermine (CAS; inhibitor of glucosidase), and deoxynojirimycin (DNJ; inhibitor of glucosidase) in blocking DENV infection of the mosquito midgut, using various treatment methods that included direct injection, ingestion by sugar feeding or blood feeding, and silencing of target genes by RNA interference (RNAi). Injection of BAF (5 µM) and MPA (25 µM) prior to feeding on virus-infected blood inhibited DENV titers in the midgut at 7 days post-infection by 56% and 60%, and in the salivary gland at 14 days post-infection by 90% and 83%, respectively, while treatment of mosquitoes with CAS or DNJ did not affect susceptibility to the virus. Ingestion of BAF and MPA through a sugar meal or together with an infectious blood meal also resulted in various degrees of virus inhibition. RNAi-mediated silencing of several vATPase subunit genes and the IMPDH gene resulted in a reduced DENV infection, thereby indicating that BAF- and MPA-mediated virus inhibition in adult mosquitoes most likely occurred through the inhibition of these DENV HFs. The route and timing of BAF and MPA administration was essential, and treatment after exposure to the virus diminished the antiviral effect of these compounds. Here we provide proof-of-principle that chemical inhibition or RNAi-mediated depletion of the DENV HFs vATPase and IMPDH can be used to suppress DENV infection of adult A. aegypti mosquitoes, which may translate to a reduction in DENV transmission.

  13. Personal Protection of Permethrin-Treated Clothing against Aedes aegypti, the Vector of Dengue and Zika Virus, in the Laboratory

    PubMed Central

    Orsborne, James; DeRaedt Banks, Sarah; Hendy, Adam; Gezan, Salvador A.; Kaur, Harparkash; Wilder-Smith, Annelies; Lindsay, Steve W.; Logan, James G.

    2016-01-01

    Background The dengue and Zika viruses are primarily transmitted by Aedes aegypti mosquitoes, which are most active during day light hours and feed both in and outside of the household. Personal protection technologies such as insecticide-treated clothing could provide individual protection. Here we assessed the efficacy of permethrin-treated clothing on personal protection in the laboratory. Methods The effect of washing on treated clothing, skin coverage and protection against resistant and susceptible Ae. aegypti was assessed using modified WHO arm-in-cage assays. Coverage was further assessed using free-flight room tests to investigate the protective efficacy of unwashed factory-dipped permethrin-treated clothing. Clothing was worn as full coverage (long sleeves and trousers) and partial coverage (short sleeves and shorts). Residual permethrin on the skin and its effect on mosquitoes was measured using modified WHO cone assays and quantified using high-pressure liquid chromatography (HPLC) analysis. Results In the arm-in-cage assays, unwashed clothing reduced landing by 58.9% (95% CI 49.2–66.9) and biting by 28.5% (95% CI 22.5–34.0), but reduced to 18.5% (95% CI 14.7–22.3) and 11.1% (95% CI 8.5–13.8) respectively after 10 washes. Landing and biting for resistant and susceptible strains was not significantly different (p<0.05). In free-flight room tests, full coverage treated clothing reduced landing by 24.3% (95% CI 17.4–31.7) and biting by 91% (95% CI 82.2–95.9) with partial coverage reducing landing and biting by 26.4% (95% CI 20.3–31.2) and 49.3% (95% CI 42.1–59.1) respectively with coverage type having no significant difference on landing (p<0.05). Residual permethrin was present on the skin in low amounts (0.0041mg/cm2), but still produced a KD of >80% one hour after wearing treated clothing. Conclusion Whilst partially covering the body with permethrin-treated clothing provided some protection against biting, wearing treated clothing with

  14. Genetic deviation in geographically close populations of the dengue vector Aedes aegypti (Diptera: Culicidae): influence of environmental barriers in South India.

    PubMed

    Vadivalagan, Chithravel; Karthika, Pushparaj; Murugan, Kadarkarai; Panneerselvam, Chellasamy; Paulpandi, Manickam; Madhiyazhagan, Pari; Wei, Hui; Aziz, Al Thabiani; Alsalhi, Mohamad Saleh; Devanesan, Sandhanasamy; Nicoletti, Marcello; Paramasivan, Rajaiah; Dinesh, Devakumar; Benelli, Giovanni

    2016-03-01

    Mosquitoes are vectors of devastating pathogens and parasites, causing millions of deaths every year. Dengue is a mosquito-borne viral infection found in tropical and subtropical regions around the world. Recently, dengue transmission has strongly increased in urban and semiurban areas, becoming a major international public health concern. Aedes aegypti (Diptera: Culicidae) is a primary vector of dengue. Shedding light on genetic deviation in A. aegypti populations is of crucial importance to fully understand their molecular ecology and evolution. In this research, haplotype and genetic analyses were conducted using individuals of A. aegypti from 31 localities in the north, southeast, northeast and central regions of Tamil Nadu (South India). The mitochondrial DNA region of cytochrome c oxidase 1 (CO1) gene was used as marker for the analyses. Thirty-one haplotypes sequences were submitted to GenBank and authenticated. The complete haplotype set included 64 haplotypes from various geographical regions clustered into three groups (lineages) separated by three fixed mutational steps, suggesting that the South Indian Ae. aegypti populations were pooled and are linked with West Africa, Columbian and Southeast Asian lineages. The genetic and haplotype diversity was low, indicating reduced gene flow among close populations of the vector, due to geographical barriers such as water bodies. Lastly, the negative values for neutrality tests indicated a bottle-neck effect and supported for low frequency of polymorphism among the haplotypes. Overall, our results add basic knowledge to molecular ecology of the dengue vector A. aegypti, providing the first evidence for multiple introductions of Ae. aegypti populations from Columbia and West Africa in South India.

  15. Effects of a Five-Year Citywide Intervention Program To Control Aedes aegypti and Prevent Dengue Outbreaks in Northern Argentina

    PubMed Central

    Gürtler, Ricardo E.; Garelli, Fernando M.; Coto, Héctor D.

    2009-01-01

    Background Dengue has propagated widely through the Americas. Most countries have not been able to maintain permanent larval mosquito control programs, and the long-term effects of control actions have rarely been documented. Methodology The study design was based on a before-and-after citywide assessment of Aedes aegypti larval indices and the reported incidence of dengue in Clorinda, northeastern Argentina, over 2003–2007. Interventions were mainly based on focal treatment with larvicides of every mosquito developmental site every four months (14 cycles), combined with limited source reduction efforts and ultra-low-volume insecticide spraying during emergency operations. The program conducted 120,000 house searches for mosquito developmental sites and 37,000 larvicide applications. Principal Findings Random-effects regression models showed that Breteau indices declined significantly in nearly all focal cycles compared to pre-intervention indices clustered by neighborhood, after allowing for lagged effects of temperature and rainfall, baseline Breteau index, and surveillance coverage. Significant heterogeneity between neighborhoods was revealed. Larval indices seldom fell to 0 shortly after interventions at the same blocks. Large water-storage containers were the most abundant and likely to be infested. The reported incidence of dengue cases declined from 10.4 per 10,000 in 2000 (by DEN-1) to 0 from 2001 to 2006, and then rose to 4.5 cases per 10,000 in 2007 (by DEN-3). In neighboring Paraguay, the reported incidence of dengue in 2007 was 30.6 times higher than that in Clorinda. Conclusions Control interventions exerted significant impacts on larval indices but failed to keep them below target levels during every summer, achieved sustained community acceptance, most likely prevented new dengue outbreaks over 2003–2006, and limited to a large degree the 2007 outbreak. For further improvement, a shift is needed towards a multifaceted program with intensified

  16. Insecticide resistance and, efficacy of space spraying and larviciding in the control of dengue vectors Aedes aegypti and Aedes albopictus in Sri Lanka.

    PubMed

    Karunaratne, S H P P; Weeraratne, T C; Perera, M D B; Surendran, S N

    2013-09-01

    Unprecedented incidence of dengue has been recorded in Sri Lanka in recent times. Source reduction and use of insecticides in space spraying/fogging and larviciding, are the primary means of controlling the vector mosquitoes Aedes aegypti and Ae. albopictus in the island nation. A study was carried out to understand insecticide cross-resistance spectra and mechanisms of insecticide resistance of both these vectors from six administrative districts, i.e. Kandy, Kurunegala, Puttalam, Gampaha, Ratnapura and Jaffna, of Sri Lanka. Efficacy of the recommended dosages of frequently used insecticides in space spraying and larviciding in dengue vector control programmes was also tested. Insecticide bioassay results revealed that, in general, both mosquito species were highly resistant to DDT but susceptible to propoxur and malathion except Jaffna Ae. aegypti population. Moderate resistance to malathion shown by Jaffna Ae. aegypti population correlated with esterase and malathion carboxylesterase activities of the population. High levels of acetylcholinesterase (AChE) insensitivity in the absence of malathion and propoxur resistance may be due to non-synaptic forms of AChE proteins. Moderate pyrethroid resistance in the absence of high monooxygenase levels indicated the possible involvement of 'kdr' type resistance mechanism in Sri Lankan dengue vectors. Results of the space spraying experiments revealed that 100% mortality at a 10 m distance and >50% mortality at a 50 m distance can be achieved with malathion, pesguard and deltacide even in a ground with dense vegetation. Pesguard and deltacide spraying gave 100% mortality up to 50 m distance in open area and areas with little vegetation. Both species gave >50% mortalities for deltacide at a distance of 75 m in a dense vegetation area. Larval bioassays conducted in the laboratory showed that a 1 ppm temephos solution can maintain a larval mortality rate of 100% for ten months, and the mortality rate declined to 0% in the

  17. Examination of the genetic basis for sexual dimorphism in the Aedes aegypti (dengue vector mosquito) pupal brain

    PubMed Central

    2014-01-01

    Background Most animal species exhibit sexually dimorphic behaviors, many of which are linked to reproduction. A number of these behaviors, including blood feeding in female mosquitoes, contribute to the global spread of vector-borne illnesses. However, knowledge concerning the genetic basis of sexually dimorphic traits is limited in any organism, including mosquitoes, especially with respect to differences in the developing nervous system. Methods Custom microarrays were used to examine global differences in female vs. male gene expression in the developing pupal head of the dengue vector mosquito, Aedes aegypti. The spatial expression patterns of a subset of differentially expressed transcripts were examined in the developing female vs. male pupal brain through in situ hybridization experiments. Small interfering RNA (siRNA)-mediated knockdown studies were used to assess the putative role of Doublesex, a terminal component of the sex determination pathway, in the regulation of sex-specific gene expression observed in the developing pupal brain. Results Transcripts (2,527), many of which were linked to proteolysis, the proteasome, metabolism, catabolic, and biosynthetic processes, ion transport, cell growth, and proliferation, were found to be differentially expressed in A. aegypti female vs. male pupal heads. Analysis of the spatial expression patterns for a subset of dimorphically expressed genes in the pupal brain validated the data set and also facilitated the identification of brain regions with dimorphic gene expression. In many cases, dimorphic gene expression localized to the optic lobe. Sex-specific differences in gene expression were also detected in the antennal lobe and mushroom body. siRNA-mediated gene targeting experiments demonstrated that Doublesex, a transcription factor with consensus binding sites located adjacent to many dimorphically expressed transcripts that function in neural development, is required for regulation of sex-specific gene

  18. Chapter 3. Integration of botanicals and microbial pesticides for the control of dengue vector, Aedes aegypti (Insecta: Diptera: Culicidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mosquitoes are the single most important group of insects in terms of public health significance and causing diseases such as malaria, filariasis, dengue fever, Japanese encephalitis and other fevers. There has been an outbreak of Chikungunya and dengue all over the India from 2006 – 2009. Aedes ae...

  19. Engineered Aedes aegypti JAK/STAT Pathway-Mediated Immunity to Dengue Virus.

    PubMed

    Jupatanakul, Natapong; Sim, Shuzhen; Angleró-Rodríguez, Yesseinia I; Souza-Neto, Jayme; Das, Suchismita; Poti, Kristin E; Rossi, Shannan L; Bergren, Nicholas; Vasilakis, Nikos; Dimopoulos, George

    2017-01-01

    We have developed genetically modified Ae. aegypti mosquitoes that activate the conserved antiviral JAK/STAT pathway in the fat body tissue, by overexpressing either the receptor Dome or the Janus kinase Hop by the blood feeding-induced vitellogenin (Vg) promoter. Transgene expression inhibits infection with several dengue virus (DENV) serotypes in the midgut as well as systemically and in the salivary glands. The impact of the transgenes Dome and Hop on mosquito longevity was minimal, but it resulted in a compromised fecundity when compared to wild-type mosquitoes. Overexpression of Dome and Hop resulted in profound transcriptome regulation in the fat body tissue as well as the midgut tissue, pinpointing several expression signatures that reflect mechanisms of DENV restriction. Our transcriptome studies and reverse genetic analyses suggested that enrichment of DENV restriction factor and depletion of DENV host factor transcripts likely accounts for the DENV inhibition, and they allowed us to identify novel factors that modulate infection. Interestingly, the fat body-specific activation of the JAK/STAT pathway did not result in any enhanced resistance to Zika virus (ZIKV) or chikungunya virus (CHIKV) infection, thereby indicating a possible specialization of the pathway's antiviral role.

  20. Engineered Aedes aegypti JAK/STAT Pathway-Mediated Immunity to Dengue Virus

    PubMed Central

    Jupatanakul, Natapong; Sim, Shuzhen; Angleró-Rodríguez, Yesseinia I.; Souza-Neto, Jayme; Das, Suchismita; Poti, Kristin E.; Rossi, Shannan L.; Bergren, Nicholas; Vasilakis, Nikos

    2017-01-01

    We have developed genetically modified Ae. aegypti mosquitoes that activate the conserved antiviral JAK/STAT pathway in the fat body tissue, by overexpressing either the receptor Dome or the Janus kinase Hop by the blood feeding-induced vitellogenin (Vg) promoter. Transgene expression inhibits infection with several dengue virus (DENV) serotypes in the midgut as well as systemically and in the salivary glands. The impact of the transgenes Dome and Hop on mosquito longevity was minimal, but it resulted in a compromised fecundity when compared to wild-type mosquitoes. Overexpression of Dome and Hop resulted in profound transcriptome regulation in the fat body tissue as well as the midgut tissue, pinpointing several expression signatures that reflect mechanisms of DENV restriction. Our transcriptome studies and reverse genetic analyses suggested that enrichment of DENV restriction factor and depletion of DENV host factor transcripts likely accounts for the DENV inhibition, and they allowed us to identify novel factors that modulate infection. Interestingly, the fat body-specific activation of the JAK/STAT pathway did not result in any enhanced resistance to Zika virus (ZIKV) or chikungunya virus (CHIKV) infection, thereby indicating a possible specialization of the pathway’s antiviral role. PMID:28081143

  1. Global Cross-Talk of Genes of the Mosquito Aedes aegypti in Response to Dengue Virus Infection

    PubMed Central

    Behura, Susanta K.; Gomez-Machorro, Consuelo; Harker, Brent W.; deBruyn, Becky; Lovin, Diane D.; Hemme, Ryan R.; Mori, Akio; Romero-Severson, Jeanne; Severson, David W.

    2011-01-01

    Background The mosquito Aedes aegypti is the primary vector of dengue virus (DENV) infection in humans, and DENV is the most important arbovirus across most of the subtropics and tropics worldwide. The early time periods after infection with DENV define critical cellular processes that determine ultimate success or failure of the virus to establish infection in the mosquito. Methods and Results To identify genes involved in these processes, we performed genome-wide transcriptome profiling between susceptible and refractory A. aegypti strains at two critical early periods after challenging them with DENV. Genes that responded coordinately to DENV infection in the susceptible strain were largely clustered in one specific expression module, whereas in the refractory strain they were distributed in four distinct modules. The susceptible response module in the global transcriptional network showed significant biased representation with genes related to energy metabolism and DNA replication, whereas the refractory response modules showed biased representation across different metabolism pathway genes including cytochrome P450 and DDT [1,1,1-Trichloro-2,2-bis(4-chlorophenyl) ethane] degradation genes, and genes associated with cell growth and death. A common core set of coordinately expressed genes was observed in both the susceptible and refractory mosquitoes and included genes related to the Wnt (Wnt: wingless [wg] and integration 1 [int1] pathway), MAPK (Mitogen-activated protein kinase), mTOR (mammalian target of rapamycin) and JAK-STAT (Janus Kinase - Signal Transducer and Activator of Transcription) pathways. Conclusions Our data revealed extensive transcriptional networks of mosquito genes that are expressed in modular manners in response to DENV infection, and indicated that successfully defending against viral infection requires more elaborate gene networks than hosting the virus. These likely play important roles in the global-cross talk among the mosquito host

  2. Evaluation of the Larvicidal Efficacy of Five Indigenous Weeds against an Indian Strain of Dengue Vector, Aedes aegypti L. (Diptera: Culicidae)

    PubMed Central

    Sharma, Aarti; Kumar, Sarita; Tripathi, Pushplata

    2016-01-01

    Background and Objectives. Aedes aegypti, dengue fever mosquito, is primarily associated with the transmission of dengue and chikungunya in tropical and subtropical regions of the world. The present investigations were carried out to assess the larvicidal efficiency of five indigenous weeds against Ae. aegypti. Methods. The 1,000 ppm hexane and ethanol extracts prepared from the leaves and stem of five plants (Achyranthes aspera, Cassia occidentalis, Catharanthus roseus, Lantana camara, and Xanthium strumarium) were screened for their larvicidal activity against early fourth instars of dengue vector. The extracts which could cause 80–100% mortality were further investigated for their efficacy. Results. The preliminary screening established the efficacy of hexane extracts as compared to the ethanol extracts. Further investigations revealed the highest larvicidal potential of A. aspera extracts exhibiting LC50 value of 82.555 ppm and 68.133 ppm, respectively. Further, their leaf extracts showed 5–85.9% higher larvicidal activity and stem extracts exhibited 0.23- to 0.85-fold more efficiency than the other four extracts. Conclusion. The present investigations suggest the possible use of A. aspera as an ideal ecofriendly, larvicidal agent for the control of dengue vector, Ae. aegypti. Future studies are, however, required to explore and identify the bioactive component involved and its mode of action. PMID:26941996

  3. Excretion of dengue virus RNA by Aedes aegypti allows non-destructive monitoring of viral dissemination in individual mosquitoes

    PubMed Central

    Fontaine, Albin; Jiolle, Davy; Moltini-Conclois, Isabelle; Lequime, Sebastian; Lambrechts, Louis

    2016-01-01

    Successful transmission of a vector-borne pathogen relies on a complex life cycle in the arthropod vector that requires initial infection of the digestive tract followed by systemic viral dissemination. The time interval between acquisition and subsequent transmission of the pathogen, called the extrinsic incubation period, is one of the most influential parameters of vector-borne pathogen transmission. However, the dynamic nature of this process is often ignored because vector competence assays are sacrificial and rely on end-point measurements. Here, we report that individual Aedes aegypti mosquitoes release large amounts of dengue virus (DENV) RNA in their excreta that can be non-sacrificially detected over time following oral virus exposure. Further, we demonstrate that detection of DENV RNA in excreta from individual mosquitoes is correlated to systemic viral dissemination with high specificity (0.9–1) albeit moderate sensitivity (0.64–0.89). Finally, we illustrate the potential of our finding to detect biological differences in the dynamics of DENV dissemination in a proof-of-concept experiment. Individual measurements of the time required for systemic viral dissemination, a prerequisite for transmission, will be valuable to monitor the dynamics of DENV vector competence, to carry out quantitative genetics studies, and to evaluate the risk of DENV transmission in field settings. PMID:27117953

  4. The enzyme 3-hydroxykynurenine transaminase as potential target for 1,2,4-oxadiazoles with larvicide activity against the dengue vector Aedes aegypti.

    PubMed

    Oliveira, Vanessa S; Pimenteira, Cecília; da Silva-Alves, Diana C B; Leal, Laylla L L; Neves-Filho, Ricardo A W; Navarro, Daniela M A F; Santos, Geanne K N; Dutra, Kamilla A; dos Anjos, Janaína V; Soares, Thereza A

    2013-11-15

    The mosquito Aedes aegypti is the vector agent responsible for the transmission of yellow fever and dengue fever viruses to over 80 million people in tropical and subtropical regions of the world. Exhaustive efforts have lead to a vaccine candidate with only 30% effectiveness against the dengue virus and failure to protect patients against the serotype 2. Hence, vector control remains the most viable route to dengue fever control programs. We have synthesized a class of 1,2,4-oxadiazole derivatives whose most biologically active compounds exhibit potent activity against Aedes aegypti larvae (ca. of 15 ppm) and low toxicity in mammals. Exposure to these larvicides results in larvae pigmentation in a manner correlated with the LC50 measurements. Structural comparisons of the 1,2,4-oxadiazole nucleus against known inhibitors of insect enzymes allowed the identification of 3-hydroxykynurenine transaminase as a potential target for these synthetic larvicides. Molecular docking calculations indicate that 1,2,4-oxadiazole compounds can bind to 3-hydroxykynurenine transaminase with similar conformation and binding energies as its crystallographic inhibitor 4-(2-aminophenyl)-4-oxobutanoic acid.

  5. Aedes aegypti resistance to temephos in Argentina.

    PubMed

    Seccacini, Emilia; Lucia, Alejandro; Zerba, Eduardo; Licastro, Susana; Masuh, Hector

    2008-12-01

    Monitoring of resistance of Aedes aegypti to temephos was implemented in the provinces of Formosa and Misiones, Argentina, as a response to the need to improve the vigilance for the dengue vector in areas of high risk of dengue. Eggs collected in each locality were reared, and susceptibility to temephos was assayed using larval bioassays. A weak decrease in susceptibility of larvae to temephos was observed in Clorinda and Puerto Iguazú, indicating an incipient resistance with a resistance ratio of 3. No control failures have been observed yet, and this program should allow the early detection of a real problem in our country.

  6. Larvicidal efficacy of Adhatoda vasica (L.) Nees against the bancroftian filariasis vector Culex quinquefasciatus Say and dengue vector Aedes aegypti L. in in vitro condition.

    PubMed

    Thanigaivel, Annamalai; Chandrasekaran, Rajamanickam; Revathi, Kannan; Nisha, Selvamathiazhagan; Sathish-Narayanan, Subbiah; Kirubakaran, Suyambulingam Arunachalam; Senthil-Nathan, Sengottayan

    2012-05-01

    The larvicidal activities of methanolic fractions from Adhatoda vasica leaf extracts were investigated against the bancroftian filariasis vector Culex quinquefasciatus and dengue vector Aedes aegypti. The results indicated that the mortality rates was high at 100, 150, 200 and 250 ppm of methanol extract of fractions III with R (f) value 0.67 and methanol extract of fraction V with R (f) value 0.64 of A. vasica against all the larval instars of C. quinquefasciatus and A. aegypti. The result of log probit analysis (at 95% confidence level) revealed that lethal concentration, LC(50) and LC(90) values were 106.13 and 180.6 ppm for fraction III, 110.6 and 170 ppm for fraction V of C. quinquefasciatus. And, the LC(50) and LC(90) values were 157.5 and 215.5 ppm for fraction III of A. aegypti and 120 and 243.5 ppm for the fraction V of A. aegypti, respectively. All the tested fractions proved to have strong larvicidal activity (doses from 100 to 250 ppm) against C. quinquefasciatus and A. aegypti. In general, second instar was more susceptible than the later instar. The results achieved suggest that, in addition to their ethnopharmacology value, A. vasica may also serve as a natural larvicidal agent.

  7. Space treatments of insecticide for control of dengue virus vector Aedes aegypti in southern Mexico. I. Baseline penetration trials in open field and houses.

    PubMed

    Arrendondo-Jimenez, Juan I; Rivero, Norma E

    2006-06-01

    We studied the efficacy of space ultra-low volume treatments of 3 insecticides for the control of the dengue virus vector Aedes aegypti in southern Mexico. Insecticides tested were permethrin (Aqua-Reslin Super), d-phenothrin (Anvil), and cyfluthrin (Solfac), applied at rates of 10.87, 7.68, and 2 g/ha, respectively, by using London Fog, HP910-PHXL, or Micro-Gen pumps mounted on vehicles. Studies included 1) open field penetration tests and 2) house penetration tests. Open field tests indicated that Anvil and Solfac were more effective than Aqua-Reslin Super. In house tests, Anvil yielded the highest mosquito mortalities (>/=88%) of the three insecticides in the front porch, living room, bedroom, and backyard. Therefore, Anvil proved to be better than other insecticides evaluated to control Ae. aegypti in Chiapas, Mexico.

  8. Effect of mycosynthesized silver nanoparticles from filtrate of Trichoderma harzianum against larvae and pupa of dengue vector Aedes aegypti L.

    PubMed

    Sundaravadivelan, Chandran; Padmanabhan, Madanagopal Nalini

    2014-03-01

    Mosquitoes transmit dreadful diseases, causing millions of deaths every year. Therefore, screening for larvicidal and pupicidal activity of microbial extracts attributes could lead to development of new and improved mosquito control methods that are economical and safe for nontarget organisms and are ecofriendly. Synthetic chemical insecticides occupy predominant position in control strategies. These hazardous chemicals exert unwarranted toxicity and lethal effects on nontarget organisms, develop physiological resistance in target, and cause adverse environmental effect. For vector control, fungal-mediated natural products have been a priority in this area at present. In the current study, effective larvicidal and pupicidal effect of mycosynthesized silver nanoparticles (Ag NPs) using an entomopathogenic fungi Trichoderma harzianum against developmental stages of the dengue vector Aedes aegypti was investigated. An attractive possibility of green nanotechnology is to use microorganisms in the synthesis of nanosilver especially Ag NPs. The mycosynthesized Ag NPs were characterized to find their unique properties through UV-visible spectrophotometer, X-ray diffraction analysis, Fourier transform infrared, and surface characteristics by scanning electron microscopy. To analyze the bioefficacy, different test concentrations for extracellular filtrate (0.2, 0.4, 0.6, 0.8, and 1.0 %) and Ag NPs (0.05, 0.10, 0.15, 0.20, and 0.25 %) were prepared to a final volume of 200 mL using deionized water; 20 larvae of each instars (I-IV) and pupa were exposed to each test concentration separately which included a set of control (distilled water) group with five replicates. Characterization of the synthesized Ag NPs were about 10-20 nm without aggregation. Susceptibility of larval instars to synthesized Ag NPs was higher than the extracellular filtrate of T. harzianum alone after 24-h exposure, where the highest mortality was recorded as 92 and 96 % for first and second instars and

  9. Oviposition-altering and ovicidal potentials of five essential oils against female adults of the dengue vector, Aedes aegypti L.

    PubMed

    Warikoo, Radhika; Wahab, Naim; Kumar, Sarita

    2011-10-01

    The oviposition deterrence and ovicidal potential of five different essential oils, peppermint oil (Mentha piperita), basil oil (Ocimum basilicum), rosemary oil (Rosemarinus officinalis), citronella oil (Cymbopogon nardus), and celery seed oil (Apium graveolens), were assessed against female adults of the dengue vector, Aedes aegypti L. Multiple concentration tests were carried out where cups containing 1 mL of different concentrations (100%, 10%, 1%, 0.1%) of the oils and 199 mL of water were used for oviposition. The number of eggs laid and the larvae hatched in each cup were scored to evaluate the oviposition deterrent and ovicidal potentials of the oils. Our investigations revealed that the addition of 100% oil (pure oil) caused complete oviposition deterrence except in A. graveolens which resulted in 75% effective repellency. The use of 10% oil resulted in the maximum deterrence of 97.5% as shown by the M. piperita oil while other oils caused 36-97% oviposition deterrence as against the control. The oviposition medium with 1% oil showed decreased deterrent potential with 30-64% effective repellency, the M. piperita oil being exceptional. However, as the concentrations of the oil were reduced further to 0.1%, the least effective oil observed was A. graveolens (25% ER). Also, the M. piperita oil showed much reduced activity (40%) as compared to the control, while the other oils exhibited 51-58% repellency to oviposition. The studies on the ovicidal effects of these oils revealed that the eggs laid in the water with 100% essential oils did not hatch at all, whereas when 10% oils were used, only the R. officinalis oil resulted in 28% egg hatch. At lower concentrations (1%), the oils of M. piperita, O. basilicum, and C. nardus showed complete egg mortality while those of A. graveolens and R. officinalis resulted in 71% and 34% egg hatches, respectively. When used at 0.1%, the O. basilicum oil was found to be the only effective oil with 100% egg mortality, whereas

  10. The relationship between entomological indicators of Aedes aegypti abundance and dengue virus infection

    PubMed Central

    Stoddard, Steven T.; Barker, Christopher M.; Van Rie, Annelies; Messer, William B.; Meshnick, Steven R.; Morrison, Amy C.; Scott, Thomas W.

    2017-01-01

    Routine entomological monitoring data are used to quantify the abundance of Ae. aegypti. The public health utility of these indicators is based on the assumption that greater mosquito abundance increases the risk of human DENV transmission, and therefore reducing exposure to the vector decreases incidence of infection. Entomological survey data from two longitudinal cohort studies in Iquitos, Peru, linked with 8,153 paired serological samples taken approximately six months apart were analyzed. Indicators of Ae. aegypti density were calculated from cross-sectional and longitudinal entomological data collected over a 12-month period for larval, pupal and adult Ae. aegypti. Log binomial models were used to estimate risk ratios (RR) to measure the association between Ae. aegypti abundance and the six-month risk of DENV seroconversion. RRs estimated using cross-sectional entomological data were compared to RRs estimated using longitudinal data. Higher cross-sectional Ae. aegypti densities were not associated with an increased risk of DENV seroconversion. Use of longitudinal entomological data resulted in RRs ranging from 1.01 (95% CI: 1.01, 1.02) to 1.30 (95% CI: 1.17, 1.46) for adult stage density estimates and RRs ranging from 1.21 (95% CI: 1.07, 1.37) to 1.75 (95% CI: 1.23, 2.5) for categorical immature indices. Ae. aegypti densities calculated from longitudinal entomological data were associated with DENV seroconversion, whereas those measured cross-sectionally were not. Ae. aegypti indicators calculated from cross-sectional surveillance, as is common practice, have limited public health utility in detecting areas or populations at high risk of DENV infection. PMID:28333938

  11. The relationship between entomological indicators of Aedes aegypti abundance and dengue virus infection.

    PubMed

    Cromwell, Elizabeth A; Stoddard, Steven T; Barker, Christopher M; Van Rie, Annelies; Messer, William B; Meshnick, Steven R; Morrison, Amy C; Scott, Thomas W

    2017-03-01

    Routine entomological monitoring data are used to quantify the abundance of Ae. aegypti. The public health utility of these indicators is based on the assumption that greater mosquito abundance increases the risk of human DENV transmission, and therefore reducing exposure to the vector decreases incidence of infection. Entomological survey data from two longitudinal cohort studies in Iquitos, Peru, linked with 8,153 paired serological samples taken approximately six months apart were analyzed. Indicators of Ae. aegypti density were calculated from cross-sectional and longitudinal entomological data collected over a 12-month period for larval, pupal and adult Ae. aegypti. Log binomial models were used to estimate risk ratios (RR) to measure the association between Ae. aegypti abundance and the six-month risk of DENV seroconversion. RRs estimated using cross-sectional entomological data were compared to RRs estimated using longitudinal data. Higher cross-sectional Ae. aegypti densities were not associated with an increased risk of DENV seroconversion. Use of longitudinal entomological data resulted in RRs ranging from 1.01 (95% CI: 1.01, 1.02) to 1.30 (95% CI: 1.17, 1.46) for adult stage density estimates and RRs ranging from 1.21 (95% CI: 1.07, 1.37) to 1.75 (95% CI: 1.23, 2.5) for categorical immature indices. Ae. aegypti densities calculated from longitudinal entomological data were associated with DENV seroconversion, whereas those measured cross-sectionally were not. Ae. aegypti indicators calculated from cross-sectional surveillance, as is common practice, have limited public health utility in detecting areas or populations at high risk of DENV infection.

  12. Insecticide susceptibility status of field-collected Aedes (Stegomyia) aegypti (L.) at a dengue endemic site in Shah Alam, Selangor, Malaysia.

    PubMed

    Rong, Loke Seau; Ann, Andy Tan Wei; Ahmad, Nazni Wasi; Lim, Lee Han; Azirun, Mohd Sofian

    2012-01-01

    Biweekly ovitrap surveillance (OS) was conducted for a year (August 2007 - September 2008) at two different dengue endemic sites in Shah Alam, Selangor, Malaysia, 50 km from Kuala Lumpur. Aedes aegypti collected from these 2 locations were raised to the F3 stage and subjected to a WHO standard bioassay method to determine lethal time (LT) against pyrethroids (permethrin 0.75%, cyfluthrin 0.15%), organophosphates (malathion 5.0%, fenitrothion 1.0%), carbamates (propoxur 0.1%, bendiocarb 0.1%) and organochlorine (DDT 4.0%). Insecticide susceptibilities were analyzed for one year. Aedes aegypti were resistant to DDT with a mortality range of 0 - 13.3% throughout the year at both sites. Susceptibilities to pyrethroids and carbamates varied throughout the year. In contrast, susceptibilities to pyrethroids and carbamates varied throughout the year: resistant to propoxur, bendiocarb and permethrin with mortality of < 80% in most months; but, showed incipient resistant to cyfluthrin in most months. Mosquitoes were consistently susceptible to malathion and fenitrothion, with complete mortality during most months. They were especially susceptible to malathion with LT50 values of 21.32 - 36.37 minutes, suggesting effectiveness of malathion for control of dengue.

  13. Use of anti-Aedes aegypti salivary extract antibody concentration to correlate risk of vector exposure and dengue transmission risk in Colombia.

    PubMed

    Londono-Renteria, Berlin; Cardenas, Jenny C; Cardenas, Lucio D; Christofferson, Rebecca C; Chisenhall, Daniel M; Wesson, Dawn M; McCracken, Michael K; Carvajal, Daisy; Mores, Christopher N

    2013-01-01

    Norte de Santander is a region in Colombia with a high incidence of dengue virus (DENV). In this study, we examined the serum concentration of anti-Aedes salivary gland extract (SGE) antibodies as a biomarker of DENV infection and transmission, and assessed the duration of anti-SGE antibody concentration after exposure to the vector ceased. We also determined whether SGE antibody concentration could differentiate between positive and negative DENV infected individuals and whether there are differences in exposure for each DENV serotype. We observed a significant decrease in the concentration of IgG antibodies at least 40 days after returning to an "Ae. aegypti-free" area. In addition, we found significantly higher anti-SGE IgG concentrations in DENV positive patients with some difference in exposure to mosquito bites among DENV serotypes. We conclude that the concentration of IgG antibodies against SGE is an accurate indicator of risk of dengue virus transmission and disease presence.

  14. Mathematical model of temephos resistance in Aedes aegypti mosquito population

    NASA Astrophysics Data System (ADS)

    Aldila, D.; Nuraini, N.; Soewono, E.; Supriatna, A. K.

    2014-03-01

    Aedes aegypti is the main vector of dengue disease in many tropical and sub-tropical countries. Dengue became major public concern in these countries due to the unavailability of vaccine or drugs for dengue disease in the market. Hence, the only way to control the spread of DF and DHF is by controlling the vectors carrying the disease, for instance with fumigation, temephos or genetic manipulation. Many previous studies conclude that Aedes aegypti may develop resistance to many kind of insecticide, including temephos. Mathematical model for transmission of temephos resistance in Aedes aegypti population is discussed in this paper. Nontrivial equilibrium point of the system and the corresponding existence are shown analytically. The model analysis have shown epidemiological trends condition that permits the coexistence of nontrivial equilibrium is given analytically. Numerical results are given to show parameter sensitivity and some cases of worsening effect values for illustrating possible conditions in the field.

  15. Glytube: a conical tube and parafilm M-based method as a simplified device to artificially blood-feed the dengue vector mosquito, Aedes aegypti.

    PubMed

    Costa-da-Silva, André Luis; Navarrete, Flávia Rosa; Salvador, Felipe Scassi; Karina-Costa, Maria; Ioshino, Rafaella Sayuri; Azevedo, Diego Soares; Rocha, Desirée Rafaela; Romano, Camila Malta; Capurro, Margareth Lara

    2013-01-01

    Aedes aegypti, the main vector of dengue virus, requires a blood meal to produce eggs. Although live animals are still the main blood source for laboratory colonies, many artificial feeders are available. These feeders are also the best method for experimental oral infection of Ae. aegypti with Dengue viruses. However, most of them are expensive or laborious to construct. Based on principle of Rutledge-type feeder, a conventional conical tube, glycerol and Parafilm-M were used to develop a simple in-house feeder device. The blood feeding efficiency of this apparatus was compared to a live blood source, mice, and no significant differences (p = 0.1189) were observed between artificial-fed (51.3% of engorgement) and mice-fed groups (40.6%). Thus, an easy to assemble and cost-effective artificial feeder, designated "Glytube" was developed in this report. This simple and efficient feeding device can be built with common laboratory materials for research on Ae. aegypti.

  16. Larvicidal Potential of the Halogenated Sesquiterpene (+)-Obtusol, Isolated from the Alga Laurencia dendroidea J. Agardh (Ceramiales: Rhodomelaceae), against the Dengue Vector Mosquito Aedes aegypti (Linnaeus) (Diptera: Culicidae)

    PubMed Central

    Salvador-Neto, Orlando; Gomes, Simone Azevedo; Soares, Angélica Ribeiro; Machado, Fernanda Lacerda da Silva; Samuels, Richard Ian; Nunes da Fonseca, Rodrigo; Souza-Menezes, Jackson; Moraes, Jorge Luiz da Cunha; Campos, Eldo; Mury, Flávia Borges; Silva, José Roberto

    2016-01-01

    Dengue is considered a serious public health problem in many tropical regions of the world including Brazil. At the moment, there is no viable alternative to reduce dengue infections other than controlling the insect vector, Aedes aegypti Linnaeus. In the continuing search for new sources of chemicals targeted at vector control, natural products are a promising alternative to synthetic pesticides. In our work, we investigated the toxicity of a bioactive compound extracted from the red alga Laurencia dendroidea J. Agardh. The initial results demonstrated that crude extracts, at a concentration of 5 ppm, caused pronounced mortality of second instar A. aegypti larvae. Two molecules, identified as (−)-elatol and (+)-obtusol were subsequently isolated from crude extract and further evaluated. Assays with (−)-elatol showed moderate larvicidal activity, whereas (+)-obtusol presented higher toxic activity than (−)-elatol, with a LC50 value of 3.5 ppm. Histological analysis of the larvae exposed to (+)-obtusol revealed damage to the intestinal epithelium. Moreover, (+)-obtusol-treated larvae incubated with 2 µM CM-H2DCFDA showed the presence of reactive oxygen species, leading us to suggest that epithelial damage might be related to redox imbalance. These results demonstrate the potential of (+)-obtusol as a larvicide for use against A. aegypti and the possible mode of action of this compound. PMID:26821032

  17. A Large Scale Biorational Approach Using Bacillus thuringiensis israeliensis (Strain AM65-52) for Managing Aedes aegypti Populations to Prevent Dengue, Chikungunya and Zika Transmission

    PubMed Central

    Pruszynski, Catherine A.; Hribar, Lawrence J.; Mickle, Robert; Leal, Andrea L.

    2017-01-01

    Background Aedes aegypti is a container-inhabiting mosquito and a vector of dengue, chikungunya, and Zika viruses. In 2009 several cases of autochthonous dengue transmission were reported in Key West, Florida, USA prompting a comprehensive response to control A. aegypti. In Key West, larvae of this mosquito develop in containers around human habitations which can be numerous and labor intensive to find and treat. Aerial applications of larvicide covering large areas in a short time can be an efficient and economical method to control A. aegypti. Bacillus thuringiensis israelensis (Bti) is a bacterial larvicide which is highly target specific and appropriate for wide area spraying over urban areas, but to date, there are no studies that evaluate aerial spraying of Bti to control container mosquitoes like A. aegypti. Methodology This paper examines the effectiveness of aerial larvicide applications using VectoBac® WG, a commercially available Bti formulation, for A. aegypti control in an urban setting in the USA. Droplet characteristics and spray drop deposition were evaluated in Key West, Florida, USA. The mortality of A. aegypti in containers placed under canopy in an urban environment was also evaluated. Efficacy of multiple larvicide applications on adult female A. aegypti population reduction was compared between an untreated control and treatment site. Conclusions Droplet characteristics showed that small droplets can penetrate through dense canopy to reach small containers. VectoBac WG droplets reached small containers under heavy canopy in sufficient amounts to cause > 55% mortality on all application days and >90% mortality on 3 of 5 application days while controls had <5% mortality. Aerial applications of VectoBac WG caused significant decrease in adult female populations throughout the summer and during the 38th week (last application) the difference in adult female numbers between untreated and treated sites was >50%. Aerial larvicide applications using

  18. Toxicity effect of Delonix elata (Yellow Gulmohr) and predatory efficiency of Copepod, Mesocyclops aspericornis for the control of dengue vector, Aedes aegypti

    PubMed Central

    Vasugi, Chellamuthu; Kamalakannan, Siva; Murugan, Kadarkarai

    2013-01-01

    Objective To evaluate the toxicity, predatory efficiency of Delonix elata (D. elata) and Mesocyclops aspericornis (M. aspericornis) against dengue vector, Aedes aegypti (Ae. aegypti). Methods A mosquitocidal bioassay was conducted at different concentration of plant extract followed by WHO standard method. The probit analysis of each tested concentration and control were observed by using software SPSS 11 version package. The each tested concentration variable was assessed by DMRT method. The predatory efficiency of copepod was followed by Deo et al., 1988. The predator, M. aspericornis was observed for mortality, abnormalities, survival and swimming activity after 24 h treatment of plant and also predation on the mosquito larvae were observed. Results D. elata were tested for biological activity against the larvae, and pupae of Ae. aegypti. Significant mortality effects were observed in each life stage. The percentage of mortality was 100% in first and second instars whereas 96%, 92% in third and fourth instars. Fitted probit-mortality curves for larvae indicated the median and 90% lethal concentrations of D. elata for instars 1-4 to be 4.91 (8.13), 5.16 (8.44), 5.95 (7.76) and 6.87 (11.23), respectively. The results indicate that leaf extract exhibits significant biological activity against life stages. The present study revealed that D. elata is potentially important in the control of Ae. aegypti. Similar studies were conducted for predatory efficiency of Copepod, M. aspericornis against mosquito vector Ae. Aegypti. This study reported that the predatory copepod fed on 39% and 25% in I and III instar larvae of mosquito and in combined treatment of D. elata and copepod maximum control of mosquito larval states and at 83%, 80%, 75% and 53% in I, II, III and IV instars, respectively. Conclusions The combined action of plant extract and predatory copepod to effectively control mosquito population and reduce the dengue transmitting diseases.

  19. Assessment of a new strategy, based on Aedes aegypti (L.) pupal productivity, for the surveillance and control of dengue transmission in Thailand.

    PubMed

    Barbazan, P; Tuntaprasart, W; Souris, M; Demoraes, F; Nitatpattana, N; Boonyuan, W; Gonzalez, J-P

    2008-03-01

    In the countries where the disease is endemic, control of dengue is mainly based on the elimination or treatment of the water-filled containers where the main vector, Aedes aegypti, breeds, in interventions usually reliant on community participation. Although such control activities must be continuous, since vector eradication appears impossible, it should be possible to reduce the incidence of dengue significantly, in a cost-effective manner, by targeting only those types of containers in which large numbers of Ae. aegypti are produced. This strategy is now recommended by the World Health Organization, although it depends on the most productive types of container being carefully identified, in each endemic region. In Thailand, exhaustive surveys of 3125 wet containers in 240 houses in either an urban area (100-120 houses) or a rural area (120 houses) were conducted during a rainy and a dry season in 2004-2005. Indices based on the numbers of Ae. aegypti pupae observed were found to correlate with the 'classical' entomological indices that are based on all of the immature stages of the vector. Overall, 2.3 and 0.8 Ae. aegypti pupae were observed per person in the rural and urban areas, respectively. Although adult female Ae. aegypti laid eggs in all 10 types of wet container that were identified, large water-storage containers produced the majority of the pupae, especially at the end of the dry season (when such containers accounted for 90% of the pupae detected in the rural area and 60% of those in the urban area). Since these containers are large, easy to reach and account for, <50% of all wet containers, it should be relatively easy and quick to treat them with larvicide or to cover them. If even such targeted treatment is to be sustainable, however, it will have to be integrated, as one of several activities in which the at-risk communities are encouraged to participate.

  20. The four serotypes of dengue recognize the same putative receptors in Aedes aegypti midgut and Ae. albopictus cells

    PubMed Central

    Mercado-Curiel, Ricardo F; Esquinca-Avilés, Héctor Armando; Tovar, Rosalinda; Díaz-Badillo, Álvaro; Camacho-Nuez, Minerva; Muñoz, María de Lourdes

    2006-01-01

    Background Dengue viruses (DENV) attach to the host cell surface and subsequently enter the cell by receptor-mediated endocytosis. Several primary and low affinity co-receptors for this flavivirus have been identified. However, the presence of these binding molecules on the cell surface does not necessarily render the cell susceptible to infection. Determination of which of them serve as bona fide receptors for this virus in the vector may be relevant to treating DENV infection and in designing control strategies. Results (1) Overlay protein binding assay showed two proteins with molecular masses of 80 and 67 kDa (R80 and R67). (2) Specific antibodies against these two proteins inhibited cell binding and infection. (3) Both proteins were bound by all four serotypes of dengue virus. (4) R80 and R67 were purified by affinity chromatography from Ae. aegypti mosquito midguts and from Ae albopictus C6/36 cells. (5) In addition, a protein with molecular mass of 57 kDa was purified by affinity chromatography from the midgut extracts. (6) R80 and R67 from radiolabeled surface membrane proteins of C6/36 cells were immunoprecipitated by antibodies against Ae. aegypti midgut. Conclusion Our results strongly suggest that R67 and R80 are receptors for the four serotypes of dengue virus in the midgut cells of Ae. aegypti and in C6/36 Ae. albopictus cells. PMID:17014723

  1. [Recommendations for the surveillance of Aedes aegypti].

    PubMed

    Barrera, Roberto

    2016-09-01

    Diseases caused by arboviruses transmitted by Aedes aegypti, such as dengue, chikungunya and Zika, continue to rise in annual incidence and geographic expansion. A key limitation for achieving control of A. aegypti has been the lack of effective tools for monitoring its population, and thus determine what control measures actually work. Surveillance of A. aegypti has been based mainly on immature indexes, but they bear little relation to the number of mosquito females, which are the ones capable of transmitting the viruses. The recent development of sampling techniques for adults of this vector species promises to facilitate surveillance and control activities. In this review, we present the various monitoring techniques for this mosquito, along with a discussion of their usefulness, and recommendations for improved entomological surveillance.

  2. A lethal ovitrap-based mass trapping scheme for dengue control in Australia: II. Impact on populations of the mosquito Aedes aegypti.

    PubMed

    Rapley, L P; Johnson, P H; Williams, C R; Silcock, R M; Larkman, M; Long, S A; Russell, R C; Ritchie, S A

    2009-12-01

    In Cairns, Australia, the impacts on Aedes aegypti L. (Diptera: Culicidae) populations of two types of 'lure & kill' (L&K) lethal ovitraps (LOs), the standard lethal ovitrap (SLO) and the biodegradable lethal ovitrap (BLO) were measured during three mass-trapping interventions. To assess the efficacy of the SLO, two interventions (one dry season and one wet season) were conducted in three discrete areas, each lasting 4 weeks, with the following treatments: (i) SLOs (>200 traps, approximately 4/premise), BG-sentinel traps (BGSs; approximately 15, 1/premise) and larval control (container reduction and methoprene treatment) and (ii) larval control alone, and (iii) untreated control. Female Ae. aegypti populations were monitored for 4 weeks pre- and post-treatment in all three areas using BGSs and sticky ovitraps (SOs) or non-lethal regular ovitraps (ROs). In the dry season, 206 SLOs and 15 BGSs set at 54 and 15 houses, respectively, caught and killed an estimated 419 and 73 female Ae. aegypti, respectively. No significant decrease in collection size of female Ae. aegypti could be attributed to the treatments. In the wet season, 243 SLOs and 15 BGSs killed approximately 993 and 119 female Ae. aegypti, respectively. The mean number of female Ae. aegypti collected after 4 weeks with SOs and BGSs was significantly less than the control (LSD post-hoc test). The third mass-trapping intervention was conducted using the BLO during the wet season in Cairns. For this trial, three treatment areas were each provided with BLOs (>500, approximately 4/premise) plus larval control, and an untreated control area was designated. Adult female Ae. aegypti were collected for 4 weeks pre- and post-treatment using 15 BGSs and 20 SOs. During this period, 53.2% of BLOs contained a total of 6654 Ae. aegypti eggs. Over the intervention period, collections of Ae. aegypti in the treatment areas were significantly less than in the control area for BGSs but not SOs. An influx of relatively large

  3. Screening of dengue virus in field-caught Aedes aegypti and Aedes albopictus (Diptera: Culicidae) by one-step SYBR green-based reverse transcriptase-polymerase chain reaction assay during 2004-2007 in Southern Taiwan.

    PubMed

    Chen, Chien-Fu; Shu, Pei-Yun; Teng, Hwa-Jen; Su, Chien-Ling; Wu, Jhy-Wen; Wang, Jen-Hsin; Lin, Ting-Hsiang; Huang, Jyh-Hsiung; Wu, Ho-Sheng

    2010-12-01

    We carried out virological surveillance of dengue virus (DENV) in field-caught Aedes mosquitoes during 2004-2007 to estimate the monthly prevalence of infected females in dengue high-risk areas of Taiwan. A total of 92,892 Aedes aegypti (43,133 females and 49,759 males) and 79,315 Aedes albopictus (57,319 females and 21,996 males) adults were collected, grouped into 25,654 pools, and processed for virus detection using a one-step SYBR Green-based real-time reverse transcriptase-polymerase chain reaction assay. DENVs were periodically and sympatrically detected in Ae. aegypti females in accordance with major dengue outbreaks and the corresponding dengue serotypes. Only 0.2% of 7628 pools of Ae. aegypti females were positive for DENVs. This resulted in an overall estimated infection rate (maximum likelihood estimation) of 0.970 per 1000 mosquitoes (95% confidence interval [CI] = 0.53-1.65). The total monthly infection rates ranged from 0.50 to 2.23 per 1000 mosquitoes (95% CI = 0.03-10.71). When sampling areas were scaled down to the city level, monthly infection rates increased to 0.73-12.59 (95% CI = 0.06-59.19). Monthly infection rates over all sampling areas and at the city level increased significantly by month. All positive pools were collected in July (one pool), August (two pools), September (one pool), October (three pools), November (four pools), and December (one pool). All four virus serotypes were detected in mosquitoes, which were consistent with dengue serotypes infecting humans in 2004 (DENV-4), 2005 and 2006 (DENV-2 and DENV-3), and 2007 (DENV-1). Our results provide supporting evidence that, in general, DENV infection rates were low in local Aedes mosquito population during 2004-2007 and that transovarial transmission may not be occurring or is occurring at much lower rates than evidenced in some endemic countries.

  4. Bacterial Larvicide, Bacillus thuringiensis israelensis Strain AM 65-52 Water Dispersible Granule Formulation Impacts Both Dengue Vector, Aedes aegypti (L.) Population Density and Disease Transmission in Cambodia

    PubMed Central

    Socheat, Doung

    2016-01-01

    A multi-phased study was conducted in Cambodia from 2005–2011 to measure the impact of larviciding with the bacterial larvicide, Bacillus thuringiensis israelensis (Bti), a water dispersible granule (WG) formulation on the vector, Aedes aegypti (L.) and the epidemiology. In our studies, all in-use containers were treated at 8 g/1000 L, including smaller containers and animal feeders which were found to contribute 23% of Ae aegypti pupae. The treated waters were subjected to routine water exchange activities. Pupal production was suppressed by an average 91% for 8 weeks. Pupal numbers continued to remain significantly lower than the untreated commune (UTC) for 13 weeks post treatment in the peak dengue vector season (p<0.05). Suppression of pupal production was supported by very low adult numbers in the treated commune. An average 70% of the household harbored 0–5 Ae aegypti mosquitoes per home for 8 weeks post treatment, but in the same period of time >50% of the household in the UTC harbored ≥11 mosquitoes per home. The adult population continued to remain at significantly much lower numbers in the Bti treated commune than in the UTC for 10–12 weeks post treatment (p<0.05). In 2011, a pilot operational program was evaluated in Kandal Province, a temephos resistant site. It was concluded that 2 cycles of Bti treatment in the 6 months monsoon season with complete coverage of the target districts achieved an overall dengue case reduction of 48% in the 6 treated districts compared to the previous year, 2010. Five untreated districts in the same province had an overwhelming increase of 352% of dengue cases during the same period of time. The larvicide efficacy, treatment of all in-use containers at the start of the monsoon season, together with treatment coverage of entire districts interrupted disease transmission in the temephos resistant province. PMID:27627758

  5. Influence of Urban Landscapes on Population Dynamics in a Short-Distance Migrant Mosquito: Evidence for the Dengue Vector Aedes aegypti

    PubMed Central

    Hemme, Ryan R.; Thomas, Clayton L.; Chadee, Dave D.; Severson, David W.

    2010-01-01

    Background Dengue viruses are endemic across most tropical and subtropical regions. Because no proven vaccines are available, dengue prevention is primarily accomplished through controlling the mosquito vector Aedes aegypti. While dispersal distance is generally believed to be ∼100 m, patterns of dispersion may vary in urban areas due to landscape features acting as barriers or corridors to dispersal. Anthropogenic features ultimately affect the flow of genes affecting vector competence and insecticide resistance. Therefore, a thorough understanding of what parameters impact dispersal is essential for efficient implementation of any mosquito population suppression program. Population replacement and genetic control strategies currently under consideration are also dependent upon a thorough understanding of mosquito dispersal in urban settings. Methodology and Principal Findings We examined the effect of a major highway on dispersal patterns over a 2 year period. A. aegypti larvae were collected on the east and west sides of Uriah Butler Highway (UBH) to examine any effect UBH may have on the observed population structure in the Charlieville neighborhood in Trinidad, West Indies. A panel of nine microsatellites, two SNPs and a 710 bp sequence of mtDNA cytochrome oxidase subunit 1 (CO1) were used for the molecular analyses of the samples. Three CO1 haplotypes were identified, one of which was only found on the east side of the road in 2006 and 2007. AMOVA using mtCO1 and nuclear markers revealed significant differentiation between the east- and west-side collections. Conclusion and Significance Our results indicate that anthropogenic barriers to A. aegypti dispersal exist in urban environments and should be considered when implementing control programs during dengue outbreaks and population suppression or replacement programs. PMID:20300516

  6. Effect of heavy-equipment aided environmental nebulization on Aedes aegypti vectors of Dengue, Zika and Chikungunya in São Paulo, Brazil.

    PubMed

    Piovezan, R; Acorinthe, J Paulo O; Visockas, A; de Azevedo, T S; Von Zuben, C J

    2016-12-15

    The control of dengue constitutes a great challenge for public health; however, the methods normally used have shown themselves to be insufficient to keep the indices of infestation of Aedes aegypti under control. Recently, beyond the large number of cases and deaths associated with dengue, new risks have arisen such as those represented by chikungunya fever and Zika. In the light of the great significance of these problems within the public health context, two areas in a municipality in the interior of the State of São Paulo, Brazil were selected in 2014. One of them, Bairro Cidade Nova, was submitted to the conventional method of nebulization with portable equipment, and the other, Bairro Jardim Europa, received the application of the insecticide by means of heavy-equipment coupled to the vehicle. During the project, 1355 mosquito eggs were collected, 1105 of them in Bairro Cidade Nova and 205 in Bairro Jardim Europa. After the applications with heavy-equipment in the months of March and April, the number of cases of the disease reported in the month of April for Bairro Jardim Europa was less than half that of Bairro Cidade Nova, which had received the conventional treatment. The nebulization with the heavy-equipment may constitute a viable and effective strategy for achieving better results in the control of Ae. aegypti.

  7. Effect of temperature on the population dynamics of Aedes aegypti

    NASA Astrophysics Data System (ADS)

    Yusoff, Nuraini; Tokachil, Mohd Najir

    2015-10-01

    Aedes aegypti is one of the main vectors in the transmission of dengue fever. Its abundance may cause the spread of the disease to be more intense. In the study of its biological life cycle, temperature was found to increase the development rate of each stage of this species and thus, accelerate the process of the development from egg to adult. In this paper, a Lefkovitch matrix model will be used to study the stage-structured population dynamics of Aedes aegypti. In constructing the transition matrix, temperature will be taken into account. As a case study, temperature recorded at the Subang Meteorological Station for year 2006 until 2010 will be used. Population dynamics of Aedes aegypti at maximum, average and minimum temperature for each year will be simulated and compared. It is expected that the higher the temperature, the faster the mosquito will breed. The result will be compared to the number of dengue fever incidences to see their relationship.

  8. Diminished reproductive fitness associated with the deltamethrin resistance in an Indian strain of dengue vector mosquito, Aedes aegypti L.

    PubMed

    Kumar, Sarita; Thomas, Anita; Samuel, Thomas; Sahgal, Arunima; Verma, Anita; Pillai, M K K

    2009-08-01

    The susceptible (SS) and resistant (DLR) strains of Aedes aegypti selected with deltamethrin and combination of deltamethrin and PBO (1:5) at the larval/adult stage were studied in the laboratory for their reproductive fitness in terms of fecundity, hatchability and longevity of gonotrophic cycles. The DLR strains exhibited 73-88% reduction in the duration of gonotrophic cycles as compared to their SS counterparts. There was a considerable decrease in egg production and hatchability rates in the selected strains of Ae. aegypti, as compared to that of the SS strain. Data indicate deltamethrin being an effective insecticide against Ae. aegypti and a possible correlation between the deltamethrin resistance and disadvantages during reproduction. The most drastic and significant effect was observed in DLR1b strains exhibiting 36.7% decrease in fecundity and 32.4% reduction in hatchability. Another important observation was diminished reproductive fitness in DLR2 strains. This suggests the usefulness of synergized deltamethrin selections in reducing the frequency of resistant individuals. A significant finding was to observe the reproductive disadvantage in adult-selected strains having negligible resistance to deltamethrin implicating the efficacy of deltamethrin as an adulticide rather than as a larvicide. Various probable reasons for the reduction in the reproductive potential and the possible resistance-management strategies of Ae. aegypti are discussed.

  9. Ovicidal, larvicidal and adulticidal properties of Asparagus racemosus (Willd.) (Family: Asparagaceae) root extracts against filariasis (Culex quinquefasciatus), dengue (Aedes aegypti) and malaria (Anopheles stephensi) vector mosquitoes (Diptera: Culicidae).

    PubMed

    Govindarajan, Marimuthu; Sivakumar, Rajamohan

    2014-04-01

    Several diseases are associated to the mosquito-human interaction. Mosquitoes are the carriers of severe and well-known illnesses such as malaria, arboviral encephalitis, dengue fever, chikungunya fever, West Nile virus and yellow fever. These diseases produce significant morbidity and mortality in humans and livestock around the world. The present investigation was undertaken to study the ovicidal, larvicidal and adulticidal activities of crude hexane, ethyl acetate, benzene, chloroform and methanol extracts of root of Asparagus racemosus were assayed for their toxicity against three important vector mosquitoes, viz., Culex quinquefasciatus, Aedes aegypti and Anopheles stephensi (Diptera: Culicidae). The mean percent hatchability of the eggs was observed after 48 h post-treatment. The percent hatchability was inversely proportional to the concentration of extract and directly proportional to the eggs. All the five solvent extracts showed moderate ovicidal activity; however, the methanol extract showed the highest ovicidal activity. The methanol extract of Asparagus racemosus against Culex quinquefasciatus, Aedes aegypti and Anopheles stephensi exerted 100% mortality (zero hatchability) at 375, 300 and 225 ppm, respectively. Control eggs showed 99-100% hatchability. The larval mortality was observed after 24 h of exposure. All extracts showed moderate larvicidal effects; however, the highest larval mortality was found in methanol extract of root of Asparagus racemosus against the larvae of Culex quinquefasciatus, Aedes aegypti and Anopheles stephensi with the LC50 and LC90 values were 115.13, 97.71 and 90.97 ppm and 210.96, 179.92, and 168.82 ppm, respectively. The adult mortality was observed after 24 h recovery period. The plant crude extracts showed dose-dependent mortality. At higher concentrations, the adult showed restless movement for some times with abnormal wagging and then died. Among the extracts tested, the highest adulticidal activity was observed in

  10. Regulation of arginine methyltransferase 3 by a Wolbachia-induced microRNA in Aedes aegypti and its effect on Wolbachia and dengue virus replication.

    PubMed

    Zhang, Guangmei; Hussain, Mazhar; Asgari, Sassan

    2014-10-01

    The gram-negative endosymbiotic bacteria, Wolbachia, have been found to colonize a wide range of invertebrates, including over 40% of insect species. Best known for host reproductive manipulations, some strains of Wolbachia have been shown to reduce the host life span by about 50% and inhibit replication and transmission of dengue virus (DENV) in the mosquito vector, Aedes aegypti. The molecular mechanisms underlying these effects still are not well understood. Our previous studies showed that Wolbachia uses host microRNAs (miRNAs) to manipulate host gene expression for its efficient maintenance and limiting replication of DENV in Ae. aegypti. Protein arginine methyltransferases are structurally and functionally conserved proteins from yeast to human. In mammals, it has been reported that protein arginine methyltransferases such as PRMT1, 5 and 6 could regulate replication of different viruses. Ae. aegypti contains eight members of protein arginine methyltransferases (AaArgM1-8). Here, we show that the wMelPop strain of Wolbachia introduced into Ae. aegypti significantly induces the expression of AaArgM3. Interestingly, we found that Wolbachia uses aae-miR-2940, which is highly upregulated in Wolbachia-infected mosquitoes, to upregulate the expression of AaArgM3. Silencing of AaArgM3 in a mosquito cell line led to a significant reduction in Wolbachia replication, but had no effect on the replication of DENV. These results provide further evidence that Wolbachia uses the host miRNAs to manipulate host gene expression and facilitate colonization in Ae. aegypti mosquito.

  11. Genomic organization and splicing evolution of the doublesex gene, a Drosophila regulator of sexual differentiation, in the dengue and yellow fever mosquito Aedes aegypti

    PubMed Central

    2011-01-01

    Background In the model system Drosophila melanogaster, doublesex (dsx) is the double-switch gene at the bottom of the somatic sex determination cascade that determines the differentiation of sexually dimorphic traits. Homologues of dsx are functionally conserved in various dipteran species, including the malaria vector Anopheles gambiae. They show a striking conservation of sex-specific regulation, based on alternative splicing, and of the encoded sex-specific proteins, which are transcriptional regulators of downstream terminal genes that influence sexual differentiation of cells, tissues and organs. Results In this work, we report on the molecular characterization of the dsx homologue in the dengue and yellow fever vector Aedes aegypti (Aeadsx). Aeadsx produces sex-specific transcripts by alternative splicing, which encode isoforms with a high degree of identity to Anopheles gambiae and Drosophila melanogaster homologues. Interestingly, Aeadsx produces an additional novel female-specific splicing variant. Genomic comparative analyses between the Aedes and Anopheles dsx genes revealed a partial conservation of the exon organization and extensive divergence in the intron lengths. An expression analysis showed that Aeadsx transcripts were present from early stages of development and that sex-specific regulation starts at least from late larval stages. The analysis of the female-specific untranslated region (UTR) led to the identification of putative regulatory cis-elements potentially involved in the sex-specific splicing regulation. The Aedes dsx sex-specific splicing regulation seems to be more complex with the respect of other dipteran species, suggesting slightly novel evolutionary trajectories for its regulation and hence for the recruitment of upstream splicing regulators. Conclusions This study led to uncover the molecular evolution of Aedes aegypti dsx splicing regulation with the respect of the more closely related Culicidae Anopheles gambiae orthologue

  12. Associative learning in the dengue vector mosquito, Aedes aegypti: avoidance of a previously attractive odor or surface color that is paired with an aversive stimulus

    PubMed Central

    Menda, Gil; Uhr, Joshua H.; Wyttenbach, Robert A.; Vermeylen, Françoise M.; Smith, David M.; Harrington, Laura C.; Hoy, Ronald R.

    2013-01-01

    SUMMARY Associative learning has been shown in a variety of insects, including the mosquitoes Culex quinquefasciatus and Anopheles gambiae. This study demonstrates associative learning for the first time in Aedes aegypti, an important vector of dengue, yellow fever and chikungunya viruses. This species prefers to rest on dark surfaces and is attracted to the odor of 1-octen-3-ol. After training in which a dark surface alone or a dark surface with odor was paired with electric shock, mosquitoes avoided the previously attractive area. The association was stronger when odor was included in training, was retained for at least 60 min but not for 24 h, and was equal for males and females. These results demonstrate the utility of a bulk-training paradigm for mosquitoes similar to that used with Drosophila melanogaster. PMID:22996441

  13. Indoor development of Aedes aegypti in Germany, 2016

    PubMed Central

    Kampen, Helge; Jansen, Stephanie; Schmidt-Chanasit, Jonas; Walther, Doreen

    2016-01-01

    In spring 2016, a German traveller returning from Martinique cultivated imported plant offsets in her home, and accidentally bred Aedes aegypti. Thirteen adult mosquito specimens submitted for identification and the traveller were tested for Zika, dengue and chikungunya virus infections, with negative results. The detection of Ae. aegypti by the ‘Mueckenatlas’ project demonstrates the value of this passive surveillance scheme for potential public health threats posed by invasive mosquitoes in Germany. PMID:27918261

  14. Pyrethroid resistance is widespread among Florida populations of Aedes aegypti

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aedes aegypti is an efficient vector of a number of diseases that affect man and is of increasing concern because of the reemergence of dengue and recent identification of locally acquired chikungunya in Florida. Pesticide resistance in this species has been demonstrated in several neighboring coun...

  15. Control of Aedes aegypti Breeding: A Novel Intervention for Prevention and Control of Dengue in an Endemic Zone of Delhi, India

    PubMed Central

    Nagpal, B. N.; Gupta, Sanjeev Kumar; Shamim, Arshad; Vikram, Kumar; Srivastava, Aruna; Tuli, N. R.; Saxena, Rekha; Singh, Himmat; Singh, V. P.; Bhagat, V. N.; Yadav, N. K.; Valecha, Neena

    2016-01-01

    Background and objective The study is based on hypothesis that whether continuous entomological surveillance of Ae. aegypti and simultaneous appropriate interventions in key containers during non-transmission (December–May) months would have any impact on breeding of Aedes and dengue cases during the following transmission months (June–November). The impact of the surveillance and intervention measures undertaken during non-transmission months were assessed by entomological indicators namely container index (CI), house index (HI), pupal index (PI) and breteau index (BI). Methods A total of 28 localities of West Zone of Delhi with persistent dengue endemicity were selected for the study. Out of these localities, 20 were included in study group while other 8 localities were in control group. IEC and various Aedes breeding control activities were carried out in study group in both non-transmission and transmission season whereas control group did not have any such interventions during non-transmission months as per guidelines of MCD. These activities were undertaken by a team of investigators from NIMR and SDMC, Delhi. In control group, investigators from NIMR carried out surveillance activity to monitor the breeding of Aedes mosquito in localities. Results Comparison of baseline data revealed that all indices in control and study group of localities were comparable and statistically non-significant (p>0.05). In both study and control groups, indices were calculated after pooling data on seasonal basis, i.e., transmission and non-transmission months for both years. The test of significance conducted on all the four indices, i.e., HI, PI, CI, and BI, revealed a significant difference (p<0.05) between the study group and control group during transmission and non-transmission months except in HI. Due to consistent intervention measures undertaken in non-transmission months in study group, reduction in CI, HI, BI and PI was observed 63%, 62%, 64% and 99% respectively

  16. Geographic distribution of Aedes aegypti and Aedes albopictus collected from used tires in Vietnam.

    PubMed

    Higa, Yukiko; Yen, Nguyen Thi; Kawada, Hitoshi; Son, Tran Hai; Hoa, Nguyen Thuy; Takagi, Masahiro

    2010-03-01

    The spatial distribution of Aedes aegypti and Aedes albopictus in environmental and geographical zones, e.g., urban-rural, coastal-mountainous, and north-south, was investigated throughout Vietnam. Immature stages were collected from used tires along roads. The effects of regions, seasons, and the degree of urbanization on the density and the frequency were statistically analyzed. Aedes aegypti predominated in the southern and central regions, while Ae. albopictus predominated in the northern region, which may be related to climatic conditions (temperature and rainfall). Larval collection from used tires may be suitable to assess rapidly the current distribution of dengue mosquitoes for estimating health risks and implementing vector control measures.

  17. Identification of a major Quantitative Trait Locus determining resistance to the organophosphate temephos in the dengue vector mosquito Aedes aegypti.

    PubMed

    Paiva, Marcelo H S; Lovin, Diane D; Mori, Akio; Melo-Santos, Maria A V; Severson, David W; Ayres, Constância F J

    2016-01-01

    Organophosphate insecticides (OP) have extensively been used to control mosquitoes, such as the vector Aedes aegypti. Unfortunately, OP resistance has hampered control programs worldwide. We used Quantitative Trait Locus (QTL) mapping to evaluate temephos resistance in two F1 intercross populations derived from crosses between a resistant Ae. aegypti strain (RecR) and two susceptible strains (MoyoD and Red). A single major effect QTL was identified on chromosome 2 of both segregating populations, named rtt1 (resistance to temephos 1). Bioinformatics analyses identified a cluster of carboxylesterase genes (CCE) within the rtt1 interval. qRT-PCR demonstrated that different CCEs were up-regulated in F2 resistant individuals from both crosses. However, none exceeded the 2-fold expression. Primary mechanisms for temephos resistance may vary between Ae. aegypti populations, yet also appear to support previous findings suggesting that multiple linked esterase genes may contribute to temephos resistance in the RecR strain as well as other populations.

  18. Temporal Dynamics and Spatial Patterns of Aedes aegypti Breeding Sites, in the Context of a Dengue Control Program in Tartagal (Salta Province, Argentina)

    PubMed Central

    Espinosa, Manuel; Weinberg, Diego; Rotela, Camilo H.; Polop, Francisco; Abril, Marcelo; Scavuzzo, Carlos Marcelo

    2016-01-01

    Background Since 2009, Fundación Mundo Sano has implemented an Aedes aegypti Surveillance and Control Program in Tartagal city (Salta Province, Argentina). The purpose of this study was to analyze temporal dynamics of Ae. aegypti breeding sites spatial distribution, during five years of samplings, and the effect of control actions over vector population dynamics. Methodology/Principal Findings Seasonal entomological (larval) samplings were conducted in 17,815 fixed sites in Tartagal urban area between 2009 and 2014. Based on information of breeding sites abundance, from satellite remote sensing data (RS), and by the use of Geographic Information Systems (GIS), spatial analysis (hotspots and cluster analysis) and predictive model (MaxEnt) were performed. Spatial analysis showed a distribution pattern with the highest breeding densities registered in city outskirts. The model indicated that 75% of Ae. aegypti distribution is explained by 3 variables: bare soil coverage percentage (44.9%), urbanization coverage percentage(13.5%) and water distribution (11.6%). Conclusions/Significance This results have called attention to the way entomological field data and information from geospatial origin (RS/GIS) are used to infer scenarios which could then be applied in epidemiological surveillance programs and in the determination of dengue control strategies. Predictive maps development constructed with Ae. aegypti systematic spatiotemporal data, in Tartagal city, would allow public health workers to identify and target high-risk areas with appropriate and timely control measures. These tools could help decision-makers to improve health system responses and preventive measures related to vector control. PMID:27223693

  19. Novel synthesis of gold nanoparticles using Artemisia vulgaris L. leaf extract and their efficacy of larvicidal activity against dengue fever vector Aedes aegypti L.

    PubMed

    Sundararajan, B; Ranjitha Kumari, B D

    2017-03-18

    The Aedes aegypti L. mosquito transmits dengue and yellow fever, which cause millions of death every year. Dengue is a mosquito-borne viral disease that has rapidly spread worldwide particularly in countries with tropical and subtropical climates areas. The present study denotes a simple and eco-friendly biosynthesis of gold nanoparticles using Artemisia vulgaris L. leaf extract as reducing agent. The synthesized gold nanoparticles were characterized by UV-Visible Spectroscopy, X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR), Dynamic Light Scattering (DLS), Zeta Potential (ZP), Transmission Electron Microscopy (TEM) and Energy Dispersive X-ray Spectroscopy (EDX). Solid state (13)C NMR was utilized to confirm the presence of larvicidal compound Beta caryophyllene in the synthesized AuNPs. Larvicidal activity of the synthesized AuNPs was measured against A. aegypti over 12 and 24h exposure periods and compared with essential oil in various concentrations (25ppm, 50ppm, 100ppm, 200ppm and 400ppm). After a 12h exposure period, the larvicidal activity of 3(rd) instar larva by AuNPs showed LC50=156.55ppm and LC90=2506.21ppm, while and essential oil displayed LC50=128.99ppm and LC90=1477.08ppm. Larvicidal activity of 4(th) instar larva by AuNPs showed LC50=97.90ppm and LC90=1677.36ppm, while essential oil displayed LC50=136.15ppm and LC90=2223.55ppm. After a 24h of exposure period, larvicidal activity of 3(rd) instar larva by AuNPs showed LC50=62.47ppm and LC90=430.16ppm and essential oil showed LC50=111.15ppm and LC90=1441.51ppm. The larvicidal activity of 4(th) instar larva and AuNPs displayed LC50=43.01ppm and LC90=376.70ppm and for essential oil LC50=74.42ppm, LC90=858.36ppm. Histopathology of A. aegypti with AuNPs for 3(rd)and 4(th) stage larvae after 24h exposure at the highest mortality concentration (400ppm) showed that the area of the midgut, epithelial cells and cortex were highly affected. The present findings demonstrate that the

  20. Detection of Aedes aegypti, Aedes albopictus, and Aedes koreicus in the Area of Sochi, Russia.

    PubMed

    Ganushkina, Ludmila A; Patraman, Ivan V; Rezza, Giovanni; Migliorini, Luigi; Litvinov, Serguei K; Sergiev, Vladimir P

    2016-01-01

    Following the identification of Aedes (Ae.) aegypti in the Sochi area in Russia at the beginning of 2000, entomological surveys were conducted during the summers of 2007, 2011, and 2012, leading to the identification of Ae. albopictus and Ae. koreicus. These findings highlight Russia as being the only country in the World Health Organization European Region with a documented presence of both Ae. aegypti and Ae. albopictus mosquitoes. Both mosquito species are found on the coasts of the Black Sea. Control measures are needed to reduce the possible risks of importing exotic vector-borne infections, such as dengue and chikungunya.

  1. Blood serum and BSA, but neither red blood cells nor hemoglobin can support vitellogenesis and egg production in the dengue vector Aedes aegypti

    PubMed Central

    Gonzales, Kristina K.; Tsujimoto, Hitoshi

    2015-01-01

    Aedes aegypti is the major vector of dengue, yellow fever and chikungunya viruses that put millions of people in endemic countries at risk. Mass rearing of this mosquito is crucial for strategies that use modified insects to reduce vector populations and transmission of pathogens, such as sterile insect technique or population replacement. A major problem for vector mosquito mass rearing is the requirement of vertebrate blood for egg production since it poses significant costs as well as potential health hazards. Also, regulations for human and animal use as blood source can pose a significant obstacle. A completely artificial diet that supports egg production in vector mosquitoes can solve this problem. In this study, we compared different blood fractions, serum and red blood cells, as dietary protein sources for mosquito egg production. We also tested artificial diets made from commercially available blood proteins (bovine serum albumin (BSA) and hemoglobin). We found that Ae. aegypti performed vitellogenesis and produced eggs when given whole bovine blood, serum, or an artificial diet containing BSA. Conversely, egg production was impaired after feeding of the red blood cell fraction or an artificial diet containing only hemoglobin. We also found that egg viability of serum-fed mosquitoes were comparable to that of whole blood and an iron supplemented BSA meal produced more viable eggs than a meal containing BSA alone. Our results indicate that serum proteins, not hemoglobin, may replace vertebrate blood in artificial diets for mass mosquito rearing. PMID:26020000

  2. Male mating history and body size influence female fecundity and longevity of the dengue vector Aedes aegypti.

    PubMed

    Helinski, Michelle E H; Harrington, Laura C

    2011-03-01

    Male reproductive success is dependent on insemination success and reproductive output. During mating, male mosquitoes transfer not just sperm, but also seminal fluid proteins that may have profound effects on mated female biology and behavior. In this study, we investigated the role of male body size and mating history on semen depletion, female longevity, and reproductive success in Aedes aegypti L. Small and large males were mated in rapid succession with up to five females. Our results indicate that large males had greater mating capacity than small males. A reduction in fecundity by >50% was observed in females that were fourth to mate with small males in comparison with females that mated earlier in sequence. For females mated to large males, this reduction became evident for females that mated fifth in sequence. No loss of fertility (measured as hatch rate) was observed in females that were third-fifth in mating sequence compared with females mated to virgin males. When females were maintained on a low-quality (5% sucrose) diet, those mated to virgin males had a greater longevity compared with females mated third in sequence. We conclude that small males experience more rapid seminal depletion than large males, and discuss the role of semen depletion in the mated female. Our results contribute toward a better understanding of the complexity of Ae. aegypti mating biology and provide refined estimates of mating capacity for genetic control efforts.

  3. Use of Anti-Aedes aegypti Salivary Extract Antibody Concentration to Correlate Risk of Vector Exposure and Dengue Transmission Risk in Colombia

    PubMed Central

    Londono-Renteria, Berlin; Cardenas, Jenny C.; Cardenas, Lucio D.; Christofferson, Rebecca C.; Chisenhall, Daniel M.; Wesson, Dawn M.; McCracken, Michael K.; Carvajal, Daisy; Mores, Christopher N.

    2013-01-01

    Norte de Santander is a region in Colombia with a high incidence of dengue virus (DENV). In this study, we examined the serum concentration of anti-Aedes salivary gland extract (SGE) antibodies as a biomarker of DENV infection and transmission, and assessed the duration of anti-SGE antibody concentration after exposure to the vector ceased. We also determined whether SGE antibody concentration could differentiate between positive and negative DENV infected individuals and whether there are differences in exposure for each DENV serotype. We observed a significant decrease in the concentration of IgG antibodies at least 40 days after returning to an “Ae. aegypti-free” area. In addition, we found significantly higher anti-SGE IgG concentrations in DENV positive patients with some difference in exposure to mosquito bites among DENV serotypes. We conclude that the concentration of IgG antibodies against SGE is an accurate indicator of risk of dengue virus transmission and disease presence. PMID:24312537

  4. Predation by Asian bullfrog tadpoles, Hoplobatrachus tigerinus, against the dengue vector, Aedes aegypti, in an aquatic environment treated with mosquitocidal nanoparticles.

    PubMed

    Murugan, Kadarkarai; Priyanka, Vishwanathan; Dinesh, Devakumar; Madhiyazhagan, Pari; Panneerselvam, Chellasamy; Subramaniam, Jayapal; Suresh, Udaiyan; Chandramohan, Balamurugan; Roni, Mathath; Nicoletti, Marcello; Alarfaj, Abdullah A; Higuchi, Akon; Munusamy, Murugan A; Khater, Hanem F; Messing, Russell H; Benelli, Giovanni

    2015-10-01

    Aedes aegypti is a primary vector of dengue and chikungunya. The use of synthetic insecticides to control Aedes populations often leads to high operational costs and adverse non-target effects. Botanical extracts have been proposed for rapid extracellular synthesis of mosquitocidal nanoparticles, but their impact against predators of mosquito larvae has not been well studied. We propose a single-step method for the biosynthesis of silver nanoparticles (AgNP) using the extract of Artemisia vulgaris leaves as a reducing and stabilizing agent. AgNP were characterized by UV-vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD). SEM and XRD showed that AgNP were polydispersed, crystalline, irregularly shaped, with a mean size of 30-70 nm. EDX confirmed the presence of elemental silver. FTIR highlighted that the functional groups from plant metabolites capped AgNP, stabilizing them over time. We investigated the mosquitocidal properties of A. vulgaris leaf extract and green-synthesized AgNP against larvae and pupae of Ae. aegypti. We also evaluated the predatory efficiency of Asian bullfrog tadpoles, Hoplobatrachus tigerinus, against larvae of Ae. aegypti, under laboratory conditions and in an aquatic environment treated with ultra-low doses of AgNP. AgNP were highly toxic to Ae. aegypti larval instars (I-IV) and pupae, with LC50 ranging from 4.4 (I) to 13.1 ppm (pupae). In the lab, the mean number of prey consumed per tadpole per day was 29.0 (I), 26.0 (II), 21.4 (III), and 16.7 (IV). After treatment with AgNP, the mean number of mosquito prey per tadpole per day increased to 34.2 (I), 32.4 (II), 27.4 (III), and 22.6 (IV). Overall, this study highlights the importance of a synergistic approach based on biocontrol agents and botanical nano-insecticides for mosquito control.

  5. Biglutaminyl-biliverdin IX alpha as a heme degradation product in the dengue fever insect-vector Aedes aegypti.

    PubMed

    Pereira, Luiza O R; Oliveira, Pedro L; Almeida, Igor C; Paiva-Silva, Gabriela O

    2007-06-12

    Hemoglobin digestion in the midgut of hematophagous animals results in the release of its prosthetic group, heme, which is a pro-oxidant molecule. Heme enzymatic degradation is a protective mechanism that has been described in several organisms, including plants, bacteria, and mammals. This reaction is catalyzed by heme oxygenase and results in formation of carbon monoxide, ferrous ion, and biliverdin IXalpha. During digestion, a large amount of a green pigment is produced and secreted into the intestinal lumen of Aedes aegypti adult females. In the case of another blood-sucking insect, the kissing-bug Rhodnius prolixus, we have recently shown that heme degradation involves a complex pathway that generates dicysteinyl-biliverdin IX gamma. The light absorption spectrum of the Aedes purified pigment was similar to that of biliverdin, but its mobility on a reverse-phase chromatography column suggested a compound less hydrophobic than biliverdin IXalpha. Structural characterization by ESI-MS revealed that the mosquito pigment is the alpha isomer of biliverdin bound to two glutamine residues by an amide bond. This biglutaminyl-biliverdin is formed by oxidative cleavage of the heme porphyrin ring followed by two subsequent additions of glutamine residues to the biliverdin IXalpha. The role of this pathway in the adaptation of this insect vector to a blood-feeding habit is discussed.

  6. Stage-Structured Population Dynamics of AEDES AEGYPTI

    NASA Astrophysics Data System (ADS)

    Yusoff, Nuraini; Budin, Harun; Ismail, Salemah

    Aedes aegypti is the main vector in the transmission of dengue fever, a vector-borne disease affecting world population living in tropical and sub-tropical countries. Better understanding of the dynamics of its population growth will help in the efforts of controlling the spread of this disease. In looking at the population dynamics of Aedes aegypti, this paper explored the stage-structured modeling of the population growth of the mosquito using the matrix population model. The life cycle of the mosquito was divided into five stages: eggs, larvae, pupae, adult1 and adult2. Developmental rates were obtained for the average Malaysian temperature and these were used in constructing the transition matrix for the matrix model. The model, which was based only on temperature, projected that the population of Aedes aegypti will blow up with time, which is not realistic. For further work, other factors need to be taken into account to obtain a more realistic result.

  7. The genetic architecture of a complex trait: Resistance to multiple toxins produced by Bacillus thuringiensis israelensis in the dengue and yellow fever vector, the mosquito Aedes aegypti.

    PubMed

    Bonin, Aurélie; Paris, Margot; Frérot, Hélène; Bianco, Erica; Tetreau, Guillaume; Després, Laurence

    2015-10-01

    The bacterial insecticide Bacillus thuringiensis subsp. israelensis (Bti) is an increasingly popular alternative to chemical insecticides for controlling mosquito populations. Because Bti toxicity relies on the action of four main toxins, resistance to Bti is very likely a complex phenotype involving several genes simultaneously. Dissecting the underlying genetic basis thus requires associating a quantitative measure of resistance to genetic variation at many loci in a segregating population. Here, we undertake this task using the dengue and yellow fever vector, the mosquito Aedes aegypti, as a study model. We conducted QTL (Quantitative Trait Locus) and admixture mapping analyses on two controlled crosses and on an artificial admixed population, respectively, all obtained from resistant and susceptible lab strains. We detected 16 QTL regions, among which four QTLs were revealed by different analysis methods. These four robust QTLs explained altogether 29.2% and 62.2% of the total phenotypic variance in the two QTL crosses, respectively. They also all showed a dominant mode of action. In addition, we found six loci showing statistical association with Bti resistance in the admixed population. Five of the supercontigs highlighted in this study contained candidate genes as suggested by their function, or by prior evidence from expression and/or outlier analyses. These genomic regions are thus good starting points for fine mapping of resistance to Bti or functional analyses aiming at identifying the underlying genes and mutations. Moreover, for the purpose of this work, we built the first Ae. aegypti genetic map based on markers associated with genes expressed in larvae. This genetic map harbors 229 SNP markers mapped across the three chromosomes for a total length of 311.9cM. It brought to light several assembly discrepancies with the reference genome, suggesting a high level of genome plasticity in Ae. aegypti.

  8. Identifying genomic changes associated with insecticide resistance in the dengue mosquito Aedes aegypti by deep targeted sequencing.

    PubMed

    Faucon, Frederic; Dusfour, Isabelle; Gaude, Thierry; Navratil, Vincent; Boyer, Frederic; Chandre, Fabrice; Sirisopa, Patcharawan; Thanispong, Kanutcharee; Juntarajumnong, Waraporn; Poupardin, Rodolphe; Chareonviriyaphap, Theeraphap; Girod, Romain; Corbel, Vincent; Reynaud, Stephane; David, Jean-Philippe

    2015-09-01

    The capacity of mosquitoes to resist insecticides threatens the control of diseases such as dengue and malaria. Until alternative control tools are implemented, characterizing resistance mechanisms is crucial for managing resistance in natural populations. Insecticide biodegradation by detoxification enzymes is a common resistance mechanism; however, the genomic changes underlying this mechanism have rarely been identified, precluding individual resistance genotyping. In particular, the role of copy number variations (CNVs) and polymorphisms of detoxification enzymes have never been investigated at the genome level, although they can represent robust markers of metabolic resistance. In this context, we combined target enrichment with high-throughput sequencing for conducting the first comprehensive screening of gene amplifications and polymorphisms associated with insecticide resistance in mosquitoes. More than 760 candidate genes were captured and deep sequenced in several populations of the dengue mosquito Ae. aegypti displaying distinct genetic backgrounds and contrasted resistance levels to the insecticide deltamethrin. CNV analysis identified 41 gene amplifications associated with resistance, most affecting cytochrome P450s overtranscribed in resistant populations. Polymorphism analysis detected more than 30,000 variants and strong selection footprints in specific genomic regions. Combining Bayesian and allele frequency filtering approaches identified 55 nonsynonymous variants strongly associated with resistance. Both CNVs and polymorphisms were conserved within regions but differed across continents, confirming that genomic changes underlying metabolic resistance to insecticides are not universal. By identifying novel DNA markers of insecticide resistance, this study opens the way for tracking down metabolic changes developed by mosquitoes to resist insecticides within and among populations.

  9. Identifying genomic changes associated with insecticide resistance in the dengue mosquito Aedes aegypti by deep targeted sequencing

    PubMed Central

    Faucon, Frederic; Dusfour, Isabelle; Gaude, Thierry; Navratil, Vincent; Boyer, Frederic; Chandre, Fabrice; Sirisopa, Patcharawan; Thanispong, Kanutcharee; Juntarajumnong, Waraporn; Poupardin, Rodolphe; Chareonviriyaphap, Theeraphap; Girod, Romain; Corbel, Vincent; Reynaud, Stephane; David, Jean-Philippe

    2015-01-01

    The capacity of mosquitoes to resist insecticides threatens the control of diseases such as dengue and malaria. Until alternative control tools are implemented, characterizing resistance mechanisms is crucial for managing resistance in natural populations. Insecticide biodegradation by detoxification enzymes is a common resistance mechanism; however, the genomic changes underlying this mechanism have rarely been identified, precluding individual resistance genotyping. In particular, the role of copy number variations (CNVs) and polymorphisms of detoxification enzymes have never been investigated at the genome level, although they can represent robust markers of metabolic resistance. In this context, we combined target enrichment with high-throughput sequencing for conducting the first comprehensive screening of gene amplifications and polymorphisms associated with insecticide resistance in mosquitoes. More than 760 candidate genes were captured and deep sequenced in several populations of the dengue mosquito Ae. aegypti displaying distinct genetic backgrounds and contrasted resistance levels to the insecticide deltamethrin. CNV analysis identified 41 gene amplifications associated with resistance, most affecting cytochrome P450s overtranscribed in resistant populations. Polymorphism analysis detected more than 30,000 variants and strong selection footprints in specific genomic regions. Combining Bayesian and allele frequency filtering approaches identified 55 nonsynonymous variants strongly associated with resistance. Both CNVs and polymorphisms were conserved within regions but differed across continents, confirming that genomic changes underlying metabolic resistance to insecticides are not universal. By identifying novel DNA markers of insecticide resistance, this study opens the way for tracking down metabolic changes developed by mosquitoes to resist insecticides within and among populations. PMID:26206155

  10. Desiccation resistance in Aedes aegypti and Aedes albopictus eggs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Causative influences that impact the separation of Aedes aegypti and Aedes albopictus populations in different geographic areas were determined. The eggs of Ae. albopictus and Ae. aegypti collected from McAllen and Brownsville, Texas, and laboratory populations of these two species were subjected t...

  11. Burchellin: study of bioactivity against Aedes aegypti

    PubMed Central

    2014-01-01

    Background The dengue mosquito Aedes aegypti Linnaeus, 1762 is a widespread insect pest of serious medical importance. Since no effective vaccine is available for treating dengue, the eradication or control of the main mosquito vector is regarded as essential. Since conventional insecticides have limited success, plants may be an alternative source of larvicidal agents, since they contain a rich source of bioactive chemicals. The aim of this study was to evaluate the larvicidal activity of the neolignan burchellin isolated from Ocotea cymbarum (Lauraceae), a plant from the Amazon region, against third instar larvae of A. aegypti. Methods Burchellin obtained from O. cymbarum was analyzed. The inhibitory activity against A. aegypti eggs and larvae and histological changes in the digestive system of treated L3 larvae were evaluated. In addition, nitric oxide synthase activity and nitric oxide levels were determined, and cytotoxicity bioassays performed. Results The data showed that burchellin interfered with the development cycle of the mosquito, where its strongest toxic effect was 100% mortality in larvae (L3) at concentrations ≥ 30 ppm. This compound did not show target cell toxicity in peritoneal macrophages from BALB/c mice, and proved to have molecular stability when dissolved in water. The L3 and L4 larvae treated with the compound showed cellular destruction and disorganization, cell spacing, and vacuolization of epithelial cells in small regions of the midgut. Conclusion The neolignan burchellin proved to be a strong candidate for a natural, safe and stable phytolarvicidal to be used in population control of A. aegypti. PMID:24713267

  12. Wolbachia uses host microRNAs to manipulate host gene expression and facilitate colonization of the dengue vector Aedes aegypti

    PubMed Central

    Hussain, Mazhar; Frentiu, Francesca D.; Moreira, Luciano A.; O'Neill, Scott L.; Asgari, Sassan

    2011-01-01

    The obligate endosymbiont Wolbachia pipientis is found in a wide range of invertebrates where they are best known for manipulating host reproduction. Recent studies have shown that Wolbachia also can modulate the lifespan of host insects and interfere with the development of human pathogens in mosquito vectors. Despite considerable study, very little is known about the molecular interactions between Wolbachia and its hosts that might mediate these effects. Using microarrays, we show that the microRNA (miRNA) profile of the mosquito, Aedes aegypti, is significantly altered by the wMelPop-CLA strain of W. pipientis. We found that a host miRNA (aae-miR-2940) is induced after Wolbachia infection in both mosquitoes and cell lines. One target of aae-miR-2940 is the Ae. aegypti metalloprotease gene. Interestingly, expression of the target gene was induced after Wolbachia infection, ectopic expression of the miRNA independent of Wolbachia, or transfection of an artificial mimic of the miRNA into mosquito cells. We also confirmed the interaction of aae-miR-2940 with the target sequences using GFP as a reporter gene. Silencing of the metalloprotease gene in both Wolbachia-infected cells and adult mosquitoes led to a significant reduction in Wolbachia density, as did inhibition of the miRNA in cells. These results indicate that manipulation of the mosquito metalloprotease gene via aae-miR-2940 is crucial for efficient maintenance of the endosymbiont. This report shows how Wolbachia alters the host miRNA profile and provides insight into the mechanisms of host manipulation used by this widespread endosymbiont. PMID:21576469

  13. Anti-dengue efficacy of bioactive andrographolide from Andrographis paniculata (Lamiales: Acanthaceae) against the primary dengue vector Aedes aegypti (Diptera: Culicidae).

    PubMed

    Edwin, Edward-Sam; Vasantha-Srinivasan, Prabhakaran; Senthil-Nathan, Sengottayan; Thanigaivel, Annamalai; Ponsankar, Athirstam; Pradeepa, Venkatraman; Selin-Rani, Selvaraj; Kalaivani, Kandaswamy; Hunter, Wayne B; Abdel-Megeed, Ahmed; Duraipandiyan, Veeramuthu; Al-Dhabi, Naif Abdullah

    2016-11-01

    The current study investigated the toxic effect of the leaf extract compound andrographolide from Andrographis paniculata (Burm.f) against the dengue vector Ae. aegypti. GC-MS analysis revealed that andrographolide was recognized as the major chemical constituent with the prominent peak area compared with other compounds. All isolated toxic compounds were purified and confirmed through RP-HPLC against chemical standards. The larvicidal assays established at 25ppm of bioactive compound against the treated instars of Ae. Aegypti showed prominent mortality compared to other treated concentrations. The percent mortality of larvae was directly proportional to concentration. The lethal concentration (LC50) was observed at 12ppm treatment concentration. The bioactive andrographolide considerably reduced the detoxifying enzyme regulations of α- and β- carboxylesterases. In contrast, the levels of GST and CYP450 significantly increase in a dose dependent manner. The andrographolide also showed strong oviposition deterrence effects at the sub-lethal dose of 12ppm. Similarly, the mean number of eggs were also significantly reduced in a dose dependent manner. At the concentration of 12ppm the effective percentage of repellency was greater than 90% with a protection time of 15-210min, compared with control. The histopathology study displayed that larvae treated with bioactive andrographolide had cytopathic effects in the midgut epithelium compared with the control. The present study established that bioactive andrographolide served as a potential useful for dengue vector management.

  14. Pyrethroid Resistance in Malaysian Populations of Dengue Vector Aedes aegypti Is Mediated by CYP9 Family of Cytochrome P450 Genes

    PubMed Central

    Ishak, Intan H.; Kamgang, Basile; Ibrahim, Sulaiman S.; Riveron, Jacob M.; Irving, Helen

    2017-01-01

    Background Dengue control and prevention rely heavily on insecticide-based interventions. However, insecticide resistance in the dengue vector Aedes aegypti, threatens the continued effectiveness of these tools. The molecular basis of the resistance remains uncharacterised in many endemic countries including Malaysia, preventing the design of evidence-based resistance management. Here, we investigated the underlying molecular basis of multiple insecticide resistance in Ae. aegypti populations across Malaysia detecting the major genes driving the metabolic resistance. Methodology/Principal Findings Genome-wide microarray-based transcription analysis was carried out to detect the genes associated with metabolic resistance in these populations. Comparisons of the susceptible New Orleans strain to three non-exposed multiple insecticide resistant field strains; Penang, Kuala Lumpur and Kota Bharu detected 2605, 1480 and 425 differentially expressed transcripts respectively (fold-change>2 and p-value ≤ 0.05). 204 genes were commonly over-expressed with monooxygenase P450 genes (CYP9J27, CYP6CB1, CYP9J26 and CYP9M4) consistently the most up-regulated detoxification genes in all populations, indicating that they possibly play an important role in the resistance. In addition, glutathione S-transferases, carboxylesterases and other gene families commonly associated with insecticide resistance were also over-expressed. Gene Ontology (GO) enrichment analysis indicated an over-representation of GO terms linked to resistance such as monooxygenases, carboxylesterases, glutathione S-transferases and heme-binding. Polymorphism analysis of CYP9J27 sequences revealed a high level of polymorphism (except in Joho Bharu), suggesting a limited directional selection on this gene. In silico analysis of CYP9J27 activity through modelling and docking simulations suggested that this gene is involved in the multiple resistance in Malaysian populations as it is predicted to metabolise

  15. Three calibration factors, applied to a rapid sweeping method, can accurately estimate Aedes aegypti (Diptera: Culicidae) pupal numbers in large water-storage containers at all temperatures at which dengue virus transmission occurs.

    PubMed

    Romero-Vivas, C M E; Llinás, H; Falconar, A K I

    2007-11-01

    The ability of a simple sweeping method, coupled to calibration factors, to accurately estimate the total numbers of Aedes aegypti (L.) (Diptera: Culicidae) pupae in water-storage containers (20-6412-liter capacities at different water levels) throughout their main dengue virus transmission temperature range was evaluated. Using this method, one set of three calibration factors were derived that could accurately estimate the total Ae. aegypti pupae in their principal breeding sites, large water-storage containers, found throughout the world. No significant differences were obtained using the method at different altitudes (14-1630 m above sea level) that included the range of temperatures (20-30 degrees C) at which dengue virus transmission occurs in the world. In addition, no significant differences were found in the results obtained between and within the 10 different teams that applied this method; therefore, this method was extremely robust. One person could estimate the Ae. aegypti pupae in each of the large water-storage containers in only 5 min by using this method, compared with two people requiring between 45 and 90 min to collect and count the total pupae population in each of them. Because the method was both rapid to perform and did not disturb the sediment layers in these domestic water-storage containers, it was more acceptable by the residents, and, therefore, ideally suited for routine surveillance purposes and to assess the efficacy of Ae. aegypti control programs in dengue virus-endemic areas throughout the world.

  16. Comparison of Stable and Transient Wolbachia Infection Models in Aedes aegypti to Block Dengue and West Nile Viruses.

    PubMed

    Joubert, Dirk Albert; O'Neill, Scott L

    2017-01-01

    Pathogen replication and transmission in Wolbachia infected insects are currently studied using three Wolbachia infection systems: naturally infected Wolbachia hosts, hosts transinfected with Wolbachia (stably maintained and inherited infections) and hosts transiently infected with Wolbachia. All three systems have been used to test the effect of Wolbachia on mosquito transmitted pathogens such as dengue virus (DENV), West Nile virus (WNV) and Plasmodium. From these studies it is becoming increasingly clear that the interaction between a particular pathogen and Wolbachia is heavily influenced by the host-Wolbachia interaction and the model of infection. In particular, there is some evidence that under very specific conditions, Wolbachia can enhance pathogen infection in some hosts. In this study, we compared the effect of Wolbachia in two infection models (stable transinfected and transiently infected) on the replication, infection- and transmission rates of two flaviviruses, DENV and WNV (Kunjin strain). Our results indicate that Wolbachia had similar blocking effects in both stable and transient models of infection, however, the magnitude of the blocking effect was significantly lower in mosquitoes transiently infected with Wolbachia. More importantly, no evidence was found for any enhancement of either DENV or WNV (Kunjin strain) infection in Ae. aegypti infected with Wolbachia, supporting a role for Wolbachia as an effective and safe means for restricting transmission of these viruses.

  17. Comparison of Stable and Transient Wolbachia Infection Models in Aedes aegypti to Block Dengue and West Nile Viruses

    PubMed Central

    Joubert, Dirk Albert; O’Neill, Scott L.

    2017-01-01

    Pathogen replication and transmission in Wolbachia infected insects are currently studied using three Wolbachia infection systems: naturally infected Wolbachia hosts, hosts transinfected with Wolbachia (stably maintained and inherited infections) and hosts transiently infected with Wolbachia. All three systems have been used to test the effect of Wolbachia on mosquito transmitted pathogens such as dengue virus (DENV), West Nile virus (WNV) and Plasmodium. From these studies it is becoming increasingly clear that the interaction between a particular pathogen and Wolbachia is heavily influenced by the host-Wolbachia interaction and the model of infection. In particular, there is some evidence that under very specific conditions, Wolbachia can enhance pathogen infection in some hosts. In this study, we compared the effect of Wolbachia in two infection models (stable transinfected and transiently infected) on the replication, infection- and transmission rates of two flaviviruses, DENV and WNV (Kunjin strain). Our results indicate that Wolbachia had similar blocking effects in both stable and transient models of infection, however, the magnitude of the blocking effect was significantly lower in mosquitoes transiently infected with Wolbachia. More importantly, no evidence was found for any enhancement of either DENV or WNV (Kunjin strain) infection in Ae. aegypti infected with Wolbachia, supporting a role for Wolbachia as an effective and safe means for restricting transmission of these viruses. PMID:28052065

  18. Influence of container size, location, and time of day on oviposition patterns of the dengue vector, Aedes aegypti, in Thailand.

    PubMed

    Harrington, L C; Ponlawat, A; Edman, J D; Scott, T W; Vermeylen, F

    2008-06-01

    We conducted a study to determine the effect of container size and location on oviposition site selection by Ae. aegypti in large outdoor field enclosures (10 x 10 x 4 m high). There was a strong positive relationship between increasing container diameter, container volume, and water surface area with egg numbers over both high (rainy, July) and low (cool-dry, January) dengue transmission seasons. Location of containers (indoors versus immediately outdoors and underneath houses) did not influence the number of eggs deposited for containers 5-32 cm in diameter in either season. No trends based on container color (black, brown, or grey) were observed. A slight trend with a greater numbers of eggs laid outdoors in the largest containers (42 cm diameter) during the dry season was observed. Three separate models were run using the mixed model procedure in SAS for each container attribute. Controlling for season, time, and date, the most important container attribute predicting total egg numbers was container volume (total capacity) explaining 88% of the variation, followed by water surface area (85%), and container diameter opening (83%). Oviposition peaked in the afternoon at 1600 hrs and 2000 hrs in the dry and rainy seasons, respectively. Few eggs were laid overnight (2000 hrs-0600 hrs). Our results indicate that physical attributes of oviposition sites, such as size, light-dark contrasts, and specular reflectance from water surfaces, play a significant role in oviposition site selection.

  19. Intraspecific Competition and Population Dynamics of Aedes aegypti

    NASA Astrophysics Data System (ADS)

    Paixão, C. A.; Charret, I. C.; Lima, R. R.

    2012-04-01

    We report computational simulations for the evolution of the population of the dengue vector, Aedes aegypti mosquitoes. The results suggest that controlling the mosquito population, on the basis of intraspecific competition at the larval stage, can be an efficient mechanism for controlling the spread of the epidemic. The results also show the presence of a kind of genetic evolution in vector population, which results mainly in increasing the average lifespan of individuals in adulthood.

  20. Solution structure of FK506-binding protein 12 from Aedes aegypti.

    PubMed

    Chakraborty, Goutam; Shin, Joon; Nguyen, Quoc Toan; Harikishore, Amaravadhi; Baek, Kwanghee; Yoon, Ho Sup

    2012-10-01

    Dengue remains one of the major public concerns as the virus eludes the immune response. Currently, no vaccines or antiviral therapeutics are available for dengue prevention or treatment. Immunosuppressive drug FK506 shows an antimalarial activity, and its molecular target, FK506-binding protein (FKBP), was identified in human Plasmodium parasites. Likewise, a conserved FKBP family protein has also been identified in Aedes aegypti (AaFKBP12), which is expected to play a similar role in the life cycle of Aedes aegypti, the primary vector of dengue virus infection. As FKBPs belong to a highly conserved class of immunophilin family and are involved in key biological regulations, they are considered as attractive pharmacological targets. In this study, we have determined the nuclear magnetic resonance solution structure of AaFKBP12, a novel FKBP member from Aedes aegypti, and presented its structural features, which may facilitate the design of potential inhibitory ligands against the dengue-transmitting mosquitoes.

  1. Genetic Analysis of Aedes aegypti Using Random Amplified Polymorphic DNA (RAPD) Markers from Dengue Outbreaks in Pakistan

    PubMed Central

    Ashraf, Hafiz Muhammad; Zahoor, Muhammad Kashif; Nasir, Shabab; Majeed, Humara Naz; Zahoor, Sarwat

    2016-01-01

    Background: Keeping in view the havoc situation of dengue fever in Pakistan, the current study was designed to demonstrate the genetic variations, gene flow and rate of migration from Lahore and Faisalabad. Methods: The larvae were collected from both natural and artificial breeding places from each collection site. The adult mosquitoes were collected by means of sweep net and battery-operated aspirator. DNA extraction was performed using TNE buffer method. Ten GeneLink-A series RAPD primers were used for PCR amplification and the data was analyzed through POPGENE. Results: The number of amplification products produced per primer varied from 8–12, ranging from 200 to 2000 bp with an average of 10.0 bands per primer. The percentage of polymorphic loci amplified by each primer varied from 22.5 to 51%. The UPGMA dendrogram demonstrates two distinct groups from Faisalabad and Lahore populations. The genetic diversity ranged from 0.260 in Faisalabad to 0.294 in Lahore with a total heterozygosity of 0.379. The GST value for nine populations within Lahore was 0.131 (Nm= 3.317), whereas for nine populations in Faisalabad GST value was 0.117 (Nm= 3.773). The overall genetic variation among eighteen populations showed GST= 0.341 and Nm= 1.966. Conclusion: The genetic relatedness and Nm value show that Ae. aegypti populations exhibit intra-population gene flow both in Faisalabad and Lahore. Although, both cities show a distinct pattern of genetic structure; however, few areas from both the cities show genetic similarity. The gene flow and the genetic relatedness in few populations of Lahore and Faisalabad cities need further investigation. PMID:28032107

  2. Comparative analysis of response to selection with three insecticides in the dengue mosquito Aedes aegypti using mRNA sequencing

    PubMed Central

    2014-01-01

    Background Mosquito control programmes using chemical insecticides are increasingly threatened by the development of resistance. Such resistance can be the consequence of changes in proteins targeted by insecticides (target site mediated resistance), increased insecticide biodegradation (metabolic resistance), altered transport, sequestration or other mechanisms. As opposed to target site resistance, other mechanisms are far from being fully understood. Indeed, insecticide selection often affects a large number of genes and various biological processes can hypothetically confer resistance. In this context, the aim of the present study was to use RNA sequencing (RNA-seq) for comparing transcription level and polymorphism variations associated with adaptation to chemical insecticides in the mosquito Aedes aegypti. Biological materials consisted of a parental susceptible strain together with three child strains selected across multiple generations with three insecticides from different classes: the pyrethroid permethrin, the neonicotinoid imidacloprid and the carbamate propoxur. Results After ten generations, insecticide-selected strains showed elevated resistance levels to the insecticides used for selection. RNA-seq data allowed detecting over 13,000 transcripts, of which 413 were differentially transcribed in insecticide-selected strains as compared to the susceptible strain. Among them, a significant enrichment of transcripts encoding cuticle proteins, transporters and enzymes was observed. Polymorphism analysis revealed over 2500 SNPs showing > 50% allele frequency variations in insecticide-selected strains as compared to the susceptible strain, affecting over 1000 transcripts. Comparing gene transcription and polymorphism patterns revealed marked differences among strains. While imidacloprid selection was linked to the over transcription of many genes, permethrin selection was rather linked to polymorphism variations. Focusing on detoxification enzymes

  3. Workbook on Identification of Aedes Aegypti Larvae.

    ERIC Educational Resources Information Center

    Pratt, Harry D.; And Others

    This self-instructional booklet is designed to enable yellow fever control workers to identify the larvae of "Aedes aegypti." The morphological features of mosquito larvae are illustrated in this partially programed text, and the distinguishing features of "A. aegypti" indicated. A glossary is included. (AL)

  4. Green-synthesized silver nanoparticles as a novel control tool against dengue virus (DEN-2) and its primary vector Aedes aegypti

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dengue is an arthropod-borne viral infection mainly vectored through the bite of Aedes mosquitoes. Recently, its transmission has strongly increased in urban and semi-urban areas of tropical and sub-tropical regions worldwide, becoming a major international public health concern. There is no specifi...

  5. Identification of Aedes aegypti and Its Respective Life Stages by Real-Time Polymerase Chain Reaction

    DTIC Science & Technology

    2004-12-01

    potential disease transmission risk and timely implementation of appropriate control measures, Aedes aegypti is the primary vector of dengue fever and...8217 Dengue fever is the most significant mosquito-borne viral disease today, with a risk comparable to that for malaria, i,e,, two-fifths of the world’s...human population, ’̂̂ Although malarial disease can be prevented by prophylaxis and yellow fever by immunization, dengue fever prophylaxis does not

  6. Identification of germline transcriptional regulatory elements in Aedes aegypti

    NASA Astrophysics Data System (ADS)

    Akbari, Omar S.; Papathanos, Philippos A.; Sandler, Jeremy E.; Kennedy, Katie; Hay, Bruce A.

    2014-02-01

    The mosquito Aedes aegypti is the principal vector for the yellow fever and dengue viruses, and is also responsible for recent outbreaks of the alphavirus chikungunya. Vector control strategies utilizing engineered gene drive systems are being developed as a means of replacing wild, pathogen transmitting mosquitoes with individuals refractory to disease transmission, or bringing about population suppression. Several of these systems, including Medea, UDMEL, and site-specific nucleases, which can be used to drive genes into populations or bring about population suppression, utilize transcriptional regulatory elements that drive germline-specific expression. Here we report the identification of multiple regulatory elements able to drive gene expression specifically in the female germline, or in the male and female germline, in the mosquito Aedes aegypti. These elements can also be used as tools with which to probe the roles of specific genes in germline function and in the early embryo, through overexpression or RNA interference.

  7. Sodium Channel Mutations and Pyrethroid Resistance in Aedes aegypti

    PubMed Central

    Du, Yuzhe; Nomura, Yoshiko; Zhorov, Boris S.; Dong, Ke

    2016-01-01

    Pyrethroid insecticides are widely used to control insect pests and human disease vectors. Voltage-gated sodium channels are the primary targets of pyrethroid insecticides. Mutations in the sodium channel have been shown to be responsible for pyrethroid resistance, known as knockdown resistance (kdr), in various insects including mosquitoes. In Aedes aegypti mosquitoes, the principal urban vectors of dengue, zika, and yellow fever viruses, multiple single nucleotide polymorphisms in the sodium channel gene have been found in pyrethroid-resistant populations and some of them have been functionally confirmed to be responsible for kdr in an in vitro expression system, Xenopus oocytes. This mini-review aims to provide an update on the identification and functional characterization of pyrethroid resistance-associated sodium channel mutations from Aedes aegypti. The collection of kdr mutations not only helped us develop molecular markers for resistance monitoring, but also provided valuable information for computational molecular modeling of pyrethroid receptor sites on the sodium channel. PMID:27809228

  8. Aedes aegypti (Diptera: Culicidae) in Mauritania: First Report on the Presence of the Arbovirus Mosquito Vector in Nouakchott.

    PubMed

    Mint Lekweiry, Khadijetou; Ould Ahmedou Salem, Mohamed Salem; Ould Brahim, Khyarhoum; Ould Lemrabott, Mohamed Aly; Brengues, Cécile; Faye, Ousmane; Simard, Frédéric; Ould Mohamed Salem Boukhary, Ali

    2015-07-01

    Aedes aegypti L. (Diptera: Culicidae) is a major vector of yellow fever, dengue, and chikungunya viruses throughout tropical and subtropical areas of the world. Although the southernmost part of Mauritania along the Senegal river has long been recognized at risk of yellow fever transmission, Aedes spp. mosquitoes had never been reported northwards in Mauritania. Here, we report the first observation of Aedes aegypti aegypti (L.) and Aedes (Ochlerotatus) caspius (Pallas, 1771) in the capital city, Nouakchott. We describe the development sites in which larvae of the two species were found, drawing attention to the risk for emergence of arbovirus transmission in the city.

  9. Dynamics of Aedes aegypti and Culex quinquefasciatus in septic tanks.

    PubMed

    Mackay, Andrew J; Amador, Manuel; Diaz, Annette; Smith, Josh; Barrera, Roberto

    2009-12-01

    Aedes aegypti and Culex quinquefasciatus were found in large numbers emerging from septic tanks in southern Puerto Rico during the dry season. Previous studies suggested that Ae. aegypti uses subterranean aquatic habitats only during dry periods when surface containers do not have water. This research investigated whether septic tanks are alternative aquatic habitats that this mosquito uses during unfavorable times of the year, or whether Ae. aegypti uses this aquatic habitat throughout the year. To assess temporal change, exit traps were used to collect mosquitoes emerging from septic tanks in Playa/Playita, southern Puerto Rico, from November 2006 to October 2007. We also investigated the hypotheses that (1) the production of Ae. aegypti in septic tanks was larger than in surface containers and (2) adult mosquitoes emerging from septic tanks were larger than those emerging from surface containers. This study demonstrated that unsealed septic tanks produced large numbers of Ae. aegypti and Cx. quinquefasciatus throughout the year, without any significant relationship with rainfall. The number of adult Ae. aegypti emerging per day from septic tanks in each community was 3 to 9 times larger than those produced in surface containers. It was also demonstrated that Ae. aegypti emerging from septic tanks were significantly larger than those emerging from surface container habitats. It is recommended that dengue prevention programs include regular inspection and maintenance of septic tanks in communities lacking sewerage.

  10. Rapid biosynthesis of silver nanoparticles using Crotalaria verrucosa leaves against the dengue vector Aedes aegypti: what happens around? An analysis of dragonfly predatory behaviour after exposure at ultra-low doses.

    PubMed

    Murugan, Kadarkarai; Sanoopa, C P; Madhiyazhagan, Pari; Dinesh, Devakumar; Subramaniam, Jayapal; Panneerselvam, Chellasamy; Roni, Mathath; Suresh, Udaiyan; Nicoletti, Marcello; Alarfaj, Abdullah A; Munusamy, Murugan A; Higuchi, Akon; Kumar, Suresh; Perumalsamy, Haribalan; Ahn, Young-Joon; Benelli, Giovanni

    2016-01-01

    Aedes aegypti is a primary vector of dengue, a mosquito-borne viral disease infecting 50-100 million people every year. Here, we biosynthesised mosquitocidal silver nanoparticles (AgNP) using the aqueous leaf extract of Crotalaria verrucosa. The green synthesis of AgNP was studied by UV-vis spectroscopy, SEM, EDX and FTIR. C. verrucosa-synthesised AgNPs were toxic against A. aegypti larvae and pupae. LC50 of AgNP ranged from 3.496 ppm (I instar larvae) to 17.700 ppm (pupae). Furthermore, we evaluated the predatory efficiency of dragonfly nymphs, Brachydiplax sobrina, against II and III instar larvae of A. aegypti in an aquatic environment contaminated with ultra-low doses of AgNP. Under standard laboratory conditions, predation after 24 h was 87.5% (II) and 54.7% (III). In an AgNP-contaminated environment, predation was 91 and 75.5%, respectively. Overall, C. verrucosa-synthesised AgNP could be employed at ultra-low doses to reduce larval population of dengue vectors enhancing predation rates of dragonfly nymphs.

  11. Fine Scale Spatiotemporal Clustering of Dengue Virus Transmission in Children and Aedes aegypti in Rural Thai Villages

    DTIC Science & Technology

    2012-07-01

    Jared Aldstadt3, Alan L. Rothman4, Darunee Tannitisupawong1, Constantianus J. M. Koenraadt5, Thanyalak Fansiri6, James W. Jones6, Amy C. Morrison7...Trends Parasit In press. 16. Klungthong C, Gibbons RV, Thaisomboonsuk B, Nisalak A, Kalayanarooj S, et al. (2007) Dengue virus detection using whole...insecticide treatment. J Med Entomol 44: 65–71. 23. Klungthong C, Gibbons RV, Thaisomboonsuk B, Nisalak A, Kalayanarooj S, et al. (2007) Dengue Viral Detection

  12. Nanoparticles in the fight against mosquito-borne diseases: bioactivity of Bruguiera cylindrica-synthesized nanoparticles against dengue virus DEN-2 (in vitro) and its mosquito vector Aedes aegypti (Diptera: Culicidae).

    PubMed

    Murugan, Kadarkarai; Dinesh, Devakumar; Paulpandi, Manickam; Althbyani, Abdulaziz Dakhellah Meqbel; Subramaniam, Jayapal; Madhiyazhagan, Pari; Wang, Lan; Suresh, Udaiyan; Kumar, Palanisamy Mahesh; Mohan, Jagathish; Rajaganesh, Rajapandian; Wei, Hui; Kalimuthu, Kandasamy; Parajulee, Megha N; Mehlhorn, Heinz; Benelli, Giovanni

    2015-12-01

    Mosquitoes are blood-feeding insects serving as the most important vectors for spreading human pathogens and parasites. Dengue is a viral disease mainly vectored through the bite of Aedes mosquitoes. Its transmission has recently increased in urban and semi-urban areas of tropical and subtropical regions worldwide, becoming a major international public health concern. There is no specific treatment for dengue. Its prevention and control solely depend on effective vector control measures. Mangrove plants have been used in Indian traditional medicine for a wide array of purposes. In this research, we proposed a method for biosynthesis of antiviral and mosquitocidal silver nanoparticles (AgNP) using the aqueous extract of Bruguiera cylindrica leaves. AgNP were characterized using a variety of biophysical analyses, including UV-visible spectrophotometry, Fourier-transform infrared spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. Bruguiera cilyndrica aqueous extract and green-synthesized AgNP were tested against the primary dengue vector Aedes aegypti. AgNP were the most effective. LC50 values ranged from 8.93 ppm (larva I) to 30.69 ppm (pupa). In vitro experiments showed that 30 μg/ml of AgNP significantly inhibited the production of dengue viral envelope (E) protein in vero cells and downregulated the expression of dengue viral E gene. Concerning nontarget effects, we observed that the predation efficiency of Carassius auratus against A. aegypti was not affected by exposure at sublethal doses of AgNP. Predation in the control was 71.81 % (larva II) and 50.43 % (larva III), while in an AgNP-treated environment, predation was boosted to 90.25 and 76.81 %, respectively. Overall, this study highlights the concrete potential of green-synthesized AgNP in the fight against dengue virus. Furthermore, B. cylindrica-synthesized AgNP can be employed at low doses to reduce larval and pupal population of A. aegypti, without detrimental

  13. The global compendium of Aedes aegypti and Ae. albopictus occurrence

    NASA Astrophysics Data System (ADS)

    Kraemer, Moritz U. G.; Sinka, Marianne E.; Duda, Kirsten A.; Mylne, Adrian; Shearer, Freya M.; Brady, Oliver J.; Messina, Jane P.; Barker, Christopher M.; Moore, Chester G.; Carvalho, Roberta G.; Coelho, Giovanini E.; van Bortel, Wim; Hendrickx, Guy; Schaffner, Francis; Wint, G. R. William; Elyazar, Iqbal R. F.; Teng, Hwa-Jen; Hay, Simon I.

    2015-07-01

    Aedes aegypti and Ae. albopictus are the main vectors transmitting dengue and chikungunya viruses. Despite being pathogens of global public health importance, knowledge of their vectors’ global distribution remains patchy and sparse. A global geographic database of known occurrences of Ae. aegypti and Ae. albopictus between 1960 and 2014 was compiled. Herein we present the database, which comprises occurrence data linked to point or polygon locations, derived from peer-reviewed literature and unpublished studies including national entomological surveys and expert networks. We describe all data collection processes, as well as geo-positioning methods, database management and quality-control procedures. This is the first comprehensive global database of Ae. aegypti and Ae. albopictus occurrence, consisting of 19,930 and 22,137 geo-positioned occurrence records respectively. Both datasets can be used for a variety of mapping and spatial analyses of the vectors and, by inference, the diseases they transmit.

  14. Assessment of the relationship between entomologic indicators of Aedes aegypti and the epidemic occurrence of dengue virus 3 in a susceptible population, São José do Rio Preto, São Paulo, Brazil.

    PubMed

    Chiaravalloti-Neto, Francisco; Pereira, Mariza; Fávaro, Eliane Aparecida; Dibo, Margareth Regina; Mondini, Adriano; Rodrigues-Junior, Antonio Luiz; Chierotti, Ana Patrícia; Nogueira, Maurício Lacerda

    2015-02-01

    The aims of this study were to describe the occurrence of dengue in space and time and to assess the relationships between dengue incidence and entomologic indicators. We selected the dengue autochthonous cases that occurred between September 2005 and August 2007 in São José do Rio Preto to calculate incidence rates by month, year and census tracts. The monthly incidence rates of the city were compared to the monthly Breteau indices (BI) of the São José do Rio Region. Between December 2006 and February 2007, an entomological survey was conducted to collect immature forms of Aedes aegypti in Jaguaré, a São José do Rio Preto neighborhood, and to obtain entomological indices. These indices were represented using statistical interpolation. To represent the occurrence of dengue in the Jaguaré neighborhood in 2006 and 2007, we used the Kernel ratio and to evaluate the relationship between dengue and the entomological indices, we used a generalized additive model in a spatial case-control design. Between September 2005 and August 2007, the occurrence of dengue in São José do Rio Preto was almost entirely caused by DENV3, and the monthly incidence rates presented high correlation coefficients with the monthly BI. In Jaguaré neighborhood, the entomological indices calculated by hectare were better predictors of the spatial distribution of dengue than the indices calculated by properties, but the pupae quantification did not show better prediction qualities than the indices based on the container positivity, in relation to the risk of dengue occurrence. The fact that the municipality's population had a high susceptibility to the serotype DENV3 before the development of this research, along with the almost total predominance of the occurrence of this serotype between 2005 and 2007, facilitated the analysis of the epidemiological situation of the disease and allowed us to connect it to the entomological indicators.

  15. [Lessons learned in the control of Aedes aegypti to address dengue and the emergency of chikungunya in Iquitos, Peru].

    PubMed

    Vilcarromero, Stalin; Casanova, Wilma; Ampuero, Julia S; Ramal-Asayag, Cesar; Siles, Crystyan; Díaz, Gloria; Durand, Salomón; Celis-Salinas, Juan C; Astete, Helvio; Rojas, Percy; Vásquez-La Torre, Gabriela; Marín, Johan; Bazán, Isabel; Alegre, Yuri; Morrison, Amy C; Rodriguez-Ferrucci, Hugo

    2015-01-01

    Dengue has affected Iquitos since 1990 causing outbreaks of major impact on public health and for this reason great efforts have been made for its temporal control. Currently, with the expansion of the chikungunya virus in the Americas and the threat of the emergence of the virus in Iquitos, we reflect on lessons learned by way of the activities undertaken in the area of vector control; epidemiological surveillance, diagnosis and clinical management during periods of outbreaks of dengue, in a way that will allow us to better face the threat of an outbreak of chikungunya virus in the largest city in the Peruvian Amazon.

  16. Morphological and genetic variability within Aedes aegypti in Niakhar, Senegal.

    PubMed

    Paupy, Christophe; Brengues, Cécile; Ndiath, Ousmane; Toty, Céline; Hervé, Jean-Pierre; Simard, Frédéric

    2010-05-01

    Aedes aegypti (Linné, 1762) is a major vector of arboviruses such as Yellow Fever, Dengue and Chikungunya. In Africa, where the species exhibits major variations in morphology, ecology, behavior and vector competence, two subspecies have been described: a light form, named Ae. aegypti aegypti (Aaa) with highly domestic and anthropophilic habits and a cosmotropical distribution; and a dark form, referred to as Ae. aegypti formosus (Aaf), which is endemic to Africa and thrives in sylvan environments. In East Africa, both forms were described to occur in sympatry whereas only Aaf was reported from Central/West Africa. However, recent findings suggest Aaa was also common in Senegal. Here, we report on a longitudinal survey of morphological and genetic variability of Ae. aegypti sampled in the rural environment of Niakhar, Senegal. In agreement with recent findings, most of specimens we analyzed were classified as Aaa suggesting typical Aaf was scarce in the studied area. Among Aaa, significant temporal variations in abdominal pale scales pattern were detected. Depending on the season and the nature of larval breeding places, the specimens (particularly females) tend to segregate in two main morphological groups. Microsatellite-based estimates of genetic differentiation did not provide any clear evidence that the two groups were genetically distinct. Overall, these results improve our understanding of the diversity of Ae. aegypti in West Africa, where data are crucially lacking.

  17. A new tent trap for monitoring the daily activity of Aedes aegypti and Aedes albopictus.

    PubMed

    Casas Martínez, Mauricio; Orozco Bonilla, Arnoldo; Muñoz Reyes, Miguel; Ulloa García, Armando; Bond, J Guillermo; Valle Mora, Javier; Weber, Manuel; Rojas, Julio C

    2013-12-01

    In this study, we designed a new tent trap; the BioDiVector (BDV) tent trap, consisting of two rectangular tents that use human bait without endangering the technical personnel. The daily activity pattern of Aedes aegypti and Aedes albopictus in intra, peri, and extradomiciliary sites was studied in an endemic area of dengue in southern Mexico by using the BDV tent trap. Totals of 3,128 individuals of Ae. aegypti and 833 Ae. albopictus were captured. More Ae. aegypti males than females were caught, while the opposite was true with Ae. albopictus. The activity of both mosquito species was affected by the interaction between the collection site and time of day. In general, more individuals of both mosquito species were captured at the extradomicillary sites than at the peri and intradomicillary sites. Mosquitoes showed two peaks of activity, one in the morning and the other in the afternoon, but in general this only occurred at the extradomicillary sites, whereas no peak of activity was observed at the intra and peridomicillary sites. Overall, Ae. aegypti had a higher indirect biting rate than Ae. albopictus. Finally, due to its efficiency, simplicity, and low cost, we suggest the use of this innovative tool for entomological surveillance, bionomics and vector incrimination studies in geographical areas where dengue and other arboviruses are present.

  18. Development and Evaluation of a Pyriproxyfen-treated Device to Control the Dengue Vector, Aedes aegypti (L.) (Diptera: Culicidae)

    DTIC Science & Technology

    2013-03-01

    embryogenesis and adult emergence of sweet - potato whitefly (Ho- moptera, Aleyrodidae). J Econ Entomol 1992; 85: 2113-7. Itoh T. Control of DF/DHF vector...deposition. Ishaaya and Horowitz (1992) found newly deposited eggs (0-1 day old) from female sweet - A PyriProxyfen TreATed device for Ae. Aegypti...Treatment period M e a n m o s q u it o e s p e r h o u s e ( ± S E ) Weeks post-treatment potato whiteflies exposed to pyriproxyfen were less likely to

  19. Leaking Containers: Success and Failure in Controlling the Mosquito Aedes aegypti in Brazil.

    PubMed

    Löwy, Ilana

    2017-04-01

    In 1958, the Pan American Health Organization declared that Brazil had successfully eradicated the mosquito Aedes aegypti, responsible for the transmission of yellow fever, dengue fever, chikungunya, and Zika virus. Yet in 2016 the Brazilian minister of health described the situation of dengue fever as "catastrophic." Discussing the recent epidemic of Zika virus, which amplified the crisis produced by the persistence of dengue fever, Brazil's president declared in January 2016 that "we are in the process of losing the war against the mosquito Aedes aegypti." I discuss the reasons for the failure to contain Aedes in Brazil and the consequences of this failure. A longue durée perspective favors a view of the Zika epidemic that does not present it as a health crisis to be contained with a technical solution alone but as a pathology that has the persistence of deeply entrenched structural problems and vulnerabilities.

  20. Argonaute 2 Suppresses Japanese Encephalitis Virus Infection in Aedes aegypti.

    PubMed

    Sasaki, Toshinori; Kuwata, Ryusei; Hoshino, Keita; Isawa, Haruhiko; Sawabe, Kyoko; Kobayashi, Mutsuo

    2017-01-24

    There are three main innate immune mechanisms against viruses in mosquitoes. Infection with the flavivirus dengue virus is controlled by RNA interference (RNAi) and the JAK-STAT and Toll signaling pathways. This study showed that another flavivirus, Japanese encephalitis virus (JEV), did not invade the salivary glands of Aedes aegypti and that this may be a result of the innate immune resistance to the virus. Argonaute 2 (Ago2) plays a critical role in the RNAi pathway. To understand the mechanism of JEV resistance, we focused on Ago2 as a possible target of JEV. Here, we show that the expression of MyD88 (a mediator of Toll signaling) and Ago2 mRNAs was induced by JEV in the salivary glands of Ae. aegypti mosquitoes and that Ago2, JAK, and domeless (DOME) mRNAs were induced by JEV in the bodies of Ae. aegypti mosquitoes. Double-stranded (ds) Ago2 RNA enhanced JEV infection, and the virus was detected in salivary glands by immunofluorescence assay. In contrast, MyD88 dsRNA had no effect on JEV infection. These data suggest that Ago2 plays a crucial role in mediating the innate immune response of Ae. aegypti to JEV in a manner similar to that employed by dengue virus.

  1. Aedes (Stegomyia) albopictus--a dengue threat for southern Australia?

    PubMed

    Russell, Richard C; Williams, Craig R; Sutherst, Robert W; Ritchie, Scott A

    2005-01-01

    Aedes albopictus, the so-called 'Asian tiger mosquito,' which has invaded areas of the Pacific, the Americas, Africa and Europe, and been intercepted in various Australian seaports in recent years, has now become established on a number of Torres Strait islands in northern Queensland and threatens to invade mainland Australia. As well as being a significant pest with day-biting tendencies, Ae. albopictus is a vector of dengue viruses and is capable of transmitting a number of other arboviruses. The species colonises domestic and peri-domestic containers, and can establish in temperate areas with cold winters. According to predictions made using the CSIRO climate matching software CLIMEX, Ae. albopictus could become established elsewhere in Australia, including southern Australia, and lead to these areas becoming receptive to dengue infections-a condition that currently does not exist because the vector Aedes aegypti is confined to Queensland and no species in southern Australia is known to be capable of transmitting dengue.

  2. Effect of niloticin, a protolimonoid isolated from Limonia acidissima L. (Rutaceae) on the immature stages of dengue vector Aedes aegypti L. (Diptera: Culicidae).

    PubMed

    Reegan, Appadurai Daniel; Gandhi, Munusamy Rajiv; Paulraj, Micheal Gabriel; Balakrishna, Kedike; Ignacimuthu, Savarimuthu

    2014-11-01

    The aim of the present study was to evaluate the mosquitocidal activity of fractions and a compound niloticin from the hexane extract of Limonia acidissima L. leaves on eggs, larvae and pupae of Aedes aegypti L. (Diptera: Culicidae). In these bioassays, the eggs, larvae and pupae were exposed to concentrations of 2.5, 5.0, 7.5 and 10.0ppm for fractions and 0.5, 1.0, 1.5 and 2.0ppm for compound. After 24h, the mortality was assessed and the LC50 and LC90 values were calculated for larvae and pupae. Per cent ovicidal activity was calculated for eggs after 120h post treatment. Among the sixteen fractions screened, fraction 8 from the hexane extract of L. acidissima generated good mosquitocidal activity against Ae. aegypti. The LC50 and LC90 values of fraction 8 were 4.11, 8.04ppm against Ae. aegypti larvae and 4.19, 8.10ppm against Ae. aegypti pupae, respectively. Further, the isolated compound, niloticin recorded strong larvicidal and pupicidal activities. The 2ppm concentration of niloticin showed 100% larvicidal and pupicidal activities in 24h. The LC50 and LC90 values of niloticin on Ae. aegypti larvae were 0.44, 1.17ppm and on pupae were 0.62, 1.45ppm, respectively. Niloticin presented 83.2% ovicidal activity at 2ppm concentration after 120h post treatment and niloticin exhibited significant growth disruption and morphological deformities at sub lethal concentrations against Ae. aegypti. The structure of the isolated compound was identified on the basis of single XRD and spectral data ((1)H NMR and (13)C NMR) and compared with literature spectral data. The results indicate that niloticin could be used as a potential natural mosquitocide.

  3. Effects of environment, dietary regime and ageing on the dengue vector microbiota: evidence of a core microbiota throughout Aedes aegypti lifespan.

    PubMed

    David, Mariana Rocha; Santos, Lilha Maria Barbosa Dos; Vicente, Ana Carolina Paulo; Maciel-de-Freitas, Rafael

    2016-09-01

    Mosquito midgut microbiota is a key component of vector competence, as gut bacteria can disturb pathogen development. In this study, we addressed the microbiota composition of Aedes aegypti during its lifespan, under field conditions. We also investigated the possible effects of environment, dietary regime and ageing on the gut community composition. We employed culture independent and dependent approaches to characterise vector microbiota. There was evidence of a lifelong stable core microbiota after mosquitoes were released into an urban settlement, where they presumably fed on a range of vertebrate hosts and carbohydrate sources. This core was formed mainly of bacteria belonging to the genera Pseudomonas, Acinetobacter, Aeromonas and Stenotrophomonas and to the families Oxalobacteraceae, Enterobacteriaceae and Comamonadaceae. We showed that both dietary regime and age were associated with the abundance of some bacterial groups in the Ae. aegypti microbiota. The majority of the bacterial groups we identified have been detected in the midgut of Ae. aegypti from laboratory and wild populations, indicating a possible core microbiota associated with this mosquito species. Our findings suggest that Ae. aegypti harbours a stable bacterial community during its adult life, similar to mosquito populations from distinct geographic areas, which may be further explored for arbovirus biocontrol strategies.

  4. Effects of environment, dietary regime and ageing on the dengue vector microbiota: evidence of a core microbiota throughout Aedes aegypti lifespan

    PubMed Central

    David, Mariana Rocha; dos Santos, Lilha Maria Barbosa; Vicente, Ana Carolina Paulo; Maciel-de-Freitas, Rafael

    2016-01-01

    Abstract Mosquito midgut microbiota is a key component of vector competence, as gut bacteria can disturb pathogen development. In this study, we addressed the microbiota composition of Aedes aegypti during its lifespan, under field conditions. We also investigated the possible effects of environment, dietary regime and ageing on the gut community composition. We employed culture independent and dependent approaches to characterise vector microbiota. There was evidence of a lifelong stable core microbiota after mosquitoes were released into an urban settlement, where they presumably fed on a range of vertebrate hosts and carbohydrate sources. This core was formed mainly of bacteria belonging to the genera Pseudomonas, Acinetobacter, Aeromonas and Stenotrophomonas and to the families Oxalobacteraceae, Enterobacteriaceae and Comamonadaceae. We showed that both dietary regime and age were associated with the abundance of some bacterial groups in the Ae. aegypti microbiota. The majority of the bacterial groups we identified have been detected in the midgut of Ae. aegypti from laboratory and wild populations, indicating a possible core microbiota associated with this mosquito species. Our findings suggest that Ae. aegypti harbours a stable bacterial community during its adult life, similar to mosquito populations from distinct geographic areas, which may be further explored for arbovirus biocontrol strategies. PMID:27580348

  5. Aerial ULV application of Dibrom against Aedes aegypti in simulated urban and rural residences

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reaching endophilic Aedes aegypti mosquito vectors of dengue located in human residences with aerial ULV pesticide applications is a prominent complication in operational wide area public health mosquito control activities. We conducted separate trials with a military C-130 fixed wing aircraft fitte...

  6. The maxillary palp of aedes aegypti, a model of multisensory integration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Female yellow-fever mosquitoes, Aedes aegypti, are obligate blood-feeders and vectors of the pathogens that cause dengue fever, yellow fever and Chikungunya. This feeding behavior concludes a series of multisensory events guiding the mosquito to its host from a distance. The antennae and maxillary...

  7. Toxicity of Acalypha indica (Euphorbiaceae) and Achyranthes aspera (Amaranthaceae) leaf extracts to Aedes aegypti (Diptera: Culicidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alternative control technologies envisioned for the dengue vector Aedes aegypti L. (Diptera: Culicidae) include botanical insecticides, which are believed to pose little threat to the environment or to human health and may provide a practical substitute for synthetic insecticides. In this study, we...

  8. Gustatory receptor expression in the labella and legs of aedes aegypti

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The yellow-fever mosquito, Aedes aegypti, is a dangerous disease vector, infecting a growing number of people every year with dengue, yellow fever and chikungunya viruses. Contact chemoreception in mosquitoes influences a number of behaviors including host-selection, oviposition and feeding. While...

  9. Chikungunya Virus in Febrile Humans and Aedes aegypti Mosquitoes, Yucatan, Mexico

    PubMed Central

    Cigarroa-Toledo, Nohemi; Blitvich, Bradley J.; Cetina-Trejo, Rosa C.; Talavera-Aguilar, Lourdes G.; Baak-Baak, Carlos M.; Torres-Chablé, Oswaldo M.; Hamid, Md-Nafiz; Friedberg, Iddo; González-Martinez, Pedro; Alonzo-Salomon, Gabriela; Rosado-Paredes, Elsy P.; Rivero-Cárdenas, Nubia; Reyes-Solis, Guadalupe C.; Farfan-Ale, Jose A.; Garcia-Rejon, Julian E.

    2016-01-01

    Chikungunya virus (CHIKV) was isolated from 12 febrile humans in Yucatan, Mexico, in 2015. One patient was co-infected with dengue virus type 1. Two additional CHIKV isolates were obtained from Aedes aegypti mosquitoes collected in the homes of patients. Phylogenetic analysis showed that the CHIKV isolates belong to the Asian lineage. PMID:27347760

  10. Mosquito activity of a series of chalcones and 2-pyrazoline derivatives against Aedes aegypti

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aedes aegypti (L.) (Diptera: Culicidae) transmit pathogens to humans, leading to diseases such as yellow fever and dengue fever. Repellents and insecticides are two common interventions to reduce mosquito biting and thereby disease risk. However, overreliance on a chemical or class of chemicals c...

  11. Structure-Activity Relationships of 33 Carboxamides as Toxicants Against Female Aedes aegypti (Diptera: Culicidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aedes aegypti (L.) is the primary vector of both dengue and yellow fever. Use of insecticides is one of the primary ways to control this medically important insect pest. However, few new insecticides have been developed for mosquito control in recent years. As a part of our effort to search for new ...

  12. Promising Aedes aegypti repellent chemotypes identified through integrated QSAE, virtual screening, synthesis, and bioassay

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Molecular field topology analysis, scaffold hopping, and molecular docking were used as complementary computational tools for the design of repellents for Aedes aegypti, the insect vector for yellow fever, West Nile fever, and dengue fever. A large number of analogues were evaluated by virtual scree...

  13. Global genetic diversity of Aedes aegypti.

    PubMed

    Gloria-Soria, Andrea; Ayala, Diego; Bheecarry, Ambicadutt; Calderon-Arguedas, Olger; Chadee, Dave D; Chiappero, Marina; Coetzee, Maureen; Elahee, Khouaildi Bin; Fernandez-Salas, Ildefonso; Kamal, Hany A; Kamgang, Basile; Khater, Emad I M; Kramer, Laura D; Kramer, Vicki; Lopez-Solis, Alma; Lutomiah, Joel; Martins, Ademir; Micieli, Maria Victoria; Paupy, Christophe; Ponlawat, Alongkot; Rahola, Nil; Rasheed, Syed Basit; Richardson, Joshua B; Saleh, Amag A; Sanchez-Casas, Rosa Maria; Seixas, Gonçalo; Sousa, Carla A; Tabachnick, Walter J; Troyo, Adriana; Powell, Jeffrey R

    2016-11-01

    Mosquitoes, especially Aedes aegypti, are becoming important models for studying invasion biology. We characterized genetic variation at 12 microsatellite loci in 79 populations of Ae. aegypti from 30 countries in six continents, and used them to infer historical and modern patterns of invasion. Our results support the two subspecies Ae. aegypti formosus and Ae. aegypti aegypti as genetically distinct units. Ae. aegypti aegypti populations outside Africa are derived from ancestral African populations and are monophyletic. The two subspecies co-occur in both East Africa (Kenya) and West Africa (Senegal). In rural/forest settings (Rabai District of Kenya), the two subspecies remain genetically distinct, whereas in urban settings, they introgress freely. Populations outside Africa are highly genetically structured likely due to a combination of recent founder effects, discrete discontinuous habitats and low migration rates. Ancestral populations in sub-Saharan Africa are less genetically structured, as are the populations in Asia. Introduction of Ae. aegypti to the New World coinciding with trans-Atlantic shipping in the 16th to 18th centuries was followed by its introduction to Asia in the late 19th century from the New World or from now extinct populations in the Mediterranean Basin. Aedes mascarensis is a genetically distinct sister species to Ae. aegypti s.l. This study provides a reference database of genetic diversity that can be used to determine the likely origin of new introductions that occur regularly for this invasive species. The genetic uniqueness of many populations and regions has important implications for attempts to control Ae. aegypti, especially for the methods using genetic modification of populations.

  14. The influence of diet on the use of near-infrared spectroscopy to determine the age of female Aedes aegypti mosquitoes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Interventions targeting adult mosquitoes are used to combat transmission of vector-borne diseases, including dengue. Without available vaccines, targeting the primary vector, Aedes aegypti, is essential to prevent transmission. Older mosquitoes (>/='7 days) are of greatest epidemiological significan...

  15. Diversity of containers and buildings infested with Aedes aegypti in Puerto Iguazú, Argentina.

    PubMed

    Costa, Federico; Fattore, Gladys; Abril, Marcelo

    2012-09-01

    Aedes aegypti is the main domestic vector of the dengue virus. Control measures to prevent dengue transmission focus on the treatment and elimination of this vector's oviposition sites. There is limited biological information on Ae. aegypti in Argentina. The aim of this study was to characterize Ae. aegypti oviposition sites in the city of Puerto Iguazú, Argentina. We surveyed an area covering nine neighborhoods in 2005. We identified 191 premises as positive for Ae. aegypti, giving a general house index of 9.6%. Premises classified as residential and vacant lots presented the highest number of infested premises, with 9% and 22% respectively. The total number of surveyed containers was 29,600. The overall container index (CI) was 1.1. The most frequently infested containers were water tanks (CI = 37). These preliminary results suggest that vacant lots and water tanks provide suitable breeding areas and environmental conditions, improving the chances of Ae. aegypti survival in Puerto Iguazú.

  16. Nepenthes ampullaria (Nepenthaceae) Pitchers Are Unattractive to Gravid Aedes aegypti and Aedes albopictus (Diptera: Culicidae).

    PubMed

    Chou, Lee Yiung; Dykes, Gary A; Wilson, Robyn F; Clarke, Charles M

    2016-02-01

    Nepenthes pitcher plants are colonized by a variety of specialized arthropods. As Aedes mosquitoes are container breeders, Nepenthes pitchers are a potential candidate oviposition site for vector species, such as Aedes aegypti (L.) and Aedes albopictus (Skuse). However, Aedes spp. are not commonly encountered in Nepenthes pitchers, and the environment inside the pitchers of some species is lethal to them. One exception is Nepenthes ampullaria Jack, whose pitchers are known to be colonized by Ae. albopictus on very rare occasions. Given that Ae. albopictus larvae can survive in N. ampullaria pitcher fluids, we sought to determine why pitcher colonization is rare, testing the hypothesis that gravid Aedes mosquitoes are deterred from ovipositing into container habitats that have similar characteristics to N. ampullaria pitchers. Using plastic ovitraps of different sizes, colors, and with different types of fluids (based on the characteristics of N. ampullaria pitchers), we compared oviposition rates by Aedes mosquitoes in urban and rural areas within the geographical range of N. ampullaria near Kuala Lumpur, Malaysia. Ovitraps that were black and large (>250-ml capacity) accumulated significantly more eggs than ovitraps that were smaller, or green in color. In terms of size and color, small, green ovitraps are analogous to N. ampullaria pitchers, indicating that these pitchers are not particularly attractive to gravid Ae. albopictus. Although Aedes spp. are capable of colonizing N. ampullaria pitchers, the pitchers are relatively unattractive to gravid females and do not represent a significant habitat for larvae of dengue vectors at present.

  17. Evidence of Polyandry for Aedes aegypti in Semifield Enclosures

    PubMed Central

    Helinski, Michelle E. H.; Valerio, Laura; Facchinelli, Luca; Scott, Thomas W.; Ramsey, Janine; Harrington, Laura C.

    2012-01-01

    Female Aedes aegypti are assumed to be primarily monandrous (i.e., mate only once in their lifetime), but true estimates of mating frequency have not been determined outside the laboratory. To assess polyandry in Ae. aegypti with first-generation progeny from wild mosquitoes, stable isotope semen-labeled males (15N or 13C) were allowed to mate with unlabeled females in semifield enclosures (22.5 m3) in a dengue-endemic area in southern Mexico. On average, 14% of females were positive for both labels, indicating that they received semen from more than one male. Our results provide evidence of a small but potentially significant rate of multiple mating within a 48-hour period and provide an approach for future open-field studies of polyandry in this species. Polyandry has implications for understanding mosquito ecology, evolution, and reproductive behavior as well as genetic strategies for mosquito control. PMID:22492148

  18. Genome sequence of Aedes aegypti, a major arbovirus vector.

    PubMed

    Nene, Vishvanath; Wortman, Jennifer R; Lawson, Daniel; Haas, Brian; Kodira, Chinnappa; Tu, Zhijian Jake; Loftus, Brendan; Xi, Zhiyong; Megy, Karyn; Grabherr, Manfred; Ren, Quinghu; Zdobnov, Evgeny M; Lobo, Neil F; Campbell, Kathryn S; Brown, Susan E; Bonaldo, Maria F; Zhu, Jingsong; Sinkins, Steven P; Hogenkamp, David G; Amedeo, Paolo; Arensburger, Peter; Atkinson, Peter W; Bidwell, Shelby; Biedler, Jim; Birney, Ewan; Bruggner, Robert V; Costas, Javier; Coy, Monique R; Crabtree, Jonathan; Crawford, Matt; Debruyn, Becky; Decaprio, David; Eiglmeier, Karin; Eisenstadt, Eric; El-Dorry, Hamza; Gelbart, William M; Gomes, Suely L; Hammond, Martin; Hannick, Linda I; Hogan, James R; Holmes, Michael H; Jaffe, David; Johnston, J Spencer; Kennedy, Ryan C; Koo, Hean; Kravitz, Saul; Kriventseva, Evgenia V; Kulp, David; Labutti, Kurt; Lee, Eduardo; Li, Song; Lovin, Diane D; Mao, Chunhong; Mauceli, Evan; Menck, Carlos F M; Miller, Jason R; Montgomery, Philip; Mori, Akio; Nascimento, Ana L; Naveira, Horacio F; Nusbaum, Chad; O'leary, Sinéad; Orvis, Joshua; Pertea, Mihaela; Quesneville, Hadi; Reidenbach, Kyanne R; Rogers, Yu-Hui; Roth, Charles W; Schneider, Jennifer R; Schatz, Michael; Shumway, Martin; Stanke, Mario; Stinson, Eric O; Tubio, Jose M C; Vanzee, Janice P; Verjovski-Almeida, Sergio; Werner, Doreen; White, Owen; Wyder, Stefan; Zeng, Qiandong; Zhao, Qi; Zhao, Yongmei; Hill, Catherine A; Raikhel, Alexander S; Soares, Marcelo B; Knudson, Dennis L; Lee, Norman H; Galagan, James; Salzberg, Steven L; Paulsen, Ian T; Dimopoulos, George; Collins, Frank H; Birren, Bruce; Fraser-Liggett, Claire M; Severson, David W

    2007-06-22

    We present a draft sequence of the genome of Aedes aegypti, the primary vector for yellow fever and dengue fever, which at approximately 1376 million base pairs is about 5 times the size of the genome of the malaria vector Anopheles gambiae. Nearly 50% of the Ae. aegypti genome consists of transposable elements. These contribute to a factor of approximately 4 to 6 increase in average gene length and in sizes of intergenic regions relative to An. gambiae and Drosophila melanogaster. Nonetheless, chromosomal synteny is generally maintained among all three insects, although conservation of orthologous gene order is higher (by a factor of approximately 2) between the mosquito species than between either of them and the fruit fly. An increase in genes encoding odorant binding, cytochrome P450, and cuticle domains relative to An. gambiae suggests that members of these protein families underpin some of the biological differences between the two mosquito species.

  19. The risk of Aedes aegypti breeding and premises condition in South Mexico.

    PubMed

    Manrique-Saide, Pablo; Davies, Clive R; Coleman, Paul G; Che-Mendoza, Azael; Dzul-Manzanilla, Felipe; Barrera-Pérez, Mario; Hernández-Betancourt, Silvia; Ayora-Talavera, Guadalupe; Pinkus-Rendón, Miguel; Burciaga-Zúñiga, Pierre; Sánchez Tejeda, Gustavo; Arredondo-Jiménez, Juan I

    2013-12-01

    A recent innovation instrumented for the Dengue Prevention and Control program in Mexico is the use of the premises condition index (PCI) as an indicator of risk for the vector Aedes aegypti infestation in dengue-endemic localities of Mexico. This paper addresses whether further improvements for the dengue control program could be made if the prevalence and productivity of Ae. aegypti populations could be reliably predicted using PCI at the household level, as well as medium-sized neighborhoods. We evaluated the use of PCI to predict the infestation with Aedes aegypti (breeding sites and immature productivity) in Merida, Mexico. The study consisted of a cross-sectional survey based on a cluster-randomized sampling design. We analyzed the statistical association between Aedes infestation and PCI, the extent to which the 3 components of PCI (house maintenance, and tidiness and shading of the patio) contributed to the association between PCI and infestation and whether infestation in a given premises was also affected by the PCI of the surrounding ones. Premises with the lowest PCI had significantly lower Aedes infestation and productivity; and as PCI scores increased infestation levels also tended to increase. Household PCI was significantly associated with Ae. aegypti breeding, largely due to the effect of patio untidiness and patio shade. The mean PCI within the surroundings premises also had a significant and independent explanatory power to predict the risk for infestation, in addition to individual PCI. This is the 1st study in Mexico showing evidence that premises condition as measured by the PCI is related to Ae. aegypti breeding sites and immature productivity. Results suggest that PCI could be used to streamline surveys to inform control efforts at least where Ae. aegypti breeds outdoors, as in Merida. The effect of individual premises, neighborhood condition, and the risk of Aedes infestation imply that the risk for dengue vector infestation can only be

  20. The role of octopamine receptor agonists in the synergistic toxicity of certain insect growth regulators (IGRs) in controlling Dengue vector Aedes aegypti (Diptera: Culicidae) mosquito.

    PubMed

    Ahmed, Mohamed Ahmed Ibrahim; Vogel, Christoph Franz Adam

    2016-03-01

    The synergistic action of octopamine receptor agonists (OR agonists) on many insecticide classes (e.g., organophosphorus, pyrethroids, and neonicotinoids) on Aedes aegypti L. has been reported recently. An investigation of OR agonist's effect on insect growth regulators (IGRs) was undertaken to provide a better understanding of the mechanism of action. Based on the IGR bioassay, pyriproxyfen was the most potent IGR insecticide tested (EC50=0.0019ng/ml). However, the lethal toxicity results indicate that diafenthiuron was the most potent insecticide (LC50=56ng/cm(2)) on A. aegypti adults after 24h of exposure. The same trend was true after 48 and 72h of exposure. Further, the synergistic effects of OR agonists plus amitraz (AMZ) or chlordimeform (CDM) was significant on adults. Among the tested synergists, AMZ increased the potency of the selected IGRs on adults the greatest. As results, OR agonists were largely synergistic with the selected IGRs. OR agonists enhanced the lethal toxicity of IGRs, which is a valuable new tool in the field of A. aegypti control. However, further field experiments need to be done to understand the unique potential role of OR agonists and their synergistic action on IGRs.

  1. Mosquito attractant blends to trap host seeking Aedes aegypti.

    PubMed

    Mathew, Nisha; Ayyanar, Elango; Shanmugavelu, Sabesan; Muthuswamy, Kalyanasundaram

    2013-03-01

    Aedes aegypti is the key vector of three important arboviral diseases -dengue, yellow fever and chikungunya. To identify volatile chemicals which could be used in odour based traps for Aedes mosquito surveillance, a few synthetic compounds and compound blends have been evaluated in an indigenously designed olfactometer. A total of 24 compounds and seven compound blends were screened against unfed adult female Ae. aegypti mosquitoes for attraction and compared with control group. The attractancy or repellency index of the test material to mosquitoes was calculated and rated them as class-1, class-2 and class-3 with rating values ranging 1-15, 16-33 and 34-100 respectively. Out of the 24 compounds tested, six were showing significant attractancy (P < 0.05) and among that 1-octene-3-ol showed maximum attractancy with a rating value of 57.81. Sixteen compounds showed significant repellency (P < 0.05) and among that with a rating value of 72.47, 1-hexene-3-ol showed strong repellent action against Ae. aegypti. All the seven blends showed significant mosquito attractancy (P < 0.05) and among that with a rating of 62.08 Myristic acid, Lactic acid and CO(2) blend exhibited first-rate mosquito attractancy.

  2. Vertical Transmission of Zika Virus in Aedes aegypti Mosquitoes

    PubMed Central

    Thangamani, Saravanan; Huang, Jing; Hart, Charles E.; Guzman, Hilda; Tesh, Robert B.

    2016-01-01

    Previous experimental studies have demonstrated that a number of mosquito-borne flavivirus pathogens are vertically transmitted in their insect vectors, providing a mechanism for these arboviruses to persist during adverse climatic conditions or in the absence of a susceptible vertebrate host. In this study, designed to test whether Zika virus (ZIKV) could be vertically transmitted, female Aedes aegypti and Aedes albopictus were injected with ZIKV, and their F1 adult progeny were tested for ZIKV infection. Six of 69 Ae. aegypti pools, comprised of a total of 1,738 F1 adults, yielded ZIKV upon culture, giving a minimum filial infection rate of 1:290. In contrast, none of 803 F1 Ae. albopictus adults (32 pools) yielded ZIKV. The MFIR for Ae. aegypti was comparable to MFIRs reported for other flaviviruses in mosquitoes, including dengue, Japanese encephalitis, yellow fever, West Nile, and St. Louis encephalitis viruses. The results suggest that vertical transmission may provide a potential mechanism for the virus to survive during adverse conditions. PMID:27573623

  3. Physiological and biochemical effects of botanical extract from Piper nigrum Linn (Piperaceae) against the dengue vector Aedes aegypti Liston (Diptera: Culicidae).

    PubMed

    Lija-Escaline, Jalasteen; Senthil-Nathan, Sengottayan; Thanigaivel, Annamalai; Pradeepa, Venkatraman; Vasantha-Srinivasan, Prabhakaran; Ponsankar, Athirstam; Edwin, Edward Sam; Selin-Rani, Selvaraj; Abdel-Megeed, Ahmed

    2015-11-01

    The leaves of Piper nigrum L. (Piperaceae) were evaluated for chemical constituents and mosquito larvicidal activity against the larvae of Aedes aegypti. GC and GC-MS analyses revealed that the crude extracts contain 16 compounds. Thymol (20.77%) and ç-elemene (10.42%) were identified as the major constituents followed by cyclohexene, 4-ethenyl-4-methyl-3-(1-methylethenyl)-1-(1 methylethyl)-, (3R-trans) (7.58%), 4,6-octadienoic acid, 2-acetyl-2-methyl-, ethyl ester (6.98), 2(3H)-furanone, 3,4-bis(1,3-benzodioxol-5-ylmethyl) dihydro-, (3R-trans) (6.95%), 1-naphthalenol, 1,2,3,4,4a,7,8,8a-octahydro-1,6-dimethyl-4-(1-methylethyl)-, [1R-(1à,4á,4aá,8aá)]-(Cedreanol) (5.30%), trans-2-undecen-1-ol (4.48%), phytol (4.22%), 1,6-cyclodecadiene, 1-methyl-5-methylene-8-(1-methylethyl)-,[s-(E,E)] (3.78%) and 2,6-dimethyl-3,5,7-octatriene-2-ol, Z,Z (2.39%). Larval mortality was observed after 3 h of exposure period. The crude extract showed remarkable larvicidal activity against Ae. aegypti (LC50 = 34.97). The larvae of Ae. aegypti exposed to the P. nigrum, significantly reduced the activities of α- and β-carboxylesterases and superdioxide. Further, P. nigrum extract was severely affecting the mosquito gut cellular organelles. Based on the results, the chemical constituents of crude extracts of P. nigrum can be considered as a new source of larvicide for the control of Ae. aegypti.

  4. Population structure of the mosquito Aedes aegypti (Stegomyia aegypti) in Pakistan.

    PubMed

    Rasheed, S B; Boots, M; Frantz, A C; Butlin, R K

    2013-12-01

    Eleven microsatellite markers were used to determine the genetic population structure and spread of Aedes aegypti (Stegomyia aegypti) (Diptera: Culicidae) in Pakistan using mosquitoes collected from 13 different cities. There is a single genetic cluster of Ae. aegypti in Pakistan with a pattern of isolation by distance within the population. The low level of isolation by distance suggests the long-range passive dispersal of this mosquito, which may be facilitated by the tyre trade in Pakistan. A decrease in genetic diversity from south to north suggests a recent spread of this mosquito from Karachi. A strong negative correlation between genetic distance and the quality of road connections shows that populations in cities connected by better road networks are less differentiated, which suggests the human-aided passive dispersal of Ae. aegypti in Pakistan. Dispersal on a large spatial scale may facilitate the strategy of introducing transgenic Ae. aegypti or intracellular bacteria such as Wolbachia to control the spread of dengue disease in Pakistan, but it also emphasizes the need for simple measures to control container breeding sites.

  5. Field validation of the gravid Aedes trap (GAT) for collection of Aedes aegypti (Diptera: Culicidae).

    PubMed

    Ritchie, Scott A; Buhagiar, Tamara S; Townsend, Michael; Hoffmann, Ary; Van Den Hurk, Andrew F; McMahon, Jamie L; Eiras, Alvaro E

    2014-01-01

    Current surveillance methods for adult Aedes aegypti (L.) are expensive, require electrical power (e.g., the BG-Sentinel trap, BGS), are labor intensive (aspirators), or require difficult to use and costly adhesives (sticky ovitraps). Field trials were conducted in Cairns (Australia) to compare the efficacy of the newly designed Gravid Aedes Trap (GAT) against existing sticky ovitraps (MosquiTRAP and double sticky ovitrap) and the BGS. Latin square design trials confirmed that alarge GAT using a 9.2-liters bucket treated with Mortein Barrier Outdoor Surface Spray ([AI] 0.3 g/kg imiprothrin and 0.6 g/kg deltamethrin) outperformed a smaller 1.2-liters GAT and collected, on average, 3.7x and 2.4X more female Ae. aegypti than the MosquiTRAP and double sticky ovitrap, respectively. Field trials showed that the GAT collected 10-50% less female Ae. aegypti than the BGS trap but 30% more gravid mosquitoes than the BGS. Trials using the BGS and the GAT indicated that there was no difference in capture rates between female Ae. aegypti uninfected and infected with the wMel strain of Wolbachia, and wMel infection rates were nearly identical at >90% to field captured Ae. aegypti. The potential for the GAT to be used for dengue virus surveillance was also demonstrated with dengue virus type 3 RNA detected in five-sixths and six-sixths pools ofAe. aegypti stored in a GAT held at 28 degreeC and 60% relative humidity for 7 and 14 d, respectively. Mosquito knock down in GATs treated with Mortein surface spray set in 30, 70, and 99% shade was comparable for up to 2 mo, with only approximately 10% of adults escaping. The GAT is therefore a useful tool for capturing adult Ae. aegypti and may be suitable for other container-inhabiting species such as Aedes albopictus (Skuse) and Culex quinquefasciatus Say. The low cost and practicality of operation make the GAT suitable for vector surveillance and projects requiring monitoring of mosquitoes for Wolbachia and arboviruses, especially in

  6. Aedes aegypti (L.) and Aedes albopictus (Skuse) in Singapore City

    PubMed Central

    Ho, B. C.; Chan, K. L.; Chan, Y. C.

    1971-01-01

    Fluctuations in the adult Ae. aegypti and Ae. albopictus populations and their relationship to rainfall were studied by weekly collections from a number of stations in the city. Aedes aegypti populations generally fluctuated with the rainfall, with multiple peaks, except in the middle of the year when there was no increase in rainfall at the time of the peak in population. It is suggested that other regulating factors, in addition to rainfall, also determine the fluctuations of this species. Aedes albopictus also fluctuated, with three peaks in a year, and these bore a close relationship to rainfall. In one area, both larvae and adults of Ae. albopictus were studied simultaneously. The larval populations were investigated by exposing tin cans in the field. The population peaks of larvae were found to precede those of adults by almost exactly 2 months. It is suggested that each adult population peak represents the cumulative effect of more than one generation of mosquitos. PMID:5316747

  7. Synthesis, depletion and cell-type expression of a protein from the male accessory glands of the dengue vector mosquito Aedes aegypti

    PubMed Central

    Alfonso-Parra, Catalina; Avila, Frank W.; Deewatthanawong, Prasit; Sirot, Laura K.; Wolfner, Mariana F.; Harrington, Laura C.

    2014-01-01

    Aedes aegypti males transfer sperm and seminal fluid proteins (Sfps), primarily produced by male accessory glands (AGs), to females during mating. When collectively injected or transplanted into females, AG tissues and/or seminal fluid homogenates have profound effects on Aedes female physiology and behavior. To identify targets and design new strategies for vector control, it is important to understand the biology of the AGs. Thus, we examined characteristics of AG secretion and development in Ae. aegypti, using the AG-specific seminal fluid protein, AAEL010824, as a marker. We showed that AAEL010824 is first detectable by 12h post-eclosion, and increases in amount over the first 3 days of adult life. We then showed that the amount of AAEL0010824 in the AG decreases after mating, with each successive mating depleting it further; by 5 successive matings with no time for recovery, its levels are very low. AAEL010824 levels in a depleted male are replenished by 48hr post-mating. In addition to examining the level of AAEL010824 protein, we also characterized the expression of its gene. We did this by making a transgenic mosquito line that carries an Enhanced Green Fluorescence Protein (EGFP) fused to the AAEL0010824 promoter that we defined here. We showed that AAEL010824 is expressed in the anterior cells of the accessory glands, and that its RNA levels also respond to mating. In addition to further characterizing AAEL010824 expression, our results with the EGFP fusion provide a promoter for driving AG expression. By providing this information on the biology of an important male reproductive tissue and the production of one of its seminal proteins, our results lay the foundation for future work aimed at identifying novel targets for mosquito population control. PMID:25107876

  8. Synthesis, depletion and cell-type expression of a protein from the male accessory glands of the dengue vector mosquito Aedes aegypti.

    PubMed

    Alfonso-Parra, Catalina; Avila, Frank W; Deewatthanawong, Prasit; Sirot, Laura K; Wolfner, Mariana F; Harrington, Laura C

    2014-11-01

    Aedes aegypti males transfer sperm and seminal fluid proteins (Sfps), primarily produced by male accessory glands (AGs), to females during mating. When collectively injected or transplanted into females, AG tissues and/or seminal fluid homogenates have profound effects on Aedes female physiology and behavior. To identify targets and design new strategies for vector control, it is important to understand the biology of the AGs. Thus, we examined characteristics of AG secretion and development in A. aegypti, using the AG-specific seminal fluid protein, AAEL010824, as a marker. We showed that AAEL010824 is first detectable by 12h post-eclosion, and increases in amount over the first 3 days of adult life. We then showed that the amount of AAEL0010824 in the AG decreases after mating, with each successive mating depleting it further; by 5 successive matings with no time for recovery, its levels are very low. AAEL010824 levels in a depleted male are replenished by 48 h post-mating. In addition to examining the level of AAEL010824 protein, we also characterized the expression of its gene. We did this by making a transgenic mosquito line that carries an Enhanced Green Fluorescence Protein (EGFP) fused to the AAEL0010824 promoter that we defined here. We showed that AAEL010824 is expressed in the anterior cells of the accessory glands, and that its RNA levels also respond to mating. In addition to further characterizing AAEL010824 expression, our results with the EGFP fusion provide a promoter for driving AG expression. By providing this information on the biology of an important male reproductive tissue and the production of one of its seminal proteins, our results lay the foundation for future work aimed at identifying novel targets for mosquito population control.

  9. Larvicidal, Repellent, and Irritant Potential of the Seed-Derived Essential oil of Apium graveolens Against Dengue Vector, Aedes aegypti L. (Diptera: Culicidae).

    PubMed

    Kumar, Sarita; Mishra, Monika; Wahab, Naim; Warikoo, Radhika

    2014-01-01

    Aedes aegypti L. is one of the primary disease vectors spreading various dreadful diseases throughout the world, specifically over tropics and subtropics. Keeping in view the adverse effects of chemical insecticides-based intervention measures, the eco-friendly and bio-degradable essential oil extracted from the seeds of celery, Apium graveolens were investigated for its efficacy against Ae. aegypti. Larvicidal bioassay carried out with the seed oil against early fourth instars of Ae. aegypti caused an LC50 and LC90 values of 16.10 and 29.08 ppm, respectively, after an exposure to 24 h. The cidal effect of the celery seed oil augmented by 1.2-fold; after an exposure to 48 h; revealing an LC50 value of 13.22 ppm. Interestingly, the seed oil did not cause immediate larval mortality, suggesting a delayed toxicity against the larval stage. Present investigations also revealed remarkable effective repellency of the oil leading to 100% protection till 165 min as compared to control that did not result in any repellency against adult Ae. aegypti. Interestingly, only one bite was recorded in the 165th-min after which only two bites were scored until 180 min of exposure of the adult mosquitoes to the oil. An exciting observation was that the knocked-down effect in adults exposed to 10% oil-impregnated papers. The contact irritancy assays with paper impregnated with 1% celery seed oil caused first flight only after 4 s resulting in an average of 63.66 flights during 15 min of exposure revealing the relative irritability of 26.97. The qualitative phytochemical analysis of the seed oil showed the presence of flavonoids, lactones, and terpenoids as the major constituents suggesting their probable role in the toxicity. Our results confirmed that celery seed essential oil can be used as an efficient larvicide and repellent against Ae. aegypti. The identification of the bioactive components, their mode of action, and studying effects on non-target organisms and the

  10. Larvicidal, Repellent, and Irritant Potential of the Seed-Derived Essential oil of Apium graveolens Against Dengue Vector, Aedes aegypti L. (Diptera: Culicidae)

    PubMed Central

    Kumar, Sarita; Mishra, Monika; Wahab, Naim; Warikoo, Radhika

    2014-01-01

    Aedes aegypti L. is one of the primary disease vectors spreading various dreadful diseases throughout the world, specifically over tropics and subtropics. Keeping in view the adverse effects of chemical insecticides-based intervention measures, the eco-friendly and bio-degradable essential oil extracted from the seeds of celery, Apium graveolens were investigated for its efficacy against Ae. aegypti. Larvicidal bioassay carried out with the seed oil against early fourth instars of Ae. aegypti caused an LC50 and LC90 values of 16.10 and 29.08 ppm, respectively, after an exposure to 24 h. The cidal effect of the celery seed oil augmented by 1.2-fold; after an exposure to 48 h; revealing an LC50 value of 13.22 ppm. Interestingly, the seed oil did not cause immediate larval mortality, suggesting a delayed toxicity against the larval stage. Present investigations also revealed remarkable effective repellency of the oil leading to 100% protection till 165 min as compared to control that did not result in any repellency against adult Ae. aegypti. Interestingly, only one bite was recorded in the 165th-min after which only two bites were scored until 180 min of exposure of the adult mosquitoes to the oil. An exciting observation was that the knocked-down effect in adults exposed to 10% oil-impregnated papers. The contact irritancy assays with paper impregnated with 1% celery seed oil caused first flight only after 4 s resulting in an average of 63.66 flights during 15 min of exposure revealing the relative irritability of 26.97. The qualitative phytochemical analysis of the seed oil showed the presence of flavonoids, lactones, and terpenoids as the major constituents suggesting their probable role in the toxicity. Our results confirmed that celery seed essential oil can be used as an efficient larvicide and repellent against Ae. aegypti. The identification of the bioactive components, their mode of action, and studying effects on non-target organisms and the

  11. Atmospheric control of Aedes aegypti populations in Buenos Aires (Argentina) and its variability

    NASA Astrophysics Data System (ADS)

    de Garín, A.; Bejarán, R. A.; Carbajo, A. E.; de Casas, S. C.; Schweigmann, N. J.

    The mosquito Aedes aegypti is the main urban vector responsible for the transmission of dengue fever and dengue hemorrhagic fever. The city of Buenos Aires, Argentina, is located at the southern end of the world distribution of the species. The population abundance of Ae. aegypti is mainly regulated by environmental factors. We calculated the potential number of times that a female could lay eggs during its mean life expectancy, based on potential egg production and daily meteorological records. The model considers those variables implying physical hazard to the survival of Ae. aegypti, mosquito flying activity and oviposition. The results, obtained after calibration and validation of the model with field observations, show significant correlation (P<0.001) for different lags depending on the life stage. From these results, more favorable atmospheric conditions for Ae. aegypti reproduction (linked to the urban climatic change) can be observed. The climatic variability in the last decade resembles conditions at the end of 19th century.

  12. Pyrethroid resistance in Aedes aegypti and Aedes albopictus: Important mosquito vectors of human diseases.

    PubMed

    Smith, Letícia B; Kasai, Shinji; Scott, Jeffrey G

    2016-10-01

    Aedes aegypti and A. albopictus mosquitoes are vectors of important human disease viruses, including dengue, yellow fever, chikungunya and Zika. Pyrethroid insecticides are widely used to control adult Aedes mosquitoes, especially during disease outbreaks. Herein, we review the status of pyrethroid resistance in A. aegypti and A. albopictus, mechanisms of resistance, fitness costs associated with resistance alleles and provide suggestions for future research. The widespread use of pyrethroids has given rise to many populations with varying levels of resistance worldwide, albeit with substantial geographical variation. In adult A. aegypti and A. albopictus, resistance levels are generally lower in Asia, Africa and the USA, and higher in Latin America, although there are exceptions. Susceptible populations still exist in several areas of the world, particularly in Asia and South America. Resistance to pyrethroids in larvae is also geographically widespread. The two major mechanisms of pyrethroid resistance are increased detoxification due to P450-monooxygenases, and mutations in the voltage sensitive sodium channel (Vssc) gene. Several P450s have been putatively associated with insecticide resistance, but the specific P450s involved are not fully elucidated. Pyrethroid resistance can be due to single mutations or combinations of mutations in Vssc. The presence of multiple Vssc mutations can lead to extremely high levels of resistance. Suggestions for future research needs are presented.

  13. The wMel strain of Wolbachia Reduces Transmission of Zika virus by Aedes aegypti

    PubMed Central

    Aliota, Matthew T.; Peinado, Stephen A.; Velez, Ivan Dario; Osorio, Jorge E.

    2016-01-01

    Zika virus (ZIKV) is causing an explosive outbreak of febrile disease in the Americas. There are no effective antiviral therapies or licensed vaccines for this virus, and mosquito control strategies have not been adequate to contain the virus. A promising candidate for arbovirus control and prevention relies on the introduction of the intracellular bacterium Wolbachia into Aedes aegypti mosquitoes. This primarily has been proposed as a tool to control dengue virus (DENV) transmission; however, evidence suggests Wolbachia infections confer protection for Ae. aegypti against other arboviruses. At present, it is unknown whether or not ZIKV can infect, disseminate, and be transmitted by Wolbachia-infected Ae. aegypti. Using Ae. aegypti infected with the wMel strain of Wolbachia that are being released in Medellin, Colombia, we report that these mosquitoes have reduced vector competence for ZIKV. These results support the use of Wolbachia biocontrol as a multivalent strategy against Ae. aegypti-transmitted viruses. PMID:27364935

  14. Differential Susceptibilities of Aedes aegypti and Aedes albopictus from the Americas to Zika Virus

    PubMed Central

    Vazeille, Marie; Yebakima, André; Girod, Romain; Goindin, Daniella; Dupont-Rouzeyrol, Myrielle; Lourenço-de-Oliveira, Ricardo; Failloux, Anna-Bella

    2016-01-01

    Background Since the major outbreak in 2007 in the Yap Island, Zika virus (ZIKV) causing dengue-like syndromes has affected multiple islands of the South Pacific region. In May 2015, the virus was detected in Brazil and then spread through South and Central America. In December 2015, ZIKV was detected in French Guiana and Martinique. The aim of the study was to evaluate the vector competence of the mosquito spp. Aedes aegypti and Aedes albopictus from the Caribbean (Martinique, Guadeloupe), North America (southern United States), South America (Brazil, French Guiana) for the currently circulating Asian genotype of ZIKV isolated from a patient in April 2014 in New Caledonia. Methodology/Principal Findings Mosquitoes were orally exposed to an Asian genotype of ZIKV (NC-2014-5132). Upon exposure, engorged mosquitoes were maintained at 28°±1°C, a 16h:8h light:dark cycle and 80% humidity. 25–30 mosquitoes were processed at 4, 7 and 14 days post-infection (dpi). Mosquito bodies (thorax and abdomen), heads and saliva were analyzed to measure infection, dissemination and transmission, respectively. High infection but lower disseminated infection and transmission rates were observed for both Ae. aegypti and Ae. albopictus. Ae. aegypti populations from Guadeloupe and French Guiana exhibited a higher dissemination of ZIKV than the other Ae. aegypti populations examined. Transmission of ZIKV was observed in both mosquito species at 14 dpi but at a low level. Conclusions/Significance This study suggests that although susceptible to infection, Ae. aegypti and Ae. albopictus were unexpectedly low competent vectors for ZIKV. This may suggest that other factors such as the large naïve population for ZIKV and the high densities of human-biting mosquitoes contribute to the rapid spread of ZIKV during the current outbreak. PMID:26938868

  15. Comprehensive DNA methylation analysis of the Aedes aegypti genome

    PubMed Central

    Falckenhayn, Cassandra; Carneiro, Vitor Coutinho; de Mendonça Amarante, Anderson; Schmid, Katharina; Hanna, Katharina; Kang, Seokyoung; Helm, Mark; Dimopoulos, George; Fantappié, Marcelo Rosado; Lyko, Frank

    2016-01-01

    Aedes aegypti mosquitoes are important vectors of viral diseases. Mosquito host factors play key roles in virus control and it has been suggested that dengue virus replication is regulated by Dnmt2-mediated DNA methylation. However, recent studies have shown that Dnmt2 is a tRNA methyltransferase and that Dnmt2-dependent methylomes lack defined DNA methylation patterns, thus necessitating a systematic re-evaluation of the mosquito genome methylation status. We have now searched the Ae. aegypti genome for candidate DNA modification enzymes. This failed to reveal any known (cytosine-5) DNA methyltransferases, but identified homologues for the Dnmt2 tRNA methyltransferase, the Mettl4 (adenine-6) DNA methyltransferase, and the Tet DNA demethylase. All genes were expressed at variable levels throughout mosquito development. Mass spectrometry demonstrated that DNA methylation levels were several orders of magnitude below the levels that are usually detected in organisms with DNA methylation-dependent epigenetic regulation. Furthermore, whole-genome bisulfite sequencing failed to reveal any evidence of defined DNA methylation patterns. These results suggest that the Ae. aegypti genome is unmethylated. Interestingly, additional RNA bisulfite sequencing provided first evidence for Dnmt2-mediated tRNA methylation in mosquitoes. These findings have important implications for understanding the mechanism of Dnmt2-dependent virus regulation. PMID:27805064

  16. Comprehensive DNA methylation analysis of the Aedes aegypti genome.

    PubMed

    Falckenhayn, Cassandra; Carneiro, Vitor Coutinho; de Mendonça Amarante, Anderson; Schmid, Katharina; Hanna, Katharina; Kang, Seokyoung; Helm, Mark; Dimopoulos, George; Fantappié, Marcelo Rosado; Lyko, Frank

    2016-11-02

    Aedes aegypti mosquitoes are important vectors of viral diseases. Mosquito host factors play key roles in virus control and it has been suggested that dengue virus replication is regulated by Dnmt2-mediated DNA methylation. However, recent studies have shown that Dnmt2 is a tRNA methyltransferase and that Dnmt2-dependent methylomes lack defined DNA methylation patterns, thus necessitating a systematic re-evaluation of the mosquito genome methylation status. We have now searched the Ae. aegypti genome for candidate DNA modification enzymes. This failed to reveal any known (cytosine-5) DNA methyltransferases, but identified homologues for the Dnmt2 tRNA methyltransferase, the Mettl4 (adenine-6) DNA methyltransferase, and the Tet DNA demethylase. All genes were expressed at variable levels throughout mosquito development. Mass spectrometry demonstrated that DNA methylation levels were several orders of magnitude below the levels that are usually detected in organisms with DNA methylation-dependent epigenetic regulation. Furthermore, whole-genome bisulfite sequencing failed to reveal any evidence of defined DNA methylation patterns. These results suggest that the Ae. aegypti genome is unmethylated. Interestingly, additional RNA bisulfite sequencing provided first evidence for Dnmt2-mediated tRNA methylation in mosquitoes. These findings have important implications for understanding the mechanism of Dnmt2-dependent virus regulation.

  17. Formulas of components of citronella oil against mosquitoes (Aedes aegypti).

    PubMed

    Hsu, Wey-Shin; Yen, Jui-Hung; Wang, Yei-Shung

    2013-01-01

    The mosquito Aedes aegypti is an epidemic vector of several diseases such as dengue fever and yellow fever. Several pesticides are used to control the mosquito population. Because of their frequent use, some mosquitoes have developed resistance. In this study, we used the Y-tube olfactometer to test essential oils of Cymbopogon species and screened specific formulas of components as repellents against Ae. aegypti. At 400 μL, the extracted oil of citronella grass (Cymbopogon nardus) and myrcene produced a low-active response by inhibiting mosquito host-seeking activity. Citronella grass, lemon grass (Cymbopogon citratus), citral and myrcene also produced a low-treatment response to repellents, for more potential to affect host-seeking behavior. Furthermore, the mixture of citral, myrcene, and citronellal oil (C:M:Ci = 6:4:1) greatly affected and inhibited host-seeking behavior (76% active response; 26% treatment response with 40 μL; 42.5%, 18% with 400 μL; and 19%, 23% with 1000 μL). As compared with the result for N,N-diethyl-3-methylbenzamide (DEET; 44%, 22% with 400 μL), adjusting the composition formulas of citronella oil had a synergistic effect, for more effective repellent against Ae. aegypti.

  18. Autophagy and viral diseases transmitted by Aedes aegypti and Aedes albopictus.

    PubMed

    Carneiro, Leticia A M; Travassos, Leonardo H

    2016-03-01

    Despite a long battle that was started by Oswaldo Cruz more than a century ago, in 1903, Brazil still struggles to fight Aedes aegypti and Aedes albopictus, the mosquito vectors of dengue virus (DENV), Chikungynya virus (CHIKV) and Zika virus (ZIKV). Dengue fever has been a serious public health problem in Brazil for decades, with recurrent epidemic outbreaks occurring during summers. In 2015, until November, 1,534,932 possible cases were reported to the Ministry of Healthv. More recently, the less studied CHIKV and ZIKV have gained attention because of a dramatic increase in their incidence (around 400% for CHIKV) and the association of ZIKV infection with a 11-fold increase in the number of cases of microcephaly from 2014 to 2015 in northeast Brazil (1761 cases until December 2015). The symptoms of these three infections are very similar, which complicates the diagnosis. These include fever, headache, nausea, fatigue, and joint pain. In some cases, DENV infection develops into dengue hemorrhagic fever, a life threatening condition characterized by bleeding and decreases in platelet numbers in the blood. As for CHIKV, the most important complication is joint pain, which can last for months.

  19. Developmental neurogenetics of sexual dimorphism in Aedes aegypti

    PubMed Central

    Duman-Scheel, Molly; Syed, Zainulabeuddin

    2015-01-01

    Sexual dimorphism, a poorly understood but crucial aspect of vector mosquito biology, encompasses sex-specific physical, physiological, and behavioral traits related to mosquito reproduction. The study of mosquito sexual dimorphism has largely focused on analysis of the differences between adult female and male mosquitoes, particularly with respect to sex-specific behaviors related to disease transmission. However, sexually dimorphic behaviors are the products of differential gene expression that initiates during development and therefore must also be studied during development. Recent technical advancements are facilitating functional genetic studies in the dengue vector Aedes aegypti, an emerging model for mosquito development. These methodologies, many of which could be extended to other non-model insect species, are facilitating analysis of the development of sexual dimorphism in neural tissues, particularly the olfactory system. These studies are providing insight into the neurodevelopmental genetic basis for sexual dimorphism in vector mosquitoes. PMID:26949699

  20. The efficacy of a combined larvicide-adulticide in ultralow volume and fumigant canister formulations in controlling the dengue vector Aedes aegypti (Diptera: Culicidae) in Northwest of Argentina.

    PubMed

    Dantur Juri, Maria J; Zaidenberg, Mario; Santana, Mirta

    2013-03-01

    The efficacy of an ultralow volume formulation (ULV) and fumigant canister, containing both permethrin and pyriproxyfen, was compared with that of standard permethrin applications in a field assay conducted in Banda del Río Salí, Tucumán (north-western Argentina). Five treatment areas were established: first area was sprayed with a ULV formulation of 10 % permethrin, a second area was treated using a fumigant canister containing 10 % permethrin and 3 % pyriproxyfen, the third area was sprayed with a ULV formulation of 10 % permethrin and 3 % pyriproxyfen, the fourth area with ULV formulation of 10 % permethrin using a portable aerosol generator and the fifth area was a left untreated area. Immature and adult Aedes aegypti individuals placed in containers and sentinel cages were positioned within the treated and control areas. The effects of treatment and time on larval, pupal and adult survival were tested. We also investigated the effects of treatment and time on the numbers of larval and pupal deaths, on the proportion of larvae that metamorphosed into pupae and adults, and on the proportion of dead adults. Larval A. aegypti survivorship in 250 mL containers revealed a significant treatment effect and significant treatment × time interaction 2 and 24 h after the application of the ULV treatment with 10 % permethrin using the portable aerosol generator. The number of dead larvae in 20 L containers differed significantly by treatment and by time. ULV treatment with 10 % permethrin and 10 % permethrin plus 3 % pyriproxyfen using the cold fogger truck mount ULV resulted in the greatest numbers of dead larvae; most larvae died 2 weeks after application. Adult A. aegypti mortality in all treatments did not differ significantly 2 and 24 h after application. In addition, we found no significant differences in adult mortality between cages exposed at 3 m and those at 6 m from the ULV application line. However, there was a significant difference in

  1. Image segmentation of ovitraps for automatic counting of Aedes Aegypti eggs.

    PubMed

    Mello, Carlos A B; dos Santos, Wellington P; Rodrigues, Marco A B; Candeias, Ana Lúcia B; Gusmão, Cristine M G

    2008-01-01

    The Aedes Aegypti mosquito is the vector of the most difficult public health problems in tropical and semi-tropical world: the epidemic proliferation of dengue, a viral disease that can cause human beings death specially in its most dangerous form, dengue haemorrhagic fever. One of the most useful methods for mosquito detection and surveillance is the ovitraps: special traps to collect eggs of the mosquito. It is very important to count the number of Aedes Aegypti eggs present in ovitraps. This counting is usually performed in a manual, visual and non-automatic form. This work approaches the development of automatic methods to count the number of eggs in ovitraps images using image processing, particularly color segmentation and mathematical morphology-based non-linear filters.

  2. Synergistic effect of Eugenia jambolana Linn. and Solidago canadensis Linn. leaf extracts with deltamethrin against the dengue vector Aedes aegypti Linn. at Mysore.

    PubMed

    Raghavendra, B S; Prathibha, K P; Vijayan, V A

    2013-06-01

    With the goal in mind to minimize the application of environmentally hazardous chemical insecticides, the larvicidal activity of two plant extracts along with deltamethrin was studied at University of Mysore. The extracts of Solidago canadensis and Eugenia jambolana were employed for working out the synergistic efficacy against Aedes aegypti larvae, as the extracts of both the plants exhibited high efficacy when applied individually. The deltamethrin when analyzed separately, LC50 and LC90 values were 0.00045 and 0.00148 ppm, respectively. Synergistic studies with two plant extracts on deltamethrin revealed S. canadensis as more effective with synergistic factor(SF) of 4.090 for LC50 value and 4.781 for LC90 followed by E. jambolana with SF 1.80 for LC50 and 2.467 for LC90 at 1:1 ratio of the phytoextracts and deltamethrin. Thus, S. canadensis was found to be a better larvicidal and synergistic agent. Combination of phytochemical and insecticide were found to be more effective than insecticides or phytochemicals alone which could be a good ecofriendly and cost-effective approach to reduce the dose of chemicals with high residual effect to be applied in vector control programs.

  3. Historical inability to control Aedes aegypti as a main contributor of fast dispersal of chikungunya outbreaks in Latin America.

    PubMed

    Fernández-Salas, Ildefonso; Danis-Lozano, Rogelio; Casas-Martínez, Mauricio; Ulloa, Armando; Bond, J Guillermo; Marina, Carlos F; Lopez-Ordóñez, Teresa; Elizondo-Quiroga, Armando; Torres-Monzón, Jorge A; Díaz-González, Esteban E

    2015-12-01

    The arrival of chikungunya fever (CHIKF) in Latin American countries has been expected to trigger epidemics and challenge health systems. Historically considered as dengue-endemic countries, abundant Aedes aegypti populations make this region highly vulnerable to chikungunya virus (CHIKV) circulation. This review describes the current dengue and CHIKF epidemiological situations, as well as the role of uncontrolled Ae. aegypti and Aedes albopictus vectors in spreading the emerging CHIKV. Comments are included relating to the vector competence of both species and failures of surveillance and vector control measures. Dengue endemicity is a reflection of these abundant and persistent Aedes populations that are now spreading CHIKV in the Americas. This article forms part of a symposium in Antiviral Research on "Chikungunya discovers the New World."

  4. Mathematical model to assess the control of Aedes aegypti mosquitoes by the sterile insect technique.

    PubMed

    Esteva, Lourdes; Mo Yang, Hyun

    2005-12-01

    We propose a mathematical model to assess the effects of irradiated (or transgenic) male insects introduction in a previously infested region. The release of sterile male insects aims to displace gradually the natural (wild) insect from the habitat. We discuss the suitability of this release technique when applied to peri-domestically adapted Aedes aegypti mosquitoes which are transmissors of Yellow Fever and Dengue disease.

  5. Papyracillic acid and its derivatives as biting deterrents against Aedes aegypti(Diptera: Culicidae): structure–activity relationships

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aedes aegypti L. is the major vector of the arboviruses responsible for dengue fever, one of the most devastating human diseases. Papyracillic acid, the main phytotoxin produced by Ascochyta agropyrina var. nana, was evaluated in a preliminary screening together with other fungal phytotoxins, cyclo...

  6. Finding Aedes aegypti in a natural breeding site in an urban zone, Sao Paulo, Southeastern Brazil

    PubMed Central

    Lima-Camara, Tamara Nunes; Urbinatti, Paulo Roberto; Chiaravalloti-Neto, Francisco

    2016-01-01

    ABSTRACT This is the description of how nine Aedes aegypti larvae were found in a natural breeding site in the Pinheiros neighborhood, city of Sao Paulo, SP, Southeastern Brazil. The record was conducted in December 2014, during an entomological surveillance program of dengue virus vectors, with an active search of potential breeding sites, either artificial or natural. Finding Ae. aegypti larvae in a tree hole shows this species’ ability to use both artificial and natural environments as breeding sites and habitats, which points towards the importance of maintaining continuous surveillance on this mosquito in all kinds of water-holding containers. PMID:26982959

  7. Functional genetic characterization of salivary gland development in Aedes aegypti

    PubMed Central

    2013-01-01

    Background Despite the devastating global impact of mosquito-borne illnesses on human health, very little is known about mosquito developmental biology. In this investigation, functional genetic analysis of embryonic salivary gland development was performed in Aedes aegypti, the dengue and yellow fever vector and an emerging model for vector mosquito development. Although embryonic salivary gland development has been well studied in Drosophila melanogaster, little is known about this process in mosquitoes or other arthropods. Results Mosquitoes possess orthologs of many genes that regulate Drosophila melanogaster embryonic salivary gland development. The expression patterns of a large subset of these genes were assessed during Ae. aegypti development. These studies identified a set of molecular genetic markers for the developing mosquito salivary gland. Analysis of marker expression allowed for tracking of the progression of Ae. aegypti salivary gland development in embryos. In Drosophila, the salivary glands develop from placodes located in the ventral neuroectoderm. However, in Ae. aegypti, salivary marker genes are not expressed in placode-like patterns in the ventral neuroectoderm. Instead, marker gene expression is detected in salivary gland rudiments adjacent to the proventriculus. These observations highlighted the need for functional genetic characterization of mosquito salivary gland development. An siRNA- mediated knockdown strategy was therefore employed to investigate the role of one of the marker genes, cyclic-AMP response element binding protein A (Aae crebA), during Ae. aegypti salivary gland development. These experiments revealed that Aae crebA encodes a key transcriptional regulator of the secretory pathway in the developing Ae. aegypti salivary gland. Conclusions The results of this investigation indicated that the initiation of salivary gland development in Ae. aegypti significantly differs from that of D. melanogaster. Despite these differences

  8. Comparative efficacy of existing surveillance tools for Aedes aegypti in Western Kenya.

    PubMed

    Yalwala, Sancto; Clark, Jeffrey; Oullo, David; Ngonga, Daniel; Abuom, David; Wanja, Elizabeth; Bast, Joshua

    2015-12-01

    All traditional surveillance techniques for Aedes aegypti have been developed for the cosmopolitan domestic subspecies Ae. aegypti aegypti, and not the sylvatic subspecies, Ae. aegypti formosus. The predominant form in Western Kenya is Ae. aegypti formosus that is rarely associated with human habitations but is linked to transmission of sylvatic dengue virus strains. We compared five surveillance methods for their effectiveness in sampling Ae. aegypti formosus with the goal of determining a sustainable surveillance strategy in Kenya. The methods included larval and pupal surveys, oviposition trapping, BG-Sentinel trapping, resting boxes, and backpack aspirations. Larval and pupal surveys collected the highest number of Ae. aegypti formosus (51.3%), followed by oviposition traps (45.7%), BG-Sentinel traps (3.0%), and zero collected with either backpack aspiration or resting box collections. No Ae. aegypti formosus larvae or pupae were found indoors. The results indicate that oviposition traps and outdoor larval and pupal surveys were better surveillance methods for Ae. aegypti formosus in Western Kenya.

  9. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus.

    PubMed

    Kraemer, Moritz U G; Sinka, Marianne E; Duda, Kirsten A; Mylne, Adrian Q N; Shearer, Freya M; Barker, Christopher M; Moore, Chester G; Carvalho, Roberta G; Coelho, Giovanini E; Van Bortel, Wim; Hendrickx, Guy; Schaffner, Francis; Elyazar, Iqbal R F; Teng, Hwa-Jen; Brady, Oliver J; Messina, Jane P; Pigott, David M; Scott, Thomas W; Smith, David L; Wint, G R William; Golding, Nick; Hay, Simon I

    2015-06-30

    Dengue and chikungunya are increasing global public health concerns due to their rapid geographical spread and increasing disease burden. Knowledge of the contemporary distribution of their shared vectors, Aedes aegypti and Aedes albopictus remains incomplete and is complicated by an ongoing range expansion fuelled by increased global trade and travel. Mapping the global distribution of these vectors and the geographical determinants of their ranges is essential for public health planning. Here we compile the largest contemporary database for both species and pair it with relevant environmental variables predicting their global distribution. We show Aedes distributions to be the widest ever recorded; now extensive in all continents, including North America and Europe. These maps will help define the spatial limits of current autochthonous transmission of dengue and chikungunya viruses. It is only with this kind of rigorous entomological baseline that we can hope to project future health impacts of these viruses.

  10. Widespread evidence for interspecific mating between Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in nature.

    PubMed

    Bargielowski, I E; Lounibos, L P; Shin, D; Smartt, C T; Carrasquilla, M C; Henry, A; Navarro, J C; Paupy, C; Dennett, J A

    2015-12-01

    Aedes aegypti and Aedes albopictus, two important vectors of the dengue and chikungunya viruses to humans, often come in contact in their invasive ranges. In these circumstances, a number of factors are thought to influence their population dynamics, including resource competition among the larval stages, prevailing environmental conditions and reproductive interference in the form of satyrization. As the distribution and abundance of Ae. aegypti and Ae. albopictus have profound epidemiological implications, understanding the competitive interactions that influence these patterns in nature is important. While evidence for resource competition and environmental factors had been gathered from the field, the evidence for reproductive interference, though strongly inferred through laboratory trials, remained sparse (one small-scale field trial). In this paper we demonstrate that low rates (1.12-3.73%) of interspecific mating occur in nature among populations of these species that have co-existed sympatrically from 3 to 150yrs. Finally this report contributes a new species-specific primer set for identifying the paternity of sperm extracted from field collected specimens.

  11. Dispersal of Male Aedes aegypti in a Coastal Village in Southern Mexico

    PubMed Central

    Valerio, Laura; Facchinelli, Luca; Ramsey, Janine M.; Scott, Thomas W.

    2012-01-01

    Most Aedes aegypti dispersal studies have focused on females because of their central role in dengue virus transmission. Only a few mark-release-recapture (MRR) studies provided insights into male Ae. aegypti dispersal. To fill this knowledge gap, we conducted five male Ae. aegypti MRR experiments in a coastal village in southern Mexico. Small and large male cohorts were marked with fluorescent dusts, released outside buildings, and recaptures were carried out by using backpack aspirators. Recapture rates ranged between 0.35% and 6.55% and median distance traveled was 12–166 meters. A statistically significant difference in median distance traveled with large males dispersing farther than small ones was detected only in one experiment (MRR5: U = 3.5, P < 0.01). Male dispersal data will be useful for constructing and estimating parameter values and validating models that will be used to plan the most effective release strategies for genetically modified male Ae. aegypti. PMID:22492152

  12. Phylogeography of Aedes (Stegomyia) aegypti (L.) and Aedes (Stegomyia) albopictus (Skuse) (Diptera: Culicidae) based on mitochondrial DNA variations.

    PubMed

    Mousson, Laurence; Dauga, Catherine; Garrigues, Thomas; Schaffner, Francis; Vazeille, Marie; Failloux, Anna-Bella

    2005-08-01

    Aedes (Stegomyia) aegypti (l.) and Aedes (Stegomyia) albopictus (Skuse) are the most important vectors of the dengue and yellow-fever viruses. Both took advantage of trade developments to spread throughout the tropics from their native area: A. aegypti originated from Africa and a. albopictus from South-East Asia. We investigated the relationships between A. aegypti and A. albopictus mosquitoes based on three mitochondrial-DNA genes (cytochrome b, cytochrome oxidase I and NADH dehydrogenase subunit 5). Little genetic variation was observed for a. albopictus, probably owing to the recent spreading of the species via human activities. For A. aegypti, most populations from South America were found to be genetically similar to populations from South-East Asia (Thailand and Vietnam), except for one sample from Boa Vista (northern Amazonia), which was more closely related to samples from Africa (Guinea and Ivory Coast). This suggests that African populations of A. aegypti introduced during the slave trade have persisted in Boa Vista, resisting eradication campaigns.

  13. Larval development of Aedes aegypti and Aedes albopictus in peri-urban brackish water and its implications for transmission of arboviral diseases.

    PubMed

    Ramasamy, Ranjan; Surendran, Sinnathamby N; Jude, Pavilupillai J; Dharshini, Sangaralingam; Vinobaba, Muthuladchumy

    2011-11-01

    Aedes aegypti (Linnaeus) and Aedes albopictus Skuse mosquitoes transmit serious human arboviral diseases including yellow fever, dengue and chikungunya in many tropical and sub-tropical countries. Females of the two species have adapted to undergo preimaginal development in natural or artificial collections of freshwater near human habitations and feed on human blood. While there is an effective vaccine against yellow fever, the control of dengue and chikungunya is mainly dependent on reducing freshwater preimaginal development habitats of the two vectors. We show here that Ae. aegypti and Ae. albopictus lay eggs and their larvae survive to emerge as adults in brackish water (water with <0.5 ppt or parts per thousand, 0.5-30 ppt and >30 ppt salt are termed fresh, brackish and saline respectively). Brackish water with salinity of 2 to 15 ppt in discarded plastic and glass containers, abandoned fishing boats and unused wells in coastal peri-urban environment were found to contain Ae. aegypti and Ae. albopictus larvae. Relatively high incidence of dengue in Jaffna city, Sri Lanka was observed in the vicinity of brackish water habitats containing Ae. aegypti larvae. These observations raise the possibility that brackish water-adapted Ae. aegypti and Ae. albopictus may play a hitherto unrecognized role in transmitting dengue, chikungunya and yellow fever in coastal urban areas. National and international health authorities therefore need to take the findings into consideration and extend their vector control efforts, which are presently focused on urban freshwater habitats, to include brackish water larval development habitats.

  14. Inhibition of Zika virus by Wolbachia in Aedes aegypti

    PubMed Central

    Caragata, Eric Pearce; Dutra, Heverton Leandro Carneiro; Moreira, Luciano Andrade

    2016-01-01

    Through association with cases of microcephaly in 2015, Zika virus (ZIKV) has transitioned from a relatively unknown mosquito-transmitted pathogen to a global health emergency, emphasizing the need to improve existing mosquito control programs to prevent future disease outbreaks. The response to Zika must involve a paradigm shift from traditional to novel methods of mosquito control, and according to the World Health Organization should incorporate the release of mosquitoes infected with the bacterial endosymbiont Wolbachia pipientis. In our recent paper [Dutra, HLC et al., Cell Host & Microbe 2016] we investigated the potential of Wolbachia infections in Aedes aegypti to restrict infection and transmission of Zika virus recently isolated in Brazil. Wolbachia is now well known for its ability to block or reduce infection with a variety of pathogens in different mosquito species including the dengue (DENV), yellow fever, and chikungunya viruses, and malaria-causing Plasmodium, and consequently has great potential to control mosquito-transmitted diseases across the globe. Our results demonstrated that the wMel Wolbachia strain in Brazilian Ae. aegypti is a strong inhibitor of ZIKV infection, and furthermore appears to prevent transmission of infectious viral particles in mosquito saliva, which highlights the bacterium’s suitability for more widespread use in Zika control. PMID:28357366

  15. Heat Sensitivity of wMel Wolbachia during Aedes aegypti Development.

    PubMed

    Ulrich, Jill N; Beier, John C; Devine, Gregor J; Hugo, Leon E

    2016-07-01

    The wMel strain of Wolbachia bacteria is known to prevent dengue and Zika virus transmission in the mosquito vector Aedes aegypti. Accordingly, the release of wMel-infected A. aegypti in endemic regions has been recommended by the World Health Organization as a potential strategy for controlling dengue and Zika outbreaks. However, the utility of this approach could be limited if high temperatures in the aquatic habitats where A. aegypti develop are detrimental to Wolbachia. We exposed wMel-infected A. aegypti eggs and larvae to fluctuating daily temperatures of 30-40°C for three, five, or seven days during their development. We found that Wolbachia levels in females emerging from heat treatments were significantly lower than in the controls that had developed at 20-30°C. Notably, seven days of high temperatures starting at the egg stage reduced Wolbachia levels in emerging females to less than 0.1% of the wMel control levels. However, after adult females returned to 20-30°C for 4-7 days, they experienced differing degrees of Wolbachia recovery. Our findings suggest that the spread of Wolbachia in wild A. aegypti populations and any consequent protection from dengue and Zika viruses might be limited in ecosystems that experience periods of extreme heat, but Wolbachia levels recover partially after temperatures return to normal.

  16. Heat Sensitivity of wMel Wolbachia during Aedes aegypti Development

    PubMed Central

    Beier, John C.; Devine, Gregor J.; Hugo, Leon E.

    2016-01-01

    The wMel strain of Wolbachia bacteria is known to prevent dengue and Zika virus transmission in the mosquito vector Aedes aegypti. Accordingly, the release of wMel-infected A. aegypti in endemic regions has been recommended by the World Health Organization as a potential strategy for controlling dengue and Zika outbreaks. However, the utility of this approach could be limited if high temperatures in the aquatic habitats where A. aegypti develop are detrimental to Wolbachia. We exposed wMel-infected A. aegypti eggs and larvae to fluctuating daily temperatures of 30–40°C for three, five, or seven days during their development. We found that Wolbachia levels in females emerging from heat treatments were significantly lower than in the controls that had developed at 20–30°C. Notably, seven days of high temperatures starting at the egg stage reduced Wolbachia levels in emerging females to less than 0.1% of the wMel control levels. However, after adult females returned to 20–30°C for 4–7 days, they experienced differing degrees of Wolbachia recovery. Our findings suggest that the spread of Wolbachia in wild A. aegypti populations and any consequent protection from dengue and Zika viruses might be limited in ecosystems that experience periods of extreme heat, but Wolbachia levels recover partially after temperatures return to normal. PMID:27459519

  17. Reappearance of Aedes aegypti (Diptera: Culicidae) in Lima, Peru.

    PubMed

    Andrade, C S; Cáceres, A G; Vaquerizo, A; Ibañez-Bernal, S; Cachay, L S

    2001-07-01

    We report here the reappearance of Aedes aegypti in the Rimac district, and summarize the history of this mosquito species in Peru since its first detection in 1852. On March 17 2000 were found Ae. aegypti and Culex quinquefasciatus in Mariscal Castilla town, Flor de Amancaes, San Juan de Amancaes, El Altillo and Santa Rosa in the Rimac district, Lima Province.

  18. Impact of Terminalia chebula Retz. against Aedes aegypti L. and non-target aquatic predatory insects.

    PubMed

    Thanigaivel, Annamalai; Vasantha-Srinivasan, Prabhakaran; Senthil-Nathan, Sengottayan; Edwin, Edward-Sam; Ponsankar, Athirstam; Chellappandian, Muthiah; Selin-Rani, Selvaraj; Lija-Escaline, Jalasteen; Kalaivani, Kandaswamy

    2017-03-01

    Aedes aegypti Linn is one of the most important mosquito species. The vectors are responsible for causing deadly diseases like dengue and dengue hemorrhagic fever. Several chemical pesticides used to control these dengue vectors caused severe toxic significances on human health and other non-target beneficial insects. Therefore the current investigation has been made to access the bio-efficacy of the crude seed extracts of T. chebula against the dengue vector Ae. aegypti. The GC-MS analysis of crude seed extracts of T. chebula identified nine chemical compounds with major peak area in the 1,2,3-Benzenetriol (61.96%), followed by Tridecanoic acid (09.55%). Ae. aegypti larvae showed dose dependent mortality rate was observed between the treatments. Prominent protection rate at greater concentrations of 100ppm and moderate protection at 75 and 50ppm was observed in the repellent assay. Lethal concentration (LC50 and LC90) of fourth instar larvae of Ae. aegypti was observed in 138 and 220ppm concentration respectively. Similarly, the seed extracts showed 100% adulticidal activity at the concentration of 400ppm at 30min of exposure time. Phytochemicals present in the seed extracts of T. chebula significantly affects the major portions of the midgut tissues of Ae. aegypti at the concentration of 100ppm. The toxicological evaluation of seed extracts also proved non-toxic towards the A. bouvieri and Tx. splendens aquatic predatory insects. Hence, the present result suggest that bio-rational plant derived T. chebula could be incorporated in the dengue vector control and have no adverse effects on non-target beneficial insects.

  19. Exploring New Thermal Fog and Ultra-Low Volume Technologies to Improve Indoor Control of the Dengue Vector, Aedes aegypti (Diptera: Culicidae)

    DTIC Science & Technology

    2014-07-01

    ULV]and thermal fog)wereevaluated for their ability toprovide immediate control of Ae. aegypti mosquitoes with a contact insecticide inside simulated...ULV] and thermal fog) were evaluated for their ability to provide immediate control of Ae. aegypti mosquitoes with a contact insecticide inside...peridomestic insecticide applications, as the pesticide delivery systemsmust be able to distribute lethal doses of active ingredient (a.i.) to all secluded areas

  20. Mass trapping with MosquiTRAPs does not reduce Aedes aegypti abundance

    PubMed Central

    Degener, Carolin Marlen; de Ázara, Tatiana Mingote Ferreira; Roque, Rosemary Aparecida; Rösner, Susanne; Rocha, Eliseu Soares Oliveira; Kroon, Erna Geessien; Codeço, Cláudia Torres; Nobre, Aline Araújo; Ohly, Jörg Johannes; Geier, Martin; Eiras, Álvaro Eduardo

    2015-01-01

    The objective of this study was to evaluate the effectiveness of Aedes aegypti mass trapping using the sticky trap MosquiTRAP (MQT) by performing a cluster randomised controlled trial in Manaus, state of Amazonas, Brazil. After an initial questionnaire and baseline monitoring of adult Ae. aegypti abundance with BG-Sentinel (BGS) traps in six clusters, three clusters were randomly assigned to the intervention arm where each participating household received three MQTs for mass trapping during 17 months. The remaining three clusters (control arm) did not receive traps. The effect of mass trapping on adult Ae. aegypti abundance was monitored fortnightly with BGS traps. During the last two months of the study, a serological survey was conducted. After the study, a second questionnaire was applied in the intervention arm. Entomological monitoring indicated that MQT mass trapping did not reduce adult Ae. aegypti abundance. The serological survey indicated that recent dengue infections were equally frequent in the intervention and the control arm. Most participants responded positively to questions concerning user satisfaction. According to the results, there is no evidence that mass trapping with MQTs can be used as a part of dengue control programs. The use of this sticky trap is only recommendable for dengue vector monitoring. PMID:25946154

  1. Mass trapping with MosquiTRAPs does not reduce Aedes aegypti abundance.

    PubMed

    Degener, Carolin Marlen; de Ázara, Tatiana Mingote Ferreira; Roque, Rosemary Aparecida; Rösner, Susanne; Rocha, Eliseu Soares Oliveira; Kroon, Erna Geessien; Codeço, Cláudia Torres; Nobre, Aline Araújo; Ohly, Jörg Johannes; Geier, Martin; Eiras, Álvaro Eduardo

    2015-06-01

    The objective of this study was to evaluate the effectiveness of Aedes aegypti mass trapping using the sticky trap MosquiTRAP (MQT) by performing a cluster randomised controlled trial in Manaus, state of Amazonas, Brazil. After an initial questionnaire and baseline monitoring of adult Ae. aegypti abundance with BG-Sentinel (BGS) traps in six clusters, three clusters were randomly assigned to the intervention arm where each participating household received three MQTs for mass trapping during 17 months. The remaining three clusters (control arm) did not receive traps. The effect of mass trapping on adult Ae. aegypti abundance was monitored fortnightly with BGS traps. During the last two months of the study, a serological survey was conducted. After the study, a second questionnaire was applied in the intervention arm. Entomological monitoring indicated that MQT mass trapping did not reduce adult Ae. aegypti abundance. The serological survey indicated that recent dengue infections were equally frequent in the intervention and the control arm. Most participants responded positively to questions concerning user satisfaction. According to the results, there is no evidence that mass trapping with MQTs can be used as a part of dengue control programs. The use of this sticky trap is only recommendable for dengue vector monitoring.

  2. Indoor Resting Behavior of Aedes aegypti (Diptera: Culicidae) in Acapulco, Mexico.

    PubMed

    Dzul-Manzanilla, Felipe; Ibarra-López, Jésus; Bibiano Marín, Wilbert; Martini-Jaimes, Andrés; Leyva, Joel Torres; Correa-Morales, Fabián; Huerta, Herón; Manrique-Saide, Pablo; Prokopec, Gonzalo Vazquez M

    2016-12-22

    The markedly anthropophilic and endophilic behaviors of Aedes aegypti (L.) make it a very efficient vector of dengue, chikungunya, and Zika viruses. Although a large body of research has investigated the immature habitats and conditions for adult emergence, relatively few studies have focused on the indoor resting behavior and distribution of vectors within houses. We investigated the resting behavior of Ae. aegypti indoors in 979 houses of the city of Acapulco, Mexico, by performing exhaustive indoor mosquito collections to describe the rooms and height at which mosquitoes were found resting. In total, 1,403 adult and 747 female Ae. aegypti were collected, primarily indoors (98% adults and 99% females). Primary resting locations included bedrooms (44%), living rooms (25%), and bathrooms (20%), followed by kitchens (9%). Aedes aegypti significantly rested below 1.5 m of height (82% adults, 83% females, and 87% bloodfed females); the odds of finding adult Ae. aegypti mosquitoes below 1.5 m was 17 times higher than above 1.5 m. Our findings provide relevant information for the design of insecticide-based interventions selectively targeting the adult resting population, such as indoor residual spraying.

  3. Human and environmental factors affecting Aedes aegypti distribution in an arid urban environment.

    PubMed

    Walker, Kathleen R; Joy, Teresa K; Ellers-Kirk, Christa; Ramberg, Frank B

    2011-06-01

    Aedes aegypti has reappeared in urban communities in the southwestern U.S.A. in the 1990s after a 40-year absence. In 2003 and 2004, a systematic survey was conducted throughout metropolitan Tucson, AZ, to identify human and environmental factors associated with Ae. aegypti distribution within an arid urban area. Aedes aegypti presence and abundance were measured monthly using the Centers for Disease Control and Prevention enhanced oviposition traps at sampling sites established in a grid at 3- to 4-km intervals across the city. Sampling occurred in the summer rainy season (July through September), the peak of mosquito activity in the region. Multiple regression analyses were conducted to determine relationships between mosquito density and factors that could influence mosquito distribution. House age was the only factor that showed a consistent significant association with Ae. aegypti abundance in both years: older houses had more mosquito eggs. This is the 1st study of Ae. aegypti distribution at a local level to identify house age as an explanatory factor independent of other human demographic factors. Further research into the reasons why mosquitoes were more abundant around older homes may help inform and refine future vector surveillance and control efforts in the event of a dengue outbreak in the region.

  4. Changing Domesticity of Aedes aegypti in Northern Peninsular Malaysia: Reproductive Consequences and Potential Epidemiological Implications

    PubMed Central

    Saifur, Rahman G. M.; Dieng, Hamady; Hassan, Ahmad Abu; Salmah, Md Rawi Che; Satho, Tomomitsu; Miake, Fumio; Hamdan, Ahmad

    2012-01-01

    Background The domestic dengue vector Aedes aegypti mosquitoes breed in indoor containers. However, in northern peninsular Malaysia, they show equal preference for breeding in both indoor and outdoor habitats. To evaluate the epidemiological implications of this peridomestic adaptation, we examined whether Ae. aegypti exhibits decreased survival, gonotrophic activity, and fecundity due to lack of host availability and the changing breeding behavior. Methodology/Principal Findings This yearlong field surveillance identified Ae. aegypti breeding in outdoor containers on an enormous scale. Through a sequence of experiments incorporating outdoors and indoors adapting as well as adapted populations, we observed that indoors provided better environment for the survival of Ae. aegypti and the observed death patterns could be explained on the basis of a difference in body size. The duration of gonotrophic period was much shorter in large-bodied females. Fecundity tended to be greater in indoor acclimated females. We also found increased tendency to multiple feeding in outdoors adapted females, which were smaller in size compared to their outdoors breeding counterparts. Conclusion/Significance The data presented here suggest that acclimatization of Ae. aegypti to the outdoor environment may not decrease its lifespan or gonotrophic activity but rather increase breeding opportunities (increased number of discarded containers outdoors), the rate of larval development, but small body sizes at emergence. Size is likely to be correlated with disease transmission. In general, small size in Aedes females will favor increased blood-feeding frequency resulting in higher population sizes and disease occurrence. PMID:22363516

  5. An evaluation of some Trinidadian plant extracts against larvae of Aedes aegypti mosquitoes.

    PubMed

    Mohammed, Azad; Chadee, Dave D

    2007-06-01

    In recent times, bioprospecting for plants that show bioactive properties has yielded many chemicals that can be used in controlling mosquitoes. Crude extracts of 4 terrestrial and 3 mangrove plants were assayed against 2-3 larval instars of Aedes aegypti. Among the plants tested, Cordia curassavica showed the highest levels of activity for all the extracts tested. Azadirachta indica showed the least activity, whereas the 2 cultivars of Mangifera indica showed substantial activity for the aqueous extracts. The mangrove species proved to be relatively nontoxic to Ae. aegypti larvae when compared to the terrestrial plants. The results of this study suggest that some common plants in Trinidad may be highly effective in controlling the urban vector of yellow fever and dengue fever, Ae. aegypti.

  6. Evidence of limited polyandry in a natural population of Aedes aegypti.

    PubMed

    Richardson, Joshua B; Jameson, Samuel B; Gloria-Soria, Andrea; Wesson, Dawn M; Powell, Jeffrey

    2015-07-01

    The mosquito Aedes aegypti is a vector of yellow fever, dengue, and chikungunya. Control of the insect is crucial to stop the spread of dengue and chikungunya, so it is critically important to understand its mating behavior. Primarily, based on laboratory behavior, it has long been assumed that Ae. aegypti females mate once in their lifetime. However, multiple inseminations have been observed in semi-field and laboratory settings, and in closely related species. Here, we report the first evidence of polyandry in a natural population of Ae. aegypti. Female Ae. aegypti were captured around the New Orleans, LA, metropolitan area. They were offered a blood meal and allowed to lay eggs, which were reared to the third-instar larval stage. A parentage analysis using four microsatellite loci was performed. Out of 48 families, 3 showed evidence of multiple paternity. An expanded analysis of these three families found that one family group included offspring contributed by three fathers, and the other two included offspring from two fathers. This result establishes that polyandry can occur in a small proportion of Ae. aegypti females in a natural setting. This could complicate future genetic control efforts and has implications for sampling for population genetics.

  7. Local Evolution of Pyrethroid Resistance Offsets Gene Flow Among Aedes aegypti Collections in Yucatan State, Mexico

    PubMed Central

    Saavedra-Rodriguez, Karla; Beaty, Meaghan; Lozano-Fuentes, Saul; Denham, Steven; Garcia-Rejon, Julian; Reyes-Solis, Guadalupe; Machain-Williams, Carlos; Loroño-Pino, Maria Alba; Flores-Suarez, Adriana; Ponce-Garcia, Gustavo; Beaty, Barry; Eisen, Lars; Black, William C.

    2015-01-01

    The mosquito Aedes aegypti is the major vector of the four serotypes of dengue virus (DENV1–4). Previous studies have shown that Ae. aegypti in Mexico have a high effective migration rate and that gene flow occurs among populations that are up to 150 km apart. Since 2000, pyrethroids have been widely used for suppression of Ae. aegypti in cities in Mexico. In Yucatan State in particular, pyrethroids have been applied in and around dengue case households creating an opportunity for local selection and evolution of resistance. Herein, we test for evidence of local adaptation by comparing patterns of variation among 27 Ae. aegypti collections at 13 single nucleotide polymorphisms (SNPs): two in the voltage-gated sodium channel gene para known to confer knockdown resistance, three in detoxification genes previously associated with pyrethroid resistance, and eight in putatively neutral loci. The SNPs in para varied greatly in frequency among collections, whereas SNPs at the remaining 11 loci showed little variation supporting previous evidence for extensive local gene flow. Among Ae. aegypti in Yucatan State, Mexico, local adaptation to pyrethroids appears to offset the homogenizing effects of gene flow. PMID:25371186

  8. Comparing dengue and chikungunya emergence and endemic transmission in A. aegypti and A. albopictus

    PubMed Central

    Manore, Carrie A.; Hickmann, Kyle S.; Xu, Sen; Wearing, Helen J.; Hyman, James M.

    2014-01-01

    Chikungunya and dengue are re-emerging mosquito-borne infectious diseases that are of increasing concern as human travel and expanding mosquito ranges increase the risk of spread. We seek to understand the differences in transient and endemic behavior of chikungunya and dengue; risk of emergence for different virus-vector assemblages; and the role that virus evolution plays in disease dynamics and risk. To address these questions, we adapt a mathematical mosquito-borne disease model to chikungunya and dengue in Aedes aegypti and Aedes albopictus mosquitoes. We derive analytical threshold conditions and important dimensionless parameters for virus transmission; perform sensitivity analysis on quantities of interest such as the basic reproduction number, endemic equilibrium, and first epidemic peak; and compute distributions for the quantities of interest across parameter ranges. We found that chikungunya and dengue exhibit different transient dynamics and long-term endemic levels. While the order of most sensitive parameters is preserved across vector-virus combinations, the magnitude of sensitivity is different across scenarios, indicating that risk of invasion or an outbreak can change with vector-virus assemblages. We found that the dengue-A. aegypti and new Rèunion strain of chikungunya-A. albopictus systems represent the highest risk across the range of parameters considered. These results inform future experimental and field research efforts and point toward effective mitigation strategies adapted to each disease. PMID:24801860

  9. Genetic Diversity of Brazilian Aedes aegypti: Patterns following an Eradication Program

    PubMed Central

    Monteiro, Fernando A.; Shama, Renata; Martins, Ademir J.; Gloria-Soria, Andrea; Brown, Julia E.; Powell, Jeffrey R.

    2014-01-01

    Background Aedes aegypti is the most important vector of dengue fever in Brazil, where severe epidemics have recently taken place. Ae. aegypti in Brazil was the subject of an intense eradication program in the 1940s and 50s to control yellow fever. Brazil was the largest country declared free of this mosquito by the Pan-American Health Organization in 1958. Soon after relaxation of this program, Ae. aegypti reappeared in this country, and by the early 1980s dengue fever had been reported. The aim of this study is to analyze the present-day genetic patterns of Ae. aegypti populations in Brazil. Methodology/Principal Findings We studied the genetic variation in samples of 11 widely spread populations of Ae. aegypti in Brazil based on 12 well-established microsatellite loci. Our principal finding is that present-day Brazilian Ae. aegypti populations form two distinct groups, one in the northwest and one in the southeast of the country. These two groups have genetic affinities to northern South American countries and the Caribbean, respectively. This is consistent with what has been reported for other genetic markers such as mitochondrial DNA and allele frequencies at the insecticide resistance gene, kdr. Conclusions/Significance We conclude that the genetic patterns in present day populations of Ae. aegypti in Brazil are more consistent with a complete eradication of the species in the recent past followed by re-colonization, rather than the alternative possibility of expansion from residual pockets of refugia. At least two colonizations are likely to have taken place, one from northern South American countries (e.g., Venezuela) that founded the northwestern group, and one from the Caribbean that founded the southeastern group. The proposed source areas were never declared free of Ae. aegypti. PMID:25233218

  10. Aedes aegypti (L.) in Latin American and Caribbean region: With growing evidence for vector adaptation to climate change?

    PubMed

    Chadee, Dave D; Martinez, Raymond

    2016-04-01

    Within Latin America and the Caribbean region the impact of climate change has been associated with the effects of rainfall and temperature on seasonal outbreaks of dengue but few studies have been conducted on the impacts of climate on the behaviour and ecology of Aedes aegypti mosquitoes.This study was conducted to examine the adaptive behaviours currently being employed by A. aegypti mosquitoes exposed to the force of climate change in LAC countries. The literature on the association between climate and dengue incidence is small and sometimes speculative. Few laboratory and field studies have identified research gaps. Laboratory and field experiments were designed and conducted to better understand the container preferences, climate-associated-adaptive behaviour, ecology and the effects of different temperatures and light regimens on the life history of A. aegypti mosquitoes. A. aegypti adaptive behaviours and changes in container preferences demonstrate how complex dengue transmission dynamics is, in different ecosystems. The use of underground drains and septic tanks represents a major behaviour change identified and compounds an already difficult task to control A. aegypti populations. A business as usual approach will exacerbate the problem and lead to more frequent outbreaks of dengue and chikungunya in LAC countries unless both area-wide and targeted vector control approaches are adopted. The current evidence and the results from proposed transdisciplinary research on dengue within different ecosystems will help guide the development of new vector control strategies and foster a better understanding of climate change impacts on vector-borne disease transmission.

  11. Shifting Patterns of Aedes aegypti Fine Scale Spatial Clustering in Iquitos, Peru

    PubMed Central

    LaCon, Genevieve; Morrison, Amy C.; Astete, Helvio; Stoddard, Steven T.; Paz-Soldan, Valerie A.; Elder, John P.; Halsey, Eric S.; Scott, Thomas W.; Kitron, Uriel; Vazquez-Prokopec, Gonzalo M.

    2014-01-01

    Background Empiric evidence shows that Aedes aegypti abundance is spatially heterogeneous and that some areas and larval habitats produce more mosquitoes than others. There is a knowledge gap, however, with regards to the temporal persistence of such Ae. aegypti abundance hotspots. In this study, we used a longitudinal entomologic dataset from the city of Iquitos, Peru, to (1) quantify the spatial clustering patterns of adult Ae. aegypti and pupae counts per house, (2) determine overlap between clusters, (3) quantify the temporal stability of clusters over nine entomologic surveys spaced four months apart, and (4) quantify the extent of clustering at the household and neighborhood levels. Methodologies/Principal Findings Data from 13,662 household entomological visits performed in two Iquitos neighborhoods differing in Ae. aegypti abundance and dengue virus transmission was analyzed using global and local spatial statistics. The location and extent of Ae. aegypti pupae and adult hotspots (i.e., small groups of houses with significantly [p<0.05] high mosquito abundance) were calculated for each of the 9 entomologic surveys. The extent of clustering was used to quantify the probability of finding spatially correlated populations. Our analyses indicate that Ae. aegypti distribution was highly focal (most clusters do not extend beyond 30 meters) and that hotspots of high vector abundance were common on every survey date, but they were temporally unstable over the period of study. Conclusions/Significance Our findings have implications for understanding Ae. aegypti distribution and for the design of surveillance and control activities relying on household-level data. In settings like Iquitos, where there is a relatively low percentage of Ae. aegypti in permanent water-holding containers, identifying and targeting key premises will be significantly challenged by shifting hotspots of Ae. aegypti infestation. Focusing efforts in large geographic areas with historically

  12. Reported Distribution of Aedes (Stegomyia) aegypti and Aedes (Stegomyia) albopictus in the United States, 1995-2016 (Diptera: Culicidae).

    PubMed

    Hahn, Micah B; Eisen, Rebecca J; Eisen, Lars; Boegler, Karen A; Moore, Chester G; McAllister, Janet; Savage, Harry M; Mutebi, John-Paul

    2016-06-09

    Aedes (Stegomyia) aegypti (L.) and Aedes (Stegomyia) albopictus (Skuse) transmit arboviruses that are increasing threats to human health in the Americas, particularly dengue, chikungunya, and Zika viruses. Epidemics of the associated arboviral diseases have been limited to South and Central America, Mexico, and the Caribbean in the Western Hemisphere, with only minor localized outbreaks in the United States. Nevertheless, accurate and up-to-date information for the geographical ranges of Ae. aegypti and Ae. albopictus in the United States is urgently needed to guide surveillance and enhance control capacity for these mosquitoes. We compiled county records for presence of Ae. aegypti and Ae. albopictus in the United States from 1995-2016, presented here in map format. Records were derived from the Centers for Disease Control and Prevention ArboNET database, VectorMap, the published literature, and a survey of mosquito control agencies, university researchers, and state and local health departments. Between January 1995 and March 2016, 183 counties from 26 states and the District of Columbia reported occurrence of Ae. aegypti, and 1,241 counties from 40 states and the District of Columbia reported occurrence of Ae. albopictus During the same time period, Ae. aegypti was collected in 3 or more years from 94 counties from 14 states and the District of Columbia, and Ae. albopictus was collected during 3 or more years from 514 counties in 34 states and the District of Columbia. Our findings underscore the need for systematic surveillance of Ae. aegypti and Ae. albopictus in the United States and delineate areas with risk for the transmission of these introduced arboviruses.

  13. Risk factors for the presence of Aedes aegypti and Aedes albopictus in domestic water-holding containers in areas impacted by the Nam Theun 2 hydroelectric project, Laos.

    PubMed

    Hiscox, Alexandra; Kaye, Angela; Vongphayloth, Khamsing; Banks, Ian; Piffer, Michele; Khammanithong, Phasouk; Sananikhom, Pany; Kaul, Surinder; Hill, Nigel; Lindsay, Steven W; Brey, Paul T

    2013-06-01

    We assessed risk factors for vectors of dengue and chikungunya viruses near a new hydroelectric project, Nam Theun 2, in Laos. Immature stages of Aedes aegypti were found only in sites within 40 km of the urban provincial capital, but Aedes albopictus was found throughout. Aedes aegypti pupae were most common in water storage jars (odds ratio [OR] = 4.72) and tires (OR = 2.99), and Ae. albopictus pupae were associated with tires in 2009 (OR = 10.87) and drums, tires, and jars in 2010 (drums OR = 3.05; tires OR = 3.45, jars OR = 6.59). Compared with water storage vessels, containers used for hygiene, cooking, and drinking were 80% less likely to harbor Ae. albopictus pupae in 2010 (OR = 0.20), and discarded waste was associated with a 3.64 increased odds of infestation. Vector control efforts should focus on source reduction of water storage containers, particularly concrete jars and tires.

  14. Mosquito-Borne Diseases and Omics: Salivary Gland Proteome of the Female Aedes aegypti Mosquito.

    PubMed

    Dhawan, Rakhi; Kumar, Manish; Mohanty, Ajeet Kumar; Dey, Gourav; Advani, Jayshree; Prasad, T S Keshava; Kumar, Ashwani

    2017-01-01

    The female Aedes aegypti mosquito is an important vector for several tropical and subtropical diseases such as dengue, chikungunya, and Zika and yellow fever. The disease viruses infect the mosquito and subsequently spread to the salivary glands after which the viruses can be transmitted to humans with probing or feeding by the mosquito. Omics systems sciences offer the opportunity to characterize vectors and can inform disease surveillance, vector control and development of innovative diagnostics, personalized medicines, vaccines, and insecticide targets. Using high-resolution mass spectrometry, we performed an analysis of the A. aegypti salivary gland proteome. The A. aegypti proteome resulted in acquisition of 83,836 spectra. Upon searches against the protein database of the A. aegypti, these spectra were assigned to 5417 unique peptides, belonging to 1208 proteins. To the best of our knowledge, this is the largest set of proteins identified in the A. aegypti salivary gland. Of note, 29 proteins were involved in immunity-related pathways in salivary glands. A subset of these proteins is known to interact with disease viruses. Another 15 proteins with signal cleavage site were found to be secretory in nature, and thus possibly playing critical roles in blood meal ingestion. These findings provide a baseline to advance our understanding of vector-borne diseases and vector-pathogen interactions before virus transmission in global health, and might therefore enable future design and development of virus-blocking strategies and novel molecular targets in the mosquito vector A. aegypti.

  15. Evidence for Aedes aegypti (Diptera: Culicidae) Oviposition on Boats in the Peruvian Amazon.

    PubMed

    Guagliardo, Sarah Anne; Morrison, Amy C; Luis Barboza, Jose; Wesson, Dawn M; Ponnusamy, Loganathan; Astete, Helvio; Vazquez-Prokopec, Gonzalo; Kitron, Uriel

    2015-07-01

    Dengue vector Aedes aegypti L. is invading peri-urban and rural areas throughout Latin America. Our previous research in the Peruvian Amazon has shown that river boats are heavily infested with immature and adult Ae. aegypti mosquitoes, likely playing a major role in their long-distance dispersal and successful invasion. However, the presence of immature mosquitoes provides no information about the timing of oviposition, and whether it took place in the boats. Here, we used baited ovitraps deployed on river boats to test the hypothesis that Ae. aegypti oviposition occurs during boat travel. We deployed 360 ovitraps on 60 different barges during August and October of 2013, and February 2014 (with 20 barges sampled during each month). We found that Ae. aegypti mosquitoes in 22 individual ovitraps from 15 of the 60 barges (premise index 25%) across all sampling dates. Further, the distribution of Ae. aegypti egg abundance was highly aggregated: 2.6% of traps (N=7) were responsible for 71.8% of eggs found, and 1.5% of traps (N=4) were responsible for all (100%) of the larvae found. Similarly, 5% of boats were responsible for the 71.47% of eggs. Our results provide strong evidence that Ae. aegypti oviposition commonly occurs during boat travel. Baited ovitraps could represent a cost-effective means of monitoring and controlling mosquito populations on boats.

  16. Characterization of Aedes aegypti (Diptera: Culcidae) production sites in urban Nicaragua.

    PubMed

    Hammond, Samantha N; Gordon, Aubree L; Lugo, Emperatriz del C; Moreno, Gilberto; Kuan, Guillermina M; López, María M; López, Josefa D; Delgado, Marco A; Valle, Sonia I; Espinoza, Perla M; Harris, Eva

    2007-09-01

    To characterize the production patterns of the dengue virus vector Aedes aegypti (L.) (Diptera: Culcidae), pupal surveys were conducted in selected neighborhoods of two major cities in Nicaragua. In León, 833 houses were visited in July and September 2003, corresponding to the beginning and middle of the dengue season; in Managua, 1,365 homes were visited in July 2003. In total, 7,607 containers were characterized, of which 11% were positive for Ae. aegypti larvae and 4% for pupae. In addition to barrels, potted plants and superficial water on tarps and in puddles were identified as highly productive sites. Univariate and multivariate analysis revealed frequency of container use, use of a lid, and rainwater filling as key variables affecting pupal positivity. Importantly, this survey demonstrated the risk associated with the presence of lids, the limited temporal efficacy of temephos, and the lack of association of water availability with risky water storage practices. Finally, we introduce the concept of an efficiency value and an accompanying graphical display system that can facilitate development of targeted pupal control strategies. These data underscore the importance of entomological surveillance of pupal productivity to gather information from which to derive streamlined, efficient, and effective vector control measures to reduce the density of Aedes mosquito larvae and pupae and thus the risk for dengue.

  17. Ecological Modeling of Aedes aegypti (L.) Pupal Production in Rural Kamphaeng Phet, Thailand

    PubMed Central

    Aldstadt, Jared; Koenraadt, Constantianus J. M.; Fansiri, Thanyalak; Kijchalao, Udom; Richardson, Jason; Jones, James W.; Scott, Thomas W.

    2011-01-01

    Background Aedes aegypti (L.) is the primary vector of dengue, the most important arboviral infection globally. Until an effective vaccine is licensed and rigorously administered, Ae. aegypti control remains the principal tool in preventing and curtailing dengue transmission. Accurate predictions of vector populations are required to assess control methods and develop effective population reduction strategies. Ae. aegypti develops primarily in artificial water holding containers. Release recapture studies indicate that most adult Ae. aegypti do not disperse over long distances. We expect, therefore, that containers in an area of high development site density are more likely to be oviposition sites and to be more frequently used as oviposition sites than containers that are relatively isolated from other development sites. After accounting for individual container characteristics, containers more frequently used as oviposition sites are likely to produce adult mosquitoes consistently and at a higher rate. To this point, most studies of Ae. aegypti populations ignore the spatial density of larval development sites. Methodology Pupal surveys were carried out from 2004 to 2007 in rural Kamphaeng Phet, Thailand. In total, 84,840 samples of water holding containers were used to estimate model parameters. Regression modeling was used to assess the effect of larval development site density, access to piped water, and seasonal variation on container productivity. A varying-coefficients model was employed to account for the large differences in productivity between container types. A two-part modeling structure, called a hurdle model, accounts for the large number of zeroes and overdispersion present in pupal population counts. Findings The number of suitable larval development sites and their density in the environment were the primary determinants of the distribution and abundance of Ae. aegypti pupae. The productivity of most container types increased significantly as

  18. In silico models for predicting vector control chemicals targeting Aedes aegypti.

    PubMed

    Devillers, J; Lagneau, C; Lattes, A; Garrigues, J C; Clémenté, M M; Yébakima, A

    2014-01-01

    Human arboviral diseases have emerged or re-emerged in numerous countries worldwide due to a number of factors including the lack of progress in vaccine development, lack of drugs, insecticide resistance in mosquitoes, climate changes, societal behaviours, and economical constraints. Thus, Aedes aegypti is the main vector of the yellow fever and dengue fever flaviviruses and is also responsible for several recent outbreaks of the chikungunya alphavirus. As for the other mosquito species, the A. aegypti control relies heavily on the use of insecticides. However, because of increasing resistance to the different families of insecticides, reduction of Aedes populations is becoming increasingly difficult. Despite the unquestionable utility of insecticides in fighting mosquito populations, there are very few new insecticides developed and commercialized for vector control. This is because the high cost of the discovery of an insecticide is not counterbalanced by the 'low profitability' of the vector control market. Fortunately, the use of quantitative structure-activity relationship (QSAR) modelling allows the reduction of time and cost in the discovery of new chemical structures potentially active against mosquitoes. In this context, the goal of the present study was to review all the existing QSAR models on A. aegypti. The homology and pharmacophore models were also reviewed. Specific attention was paid to show the variety of targets investigated in Aedes in relation to the physiology and ecology of the mosquito as well as the diversity of the chemical structures which have been proposed, encompassing man-made and natural substances.

  19. In silico models for predicting vector control chemicals targeting Aedes aegypti

    PubMed Central

    Devillers, J.; Lagneau, C.; Lattes, A.; Garrigues, J.C.; Clémenté, M.M.; Yébakima, A.

    2014-01-01

    Human arboviral diseases have emerged or re-emerged in numerous countries worldwide due to a number of factors including the lack of progress in vaccine development, lack of drugs, insecticide resistance in mosquitoes, climate changes, societal behaviours, and economical constraints. Thus, Aedes aegypti is the main vector of the yellow fever and dengue fever flaviviruses and is also responsible for several recent outbreaks of the chikungunya alphavirus. As for the other mosquito species, the A. aegypti control relies heavily on the use of insecticides. However, because of increasing resistance to the different families of insecticides, reduction of Aedes populations is becoming increasingly difficult. Despite the unquestionable utility of insecticides in fighting mosquito populations, there are very few new insecticides developed and commercialized for vector control. This is because the high cost of the discovery of an insecticide is not counterbalanced by the ‘low profitability’ of the vector control market. Fortunately, the use of quantitative structure–activity relationship (QSAR) modelling allows the reduction of time and cost in the discovery of new chemical structures potentially active against mosquitoes. In this context, the goal of the present study was to review all the existing QSAR models on A. aegypti. The homology and pharmacophore models were also reviewed. Specific attention was paid to show the variety of targets investigated in Aedes in relation to the physiology and ecology of the mosquito as well as the diversity of the chemical structures which have been proposed, encompassing man-made and natural substances. PMID:25275884

  20. Promising Aedes aegypti Repellent Chemotypes Identified through Integrated QSAR, Virtual Screening, Synthesis, and Bioassay

    PubMed Central

    Oliferenko, Polina V.; Oliferenko, Alexander A.; Poda, Gennadiy I.; Osolodkin, Dmitry I.; Pillai, Girinath G.; Bernier, Ulrich R.; Tsikolia, Maia; Agramonte, Natasha M.; Clark, Gary G.; Linthicum, Kenneth J.; Katritzky, Alan R.

    2013-01-01

    Molecular field topology analysis, scaffold hopping, and molecular docking were used as complementary computational tools for the design of repellents for Aedes aegypti, the insect vector for yellow fever, chikungunya, and dengue fever. A large number of analogues were evaluated by virtual screening with Glide molecular docking software. This produced several dozen hits that were either synthesized or procured from commercial sources. Analysis of these compounds by a repellent bioassay resulted in a few highly active chemicals (in terms of minimum effective dosage) as viable candidates for further hit-to-lead and lead optimization effort. PMID:24039693

  1. Costs of Three Wolbachia Infections on the Survival of Aedes aegypti Larvae under Starvation Conditions.

    PubMed

    Ross, Perran A; Endersby, Nancy M; Hoffmann, Ary A

    2016-01-01

    The mosquito Aedes aegypti, the principal vector of dengue virus, has recently been infected experimentally with Wolbachia: intracellular bacteria that possess potential as dengue biological control agents. Wolbachia depend on their hosts for nutrients they are unable to synthesize themselves. Consequently, competition between Wolbachia and their host for resources could reduce host fitness under the competitive conditions commonly experienced by larvae of Ae. aegypti in the field, hampering the invasion of Wolbachia into natural mosquito populations. We assess the survival and development of Ae. aegypti larvae under starvation conditions when infected with each of three experimentally-generated Wolbachia strains: wMel, wMelPop and wAlbB, and compare their fitness to wild-type uninfected larvae. We find that all three Wolbachia infections reduce the survival of larvae relative to those that are uninfected, and the severity of the effect is concordant with previously characterized fitness costs to other life stages. We also investigate the ability of larvae to recover from extended food deprivation and find no effect of Wolbachia on this trait. Aedes aegypti larvae of all infection types were able to resume their development after one month of no food, pupate rapidly, emerge at a large size, and exhibit complete cytoplasmic incompatibility and maternal transmission. A lowered ability of Wolbachia-infected larvae to survive under starvation conditions will increase the threshold infection frequency required for Wolbachia to establish in highly competitive natural Ae. aegypti populations and will also reduce the speed of invasion. This study also provides insights into survival strategies of larvae when developing in stressful environments.

  2. Costs of Three Wolbachia Infections on the Survival of Aedes aegypti Larvae under Starvation Conditions

    PubMed Central

    Ross, Perran A.; Endersby, Nancy M.; Hoffmann, Ary A.

    2016-01-01

    The mosquito Aedes aegypti, the principal vector of dengue virus, has recently been infected experimentally with Wolbachia: intracellular bacteria that possess potential as dengue biological control agents. Wolbachia depend on their hosts for nutrients they are unable to synthesize themselves. Consequently, competition between Wolbachia and their host for resources could reduce host fitness under the competitive conditions commonly experienced by larvae of Ae. aegypti in the field, hampering the invasion of Wolbachia into natural mosquito populations. We assess the survival and development of Ae. aegypti larvae under starvation conditions when infected with each of three experimentally-generated Wolbachia strains: wMel, wMelPop and wAlbB, and compare their fitness to wild-type uninfected larvae. We find that all three Wolbachia infections reduce the survival of larvae relative to those that are uninfected, and the severity of the effect is concordant with previously characterized fitness costs to other life stages. We also investigate the ability of larvae to recover from extended food deprivation and find no effect of Wolbachia on this trait. Aedes aegypti larvae of all infection types were able to resume their development after one month of no food, pupate rapidly, emerge at a large size, and exhibit complete cytoplasmic incompatibility and maternal transmission. A lowered ability of Wolbachia-infected larvae to survive under starvation conditions will increase the threshold infection frequency required for Wolbachia to establish in highly competitive natural Ae. aegypti populations and will also reduce the speed of invasion. This study also provides insights into survival strategies of larvae when developing in stressful environments. PMID:26745630

  3. Identification of Essential Containers for Aedes Larval Breeding to Control Dengue in Dhaka, Bangladesh

    PubMed Central

    Ferdousi, Farhana; Yoshimatsu, Shoji; Ma, Enbo; Sohel, Nazmul; Wagatsuma, Yukiko

    2015-01-01

    Dengue fever (DF), one of the most important emerging arboviral diseases, is transmitted through the bite of container breeding mosquitoes Aedes aegypti and Aedes albopictus. A household entomological survey was conducted in Dhaka from August through October 2000 to inspect water-holding containers in indoor, outdoor, and rooftop locations for Aedes larvae. The objective of this study was to determine mosquito productivity of each container type and to identify some risk factors of households infested with Aedes larvae. Of 9,222 households inspected, 1,306 (14.2%) were positive for Aedes larvae. Of 38,777 wet containers examined, 2,272 (5.8%) were infested with Aedes larvae. Containers used to hold water, such as earthen jars, tanks, and drums were the most common containers for larval breeding. Tires in outdoor and rooftop locations of the households were also important for larval breeding. Although present in abundance, buckets were of less importance. Factors such as independent household, presence of a water storage system in the house, and fully/partly shaded outdoors were found to be significantly associated with household infestation of Aedes larvae. Identification and subsequent elimination of the most productive containers in a given area may potentially reduce mosquito density to below a level at which dengue transmission may be halted. PMID:26865829

  4. Seasonal Genetic Changes of Aedes aegypti (Diptera: Culicidae) Populations in Selected Sites of Cebu City, Philippines

    PubMed Central

    Sayson, S. L.; Gloria-Soria, A.; Powell, J. R.; Edillo, F. E.

    2015-01-01

    Aedes aegypti (L.) is the primary vector of dengue virus in the Philippines, where dengue is endemic. We examined the genetic changes of Ae. aegypti collected from three selected sites in Cebu city, Philippines, during the relatively wet (2011–2012) and dry seasons (2012 and 2013). A total of 493 Ae. aegypti adults, reared in the laboratory from field-collected larvae, were analyzed using 11 microsatellite loci. Seasonal variation was observed in allele frequencies and allelic richness. Average genetic differentiation (DEST = 0.018; FST = 0.029) in both dry seasons was higher, due to reduced Ne, than in the wet season (DEST=0.006; FST=0.009). Thus, average gene flow was higher in the wet season than in the dry seasons. However, the overall FST estimate (0.02) inclusive of the two seasons showed little genetic differentiation as supported by Bayesian clustering analysis. Results suggest that during the dry season the intense selection that causes a dramatic reduction of population size favors heterozygotes, leading to small pockets of mosquitoes (refuges) that exhibit random genetic differentiation. During the wet season, the genetic composition of the population is reconstituted by the expansion of the refuges that survived the preceding dry season. Source reduction of mosquitoes during the nonepidemic dry season is thus recommended to prevent dengue re-emergence in the subsequent wet season. PMID:26335470

  5. Seasonal Genetic Changes of Aedes aegypti (Diptera: Culicidae) Populations in Selected Sites of Cebu City, Philippines.

    PubMed

    Sayson, S L; Gloria-Soria, A; Powell, J R; Edillo, F E

    2015-07-01

    Aedes aegypti (L.) is the primary vector of dengue virus in the Philippines, where dengue is endemic. We examined the genetic changes of Ae. aegypti collected from three selected sites in Cebu city, Philippines, during the relatively wet (2011-2012) and dry seasons (2012 and 2013). A total of 493 Ae. aegypti adults, reared in the laboratory from field-collected larvae, were analyzed using 11 microsatellite loci. Seasonal variation was observed in allele frequencies and allelic richness. Average genetic differentiation (DEST=0.018; FST=0.029) in both dry seasons was higher, due to reduced Ne, than in the wet season (DEST=0.006; FST=0.009). Thus, average gene flow was higher in the wet season than in the dry seasons. However, the overall FST estimate (0.02) inclusive of the two seasons showed little genetic differentiation as supported by Bayesian clustering analysis. Results suggest that during the dry season the intense selection that causes a dramatic reduction of population size favors heterozygotes, leading to small pockets of mosquitoes (refuges) that exhibit random genetic differentiation. During the wet season, the genetic composition of the population is reconstituted by the expansion of the refuges that survived the preceding dry season. Source reduction of mosquitoes during the nonepidemic dry season is thus recommended to prevent dengue re-emergence in the subsequent wet season.

  6. Insecticidal action of sodium anacardate from Brazilian cashew nut shell liquid against Aedes aegypti.

    PubMed

    Farias, Davi F; Cavalheiro, Mariana G; Viana, Sayonara M; De Lima, Glauber P G; da Rocha-Bezerra, Lady Clarissa B; Ricardo, Nágila M P S; Carvalho, Ana F U

    2009-09-01

    Aedes aegypti is the major vector of 1 of the most concerning arboviruses of the world, the dengue fever. The only effective way of reducing the incidence of dengue fever is to control the vector mosquito, mainly by application of insecticides to its breeding places. This study was aimed at assessing the insecticidal activity of sodium anacardate, isolated from Brazilian cashew nut shell liquid (CNSL), against the eggs, 3rd instars or pupae of Ae. aegypti. In addition, the acute toxicity of sodium anacardate to mice was also investigated. Sodium anacardate showed toxicity against Ae. aegypti eggs (median effective concentration [EC50] = 162.93 +/- 29.93 microg/ml), larvae (median lethal concentration [LC50] = 55.47 +/- 3.0 microg/ml) and pupae (LC50 = 369.78 - 52.30 microg/ml). On the other hand, even at high dose (0.3 g/kg body weight), this compound did not cause any adverse effects on mice, suggesting that this compound is safe to mammals. Therefore, sodium anacardate may be a viable low-cost alternative to help combat Ae. aegypti.

  7. Discriminating lethal concentrations and efficacy of six pyrethroids for control of Aedes aegypti in Thailand.

    PubMed

    Juntarajumnong, Waraporn; Pimnon, Sunthorn; Bangs, Michael J; Thanispong, Kanutcharee; Chareonviriyaphap, Theeraphap

    2012-03-01

    Establishing baseline insecticide discriminating doses is crucial in accurately determining susceptibility status and changing temporal patterns of physiological response in mosquito populations. Pyrethroids are the predominant chemicals used for controlling adult Aedes aegypti and Ae. albopictus, both vectors of dengue viruses, in Thailand. Presently, only 2 pyrethroids, permethrin and lambda-cyhalothrin, have published diagnostic dose rates for monitoring Ae. aegypti. This study established the diagnostic lethal concentrations for 6 different pyrethroids available in Thailand for dengue vector control. United States Department of Agriculture insecticide-susceptible strain of Ae. aegypti was used to establish the baseline concentrations for subsequent susceptibility testing of field populations. Our findings showed lower discriminating concentrations for lambda-cyhalothrin and permethrin than those recommended by the World Health Organization (WHO), at 2.5- and 1.7-fold lower dosing, respectively. The susceptibility status of 3 different geographical populations of field-collected Ae. aegypti were tested using the standard WHO procedures. All 3 field strains demonstrated varying levels of physiological resistance to each compound. We conclude that establishing the baseline diagnostic concentration of an insecticide is of paramount importance in accurately determining the susceptibility status in field-collected mosquitoes. If possible, discriminating doses should be established for all insecticides and test assays run concurrently with a known susceptible strain for more accurate monitoring of resistance in mosquito populations in Thailand.

  8. Toxicity and Larvicidal Activity of Podophyllum-Based Lignans Against Aedes aegypti (Diptera: Culicidae).

    PubMed

    Maleck, Marise; Hollanda, Priscila de Oliveira; Serdeiro, Michele Teixeira; Soares, Renata Oliveira de Araújo; Honório, Nildimar Alves; Silva, Cláudia Gontijo

    2017-01-01

    Aedes aegypti L. (Diptera: Culicidae) is a mosquito species that has adapted to urban environments and is the main vector of dengue viruses. Because of the increasing incidence of dengue, a more environmentally acceptable insecticide needs to be found. Natural products have been and continue to be an important source of leading compounds that can be modified in order to develop new drugs. The lignan family of natural products includes compounds with a diverse spectrum of biological activity. Podophyllotoxin and its related lignans represent an exciting class of natural products that can be targeted at different types of biological activity and are therefore worth exploring further. This study had the aim of evaluating the larvicidal activity of an ethanolic extract from the rhizomes and roots of Podophyllum hexandrum (PM-3) and its isolated lignans, podophyllotoxone (1) and desoxypodophyllotoxin (2), on the larvae of the mosquito vector Ae. aegypti. The PM-3 extract and the compounds (1) and (2) were dissolved in a mixture of acetone and dimethylsulfoxide at final concentrations of 1, 10, 30, 50, 100, and 200 μg/ml. After dilution, the solutions were applied (μg/ml) to the larvae-rearing medium. Overall, the ethanolic extract from the rhizomes and roots of P. hexandrum and the compounds (1) and (2) showed larvicidal activity against the larvae of Ae. aegypti According to the results from this study, it can be concluded that podophyllotoxone (1) and desoxypodophyllotoxin (2) exhibited significant toxicity toward Ae. aegypti larvae.

  9. Novel estimates of Aedes aegypti (Diptera: Culicidae) population size and adult survival based on Wolbachia releases.

    PubMed

    Ritchie, Scott A; Montgomery, Brian L; Hoffmann, Ary A

    2013-05-01

    The size of Aedes aegypti (L.) mosquito populations and adult survival rates have proven difficult to estimate because of a lack of consistent quantitative measures to equate sampling methods, such as adult trapping, to actual population size. However, such estimates are critical for devising control methods and for modeling the transmission of dengue and other infectious agents carried by this species. Here we take advantage of recent releases of Wolbachia-infected Ae. aegypti coupled with the results of ongoing monitoring to estimate the size of adult Ae. aegypti populations around Cairns in far north Queensland, Australia. Based on the association between released adults infected with Wolbachia and data from Biogents Sentinel traps, we show that data from two locations are consistent with population estimates of approximately 5-10 females per house and daily survival rates of 0.7-0.9 for the released Wolbachia-infected females. Moreover, we estimate that networks of Biogents Sentinel traps at a density of one per 15 houses capture around 5-10% of the adult population per week, and provide a rapid estimate of the absolute population size of Ae. aegypti. These data are discussed with respect to release rates and monitoring in future Wolbachia releases and also the levels of suppression required to reduce dengue transmission.

  10. Toxicity and Larvicidal Activity of Podophyllum-Based Lignans Against Aedes aegypti (Diptera: Culicidae).

    PubMed

    Maleck, Marise; Hollanda, Priscila de Oliveira; Serdeiro, Michele Teixeira; Soares, Renata Oliveira de Araújo; Honório, Nildimar Alves; Silva, Cláudia Gontijo

    2016-08-25

    Aedes aegypti L. (Diptera: Culicidae) is a mosquito species that has adapted to urban environments and is the main vector of dengue viruses. Because of the increasing incidence of dengue, a more environmentally acceptable insecticide needs to be found. Natural products have been and continue to be an important source of leading compounds that can be modified in order to develop new drugs. The lignan family of natural products includes compounds with a diverse spectrum of biological activity. Podophyllotoxin and its related lignans represent an exciting class of natural products that can be targeted at different types of biological activity and are therefore worth exploring further. This study had the aim of evaluating the larvicidal activity of an ethanolic extract from the rhizomes and roots of Podophyllum hexandrum (PM-3) and its isolated lignans, podophyllotoxone (1) and desoxypodophyllotoxin (2), on the larvae of the mosquito vector Ae. aegypti. The PM-3 extract and the compounds (1) and (2) were dissolved in a mixture of acetone and dimethylsulfoxide at final concentrations of 1, 10, 30, 50, 100, and 200 μg/ml. After dilution, the solutions were applied (μg/ml) to the larvae-rearing medium. Overall, the ethanolic extract from the rhizomes and roots of P. hexandrum and the compounds (1) and (2) showed larvicidal activity against the larvae of Ae. aegypti According to the results from this study, it can be concluded that podophyllotoxone (1) and desoxypodophyllotoxin (2) exhibited significant toxicity toward Ae. aegypti larvae.

  11. On the analysis of parasite effect for Aedes aegypti and Aedes albopictus population

    NASA Astrophysics Data System (ADS)

    Kallista, Meta; Aldila, Dipo; Nuraini, Nuning; Soewono, Edy

    2014-03-01

    It has been reported in some countries that the population of Aedes aegypti has been significantly reduced by the invasion of Aedes albopictus. There has been a hypothesis explaining this phenomenon of which investigated the influence of parasites pathogenesis to the competition between these two mosquito species in the fields. Ascogregarina taiwanensis and Ascogregarina culicis are known as parasites that infect Aedes albopictus and Aedes aegypti, respectively. Several studies have concluded that Ascogregarina taiwanensis caused high fatality for Aedes aegypti larvae, but Ascogregarina culicis was not pathogenic to Aedes albopictus larvae. Therefore, Ascogregarina taiwanensis may contribute to reduce the number of populations Aedes aegypti in the fields. Inspired by these facts, a mathematical model depicting interaction between parasites and mosquitoes is constructed in this paper. In this model are included six dynamic mosquito compartments, i.e. egg, larvae, infected larvae, adult, infected adult and one dynamic compartment for parasite. Derivation of the existence criteria and the stability analysis of parasite-free equilibrium as well as the basic offspring for the model are presented. Numerical simulations for sensitivity analysis indicating the invasive species for variation parameters are shown.

  12. Aedes cadherin mediates the in vivo toxicity of the Cry11Aa toxin to Aedes aegypti

    PubMed Central

    Aimanova, Karlygash G.; Gill, Sarjeet S.

    2014-01-01

    Cadherin plays an important role in the toxicity of Bacillus thuringiensis Cry proteins. We previously cloned a full-length cadherin from Aedes aegypti larvae and reported this protein binds Cry11Aa toxin from B. thuringiensis subsp. israelensis with high affinity, ≈ 16.7 nM. Based on these results, we investigated if Aedes cadherin is involved in the in vivo toxicity of Cry11Aa toxin to Ae. aegypti. We established a mosquito cell line stably expressing the full-length Aedes cadherin and transgenic mosquitoes with silenced Aedes cadherin expression. Cells expressing the Aedes cadherin showed increased sensitivity to Cry11Aa toxin. Cry11Aa toxin at 400 nM killed approximately 37% of the cells in 3 h. Otherwise, transgenic mosquitoes with silenced Aedes cadherin expression showed increased tolerance to Cry11Aa toxin. Furthermore, cells expressing Aedes cadherin triggered Cry11Aa oligomerization. These results show the Aedes cadherin plays a pivotal role in Cry11Aa toxicity to Ae. aegypti larvae by mediating Cry11Aa oligomerization. However, since high toxicity was not obtained in cadherin-expressing cells, an additional receptor may be needed for manifestation of full toxicity. Moreover, cells expressing Aedes cadherin were sensitive to Cry4Aa and Cry11Ba but not Cry4Ba. However transgenic mosquitoes with silenced Aedes cadherin expression showed no tolerance to Cry4Aa, Cry4Ba, and Cry11Ba toxins. These results suggest that while Aedes cadherin may mediate Cry4Aa and Cry11Ba toxicity, this cadherin but is not the main receptor of Cry4Aa, Cry4Ba and Cry11Ba toxin in Ae. aegypti. PMID:25064814

  13. Aedes cadherin mediates the in vivo toxicity of the Cry11Aa toxin to Aedes aegypti.

    PubMed

    Lee, Su-Bum; Chen, Jianwu; Aimanova, Karlygash G; Gill, Sarjeet S

    2015-06-01

    Cadherin plays an important role in the toxicity of Bacillus thuringiensis Cry proteins. We previously cloned a full-length cadherin from Aedes aegypti larvae and reported this protein binds Cry11Aa toxin from B. thuringiensis subsp. israelensis with high affinity, ≈16.7nM. Based on these results, we investigated if Aedes cadherin is involved in the in vivo toxicity of Cry11Aa toxin to Ae. aegypti. We established a mosquito cell line stably expressing the full-length Aedes cadherin and transgenic mosquitoes with silenced Aedes cadherin expression. Cells expressing the Aedes cadherin showed increased sensitivity to Cry11Aa toxin. Cry11Aa toxin at 400nM killed approximately 37% of the cells in 3h. Otherwise, transgenic mosquitoes with silenced Aedes cadherin expression showed increased tolerance to Cry11Aa toxin. Furthermore, cells expressing Aedes cadherin triggered Cry11Aa oligomerization. These results show the Aedes cadherin plays a pivotal role in Cry11Aa toxicity to Ae. aegypti larvae by mediating Cry11Aa oligomerization. However, since high toxicity was not obtained in cadherin-expressing cells, an additional receptor may be needed for manifestation of full toxicity. Moreover, cells expressing Aedes cadherin were sensitive to Cry4Aa and Cry11Ba, but not Cry4Ba. However transgenic mosquitoes with silenced Aedes cadherin expression showed no tolerance to Cry4Aa, Cry4Ba, and Cry11Ba toxins. These results suggest that while Aedes cadherin may mediate Cry4Aa and Cry11Ba toxicity, this cadherin but is not the main receptor of Cry4Aa, Cry4Ba and Cry11Ba toxin in Ae. aegypti.

  14. Septic tanks as larval habitats for the mosquitoes Aedes aegypti and Culex quinquefasciatus in Playa-Playita, Puerto Rico.

    PubMed

    Burke, R; Barrera, R; Lewis, M; Kluchinsky, T; Claborn, D

    2010-06-01

    Adult Aedes aegypti (Linnaeus) (Diptera: Culicidae) were previously recovered from emergence traps on septic tanks in southeastern Puerto Rico. In this study we quantified immature mosquito abundance and its relationship with structural variables of the septic tanks and chemical properties of the water containing raw sewage. A miniaturized floating funnel trap was used to sample 89 septic tanks for larvae in the Puerto Rican community of Playa-Playita. Aedes aegypti larvae were recovered from 18% of the sampled tanks (10.3 larvae per septic tank per day). Larval presence was positively associated with cracking of the septic tank walls and uncovered access ports. Larval abundance was positively associated with cracking of the septic tank walls and larger tank surface areas, and inversely associated with the total dissolved solids (TDS). Culex quinquefasciatus (Say) larvae were also recovered from 74% of the septic tanks (129.6 larvae per septic tank per day). Larval presence was negatively associated with TDS in the water and larval abundance was positively associated with cracking of the septic tank walls. A screened, plastic emergence trap was used to sample 93 septic tanks within the community for Ae. aegypti and Cx. quinquefasciatus adults. Aedes aegypti adults were recovered from 49% of the sampled tanks (8.7 adults per septic tank per day) and Cx. quinquefasciatus adults were recovered from 97% of the sampled tanks (155.5 adults per septic tank per day). Aedes aegypti adult presence was positively associated with cracking, uncapped openings and septic water pH. The Ae. aegypti adult counts were positively associated with cracking and inversely associated with TDS and conductivity. This study marks the first published record of the recovery of Ae. aegypti larvae from holding tanks containing raw sewage in the Caribbean region. Our study indicates that Ae. aegypti larvae are present in sewage water and that septic tanks have at least the potential to maintain

  15. Control of aedes aegypti breeding in desert coolers and tires by use of Bacillus thuringiensis var. Israelensis formulation.

    PubMed

    Batra, C P; Mittal, P K; Adak, T

    2000-12-01

    Three different formulations of Bacillus thuringiensis var. israelensis (Bti) were evaluated for their efficacy against immature Aedes aegypti in desert coolers and tires. Three formulations, viz., VectoBac tablets, VectoBac granules, and Bacticide powder, at the application rate of 0.75, 2, and 1 g per cooler, respectively, and VectoBac tablets at 0.75 and 0.375 g per tire, were evaluated. In coolers and tires, 100% reduction in the abundance of late larval instars of Ae. aegypti was observed for a period of 2 and 3 wk, respectively. The possibility of using tablets and capsules filled with Bti granules and powder formulation by individuals or communities for control of Ae. aegypti breeding has been discussed in view of the increasing outbreaks of dengue and dengue hemorrhagic fever in India. Use of these formulations over conventional methods is better and more user-friendly.

  16. Selective inhibitors of digestive enzymes from Aedes aegypti larvae identified by phage display.

    PubMed

    Soares, Tatiane Sanches; Soares Torquato, Ricardo Jose; Alves Lemos, Francisco Jose; Tanaka, Aparecida Sadae

    2013-01-01

    Dengue is a serious disease transmitted by the mosquito Aedes aegypti during blood meal feeding. It is estimated that the dengue virus is transmitted to millions of individuals each year in tropical and subtropical areas. Dengue control strategies have been based on controlling the vector, Ae. aegypti, using insecticide, but the emergence of resistance poses new challenges. The aim of this study was the identification of specific protease inhibitors of the digestive enzymes from Ae. aegypti larvae, which may serve as a prospective alternative biocontrol method. High affinity protein inhibitors were selected by all of the digestive serine proteases of the 4th instar larval midgut, and the specificity of these inhibitors was characterized. These inhibitors were obtained from a phage library displaying variants of HiTI, a trypsin inhibitor from Haematobia irritans, that are mutated in the reactive loop (P1-P4'). Based on the selected amino acid sequence pattern, seven HiTI inhibitor variants were cloned, expressed and purified. The results indicate that the HiTI variants named T6 (RGGAV) and T128 (WNEGL) were selected by larval trypsin-like (IC(50) of 1.1 nM) and chymotrypsin-like enzymes (IC(50) of 11.6 nM), respectively. The variants T23 (LLGGL) and T149 (GGVWR) inhibited both larval chymotrypsin-like (IC(50) of 4.2 nM and 29.0 nM, respectively) and elastase-like enzymes (IC(50) of 1.2 nM for both). Specific inhibitors were successfully obtained for the digestive enzymes of Ae. aegypti larvae by phage display. Our data also strongly suggest the presence of elastase-like enzymes in Ae. aegypti larvae. The HiTI variants T6 and T23 are good candidates for the development as a larvicide to control the vector.

  17. A review on symmetries for certain Aedes aegypti models

    NASA Astrophysics Data System (ADS)

    Freire, Igor Leite; Torrisi, Mariano

    2015-04-01

    We summarize our results related with mathematical modeling of Aedes aegypti and its Lie symmetries. Moreover, some explicit, group-invariant solutions are also shown. Weak equivalence transformations of more general reaction diffusion systems are also considered. New classes of solutions are obtained.

  18. Genome Investigations of Vector Competence in Aedes aegypti to Inform Novel Arbovirus Disease Control Approaches.

    PubMed

    Severson, David W; Behura, Susanta K

    2016-10-30

    Dengue (DENV), yellow fever, chikungunya, and Zika virus transmission to humans by a mosquito host is confounded by both intrinsic and extrinsic variables. Besides virulence factors of the individual arboviruses, likelihood of virus transmission is subject to variability in the genome of the primary mosquito vector, Aedes aegypti. The "vectorial capacity" of A. aegypti varies depending upon its density, biting rate, and survival rate, as well as its intrinsic ability to acquire, host and transmit a given arbovirus. This intrinsic ability is known as "vector competence". Based on whole transcriptome analysis, several genes and pathways have been predicated to have an association with a susceptible or refractory response in A. aegypti to DENV infection. However, the functional genomics of vector competence of A. aegypti is not well understood, primarily due to lack of integrative approaches in genomic or transcriptomic studies. In this review, we focus on the present status of genomics studies of DENV vector competence in A. aegypti as limited information is available relative to the other arboviruses. We propose future areas of research needed to facilitate the integration of vector and virus genomics and environmental factors to work towards better understanding of vector competence and vectorial capacity in natural conditions.

  19. QTL Mapping of Genome Regions Controlling Temephos Resistance in Larvae of the Mosquito Aedes aegypti

    PubMed Central

    Reyes-Solis, Guadalupe del Carmen; Saavedra-Rodriguez, Karla; Suarez, Adriana Flores; Black, William C.

    2014-01-01

    Introduction The mosquito Aedes aegypti is the principal vector of dengue and yellow fever flaviviruses. Temephos is an organophosphate insecticide used globally to suppress Ae. aegypti larval populations but resistance has evolved in many locations. Methodology/Principal Findings Quantitative Trait Loci (QTL) controlling temephos survival in Ae. aegypti larvae were mapped in a pair of F3 advanced intercross lines arising from temephos resistant parents from Solidaridad, México and temephos susceptible parents from Iquitos, Peru. Two sets of 200 F3 larvae were exposed to a discriminating dose of temephos and then dead larvae were collected and preserved for DNA isolation every two hours up to 16 hours. Larvae surviving longer than 16 hours were considered resistant. For QTL mapping, single nucleotide polymorphisms (SNPs) were identified at 23 single copy genes and 26 microsatellite loci of known physical positions in the Ae. aegypti genome. In both reciprocal crosses, Multiple Interval Mapping identified eleven QTL associated with time until death. In the Solidaridad×Iquitos (SLD×Iq) cross twelve were associated with survival but in the reciprocal IqxSLD cross, only six QTL were survival associated. Polymorphisms at acetylcholine esterase (AchE) loci 1 and 2 were not associated with either resistance phenotype suggesting that target site insensitivity is not an organophosphate resistance mechanism in this region of México. Conclusions/Significance Temephos resistance is under the control of many metabolic genes of small effect and dispersed throughout the Ae. aegypti genome. PMID:25330200

  20. Genome Investigations of Vector Competence in Aedes aegypti to Inform Novel Arbovirus Disease Control Approaches

    PubMed Central

    Severson, David W.; Behura, Susanta K.

    2016-01-01

    Dengue (DENV), yellow fever, chikungunya, and Zika virus transmission to humans by a mosquito host is confounded by both intrinsic and extrinsic variables. Besides virulence factors of the individual arboviruses, likelihood of virus transmission is subject to variability in the genome of the primary mosquito vector, Aedes aegypti. The “vectorial capacity” of A. aegypti varies depending upon its density, biting rate, and survival rate, as well as its intrinsic ability to acquire, host and transmit a given arbovirus. This intrinsic ability is known as “vector competence”. Based on whole transcriptome analysis, several genes and pathways have been predicated to have an association with a susceptible or refractory response in A. aegypti to DENV infection. However, the functional genomics of vector competence of A. aegypti is not well understood, primarily due to lack of integrative approaches in genomic or transcriptomic studies. In this review, we focus on the present status of genomics studies of DENV vector competence in A. aegypti as limited information is available relative to the other arboviruses. We propose future areas of research needed to facilitate the integration of vector and virus genomics and environmental factors to work towards better understanding of vector competence and vectorial capacity in natural conditions. PMID:27809220

  1. Larval Development of Aedes aegypti and Aedes albopictus in Peri-Urban Brackish Water and Its Implications for Transmission of Arboviral Diseases

    PubMed Central

    Ramasamy, Ranjan; Surendran, Sinnathamby N.; Jude, Pavilupillai J.; Dharshini, Sangaralingam; Vinobaba, Muthuladchumy

    2011-01-01

    Aedes aegypti (Linnaeus) and Aedes albopictus Skuse mosquitoes transmit serious human arboviral diseases including yellow fever, dengue and chikungunya in many tropical and sub-tropical countries. Females of the two species have adapted to undergo preimaginal development in natural or artificial collections of freshwater near human habitations and feed on human blood. While there is an effective vaccine against yellow fever, the control of dengue and chikungunya is mainly dependent on reducing freshwater preimaginal development habitats of the two vectors. We show here that Ae. aegypti and Ae. albopictus lay eggs and their larvae survive to emerge as adults in brackish water (water with <0.5 ppt or parts per thousand, 0.5–30 ppt and >30 ppt salt are termed fresh, brackish and saline respectively). Brackish water with salinity of 2 to 15 ppt in discarded plastic and glass containers, abandoned fishing boats and unused wells in coastal peri-urban environment were found to contain Ae. aegypti and Ae. albopictus larvae. Relatively high incidence of dengue in Jaffna city, Sri Lanka was observed in the vicinity of brackish water habitats containing Ae. aegypti larvae. These observations raise the possibility that brackish water-adapted Ae. aegypti and Ae. albopictus may play a hitherto unrecognized role in transmitting dengue, chikungunya and yellow fever in coastal urban areas. National and international health authorities therefore need to take the findings into consideration and extend their vector control efforts, which are presently focused on urban freshwater habitats, to include brackish water larval development habitats. PMID:22132243

  2. Field Efficacy of New Larvicide Products for Control of Multi-Resistant Aedes aegypti Populations in Martinique (French West Indies)

    PubMed Central

    Marcombe, Sébastien; Darriet, Frédéric; Agnew, Philip; Etienne, Manuel; Yp-Tcha, Marie-Michelle; Yébakima, André; Corbel, Vincent

    2011-01-01

    World-wide dengue vector control is hampered by the spread of insecticide resistance in Aedes aegypti. We report the resistance status of a wild Ae. aegypti population from Martinique (Vauclin) to conventional larvicides (Bacillus thuringiensis var israeliensis [Bti] and temephos) and potential alternatives (spinosad, diflubenzuron, and pyriproxyfen). The efficacy and residual activity of these insecticides were evaluated under simulated and field conditions. The Vauclin strain exhibited a high level of resistance to temephos, a tolerance to insect growth regulators, and full susceptibility to spinosad and Bti. In simulated trials, pyriproxyfen and Bti showed long residual activities in permanent breeding containers (28 and 37 weeks), whereas under field conditions they failed to curtail Ae. aegypti populations after four weeks. Conversely, diflubenzuron and spinosad showed a residual efficacy of 16 weeks, suggesting that these chemicals may be promising alternatives to Bti and temephos for controlling insecticide-resistant Ae. aegypti populations. PMID:21212213

  3. Field efficacy of new larvicide products for control of multi-resistant Aedes aegypti populations in Martinique (French West Indies).

    PubMed

    Marcombe, Sébastien; Darriet, Frédéric; Agnew, Philip; Etienne, Manuel; Yp-Tcha, Marie-Michelle; Yébakima, André; Corbel, Vincent

    2011-01-01

    World-wide dengue vector control is hampered by the spread of insecticide resistance in Aedes aegypti. We report the resistance status of a wild Ae. aegypti population from Martinique (Vauclin) to conventional larvicides (Bacillus thuringiensis var israeliensis [Bti] and temephos) and potential alternatives (spinosad, diflubenzuron, and pyriproxyfen). The efficacy and residual activity of these insecticides were evaluated under simulated and field conditions. The Vauclin strain exhibited a high level of resistance to temephos, a tolerance to insect growth regulators, and full susceptibility to spinosad and Bti. In simulated trials, pyriproxyfen and Bti showed long residual activities in permanent breeding containers (28 and 37 weeks), whereas under field conditions they failed to curtail Ae. aegypti populations after four weeks. Conversely, diflubenzuron and spinosad showed a residual efficacy of 16 weeks, suggesting that these chemicals may be promising alternatives to Bti and temephos for controlling insecticide-resistant Ae. aegypti populations.

  4. Influence of breeding site availability on the oviposition behaviour of Aedes aegypti.

    PubMed

    Abreu, Filipe Vieira Santos de; Morais, Maira Moreira; Ribeiro, Sérvio Pontes; Eiras, Álvaro Eduardo

    2015-08-01

    Despite the importance of the mosquito Aedes aegypti in the transmission of arboviruses, such as yellow fever, Chikungunya fever and dengue fever, some aspects of their behaviour remain unknown. In the present study, the oviposition behaviour of Ae. aegypti females that were exposed to different densities of breeding sites (2, 4, 8 and 16) was evaluated in laboratory and semi-field conditions. The number of breeding sites that were used was proportional to the number available, but tended towards stabilisation. Females used four-six breeding sites on average, with a maximum of 11. A high percentage of eggs was observed in the water, along with the presence of a breeding site termed "favourite", which received at least 40% of the eggs. The results are discussed in ecological, evolutionary and epidemiological approaches.

  5. Indoor volatiles of primary school classrooms in Tapachula, Chiapas, Mexico, are attractants to Aedes aegypti females.

    PubMed

    Torres Estrada, José Luis; Ríos Delgado, Silvany Mayoly; Takken, Willem

    2013-09-01

    We determined the behavioral response of Aedes aegypti females to volatile compounds collected in indoor primary school classrooms. Volatiles were collected from classrooms from 0800 through 1030 h and 1130 through 1400 h in urban and rural schools in Tapachula, Chiapas, Mexico. Female responses to volatiles were assessed in a Y-tube olfactometer. Chemical compounds were identified using gas chromatography-mass spectrometer analysis. Volatiles from both schools were attractive when compared against their control. When such volatiles were compared, those from the rural school were more attractive than the ones from the urban school. Chromatographic profiles were similar between schools; however, the rural school showed more compounds. Attraction of Ae. aegypti females toward volatiles of primary school classrooms might increase dengue transmission probabilities in those sites.

  6. Influence of breeding site availability on the oviposition behaviour of Aedes aegypti

    PubMed Central

    de Abreu, Filipe Vieira Santos; Morais, Maira Moreira; Ribeiro, Sérvio Pontes; Eiras, Álvaro Eduardo

    2015-01-01

    Despite the importance of the mosquito Aedes aegypti in the transmission of arboviruses, such as yellow fever, Chikungunya fever and dengue fever, some aspects of their behaviour remain unknown. In the present study, the oviposition behaviour of Ae. aegypti females that were exposed to different densities of breeding sites (2, 4, 8 and 16) was evaluated in laboratory and semi-field conditions. The number of breeding sites that were used was proportional to the number available, but tended towards stabilisation. Females used four-six breeding sites on average, with a maximum of 11. A high percentage of eggs was observed in the water, along with the presence of a breeding site termed “favourite”, which received at least 40% of the eggs. The results are discussed in ecological, evolutionary and epidemiological approaches. PMID:26154742

  7. Assessing the Feasibility of Controlling Aedes aegypti with Transgenic Methods: A Model-Based Evaluation

    PubMed Central

    Legros, Mathieu; Xu, Chonggang; Okamoto, Kenichi; Scott, Thomas W.; Morrison, Amy C.; Lloyd, Alun L.; Gould, Fred

    2012-01-01

    Suppression of dengue and malaria through releases of genetically engineered mosquitoes might soon become feasible. Aedes aegypti mosquitoes carrying a conditionally lethal transgene have recently been used to suppress local vector populations in small-scale field releases. Prior to releases of transgenic insects on a wider scale, however, most regulatory authorities will require additional evidence that suppression will be effective in natural heterogeneous habitats. We use a spatially explicit stochastic model of an Ae. aegypti population in Iquitos, Peru, along with an uncertainty analysis of its predictions, to quantitatively assess the outcome of varied operational approaches for releases of transgenic strains with conditional death of females. We show that population elimination might be an unrealistic objective in heterogeneous populations. We demonstrate that substantial suppression can nonetheless be achieved if releases are deployed in a uniform spatial pattern using strains combining multiple lethal elements, illustrating the importance of detailed spatial models for guiding genetic mosquito control strategies. PMID:23284949

  8. [Aedes (Stegomyia) aegypti (Linnaeus, 1762) breeding sites in native bromeliads in Vitória City, ES].

    PubMed

    Varejão, José Benedito Malta; Santos, Claudiney Biral dos; Rezende, Helder Ricas; Bevilacqua, Luiz Carlos; Falqueto, Aloísio

    2005-01-01

    Some insects that are vectors of human diseases have accompanied man in his migrations throughout the world and breed exclusively in the proximity of human dwellings. The mosquito Aedes aegypti has been responsible for epidemics of dengue in Brazil and its presence also constitutes a serious risk for future outbreaks of urban yellow fever. The failure of campaigns to eradicate this species justifies the search for alternative breeding sites, which may be beyond the reach of present control measures. In this study the occurrence of Aedes aegypti breeding sites in native bromeliads on rocky slopes was investigated in five areas of Vitória, capital of the Brazilian State of Espírito Santo, ES. Water contained in the bromeliads was collected with the aid of a suction apparatus to search for culicid larvae. The degree of infestation of buildings in adjacent urban areas was evaluated simultaneously. Culicid larvae were found in bromeliads in four of the five areas investigated, Aedes aegypti being present in two areas. The presence of breeding sites in bromeliads was not related to indices of infestation of buildings in adjacent areas. Further studies are necessary to define whether breeding sites in bromeliads constitute primary foci of Aedes aegypti, or are a consequence of high infestation levels in urban areas.

  9. Arbovirus Surveillance and First Report of Chikungunya Virus in Wild Populations of Aedes aegypti from Guerrero, Mexico.

    PubMed

    Dzul-Manzanilla, Felipe; Martínez, Norma E; Cruz-Nolasco, Maximina; Gutiérrez-Castro, Cipriano; López-Damián, Leonardo; Ibarra-López, Jesús; Martini, Andres; Torres-Leyva, Joel; Bibiano-Marín, Wilbert; Tornez-Benitez, Citlalli; Ayora-Talavera, Guadalupe; Manrique-Saide, Pablo

    2015-09-01

    We carried out dengue (DENV) and chikungunya virus (CHIKV) surveillance in wild populations of Aedes aegypti from Guerrero, Mexico, from 2012 to 2014 following a standard national protocol of the Mexican Dengue Control Program. A total of 284 pools (15-30 specimens/pool) of female mosquitoes were tested with real-time reverse transcriptase-polymerase chain reaction to detect DENV and CHIKV. We report for the 1st time the detection of CHIKV from field-collected mosquitoes at Acapulco and Juchitán in 2014. Results from DENV are also reported.

  10. Microclimate and human factors in the divergent ecology of Aedes aegypti along the Arizona, U.S./Sonora, MX border.

    PubMed

    Hayden, Mary H; Uejio, Christopher K; Walker, Kathleen; Ramberg, Frank; Moreno, Rafael; Rosales, Cecilia; Gameros, Mercedes; Mearns, Linda O; Zielinski-Gutierrez, Emily; Janes, Craig R

    2010-08-01

    This study examined the association of human and environmental factors with the presence of Aedes aegypti, the vector for dengue fever and yellow fever viruses, in a desert region in the southwest United States and northwest Mexico. Sixty-eight sites were longitudinally surveyed along the United States-Mexico border in Tucson, AZ, Nogales, AZ, and Nogales, Sonora during a 3-year period. Aedes aegypti presence or absence at each site was measured three times per year using standard oviposition traps. Maximum and minimum temperature and relative humidity were measured hourly at each site. Field inventories were conducted to measure human housing factors potentially affecting mosquito presence, such as the use of air-conditioning and evaporative coolers, outdoor vegetation cover, and access to piped water. The results showed that Ae. aegypti presence was highly variable across space and time. Aedes aegypti presence was positively associated with highly vegetated areas. Other significant variables included microclimatic differences and access to piped water. This study demonstrates the importance of microclimate and human factors in predicting Ae. aegypti distribution in an arid environment.

  11. Climate change and the potential global distribution of Aedes aegypti: spatial modelling using GIS and CLIMEX.

    PubMed

    Khormi, Hassan M; Kumar, Lalit

    2014-05-01

    We examined the potential added risk posed by global climate change on the dengue vector Aedes aegypti abundance using CLIMEX, a powerful tool for exploring the relationship between the fundamental and realised niche of any species. After calibrating the model using data from several knowledge domains, including geographical distribution records, we estimated potential distributions of the mosquito under current and future potential scenarios. The impact of climate change on its potential distribution was assessed with two global climate models, the CSIRO-Mk3.0 and the MIROC-H, run with two potential, future emission scenarios (A1B and A2) published by the Intergovernmental Panel on Climate Change. We compared today's climate situation with two arbitrarily chosen future time points (2030 and 2070) to see the impact on the worldwide distribution of A. aegypti . The model for the current global climate indicated favourable areas for the mosquito within its known distribution in tropical and subtropical areas. However, even if much of the tropics and subtropics will continue to be suitable, the climatically favourable areas for A. aegypti globally are projected to contract under the future scenarios produced by these models, while currently unfavourable areas, such as inland Australia, the Arabian Peninsula, southern Iran and some parts of North America may become climatically favourable for this mosquito species. The climate models for the Aedes dengue vector presented here should be useful for management purposes as they can be adapted for decision/making regarding allocation of resources for dengue risk toward areas where risk infection remains and away from areas where climatic suitability is likely to decrease in the future.

  12. Neuropeptidomics of the Mosquito Aedes Aegypti

    DTIC Science & Technology

    2010-01-01

    and PK in different ganglia, differential posttranslational pro- cessing of CAPA-PVK-2 in Ae. aegypti tissues was observed. The N-terminally blocked...secretory cells (X cells) is separate and posterior to the CC, and axons from these cells extend to the CC. In female An. gambiae and Ae. aegypti , these...Expression of a gene encoding AKH-2 was characterized in Ae. aegypti .19 Native AKH-2 was resolved by HPLC from head extracts of female An. gambiae in

  13. Seasonal Differences in Density But Similar Competitive Impact of Aedes albopictus (Skuse) on Aedes aegypti (L.) in Rio de Janeiro, Brazil.

    PubMed

    Camara, Daniel Cardoso Portela; Codeço, Claudia Torres; Juliano, Steven A; Lounibos, L Philip; Riback, Thais Irene Souza; Pereira, Glaucio Rocha; Honorio, Nildimar Alves

    2016-01-01

    Previous studies have shown that the negative effects of density of Ae. albopictus on Ae. aegypti exceed those of Ae. aegypti on Ae. albopictus for population growth, adult size, survivorship, and developmental rate. This competitive superiority has been invoked to explain the displacement of Ae. aegypti by Ae. albopictus in the southeastern USA. In Brazil, these species coexist in many vegetated suburban and rural areas. We investigated a related, but less-well-studied question: do effects of Ae. albopictus on Ae. aegypti larval development and survival occur under field conditions at realistic densities across multiple seasons in Brazil? We conducted additive competition experiments in a vegetated area of Rio de Janeiro where these species coexist. We tested the hypothesis that Ae. aegypti (the focal species, at a fixed density) suffers negative effects on development and survivorship across a gradient of increasing densities of Ae. albopictus (the associate species) in three seasons. The results showed statistically significant effects of both season and larval density on Ae. aegypti survivorship, and significant effects of season on development rate, with no significant season-density interactions. Densities of Aedes larvae in these habitats differed among seasons by a factor of up to 7x. Overall, Spring was the most favorable season for Ae. aegypti survivorship and development. Results showed that under natural conditions the negative competitive effects of Ae. albopictus on Ae. aegypti were expressed primarily as lower survivorship. Coexistence between Ae. aegypti and Ae. albopictus in vegetated areas is likely affected by seasonal environmental differences, such as detrital resource levels or egg desiccation, which can influence competition between these species. Interactions between these Aedes are important in Brazil, where both species are well established and widely distributed and vector dengue, Zika and chikungunya viruses.

  14. Seasonal Differences in Density But Similar Competitive Impact of Aedes albopictus (Skuse) on Aedes aegypti (L.) in Rio de Janeiro, Brazil

    PubMed Central

    Camara, Daniel Cardoso Portela; Codeço, Claudia Torres; Juliano, Steven A.; Lounibos, L. Philip; Riback, Thais Irene Souza; Pereira, Glaucio Rocha; Honorio, Nildimar Alves

    2016-01-01

    Previous studies have shown that the negative effects of density of Ae. albopictus on Ae. aegypti exceed those of Ae. aegypti on Ae. albopictus for population growth, adult size, survivorship, and developmental rate. This competitive superiority has been invoked to explain the displacement of Ae. aegypti by Ae. albopictus in the southeastern USA. In Brazil, these species coexist in many vegetated suburban and rural areas. We investigated a related, but less-well-studied question: do effects of Ae. albopictus on Ae. aegypti larval development and survival occur under field conditions at realistic densities across multiple seasons in Brazil? We conducted additive competition experiments in a vegetated area of Rio de Janeiro where these species coexist. We tested the hypothesis that Ae. aegypti (the focal species, at a fixed density) suffers negative effects on development and survivorship across a gradient of increasing densities of Ae. albopictus (the associate species) in three seasons. The results showed statistically significant effects of both season and larval density on Ae. aegypti survivorship, and significant effects of season on development rate, with no significant season-density interactions. Densities of Aedes larvae in these habitats differed among seasons by a factor of up to 7x. Overall, Spring was the most favorable season for Ae. aegypti survivorship and development. Results showed that under natural conditions the negative competitive effects of Ae. albopictus on Ae. aegypti were expressed primarily as lower survivorship. Coexistence between Ae. aegypti and Ae. albopictus in vegetated areas is likely affected by seasonal environmental differences, such as detrital resource levels or egg desiccation, which can influence competition between these species. Interactions between these Aedes are important in Brazil, where both species are well established and widely distributed and vector dengue, Zika and chikungunya viruses. PMID:27322537

  15. Aedes aegypti immature forms distribution according to type of breeding site.

    PubMed

    Medronho, Roberto A; Macrini, Leonardo; Novellino, Daniele M; Lagrotta, Marcos T F; Câmara, Volney M; Pedreira, Carlos E

    2009-03-01

    More than 2.5 billion people, in more than 100 countries, are estimated to live in risk areas for the transmission of dengue. We investigated the production of Aedes aegypti immature forms in different types of containers. Larvae and pupae presence were inspected in 747 containers in 300 dwellings in Rio de Janeiro state, Brazil. The statistical significance of the differences of immature forms was calculated for different groups of recipients and classified according to the type of use, volume, and material. Containers used to store water and those classified as garbage enclosed 90.2% of the larvae and 88.9% of the pupae. We concluded that a wider covering of more regular water supply, as well as regular garbage collection, are decisive factors for an effective control of dengue vector.

  16. New Records of Aedes aegypti In Southern Oklahoma, 2016.

    PubMed

    Bradt, David L; Bradley, Kristy K; Hoback, W Wyatt; Noden, Bruce H

    2017-03-01

    Aedes aegypti is an important subtropical vector species and is predicted to have a limited year-round distribution in the southern United States. Collection of the species has not been officially verified in Oklahoma since 1940. Adult mosquitoes were collected in 42 sites across 7 different cities in Oklahoma using 3 different mosquito traps between May and September 2016. Between July and September 2016, 88 Ae. aegypti adults were collected at 18 different sites in 4 different cities across southern Oklahoma. Centers for Disease Control and Prevention mini light traps baited with CO2 attracted the highest numbers of Ae. aegypti individuals compared to Biogents (BG)-Sentinel(®) traps baited with Biogents (BG)-lure and octenol and Centers for Disease Control and Prevention gravid traps baited with Bermuda grass-infused water. The discovery of Ae. aegypti mosquitoes within urban/exurban areas in Oklahoma is important from an ecological as well as a public health perspective.

  17. Oviposition deterrent activity from the ethanolic extract of Pongamia pinnata, Coleus forskohlii, and Datura stramonium leaves against Aedes aegypti and Culex quinquefaciatus.

    PubMed

    Swathi, S; Murugananthan, G; Ghosh, S K

    2010-10-01

    Mosquitoes are responsible for spread of many diseases than any other group of arthropods. Diseases such as malaria, filariasis, dengue hemorrhagic fever (DHF), and chikunguinya are real threat to mankind. In the present study, ethanolic extracts of leaves of Pongamia pinnata, Coleus forskohlii, and Datura stramonium were evaluated for oviposition deterrent activity against Aedes aegypti and Culex quinquefasciatus. The oviposition deterrent tests of ethanolic extract of Pongamia pinnata, Coleus forskohlii, and Datura stramonium leaves reduced egg laying by 97.62%, 77.3%, 100% against Aedes aegypti and 59.10%, 39.22%, 82% against Culex quinquefasciatus at higher concentration (0.1%).

  18. Oral toxicity of Photorhabdus luminescens and Xenorhabdus nematophila (Enterobacteriaceae) against Aedes aegypti (Diptera: Culicidae).

    PubMed

    da Silva, Onilda Santos; Prado, Geronimo Rodrigues; da Silva, João Luiz Rosa; Silva, Carlos Eugenio; da Costa, Marisa; Heermann, Ralf

    2013-08-01

    Dengue fever is an important vector-borne disease, mainly transmitted by Aedes aegypti. To date, there are no vaccines or effective drugs available against this arboviral disease. As mosquito control is practically the only method available to control dengue fever, alternative and cost-effective pest control strategies need to be explored. The gram-negative enteric bacteria Xenorhabdus and Photorhabdus are symbiotically associated with nematode parasites, which themselves are highly pathogenic for insect larvae. Here, we evaluate the oral toxicity of these entomopathogenic bacteria in A. aegypti larvae. The susceptibility of larvae (third late or fourth early instars) was assessed by exposing them to suspensions containing Photorhabdus luminescens or Xenorhabdus nematophila, respectively. Two diet treatments were tested with larvae fed on pet food and unfed larvae. After 24 h, larvae began to die when exposed to the bacteria. Exposure to P. luminescens killed 73% of the fed and 83% of the unfed larvae, respectively. In comparison, X. nematophila was less pathogenic, killing 52% of the larvae in the fed and 42% in the unfed treatment. Remarkably, cannibalism was observed in all bioassays after exposing larvae to either of the bacterial species. To our knowledge, this is the first report demonstrating the efficiency of these entomopathogenic bacteria for oral A. aegypti killing. Our results provide a promising basis for using these bacteria as bioinsecticides for mosquito control in the future.

  19. Comparison of wing geometry data and genetic data for assessing the population structure of Aedes aegypti.

    PubMed

    Vidal, Paloma Oliveira; Suesdek, Lincoln

    2012-04-01

    Aedes aegypti is the most important vector of dengue viruses in tropical and subtropical regions. Because vaccines are still under development, dengue prevention depends primarily on vector control. Population genetics is a common approach in research involving Ae. aegypti. In the context of medical entomology, wing morphometric analysis has been proposed as a strong and low-cost complementary tool for investigating population structure. Therefore, we comparatively evaluated the genetic and phenotypic variability of population samples of Ae. aegypti from four sampling sites in the metropolitan area of São Paulo city, Brazil. The distances between the sites ranged from 7.1 to 50 km. This area, where knowledge on the population genetics of this mosquito is incipient, was chosen due to the thousands of dengue cases registered yearly. The analysed loci were polymorphic, and they revealed population structure (global F(ST)=0.062; p<0.05) and low levels of gene flow (Nm=0.47) between the four locations. Principal component and discriminant analyses of wing shape variables (18 landmarks) demonstrated that wing polymorphisms were only slightly more common between populations than within populations. Whereas microsatellites allowed for geographic differentiation, wing geometry failed to distinguish the samples. These data suggest that microevolution in this species may affect genetic and morphological characters to different degrees. In this case, wing shape was not validated as a marker for assessing population structure. According to the interpretation of a previous report, the wing shape of Ae. aegypti does not vary significantly because it is stabilised by selective pressure.

  20. Germ band retraction as a landmark in glucose metabolism during Aedes aegypti embryogenesis

    PubMed Central

    2010-01-01

    Background The mosquito A. aegypti is vector of dengue and other viruses. New methods of vector control are needed and can be achieved by a better understanding of the life cycle of this insect. Embryogenesis is a part of A. aegypty life cycle that is poorly understood. In insects in general and in mosquitoes in particular energetic metabolism is well studied during oogenesis, when the oocyte exhibits fast growth, accumulating carbohydrates, lipids and proteins that will meet the regulatory and metabolic needs of the developing embryo. On the other hand, events related with energetic metabolism during A. aegypti embryogenesis are unknown. Results Glucose metabolism was investigated throughout Aedes aegypti (Diptera) embryonic development. Both cellular blastoderm formation (CBf, 5 h after egg laying - HAE) and germ band retraction (GBr, 24 HAE) may be considered landmarks regarding glucose 6-phosphate (G6P) destination. We observed high levels of glucose 6-phosphate dehydrogenase (G6PDH) activity at the very beginning of embryogenesis, which nevertheless decreased up to 5 HAE. This activity is correlated with the need for nucleotide precursors generated by the pentose phosphate pathway (PPP), of which G6PDH is the key enzyme. We suggest the synchronism of egg metabolism with carbohydrate distribution based on the decreasing levels of phosphoenolpyruvate carboxykinase (PEPCK) activity and on the elevation observed in protein content up to 24 HAE. Concomitantly, increasing levels of hexokinase (HK) and pyruvate kinase (PK) activity were observed, and PEPCK reached a peak around 48 HAE. Glycogen synthase kinase (GSK3) activity was also monitored and shown to be inversely correlated with glycogen distribution during embryogenesis. Conclusions The results herein support the hypothesis that glucose metabolic fate changes according to developmental embryonic stages. Germ band retraction is a moment that was characterized as a landmark in glucose metabolism during Aedes

  1. Aedes aegypti in Córdoba Province, Argentina.

    PubMed

    Avilés, G; Cecchini, R; Harrington, M E; Cichero, J; Asis, R; Rios, C

    1997-09-01

    In 1955, the area infested by Aedes aegypti in Argentina was estimated as 1,500,000 km2; and in 1963, the species was considered to be eradicated from Argentina. In 1995, the Argentine Ministry of Health reported reinfestation by Ae. aegypti. During 1994-95, the Ministry of Health of Córdoba Province, Zoonosis Department, established a surveillance system for Ae. aegypti in Córdoba Province, Argentina. This report is a summary of results obtained thus far. In total, 74 localities in Córdoba Province were sampled during August 1994-April 1996, resulting in 5 positives (6.7%): Villa María city, Villa Nueva, and Córdoba city in 1995, and Juarez Celman and Jesús María in 1996. In Villa María and Villa Nueva, Ae. aegypti was present until June 1995 (autumn) and reappeared in December 1995. In Córdoba city, Ae. aegypti was eliminated from the only positive house in May 1995, but it reappeared in March 1996. Reappearance of Ae. aegypti in this temperate area in early summer may have been due to the survival of individuals during winter and not to reintroduction during summertime. The last previous active surveillance for Ae. aegypti in Córdoba Province was carried out more than 30 years ago.

  2. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus

    PubMed Central

    Kraemer, Moritz UG; Sinka, Marianne E; Duda, Kirsten A; Mylne, Adrian QN; Shearer, Freya M; Barker, Christopher M; Moore, Chester G; Carvalho, Roberta G; Coelho, Giovanini E; Van Bortel, Wim; Hendrickx, Guy; Schaffner, Francis; Elyazar, Iqbal RF; Teng, Hwa-Jen; Brady, Oliver J; Messina, Jane P; Pigott, David M; Scott, Thomas W; Smith, David L; Wint, GR William; Golding, Nick; Hay, Simon I

    2015-01-01

    Dengue and chikungunya are increasing global public health concerns due to their rapid geographical spread and increasing disease burden. Knowledge of the contemporary distribution of their shared vectors, Aedes aegypti and Aedes albopictus remains incomplete and is complicated by an ongoing range expansion fuelled by increased global trade and travel. Mapping the global distribution of these vectors and the geographical determinants of their ranges is essential for public health planning. Here we compile the largest contemporary database for both species and pair it with relevant environmental variables predicting their global distribution. We show Aedes distributions to be the widest ever recorded; now extensive in all continents, including North America and Europe. These maps will help define the spatial limits of current autochthonous transmission of dengue and chikungunya viruses. It is only with this kind of rigorous entomological baseline that we can hope to project future health impacts of these viruses. DOI: http://dx.doi.org/10.7554/eLife.08347.001 PMID:26126267

  3. Larvicidal activity of some Euphorbiaceae plant extracts against Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae).

    PubMed

    Rahuman, A Abdul; Gopalakrishnan, Geetha; Venkatesan, P; Geetha, Kannappan

    2008-04-01

    Larvicidal activity of ethyl acetate, butanol, and petroleum ether extracts of five species of Euphorbiaceae plants, Jatropha curcas, Pedilanthus tithymaloides, Phyllanthus amarus, Euphorbia hirta, and Euphorbia tirucalli, were tested against the early fourth instar larvae of Aedes aegypti L. and Culex quinquefasciatus (Say). The larval mortality was observed after 24 h of exposure. All extracts showed low larvicidal effects; however, the highest larval mortality was found in petroleum ether extract. The LC50 value of petroleum ether extracts of J. curcas, P. tithymaloides, P. amarus, E. hirta, and E. tirucalli were 8.79, 55.26, 90.92, 272.36, and 4.25 ppm, respectively, against A. aegypti and 11.34, 76.61, 113.40, 424.94, and 5.52 ppm, respectively, against C quinquefasciatus. Of the various ratios tested, the petroleum ether extracts of J. curcas and E. tirucalli were observed to be more efficient than the other plant extracts. It is, therefore, suggested that E. tirucalli can be applied as an ideal potential larvicide against A. aegypti and C. quinquefasciatus. This is an ideal ecofriendly approach for the control of the dengue vector, A. aegypti, and the lymphatic filariasis vector, C. quinquefasciatus.

  4. Insecticidal and Repellent Activity of Several Plant-Derived Essential Oils Against Aedes aegypti.

    PubMed

    Castillo, Ruth M; Stashenko, Elena; Duque, Jonny E

    2017-03-01

    We examined the pupicidal, adulticidal, repellent, and oviposition-deterrent activities of essential oils (EOs) from Lippia alba, L. origanoides, Eucalyptus citriodora, Cymbopogon citratus, Cymbopogon flexuosus, Citrus sinensis , Cananga odorata , Swinglea glutinosa, and Tagetes lucida plants against Aedes aegypti under laboratory conditions. Pupicidal and adulticidal activities were assessed at exploratory concentrations of 250, 310, and 390 parts per million (ppm); and 30, 300, and 1,000 ppm, respectively. The greatest pupicidal activity was exhibited at 390 ppm with a 24-h exposure by L. origanoides, and 390 ppm with a 48-h exposure by Citrus sinensis . Lippia origanoides killed all adult mosquitoes at 300 ppm after 120 min of exposure. Only L. origanoides and E. citriodora EOs, applied at 1,000 ppm to human skin, produced the greatest repellency (100%) to host-seeking Ae. aegypti after 2 min of exposure; the repellency decreased between 12% and 10% after 15 min. Complete oviposition deterrence by gravid Ae. aegypti was observed for E. citriodora EOs at 200 ppm with an oviposition activity index of -1.00. These results confirm that the EOs assessed in this study have insecticidal, repellent, and oviposition-deterrent activities against the dengue vector, Ae. aegypti.

  5. Behavioral Response of Aedes aegypti Mosquito towards Essential Oils Using Olfactometer

    PubMed Central

    Uniyal, Ashish; Tikar, Sachin N; Mendki, Murlidhar J; Singh, Ram; Shukla, Shakti V; Agrawal, Om P; Veer, Vijay; Sukumaran, Devanathan

    2016-01-01

    Background: Aedes aegypti mosquito is responsible for transmitting human diseases like dengue and chikungunya. Personal or space protection with insect repellents is a practical approach to reducing human mosquito contact, thereby minimizing disease transmission. Essential oils are natural volatile substances from plants used as protective measure against blood-sucking mosquitoes. Methods: Twenty-three essential oils were evaluated for their repellent effect against Ae. aegypti female mosquito in laboratory conditions using Y-tube olfactometer. Results: The essential oils exhibited varying degree of repellency. Litsea oil showed 50.31%, 60.2 %, and 77.26% effective mean repellency at 1 ppm, 10 ppm and 100 ppm respectively, while DEET exhibited 59.63%, 68.63%, 85.48% and DEPA showed 57.97%, 65.43%, and 80.62% repellency at respective above concentrations. Statistical analysis revealed that among the tested essential oils, litsea oil had effective repellency in comparison with DEET and DEPA against Ae. aegypti mosquito at all concentration. Essential oils, DEET and DEPA showed significant repellence against Ae. aegypti (P< 0.05) at all 3 concentration tested. Conclusion: Litsea oil exhibited effective percentage repellency similar to DEET and DEPA. The essential oils are natural plant products that may be useful for developing safer and newer herbal based effective mosquito repellents. PMID:27308295

  6. Long-term spatio-temporal dynamics of the mosquito Aedes aegypti in temperate Argentina.

    PubMed

    Fischer, S; De Majo, M S; Quiroga, L; Paez, M; Schweigmann, N

    2017-04-01

    Buenos Aires city is located near the southern limit of the distribution of Aedes aegypti (Diptera: Culicidae). This study aimed to assess long-term variations in the abundance of Ae. aegypti in Buenos Aires in relation to changes in climatic conditions. Ae. aegypti weekly oviposition activity was analyzed and compared through nine warm seasons from 1998 to 2014, with 200 ovitraps placed across the whole extension of the city. The temporal and spatial dynamics of abundances were compared among seasons, and their relation with climatic variables were analyzed. Results showed a trend to higher peak abundances, a higher number of infested sites, and longer duration of the oviposition season through subsequent years, consistent with a long-term colonization process. In contrast, thermal favorability and rainfall pattern did not show a consistent trend of changes. The long-term increase in abundance, and the recently documented expansion of Ae. aegypti to colder areas of Buenos Aires province suggest that local populations might be adapting to lower temperature conditions. The steadily increasing abundances may have implications on the risk of dengue transmission.

  7. Genetics and morphology of Aedes aegypti (Diptera: Culicidae) in septic tanks in Puerto Rico.

    PubMed

    Somers, Gerard; Brown, Julia E; Barrera, Roberto; Powell, Jeffrey R

    2011-11-01

    Dengue viruses, primarily transmitted by the mosquito Aedes aegypti (L.), affect an estimated 50-100 million people yearly. Traditional approaches to control mosquito population numbers, such as the use of pesticides, have had only limited success. Atypical mosquito behavior may be one reason why current vector control efforts have been less efficacious than expected. In Puerto Rico, for example, adult Ae. aegypti have been observed emerging from septic tanks. Interestingly, adults emerging from septic tanks are larger on average than adults collected from surface containers. To determine whether adults colonizing septic tanks constitute a separate Ae. aegypti population, we used 12 previously validated microsatellite loci to examine adult mosquitoes collected from both septic tanks and surface containers, but found no evidence to suggest genetic differentiation. Size differences between septic tank and surface mosquitoes were reduced when nutrient levels were held constant across experimental groups. Despite the absence of evidence suggesting a genetic difference between experimental groups in this study, Ae. aegypti emerging from septic tanks may still represent a more dangerous phenotype and should be given special consideration when developing vector control programs and designing public health interventions in the future.

  8. Lethal ovitrap deployment for Aedes aegypti control: potential implications for non-target organisms.

    PubMed

    Long, Sharron A; Jacups, Susan P; Ritchie, Scott A

    2015-06-01

    In Australia, dengue control combines source reduction with lethal ovitraps to reduce Aedes aegypti populations during outbreaks. Lethal ovitraps are considered a sustainable and environmentally friendly method of controlling container-inhabiting mosquitoes, however, to-date, this claim has not been quantified. This study assesses the potential impact of lethal ovitraps on non-target organisms when used to control Ae. aegypti in tropical Australia. For retention of specimens, we substituted standard sticky ovitraps for lethal ovitraps. We collected 988 Ae. aegypti and 44,132 non-target specimens over 13 months from 16 sites. Although Ae. aegypti comprised only 2.2% of the total collection, they were were the eighth most dominant taxa collected, on the 93(rd) percentile. Of the non-target organisms, Collembola were the dominant taxa, 44.2%, with 36.8% and 10.5% Diptera and Hymenoptera, respectively. Of the Dipterans, 61% were family Phoridae. Lethal ovitraps were visited by 90 insect or invertebrate families in total. Ovitraps are attractive to Collembola, Phoridae, Sciaridae, Formicidae, and Culicidae, with minimal attraction by Apidae and other commonly monitored non-target organisms. For container-inhabiting mosquitoes, LOs are cost effective operationally, requiring minimal staff resources for placement and retrieval.

  9. Investigating the Potential Range Expansion of the Vector Mosquito Aedes aegypti in Mexico with NASA Earth Science Remote Sensing Results

    NASA Astrophysics Data System (ADS)

    Crosson, W. L.; Eisen, L.; Estes, M. G.; Estes, S. M.; Hayden, M.; Lozano-Fuentes, S.; Monaghan, A. J.; Moreno Madriñán, M. J.; Ochoa, C.; Quattrochi, D.; Tapia, B.; Welsh-Rodriguez, C. M.

    2012-12-01

    In tropical and sub-tropical regions, the mosquito Aedes aegypti is the major vector for the virus causing dengue, a serious public health issue in these areas. Through ongoing NSF- and NASA-funded studies, field surveys of Aedes aegypti and an integrated modeling approach are being used to improve our understanding of the potential range of the mosquito to expand toward heavily populated high elevation areas such as Mexico City under various climate change and socio-economic scenarios. This work serves three primary objectives: (1) Employ NASA remotely-sensed data to supplement the environmental monitoring and modeling component of the project. These data -- for example, surface temperature, precipitation, vegetation indices, soil moisture and elevation -- are critical for understanding the habitat necessary for mosquito survival and abundance; (2) Implement training sessions to instruct scientists and students from Mexico and the U.S. on how to use remote sensing and implement the NASA SERVIR Regional Visualization and Monitoring System; (3) Employ the SERVIR framework to optimize the dissemination of key project results in order to increase their societal relevance and benefits in developing climate adaptation strategies. Field surveys of larval, pupal and adult Aedes aegypti, as well as detailed physical and social household characteristics, were conducted in the summers of 2011and 2012 at geographic scales from the household to the community along a transect from sea level to 2400 m ASL. These data are being used in models to estimate Aedes aegypti habitat suitability. In 2011, Aedes aegypti were identified at an elevation of over 2150 m in Puebla, the highest elevation at which this species has been observed.

  10. Investigating the Potential Range Expansion of the Vector Mosquito Aedes Aegypti in Mexico with NASA Earth Science Remote Sensing Results

    NASA Technical Reports Server (NTRS)

    Crosson, W. L.; Estes, M. G.; Estes, S. M.; Hayden, M.; Monaghan, A. J.; Eisen, L.; Lozano-Fuentes, S.; Ochoa, C.; Tapia, B.; Welsh-Rodriquez, C. M.; Quattrochi, D.; MorenoMadrinan, M. J.

    2012-01-01

    In tropical and sub ]tropical regions, the mosquito Aedes aegypti is the major vector for the virus causing dengue, a serious public health issue in these areas. Through ongoing NSF- and NASA-funded studies, field surveys of Aedes aegypti and an integrated modeling approach are being used to improve our understanding of the potential range of the mosquito to expand toward heavily populated high elevation areas such as Mexico City under various climate change and socio ]economic scenarios. This work serves three primary objectives: (1) Employ NASA remotely-sensed data to supplement the environmental monitoring and modeling component of the project. These data-- for example, surface temperature, precipitation, vegetation indices, soil moisture and elevation-- are critical for understanding the habitat necessary for mosquito survival and abundance; (2) Implement training sessions to instruct scientists and students from Mexico and the U.S. on how to use remote sensing and implement the NASA SERVIR Regional Visualization and Monitoring System; (3) Employ the SERVIR framework to optimize the dissemination of key project results in order to increase their societal relevance and benefits in developing climate adaptation strategies. Field surveys of larval, pupal and adult Aedes aegypti, as well as detailed physical and social household characteristics, were conducted in the summers of 2011and 2012 at geographic scales from the household to the community along a transect from sea level to 2400 m ASL. These data are being used in models to estimate Aedes aegypti habitat suitability. In 2011, Aedes aegypti were identified at an elevation of over 2150 m in Puebla, the highest elevation at which this species has been observed.

  11. EFFICACY OF THAI NEEM OIL AGAINST AEDES AEGYPTI (L.) LARVAE.

    PubMed

    Silapanuntakul, Suthep; Keanjoom, Romnalin; Pandii, Wongdyan; Boonchuen, Supawadee; Sombatsiri, Kwanchai

    2016-05-01

    Trees with larvicidal activity may be found in Thailand. We conducted this study to evaluate the efficacy and length of efficacy of Thai neem (Azadirachta siamensis) oil emulsion and an alginate bead of Thai neem oil formulation against early fourth stage Aedes aegypti larvae using a dipping test. The Thai neem oil emulsion had significantly greater larvicidal activity than the alginate bead formulation at 12 to 60 hours post-exposure (p < 0.01). The Thai neem oil formulation resulted in 100% mortality among the early fourth stage Aedes aegypti larvae at 48 hours, while the alginate bead formulation resulted in 98% larval mortality at 84 hours and 100% mortality at 96 hours. The mean larval mortality using the Thai neem oil emulsion dropped to < 25% by 12 days and with the alginate beads dropped to < 25% by 15 days of exposure.

  12. [Ecology of Aedes aegypti and Aedes albopictus in the Americas and disease transmission].

    PubMed

    Rey, Jorge R; Lounibos, Philip

    2015-01-01

    The recent range expansion of the mosquito Aedes albopictus has been associated in some areas by declines in abundance or local elimination of Aedes aegypti, but the two species still coexist in large regions of the Americas. We offer a summary of the possible mechanisms responsible for the abundance and displacement pattern observed and of their significance in terms of disease transmission. Among these mechanisms we may mention the competition for limiting resources, the differences in the ability to withstand starvation, the apparent competition through differential effects of the parasite Ascogregarina taiwanensis, and the inhibition of Ae. aegypti egg development by Ae. albopictus larvae. Habitat segregation has been proposed as a mechanism promoting the coexistence of the two species through avoidance of direct competition. Aedes aegypti predominates in urban areas, Ae. albopictus in rural ones, and both species coexist in the suburbs. There is also evidence that in certain areas, habitat segregation in terms of distance from the coast can influence the distribution of both species. Another possible cause of the rapid disappearance of Ae. aegypti is reproductive interference between the species. According to this hypothesis, asymmetric effects of interspecific mating favor Ae. albopictus. This type of reproductive interference can result in the elimination of sympatric populations of the affected species and can be one of the major causes for the swiftness with which Ae. aegypti disappeared from some places in the Americas following invasions by Ae. albopictus.

  13. Similarity solutions for systems arising from an Aedes aegypti model

    NASA Astrophysics Data System (ADS)

    Freire, Igor Leite; Torrisi, Mariano

    2014-04-01

    In a recent paper a new model for the Aedes aegypti mosquito dispersal dynamics was proposed and its Lie point symmetries were investigated. According to the carried group classification, the maximal symmetry Lie algebra of the nonlinear cases is reached whenever the advection term vanishes. In this work we analyze the family of systems obtained when the wind effects on the proposed model are neglected. Wide new classes of solutions to the systems under consideration are obtained.

  14. Temporal distribution of Aedes aegypti in different districts of Rio de Janeiro, Brazil, measured by two types of traps.

    PubMed

    Honório, N A; Codeço, C T; Alves, F C; Magalhães, M A F M; Lourenço-De-Oliveira, R

    2009-09-01

    Dengue dynamics in Rio de Janeiro, Brazil, as in many dengue-endemic regions of the world, is seasonal, with peaks during the wet-hot months. This temporal pattern is generally attributed to the dynamics of its mosquito vector Aedes aegypti (L.). The objectives of this study were to characterize the temporal pattern of Ae. aegypti population dynamics in three neighborhoods of Rio de Janeiro and its association with local meteorological variables; and to compare positivity and density indices obtained with ovitraps and MosquiTraps. The three neighborhoods are distinct in vegetation coverage, sanitation, water supply, and urbanization. Mosquito sampling was carried out weekly, from September 2006 to March 2008, a period during which large dengue epidemics occurred in the city. Our results show peaks of oviposition in early summer 2007 and late summer 2008, detected by both traps. The ovitrap provided a more sensitive index than MosquiTrap. The MosquiTrap detection threshold showed high variation among areas, corresponding to a mean egg density of approximately 25-52 eggs per ovitrap. Both temperature and rainfall were significantly related to Ae. aegypti indices at a short (1 wk) time lag. Our results suggest that mean weekly temperature above 22-24 degrees C is strongly associated with high Ae. aegypti abundance and consequently with an increased risk of dengue transmission. Understanding the effects of meteorological variables on Ae. aegypti population dynamics will help to target control measures at the times when vector populations are greatest, contributing to the development of climate-based control and surveillance measures for dengue fever in a hyperendemic area.

  15. Temporal and geographic patterns of Aedes aegypti (Diptera: Culicidae) production in Iquitos, Peru.

    PubMed

    Morrison, Amy C; Gray, Kenneth; Getis, Arthur; Astete, Helvio; Sihuincha, Moises; Focks, Dana; Watts, Douglas; Stancil, Jeffrey D; Olson, James G; Blair, Patrick; Scott, Thomas W

    2004-11-01

    Large-scale longitudinal cohort studies are necessary to characterize temporal and geographic variation in Aedes aegypti (L.) (Diptera: Culicidae) production patterns and to develop targeted dengue control strategies that will reduce disease. We carried out pupal/demographic surveys in a circuit of approximately 6,000 houses, 10 separate times, between January 1999 and August 2002 in the Amazonian city of Iquitos, Peru. We quantified the number of containers positive for Ae. aegypti larvae and/or pupae, containers holding pupae, and the absolute number of pupae by 4-mo sampling circuits and spatially by geographic area by using a geographic information system developed for the city. A total of 289,941 water-holding containers were characterized, of which 7.3% were positive for Ae. aegypti. Temporal and geographic variations were detected for all variables examined, and the relative importance of different container types for production of Ae. aegypti was calculated. Ae. aegypti larvae and pupae were detected in 64 types of containers. Consistent production patterns were observed for the lid status (lids: 32% wet containers, 2% pupal production), container location (outdoor: 43% wet containers, 85% pupal production), and method by which the container was filled with water (rain filled: 15% wet containers, 88.3% pupal production); these patterns were consistent temporally and geographically. We describe a new container category (nontraditional) that includes transient puddles, which were rare but capable of producing large numbers of pupae. Because of high variable pupal counts, four container categories (large tank, medium storage, miscellaneous, and nontraditional) should be targeted in addition to outdoor rain-filled containers that are not covered by a lid. The utility of targeted Ae. aegypti control is discussed, as well as the ability to achieve control objectives based on published but untested threshold values.

  16. Contact Irritant Responses of Aedes aegypti Using Sublethal Concentration and Focal Application of Pyrethroid Chemicals

    PubMed Central

    Manda, Hortance; Shah, Pankhil; Polsomboon, Suppaluck; Chareonviriyaphap, Theeraphap; Castro-Llanos, Fanny; Morrison, Amy; Burrus, Roxanne G.; Grieco, John P.; Achee, Nicole L.

    2013-01-01

    Background Previous studies have demonstrated contact irritant and spatial repellent behaviors in Aedes aegypti following exposure to sublethal concentrations of chemicals. These sublethal actions are currently being evaluated in the development of a push-pull strategy for Ae. aegypti control. This study reports on mosquito escape responses after exposure to candidate chemicals for a contact irritant focused push-pull strategy using varying concentrations and focal application. Methods Contact irritancy (escape) behavior, knockdown and 24 hour mortality rates were quantified in populations of female Ae. aegypti under laboratory conditions and validated in the field (Thailand and Peru) using experimental huts. Evaluations were conducted using varying concentrations and treatment surface area coverage (SAC) of three pyrethroid insecticides: alphacypermethrin, lambacyhalothrin and deltamethrin. Results Under laboratory conditions, exposure of Ae. aegypti to alphacypermethrin using the standard field application rate (FAR) resulted in escape responses at 25% and 50% SAC that were comparable with escape responses at 100% SAC. Significant escape responses were also observed at <100% SAC using ½FAR of all test compounds. In most trials, KD and 24 hour mortality rates were higher in mosquitoes that did not escape than in those that escaped. In Thailand, field validation studies indicated an early time of exit (by four hours) and 40% increase in escape using ½FAR of alphacypermethrin at 75% SAC compared to a matched chemical-free control. In Peru, however, the maximum increase in Ae. aegypti escape from alphacypermethrin-treated huts was 11%. Conclusions/Significance Results presented here suggest a potential role for sublethal and focal application of contact irritant chemicals in an Ae. aegypti push-pull strategy to reduce human–vector contact inside treated homes. However, the impact of an increase in escape response on dengue virus transmission is currently unknown

  17. First report of Stegomyia aegypti (= Aedes aegypti) in Mexico City, Mexico.

    PubMed

    Kuri-Morales, P; Correa-Morales, F; González-Acosta, C; Sánchez-Tejeda, G; Dávalos-Becerril, E; Fernanda Juárez-Franco, M; Díaz-Quiñonez, A; Huerta-Jimenéz, H; Mejía-Guevara, M D; Moreno-García, M; González-Roldán, J F

    2017-01-20

    Stegomyia aegypti (= Aedes aegypti) (Diptera: Culicidae) is a species of mosquito that is currently widespread in Mexico. Historically, the mosquito has been distributed across most tropical and subtropical areas lower than 1700 m a.s.l. Currently, populations that are found at higher altitudes in regions with cold and dry climates suggest that these conditions do not limit the colonization and population growth of S. aegypti. During a survey of mosquitoes in September 2015, larvae of S. aegypti mosquitoes were found in two different localities in Mexico City, which is located at about 2250 m a.s.l. Mexico City is the most populous city in Mexico and has inefficient drainage and water supply systems. These factors may result in the provision of numerous larval breeding sites. Mosquito monitoring and surveillance are now priorities for the city.

  18. Bacteria as a source of oviposition attractant for Aedes aegypti mosquitoes.

    PubMed

    Arbaoui, A A; Chua, T H

    2014-03-01

    Since a safe and effective mass vaccination program against dengue fever is not presently available, a good way to prevent and control dengue outbreaks depends mainly on controlling the mosquito vectors. Aedes aegypti mosquito populations can be monitored and reduced by using ovitraps baited with organic infusions. A series of laboratory experiments were conducted which demonstrated that the bacteria in bamboo leaf infusion produce volatile attractants and contact chemical stimulants attractive to the female mosquitoes. The results showed that the female mosquitoes laid most of their eggs (59.9 ± 8.1 vs 2.9 ± 2.8 eggs, P<0.001) in bamboo leaf infusions when compared to distilled water. When the fresh infusion was filtered with a 0.45 μm filter membrane, the female mosquitoes laid significantly more eggs (64.1 ± 6.6 vs 4.9 ± 2.6 eggs, P<0.001) in unfiltered infusion. However when a 0.8 μm filter membrane was used, the female laid significantly more eggs (62.0 ± 4.3 vs 10.1 ± 7.8 eggs, P<0.001) in filtrate compared to a solution containing the residue. We also found that a mixture of bacteria isolated from bamboo leaf infusion serve as potent oviposition stimulants for gravid Aedes mosquitoes. Aedes aegypti laid significantly more eggs (63.3 ± 6.5 vs 3.1 ± 2.4 eggs, P<0.001) in bacteria suspension compared to sterile R2A medium. Our results suggest microbial activity has a role in the production of odorants that mediate the oviposition response of gravid mosquitoes.

  19. Larvicidal activity of Tagetes erecta against Aedes aegypti.

    PubMed

    Marques, Márcia M M; Morais, Selene M; Vieira, Icaro G P; Vieira, Mariano G S; Raquel, Ana; Silva, A; De Almeida, Raimundo Rafael; Guedes, Maria Izabel F

    2011-06-01

    The aim of this study was to evaluate the activity of essential oil from Tagetes erecta against 3rd instars of Aedes aegypti and to determine the amounts of larvicidal thiophenes in all plant tissues. The oil obtained by steam distillation and analyzed by gas chromatography/mass spectrometry showed 14 compounds. The main compounds were piperitone (45.72%), D-limonene (9.67%), and piperitenone (5.89%). The essential oil was active against larvae of Ae. aegypti, with LC50 of 79.78 microg/ml and LC90 of 100.84 microg/ml. The larvicidal thiophene contents were higher in the roots and flowers as demonstrated by high-performance liquid chromatography analysis. Thus, T. erecta constitutes a good source of varied compounds showing larvicidal activity against Ae. aegypti.

  20. Imidacloprid impairs the post-embryonic development of the midgut in the yellow fever mosquito Stegomyia aegypti (=Aedes aegypti).

    PubMed

    Fernandes, K M; Gonzaga, W G; Pascini, T V; Miranda, F R; Tomé, H V V; Serrão, J E; Martins, G F

    2015-09-01

    The mosquito Stegomyia aegypti (=Aedes aegypti) (Diptera: Culicidae) is a vector for the dengue and yellow fever viruses. As blood digestion occurs in the midgut, this organ constitutes the route of entry of many pathogens. The effects of the insecticide imidacloprid on the survival of St. aegypti were investigated and the sub-lethal effects of the insecticide on midgut development were determined. Third instar larvae were exposed to different concentrations of imidacloprid (0.15, 1.5, 3.0, 6.0 and 15.0 p.p.m.) and survival was monitored every 24 h for 10 days. Midguts from imidacloprid-treated insects at different stages of development were dissected and processed for analyses by transmission electron microscopy, immunofluorescence microscopy and terminal deoxynucleotidyl transferase dUTP nick-end labelling (TUNEL) assays. Imidacloprid concentrations of 3.0 and 15.0 p.p.m. were found to affect midgut development similarly. Digestive cells of the fourth instar larvae (L4) midgut exposed to imidacloprid had more multilamellar bodies, abundantly found in the cell apex, and more electron-lucent vacuoles in the basal region compared with those from untreated insects. Moreover, imidacloprid interfered with the differentiation of regenerative cells, dramatically reducing the number of digestive and endocrine cells and leading to malformation of the midgut epithelium in adults. The data demonstrate that imidacloprid can reduce the survival of mosquitoes and thus indicate its potentially high efficacy in the control of St. aegypti populations.

  1. Integrated proteomic and transcriptomic analysis of the Aedes aegypti eggshell

    PubMed Central

    2014-01-01

    Background Mosquito eggshells show remarkable diversity in physical properties and structure consistent with adaptations to the wide variety of environments exploited by these insects. We applied proteomic, transcriptomic, and hybridization in situ techniques to identify gene products and pathways that participate in the assembly of the Aedes aegypti eggshell. Aedes aegypti population density is low during cold and dry seasons and increases immediately after rainfall. The survival of embryos through unfavorable periods is a key factor in the persistence of their populations. The work described here supports integrated vector control approaches that target eggshell formation and result in Ae. aegypti drought-intolerant phenotypes for public health initiatives directed to reduce mosquito-borne diseases. Results A total of 130 proteins were identified from the combined mass spectrometric analyses of eggshell preparations. Conclusions Classification of proteins according to their known and putative functions revealed the complexity of the eggshell structure. Three novel Ae. aegypti vitelline membrane proteins were discovered. Odorant-binding and cysteine-rich proteins that may be structural components of the eggshell were identified. Enzymes with peroxidase, laccase and phenoloxidase activities also were identified, and their likely involvements in cross-linking reactions that stabilize the eggshell structure are discussed. PMID:24707823

  2. Aedes (Stegomyia) aegypti in the continental United States: a vector at the cool margin of its geographic range.

    PubMed

    Eisen, Lars; Moore, Chester G

    2013-05-01

    After more than a half century without recognized local dengue outbreaks in the continental United States, there were recent outbreaks of autochthonous dengue in the southern parts of Texas (2004-2005) and Florida (2009-2011). This dengue reemergence has provoked interest in the extent of the future threat posed by the yellow fever mosquito, Aedes (Stegomyia) aegypti (L.), the primary vector of dengue and yellow fever viruses in urban settings, to human health in the continental United States. Ae. aegypti is an intriguing example of a vector species that not only occurs in the southernmost portions of the eastern United States today but also is incriminated as the likely primary vector in historical outbreaks of yellow fever as far north as New York, Philadelphia, and Boston, from the 1690s to the 1820s. For vector species with geographic ranges limited, in part, by low temperature and cool range margins occurring in the southern part of the continental United States, as is currently the case for Ae. aegypti, it is tempting to speculate that climate warming may result in a northward range expansion (similar to that seen for Ixodes tick vectors of Lyme borreliosis spirochetes in Scandinavia and southern Canada in recent decades). Although there is no doubt that climate conditions directly impact many aspects of the life history of Ae. aegypti, this mosquito also is closely linked to the human environment and directly influenced by the availability of water-holding containers for oviposition and larval development. Competition with other container-inhabiting mosquito species, particularly Aedes (Stegomyia) albopictus (Skuse), also may impact the presence and local abundance of Ae. aegypti. Field-based studies that focus solely on the impact of weather or climate factors on the presence and abundance of Ae. aegypti, including assessments of the potential impact of climate warming on the mosquito's future range and abundance, do not consider the potential confounding

  3. Insecticide resistance in two Aedes aegypti (Diptera: Culicidae) strains from Costa Rica.

    PubMed

    Bisset, J A; Marín, R; Rodríguez, M M; Severson, D W; Ricardo, Y; French, L; Díaz, M; Pérez, O

    2013-03-01

    Dengue (family Flaviridae, genus Flavivirus, DENV) and dengue hemorrhagic fever (DHF) are presently important public health problems in Costa Rica. The primary strategy for disease control is based on reducing population densities of the main mosquito vector Aedes aegypti (L.) (Diptera: Culicidae). This is heavily dependent on use of chemical insecticides, thus the development of resistance is a frequent threat to control program effectiveness. The objective of this study was to determine the levels of insecticide resistance and the metabolic resistance mechanisms involved in two Ae. aegypti strains collected from two provinces (Puntarenas and Limon) in Costa Rica. Bioassays with larvae were performed according to World Health Organization guidelines and resistance in adults was measured through standard bottle assays. The activities of beta-esterases, cytochrome P450 monooxygenases, and glutathione S-transferases (GST), were assayed through synergists and biochemical tests, wherein the threshold criteria for each enzyme was established using the susceptible Rockefeller strain. The results showed higher resistance levels to the organophosphate (OP) temephos and the pyrethroid deltamethrin in larvae. The efficacy of commercial formulations of temephos in controlling Ae. aegypti populations was 100% mortality up to 11 and 12 d posttreatment with daily water replacements in test containers. Temephos and deltamethrin resistance in larvae were associated with high esterase activity, but not to cytochrome P450 monooxygenase or GST activities. Adult mosquitoes were resistant to deltamethrin, and susceptible to bendiocarb, chlorpyrifos, and cypermethrin. Because temephos and deltamethrin resistance are emerging at the studied sites, alternative insecticides should be considered. The insecticides chlorpyrifos and cypermethrin could be good candidates to use as alternatives for Ae. aegypti control.

  4. Larvicidal activity against Aedes aegypti of Foeniculum vulgare essential oils from Portugal and Cape Verde.

    PubMed

    Rocha, Diara Kady; Matosc, Olivia; Novoa, Maria Teresa; Figueiredo, Ana Cristina; Delgado, Manuel; Moiteiro, Cristina

    2015-04-01

    Dengue is a potentially fatal mosquito-borne infection with 50 million cases per year and 2.5 billion people vulnerable to the disease. This major public health problem has recurrent epidemics in Latin America and occurred recently in Cape Verde and Madeira Island. The lack of anti-viral treatment or vaccine makes the control of mosquito vectors a high option to prevent virus transmission. Essential oil (EO) constituents can affect insect's behaviour, being potentially effective in pest control. The present study evaluated the potential use of Foenicultm vulgare (fennel) EO in the control of the dengue vector Aedes aegypti. EOs isolated from fennel aerial parts collected in Cape Verde and from a commercial fennel EO of Portugal were analysed by NMR, GC and GC-MS. trans-Anethole (32 and 30%, respectively), limonene (28 and 18%, respectively) and fenchone (10% in both cases) were the main compounds identified in the EOs isolated from fennel from Cape Verde and Portugal, respectively. The larvicidal activity of the EOs and its major constituents were evaluated, using WHO procedures, against third instar larvae ofAe. aegypti for 24 h. Pure compounds, such as limonene isomers, were also assayed. The lethal concentrations LC50, C90 and LC99 were determined by probit analysis using mortality rates of bioassays. A 99% mortality of Ae. aegypti larvae was estimated at 37.1 and 52.4 µL L-1 of fennel EOs from Cape Verde and Portugal, respectively. Bioassays showed that fennel EOs from both countries displayed strong larvicidal effect against Ae. aegypti, the Cape Verde EO being as active as one of its major constituents, (-)-limonene.

  5. Neuropeptidomics of the mosquito Aedes aegypti

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Neuropeptidomic data were collected on the mosquito Ae. aegypti which is considered the most tractable mosquito species for physiological and endocrine studies. The data were solely obtained by direct mass spectrometric profiling, including tandem fragmentation, of selected tissues from single speci...

  6. A dengue vector surveillance by human population-stratified ovitrap survey for Aedes (Diptera: Culicidae) adult and egg collections in high dengue-risk areas of Taiwan.

    PubMed

    Wu, Huai-Hui; Wang, Chih-Yuan; Teng, Hwa-Jen; Lin, Cheo; Lu, Liang-Chen; Jian, Shu-Wan; Chang, Niann-Tai; Wen, Tzai-Hung; Wu, Jhy-Wen; Liu, Ding-Ping; Lin, Li-Jen; Norris, Douglas E; Wu, Ho-Sheng

    2013-03-01

    Aedes aegypti L. is the primary dengue vector in southern Taiwan. This article is the first report on a large-scale surveillance program to study the spatial-temporal distribution of the local Ae. aegytpi population using ovitraps stratified according to the human population in high dengue-risk areas. The sampling program was conducted for 1 yr and was based on weekly collections of eggs and adults in Kaohsiung City. In total, 10,380 ovitraps were placed in 5,190 households. Paired ovitraps, one indoors and one outdoors were used per 400 people. Three treatments in these ovitraps (paddle-shaped wooden sticks, sticky plastic, or both) were assigned by stratified random sampling to two areas (i.e., metropolitan or rural, respectively). We found that the sticky plastic alone had a higher sensitivity for detecting the occurrence of indigenous dengue cases than other treatments with time lags of up to 14 wk. The wooden paddle alone detected the oviposition of Ae. aegypti throughout the year in this study area. Furthermore, significantly more Ae. aegypti females were collected indoors than outdoors. Therefore, our survey identified the whole year oviposition activity, spatial-temporal distribution of the local Ae. aegypti population and a 14 wk lag correlation with dengue incidence to plan an effectively proactive control.

  7. Exposure to chikungunya virus and adult longevity in Aedes aegypti (L.) and Aedes albopictus (Skuse).

    PubMed

    Reiskind, Michael H; Westbrook, Catherine J; Lounibos, L Philip

    2010-06-01

    Chikungunya virus (CHIKV) recently emerged as a global threat to public health through its adaptation to the cosmopolitan mosquito Aedes albopictus Skuse. Aedes albopictus is highly susceptible to the emergent strain of CHIKV, relative to the historical vector of CHIKV, Aedes aegypti (L.). We hypothesized that the high susceptibility of Ae. albopictus to CHIKV may have a cost in terms of longevity and fecundity among infected vs non-infected mosquitoes, relative to Ae. aegypti. We performed a longevity experiment comparing Ae. aegypti and Ae. albopictus exposed to the emergent strain of CHIKV (LR-2006OPY1). We found a small but significant decrease in longevity of Ae. albopictus, but not Ae. aegypti, in response to exposure to CHIKV. We did not observe significant differences in numbers of eggs laid by either species in response to exposure. Longevity and body titer of infected Ae. albopictus were significantly negatively correlated, such that individuals that lived longer had lower viral body titers when they died. The cost of exposure, while not high, suggests there may be physiological constraints in the evolution of viral infectiousness in its insect vector.

  8. Comparison of the insecticide susceptibilities of laboratory strains of Aedes aegypti and Aedes albopictus.

    PubMed

    Gómez, Andrea; Seccacini, Emilia; Zerba, Eduardo; Licastro, Susana

    2011-12-01

    A susceptible strain of Aedes albopictus derived from the Gainesville strain (Florida, USA) was established in our laboratory. The larvicidal efficacies of the neurotoxic insecticides temephos, permethrin and the pure cis and trans-permethrin isomers and the microbial insecticide Bacillus thuringiensis israelensis (Bti) against Ae. albopictus were estimated and compared to a susceptible strain of Aedes aegypti. The larvicidal effect of insect growth regulator pyriproxyfen was also evaluated in both mosquito strains. The median lethal concentration/median emergency inhibition values for Ae. aegypti and Ae. albopictus, respectively, were: temephos, 3.058 and 6.632 ppb, permethrin, 3.143 and 4.933 ppb, cis-permethrin, 4.457 and 10.068 ppb, trans-permethrin, 1.510 and 3.883 ppb, Bti, 0.655 and 0.880 ppb and pyriproxyfen, 0.00774 and 0.01642 ppb. Ae. albopictus was more tolerant than Ae. aegypti to all six larvicides evaluated. The order of susceptibility for Ae. aegypti was pyriproxyfen > Bti > trans-permethrin > temephos > permethrin > cis-permethrin and for Ae. albopictus was pyriproxyfen > Bti > trans-permethrin > permethrin > temephos > cis-permethrin. Because both species can be found together in common urban, suburban and rural breeding sites, the results of this work provide baseline data on the susceptibility of Ae. albopictus to insecticides commonly used for controlling Ae. aegypti in the field.

  9. Differentiation of Aedes aegypti and Aedes notoscriptus (Diptera: Culicidae) eggs using scanning electron microscopy.

    PubMed

    Faull, Katherine J; Williams, Craig R

    2016-05-01

    Aedes notoscriptus and Aedes aegypti are both peri-domestic, invasive container-breeding mosquitoes. While the two potential arboviral vectors are bionomically similar, their sympatric distribution in Australia is limited. In this study, analyses of Ae. aegypti and Ae. notoscriptus eggs were enabled using scanning electron microscopy. Significant variations in egg length to width ratio and outer chorionic cell field morphology between Ae. aegypti and Ae. notoscriptus enabled distinction of the two species. Intraspecific variations in cell field morphology also enabled differentiation of the separate populations of both species, highlighting regional and global variation. Our study provides a comprehensive comparative analysis of inter- and intraspecific egg morphological and morphometric variation between two invasive container-breeding mosquitoes. The results indicate a high degree of intraspecific variation in Ae. notoscriptus egg morphology when compared to the eggs of Ae. aegypti. Comparative morphological analyses of Ae. aegypti and Ae. notoscriptus egg attributes using SEM allows differentiation of the species and may be helpful in understanding egg biology in relation to biotope of origin.

  10. Suppression of a Field Population of Aedes aegypti in Brazil by Sustained Release of Transgenic Male Mosquitoes.

    PubMed

    Carvalho, Danilo O; McKemey, Andrew R; Garziera, Luiza; Lacroix, Renaud; Donnelly, Christl A; Alphey, Luke; Malavasi, Aldo; Capurro, Margareth L

    2015-01-01

    The increasing burden of dengue, and the relative failure of traditional vector control programs highlight the need to develop new control methods. SIT using self-limiting genetic technology is one such promising method. A self-limiting strain of Aedes aegypti, OX513A, has already reached the stage of field evaluation. Sustained releases of OX513A Ae. aegypti males led to 80% suppression of a target wild Ae. aegypti population in the Cayman Islands in 2010. Here we describe sustained series of field releases of OX513A Ae. aegypti males in a suburb of Juazeiro, Bahia, Brazil. This study spanned over a year and reduced the local Ae. aegypti population by 95% (95% CI: 92.2%-97.5%) based on adult trap data and 81% (95% CI: 74.9-85.2%) based on ovitrap indices compared to the adjacent no-release control area. The mating competitiveness of the released males (0.031; 95% CI: 0.025-0.036) was similar to that estimated in the Cayman trials (0.059; 95% CI: 0.011-0.210), indicating that environmental and target-strain differences had little impact on the mating success of the OX513A males. We conclude that sustained release of OX513A males may be an effective and widely useful method for suppression of the key dengue vector Ae. aegypti. The observed level of suppression would likely be sufficient to prevent dengue epidemics in the locality tested and other areas with similar or lower transmission.

  11. Suppression of a Field Population of Aedes aegypti in Brazil by Sustained Release of Transgenic Male Mosquitoes

    PubMed Central

    Garziera, Luiza; Lacroix, Renaud; Donnelly, Christl A.; Alphey, Luke; Malavasi, Aldo; Capurro, Margareth L.

    2015-01-01

    The increasing burden of dengue, and the relative failure of traditional vector control programs highlight the need to develop new control methods. SIT using self-limiting genetic technology is one such promising method. A self-limiting strain of Aedes aegypti, OX513A, has already reached the stage of field evaluation. Sustained releases of OX513A Ae. aegypti males led to 80% suppression of a target wild Ae. aegypti population in the Cayman Islands in 2010. Here we describe sustained series of field releases of OX513A Ae. aegypti males in a suburb of Juazeiro, Bahia, Brazil. This study spanned over a year and reduced the local Ae. aegypti population by 95% (95% CI: 92.2%-97.5%) based on adult trap data and 81% (95% CI: 74.9-85.2%) based on ovitrap indices compared to the adjacent no-release control area. The mating competitiveness of the released males (0.031; 95% CI: 0.025-0.036) was similar to that estimated in the Cayman trials (0.059; 95% CI: 0.011 – 0.210), indicating that environmental and target-strain differences had little impact on the mating success of the OX513A males. We conclude that sustained release of OX513A males may be an effective and widely useful method for suppression of the key dengue vector Ae. aegypti. The observed level of suppression would likely be sufficient to prevent dengue epidemics in the locality tested and other areas with similar or lower transmission. PMID:26135160

  12. The wMel Strain of Wolbachia Reduces Transmission of Chikungunya Virus in Aedes aegypti

    PubMed Central

    Aliota, Matthew T.; Walker, Emma C.; Uribe Yepes, Alexander; Dario Velez, Ivan; Christensen, Bruce M.; Osorio, Jorge E.

    2016-01-01

    Background New approaches to preventing chikungunya virus (CHIKV) are needed because current methods are limited to controlling mosquito populations, and they have not prevented the invasion of this virus into new locales, nor have they been sufficient to control the virus upon arrival. A promising candidate for arbovirus control and prevention relies on the introduction of the intracellular bacterium Wolbachia into Aedes aegypti mosquitoes. This primarily has been proposed as a tool to control dengue virus (DENV) transmission; however, evidence suggests Wolbachia infections confer protection for Ae. aegypti against CHIKV. Although this approach holds much promise for limiting virus transmission, at present our understanding of the ability of CHIKV to infect, disseminate, and be transmitted by wMel-infected Ae. aegypti currently being used at Wolbachia release sites is limited. Methodology/Principal Findings Using Ae. aegypti infected with the wMel strain of Wolbachia that are being released in Medellin, Colombia, we report that these mosquitoes have reduced vector competence for CHIKV, even with extremely high viral titers in the bloodmeal. In addition, we examined the dynamics of CHIKV infection over the course of four to seven days post feeding. Wolbachia-infected mosquitoes remained non-infective over the duration of seven days, i.e., no infectious virus was detected in the saliva when exposed to bloodmeals of moderate viremia, but CHIKV-exposed, wild type mosquitoes did have viral loads in the saliva consistent with what has been reported elsewhere. Finally, the presence of wMel infection had no impact on the lifespan of mosquitoes as compared to wild type mosquitoes following CHIKV infection. Conclusions/Significance These results could have an impact on vector control strategies in areas where Ae. aegypti are transmitting both DENV and CHIKV; i.e., they argue for further exploration, both in the laboratory and the field, on the feasibility of expanding this

  13. Spatial Patterns of High Aedes aegypti Oviposition Activity in Northwestern Argentina

    PubMed Central

    Estallo, Elizabet Lilia; Más, Guillermo; Vergara-Cid, Carolina; Lanfri, Mario Alberto; Ludueña-Almeida, Francisco; Scavuzzo, Carlos Marcelo; Introini, María Virginia; Zaidenberg, Mario; Almirón, Walter Ricardo

    2013-01-01

    Background In Argentina, dengue has affected mainly the Northern provinces, including Salta. The objective of this study was to analyze the spatial patterns of high Aedes aegypti oviposition activity in San Ramón de la Nueva Orán, northwestern Argentina. The location of clusters as hot spot areas should help control programs to identify priority areas and allocate their resources more effectively. Methodology Oviposition activity was detected in Orán City (Salta province) using ovitraps, weekly replaced (October 2005–2007). Spatial autocorrelation was measured with Moran’s Index and depicted through cluster maps to identify hot spots. Total egg numbers were spatially interpolated and a classified map with Ae. aegypti high oviposition activity areas was performed. Potential breeding and resting (PBR) sites were geo-referenced. A logistic regression analysis of interpolated egg numbers and PBR location was performed to generate a predictive mapping of mosquito oviposition activity. Principal Findings Both cluster maps and predictive map were consistent, identifying in central and southern areas of the city high Ae. aegypti oviposition activity. A logistic regression model was successfully developed to predict Ae. aegypti oviposition activity based on distance to PBR sites, with tire dumps having the strongest association with mosquito oviposition activity. A predictive map reflecting probability of oviposition activity was produced. The predictive map delimitated an area of maximum probability of Ae. aegypti oviposition activity in the south of Orán city where tire dumps predominate. The overall fit of the model was acceptable (ROC = 0.77), obtaining 99% of sensitivity and 75.29% of specificity. Conclusions Distance to tire dumps is inversely associated with high mosquito activity, allowing us to identify hot spots. These methodologies are useful for prevention, surveillance, and control of tropical vector borne diseases and might assist National Health

  14. Genetic Diversity and Phylogeny of Aedes aegypti, the Main Arbovirus Vector in the Pacific

    PubMed Central

    Calvez, Elodie; Guillaumot, Laurent; Millet, Laurent; Marie, Jérôme; Bossin, Hervé; Rama, Vineshwaran; Faamoe, Akata; Kilama, Sosiasi; Teurlai, Magali; Mathieu-Daudé, Françoise; Dupont-Rouzeyrol, Myrielle

    2016-01-01

    Background The Pacific region is an area unique in the world, composed of thousands of islands with differing climates and environments. The spreading and establishment of the mosquito Aedes aegypti in these islands might be linked to human migration. Ae. aegypti is the major vector of arboviruses (dengue, chikungunya and Zika viruses) in the region. The intense circulation of these viruses in the Pacific during the last decade led to an increase of vector control measures by local health authorities. The aim of this study is to analyze the genetic relationships among Ae. aegypti populations in this region. Methodology/Principal Finding We studied the genetic variability and population genetics of 270 Ae. aegypti, sampled from 9 locations in New Caledonia, Fiji, Tonga and French Polynesia by analyzing nine microsatellites and two mitochondrial DNA regions (CO1 and ND4). Microsatellite markers revealed heterogeneity in the genetic structure between the western, central and eastern Pacific island countries. The microsatellite markers indicate a statistically moderate differentiation (FST = 0.136; P < = 0.001) in relation to island isolation. A high degree of mixed ancestry can be observed in the most important towns (e.g. Noumea, Suva and Papeete) compared with the most isolated islands (e.g. Ouvea and Vaitahu). Phylogenetic analysis indicated that most of samples are related to Asian and American specimens. Conclusions/Significance Our results suggest a link between human migrations in the Pacific region and the origin of Ae. aegypti populations. The genetic pattern observed might be linked to the island isolation and to the different environmental conditions or ecosystems. PMID:26799213

  15. The use of Aedes aegypti larvae attractants to enhance the effectiveness of larvicides.

    PubMed

    Gonzalez, Paula V; Harburguer, Laura; González-Audino, Paola A; Masuh, Héctor M

    2016-06-01

    Aedes aegypti (L.) is an important dengue, chikungunya, and yellow fever vector. Immature stages of this species inhabit human-made containers placed in residential landscapes, and the application of larvicides inside containers that cannot be eliminated is still considered a priority in control programs. Larvicidal efficacy is influenced by several factors, including the formulation used, the water quality, and the susceptibility of larvae, among others. If an attractant can be incorporated into a slow-release larvicide formulation, it will be feasible to direct the larvae into the source of insecticide and thereby improving its efficacy. We studied the influence of 1-octen-3ol and 3-methylphenol on the rate of Ae. aegypti larvae mortality using the larvicides Bacillus thuringiensis var. israelensis (Bti), temephos, and spinosad. These chemicals were combined with the larvicides mixed with agar during the bioassays. Mortality was registered every 10 min, and a lethal time 50 (LT50) was calculated. The inclusion of the Ae. aegypti larvae attractants with the larvicides into a solid agar matrix improved their efficiency obtaining a strong and marked reduction in the LT50 compared with the use of larvicides alone.

  16. Identification and initial characterization of matrix metalloproteinases in the yellow fever mosquito, Aedes aegypti.

    PubMed

    Kantor, A M; Dong, S; Held, N L; Ishimwe, E; Passarelli, A L; Clem, R J; Franz, A W E

    2017-02-01

    Aedes aegypti is a major vector for arboviruses such as dengue, chikungunya and Zika viruses. During acquisition of a viremic bloodmeal, an arbovirus infects mosquito midgut cells before disseminating to secondary tissues, including the salivary glands. Once virus is released into the salivary ducts it can be transmitted to another vertebrate host. The midgut is surrounded by a basal lamina (BL) in the extracellular matrix, consisting of a proteinaceous mesh composed of collagen IV and laminin. BL pore size exclusion limit prevents virions from passing through. Thus, the BL probably requires remodelling via enzymatic activity to enable efficient virus dissemination. Matrix metalloproteinases (MMPs) are extracellular endopeptidases that are involved in remodelling of the extracellular matrix. Here, we describe and characterize the nine Ae. aegypti encoded MMPs, AeMMPs 1-9, which share common features with other invertebrate and vertebrate MMPs. Expression profiling in Ae. aegypti revealed that Aemmp4 and Aemmp6 were upregulated during metamorphosis, whereas expression of Aemmp1 and Aemmp2 increased during bloodmeal digestion. Aemmp1 expression was also upregulated in the presence of a bloodmeal containing chikungunya virus. Using polyclonal antibodies, AeMMP1 and AeMMP2 were specifically detected in tissues associated with the mosquito midgut.

  17. Thermal sensitivity of Aedes aegypti from Australia: empirical data and prediction of effects on distribution.

    PubMed

    Richardson, Kelly; Hoffmann, Ary A; Johnson, Petrina; Ritchie, Scott; Kearney, Michael R

    2011-07-01

    An understanding of physiological sensitivity to temperature and its variability is important for predicting habitat suitability for disease vectors under different climatic regimes. In this study, we characterized the thermal sensitivity of larval developmental rates and survival in several Australian mainland populations of the dengue virus vector Aedes aegypti. Males developed more rapidly than females, but there were no differences among populations for development time or survival despite previously demonstrated genetic differentiation for neutral markers. Optimal development and survival temperatures were 37 degrees C and 25 degrees C, respectively. The values for maximal development and survival were similar to standard functions used in the container inhabiting simulation (CIMSIM) model for predicting population dynamics ofAe. aegypti populations, but CIMSIM assumed a lower optimal temperature. Heat stress experiments indicated that larvae could withstand water temperatures up to 44 degrees C regardless of the rate at which temperature was increased. Results from development time measured under constant temperatures could predict development time under fluctuating conditions, whereas CIMSIM predicted faster rates of development. This difference acts to reduce the predicted potential number of generations of Ae. aegypti per year in Australia, although it does not influence its predicted distribution, which depends critically on the nature of the aquatic breeding sites.

  18. Differential transcription profiles in Aedes aegypti detoxification genes following temephos selection

    PubMed Central

    Saavedra-Rodriguez, Karla; Strode, Clare; Flores, Adriana E.; Garcia-Luna, Selene; Reyes-Solis, Guadalupe; Ranson, Hilary; Hemingway, Janet; Black, William C.

    2014-01-01

    The mosquito Aedes aegypti is the main vector of Dengue and Yellow Fever flaviviruses. The organophosphate insecticide temephos is a larvicide that is used globally to control Ae. aegypti populations; many of which have in turn evolved resistance. Target site alteration in the acetylcholine esterase of this species has not being identified. Instead, we tracked changes in transcription of metabolic detoxification genes using the Ae. aegypti ‘Detox Chip’ microarray during five generations of temephos selection. We selected for temephos resistance in three replicates in each of six collections, five from México, and one from Perú. The response to selection was tracked in terms of lethal concentrations (LC50). Uniform upregulation was seen in the epsilon class glutathione-S-transferase genes (eGSTs) in strains from México prior to laboratory selection, while eGSTs in the Iquitos Perú strain became upregulated following five generations of temephos selection. While expression of many esterase genes (CCE) increased with selection, no single esterase was consistently upregulated and this same pattern was noted in the cytochrome P450 genes (CYP) and in other genes involved in reduction or oxidation of xenobiotics. Bioassays using GST, CCE and CYP inhibitors suggest that various CCE instead of GSTs are the main metabolic mechanism conferring resistance to temephos. We show that temephos selected strains show no cross resistance to permethrin and that genes associated with temephos selection are largely independent of those selected with permethrin in a previous study. PMID:24299217

  19. Use of transgenic Aedes aegypti in Brazil: risk perception and assessment.

    PubMed

    Paes de Andrade, Paulo; Aragão, Francisco José Lima; Colli, Walter; Dellagostin, Odir Antônio; Finardi-Filho, Flávio; Hirata, Mario Hiroyuki; Lira-Neto, Amaro de Castro; Almeida de Melo, Marcia; Nepomuceno, Alexandre Lima; Gorgônio da Nóbrega, Francisco; Delfino de Sousa, Gutemberg; Valicente, Fernando Hercos; Zanettini, Maria Helena Bodanese

    2016-10-01

    The OX513A strain of Aedes aegypti, which was developed by the British company Oxitec, expresses a self-limiting transgene that prevents larvae from developing to adulthood. In April 2014, the Brazilian National Technical Commission on Biosafety completed a risk assessment of OX513A and concluded that the strain did not present new biological risks to humans or the environment and could be released in Brazil. At that point, Brazil became the first country to approve the unconstrained release of a genetically modified mosquito. During the assessment, the commission produced a comprehensive list of - and systematically analysed - the perceived hazards. Such hazards included the potential survival to adulthood of immature stages carrying the transgene - should the transgene fail to be expressed or be turned off by exposure to sufficient environmental tetracycline. Other perceived hazards included the potential allergenicity and/or toxicity of the proteins expressed by the gene, the potential for gene flow or increased transmission of human pathogens and the occupation of vacant breeding sites by other vector species. The Zika epidemic both elevated the perceived importance of Ae. aegypti as a vector - among policy-makers and regulators as well as the general public - and increased concerns over the release of males of the OX513A strain. We have therefore reassessed the potential hazards. We found that release of the transgenic mosquitoes would still be both safe and of great potential value in the control of diseases spread by Ae. aegypti, such as chikungunya, dengue and Zika.

  20. Spatial and temporal country-wide survey of temephos resistance in Brazilian populations of Aedes aegypti

    PubMed Central

    Chediak, Mateus; G Pimenta, Fabiano; Coelho, Giovanini E; Braga, Ima A; Lima, José Bento P; Cavalcante, Karina Ribeiro LJ; de Sousa, Lindemberg C; de Melo-Santos, Maria Alice V; Macoris, Maria de Lourdes da G; de Araújo, Ana Paula; Ayres, Constância Flávia J; Andrighetti, Maria Teresa M; Gomes, Ricristhi Gonçalves de A; Campos, Kauara B; Guedes, Raul Narciso C

    2016-01-01

    The organophosphate temephos has been the main insecticide used against larvae of the dengue and yellow fever mosquito (Aedes aegypti) in Brazil since the mid-1980s. Reports of resistance date back to 1995; however, no systematic reports of widespread temephos resistance have occurred to date. As resistance investigation is paramount for strategic decision-making by health officials, our objective here was to investigate the spatial and temporal spread of temephos resistance in Ae. aegypti in Brazil for the last 12 years using discriminating temephos concentrations and the bioassay protocols of the World Health Organization. The mortality results obtained were subjected to spatial analysis for distance interpolation using semi-variance models to generate maps that depict the spread of temephos resistance in Brazil since 1999. The problem has been expanding. Since 2002-2003, approximately half the country has exhibited mosquito populations resistant to temephos. The frequency of temephos resistance and, likely, control failures, which start when the insecticide mortality level drops below 80%, has increased even further since 2004. Few parts of Brazil are able to achieve the target 80% efficacy threshold by 2010/2011, resulting in a significant risk of control failure by temephos in most of the country. The widespread resistance to temephos in Brazilian Ae. aegypti populations greatly compromise effective mosquito control efforts using this insecticide and indicates the urgent need to identify alternative insecticides aided by the preventive elimination of potential mosquito breeding sites. PMID:27143489

  1. Temperature, Larval Diet, and Density Effects on Development Rate and Survival of Aedes aegypti (Diptera: Culicidae)

    PubMed Central

    Couret, Jannelle; Dotson, Ellen; Benedict, Mark Q.

    2014-01-01

    Many environmental factors, biotic and abiotic interact to influence organismal development. Given the importance of Aedes aegypti as a vector of human pathogens including dengue and yellow fever, understanding the impact of environmental factors such as temperature, resource availability, and intraspecific competition during development is critical for population control purposes. Despite known associations between developmental traits and factors of diet and density, temperature has been considered the primary driver of development rate and survival. To determine the relative importance of these critical factors, wide gradients of conditions must be considered. We hypothesize that 1) diet and density, as well as temperature influence the variation in development rate and survival, 2) that these factors interact, and this interaction is also necessary to understand variation in developmental traits. Temperature, diet, density, and their two-way interactions are significant factors in explaining development rate variation of the larval stages of Ae. aegypti mosquitoes. These factors as well as two and three-way interactions are significantly associated with the development rate from hatch to emergence. Temperature, but not diet or density, significantly impacted juvenile mortality. Development time was heteroskedastic with the highest variation occurring at the extremes of diet and density conditions. All three factors significantly impacted survival curves of experimental larvae that died during development. Complex interactions may contribute to variation in development rate. To better predict variation in development rate and survival in Ae. aegypti, factors of resource availability and intraspecific density must be considered in addition, but never to the exclusion of temperature. PMID:24498328

  2. Spatial and temporal country-wide survey of temephos resistance in Brazilian populations of Aedes aegypti.

    PubMed

    Chediak, Mateus; G Pimenta, Fabiano; Coelho, Giovanini E; Braga, Ima A; Lima, José Bento P; Cavalcante, Karina Ribeiro Lj; Sousa, Lindemberg C de; Melo-Santos, Maria Alice V de; Macoris, Maria de Lourdes da G; Araújo, Ana Paula de; Ayres, Constância Flávia J; Andrighetti, Maria Teresa M; Gomes, Ricristhi Gonçalves de A; Campos, Kauara B; Guedes, Raul Narciso C

    2016-05-01

    The organophosphate temephos has been the main insecticide used against larvae of the dengue and yellow fever mosquito (Aedes aegypti) in Brazil since the mid-1980s. Reports of resistance date back to 1995; however, no systematic reports of widespread temephos resistance have occurred to date. As resistance investigation is paramount for strategic decision-making by health officials, our objective here was to investigate the spatial and temporal spread of temephos resistance in Ae. aegypti in Brazil for the last 12 years using discriminating temephos concentrations and the bioassay protocols of the World Health Organization. The mortality results obtained were subjected to spatial analysis for distance interpolation using semi-variance models to generate maps that depict the spread of temephos resistance in Brazil since 1999. The problem has been expanding. Since 2002-2003, approximately half the country has exhibited mosquito populations resistant to temephos. The frequency of temephos resistance and, likely, control failures, which start when the insecticide mortality level drops below 80%, has increased even further since 2004. Few parts of Brazil are able to achieve the target 80% efficacy threshold by 2010/2011, resulting in a significant risk of control failure by temephos in most of the country. The widespread resistance to temephos in Brazilian Ae. aegypti populations greatly compromise effective mosquito control efforts using this insecticide and indicates the urgent need to identify alternative insecticides aided by the preventive elimination of potential mosquito breeding sites.

  3. Differential transcription profiles in Aedes aegypti detoxification genes after temephos selection.

    PubMed

    Saavedra-Rodriguez, K; Strode, C; Flores, A E; Garcia-Luna, S; Reyes-Solis, G; Ranson, H; Hemingway, J; Black, W C

    2014-04-01

    The mosquito Aedes aegypti is the main vector of Dengue and Yellow Fever flaviviruses. The organophosphate insecticide temephos is a larvicide that is used globally to control Ae. aegypti populations; many of which have in turn evolved resistance. Target site alteration in the acetylcholine esterase of this species has not being identified. Instead, we tracked changes in transcription of metabolic detoxification genes using the Ae. aegypti 'Detox Chip' microarray during five generations of temephos selection. We selected for temephos resistance in three replicates in each of six collections, five from Mexico, and one from Peru. The response to selection was tracked in terms of lethal concentrations. Uniform upregulation was seen in the epsilon class glutathione-S-transferase (eGST) genes in strains from Mexico prior to laboratory selection, while eGSTs in the Iquitos Peru strain became upregulated after five generations of temephos selection. While expression of many carboxyl/cholinesterase esterase (CCE) genes increased with selection, no single esterase was consistently upregulated and this same pattern was noted in the cytochrome P450 monooxygenase (CYP) genes and in other genes involved in reduction or oxidation of xenobiotics. Bioassays using glutathione-S-transferase (GST), CCE and CYP inhibitors suggest that various CCEs instead of GSTs are the main metabolic mechanism conferring resistance to temephos. We show that temephos-selected strains show no cross resistance to permethrin and that genes associated with temephos selection are largely independent of those selected with permethrin in a previous study.

  4. Aedes aegypti (L.) and Aedes albopictus (Skuse) in Singapore City

    PubMed Central

    Chan, K. L.; Chan, Y. C.; Ho, B. C.

    1971-01-01

    There is a current belief stemming from statements made in the literature that Ae. aegypti is displacing Ae. albopictus in a number of cities of South-East Asia and in Calcutta, India. A critical review of these works showed that either the observations were inconclusive or the methods of collection were biased for one or the other species. Extensive surveys of the larval habitats of the two species in Singapore showed that the sharing of breeding habitats was uncommon in both urban and rural areas. In the laboratory, Ae. aegypti took a slightly shorter time to complete its development from egg-hatching to adult emergence. It is concluded that information available at present is insufficient to interpret the Ae. aegypti—Ae. albopictus population balance resulting from interspecific competition in Singapore. The pattern of distribution of the two species is unlikely to be the result of competitive displacement; it is, rather, probable that this pattern results from factors that favour the rapid increase and spread of one species over the other. It is suggested that Ae. aegypti in the city is favoured by rapid and extensive urbanization and by the higher fecundity and shorter life cycle of the species. PMID:5316748

  5. Multi-scale analysis of the associations among egg, larval and pupal surveys and the presence and abundance of adult female Aedes aegypti (Stegomyia aegypti) in the city of Merida, Mexico.

    PubMed

    Manrique-Saide, P; Coleman, P; McCall, P J; Lenhart, A; Vázquez-Prokopec, G; Davies, C R

    2014-09-01

    Despite decades of research, there is still no agreement on which indices of Aedes aegypti (Stegomyia aegypti) (Diptera: Culicidae) presence and abundance better quantify entomological risk for dengue. This study reports the results of a multi-scale, cross-sectional entomological survey carried out in 1160 households in the city of Merida, Mexico to establish: (a) the correlation between levels of Ae. aegypti presence and abundance detected with aspirators and ovitraps; (b) which immature and egg indices correlate with the presence and abundance of Ae. aegypti females, and (c) the correlations amongst traditional Aedes indices and their modifications for pupae at the household level and within medium-sized geographic areas used for vector surveillance. Our analyses show that ovitrap positivity was significantly associated with indoor adult Ae. aegypti presence [odds ratio (OR) = 1.50; P = 0.03], that the presence of pupae is associated with adult presence at the household level (OR = 2.27; P = 0.001), that classic Aedes indices are informative only when they account for pupae, and that window screens provide a significant level of protection against peridomestic Ae. aegypti (OR = 0.59; P = 0.02). Results reinforce the potential of using both positive collections in outdoor ovitraps and the presence of pupae as sensitive indicators of indoor adult female presence.

  6. Detritus type alters the outcome of interspecific competition between Aedes aegypti and Aedes albopictus (Diptera: Culicidae).

    PubMed

    Murrell, Ebony G; Juliano, Steven A

    2008-05-01

    Many studies of interspecific competition between Aedes albopictus (Skuse) and Aedes aegypti (L.) (Diptera: Culicidae) larvae show that Ae. albopictus are superior resource competitors to Ae. aegypti. Single-species studies indicate that growth and survival of Ae. albopictus and Ae. aegypti larvae are affected by the type of detritus present in containers, which presumably affects the amount and quality of microorganisms that the mosquito larvae consume. We tested whether different detritus types alter the intensity of larval competition by raising 10 different density/species combinations of Ae. albopictus and Ae. aegypti larvae under standard laboratory conditions, with one of four detritus types (oak, pine, grass, or insect) provided as a nutrient base. Intraspecific competitive effects on survival were present with all detritus types. Ae. albopictus survivorship was unaffected by interspecific competition in all treatments. Negative interspecific effects on Ae. aegypti survivorship were present with three of four detritus types, but absent with grass. Estimated finite rate of increase (lambda') was lower with pine detritus than with any other detritus type for both species. Furthermore, Ae. aegypti lambda' was negatively affected by high interspecific density in all detritus types except grass. Thus, our experiment confirms competitive asymmetry in favor of Ae. albopictus with oak, pine, or insect detritus, but also demonstrates that certain detritus types may eliminate interspecific competition among the larvae of these species, which may allow for stable coexistence. Such variation in competitive outcome with detritus type may help to account for observed patterns of coexistence/exclusion of Ae. albopictus and Ae. aegypti in the field.

  7. LABORATORY EVALUATION OF THE DEVELOPMENT OF Aedes aegypti IN TWO SEASONS: INFLUENCE OF DIFFERENT PLACES AND DIFFERENT DENSITIES

    PubMed Central

    Lopes, Tatiana Forte; Holcman, Marcia Moreira; Barbosa, Gerson Laurindo; Domingos, Maria de Fatima; Barreiros, Rosa Maria Oliveira Veiga

    2014-01-01

    Aedes aegypti is an important vector in Brazil being the main vector of the dengue-fever. This paper employs survival curves to describe the time in days from larvae to adult forms of Aedes aegypti raised, individually and collectively, and compares it during winter and spring when positioned inside and outside a laboratory. The study was conducted in São Vicente, a coastal city in Southeastern Brazil. The lowest water temperature in winter and in spring was 20 °C and the highest was 26 °C in spring. Higher and more stable temperatures were measured in the intra compared to the peri in both seasons. Consequently, larvae positioned in the intra resulted in the lowest median time to develop in the individual and collective experiment (nine and ten days, respectively). At least 25% of the larvae positioned in the intra in the individual experiment in the spring took only seven days to reach adulthood. Sex ratios and the median time development by sex did not show significant differences. These results indicate that efforts to control Aedes aegypti must be continuous and directed mainly to prevent the intra-domiciliary sites that can be infested in a week in order to reduce the human-vector contact. PMID:25229215

  8. Laboratory evaluation of the development of Aedes aegypti in two seasons: influence of different places and different densities.

    PubMed

    Lopes, Tatiana Forte; Holcman, Marcia Moreira; Barbosa, Gerson Laurindo; Domingos, Maria de Fatima; Barreiros, Rosa Maria Oliveira Veiga

    2014-01-01

    Aedes aegypti is an important vector in Brazil being the main vector of the dengue-fever. This paper employs survival curves to describe the time in days from larvae to adult forms of Aedes aegypti raised, individually and collectively, and compares it during winter and spring when positioned inside and outside a laboratory. The study was conducted in São Vicente, a coastal city in Southeastern Brazil. The lowest water temperature in winter and in spring was 20 °C and the highest was 26 °C in spring. Higher and more stable temperatures were measured in the intra compared to the peri in both seasons. Consequently, larvae positioned in the intra resulted in the lowest median time to develop in the individual and collective experiment (nine and ten days, respectively). At least 25% of the larvae positioned in the intra in the individual experiment in the spring took only seven days to reach adulthood. Sex ratios and the median time development by sex did not show significant differences. These results indicate that efforts to control Aedes aegypti must be continuous and directed mainly to prevent the intra-domiciliary sites that can be infested in a week in order to reduce the human-vector contact.

  9. [Aedes albopictus, vector of chikungunya and dengue viruses in Reunion Island: biology and control].

    PubMed

    Delatte, H; Paupy, C; Dehecq, J S; Thiria, J; Failloux, A B; Fontenille, D

    2008-03-01

    Chikungunya virus (CHIKV) and dengue virus (DENV) are mosquito-borne viruses transmitted by the Aedes genus. Dengue is considered as the most important arbovirus disease throughout the World. Chikungunya, known from epidemics in continental Africa and Asia, has up to now been poorly studied. It has been recently responsible for the severe 2004-2007 epidemic reported in the Indian Ocean (IO), which has caused several serious health and economic problems. This unprecedented epidemic of the IO has shown severe health troubles with morbidity and death associated, which had never been observed before. The two major vectors of those arboviruses in the IO area are Aedes aegypti and Aedes albopictus. The latest is considered as the main vector in most of the islands of the area, especially in Reunion Island. Ae. albopictus showed strong ecological plasticity. Small disposable containers were the principal urban breeding sites, and preferred natural developmental sites were bamboo stumps and rock holes in peri-urban and gully areas. The virus has been isolated from field collected Ae. albopictus females, and in two out of 500 pools of larvae, demonstrating vertical transmission. Experimental works showed that both Ae. albopictus and Ae. aegypti from west IO islands are efficient vectors of dengue and chikungunya viruses. Since 2006 and all along the epidemic of CHIKV, measures for the control of larvae (temephos then Bacillus thuringiensis) and adults (fenitrothion, then deltamethrine) of Ae. albopictus where applied along with individual and collective actions (by the use of repellents, and removal of breeding sites around houses) in Reunion Island. In order to prevent such epidemics, a preventive plan for arboviruses upsurge is ongoing processed. This plan would allow a quicker response to the threat and adapt it according to the virus and its specific vector.

  10. Experimental transmission of Mayaro virus by Aedes aegypti.

    PubMed

    Long, Kanya C; Ziegler, Sarah A; Thangamani, Saravanan; Hausser, Nicole L; Kochel, Tadeusz J; Higgs, Stephen; Tesh, Robert B

    2011-10-01

    Outbreaks of Mayaro fever have been associated with a sylvatic cycle of Mayaro virus (MAYV) transmission in South America. To evaluate the potential for a common urban mosquito to transmit MAYV, laboratory vector competence studies were performed with Aedes aegypti from Iquitos, Peru. Oral infection in Ae. aegypti ranged from 0% (0/31) to 84% (31/37), with blood meal virus titers between 3.4 log(10) and 7.3 log(10) plaque-forming units (PFU)/mL. Transmission of MAYV by 70% (21/30) of infected mosquitoes was shown by saliva collection and exposure to suckling mice. Amount of viral RNA in febrile humans, determined by real-time polymerase chain reaction, ranged from 2.7 to 5.3 log(10) PFU equivalents/mL. Oral susceptibility of Ae. aegypti to MAYV at titers encountered in viremic humans may limit opportunities to initiate an urban cycle; however, transmission of MAYV by Ae. aegypti shows the vector competence of this species and suggests potential for urban transmission.

  11. Targeted genome editing in Aedes aegypti using TALENs.

    PubMed

    Aryan, Azadeh; Myles, Kevin M; Adelman, Zach N

    2014-08-15

    The Culicine mosquito, Aedes aegypti, is both a major vector of arthropod-borne viruses (arboviruses) and a genetic model organism for arbovirus transmission. TALE nucleases (TALENs), a group of artificial enzymes capable of generating site-specific DNA lesions, consist of a non-specific FokI endonuclease cleavage domain fused to an engineered DNA binding domain specific to a target site. While TALENs have become an important tool for targeted gene disruption in a variety of organisms, application to the mosquito genome is a new approach. We recently described the use of TALENs to perform heritable genetic disruptions in A. aegypti. Here, we provide detailed methods that will allow other research laboratories to capitalize on the potential of this technology for understanding mosquito gene function. We describe target site selection, transient embryo-based assays to rapidly assess TALEN activity, embryonic microinjection and downstream screening steps to identify target site mutations.

  12. Linkage map for Aedes aegypti using restriction fragment length polymorphisms.

    PubMed

    Severson, D W; Mori, A; Zhang, Y; Christensen, B M

    1993-01-01

    We report construction of a genetic linkage map for the mosquito, Aedes aegypti, based on restriction fragment length polymorphisms (RFLPs). The map consists of 50 DNA markers that identify 53 loci covering 134 map units across three linkage groups. Determination of linkage associations between RFLP markers and several mutant marker loci allowed for partial integration of the RFLP markers with an existing classical genetic linkage map for A. aegypti. The RFLP markers include 42 random cDNA clones, three random genomic DNA clones, and five cDNA clones of known genes. We discuss the influence of autosomal sex determination, characteristic of culicine mosquitoes, in relation to its observed influence on segregation ratios. This has important ramifications for future efforts to identify quantitative trait loci associated with the ability of these mosquitoes to transmit various pathogens and parasites to man and other animals.

  13. Variation in Aedes aegypti Mosquito Competence for Zika Virus Transmission.

    PubMed

    Roundy, Christopher M; Azar, Sasha R; Rossi, Shannan L; Huang, Jing H; Leal, Grace; Yun, Ruimei; Fernandez-Salas, Ildefonso; Vitek, Christopher J; Paploski, Igor A D; Kitron, Uriel; Ribeiro, Guilherme S; Hanley, Kathryn A; Weaver, Scott C; Vasilakis, Nikos

    2017-04-01

    To test whether Zika virus has adapted for more efficient transmission by Aedes aegypti mosquitoes, leading to recent urban outbreaks, we fed mosquitoes from Brazil, the Dominican Republic, and the United States artificial blood meals containing 1 of 3 Zika virus strains (Senegal, Cambodia, Mexico) and monitored infection, dissemination, and virus in saliva. Contrary to our hypothesis, Cambodia and Mexica strains were less infectious than the Senegal strain. Only mosquitoes from the Dominican Republic transmitted the Cambodia and Mexica strains. However, blood meals from viremic mice were more infectious than artificial blood meals of comparable doses; the Cambodia strain was not transmitted by mosquitoes from Brazil after artificial blood meals, whereas 61% transmission occurred after a murine blood meal (saliva titers up to 4 log 10 infectious units/collection). Although regional origins of vector populations and virus strain influence transmission efficiency, Ae. aegypti mosquitoes appear to be competent vectors of Zika virus in several regions of the Americas.

  14. Variation in Aedes aegypti Mosquito Competence for Zika Virus Transmission

    PubMed Central

    Roundy, Christopher M.; Azar, Sasha R.; Rossi, Shannan L.; Huang, Jing H.; Leal, Grace; Yun, Ruimei; Fernandez-Salas, Ildefonso; Vitek, Christopher J.; Paploski, Igor A.D.; Kitron, Uriel; Ribeiro, Guilherme S.; Hanley, Kathryn A.

    2017-01-01

    To test whether Zika virus has adapted for more efficient transmission by Aedes aegypti mosquitoes, leading to recent urban outbreaks, we fed mosquitoes from Brazil, the Dominican Republic, and the United States artificial blood meals containing 1 of 3 Zika virus strains (Senegal, Cambodia, Mexico) and monitored infection, dissemination, and virus in saliva. Contrary to our hypothesis, Cambodia and Mexica strains were less infectious than the Senegal strain. Only mosquitoes from the Dominican Republic transmitted the Cambodia and Mexica strains. However, blood meals from viremic mice were more infectious than artificial blood meals of comparable doses; the Cambodia strain was not transmitted by mosquitoes from Brazil after artificial blood meals, whereas 61% transmission occurred after a murine blood meal (saliva titers up to 4 log10 infectious units/collection). Although regional origins of vector populations and virus strain influence transmission efficiency, Ae. aegypti mosquitoes appear to be competent vectors of Zika virus in several regions of the Americas. PMID:28287375

  15. Aedes aegypti Larvicidal Sesquiterpene Alkaloids from Maytenus oblongata.

    PubMed

    Touré, Seindé; Nirma, Charlotte; Falkowski, Michael; Dusfour, Isabelle; Boulogne, Isabelle; Jahn-Oyac, Arnaud; Coke, Maïra; Azam, Didier; Girod, Romain; Moriou, Céline; Odonne, Guillaume; Stien, Didier; Houël, Emeline; Eparvier, Véronique

    2017-02-24

    Four new sesquiterpene alkaloids (1-4) with a β-dihydroagrofuran skeleton and a new triterpenoid (5) were isolated from an ethyl acetate extract of Maytenus oblongata stems. Their structures were elucidated using 1D and 2D NMR spectroscopy as well as MS and ECD experiments. The M. oblongata stem EtOAc extract and the pure compounds isolated were tested for larvicidal activity against Aedes aegypti under laboratory conditions, and compounds 2 and 3 were found to be active.

  16. Diffusion of community empowerment strategies for Aedes aegypti control in Cuba: a muddling through experience.

    PubMed

    Pérez, Dennis; Lefèvre, Pierre; Castro, Marta; Toledo, María Eugenia; Zamora, Gilberto; Bonet, Mariano; Van der Stuyft, Patrick

    2013-05-01

    Effective participatory strategies in dengue control have been developed and assessed as small-scale efforts. The challenge is to scale-up and institutionalize these strategies within dengue control programs. We describe and critically analyze the diffusion process of an effective empowerment strategy within the Cuban Aedes aegypti control program, focusing on decision-making at the national level, to identify ways forward to institutionalize such strategies in Cuba and elsewhere. From 2005 to 2009, we carried out a process-oriented case study. We used participant observation, in-depth interviews with key informants involved in the diffusion process and document analysis. In a first phase, the data analysis was inductive. In a second phase, to enhance robustness of the analysis, emerging categories were contrasted with Rogers' five-stage conceptual model of the innovation-decision process, which was eventually used as the analytical framework. The diffusion of the empowerment strategy was a continuous and dynamic process. Adoption was a result of the perceived potential match between the innovative empowerment strategy and the performance gap of the Ae. aegypti control program. During implementation, the strategy was partially modified by top level Ae. aegypti control program decision-makers to accommodate program characteristics. However, structure, practices and organizational culture of the control program did not change significantly. Thus rejection occurred. It was mainly due to insufficient dissemination of know-how and underlying principles of the strategy by innovation developers, but also to resistance to change. The innovation-diffusion process has produced mitigated results to date, and the control program is still struggling to find ways to move forward. Improving the innovation strategy by providing the necessary knowledge about the innovation and addressing control program organizational changes is crucial for successful diffusion of empowerment

  17. Community-based control of Aedes aegypti by using Mesocyclops in southern Vietnam.

    PubMed

    Sinh Nam, Vu; Thi Yen, Nguyen; Minh Duc, Hoang; Cong Tu, Tran; Trong Thang, Vu; Hoang Le, Nguyen; Hoang San, Le; Le Loan, Luu; Que Huong, Vu Thi; Kim Khanh, Ly Huynh; Thuy Trang, Huynh Thi; Lam, Leonie Z Y; Kutcher, Simon C; Aaskov, John G; Jeffery, Jason A L; Ryan, Peter A; Kay, Brian H

    2012-05-01

    We previously reported a new community-based mosquito control strategy that resulted in elimination of Aedes aegypti (Linn.) in 40 of 46 communes in northern and central Vietnam, and with annual recurrent total costs (direct and indirect) of only $0.28-$0.89 international dollars per person. This control strategy was extended to four provinces in southern Vietnam in Long An and Hau Giang (2004-2007) and to Long An, Ben Tre, and Vinh Long (2005-2010). In a total of 14 communes with 124,743 residents, the mean ± SD of adult female Ae. aegypti was reduced from 0.93 ± 0.62 to 0.06 ± 0.09, and the reduction of immature Ae. aegypti averaged 98.8%. By the final survey, no adults could be collected in 6 of 14 communes, and one commune, Binh Thanh, also had no immature forms. Although the community-based programs also involved community education and clean-up campaigns, the prevalence of Mesocyclops in large water storage containers > 50 liters increased from 12.77 ± 8.39 to 75.69 ± 9.17% over periods of 15-45 months. At the conclusion of the study, no confirmed dengue cases were detected in four of the five communes for which diagnostic serologic analysis was performed. The rate of progress was faster in communes that were added in stages to the program but the reason for this finding was unclear. At the completion of the formal project, sustainability funds were set up to provide each commune with the financial means to ensure that community-based dengue control activities continued.

  18. Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission.

    PubMed

    Hoffmann, A A; Montgomery, B L; Popovici, J; Iturbe-Ormaetxe, I; Johnson, P H; Muzzi, F; Greenfield, M; Durkan, M; Leong, Y S; Dong, Y; Cook, H; Axford, J; Callahan, A G; Kenny, N; Omodei, C; McGraw, E A; Ryan, P A; Ritchie, S A; Turelli, M; O'Neill, S L

    2011-08-24

    Genetic manipulations of insect populations for pest control have been advocated for some time, but there are few cases where manipulated individuals have been released in the field and no cases where they have successfully invaded target populations. Population transformation using the intracellular bacterium Wolbachia is particularly attractive because this maternally-inherited agent provides a powerful mechanism to invade natural populations through cytoplasmic incompatibility. When Wolbachia are introduced into mosquitoes, they interfere with pathogen transmission and influence key life history traits such as lifespan. Here we describe how the wMel Wolbachia infection, introduced into the dengue vector Aedes aegypti from Drosophila melanogaster, successfully invaded two natural A. aegypti populations in Australia, reaching near-fixation in a few months following releases of wMel-infected A. aegypti adults. Models with plausible parameter values indicate that Wolbachia-infected mosquitoes suffered relatively small fitness costs, leading to an unstable equilibrium frequency <30% that must be exceeded for invasion. These findings demonstrate that Wolbachia-based strategies can be deployed as a practical approach to dengue suppression with potential for area-wide implementation.

  19. Larvicidal and ovicidal properties of leaf and seed extracts of Delonix elata (L.) Gamble (family: Fabaceae) against malaria (Anopheles stephensi Liston) and dengue (Aedes aegypti Linn.) (Diptera: Culicidae) vector mosquitoes.

    PubMed

    Marimuthu, Govindarajan; Rajamohan, Sivakumar; Mohan, Rajeswari; Krishnamoorthy, Yogalakshmi

    2012-07-01

    Mosquito-borne diseases with an economic impact create loss in commercial and labor outputs, particularly in countries with tropical and subtropical climates. Mosquito control is facing a threat because of the emergence of resistance to synthetic insecticides. Extracts from plants may be alternative sources of mosquito control agents because they constitute a rich source of bioactive compounds that are biodegradable into nontoxic products and potentially suitable for use to control mosquitoes. Insecticides of botanical origin may serve as suitable alternative biocontrol techniques in the future. In view of the recently increased interest in developing plant origin insecticides as an alternative to chemical insecticide, this study was undertaken to assess the larvicidal and ovicidal potential of the crude hexane, benzene, chloroform, ethyl acetate, and methanol solvent extracts from the medicinal plant Delonix elata against the medically important mosquito vectors, Anopheles stephensi and Aedes aegypti (Diptera: Culicidae). The larval mortality was observed after 24 h of exposure. All extracts showed moderate larvicidal effects; however, the highest larval mortality was found in methanol extract of leaf of D. elata against the larvae of A. stephensi and A. aegypti with the LC(50) and LC(90) values being 93.59 and 111.83, and 163.69 and 202.77 ppm, respectively. Compared to leaf extracts, seeds have low potency against two mosquitoes with the LC(50) and LC(90) values being 115.28 and 139.04, and 225.07 and 273.03 ppm, respectively. The mean percent hatchability of the eggs was observed after 48 h post-treatment. The percent hatchability was inversely proportional to the concentration of extract and directly proportional to the eggs. All the five solvent extracts showed moderate ovicidal activity; however, the methanol extract showed the highest ovicidal activity. One hundred percent mortality was observed at 300 ppm for leaf methanol extract and 500 ppm for seed

  20. Prevalence of Aedes aegypti Linnaeus and Aedes albopictus Skuse in Koderma, Jharkhand.

    PubMed

    Singh, R K; Dhiman, R C; Dua, V K

    2011-09-01

    Entomological survey was carried out in different localities of Koderma district of Jharkhand with a view to study the prevalence, distribution and stratification of areas for Aedes mosquito species. A total of 233 houses were covered during house to house larval and adult survey. Aedes breeding could be detected in 157 houses. In all, a total of 942 domestic water containers were searched, out of which 461 were found positive. The overall house index(HI) container index(CI) breteau index(B1) and pupal index(PI) were 67.38%, 48.94%, 197.85% and 79.4%, respectively. The survey revealed that Aedes aegypti Linnaeus and Aedes albopictus Skuse are well established in Koderma with most of the areas showing high adult and larval indices. The preventive strategy needs to be directed towards minimizing the breeding potential of Aedes and water management practice by individuals along with implementation of urban bye-laws as well as IEC activities to contain Aedes breeding in future.

  1. Evaluation of reference genes at different developmental stages for quantitative real-time PCR in Aedes aegypti.

    PubMed

    Dzaki, Najat; Ramli, Karima N; Azlan, Azali; Ishak, Intan H; Azzam, Ghows

    2017-03-16

    The mosquito Aedes aegypti (Ae. aegypti) is the most notorious vector of illness-causing viruses such as Dengue, Chikugunya, and Zika. Although numerous genetic expression studies utilizing quantitative real-time PCR (qPCR) have been conducted with regards to Ae. aegypti, a panel of genes to be used suitably as references for the purpose of expression-level normalization within this epidemiologically important insect is presently lacking. Here, the usability of seven widely-utilized reference genes i.e. actin (ACT), eukaryotic elongation factor 1 alpha (eEF1α), alpha tubulin (α-tubulin), ribosomal proteins L8, L32 and S17 (RPL8, RPL32 and RPS17), and glyceraldeyde 3-phosphate dehydrogenase (GAPDH) were investigated. Expression patterns of the reference genes were observed in sixteen pre-determined developmental stages and in cell culture. Gene stability was inferred from qPCR data through three freely available algorithms i.e. BestKeeper, geNorm, and NormFinder. The consensus rankings generated from stability values provided by these programs suggest a combination of at least two genes for normalization. ACT and RPS17 are the most dependably expressed reference genes and therefore, we propose an ACT/RPS17 combination for normalization in all Ae. aegypti derived samples. GAPDH performed least desirably, and is thus not a recommended reference gene. This study emphasizes the importance of validating reference genes in Ae. aegypti for qPCR based research.

  2. Evaluation of reference genes at different developmental stages for quantitative real-time PCR in Aedes aegypti

    PubMed Central

    Dzaki, Najat; Ramli, Karima N.; Azlan, Azali; Ishak, Intan H.; Azzam, Ghows

    2017-01-01

    The mosquito Aedes aegypti (Ae. aegypti) is the most notorious vector of illness-causing viruses such as Dengue, Chikugunya, and Zika. Although numerous genetic expression studies utilizing quantitative real-time PCR (qPCR) have been conducted with regards to Ae. aegypti, a panel of genes to be used suitably as references for the purpose of expression-level normalization within this epidemiologically important insect is presently lacking. Here, the usability of seven widely-utilized reference genes i.e. actin (ACT), eukaryotic elongation factor 1 alpha (eEF1α), alpha tubulin (α-tubulin), ribosomal proteins L8, L32 and S17 (RPL8, RPL32 and RPS17), and glyceraldeyde 3-phosphate dehydrogenase (GAPDH) were investigated. Expression patterns of the reference genes were observed in sixteen pre-determined developmental stages and in cell culture. Gene stability was inferred from qPCR data through three freely available algorithms i.e. BestKeeper, geNorm, and NormFinder. The consensus rankings generated from stability values provided by these programs suggest a combination of at least two genes for normalization. ACT and RPS17 are the most dependably expressed reference genes and therefore, we propose an ACT/RPS17 combination for normalization in all Ae. aegypti derived samples. GAPDH performed least desirably, and is thus not a recommended reference gene. This study emphasizes the importance of validating reference genes in Ae. aegypti for qPCR based research. PMID:28300076

  3. Larval nutritional stress affects vector immune traits in adult yellow fever mosquito Aedes aegypti (Stegomyia aegypti).

    PubMed

    Telang, A; Qayum, A A; Parker, A; Sacchetta, B R; Byrnes, G R

    2012-09-01

    We report key physiological traits that link larval nutritional experience to adult immune status in the yellow fever mosquito Aedes aegypti L. (Stegomyia aegypti) (Diptera: Culicidae). Many lines of defence make up the innate immune system of mosquitoes. Among defences, the epithelium-lined midgut is the first barrier, circulating haemocytes are cellular components of innate immunity and, when triggered, the Toll and Imd pathways signal production of antimicrobial peptides (AMP) as part of humoral defences. We quantified three lines of defence in Ae. aegypti in response to larval nutritional stress, and our data show that important female immune functions are modified by the larval rearing environment. Adult midgut basal lamina thickness was not affected by larval nutrient stress as has been observed in another Aedes sp. However, nutrient stresses experienced by larvae lead to a reduced number of haemocytes in females. Transcripts of Spaetzle (upstream regulator of Toll pathway that leads to induction of AMPs) and some immune-related genes were less abundant in stressed larvae but showed increased expression in females derived from stressed larvae. Results indicate a potential for compensation by the humoral branch for a reduced cellular branch of innate immunity in adults in response to larval nutrient stress.

  4. Seasonal population dynamics and the genetic structure of the mosquito vector Aedes aegypti in São Paulo, Brazil

    PubMed Central

    Campos, Melina; Spenassatto, Carine; Lourdes da Graça Macoris, Maria; Paduan, Karina dos Santos; Pinto, João; Ribolla, Paulo Eduardo Martins

    2012-01-01

    Population genetic studies of insect vectors can generate knowledge to improve epidemiological studies focused on the decrease of pathogen transmission. In this study, we used nine SNPs across the Aedes aegypti genome to characterize seasonal population variations of this important dengue vector. Mosquito samples were obtained by ovitraps placed over Botucatu SP from 2005 to 2010. Our data show that, regardless of the large variation in mosquito abundance (deduced from the number of eggs obtained from ovitraps), the effective population size remained stable over the years. These results suggest that Ae. aegypti is able to maintain a sufficiently large active breeding population during the dry season to keep genetic frequencies stable. These results open new perspectives on mosquito survey and control methods. PMID:23170214

  5. Vector Competence of Aedes aegypti and Aedes polynesiensis Populations from French Polynesia for Chikungunya Virus

    PubMed Central

    Richard, Vaea; Paoaafaite, Tuterarii; Cao-Lormeau, Van-Mai

    2016-01-01

    Background From October 2014 to March 2015, French Polynesia experienced for the first time a chikungunya outbreak. Two Aedes mosquitoes may have contributed to chikungunya virus (CHIKV) transmission in French Polynesia: the worldwide distributed Ae. aegypti and the Polynesian islands-endemic Ae. polynesiensis mosquito. Methods To investigate the vector competence of French Polynesian populations of Ae. aegypti and Ae. polynesiensis for CHIKV, mosquitoes were exposed per os at viral titers of 7 logs tissue culture infectious dose 50%. At 2, 6, 9, 14 and 21 days post-infection (dpi), saliva was collected from each mosquito and inoculated onto C6/36 mosquito cells to check for the presence of CHIKV infectious particles. Legs and body (thorax and abdomen) of each mosquito were also collected at the different dpi and submitted separately to viral RNA extraction and CHIKV real-time RT-PCR. Results CHIKV infection rate, dissemination and transmission efficiencies ranged from 7–90%, 18–78% and 5–53% respectively for Ae. aegypti and from 39–41%, 3–17% and 0–14% respectively for Ae. polynesiensis, depending on the dpi. Infectious saliva was found as early as 2 dpi for Ae. aegypti and from 6 dpi for Ae. polynesiensis. Our laboratory results confirm that the French Polynesian population of Ae. aegypti is highly competent for CHIKV and they provide clear evidence for Ae. polynesiensis to act as an efficient CHIKV vector. Conclusion As supported by our findings, the presence of two CHIKV competent vectors in French Polynesia certainly contributed to enabling this virus to quickly disseminate from the urban/peri-urban areas colonized by Ae. aegypti to the most remote atolls where Ae. polynesiensis is predominating. Ae. polynesiensis was probably involved in the recent chikungunya outbreaks in Samoa and the Cook Islands. Moreover, this vector may contribute to the risk for CHIKV to emerge in other Polynesian islands like Fiji, and more particularly Wallis where there

  6. Cost effectiveness of Aedes aegypti control programmes: participatory versus vertical.

    PubMed

    Baly, A; Toledo, M E; Boelaert, M; Reyes, A; Vanlerberghe, V; Ceballos, E; Carvajal, M; Maso, R; La Rosa, M; Denis, O; Van der Stuyft, P

    2007-06-01

    We conducted an economic appraisal of two strategies for Aedes aegypti control: a vertical versus a community-based approach. Costs were calculated for the period 2000-2002 in three pilot areas of Santiago de Cuba where a community intervention was implemented and compared with three control areas with routine vertical programme activities. Reduction in A. aegypti foci was chosen as the measure of effectiveness. The pre-intervention number of foci (614 vs. 632) and economical costs for vector control (US$243746 vs. US$263486) were comparable in the intervention and control areas. During the intervention period (2001-2002), a 13% decrease in recurrent costs for the health system was observed. Within the control areas, these recurrent relative costs remained stable. The number of A. aegypti foci in the pilot areas and the control areas fell by 459 and 467, respectively. The community-based approach was more cost effective from a health system perspective (US$964 vs. US$1406 per focus) as well as from society perspective (US$1508 vs. US$1767 per focus).

  7. Functional Development of the Octenol Response in Aedes aegypti

    PubMed Central

    Bohbot, Jonathan D.; Durand, Nicolas F.; Vinyard, Bryan T.; Dickens, Joseph C.

    2013-01-01

    Attraction of female Aedes aegypti mosquitoes to 1-octen-3-ol (octenol), CO2, lactic acid, or ammonia emitted by vertebrate hosts is not only contingent on the presence of odorants in the environment, but is also influenced by the insect’s physiological state. For anautogenous mosquito species, like A. aegypti, newly emerged adult females neither respond to host odors nor engage in blood-feeding; the bases for these behaviors are poorly understood. Here we investigated detection of two components of an attractant blend emitted by vertebrate hosts, octenol, and CO2, by female A. aegypti mosquitoes using electrophysiological, behavioral, and molecular approaches. An increase in sensitivity of octenol olfactory receptor neurons (ORNs) was correlated with an increase in odorant receptor gene (Or) expression and octenol-mediated attractive behavior from day 1 to day 6 post-emergence. While the sensitivity of octenol ORNs was maintained through day 10, behavioral responses to octenol decreased as did the ability of females to discriminate between octenol and octenol + CO2. Our results show differing age-related roles for the peripheral receptors for octenol and higher order neural processing in the behavior of female mosquitoes. PMID:23471139

  8. Effects of intraspecific larval competition on adult longevity in the mosquitoes Aedes aegypti and Aedes albopictus

    PubMed Central

    LOUNIBOS, L. P.

    2009-01-01

    Larval competition is common in container-breeding mosquitoes. The impact of competition on larval growth has been thoroughly examined and findings that larval competition can lead to density-dependent effects on adult body size have been documented. The effects of larval competition on adult longevity have been less well explored. The effects of intraspecific larval densities on the longevity of adults maintained under relatively harsh environmental conditions were tested in the laboratory by measuring the longevity of adult Aedes aegypti (L.) and Aedes albopictus (Skuse) (Diptera: Culicidae) that had been reared under a range of larval densities and subsequently maintained in high- or low-humidity regimes (85% or 35% relative humidity [RH], respectively) as adults. We found significant negative effects of competition on adult longevity in Ae. aegypti, but not in Ae. albopictus. Multivariate analysis of variance suggested that the negative effect of the larval environment on the longevity of Ae. aegypti adults was most strongly associated with increased development time and decreased wing length as adults. Understanding how larval competition affects adult longevity under a range of environmental conditions is important in establishing the relationship between models of mosquito population regulation and epidemiological models of vector-borne disease transmission. PMID:19239615

  9. Resistance Status to the Insecticides Temephos, Deltamethrin, and Diflubenzuron in Brazilian Aedes aegypti Populations

    PubMed Central

    Viana-Medeiros, Priscila Fernandes; Araújo, Simone Costa; Martins, Ademir J.; Lima, José Bento Pereira

    2016-01-01

    Insecticides are still largely applied in public health to control disease vectors. In Brazil, organophosphates (OP) and pyrethroids (PY) are used against Aedes aegypti for years. Since 2009 Insect Growth Regulators (IGR) are also employed in the control of larvae. We quantified resistance to temephos (OP), deltamethrin (PY), and diflubenzuron (IGR) of A. aegypti samples from 12 municipalities distributed throughout the country, collected between 2010 and 2012. High levels of resistance to neurotoxic insecticides were detected in almost all populations: RR95 to temephos varied between 4.0 and 27.1; the lowest RR95 to deltamethrin was 13.1, and values higher than 70.0 were found. In contrast, all samples were susceptible to diflubenzuron (RR95 < 2.3). Biochemical tests performed with larvae and adults discarded the participation of acetylcholinesterase, the OP target, and confirmed involvement of the detoxifying enzymes esterases, mixed function oxidases, and glutathione-S-transferases. The results obtained were discussed taking into account the public chemical control component and the increase in the domestic use of insecticides during dengue epidemic seasons in the evaluated municipalities. PMID:27419140

  10. Aedes aegypti larvicide from the ethanolic extract of Piper nigrum black peppercorns.

    PubMed

    Santiago, Viviene S; Alvero, Rita Grace; Villaseñor, Irene M

    2015-01-01

    Due to unavailability of a vaccine and a specific cure to dengue, the focus nowadays is to develop an effective vector control method against the female Aedes aegypti mosquito. This study aims to determine the larvicidal fractions from Piper nigrum ethanolic extracts (PnPcmE) and to elucidate the identity of the bioactive compounds that comprise these larvicidal fractions. Larvicidal assay was performed by subjecting 3rd to 4th A. aegypti instar larvae to PnPcmE of P. nigrum. The PnPcmE exhibited potential larvicidal activity having an LC50 of 7.1246 ± 0.1304 ppm (mean ± Std error). Normal phase vacuum liquid chromatography of the PnPcmE was employed which resulted in five fractions, two of which showed larvicidal activity. The most active of the PnPcmE fractions is PnPcmE-1A, with an LC50 and LC90 of 1.7101 ± 0.0491 ppm and 3.7078 ppm, respectively. Subsequent purification of PnPcmE-1A allowed the identification of the larvicidal compound as oleic acid.

  11. Rhythms and synchronization patterns in gene expression in the Aedes aegypti mosquito

    PubMed Central

    2011-01-01

    Background Aedes aegypti is arguably the most studied of all mosquito species in the laboratory and is the primary vector of both Dengue and Yellow Fever flaviviruses in the field. A large number of transcriptional studies have been made in the species and these usually report transcript quantities observed at a certain age or stage of development. However, circadian oscillation is an important characteristic of gene expression in many animals and plants, modulating both their physiology and behavior. Circadian gene expression in mosquito species has been previously reported but for only a few genes directly involved in the function of the molecular clock. Results Herein we analyze the transcription profiles of 21,494 messenger RNAs using an Ae. aegypti Agilent® microarray. Transcripts were quantified in adult female heads at 24 hours and then again at 72 hours and eight subsequent time points spaced four hours apart. We document circadian rhythms in multiple molecular pathways essential for growth, development, immune response, detoxification/pesticide resistance. Circadian rhythms were also noted in ribosomal protein genes used for normalization in reverse transcribed PCR (RT-PCR) to determine transcript abundance. We report pervasive oscillations and intricate synchronization patterns relevant to all known biological pathways. Conclusion These results argue strongly that transcriptional analyses either need to be made over time periods rather than confining analyses to a single time point or development stage or exceptional care needs to be made to synchronize all mosquitoes to be analyzed and compared among treatment groups. PMID:21414217

  12. Bionomics of Aedes aegypti subpopulations (Diptera: Culicidae) from Misiones Province, northeastern Argentina.

    PubMed

    Tejerina, Edmundo Fabricio; Almeida, Francisco Felipe Ludueña; Almirón, Walter Ricardo

    2009-01-01

    Life statistics of four Aedes aegypti subpopulations from the subtropical province of Misiones were studied during autumn and winter, under semi-natural conditions, coming from the localities of Posadas (SW), San Javier (SE), Bernardo de Irigoyen (NE) and Puerto Libertad (NW). The eastern subpopulations are geographically separated by the central mountain system of the province from the western subpopulations. High percentages of larval and pupal survival (97-100%) were recorded, and no significant differences were detected among the four subpopulations. Larvae and pupae lasted approximately 8 days to complete their development, no significant differences being detected among the four subpopulations studied. Sex ratio recorded did not differ significantly from 1:1. Male longevity did not show difference among the different subpopulations, but female longevity was remarkably different among the four subpopulations (F=16.27; d.f.=(3;8); P=0.0009), ranging among 11.45 days for San Javier and 57.87 days for Posadas. Fecundity also varied considerably among subpopulations, the greatest number (307.44 eggs/female) being recorded for Posadas (F=4.13; d.f.=(3;8); P=0.04). Ae. aegypti females of the western subpopulations lived longer than the eastern subpopulations studied, therefore, the risk of dengue outbreak would be greater on the Misiones Province border with Paraguay.

  13. Susceptibility profile of Aedes aegypti from Santiago Island, Cabo Verde, to insecticides.

    PubMed

    Rocha, Hélio Daniel Ribeiro; Paiva, Marcelo Henrique Santos; Silva, Norma Machado; de Araújo, Ana Paula; Camacho, Denise dos Reis da Rosa de Azevedo; Moura, Aires Januário Fernandes da; Gómez, Lara Ferrero; Ayres, Constância Flávia Junqueira; Santos, Maria Alice Varjal de Melo

    2015-12-01

    In 2009, Cabo Verde diagnosed the first dengue cases, with 21,137 cases reported and Aedes aegypti was identified as the vector. Since the outbreak, chemical insecticides and source reduction were used to control the mosquito population. This study aimed to assess the susceptibility of A. aegypti populations from Santiago, Cabo Verde to insecticides and identify the mechanisms of resistance. Samples of A. aegypti eggs were obtained at two different time periods (2012 and 2014), using ovitraps in different locations in Santiago Island to establish the parental population. F1 larvae were exposed to different concentrations of insecticides (Bacillus thuringiensis var israelensis (Bti), diflubenzuron and temephos) to estimate the lethal concentrations (LC90) and calculate the respective rate of resistance (RR90). Semi-field tests using temephos-ABATE(®) were performed to evaluate the persistence of the product. Bottle tests using female mosquitoes were carried out to determine the susceptibility to the adulticides malathion, cypermethrin and deltamethrin. Biochemical and molecular tests were performed to investigate the presence of metabolic resistance mechanisms, associated with the enzymes glutathione S-transferases (GSTs), esterases and mixed-function oxidases (MFO) and to detect mutations or alterations in the sodium channel and acetylcholinesterase genes. A. aegypti mosquitoes from Santiago exhibited resistance to deltamethrin, cypermethrin (mortality<80%) and temephos (RR90=4.4) but susceptibility to malathion (mortality≥98%), Bti and diflubenzuron. The low level of resistance to temephos did not affect the effectiveness of Abate(®). The enzymatic analysis conducted in 2012 revealed slight changes in the activities of GST (25%), MFO (18%), α-esterase (19%) and β-esterase (17%), but no significant changes in 2014. Target site resistance mutations were not detected. Our results suggest that the A. aegypti population from Santiago is resistant to two major

  14. Aedes (Stegomyia) albopictus' dynamics influenced by spatiotemporal characteristics in a Brazilian dengue-endemic risk city.

    PubMed

    Bezerra, Juliana M T; Araújo, Raphaela G P; Melo, Fabrício F; Gonçalves, Caroline M; Chaves, Bárbara A; Silva, Breno M; Silva, Luciana D; Brandão, Silvana T; Secundino, Nágila F C; Norris, Douglas E; Pimenta, Paulo F P

    2016-12-01

    Brazil reported the majority of the dengue cases in Americas during the last two decades, where the occurrence of human dengue cases is exclusively attributed to the Aedes (Stegomyia) aegypti (Linnaeus). Nowadays, other recognized Dengue virus (DENV) vector in Asian countries, Aedes (Stegomyia) albopictus (Skuse), has been detected in more than half of the 5565 Brazilian municipalities. Therefore, the aim of the present study was to investigate the presence of, and determine the Ae. albopictus' dynamics influenced by spatiotemporal characteristics in a dengue-endemic risk city of Belo Horizonte, Minas Gerais State's capital. Aedes albopictus were collected across four consecutive DENV transmission seasons from 2010 to 2014. These mosquitoes were caught in three selected districts, which had been reported in the previous ten years as having high mosquito densities and an elevated concentration of human dengue cases during epidemic seasons. All field-caught Ae. albopictus was individually processed by real-time RT-PCR, to research the DENV presence. The third season (p<0.05) and the Pampulha district (p<0.05) had the highest proportions of field-caught Ae. albopictus, respectively. The second season had the highest proportion of DENV-infected field-caught females (p<0.05), but there was no difference among the proportions of DENV-infected Ae. albopictus when comparing the collection in the three districts (p=0.98). Minimum (p=0.004) and maximum (p<0.0001) temperature were correlated with the field-caught Ae. albopictus in four different periods and districts. In the generalized linear model of Poisson, the field-caught DENV-infected Ae. albopictus (p=0.005), East district (p=0.003), minimum temperature (p<0.0001) and relative humidity (p=0.001) remained associated with the total number of human dengue cases. Our study demonstrated that the number of field-caught DENV-infected Ae. albopictus was inversed correlated with the number of human dengue cases. Our study

  15. Evidence for natural vertical transmission of chikungunya viruses in field populations of Aedes aegypti in Delhi and Haryana states in India-a preliminary report.

    PubMed

    Jain, Jaspreet; Kushwah, Raja Babu S; Singh, Shashi S; Sharma, Anil; Adak, Tridibes; Singh, Om P; Bhatnagar, Raj Kamal; Subbarao, Sarala K; Sunil, Sujatha

    2016-10-01

    Aedes aegypti and Aedes albopictus are principal vectors for the transmission of chikungunya virus (CHIKV). India is a hub for both dengue and chikungunya infections and there are several reports of co-infection of dengue and chikungunya virus in the clinical scenario. The present pilot entomological survey was conducted to evaluate vertical transmission of CHIKV in Aedes field populations. Aedes immature (larvae and pupae) collection was done in 2012, over a period of six months from selected sites in Delhi and Haryana, India. The immatures collected were reared for adult emergence and species identification was done. A. aegypti male and female mosquitoes were separated and pooled collection spot-wise, RNA extracted and RT PCR performed to test for the presence of CHIKV in the pools. Container index (CI) and minimum infection rate (MIR) were estimated. From study areas that tested positive for CHIKV, adult collections were made and females upon feeding on uninfected blood in laboratory were allowed to lay eggs. The progeny that emerged from these field-collected mothers were tested for CHIKV presence. Our pilot survey showed the existence of A. aegypti population even during peak summer season in a few foci which eventually helped the mosquitoes to tide over adverse environmental conditions and with the start of rainfall, the population exploded within a short period of time. Immatures collected from field and progeny of adults collected from the field were CHIKV positive demonstrating the presence of vertical transmission of chikungunya virus in field population of A. aegypti. The present study further demonstrates the importance of identifying permanent breeding sites for proper Aedes species control.

  16. Robust heat-inducible gene expression by two endogenous hsp70-derived promoters in transgenic Aedes aegypti

    PubMed Central

    Carpenetti, Tiffany L. G.; Aryan, Azadeh; Myles, Kevin M.; Adelman, Zach N.

    2011-01-01

    Aedes aegypti is an important vector of the viruses that cause dengue fever, dengue hemorrhagic fever, and yellow fever. Reverse genetic approaches to the study of gene function in this mosquito have been limited by the lack of a robust inducible promoter to allow precise temporal control over a protein-encoding or hairpin RNA transgene. Likewise, investigations into the molecular and biochemical basis of vector competence would benefit from the ability to activate an anti-pathogen molecule at specific times during infection. We have characterized the ability of genomic sequences derived from two Ae. aegypti hsp70 genes to drive heat-inducible expression of a reporter in both transient and germline transformation contexts. AaHsp70-luciferase transcripts accumulated specifically after heat shock, and displayed a pattern of rapid induction and decay similar to endogenous AaHsp70 genes. Luciferase expression in transgenic Ae. aegypti increased by ∼25-50 fold in whole adults by four hours after heat-shock, with significant activity (∼20 fold) remaining at 24 hr. Heat-induced expression was even more dramatic in midgut tissues, with one strain showing a ∼2500-fold increase in luciferase activity. The AaHsp70 promoters described could be valuable for gene function studies as well as for the precise timing of the expression of anti-pathogen molecules. PMID:22142225

  17. Establishment of a Wolbachia Superinfection in Aedes aegypti Mosquitoes as a Potential Approach for Future Resistance Management

    PubMed Central

    De Bruyne, Jyotika Taneja; Kien, Duong Hue T.; Hoang, Nhat Le Thanh; Chau, Nguyen Van Vinh; Iturbe-Ormaetxe, Iñaki; Simmons, Cameron P.; O’Neill, Scott L.

    2016-01-01

    Wolbachia pipientis is an endosymbiotic bacterium estimated to chronically infect between 40–75% of all arthropod species. Aedes aegypti, the principle mosquito vector of dengue virus (DENV), is not a natural host of Wolbachia. The transinfection of Wolbachia strains such as wAlbB, wMel and wMelPop-CLA into Ae. aegypti has been shown to significantly reduce the vector competence of this mosquito for a range of human pathogens in the laboratory. This has led to wMel-transinfected Ae. aegypti currently being released in five countries to evaluate its effectiveness to control dengue disease in human populations. Here we describe the generation of a superinfected Ae. aegypti mosquito line simultaneously infected with two avirulent Wolbachia strains, wMel and wAlbB. The line carries a high overall Wolbachia density and tissue localisation of the individual strains is very similar to each respective single infected parental line. The superinfected line induces unidirectional cytoplasmic incompatibility (CI) when crossed to each single infected parental line, suggesting that the superinfection would have the capacity to replace either of the single constituent infections already present in a mosquito population. No significant differences in fitness parameters were observed between the superinfected line and the parental lines under the experimental conditions tested. Finally, the superinfected line blocks DENV replication more efficiently than the single wMel strain when challenged with blood meals from viremic dengue patients. These results suggest that the deployment of superinfections could be used to replace single infections and may represent an effective strategy to help manage potential resistance by DENV to field deployments of single infected strains. PMID:26891349

  18. Vector Competence of French Polynesian Aedes aegypti and Aedes polynesiensis for Zika Virus

    PubMed Central

    Richard, Vaea; Paoaafaite, Tuterarii; Cao-Lormeau, Van-Mai

    2016-01-01

    Background In 2013–2014, French Polynesia experienced for the first time a Zika outbreak. Two Aedes mosquitoes may have contributed to Zika virus (ZIKV) transmission in French Polynesia: the worldwide distributed Ae. aegypti and the Polynesian islands-endemic Ae. polynesiensis mosquito. Methodology/Principal Findings To evaluate their vector competence for ZIKV, mosquitoes were infected per os at viral titers of 7 logs tissue culture infectious dose 50%. At several days post-infection (dpi), saliva was collected from each mosquito and inoculated onto C6/36 mosquito cells to check for the presence of ZIKV infectious particles. Legs and body of each mosquito were also collected and submitted separately to RNA extraction and ZIKV RT-PCR. In Ae. aegypti the infection rate was high as early as 6 dpi and the dissemination efficiency get substantial from 9 dpi while the both rates remained quite low in Ae. polynesiensis. The transmission efficiency was poor in Ae. aegypti until 14 dpi and no infectious saliva was found in Ae. polynesiensis at the time points studied. Conclusions/Significance In our experimental conditions, the late ability of the French Polynesian Ae. aegypti to transmit ZIKV added by the poor competence of Ae. polynesiensis for this virus suggest the possible contribution of another vector for the propagation of ZIKV during the outbreak, in particular in remote islands where Ae. polynesiensis is predominating. PMID:27654962

  19. High Level of Vector Competence of Aedes aegypti and Aedes albopictus from Ten American Countries as a Crucial Factor in the Spread of Chikungunya Virus

    PubMed Central

    Vega-Rúa, Anubis; Zouache, Karima; Girod, Romain

    2014-01-01

    ABSTRACT Chikungunya virus (CHIKV) causes a major public health problem. In 2004, CHIKV began an unprecedented global expansion and has been responsible for epidemics in Africa, Asia, islands in the Indian Ocean region, and surprisingly, in temperate regions, such as Europe. Intriguingly, no local transmission of chikungunya virus (CHIKV) had been reported in the Americas until recently, despite the presence of vectors and annually reported imported cases. Here, we assessed the vector competence of 35 American Aedes aegypti and Aedes albopictus mosquito populations for three CHIKV genotypes. We also compared the number of viral particles of different CHIKV strains in mosquito saliva at two different times postinfection. Primarily, viral dissemination rates were high for all mosquito populations irrespective of the tested CHIKV isolate. In contrast, differences in transmission efficiency (TE) were underlined in populations of both species through the Americas, suggesting the role of salivary glands in selecting CHIKV for highly efficient transmission. Nonetheless, both mosquito species were capable of transmitting all three CHIKV genotypes, and TE reached alarming rates as high as 83.3% and 96.7% in A. aegypti and A. albopictus populations, respectively. A. albopictus better transmitted the epidemic mutant strain CHIKV_0621 of the East-Central-South African (ECSA) genotype than did A. aegypti, whereas the latter species was more capable of transmitting the original ECSA CHIKV_115 strain and also the Asian genotype CHIKV_NC. Therefore, a high risk of establishment and spread of CHIKV throughout the tropical, subtropical, and even temperate regions of the Americas is more real than ever. IMPORTANCE Until recently, the Americas had never reported chikungunya (CHIK) autochthonous transmission despite its global expansion beginning in 2004. Large regions of the continent are highly infested with Aedes aegypti and Aedes albopictus mosquitoes, and millions of dengue (DEN

  20. Egg and fourth instar larvae gut of Aedes aegypti as a source of stem cells.

    PubMed

    Mario, Lara C; Borghesi, Jéssica; Crivellari-Damasceno, Wilson T; Favaron, Phelipe O; Carreira, Ana Claudia O; Will, Sonia E A L; Maria, Durvanei A; Miglino, Maria A

    2016-10-01

    According to the World Health Organization, 2015 registered more than 1.206.172 cases of Dengue in the Americas. Recently, the Aedes aegypti has been not only related to Dengue, but also with cases of Zika virus and Chikungunya. Due to its epidemiological importance, this study characterized the morphology of the embryonated eggs of A. aegypti and provided a protocol to culture stem cells from eggs and digestive tract of fourth instar larvae in order to examine cell biology and expression of markers in these vectors. Cells were isolated and cultured in DMEM-High at 28°C, and their morphology, cell cycle and immunophenotyping were examined. Morphologically, embryos were at the end of the embryonic period and showed: head, thorax, and abdomen with eight abdominal segments. The embryonic tissues expressed markers related to cell proliferation (PCNA), pluripotency (Sox2 and OCT3/4), neural cells (Nestin), mesenchymal cells (Vimentin and Stro-1), and endosomal cells (GM130 and RAB5). In culture, cells from both tissues (eggs and larvae gut) were composed by a heterogeneous population. The cells had a globoid shape and small size. Cell cycle analysis on passage 1 (P1) showed 27.5%±2.0% of cell debris, 68% of cells on G0-G1 phase, 30.2% on S phase, 1.9%±0.5% on G2-M phase. In addition, cells on passage 2 showed: 10% of cell debris, 92.4% of cells on G0-G1 phase, 6.8% on S phase, 0.6% on G2-M phase. Embryonated eggs expressed markers involved with pluripotency (Sox2 and Oct 3/4), mesenchymal cells (vimentin and Stro-1), neural cells (Nestin), and cellular death by apoptosis (Caspase 3). Specific endosomal markers for insect cells (GM130 and RAB5) were also highly expressed. In cell culture of A. aegypti larvae gut the same labeling pattern was observed, with a small decrease in the expression of mesenchymal (vimentin and Stro-1) and neural (Nestin) markers. In summary, we were able to establish a protocol to culture embryonated eggs and larvae gut of A. aegypti

  1. Oviposition and flight orientation response of Aedes aegypti to certain aromatic aryl hydrazono esters.

    PubMed

    Guha, Lopamudra; Seenivasagan, T; Bandyopadhyay, Prabal; Iqbal, S Thanvir; Sathe, Manisha; Sharma, Pratibha; Parashar, B D; Kaushik, M P

    2012-09-01

    Aedes aegypti is a day-biting, highly anthropophilic mosquito and a potential vector of dengue and chikungunya in India. A. aegypti is a container breeder, generally oviposit in the stored and fresh water bodies, and discarded containers near residential areas that provide suitable habitats for oviposition by gravid females. The diurnal activity and endophilic nature of these mosquitoes have increased the frequency of contact with human being. Assured blood meal from human host in an infested area leads to increased disease occurrence. Gravid mosquitoes can potentially be lured to attractant-treated traps and could subsequently be killed with insecticides or growth regulators. In this direction, oviposition by A. aegypti females to aryl hydrazono esters (AHE)-treated bowls at 10 ppm concentration was tested in dual choice experiment, and their orientation response to these ester compounds was studied in Y-tube olfactometer. Among the esters tested, AHE-2, AHE-11 and AHE-12 elicited increased egg deposition with oviposition activity indices (OAI) of +0.39, +0.24 and +0.48, respectively, compared to control; in contrast, AHE-8, AHE-9 and AHE-10 showed negative oviposition response with OAI of -0.46, -0.35 and -0.29, respectively, at 10 mg/L. In the Y-tube olfactometer bioassay, AHE-2 attracted 60 % females compared to control, while to the odour of AHE-11 and AHE-12, about 70 % of the females were trapped in treated chambers. In contrast, only 27-30 % of gravid females entered the chamber releasing AHE-8, AHE-9 and AHE-10 odour plumes, while 70 % entered control chamber, evincing a possible non-preference of treatment odours as well as interference with olfactory receptors. These compounds have the potential for application as oviposition stimulants or deterrents for surveillance and control of mosquito population using ovitraps.

  2. Use of transgenic Aedes aegypti in Brazil: risk perception and assessment

    PubMed Central

    Aragão, Francisco José Lima; Colli, Walter; Dellagostin, Odir Antônio; Finardi-Filho, Flávio; Hirata, Mario Hiroyuki; Lira-Neto, Amaro de Castro; Almeida de Melo, Marcia; Nepomuceno, Alexandre Lima; Gorgônio da Nóbrega, Francisco; Delfino de Sousa, Gutemberg; Valicente, Fernando Hercos; Zanettini, Maria Helena Bodanese

    2016-01-01

    Abstract The OX513A strain of Aedes aegypti, which was developed by the British company Oxitec, expresses a self-limiting transgene that prevents larvae from developing to adulthood. In April 2014, the Brazilian National Technical Commission on Biosafety completed a risk assessment of OX513A and concluded that the strain did not present new biological risks to humans or the environment and could be released in Brazil. At that point, Brazil became the first country to approve the unconstrained release of a genetically modified mosquito. During the assessment, the commission produced a comprehensive list of – and systematically analysed – the perceived hazards. Such hazards included the potential survival to adulthood of immature stages carrying the transgene – should the transgene fail to be expressed or be turned off by exposure to sufficient environmental tetracycline. Other perceived hazards included the potential allergenicity and/or toxicity of the proteins expressed by the gene, the potential for gene flow or increased transmission of human pathogens and the occupation of vacant breeding sites by other vector species. The Zika epidemic both elevated the perceived importance of Ae. aegypti as a vector – among policy-makers and regulators as well as the general public – and increased concerns over the release of males of the OX513A strain. We have therefore reassessed the potential hazards. We found that release of the transgenic mosquitoes would still be both safe and of great potential value in the control of diseases spread by Ae. aegypti, such as chikungunya, dengue and Zika. PMID:27843167

  3. Larvicidal and Growth-Inhibitory Activity of Entomopathogenic Bacteria Culture Fluids Against Aedes aegypti (Diptera: Culicidae).

    PubMed

    da Silva, João Luiz Rosa; Undurraga Schwalm, Fernanda; Eugênio Silva, Carlos; da Costa, Marisa; Heermann, Ralf; Santos da Silva, Onilda

    2017-01-06

    Dengue, Chikungunya, and Zika are important vector-borne diseases, and Aedes aegypti L. is their main transmitter. As the disease management is mainly based on mosquito control strategies, the search for alternative and cost-effective approaches is ongoing. The Gram-negative bacteria Xenorhabdus nematophila and Photorhabdus luminescens are symbiotically associated with entomopathogenic nematodes and are highly pathogenic for insect larvae. After we have recently confirmed the toxicity of these bacteria in Ae. aegypti larvae, we here evaluated the toxic activity of culture fluids on the development of this mosquito species. Larval susceptibility was assessed by exposing larvae to different concentrations of P. luminescens or X. nematophila culture fluids to confirm whether secondary metabolites might cause the mosquitos' death. Xenorhabdus nematophila culture fluid was more effective and stable during the mosquito pathogenicity bioassays compared to that of P. luminescens Larval mortality started a few hours after exposure of the insects to the fluids. Furthermore, the residual effect of larvicidal activity of X. nematophila fluid persisted at full efficiency for 4 d. Particularly, larval mortality was still higher than 50% for up to 8 d. Exposure of larvae to a sublethal dose of X. nematophila fluid delayed pupation as well as emergence of adult mosquitoes and caused cumulative larval mortality higher than 90% by day 14. Here, we describe for the first time the use of stable culture fluids and therefore secondary metabolites of P. luminescens and X. nematophila as a promising basis for the use as biopesticide for control of Ae. aegypti in the future.

  4. Determinants of Heterogeneous Blood Feeding Patterns by Aedes aegypti in Iquitos, Peru

    PubMed Central

    Liebman, Kelly A.; Stoddard, Steven T.; Reiner, Robert C.; Perkins, T. Alex; Astete, Helvio; Sihuincha, Moises; Halsey, Eric S.; Kochel, Tadeusz J.; Morrison, Amy C.; Scott, Thomas W.

    2014-01-01

    Background Heterogeneous mosquito biting results in different individuals in a population receiving an uneven number of bites. This is a feature of many vector-borne disease systems that, if understood, could guide preventative control efforts toward individuals who are expected to contribute most to pathogen transmission. We aimed to characterize factors determining biting patterns of Aedes aegypti, the principal mosquito vector of dengue virus. Methodology/Principal Findings Engorged female Ae. aegypti and human cheek swabs were collected from 19 houses in Iquitos, Peru. We recorded the body size, age, and sex of 275 consenting residents. Movement in and out of the house over a week (time in house) and mosquito abundance were recorded on eight separate occasions in each household over twelve months. We identified the individuals bitten by 96 engorged mosquitoes over this period by amplifying specific human microsatellite markers in mosquito blood meals and human cheek swabs. Using a multinomial model assuming a saturating relationship (power), we found that, relative to other residents of a home, an individual's likelihood of being bitten in the home was directly proportional to time spent in their home and body surface area (p<0.05). A linear function fit the relationship equally well (ΔAIC<1). Conclusions/Significance Our results indicate that larger people and those who spend more time at home are more likely to receive Ae. aegypti bites in their homes than other household residents. These findings are consistent with the idea that measurable characteristics of individuals can inform predictions of the extent to which different people will be bitten. This has implications for an improved understanding of heterogeneity in different people's contributions to pathogen transmission, and enhanced interventions that include the people and places that contribute most to pathogen amplification and spread. PMID:24551262

  5. Physiological and Morphological Aspects of Aedes aegypti Developing Larvae: Effects of the Chitin Synthesis Inhibitor Novaluron

    PubMed Central

    Farnesi, Luana C.; Brito, José M.; Linss, Jutta G.; Pelajo-Machado, Marcelo; Valle, Denise; Rezende, Gustavo L.

    2012-01-01

    Population control of the dengue vector mosquito, Aedes aegypti, is difficult due to many reasons, one being the development of resistance to neurotoxic insecticides employed. The biosynthesis of chitin, a major constituent of insect cuticle, is a novel target for population control. Novaluron is a benzoylphenylurea (BPU) that acts as a chitin synthesis inhibitor, already used against mosquitoes. However, information regarding BPU effects on immature mosquito stages and physiological parameters related with mosquito larval development are scarce. A set of physiological parameters were recorded in control developing larvae and novaluron was administered continuously to Ae. aegypti larvae, since early third instar. Larval instar period duration was recorded from third instar until pupation. Chitin content was measured during third and fourth instars. Fourth instars were processed histochemically at the mesothorax region, stained with hematoxylin and eosin (HE) for assessment of internal tissues, and labeled with WGA-FITC to reveal chitinized structures. In control larvae: i) there is a chitin content increase during both third and fourth instars where late third instars contain more chitin than early fourth instars; ii) thoracic organs and a continuous cuticle, closely associated with the underlying epidermis were observed; iii) chitin was continuously present throughout integument cuticle. Novaluron treatment inhibited adult emergence, induced immature mortality, altered adult sex ratio and caused delay in larval development. Moreover, novaluron: i) significantly affected chitin content during larval development; ii) induced a discontinuous and altered cuticle in some regions while epidermis was often thinner or missing; iii) rendered chitin cuticle presence discontinuous and less evident. In both control and novaluron larvae, chitin was present in the peritrophic matrix. This study showed quantitatively and qualitatively evidences of novaluron effects on Ae

  6. Virulency of novel nanolarvicide from Trichoderma atroviride against Aedes aegypti (Linn.): a CLSM analysis.

    PubMed

    Singh, Gavendra; Prakash, Soam

    2015-08-01

    Aedes aegypti is the vector for transmitting dengue, chikungunya, and yellow fever. These diseases' transmission has increased predominantly in urban and semi-urban areas as a major public health concern. In present investigation, Trichoderma atroviride culture filtrates were used for the synthesis of silver nanoparticle. Moreover, T. atroviride is a free-living and rapidly growing fungi common in soil and root ecosystem. This fungi is an exceptionally good model for biocontrol and more significant as a bioagent. T. atroviride was grown in malt extract. T. atroviride culture filtrates were exposed to silver nitrates solution for 24 h at 25 °C for the synthesis of silver nanoparticles (AgNPs). These AgNPs were characterized to find their unique properties with UV-visible spectrophotometer and transmission electron microscope (TEM) analysis. The T. atroviride culture filtrates have formed hexagonal (diamond shape) AgNPs with the range of size of 14.01-21.02 nm. These AgNPs have shown significant efficacies against first, second, third, and fourth instar larvae of A. aegypti. The LC90 and LC99 values for the first instar were 1 and 3 ppm, second instar 2 and 3.18 ppm, third instar 3.12 and 4.12 ppm, and fourth instar 6.30 and 6.59 ppm, respectively, after an exposure of 7 h. The confocal laser scanning microscopy (CLSM) studies were verdict that these AgNPs embedded in the cuticle of larvae and cause instant lethality in 7 h. Present investigations have demonstrated that the AgNPs of T. atroviride culture filtrates synthesized can be used for larvae control of A. aegypti. T. atroviride is synthesized to silver nanoparticles to be a promising new candidate for application in mosquito control. We therefore suggested that the ability of T. atroviride culture filtrates in synthesis can also be explored for synthesizing silver nanoparticles for commercial exploitation.

  7. Developmental and Environmental Regulation of AaeIAP1 Transcript in Aedes aegypti

    DTIC Science & Technology

    2008-01-01

    swine fever virus IAP ho- molog is a late structural polypeptide. Virology 214: 670Ð 674. Christophers, S. R. 1960. Aedes aegypti (L.) the yellow fever...Aedes triseriatusmosquitoes. Insect Mol. Biol. 11: 431Ð442. Chacon,M. R., F. Almazan,M. L. Nogal, E. Vinuela, and J. F. Rodriguez. 1995. The African

  8. Repellents Inhibit P450 Enzymes in Stegomyia (Aedes) aegypti

    PubMed Central

    Jaramillo Ramirez, Gloria Isabel; Logan, James G.; Loza-Reyes, Elisa; Stashenko, Elena; Moores, Graham D.

    2012-01-01

    The primary defence against mosquitoes and other disease vectors is often the application of a repellent. Despite their common use, the mechanism(s) underlying the activity of repellents is not fully understood, with even the mode of action of DEET having been reported to be via different mechanisms; e.g. interference with olfactory receptor neurones or actively detected by olfactory receptor neurones on the antennae or maxillary palps. In this study, we discuss a novel mechanism for repellence, one of P450 inhibition. Thirteen essential oil extracts from Colombian plants were assayed for potency as P450 inhibitors, using a kinetic fluorometric assay, and for repellency using a modified World Health Organisation Pesticide Evaluations Scheme (WHOPES) arm-in cage assay with Stegomyia (Aedes) aegypti mosquitoes. Bootstrap analysis on the inhibition analysis revealed a significant correlation between P450-inhibition and repellent activity of the oils. PMID:23152795

  9. Spatial and temporal patterns of abundance of Aedes aegypti L. (Stegomyia aegypti) and Aedes albopictus (Skuse) [Stegomyia albopictus (Skuse)] in southern Florida.

    PubMed

    Reiskind, M H; Lounibos, L P

    2013-12-01

    Invasion by mosquito vectors of disease may impact the distribution of resident mosquitoes, resulting in novel patterns of vectors and concomitant risk for disease. One example of such an impact is the invasion by Aedes albopictus (Skuse) [Stegomyia albopictus (Skuse)] (Diptera: Culicidae) of North America and this species' interaction with Aedes aegypti L. (Stegomyia aegypti L). We hypothesized that Ae. aegypti would be found in urban, coastal areas that experience hotter and drier conditions, whereas Ae. albopictus would be more commonly found in suburban and rural areas that are cooler and wetter. In addition, we hypothesized that Ae. aegypti would be more abundant early in the wet season, whereas Ae. albopictus would be more abundant later in the wet season. Urban areas were drier, hotter and contained more Ae. aegypti than suburban or rural areas. Aedes aegypti was relatively more abundant early in the wet season, whereas Ae. albopictus was more abundant in both the late wet season and the dry season. The spatial patterns of inter- and intraspecific encounters between these species were also described. The distribution of these mosquitoes is correlated with abiotic conditions, and with temperature, humidity and the relative availability of rain-filled containers. Understanding the ecological determinants of species distribution can provide insight into the biology of these vectors and important information for their appropriate control.

  10. Cumulative mortality of Aedes aegypti larvae treated with compounds

    PubMed Central

    Torres, Sandra Maria; da Cruz, Nadine Louise Nicolau; Rolim, Vitor Pereira de Matos; Cavalcanti, Maria Inês de Assis; Alves, Leucio Câmara; da Silva, Valdemiro Amaro

    2014-01-01

    OBJECTIVE To evaluate the larvicidal activity of Azadirachta indica, Melaleuca alternifolia, carapa guianensis essential oils and fermented extract of Carica papaya against Aedes aegypti (Linnaeus, 1762) (Diptera: Culicidae). METHODS The larvicide test was performed in triplicate with 300 larvae for each experimental group using the third larval stage, which were exposed for 24h. The groups were: positive control with industrial larvicide (BTI) in concentrations of 0.37 ppm (PC1) and 0.06 ppm (PC2); treated with compounds of essential oils and fermented extract, 50.0% concentration (G1); treated with compounds of essential oils and fermented extract, 25.0% concentration (G2); treated with compounds of essential oils and fermented extract, 12.5% concentration (G3); and negative control group using water (NC1) and using dimethyl (NC2). The larvae were monitored every 60 min using direct visualization. RESULTS No mortality occurred in experimental groups NC1 and NC2 in the 24h exposure period, whereas there was 100% mortality in the PC1 and PC2 groups compared to NC1 and NC2. Mortality rates of 65.0%, 50.0% and 78.0% were observed in the groups G1, G2 and G3 respectively, compared with NC1 and NC2. CONCLUSIONS The association between three essential oils from Azadirachta indica, Melaleuca alternifolia, Carapa guianensis and fermented extract of Carica papaya was efficient at all concentrations. Therefore, it can be used in Aedes aegypti Liverpool third larvae stage control programs. PMID:25119939

  11. Worldwide patterns of genetic differentiation imply multiple ‘domestications’ of Aedes aegypti, a major vector of human diseases

    PubMed Central

    Brown, Julia E.; McBride, Carolyn S.; Johnson, Petrina; Ritchie, Scott; Paupy, Christophe; Bossin, Hervé; Lutomiah, Joel; Fernandez-Salas, Ildefonso; Ponlawat, Alongkot; Cornel, Anthony J.; Black, William C.; Gorrochotegui-Escalante, Norma; Urdaneta-Marquez, Ludmel; Sylla, Massamba; Slotman, Michel; Murray, Kristy O.; Walker, Christopher; Powell, Jeffrey R.

    2011-01-01

    Understanding the processes by which species colonize and adapt to human habitats is particularly important in the case of disease-vectoring arthropods. The mosquito species Aedes aegypti, a major vector of dengue and yellow fever viruses, probably originated as a wild, zoophilic species in sub-Saharan Africa, where some populations still breed in tree holes in forested habitats. Many populations of the species, however, have evolved to thrive in human habitats and to bite humans. This includes some populations within Africa as well as almost all those outside Africa. It is not clear whether all domestic populations are genetically related and represent a single ‘domestication’ event, or whether association with human habitats has developed multiple times independently within the species. To test the hypotheses above, we screened 24 worldwide population samples of Ae. aegypti at 12 polymor