Science.gov

Sample records for aedes aegypti dengue

  1. The dengue vector Aedes aegypti: what comes next.

    PubMed

    Jansen, Cassie C; Beebe, Nigel W

    2010-04-01

    Aedes aegypti is the urban vector of dengue viruses worldwide. While climate influences the geographical distribution of this mosquito species, other factors also determine the suitability of the physical environment. Importantly, the close association of A. aegypti with humans and the domestic environment allows this species to persist in regions that may otherwise be unsuitable based on climatic factors alone. We highlight the need to incorporate the impact of the urban environment in attempts to model the potential distribution of A. aegypti and we briefly discuss the potential for future technology to aid management and control of this widespread vector species.

  2. Dengue-2 virus carrying capacity of Thai Aedes aegypti strains with different susceptibility to deltamethrin.

    PubMed

    Phanpoowong, Theerawit; Lek-Uthai, Usa; Thongrungkiat, Supatra; Komalamisra, Narumon; Srisawat, Raweewan; Russell, Bruce; Renia, Laurent

    2012-05-01

    Deltamethrin-resistant Aedes aegypti currently threatens the effectiveness of dengue hemorrhagic fever control operations in Thailand. Although a previous study has suggested that insecticide resistance may increase Ae. aegypti susceptibility to dengue-2 virus infection, our experimental data showed no significant association between laboratory-induced deltamethrin-resistance in a Thai Ae. aegypti isolate and its susceptibility to dengue -2 infection.

  3. Aedes aegypti D7 Saliva Protein Inhibits Dengue Virus Infection

    PubMed Central

    Conway, Michael J.; Londono-Renteria, Berlin; Troupin, Andrea; Watson, Alan M.; Klimstra, William B.; Fikrig, Erol; Colpitts, Tonya M.

    2016-01-01

    Aedes aegypti is the primary vector of several medically relevant arboviruses including dengue virus (DENV) types 1–4. Ae. aegypti transmits DENV by inoculating virus-infected saliva into host skin during probing and feeding. Ae. aegypti saliva contains over one hundred unique proteins and these proteins have diverse functions, including facilitating blood feeding. Previously, we showed that Ae. aegypti salivary gland extracts (SGEs) enhanced dissemination of DENV to draining lymph nodes. In contrast, HPLC-fractionation revealed that some SGE components inhibited infection. Here, we show that D7 proteins are enriched in HPLC fractions that are inhibitory to DENV infection, and that recombinant D7 protein can inhibit DENV infection in vitro and in vivo. Further, binding assays indicate that D7 protein can directly interact with DENV virions and recombinant DENV envelope protein. These data reveal a novel role for D7 proteins, which inhibits arbovirus transmission to vertebrates through a direct interaction with virions. PMID:27632170

  4. Aedes aegypti D7 Saliva Protein Inhibits Dengue Virus Infection.

    PubMed

    Conway, Michael J; Londono-Renteria, Berlin; Troupin, Andrea; Watson, Alan M; Klimstra, William B; Fikrig, Erol; Colpitts, Tonya M

    2016-09-01

    Aedes aegypti is the primary vector of several medically relevant arboviruses including dengue virus (DENV) types 1-4. Ae. aegypti transmits DENV by inoculating virus-infected saliva into host skin during probing and feeding. Ae. aegypti saliva contains over one hundred unique proteins and these proteins have diverse functions, including facilitating blood feeding. Previously, we showed that Ae. aegypti salivary gland extracts (SGEs) enhanced dissemination of DENV to draining lymph nodes. In contrast, HPLC-fractionation revealed that some SGE components inhibited infection. Here, we show that D7 proteins are enriched in HPLC fractions that are inhibitory to DENV infection, and that recombinant D7 protein can inhibit DENV infection in vitro and in vivo. Further, binding assays indicate that D7 protein can directly interact with DENV virions and recombinant DENV envelope protein. These data reveal a novel role for D7 proteins, which inhibits arbovirus transmission to vertebrates through a direct interaction with virions. PMID:27632170

  5. Dengue virus detection in Aedes aegypti larvae from southeastern Brazil.

    PubMed

    Cecílio, Samyra Giarola; Júnior, Willer Ferreira Silva; Tótola, Antônio Helvécio; de Brito Magalhães, Cíntia Lopes; Ferreira, Jaqueline Maria Siqueira; de Magalhães, José Carlos

    2015-06-01

    The transmission of dengue, the most important arthropod-borne viral disease in Brazil, has been intensified over the past decades, along with the accompanying expansion and adaptation of its Aedes vectors. In the present study, we mapped dengue vectors in Ouro Preto and Ouro Branco, Minas Gerais, by installing ovitraps in 32 public schools. The traps were examined monthly between September, 2011 through July, 2012 and November, 2012 to April, 2013. The larvae were reared until the fourth stadium and identified according to species. The presence of dengue virus was detected by real time PCR and agarose gel electrophoresis. A total of 1,945 eggs was collected during the 17 months of the study. The Ovitrap Positivity Index (OPI) ranged from 0 to 28.13% and the Eggs Density Index (EDI) ranged from 0 to 59.9. The predominant species was Aedes aegypti, with 84.9% of the hatched larvae. Although the collection was low when compared to other ovitraps studies, vertical transmission could be detected. Of the 54 pools, dengue virus was detected in four Ae. aegypti pools. PMID:26047186

  6. Dengue cases and Aedes aegypti indices in Trinidad, West Indies.

    PubMed

    Chadee, D D

    2009-11-01

    This study was conducted to determine whether any relationships exist between Aedes aegypti indices, dengue seroprevalence and dengue transmission in County Victoria, Trinidad, West Indies. The cardinal points surveillance method was used to evaluate 50 suspected dengue fever (DF) cases. Thirty-three (33) confirmed DF cases were fully investigated within 48h of clinical diagnosis. Using retrospective data collected during the previous year (2003-2004) and study data, key premises and key containers were determined. Ninety-two percent of the houses were considered key premises, and 66% (22/33) of the houses with dengue positive cases harboured Ae. aegypti immature stages. These results showed that significantly (P<0.001) more adults (1050 vs 493) and immatures were collected during dengue case investigations than during routine inspection and treatment cycles. In addition, when the DF diagnosis was made the pupae per person rates increased from 0.65 to 1.35 with significantly (P<0.001) larger numbers of Ae. aegypti females emerging daily, increasing from 221 to 472.5. That is, the mosquito density required for DF transmission may be high for Trinidad given the high seroprevalence rates (94% among pregnant women). These results suggest that dengue transmission occurs, not at a fixed entomologic figure/quantity but rather at a variable level based on numerous factors including seroprevalence, mosquito density and climate. These findings have implications for effective programs: by combining cardinal points and the key premises approaches; vector control programs can now target the most productive containers in key premises thus reducing dengue transmission levels.

  7. Susceptibility of Florida Aedes aegypti and Aedes albopictus to dengue viruses from Puerto Rico.

    PubMed

    Alto, Barry W; Smartt, Chelsea T; Shin, Dongyoung; Bettinardi, David; Malicoate, Jolene; Anderson, Sheri L; Richards, Stephanie L

    2014-12-01

    Locally acquired dengue cases in the continental U.S. are rare. However, outbreaks of dengue-1 during 2009, 2010, and 2013 in Florida and dengue-1 and -2 in Texas suggest vulnerability to transmission. Travel and commerce between Puerto Rico and the U.S. mainland is common, which may pose a risk for traveler-imported dengue cases. Mosquitoes were collected in Florida and used to evaluate their susceptibility to dengue viruses (DENV) from Puerto Rico. Aedes aegypti and Ae. albopictus were susceptible to virus infection with DENV-1 and -2. No significant differences were observed in rates of midgut infection or dissemination between Ae. aegypti or Ae. albopictus for DENV-1 (6-14%). Aedes aegypti was significantly more susceptible to midgut infection with DENV-2 than Ae. albopictus (Ae. aegypti, ∼28%; Ae. albopictus, ∼9%). The dissemination rate with dengue-2 virus for Ae. aegypti (23%) was greater than Ae. albopictus (0%), suggesting that Ae. albopictus is not likely to be an important transmitter of the DENV-2 isolate from Puerto Rico. These results are discussed in light of Florida's vulnerability to DENV transmission.

  8. Dengue virus-infected Aedes aegypti in the home environment.

    PubMed

    Garcia-Rejon, Julian; Loroño-Pino, Maria Alba; Farfan-Ale, Jose Arturo; Flores-Flores, Luis; Del Pilar Rosado-Paredes, Elsy; Rivero-Cardenas, Nubia; Najera-Vazquez, Rosario; Gomez-Carro, Salvador; Lira-Zumbardo, Victor; Gonzalez-Martinez, Pedro; Lozano-Fuentes, Saul; Elizondo-Quiroga, Darwin; Beaty, Barry J; Eisen, Lars

    2008-12-01

    We determined abundance of Aedes aegypti mosquitoes and presence of dengue virus (DENV) in females collected from premises of laboratory-confirmed dengue patients over a 12-month period (March 2007 to February 2008) in Merida, Mexico. Backpack aspiration from 880 premises produced 1,836 females and 1,292 males indoors (predominantly from bedrooms) and 102 females and 108 males from patios/backyards. The mean weekly indoor catch rate per home peaked at 7.8 females in late August. Outdoor abundances of larvae or pupae were not predictive of female abundance inside the home. DENV-infected Ae. aegypti females were recovered from 34 premises. Collection of DENV-infected females from homes of dengue patients up to 27 days after the onset of symptoms (median, 14 days) shows the usefulness of indoor insecticide application in homes of suspected dengue patients to prevent their homes from becoming sources for dispersal of DENV by persons visiting and being bitten by infected mosquitoes. PMID:19052309

  9. Origin of the Dengue Fever Mosquito, Aedes aegypti, in California

    PubMed Central

    Gloria-Soria, Andrea; Brown, Julia E.; Kramer, Vicki; Hardstone Yoshimizu, Melissa; Powell, Jeffrey R.

    2014-01-01

    Dengue fever is among the most widespread vector-borne infectious diseases. The primary vector of dengue is the Aedes aegypti mosquito. Ae. aegypti is prevalent in the tropics and sub-tropics and is closely associated with human habitats outside its native range of Africa. While long established in the southeastern United States of America where dengue is re-emerging, breeding populations have never been reported from California until the summer of 2013. Using 12 highly variable microsatellite loci and a database of reference populations, we have determined that the likely source of the California introduction is the southeastern United States, ruling out introductions from abroad, from the geographically closer Arizona or northern Mexico populations, or an accidental release from a research laboratory. The power to identify the origin of new introductions of invasive vectors of human disease relies heavily on the availability of a panel of reference populations. Our work demonstrates the importance of generating extensive reference databases of genetically fingerprinted human-disease vector populations to aid public health efforts to prevent the introduction and spread of vector-borne diseases. PMID:25077804

  10. Origin of the dengue fever mosquito, Aedes aegypti, in California.

    PubMed

    Gloria-Soria, Andrea; Brown, Julia E; Kramer, Vicki; Hardstone Yoshimizu, Melissa; Powell, Jeffrey R

    2014-01-01

    Dengue fever is among the most widespread vector-borne infectious diseases. The primary vector of dengue is the Aedes aegypti mosquito. Ae. aegypti is prevalent in the tropics and sub-tropics and is closely associated with human habitats outside its native range of Africa. While long established in the southeastern United States of America where dengue is re-emerging, breeding populations have never been reported from California until the summer of 2013. Using 12 highly variable microsatellite loci and a database of reference populations, we have determined that the likely source of the California introduction is the southeastern United States, ruling out introductions from abroad, from the geographically closer Arizona or northern Mexico populations, or an accidental release from a research laboratory. The power to identify the origin of new introductions of invasive vectors of human disease relies heavily on the availability of a panel of reference populations. Our work demonstrates the importance of generating extensive reference databases of genetically fingerprinted human-disease vector populations to aid public health efforts to prevent the introduction and spread of vector-borne diseases.

  11. Laboratory evaluation of the response of Aedes aegypti and Aedes albopictus uninfected and infected with dengue virus to deet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Laboratory studies were conducted to compare the response of Aedes aegypti (L.) and Aedes albopictus (Skuse) adults, uninfected and infected with four serotypes of dengue virus, to a repellent containing 5% deet. The results showed that mosquitoes infected with the four serotypes of dengue respond i...

  12. [Oral receptivity of Aedes aegypti formosus from Franceville (Gabon, central Africa) for type 2 dengue virus].

    PubMed

    Vazeille-Falcoz, M; Failloux, A B; Mousson, L; Elissa, N; Rodhain, F

    1999-12-01

    Dengue is widely distributed in the tropics but epidemic activity was rarely reported in Africa before the 1980's. In the past 15 years, increased epidemic dengue fever has been reported both in East and West Africa, raising concern about the ability of local populations of Aedes aegypti to transmit dengue viruses. Ae. aegypti is present in two forms in Africa: Ae. aegypti aegypti and Ae. aegypti formosus. This latter form, much darker, was not originally a local species but is now colonizing artificial breeding sites within cities. We have been able to demonstrate the oral susceptibility for dengue type 2 virus of Ae. aegypti formosus collected in Franceville, Gabon (Central Africa). However, these mosquitoes sampled exhibited lower infection rates than those of a control colony of Ae. aegypti aegypti originating from French Polynesia.

  13. Discriminable roles of Aedes aegypti and Aedes albopictus in establishment of dengue outbreaks in Taiwan.

    PubMed

    Yang, Chao-Fu; Hou, Jion-Nun; Chen, Tien-Huang; Chen, Wei-June

    2014-02-01

    Aedes aegypti and Aedes albopictus were reported to be significant as vectors of dengue fever. In Taiwan, the latter is distributed throughout the island while the former appears only south of the Tropic of Cancer; i.e., 23.5°N. In the past decade, there were five outbreaks with over 1000 cases of dengue fever in Taiwan. Without exception, these outbreaks all occurred in the south where the two Aedes mosquitoes are sympartic. According to the Center for Disease Control of Taiwan, imported cases are thought to provide the seeds of dengue outbreaks every year. Mostly, the number of imported cases is greater in northern island, probably due to a larger population of travelers and imported workers from endemic countries. Looking at the example in 2002, northern, central, and southern parts of Taiwan reported 28, 11, and 13 imported cases, respectively. However, 54, 21, and 5309 total cases were confirmed in the corresponding regions over the entire year, indicating a significant skew of case distributions. A hypothesis is thus inspired that the existence of Ae. aegypti is a prerequisite to initiate a dengue outbreak, while participation of Ae. albopictus expands or maintains the scale until the de novo herd immunity reaches high level.

  14. Comparison of Vector Competence of Aedes mediovittatus and Aedes aegypti for Dengue Virus: Implications for Dengue Control in the Caribbean

    PubMed Central

    Poole-Smith, B. Katherine; Hemme, Ryan R.; Delorey, Mark; Felix, Gilberto; Gonzalez, Andrea L.; Amador, Manuel; Hunsperger, Elizabeth A.; Barrera, Roberto

    2015-01-01

    Background Aedes mediovittatus mosquitoes are found throughout the Greater Antilles in the Caribbean and often share the same larval habitats with Ae. Aegypti, the primary vector for dengue virus (DENV). Implementation of vector control measures to control dengue that specifically target Ae. Aegypti may not control DENV transmission in Puerto Rico (PR). Even if Ae. Aegypti is eliminated or DENV refractory mosquitoes are released, DENV transmission may not cease when other competent mosquito species like Ae. Mediovittatus are present. To compare vector competence of Ae. Mediovittatus and Ae. Aegypti mosquitoes, we studied relative infection and transmission rates for all four DENV serotypes. Methods To compare the vector competence of Ae. Mediovittatus and Ae. Aegypti, mosquitoes were exposed to DENV 1–4 per os at viral titers of 5–6 logs plaque-forming unit (pfu) equivalents. At 14 days post infectious bloodmeal, viral RNA was extracted and tested by qRT-PCR to determine infection and transmission rates. Infection and transmission rates were analyzed with a generalized linear model assuming a binomial distribution. Results Ae. Aegypti had significantly higher DENV-4 infection and transmission rates than Ae. mediovittatus. Conclusions This study determined that Ae. Mediovittatus is a competent DENV vector. Therefore dengue prevention programs in PR and the Caribbean should consider both Ae. Mediovittatus and Ae. Aegypti mosquitoes in their vector control programs. PMID:25658951

  15. Aedes aegypti, Aedes albopictus, and dengue in Argentina: current knowledge and future directions.

    PubMed

    Vezzani, Darío; Carbajo, Aníbal E

    2008-02-01

    Since the reinfestation of South American countries by Ae. aegypti, dengue fever (DF) and dengue hemorrhagic fever (DHF) have become a major public health concern. The aim of this paper was to review the information related with Aedes vectors and dengue in Argentina since the reintroduction of Ae. aegypti in 1986. The geographic distribution of Ae. albopictus is restricted to the Northeast, and that of Ae. aegypti has expanded towards the South and the West in comparison with the records during the eradication campaign in the 1960s. Since 1998, 4,718 DF cases have been reported concentrated in the provinces of Salta, Formosa, Misiones, Jujuy and Corrientes. Despite the circulation of three dengue virus serotypes (DENV-1, -2 and -3) in the North of the country, DHF has not occurred until the present. The information published over the last two decades regarding mosquito abundance, temporal variations, habitat characteristics, competition, and chemical and biological control, was reviewed. Considering the available information, issues pending in Argentina are discussed. The presence of three DENV, the potential spread of Ae. albopictus, and the predicted climate change suggest that dengue situation will get worse in the region. Research efforts should be increased in the Northern provinces, where DHF is currently an actual risk.

  16. Low oral receptivity for dengue type 2 viruses of Aedes albopictus from Southeast Asia compared with that of Aedes aegypti.

    PubMed

    Vazeille, Marie; Rosen, Leon; Mousson, Laurence; Failloux, Anna-Bella

    2003-02-01

    Dengue hemorrhagic fever has been a major health problem in Asia since the 1950s. During this period, the former principal vector of dengue viruses in Asia, Aedes albopictus, was replaced by Aedes aegypti in most major cities of the area. Ae. aegypti is now considered the main vector of dengue viruses in Asia. Surprisingly, however, this mosquito has been described as having a relatively low oral receptivity for dengue viruses compared with Ae. albopictus. In the present study, we compared the relative oral receptivities of Ae. aegypti and Ae. albopictus collected in southeast Asia from both sympatric and allopatric breeding sites. In all instances, the oral receptivity of Ae. aegypti to the dengue type 2 virus used was significantly higher than that of Ae. albopictus. We also compared the relative oral receptivity of Ae. aegypti and Ae. albopictus for two other low-passage strains of dengue 2. In all instances, Ae. aegypti was significantly more receptive than Ae. albopictus. It should be noted, however, that the difference was found only for Ae. albopictus recently collected from the field (Ta Promh strain, Cambodia, 2001) and not for an Ae. albopictus strain that had been colonized for many years (Oahu strain, Hawaii, 1971). We also observed a significant increase in the infection rate of Ae. albopictus of the Ta Promh strain with increasing generations in the laboratory. These observations demonstrate the importance of considering the colonization history of mosquitoes when assessing their susceptibility to infection with dengue viruses and, perhaps, other arboviruses.

  17. Productivity and population density estimates of the dengue vector mosquito Aedes aegypti (Stegomyia aegypti) in Australia.

    PubMed

    Williams, C R; Johnson, P H; Ball, T S; Ritchie, S A

    2013-09-01

    New mosquito control strategies centred on the modifying of populations require knowledge of existing population densities at release sites and an understanding of breeding site ecology. Using a quantitative pupal survey method, we investigated production of the dengue vector Aedes aegypti (L.) (Stegomyia aegypti) (Diptera: Culicidae) in Cairns, Queensland, Australia, and found that garden accoutrements represented the most common container type. Deliberately placed 'sentinel' containers were set at seven houses and sampled for pupae over 10 weeks during the wet season. Pupal production was approximately constant; tyres and buckets represented the most productive container types. Sentinel tyres produced the largest female mosquitoes, but were relatively rare in the field survey. We then used field-collected data to make estimates of per premises population density using three different approaches. Estimates of female Ae. aegypti abundance per premises made using the container-inhabiting mosquito simulation (CIMSiM) model [95% confidence interval (CI) 18.5-29.1 females] concorded reasonably well with estimates obtained using a standing crop calculation based on pupal collections (95% CI 8.8-22.5) and using BG-Sentinel traps and a sampling rate correction factor (95% CI 6.2-35.2). By first describing local Ae. aegypti productivity, we were able to compare three separate population density estimates which provided similar results. We anticipate that this will provide researchers and health officials with several tools with which to make estimates of population densities.

  18. Vertical infestation of the dengue vectors Aedes aegypti and Aedes albopictus in apartments in Kuala Lumpur, Malaysia.

    PubMed

    Roslan, Muhammad Aidil; Shafie, Aziz; Ngui, Romano; Lim, Yvonne Ai Lian; Sulaiman, Wan Yusoff Wan

    2013-12-01

    Dengue is a serious public health problem in Malaysia. The aim of this study was to compare the vertical infestation of Aedes population in 2 apartments in Kuala Lumpur with different status of dengue incidence (i.e., high-dengue-incidence area and area with no reported dengue cases). The study was also conducted to assess the relationship between environmental factors such as rainfall, temperature, and humidity and Aedes population that may influence Aedes infestation. Surveillance with a mosquito larvae trapping device was conducted for 28 continuous weeks (January to July 2012) in Vista Angkasa (VA) and Inderaloka (IL) apartments located in Kuala Lumpur, Malaysia. The results indicated that both Aedes spp. could be found from ground to higher floor levels of the apartments, with Aedes aegypti being more predominant than Ae. albopictus. Data based on mixed and single breeding of Aedes spp. on different floors did not show any significant difference. Both rainfall (R3; i.e., the amount of rainfall collected during the previous 3 wk before the surveillance period began) and RH data showed significant relationship with the number of Aedes larvae collected in VA and IL. No significant difference was found between the numbers of Aedes larvae in both study areas as well as maximum and minimum temperatures. Results also indicated adaptations of Ae. aegypti to the ecosystem at each elevation of high-rise buildings, with Ae. albopictus staying inside of apartment units.

  19. Proteomic identification of dengue virus binding proteins in Aedes aegypti mosquitoes and Aedes albopictus cells.

    PubMed

    Muñoz, Maria de Lourdes; Limón-Camacho, Gustavo; Tovar, Rosalinda; Diaz-Badillo, Alvaro; Mendoza-Hernández, Guillermo; Black, William C

    2013-01-01

    The main vector of dengue in America is the mosquito Aedes aegypti, which is infected by dengue virus (DENV) through receptors of midgut epithelial cells. The envelope protein (E) of dengue virus binds to receptors present on the host cells through its domain III that has been primarily recognized to bind cell receptors. In order to identify potential receptors, proteins from mosquito midgut tissue and C6/36 cells were purified by affinity using columns with the recombinant E protein domain III (rE-DIII) or DENV particles bound covalently to Sepharose 4B to compare and evaluate their performance to bind proteins including putative receptors from female mosquitoes of Ae. aegypti. To determine their identity mass spectrometric analysis of purified proteins separated by polyacrylamide gel electrophoresis was performed. Our results indicate that both viral particles and rE-DIII bound proteins with the same apparent molecular weights of 57 and 67 kDa. In addition, viral particles bound high molecular weight proteins. Purified proteins identified were enolase, beta-adrenergic receptor kinase (beta-ARK), translation elongation factor EF-1 alpha/Tu, and cadherin. PMID:24324976

  20. Dengue virus 3 genotype I in Aedes aegypti mosquitoes and eggs, Brazil, 2005-2006.

    PubMed

    Vilela, Ana P P; Figueiredo, Leandra B; dos Santos, João R; Eiras, Alvaro E; Bonjardim, Cláudio A; Ferreira, Paulo C P; Kroon, Erna G

    2010-06-01

    Dengue virus type 3 genotype I was detected in Brazil during epidemics in 2002-2004. To confirm this finding, we identified this virus genotype in naturally infected field-caught Aedes aegypti mosquitoes and eggs. Results showed usefulness of virus investigations in vectors as a component of active epidemiologic surveillance. PMID:20507754

  1. Ovicidal activity of Ageratina adenophora (Family: Asteraceae) against dengue vector, Aedes aegypti (Diptera: Culicidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To determine the ovicidal efficacy of different solvent leaf extracts of Ageratina adenophora against dengue vector Aedes aegypti . Methods: The ovicidal efficacy of the crude leaf extracts of A. adenophora with five different solvents (hexane, benzene, chloroform, ethyl acetate, methanol) and was ...

  2. Global temperature constraints on Aedes aegypti and Ae. albopictus persistence and competence for dengue virus transmission

    PubMed Central

    2014-01-01

    Background Dengue is a disease that has undergone significant expansion over the past hundred years. Understanding what factors limit the distribution of transmission can be used to predict current and future limits to further dengue expansion. While not the only factor, temperature plays an important role in defining these limits. Previous attempts to analyse the effect of temperature on the geographic distribution of dengue have not considered its dynamic intra-annual and diurnal change and its cumulative effects on mosquito and virus populations. Methods Here we expand an existing modelling framework with new temperature-based relationships to model an index proportional to the basic reproductive number of the dengue virus. This model framework is combined with high spatial and temporal resolution global temperature data to model the effects of temperature on Aedes aegypti and Ae. albopictus persistence and competence for dengue virus transmission. Results Our model predicted areas where temperature is not expected to permit transmission and/or Aedes persistence throughout the year. By reanalysing existing experimental data our analysis indicates that Ae. albopictus, often considered a minor vector of dengue, has comparable rates of virus dissemination to its primary vector, Ae. aegypti, and when the longer lifespan of Ae. albopictus is considered its competence for dengue virus transmission far exceeds that of Ae. aegypti. Conclusions These results can be used to analyse the effects of temperature and other contributing factors on the expansion of dengue or its Aedes vectors. Our finding that Ae. albopictus has a greater capacity for dengue transmission than Ae. aegypti is contrary to current explanations for the comparative rarity of dengue transmission in established Ae. albopictus populations. This suggests that the limited capacity of Ae. albopictus to transmit DENV is more dependent on its ecology than vector competence. The recommendations, which we

  3. Aedes aegypti (L.) and Aedes albopictus (Skuse) in Singapore City. 5. Observations in relation to dengue haemorrhagic fever.

    PubMed

    Chan, Y C; Ho, B C; Chan, K L

    1971-01-01

    Dengue haemorrhagic fever in Singapore was a disease of the urban human population, with concentrations of cases occurring in areas of high population density. Mosquito surveys revealed that these areas also had high population densities of Ae. aegypti and Ae. albopictus.The disease occurred throughout the year but the incidence of cases appeared to follow a seasonal pattern. Observations from 1966 to 1968 showed that the number of cases increased in April, reached a peak in November, and, thereafter, decreased until the next increase in April of the following year. The epidemic curve generally agreed with the fluctuations of both Ae. aegypti and Ae. albopictus populations, although the latter species appeared to show a better correspondence with the incidence of cases.Six dengue viruses were isolated from the two Aedes species during 1966. One dengue type 2 virus was isolated from a pool of Ae. aegypti and 1 dengue type 1 virus and 4 dengue type 2 viruses were recovered from 5 pools of Ae. albopictus. These viruses were isolated from mosquitos collected during the period of increase in the incidence of cases and in 4 different areas of the city. The dengue virus infection rates per 1 000 mosquitos estimated in the present study were 0.51 for Ae. aegypti and 0.59 for Ae. albopictus.The data obtained in the present study suggest that both Ae. aegypti and Ae. albopictus are involved in the transmission of dengue haemorrhagic fever in Singapore.

  4. Oral receptivity of Aedes aegypti from Cape Verde for yellow fever, dengue, and chikungunya viruses.

    PubMed

    Vazeille, Marie; Yébakima, André; Lourenço-de-Oliveira, Ricardo; Andriamahefazafy, Barrysson; Correira, Artur; Rodrigues, Julio Monteiro; Veiga, Antonio; Moreira, Antonio; Leparc-Goffart, Isabelle; Grandadam, Marc; Failloux, Anna-Bella

    2013-01-01

    At the end of 2009, 21,313 cases of dengue-3 virus (DENV-3) were reported in the islands of Cape Verde, an archipelago located in the Atlantic Ocean 570 km from the coast of western Africa. It was the first dengue outbreak ever reported in Cape Verde. Mosquitoes collected in July 2010 in the city of Praia, on the island of Santiago, were identified morphologically as Aedes aegypti formosus. Using experimental oral infections, we found that this vector showed a moderate ability to transmit the epidemic dengue-3 virus, but was highly susceptible to chikungunya and yellow fever viruses.

  5. Aedes aegypti in Brazil: genetically differentiated populations with high susceptibility to dengue and yellow fever viruses.

    PubMed

    Lourenço-de-Oliveira, R; Vazeille, M; de Filippis, A M; Failloux, A B

    2004-01-01

    Aedes aegypti was eliminated from Brazil in 1955, but re-infested the country in the 1970s. Dengue outbreaks have occurred since 1981 and became endemic in several cities in Brazil after 1986. Urban yellow fever has not occurred since 1942, and only jungle yellow fever cases have been reported. A population genetic analysis using isoenzyme variation combined with an evaluation of susceptibility to both yellow fever and dengue 2 viruses was conducted among 23 A. aegypti samples from 13 Brazilian states. We demonstrated that experimental infection rates of A. aegypti for both dengue and yellow fever viruses (YFV) are high and heterogeneous, and samples collected in the endemic and transition areas of sylvatic yellow fever were highly susceptible to yellow fever virus. Boa Vista, a border city between Brazil and Venezuela, and Rio de Janeiro in the Southeast region are considered as the most important entry points for dengue dissemination. Considering the high densities of A. aegypti, and its high susceptibility to dengue and yellow fever viruses, the risk of dengue epidemics and yellow fever urbanization in Brazil is more real than ever.

  6. [Aedes aegypti, vector of the dengue virus: spatio-temporal structure of its genetic variation].

    PubMed

    Huber, Karine; Luu Le, Loan; Tran Huu, Hoang; Tran Khanh, Tien; Rodhain, François; Failloux, Anna-Bella

    2002-01-01

    Aedes aegypti is the main vector of dengue viruses. Methods for limiting the spread of dengue outbreaks are currently based on vector control. Estimates of population genetic organization and gene flow with respect to vector capacity have provided great insights into dengue epidemiology. In Vietnam, dengue hemorrhagic fever was detected in the 1950's and becomes today the major problem of public health. Among factors influencing dengue epidemiology, ecological disturbances have a direct impact on vectorial system functioning. Human activities through urbanization creating sanitary conditions are convenient to the vector proliferation and then, to dengue endemisation. To assess the role of the vector in the changing pattern of dengue in South-East Asia, we studied the genetic differentiation and the vector competence towards dengue 2 virus at two scales: at a spatial level (a local scale (i.e., Ho Chi Minh City) and a regional scale (i.e., Cambodia, Thailand and South Vietnam) and at a temporal scale. This study allows to propose a model of Ae. aegypti population functioning according space and time. Dynamics of dengue virus diffusion in relation with the vector, depend on the population genetic composition and its evolution.

  7. Aedes aegypti larval indices and risk for dengue epidemics.

    PubMed

    Sanchez, Lizet; Vanlerberghe, Veerle; Alfonso, Lázara; Marquetti, Maria del Carmen; Guzman, Maria Guadalupe; Bisset, Juan; van der Stuyft, Patrick

    2006-05-01

    We assessed in a case-control study the test-validity of Aedes larval indices for the 2000 Havana outbreak. "Cases" were blocks where a dengue fever patient lived during the outbreak. "Controls" were randomly sampled blocks. Before, during, and after the epidemic, we calculated Breteau index (BI) and house index at the area, neighborhood, and block level. We constructed receiver operating characteristic (ROC) curves to determine their performance as predictors of dengue transmission. We observed a pronounced effect of the level of measurement. The BI(max) (maximum block BI in a radius of 100 m) at 2-month intervals had an area under the ROC curve of 71%. At a cutoff of 4.0, it significantly (odds ratio 6.00, p<0.05) predicted transmission with 78% sensitivity and 63% specificity. Analysis of BI at the local level, with human-defined boundaries, could be introduced in control programs to identify neighborhoods at high risk for dengue transmission.

  8. [The role of the Aedes aegypti vector in the epidemiology of dengue in Mexico].

    PubMed

    Fernández-Salas, I; Flores-Leal, A

    1995-01-01

    The role of Aedes aegypti (Lineo) in the epidemiology of dengue fever in Mexico is herein discussed based on the vectorial capacity model. Comments on the advantages and disadvantages of each model component at the time of field determinations are also presented. Emphasis is made on the impact of sampling and method bias on the results of vectorial capacity studies. The paper also addresses the need to increase vector biology knowledge as an input for epidemiological work to explain and predict dengue fever outbreaks. Comments on potential entomological variables not considered by the quantitative model are included. Finally, we elaborate on the introduction of Aedes albopictus (Skuse) in Mexico as a new risk factor and on its implications for the understanding of dengue fever transmission in Mexico.

  9. [Aedes aegypti in French Guiana. Some aspects of history, general ecology and vertical transmission of the dengue virus].

    PubMed

    Fouque, F; Carinci, R

    1996-01-01

    Aedes aegypti is suspected to be present in the country since the late 18th century, and was responsible of urban yellow fever epidemics in the last century. This mosquito was identified for the first time in French Guiana in 1902. More recently, in 1940, an eradication campaign started and Aedes aegypti was eradicated between 1950 and 1963, date of the reinfestation. During the past 30 years, some dengue outbreaks occurred every 2 to 6 years, and the first dengue haemorrhagic fever epidemic spread over the country in 1992. Actually, Ae. aegypti is distributed almost all inhabited areas of French Guiana: in the towns, villages, smaller human settlements, and was also found in a wild area. The most frequent Ae. aegypti breeding-sources are the outside discarded small containers, other less frequent breeding-sites are the outside flower pots and the outside big containers. The type of breeding-source significantly influences the duration of larval and pupal development. In French Guiana, Ae. aegypti is the only vector of dengue. The vertical transmission of dengue viruses under field conditions was demonstrated. Dengue is thus endemic in the country and has almost the same distribution as Ae. aegypti, with most probably the same possibilities of extension. Ae. aegypti can be considered not only as vector and an amplificator of dengue in French Guiana, but also as a reservoir, even if occasional.

  10. Association of human immune response to Aedes aegypti salivary proteins with dengue disease severity.

    PubMed

    Machain-Williams, C; Mammen, M P; Zeidner, N S; Beaty, B J; Prenni, J E; Nisalak, A; Blair, C D

    2012-01-01

    Dengue viruses (DENV; family Flaviviridae, genus Flavivirus) are transmitted by Aedes aegypti mosquitoes and can cause dengue fever (DF), a relatively benign disease, or more severe dengue haemorrhagic fever (DHF). Arthropod saliva contains proteins delivered into the bite wound that can modulate the host haemostatic and immune responses to facilitate the intake of a blood meal. The potential effects on DENV infection of previous exposure to Ae. aegypti salivary proteins have not been investigated. We collected Ae. aegypti saliva, concentrated the proteins and fractionated them by nondenaturing polyacrylamide gel electrophoresis (PAGE). By the use of immunoblots, we analysed reactivity with the mosquito salivary proteins (MSP) of sera from 96 Thai children diagnosed with secondary DENV infections leading either to DF or DHF, or with no DENV infection, and found that different proportions of each patient group had serum antibodies reactive to specific Ae. aegypti salivary proteins. Our results suggest that prior exposure to MSP might play a role in the outcome of DENV infection in humans.

  11. Aedes aegypti on Madeira Island (Portugal): genetic variation of a recently introduced dengue vector.

    PubMed

    Seixas, Gonçalo; Salgueiro, Patrícia; Silva, Ana Clara; Campos, Melina; Spenassatto, Carine; Reyes-Lugo, Matías; Novo, Maria Teresa; Ribolla, Paulo Eduardo Martins; Silva Pinto, João Pedro Soares da; Sousa, Carla Alexandra

    2013-01-01

    The increasing population of Aedes aegypti mosquitoes on Madeira Island (Portugal) resulted in the first autochthonous dengue outbreak, which occurred in October 2012. Our study establishes the first genetic evaluation based on the mitochondrial DNA (mtDNA) genes [cytochrome oxidase subunit I (COI) and NADH dehydrogenase subunit 4 (ND4)] and knockdown resistance (kdr) mutations exploring the colonisation history and the genetic diversity of this insular vector population. We included mosquito populations from Brazil and Venezuela in the analysis as putative geographic sources. The Ae. aegypti population from Madeira showed extremely low mtDNA genetic variability, with a single haplotype for COI and ND4. We also detected the presence of two important kdr mutations and the quasi-fixation of one of these mutations (F1534C). These results are consistent with a unique recent founder event that occurred on the island of Ae. aegypti mosquitoes that carry kdr mutations associated with insecticide resistance. Finally, we also report the presence of the F1534C kdr mutation in the Brazil and Venezuela populations. To our knowledge, this is the first time this mutation has been found in South American Ae. aegypti mosquitoes. Given the present risk of Ae. aegypti re-invading continental Europe from Madeira and the recent dengue outbreaks on the island, this information is important to plan surveillance and control measures.

  12. Adult survivorship of the dengue mosquito Aedes aegypti varies seasonally in central Vietnam.

    PubMed

    Hugo, Leon E; Jeffery, Jason A L; Trewin, Brendan J; Wockner, Leesa F; Nguyen, Thi Yen; Nguyen, Hoang Le; Nghia, Le Trung; Hine, Emma; Ryan, Peter A; Kay, Brian H

    2014-02-01

    The survival characteristics of the mosquito Aedes aegypti affect transmission rates of dengue because transmission requires infected mosquitoes to survive long enough for the virus to infect the salivary glands. Mosquito survival is assumed to be high in tropical, dengue endemic, countries like Vietnam. However, the survival rates of wild populations of mosquitoes are seldom measured due the difficulty of predicting mosquito age. Hon Mieu Island in central Vietnam is the site of a pilot release of Ae. aegypti infected with a strain of Wolbachia pipientis bacteria (wMelPop) that induces virus interference and mosquito life-shortening. We used the most accurate mosquito age grading approach, transcriptional profiling, to establish the survival patterns of the mosquito population from the population age structure. Furthermore, estimations were validated on mosquitoes released into a large semi-field environment consisting of an enclosed house, garden and yard to incorporate natural environmental variability. Mosquito survival was highest during the dry/cool (January-April) and dry/hot (May-August) seasons, when 92 and 64% of Hon Mieu mosquitoes had survived to an age that they were able to transmit dengue (12 d), respectively. This was reduced to 29% during the wet/cool season from September to December. The presence of Ae. aegypti older than 12 d during each season is likely to facilitate the observed continuity of dengue transmission in the region. We provide season specific Ae. aegypti survival models for improved dengue epidemiology and evaluation of mosquito control strategies that aim to reduce mosquito survival to break the dengue transmission cycle.

  13. Adult Survivorship of the Dengue Mosquito Aedes aegypti Varies Seasonally in Central Vietnam

    PubMed Central

    Hugo, Leon E.; Jeffery, Jason A. L.; Trewin, Brendan J.; Wockner, Leesa F.; Thi Yen, Nguyen; Le, Nguyen Hoang; Nghia, Le Trung; Hine, Emma; Ryan, Peter A.; Kay, Brian H.

    2014-01-01

    The survival characteristics of the mosquito Aedes aegypti affect transmission rates of dengue because transmission requires infected mosquitoes to survive long enough for the virus to infect the salivary glands. Mosquito survival is assumed to be high in tropical, dengue endemic, countries like Vietnam. However, the survival rates of wild populations of mosquitoes are seldom measured due the difficulty of predicting mosquito age. Hon Mieu Island in central Vietnam is the site of a pilot release of Ae. aegypti infected with a strain of Wolbachia pipientis bacteria (wMelPop) that induces virus interference and mosquito life-shortening. We used the most accurate mosquito age grading approach, transcriptional profiling, to establish the survival patterns of the mosquito population from the population age structure. Furthermore, estimations were validated on mosquitoes released into a large semi-field environment consisting of an enclosed house, garden and yard to incorporate natural environmental variability. Mosquito survival was highest during the dry/cool (January-April) and dry/hot (May-August) seasons, when 92 and 64% of Hon Mieu mosquitoes had survived to an age that they were able to transmit dengue (12 d), respectively. This was reduced to 29% during the wet/cool season from September to December. The presence of Ae. aegypti older than 12 d during each season is likely to facilitate the observed continuity of dengue transmission in the region. We provide season specific Ae. aegypti survival models for improved dengue epidemiology and evaluation of mosquito control strategies that aim to reduce mosquito survival to break the dengue transmission cycle. PMID:24551251

  14. Aedes aegypti Global Suitability Maps Using a Water Container Energy Balance Model for Dengue Risk Applications

    NASA Astrophysics Data System (ADS)

    Steinhoff, D.

    2015-12-01

    Dengue infections are estimated to total nearly 400 million per year worldwide, with both the geographic range and the magnitude of infections having increased in the past 50 years. The primary dengue vector mosquito Aedes aegypti is closely associated with humans. It lives exclusively in urban and semi-urban areas, preferentially bites humans, and spends its developmental stages in artificial water containers. Climate regulates the development of Ae. aegypti immature mosquitoes in artificial containers. Potential containers for Ae. aegypti immature development include, but are not limited to, small sundry items (e.g., bottles, cans, plastic containers), buckets, tires, barrels, tanks, and cisterns. Successful development of immature mosquitoes from eggs to larvae, pupae, and eventually adults is largely dependent on the availability of water and the thermal properties of the water in the containers. Recent work has shown that physics-based approaches toward modeling container water properties are promising for resolving the complexities of container water dynamics and the effects on immature mosquito development. An energy balance container model developed by the author, termed the Water Height And Temperature in Container Habitats Energy Model (WHATCH'EM), solves for water temperature and height for user-specified containers with readily available weather data. Here we use WHATCH'EM with NASA Earth Science products used as input to construct global suitability maps based on established water temperature ranges for immature Ae. aegypti mosquitoes. A proxy for dengue risk is provided from habitat suitability, but also population estimates, as Ae. aegypti is closely associated with human activity. NASA gridded Global Population of the World data is used to mask out rural areas with low dengue risk. Suitability maps are illustrated for a variety of containers (size, material, color) and shading scenarios.

  15. [The risk of urban yellow fever outbreaks in Brazil by dengue vectors. Aedes aegypti and Aedes albopictus].

    PubMed

    Mondet, B; da Rosa, A P; Vasconcelos, P F

    1996-01-01

    Urban yellow fever (YF) epidemics have disappeared from Brazil since about 50 years, but a selvatic cycle still exist. In many States, cases are more or less numerous each year. Ae. aegypti was eradicated in 1954, re-appeared temporarily in 1967, and then definitively in 1976-1977. Ae. aegypti is a vector of yellow few (YF), but also of dengue, whose first cases were reported in 1982. Today, dengue is endemic in many regions. A second Flavivirus vector, Aedes albopictus is present since about ten years in some States, from which Säo Paulo. The analysis of the YF cases between 1972 and 1994 allowed us to determine the epidemiologic regions. In the first region, the endemic area, the YF virus is circulating "silently" among monkeys, and the emergence of human cases is rare. In the second region, the epidemic area, some epizootics occur in a more or less cyclic way, and human cases can be numerous. Nevertheless, these outbreaks are considered "selvatic" epidemics, as long as Ae. aegypti is not concerned. From the Amazonian region, the virus moves forward along the forest galleries of the Amazone tributaries, from North to South. Actually, dengue epidemics appear in quite all States, and reflect the geographical distribution of Ae. aegypti. Recently, Ae. aegypti was found in the southern part of the Pará State, in the Carajás region considered to be the source of the main YF epidemics. In another hand, Ae. albopictus is now increasing its distribution area, specially in the suburban zones. The ecology of this potential vector, which seems to have a great adaptative capacity, give this vector an intermediate position between the forest galleries, where the YF virus circulates, and the agglomerations infested with Ae. aegypti. Since a few years, the possibility of urban YF is threatening Brazil, it is more and more predictable and we must survey very carefully the epidemiological situation in some regions of the country.

  16. Gene Flow, Subspecies Composition, and Dengue Virus-2 Susceptibility among Aedes aegypti Collections in Senegal

    PubMed Central

    Sylla, Massamba; Bosio, Christopher; Urdaneta-Marquez, Ludmel; Ndiaye, Mady; Black, William C.

    2009-01-01

    Background Aedes aegypti, the “yellow fever mosquito”, is the primary vector to humans of the four serotypes of dengue viruses (DENV1-4) and yellow fever virus (YFV) and is a known vector of Chikungunya virus. There are two recognized subspecies of Ae. aegypti sensu latu (s.l.): the presumed ancestral form, Ae. aegypti formosus (Aaf), a primarily sylvan mosquito in sub-Saharan Africa, and Ae. aegypti aegypti (Aaa), found globally in tropical and subtropical regions typically in association with humans. The designation of Ae. aegypti s.l. subspecies arose from observations made in East Africa in the late 1950s that the frequency of pale “forms” of Ae. aegypti was higher in populations in and around human dwellings than in those of the nearby bush. But few studies have been made of Ae. aegypti s.l. in West Africa. To address this deficiency we have been studying the population genetics, subspecies composition and vector competence for DENV-2 of Ae. aegypti s.l. in Senegal. Methods and Findings A population genetic analysis of gene flow was conducted among 1,040 Aedes aegypti s.l. from 19 collections distributed across the five phytogeographic regions of Senegal. Adults lacking pale scales on their first abdominal tergite were classified as Aedes aegypti formosus (Aaf) following the original description of the subspecies and the remainder were classified as Aedes aegypti aegypti (Aaa). There was a clear northwest–southeast cline in the abundance of Aaa and Aaf. Collections from the northern Sahelian region contained only Aaa while southern Forest gallery collections contained only Aaf. The two subspecies occurred in sympatry in four collections north of the Gambia in the central Savannah region and Aaa was a minor component of two collections from the Forest gallery area. Mosquitoes from 11 collections were orally challenged with DENV-2 virus. In agreement with the early literature, Aaf had significantly lower vector competence than Aaa. Among pure Aaa

  17. Comparative Susceptibility of Aedes albopictus and Aedes aegypti to Dengue Virus Infection After Feeding on Blood of Viremic Humans: Implications for Public Health

    PubMed Central

    Whitehorn, James; Kien, Duong Thi Hue; Nguyen, Nguyet Minh; Nguyen, Hoa L.; Kyrylos, Peter P.; Carrington, Lauren B.; Tran, Chau Nguyen Bich; Quyen, Nguyen Thanh Ha; Thi, Long Vo; Le Thi, Dui; Truong, Nguyen Thanh; Luong, Tai Thi Hue; Nguyen, Chau Van Vinh; Wills, Bridget; Wolbers, Marcel; Simmons, Cameron P.

    2015-01-01

    Aedes albopictus is secondary to Aedes aegypti as a vector of dengue viruses (DENVs) in settings of endemicity, but it plays an important role in areas of dengue emergence. This study compared the susceptibility of these 2 species to DENV infection by performing 232 direct blood-feeding experiments on 118 viremic patients with dengue in Vietnam. Field-derived A. albopictus acquired DENV infections as readily as A. aegypti after blood feeding. Once infected, A. albopictus permitted higher concentrations of DENV RNA to accumulate in abdominal tissues, compared with A. aegypti. However, the odds of A. albopictus having infectious saliva were lower than the odds observed for A. aegypti (odds ratio, 0.70; 95% confidence interval, .52–.93). These results quantitate the susceptibility of A. albopictus to DENV infection and will assist parameterization of models for predicting disease risk in settings where A. albopictus is present. PMID:25784733

  18. Comparative Susceptibility of Aedes albopictus and Aedes aegypti to Dengue Virus Infection After Feeding on Blood of Viremic Humans: Implications for Public Health.

    PubMed

    Whitehorn, James; Kien, Duong Thi Hue; Nguyen, Nguyet Minh; Nguyen, Hoa L; Kyrylos, Peter P; Carrington, Lauren B; Tran, Chau Nguyen Bich; Quyen, Nguyen Thanh Ha; Thi, Long Vo; Le Thi, Dui; Truong, Nguyen Thanh; Luong, Tai Thi Hue; Nguyen, Chau Van Vinh; Wills, Bridget; Wolbers, Marcel; Simmons, Cameron P

    2015-10-15

    Aedes albopictus is secondary to Aedes aegypti as a vector of dengue viruses (DENVs) in settings of endemicity, but it plays an important role in areas of dengue emergence. This study compared the susceptibility of these 2 species to DENV infection by performing 232 direct blood-feeding experiments on 118 viremic patients with dengue in Vietnam. Field-derived A. albopictus acquired DENV infections as readily as A. aegypti after blood feeding. Once infected, A. albopictus permitted higher concentrations of DENV RNA to accumulate in abdominal tissues, compared with A. aegypti. However, the odds of A. albopictus having infectious saliva were lower than the odds observed for A. aegypti (odds ratio, 0.70; 95% confidence interval, .52-.93). These results quantitate the susceptibility of A. albopictus to DENV infection and will assist parameterization of models for predicting disease risk in settings where A. albopictus is present.

  19. The Dengue Virus Mosquito Vector Aedes aegypti at High Elevation in México

    PubMed Central

    Lozano-Fuentes, Saul; Hayden, Mary H.; Welsh-Rodriguez, Carlos; Ochoa-Martinez, Carolina; Tapia-Santos, Berenice; Kobylinski, Kevin C.; Uejio, Christopher K.; Zielinski-Gutierrez, Emily; Monache, Luca Delle; Monaghan, Andrew J.; Steinhoff, Daniel F.; Eisen, Lars

    2012-01-01

    México has cities (e.g., México City and Puebla City) located at elevations > 2,000 m and above the elevation ceiling below which local climates allow the dengue virus mosquito vector Aedes aegypti to proliferate. Climate warming could raise this ceiling and place high-elevation cities at risk for dengue virus transmission. To assess the elevation ceiling for Ae. aegypti and determine the potential for using weather/climate parameters to predict mosquito abundance, we surveyed 12 communities along an elevation/climate gradient from Veracruz City (sea level) to Puebla City (∼2,100 m). Ae. aegypti was commonly encountered up to 1,700 m and present but rare from 1,700 to 2,130 m. This finding extends the known elevation range in México by > 300 m. Mosquito abundance was correlated with weather parameters, including temperature indices. Potential larval development sites were abundant in Puebla City and other high-elevation communities, suggesting that Ae. aegypti could proliferate should the climate become warmer. PMID:22987656

  20. The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti.

    PubMed

    Bian, Guowu; Xu, Yao; Lu, Peng; Xie, Yan; Xi, Zhiyong

    2010-04-01

    Genetic strategies that reduce or block pathogen transmission by mosquitoes have been proposed as a means of augmenting current control measures to reduce the growing burden of vector-borne diseases. The endosymbiotic bacterium Wolbachia has long been promoted as a potential vehicle for introducing disease-resistance genes into mosquitoes, thereby making them refractory to the human pathogens they transmit. Given the large overlap in tissue distribution and intracellular localization between Wolbachia and dengue virus in mosquitoes, we conducted experiments to characterize their interactions. Our results show that Wolbachia inhibits viral replication and dissemination in the main dengue vector, Aedes aegypti. Moreover, the virus transmission potential of Wolbachia-infected Ae. aegypti was significantly diminished when compared to wild-type mosquitoes that did not harbor Wolbachia. At 14 days post-infection, Wolbachia completely blocked dengue transmission in at least 37.5% of Ae. aegypti mosquitoes. We also observed that this Wolbachia-mediated viral interference was associated with an elevated basal immunity and increased longevity in the mosquitoes. These results underscore the potential usefulness of Wolbachia-based control strategies for population replacement. PMID:20368968

  1. Aedes aegypti from temperate regions of South America are highly competent to transmit dengue virus

    PubMed Central

    2013-01-01

    Background Aedes aegypti is extensively spread throughout South America where it has been responsible for large dengue epidemics during the last decades. Intriguingly, dengue transmission has not been reported in Uruguay and is essentially prevalent in subtropical northern Argentina which borders Uruguay. Methods We assessed vector competence for dengue virus (DENV) of Ae. aegypti populations collected in subtropical Argentina (Corrientes) as well as temperate Uruguay (Salto) and Argentina (Buenos Aires) in 2012 using experimental oral infections with DENV-2. Mosquitoes were incubated at 28°C and examined at 14 and 21 days p.i. to access viral dissemination and transmission. Batches of the Buenos Aires mosquitoes were also incubated at 15°C and 20°C. Results Although mosquitoes from temperate Uruguay and Argentina were competent to transmit DENV, those from subtropical Argentina were more susceptible, displaying the highest virus titters in the head and presenting the highest dissemination of infection and transmission efficiency rates when incubated at 28°C. Interestingly, infectious viral particles could be detected in saliva of mosquitoes from Buenos Aires exposed to 15°C and 20°C. Conclusions There is a potential risk of establishing DENV transmission in Uruguay and for the spread of dengue outbreaks to other parts of subtropical and temperate Argentina, notably during spring and summer periods. PMID:24373423

  2. HPTLC analysis of Scoparia dulcis Linn (Scrophulariaceae) and its larvicidal potential against dengue vector Aedes aegypti.

    PubMed

    Wankhar, Wankupar; Srinivasan, Sakthivel; Rathinasamy, Sheeladevi

    2015-01-01

    This study evaluates the larvicidal activity of Scoparia dulcis aqueous extract against dengue vector and determines its major chemical components. The extract was tested at various concentrations ranging from 0.1 to 2 mg/mL against Aedes aegypti larvae. The extracts displayed significant larvicidal efficacy against Ae. aegypt species after 24 h exposure revealing LC50 of 3.3835 (mg/mL) and LC90 of 5.7578 (mg/mL). Finger printing profile carried out by CAMAG automatic TLC sample applicator programmed through WIN CATS software revealed peaks with different Rf values for three different volumes injected: 16, 15 and 18 peaks were spotted for 3, 6 and 9 μL, respectively. Ascending order of Rf values was also ascertained for each peak recorded. This study clearly signifies that S. dulcis extract contains numerous compounds that are known to have larvicidal properties which clearly substantiates its efficacy on Ae. aegypti larvae.

  3. HPTLC analysis of Scoparia dulcis Linn (Scrophulariaceae) and its larvicidal potential against dengue vector Aedes aegypti.

    PubMed

    Wankhar, Wankupar; Srinivasan, Sakthivel; Rathinasamy, Sheeladevi

    2015-01-01

    This study evaluates the larvicidal activity of Scoparia dulcis aqueous extract against dengue vector and determines its major chemical components. The extract was tested at various concentrations ranging from 0.1 to 2 mg/mL against Aedes aegypti larvae. The extracts displayed significant larvicidal efficacy against Ae. aegypt species after 24 h exposure revealing LC50 of 3.3835 (mg/mL) and LC90 of 5.7578 (mg/mL). Finger printing profile carried out by CAMAG automatic TLC sample applicator programmed through WIN CATS software revealed peaks with different Rf values for three different volumes injected: 16, 15 and 18 peaks were spotted for 3, 6 and 9 μL, respectively. Ascending order of Rf values was also ascertained for each peak recorded. This study clearly signifies that S. dulcis extract contains numerous compounds that are known to have larvicidal properties which clearly substantiates its efficacy on Ae. aegypti larvae. PMID:25573588

  4. Landing periodicity of Aedes aegypti with implications for dengue transmission in Trinidad, West Indies.

    PubMed

    Chadee, D D; Martinez, R

    2000-12-01

    The diel landing/biting periodicity of the Trinidad strain of Aedes aegypti (L.) was monitored using human-bait during January-August 1999. Hourly light intensities were measured both indoors and outdoors at both urban and rural sites. The periodicity of females was diurnal and nocturnal, with 90% arriving during daylight and twilight and 10% during the night. The pattern of landing was trimodal, with consistent peaks at 0700 h, 1100 h and 1700 h. The diel periodicities at indoor and outdoor urban sites were virtually identical. In contrast, the periodicities in rural areas differed, with no nocturnal activities being recorded at indoor and outdoor sites. At both urban and rural sites, larger numbers of adults were collected outside than inside houses. A significant correlation between light intensities and mosquito landing patterns was observed. The implications of the changing landing patterns of Ae. aegypti within urban areas are discussed in light of the epidemiology and control of dengue fever in Trinidad.

  5. Vectorial capacity of Aedes aegypti: effects of temperature and implications for global dengue epidemic potential.

    PubMed

    Liu-Helmersson, Jing; Stenlund, Hans; Wilder-Smith, Annelies; Rocklöv, Joacim

    2014-01-01

    Dengue is a mosquito-borne viral disease that occurs mainly in the tropics and subtropics but has a high potential to spread to new areas. Dengue infections are climate sensitive, so it is important to better understand how changing climate factors affect the potential for geographic spread and future dengue epidemics. Vectorial capacity (VC) describes a vector's propensity to transmit dengue taking into account human, virus, and vector interactions. VC is highly temperature dependent, but most dengue models only take mean temperature values into account. Recent evidence shows that diurnal temperature range (DTR) plays an important role in influencing the behavior of the primary dengue vector Aedes aegypti. In this study, we used relative VC to estimate dengue epidemic potential (DEP) based on the temperature and DTR dependence of the parameters of A. aegypti. We found a strong temperature dependence of DEP; it peaked at a mean temperature of 29.3°C when DTR was 0°C and at 20°C when DTR was 20°C. Increasing average temperatures up to 29°C led to an increased DEP, but temperatures above 29°C reduced DEP. In tropical areas where the mean temperatures are close to 29°C, a small DTR increased DEP while a large DTR reduced it. In cold to temperate or extremely hot climates where the mean temperatures are far from 29°C, increasing DTR was associated with increasing DEP. Incorporating these findings using historical and predicted temperature and DTR over a two hundred year period (1901-2099), we found an increasing trend of global DEP in temperate regions. Small increases in DEP were observed over the last 100 years and large increases are expected by the end of this century in temperate Northern Hemisphere regions using climate change projections. These findings illustrate the importance of including DTR when mapping DEP based on VC.

  6. Vectorial capacity of Aedes aegypti: effects of temperature and implications for global dengue epidemic potential.

    PubMed

    Liu-Helmersson, Jing; Stenlund, Hans; Wilder-Smith, Annelies; Rocklöv, Joacim

    2014-01-01

    Dengue is a mosquito-borne viral disease that occurs mainly in the tropics and subtropics but has a high potential to spread to new areas. Dengue infections are climate sensitive, so it is important to better understand how changing climate factors affect the potential for geographic spread and future dengue epidemics. Vectorial capacity (VC) describes a vector's propensity to transmit dengue taking into account human, virus, and vector interactions. VC is highly temperature dependent, but most dengue models only take mean temperature values into account. Recent evidence shows that diurnal temperature range (DTR) plays an important role in influencing the behavior of the primary dengue vector Aedes aegypti. In this study, we used relative VC to estimate dengue epidemic potential (DEP) based on the temperature and DTR dependence of the parameters of A. aegypti. We found a strong temperature dependence of DEP; it peaked at a mean temperature of 29.3°C when DTR was 0°C and at 20°C when DTR was 20°C. Increasing average temperatures up to 29°C led to an increased DEP, but temperatures above 29°C reduced DEP. In tropical areas where the mean temperatures are close to 29°C, a small DTR increased DEP while a large DTR reduced it. In cold to temperate or extremely hot climates where the mean temperatures are far from 29°C, increasing DTR was associated with increasing DEP. Incorporating these findings using historical and predicted temperature and DTR over a two hundred year period (1901-2099), we found an increasing trend of global DEP in temperate regions. Small increases in DEP were observed over the last 100 years and large increases are expected by the end of this century in temperate Northern Hemisphere regions using climate change projections. These findings illustrate the importance of including DTR when mapping DEP based on VC. PMID:24603439

  7. Engineering RNA interference-based resistance to dengue virus type 2 in genetically modified Aedes aegypti.

    PubMed

    Franz, Alexander W E; Sanchez-Vargas, Irma; Adelman, Zach N; Blair, Carol D; Beaty, Barry J; James, Anthony A; Olson, Ken E

    2006-03-14

    Mosquitoes (Aedes aegypti) were genetically modified to exhibit impaired vector competence for dengue type 2 viruses (DENV-2). We exploited the natural antiviral RNA interference (RNAi) pathway in the mosquito midgut by constructing an effector gene that expresses an inverted-repeat (IR) RNA derived from the premembrane protein coding region of the DENV-2 RNA genome. The A. aegypti carboxypeptidase A promoter was used to express the IR RNA in midgut epithelial cells after ingestion of a bloodmeal. The promoter and effector gene were inserted into the genome of a white-eye Puerto Rico Rexville D (Higgs' white eye) strain by using the nonautonomous mariner MosI transformation system. A transgenic family, Carb77, expressed IR RNA in the midgut after a bloodmeal. Carb77 mosquitoes ingesting an artificial bloodmeal containing DENV-2 exhibited marked reduction of viral envelope antigen in midguts and salivary glands after infection. DENV-2 titration of individual mosquitoes showed that most Carb77 mosquitoes poorly supported virus replication. Transmission in vitro of virus from the Carb77 line was significantly diminished when compared to control mosquitoes. The presence of DENV-2-derived siRNAs in RNA extracts from midguts of Carb77 and the loss of the resistance phenotype when the RNAi pathway was interrupted proved that DENV-2 resistance was caused by a RNAi response. Engineering of transgenic A. aegypti that show a high level of resistance against DENV-2 provides a powerful tool for developing population replacement strategies to control transmission of dengue viruses.

  8. Age and body size influence male sperm capacity of the dengue vector Aedes aegypti (Diptera: Culicidae).

    PubMed

    Ponlawat, Alongkot; Harrington, Laura C

    2007-05-01

    Understanding mosquito mating biology is essential for studies of mosquito behavior, gene flow, population structure, and genetic control. In the current study, we examine the effect of age and body size on spermatozoa number in two laboratory strains of the dengue vector, Aedes aegypti (L.), Thailand and Rockefeller (ROCK), and in wild-collected mosquitoes from Thailand. Body size was a major predictor of total spermatozoa number, with significantly greater sperm numbers in large (2.27-mm wing length) versus small males (1.85-mm wing length) within the same age group. Total sperm capacity also varied by male age. Spermatozoa numbers in virgin Ae. aegypti males increased significantly up to 10 d after emergence and then leveled off until 20 d. Significant variations in sperm number were detected among Ae. aegypti strains, with wild-collected mosquitoes having the greatest total number of sperm. Our study provides the first evidence of spermatogenesis in adult mosquitoes and indicates high rates of spermatogenesis in male mosquitoes up to 10 d of age (3.3 degree-days). Our results emphasize the potential role of body size and age on the mating capacity of this important vector of dengue and yellow fever viruses.

  9. A Multipurpose, High-Throughput Single-Nucleotide Polymorphism Chip for the Dengue and Yellow Fever Mosquito, Aedes aegypti.

    PubMed

    Evans, Benjamin R; Gloria-Soria, Andrea; Hou, Lin; McBride, Carolyn; Bonizzoni, Mariangela; Zhao, Hongyu; Powell, Jeffrey R

    2015-05-01

    The dengue and yellow fever mosquito, Aedes aegypti, contributes significantly to global disease burden. Genetic study of Aedes aegypti is essential to understanding its evolutionary history, competence as a disease vector, and the effects and efficacy of vector control methods. The prevalence of repeats and transposable elements in the Aedes aegypti genome complicates marker development and makes genome-wide genetic study challenging. To overcome these challenges, we developed a high-throughput genotyping chip, Axiom_aegypti1. This chip screens for 50,000 single-nucleotide polymorphisms present in Aedes aegypti populations from around the world. The array currently used genotypes 96 samples simultaneously. To ensure that these markers satisfy assumptions commonly made in many genetic analyses, we tested for Mendelian inheritance and linkage disequilibrium in laboratory crosses and a wild population, respectively. We have validated more than 25,000 of these markers to date, and expect this number to increase with more sampling. We also present evidence of the chip's efficacy in distinguishing populations throughout the world. The markers on this chip are ideal for applications ranging from population genetics to genome-wide association studies. This tool makes rapid, cost-effective, and comparable genotype data attainable to diverse sets of Aedes aegypti researchers, from those interested in potential range shifts due to climate change to those characterizing the genetic underpinnings of its competence to transmit disease. PMID:25721127

  10. A Multipurpose, High-Throughput Single-Nucleotide Polymorphism Chip for the Dengue and Yellow Fever Mosquito, Aedes aegypti.

    PubMed

    Evans, Benjamin R; Gloria-Soria, Andrea; Hou, Lin; McBride, Carolyn; Bonizzoni, Mariangela; Zhao, Hongyu; Powell, Jeffrey R

    2015-02-26

    The dengue and yellow fever mosquito, Aedes aegypti, contributes significantly to global disease burden. Genetic study of Aedes aegypti is essential to understanding its evolutionary history, competence as a disease vector, and the effects and efficacy of vector control methods. The prevalence of repeats and transposable elements in the Aedes aegypti genome complicates marker development and makes genome-wide genetic study challenging. To overcome these challenges, we developed a high-throughput genotyping chip, Axiom_aegypti1. This chip screens for 50,000 single-nucleotide polymorphisms present in Aedes aegypti populations from around the world. The array currently used genotypes 96 samples simultaneously. To ensure that these markers satisfy assumptions commonly made in many genetic analyses, we tested for Mendelian inheritance and linkage disequilibrium in laboratory crosses and a wild population, respectively. We have validated more than 25,000 of these markers to date, and expect this number to increase with more sampling. We also present evidence of the chip's efficacy in distinguishing populations throughout the world. The markers on this chip are ideal for applications ranging from population genetics to genome-wide association studies. This tool makes rapid, cost-effective, and comparable genotype data attainable to diverse sets of Aedes aegypti researchers, from those interested in potential range shifts due to climate change to those characterizing the genetic underpinnings of its competence to transmit disease.

  11. Temephos Resistance in Aedes aegypti in Colombia Compromises Dengue Vector Control

    PubMed Central

    Grisales, Nelson; Poupardin, Rodolphe; Gomez, Santiago; Fonseca-Gonzalez, Idalyd; Ranson, Hilary; Lenhart, Audrey

    2013-01-01

    Background Control and prevention of dengue relies heavily on the application of insecticides to control dengue vector mosquitoes. In Colombia, application of the larvicide temephos to the aquatic breeding sites of Aedes aegypti is a key part of the dengue control strategy. Resistance to temephos was recently detected in the dengue-endemic city of Cucuta, leading to questions about its efficacy as a control tool. Here, we characterize the underlying mechanisms and estimate the operational impact of this resistance. Methodology/Principal Findings Larval bioassays of Ae. aegypti larvae from Cucuta determined the temephos LC50 to be 0.066 ppm (95% CI 0.06–0.074), approximately 15× higher than the value obtained from a susceptible laboratory colony. The efficacy of the field dose of temephos at killing this resistant Cucuta population was greatly reduced, with mortality rates <80% two weeks after application and <50% after 4 weeks. Neither biochemical assays nor partial sequencing of the ace-1 gene implicated target site resistance as the primary resistance mechanism. Synergism assays and microarray analysis suggested that metabolic mechanisms were most likely responsible for the temephos resistance. Interestingly, although the greatest synergism was observed with the carboxylesterase inhibitor, DEF, the primary candidate genes from the microarray analysis, and confirmed by quantitative PCR, were cytochrome P450 oxidases, notably CYP6N12, CYP6F3 and CYP6M11. Conclusions/Significance In Colombia, resistance to temephos in Ae. aegypti compromises the duration of its effect as a vector control tool. Several candidate genes potentially responsible for metabolic resistance to temephos were identified. Given the limited number of insecticides that are approved for vector control, future chemical-based control strategies should take into account the mechanisms underlying the resistance to discern which insecticides would likely lead to the greatest control efficacy while

  12. Genetic differentiation of the dengue vector, Aedes aegypti (Ho Chi Minh City, Vietnam) using microsatellite markers.

    PubMed

    Huber, K; Le Loan, L; Hoang, T H; Ravel, S; Rodhain, F; Failloux, A-B

    2002-09-01

    Dengue haemorrhagic fever emerged in the 1950s and has become a major public health concern in most Asian countries. In Vietnam, little is known about the intraspecific variation of the vector and its consequences on vectorial capacity. Here we report the use of microsatellite markers to differentiate Aedes aegypti populations in Ho Chi Minh City, a typical, overcrowded Asian city. Six microsatellite loci, with 5-14 alleles per locus, were scored in 20 mosquito samples collected in 1998 in Ho Chi Minh City. We found substantial differentiation among Ae. aegypti populations from the outskirts, whereas populations from the centre of the city showed less differentiation. These results are consistent with the hypothesis that populations of Ae. aegypti in central Ho Chi Minh City are panmictic because there are abundant larval breeding sites and an abundance of humans for adults to feed upon. In contrast, populations on the outskirts become differentiated largely through the processes of genetic drift because larval breeding sites are not as abundant. These findings implicate human activities associated with urbanization, as factors shaping the genetic structure of Ae. aegypti populations.

  13. Sialic acid expression in the mosquito Aedes aegypti and its possible role in dengue virus-vector interactions.

    PubMed

    Cime-Castillo, Jorge; Delannoy, Philippe; Mendoza-Hernández, Guillermo; Monroy-Martínez, Verónica; Harduin-Lepers, Anne; Lanz-Mendoza, Humberto; Hernández-Hernández, Fidel de la Cruz; Zenteno, Edgar; Cabello-Gutiérrez, Carlos; Ruiz-Ordaz, Blanca H

    2015-01-01

    Dengue fever (DF) is the most prevalent arthropod-borne viral disease which affects humans. DF is caused by the four dengue virus (DENV) serotypes, which are transmitted to the host by the mosquito Aedes aegypti that has key roles in DENV infection, replication, and viral transmission (vector competence). Mosquito saliva also plays an important role during DENV transmission. In this study, we detected the presence of sialic acid (Sia) in Aedes aegypti tissues, which may have an important role during DENV-vector competence. We also identified genome sequences encoding enzymes involved in Sia pathways. The cDNA for Aedes aegypti CMP-Sia synthase (CSAS) was amplified, cloned, and functionally evaluated via the complementation of LEC29.Lec32 CSAS-deficient CHO cells. AedesCSAS-transfected LEC29.Lec32 cells were able to express Sia moieties on the cell surface. Sequences related to α-2,6-sialyltransferase were detected in the Aedes aegypti genome. Likewise, we identified Sia-α-2,6-DENV interactions in different mosquito tissues. In addition, we evaluated the possible role of sialylated molecules in a salivary gland extract during DENV internalization in mammalian cells. The knowledge of early DENV-host interactions could facilitate a better understanding of viral tropism and pathogenesis to allow the development of new strategies for controlling DENV transmission.

  14. Sialic Acid Expression in the Mosquito Aedes aegypti and Its Possible Role in Dengue Virus-Vector Interactions

    PubMed Central

    Cime-Castillo, Jorge; Delannoy, Philippe; Mendoza-Hernández, Guillermo; Monroy-Martínez, Verónica; Lanz-Mendoza, Humberto; Hernández-Hernández, Fidel de la Cruz; Cabello-Gutiérrez, Carlos; Ruiz-Ordaz, Blanca H.

    2015-01-01

    Dengue fever (DF) is the most prevalent arthropod-borne viral disease which affects humans. DF is caused by the four dengue virus (DENV) serotypes, which are transmitted to the host by the mosquito Aedes aegypti that has key roles in DENV infection, replication, and viral transmission (vector competence). Mosquito saliva also plays an important role during DENV transmission. In this study, we detected the presence of sialic acid (Sia) in Aedes aegypti tissues, which may have an important role during DENV-vector competence. We also identified genome sequences encoding enzymes involved in Sia pathways. The cDNA for Aedes aegypti CMP-Sia synthase (CSAS) was amplified, cloned, and functionally evaluated via the complementation of LEC29.Lec32 CSAS-deficient CHO cells. AedesCSAS-transfected LEC29.Lec32 cells were able to express Sia moieties on the cell surface. Sequences related to α-2,6-sialyltransferase were detected in the Aedes aegypti genome. Likewise, we identified Sia-α-2,6-DENV interactions in different mosquito tissues. In addition, we evaluated the possible role of sialylated molecules in a salivary gland extract during DENV internalization in mammalian cells. The knowledge of early DENV-host interactions could facilitate a better understanding of viral tropism and pathogenesis to allow the development of new strategies for controlling DENV transmission. PMID:25874215

  15. Bioefficacy of Mentha piperita essential oil against dengue fever mosquito Aedes aegypti L

    PubMed Central

    Kumar, Sarita; Wahab, Naim; Warikoo, Radhika

    2011-01-01

    Objective To assess the larvicidal and repellent potential of the essential oil extracted from the leaves of peppermint plant, Mentha piperita (M. piperita) against the larval and adult stages of Aedes aegypti (Ae. Aegypti). Methods The larvicidal potential of peppermint oil was evaluated against early fourth instar larvae of Ae. aegypti using WHO protocol. The mortality counts were made after 24 and 48 h, and LC50 and LC90 values were calculated. The efficacy of peppermint oil as mosquito repellent was assessed using the human-bait technique. The measured area of one arm of a human volunteer was applied with the oil and the other arm was applied with ethanol. The mosquito bites on both the arms were recorded for 3 min after every 15 min. The experiment continued for 3 h and the percent protection was calculated. Results The essential oil extracted from M. piperita possessed excellent larvicidal efficiency against dengue vector. The bioassays showed an LC50 and LC90 value of 111.9 and 295.18 ppm, respectively after 24 h of exposure. The toxicity of the oil increased 11.8% when the larvae were exposed to the oil for 48 h. The remarkable repellent properties of M. piperita essential oil were established against adults Ae. aegypti. The application of oil resulted in 100% protection till 150 min. After next 30 min, only 1-2 bites were recorded as compared with 8-9 bites on the control arm. Conclusions The peppermint essential oil is proved to be efficient larvicide and repellent against dengue vector. Further studies are needed to identify the possible role of oil as adulticide, oviposition deterrent and ovicidal agent. The isolation of active ingredient from the oil could help in formulating strategies for mosquito control. PMID:23569733

  16. Transstadial Effects of Bti on Traits of Aedes aegypti and Infection with Dengue Virus

    PubMed Central

    Alto, Barry W.; Lord, Cynthia C.

    2016-01-01

    Most mosquito control efforts are primarily focused on reducing the adult population size mediated by reductions in the larval population, which should lower risk of disease transmission. Although the aim of larviciding is to reduce larval abundance and thus recruitment of adults, nonlethal effects on adults are possible, including transstadial effects on phenotypes of adults such as survival and pathogen infection and transmission. In addition, the mortality induced by control efforts may act in conjunction with other sources of mosquito mortality in nature. The consequences of these effects and interactions may alter the potential of the population to transmit pathogens. We tested experimentally the combined effects of a larvicide (Bacillus thuringiensis ssp. israelensis, Bti) and competition during the larval stages on subsequent Aedes aegypti (Linnaeus) traits, population performance, and susceptibility to dengue-1 virus infection. Ae. aegypti that survived exposure to Bti experienced accelerated development, were larger, and produced more eggs with increasing amounts of Bti, consistent with competitive release among surviving mosquitoes. Changing larval density had no significant interactive effect with Bti treatment on development and growth to adulthood. Larval density, but not Bti or treatment interaction, had a strong effect on survival of adult Ae. aegypti females. There were sharper declines in cumulative daily survival of adults from crowded than uncrowded larval conditions, suggesting that high competition conditions of larvae may be an impediment to transmission of dengue viruses. Rates of infection and dengue-1 virus disseminated infections were found to be 87±13% and 88±12%, respectively. There were no significant treatment effects on infection measurements. Our findings suggest that larvicide campaigns using Bti may reduce the number of emerged adults, but survivors will have a fitness advantage (growth, development, enhanced production of eggs

  17. Bromeliad-inhabiting mosquitoes in an urban botanical garden of dengue endemic Rio de Janeiro. Are bromeliads productive habitats for the invasive vectors Aedes aegypti and Aedes albopictus?

    PubMed Central

    Mocellin, Márcio Goulart; Simões, Taynãna César; do Nascimento, Teresa Fernandes Silva; Teixeira, Maria Lucia França; Lounibos, Leon Philip; de Oliveira, Ricardo Lourenço

    2012-01-01

    Immatures of both Aedes aegypti and Aedes albopictus have been found in water-holding bromeliad axils in Brazil. Removal of these plants or their treatment with insecticides in public and private gardens have been undertaken during dengue outbreaks in Brazil despite uncertainty as to their importance as productive habitats for dengue vectors. From March 2005-February 2006, we sampled 120 randomly selected bromeliads belonging to 10 species in a public garden less than 200 m from houses in a dengue-endemic neighborhood in Rio de Janeiro. A total of 2,816 mosquito larvae and pupae was collected, with an average of 5.87 immatures per plant per collection. Culex (Microculex) pleuristriatus and Culex spp of the Ocellatus Group were the most abundant culicid species, found in all species of bromeliads; next in relative abundance were species of the genus Wyeomyia. Only two individuals of Ae. aegypti (0.07%) and five of Ae. albopictus (0.18%) were collected from bromeliads. By contrast, immatures of Ae. aegypti were found in manmade containers in nearly 5% of nearby houses. These results demonstrate that bromeliads are not important producers of Ae. aegypti and Ae. albopictus and, hence, should not be a focus for dengue control. However, the results of this study of only one year in a single area may not represent outcomes in other urban localities where bromeliads, Ae. aegypti and dengue coincide in more disturbed habitats. PMID:20140379

  18. Breeding Sites of Aedes aegypti: Potential Dengue Vectors in Dire Dawa, East Ethiopia

    PubMed Central

    Getachew, Dejene; Tekie, Habte; Gebre-Michael, Teshome; Balkew, Meshesha; Mesfin, Akalu

    2015-01-01

    Background and Objectives. Entomological survey was carried out from May-June to September-October 2014 to investigate the presence of dengue vectors in discarded tires and artificial water containers in houses and peridomestic areas. Methods. A cross-sectional immature stage survey was done indoors and outdoors in 301 houses. Mosquito larval sampling was conducted using pipette or dipper depending on container types. Larvae were identified morphologically and larval indices were also calculated. Results. A total of 750 containers were inspected, and of these 405 were positive for mosquito larvae. A total of 1,873 larvae were collected and morphologically identified as Aedes aegypti (n = 1580: 84.4%) and Culex (n = 293: 15.6%). The larval indices, house index, container index, and breteau index, varied from 33.3 to 86.2, from 23.2 to 73.9, and from 56.5 to 188.9, respectively. Conclusion. Aedes aegypti is breeding in a wide range of artificial containers. To control these mosquitoes, the integration of different methods should be taken into consideration. PMID:26435712

  19. Dengue Virus Infection of Aedes aegypti Requires a Putative Cysteine Rich Venom Protein

    PubMed Central

    Londono-Renteria, Berlin; Troupin, Andrea; Conway, Michael J; Vesely, Diana; Ledizet, Michael; Roundy, Christopher M.; Cloherty, Erin; Jameson, Samuel; Vanlandingham, Dana; Higgs, Stephen; Fikrig, Erol; Colpitts, Tonya M.

    2015-01-01

    Dengue virus (DENV) is a mosquito-borne flavivirus that causes serious human disease and mortality worldwide. There is no specific antiviral therapy or vaccine for DENV infection. Alterations in gene expression during DENV infection of the mosquito and the impact of these changes on virus infection are important events to investigate in hopes of creating new treatments and vaccines. We previously identified 203 genes that were ≥5-fold differentially upregulated during flavivirus infection of the mosquito. Here, we examined the impact of silencing 100 of the most highly upregulated gene targets on DENV infection in its mosquito vector. We identified 20 genes that reduced DENV infection by at least 60% when silenced. We focused on one gene, a putative cysteine rich venom protein (SeqID AAEL000379; CRVP379), whose silencing significantly reduced DENV infection in Aedes aegypti cells. Here, we examine the requirement for CRVP379 during DENV infection of the mosquito and investigate the mechanisms surrounding this phenomenon. We also show that blocking CRVP379 protein with either RNAi or specific antisera inhibits DENV infection in Aedes aegypti. This work identifies a novel mosquito gene target for controlling DENV infection in mosquitoes that may also be used to develop broad preventative and therapeutic measures for multiple flaviviruses. PMID:26491875

  20. [Aedes aegypti (L.): importance of its bioecology in the transmission of dengue and other arboviruses. I].

    PubMed

    Dégallier, N; Hervé, J P; Travassos da Rosa, A P; Sa, G C

    1988-01-01

    The bioecological parameters which are of special importance in the epidemiology of Dengue, Yellow Fever, and other arboviruses are discussed. Three levels are retained: the nature of Aedes aegypti-man contacts, the susceptibility of the mosquito to the pathogen and multiplication of the latter, and the transmission. The trophic preferences, the density variations, the daily survival rate, the egg diapause, and man influences are the main vector-dependent ecological factors. Temperature and genetical nature of viral and mosquito strains are particularly important in susceptibility and multiplication studies. Efficacy of the oral transmission is also temperature-dependent and mainly genetically determined. The true natural role of transovarial transmission is not yet well understood. Thus, the breaking up and/or prevention of epidemics would be possible only with a thorough knowledge of the relation between the above biological factors and the epidemiological situation. A list is provided of the naturally or experimentally Aedes aegypti transmitted arboviruses (103), protozoans (5) and filaria (20).

  1. Emerging role of lipid droplets in Aedes aegypti immune response against bacteria and Dengue virus

    PubMed Central

    Barletta, Ana Beatriz Ferreira; Alves, Liliane Rosa; Nascimento Silva, Maria Clara L.; Sim, Shuzhen; Dimopoulos, George; Liechocki, Sally; Maya-Monteiro, Clarissa M.; Sorgine, Marcos H. Ferreira

    2016-01-01

    In mammals, lipid droplets (LDs) are ubiquitous organelles that modulate immune and inflammatory responses through the production of lipid mediators. In insects, it is unknown whether LDs play any role during the development of immune responses. We show that Aedes aegypti Aag2 cells – an immune responsive cell lineage – accumulates LDs when challenged with Enterobacter cloacae, Sindbis, and Dengue viruses. Microarray analysis of Aag2 challenged with E.cloacae or infected with Dengue virus revealed high transcripts levels of genes associated with lipid storage and LDs biogenesis, correlating with the increased LDs numbers in those conditions. Similarly, in mosquitoes, LDs accumulate in midgut cells in response to Serratia marcescens and Sindbis virus or when the native microbiota proliferates, following a blood meal. Also, constitutive activation of Toll and IMD pathways by knocking-down their respective negative modulators (Cactus and Caspar) increases LDs numbers in the midgut. Our results show for the first time an infection-induced LDs accumulation in response to both bacterial and viral infections in Ae. Aegypti, and we propose a role for LDs in mosquito immunity. These findings open new venues for further studies in insect immune responses associated with lipid metabolism. PMID:26887863

  2. Emerging role of lipid droplets in Aedes aegypti immune response against bacteria and Dengue virus.

    PubMed

    Barletta, Ana Beatriz Ferreira; Alves, Liliane Rosa; Silva, Maria Clara L Nascimento; Sim, Shuzhen; Dimopoulos, George; Liechocki, Sally; Maya-Monteiro, Clarissa M; Sorgine, Marcos H Ferreira

    2016-01-01

    In mammals, lipid droplets (LDs) are ubiquitous organelles that modulate immune and inflammatory responses through the production of lipid mediators. In insects, it is unknown whether LDs play any role during the development of immune responses. We show that Aedes aegypti Aag2 cells - an immune responsive cell lineage - accumulates LDs when challenged with Enterobacter cloacae, Sindbis, and Dengue viruses. Microarray analysis of Aag2 challenged with E.cloacae or infected with Dengue virus revealed high transcripts levels of genes associated with lipid storage and LDs biogenesis, correlating with the increased LDs numbers in those conditions. Similarly, in mosquitoes, LDs accumulate in midgut cells in response to Serratia marcescens and Sindbis virus or when the native microbiota proliferates, following a blood meal. Also, constitutive activation of Toll and IMD pathways by knocking-down their respective negative modulators (Cactus and Caspar) increases LDs numbers in the midgut. Our results show for the first time an infection-induced LDs accumulation in response to both bacterial and viral infections in Ae. Aegypti, and we propose a role for LDs in mosquito immunity. These findings open new venues for further studies in insect immune responses associated with lipid metabolism. PMID:26887863

  3. Heterogeneous Feeding Patterns of the Dengue Vector, Aedes aegypti, on Individual Human Hosts in Rural Thailand

    PubMed Central

    Harrington, Laura C.; Fleisher, Andrew; Ruiz-Moreno, Diego; Vermeylen, Francoise; Wa, Chrystal V.; Poulson, Rebecca L.; Edman, John D.; Clark, John M.; Jones, James W.; Kitthawee, Sangvorn; Scott, Thomas W.

    2014-01-01

    Background Mosquito biting frequency and how bites are distributed among different people can have significant epidemiologic effects. An improved understanding of mosquito vector-human interactions would refine knowledge of the entomological processes supporting pathogen transmission and could reveal targets for minimizing risk and breaking pathogen transmission cycles. Methodology and principal findings We used human DNA blood meal profiling of the dengue virus (DENV) vector, Aedes aegypti, to quantify its contact with human hosts and to infer epidemiologic implications of its blood feeding behavior. We determined the number of different people bitten, biting frequency by host age, size, mosquito age, and the number of times each person was bitten. Of 3,677 engorged mosquitoes collected and 1,186 complete DNA profiles, only 420 meals matched people from the study area, indicating that Ae. aegypti feed on people moving transiently through communities to conduct daily business. 10–13% of engorged mosquitoes fed on more than one person. No biting rate differences were detected between high- and low-dengue transmission seasons. We estimate that 43–46% of engorged mosquitoes bit more than one person within each gonotrophic cycle. Most multiple meals were from residents of the mosquito collection house or neighbors. People ≤25 years old were bitten less often than older people. Some hosts were fed on frequently, with three hosts bitten nine times. Interaction networks for mosquitoes and humans revealed biologically significant blood feeding hotspots, including community marketplaces. Conclusion and significance High multiple-feeding rates and feeding on community visitors are likely important features in the efficient transmission and rapid spread of DENV. These results help explain why reducing vector populations alone is difficult for dengue prevention and support the argument for additional studies of mosquito feeding behavior, which when integrated with a

  4. Tackling the growing threat of dengue: Phyllanthus niruri-mediated synthesis of silver nanoparticles and their mosquitocidal properties against the dengue vector Aedes aegypti (Diptera: Culicidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mosquitoes transmit pathogens that cause millions of human deaths each year. Dengue virus is transmitted to humans in tropical and subtropical areas by Aedes aegypti (Diptera: Culicidae). The use of synthetic insecticides to control this mosquito is accompanied by high operational costs and adverse...

  5. Stochastic eco-epidemiological model of dengue disease transmission by Aedes aegypti mosquito.

    PubMed

    Otero, M; Solari, H G

    2010-01-01

    We present a stochastic dynamical model for the transmission of dengue that takes into account seasonal and spatial dynamics of the vector Aedes aegypti. It describes disease dynamics triggered by the arrival of infected people in a city. We show that the probability of an epidemic outbreak depends on seasonal variation in temperature and on the availability of breeding sites. We also show that the arrival date of an infected human in a susceptible population dramatically affects the distribution of the final size of epidemics and that early outbreaks have a low probability. However, early outbreaks are likely to produce large epidemics because they have a longer time to evolve before the winter extinction of vectors. Our model could be used to estimate the risk and final size of epidemic outbreaks in regions with seasonal climatic variations.

  6. Heme Signaling Impacts Global Gene Expression, Immunity and Dengue Virus Infectivity in Aedes aegypti

    PubMed Central

    Bottino-Rojas, Vanessa; Talyuli, Octávio A. C.; Jupatanakul, Natapong; Sim, Shuzhen; Dimopoulos, George; Venancio, Thiago M.; Bahia, Ana C.; Sorgine, Marcos H.; Oliveira, Pedro L.; Paiva-Silva, Gabriela O.

    2015-01-01

    Blood-feeding mosquitoes are exposed to high levels of heme, the product of hemoglobin degradation. Heme is a pro-oxidant that influences a variety of cellular processes. We performed a global analysis of heme-regulated Aedes aegypti (yellow fever mosquito) transcriptional changes to better understand influence on mosquito physiology at the molecular level. We observed an iron- and reactive oxygen species (ROS)-independent signaling induced by heme that comprised genes related to redox metabolism. By modulating the abundance of these transcripts, heme possibly acts as a danger signaling molecule. Furthermore, heme triggered critical changes in the expression of energy metabolism and immune response genes, altering the susceptibility towards bacteria and dengue virus. These findings seem to have implications on the adaptation of mosquitoes to hematophagy and consequently on their ability to transmit diseases. Altogether, these results may also contribute to the understanding of heme cell biology in eukaryotic cells. PMID:26275150

  7. Heme Signaling Impacts Global Gene Expression, Immunity and Dengue Virus Infectivity in Aedes aegypti.

    PubMed

    Bottino-Rojas, Vanessa; Talyuli, Octávio A C; Jupatanakul, Natapong; Sim, Shuzhen; Dimopoulos, George; Venancio, Thiago M; Bahia, Ana C; Sorgine, Marcos H; Oliveira, Pedro L; Paiva-Silva, Gabriela O

    2015-01-01

    Blood-feeding mosquitoes are exposed to high levels of heme, the product of hemoglobin degradation. Heme is a pro-oxidant that influences a variety of cellular processes. We performed a global analysis of heme-regulated Aedes aegypti (yellow fever mosquito) transcriptional changes to better understand influence on mosquito physiology at the molecular level. We observed an iron- and reactive oxygen species (ROS)-independent signaling induced by heme that comprised genes related to redox metabolism. By modulating the abundance of these transcripts, heme possibly acts as a danger signaling molecule. Furthermore, heme triggered critical changes in the expression of energy metabolism and immune response genes, altering the susceptibility towards bacteria and dengue virus. These findings seem to have implications on the adaptation of mosquitoes to hematophagy and consequently on their ability to transmit diseases. Altogether, these results may also contribute to the understanding of heme cell biology in eukaryotic cells.

  8. Differential Protein Modulation in Midguts of Aedes aegypti Infected with Chikungunya and Dengue 2 Viruses

    PubMed Central

    Tchankouo-Nguetcheu, Stéphane; Khun, Huot; Pincet, Laurence; Roux, Pascal; Bahut, Muriel; Huerre, Michel; Guette, Catherine; Choumet, Valérie

    2010-01-01

    Background Arthropod borne virus infections cause several emerging and resurgent infectious diseases. Among the diseases caused by arboviruses, dengue and chikungunya are responsible for a high rate of severe human diseases worldwide. The midgut of mosquitoes is the first barrier for pathogen transmission and is a target organ where arboviruses must replicate prior to infecting other organs. A proteomic approach was undertaken to characterize the key virus/vector interactions and host protein modifications that happen in the midgut for viral transmission to eventually take place. Methodology and Principal Findings Using a proteomics differential approach with two-Dimensional Differential in-Gel Electrophoresis (2D-DIGE), we defined the protein modulations in the midgut of Aedes aegypti that were triggered seven days after an oral infection (7 DPI) with dengue 2 (DENV-2) and chikungunya (CHIKV) viruses. Gel profile comparisons showed that the level of 18 proteins was modulated by DENV-2 only and 12 proteins were modulated by CHIKV only. Twenty proteins were regulated by both viruses in either similar or different ways. Both viruses caused an increase of proteins involved in the generation of reactive oxygen species, energy production, and carbohydrate and lipid metabolism. Midgut infection by DENV-2 and CHIKV triggered an antioxidant response. CHIKV infection produced an increase of proteins involved in detoxification. Conclusion/Significance Our study constitutes the first analysis of the protein response of Aedes aegypti's midgut infected with viruses belonging to different families. It shows that the differentially regulated proteins in response to viral infection include structural, redox, regulatory proteins, and enzymes for several metabolic pathways. Some of these proteins like antioxidant are probably involved in cell protection. On the other hand, we propose that the modulation of other proteins like transferrin, hsp60 and alpha glucosidase, may favour

  9. Ovitrap surveillance of the dengue vectors, Aedes (Stegomyia) aegypti (L.) and Aedes (Stegomyia) albopictus Skuse in selected areas in Bentong, Pahang, Malaysia.

    PubMed

    Norzahira, R; Hidayatulfathi, O; Wong, H M; Cheryl, A; Firdaus, R; Chew, H S; Lim, K W; Sing, K W; Mahathavan, M; Nazni, W A; Lee, H L; Vasan, S S; McKemey, A; Lacroix, R

    2011-04-01

    Ovitrap surveillance was conducted in methodically selected areas in Bentong, Pahang, Malaysia from June 2008 till December 2009 in order to identify insular sites with stable Aedes aegypti population. Eleven sites were surveyed in Bentong district, Pahang, and one of these locations (N3º33' E101º54') was found to have an ovitrap index of Ae. aegypti and Aedes albopictus ranging from 8%-47% and 37%-78% respectively, indicating that this site could be a high-risk area for dengue outbreak. Ae. aegypti larvae were found in both indoor and outdoor ovitraps (p>0.05) while significant difference between the populations of Ae. albopictus larvae from indoors and outdoors was observed (p<0.01). Data collected in this study could provide important entomological information for designing an effective integrated vector control programme to combat Aedes mosquitoes in this area. PMID:21602768

  10. Undesirable Consequences of Insecticide Resistance following Aedes aegypti Control Activities Due to a Dengue Outbreak

    PubMed Central

    Maciel-de-Freitas, Rafael; Avendanho, Fernando Campos; Santos, Rosangela; Sylvestre, Gabriel; Araújo, Simone Costa; Lima, José Bento Pereira; Martins, Ademir Jesus; Coelho, Giovanini Evelim; Valle, Denise

    2014-01-01

    Background During a dengue outbreak with co-circulation of DENV-1 and -2 in the city of Boa Vista, one patient was diagnosed with DENV-4, a serotype supposed absent from Brazil for almost 30 years. The re-emergence of DENV-4 triggered the intensification of mechanical and chemical Aedes aegypti control activities in order to reduce vector density and avoid DENV-4 dissemination throughout the country. Methods/Principal Findings Vector control activities consisted of (a) source reduction, (b) application of diflubenzuron against larvae and (c) vehicle-mounted space spraying of 2% deltamethrin to eliminate adults. Control activity efficacy was monitored by comparing the infestation levels and the number of eggs collected in ovitraps before and after interventions, performed in 22 Boa Vista districts, covering an area of ∼80% of the city and encompassing 56,837 dwellings. A total of 94,325 containers were eliminated or treated with diflubenzuron. The most frequently positive containers were small miscellaneous receptacles, which corresponded to 59% of all positive breeding sites. Insecticide resistance to deltamethrin was assessed before, during and after interventions by dose-response bioassays adopting WHO-based protocols. The intense use of the pyrethroid increased fourfold the resistance ratio of the local Ae. aegypti population only six months after the beginning of vector control. Curiously, this trend was also observed in the districts in which no deltamethrin was applied by the public health services. On the other hand, changes in the resistance ratio to the organophosphate temephos seemed less influenced by insecticide in Boa Vista. Conclusions Despite the intense effort, mosquito infestation levels were only slightly reduced. Besides, the median number of eggs in ovitraps remained unaltered after control activity intensification. The great and rapid increase in pyrethroid resistance levels of natural Ae. aegypti populations is discussed in the context of

  11. Aedes aegypti Control Strategies in Brazil: Incorporation of New Technologies to Overcome the Persistence of Dengue Epidemics

    PubMed Central

    Araújo, Helena R. C.; Carvalho, Danilo O.; Ioshino, Rafaella S.; Costa-da-Silva, André L.; Capurro, Margareth L.

    2015-01-01

    Dengue is considered to be the most important mosquito-borne viral disease in the world. The Aedes aegypti mosquito, its vector, is highly anthropophilic and is very well adapted to urban environments. Although several vaccine candidates are in advanced stages of development no licensed dengue vaccine is yet available. As a result, controlling the spread of dengue still requires that mosquitoes be targeted directly. We review the current methods of dengue vector control focusing on recent technical advances. We first examine the history of Brazil’s National Dengue Control Plan in effect since 2002, and we describe its establishment and operation. With the persistent recurrence of dengue epidemics, current strategies should be reassessed to bring to the forefront a discussion of the possible implementation of new technologies in Brazil’s mosquito control program. PMID:26463204

  12. Aedes aegypti Control Strategies in Brazil: Incorporation of New Technologies to Overcome the Persistence of Dengue Epidemics.

    PubMed

    Araújo, Helena R C; Carvalho, Danilo O; Ioshino, Rafaella S; Costa-da-Silva, André L; Capurro, Margareth L

    2015-01-01

    Dengue is considered to be the most important mosquito-borne viral disease in the world. The Aedes aegypti mosquito, its vector, is highly anthropophilic and is very well adapted to urban environments. Although several vaccine candidates are in advanced stages of development no licensed dengue vaccine is yet available. As a result, controlling the spread of dengue still requires that mosquitoes be targeted directly. We review the current methods of dengue vector control focusing on recent technical advances. We first examine the history of Brazil's National Dengue Control Plan in effect since 2002, and we describe its establishment and operation. With the persistent recurrence of dengue epidemics, current strategies should be reassessed to bring to the forefront a discussion of the possible implementation of new technologies in Brazil's mosquito control program. PMID:26463204

  13. Microevolution of Aedes aegypti

    PubMed Central

    Louise, Caroline; Vidal, Paloma Oliveira; Suesdek, Lincoln

    2015-01-01

    Scientific research into the epidemiology of dengue frequently focuses on the microevolution and dispersion of the mosquito Aedes aegypti. One of the world’s largest urban agglomerations infested by Ae. aegypti is the Brazilian megalopolis of Sao Paulo, where >26,900 cases of dengue were reported until June 2015. Unfortunately, the dynamics of the genetic variability of Ae. aegypti in the Sao Paulo area have not been well studied. To reduce this knowledge gap, we assessed the morphogenetic variability of a population of Ae. aegypti from a densely urbanised neighbourhood of Sao Paulo. We tested if allelic patterns could vary over a short term and if wing shape could be a predictor of the genetic variation. Over a period of 14 months, we examined the variation of genetic (microsatellites loci) and morphological (wing geometry) markers in Ae. aegypti. Polymorphisms were detected, as revealed by the variability of 20 microsatellite loci (115 alleles combined; overall Fst = 0.0358) and 18 wing landmarks (quantitative estimator Qst = 0.4732). These levels of polymorphism are higher than typically expected to an exotic species. Allelic frequencies of the loci changed over time and temporal variation in the wing shape was even more pronounced, permitting high reclassification levels of chronological samples. In spite of the fact that both markers underwent temporal variation, no correlation was detected between their dynamics. We concluded that microevolution was detected despite the short observational period, but the intensities of change of the markers were discrepant. Wing shape failed from predicting allelic temporal variation. Possibly, natural selection (Qst>Fst) or variance of expressivity of wing phenotype are involved in this discrepancy. Other possibly influential factors on microevolution of Ae. aegypti are worth searching. Additionally, the implications of the rapid evolution and high polymorphism of this mosquito vector on the efficacy of control methods

  14. Microevolution of Aedes aegypti.

    PubMed

    Louise, Caroline; Vidal, Paloma Oliveira; Suesdek, Lincoln

    2015-01-01

    Scientific research into the epidemiology of dengue frequently focuses on the microevolution and dispersion of the mosquito Aedes aegypti. One of the world's largest urban agglomerations infested by Ae. aegypti is the Brazilian megalopolis of Sao Paulo, where >26,900 cases of dengue were reported until June 2015. Unfortunately, the dynamics of the genetic variability of Ae. aegypti in the Sao Paulo area have not been well studied. To reduce this knowledge gap, we assessed the morphogenetic variability of a population of Ae. aegypti from a densely urbanised neighbourhood of Sao Paulo. We tested if allelic patterns could vary over a short term and if wing shape could be a predictor of the genetic variation. Over a period of 14 months, we examined the variation of genetic (microsatellites loci) and morphological (wing geometry) markers in Ae. aegypti. Polymorphisms were detected, as revealed by the variability of 20 microsatellite loci (115 alleles combined; overall Fst = 0.0358) and 18 wing landmarks (quantitative estimator Qst = 0.4732). These levels of polymorphism are higher than typically expected to an exotic species. Allelic frequencies of the loci changed over time and temporal variation in the wing shape was even more pronounced, permitting high reclassification levels of chronological samples. In spite of the fact that both markers underwent temporal variation, no correlation was detected between their dynamics. We concluded that microevolution was detected despite the short observational period, but the intensities of change of the markers were discrepant. Wing shape failed from predicting allelic temporal variation. Possibly, natural selection (Qst>Fst) or variance of expressivity of wing phenotype are involved in this discrepancy. Other possibly influential factors on microevolution of Ae. aegypti are worth searching. Additionally, the implications of the rapid evolution and high polymorphism of this mosquito vector on the efficacy of control methods have

  15. Natural vertical transmission of dengue viruses in Aedes aegypti in selected sites in Cebu City, Philippines.

    PubMed

    Edillo, Frances E; Sarcos, Janet R; Sayson, Stephanie L

    2015-12-01

    We attempted to determine the vertical transmission of dengue virus (DENV) in Aedes aegypti in selected sites in Cebu City, Philippines. Mosquito sub-adults were collected monthly from households and the field during the wet-dry-wet season from November, 2011 to July, 2012 and were laboratory-reared to adults. Viral RNA extracts in mosquitoes were assayed by hemi-nested RT-PCR. Results showed that 62 (36.26%; n=679) out of 171 mosquito pools (n=2,871) were DENV+. The minimum infection rate (MIR) of DENV ranged from 0 in wet months to 48.22/1,000 mosquitoes in April, 2012 (mid-dry). DENVs were detected in larvae, pupae, and male and female adults, with DENV-4, DENV-3, and DENV-1, in that rank of prevalence. DENV-1 co-infected with either DENV-3 or -4 or with both in April, 2012; DENV-3 and -4 were present in both seasons. More DENV+ mosquitoes were collected from households than in field premises (p<0.001) and in the dry than in the wet season (p<0.05), with significant interaction (p<0.05) between sites and premises but no interaction between sites and seasons (p>0.05). By Generalized Linear Mixed models, the type of premises nested in sites and monthly total rainfall were significant predictors of monthly dengue cases (p<0.05) and not MIR, season, temperature, and relative humidity. Surveillance of DENV prevalence in Ae. aegypti and detecting their natural foci in the dry season provide an early warning signal of dengue outbreak.

  16. Absence of impact of aerial malathion treatment on Aedes aegypti during a dengue outbreak in Kingston, Jamaica.

    PubMed

    Castle, T; Amador, M; Rawlins, S; Figueroa, J P; Reiter, P

    1999-02-01

    During an outbreak of dengue fever in Jamaica from October to December 1995, a study was carried out to determine the impact of aerial ultra-low volume malathion treatment on adult Aedes aegypti. This was done by monitoring oviposition rates of the vector in three urban communities in Kingston and by exposing caged mosquitoes both directly and indirectly to the aerial malathion treatment. The insecticide was delivered at a rate of 219 mL/ha between 7:10 a.m. and 8:45 a.m. The results of the study clearly showed that the insecticide application was ineffective in interfering with Aedes aegypti oviposition, and adult mosquitoes held in cages inside dwellings were largely unaffected. Consequently, this type of intervention seemed to have little significant impact in arresting or abating dengue transmission.

  17. Population Dynamics of Aedes aegypti and Dengue as Influenced by Weather and Human Behavior in San Juan, Puerto Rico

    PubMed Central

    Barrera, Roberto; Amador, Manuel; MacKay, Andrew J.

    2011-01-01

    Previous studies on the influence of weather on Aedes aegypti dynamics in Puerto Rico suggested that rainfall was a significant driver of immature mosquito populations and dengue incidence, but mostly in the drier areas of the island. We conducted a longitudinal study of Ae. aegypti in two neighborhoods of the metropolitan area of San Juan city, Puerto Rico where rainfall is more uniformly distributed throughout the year. We assessed the impacts of rainfall, temperature, and human activities on the temporal dynamics of adult Ae. aegypti and oviposition. Changes in adult mosquitoes were monitored with BG-Sentinel traps and oviposition activity with CDC enhanced ovitraps. Pupal surveys were conducted during the drier and wetter parts of the year in both neighborhoods to determine the contribution of humans and rains to mosquito production. Mosquito dynamics in each neighborhood was compared with dengue incidence in their respective municipalities during the study. Our results showed that: 1. Most pupae were produced in containers managed by people, which explains the prevalence of adult mosquitoes at times when rainfall was scant; 2. Water meters were documented for the first time as productive habitats for Ae. aegypti; 3. Even though Puerto Rico has a reliable supply of tap water and an active tire recycling program, water storage containers and discarded tires were important mosquito producers; 4. Peaks in mosquito density preceded maximum dengue incidence; and 5. Ae. aegypti dynamics were driven by weather and human activity and oviposition was significantly correlated with dengue incidence. PMID:22206021

  18. Elimination of dengue by community programs using Mesocyclops(Copepoda) against Aedes aegypti in central Vietnam.

    PubMed

    Vu, Sinh Nam; Nguyen, Thi Yen; Tran, Vu Phong; Truong, Uyen Ninh; Le, Quyen Mai; Le, Viet Lo; Le, Trung Nghia; Bektas, Ahmet; Briscombe, Alistair; Aaskov, John G; Ryan, Peter A; Kay, Brian H

    2005-01-01

    From September 2000 to June 2003, a community-based program for dengue control using local predacious copepods of the genus Mesocyclops was conducted in three rural communes in the central Vietnam provinces of Quang Nam, Quang Ngai, and Khanh Hoa. Post-project, three subsequent entomologic surveys were conducted until March 2004. The number of households and residents in the communes were 5,913 and 27,167, respectively, and dengue notification rates for these communes from 1996 were as high as 2,418.5 per 100,000 persons. Following knowledge, attitude, and practice evaluations, surveys of water storage containers indicated that Mesocyclops spp. already occurred in 3-17% and that large tanks up to 2,000 liters, 130-300-liter jars, wells, and some 220-liter metal drums were the most productive habitats for Aedes aegypti. With technical support, the programs were driven by communal management committees, health collaborators, schoolteachers, and pupils. From quantitative estimates of the standing crop of third and fourth instars from 100 households, Ae. aegypti were reduced by approximately 90% by year 1, 92.3-98.6% by year 2, and Ae. aegypti immature forms had been eliminated from two of three communes by June 2003. Similarly, from resting adult collections from 100 households, densities were reduced to 0-1 per commune. By March 2004, two communes with no larvae had small numbers but the third was negative; one adult was collected in each of two communes while one became negative. Absolute estimates of third and fourth instars at the three intervention communes and one left untreated had significant correlations (P = 0.009-< 0.001) with numbers of adults aspirated from inside houses on each of 15 survey periods. By year 1, the incidence of dengue disease in the treated communes was reduced by 76.7% compared with non-intervention communes within the same districts, and no dengue was evident in 2002 and 2003, compared with 112.8 and 14.4 cases per 100,000 at district

  19. Elimination of dengue by community programs using Mesocyclops(Copepoda) against Aedes aegypti in central Vietnam.

    PubMed

    Vu, Sinh Nam; Nguyen, Thi Yen; Tran, Vu Phong; Truong, Uyen Ninh; Le, Quyen Mai; Le, Viet Lo; Le, Trung Nghia; Bektas, Ahmet; Briscombe, Alistair; Aaskov, John G; Ryan, Peter A; Kay, Brian H

    2005-01-01

    From September 2000 to June 2003, a community-based program for dengue control using local predacious copepods of the genus Mesocyclops was conducted in three rural communes in the central Vietnam provinces of Quang Nam, Quang Ngai, and Khanh Hoa. Post-project, three subsequent entomologic surveys were conducted until March 2004. The number of households and residents in the communes were 5,913 and 27,167, respectively, and dengue notification rates for these communes from 1996 were as high as 2,418.5 per 100,000 persons. Following knowledge, attitude, and practice evaluations, surveys of water storage containers indicated that Mesocyclops spp. already occurred in 3-17% and that large tanks up to 2,000 liters, 130-300-liter jars, wells, and some 220-liter metal drums were the most productive habitats for Aedes aegypti. With technical support, the programs were driven by communal management committees, health collaborators, schoolteachers, and pupils. From quantitative estimates of the standing crop of third and fourth instars from 100 households, Ae. aegypti were reduced by approximately 90% by year 1, 92.3-98.6% by year 2, and Ae. aegypti immature forms had been eliminated from two of three communes by June 2003. Similarly, from resting adult collections from 100 households, densities were reduced to 0-1 per commune. By March 2004, two communes with no larvae had small numbers but the third was negative; one adult was collected in each of two communes while one became negative. Absolute estimates of third and fourth instars at the three intervention communes and one left untreated had significant correlations (P = 0.009-< 0.001) with numbers of adults aspirated from inside houses on each of 15 survey periods. By year 1, the incidence of dengue disease in the treated communes was reduced by 76.7% compared with non-intervention communes within the same districts, and no dengue was evident in 2002 and 2003, compared with 112.8 and 14.4 cases per 100,000 at district

  20. Development and evaluation of a pyriproxyfen-treated device to control the dengue vector, Aedes aegypti (L.) (Diptera:Culicidae).

    PubMed

    Ponlawat, Alongkot; Fansiri, Thanyalak; Kurusarttra, Somwang; Pongsiri, Arissara; McCardle, Patrick W; Evans, Brian P; Evans, Brain P; Richardson, Jason H

    2013-03-01

    The resurgence of dengue fever and the chikungunya epidemic make the control of Aedes aegypti mosquitoes, the vectors of these diseases, critically important. We developed and evaluated an Ae. aegypti control device that is visually-attractive to mosquitoes. This pyriproxyfen-treated device was evaluated for its impact on Ae. aegypti egg production and population dynamics in dengue-endemic areas in Thailand. The device consists of a "high rise" shaped ovitrap/ resting station covered with black cotton cloth. The device is easily collapsible and transportable. Ae. aegypti are generally drawn towards darker, shadier areas making this device physically attractive as a resting station to mosquitoes of all physiological stages. The results show this device suppressed Ae. aegypti populations after it was introduced into a village. The observed effect was primarily the result of the Ae. aegypti exposure to pyriproxyfen shortly after adult emergence or after taking a blood meal resulting in decreased egg production. We believe the device may be further improved physically and the formulation should be replaced to provide even better efficacy for controlling Ae. aegypti mosquito, populations. PMID:23691625

  1. Polyandry Depends on Postmating Time Interval in the Dengue Vector Aedes aegypti

    PubMed Central

    Degner, Ethan C.; Harrington, Laura C.

    2016-01-01

    Aedes aegypti is the primary vector of the dengue and chikungunya viruses. After mating, male seminal fluid molecules cause females to become unreceptive to a subsequent mating. This response is often assumed to be immediate and complete, but a growing body of evidence suggests that some females do mate more than once. It is unknown how quickly a female becomes unreceptive to a second mating. Furthermore, the degree to which she remains monandrous after laying several batches of eggs has not been rigorously tested. Therefore, we assessed the rates of polyandry in two sets of experiments using wild-type males and those with fluorescent sperm. The first experiment tested the likelihood of polyandry after postmating intervals of various durations. Most females became refractory to a second mating within 2 hours after mating, and rates of polyandry ranged from 24% immediately after mating to 3% at 20 hours after mating. The second experiment tested whether females were polyandrous after cycles of blood meals and oviposition. No re-insemination was found after one, three, or five such cycles. This study is the first to demonstrate that polyandrous behavior depends on the postmating interval. Our results will inform future applications that depend on an accurate knowledge of Ae. aegypti mating behavior, including models of gene flow, investigations of molecules that drive female mating behavior, and control strategies that deploy genetically modified mosquitoes into the field. PMID:26880776

  2. Odonate Nymphs: Generalist Predators and Their Potential in the Management of Dengue Mosquito, Aedes aegypti (Diptera: Culicidae)

    PubMed Central

    Akram, Waseem; Ali-Khan, Hafiz Azhar

    2016-01-01

    Background: Dengue is amongst the most serious mosquito-borne infectious disease with hot spots in tropical and subtropical parts of the world. Unfortunately, no licensed vaccine for the disease is currently available in medicine markets. The only option available is the management of dengue vector mosquito, Aedes aegypti (Diptera: Culicidae). Method: Predatory potential of five odonate nymphs namely Anax parthenope, Bradinopyga geminate, Ischnura forcipata, Rhinocypha quadrimaculata, and Orthetrum sabina were evaluated against the 4th instar larvae of the dengue vector mosquito, Aedes aegypti, under laboratory conditions. The consumption of the mosquito larvae was evaluated at three water volume levels viz., 1 liter, 2 liter and 3 liter. Results: The number of Ae. aegypti larvae consumed varied significantly among the five species, and at different levels of water volume (P< 0.01). However, the interaction between odonate nymphs and the water volumes was statistically non-significant (P> 0.05). Ischnura forcipata consumed the highest number of Ae. aegypti larvae (n=56) followed by A. parthenope (n=47) and B. geminate (n=46). The number of larvae consumed was decreased with increasing search area or water volume, and the highest predation was observed at 1-liter water volume. Conclusion: The odonate nymphs could be a good source of biological agents for the management of the mosquitoes at larval stages. PMID:27308283

  3. Climate Change Influences Potential Distribution of Infected Aedes aegypti Co-Occurrence with Dengue Epidemics Risk Areas in Tanzania

    PubMed Central

    Mweya, Clement N.; Kimera, Sharadhuli I.; Stanley, Grades; Misinzo, Gerald; Mboera, Leonard E. G.

    2016-01-01

    Background Dengue is the second most important vector-borne disease of humans globally after malaria. Incidence of dengue infections has dramatically increased recently, potentially due to changing climate. Climate projections models predict increases in average annual temperature, precipitation and extreme events in the future. The objective of this study was to assess the effect of changing climate on distribution of dengue vectors in relation to epidemic risk areas in Tanzania. Methods/Findings We used ecological niche models that incorporated presence-only infected Aedes aegypti data co-occurrence with dengue virus to estimate potential distribution of epidemic risk areas. Model input data on infected Ae. aegypti was collected during the May to June 2014 epidemic in Dar es Salaam. Bioclimatic predictors for current and future projections were also used as model inputs. Model predictions indicated that habitat suitability for infected Ae. aegypti co-occurrence with dengue virus in current scenarios is highly localized in the coastal areas, including Dar es Salaam, Pwani, Morogoro, Tanga and Zanzibar. Models indicate that areas of Kigoma, Ruvuma, Lindi, and those around Lake Victoria are also at risk. Projecting to 2020, we show that risk emerges in Mara, Arusha, Kagera and Manyara regions, but disappears in parts of Morogoro, Ruvuma and near Lake Nyasa. In 2050 climate scenario, the predicted habitat suitability of infected Ae. aegypti co-occurrence with dengue shifted towards the central and north-eastern parts with intensification in areas around all major lakes. Generally, model findings indicated that the coastal regions would remain at high risk for dengue epidemic through 2050. Conclusion/Significance Models incorporating climate change scenarios to predict emerging risk areas for dengue epidemics in Tanzania show that the anticipated risk is immense and results help guiding public health policy decisions on surveillance and control of dengue epidemics. A

  4. Dengue Vector Dynamics (Aedes aegypti) Influenced by Climate and Social Factors in Ecuador: Implications for Targeted Control

    PubMed Central

    Stewart Ibarra, Anna M.; Ryan, Sadie J.; Beltrán, Efrain; Mejía, Raúl; Silva, Mercy; Muñoz, Ángel

    2013-01-01

    Background Dengue fever, a mosquito-borne viral disease, is now the fastest spreading tropical disease globally. Previous studies indicate that climate and human behavior interact to influence dengue virus and vector (Aedes aegypti) population dynamics; however, the relative effects of these variables depends on local ecology and social context. We investigated the roles of climate and socio-ecological factors on Ae. aegypti population dynamics in Machala, a city in southern coastal Ecuador where dengue is hyper-endemic. Methods/Principal findings We studied two proximate urban localities where we monitored weekly Ae. aegypti oviposition activity (Nov. 2010-June 2011), conducted seasonal pupal surveys, and surveyed household to identify dengue risk factors. The results of this study provide evidence that Ae. aegypti population dynamics are influenced by social risk factors that vary by season and lagged climate variables that vary by locality. Best-fit models to predict the presence of Ae. aegypti pupae included parameters for household water storage practices, access to piped water, the number of households per property, condition of the house and patio, and knowledge and perceptions of dengue. Rainfall and minimum temperature were significant predictors of oviposition activity, although the effect of rainfall varied by locality due to differences in types of water storage containers. Conclusions These results indicate the potential to reduce the burden of dengue in this region by conducting focused vector control interventions that target high-risk households and containers in each season and by developing predictive models using climate and non-climate information. These findings provide the region's public health sector with key information for conducting time and location-specific vector control campaigns, and highlight the importance of local socio-ecological studies to understand dengue dynamics. See Text S1 for an executive summary in Spanish. PMID:24324542

  5. Indirect effects of cigarette butt waste on the dengue vector Aedes aegypti (Diptera: Culicidae).

    PubMed

    Dieng, Hamady; Rajasaygar, Sudha; Ahmad, Abu Hassan; Rawi, Che Salmah Md; Ahmad, Hamdan; Satho, Tomomitsu; Miake, Fumio; Zuharah, Wan Fatma; Fukumitsu, Yuki; Saad, Ahmad Ramli; Abdul Hamid, Suhaila; Vargas, Ronald Enrique Morales; Ab Majid, Abdul Hafiz; Fadzly, Nik; Abu Kassim, Nur Faeza; Hashim, Nur Aida; Abd Ghani, Idris; Abang, Fatimah Bt; AbuBakar, Sazaly

    2014-02-01

    Despite major insecticide-based vector control programs, dengue continues to be a major threat to public health in urban areas. The reasons for this failure include the emergence of insecticide resistance and the narrowing of the spectrum of efficient products. Cigarette butts (CBs), the most commonly discarded piece of waste, also represent a major health hazard to human and animal life. CBs are impregnated with thousands of chemical compounds, many of which are highly toxic and none of which has history of resistance in mosquitoes. This study was performed to examine whether exposure to CB alters various biological parameters of parents and their progeny. We examined whether the mosquito changes its ovipositional behaviors, egg hatching, reproductive capacity, longevity and fecundity in response to CB exposure at three different concentrations. Females tended to prefer microcosms containing CBs for egg deposition than those with water only. There were equivalent rates of eclosion success among larvae from eggs that matured in CB and water environments. We also observed decreased life span among adults that survived CB exposure. Extracts of CB waste have detrimental effects on the fecundity and longevity of its offspring, while being attractive to its gravid females. These results altogether indicate that CB waste indirectly affect key adult life traits of Aedes aegypti and could conceivably be developed as a novel dengue vector control strategy, referring to previously documented direct toxicity on the larval stage. But this will require further research on CB waste effects on non-target organisms including humans.

  6. Risk of dengue occurrence based on the capture of gravid Aedes aegypti females using MosquiTRAP.

    PubMed

    Steffler, Lizandra Makowski; Marteis, Letícia Silva; Dolabella, Silvio Santana; Cavalcanti, Sócrates Cabral de Holanda; Santos, Roseli La Corte Dos

    2011-05-01

    We assessed the risk classification of dengue fever based on the capture of Aedes aegypti adults using MosquiTRAP, a type of sticky trap, in comparison with traditional larval infestation indices. A total of 27 MosquiTRAPs were installed, with one trap per block, and were inspected weekly between November 2008-February 2009. Infestation baseline data were obtained from a survey conducted prior to trap installation. The index generated by MosquiTRAP and house index (HI) classified the area "in alert situation". The set for risk of dengue occurrence proposed by the use of MosquiTRAP classify areas in the same way of the traditional HI.

  7. Seasonal fluctuations of dengue fever vector, Aedes aegypti (Diptera: Culicidae) in Delhi, India.

    PubMed

    Sharma, R S; Kaul, S M; Sokhay, Jotna

    2005-01-01

    Studies on the seasonal fluctuation of Aedes aegypti were undertaken in different localities of Delhi, during 2000. The Aedes aegypti population was found to be prevalent in all the localities in Delhi. Water coolers and tires were found to be the preferred breeding habitats of Aedes mosquitos in the city. Aedes aegypti, being hygroscopic, showed a phenomenon of annual pulsation. It tends to move to mother foci in the central areas of the city, which are humid in the dry season, and spread out during the wet season. Out of 103,778 houses surveyed, 20,513 houses and 3,547 containers were reported positive for Aedes aegypti. The house container, and Breteau indices were very high during the post-monsoon season. The container indicies was very high (17.7%) in the defence area in September 2000. The container index in the areas of the Municipal Corporation of Delhi (MCD) and the New Delhi Municipal Committee (NDMC) were found to be high during the same period. The house index forAedes aegypti ranged from 0.1 to 7.4, 0.1 to 11.3, and 0.1 to 11.1 in the MCD, NDMC, and Defence areas, respectively.

  8. Flavivirus susceptibility in Aedes aegypti.

    PubMed

    Black, William C; Bennett, Kristine E; Gorrochótegui-Escalante, Norma; Barillas-Mury, Carolina V; Fernández-Salas, Ildefonso; de Lourdes Muñoz, María; Farfán-Alé, José A; Olson, Ken E; Beaty, Barry J

    2002-01-01

    Aedes aegypti is the primary vector of yellow fever (YF) and dengue fever (DF) flaviviruses worldwide. In this review we focus on past and present research on genetic components and environmental factors in Aedes aegypti that appear to control flavivirus transmission. We review genetic relationships among Ae. aegypti populations throughout the world and discuss how variation in vector competence is correlated with overall genetic differences among populations. We describe current research into how genetic and environmental factors jointly affect distribution of vector competence in natural populations. Based on this information, we propose a population genetic model for vector competence and discuss our recent progress in testing this model. We end with a discussion of approaches being taken to identify the genes that may control flavivirus susceptibility in Ae. aegypti.

  9. [Detection of Aedes aegypti and Aedes albopictus, in an urban zone of the municipality of Catanduva, SP, after control of a Dengue epidemic].

    PubMed

    Cardoso Júnior, R P; Scandar, S A; de Mello, N V; Ernandes, S; Botti, M V; Nascimento, E M

    1997-01-01

    After the realization of control research that had in view the transmission of dengue virus, we started to monitor two kinds of entomological vigilance, Breteau Index and ovitrap. We intended to evaluate the necessary time elapsed before Aedes sp mosquitoes were again detected at the urban area of Catanduva s town (SP). The ovitraps showed positiveness for the Aedes aegypti two months after the control research, while the Breteau Index became positive only at the fourth month after the end of the referred research.

  10. Aedes aegypti genomics.

    PubMed

    Severson, David W; Knudson, Dennis L; Soares, Marcelo B; Loftus, Brendan J

    2004-07-01

    The mosquito, Aedes aegypti, is the primary, worldwide arthropod vector for the yellow fever and dengue viruses. As it is also one of the most tractable mosquito species for laboratory studies, it has been and remains one of the most intensively studied arthropod species. This has resulted in the development of detailed genetic and physical maps for Ae. aegypti and considerable insight into its genome organization. The research community is well-advanced in developing important molecular tools that will facilitate a whole genome sequencing effort. This includes generation of BAC clone end sequences, physical mapping of selected BAC clones and generation of EST sequences. Whole genome sequence information for Ae. aegypti will provide important insight into mosquito chromosome evolution and allow for the identification of genes and gene function. These functions may be common to all mosquitoes or perhaps unique to individual species, possibly specific to host-seeking and blood-feeding behaviors, as well as the innate immune response to pathogens encountered during blood-feeding. This information will be invaluable to the global effort to develop novel strategies for preventing arthropod-borne disease transmission.

  11. Fitness costs of resistance to Bti toxins in the dengue vector Aedes aegypti.

    PubMed

    Paris, Margot; David, Jean-Philippe; Despres, Laurence

    2011-08-01

    Sustainable insect vector disease control strategies involve delaying the evolution of resistance to insecticides in natural populations. The evolutionary dynamics of resistance in the field is highly dependent on the fitness cost of resistance alleles. To successfully manage resistance evolution in target species, it is not only important to find evidence of fitness cost in resistant insects, but also to determine at which stage of the insect's life it is expressed. Here, we show that resistance costs to the bacterio-insecticide Bacillus thuringiensis subsp. israelensis (Bti) are expressed at all the life-stages of the dengue vector Aedes aegypti, including egg survival, larval development time, and female fecundity. We show that the storage of eggs for 4 months is long enough to counter-select resistance alleles. This suggests that Bti resistance is not likely to evolve in temperate climates where most mosquito species overwinter as eggs. In tropical regions with a rapid turn-over of generations, resistance alleles are likely to be counter-selected in only few generations without treatment through fitness costs expressed in terms of larval development time and female fecundity. We discuss the implications of our findings in terms of sustainable management strategies in light of the challenge of preserving the long-term efficiency of this environmentally safe anti-mosquito bio-insecticide.

  12. Production of Infectious Dengue Virus in Aedes aegypti Is Dependent on the Ubiquitin Proteasome Pathway

    PubMed Central

    Choy, Milly M.; Sessions, October M.; Gubler, Duane J.; Ooi, Eng Eong

    2015-01-01

    Dengue virus (DENV) relies on host factors to complete its life cycle in its mosquito host for subsequent transmission to humans. DENV first establishes infection in the midgut of Aedes aegypti and spreads to various mosquito organs for lifelong infection. Curiously, studies have shown that infectious DENV titers peak and decrease thereafter in the midgut despite relatively stable viral genome levels. However, the mechanisms that regulate this decoupling of infectious virion production from viral RNA replication have never been determined. We show here that the ubiquitin proteasome pathway (UPP) plays an important role in regulating infectious DENV production. Using RNA interference studies, we show in vivo that knockdown of selected UPP components reduced infectious virus production without altering viral RNA replication in the midgut. Furthermore, this decoupling effect could also be observed after RNAi knockdown in the head/thorax of the mosquito, which otherwise showed direct correlation between infectious DENV titer and viral RNA levels. The dependence on the UPP for successful DENV production is further reinforced by the observed up-regulation of key UPP molecules upon DENV infection that overcome the relatively low expression of these genes after a blood meal. Collectively, our findings indicate an important role for the UPP in regulating DENV production in the mosquito vector. PMID:26566123

  13. Mosquito Infestation and Dengue Virus Infection in Aedes aegypti Females in Schools in Mérida, México

    PubMed Central

    García-Rejón, Julián E.; Loroño-Pino, María Alba; Farfán-Ale, José Arturo; Flores-Flores, Luis F.; López-Uribe, Mildred P.; del Rosario Najera-Vazquez, Maria; Nuñez-Ayala, Guadalupe; Beaty, Barry J.; Eisen, Lars

    2011-01-01

    We determined abundance of Aedes aegypti mosquitoes and presence of dengue virus (DENV) in females collected from schools in Mérida, México, during 2008 and 2009. Backpack aspiration from 24 schools produced 468 females of Ae. aegypti and 1,676 females of another human biter, Culex quinquefasciatus. Ae. aegypti females were collected most commonly from classrooms followed by offices and bathrooms. Of these females, 24.7% were freshly fed. Examination of 118 pools of Ae. aegypti females (total of 415 females) for presence of DENV RNA produced 19 positive pools (16.1%). DENV-infected pools were detected from 11 (45.8%) of 24 schools and came from different room types, including classrooms, offices, and bathrooms. The overall rate of DENV infection per 100 Ae. aegypti females was 4.8. We conclude that schools in Mérida present a risk environment for students, teachers, and other personnel to be exposed to mosquitoes and bites of DENV-infected Ae. aegypti females. PMID:21363990

  14. Evaluation of Simultaneous Transmission of Chikungunya Virus and Dengue Virus Type 2 in Infected Aedes aegypti and Aedes albopictus (Diptera: Culicidae)

    PubMed Central

    Nuckols, J. T.; Huang, Y.-J. S.; Higgs, S.; Miller, A. L.; Pyles, R. B.; Spratt, H. m.; Horne, K. M.; Vanlandingham, D. L.

    2015-01-01

    The simultaneous transmission of chikungunya virus (CHIKV) and dengue viruses (DENV) has been a major public health concern because of their sympatric distribution and shared mosquito vectors. Groups of Aedes aegypti (L.) and Aedes albopictus (Skuse) were orally infected with 1.5 × 105 PFU/ml of CHIKV and 3.2 × 106 FFU/ml of DENV-2 simultaneously or separately in inverse orders and evaluated for dissemination and transmission by qRT-PCR. Simultaneous dissemination of both viruses was detected for all groups in Ae. aegypti and Ae. albopictus while cotransmission of CHIKV and DENV-2 only occurred at low rates after sequential but not simultaneous infection. PMID:26334820

  15. Evaluation of Simultaneous Transmission of Chikungunya Virus and Dengue Virus Type 2 in Infected Aedes aegypti and Aedes albopictus (Diptera: Culicidae).

    PubMed

    Nuckols, J T; Huang, Y-J S; Higgs, S; Miller, A L; Pyles, R B; Spratt, H M; Horne, K M; Vanlandingham, D L

    2015-05-01

    The simultaneous transmission of chikungunya virus (CHIKV) and dengue viruses (DENV) has been a major public health concern because of their sympatric distribution and shared mosquito vectors. Groups of Aedes aegypti (L.) and Aedes albopictus (Skuse) were orally infected with 1.5 × 10(5) PFU/ml of CHIKV and 3.2 × 10(6) FFU/ml of DENV-2 simultaneously or separately in inverse orders and evaluated for dissemination and transmission by qRT-PCR. Simultaneous dissemination of both viruses was detected for all groups in Ae. aegypti and Ae. albopictus while cotransmission of CHIKV and DENV-2 only occurred at low rates after sequential but not simultaneous infection.

  16. Risk Factors for the Presence of Chikungunya and Dengue Vectors (Aedes aegypti and Aedes albopictus), Their Altitudinal Distribution and Climatic Determinants of Their Abundance in Central Nepal

    PubMed Central

    Dhimal, Meghnath; Gautam, Ishan; Joshi, Hari Datt; O’Hara, Robert B.; Ahrens, Bodo; Kuch, Ulrich

    2015-01-01

    Background The presence of the recently introduced primary dengue virus vector mosquito Aedes aegypti in Nepal, in association with the likely indigenous secondary vector Aedes albopictus, raises public health concerns. Chikungunya fever cases have also been reported in Nepal, and the virus causing this disease is also transmitted by these mosquito species. Here we report the results of a study on the risk factors for the presence of chikungunya and dengue virus vectors, their elevational ceiling of distribution, and climatic determinants of their abundance in central Nepal. Methodology/Principal Findings We collected immature stages of mosquitoes during six monthly cross-sectional surveys covering six administrative districts along an altitudinal transect in central Nepal that extended from Birgunj (80 m above sea level [asl]) to Dhunche (highest altitude sampled: 2,100 m asl). The dengue vectors Ae. aegypti and Ae. albopictus were commonly found up to 1,350 m asl in Kathmandu valley and were present but rarely found from 1,750 to 2,100 m asl in Dhunche. The lymphatic filariasis vector Culex quinquefasciatus was commonly found throughout the study transect. Physiographic region, month of collection, collection station and container type were significant predictors of the occurrence and co-occurrence of Ae. aegypti and Ae. albopictus. The climatic variables rainfall, temperature, and relative humidity were significant predictors of chikungunya and dengue virus vectors abundance. Conclusions/Significance We conclude that chikungunya and dengue virus vectors have already established their populations up to the High Mountain region of Nepal and that this may be attributed to the environmental and climate change that has been observed over the decades in Nepal. The rapid expansion of the distribution of these important disease vectors in the High Mountain region, previously considered to be non-endemic for dengue and chikungunya fever, calls for urgent actions to

  17. Epidemiological significanceof subterranean Aedes aegypti (Diptera: Culicidae) breeding sites to dengue virus infection in Charters Towers, 1993.

    PubMed

    Russell, B M; Mcbride, W J J; Mullner, H; Kay, B H

    2002-01-01

    The objective of this study wasto determine the epidemiological significance of subterranean mosquito breeding sites to the 1993 outbreak of dengue fever (type 2) in the northern Queensland town of Charters Towers, Australia. In recent studies on subterranean mosquito breeding, containers such as wells and service manholes have been shown to be important breeding sites to Australia's only dengue vector, Aedes aegypti (L.). This study demonstrates a direct epidemiological association between subterranean breeding sites and dengue virus infection. The mean distance between residents seropositive for dengue 2 and the nearest subterranean container (113 m) was significantly less than for a randomly selected control (191 m), (F = 81.9; df = 1, 478; P < 0.001). Residents positive for dengue 2 antibodies was 2.47 (95% confidence interval 1.88-3.24) times higher for those living within 160 m of a well or service manhole, compared with those residing further away. These findings emphasize the importance of incluuding subterranean water containers in Ae. aegypti surveillance and control programs.

  18. Modeling the impact on virus transmission of Wolbachia-mediated blocking of dengue virus infection of Aedes aegypti

    PubMed Central

    Ferguson, Neil M.; Kien, Duong Thi Hue; Clapham, Hannah; Aguas, Ricardo; Trung, Vu Tuan; Chau, Tran Nguyen Bich; Popovici, Jean; Ryan, Peter A.; O’Neill, Scott L.; McGraw, Elizabeth A.; Long, Vo Thi; Dui, Le Thi; Nguyen, Hoa L; Van Vinh Chau, Nguyen; Wills, Bridget; Simmons, Cameron P.

    2015-01-01

    Dengue is the most common arboviral infection of humans and a public health burden in over 100 countries. Aedes aegypti mosquitoes stably infected with strains of the intracellular bacterium Wolbachia are resistant to dengue virus (DENV) infection and are being tested in field trials. To mimic field conditions, we experimentally assessed the vector competence of A. aegypti carrying the Wolbachia strains wMel and wMelPop after challenge with viremic blood from dengue patients. We found that wMelPop conferred strong resistance to DENV infection of mosquito abdomen tissue and largely prevented disseminated infection. wMel conferred less resistance to infection of mosquito abdomen tissue, but importantly did reduce the prevalence of mosquitoes with infectious saliva. A mathematical model of DENV transmission incorporating the dynamics of viral infection within humans and mosquitoes was fitted to the data collected. Model predictions suggested that wMel would reduce the basic reproduction number, R0, of DENV transmission by 66–75%. Our results suggest that establishment of wMelPop-infected A. aegypti at high frequency in a dengue endemic setting would result in complete abatement of DENV transmission. Establishment of wMel-infected A. aegypti is also predicted to have a substantial effect on transmission that would be sufficient to eliminate dengue in low or moderate transmission settings, but may be insufficient to achieve complete control in settings where R0 is high. These findings develop a framework for selecting Wolbachia strains for field releases and for calculating their likely impact. PMID:25787763

  19. Genetic structure and phylogeography of Aedes aegypti, the dengue and yellow-fever mosquito vector in Bolivia.

    PubMed

    Paupy, Christophe; Le Goff, Gilbert; Brengues, Cécile; Guerra, Mabel; Revollo, Jimmy; Barja Simon, Zaïra; Hervé, Jean-Pierre; Fontenille, Didier

    2012-08-01

    Between the 16th and 18th centuries, Aedes aegypti (Diptera: Culicidae), a mosquito native to Africa, invaded the Americas, where it was successively responsible for the emergence of yellow fever (YF) and dengue (DEN). The species was eradicated from numerous American countries in the mid-20th century, but re-invaded them in the 1970s and 1980s. Little is known about the precise identities of Ae. aegypti populations which successively thrived in South America, or their relation with the epidemiological changes in patterns of YF and DEN. We examined these questions in Bolivia, where Ae. aegypti, eradicated in 1943, re-appeared in the 1980s. We assessed the genetic variability and population genetics of Ae. aegypti samples in order to deduce their genetic structure and likely geographic origin. Using a 21-population set covering Bolivia, we analyzed the polymorphism at nine microsatellite loci and in two mitochondrial DNA regions (COI and ND4). Microsatellite markers revealed a significant genetic structure among geographic populations (F(ST)=0.0627, P<0.0001) in relation with the recent re-expansion of Ae. aegypti in Bolivia. Analysis of mtDNA sequences revealed the existence of two genetic lineages, one dominant lineage recovered throughout Bolivia, and the second restricted to rural localities in South Bolivia. Phylogenic analysis indicated that this minority lineage was related to West African Ae. aegypti specimens. In conclusion, our results suggested a temporal succession of Ae. aegypti populations in Bolivia, that potentially impacted the epidemiology of dengue and yellow fever.

  20. Ovicidal activity of Metarhizium brunneum (Mb F52) on dengue fever vector, Aedes aegypti

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ovicidal activity of Metarhizium brunneum F52 (Mb F52) grown from granules was evaluated against Aedes aegypti eggs over time. Survival of larvae from treated eggs was significantly less when compared with untreated eggs at 7, 10 and 14 days post treatment. Only 27 % of treated eggs produced vi...

  1. Replicate surveys of larval habitats of Aedes aegypti in relation to Dengue haemorrhagic fever in Bangkok, Thailand.

    PubMed

    Tonn, R J; Sheppard, P M; Macdonald, W W; Bang, Y H

    1969-01-01

    Dengue haemorrhagic fever in Bangkok and Thonburi occurs principally during the wet season. The mosquito vector is Aedes aegypti. A study was made of the larval habitats of A. aegypti in 14 localities, at three different times of the year, to determine whether there were fluctuations in the A. aegypti population, as measured by the number of occupied habitats, which could be correlated with the incidence of the infection.The habitats were classified into 6 categories and a single larva was collected for identification from each one that was occupied. The number and percentage of occupied habitats of each category per 100 houses were analysed to determine whether there were differences between localities and between times of the year. Almost all the comparisons between localities were highly significant. There was evidence of slight changes in the number of occupied habitats from time to time, the chief increase being between the cool and the warm seasons and the chief decrease from the wet to the cool season, but it seems unlikely that outbreaks of dengue haemorrhagic fever can be explained by increases in A. aegypti densities during the wet season.

  2. Detection of all four dengue serotypes in Aedes aegypti female mosquitoes collected in a rural area in Colombia

    PubMed Central

    Pérez-Castro, Rosalía; Castellanos, Jaime E; Olano, Víctor A; Matiz, María Inés; Jaramillo, Juan F; Vargas, Sandra L; Sarmiento, Diana M; Stenström, Thor Axel; Overgaard, Hans J

    2016-01-01

    The Aedes aegypti vector for dengue virus (DENV) has been reported in urban and periurban areas. The information about DENV circulation in mosquitoes in Colombian rural areas is limited, so we aimed to evaluate the presence of DENV in Ae. aegypti females caught in rural locations of two Colombian municipalities, Anapoima and La Mesa. Mosquitoes from 497 rural households in 44 different rural settlements were collected. Pools of about 20 Ae. aegypti females were processed for DENV serotype detection. DENV in mosquitoes was detected in 74% of the analysed settlements with a pool positivity rate of 62%. The estimated individual mosquito infection rate was 4.12% and the minimum infection rate was 33.3/1,000 mosquitoes. All four serotypes were detected; the most frequent being DENV-2 (50%) and DENV-1 (35%). Two-three serotypes were detected simultaneously in separate pools. This is the first report on the co-occurrence of natural DENV infection of mosquitoes in Colombian rural areas. The findings are important for understanding dengue transmission and planning control strategies. A potential latent virus reservoir in rural areas could spill over to urban areas during population movements. Detecting DENV in wild-caught adult mosquitoes should be included in the development of dengue epidemic forecasting models. PMID:27074252

  3. Detection of all four dengue serotypes in Aedes aegypti female mosquitoes collected in a rural area in Colombia.

    PubMed

    Pérez-Castro, Rosalía; Castellanos, Jaime E; Olano, Víctor A; Matiz, María Inés; Jaramillo, Juan F; Vargas, Sandra L; Sarmiento, Diana M; Stenström, Thor Axel; Overgaard, Hans J

    2016-04-01

    The Aedes aegypti vector for dengue virus (DENV) has been reported in urban and periurban areas. The information about DENV circulation in mosquitoes in Colombian rural areas is limited, so we aimed to evaluate the presence of DENV in Ae. aegypti females caught in rural locations of two Colombian municipalities, Anapoima and La Mesa. Mosquitoes from 497 rural households in 44 different rural settlements were collected. Pools of about 20 Ae. aegypti females were processed for DENV serotype detection. DENV in mosquitoes was detected in 74% of the analysed settlements with a pool positivity rate of 62%. The estimated individual mosquito infection rate was 4.12% and the minimum infection rate was 33.3/1,000 mosquitoes. All four serotypes were detected; the most frequent being DENV-2 (50%) and DENV-1 (35%). Two-three serotypes were detected simultaneously in separate pools. This is the first report on the co-occurrence of natural DENV infection of mosquitoes in Colombian rural areas. The findings are important for understanding dengue transmission and planning control strategies. A potential latent virus reservoir in rural areas could spill over to urban areas during population movements. Detecting DENV in wild-caught adult mosquitoes should be included in the development of dengue epidemic forecasting models.

  4. Insecticide-Driven Patterns of Genetic Variation in the Dengue Vector Aedes aegypti in Martinique Island

    PubMed Central

    Paupy, Christophe; Bringuier, Charline; Yebakima, André; Chandre, Fabrice; David, Jean-Philippe; Corbel, Vincent; Despres, Laurence

    2013-01-01

    Effective vector control is currently challenged worldwide by the evolution of resistance to all classes of chemical insecticides in mosquitoes. In Martinique, populations of the dengue vector Aedes aegypti have been intensively treated with temephos and deltamethrin insecticides over the last fifty years, resulting in heterogeneous levels of resistance across the island. Resistance spreading depends on standing genetic variation, selection intensity and gene flow among populations. To determine gene flow intensity, we first investigated neutral patterns of genetic variability in sixteen populations representative of the many environments found in Martinique and experiencing various levels of insecticide pressure, using 6 microsatellites. Allelic richness was lower in populations resistant to deltamethrin, and consanguinity was higher in populations resistant to temephos, consistent with a negative effect of insecticide pressure on neutral genetic diversity. The global genetic differentiation was low, suggesting high gene flow among populations, but significant structure was found, with a pattern of isolation-by-distance at the global scale. Then, we investigated adaptive patterns of divergence in six out of the 16 populations using 319 single nucleotide polymorphisms (SNPs). Five SNP outliers displaying levels of genetic differentiation out of neutral expectations were detected, including the kdr-V1016I mutation in the voltage-gated sodium channel gene. Association tests revealed a total of seven SNPs associated with deltamethrin resistance. Six other SNPs were associated with temephos resistance, including two non-synonymous substitutions in an alkaline phosphatase and in a sulfotransferase respectively. Altogether, both neutral and adaptive patterns of genetic variation in mosquito populations appear to be largely driven by insecticide pressure in Martinique. PMID:24204999

  5. A Sequence of Flushing and Drying of Breeding Habitats of Aedes aegypti (L.) Prior to the Low Dengue Season in Singapore

    PubMed Central

    Seidahmed, Osama M. E.; Eltahir, Elfatih A. B.

    2016-01-01

    In dengue-endemic areas, transmission shows both a seasonal and interannual variability. To investigate how rainfall impacts dengue seasonality in Singapore, we carried out a longitudinal survey in the Geylang neighborhood from August 2014 to August 2015. The survey comprised of twice-weekly random inspections to outdoor breeding habitats and continuous monitoring for positive ones. In addition, observations of rainstorms were collected. Out of 6824 inspected habitats, 67 contained Aedes aegypti, 11 contained Aedes albopictus and 24 contained Culex spp. The main outdoors habitat of Aedes aegypti was storm drains (54/67). We found that 80% of breeding sites in drains (43/54) were lost after intense rainstorms related to the wet phase of the Northeast monsoon (NE) between November 2014 and early January 2015. Subsequently, 95% (41/43) of these flushed drains had dried out during the dry phase of the NE in late January-February 2015. A return in the outdoor breeding of Aedes aegypti was observed after the onset of Southwest monsoon (SW) between May and August 2015. There was also a reduction in productivity of breeding habitats for larvae and pupae after the onset of the NE. In wet equatorial regions like Singapore, rainfall varies with the monsoons. A monsoon-driven sequence of flushing and drying shapes the outdoor seasonal abundance of Aedes aegypti. This finding can be used to optimize vector control strategies and better understand dengue in the context of climate change. PMID:27459322

  6. A Sequence of Flushing and Drying of Breeding Habitats of Aedes aegypti (L.) Prior to the Low Dengue Season in Singapore.

    PubMed

    Seidahmed, Osama M E; Eltahir, Elfatih A B

    2016-07-01

    In dengue-endemic areas, transmission shows both a seasonal and interannual variability. To investigate how rainfall impacts dengue seasonality in Singapore, we carried out a longitudinal survey in the Geylang neighborhood from August 2014 to August 2015. The survey comprised of twice-weekly random inspections to outdoor breeding habitats and continuous monitoring for positive ones. In addition, observations of rainstorms were collected. Out of 6824 inspected habitats, 67 contained Aedes aegypti, 11 contained Aedes albopictus and 24 contained Culex spp. The main outdoors habitat of Aedes aegypti was storm drains (54/67). We found that 80% of breeding sites in drains (43/54) were lost after intense rainstorms related to the wet phase of the Northeast monsoon (NE) between November 2014 and early January 2015. Subsequently, 95% (41/43) of these flushed drains had dried out during the dry phase of the NE in late January-February 2015. A return in the outdoor breeding of Aedes aegypti was observed after the onset of Southwest monsoon (SW) between May and August 2015. There was also a reduction in productivity of breeding habitats for larvae and pupae after the onset of the NE. In wet equatorial regions like Singapore, rainfall varies with the monsoons. A monsoon-driven sequence of flushing and drying shapes the outdoor seasonal abundance of Aedes aegypti. This finding can be used to optimize vector control strategies and better understand dengue in the context of climate change.

  7. A Sequence of Flushing and Drying of Breeding Habitats of Aedes aegypti (L.) Prior to the Low Dengue Season in Singapore.

    PubMed

    Seidahmed, Osama M E; Eltahir, Elfatih A B

    2016-07-01

    In dengue-endemic areas, transmission shows both a seasonal and interannual variability. To investigate how rainfall impacts dengue seasonality in Singapore, we carried out a longitudinal survey in the Geylang neighborhood from August 2014 to August 2015. The survey comprised of twice-weekly random inspections to outdoor breeding habitats and continuous monitoring for positive ones. In addition, observations of rainstorms were collected. Out of 6824 inspected habitats, 67 contained Aedes aegypti, 11 contained Aedes albopictus and 24 contained Culex spp. The main outdoors habitat of Aedes aegypti was storm drains (54/67). We found that 80% of breeding sites in drains (43/54) were lost after intense rainstorms related to the wet phase of the Northeast monsoon (NE) between November 2014 and early January 2015. Subsequently, 95% (41/43) of these flushed drains had dried out during the dry phase of the NE in late January-February 2015. A return in the outdoor breeding of Aedes aegypti was observed after the onset of Southwest monsoon (SW) between May and August 2015. There was also a reduction in productivity of breeding habitats for larvae and pupae after the onset of the NE. In wet equatorial regions like Singapore, rainfall varies with the monsoons. A monsoon-driven sequence of flushing and drying shapes the outdoor seasonal abundance of Aedes aegypti. This finding can be used to optimize vector control strategies and better understand dengue in the context of climate change. PMID:27459322

  8. Human Antibody Response to Aedes aegypti Saliva in an Urban Population in Bolivia: A New Biomarker of Exposure to Dengue Vector Bites

    PubMed Central

    Doucoure, Souleymane; Mouchet, François; Cournil, Amandine; Le Goff, Gilbert; Cornelie, Sylvie; Roca, Yelin; Giraldez, Mabel Guerra; Simon, Zaira Barja; Loayza, Roxanna; Misse, Dorothée; Flores, Jorge Vargas; Walter, Annie; Rogier, Christophe; Herve, Jean Pierre; Remoue, Franck

    2012-01-01

    Aedes mosquitoes are important vectors of re-emerging diseases in developing countries, and increasing exposure to Aedes in the developed world is currently a source of concern. Given the limitations of current entomologic methods, there is a need for a new effective way for evaluating Aedes exposure. Our objective was to evaluate specific antibody responses to Aedes aegypti saliva as a biomarker for vector exposure in a dengue-endemic urban area. IgG responses to saliva were strong in young children and steadily waned with age. Specific IgG levels were significantly higher in persons living in sites with higher Ae. aegypti density, as measured by using entomologic parameters. Logistic regression showed a significant correlation between IgG to saliva and exposure level, independently of either age or sex. These results suggest that antibody responses to saliva could be used to monitor human exposure to Aedes bites. PMID:22848099

  9. Human antibody response to Aedes aegypti saliva in an urban population in Bolivia: a new biomarker of exposure to Dengue vector bites.

    PubMed

    Doucoure, Souleymane; Mouchet, François; Cournil, Amandine; Le Goff, Gilbert; Cornelie, Sylvie; Roca, Yelin; Giraldez, Mabel Guerra; Simon, Zaira Barja; Loayza, Roxanna; Misse, Dorothée; Flores, Jorge Vargas; Walter, Annie; Rogier, Christophe; Herve, Jean Pierre; Remoue, Franck

    2012-09-01

    Aedes mosquitoes are important vectors of re-emerging diseases in developing countries, and increasing exposure to Aedes in the developed world is currently a source of concern. Given the limitations of current entomologic methods, there is a need for a new effective way for evaluating Aedes exposure. Our objective was to evaluate specific antibody responses to Aedes aegypti saliva as a biomarker for vector exposure in a dengue-endemic urban area. IgG responses to saliva were strong in young children and steadily waned with age. Specific IgG levels were significantly higher in persons living in sites with higher Ae. aegypti density, as measured by using entomologic parameters. Logistic regression showed a significant correlation between IgG to saliva and exposure level, independently of either age or sex. These results suggest that antibody responses to saliva could be used to monitor human exposure to Aedes bites.

  10. River Boats Contribute to the Regional Spread of the Dengue Vector Aedes aegypti in the Peruvian Amazon

    PubMed Central

    Guagliardo, Sarah Anne; Morrison, Amy C.; Barboza, Jose Luis; Requena, Edwin; Astete, Helvio; Vazquez-Prokopec, Gonzalo; Kitron, Uriel

    2015-01-01

    Background and Objectives The dramatic range expansion of the dengue vector Aedes aegypti is associated with various anthropogenic transport activities, but little is known about the underlying mechanisms driving this geographic expansion. We longitudinally characterized infestation of different vehicle types (cars, boats, etc.) to estimate the frequency and intensity of mosquito introductions into novel locations (propagule pressure). Methods Exhaustive adult and immature Ae. aegypti collections were performed on six different vehicle types at five ports and two bus/ taxi departure points in the Amazonian city of Iquitos, Peru during 2013. Aquatic vehicles included 32 large and 33 medium-sized barges, 53 water taxis, and 41 speed boats. Terrestrial vehicles sampled included 40 buses and 30 taxis traveling on the only highway in the region. Ae. aegypti adult infestation rates and immature indices were analyzed by vehicle type, location within vehicles, and sampling date. Results Large barges (71.9% infested) and medium barges (39.4% infested) accounted for most of the infestations. Notably, buses had an overall infestation rate of 12.5%. On large barges, the greatest number of Ae. aegypti adults were found in October, whereas most immatures were found in February followed by October. The vast majority of larvae (85.9%) and pupae (76.7%) collected in large barges were produced in puddles formed in cargo holds. Conclusions Because larges barges provide suitable mosquito habitats (due to dark, damp cargo storage spaces and ample oviposition sites), we conclude that they likely serve as significant contributors to mosquitoes’ propagule pressure across long distances throughout the Peruvian Amazon. This information can help anticipate vector population mixing and future range expansions of dengue and other viruses transmitted by Ae. aegypti. PMID:25860352

  11. Host and viral features of human dengue cases shape the population of infected and infectious Aedes aegypti mosquitoes

    PubMed Central

    Nguyen, Nguyet Minh; Thi Hue Kien, Duong; Tuan, Trung Vu; Quyen, Nguyen Than Ha; Tran, Chau N. B.; Vo Thi, Long; Thi, Dui Le; Nguyen, Hoa Lan; Farrar, Jeremy J.; Holmes, Edward C.; Rabaa, Maia A.; Bryant, Juliet E.; Nguyen, Truong Thanh; Nguyen, Huong Thi Cam; Nguyen, Lan Thi Hong; Pham, Mai Phuong; Nguyen, Hung The; Luong, Tai Thi Hue; Wills, Bridget; Nguyen, Chau Van Vinh; Wolbers, Marcel; Simmons, Cameron P.

    2013-01-01

    Dengue is the most prevalent arboviral disease of humans. The host and virus variables associated with dengue virus (DENV) transmission from symptomatic dengue cases (n = 208) to Aedes aegypti mosquitoes during 407 independent exposure events was defined. The 50% mosquito infectious dose for each of DENV-1–4 ranged from 6.29 to 7.52 log10 RNA copies/mL of plasma. Increasing day of illness, declining viremia, and rising antibody titers were independently associated with reduced risk of DENV transmission. High early DENV plasma viremia levels in patients were a marker of the duration of human infectiousness, and blood meals containing high concentrations of DENV were positively associated with the prevalence of infectious mosquitoes 14 d after blood feeding. Ambulatory dengue cases had lower viremia levels compared with hospitalized dengue cases but nonetheless at levels predicted to be infectious to mosquitoes. These data define serotype-specific viremia levels that vaccines or drugs must inhibit to prevent DENV transmission. PMID:23674683

  12. Effect of confertifolin from Polygonum hydropiper L. against dengue vector mosquitoes Aedes aegypti L.

    PubMed

    Maheswaran, Rajan; Ignacimuthu, Savarimuthu

    2015-06-01

    The essential oil from the leaves of Polygonum hydropiper L. (Polygonaceae) was tested against Aedes aegypti L. The LC50 values were 190.72 and 234.37 ppm against second and fourth instar larvae of A. aegypti, respectively. Confertifolin (6,6,9a-trimethy l-4,5,5a,6,7,8,9,9a-octahydronaphtho [1,2-c] furan-3 (1H)-one) was isolated from the essential oil of P. hydropiper leaves using silica gel column chromatography. The LC50 values were 2.90 and 2.96 ppm for second and fourth instar larvae of A. aegypti, respectively. At 10 ppm, the concentration of confertifolin showed ovicidal activity of 100, 100, and 77.6 % on 0-6, 6-12, and 12-18 h old eggs; the repellent activity was 323.2 min; and oviposition deterrent activity was 97.52 % and adulticidal activity was 100 % against A. aegypti. The results were statistically significant at P < 0.05 level. The results suggested that confertifolin as an effective major constituent against A. aegypti and might be considered as a potent source for the production of superior natural mosquitocides. PMID:25523289

  13. Effect of confertifolin from Polygonum hydropiper L. against dengue vector mosquitoes Aedes aegypti L.

    PubMed

    Maheswaran, Rajan; Ignacimuthu, Savarimuthu

    2015-06-01

    The essential oil from the leaves of Polygonum hydropiper L. (Polygonaceae) was tested against Aedes aegypti L. The LC50 values were 190.72 and 234.37 ppm against second and fourth instar larvae of A. aegypti, respectively. Confertifolin (6,6,9a-trimethy l-4,5,5a,6,7,8,9,9a-octahydronaphtho [1,2-c] furan-3 (1H)-one) was isolated from the essential oil of P. hydropiper leaves using silica gel column chromatography. The LC50 values were 2.90 and 2.96 ppm for second and fourth instar larvae of A. aegypti, respectively. At 10 ppm, the concentration of confertifolin showed ovicidal activity of 100, 100, and 77.6 % on 0-6, 6-12, and 12-18 h old eggs; the repellent activity was 323.2 min; and oviposition deterrent activity was 97.52 % and adulticidal activity was 100 % against A. aegypti. The results were statistically significant at P < 0.05 level. The results suggested that confertifolin as an effective major constituent against A. aegypti and might be considered as a potent source for the production of superior natural mosquitocides.

  14. Vector competence of Aedes albopictus and Aedes aegypti (Diptera: Culicidae) for DEN2-43 and New Guinea C virus strains of dengue 2 virus.

    PubMed

    Guo, Xiao-Xia; Zhu, Xiao-Juan; Li, Chun-Xiao; Dong, Yan-De; Zhang, Ying-Mei; Xing, Dan; Xue, Rui-De; Qin, Cheng-Feng; Zhao, Tong-Yan

    2013-12-01

    The vector competence of Aedes albopictus and Aedes aegypti with regard to DEN2-43 and New Guinea C (NGC) virus strains of Dengue 2 viruses was assessed and compared. The infection and dissemination rate and distribution of DEN2-43 antigens in orally infected Ae. albopictus was investigated using the reverse transcription polymerase chain reaction and an indirect immunofluorescence assay. To better understand the initial infection, dissemination and transmission of these viral strains in vector mosquitoes, Ae. albopoictus and Ae. aegypti were fed an artificial blood meal containing either the DEN2-43 or NGC strain. There was no significant difference in the infection and dissemination rates of DEN2-43 and NGC virus strains in Ae. albopictus, however, Ae. aegypti was more susceptible to infection by NGC than DEN2-43 vrius strain. Ae. albopictus mosquitoes infected with the NGC strain developed a higher percentage of midgut infections than those infected with the DEN2-43 strain (t=2.893, df=7, P=0.024). Approximately 26.7% of midgut samples were positive for the NGC antigen 5 days after infection, and 80% of mosquitoes had infected midgets after 15 days. The NGC antigen first became evident in mosquito salivary glands on Day 5, and 40% of mosquitoes had infected salivary by Day 9. In contrast, the DEN2-43 antigen first became evident in salivary glands on Day 7. The infection rate of NGC and DEN2-43 virus strains in salivary glands were similar. These results indicate that Ae. albopictus and Ae. aegypti are moderately competent vectors for the DEN2-43 virus, which could provide basic data for the epidemiology study of dengue fever in China.

  15. Vector competence of Aedes albopictus and Aedes aegypti (Diptera: Culicidae) for the DEN2-FJ10 and DEN2-FJ11 strains of the dengue 2 virus in Fujian, China.

    PubMed

    Guo, Xiao-Xia; Li, Chun-Xiao; Zhang, Ying-Mei; Xing, Dan; Dong, Yan-De; Zhang, Heng-Duan; Qin, Cheng-Feng; Zhao, Tong-Yan

    2016-09-01

    Dengue is an acute, emerging, infectious disease transmitted by Aedes mosquitoes that has become a serious global public health problem. The DEN2-FJ10 and DEN2-FJ11 strains of the dengue 2 virus were originally isolated from the serum of a patient with dengue fever in Fujian Province, China, in 1999. Our data provide the first assessment of the vector competence of Aedes mosquitoes with respect to the DEN2-FJ10 and DEN2-FJ11 strains of the dengue virus. There were significant differences in the replication rates of these two viral strains in Aedes albopictus and Aedes aegypti (P<0.05); replication of the DEN2-FJ10 strain was greater in Ae. aegypti than in Ae. albopictus 5 days post infection whereas replication of the DEN2-FJ11 was greater in Ae. albopictus than in Ae. aegypti 7 days post infection. The replicative ability of the DEN2-FJ11 strain was greater than that of the DEN2-FJ10 strain in infected Ae. albopictus. In infected Ae. aegypti, rapid proliferation of the DEN2-FJ10 strain occurred earlier than in the DEN2-FJ11 strain. There were no significant differences in the midgut and salivary gland infection rates of Ae. albopictus and Ae. aegypti with respect to either viral strain. Although the DEN2-FJ10 and DEN2-FJ11 strains differ in their virulence to neonatal rats, there was no significant difference in the ability of either Ae. albopictus or Ae. aegypti to transmit the DEN2-FJ10 and DEN2-FJ10 strains of the dengue 2 virus (P>0.05). In summary, our results indicate that Ae. albopictus and Ae. aegypti mosquitoes are moderately competent vectors of the DEN2-FJ10 and DEN2-FJ11 strains of the dengue virus and provide the first evidence of the effect of these two viral strains on the vector competence of mosquitoes in China.

  16. Vector competence of Aedes albopictus and Aedes aegypti (Diptera: Culicidae) for the DEN2-FJ10 and DEN2-FJ11 strains of the dengue 2 virus in Fujian, China.

    PubMed

    Guo, Xiao-Xia; Li, Chun-Xiao; Zhang, Ying-Mei; Xing, Dan; Dong, Yan-De; Zhang, Heng-Duan; Qin, Cheng-Feng; Zhao, Tong-Yan

    2016-09-01

    Dengue is an acute, emerging, infectious disease transmitted by Aedes mosquitoes that has become a serious global public health problem. The DEN2-FJ10 and DEN2-FJ11 strains of the dengue 2 virus were originally isolated from the serum of a patient with dengue fever in Fujian Province, China, in 1999. Our data provide the first assessment of the vector competence of Aedes mosquitoes with respect to the DEN2-FJ10 and DEN2-FJ11 strains of the dengue virus. There were significant differences in the replication rates of these two viral strains in Aedes albopictus and Aedes aegypti (P<0.05); replication of the DEN2-FJ10 strain was greater in Ae. aegypti than in Ae. albopictus 5 days post infection whereas replication of the DEN2-FJ11 was greater in Ae. albopictus than in Ae. aegypti 7 days post infection. The replicative ability of the DEN2-FJ11 strain was greater than that of the DEN2-FJ10 strain in infected Ae. albopictus. In infected Ae. aegypti, rapid proliferation of the DEN2-FJ10 strain occurred earlier than in the DEN2-FJ11 strain. There were no significant differences in the midgut and salivary gland infection rates of Ae. albopictus and Ae. aegypti with respect to either viral strain. Although the DEN2-FJ10 and DEN2-FJ11 strains differ in their virulence to neonatal rats, there was no significant difference in the ability of either Ae. albopictus or Ae. aegypti to transmit the DEN2-FJ10 and DEN2-FJ10 strains of the dengue 2 virus (P>0.05). In summary, our results indicate that Ae. albopictus and Ae. aegypti mosquitoes are moderately competent vectors of the DEN2-FJ10 and DEN2-FJ11 strains of the dengue virus and provide the first evidence of the effect of these two viral strains on the vector competence of mosquitoes in China. PMID:27260668

  17. Identification of Aedes aegypti Long Intergenic Non-coding RNAs and Their Association with Wolbachia and Dengue Virus Infection

    PubMed Central

    Etebari, Kayvan; Asad, Sultan; Zhang, Guangmei; Asgari, Sassan

    2016-01-01

    Long intergenic non-coding RNAs (lincRNAs) are appearing as an important class of regulatory RNAs with a variety of biological functions. The aim of this study was to identify the lincRNA profile in the dengue vector Aedes aegypti and evaluate their potential role in host-pathogen interaction. The majority of previous RNA-Seq transcriptome studies in Ae. aegypti have focused on the expression pattern of annotated protein coding genes under different biological conditions. Here, we used 35 publically available RNA-Seq datasets with relatively high depth to screen the Ae. aegypti genome for lincRNA discovery. This led to the identification of 3,482 putative lincRNAs. These lincRNA genes displayed a slightly lower GC content and shorter transcript lengths compared to protein-encoding genes. Ae. aegypti lincRNAs also demonstrate low evolutionary sequence conservation even among closely related species such as Culex quinquefasciatus and Anopheles gambiae. We examined their expression in dengue virus serotype 2 (DENV-2) and Wolbachia infected and non-infected adult mosquitoes and Aa20 cells. The results revealed that DENV-2 infection increased the abundance of a number of host lincRNAs, from which some suppress viral replication in mosquito cells. RNAi-mediated silencing of lincRNA_1317 led to enhancement in viral replication, which possibly indicates its potential involvement in the host anti-viral defense. A number of lincRNAs were also differentially expressed in Wolbachia-infected mosquitoes. The results will facilitate future studies to unravel the function of lncRNAs in insects and may prove to be beneficial in developing new ways to control vectors or inhibit replication of viruses in them. PMID:27760142

  18. Larvicidal and irritant activities of hexane leaf extracts of Citrus sinensis against dengue vector Aedes aegypti L.

    PubMed Central

    Warikoo, Radhika; Ray, Ankita; Sandhu, Jasdeep Kaur; Samal, Roopa; Wahab, Naim; Kumar, Sarita

    2012-01-01

    Objective To assess the larvicidal and irritant activities of the hexane extracts of leaves of Citrus sinensis (C. sinensis) against the early fourth instars and female adults of Aedes aegypti (Ae. aegypti). Methods The larvicidal potential of the prepared leaf extract was evaluated against early fourth instar larvae of Ae. aegypti using WHO protocol. The mortality counts were made after 24 h and LC50 and LC90 values were calculated. The efficacy of extract as mosquito irritant was assessed by contact irritancy assays. Extract-impregnated paper was placed on a glass plate over which a perspex funnel with a hole on the top was kept inverted. Single female adult, 3-day old unfed/blood-fed, was released inside the funnel. After 3 min of acclimatization time, the time taken for the first take-off and total number of flights undertaken during 15 min were scored. Results The citrus leaf extracts from hexane possessed moderate larvicidal efficiency against dengue vector. The bioassays resulted in an LC50 and LC90 value of 446.84 and 1 370.96 ppm, respectively after 24 h of exposure. However, the extracts were proved to be remarkable irritant against adults Ae. aegypti, more pronounced effects being observed on blood-fed females than unfed females. The extract-impregnated paper was thus proved to be 7–11 times more irritable as compared with the control paper. Conclusions The hexane extracts from C. sinensis leaves are proved to be reasonably larvicidal but remarkably irritant against dengue vector. Further studies are needed to identify the possible role of extract as adulticide, oviposition deterrent and ovicidal agent. The isolation of active ingredient from the extract could help in formulating strategies for mosquito control. PMID:23569887

  19. Weather Variability Associated with Aedes (Stegomyia) aegypti (Dengue Vector) Oviposition Dynamics in Northwestern Argentina.

    PubMed

    Estallo, Elizabet L; Ludueña-Almeida, Francisco F; Introini, María V; Zaidenberg, Mario; Almirón, Walter R

    2015-01-01

    This study aims to develop a forecasting model by assessing the weather variability associated with seasonal fluctuation of Aedes aegypti oviposition dynamic at a city level in Orán, in northwestern Argentina. Oviposition dynamics were assessed by weekly monitoring of 90 ovitraps in the urban area during 2005-2007. Correlations were performed between the number of eggs collected weekly and weather variables (rainfall, photoperiod, vapor pressure of water, temperature, and relative humidity) with and without time lags (1 to 6 weeks). A stepwise multiple linear regression analysis was performed with the set of meteorological variables from the first year of study with the variables in the time lags that best correlated with the oviposition. Model validation was conducted using the data from the second year of study (October 2006- 2007). Minimum temperature and rainfall were the most important variables. No eggs were found at temperatures below 10 °C. The most significant time lags were 3 weeks for minimum temperature and rains, 3 weeks for water vapor pressure, and 6 weeks for maximum temperature. Aedes aegypti could be expected in Orán three weeks after rains with adequate min temperatures. The best-fit forecasting model for the combined meteorological variables explained 70 % of the variance (adj. R(2)). The correlation between Ae. aegypti oviposition observed and estimated by the forecasting model resulted in rs = 0.80 (P < 0.05). The forecasting model developed would allow prediction of increases and decreases in the Ae. aegypti oviposition activity based on meteorological data for Orán city and, according to the meteorological variables, vector activity can be predicted three or four weeks in advance.

  20. Weather Variability Associated with Aedes (Stegomyia) aegypti (Dengue Vector) Oviposition Dynamics in Northwestern Argentina.

    PubMed

    Estallo, Elizabet L; Ludueña-Almeida, Francisco F; Introini, María V; Zaidenberg, Mario; Almirón, Walter R

    2015-01-01

    This study aims to develop a forecasting model by assessing the weather variability associated with seasonal fluctuation of Aedes aegypti oviposition dynamic at a city level in Orán, in northwestern Argentina. Oviposition dynamics were assessed by weekly monitoring of 90 ovitraps in the urban area during 2005-2007. Correlations were performed between the number of eggs collected weekly and weather variables (rainfall, photoperiod, vapor pressure of water, temperature, and relative humidity) with and without time lags (1 to 6 weeks). A stepwise multiple linear regression analysis was performed with the set of meteorological variables from the first year of study with the variables in the time lags that best correlated with the oviposition. Model validation was conducted using the data from the second year of study (October 2006- 2007). Minimum temperature and rainfall were the most important variables. No eggs were found at temperatures below 10 °C. The most significant time lags were 3 weeks for minimum temperature and rains, 3 weeks for water vapor pressure, and 6 weeks for maximum temperature. Aedes aegypti could be expected in Orán three weeks after rains with adequate min temperatures. The best-fit forecasting model for the combined meteorological variables explained 70 % of the variance (adj. R(2)). The correlation between Ae. aegypti oviposition observed and estimated by the forecasting model resulted in rs = 0.80 (P < 0.05). The forecasting model developed would allow prediction of increases and decreases in the Ae. aegypti oviposition activity based on meteorological data for Orán city and, according to the meteorological variables, vector activity can be predicted three or four weeks in advance. PMID:25993415

  1. Weather Variability Associated with Aedes (Stegomyia) aegypti (Dengue Vector) Oviposition Dynamics in Northwestern Argentina

    PubMed Central

    Estallo, Elizabet L.; Ludueña-Almeida, Francisco F.; Introini, María V.; Zaidenberg, Mario; Almirón, Walter R.

    2015-01-01

    This study aims to develop a forecasting model by assessing the weather variability associated with seasonal fluctuation of Aedes aegypti oviposition dynamic at a city level in Orán, in northwestern Argentina. Oviposition dynamics were assessed by weekly monitoring of 90 ovitraps in the urban area during 2005-2007. Correlations were performed between the number of eggs collected weekly and weather variables (rainfall, photoperiod, vapor pressure of water, temperature, and relative humidity) with and without time lags (1 to 6 weeks). A stepwise multiple linear regression analysis was performed with the set of meteorological variables from the first year of study with the variables in the time lags that best correlated with the oviposition. Model validation was conducted using the data from the second year of study (October 2006- 2007). Minimum temperature and rainfall were the most important variables. No eggs were found at temperatures below 10°C. The most significant time lags were 3 weeks for minimum temperature and rains, 3 weeks for water vapor pressure, and 6 weeks for maximum temperature. Aedes aegypti could be expected in Orán three weeks after rains with adequate min temperatures. The best-fit forecasting model for the combined meteorological variables explained 70 % of the variance (adj. R2). The correlation between Ae. aegypti oviposition observed and estimated by the forecasting model resulted in rs = 0.80 (P < 0.05). The forecasting model developed would allow prediction of increases and decreases in the Ae. aegypti oviposition activity based on meteorological data for Orán city and, according to the meteorological variables, vector activity can be predicted three or four weeks in advance. PMID:25993415

  2. siRNA-Mediated Silencing of doublesex during Female Development of the Dengue Vector Mosquito Aedes aegypti

    PubMed Central

    Mysore, Keshava; Sun, Longhua; Tomchaney, Michael; Sullivan, Gwyneth; Adams, Haley; Piscoya, Andres S.; Severson, David W.; Syed, Zainulabeuddin; Duman-Scheel, Molly

    2015-01-01

    The development of sex-specific traits, including the female-specific ability to bite humans and vector disease, is critical for vector mosquito reproduction and pathogen transmission. Doublesex (Dsx), a terminal transcription factor in the sex determination pathway, is known to regulate sex-specific gene expression during development of the dengue fever vector mosquito Aedes aegypti. Here, the effects of developmental siRNA-mediated dsx silencing were assessed in adult females. Targeting of dsx during A. aegypti development resulted in decreased female wing size, a correlate for body size, which is typically larger in females. siRNA-mediated targeting of dsx also resulted in decreased length of the adult female proboscis. Although dsx silencing did not impact female membrane blood feeding or mating behavior in the laboratory, decreased fecundity and fertility correlated with decreased ovary length, ovariole length, and ovariole number in dsx knockdown females. Dsx silencing also resulted in disruption of olfactory system development, as evidenced by reduced length of the female antenna and maxillary palp and the sensilla present on these structures, as well as disrupted odorant receptor expression. Female lifespan, a critical component of the ability of A. aegypti to transmit pathogens, was also significantly reduced in adult females following developmental targeting of dsx. The results of this investigation demonstrate that silencing of dsx during A. aegypti development disrupts multiple sex-specific morphological, physiological, and behavioral traits of adult females, a number of which are directly or indirectly linked to mosquito reproduction and pathogen transmission. Moreover, the olfactory phenotypes observed connect Dsx to development of the olfactory system, suggesting that A. aegypti will be an excellent system in which to further assess the developmental genetics of sex-specific chemosensation. PMID:26544686

  3. siRNA-Mediated Silencing of doublesex during Female Development of the Dengue Vector Mosquito Aedes aegypti.

    PubMed

    Mysore, Keshava; Sun, Longhua; Tomchaney, Michael; Sullivan, Gwyneth; Adams, Haley; Piscoya, Andres S; Severson, David W; Syed, Zainulabeuddin; Duman-Scheel, Molly

    2015-11-01

    The development of sex-specific traits, including the female-specific ability to bite humans and vector disease, is critical for vector mosquito reproduction and pathogen transmission. Doublesex (Dsx), a terminal transcription factor in the sex determination pathway, is known to regulate sex-specific gene expression during development of the dengue fever vector mosquito Aedes aegypti. Here, the effects of developmental siRNA-mediated dsx silencing were assessed in adult females. Targeting of dsx during A. aegypti development resulted in decreased female wing size, a correlate for body size, which is typically larger in females. siRNA-mediated targeting of dsx also resulted in decreased length of the adult female proboscis. Although dsx silencing did not impact female membrane blood feeding or mating behavior in the laboratory, decreased fecundity and fertility correlated with decreased ovary length, ovariole length, and ovariole number in dsx knockdown females. Dsx silencing also resulted in disruption of olfactory system development, as evidenced by reduced length of the female antenna and maxillary palp and the sensilla present on these structures, as well as disrupted odorant receptor expression. Female lifespan, a critical component of the ability of A. aegypti to transmit pathogens, was also significantly reduced in adult females following developmental targeting of dsx. The results of this investigation demonstrate that silencing of dsx during A. aegypti development disrupts multiple sex-specific morphological, physiological, and behavioral traits of adult females, a number of which are directly or indirectly linked to mosquito reproduction and pathogen transmission. Moreover, the olfactory phenotypes observed connect Dsx to development of the olfactory system, suggesting that A. aegypti will be an excellent system in which to further assess the developmental genetics of sex-specific chemosensation. PMID:26544686

  4. siRNA-Mediated Silencing of doublesex during Female Development of the Dengue Vector Mosquito Aedes aegypti.

    PubMed

    Mysore, Keshava; Sun, Longhua; Tomchaney, Michael; Sullivan, Gwyneth; Adams, Haley; Piscoya, Andres S; Severson, David W; Syed, Zainulabeuddin; Duman-Scheel, Molly

    2015-11-01

    The development of sex-specific traits, including the female-specific ability to bite humans and vector disease, is critical for vector mosquito reproduction and pathogen transmission. Doublesex (Dsx), a terminal transcription factor in the sex determination pathway, is known to regulate sex-specific gene expression during development of the dengue fever vector mosquito Aedes aegypti. Here, the effects of developmental siRNA-mediated dsx silencing were assessed in adult females. Targeting of dsx during A. aegypti development resulted in decreased female wing size, a correlate for body size, which is typically larger in females. siRNA-mediated targeting of dsx also resulted in decreased length of the adult female proboscis. Although dsx silencing did not impact female membrane blood feeding or mating behavior in the laboratory, decreased fecundity and fertility correlated with decreased ovary length, ovariole length, and ovariole number in dsx knockdown females. Dsx silencing also resulted in disruption of olfactory system development, as evidenced by reduced length of the female antenna and maxillary palp and the sensilla present on these structures, as well as disrupted odorant receptor expression. Female lifespan, a critical component of the ability of A. aegypti to transmit pathogens, was also significantly reduced in adult females following developmental targeting of dsx. The results of this investigation demonstrate that silencing of dsx during A. aegypti development disrupts multiple sex-specific morphological, physiological, and behavioral traits of adult females, a number of which are directly or indirectly linked to mosquito reproduction and pathogen transmission. Moreover, the olfactory phenotypes observed connect Dsx to development of the olfactory system, suggesting that A. aegypti will be an excellent system in which to further assess the developmental genetics of sex-specific chemosensation.

  5. Human impacts have shaped historical and recent evolution in Aedes aegypti, the dengue and yellow fever mosquito.

    PubMed

    Brown, Julia E; Evans, Benjamin R; Zheng, Wei; Obas, Vanessa; Barrera-Martinez, Laura; Egizi, Andrea; Zhao, Hongyu; Caccone, Adalgisa; Powell, Jeffrey R

    2014-02-01

    Although anthropogenic impacts are often considered harmful to species, human modifications to the landscape can actually create novel niches to which other species can adapt. These "domestication" processes are especially important in the context of arthropod disease vectors, where ecological overlap of vector and human populations may lead to epidemics. Here, we present results of a global genetic study of one such species, the dengue and yellow fever mosquito, Aedes aegypti, whose evolutionary history and current distribution have been profoundly shaped by humans. We used DNA sequences of four nuclear genes and 1504 single nucleotide polymorphism (SNP) markers developed with restriction-site associated DNA (RAD) sequencing to test the hypothesis that Ae. aegypti originated in Africa, where a domestic form arose and spread throughout the tropical and subtropical world with human trade and movement. Results confirmed African ancestry of the species, and supported a single subspeciation event leading to the pantropical domestic form. In addition, genetic data strongly supported the hypothesis that human trade routes first moved domestic Ae. aegypti out of Africa into the New World, followed by a later invasion from the New World into Southeast Asia and the Pacific. These patterns of domestication and invasion are relevant to many species worldwide, as anthropogenic forces increasingly impact evolutionary processes.

  6. Potential for Extrinsic Incubation Temperature to Alter Interplay Between Transmission Potential and Mortality of Dengue-Infected Aedes aegypti

    PubMed Central

    Christofferson, Rebecca C.; Mores, Christopher N.

    2016-01-01

    The extrinsic incubation period is a critical component in the assessment of arboviral transmission potential. It defines the time it takes for a mosquito to become infectious following exposure to an arbovirus. Since this is a temporal process, the lifespan of a mosquito is intimately tied to the extrinsic incubation period and thus transmission potential of these viruses. Temperature is a known effector of both vector competence (the ability of a vector to transmit a pathogen) and mosquito mortality, but the interaction among temperature, vector competence, and mosquito mortality is not well characterized. Herein, we investigate this interaction for dengue virus, serotype 2, and its primary vector Aedes aegypti where we found that at 30 °C, infection and/or dissemination shortened the average lifespan of the mosquito and that when considering only mosquitoes with a disseminated infection, those incubated at 26 °C lived significantly longer. PMID:27478382

  7. Transgene-mediated suppression of dengue viruses in the salivary glands of the yellow fever mosquito, Aedes aegypti.

    PubMed

    Mathur, G; Sanchez-Vargas, I; Alvarez, D; Olson, K E; Marinotti, O; James, A A

    2010-12-01

    Controlled sex-, stage- and tissue-specific expression of antipathogen effector molecules is important for genetic engineering strategies to control mosquito-borne diseases. Adult female salivary glands are involved in pathogen transmission to human hosts and are target sites for expression of antipathogen effector molecules. The Aedes aegypti 30K a and 30K b genes are expressed exclusively in adult female salivary glands and are transcribed divergently from start sites separated by 263 nucleotides. The intergenic, 5'- and 3'-end untranslated regions of both genes are sufficient to express simultaneously two different transgene products in the distal-lateral lobes of the female salivary glands. An antidengue effector gene, membranes no protein (Mnp), driven by the 30K b promoter, expresses an inverted-repeat RNA with sequences derived from the premembrane protein-encoding region of the dengue virus serotype 2 genome and reduces significantly the prevalence and mean intensities of viral infection in mosquito salivary glands and saliva.

  8. Potential for Extrinsic Incubation Temperature to Alter Interplay Between Transmission Potential and Mortality of Dengue-Infected Aedes aegypti.

    PubMed

    Christofferson, Rebecca C; Mores, Christopher N

    2016-01-01

    The extrinsic incubation period is a critical component in the assessment of arboviral transmission potential. It defines the time it takes for a mosquito to become infectious following exposure to an arbovirus. Since this is a temporal process, the lifespan of a mosquito is intimately tied to the extrinsic incubation period and thus transmission potential of these viruses. Temperature is a known effector of both vector competence (the ability of a vector to transmit a pathogen) and mosquito mortality, but the interaction among temperature, vector competence, and mosquito mortality is not well characterized. Herein, we investigate this interaction for dengue virus, serotype 2, and its primary vector Aedes aegypti where we found that at 30 °C, infection and/or dissemination shortened the average lifespan of the mosquito and that when considering only mosquitoes with a disseminated infection, those incubated at 26 °C lived significantly longer. PMID:27478382

  9. Biosynthesis of silver nanoparticles using Bacillus thuringiensis against dengue vector, Aedes aegypti (Diptera: Culicidae).

    PubMed

    Banu, A Najitha; Balasubramanian, C; Moorthi, P Vinayaga

    2014-01-01

    The present study reveals the larvicidal activity of silver nanoparticles (AgNPs) synthesized by Bacillus thuringiensis (Bt) against Aedes aegypti responsible for the diseases of public health importance. The Bt-AgNPs were characterized by using UV-visible spectrophotometer followed by scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX) spectroscopy. A surface plasmon resonance spectrum of AgNps was obtained at 420 nm. The particle sizes were measured through SEM imaging ranging from 43.52 to 142.97 nm. The Bt-AgNPs has also given a characteristic peak at 3 keV in EDX image. Interestingly, the mortality rendered by Bt-AgNPs was comparatively high than that of the control against third-instar larvae of A. aegypti (LC50 0.10 ppm and LC90 0.39 ppm) in all the tested concentrations, viz. 0.03, 0.06, 0.09, 0.12, and 0.15 ppm. Hence, Bt-AgNPs would be significantly used as a potent mosquito larvicide against A. aegypti.

  10. Insecticide Resistance in the Dengue Vector Aedes aegypti from Martinique: Distribution, Mechanisms and Relations with Environmental Factors

    PubMed Central

    Marcombe, Sébastien; Mathieu, Romain Blanc; Pocquet, Nicolas; Riaz, Muhammad-Asam; Poupardin, Rodolphe; Sélior, Serge; Darriet, Frédéric; Reynaud, Stéphane; Yébakima, André; Corbel, Vincent; David, Jean-Philippe; Chandre, Fabrice

    2012-01-01

    Dengue is an important mosquito borne viral disease in Martinique Island (French West Indies). The viruses responsible for dengue are transmitted by Aedes aegypti, an indoor day-biting mosquito. The most effective proven method for disease prevention has been by vector control by various chemical or biological means. Unfortunately insecticide resistance has already been observed on the Island and recently showed to significantly reduce the efficacy of vector control interventions. In this study, we investigated the distribution of resistance and the underlying mechanisms in nine Ae. aegypti populations. Statistical multifactorial approach was used to investigate the correlations between insecticide resistance levels, associated mechanisms and environmental factors characterizing the mosquito populations. Bioassays revealed high levels of resistance to temephos and deltamethrin and susceptibility to Bti in the 9 populations tested. Biochemical assays showed elevated detoxification enzyme activities of monooxygenases, carboxylesterases and glutathione S-tranferases in most of the populations. Molecular screening for common insecticide target-site mutations, revealed the presence of the “knock-down resistance” V1016I Kdr mutation at high frequency (>87%). Real time quantitative RT-PCR showed the potential involvement of several candidate detoxification genes in insecticide resistance. Principal Component Analysis (PCA) performed with variables characterizing Ae. aegypti from Martinique permitted to underline potential links existing between resistance distribution and other variables such as agriculture practices, vector control interventions and urbanization. Insecticide resistance is widespread but not homogeneously distributed across Martinique. The influence of environmental and operational factors on the evolution of the resistance and mechanisms are discussed. PMID:22363529

  11. Permethrin-Treated Clothing as Protection against the Dengue Vector, Aedes aegypti: Extent and Duration of Protection

    PubMed Central

    DeRaedt Banks, Sarah; Orsborne, James; Gezan, Salvador A.; Kaur, Harparkash; Wilder-Smith, Annelies; Lindsey, Steve W.; Logan, James G.

    2015-01-01

    Introduction Dengue transmission by the mosquito vector, Aedes aegypti, occurs indoors and outdoors during the day. Personal protection of individuals, particularly when outside, is challenging. Here we assess the efficacy and durability of different types of insecticide-treated clothing on laboratory-reared Ae. aegypti. Methods Standardised World Health Organisation Pesticide Evaluation Scheme (WHOPES) cone tests and arm-in-cage assays were used to assess knockdown (KD) and mortality of Ae. aegypti tested against factory-treated fabric, home-dipped fabric and microencapsulated fabric. Based on the testing of these three different treatment types, the most protective was selected for further analysis using arm-in cage assays with the effect of washing, ultra-violet light, and ironing investigated using high pressure liquid chromatography. Results Efficacy varied between the microencapsulated and factory dipped fabrics in cone testing. Factory-dipped clothing showed the greatest effect on KD (3 min 38.1%; 1 hour 96.5%) and mortality (97.1%) with no significant difference between this and the factory dipped school uniforms. Factory-dipped clothing was therefore selected for further testing. Factory dipped clothing provided 59% (95% CI = 49.2%– 66.9%) reduction in landing and a 100% reduction in biting in arm-in-cage tests. Washing duration and technique had a significant effect, with insecticidal longevity shown to be greater with machine washing (LW50 = 33.4) compared to simulated hand washing (LW50 = 17.6). Ironing significantly reduced permethrin content after 1 week of simulated use, with a 96.7% decrease after 3 months although UV exposure did not reduce permethrin content within clothing significantly after 3 months simulated use. Conclusion Permethrin-treated clothing may be a promising intervention in reducing dengue transmission. However, our findings also suggest that clothing may provide only short-term protection due to the effect of washing and ironing

  12. Bromeliad-inhabiting mosquitoes in an urban botanical garden of dengue endemic Rio de Janeiro--are bromeliads productive habitats for the invasive vectors Aedes aegypti and Aedes albopictus?

    PubMed

    Mocellin, Márcio Goulart; Simões, Taynãna César; Nascimento, Teresa Fernandes Silva do; Teixeira, Maria Lucia França; Lounibos, Leon Philip; Oliveira, Ricardo Lourenço de

    2009-12-01

    Immatures of both Aedes aegypti and Aedes albopictus have been found in water-holding bromeliad axils in Brazil. Removal of these plants or their treatment with insecticides in public and private gardens have been undertaken during dengue outbreaks in Brazil despite uncertainty as to their importance as productive habitats for dengue vectors. From March 2005-February 2006, we sampled 120 randomly selected bromeliads belonging to 10 species in a public garden less than 200 m from houses in a dengue-endemic neighborhood in Rio de Janeiro. A total of 2,816 mosquito larvae and pupae was collected, with an average of 5.87 immatures per plant per collection. Culex (Microculex) pleuristriatus and Culex spp of the Ocellatus Group were the most abundant culicid species, found in all species of bromeliads; next in relative abundance were species of the genus Wyeomyia. Only two individuals of Ae. aegypti (0.07%) and five of Ae. albopictus(0.18%) were collected from bromeliads. By contrast, immatures of Ae. aegypti were found in manmade containers in nearly 5% of nearby houses. These results demonstrate that bromeliads are not important producers of Ae. aegypti and Ae. albopictus and, hence, should not be a focus for dengue control. However, the results of this study of only one year in a single area may not represent outcomes in other urban localities where bromeliads, Ae. aegypti and dengue coincide in more disturbed habitats.

  13. The effect of temperature and humidity on dengue virus propagation in Aedes aegypti mosquitos.

    PubMed

    Thu, H M; Aye, K M; Thein, S

    1998-06-01

    The effect of temperature and relative humidity on dengue virus propagation in the mosquito as one of the possible contributing factors to dengue hemorrhagic fever (DHF) outbreaks was studied. Ae. aegypti mosquitos were reared under standard conditions and inoculated intrathoracically with dengue virus. Virus propagation in the mosquitos was determined at the temperature and relative humidity of all 3 seasons of Yangon and for the simulated temperature and relative humidity of Singapore. The virus propagation was detected by direct fluorescent antibody technique (DFAT) with mosquito head squash and the virus titer was determined by plaque forming unit test (PFUT) in baby hamster kidney-21 cells. The results show that the infected mosquitos kept under the conditions of the rainy season and under the simulated conditions of Singapore had a significantly higher virus titer (p=<0.05) when compared with the other 2 seasons of Yangon. So it is thought that the temperature and relative humidity of the rainy season of Yangon and that of Singapore favors dengue virus propagation in the mosquito and is one of the contributing factors to the occurence of DHF outbreaks.

  14. Spatio-Temporal Distribution of Aedes aegypti (Diptera: Culicidae) Mitochondrial Lineages in Cities with Distinct Dengue Incidence Rates Suggests Complex Population Dynamics of the Dengue Vector in Colombia

    PubMed Central

    Jaimes-Dueñez, Jeiczon; Arboleda, Sair; Triana-Chávez, Omar; Gómez-Palacio, Andrés

    2015-01-01

    Background Aedes aegypti is the primary vector of the four serotypes of dengue virus (DENV1-4), Chikungunya and yellow fever virus to humans. Previous population genetic studies have revealed a particular genetic structure among the vector populations in the Americas that suggests differences in the ability to transmit DENV. In Colombia, despite its high epidemiologic importance, the genetic population structure and the phylogeographic depiction of Ae. aegypti, as well as its relationship with the epidemiologic landscapes in cities with heterogeneous incidence levels, remains unknown. We conducted a spatiotemporal analysis with the aim of determining the genetic structure and phylogeography of Colombian populations of Ae. aegypti among cities with different eco-epidemiologic characteristics with regard to DENV. Methods/Findings Mitochondrial cytochrome oxidase C subunit 1 (COI) - NADH dehydrogenase subunit 4 (ND4) genes were sequenced and analyzed from 341 adult mosquitoes collected during 2012 and 2013 in the Colombian cities of Bello, Riohacha and Villavicencio, which exhibit low, medium and high levels of incidence of DENV, respectively. The results demonstrated a low genetic differentiation over time and a high genetic structure between the cities due to changes in the frequency of two highly supported genetic groups. The phylogeographic analyses indicated that one group (associated with West African populations) was found in all the cities throughout the sampling while the second group (associated with East African populations) was found in all the samples from Bello and in only one sampling from Riohacha. Environmental factors such as the use of chemical insecticides showed a significant correlation with decreasing genetic diversity, indicating that environmental factors affect the population structure of Ae. aegypti across time and space in these cities. Conclusions Our results suggest that two Ae. aegypti lineages are present in Colombia; one that is

  15. Lessons of Aedes aegypti control in Thailand.

    PubMed

    Gratz, N G

    1993-01-01

    The incidence of dengue haemorrhagic fever (DHF) in Thailand has increased cyclically since the first recognized outbreak in 1958. Without an effective vaccine against dengue, and considering the clinical difficulty of treating DHF cases, vector control is needed to prevent dengue transmission. Since the establishment of the WHO Aedes Research Unit in 1964, continued since 1973 as the WHO Collaborating Centre at the Department of Medical Research in Bangkok, much operational research has been carried out in Thailand on the bionomics and control of dengue vectors: Aedes aegypti and Ae. albopictus. This review shows that, as in most other countries, dengue vector control programmes in Thailand make little use of the procedures arising from research, nor have they reduced the upward trend of dengue or prevented DHF outbreaks. Implications of the reluctance to use results of operational research on vector control are considered and remedial suggestions made.

  16. Larvicidal action of ethanolic extracts from fruit endocarps of Melia azedarach and Azadirachta indica against the dengue mosquito Aedes aegypti.

    PubMed

    Wandscheer, Carolina B; Duque, Jonny E; da Silva, Mario A N; Fukuyama, Yoshiyasu; Wohlke, Jonathan L; Adelmann, Juliana; Fontana, José D

    2004-12-15

    Ethanolic extracts from the kernels of ripe fruits from the Indian Lilac Melia azedarach and from the well-known Neem tree, Azadirachta indica were assayed against larvae of Aedes aegypti, the mosquito vector of dengue fever. The lethality bioassays were carried out according to the recommendations of the World Health Organization. Extracts were tested at doses ranging from 0.0033 to 0.05 g% in an aqueous medium for 24 and 48 h, at 25 or 30 degrees C, with or without feeding of the larvae. LC50, LC95 and LC99 were determined. Both seed extracts proved lethal for third to fourth instar larvae. Non-fed A. aegypti larvae were more susceptible to Azadirachta extracts at both temperatures. Under a more realistic environmental situation, namely with fed larvae at 25 degrees C, the death rates caused by the Melia extract were higher, although at 30 degrees C the extract of Azadirachta had an even higher lethality. Inter allia, the LC50 values for the crude extracts of these two members of the Meliaceae ranged from 0.017 to 0.034 g% while the LC99 values ranged from 0.133 to 0.189 g%. Since no downstream processing was undertaken to purify the active agents in the extracts, our findings seem very promising, suggesting that it may be possible to increase the larvicidal activity further by improving the extraction and the fractionation of the crude limonoids, for instance removing the co-extracted natural fats.

  17. Towards a Casa Segura: A Consumer Product Study of the Effect of Insecticide-Treated Curtains on Aedes aegypti and Dengue Virus Infections in the Home

    PubMed Central

    Loroño-Pino, María Alba; García-Rejón, Julián E.; Machain-Williams, Carlos; Gomez-Carro, Salvador; Nuñez-Ayala, Guadalupe; del Rosario Nájera-Vázquez, Maria; Losoya, Arturo; Aguilar, Lyla; Saavedra-Rodriguez, Karla; Lozano-Fuentes, Saul; Beaty, Meaghan K.; Black, William C.; Keefe, Thomas J.; Eisen, Lars; Beaty, Barry J.

    2013-01-01

    The home, or domicile, is the principal environment for transmission of dengue virus (DENV) between humans and mosquito vectors. Community-wide distribution of insecticide-treated curtains (ITCs), mimicking vector control program-driven interventions, has shown promise to reduce DENV infections. We conducted a Casa Segura consumer product intervention study in Mérida, Mexico to determine the potential to reduce intradomicillary DENV transmission through ITC use in individual homes. Dengue virus infections in mosquitoes and in humans were reduced in homes with ITCs in one of two study subareas. Overall, ITCs reduced intradomicillary DENV transmission; ITC homes were significantly less likely to experience multiple DENV infections in humans than NTC homes. Dengue virus–infected Aedes aegypti females were reduced within the ITC homes where curtain use was highest. Some homes yielded up to nine infected Ae. aegypti females. This study provides insights regarding best practices for Casa Segura interventions to protect homes from intradomicillary DENV transmission. PMID:23732254

  18. Towards a Casa Segura: a consumer product study of the effect of insecticide-treated curtains on Aedes aegypti and dengue virus infections in the home.

    PubMed

    Loroño-Pino, María Alba; García-Rejón, Julián E; Machain-Williams, Carlos; Gomez-Carro, Salvador; Nuñez-Ayala, Guadalupe; Nájera-Vázquez, Maria del Rosario; Losoya, Arturo; Aguilar, Lyla; Saavedra-Rodriguez, Karla; Lozano-Fuentes, Saul; Beaty, Meaghan K; Black, William C; Keefe, Thomas J; Eisen, Lars; Beaty, Barry J

    2013-08-01

    The home, or domicile, is the principal environment for transmission of dengue virus (DENV) between humans and mosquito vectors. Community-wide distribution of insecticide-treated curtains (ITCs), mimicking vector control program-driven interventions, has shown promise to reduce DENV infections. We conducted a Casa Segura consumer product intervention study in Mérida, Mexico to determine the potential to reduce intradomicillary DENV transmission through ITC use in individual homes. Dengue virus infections in mosquitoes and in humans were reduced in homes with ITCs in one of two study subareas. Overall, ITCs reduced intradomicillary DENV transmission; ITC homes were significantly less likely to experience multiple DENV infections in humans than NTC homes. Dengue virus-infected Aedes aegypti females were reduced within the ITC homes where curtain use was highest. Some homes yielded up to nine infected Ae. aegypti females. This study provides insights regarding best practices for Casa Segura interventions to protect homes from intradomicillary DENV transmission.

  19. Towards a Casa Segura: a consumer product study of the effect of insecticide-treated curtains on Aedes aegypti and dengue virus infections in the home.

    PubMed

    Loroño-Pino, María Alba; García-Rejón, Julián E; Machain-Williams, Carlos; Gomez-Carro, Salvador; Nuñez-Ayala, Guadalupe; Nájera-Vázquez, Maria del Rosario; Losoya, Arturo; Aguilar, Lyla; Saavedra-Rodriguez, Karla; Lozano-Fuentes, Saul; Beaty, Meaghan K; Black, William C; Keefe, Thomas J; Eisen, Lars; Beaty, Barry J

    2013-08-01

    The home, or domicile, is the principal environment for transmission of dengue virus (DENV) between humans and mosquito vectors. Community-wide distribution of insecticide-treated curtains (ITCs), mimicking vector control program-driven interventions, has shown promise to reduce DENV infections. We conducted a Casa Segura consumer product intervention study in Mérida, Mexico to determine the potential to reduce intradomicillary DENV transmission through ITC use in individual homes. Dengue virus infections in mosquitoes and in humans were reduced in homes with ITCs in one of two study subareas. Overall, ITCs reduced intradomicillary DENV transmission; ITC homes were significantly less likely to experience multiple DENV infections in humans than NTC homes. Dengue virus-infected Aedes aegypti females were reduced within the ITC homes where curtain use was highest. Some homes yielded up to nine infected Ae. aegypti females. This study provides insights regarding best practices for Casa Segura interventions to protect homes from intradomicillary DENV transmission. PMID:23732254

  20. Tackling the growing threat of dengue: Phyllanthus niruri-mediated synthesis of silver nanoparticles and their mosquitocidal properties against the dengue vector Aedes aegypti (Diptera: Culicidae).

    PubMed

    Suresh, Udaiyan; Murugan, Kadarkarai; Benelli, Giovanni; Nicoletti, Marcello; Barnard, Donald R; Panneerselvam, Chellasamy; Kumar, Palanisamy Mahesh; Subramaniam, Jayapal; Dinesh, Devakumar; Chandramohan, Balamurugan

    2015-04-01

    Mosquitoes are vectors of devastating pathogens and parasites, causing millions of deaths every year. Dengue is a mosquito-borne viral infection found in tropical and subtropical regions around the world. Recently, transmission has strongly increased in urban and semiurban areas, becoming a major international public health concern. Aedes aegypti (Diptera: Culicidae) is the primary vector of dengue. The use of synthetic insecticides to control Aedes mosquitoes lead to high operational costs and adverse nontarget effects. In this scenario, eco-friendly control tools are a priority. We proposed a novel method to synthesize silver nanoparticles using the aqueous leaf extract of Phyllanthus niruri, a cheap and nontoxic material. The UV-vis spectrum of the aqueous medium containing silver nanostructures showed a peak at 420 nm corresponding to the surface plasmon resonance band of nanoparticles. SEM analyses of the synthesized nanoparticles showed a mean size of 30-60 nm. EDX spectrum showed the chemical composition of the synthesized nanoparticles. XRD highlighted that the nanoparticles are crystalline in nature with face-centered cubic geometry. Fourier transform infrared spectroscopy (FTIR) of nanoparticles exhibited prominent peaks 3,327.63, 2,125.87, 1,637.89, 644.35, 597.41, and 554.63 cm(-1). In laboratory assays, the aqueous extract of P. niruri was toxic against larval instars (I-IV) and pupae of A. aegypti. LC50 was 158.24 ppm (I), 183.20 ppm (II), 210.53 ppm (III), 210.53 ppm (IV), and 358.08 ppm (pupae). P. niruri-synthesized nanoparticles were highly effective against A. aegypti, with LC50 of 3.90 ppm (I), 5.01 ppm (II), 6.2 ppm (III), 8.9 ppm (IV), and 13.04 ppm (pupae). In the field, the application of silver nanoparticles (10 × LC50) lead to A. aegypti larval reduction of 47.6%, 76.7% and 100%, after 24, 48, and 72 h, while the P. niruri extract lead to 39.9%, 69.2 % and 100 % of reduction, respectively. In adulticidal experiments, P. niruri extract

  1. Bioactivity of seagrass against the dengue fever mosquito Aedes aegypti larvae

    PubMed Central

    Ali, M Syed; Ravikumar, S; Beula, J Margaret

    2012-01-01

    Objective To identify the larvicidal activity of the seagrass extracts. Methods Seagrass extracts, Syringodium isoetifolium (S. isoetifolium), Cymodocea serrulata and Halophila beccarii, were dissolved in DMSO to prepare a graded series of concentration. Batches of 25 early 4th instars larvae of Aedes aegypti (Ae. aegypti) were transferred to 250 mL enamel bowl containing 199 mL of distilled water and 1 mL of plant extracts (0.01 mg – 0.1 mg). After 24 h the mortality rate was identified with the formulae [(% of test mortality – % of control mortality)/(100 – % of control mortality)] × 100. Each experiment was conducted with three replicates and a concurrent control group. A control group consisted of 1 mL of DMSO and 199 mL of distilled water only. Results : The root extract of S. isoetifolium showed maximum larvicidal activity with minimum concentration of extract of LC50= 0.0 604 ± 0.0 040)µg/mL with lower confidence limit (LCL) – upper confidence limit (UCL) = (0.051–0.071) and LC90=0.0 972µg/mL followed by leaf extract of S. isoetifolium showed LC50= (0.062 ± 0.005)µg/mL. The regression equation of root and leaf extract of S. isoetifolium for 4th instar larvae were Y= 4.909 + 1.32x (R2= 0.909) and Y= 2.066 + 1.21x (R2 =0.897) respectively. The results of the preliminary phytochemical constituents shows the presence of saponin, steroids, terpenoid, phenols, protein and sugars. Conclusions From the present study the ethanolic extracts of seagrass of S. isoetifolium possesses lead compound for development of larvicidal activity. PMID:23569973

  2. Impact of Argemone mexicana extracts on the cidal, morphological, and behavioral response of dengue vector, Aedes aegypti L. (Diptera: Culicidae).

    PubMed

    Warikoo, Radhika; Kumar, Sarita

    2013-10-01

    The larvicidal, behavioral, and morphological response of dengue vector, Aedes aegypti treated with deleterious weed, Argemone mexicana, was explored. The 1,000 ppm extracts of A. mexicana leaf, stem, and roots prepared in five different solvents (petroleum ether, hexane, benzene, acetone, and ethanol) were screened for their larvicidal activity against dengue vector establishing the efficacy of petroleum ether and hexane extracts. Other extracts, unable to give 100% mortality, were considered ineffective and discarded from further study. Larvicidal bioassay conducted with selected extracts confirmed the higher efficacy of hexane extracts exhibiting 1.1- to 1.8-fold more potential than the petroleum ether extracts. The results further revealed 1.6- to 2.4-fold higher efficacy of root extracts than those prepared from the leaves and stem of A. mexicana. The hexane root extract of A. mexicana was found to be the most effective larvicide with LC50 value of 91.331 ppm after 24 h of exposure causing 1.8 and 2.4 fold more toxicity as compared to the hexane leaf and stem extracts, respectively. Prolonged exposure of the larvae to the extracts resulted in increased toxicity potential of the extracts. Observations of the treated larvae revealed excitation, violent vertical, and horizontal movements with aggressive anal biting behavior suggesting effect of extracts on their neuromuscular system. Morphological studies of the treated larvae revealed the demelanization of cuticle and shrinkage of internal cuticle of anal papillae indicating the anal papillae as the probable action sites of the A. mexicana extracts. The potential of A. mexicana as new larvicides against dengue vector are being explored.

  3. Personal Protection of Permethrin-Treated Clothing against Aedes aegypti, the Vector of Dengue and Zika Virus, in the Laboratory

    PubMed Central

    Orsborne, James; DeRaedt Banks, Sarah; Hendy, Adam; Gezan, Salvador A.; Kaur, Harparkash; Wilder-Smith, Annelies; Lindsay, Steve W.; Logan, James G.

    2016-01-01

    Background The dengue and Zika viruses are primarily transmitted by Aedes aegypti mosquitoes, which are most active during day light hours and feed both in and outside of the household. Personal protection technologies such as insecticide-treated clothing could provide individual protection. Here we assessed the efficacy of permethrin-treated clothing on personal protection in the laboratory. Methods The effect of washing on treated clothing, skin coverage and protection against resistant and susceptible Ae. aegypti was assessed using modified WHO arm-in-cage assays. Coverage was further assessed using free-flight room tests to investigate the protective efficacy of unwashed factory-dipped permethrin-treated clothing. Clothing was worn as full coverage (long sleeves and trousers) and partial coverage (short sleeves and shorts). Residual permethrin on the skin and its effect on mosquitoes was measured using modified WHO cone assays and quantified using high-pressure liquid chromatography (HPLC) analysis. Results In the arm-in-cage assays, unwashed clothing reduced landing by 58.9% (95% CI 49.2–66.9) and biting by 28.5% (95% CI 22.5–34.0), but reduced to 18.5% (95% CI 14.7–22.3) and 11.1% (95% CI 8.5–13.8) respectively after 10 washes. Landing and biting for resistant and susceptible strains was not significantly different (p<0.05). In free-flight room tests, full coverage treated clothing reduced landing by 24.3% (95% CI 17.4–31.7) and biting by 91% (95% CI 82.2–95.9) with partial coverage reducing landing and biting by 26.4% (95% CI 20.3–31.2) and 49.3% (95% CI 42.1–59.1) respectively with coverage type having no significant difference on landing (p<0.05). Residual permethrin was present on the skin in low amounts (0.0041mg/cm2), but still produced a KD of >80% one hour after wearing treated clothing. Conclusion Whilst partially covering the body with permethrin-treated clothing provided some protection against biting, wearing treated clothing with

  4. Studies on insecticide susceptibility of Aedes aegypti (Linn) and Aedes albopictus (Skuse) vectors of dengue and chikungunya in Andaman and Nicobar Islands, India.

    PubMed

    Sivan, Arun; Shriram, A N; Sunish, I P; Vidhya, P T

    2015-12-01

    Dengue and chikungunya are important arboviral infections in the Andaman Islands. Competent vectors viz. Aedes aegypti and Aedes albopictus are widely prevalent. The most effective proven method for interrupting the transmission of these arboviruses is vector control, mediated through insecticides. Currently, DDT and temephos are the insecticides used for vector control in these islands. Lack of information on susceptibility necessitated assessing the susceptibility profile of A. aegypti and A. albopictus. F1 generation of adult and larvae were assayed, and LT50 and LT90 values were interpreted following the World Health Organization (WHO) protocol. Adults were found resistant to DDT-4 % while susceptible to dieldrin-0.4 %. Against organophosphates, both showed resistance to fenitrothion but susceptible to malathion-5 %. Both species showed resistance to carbamate and bendiocarb-0.1 % while susceptible to propoxur-0.1 %. Of the four synthetic pyrethroids, both were susceptible to deltamethrin-0.05 %, while resistant to permethrin-0.75 %, lambdacyhalothrin-0.05 % and cyfluthrin-0.15 %. Larvae of both species showed resistance to temephos at 0.02 mg/L but susceptible to malathion at 1 mg/L and fenthion at 0.05 mg/L. Currently, there is no prescribed WHO dose for adult-insecticide susceptibility testing. The emergence of resistance to DDT and temephos in the vector population poses a challenge to the on-going vector control measures. The results highlight the need for monitoring resistance to insecticides in the vector population. Impetus for source reduction and alternative choices of control measures are discussed for tackling future threat of arboviral infections in these islands.

  5. Green-synthesized silver nanoparticles as a novel control tool against dengue virus (DEN-2) and its primary vector Aedes aegypti.

    PubMed

    Sujitha, Vasu; Murugan, Kadarkarai; Paulpandi, Manickam; Panneerselvam, Chellasamy; Suresh, Udaiyan; Roni, Mathath; Nicoletti, Marcello; Higuchi, Akon; Madhiyazhagan, Pari; Subramaniam, Jayapal; Dinesh, Devakumar; Vadivalagan, Chithravel; Chandramohan, Balamurugan; Alarfaj, Abdullah A; Munusamy, Murugan A; Barnard, Donald R; Benelli, Giovanni

    2015-09-01

    Dengue is an arthropod-borne viral infection mainly vectored through the bite of Aedes mosquitoes. Recently, its transmission has strongly increased in urban and semi-urban areas of tropical and sub-tropical regions worldwide, becoming a major international public health concern. There is no specific treatment for dengue. Its prevention and control solely depends on effective vector control measures. In this study, we proposed the green-synthesis of silver nanoparticles (AgNP) as a novel and effective tool against the dengue serotype DEN-2 and its major vector Aedes aegypti. AgNP were synthesized using the Moringa oleifera seed extract as reducing and stabilizing agent. AgNP were characterized using a variety of biophysical methods including UV-vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and sorted for size categories. AgNP showed in vitro antiviral activity against DEN-2 infecting vero cells. Viral titer was 7 log10 TCID50/ml in control (AgNP-free), while it dropped to 3.2 log10 TCID50/ml after a single treatment with 20 μl/ml of AgNP. After 6 h, DEN-2 yield was 5.8 log10 PFU/ml in the control, while it was 1.4 log10 PFU/ml post-treatment with AgNP (20 μl/ml). AgNP were highly effective against the dengue vector A. aegypti, with LC50 values ranging from 10.24 ppm (I instar larvae) to 21.17 ppm (pupae). Overall, this research highlighted the concrete potential of green-synthesized AgNP in the fight against dengue and its primary vector A. aegypti. Further research on structure-activity relationships of AgNP against other dengue serotypes is urgently required.

  6. Green-synthesized silver nanoparticles as a novel control tool against dengue virus (DEN-2) and its primary vector Aedes aegypti.

    PubMed

    Sujitha, Vasu; Murugan, Kadarkarai; Paulpandi, Manickam; Panneerselvam, Chellasamy; Suresh, Udaiyan; Roni, Mathath; Nicoletti, Marcello; Higuchi, Akon; Madhiyazhagan, Pari; Subramaniam, Jayapal; Dinesh, Devakumar; Vadivalagan, Chithravel; Chandramohan, Balamurugan; Alarfaj, Abdullah A; Munusamy, Murugan A; Barnard, Donald R; Benelli, Giovanni

    2015-09-01

    Dengue is an arthropod-borne viral infection mainly vectored through the bite of Aedes mosquitoes. Recently, its transmission has strongly increased in urban and semi-urban areas of tropical and sub-tropical regions worldwide, becoming a major international public health concern. There is no specific treatment for dengue. Its prevention and control solely depends on effective vector control measures. In this study, we proposed the green-synthesis of silver nanoparticles (AgNP) as a novel and effective tool against the dengue serotype DEN-2 and its major vector Aedes aegypti. AgNP were synthesized using the Moringa oleifera seed extract as reducing and stabilizing agent. AgNP were characterized using a variety of biophysical methods including UV-vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and sorted for size categories. AgNP showed in vitro antiviral activity against DEN-2 infecting vero cells. Viral titer was 7 log10 TCID50/ml in control (AgNP-free), while it dropped to 3.2 log10 TCID50/ml after a single treatment with 20 μl/ml of AgNP. After 6 h, DEN-2 yield was 5.8 log10 PFU/ml in the control, while it was 1.4 log10 PFU/ml post-treatment with AgNP (20 μl/ml). AgNP were highly effective against the dengue vector A. aegypti, with LC50 values ranging from 10.24 ppm (I instar larvae) to 21.17 ppm (pupae). Overall, this research highlighted the concrete potential of green-synthesized AgNP in the fight against dengue and its primary vector A. aegypti. Further research on structure-activity relationships of AgNP against other dengue serotypes is urgently required. PMID:26063530

  7. Insecticide resistance and, efficacy of space spraying and larviciding in the control of dengue vectors Aedes aegypti and Aedes albopictus in Sri Lanka.

    PubMed

    Karunaratne, S H P P; Weeraratne, T C; Perera, M D B; Surendran, S N

    2013-09-01

    Unprecedented incidence of dengue has been recorded in Sri Lanka in recent times. Source reduction and use of insecticides in space spraying/fogging and larviciding, are the primary means of controlling the vector mosquitoes Aedes aegypti and Ae. albopictus in the island nation. A study was carried out to understand insecticide cross-resistance spectra and mechanisms of insecticide resistance of both these vectors from six administrative districts, i.e. Kandy, Kurunegala, Puttalam, Gampaha, Ratnapura and Jaffna, of Sri Lanka. Efficacy of the recommended dosages of frequently used insecticides in space spraying and larviciding in dengue vector control programmes was also tested. Insecticide bioassay results revealed that, in general, both mosquito species were highly resistant to DDT but susceptible to propoxur and malathion except Jaffna Ae. aegypti population. Moderate resistance to malathion shown by Jaffna Ae. aegypti population correlated with esterase and malathion carboxylesterase activities of the population. High levels of acetylcholinesterase (AChE) insensitivity in the absence of malathion and propoxur resistance may be due to non-synaptic forms of AChE proteins. Moderate pyrethroid resistance in the absence of high monooxygenase levels indicated the possible involvement of 'kdr' type resistance mechanism in Sri Lankan dengue vectors. Results of the space spraying experiments revealed that 100% mortality at a 10 m distance and >50% mortality at a 50 m distance can be achieved with malathion, pesguard and deltacide even in a ground with dense vegetation. Pesguard and deltacide spraying gave 100% mortality up to 50 m distance in open area and areas with little vegetation. Both species gave >50% mortalities for deltacide at a distance of 75 m in a dense vegetation area. Larval bioassays conducted in the laboratory showed that a 1 ppm temephos solution can maintain a larval mortality rate of 100% for ten months, and the mortality rate declined to 0% in the

  8. Effects of a Five-Year Citywide Intervention Program To Control Aedes aegypti and Prevent Dengue Outbreaks in Northern Argentina

    PubMed Central

    Gürtler, Ricardo E.; Garelli, Fernando M.; Coto, Héctor D.

    2009-01-01

    Background Dengue has propagated widely through the Americas. Most countries have not been able to maintain permanent larval mosquito control programs, and the long-term effects of control actions have rarely been documented. Methodology The study design was based on a before-and-after citywide assessment of Aedes aegypti larval indices and the reported incidence of dengue in Clorinda, northeastern Argentina, over 2003–2007. Interventions were mainly based on focal treatment with larvicides of every mosquito developmental site every four months (14 cycles), combined with limited source reduction efforts and ultra-low-volume insecticide spraying during emergency operations. The program conducted 120,000 house searches for mosquito developmental sites and 37,000 larvicide applications. Principal Findings Random-effects regression models showed that Breteau indices declined significantly in nearly all focal cycles compared to pre-intervention indices clustered by neighborhood, after allowing for lagged effects of temperature and rainfall, baseline Breteau index, and surveillance coverage. Significant heterogeneity between neighborhoods was revealed. Larval indices seldom fell to 0 shortly after interventions at the same blocks. Large water-storage containers were the most abundant and likely to be infested. The reported incidence of dengue cases declined from 10.4 per 10,000 in 2000 (by DEN-1) to 0 from 2001 to 2006, and then rose to 4.5 cases per 10,000 in 2007 (by DEN-3). In neighboring Paraguay, the reported incidence of dengue in 2007 was 30.6 times higher than that in Clorinda. Conclusions Control interventions exerted significant impacts on larval indices but failed to keep them below target levels during every summer, achieved sustained community acceptance, most likely prevented new dengue outbreaks over 2003–2006, and limited to a large degree the 2007 outbreak. For further improvement, a shift is needed towards a multifaceted program with intensified

  9. Genetic deviation in geographically close populations of the dengue vector Aedes aegypti (Diptera: Culicidae): influence of environmental barriers in South India.

    PubMed

    Vadivalagan, Chithravel; Karthika, Pushparaj; Murugan, Kadarkarai; Panneerselvam, Chellasamy; Paulpandi, Manickam; Madhiyazhagan, Pari; Wei, Hui; Aziz, Al Thabiani; Alsalhi, Mohamad Saleh; Devanesan, Sandhanasamy; Nicoletti, Marcello; Paramasivan, Rajaiah; Dinesh, Devakumar; Benelli, Giovanni

    2016-03-01

    Mosquitoes are vectors of devastating pathogens and parasites, causing millions of deaths every year. Dengue is a mosquito-borne viral infection found in tropical and subtropical regions around the world. Recently, dengue transmission has strongly increased in urban and semiurban areas, becoming a major international public health concern. Aedes aegypti (Diptera: Culicidae) is a primary vector of dengue. Shedding light on genetic deviation in A. aegypti populations is of crucial importance to fully understand their molecular ecology and evolution. In this research, haplotype and genetic analyses were conducted using individuals of A. aegypti from 31 localities in the north, southeast, northeast and central regions of Tamil Nadu (South India). The mitochondrial DNA region of cytochrome c oxidase 1 (CO1) gene was used as marker for the analyses. Thirty-one haplotypes sequences were submitted to GenBank and authenticated. The complete haplotype set included 64 haplotypes from various geographical regions clustered into three groups (lineages) separated by three fixed mutational steps, suggesting that the South Indian Ae. aegypti populations were pooled and are linked with West Africa, Columbian and Southeast Asian lineages. The genetic and haplotype diversity was low, indicating reduced gene flow among close populations of the vector, due to geographical barriers such as water bodies. Lastly, the negative values for neutrality tests indicated a bottle-neck effect and supported for low frequency of polymorphism among the haplotypes. Overall, our results add basic knowledge to molecular ecology of the dengue vector A. aegypti, providing the first evidence for multiple introductions of Ae. aegypti populations from Columbia and West Africa in South India. PMID:26627691

  10. Genetic deviation in geographically close populations of the dengue vector Aedes aegypti (Diptera: Culicidae): influence of environmental barriers in South India.

    PubMed

    Vadivalagan, Chithravel; Karthika, Pushparaj; Murugan, Kadarkarai; Panneerselvam, Chellasamy; Paulpandi, Manickam; Madhiyazhagan, Pari; Wei, Hui; Aziz, Al Thabiani; Alsalhi, Mohamad Saleh; Devanesan, Sandhanasamy; Nicoletti, Marcello; Paramasivan, Rajaiah; Dinesh, Devakumar; Benelli, Giovanni

    2016-03-01

    Mosquitoes are vectors of devastating pathogens and parasites, causing millions of deaths every year. Dengue is a mosquito-borne viral infection found in tropical and subtropical regions around the world. Recently, dengue transmission has strongly increased in urban and semiurban areas, becoming a major international public health concern. Aedes aegypti (Diptera: Culicidae) is a primary vector of dengue. Shedding light on genetic deviation in A. aegypti populations is of crucial importance to fully understand their molecular ecology and evolution. In this research, haplotype and genetic analyses were conducted using individuals of A. aegypti from 31 localities in the north, southeast, northeast and central regions of Tamil Nadu (South India). The mitochondrial DNA region of cytochrome c oxidase 1 (CO1) gene was used as marker for the analyses. Thirty-one haplotypes sequences were submitted to GenBank and authenticated. The complete haplotype set included 64 haplotypes from various geographical regions clustered into three groups (lineages) separated by three fixed mutational steps, suggesting that the South Indian Ae. aegypti populations were pooled and are linked with West Africa, Columbian and Southeast Asian lineages. The genetic and haplotype diversity was low, indicating reduced gene flow among close populations of the vector, due to geographical barriers such as water bodies. Lastly, the negative values for neutrality tests indicated a bottle-neck effect and supported for low frequency of polymorphism among the haplotypes. Overall, our results add basic knowledge to molecular ecology of the dengue vector A. aegypti, providing the first evidence for multiple introductions of Ae. aegypti populations from Columbia and West Africa in South India.

  11. Examination of the genetic basis for sexual dimorphism in the Aedes aegypti (dengue vector mosquito) pupal brain

    PubMed Central

    2014-01-01

    Background Most animal species exhibit sexually dimorphic behaviors, many of which are linked to reproduction. A number of these behaviors, including blood feeding in female mosquitoes, contribute to the global spread of vector-borne illnesses. However, knowledge concerning the genetic basis of sexually dimorphic traits is limited in any organism, including mosquitoes, especially with respect to differences in the developing nervous system. Methods Custom microarrays were used to examine global differences in female vs. male gene expression in the developing pupal head of the dengue vector mosquito, Aedes aegypti. The spatial expression patterns of a subset of differentially expressed transcripts were examined in the developing female vs. male pupal brain through in situ hybridization experiments. Small interfering RNA (siRNA)-mediated knockdown studies were used to assess the putative role of Doublesex, a terminal component of the sex determination pathway, in the regulation of sex-specific gene expression observed in the developing pupal brain. Results Transcripts (2,527), many of which were linked to proteolysis, the proteasome, metabolism, catabolic, and biosynthetic processes, ion transport, cell growth, and proliferation, were found to be differentially expressed in A. aegypti female vs. male pupal heads. Analysis of the spatial expression patterns for a subset of dimorphically expressed genes in the pupal brain validated the data set and also facilitated the identification of brain regions with dimorphic gene expression. In many cases, dimorphic gene expression localized to the optic lobe. Sex-specific differences in gene expression were also detected in the antennal lobe and mushroom body. siRNA-mediated gene targeting experiments demonstrated that Doublesex, a transcription factor with consensus binding sites located adjacent to many dimorphically expressed transcripts that function in neural development, is required for regulation of sex-specific gene

  12. Surveillance of dengue fever cases using a novel Aedes aegypti population sampling method in Trinidad, West Indies: the cardinal points approach.

    PubMed

    Chadee, Dave D; Doon, Rohit; Severson, David W

    2007-10-01

    A novel dengue surveillance method is described and used to evaluate 100 suspected dengue fever (DF) cases in county St. Patrick, Trinidad, West Indies. From the 30 confirmed DF cases fully investigated within 48 h of diagnosis, 63% (19/30 houses) of their homes were found harboring Aedes aegypti immature stages. Only houses at the four cardinal points of the index case rather than the entire neighborhood were investigated. The results showed significantly (P<0.001) more Ae. aegypti positive houses were observed to the east (P<0.04) and west (P<0.01) than to the north and south (P>0.9). In addition, from the 150 houses inspected a total of 474 artificial containers were inspected and treated, of which 20.8% (99) were infested with Ae. aegypti immature stages. More than 49% of the containers inspected were small miscellaneous containers, but they only produced 4.0% of the Ae. aegypti immatures, of which only 0.4% were pupae. Water tanks (41.7%), drums (40.4%) and buckets (24.2%) produced over 98% of the pupae. The results of this study imply that dengue vector control programs in Trinidad could increase their efficiency by applying the cardinal points surveillance approach during DF case investigations and concentrating their vector control measures on the most productive containers located at the east and west of the index cases.

  13. Chapter 3. Integration of botanicals and microbial pesticides for the control of dengue vector, Aedes aegypti (Insecta: Diptera: Culicidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mosquitoes are the single most important group of insects in terms of public health significance and causing diseases such as malaria, filariasis, dengue fever, Japanese encephalitis and other fevers. There has been an outbreak of Chikungunya and dengue all over the India from 2006 – 2009. Aedes ae...

  14. Mechanisms of Pyrethroid Resistance in the Dengue Mosquito Vector, Aedes aegypti: Target Site Insensitivity, Penetration, and Metabolism

    PubMed Central

    Kasai, Shinji; Komagata, Osamu; Itokawa, Kentaro; Shono, Toshio; Ng, Lee Ching; Kobayashi, Mutsuo; Tomita, Takashi

    2014-01-01

    Aedes aegypti is the major vector of yellow and dengue fevers. After 10 generations of adult selection, an A. aegypti strain (SP) developed 1650-fold resistance to permethrin, which is one of the most widely used pyrethroid insecticides for mosquito control. SP larvae also developed 8790-fold resistance following selection of the adults. Prior to the selections, the frequencies of V1016G and F1534C mutations in domains II and III, respectively, of voltage-sensitive sodium channel (Vssc, the target site of pyrethroid insecticide) were 0.44 and 0.56, respectively. In contrast, only G1016 alleles were present after two permethrin selections, indicating that G1016 can more contribute to the insensitivity of Vssc than C1534. In vivo metabolism studies showed that the SP strain excreted permethrin metabolites more rapidly than a susceptible SMK strain. Pretreatment with piperonyl butoxide caused strong inhibition of excretion of permethrin metabolites, suggesting that cytochrome P450 monooxygenases (P450s) play an important role in resistance development. In vitro metabolism studies also indicated an association of P450s with resistance. Microarray analysis showed that multiple P450 genes were over expressed during the larval and adult stages in the SP strain. Following quantitative real time PCR, we focused on two P450 isoforms, CYP9M6 and CYP6BB2. Transcription levels of these P450s were well correlated with the rate of permethrin excretion and they were certainly capable of detoxifying permethrin to 4′-HO-permethrin. Over expression of CYP9M6 was partially due to gene amplification. There was no significant difference in the rate of permethrin reduction from cuticle between SP and SMK strains. PMID:24945250

  15. Larvicidal action of ethanolic extracts from fruit endocarps of Melia azedarach and Azadirachta indica against the dengue mosquito Aedes aegypti.

    PubMed

    Wandscheer, Carolina B; Duque, Jonny E; da Silva, Mario A N; Fukuyama, Yoshiyasu; Wohlke, Jonathan L; Adelmann, Juliana; Fontana, José D

    2004-12-15

    Ethanolic extracts from the kernels of ripe fruits from the Indian Lilac Melia azedarach and from the well-known Neem tree, Azadirachta indica were assayed against larvae of Aedes aegypti, the mosquito vector of dengue fever. The lethality bioassays were carried out according to the recommendations of the World Health Organization. Extracts were tested at doses ranging from 0.0033 to 0.05 g% in an aqueous medium for 24 and 48 h, at 25 or 30 degrees C, with or without feeding of the larvae. LC50, LC95 and LC99 were determined. Both seed extracts proved lethal for third to fourth instar larvae. Non-fed A. aegypti larvae were more susceptible to Azadirachta extracts at both temperatures. Under a more realistic environmental situation, namely with fed larvae at 25 degrees C, the death rates caused by the Melia extract were higher, although at 30 degrees C the extract of Azadirachta had an even higher lethality. Inter allia, the LC50 values for the crude extracts of these two members of the Meliaceae ranged from 0.017 to 0.034 g% while the LC99 values ranged from 0.133 to 0.189 g%. Since no downstream processing was undertaken to purify the active agents in the extracts, our findings seem very promising, suggesting that it may be possible to increase the larvicidal activity further by improving the extraction and the fractionation of the crude limonoids, for instance removing the co-extracted natural fats. PMID:15530964

  16. Excretion of dengue virus RNA by Aedes aegypti allows non-destructive monitoring of viral dissemination in individual mosquitoes

    PubMed Central

    Fontaine, Albin; Jiolle, Davy; Moltini-Conclois, Isabelle; Lequime, Sebastian; Lambrechts, Louis

    2016-01-01

    Successful transmission of a vector-borne pathogen relies on a complex life cycle in the arthropod vector that requires initial infection of the digestive tract followed by systemic viral dissemination. The time interval between acquisition and subsequent transmission of the pathogen, called the extrinsic incubation period, is one of the most influential parameters of vector-borne pathogen transmission. However, the dynamic nature of this process is often ignored because vector competence assays are sacrificial and rely on end-point measurements. Here, we report that individual Aedes aegypti mosquitoes release large amounts of dengue virus (DENV) RNA in their excreta that can be non-sacrificially detected over time following oral virus exposure. Further, we demonstrate that detection of DENV RNA in excreta from individual mosquitoes is correlated to systemic viral dissemination with high specificity (0.9–1) albeit moderate sensitivity (0.64–0.89). Finally, we illustrate the potential of our finding to detect biological differences in the dynamics of DENV dissemination in a proof-of-concept experiment. Individual measurements of the time required for systemic viral dissemination, a prerequisite for transmission, will be valuable to monitor the dynamics of DENV vector competence, to carry out quantitative genetics studies, and to evaluate the risk of DENV transmission in field settings. PMID:27117953

  17. Seasonal dynamics of Aedes aegypti (Diptera: Culicidae) in the northernmost state of Brazil: a likely port-of-entry for dengue virus 4.

    PubMed

    Codeço, Cláudia Torres; Honório, Nildimar Alves; Ríos-Velásquez, Cláudia M; Santos, Maria da Conceição Alves dos; Mattos, Ingrid Vieira de; Luz, Sérgio Bessa; Reis, Izabel Cristina; Cunha, Guilherme Bernardino da; Rosa-Freitas, Maria Goreti; Tsouris, Pantelis; Castro, Márcia Gonçalves de; Hayd, Ramão Luciano Nogueira; Luitgards-Moura, José Francisco

    2009-07-01

    Roraima is the northernmost state of Brazil, bordering both Venezuela and Guyana. Appropriate climate and vector conditions for dengue transmission together with its proximity to countries where all four dengue serotypes circulate make this state, particularly the capital Boa Vista, strategically important for dengue surveillance in Brazil. Nonetheless, few studies have addressed the population dynamics of Aedes aegypti in Boa Vista. In this study, we report temporal and spatial variations in Ae. aegypti population density using ovitraps in two highly populated neighbourhoods; Centro and Tancredo Neves. In three out of six surveys, Ae. aegypti was present in more than 80% of the sites visited. High presence levels of this mosquito suggest ubiquitous human exposure to the vector, at least during part of the year. The highest infestation rates occurred during the peak of the rainy seasons, but a large presence was also observed during the early dry season (although with more variation among years). Spatial distribution of positive houses changed from a sparse and local pattern to a very dense pattern during the dry-wet season transition. These results suggest that the risk of dengue transmission and the potential for the new serotype invasions are high for most of the year.

  18. Evaluation of the Larvicidal Efficacy of Five Indigenous Weeds against an Indian Strain of Dengue Vector, Aedes aegypti L. (Diptera: Culicidae)

    PubMed Central

    Sharma, Aarti; Kumar, Sarita; Tripathi, Pushplata

    2016-01-01

    Background and Objectives. Aedes aegypti, dengue fever mosquito, is primarily associated with the transmission of dengue and chikungunya in tropical and subtropical regions of the world. The present investigations were carried out to assess the larvicidal efficiency of five indigenous weeds against Ae. aegypti. Methods. The 1,000 ppm hexane and ethanol extracts prepared from the leaves and stem of five plants (Achyranthes aspera, Cassia occidentalis, Catharanthus roseus, Lantana camara, and Xanthium strumarium) were screened for their larvicidal activity against early fourth instars of dengue vector. The extracts which could cause 80–100% mortality were further investigated for their efficacy. Results. The preliminary screening established the efficacy of hexane extracts as compared to the ethanol extracts. Further investigations revealed the highest larvicidal potential of A. aspera extracts exhibiting LC50 value of 82.555 ppm and 68.133 ppm, respectively. Further, their leaf extracts showed 5–85.9% higher larvicidal activity and stem extracts exhibited 0.23- to 0.85-fold more efficiency than the other four extracts. Conclusion. The present investigations suggest the possible use of A. aspera as an ideal ecofriendly, larvicidal agent for the control of dengue vector, Ae. aegypti. Future studies are, however, required to explore and identify the bioactive component involved and its mode of action. PMID:26941996

  19. The combination of the entomopathogenic fungus Metarhizium anisopliae with the insecticide Imidacloprid increases virulence against the dengue vector Aedes aegypti (Diptera: Culicidae)

    PubMed Central

    2011-01-01

    Background Dengue fever transmitted by the mosquito Aedes aegypti, is one of the most rapidly spreading insect borne diseases, stimulating the search for alternatives to current control measures. The dengue vector A. aegypti has received less attention than anophelene species, although more than 2.5 billion people are at risk of infection worldwide. Entomopathogenic fungi are emerging as potential candidates for the control of mosquitoes. Here we continue our studies on the pathogenicity of the entomopathogenic fungus Metarhizium anisopliae against adult A. aegypti females. With the aim of further reducing mean survival times of A. aegypti exposed to fungus impregnated surfaces, a sub-lethal concentration of the neonicotinoid insecticide Imidacloprid (IMI) was added to fungal suspensions. Results A sub-lethal concentration of IMI that did not significantly alter the daily survival rates or mean survival percentages of mosquitoes was identified to be 0.1 ppm. This sub-lethal concentration was combined with M. anisopliae conidia (1 × 109 conidia mL-1). Both the combined treatment and the conidia alone were able to reduce the survival of A. aegypti compared with untreated or IMI treated mosquitoes. Importantly, mosquito survival following exposure to the combined treatment for 6 and 12 hrs was significantly reduced when compared with mosquitoes exposed to conidia alone. Conclusions This is the first time that a combination of an insecticide and an entomopathogenic fungus has been tested against A. aegypti. Firstly, the study showed the potential of IMI as an alternative to the currently employed pyrethroid adulticides. Secondly, as an alternative to applications of high concentrations of chemical insecticides, we suggest that adult A. aegypti could be controlled by surface application of entomopathogenic fungi and that the efficiency of these fungi could be increased by combining the fungi with ultra-low concentrations of insecticides, resulting in higher mortality

  20. Thiosemicarbazones as Aedes aegypti larvicidal.

    PubMed

    da Silva, João Bosco P; Navarro, Daniela Maria do A F; da Silva, Aluizio G; Santos, Geanne K N; Dutra, Kamilla A; Moreira, Diogo Rodrigo; Ramos, Mozart N; Espíndola, José Wanderlan P; de Oliveira, Ana Daura T; Brondani, Dalci José; Leite, Ana Cristina L; Hernandes, Marcelo Zaldini; Pereira, Valéria R A; da Rocha, Lucas F; de Castro, Maria Carolina A B; de Oliveira, Beatriz C; Lan, Que; Merz, Kenneth M

    2015-07-15

    A set of aryl- and phenoxymethyl-(thio)semicarbazones were synthetized, characterized and biologically evaluated against the larvae of Aedes aegypti (A. aegypti), the vector responsible for diseases like Dengue and Yellow Fever. (Q)SAR studies were useful for predicting the activities of the compounds not included to create the QSAR model as well as to predict the features of a new compound with improved activity. Docking studies corroborated experimental evidence of AeSCP-2 as a potential target able to explain the larvicidal properties of its compounds. The trend observed between the in silico Docking scores and the in vitro pLC50 (equals -log LC50, at molar concentration) data indicated that the highest larvicidal compounds, or the compounds with the highest values for pLC50, are usually those with the higher docking scores (i.e., greater in silico affinity for the AeSCP-2 target). Determination of cytotoxicity for these compounds in mammal cells demonstrated that the top larvicide compounds are non-toxic.

  1. Thiosemicarbazones as Aedes aegypti larvicidal.

    PubMed

    da Silva, João Bosco P; Navarro, Daniela Maria do A F; da Silva, Aluizio G; Santos, Geanne K N; Dutra, Kamilla A; Moreira, Diogo Rodrigo; Ramos, Mozart N; Espíndola, José Wanderlan P; de Oliveira, Ana Daura T; Brondani, Dalci José; Leite, Ana Cristina L; Hernandes, Marcelo Zaldini; Pereira, Valéria R A; da Rocha, Lucas F; de Castro, Maria Carolina A B; de Oliveira, Beatriz C; Lan, Que; Merz, Kenneth M

    2015-07-15

    A set of aryl- and phenoxymethyl-(thio)semicarbazones were synthetized, characterized and biologically evaluated against the larvae of Aedes aegypti (A. aegypti), the vector responsible for diseases like Dengue and Yellow Fever. (Q)SAR studies were useful for predicting the activities of the compounds not included to create the QSAR model as well as to predict the features of a new compound with improved activity. Docking studies corroborated experimental evidence of AeSCP-2 as a potential target able to explain the larvicidal properties of its compounds. The trend observed between the in silico Docking scores and the in vitro pLC50 (equals -log LC50, at molar concentration) data indicated that the highest larvicidal compounds, or the compounds with the highest values for pLC50, are usually those with the higher docking scores (i.e., greater in silico affinity for the AeSCP-2 target). Determination of cytotoxicity for these compounds in mammal cells demonstrated that the top larvicide compounds are non-toxic. PMID:26087027

  2. The enzyme 3-hydroxykynurenine transaminase as potential target for 1,2,4-oxadiazoles with larvicide activity against the dengue vector Aedes aegypti.

    PubMed

    Oliveira, Vanessa S; Pimenteira, Cecília; da Silva-Alves, Diana C B; Leal, Laylla L L; Neves-Filho, Ricardo A W; Navarro, Daniela M A F; Santos, Geanne K N; Dutra, Kamilla A; dos Anjos, Janaína V; Soares, Thereza A

    2013-11-15

    The mosquito Aedes aegypti is the vector agent responsible for the transmission of yellow fever and dengue fever viruses to over 80 million people in tropical and subtropical regions of the world. Exhaustive efforts have lead to a vaccine candidate with only 30% effectiveness against the dengue virus and failure to protect patients against the serotype 2. Hence, vector control remains the most viable route to dengue fever control programs. We have synthesized a class of 1,2,4-oxadiazole derivatives whose most biologically active compounds exhibit potent activity against Aedes aegypti larvae (ca. of 15 ppm) and low toxicity in mammals. Exposure to these larvicides results in larvae pigmentation in a manner correlated with the LC50 measurements. Structural comparisons of the 1,2,4-oxadiazole nucleus against known inhibitors of insect enzymes allowed the identification of 3-hydroxykynurenine transaminase as a potential target for these synthetic larvicides. Molecular docking calculations indicate that 1,2,4-oxadiazole compounds can bind to 3-hydroxykynurenine transaminase with similar conformation and binding energies as its crystallographic inhibitor 4-(2-aminophenyl)-4-oxobutanoic acid.

  3. Aedes aegypti resistance to temephos in Argentina.

    PubMed

    Seccacini, Emilia; Lucia, Alejandro; Zerba, Eduardo; Licastro, Susana; Masuh, Hector

    2008-12-01

    Monitoring of resistance of Aedes aegypti to temephos was implemented in the provinces of Formosa and Misiones, Argentina, as a response to the need to improve the vigilance for the dengue vector in areas of high risk of dengue. Eggs collected in each locality were reared, and susceptibility to temephos was assayed using larval bioassays. A weak decrease in susceptibility of larvae to temephos was observed in Clorinda and Puerto Iguazú, indicating an incipient resistance with a resistance ratio of 3. No control failures have been observed yet, and this program should allow the early detection of a real problem in our country.

  4. Preliminary evaluation on the efficiency of the kit Platelia Dengue NS1 Ag-ELISA to detect dengue virus in dried Aedes aegypti: a potential tool to improve dengue surveillance

    PubMed Central

    2014-01-01

    Background Surveillance is a critical component of any dengue prevention and control programme. Herein, we investigate the efficiency of the commercial kit Platelia Dengue NS1 Ag-ELISA to detect dengue virus (DENV) antigens in Aedes aegypti mosquitoes infected under laboratory conditions. Methods Under insectary conditions, four to five day-old mosquitoes were orally challenged with DENV-2 titer of 3.6 x 105 PFU equivalent/ml, incubated for 14 days and then killed. At ten time-points following mosquito death (0, 6, 12, 24, 72, 96, 120, 144 and 168 h), i.e., during a one-week period, dried mosquitoes were comparatively tested for the detection of the NS1 antigen with other methods of detection, such as qRT-PCR and virus isolation in C6/36 cells. Results We first observed that the NS1 antigen was more effective in detecting DENV-2 in Ae. aegypti between 12 and 72 h after mosquito death when compared with qRT-PCR. A second round involved comparing the sensitivity of detection of the NS1 antigen and virus isolation in C6/36 cells. The NS1 antigen was also more effective than virus isolation, detecting DENV-2 at all time-points, i.e., up to 168 h after mosquito death. Meanwhile, virus isolation was successful up to 96 h after Ae. aegypti death, but the number of positive samples per time period presented a tendency to decline progressively over time. From the 43 samples positive by the virus isolation technique, 38 (88.4%) were also positive by the NS1 test. Conclusion Taken together, these results are the first to indicate that the NS1 antigen might be an interesting complementary tool to improve dengue surveillance through DENV detection in dried Ae. aegypti females. PMID:24690324

  5. Integrated control of the dengue vector Aedes aegypti in Liu-Chiu village, Ping-Tung County, Taiwan.

    PubMed

    Wang, C H; Chang, N T; Wu, H H; Ho, C M

    2000-06-01

    Because of an inadequate supply of potable water, villagers of Small Liu-Chiu Isle, Ping-Tung County, Taiwan, store water in containers supporting a large population of Aedes aegypti. In 1989-96, integrated control measures against Ae. aegypti were implemented on the basis of community participation. These measures included release of mosquito larvivorous fish in the drinking water storage facilities, application of larvicides to the water storage facilities in vegetable gardens, removal of discarded and unused containers and tires, improvement of household water storage facilities, and increase of potable water supply. Before implementation of the integrated control measures in 1988, 74% of the water-containing vessels were water storage facilities, and 24% of those were infested by Ae. aegypti. In 1989, the Breteau index for the entire island, indicating the average distribution density for larval Ae. aegypti, was 53.9, as compared to an index of 1.2 in 1996. In 4 villages located at the southwest and middle of the island, Ae. aegypti nearly became extinct because of the enthusiastic participation of the community. Before the implementation of integrated control, Ae. aegypti was the dominant species in containers both inside and outside the household, but after the integrated control, Aedes albopictus became predominant outside. PMID:10901632

  6. Exploring new thermal fog and ultra-low volume technologies to improve indoor control of the dengue vector, Aedes aegypti (Diptera: Culicidae).

    PubMed

    Harwood, James F; Farooq, Muhammad; Richardson, Alec G; Doud, Carl W; Putnam, John L; Szumlas, Daniel E; Richardson, Jason H

    2014-07-01

    Control of the mosquito vector, Aedes aegypti (L.), inside human habitations must be performed quickly and efficiently to reduce the risk of transmission during dengue outbreaks. As part of abroad study to assess the efficacy of dengue vector control tools for the U.S. Military, two pesticide delivery systems (ultra-low volume [ULV] and thermal fog) were evaluated for their ability to provide immediate control of Ae. aegypti mosquitoes with a contact insecticide inside simulated urban structures. An insect growth regulator was also applied to determine how well each sprayer delivered lethal doses of active ingredient to indoor water containers for pupal control. Mortality of caged Ae. aegypti, pesticide droplet size, and droplet deposition were recorded after applications. In addition, larval and pupal mortality was measured from treated water samples for 4 wk after the applications. The ULV and the thermal fogger performed equally well in delivering lethal doses of adulticide throughout the structures. The ULV resulted in greater larval mortality and adult emergence inhibition in the water containers for a longer period than the thermal fogger. Therefore, the ULV technology is expected to be a better tool for sustained vector suppression when combined with an effective insect growth regulator. However, during a dengue outbreak, either delivery system should provide an immediate knockdown of vector populations that may lower the risk of infection and allow other suppression strategies to be implemented.

  7. Spray application of Bacillus thuringiensis israelensis (Bti strain AM65-52) against Aedes aegypti (L.) and Ae. albopictus Skuse populations and impact on dengue transmission in a dengue endemic residential site in Malaysia.

    PubMed

    Tan, A W A; Loke, S R; Benjamin, S; Lee, H L; Chooi, K H; Sofian-Azirun, M

    2012-03-01

    A one year study was conducted to evaluate the impact of spray application of Bacillus thuringiensis israelensis (Bti), strain AM65-52 on vector populations and dengue transmission in a dengue endemic state in Malaysia. Residential sites with similar populations of Aedes aegypti (L.) and Aedes albopictus Skuse were studied. One site was treated with spray application of Bti into all outdoor target vector habitats, which consisted of natural and artificial containers. The other site was not treated. The impact of spray application was measured with an indoor and outdoor ovitrap index (OI) and epidemiologic data. Significant reductions in both Ae. aegypti and Ae. albopictus, OI were observed both indoors and outdoors, in treated sites compared to untreated sites (p < 0.05). OI reduction was achieved over time in the treated area. The OI was suppressed to below 10%. This was maintained for 4 weeks into the post-treatment phase. The outdoor OI at the untreated site remained at more than 40% for 38 weeks during the evaluation period. One dengue case occurred at the Bti treatment site at the beginning of the treatment phase, but no further cases were detected during the remainder of the treatment phase. However, there was an ongoing dengue outbreak in the untreated area with 15 serologically confirmed cases during weeks 37-54. Intensive fogging operations with pyrethroids at the untreated (Bti) site had a positive impact on Ae. albopictus, but not on Ae. aegypti. PMID:23082582

  8. Breeding habitats of Aedes aegypti (L) and Aedes. albopictus (Skuse) in villages of Barru, South Sulawesi, Indonesia.

    PubMed

    Ishak, H; Miyagi, I; Toma, T; Kamimura, K

    1997-12-01

    The breeding habitats of the dengue vector, Aedes aegypti and Aedes albopictus, were studied using larval collection method inside and outside houses in 6 villages of Barru, South Sulawesi, Indonesia from July 1994 to August 1995. Aedes aegypti was the dominant species, being abundant indoors especially in the coastal areas. Aedes albopictus was breeding primarily in outdoor containers in the hill and mountain areas. Earthen jar was the most common breeding habitat of Aedes aegypti in all villages surveyed. Drum can was the most common outdoor breeding habitat of Aedes albopictus in the hill and mountain areas. The high Breteau indices of Aedes aegypti and Aedes albopictus suggests that these species may play an important role in the transmission of dengue hemorrhagic fever in Barru where epidemics of the fever occur occasionally.

  9. Identity and transfer of male reproductive gland proteins of the dengue vector mosquito, Aedes aegypti: potential tools for control of female feeding and reproduction.

    PubMed

    Sirot, Laura K; Poulson, Rebecca L; McKenna, M Caitlin; Girnary, Hussein; Wolfner, Mariana F; Harrington, Laura C

    2008-02-01

    Male reproductive gland proteins (mRGPs) impact the physiology and/or behavior of mated females in a broad range of organisms. We sought to identify mRGPs of the yellow fever mosquito, Aedes aegypti, the primary vector of dengue and yellow fever viruses. Earlier studies with Ae. aegypti demonstrated that "matrone" (a partially purified male reproductive accessory gland substance) or male accessory gland fluid injected into virgin female Ae. aegypti affect female sexual refractoriness, blood feeding and digestion, flight, ovarian development, and oviposition. Using bioinformatic comparisons to Drosophila melanogaster accessory gland proteins and mass spectrometry of proteins from Ae. aegypti male accessory glands and ejaculatory ducts (AG/ED) and female reproductive tracts, we identified 63 new putative Ae. aegypti mRGPs. Twenty-one of these proteins were found in the reproductive tract of mated females but not of virgin females suggesting that they are transferred from males to females during mating. Most of the putative mRGPs fall into the same protein classes as mRGPs in other organisms, although some appear to be evolving rapidly and lack identifiable homologs in Culex pipiens, Anopheles gambiae, and D. melanogaster. Our results identify candidate male-derived molecules that may have an important influence on behavior, survival, and reproduction of female mosquitoes.

  10. Temporal genetic stability of Stegomyia aegypti (= Aedes aegypti) populations.

    PubMed

    Gloria-Soria, A; Kellner, D A; Brown, J E; Gonzalez-Acosta, C; Kamgang, B; Lutwama, J; Powell, J R

    2016-06-01

    The mosquito Stegomyia aegypti (= Aedes aegypti) (Diptera: Culicidae) is the primary vector of viruses that cause yellow fever, dengue and Chikungunya fever. In the absence of effective vaccines, the reduction of these diseases relies on vector control strategies. The success of these strategies is tightly linked to the population dynamics of target populations. In the present study, 14 collections from St. aegypti populations separated by periods of 1-13 years were analysed to determine their temporal genetic stability. Although temporal structure is discernible in most populations, the degree of temporal differentiation is dependent on the population and does not obscure the geographic structure of the various populations. The results suggest that performing detailed studies in the years prior to and after population reduction- or modification-based control interventions at each target field site may be useful in assessing the probability of success. PMID:26744174

  11. Temporal genetic stability of Stegomyia aegypti (= Aedes aegypti) populations.

    PubMed

    Gloria-Soria, A; Kellner, D A; Brown, J E; Gonzalez-Acosta, C; Kamgang, B; Lutwama, J; Powell, J R

    2016-06-01

    The mosquito Stegomyia aegypti (= Aedes aegypti) (Diptera: Culicidae) is the primary vector of viruses that cause yellow fever, dengue and Chikungunya fever. In the absence of effective vaccines, the reduction of these diseases relies on vector control strategies. The success of these strategies is tightly linked to the population dynamics of target populations. In the present study, 14 collections from St. aegypti populations separated by periods of 1-13 years were analysed to determine their temporal genetic stability. Although temporal structure is discernible in most populations, the degree of temporal differentiation is dependent on the population and does not obscure the geographic structure of the various populations. The results suggest that performing detailed studies in the years prior to and after population reduction- or modification-based control interventions at each target field site may be useful in assessing the probability of success.

  12. Effect of mycosynthesized silver nanoparticles from filtrate of Trichoderma harzianum against larvae and pupa of dengue vector Aedes aegypti L.

    PubMed

    Sundaravadivelan, Chandran; Padmanabhan, Madanagopal Nalini

    2014-03-01

    Mosquitoes transmit dreadful diseases, causing millions of deaths every year. Therefore, screening for larvicidal and pupicidal activity of microbial extracts attributes could lead to development of new and improved mosquito control methods that are economical and safe for nontarget organisms and are ecofriendly. Synthetic chemical insecticides occupy predominant position in control strategies. These hazardous chemicals exert unwarranted toxicity and lethal effects on nontarget organisms, develop physiological resistance in target, and cause adverse environmental effect. For vector control, fungal-mediated natural products have been a priority in this area at present. In the current study, effective larvicidal and pupicidal effect of mycosynthesized silver nanoparticles (Ag NPs) using an entomopathogenic fungi Trichoderma harzianum against developmental stages of the dengue vector Aedes aegypti was investigated. An attractive possibility of green nanotechnology is to use microorganisms in the synthesis of nanosilver especially Ag NPs. The mycosynthesized Ag NPs were characterized to find their unique properties through UV-visible spectrophotometer, X-ray diffraction analysis, Fourier transform infrared, and surface characteristics by scanning electron microscopy. To analyze the bioefficacy, different test concentrations for extracellular filtrate (0.2, 0.4, 0.6, 0.8, and 1.0 %) and Ag NPs (0.05, 0.10, 0.15, 0.20, and 0.25 %) were prepared to a final volume of 200 mL using deionized water; 20 larvae of each instars (I-IV) and pupa were exposed to each test concentration separately which included a set of control (distilled water) group with five replicates. Characterization of the synthesized Ag NPs were about 10-20 nm without aggregation. Susceptibility of larval instars to synthesized Ag NPs was higher than the extracellular filtrate of T. harzianum alone after 24-h exposure, where the highest mortality was recorded as 92 and 96 % for first and second instars and

  13. Angelica sinensis (Umbelliferae) with proven repellent properties against Aedes aegypti, the primary dengue fever vector in Thailand.

    PubMed

    Champakaew, D; Junkum, A; Chaithong, U; Jitpakdi, A; Riyong, D; Sanghong, R; Intirach, J; Muangmoon, R; Chansang, A; Tuetun, B; Pitasawat, B

    2015-06-01

    Botanical resources with great diversity in medicinal and aromatic plants are a rich and reliable source for finding insect repellents of plant origin, which are widely popular among today's consumers. Although some herbal-based repellents have been proven comparable to or even better than synthetics, commercially available natural repellents generally tend to be expensive, with short-lived effectiveness. This critical flaw leads to ongoing research for new and effective repellents, which provide longer protection against vector and nuisance-biting insects, while remaining safe, user friendly, and reasonably priced. This study aimed to evaluate the repellent activity of plant-derived products against the primary dengue vector, Aedes aegypti, by following the human bait technique of World Health Organization guidelines. Preliminary laboratory screening tests for repellency of 33 plant species clearly demonstrated Angelica sinensis as the most effective repellent from each kind of extracted product, with its essential oil and ethanolic extract having median complete protection times of 7.0 h (6.0-7.5) and 2.5 h (2.0-2.5), respectively. Due to its low yield (0.02 %), pungent smell, and little cause of irritation, A. sinensis essential oil did not qualify as a candidate for further repellent assessment. However, subsequent extractions of A. sinensis with different organic solvents of increasing polarity provided four extractants with varying degrees of repellency against A. aegypti. The hexane extract of A. sinensis provided excellent repellency, with a median complete protection time of 7.5 h (6.5-8.5), which was longer than that of ethanol (2.5, 2.0-2.5 h), acetone (1.75, 0.5-2.5 h), and methanol extracts (0.5, 0-1.0 h). By being the most effective product, A. sinensis hexane extract gave significant protection comparable to that of its essential oil and the standard synthetic repellent, N,N-diethyl-3-methylbenzamide (DEET: 6.25, 5.0-6.5 h). Qualitative gas

  14. Angelica sinensis (Umbelliferae) with proven repellent properties against Aedes aegypti, the primary dengue fever vector in Thailand.

    PubMed

    Champakaew, D; Junkum, A; Chaithong, U; Jitpakdi, A; Riyong, D; Sanghong, R; Intirach, J; Muangmoon, R; Chansang, A; Tuetun, B; Pitasawat, B

    2015-06-01

    Botanical resources with great diversity in medicinal and aromatic plants are a rich and reliable source for finding insect repellents of plant origin, which are widely popular among today's consumers. Although some herbal-based repellents have been proven comparable to or even better than synthetics, commercially available natural repellents generally tend to be expensive, with short-lived effectiveness. This critical flaw leads to ongoing research for new and effective repellents, which provide longer protection against vector and nuisance-biting insects, while remaining safe, user friendly, and reasonably priced. This study aimed to evaluate the repellent activity of plant-derived products against the primary dengue vector, Aedes aegypti, by following the human bait technique of World Health Organization guidelines. Preliminary laboratory screening tests for repellency of 33 plant species clearly demonstrated Angelica sinensis as the most effective repellent from each kind of extracted product, with its essential oil and ethanolic extract having median complete protection times of 7.0 h (6.0-7.5) and 2.5 h (2.0-2.5), respectively. Due to its low yield (0.02 %), pungent smell, and little cause of irritation, A. sinensis essential oil did not qualify as a candidate for further repellent assessment. However, subsequent extractions of A. sinensis with different organic solvents of increasing polarity provided four extractants with varying degrees of repellency against A. aegypti. The hexane extract of A. sinensis provided excellent repellency, with a median complete protection time of 7.5 h (6.5-8.5), which was longer than that of ethanol (2.5, 2.0-2.5 h), acetone (1.75, 0.5-2.5 h), and methanol extracts (0.5, 0-1.0 h). By being the most effective product, A. sinensis hexane extract gave significant protection comparable to that of its essential oil and the standard synthetic repellent, N,N-diethyl-3-methylbenzamide (DEET: 6.25, 5.0-6.5 h). Qualitative gas

  15. Mathematical model of temephos resistance in Aedes aegypti mosquito population

    NASA Astrophysics Data System (ADS)

    Aldila, D.; Nuraini, N.; Soewono, E.; Supriatna, A. K.

    2014-03-01

    Aedes aegypti is the main vector of dengue disease in many tropical and sub-tropical countries. Dengue became major public concern in these countries due to the unavailability of vaccine or drugs for dengue disease in the market. Hence, the only way to control the spread of DF and DHF is by controlling the vectors carrying the disease, for instance with fumigation, temephos or genetic manipulation. Many previous studies conclude that Aedes aegypti may develop resistance to many kind of insecticide, including temephos. Mathematical model for transmission of temephos resistance in Aedes aegypti population is discussed in this paper. Nontrivial equilibrium point of the system and the corresponding existence are shown analytically. The model analysis have shown epidemiological trends condition that permits the coexistence of nontrivial equilibrium is given analytically. Numerical results are given to show parameter sensitivity and some cases of worsening effect values for illustrating possible conditions in the field.

  16. Exploring the molecular basis of insecticide resistance in the dengue vector Aedes aegypti: a case study in Martinique Island (French West Indies)

    PubMed Central

    Marcombe, Sébastien; Poupardin, Rodolphe; Darriet, Frederic; Reynaud, Stéphane; Bonnet, Julien; Strode, Clare; Brengues, Cecile; Yébakima, André; Ranson, Hilary; Corbel, Vincent; David, Jean-Philippe

    2009-01-01

    Background The yellow fever mosquito Aedes aegypti is a major vector of dengue and hemorrhagic fevers, causing up to 100 million dengue infections every year. As there is still no medicine and efficient vaccine available, vector control largely based on insecticide treatments remains the only method to reduce dengue virus transmission. Unfortunately, vector control programs are facing operational challenges with mosquitoes becoming resistant to commonly used insecticides. Resistance of Ae. aegypti to chemical insecticides has been reported worldwide and the underlying molecular mechanisms, including the identification of enzymes involved in insecticide detoxification are not completely understood. Results The present paper investigates the molecular basis of insecticide resistance in a population of Ae. aegypti collected in Martinique (French West Indies). Bioassays with insecticides on adults and larvae revealed high levels of resistance to organophosphate and pyrethroid insecticides. Molecular screening for common insecticide target-site mutations showed a high frequency (71%) of the sodium channel 'knock down resistance' (kdr) mutation. Exposing mosquitoes to detoxification enzymes inhibitors prior to bioassays induced a significant increased susceptibility of mosquitoes to insecticides, revealing the presence of metabolic-based resistance mechanisms. This trend was biochemically confirmed by significant elevated activities of cytochrome P450 monooxygenases, glutathione S-transferases and carboxylesterases at both larval and adult stages. Utilization of the microarray Aedes Detox Chip containing probes for all members of detoxification and other insecticide resistance-related enzymes revealed the significant constitutive over-transcription of multiple detoxification genes at both larval and adult stages. The over-transcription of detoxification genes in the resistant strain was confirmed by using real-time quantitative RT-PCR. Conclusion These results suggest

  17. Study of the relationship between Aedes (Stegomyia) aegypti egg and adult densities, dengue fever and climate in Mirassol, state of São Paulo, Brazil.

    PubMed

    Dibo, Margareth Regina; Chierotti, Ana Patricia; Ferrari, Mariana Silveira; Mendonça, Adriano Luis; Chiaravalloti Neto, Francisco

    2008-09-01

    The purpose of this study was to examine the relationship between Aedes aegypti egg and adult density indices, dengue fever and climate in Mirassol, state of São Paulo, Brazil, between November 2004-November 2005. Weekly collections of adults and eggs were made using, respectively, manual aspirators and oviposition traps that produced four entomological indices (positivity and average of females and eggs). Weekly incidence coefficients were calculated based on dengue cases. Each week, the data obtained from entomological indices were related to each other, dengue, and climate variables. The first index to show an association with dengue transmission was the female average, followed by female positivity and egg average. Egg positivity did not show a relationship with risk for dengue, but was sensitive to identifying the presence of the vector, principally in dry seasons. The relationship between climatic factors, the vector and the disease found in this study can be widely employed in planning and undertaking dengue surveillance and control activities, but it is a tool that has not been considered by the authorities responsible for controlling the disease. In fact, this relationship permits the use of information about climate for early detection of epidemics and for establishing more effective prevention strategies than currently exist.

  18. Insecticide susceptibility status of field-collected Aedes (Stegomyia) aegypti (L.) at a dengue endemic site in Shah Alam, Selangor, Malaysia.

    PubMed

    Rong, Loke Seau; Ann, Andy Tan Wei; Ahmad, Nazni Wasi; Lim, Lee Han; Azirun, Mohd Sofian

    2012-01-01

    Biweekly ovitrap surveillance (OS) was conducted for a year (August 2007 - September 2008) at two different dengue endemic sites in Shah Alam, Selangor, Malaysia, 50 km from Kuala Lumpur. Aedes aegypti collected from these 2 locations were raised to the F3 stage and subjected to a WHO standard bioassay method to determine lethal time (LT) against pyrethroids (permethrin 0.75%, cyfluthrin 0.15%), organophosphates (malathion 5.0%, fenitrothion 1.0%), carbamates (propoxur 0.1%, bendiocarb 0.1%) and organochlorine (DDT 4.0%). Insecticide susceptibilities were analyzed for one year. Aedes aegypti were resistant to DDT with a mortality range of 0 - 13.3% throughout the year at both sites. Susceptibilities to pyrethroids and carbamates varied throughout the year. In contrast, susceptibilities to pyrethroids and carbamates varied throughout the year: resistant to propoxur, bendiocarb and permethrin with mortality of < 80% in most months; but, showed incipient resistant to cyfluthrin in most months. Mosquitoes were consistently susceptible to malathion and fenitrothion, with complete mortality during most months. They were especially susceptible to malathion with LT50 values of 21.32 - 36.37 minutes, suggesting effectiveness of malathion for control of dengue. PMID:23082552

  19. Spatial Stability of Adult Aedes aegypti Populations

    PubMed Central

    Barrera, Roberto

    2011-01-01

    Vector control programs could be more efficient by identifying the location of highly productive sites of Aedes aegypti. This study explored if the number of female adults of Ae. aegypti in BG-Sentinel traps was clustered and if their spatial distribution changed in time in two neighborhoods in San Juan, Puerto Rico. Traps were uniformly distributed across each neighborhood (130 m from each other), and samples were taken every 3 weeks. Global and local spatial autocorrelations were explored. Spatial stability existed if the rank order of trap captures was kept in time. There was lack of global autocorrelation in both neighborhoods, precluding their stratification for control purposes. Hot and cold spots were identified, revealing the highly focal nature of Ae. aegypti. There was significant spatial stability throughout the study in both locations. The consistency in trap productivity in time could be used to increase the effectiveness of vector and dengue control programs. PMID:22144449

  20. Larvicidal Potential of the Halogenated Sesquiterpene (+)-Obtusol, Isolated from the Alga Laurencia dendroidea J. Agardh (Ceramiales: Rhodomelaceae), against the Dengue Vector Mosquito Aedes aegypti (Linnaeus) (Diptera: Culicidae)

    PubMed Central

    Salvador-Neto, Orlando; Gomes, Simone Azevedo; Soares, Angélica Ribeiro; Machado, Fernanda Lacerda da Silva; Samuels, Richard Ian; Nunes da Fonseca, Rodrigo; Souza-Menezes, Jackson; Moraes, Jorge Luiz da Cunha; Campos, Eldo; Mury, Flávia Borges; Silva, José Roberto

    2016-01-01

    Dengue is considered a serious public health problem in many tropical regions of the world including Brazil. At the moment, there is no viable alternative to reduce dengue infections other than controlling the insect vector, Aedes aegypti Linnaeus. In the continuing search for new sources of chemicals targeted at vector control, natural products are a promising alternative to synthetic pesticides. In our work, we investigated the toxicity of a bioactive compound extracted from the red alga Laurencia dendroidea J. Agardh. The initial results demonstrated that crude extracts, at a concentration of 5 ppm, caused pronounced mortality of second instar A. aegypti larvae. Two molecules, identified as (−)-elatol and (+)-obtusol were subsequently isolated from crude extract and further evaluated. Assays with (−)-elatol showed moderate larvicidal activity, whereas (+)-obtusol presented higher toxic activity than (−)-elatol, with a LC50 value of 3.5 ppm. Histological analysis of the larvae exposed to (+)-obtusol revealed damage to the intestinal epithelium. Moreover, (+)-obtusol-treated larvae incubated with 2 µM CM-H2DCFDA showed the presence of reactive oxygen species, leading us to suggest that epithelial damage might be related to redox imbalance. These results demonstrate the potential of (+)-obtusol as a larvicide for use against A. aegypti and the possible mode of action of this compound. PMID:26821032

  1. Larvicidal Potential of the Halogenated Sesquiterpene (+)-Obtusol, Isolated from the Alga Laurencia dendroidea J. Agardh (Ceramiales: Rhodomelaceae), against the Dengue Vector Mosquito Aedes aegypti (Linnaeus) (Diptera: Culicidae).

    PubMed

    Salvador-Neto, Orlando; Gomes, Simone Azevedo; Soares, Angélica Ribeiro; Machado, Fernanda Lacerda da Silva; Samuels, Richard Ian; Nunes da Fonseca, Rodrigo; Souza-Menezes, Jackson; Moraes, Jorge Luiz da Cunha; Campos, Eldo; Mury, Flávia Borges; Silva, José Roberto

    2016-02-01

    Dengue is considered a serious public health problem in many tropical regions of the world including Brazil. At the moment, there is no viable alternative to reduce dengue infections other than controlling the insect vector, Aedes aegypti Linnaeus. In the continuing search for new sources of chemicals targeted at vector control, natural products are a promising alternative to synthetic pesticides. In our work, we investigated the toxicity of a bioactive compound extracted from the red alga Laurencia dendroidea J. Agardh. The initial results demonstrated that crude extracts, at a concentration of 5 ppm, caused pronounced mortality of second instar A. aegypti larvae. Two molecules, identified as (-)-elatol and (+)-obtusol were subsequently isolated from crude extract and further evaluated. Assays with (-)-elatol showed moderate larvicidal activity, whereas (+)-obtusol presented higher toxic activity than (-)-elatol, with a LC50 value of 3.5 ppm. Histological analysis of the larvae exposed to (+)-obtusol revealed damage to the intestinal epithelium. Moreover, (+)-obtusol-treated larvae incubated with 2 µM CM-H₂DCFDA showed the presence of reactive oxygen species, leading us to suggest that epithelial damage might be related to redox imbalance. These results demonstrate the potential of (+)-obtusol as a larvicide for use against A. aegypti and the possible mode of action of this compound.

  2. Toxicity effect of Delonix elata (Yellow Gulmohr) and predatory efficiency of Copepod, Mesocyclops aspericornis for the control of dengue vector, Aedes aegypti

    PubMed Central

    Vasugi, Chellamuthu; Kamalakannan, Siva; Murugan, Kadarkarai

    2013-01-01

    Objective To evaluate the toxicity, predatory efficiency of Delonix elata (D. elata) and Mesocyclops aspericornis (M. aspericornis) against dengue vector, Aedes aegypti (Ae. aegypti). Methods A mosquitocidal bioassay was conducted at different concentration of plant extract followed by WHO standard method. The probit analysis of each tested concentration and control were observed by using software SPSS 11 version package. The each tested concentration variable was assessed by DMRT method. The predatory efficiency of copepod was followed by Deo et al., 1988. The predator, M. aspericornis was observed for mortality, abnormalities, survival and swimming activity after 24 h treatment of plant and also predation on the mosquito larvae were observed. Results D. elata were tested for biological activity against the larvae, and pupae of Ae. aegypti. Significant mortality effects were observed in each life stage. The percentage of mortality was 100% in first and second instars whereas 96%, 92% in third and fourth instars. Fitted probit-mortality curves for larvae indicated the median and 90% lethal concentrations of D. elata for instars 1-4 to be 4.91 (8.13), 5.16 (8.44), 5.95 (7.76) and 6.87 (11.23), respectively. The results indicate that leaf extract exhibits significant biological activity against life stages. The present study revealed that D. elata is potentially important in the control of Ae. aegypti. Similar studies were conducted for predatory efficiency of Copepod, M. aspericornis against mosquito vector Ae. Aegypti. This study reported that the predatory copepod fed on 39% and 25% in I and III instar larvae of mosquito and in combined treatment of D. elata and copepod maximum control of mosquito larval states and at 83%, 80%, 75% and 53% in I, II, III and IV instars, respectively. Conclusions The combined action of plant extract and predatory copepod to effectively control mosquito population and reduce the dengue transmitting diseases.

  3. A lethal ovitrap-based mass trapping scheme for dengue control in Australia: II. Impact on populations of the mosquito Aedes aegypti.

    PubMed

    Rapley, L P; Johnson, P H; Williams, C R; Silcock, R M; Larkman, M; Long, S A; Russell, R C; Ritchie, S A

    2009-12-01

    In Cairns, Australia, the impacts on Aedes aegypti L. (Diptera: Culicidae) populations of two types of 'lure & kill' (L&K) lethal ovitraps (LOs), the standard lethal ovitrap (SLO) and the biodegradable lethal ovitrap (BLO) were measured during three mass-trapping interventions. To assess the efficacy of the SLO, two interventions (one dry season and one wet season) were conducted in three discrete areas, each lasting 4 weeks, with the following treatments: (i) SLOs (>200 traps, approximately 4/premise), BG-sentinel traps (BGSs; approximately 15, 1/premise) and larval control (container reduction and methoprene treatment) and (ii) larval control alone, and (iii) untreated control. Female Ae. aegypti populations were monitored for 4 weeks pre- and post-treatment in all three areas using BGSs and sticky ovitraps (SOs) or non-lethal regular ovitraps (ROs). In the dry season, 206 SLOs and 15 BGSs set at 54 and 15 houses, respectively, caught and killed an estimated 419 and 73 female Ae. aegypti, respectively. No significant decrease in collection size of female Ae. aegypti could be attributed to the treatments. In the wet season, 243 SLOs and 15 BGSs killed approximately 993 and 119 female Ae. aegypti, respectively. The mean number of female Ae. aegypti collected after 4 weeks with SOs and BGSs was significantly less than the control (LSD post-hoc test). The third mass-trapping intervention was conducted using the BLO during the wet season in Cairns. For this trial, three treatment areas were each provided with BLOs (>500, approximately 4/premise) plus larval control, and an untreated control area was designated. Adult female Ae. aegypti were collected for 4 weeks pre- and post-treatment using 15 BGSs and 20 SOs. During this period, 53.2% of BLOs contained a total of 6654 Ae. aegypti eggs. Over the intervention period, collections of Ae. aegypti in the treatment areas were significantly less than in the control area for BGSs but not SOs. An influx of relatively large

  4. Effect of temperature on the population dynamics of Aedes aegypti

    NASA Astrophysics Data System (ADS)

    Yusoff, Nuraini; Tokachil, Mohd Najir

    2015-10-01

    Aedes aegypti is one of the main vectors in the transmission of dengue fever. Its abundance may cause the spread of the disease to be more intense. In the study of its biological life cycle, temperature was found to increase the development rate of each stage of this species and thus, accelerate the process of the development from egg to adult. In this paper, a Lefkovitch matrix model will be used to study the stage-structured population dynamics of Aedes aegypti. In constructing the transition matrix, temperature will be taken into account. As a case study, temperature recorded at the Subang Meteorological Station for year 2006 until 2010 will be used. Population dynamics of Aedes aegypti at maximum, average and minimum temperature for each year will be simulated and compared. It is expected that the higher the temperature, the faster the mosquito will breed. The result will be compared to the number of dengue fever incidences to see their relationship.

  5. Bacterial Larvicide, Bacillus thuringiensis israelensis Strain AM 65-52 Water Dispersible Granule Formulation Impacts Both Dengue Vector, Aedes aegypti (L.) Population Density and Disease Transmission in Cambodia.

    PubMed

    Setha, To; Chantha, Ngan; Benjamin, Seleena; Socheat, Doung

    2016-09-01

    A multi-phased study was conducted in Cambodia from 2005-2011 to measure the impact of larviciding with the bacterial larvicide, Bacillus thuringiensis israelensis (Bti), a water dispersible granule (WG) formulation on the vector, Aedes aegypti (L.) and the epidemiology. In our studies, all in-use containers were treated at 8 g/1000 L, including smaller containers and animal feeders which were found to contribute 23% of Ae aegypti pupae. The treated waters were subjected to routine water exchange activities. Pupal production was suppressed by an average 91% for 8 weeks. Pupal numbers continued to remain significantly lower than the untreated commune (UTC) for 13 weeks post treatment in the peak dengue vector season (p<0.05). Suppression of pupal production was supported by very low adult numbers in the treated commune. An average 70% of the household harbored 0-5 Ae aegypti mosquitoes per home for 8 weeks post treatment, but in the same period of time >50% of the household in the UTC harbored ≥11 mosquitoes per home. The adult population continued to remain at significantly much lower numbers in the Bti treated commune than in the UTC for 10-12 weeks post treatment (p<0.05). In 2011, a pilot operational program was evaluated in Kandal Province, a temephos resistant site. It was concluded that 2 cycles of Bti treatment in the 6 months monsoon season with complete coverage of the target districts achieved an overall dengue case reduction of 48% in the 6 treated districts compared to the previous year, 2010. Five untreated districts in the same province had an overwhelming increase of 352% of dengue cases during the same period of time. The larvicide efficacy, treatment of all in-use containers at the start of the monsoon season, together with treatment coverage of entire districts interrupted disease transmission in the temephos resistant province. PMID:27627758

  6. Bacterial Larvicide, Bacillus thuringiensis israelensis Strain AM 65-52 Water Dispersible Granule Formulation Impacts Both Dengue Vector, Aedes aegypti (L.) Population Density and Disease Transmission in Cambodia

    PubMed Central

    Socheat, Doung

    2016-01-01

    A multi-phased study was conducted in Cambodia from 2005–2011 to measure the impact of larviciding with the bacterial larvicide, Bacillus thuringiensis israelensis (Bti), a water dispersible granule (WG) formulation on the vector, Aedes aegypti (L.) and the epidemiology. In our studies, all in-use containers were treated at 8 g/1000 L, including smaller containers and animal feeders which were found to contribute 23% of Ae aegypti pupae. The treated waters were subjected to routine water exchange activities. Pupal production was suppressed by an average 91% for 8 weeks. Pupal numbers continued to remain significantly lower than the untreated commune (UTC) for 13 weeks post treatment in the peak dengue vector season (p<0.05). Suppression of pupal production was supported by very low adult numbers in the treated commune. An average 70% of the household harbored 0–5 Ae aegypti mosquitoes per home for 8 weeks post treatment, but in the same period of time >50% of the household in the UTC harbored ≥11 mosquitoes per home. The adult population continued to remain at significantly much lower numbers in the Bti treated commune than in the UTC for 10–12 weeks post treatment (p<0.05). In 2011, a pilot operational program was evaluated in Kandal Province, a temephos resistant site. It was concluded that 2 cycles of Bti treatment in the 6 months monsoon season with complete coverage of the target districts achieved an overall dengue case reduction of 48% in the 6 treated districts compared to the previous year, 2010. Five untreated districts in the same province had an overwhelming increase of 352% of dengue cases during the same period of time. The larvicide efficacy, treatment of all in-use containers at the start of the monsoon season, together with treatment coverage of entire districts interrupted disease transmission in the temephos resistant province. PMID:27627758

  7. Bacterial Larvicide, Bacillus thuringiensis israelensis Strain AM 65-52 Water Dispersible Granule Formulation Impacts Both Dengue Vector, Aedes aegypti (L.) Population Density and Disease Transmission in Cambodia.

    PubMed

    Setha, To; Chantha, Ngan; Benjamin, Seleena; Socheat, Doung

    2016-09-01

    A multi-phased study was conducted in Cambodia from 2005-2011 to measure the impact of larviciding with the bacterial larvicide, Bacillus thuringiensis israelensis (Bti), a water dispersible granule (WG) formulation on the vector, Aedes aegypti (L.) and the epidemiology. In our studies, all in-use containers were treated at 8 g/1000 L, including smaller containers and animal feeders which were found to contribute 23% of Ae aegypti pupae. The treated waters were subjected to routine water exchange activities. Pupal production was suppressed by an average 91% for 8 weeks. Pupal numbers continued to remain significantly lower than the untreated commune (UTC) for 13 weeks post treatment in the peak dengue vector season (p<0.05). Suppression of pupal production was supported by very low adult numbers in the treated commune. An average 70% of the household harbored 0-5 Ae aegypti mosquitoes per home for 8 weeks post treatment, but in the same period of time >50% of the household in the UTC harbored ≥11 mosquitoes per home. The adult population continued to remain at significantly much lower numbers in the Bti treated commune than in the UTC for 10-12 weeks post treatment (p<0.05). In 2011, a pilot operational program was evaluated in Kandal Province, a temephos resistant site. It was concluded that 2 cycles of Bti treatment in the 6 months monsoon season with complete coverage of the target districts achieved an overall dengue case reduction of 48% in the 6 treated districts compared to the previous year, 2010. Five untreated districts in the same province had an overwhelming increase of 352% of dengue cases during the same period of time. The larvicide efficacy, treatment of all in-use containers at the start of the monsoon season, together with treatment coverage of entire districts interrupted disease transmission in the temephos resistant province.

  8. Effect of mycosynthesized silver nanoparticles from filtrate of Trichoderma harzianum against larvae and pupa of dengue vector Aedes aegypti L.

    PubMed

    Sundaravadivelan, Chandran; Padmanabhan, Madanagopal Nalini

    2014-03-01

    Mosquitoes transmit dreadful diseases, causing millions of deaths every year. Therefore, screening for larvicidal and pupicidal activity of microbial extracts attributes could lead to development of new and improved mosquito control methods that are economical and safe for nontarget organisms and are ecofriendly. Synthetic chemical insecticides occupy predominant position in control strategies. These hazardous chemicals exert unwarranted toxicity and lethal effects on nontarget organisms, develop physiological resistance in target, and cause adverse environmental effect. For vector control, fungal-mediated natural products have been a priority in this area at present. In the current study, effective larvicidal and pupicidal effect of mycosynthesized silver nanoparticles (Ag NPs) using an entomopathogenic fungi Trichoderma harzianum against developmental stages of the dengue vector Aedes aegypti was investigated. An attractive possibility of green nanotechnology is to use microorganisms in the synthesis of nanosilver especially Ag NPs. The mycosynthesized Ag NPs were characterized to find their unique properties through UV-visible spectrophotometer, X-ray diffraction analysis, Fourier transform infrared, and surface characteristics by scanning electron microscopy. To analyze the bioefficacy, different test concentrations for extracellular filtrate (0.2, 0.4, 0.6, 0.8, and 1.0 %) and Ag NPs (0.05, 0.10, 0.15, 0.20, and 0.25 %) were prepared to a final volume of 200 mL using deionized water; 20 larvae of each instars (I-IV) and pupa were exposed to each test concentration separately which included a set of control (distilled water) group with five replicates. Characterization of the synthesized Ag NPs were about 10-20 nm without aggregation. Susceptibility of larval instars to synthesized Ag NPs was higher than the extracellular filtrate of T. harzianum alone after 24-h exposure, where the highest mortality was recorded as 92 and 96 % for first and second instars and

  9. Diminished reproductive fitness associated with the deltamethrin resistance in an Indian strain of dengue vector mosquito, Aedes aegypti L.

    PubMed

    Kumar, Sarita; Thomas, Anita; Samuel, Thomas; Sahgal, Arunima; Verma, Anita; Pillai, M K K

    2009-08-01

    The susceptible (SS) and resistant (DLR) strains of Aedes aegypti selected with deltamethrin and combination of deltamethrin and PBO (1:5) at the larval/adult stage were studied in the laboratory for their reproductive fitness in terms of fecundity, hatchability and longevity of gonotrophic cycles. The DLR strains exhibited 73-88% reduction in the duration of gonotrophic cycles as compared to their SS counterparts. There was a considerable decrease in egg production and hatchability rates in the selected strains of Ae. aegypti, as compared to that of the SS strain. Data indicate deltamethrin being an effective insecticide against Ae. aegypti and a possible correlation between the deltamethrin resistance and disadvantages during reproduction. The most drastic and significant effect was observed in DLR1b strains exhibiting 36.7% decrease in fecundity and 32.4% reduction in hatchability. Another important observation was diminished reproductive fitness in DLR2 strains. This suggests the usefulness of synergized deltamethrin selections in reducing the frequency of resistant individuals. A significant finding was to observe the reproductive disadvantage in adult-selected strains having negligible resistance to deltamethrin implicating the efficacy of deltamethrin as an adulticide rather than as a larvicide. Various probable reasons for the reduction in the reproductive potential and the possible resistance-management strategies of Ae. aegypti are discussed. PMID:19901902

  10. Ovicidal, larvicidal and adulticidal properties of Asparagus racemosus (Willd.) (Family: Asparagaceae) root extracts against filariasis (Culex quinquefasciatus), dengue (Aedes aegypti) and malaria (Anopheles stephensi) vector mosquitoes (Diptera: Culicidae).

    PubMed

    Govindarajan, Marimuthu; Sivakumar, Rajamohan

    2014-04-01

    Several diseases are associated to the mosquito-human interaction. Mosquitoes are the carriers of severe and well-known illnesses such as malaria, arboviral encephalitis, dengue fever, chikungunya fever, West Nile virus and yellow fever. These diseases produce significant morbidity and mortality in humans and livestock around the world. The present investigation was undertaken to study the ovicidal, larvicidal and adulticidal activities of crude hexane, ethyl acetate, benzene, chloroform and methanol extracts of root of Asparagus racemosus were assayed for their toxicity against three important vector mosquitoes, viz., Culex quinquefasciatus, Aedes aegypti and Anopheles stephensi (Diptera: Culicidae). The mean percent hatchability of the eggs was observed after 48 h post-treatment. The percent hatchability was inversely proportional to the concentration of extract and directly proportional to the eggs. All the five solvent extracts showed moderate ovicidal activity; however, the methanol extract showed the highest ovicidal activity. The methanol extract of Asparagus racemosus against Culex quinquefasciatus, Aedes aegypti and Anopheles stephensi exerted 100% mortality (zero hatchability) at 375, 300 and 225 ppm, respectively. Control eggs showed 99-100% hatchability. The larval mortality was observed after 24 h of exposure. All extracts showed moderate larvicidal effects; however, the highest larval mortality was found in methanol extract of root of Asparagus racemosus against the larvae of Culex quinquefasciatus, Aedes aegypti and Anopheles stephensi with the LC50 and LC90 values were 115.13, 97.71 and 90.97 ppm and 210.96, 179.92, and 168.82 ppm, respectively. The adult mortality was observed after 24 h recovery period. The plant crude extracts showed dose-dependent mortality. At higher concentrations, the adult showed restless movement for some times with abnormal wagging and then died. Among the extracts tested, the highest adulticidal activity was observed in

  11. Regulation of arginine methyltransferase 3 by a Wolbachia-induced microRNA in Aedes aegypti and its effect on Wolbachia and dengue virus replication.

    PubMed

    Zhang, Guangmei; Hussain, Mazhar; Asgari, Sassan

    2014-10-01

    The gram-negative endosymbiotic bacteria, Wolbachia, have been found to colonize a wide range of invertebrates, including over 40% of insect species. Best known for host reproductive manipulations, some strains of Wolbachia have been shown to reduce the host life span by about 50% and inhibit replication and transmission of dengue virus (DENV) in the mosquito vector, Aedes aegypti. The molecular mechanisms underlying these effects still are not well understood. Our previous studies showed that Wolbachia uses host microRNAs (miRNAs) to manipulate host gene expression for its efficient maintenance and limiting replication of DENV in Ae. aegypti. Protein arginine methyltransferases are structurally and functionally conserved proteins from yeast to human. In mammals, it has been reported that protein arginine methyltransferases such as PRMT1, 5 and 6 could regulate replication of different viruses. Ae. aegypti contains eight members of protein arginine methyltransferases (AaArgM1-8). Here, we show that the wMelPop strain of Wolbachia introduced into Ae. aegypti significantly induces the expression of AaArgM3. Interestingly, we found that Wolbachia uses aae-miR-2940, which is highly upregulated in Wolbachia-infected mosquitoes, to upregulate the expression of AaArgM3. Silencing of AaArgM3 in a mosquito cell line led to a significant reduction in Wolbachia replication, but had no effect on the replication of DENV. These results provide further evidence that Wolbachia uses the host miRNAs to manipulate host gene expression and facilitate colonization in Ae. aegypti mosquito.

  12. Pyrethroid resistance is widespread among Florida populations of Aedes aegypti

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aedes aegypti is an efficient vector of a number of diseases that affect man and is of increasing concern because of the reemergence of dengue and recent identification of locally acquired chikungunya in Florida. Pesticide resistance in this species has been demonstrated in several neighboring coun...

  13. Strong larvicidal potential of Artemisia annua leaf extract against malaria (Anopheles stephensi Liston) and dengue (Aedes aegypti L.) vectors and bioassay-driven isolation of the marker compounds.

    PubMed

    Sharma, Gaurav; Kapoor, Himanshi; Chopra, Madhu; Kumar, Kaushal; Agrawal, Veena

    2014-01-01

    Malaria and dengue are the two most important vector-borne human diseases caused by mosquito vectors Anopheles stephensi and Aedes aegypti, respectively. Of the various strategies adopted for eliminating these diseases, controlling of vectors through herbs has been reckoned as one of the important measures for preventing their resurgence. Artemisia annua leaf chloroform extract when tried against larvae of A. stephensi and A. aegypti has shown a strong larvicidal activity against both of these vectors, their respective LC50 and LC90 values being 0.84 and 4.91 ppm for A. stephensi and 0.67 and 5.84 ppm for A. aegypti. The crude extract when separated through column chromatography using petroleum ether-ethyl acetate gradient (0-100%) yielded 76 fractions which were pooled into three different active fractions A, B and C on the basis of same or nearly similar R f values. The aforesaid pooled fractions when assayed against the larvae of A. stephensi too reported a strong larvicidal activity. The respective marker compound purified from the individual fractions A, B and C, were Artemisinin, Arteannuin B and Artemisinic acid, as confirmed and characterized through FT-IR and NMR. This is our first report of strong mortality of A. annua leaf chloroform extract against vectors of two deadly diseases. This technology can be scaled up for commercial exploitation. PMID:24158647

  14. Identification of a major Quantitative Trait Locus determining resistance to the organophosphate temephos in the dengue vector mosquito Aedes aegypti.

    PubMed

    Paiva, Marcelo H S; Lovin, Diane D; Mori, Akio; Melo-Santos, Maria A V; Severson, David W; Ayres, Constância F J

    2016-01-01

    Organophosphate insecticides (OP) have extensively been used to control mosquitoes, such as the vector Aedes aegypti. Unfortunately, OP resistance has hampered control programs worldwide. We used Quantitative Trait Locus (QTL) mapping to evaluate temephos resistance in two F1 intercross populations derived from crosses between a resistant Ae. aegypti strain (RecR) and two susceptible strains (MoyoD and Red). A single major effect QTL was identified on chromosome 2 of both segregating populations, named rtt1 (resistance to temephos 1). Bioinformatics analyses identified a cluster of carboxylesterase genes (CCE) within the rtt1 interval. qRT-PCR demonstrated that different CCEs were up-regulated in F2 resistant individuals from both crosses. However, none exceeded the 2-fold expression. Primary mechanisms for temephos resistance may vary between Ae. aegypti populations, yet also appear to support previous findings suggesting that multiple linked esterase genes may contribute to temephos resistance in the RecR strain as well as other populations.

  15. Detection of Aedes aegypti, Aedes albopictus, and Aedes koreicus in the Area of Sochi, Russia.

    PubMed

    Ganushkina, Ludmila A; Patraman, Ivan V; Rezza, Giovanni; Migliorini, Luigi; Litvinov, Serguei K; Sergiev, Vladimir P

    2016-01-01

    Following the identification of Aedes (Ae.) aegypti in the Sochi area in Russia at the beginning of 2000, entomological surveys were conducted during the summers of 2007, 2011, and 2012, leading to the identification of Ae. albopictus and Ae. koreicus. These findings highlight Russia as being the only country in the World Health Organization European Region with a documented presence of both Ae. aegypti and Ae. albopictus mosquitoes. Both mosquito species are found on the coasts of the Black Sea. Control measures are needed to reduce the possible risks of importing exotic vector-borne infections, such as dengue and chikungunya.

  16. The use of direct sequencing of dengue virus cDNA from individual field-collected Aedes aegypti for surveillance and epidemiological studies.

    PubMed

    Romero-Vivas, C M; Sutherland, C J; Falconar, A K

    2000-03-01

    The relative efficiencies of four methods to extract viral RNA from individual dengue-2 virus (D-2V)-infected mosquitoes, Aedes aegypti (L.) (Diptera: Culicidae), were compared. The most efficient of these methods was then used to extract viral RNA for the preparation of cDNA from the abdomens of six engorged D-2V-infected mosquitoes and sera from three dengue fever (DF) patients collected in an isolated rural town in Colombia. Comparisons of viral envelope (E) gene sequences from each of these strongly suggested that the D-2V population which circulated in this study area was a homogeneous genotype which was unrelated to any of the D-2 viruses isolated from elsewhere in the world. When coupled with our rapid method to identify viruses in individual mosquitoes (Romero-Vivas et al. (1998) Medical and Veterinary Entomology, 12, 101-105), the methodology we describe should be useful for epidemiological and surveillance studies of dengue viruses and other arboviruses.

  17. Importance of ecology in Aedes aegypti control.

    PubMed

    Service, M W

    1992-12-01

    Aedes aegypti is one of the world's most widely distributed mosquitos and is of considerable medical importance as a vector of dengue and yellow fever. Not surprisingly therefore there has been more written on its biology than any other mosquito. The present paper summarizes ecological studies undertaken on this vector, including those on pre-adult mortalities, life-tables, adult dispersal and survival rates. In discussing surveillance techniques it is pointed out there are still no reliable methods for monitoring adult populations. The importance of the resting habits of adults and house construction in insecticidal control of Ae. aegypti is discussed. The question is, have ecological studies and population modeling resulted in any more understanding of the epidemiology of dengue, or helped formulate better control strategies? The answer seems to be not usually, possible because there have actually been relatively few good ecological studies on Ae. aegypti. Although mathematical modeling indicates that better control might be achieved if it were directed at the larvae, not adults, this has not usually been taken into consideration by those engaged in control. There is clearly need for greater collaboration between those practicing control, and ecologists and modelers.

  18. Temporal Dynamics and Spatial Patterns of Aedes aegypti Breeding Sites, in the Context of a Dengue Control Program in Tartagal (Salta Province, Argentina)

    PubMed Central

    Espinosa, Manuel; Weinberg, Diego; Rotela, Camilo H.; Polop, Francisco; Abril, Marcelo; Scavuzzo, Carlos Marcelo

    2016-01-01

    Background Since 2009, Fundación Mundo Sano has implemented an Aedes aegypti Surveillance and Control Program in Tartagal city (Salta Province, Argentina). The purpose of this study was to analyze temporal dynamics of Ae. aegypti breeding sites spatial distribution, during five years of samplings, and the effect of control actions over vector population dynamics. Methodology/Principal Findings Seasonal entomological (larval) samplings were conducted in 17,815 fixed sites in Tartagal urban area between 2009 and 2014. Based on information of breeding sites abundance, from satellite remote sensing data (RS), and by the use of Geographic Information Systems (GIS), spatial analysis (hotspots and cluster analysis) and predictive model (MaxEnt) were performed. Spatial analysis showed a distribution pattern with the highest breeding densities registered in city outskirts. The model indicated that 75% of Ae. aegypti distribution is explained by 3 variables: bare soil coverage percentage (44.9%), urbanization coverage percentage(13.5%) and water distribution (11.6%). Conclusions/Significance This results have called attention to the way entomological field data and information from geospatial origin (RS/GIS) are used to infer scenarios which could then be applied in epidemiological surveillance programs and in the determination of dengue control strategies. Predictive maps development constructed with Ae. aegypti systematic spatiotemporal data, in Tartagal city, would allow public health workers to identify and target high-risk areas with appropriate and timely control measures. These tools could help decision-makers to improve health system responses and preventive measures related to vector control. PMID:27223693

  19. Aedes aegypti in south Vietnam: ecology, genetic structure, vectorial competence and resistance to insecticides.

    PubMed

    Huber, Karine; Le Loan, Luu; Hoang, Tran Huu; Tien, Tran Khanh; Rodhain, François; Failloux, Anna-Bella

    2003-03-01

    In Vietnam, dengue hemorrhagic fever has been detected since the 1950s. In Southeast Asia, urban centers expanded rapidly in an uncontrolled and unplanned way. The Aedes aegypti populations and dengue viruses thrived in these new ecological and demographic settings. The result of these changes was a greatly extended geographic distribution, increased densities of Ae. aegypti and the maintenance of the four dengue serotypes leading to a dramatic increase in dengue transmission. To assess the role of the vector in the changing pattern of the disease in Southeast Asia, we studied the ecology of Ae. aegypti, genetic differentiation, variability in competence as a vector for dengue 2 virus, and resistance to insecticides.

  20. Larvicidal efficacy of different plant parts of railway creeper, Ipomoea cairica Extract Against Dengue Vector Mosquitoes, Aedes albopictus (Diptera: Culicidae) and Aedes aegypti (Diptera: Culicidae).

    PubMed

    AhbiRami, Rattanam; Zuharah, Wan Fatma; Thiagaletchumi, Maniam; Subramaniam, Sreeramanan; Sundarasekar, Jeevandran

    2014-01-01

    Natural insecticides from plant origin against mosquito vectors have been the main concern for research due to their high level of eco-safety. Control of mosquitoes in their larval stages are an ideal method since Aedes larvae are aquatic, thus it is easier to deal with them in this habitat. The present study was specifically conducted to explore the larvicidal efficacy of different plant parts of Ipomoea cairica (L.) or railway creeper crude extract obtained using two different solvents; methanol and acetone against late third-stage larvae of Aedes albopictus (Skuse) and Aedes aegypti (L.) (Diptera: Culicidae). Plant materials of I. cairica leaf, flower, and stem were segregated, airdried, powdered, and extracted using Soxhlet apparatus. Larvicidal bioassays were performed by using World Health Organization standard larval susceptibility test method for each species which were conducted separately for different concentration ranging from 10 to 450 ppm. Both acetone and methanol extracts showed 100% mortality at highest concentration tested (450 ppm) after 24 h of exposure. Results from factorial ANOVA indicated that there were significant differences in larvicidal effects between mosquito species, solvent used and plant parts (F=5.71, df=2, P<0.05). The acetone extract of I. cairica leaf showed the most effective larvicidal action in Ae. aegypti with LC50 of 101.94 ppm followed by Ae. albopictus with LC50 of 105.59 ppm compared with other fractions of I. cairica extract obtained from flower, stem, and when methanol are used as solvent. The larvae of Ae. aegypti appeared to be more susceptible to I. cairica extract with lower LC50 value compared with Ae. albopictus (F=8.83, df=1, P<0.05). Therefore, this study suggests that the acetone extract of I. cairica leaf can be considered as plant-derived insecticide for the control of Aedes mosquitoes. This study quantified the larvicidal property of I. cairica extract, providing information on lethal concentration that

  1. Larvicidal efficacy of different plant parts of railway creeper, Ipomoea cairica Extract Against Dengue Vector Mosquitoes, Aedes albopictus (Diptera: Culicidae) and Aedes aegypti (Diptera: Culicidae).

    PubMed

    AhbiRami, Rattanam; Zuharah, Wan Fatma; Thiagaletchumi, Maniam; Subramaniam, Sreeramanan; Sundarasekar, Jeevandran

    2014-01-01

    Natural insecticides from plant origin against mosquito vectors have been the main concern for research due to their high level of eco-safety. Control of mosquitoes in their larval stages are an ideal method since Aedes larvae are aquatic, thus it is easier to deal with them in this habitat. The present study was specifically conducted to explore the larvicidal efficacy of different plant parts of Ipomoea cairica (L.) or railway creeper crude extract obtained using two different solvents; methanol and acetone against late third-stage larvae of Aedes albopictus (Skuse) and Aedes aegypti (L.) (Diptera: Culicidae). Plant materials of I. cairica leaf, flower, and stem were segregated, airdried, powdered, and extracted using Soxhlet apparatus. Larvicidal bioassays were performed by using World Health Organization standard larval susceptibility test method for each species which were conducted separately for different concentration ranging from 10 to 450 ppm. Both acetone and methanol extracts showed 100% mortality at highest concentration tested (450 ppm) after 24 h of exposure. Results from factorial ANOVA indicated that there were significant differences in larvicidal effects between mosquito species, solvent used and plant parts (F=5.71, df=2, P<0.05). The acetone extract of I. cairica leaf showed the most effective larvicidal action in Ae. aegypti with LC50 of 101.94 ppm followed by Ae. albopictus with LC50 of 105.59 ppm compared with other fractions of I. cairica extract obtained from flower, stem, and when methanol are used as solvent. The larvae of Ae. aegypti appeared to be more susceptible to I. cairica extract with lower LC50 value compared with Ae. albopictus (F=8.83, df=1, P<0.05). Therefore, this study suggests that the acetone extract of I. cairica leaf can be considered as plant-derived insecticide for the control of Aedes mosquitoes. This study quantified the larvicidal property of I. cairica extract, providing information on lethal concentration that

  2. Stage-Structured Population Dynamics of AEDES AEGYPTI

    NASA Astrophysics Data System (ADS)

    Yusoff, Nuraini; Budin, Harun; Ismail, Salemah

    Aedes aegypti is the main vector in the transmission of dengue fever, a vector-borne disease affecting world population living in tropical and sub-tropical countries. Better understanding of the dynamics of its population growth will help in the efforts of controlling the spread of this disease. In looking at the population dynamics of Aedes aegypti, this paper explored the stage-structured modeling of the population growth of the mosquito using the matrix population model. The life cycle of the mosquito was divided into five stages: eggs, larvae, pupae, adult1 and adult2. Developmental rates were obtained for the average Malaysian temperature and these were used in constructing the transition matrix for the matrix model. The model, which was based only on temperature, projected that the population of Aedes aegypti will blow up with time, which is not realistic. For further work, other factors need to be taken into account to obtain a more realistic result.

  3. Blood serum and BSA, but neither red blood cells nor hemoglobin can support vitellogenesis and egg production in the dengue vector Aedes aegypti

    PubMed Central

    Gonzales, Kristina K.; Tsujimoto, Hitoshi

    2015-01-01

    Aedes aegypti is the major vector of dengue, yellow fever and chikungunya viruses that put millions of people in endemic countries at risk. Mass rearing of this mosquito is crucial for strategies that use modified insects to reduce vector populations and transmission of pathogens, such as sterile insect technique or population replacement. A major problem for vector mosquito mass rearing is the requirement of vertebrate blood for egg production since it poses significant costs as well as potential health hazards. Also, regulations for human and animal use as blood source can pose a significant obstacle. A completely artificial diet that supports egg production in vector mosquitoes can solve this problem. In this study, we compared different blood fractions, serum and red blood cells, as dietary protein sources for mosquito egg production. We also tested artificial diets made from commercially available blood proteins (bovine serum albumin (BSA) and hemoglobin). We found that Ae. aegypti performed vitellogenesis and produced eggs when given whole bovine blood, serum, or an artificial diet containing BSA. Conversely, egg production was impaired after feeding of the red blood cell fraction or an artificial diet containing only hemoglobin. We also found that egg viability of serum-fed mosquitoes were comparable to that of whole blood and an iron supplemented BSA meal produced more viable eggs than a meal containing BSA alone. Our results indicate that serum proteins, not hemoglobin, may replace vertebrate blood in artificial diets for mass mosquito rearing. PMID:26020000

  4. Synergistic action of octopamine receptor agonists on the activity of selected novel insecticides for control of dengue vector Aedes aegypti (Diptera: Culicidae) mosquito.

    PubMed

    Ahmed, Mohamed Ahmed Ibrahim; Vogel, Christoph Franz Adam

    2015-05-01

    Studying insecticide resistance in mosquitoes has attracted the attention of many scientists to elucidate the pathways of resistance development and to design novel strategies in order to prevent or minimize the spread and evolution of resistance. Here, we tested the synergistic action of piperonyl butoxide (PBO) and two octopamine receptor (OR) agonists, amitraz (AMZ) and chlordimeform (CDM) on selected novel insecticides to increase their lethal action on the fourth instar larvae of Aedes aegypti L. However, chlorfenapyr was the most toxic insecticide (LC50 = 193, 102, and 48 ng/ml, after 24, 48, and 72 h exposure, respectively) tested. Further, PBO synergized all insecticides and the most toxic combinatorial insecticide was nitenpyram even after 48 and 72 h exposure. In addition, OR agonists significantly synergized most of the selected insecticides especially after 48 and 72 h exposure. The results imply that the synergistic effects of amitraz are a promising approach in increasing the potency of certain insecticides in controlling the dengue vector Ae. aegypti mosquito.

  5. Blood serum and BSA, but neither red blood cells nor hemoglobin can support vitellogenesis and egg production in the dengue vector Aedes aegypti.

    PubMed

    Gonzales, Kristina K; Tsujimoto, Hitoshi; Hansen, Immo A

    2015-01-01

    Aedes aegypti is the major vector of dengue, yellow fever and chikungunya viruses that put millions of people in endemic countries at risk. Mass rearing of this mosquito is crucial for strategies that use modified insects to reduce vector populations and transmission of pathogens, such as sterile insect technique or population replacement. A major problem for vector mosquito mass rearing is the requirement of vertebrate blood for egg production since it poses significant costs as well as potential health hazards. Also, regulations for human and animal use as blood source can pose a significant obstacle. A completely artificial diet that supports egg production in vector mosquitoes can solve this problem. In this study, we compared different blood fractions, serum and red blood cells, as dietary protein sources for mosquito egg production. We also tested artificial diets made from commercially available blood proteins (bovine serum albumin (BSA) and hemoglobin). We found that Ae. aegypti performed vitellogenesis and produced eggs when given whole bovine blood, serum, or an artificial diet containing BSA. Conversely, egg production was impaired after feeding of the red blood cell fraction or an artificial diet containing only hemoglobin. We also found that egg viability of serum-fed mosquitoes were comparable to that of whole blood and an iron supplemented BSA meal produced more viable eggs than a meal containing BSA alone. Our results indicate that serum proteins, not hemoglobin, may replace vertebrate blood in artificial diets for mass mosquito rearing.

  6. Characterization and bioassay for larvicidal activity of Anacardium occidentale (cashew) shell waste fractions against dengue vector Aedes aegypti.

    PubMed

    Torres, Rosalinda C; Garbo, Alicia G; Walde, Rikkamae Zinca Marie L

    2015-10-01

    Recent studies regarding the harmful effects of synthetic larvicides initiated the need to investigate for unconventional measures that are environmentally safe and target-specific against Aedes aegypti larvae. Thus, the main objectives of the study are to evaluate the larvicidal toxicity of the solvent fractions of Anacardium occidentale shell wastes against the third and fourth instar larvae of A. aegypti and to compare the results with the commercial larvicide product. The shell wastes were extracted with 95% EtOH followed by polarity-based fractionation. The fractions were tested for larvicidal activity according to the World Health Organization bioassay method. These were then characterized by quantitative thin-layer chromatographic (TLC) fingerprinting. The hexane fraction gave the strongest activity among the fractions with an LC50 of 4.01 mg/L and LC90 of 11.29 mg/L highly comparable to the commercial larvicide, which exhibited an LC50 of 1.71 mg/L and LC90 of 8.41 mg/L. The dichloromethane fraction exhibited 9.70 mg/L LC50 and 18.44 mg/L LC90. The remarkable toxicity effects exhibited by these fractions indicate their potential to provide core structures from which sustainable and environmentally safe plant-based larvicidal agents can be synthesized. PMID:26099240

  7. Characterization and bioassay for larvicidal activity of Anacardium occidentale (cashew) shell waste fractions against dengue vector Aedes aegypti.

    PubMed

    Torres, Rosalinda C; Garbo, Alicia G; Walde, Rikkamae Zinca Marie L

    2015-10-01

    Recent studies regarding the harmful effects of synthetic larvicides initiated the need to investigate for unconventional measures that are environmentally safe and target-specific against Aedes aegypti larvae. Thus, the main objectives of the study are to evaluate the larvicidal toxicity of the solvent fractions of Anacardium occidentale shell wastes against the third and fourth instar larvae of A. aegypti and to compare the results with the commercial larvicide product. The shell wastes were extracted with 95% EtOH followed by polarity-based fractionation. The fractions were tested for larvicidal activity according to the World Health Organization bioassay method. These were then characterized by quantitative thin-layer chromatographic (TLC) fingerprinting. The hexane fraction gave the strongest activity among the fractions with an LC50 of 4.01 mg/L and LC90 of 11.29 mg/L highly comparable to the commercial larvicide, which exhibited an LC50 of 1.71 mg/L and LC90 of 8.41 mg/L. The dichloromethane fraction exhibited 9.70 mg/L LC50 and 18.44 mg/L LC90. The remarkable toxicity effects exhibited by these fractions indicate their potential to provide core structures from which sustainable and environmentally safe plant-based larvicidal agents can be synthesized.

  8. Predation by Asian bullfrog tadpoles, Hoplobatrachus tigerinus, against the dengue vector, Aedes aegypti, in an aquatic environment treated with mosquitocidal nanoparticles.

    PubMed

    Murugan, Kadarkarai; Priyanka, Vishwanathan; Dinesh, Devakumar; Madhiyazhagan, Pari; Panneerselvam, Chellasamy; Subramaniam, Jayapal; Suresh, Udaiyan; Chandramohan, Balamurugan; Roni, Mathath; Nicoletti, Marcello; Alarfaj, Abdullah A; Higuchi, Akon; Munusamy, Murugan A; Khater, Hanem F; Messing, Russell H; Benelli, Giovanni

    2015-10-01

    Aedes aegypti is a primary vector of dengue and chikungunya. The use of synthetic insecticides to control Aedes populations often leads to high operational costs and adverse non-target effects. Botanical extracts have been proposed for rapid extracellular synthesis of mosquitocidal nanoparticles, but their impact against predators of mosquito larvae has not been well studied. We propose a single-step method for the biosynthesis of silver nanoparticles (AgNP) using the extract of Artemisia vulgaris leaves as a reducing and stabilizing agent. AgNP were characterized by UV-vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD). SEM and XRD showed that AgNP were polydispersed, crystalline, irregularly shaped, with a mean size of 30-70 nm. EDX confirmed the presence of elemental silver. FTIR highlighted that the functional groups from plant metabolites capped AgNP, stabilizing them over time. We investigated the mosquitocidal properties of A. vulgaris leaf extract and green-synthesized AgNP against larvae and pupae of Ae. aegypti. We also evaluated the predatory efficiency of Asian bullfrog tadpoles, Hoplobatrachus tigerinus, against larvae of Ae. aegypti, under laboratory conditions and in an aquatic environment treated with ultra-low doses of AgNP. AgNP were highly toxic to Ae. aegypti larval instars (I-IV) and pupae, with LC50 ranging from 4.4 (I) to 13.1 ppm (pupae). In the lab, the mean number of prey consumed per tadpole per day was 29.0 (I), 26.0 (II), 21.4 (III), and 16.7 (IV). After treatment with AgNP, the mean number of mosquito prey per tadpole per day increased to 34.2 (I), 32.4 (II), 27.4 (III), and 22.6 (IV). Overall, this study highlights the importance of a synergistic approach based on biocontrol agents and botanical nano-insecticides for mosquito control.

  9. Predation by Asian bullfrog tadpoles, Hoplobatrachus tigerinus, against the dengue vector, Aedes aegypti, in an aquatic environment treated with mosquitocidal nanoparticles.

    PubMed

    Murugan, Kadarkarai; Priyanka, Vishwanathan; Dinesh, Devakumar; Madhiyazhagan, Pari; Panneerselvam, Chellasamy; Subramaniam, Jayapal; Suresh, Udaiyan; Chandramohan, Balamurugan; Roni, Mathath; Nicoletti, Marcello; Alarfaj, Abdullah A; Higuchi, Akon; Munusamy, Murugan A; Khater, Hanem F; Messing, Russell H; Benelli, Giovanni

    2015-10-01

    Aedes aegypti is a primary vector of dengue and chikungunya. The use of synthetic insecticides to control Aedes populations often leads to high operational costs and adverse non-target effects. Botanical extracts have been proposed for rapid extracellular synthesis of mosquitocidal nanoparticles, but their impact against predators of mosquito larvae has not been well studied. We propose a single-step method for the biosynthesis of silver nanoparticles (AgNP) using the extract of Artemisia vulgaris leaves as a reducing and stabilizing agent. AgNP were characterized by UV-vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD). SEM and XRD showed that AgNP were polydispersed, crystalline, irregularly shaped, with a mean size of 30-70 nm. EDX confirmed the presence of elemental silver. FTIR highlighted that the functional groups from plant metabolites capped AgNP, stabilizing them over time. We investigated the mosquitocidal properties of A. vulgaris leaf extract and green-synthesized AgNP against larvae and pupae of Ae. aegypti. We also evaluated the predatory efficiency of Asian bullfrog tadpoles, Hoplobatrachus tigerinus, against larvae of Ae. aegypti, under laboratory conditions and in an aquatic environment treated with ultra-low doses of AgNP. AgNP were highly toxic to Ae. aegypti larval instars (I-IV) and pupae, with LC50 ranging from 4.4 (I) to 13.1 ppm (pupae). In the lab, the mean number of prey consumed per tadpole per day was 29.0 (I), 26.0 (II), 21.4 (III), and 16.7 (IV). After treatment with AgNP, the mean number of mosquito prey per tadpole per day increased to 34.2 (I), 32.4 (II), 27.4 (III), and 22.6 (IV). Overall, this study highlights the importance of a synergistic approach based on biocontrol agents and botanical nano-insecticides for mosquito control. PMID:26091763

  10. Burchellin: study of bioactivity against Aedes aegypti

    PubMed Central

    2014-01-01

    Background The dengue mosquito Aedes aegypti Linnaeus, 1762 is a widespread insect pest of serious medical importance. Since no effective vaccine is available for treating dengue, the eradication or control of the main mosquito vector is regarded as essential. Since conventional insecticides have limited success, plants may be an alternative source of larvicidal agents, since they contain a rich source of bioactive chemicals. The aim of this study was to evaluate the larvicidal activity of the neolignan burchellin isolated from Ocotea cymbarum (Lauraceae), a plant from the Amazon region, against third instar larvae of A. aegypti. Methods Burchellin obtained from O. cymbarum was analyzed. The inhibitory activity against A. aegypti eggs and larvae and histological changes in the digestive system of treated L3 larvae were evaluated. In addition, nitric oxide synthase activity and nitric oxide levels were determined, and cytotoxicity bioassays performed. Results The data showed that burchellin interfered with the development cycle of the mosquito, where its strongest toxic effect was 100% mortality in larvae (L3) at concentrations ≥ 30 ppm. This compound did not show target cell toxicity in peritoneal macrophages from BALB/c mice, and proved to have molecular stability when dissolved in water. The L3 and L4 larvae treated with the compound showed cellular destruction and disorganization, cell spacing, and vacuolization of epithelial cells in small regions of the midgut. Conclusion The neolignan burchellin proved to be a strong candidate for a natural, safe and stable phytolarvicidal to be used in population control of A. aegypti. PMID:24713267

  11. The genetic architecture of a complex trait: Resistance to multiple toxins produced by Bacillus thuringiensis israelensis in the dengue and yellow fever vector, the mosquito Aedes aegypti.

    PubMed

    Bonin, Aurélie; Paris, Margot; Frérot, Hélène; Bianco, Erica; Tetreau, Guillaume; Després, Laurence

    2015-10-01

    The bacterial insecticide Bacillus thuringiensis subsp. israelensis (Bti) is an increasingly popular alternative to chemical insecticides for controlling mosquito populations. Because Bti toxicity relies on the action of four main toxins, resistance to Bti is very likely a complex phenotype involving several genes simultaneously. Dissecting the underlying genetic basis thus requires associating a quantitative measure of resistance to genetic variation at many loci in a segregating population. Here, we undertake this task using the dengue and yellow fever vector, the mosquito Aedes aegypti, as a study model. We conducted QTL (Quantitative Trait Locus) and admixture mapping analyses on two controlled crosses and on an artificial admixed population, respectively, all obtained from resistant and susceptible lab strains. We detected 16 QTL regions, among which four QTLs were revealed by different analysis methods. These four robust QTLs explained altogether 29.2% and 62.2% of the total phenotypic variance in the two QTL crosses, respectively. They also all showed a dominant mode of action. In addition, we found six loci showing statistical association with Bti resistance in the admixed population. Five of the supercontigs highlighted in this study contained candidate genes as suggested by their function, or by prior evidence from expression and/or outlier analyses. These genomic regions are thus good starting points for fine mapping of resistance to Bti or functional analyses aiming at identifying the underlying genes and mutations. Moreover, for the purpose of this work, we built the first Ae. aegypti genetic map based on markers associated with genes expressed in larvae. This genetic map harbors 229 SNP markers mapped across the three chromosomes for a total length of 311.9cM. It brought to light several assembly discrepancies with the reference genome, suggesting a high level of genome plasticity in Ae. aegypti.

  12. Identifying genomic changes associated with insecticide resistance in the dengue mosquito Aedes aegypti by deep targeted sequencing.

    PubMed

    Faucon, Frederic; Dusfour, Isabelle; Gaude, Thierry; Navratil, Vincent; Boyer, Frederic; Chandre, Fabrice; Sirisopa, Patcharawan; Thanispong, Kanutcharee; Juntarajumnong, Waraporn; Poupardin, Rodolphe; Chareonviriyaphap, Theeraphap; Girod, Romain; Corbel, Vincent; Reynaud, Stephane; David, Jean-Philippe

    2015-09-01

    The capacity of mosquitoes to resist insecticides threatens the control of diseases such as dengue and malaria. Until alternative control tools are implemented, characterizing resistance mechanisms is crucial for managing resistance in natural populations. Insecticide biodegradation by detoxification enzymes is a common resistance mechanism; however, the genomic changes underlying this mechanism have rarely been identified, precluding individual resistance genotyping. In particular, the role of copy number variations (CNVs) and polymorphisms of detoxification enzymes have never been investigated at the genome level, although they can represent robust markers of metabolic resistance. In this context, we combined target enrichment with high-throughput sequencing for conducting the first comprehensive screening of gene amplifications and polymorphisms associated with insecticide resistance in mosquitoes. More than 760 candidate genes were captured and deep sequenced in several populations of the dengue mosquito Ae. aegypti displaying distinct genetic backgrounds and contrasted resistance levels to the insecticide deltamethrin. CNV analysis identified 41 gene amplifications associated with resistance, most affecting cytochrome P450s overtranscribed in resistant populations. Polymorphism analysis detected more than 30,000 variants and strong selection footprints in specific genomic regions. Combining Bayesian and allele frequency filtering approaches identified 55 nonsynonymous variants strongly associated with resistance. Both CNVs and polymorphisms were conserved within regions but differed across continents, confirming that genomic changes underlying metabolic resistance to insecticides are not universal. By identifying novel DNA markers of insecticide resistance, this study opens the way for tracking down metabolic changes developed by mosquitoes to resist insecticides within and among populations.

  13. Identifying genomic changes associated with insecticide resistance in the dengue mosquito Aedes aegypti by deep targeted sequencing

    PubMed Central

    Faucon, Frederic; Dusfour, Isabelle; Gaude, Thierry; Navratil, Vincent; Boyer, Frederic; Chandre, Fabrice; Sirisopa, Patcharawan; Thanispong, Kanutcharee; Juntarajumnong, Waraporn; Poupardin, Rodolphe; Chareonviriyaphap, Theeraphap; Girod, Romain; Corbel, Vincent; Reynaud, Stephane; David, Jean-Philippe

    2015-01-01

    The capacity of mosquitoes to resist insecticides threatens the control of diseases such as dengue and malaria. Until alternative control tools are implemented, characterizing resistance mechanisms is crucial for managing resistance in natural populations. Insecticide biodegradation by detoxification enzymes is a common resistance mechanism; however, the genomic changes underlying this mechanism have rarely been identified, precluding individual resistance genotyping. In particular, the role of copy number variations (CNVs) and polymorphisms of detoxification enzymes have never been investigated at the genome level, although they can represent robust markers of metabolic resistance. In this context, we combined target enrichment with high-throughput sequencing for conducting the first comprehensive screening of gene amplifications and polymorphisms associated with insecticide resistance in mosquitoes. More than 760 candidate genes were captured and deep sequenced in several populations of the dengue mosquito Ae. aegypti displaying distinct genetic backgrounds and contrasted resistance levels to the insecticide deltamethrin. CNV analysis identified 41 gene amplifications associated with resistance, most affecting cytochrome P450s overtranscribed in resistant populations. Polymorphism analysis detected more than 30,000 variants and strong selection footprints in specific genomic regions. Combining Bayesian and allele frequency filtering approaches identified 55 nonsynonymous variants strongly associated with resistance. Both CNVs and polymorphisms were conserved within regions but differed across continents, confirming that genomic changes underlying metabolic resistance to insecticides are not universal. By identifying novel DNA markers of insecticide resistance, this study opens the way for tracking down metabolic changes developed by mosquitoes to resist insecticides within and among populations. PMID:26206155

  14. Wolbachia uses host microRNAs to manipulate host gene expression and facilitate colonization of the dengue vector Aedes aegypti.

    PubMed

    Hussain, Mazhar; Frentiu, Francesca D; Moreira, Luciano A; O'Neill, Scott L; Asgari, Sassan

    2011-05-31

    The obligate endosymbiont Wolbachia pipientis is found in a wide range of invertebrates where they are best known for manipulating host reproduction. Recent studies have shown that Wolbachia also can modulate the lifespan of host insects and interfere with the development of human pathogens in mosquito vectors. Despite considerable study, very little is known about the molecular interactions between Wolbachia and its hosts that might mediate these effects. Using microarrays, we show that the microRNA (miRNA) profile of the mosquito, Aedes aegypti, is significantly altered by the wMelPop-CLA strain of W. pipientis. We found that a host miRNA (aae-miR-2940) is induced after Wolbachia infection in both mosquitoes and cell lines. One target of aae-miR-2940 is the Ae. aegypti metalloprotease gene. Interestingly, expression of the target gene was induced after Wolbachia infection, ectopic expression of the miRNA independent of Wolbachia, or transfection of an artificial mimic of the miRNA into mosquito cells. We also confirmed the interaction of aae-miR-2940 with the target sequences using GFP as a reporter gene. Silencing of the metalloprotease gene in both Wolbachia-infected cells and adult mosquitoes led to a significant reduction in Wolbachia density, as did inhibition of the miRNA in cells. These results indicate that manipulation of the mosquito metalloprotease gene via aae-miR-2940 is crucial for efficient maintenance of the endosymbiont. This report shows how Wolbachia alters the host miRNA profile and provides insight into the mechanisms of host manipulation used by this widespread endosymbiont.

  15. Detection of dengue viral RNA in Aedes aegypti (Diptera: Culicidae) exposed to sticky lures using reverse-transcriptase polymerase chain reaction.

    PubMed

    Bangs, M J; Tan, R; Listiyaningsih, E; Kay, B H; Porter, K R

    2001-09-01

    Active surveillance for dengue (DEN) virus infected mosquitoes can be an effective way to predict the risk of dengue infection in a given area. However, doing so may pose logistical problems if mosquitoes must be kept alive or frozen fresh to detect DEN virus. In an attempt to simplify mosquito processing, we evaluated the usefulness of a sticky lure and a seminested reverse-transcriptase polymerase chain reaction assay (RT-PCR) for detecting DEN virus RNA under laboratory conditions using experimentally infected Aedes aegypti (L.) mosquitoes. In the first experiment, 40 male mosquitoes were inoculated with 0.13 microl of a 10(4) pfu/ml DEN-2 stock solution. After a 7-d incubation period, the mosquitoes were applied to the sticky lure and kept at room temperatures of 23-30 degrees C. Following 7, 10, 14, and 28 d application, 10 mosquitoes each were removed from the lure, pooled, and assayed for virus. DEN virus nucleic acid was clearly detectable in all pools up to 28 d after death. A second study evaluated sensitivity and specificity using one, two, and five DEN-infected mosquitoes removed after 7,10, 14, 21, and 30 d application and tested by RT-PCR. All four DEN serotypes were individually inoculated in mosquitoes and evaluated using the same procedures as experiment 1. The four serotypes were detectable in as few as one mosquito 30 d after applications to the lure with no evidence of cross-reactivity. The combination of sticky lures and RT-PCR show promise for mosquito and dengue virus surveillance and warrant further evaluation. PMID:11580045

  16. Breeding of Aedes aegypti (L.) and Aedes albopictus (Skuse) in urban housing of Sibu town, Sarawak.

    PubMed

    Seng, C M; Jute, N

    1994-09-01

    An Aedes survey using various larval survey methods was conducted in 12 urban housing areas and 29 vacant lands in Sibu town proper. Aedes albopictus larvae were found in all areas surveyed while Aedes aegypti larvae were present in 10 localities and 4 vacant lands. There were no significant difference in the house index, breteau and larval density index of these two Aedes (Stegomyia) species from the survey areas. The proportion of containers positive with Ae. aegypti and Ae. albopictus in area outside the house compound and near the house fencing were 3.2 times higher than outdoor compound. The indoor/outdoor breeding ratio for Ae. aegypti alone is 1.6:1. The most preferred breeding habitats outdoor were plastic cups and used tires while indoor habitats were ant traps and flower vases. In the vacant lands, the average number of larvae per containers was significantly higher than in houses and over 51% of the containers inspected were positive. Shared breeding between Ae. aegypti and Ae. albopictus larvae accounted for 9% in house surveys and 4.5% in vacant land survey. The use of various methods in Aedes larval survey may provide essential information in the study of vector epidemiology in dengue and dengue hemorrhagic fever transmission.

  17. Aedes aegypti and Aedes albopictus Habitat Preferences in South Texas, USA

    PubMed Central

    Champion, Samantha R; Vitek, Christopher J

    2014-01-01

    The South Texas region has a historical record of occasional dengue outbreaks. The recent introduction of chikungunya virus to the Caribbean suggests that this disease may be a concern as well. Six different cities and three field habitat types (residential, tire shops, and cemeteries) were examined for evidence of habitat and longitudinal preference of two vector species, Aedes aegypti and Aedes albopictus. A. aegypti was more prevalent in tire shop sites, while A. albopictus was more prevalent in cemetery sites. In residential sites, the relative abundance of the two species varied with longitude, with A. albopictus being more abundant near the coast, and A. aegypti being more abundant inland. There was also a temporal variation, with A. aegypti declining in frequency over time in residential sites. These results have implications for control strategies and disease risk and suggest a greater need for increased surveillance and research in the region. PMID:25520559

  18. Design, synthesis, acetylcholinesterase inhibition and larvicidal activity of girgensohnine analogs on Aedes aegypti, vector of dengue fever.

    PubMed

    Carreño Otero, Aurora L; Vargas Méndez, Leonor Y; Duque L, Jonny E; Kouznetsov, Vladimir V

    2014-05-01

    Girgensohnine alkaloid was used as a natural model in the design and generation of new alkaloid-like α-aminonitrile series that was completed by the use of SSA-catalyzed Strecker reaction between commercial and inexpensive substituted benzaldehydes, piperidine (pyrrolidine, morpholine and N-methylpiperazine) and acetone cyanohydrin. Calculated ADMETox parameters of the designed analogs revealed their good pharmacokinetic profiles indicating lipophilic characteristics. In vitro AChE enzyme test showed that obtained α-aminonitriles could be considered as AChEIs with micromolar IC50 values ranging from 42.0 to 478.0 μM (10.3-124.0 μg/mL). Among this series, the best AChE inhibitor was the pyrrolidine α-aminonitrile 3 (IC50 = 42 μM), followed by the piperidine α-aminonitriles 2 and 6 (IC50 = 45 μM and IC50 = 51 μM, respectively), and the compound 7 (IC50 = 51 μM). In vivo insecticidal activity of more active AChEIs against Aedes aegypti larvae was also performed showing a good larvicidal activity at concentrations less than 140 ppm, highlighting products 2 and 7 that could serve as lead compounds to develop new potent and selective insecticides.

  19. Anti-dengue efficacy of bioactive andrographolide from Andrographis paniculata (Lamiales: Acanthaceae) against the primary dengue vector Aedes aegypti (Diptera: Culicidae).

    PubMed

    Edwin, Edward-Sam; Vasantha-Srinivasan, Prabhakaran; Senthil-Nathan, Sengottayan; Thanigaivel, Annamalai; Ponsankar, Athirstam; Pradeepa, Venkatraman; Selin-Rani, Selvaraj; Kalaivani, Kandaswamy; Hunter, Wayne B; Abdel-Megeed, Ahmed; Duraipandiyan, Veeramuthu; Al-Dhabi, Naif Abdullah

    2016-11-01

    The current study investigated the toxic effect of the leaf extract compound andrographolide from Andrographis paniculata (Burm.f) against the dengue vector Ae. aegypti. GC-MS analysis revealed that andrographolide was recognized as the major chemical constituent with the prominent peak area compared with other compounds. All isolated toxic compounds were purified and confirmed through RP-HPLC against chemical standards. The larvicidal assays established at 25ppm of bioactive compound against the treated instars of Ae. Aegypti showed prominent mortality compared to other treated concentrations. The percent mortality of larvae was directly proportional to concentration. The lethal concentration (LC50) was observed at 12ppm treatment concentration. The bioactive andrographolide considerably reduced the detoxifying enzyme regulations of α- and β- carboxylesterases. In contrast, the levels of GST and CYP450 significantly increase in a dose dependent manner. The andrographolide also showed strong oviposition deterrence effects at the sub-lethal dose of 12ppm. Similarly, the mean number of eggs were also significantly reduced in a dose dependent manner. At the concentration of 12ppm the effective percentage of repellency was greater than 90% with a protection time of 15-210min, compared with control. The histopathology study displayed that larvae treated with bioactive andrographolide had cytopathic effects in the midgut epithelium compared with the control. The present study established that bioactive andrographolide served as a potential useful for dengue vector management. PMID:27443607

  20. Intraspecific Competition and Population Dynamics of Aedes aegypti

    NASA Astrophysics Data System (ADS)

    Paixão, C. A.; Charret, I. C.; Lima, R. R.

    2012-04-01

    We report computational simulations for the evolution of the population of the dengue vector, Aedes aegypti mosquitoes. The results suggest that controlling the mosquito population, on the basis of intraspecific competition at the larval stage, can be an efficient mechanism for controlling the spread of the epidemic. The results also show the presence of a kind of genetic evolution in vector population, which results mainly in increasing the average lifespan of individuals in adulthood.

  1. Evaluation of 15 Local Plant Species as Larvicidal Agents Against an Indian Strain of Dengue Fever Mosquito, Aedes aegypti L. (Diptera: Culicidae)

    PubMed Central

    Kumar, Sarita; Wahab, Naim; Mishra, Monika; Warikoo, Radhika

    2012-01-01

    The adverse effects of chemical insecticides-based intervention measures for the control of mosquito vectors have received wide public apprehension because of several problems like insecticide resistance, resurgence of pest species, environmental pollution, toxic hazards to humans, and non-target organisms. These problems have necessitated the need to explore and develop alternative strategies using eco-friendly, environmentally safe, bio-degradable plant products which are non-toxic to non-target organisms too. In view of this, 15 plant species were collected from local areas in New Delhi, India. Different parts of these plants were separated, dried, mechanically grinded, and sieved to get fine powder. The 200 g of each part was soaked in 1000 mL of different solvents separately and the crude extracts, thus formed, were concentrated using a vacuum evaporator at 45°C under low pressure. Each extract was screened to explore its potential as a mosquito larvicidal agent against early fourth instars of dengue vector, Aedes aegypti using WHO protocol. The preliminary screening showed that only 10 plants possessed larvicidal potential as they could result in 100% mortality at 1000 ppm. Further evaluation of the potential larvicidal extracts established the hexane leaf extract of Lantana camara to be most effective extract exhibiting a significant LC50 value of 30.71 ppm while the Phyllanthus emblica fruit extract was found to be least effective with an LC50 value of 298.93 ppm. The extracts made from different parts of other five plants; Achyranthes aspera, Zingiber officinalis, Ricinus communis, Trachyspermum ammi, and Cassia occidentalis also possessed significant larvicidal potential with LC50 values ranging from 55.0 to 74.67 ppm. Other three extracts showed moderate toxicity against A. aegypti larvae. Further investigations would be needed to isolate and identify the primary component responsible for the larvicidal efficiency of the effective plants

  2. Reduced survival and reproductive success generates selection pressure for the dengue mosquito Aedes aegypti to evolve resistance against infection by the microsporidian parasite Vavraia culicis

    PubMed Central

    Sy, Victoria E; Agnew, Philip; Sidobre, Christine; Michalakis, Yannis

    2014-01-01

    The success and sustainability of control measures aimed at reducing the transmission of mosquito-borne diseases will depend on how they influence the fitness of mosquitoes in targeted populations. We investigated the effects of the microsporidian parasite Vavraia culicis on the survival, blood-feeding behaviour and reproductive success of female Aedes aegypti mosquitoes, the main vector of dengue. Infection reduced survival to adulthood and increased adult female mosquito age-dependent mortality relative to uninfected individuals; this additional mortality was closely correlated with the number of parasite spores they harboured when they died. In the first gonotrophic cycle, infected females were less likely to blood-feed, took smaller meals when they did so, and developed fewer eggs than uninfected females. Even though the conditions of this laboratory study favoured minimal developmental times, the costs of infection were already being experienced by the time females reached an age at which they could first reproduce. These results suggest there will be selection pressure for mosquitoes to evolve resistance against this pathogen if it is used as an agent in a control program to reduce the transmission of mosquito-borne human diseases. PMID:24822081

  3. Workbook on Identification of Aedes Aegypti Larvae.

    ERIC Educational Resources Information Center

    Pratt, Harry D.; And Others

    This self-instructional booklet is designed to enable yellow fever control workers to identify the larvae of "Aedes aegypti." The morphological features of mosquito larvae are illustrated in this partially programed text, and the distinguishing features of "A. aegypti" indicated. A glossary is included. (AL)

  4. Comparative analysis of response to selection with three insecticides in the dengue mosquito Aedes aegypti using mRNA sequencing

    PubMed Central

    2014-01-01

    Background Mosquito control programmes using chemical insecticides are increasingly threatened by the development of resistance. Such resistance can be the consequence of changes in proteins targeted by insecticides (target site mediated resistance), increased insecticide biodegradation (metabolic resistance), altered transport, sequestration or other mechanisms. As opposed to target site resistance, other mechanisms are far from being fully understood. Indeed, insecticide selection often affects a large number of genes and various biological processes can hypothetically confer resistance. In this context, the aim of the present study was to use RNA sequencing (RNA-seq) for comparing transcription level and polymorphism variations associated with adaptation to chemical insecticides in the mosquito Aedes aegypti. Biological materials consisted of a parental susceptible strain together with three child strains selected across multiple generations with three insecticides from different classes: the pyrethroid permethrin, the neonicotinoid imidacloprid and the carbamate propoxur. Results After ten generations, insecticide-selected strains showed elevated resistance levels to the insecticides used for selection. RNA-seq data allowed detecting over 13,000 transcripts, of which 413 were differentially transcribed in insecticide-selected strains as compared to the susceptible strain. Among them, a significant enrichment of transcripts encoding cuticle proteins, transporters and enzymes was observed. Polymorphism analysis revealed over 2500 SNPs showing > 50% allele frequency variations in insecticide-selected strains as compared to the susceptible strain, affecting over 1000 transcripts. Comparing gene transcription and polymorphism patterns revealed marked differences among strains. While imidacloprid selection was linked to the over transcription of many genes, permethrin selection was rather linked to polymorphism variations. Focusing on detoxification enzymes

  5. Occurrence of Toxorhynchites guadeloupensis (Dyar Knab) in oviposition trap of Aedes aegypti (L.) (Diptera: Culicidae).

    PubMed

    Honório, Nildimar A; de Barros, Fábio S M; Tsouris, Pantelis; Rosa-Freitas, Maria G

    2007-01-01

    Toxorhynchites guadeloupensis (Dyar Knab), a poorly known mosquito species, was observed preying upon Aedes aegypti (L.) larvae, in an oviposition trap placed for routine dengue entomological surveillance, during 2003-2004 in the urban area of Boa Vista, Roraima, Brazil. This is the first report for Tx. guadeloupensis using Ae. aegypti oviposition traps as breeding places. This finding may have important consequences in the epidemiology and local dengue control since Ae. aegypti density is a basic variable in dengue prediction. Whether predation of Ae aegypti by Tx. guadeloupensis in the Amazon is of significance, is a question to be examined. Also, larval predation may be a cause for underestimation of the actual Ae aegypti numbers. Together these hypotheses need to be better investigated as they are directly related to dengue epidemiology, to the success of any outbreak prediction and surveillance program.

  6. Identification of germline transcriptional regulatory elements in Aedes aegypti

    NASA Astrophysics Data System (ADS)

    Akbari, Omar S.; Papathanos, Philippos A.; Sandler, Jeremy E.; Kennedy, Katie; Hay, Bruce A.

    2014-02-01

    The mosquito Aedes aegypti is the principal vector for the yellow fever and dengue viruses, and is also responsible for recent outbreaks of the alphavirus chikungunya. Vector control strategies utilizing engineered gene drive systems are being developed as a means of replacing wild, pathogen transmitting mosquitoes with individuals refractory to disease transmission, or bringing about population suppression. Several of these systems, including Medea, UDMEL, and site-specific nucleases, which can be used to drive genes into populations or bring about population suppression, utilize transcriptional regulatory elements that drive germline-specific expression. Here we report the identification of multiple regulatory elements able to drive gene expression specifically in the female germline, or in the male and female germline, in the mosquito Aedes aegypti. These elements can also be used as tools with which to probe the roles of specific genes in germline function and in the early embryo, through overexpression or RNA interference.

  7. Identification of germline transcriptional regulatory elements in Aedes aegypti.

    PubMed

    Akbari, Omar S; Papathanos, Philippos A; Sandler, Jeremy E; Kennedy, Katie; Hay, Bruce A

    2014-02-04

    The mosquito Aedes aegypti is the principal vector for the yellow fever and dengue viruses, and is also responsible for recent outbreaks of the alphavirus chikungunya. Vector control strategies utilizing engineered gene drive systems are being developed as a means of replacing wild, pathogen transmitting mosquitoes with individuals refractory to disease transmission, or bringing about population suppression. Several of these systems, including Medea, UD(MEL), and site-specific nucleases, which can be used to drive genes into populations or bring about population suppression, utilize transcriptional regulatory elements that drive germline-specific expression. Here we report the identification of multiple regulatory elements able to drive gene expression specifically in the female germline, or in the male and female germline, in the mosquito Aedes aegypti. These elements can also be used as tools with which to probe the roles of specific genes in germline function and in the early embryo, through overexpression or RNA interference.

  8. Dynamics of Aedes aegypti and Culex quinquefasciatus in septic tanks.

    PubMed

    Mackay, Andrew J; Amador, Manuel; Diaz, Annette; Smith, Josh; Barrera, Roberto

    2009-12-01

    Aedes aegypti and Culex quinquefasciatus were found in large numbers emerging from septic tanks in southern Puerto Rico during the dry season. Previous studies suggested that Ae. aegypti uses subterranean aquatic habitats only during dry periods when surface containers do not have water. This research investigated whether septic tanks are alternative aquatic habitats that this mosquito uses during unfavorable times of the year, or whether Ae. aegypti uses this aquatic habitat throughout the year. To assess temporal change, exit traps were used to collect mosquitoes emerging from septic tanks in Playa/Playita, southern Puerto Rico, from November 2006 to October 2007. We also investigated the hypotheses that (1) the production of Ae. aegypti in septic tanks was larger than in surface containers and (2) adult mosquitoes emerging from septic tanks were larger than those emerging from surface containers. This study demonstrated that unsealed septic tanks produced large numbers of Ae. aegypti and Cx. quinquefasciatus throughout the year, without any significant relationship with rainfall. The number of adult Ae. aegypti emerging per day from septic tanks in each community was 3 to 9 times larger than those produced in surface containers. It was also demonstrated that Ae. aegypti emerging from septic tanks were significantly larger than those emerging from surface container habitats. It is recommended that dengue prevention programs include regular inspection and maintenance of septic tanks in communities lacking sewerage.

  9. Aedes aegypti (Diptera: Culicidae) in Mauritania: First Report on the Presence of the Arbovirus Mosquito Vector in Nouakchott.

    PubMed

    Mint Lekweiry, Khadijetou; Ould Ahmedou Salem, Mohamed Salem; Ould Brahim, Khyarhoum; Ould Lemrabott, Mohamed Aly; Brengues, Cécile; Faye, Ousmane; Simard, Frédéric; Ould Mohamed Salem Boukhary, Ali

    2015-07-01

    Aedes aegypti L. (Diptera: Culicidae) is a major vector of yellow fever, dengue, and chikungunya viruses throughout tropical and subtropical areas of the world. Although the southernmost part of Mauritania along the Senegal river has long been recognized at risk of yellow fever transmission, Aedes spp. mosquitoes had never been reported northwards in Mauritania. Here, we report the first observation of Aedes aegypti aegypti (L.) and Aedes (Ochlerotatus) caspius (Pallas, 1771) in the capital city, Nouakchott. We describe the development sites in which larvae of the two species were found, drawing attention to the risk for emergence of arbovirus transmission in the city. PMID:26335483

  10. Aedes aegypti (Diptera: Culicidae) in Mauritania: First Report on the Presence of the Arbovirus Mosquito Vector in Nouakchott.

    PubMed

    Mint Lekweiry, Khadijetou; Ould Ahmedou Salem, Mohamed Salem; Ould Brahim, Khyarhoum; Ould Lemrabott, Mohamed Aly; Brengues, Cécile; Faye, Ousmane; Simard, Frédéric; Ould Mohamed Salem Boukhary, Ali

    2015-07-01

    Aedes aegypti L. (Diptera: Culicidae) is a major vector of yellow fever, dengue, and chikungunya viruses throughout tropical and subtropical areas of the world. Although the southernmost part of Mauritania along the Senegal river has long been recognized at risk of yellow fever transmission, Aedes spp. mosquitoes had never been reported northwards in Mauritania. Here, we report the first observation of Aedes aegypti aegypti (L.) and Aedes (Ochlerotatus) caspius (Pallas, 1771) in the capital city, Nouakchott. We describe the development sites in which larvae of the two species were found, drawing attention to the risk for emergence of arbovirus transmission in the city.

  11. The global compendium of Aedes aegypti and Ae. albopictus occurrence.

    PubMed

    Kraemer, Moritz U G; Sinka, Marianne E; Duda, Kirsten A; Mylne, Adrian; Shearer, Freya M; Brady, Oliver J; Messina, Jane P; Barker, Christopher M; Moore, Chester G; Carvalho, Roberta G; Coelho, Giovanini E; Van Bortel, Wim; Hendrickx, Guy; Schaffner, Francis; Wint, G R William; Elyazar, Iqbal R F; Teng, Hwa-Jen; Hay, Simon I

    2015-01-01

    Aedes aegypti and Ae. albopictus are the main vectors transmitting dengue and chikungunya viruses. Despite being pathogens of global public health importance, knowledge of their vectors' global distribution remains patchy and sparse. A global geographic database of known occurrences of Ae. aegypti and Ae. albopictus between 1960 and 2014 was compiled. Herein we present the database, which comprises occurrence data linked to point or polygon locations, derived from peer-reviewed literature and unpublished studies including national entomological surveys and expert networks. We describe all data collection processes, as well as geo-positioning methods, database management and quality-control procedures. This is the first comprehensive global database of Ae. aegypti and Ae. albopictus occurrence, consisting of 19,930 and 22,137 geo-positioned occurrence records respectively. Both datasets can be used for a variety of mapping and spatial analyses of the vectors and, by inference, the diseases they transmit.

  12. Green-synthesized silver nanoparticles as a novel control tool against dengue virus (DEN-2) and its primary vector Aedes aegypti

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dengue is an arthropod-borne viral infection mainly vectored through the bite of Aedes mosquitoes. Recently, its transmission has strongly increased in urban and semi-urban areas of tropical and sub-tropical regions worldwide, becoming a major international public health concern. There is no specifi...

  13. Observations on the breeding habitats of Aedes aegypti in Calcutta following an episode of dengue haemorrhagic fever.

    PubMed

    Biswas, D; Dey, S; Dutta, R N; Hati, A K

    1993-01-01

    A year-long (Nov. 1990-Oct. 1991) search for Ae. aegypti larvae was made of all water containers in and around fixed 100 houses at Bowbazar area in Calcutta following an episode of DHF. Out of 10151 containers searched, 615 (6%) were positive. Masonry tanks were the major (64.2%) and preferred (17%) breeding sites of Ae. aegypti. Indoor containers (6.7%) were more conducive to breeding of the vector species than the outdoor ones (3%). Breteau index showing wide variation (25 in December '90 to '93 in August 1991) proved to be the best for measurement of density of larval population of Ae. aegypti and paralleled the fluctuation in both rainfall and humidity. Role of temperature was not pronounced. It was noted that cases of DHF occurred even with the lowest Breteau index in December.

  14. Rapid biosynthesis of silver nanoparticles using Crotalaria verrucosa leaves against the dengue vector Aedes aegypti: what happens around? An analysis of dragonfly predatory behaviour after exposure at ultra-low doses.

    PubMed

    Murugan, Kadarkarai; Sanoopa, C P; Madhiyazhagan, Pari; Dinesh, Devakumar; Subramaniam, Jayapal; Panneerselvam, Chellasamy; Roni, Mathath; Suresh, Udaiyan; Nicoletti, Marcello; Alarfaj, Abdullah A; Munusamy, Murugan A; Higuchi, Akon; Kumar, Suresh; Perumalsamy, Haribalan; Ahn, Young-Joon; Benelli, Giovanni

    2016-01-01

    Aedes aegypti is a primary vector of dengue, a mosquito-borne viral disease infecting 50-100 million people every year. Here, we biosynthesised mosquitocidal silver nanoparticles (AgNP) using the aqueous leaf extract of Crotalaria verrucosa. The green synthesis of AgNP was studied by UV-vis spectroscopy, SEM, EDX and FTIR. C. verrucosa-synthesised AgNPs were toxic against A. aegypti larvae and pupae. LC50 of AgNP ranged from 3.496 ppm (I instar larvae) to 17.700 ppm (pupae). Furthermore, we evaluated the predatory efficiency of dragonfly nymphs, Brachydiplax sobrina, against II and III instar larvae of A. aegypti in an aquatic environment contaminated with ultra-low doses of AgNP. Under standard laboratory conditions, predation after 24 h was 87.5% (II) and 54.7% (III). In an AgNP-contaminated environment, predation was 91 and 75.5%, respectively. Overall, C. verrucosa-synthesised AgNP could be employed at ultra-low doses to reduce larval population of dengue vectors enhancing predation rates of dragonfly nymphs. PMID:26284510

  15. Rapid biosynthesis of silver nanoparticles using Crotalaria verrucosa leaves against the dengue vector Aedes aegypti: what happens around? An analysis of dragonfly predatory behaviour after exposure at ultra-low doses.

    PubMed

    Murugan, Kadarkarai; Sanoopa, C P; Madhiyazhagan, Pari; Dinesh, Devakumar; Subramaniam, Jayapal; Panneerselvam, Chellasamy; Roni, Mathath; Suresh, Udaiyan; Nicoletti, Marcello; Alarfaj, Abdullah A; Munusamy, Murugan A; Higuchi, Akon; Kumar, Suresh; Perumalsamy, Haribalan; Ahn, Young-Joon; Benelli, Giovanni

    2016-01-01

    Aedes aegypti is a primary vector of dengue, a mosquito-borne viral disease infecting 50-100 million people every year. Here, we biosynthesised mosquitocidal silver nanoparticles (AgNP) using the aqueous leaf extract of Crotalaria verrucosa. The green synthesis of AgNP was studied by UV-vis spectroscopy, SEM, EDX and FTIR. C. verrucosa-synthesised AgNPs were toxic against A. aegypti larvae and pupae. LC50 of AgNP ranged from 3.496 ppm (I instar larvae) to 17.700 ppm (pupae). Furthermore, we evaluated the predatory efficiency of dragonfly nymphs, Brachydiplax sobrina, against II and III instar larvae of A. aegypti in an aquatic environment contaminated with ultra-low doses of AgNP. Under standard laboratory conditions, predation after 24 h was 87.5% (II) and 54.7% (III). In an AgNP-contaminated environment, predation was 91 and 75.5%, respectively. Overall, C. verrucosa-synthesised AgNP could be employed at ultra-low doses to reduce larval population of dengue vectors enhancing predation rates of dragonfly nymphs.

  16. Aedes aegypti in Senegal: genetic diversity and genetic structure of domestic and sylvatic populations.

    PubMed

    Huber, Karine; Ba, Yamar; Dia, Ibrahima; Mathiot, Christian; Sall, Amadou A; Diallo, Mawlouth

    2008-08-01

    Aedes aegypti is the main vector of dengue viruses. The epidemiology of dengue fever remains poorly understood in Senegal. A sylvatic transmission seems to predominate. However, despite the sylvatic circulation of the dengue virus and the presence of vectors in urban areas, only sporadic cases have been reported. Ae. aegypti is a polytypic species. In Senegal, a purely sylvatic form is found in the forest gallery areas and a domestic form is found in the villages in savannah and sahelian areas and in urban areas. Using allozymes, we analyzed the genetic diversity and the genetic structure of Ae. aegypti populations differing in their ecological characteristics. Populations from Senegal were significantly structured but with a low level of genetic differentiation. Ae. aegypti from the "domestic" populations show a decreased genetic diversity and a lower genetic differentiation compared with "sylvatic" populations. These findings suggest that environmental conditions, ecological factors, and human activities may impact the genetic structure of Ae. aegypti populations in Senegal.

  17. Nanoparticles in the fight against mosquito-borne diseases: bioactivity of Bruguiera cylindrica-synthesized nanoparticles against dengue virus DEN-2 (in vitro) and its mosquito vector Aedes aegypti (Diptera: Culicidae).

    PubMed

    Murugan, Kadarkarai; Dinesh, Devakumar; Paulpandi, Manickam; Althbyani, Abdulaziz Dakhellah Meqbel; Subramaniam, Jayapal; Madhiyazhagan, Pari; Wang, Lan; Suresh, Udaiyan; Kumar, Palanisamy Mahesh; Mohan, Jagathish; Rajaganesh, Rajapandian; Wei, Hui; Kalimuthu, Kandasamy; Parajulee, Megha N; Mehlhorn, Heinz; Benelli, Giovanni

    2015-12-01

    Mosquitoes are blood-feeding insects serving as the most important vectors for spreading human pathogens and parasites. Dengue is a viral disease mainly vectored through the bite of Aedes mosquitoes. Its transmission has recently increased in urban and semi-urban areas of tropical and subtropical regions worldwide, becoming a major international public health concern. There is no specific treatment for dengue. Its prevention and control solely depend on effective vector control measures. Mangrove plants have been used in Indian traditional medicine for a wide array of purposes. In this research, we proposed a method for biosynthesis of antiviral and mosquitocidal silver nanoparticles (AgNP) using the aqueous extract of Bruguiera cylindrica leaves. AgNP were characterized using a variety of biophysical analyses, including UV-visible spectrophotometry, Fourier-transform infrared spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. Bruguiera cilyndrica aqueous extract and green-synthesized AgNP were tested against the primary dengue vector Aedes aegypti. AgNP were the most effective. LC50 values ranged from 8.93 ppm (larva I) to 30.69 ppm (pupa). In vitro experiments showed that 30 μg/ml of AgNP significantly inhibited the production of dengue viral envelope (E) protein in vero cells and downregulated the expression of dengue viral E gene. Concerning nontarget effects, we observed that the predation efficiency of Carassius auratus against A. aegypti was not affected by exposure at sublethal doses of AgNP. Predation in the control was 71.81 % (larva II) and 50.43 % (larva III), while in an AgNP-treated environment, predation was boosted to 90.25 and 76.81 %, respectively. Overall, this study highlights the concrete potential of green-synthesized AgNP in the fight against dengue virus. Furthermore, B. cylindrica-synthesized AgNP can be employed at low doses to reduce larval and pupal population of A. aegypti, without detrimental

  18. Morphological and genetic variability within Aedes aegypti in Niakhar, Senegal.

    PubMed

    Paupy, Christophe; Brengues, Cécile; Ndiath, Ousmane; Toty, Céline; Hervé, Jean-Pierre; Simard, Frédéric

    2010-05-01

    Aedes aegypti (Linné, 1762) is a major vector of arboviruses such as Yellow Fever, Dengue and Chikungunya. In Africa, where the species exhibits major variations in morphology, ecology, behavior and vector competence, two subspecies have been described: a light form, named Ae. aegypti aegypti (Aaa) with highly domestic and anthropophilic habits and a cosmotropical distribution; and a dark form, referred to as Ae. aegypti formosus (Aaf), which is endemic to Africa and thrives in sylvan environments. In East Africa, both forms were described to occur in sympatry whereas only Aaf was reported from Central/West Africa. However, recent findings suggest Aaa was also common in Senegal. Here, we report on a longitudinal survey of morphological and genetic variability of Ae. aegypti sampled in the rural environment of Niakhar, Senegal. In agreement with recent findings, most of specimens we analyzed were classified as Aaa suggesting typical Aaf was scarce in the studied area. Among Aaa, significant temporal variations in abdominal pale scales pattern were detected. Depending on the season and the nature of larval breeding places, the specimens (particularly females) tend to segregate in two main morphological groups. Microsatellite-based estimates of genetic differentiation did not provide any clear evidence that the two groups were genetically distinct. Overall, these results improve our understanding of the diversity of Ae. aegypti in West Africa, where data are crucially lacking.

  19. Use of mapping and spatial and space-time modeling approaches in operational control of Aedes aegypti and dengue.

    PubMed

    Eisen, Lars; Lozano-Fuentes, Saul

    2009-01-01

    The aims of this review paper are to 1) provide an overview of how mapping and spatial and space-time modeling approaches have been used to date to visualize and analyze mosquito vector and epidemiologic data for dengue; and 2) discuss the potential for these approaches to be included as routine activities in operational vector and dengue control programs. Geographical information system (GIS) software are becoming more user-friendly and now are complemented by free mapping software that provide access to satellite imagery and basic feature-making tools and have the capacity to generate static maps as well as dynamic time-series maps. Our challenge is now to move beyond the research arena by transferring mapping and GIS technologies and spatial statistical analysis techniques in user-friendly packages to operational vector and dengue control programs. This will enable control programs to, for example, generate risk maps for exposure to dengue virus, develop Priority Area Classifications for vector control, and explore socioeconomic associations with dengue risk. PMID:19399163

  20. A new tent trap for monitoring the daily activity of Aedes aegypti and Aedes albopictus.

    PubMed

    Casas Martínez, Mauricio; Orozco Bonilla, Arnoldo; Muñoz Reyes, Miguel; Ulloa García, Armando; Bond, J Guillermo; Valle Mora, Javier; Weber, Manuel; Rojas, Julio C

    2013-12-01

    In this study, we designed a new tent trap; the BioDiVector (BDV) tent trap, consisting of two rectangular tents that use human bait without endangering the technical personnel. The daily activity pattern of Aedes aegypti and Aedes albopictus in intra, peri, and extradomiciliary sites was studied in an endemic area of dengue in southern Mexico by using the BDV tent trap. Totals of 3,128 individuals of Ae. aegypti and 833 Ae. albopictus were captured. More Ae. aegypti males than females were caught, while the opposite was true with Ae. albopictus. The activity of both mosquito species was affected by the interaction between the collection site and time of day. In general, more individuals of both mosquito species were captured at the extradomicillary sites than at the peri and intradomicillary sites. Mosquitoes showed two peaks of activity, one in the morning and the other in the afternoon, but in general this only occurred at the extradomicillary sites, whereas no peak of activity was observed at the intra and peridomicillary sites. Overall, Ae. aegypti had a higher indirect biting rate than Ae. albopictus. Finally, due to its efficiency, simplicity, and low cost, we suggest the use of this innovative tool for entomological surveillance, bionomics and vector incrimination studies in geographical areas where dengue and other arboviruses are present.

  1. Fitness Impact and Stability of a Transgene Conferring Resistance to Dengue-2 Virus following Introgression into a Genetically Diverse Aedes aegypti Strain

    PubMed Central

    Franz, Alexander W. E.; Sanchez-Vargas, Irma; Raban, Robyn R.; Black, William C.; James, Anthony A.; Olson, Ken E.

    2014-01-01

    In 2006, we reported a mariner (Mos1)-transformed Aedes aegypti line, Carb77, which was highly resistant to dengue-2 virus (DENV2). Carb77 mosquitoes expressed a DENV2-specific inverted-repeat (IR) RNA in midgut epithelial cells after ingesting an infectious bloodmeal. The IR-RNA formed double-stranded DENV2-derived RNA, initiating an intracellular antiviral RNA interference (RNAi) response. However, Carb77 mosquitoes stopped expressing the IR-RNA after 17 generations in culture and lost their DENV2-refractory phenotype. In the current study, we generated new transgenic lines having the identical transgene as Carb77. One of these lines, Carb109M, has been genetically stable and refractory to DENV2 for >33 generations. Southern blot analysis identified two transgene integration sites in Carb109M. Northern blot analysis detected abundant, transient expression of the IR-RNA 24 h after a bloodmeal. Carb109M mosquitoes were refractory to different DENV2 genotypes but not to other DENV serotypes. To further test fitness and stability, we introgressed the Carb109M transgene into a genetically diverse laboratory strain (GDLS) by backcrossing for five generations and selecting individuals expressing the transgene's EGFP marker in each generation. Comparison of transgene stability in replicate backcross 5 (BC5) lines versus BC1 control lines demonstrated that backcrossing dramatically increased transgene stability. We subjected six BC5 lines to five generations of selection based on EGFP marker expression to increase the frequency of the transgene prior to final family selection. Comparison of the observed transgene frequencies in the six replicate lines relative to expectations from Fisher's selection model demonstrated lingering fitness costs associated with either the transgene or linked deleterious genes. Although minimal fitness loss (relative to GDLS) was manifest in the final family selection stage, we were able to select homozygotes for the transgene in one family

  2. Winter Refuge for Aedes aegypti and Ae. albopictus Mosquitoes in Hanoi during Winter

    PubMed Central

    Tsunoda, Takashi; Cuong, Tran Chi; Dong, Tran Duc; Yen, Nguyen Thi; Le, Nguyen Hoang; Phong, Tran Vu; Minakawa, Noboru

    2014-01-01

    Dengue occurs throughout the year in Hanoi, Vietnam, despite winter low temperatures <10°C. During July 2010 to March 2012, we surveyed monthly for Aedes larvae and pupae in 120 houses in 8 Hanoi districts. Aedes albopictus preferred discarded containers in summer and pupal density drastically decreased in winter. Aedes aegypti preferred concrete tanks and this preference increased in winter. Even in winter, the lowest water temperature found in concrete tanks was >14°C, exceeding the developmental zero point of Ae. aegypti. Although jars, drums and concrete tanks were the dominant containers previously (1994–97) in Hanoi, currently the percentage of residences with concrete tanks was still high while jars and drums were quite low. Our study showed that concrete tanks with broken lids allowing mosquitoes access were important winter refuge for Ae. aegypti. We also indicate a concern about concrete tanks serving as foci for Ae. aegypti to expand their distribution in cooler regions. PMID:24752230

  3. Chikungunya Virus in Febrile Humans and Aedes aegypti Mosquitoes, Yucatan, Mexico

    PubMed Central

    Cigarroa-Toledo, Nohemi; Blitvich, Bradley J.; Cetina-Trejo, Rosa C.; Talavera-Aguilar, Lourdes G.; Baak-Baak, Carlos M.; Torres-Chablé, Oswaldo M.; Hamid, Md-Nafiz; Friedberg, Iddo; González-Martinez, Pedro; Alonzo-Salomon, Gabriela; Rosado-Paredes, Elsy P.; Rivero-Cárdenas, Nubia; Reyes-Solis, Guadalupe C.; Farfan-Ale, Jose A.; Garcia-Rejon, Julian E.

    2016-01-01

    Chikungunya virus (CHIKV) was isolated from 12 febrile humans in Yucatan, Mexico, in 2015. One patient was co-infected with dengue virus type 1. Two additional CHIKV isolates were obtained from Aedes aegypti mosquitoes collected in the homes of patients. Phylogenetic analysis showed that the CHIKV isolates belong to the Asian lineage. PMID:27347760

  4. The maxillary palp of aedes aegypti, a model of multisensory integration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Female yellow-fever mosquitoes, Aedes aegypti, are obligate blood-feeders and vectors of the pathogens that cause dengue fever, yellow fever and Chikungunya. This feeding behavior concludes a series of multisensory events guiding the mosquito to its host from a distance. The antennae and maxillary...

  5. Gustatory receptor expression in the labella and legs of aedes aegypti

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The yellow-fever mosquito, Aedes aegypti, is a dangerous disease vector, infecting a growing number of people every year with dengue, yellow fever and chikungunya viruses. Contact chemoreception in mosquitoes influences a number of behaviors including host-selection, oviposition and feeding. While...

  6. Mosquito activity of a series of chalcones and 2-pyrazoline derivatives against Aedes aegypti

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aedes aegypti (L.) (Diptera: Culicidae) transmit pathogens to humans, leading to diseases such as yellow fever and dengue fever. Repellents and insecticides are two common interventions to reduce mosquito biting and thereby disease risk. However, overreliance on a chemical or class of chemicals c...

  7. Public Health Response to Aedes aegypti and Ae. albopictus Mosquitoes Invading California, USA.

    PubMed

    Porse, Charsey Cole; Kramer, Vicki; Yoshimizu, Melissa Hardstone; Metzger, Marco; Hu, Renjie; Padgett, Kerry; Vugia, Duc J

    2015-10-01

    Aedes aegypti and Ae. albopictus mosquitoes, primary vectors of dengue and chikungunya viruses, were recently detected in California, USA. The threat of potential local transmission of these viruses increases as more infected travelers arrive from affected areas. Public health response has included enhanced human and mosquito surveillance, education, and intensive mosquito control.

  8. Aerial ULV application of Dibrom against Aedes aegypti in simulated urban and rural residences

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reaching endophilic Aedes aegypti mosquito vectors of dengue located in human residences with aerial ULV pesticide applications is a prominent complication in operational wide area public health mosquito control activities. We conducted separate trials with a military C-130 fixed wing aircraft fitte...

  9. Promising Aedes aegypti repellent chemotypes identified through integrated QSAE, virtual screening, synthesis, and bioassay

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Molecular field topology analysis, scaffold hopping, and molecular docking were used as complementary computational tools for the design of repellents for Aedes aegypti, the insect vector for yellow fever, West Nile fever, and dengue fever. A large number of analogues were evaluated by virtual scree...

  10. Chikungunya Virus in Febrile Humans and Aedes aegypti Mosquitoes, Yucatan, Mexico.

    PubMed

    Cigarroa-Toledo, Nohemi; Blitvich, Bradley J; Cetina-Trejo, Rosa C; Talavera-Aguilar, Lourdes G; Baak-Baak, Carlos M; Torres-Chablé, Oswaldo M; Hamid, Md-Nafiz; Friedberg, Iddo; González-Martinez, Pedro; Alonzo-Salomon, Gabriela; Rosado-Paredes, Elsy P; Rivero-Cárdenas, Nubia; Reyes-Solis, Guadalupe C; Farfan-Ale, Jose A; Garcia-Rejon, Julian E; Machain-Williams, Carlos

    2016-10-01

    Chikungunya virus (CHIKV) was isolated from 12 febrile humans in Yucatan, Mexico, in 2015. One patient was co-infected with dengue virus type 1. Two additional CHIKV isolates were obtained from Aedes aegypti mosquitoes collected in the homes of patients. Phylogenetic analysis showed that the CHIKV isolates belong to the Asian lineage. PMID:27347760

  11. Do colour and surface area of ovitrap influence the oviposition behaviour of Aedes aegypti, the vector of dengue and DHF?

    PubMed

    Sivagnaname, N; Amalraj, D Dominic

    2008-12-01

    A newly developed ovitrap made from a fiberglass tray (FGTO) was compared with conventionally used black jar ovitrap (BJO) in field condition in terms of number of eggs received. The number of eggs laid in FGTO was consistently higher than in BJO. The number of eggs collected in FGTO was significantly higher and it was 5-94 times more than that of BJO (t =9.45; p<0.0001). This finding has implication in designing lethal ovitraps for the control of dengue vectors. PMID:19579722

  12. Do colour and surface area of ovitrap influence the oviposition behaviour of Aedes aegypti, the vector of dengue and DHF?

    PubMed

    Sivagnaname, N; Amalraj, D Dominic

    2008-12-01

    A newly developed ovitrap made from a fiberglass tray (FGTO) was compared with conventionally used black jar ovitrap (BJO) in field condition in terms of number of eggs received. The number of eggs laid in FGTO was consistently higher than in BJO. The number of eggs collected in FGTO was significantly higher and it was 5-94 times more than that of BJO (t =9.45; p<0.0001). This finding has implication in designing lethal ovitraps for the control of dengue vectors.

  13. Effect of niloticin, a protolimonoid isolated from Limonia acidissima L. (Rutaceae) on the immature stages of dengue vector Aedes aegypti L. (Diptera: Culicidae).

    PubMed

    Reegan, Appadurai Daniel; Gandhi, Munusamy Rajiv; Paulraj, Micheal Gabriel; Balakrishna, Kedike; Ignacimuthu, Savarimuthu

    2014-11-01

    The aim of the present study was to evaluate the mosquitocidal activity of fractions and a compound niloticin from the hexane extract of Limonia acidissima L. leaves on eggs, larvae and pupae of Aedes aegypti L. (Diptera: Culicidae). In these bioassays, the eggs, larvae and pupae were exposed to concentrations of 2.5, 5.0, 7.5 and 10.0ppm for fractions and 0.5, 1.0, 1.5 and 2.0ppm for compound. After 24h, the mortality was assessed and the LC50 and LC90 values were calculated for larvae and pupae. Per cent ovicidal activity was calculated for eggs after 120h post treatment. Among the sixteen fractions screened, fraction 8 from the hexane extract of L. acidissima generated good mosquitocidal activity against Ae. aegypti. The LC50 and LC90 values of fraction 8 were 4.11, 8.04ppm against Ae. aegypti larvae and 4.19, 8.10ppm against Ae. aegypti pupae, respectively. Further, the isolated compound, niloticin recorded strong larvicidal and pupicidal activities. The 2ppm concentration of niloticin showed 100% larvicidal and pupicidal activities in 24h. The LC50 and LC90 values of niloticin on Ae. aegypti larvae were 0.44, 1.17ppm and on pupae were 0.62, 1.45ppm, respectively. Niloticin presented 83.2% ovicidal activity at 2ppm concentration after 120h post treatment and niloticin exhibited significant growth disruption and morphological deformities at sub lethal concentrations against Ae. aegypti. The structure of the isolated compound was identified on the basis of single XRD and spectral data ((1)H NMR and (13)C NMR) and compared with literature spectral data. The results indicate that niloticin could be used as a potential natural mosquitocide.

  14. Effects of environment, dietary regime and ageing on the dengue vector microbiota: evidence of a core microbiota throughout Aedes aegypti lifespan

    PubMed Central

    David, Mariana Rocha; dos Santos, Lilha Maria Barbosa; Vicente, Ana Carolina Paulo; Maciel-de-Freitas, Rafael

    2016-01-01

    Abstract Mosquito midgut microbiota is a key component of vector competence, as gut bacteria can disturb pathogen development. In this study, we addressed the microbiota composition of Aedes aegypti during its lifespan, under field conditions. We also investigated the possible effects of environment, dietary regime and ageing on the gut community composition. We employed culture independent and dependent approaches to characterise vector microbiota. There was evidence of a lifelong stable core microbiota after mosquitoes were released into an urban settlement, where they presumably fed on a range of vertebrate hosts and carbohydrate sources. This core was formed mainly of bacteria belonging to the genera Pseudomonas, Acinetobacter, Aeromonas and Stenotrophomonas and to the families Oxalobacteraceae, Enterobacteriaceae and Comamonadaceae. We showed that both dietary regime and age were associated with the abundance of some bacterial groups in the Ae. aegypti microbiota. The majority of the bacterial groups we identified have been detected in the midgut of Ae. aegypti from laboratory and wild populations, indicating a possible core microbiota associated with this mosquito species. Our findings suggest that Ae. aegypti harbours a stable bacterial community during its adult life, similar to mosquito populations from distinct geographic areas, which may be further explored for arbovirus biocontrol strategies. PMID:27580348

  15. Effects of environment, dietary regime and ageing on the dengue vector microbiota: evidence of a core microbiota throughout Aedes aegypti lifespan.

    PubMed

    David, Mariana Rocha; Santos, Lilha Maria Barbosa Dos; Vicente, Ana Carolina Paulo; Maciel-de-Freitas, Rafael

    2016-09-01

    Mosquito midgut microbiota is a key component of vector competence, as gut bacteria can disturb pathogen development. In this study, we addressed the microbiota composition of Aedes aegypti during its lifespan, under field conditions. We also investigated the possible effects of environment, dietary regime and ageing on the gut community composition. We employed culture independent and dependent approaches to characterise vector microbiota. There was evidence of a lifelong stable core microbiota after mosquitoes were released into an urban settlement, where they presumably fed on a range of vertebrate hosts and carbohydrate sources. This core was formed mainly of bacteria belonging to the genera Pseudomonas, Acinetobacter, Aeromonas and Stenotrophomonas and to the families Oxalobacteraceae, Enterobacteriaceae and Comamonadaceae. We showed that both dietary regime and age were associated with the abundance of some bacterial groups in the Ae. aegypti microbiota. The majority of the bacterial groups we identified have been detected in the midgut of Ae. aegypti from laboratory and wild populations, indicating a possible core microbiota associated with this mosquito species. Our findings suggest that Ae. aegypti harbours a stable bacterial community during its adult life, similar to mosquito populations from distinct geographic areas, which may be further explored for arbovirus biocontrol strategies. PMID:27580348

  16. Oviposition and olfaction responses of Aedes aegypti mosquitoes to insecticides.

    PubMed

    Canyon, D V; Muller, R

    2013-12-01

    Insecticide applications are not particularly effective on Aedes aegypti mosquitoes which has been attributed to their 'closet' behaviour, or ability to rest in places that remain unexposed to insecticides. Some researchers have suggested that insecticides repel mosquitoes, which would result in less exposure and increased dispersal. If repellence due to insecticides is a fact, acquiring a vector-borne disease, such as dengue, could legitimately be attributed to local vector control efforts and this would lead to restitution claims. This study thus investigated the effect of insecticide presence on mosquito behaviour indirectly via oviposition and directly via olfactory response. In all experiments, oviposition in each insecticide compared to its water and ethanol controls was not significantly different. This indicates that Ae. aegypti mosquitoes are not affected by insecticide presence and that increased dispersal is unlikely to be caused by vector control spraying.

  17. The risk of Aedes aegypti breeding and premises condition in South Mexico.

    PubMed

    Manrique-Saide, Pablo; Davies, Clive R; Coleman, Paul G; Che-Mendoza, Azael; Dzul-Manzanilla, Felipe; Barrera-Pérez, Mario; Hernández-Betancourt, Silvia; Ayora-Talavera, Guadalupe; Pinkus-Rendón, Miguel; Burciaga-Zúñiga, Pierre; Sánchez Tejeda, Gustavo; Arredondo-Jiménez, Juan I

    2013-12-01

    A recent innovation instrumented for the Dengue Prevention and Control program in Mexico is the use of the premises condition index (PCI) as an indicator of risk for the vector Aedes aegypti infestation in dengue-endemic localities of Mexico. This paper addresses whether further improvements for the dengue control program could be made if the prevalence and productivity of Ae. aegypti populations could be reliably predicted using PCI at the household level, as well as medium-sized neighborhoods. We evaluated the use of PCI to predict the infestation with Aedes aegypti (breeding sites and immature productivity) in Merida, Mexico. The study consisted of a cross-sectional survey based on a cluster-randomized sampling design. We analyzed the statistical association between Aedes infestation and PCI, the extent to which the 3 components of PCI (house maintenance, and tidiness and shading of the patio) contributed to the association between PCI and infestation and whether infestation in a given premises was also affected by the PCI of the surrounding ones. Premises with the lowest PCI had significantly lower Aedes infestation and productivity; and as PCI scores increased infestation levels also tended to increase. Household PCI was significantly associated with Ae. aegypti breeding, largely due to the effect of patio untidiness and patio shade. The mean PCI within the surroundings premises also had a significant and independent explanatory power to predict the risk for infestation, in addition to individual PCI. This is the 1st study in Mexico showing evidence that premises condition as measured by the PCI is related to Ae. aegypti breeding sites and immature productivity. Results suggest that PCI could be used to streamline surveys to inform control efforts at least where Ae. aegypti breeds outdoors, as in Merida. The effect of individual premises, neighborhood condition, and the risk of Aedes infestation imply that the risk for dengue vector infestation can only be

  18. The influence of diet on the use of near-infrared spectroscopy to determine the age of female Aedes aegypti mosquitoes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Interventions targeting adult mosquitoes are used to combat transmission of vector-borne diseases, including dengue. Without available vaccines, targeting the primary vector, Aedes aegypti, is essential to prevent transmission. Older mosquitoes (>/='7 days) are of greatest epidemiological significan...

  19. Insecticide susceptibility of Aedes aegypti and Aedes albopictus in Central Africa

    PubMed Central

    2011-01-01

    Background Aedes aegypti (Linnaeus, 1762) and Aedes albopictus (Skuse, 1894) are the main vectors of dengue (DENV) and chikungunya (CHIKV) viruses worldwide. As there is still no vaccine or specific treatment for DENV and CHIKV, vector control remains the cornerstone of prevention and outbreak control. Unfortunately, vector control programs are facing operational challenges with mosquitoes becoming resistant to commonly used insecticides in several areas through the world. Throughout Central Africa no recent data are available susceptible/resistant status of either vector species since the introduction/arrival of Ae. albopictus in this area. We therefore studied the level of resistance of these two major vectors to insecticides commonly used in Africa for mosquito control. Results Aedes aegypti and Ae. albopictus were sampled in six urban localities of Cameroon (Garoua, Bertoua, Yaoundé, Bafia, Buea) and Gabon (Libreville). Larval bioassays, carried out to determine the lethal concentrations (LC50 and LC95) and resistance ratios (RR50 and RR95) suggested that both vector species were susceptible to Bti (Bacillus thuringiensis var israeliensis) and temephos. Bioassays were also performed on adults using WHO diagnostic test kits to assess phenotypic resistance to deltamethrin, DDT, fenitrothion and propoxur. These experiments showed that one population of Ae. aegypti (Libreville) and two populations of Ae. albopictus (Buea and Yaoundé) were resistant to DDT (mortality 36% to 71%). Resistance to deltamethrin was also suspected in Ae. albopictus from Yaoundé (83% mortality). All other field mosquito populations were susceptible to deltamethrin, DDT, fenitrothion and propoxur. No increase in the knockdown times (Kdt50 and Kdt95) was noted in the Yaoundé resistant population compared to other Ae. albopictus populations, suggesting the possible involvement of metabolic resistance to deltamethrin and DDT. Conclusion In view of the recent increase in dengue and

  20. Population structure of the mosquito Aedes aegypti (Stegomyia aegypti) in Pakistan.

    PubMed

    Rasheed, S B; Boots, M; Frantz, A C; Butlin, R K

    2013-12-01

    Eleven microsatellite markers were used to determine the genetic population structure and spread of Aedes aegypti (Stegomyia aegypti) (Diptera: Culicidae) in Pakistan using mosquitoes collected from 13 different cities. There is a single genetic cluster of Ae. aegypti in Pakistan with a pattern of isolation by distance within the population. The low level of isolation by distance suggests the long-range passive dispersal of this mosquito, which may be facilitated by the tyre trade in Pakistan. A decrease in genetic diversity from south to north suggests a recent spread of this mosquito from Karachi. A strong negative correlation between genetic distance and the quality of road connections shows that populations in cities connected by better road networks are less differentiated, which suggests the human-aided passive dispersal of Ae. aegypti in Pakistan. Dispersal on a large spatial scale may facilitate the strategy of introducing transgenic Ae. aegypti or intracellular bacteria such as Wolbachia to control the spread of dengue disease in Pakistan, but it also emphasizes the need for simple measures to control container breeding sites.

  1. The role of octopamine receptor agonists in the synergistic toxicity of certain insect growth regulators (IGRs) in controlling Dengue vector Aedes aegypti (Diptera: Culicidae) mosquito.

    PubMed

    Ahmed, Mohamed Ahmed Ibrahim; Vogel, Christoph Franz Adam

    2016-03-01

    The synergistic action of octopamine receptor agonists (OR agonists) on many insecticide classes (e.g., organophosphorus, pyrethroids, and neonicotinoids) on Aedes aegypti L. has been reported recently. An investigation of OR agonist's effect on insect growth regulators (IGRs) was undertaken to provide a better understanding of the mechanism of action. Based on the IGR bioassay, pyriproxyfen was the most potent IGR insecticide tested (EC50=0.0019ng/ml). However, the lethal toxicity results indicate that diafenthiuron was the most potent insecticide (LC50=56ng/cm(2)) on A. aegypti adults after 24h of exposure. The same trend was true after 48 and 72h of exposure. Further, the synergistic effects of OR agonists plus amitraz (AMZ) or chlordimeform (CDM) was significant on adults. Among the tested synergists, AMZ increased the potency of the selected IGRs on adults the greatest. As results, OR agonists were largely synergistic with the selected IGRs. OR agonists enhanced the lethal toxicity of IGRs, which is a valuable new tool in the field of A. aegypti control. However, further field experiments need to be done to understand the unique potential role of OR agonists and their synergistic action on IGRs.

  2. Aedes aegypti disregard humidity-related conditions with adequate nutrition.

    PubMed

    Canyon, D V; Muller, R; Hii J, L K

    2013-03-01

    Weather variations have clear associations with the epidemiology of dengue fever and populations of Aedes aegypti mosquitoes. Data on humidity associations, however, lags with respect to its effect on host-biting, nectar-seeking and survival. This experimental study on Ae. aegypti, sourced from the arid tropics, investigated the effect of low and high relative humidity and diet in relation to host-biting, temporal variations in feeding frequency, and mosquito mortality. In each environmental setting, 10 replicates, containing one male and five female mosquitoes, were challenged with different nutritional sources every six hours over 12 days. Results showed that host-biting did not diminish in low humidity and was six times higher than expected. Sucrose feeding was observed to significantly moderate host-biting and water alone was inadequate for survival. The high host-biting rates help to explain the intensity of dengue epidemics, while the ability of the mosquito to disregard adverse humidity-related conditions helps to explain how dengue epidemics in arid tropical regions can be just as devastating as those in the wet tropics.

  3. Field validation of the gravid Aedes trap (GAT) for collection of Aedes aegypti (Diptera: Culicidae).

    PubMed

    Ritchie, Scott A; Buhagiar, Tamara S; Townsend, Michael; Hoffmann, Ary; Van Den Hurk, Andrew F; McMahon, Jamie L; Eiras, Alvaro E

    2014-01-01

    Current surveillance methods for adult Aedes aegypti (L.) are expensive, require electrical power (e.g., the BG-Sentinel trap, BGS), are labor intensive (aspirators), or require difficult to use and costly adhesives (sticky ovitraps). Field trials were conducted in Cairns (Australia) to compare the efficacy of the newly designed Gravid Aedes Trap (GAT) against existing sticky ovitraps (MosquiTRAP and double sticky ovitrap) and the BGS. Latin square design trials confirmed that alarge GAT using a 9.2-liters bucket treated with Mortein Barrier Outdoor Surface Spray ([AI] 0.3 g/kg imiprothrin and 0.6 g/kg deltamethrin) outperformed a smaller 1.2-liters GAT and collected, on average, 3.7x and 2.4X more female Ae. aegypti than the MosquiTRAP and double sticky ovitrap, respectively. Field trials showed that the GAT collected 10-50% less female Ae. aegypti than the BGS trap but 30% more gravid mosquitoes than the BGS. Trials using the BGS and the GAT indicated that there was no difference in capture rates between female Ae. aegypti uninfected and infected with the wMel strain of Wolbachia, and wMel infection rates were nearly identical at >90% to field captured Ae. aegypti. The potential for the GAT to be used for dengue virus surveillance was also demonstrated with dengue virus type 3 RNA detected in five-sixths and six-sixths pools ofAe. aegypti stored in a GAT held at 28 degreeC and 60% relative humidity for 7 and 14 d, respectively. Mosquito knock down in GATs treated with Mortein surface spray set in 30, 70, and 99% shade was comparable for up to 2 mo, with only approximately 10% of adults escaping. The GAT is therefore a useful tool for capturing adult Ae. aegypti and may be suitable for other container-inhabiting species such as Aedes albopictus (Skuse) and Culex quinquefasciatus Say. The low cost and practicality of operation make the GAT suitable for vector surveillance and projects requiring monitoring of mosquitoes for Wolbachia and arboviruses, especially in

  4. Field validation of the gravid Aedes trap (GAT) for collection of Aedes aegypti (Diptera: Culicidae).

    PubMed

    Ritchie, Scott A; Buhagiar, Tamara S; Townsend, Michael; Hoffmann, Ary; Van Den Hurk, Andrew F; McMahon, Jamie L; Eiras, Alvaro E

    2014-01-01

    Current surveillance methods for adult Aedes aegypti (L.) are expensive, require electrical power (e.g., the BG-Sentinel trap, BGS), are labor intensive (aspirators), or require difficult to use and costly adhesives (sticky ovitraps). Field trials were conducted in Cairns (Australia) to compare the efficacy of the newly designed Gravid Aedes Trap (GAT) against existing sticky ovitraps (MosquiTRAP and double sticky ovitrap) and the BGS. Latin square design trials confirmed that alarge GAT using a 9.2-liters bucket treated with Mortein Barrier Outdoor Surface Spray ([AI] 0.3 g/kg imiprothrin and 0.6 g/kg deltamethrin) outperformed a smaller 1.2-liters GAT and collected, on average, 3.7x and 2.4X more female Ae. aegypti than the MosquiTRAP and double sticky ovitrap, respectively. Field trials showed that the GAT collected 10-50% less female Ae. aegypti than the BGS trap but 30% more gravid mosquitoes than the BGS. Trials using the BGS and the GAT indicated that there was no difference in capture rates between female Ae. aegypti uninfected and infected with the wMel strain of Wolbachia, and wMel infection rates were nearly identical at >90% to field captured Ae. aegypti. The potential for the GAT to be used for dengue virus surveillance was also demonstrated with dengue virus type 3 RNA detected in five-sixths and six-sixths pools ofAe. aegypti stored in a GAT held at 28 degreeC and 60% relative humidity for 7 and 14 d, respectively. Mosquito knock down in GATs treated with Mortein surface spray set in 30, 70, and 99% shade was comparable for up to 2 mo, with only approximately 10% of adults escaping. The GAT is therefore a useful tool for capturing adult Ae. aegypti and may be suitable for other container-inhabiting species such as Aedes albopictus (Skuse) and Culex quinquefasciatus Say. The low cost and practicality of operation make the GAT suitable for vector surveillance and projects requiring monitoring of mosquitoes for Wolbachia and arboviruses, especially in

  5. Physiological and biochemical effects of botanical extract from Piper nigrum Linn (Piperaceae) against the dengue vector Aedes aegypti Liston (Diptera: Culicidae).

    PubMed

    Lija-Escaline, Jalasteen; Senthil-Nathan, Sengottayan; Thanigaivel, Annamalai; Pradeepa, Venkatraman; Vasantha-Srinivasan, Prabhakaran; Ponsankar, Athirstam; Edwin, Edward Sam; Selin-Rani, Selvaraj; Abdel-Megeed, Ahmed

    2015-11-01

    The leaves of Piper nigrum L. (Piperaceae) were evaluated for chemical constituents and mosquito larvicidal activity against the larvae of Aedes aegypti. GC and GC-MS analyses revealed that the crude extracts contain 16 compounds. Thymol (20.77%) and ç-elemene (10.42%) were identified as the major constituents followed by cyclohexene, 4-ethenyl-4-methyl-3-(1-methylethenyl)-1-(1 methylethyl)-, (3R-trans) (7.58%), 4,6-octadienoic acid, 2-acetyl-2-methyl-, ethyl ester (6.98), 2(3H)-furanone, 3,4-bis(1,3-benzodioxol-5-ylmethyl) dihydro-, (3R-trans) (6.95%), 1-naphthalenol, 1,2,3,4,4a,7,8,8a-octahydro-1,6-dimethyl-4-(1-methylethyl)-, [1R-(1à,4á,4aá,8aá)]-(Cedreanol) (5.30%), trans-2-undecen-1-ol (4.48%), phytol (4.22%), 1,6-cyclodecadiene, 1-methyl-5-methylene-8-(1-methylethyl)-,[s-(E,E)] (3.78%) and 2,6-dimethyl-3,5,7-octatriene-2-ol, Z,Z (2.39%). Larval mortality was observed after 3 h of exposure period. The crude extract showed remarkable larvicidal activity against Ae. aegypti (LC50 = 34.97). The larvae of Ae. aegypti exposed to the P. nigrum, significantly reduced the activities of α- and β-carboxylesterases and superdioxide. Further, P. nigrum extract was severely affecting the mosquito gut cellular organelles. Based on the results, the chemical constituents of crude extracts of P. nigrum can be considered as a new source of larvicide for the control of Ae. aegypti.

  6. Physiological and biochemical effects of botanical extract from Piper nigrum Linn (Piperaceae) against the dengue vector Aedes aegypti Liston (Diptera: Culicidae).

    PubMed

    Lija-Escaline, Jalasteen; Senthil-Nathan, Sengottayan; Thanigaivel, Annamalai; Pradeepa, Venkatraman; Vasantha-Srinivasan, Prabhakaran; Ponsankar, Athirstam; Edwin, Edward Sam; Selin-Rani, Selvaraj; Abdel-Megeed, Ahmed

    2015-11-01

    The leaves of Piper nigrum L. (Piperaceae) were evaluated for chemical constituents and mosquito larvicidal activity against the larvae of Aedes aegypti. GC and GC-MS analyses revealed that the crude extracts contain 16 compounds. Thymol (20.77%) and ç-elemene (10.42%) were identified as the major constituents followed by cyclohexene, 4-ethenyl-4-methyl-3-(1-methylethenyl)-1-(1 methylethyl)-, (3R-trans) (7.58%), 4,6-octadienoic acid, 2-acetyl-2-methyl-, ethyl ester (6.98), 2(3H)-furanone, 3,4-bis(1,3-benzodioxol-5-ylmethyl) dihydro-, (3R-trans) (6.95%), 1-naphthalenol, 1,2,3,4,4a,7,8,8a-octahydro-1,6-dimethyl-4-(1-methylethyl)-, [1R-(1à,4á,4aá,8aá)]-(Cedreanol) (5.30%), trans-2-undecen-1-ol (4.48%), phytol (4.22%), 1,6-cyclodecadiene, 1-methyl-5-methylene-8-(1-methylethyl)-,[s-(E,E)] (3.78%) and 2,6-dimethyl-3,5,7-octatriene-2-ol, Z,Z (2.39%). Larval mortality was observed after 3 h of exposure period. The crude extract showed remarkable larvicidal activity against Ae. aegypti (LC50 = 34.97). The larvae of Ae. aegypti exposed to the P. nigrum, significantly reduced the activities of α- and β-carboxylesterases and superdioxide. Further, P. nigrum extract was severely affecting the mosquito gut cellular organelles. Based on the results, the chemical constituents of crude extracts of P. nigrum can be considered as a new source of larvicide for the control of Ae. aegypti. PMID:26277727

  7. Surveillance of Aedes albopictus Skuse breeding preference in selected dengue outbreak localities, peninsular Malaysia.

    PubMed

    Rozilawati, H; Tanaselvi, K; Nazni, W A; Mohd Masri, S; Zairi, J; Adanan, C R; Lee, H L

    2015-03-01

    Entomological surveillance was conducted in order to determine the abundance and to evaluate any changes of biological vectors or ecology, especially in the dengue outbreak areas. The abundance and breeding preference of Aedes albopictus and Aedes aegypti were conducted in selected dengue outbreak localities in three states of peninsular Malaysia namely Selangor, Federal Territory of Kuala Lumpur, and Penang Island using ovitraps and larval survey method. It was determined that Ae. albopictus was predominant in most of the localities and found to breed more outdoor than indoor. A wide range of breeding foci were recorded in this study. It was also determined that ovitrap method was more effective to detect the presence of Aedes mosquitoes when the larval survey was at low rate of infestation. The abundance of Ae. albopictus in dengue outbreak localities emphasis that the vector control programme should also target this species together with the primary dengue vector, Ae. aegypti. PMID:25801254

  8. Using GARP to predict the range of Aedes aegypti in China.

    PubMed

    Wang, Gang; Zhang, Hengduan; Cao, Xin; Zhang, Xiaolong; Wang, Guolong; He, Zhihong; Yu, Changhui; Zhao, Tongyan

    2014-03-01

    Dengue fever and dengue hemorrhagic fever are common mosquito-borne diseases in tropical and subtropical regions, and are mainly transmitted by the mosquito Aedes aegypti (Diptera: Culicidae). The international trade of used tires, coupled with its anthropophilic habit, has enabled Ae. aegypti to colonise new areas in China. We used Genetic Algorithum Rule-Set Production (GARP) to predict the putative current distribution of Ae. aegypti based on data on its distribution 20 years ago and compared this predicted distribution with the known current distribution. The putative distribution corresponded perfectly to the existing distribution. We conclude that GARP is a valid method to predict the putative future distribution of Ae. aegypti, and therefore is an important tool for the surveillance of mosquito-borne diseases in general.

  9. Atmospheric control of Aedes aegypti populations in Buenos Aires (Argentina) and its variability

    NASA Astrophysics Data System (ADS)

    de Garín, A.; Bejarán, R. A.; Carbajo, A. E.; de Casas, S. C.; Schweigmann, N. J.

    The mosquito Aedes aegypti is the main urban vector responsible for the transmission of dengue fever and dengue hemorrhagic fever. The city of Buenos Aires, Argentina, is located at the southern end of the world distribution of the species. The population abundance of Ae. aegypti is mainly regulated by environmental factors. We calculated the potential number of times that a female could lay eggs during its mean life expectancy, based on potential egg production and daily meteorological records. The model considers those variables implying physical hazard to the survival of Ae. aegypti, mosquito flying activity and oviposition. The results, obtained after calibration and validation of the model with field observations, show significant correlation (P<0.001) for different lags depending on the life stage. From these results, more favorable atmospheric conditions for Ae. aegypti reproduction (linked to the urban climatic change) can be observed. The climatic variability in the last decade resembles conditions at the end of 19th century.

  10. Synthesis, depletion and cell-type expression of a protein from the male accessory glands of the dengue vector mosquito Aedes aegypti.

    PubMed

    Alfonso-Parra, Catalina; Avila, Frank W; Deewatthanawong, Prasit; Sirot, Laura K; Wolfner, Mariana F; Harrington, Laura C

    2014-11-01

    Aedes aegypti males transfer sperm and seminal fluid proteins (Sfps), primarily produced by male accessory glands (AGs), to females during mating. When collectively injected or transplanted into females, AG tissues and/or seminal fluid homogenates have profound effects on Aedes female physiology and behavior. To identify targets and design new strategies for vector control, it is important to understand the biology of the AGs. Thus, we examined characteristics of AG secretion and development in A. aegypti, using the AG-specific seminal fluid protein, AAEL010824, as a marker. We showed that AAEL010824 is first detectable by 12h post-eclosion, and increases in amount over the first 3 days of adult life. We then showed that the amount of AAEL0010824 in the AG decreases after mating, with each successive mating depleting it further; by 5 successive matings with no time for recovery, its levels are very low. AAEL010824 levels in a depleted male are replenished by 48 h post-mating. In addition to examining the level of AAEL010824 protein, we also characterized the expression of its gene. We did this by making a transgenic mosquito line that carries an Enhanced Green Fluorescence Protein (EGFP) fused to the AAEL0010824 promoter that we defined here. We showed that AAEL010824 is expressed in the anterior cells of the accessory glands, and that its RNA levels also respond to mating. In addition to further characterizing AAEL010824 expression, our results with the EGFP fusion provide a promoter for driving AG expression. By providing this information on the biology of an important male reproductive tissue and the production of one of its seminal proteins, our results lay the foundation for future work aimed at identifying novel targets for mosquito population control.

  11. Larvicidal, Repellent, and Irritant Potential of the Seed-Derived Essential oil of Apium graveolens Against Dengue Vector, Aedes aegypti L. (Diptera: Culicidae).

    PubMed

    Kumar, Sarita; Mishra, Monika; Wahab, Naim; Warikoo, Radhika

    2014-01-01

    Aedes aegypti L. is one of the primary disease vectors spreading various dreadful diseases throughout the world, specifically over tropics and subtropics. Keeping in view the adverse effects of chemical insecticides-based intervention measures, the eco-friendly and bio-degradable essential oil extracted from the seeds of celery, Apium graveolens were investigated for its efficacy against Ae. aegypti. Larvicidal bioassay carried out with the seed oil against early fourth instars of Ae. aegypti caused an LC50 and LC90 values of 16.10 and 29.08 ppm, respectively, after an exposure to 24 h. The cidal effect of the celery seed oil augmented by 1.2-fold; after an exposure to 48 h; revealing an LC50 value of 13.22 ppm. Interestingly, the seed oil did not cause immediate larval mortality, suggesting a delayed toxicity against the larval stage. Present investigations also revealed remarkable effective repellency of the oil leading to 100% protection till 165 min as compared to control that did not result in any repellency against adult Ae. aegypti. Interestingly, only one bite was recorded in the 165th-min after which only two bites were scored until 180 min of exposure of the adult mosquitoes to the oil. An exciting observation was that the knocked-down effect in adults exposed to 10% oil-impregnated papers. The contact irritancy assays with paper impregnated with 1% celery seed oil caused first flight only after 4 s resulting in an average of 63.66 flights during 15 min of exposure revealing the relative irritability of 26.97. The qualitative phytochemical analysis of the seed oil showed the presence of flavonoids, lactones, and terpenoids as the major constituents suggesting their probable role in the toxicity. Our results confirmed that celery seed essential oil can be used as an efficient larvicide and repellent against Ae. aegypti. The identification of the bioactive components, their mode of action, and studying effects on non-target organisms and the

  12. Larvicidal, Repellent, and Irritant Potential of the Seed-Derived Essential oil of Apium graveolens Against Dengue Vector, Aedes aegypti L. (Diptera: Culicidae)

    PubMed Central

    Kumar, Sarita; Mishra, Monika; Wahab, Naim; Warikoo, Radhika

    2014-01-01

    Aedes aegypti L. is one of the primary disease vectors spreading various dreadful diseases throughout the world, specifically over tropics and subtropics. Keeping in view the adverse effects of chemical insecticides-based intervention measures, the eco-friendly and bio-degradable essential oil extracted from the seeds of celery, Apium graveolens were investigated for its efficacy against Ae. aegypti. Larvicidal bioassay carried out with the seed oil against early fourth instars of Ae. aegypti caused an LC50 and LC90 values of 16.10 and 29.08 ppm, respectively, after an exposure to 24 h. The cidal effect of the celery seed oil augmented by 1.2-fold; after an exposure to 48 h; revealing an LC50 value of 13.22 ppm. Interestingly, the seed oil did not cause immediate larval mortality, suggesting a delayed toxicity against the larval stage. Present investigations also revealed remarkable effective repellency of the oil leading to 100% protection till 165 min as compared to control that did not result in any repellency against adult Ae. aegypti. Interestingly, only one bite was recorded in the 165th-min after which only two bites were scored until 180 min of exposure of the adult mosquitoes to the oil. An exciting observation was that the knocked-down effect in adults exposed to 10% oil-impregnated papers. The contact irritancy assays with paper impregnated with 1% celery seed oil caused first flight only after 4 s resulting in an average of 63.66 flights during 15 min of exposure revealing the relative irritability of 26.97. The qualitative phytochemical analysis of the seed oil showed the presence of flavonoids, lactones, and terpenoids as the major constituents suggesting their probable role in the toxicity. Our results confirmed that celery seed essential oil can be used as an efficient larvicide and repellent against Ae. aegypti. The identification of the bioactive components, their mode of action, and studying effects on non-target organisms and the

  13. Evaluation of Sumithion L-40 against Aedes aegypti (L.) and Aedes albopictus Skuse.

    PubMed

    Loke, S R; Sing, K W; Teoh, G N; Lee, H L

    2015-03-01

    Space spraying of chemical insecticides is still an important mean of controlling Aedes mosquitoes and dengue transmission. For this purpose, the bioefficacy of space-sprayed chemical insecticide should be evaluated from time to time. A simulation field trial was conducted outdoor in an open field and indoor in unoccupied flat units in Kuala Lumpur, to evaluate the adulticidal and larvicidal effects of Sumithion L-40, a ULV formulation of fenitrothion. A thermal fogger with a discharge rate of 240 ml/min was used to disperse Sumithion L-40 at 3 different dosages (350 ml/ha, 500 ml/ha, 750 ml/ha) against lab-bred larvae and adult female Aedes aegypti and Aedes albopictus. An average of more than 80% adult mortality was achieved for outdoor space spray, and 100% adult mortality for indoor space spray, in all tested dosages. Outdoor larvicidal effect was noted up to 14 days and 7 days at a dosage of 500 and 750 ml/ha for Ae. aegypti and Ae. albopictus, respectively. Indoor larvicidal effect was up to 21 days (500 ml/ha) and 14 days (750 ml/ha), respectively, after spraying with larval mortality > 50% against Ae. aegypti. This study concluded that the effective dosage of Sumithion L-40 thermally applied against adult Ae. aegypti and Ae. albopictus indoor and outdoor is 500 and 750 ml/ha. Based on these dosages, effective indoor spray volume is 0.4 - 0.6 ml/m³. Additional indoor and outdoor larvicidal effect will be observed at these application dosages, in addition to adult mortality.

  14. Characterising the spatial dynamics of sympatric Aedes aegypti and Aedes albopictus populations in the Philippines.

    PubMed

    Duncombe, Jennifer; Espino, Fe; Marollano, Kristian; Velazco, Aldwin; Ritchie, Scott A; Hu, Wen-Biao; Weinstein, Philip; Clements, Archie C A

    2013-11-01

    Entomological surveillance and control are essential to the management of dengue fever (DF). Hence, understanding the spatial and temporal patterns of DF vectors, Aedes (Stegomyia) aegypti (L.) and Ae. (Stegomyia) albopictus (Skuse), is paramount. In the Philippines, resources are limited and entomological surveillance and control are generally commenced during epidemics, when transmission is difficult to control. Recent improvements in spatial epidemiological tools and methods offer opportunities to explore more efficient DF surveillance and control solutions: however, there are few examples in the literature from resource-poor settings. The objectives of this study were to: (i) explore spatial patterns of Aedes populations and (ii) predict areas of high and low vector density to inform DF control in San Jose village, Muntinlupa city, Philippines. Fortnightly, adult female Aedes mosquitoes were collected from 50 double-sticky ovitraps (SOs) located in San Jose village for the period June-November 2011. Spatial clustering analysis was performed to identify high and low density clusters of Ae. aegypti and Ae. albopictus mosquitoes. Spatial autocorrelation was assessed by examination of semivariograms, and ordinary kriging was undertaken to create a smoothed surface of predicted vector density in the study area. Our results show that both Ae. aegypti and Ae. albopictus were present in San Jose village during the study period. However, one Aedes species was dominant in a given geographic area at a time, suggesting differing habitat preferences and interspecies competition between vectors. Density maps provide information to direct entomological control activities and advocate the development of geographically enhanced surveillance and control systems to improve DF management in the Philippines.

  15. Differential Susceptibilities of Aedes aegypti and Aedes albopictus from the Americas to Zika Virus

    PubMed Central

    Vazeille, Marie; Yebakima, André; Girod, Romain; Goindin, Daniella; Dupont-Rouzeyrol, Myrielle; Lourenço-de-Oliveira, Ricardo; Failloux, Anna-Bella

    2016-01-01

    Background Since the major outbreak in 2007 in the Yap Island, Zika virus (ZIKV) causing dengue-like syndromes has affected multiple islands of the South Pacific region. In May 2015, the virus was detected in Brazil and then spread through South and Central America. In December 2015, ZIKV was detected in French Guiana and Martinique. The aim of the study was to evaluate the vector competence of the mosquito spp. Aedes aegypti and Aedes albopictus from the Caribbean (Martinique, Guadeloupe), North America (southern United States), South America (Brazil, French Guiana) for the currently circulating Asian genotype of ZIKV isolated from a patient in April 2014 in New Caledonia. Methodology/Principal Findings Mosquitoes were orally exposed to an Asian genotype of ZIKV (NC-2014-5132). Upon exposure, engorged mosquitoes were maintained at 28°±1°C, a 16h:8h light:dark cycle and 80% humidity. 25–30 mosquitoes were processed at 4, 7 and 14 days post-infection (dpi). Mosquito bodies (thorax and abdomen), heads and saliva were analyzed to measure infection, dissemination and transmission, respectively. High infection but lower disseminated infection and transmission rates were observed for both Ae. aegypti and Ae. albopictus. Ae. aegypti populations from Guadeloupe and French Guiana exhibited a higher dissemination of ZIKV than the other Ae. aegypti populations examined. Transmission of ZIKV was observed in both mosquito species at 14 dpi but at a low level. Conclusions/Significance This study suggests that although susceptible to infection, Ae. aegypti and Ae. albopictus were unexpectedly low competent vectors for ZIKV. This may suggest that other factors such as the large naïve population for ZIKV and the high densities of human-biting mosquitoes contribute to the rapid spread of ZIKV during the current outbreak. PMID:26938868

  16. The wMel strain of Wolbachia Reduces Transmission of Zika virus by Aedes aegypti

    PubMed Central

    Aliota, Matthew T.; Peinado, Stephen A.; Velez, Ivan Dario; Osorio, Jorge E.

    2016-01-01

    Zika virus (ZIKV) is causing an explosive outbreak of febrile disease in the Americas. There are no effective antiviral therapies or licensed vaccines for this virus, and mosquito control strategies have not been adequate to contain the virus. A promising candidate for arbovirus control and prevention relies on the introduction of the intracellular bacterium Wolbachia into Aedes aegypti mosquitoes. This primarily has been proposed as a tool to control dengue virus (DENV) transmission; however, evidence suggests Wolbachia infections confer protection for Ae. aegypti against other arboviruses. At present, it is unknown whether or not ZIKV can infect, disseminate, and be transmitted by Wolbachia-infected Ae. aegypti. Using Ae. aegypti infected with the wMel strain of Wolbachia that are being released in Medellin, Colombia, we report that these mosquitoes have reduced vector competence for ZIKV. These results support the use of Wolbachia biocontrol as a multivalent strategy against Ae. aegypti-transmitted viruses. PMID:27364935

  17. The wMel strain of Wolbachia Reduces Transmission of Zika virus by Aedes aegypti.

    PubMed

    Aliota, Matthew T; Peinado, Stephen A; Velez, Ivan Dario; Osorio, Jorge E

    2016-01-01

    Zika virus (ZIKV) is causing an explosive outbreak of febrile disease in the Americas. There are no effective antiviral therapies or licensed vaccines for this virus, and mosquito control strategies have not been adequate to contain the virus. A promising candidate for arbovirus control and prevention relies on the introduction of the intracellular bacterium Wolbachia into Aedes aegypti mosquitoes. This primarily has been proposed as a tool to control dengue virus (DENV) transmission; however, evidence suggests Wolbachia infections confer protection for Ae. aegypti against other arboviruses. At present, it is unknown whether or not ZIKV can infect, disseminate, and be transmitted by Wolbachia-infected Ae. aegypti. Using Ae. aegypti infected with the wMel strain of Wolbachia that are being released in Medellin, Colombia, we report that these mosquitoes have reduced vector competence for ZIKV. These results support the use of Wolbachia biocontrol as a multivalent strategy against Ae. aegypti-transmitted viruses.

  18. The wMel strain of Wolbachia Reduces Transmission of Zika virus by Aedes aegypti.

    PubMed

    Aliota, Matthew T; Peinado, Stephen A; Velez, Ivan Dario; Osorio, Jorge E

    2016-01-01

    Zika virus (ZIKV) is causing an explosive outbreak of febrile disease in the Americas. There are no effective antiviral therapies or licensed vaccines for this virus, and mosquito control strategies have not been adequate to contain the virus. A promising candidate for arbovirus control and prevention relies on the introduction of the intracellular bacterium Wolbachia into Aedes aegypti mosquitoes. This primarily has been proposed as a tool to control dengue virus (DENV) transmission; however, evidence suggests Wolbachia infections confer protection for Ae. aegypti against other arboviruses. At present, it is unknown whether or not ZIKV can infect, disseminate, and be transmitted by Wolbachia-infected Ae. aegypti. Using Ae. aegypti infected with the wMel strain of Wolbachia that are being released in Medellin, Colombia, we report that these mosquitoes have reduced vector competence for ZIKV. These results support the use of Wolbachia biocontrol as a multivalent strategy against Ae. aegypti-transmitted viruses. PMID:27364935

  19. Insecticide susceptibility of Aedes aegypti and Aedes albopictus in the Lower Rio Grande Valley of Texas and Mexico.

    PubMed

    Sames, W J; Bueno, R; Hayes, J; Olson, J K

    1996-09-01

    In response to a potential dengue fever outbreak in south Texas during 1995, the susceptibilities of Aedes aegypti and Aedes albopictus to commonly used mosquito adulticides were assessed. Larvae collected from the Lower Rio Grande Valley of Texas and Mexico were reared to adults and tested against susceptible laboratory strains at Texas A&M University. Resistance ratios at both the LC50 and LC95 rates were all less than 10, indicating that adult populations of both species are still susceptible to malathion, chlorpyrifos, resmethrin, and permethrin.

  20. Macroclimate determines the global range limit of Aedes aegypti.

    PubMed

    Capinha, César; Rocha, Jorge; Sousa, Carla A

    2014-09-01

    Aedes aegypti is the main vector of dengue and a number of other diseases worldwide. Because of the domestic nature of this mosquito, the relative importance of macroclimate in shaping its distribution has been a controversial issue. We have captured here the worldwide macroclimatic conditions occupied by A. aegypti in the last century. We assessed the ability of this information to predict the species' observed distribution using supra-continental spatially-uncorrelated data. We further projected the distribution of the colonized climates in the near future (2010-2039) under two climate-change scenarios. Our results indicate that the macroclimate is largely responsible for setting the maximum range limit of A. aegypti worldwide and that in the near future, relatively wide areas beyond this limit will receive macroclimates previously occupied by the species. By comparing our projections, with those from a previous model based strictly on species-climate relationships (i.e., excluding human influence), we also found support for the hypothesis that much of the species' range in temperate and subtropical regions is being sustained by artificial environments. Altogether, these findings suggest that, if the domestic environments commonly exploited by this species are available in the newly suitable areas, its distribution may expand considerably in the near future. PMID:24643859

  1. Germline excision of transgenes in Aedes aegypti by homing endonucleases.

    PubMed

    Aryan, Azadeh; Anderson, Michelle A E; Myles, Kevin M; Adelman, Zach N

    2013-01-01

    Aedes (Ae.) aegypti is the primary vector for dengue viruses (serotypes1-4) and chikungunya virus. Homing endonucleases (HEs) are ancient selfish elements that catalyze double-stranded DNA breaks (DSB) in a highly specific manner. In this report, we show that the HEs Y2-I-AniI, I-CreI and I-SceI are all capable of catalyzing the excision of genomic segments from the Ae. aegypti genome in a heritable manner. Y2-I-AniI demonstrated the highest efficiency at two independent genomic targets, with 20-40% of Y2-I-AniI-treated individuals producing offspring that had lost the target transgene. HE-induced DSBs were found to be repaired via the single-strand annealing (SSA) and non-homologous end-joining (NHEJ) pathways in a manner dependent on the availability of direct repeat sequences in the transgene. These results support the development of HE-based gene editing and gene drive strategies in Ae. aegypti, and confirm the utility of HEs in the manipulation and modification of transgenes in this important vector.

  2. Formulas of components of citronella oil against mosquitoes (Aedes aegypti).

    PubMed

    Hsu, Wey-Shin; Yen, Jui-Hung; Wang, Yei-Shung

    2013-01-01

    The mosquito Aedes aegypti is an epidemic vector of several diseases such as dengue fever and yellow fever. Several pesticides are used to control the mosquito population. Because of their frequent use, some mosquitoes have developed resistance. In this study, we used the Y-tube olfactometer to test essential oils of Cymbopogon species and screened specific formulas of components as repellents against Ae. aegypti. At 400 μL, the extracted oil of citronella grass (Cymbopogon nardus) and myrcene produced a low-active response by inhibiting mosquito host-seeking activity. Citronella grass, lemon grass (Cymbopogon citratus), citral and myrcene also produced a low-treatment response to repellents, for more potential to affect host-seeking behavior. Furthermore, the mixture of citral, myrcene, and citronellal oil (C:M:Ci = 6:4:1) greatly affected and inhibited host-seeking behavior (76% active response; 26% treatment response with 40 μL; 42.5%, 18% with 400 μL; and 19%, 23% with 1000 μL). As compared with the result for N,N-diethyl-3-methylbenzamide (DEET; 44%, 22% with 400 μL), adjusting the composition formulas of citronella oil had a synergistic effect, for more effective repellent against Ae. aegypti. PMID:23998314

  3. [Anti-Aedes aegypti campaign in French Guiana].

    PubMed

    Cebret, A; Désiré, R

    1996-01-01

    The history of vector control in French Guiana started in 1947 when a small team was recruited for that purpose. In 1949, the first DDT treatments were implemented and Aedes aegypti could not be found until 1960. Between 1966 and 1972 an eradication campaign was carried out which resulted in the elimination of Ae. aegypti from all the department except the city of Cayenne. Malathion and orthodibrom were used as adulticides and temephos (Abate) was sprayed against the larvae. Nevertheless, in 1980, Ae. aegypti was still infesting Cayenne and its surroundings. The pilot project of the "Cité Grant" was developed, but never gave the expected results. In 1986, the vector control agency called "Service départmental de désinfection" was restructured and extended. During the 1990s, collaborations were developed between the different health participants of French Guiana, to improve disease control. Actually, the vector control activities include house inspections, mainly to detect, treat or eliminate the breeding-sources, and also to set up entomological indices. Furthermore, investigations are made on the laboratory confirmed dengue cases to find and treat the place of infection, spatial sprayings are made against the adults, and the community health education has being reinforced. The situation in French Guiana is not optimistic for climatic and logistical reasons, and the lack of participation from the community. The perspectives are to improve vector control through education, collaborations with local authorities, reorganisation of the control teams and regional exchanges.

  4. Pyrethroid resistance in Aedes aegypti and Aedes albopictus from Port-au-Prince, Haiti.

    PubMed

    McAllister, Janet C; Godsey, Marvin S; Scott, Mariah L

    2012-12-01

    In Port-au-Prince, Haiti, the status of insecticide resistance has not recently been evaluated for Aedes aegypti (L) and Aedes albopictus (Skuse) populations. No prophylactics exist for dengue, so prevention is only through vector control methods. An earthquake occurred in Haiti on January 12, 2010, with a magnitude of 7.0 Mw that devastated the area. Dengue became a major concern for the humanitarian relief workers that entered the country. Bottle bioassays were conducted in the field on adult mosquitoes reared from larvae collected from the grounds of the U.S. Embassy and from an adjacent neighborhood in eastern Port-au-Prince, Haiti. At the CDC, Fort Collins, CO, bioassays, molecular, and biochemical assays were performed on mosquitoes reared from field-collected eggs. A small percentage of the population was able to survive the diagnostic dose in bioassays run in Haiti. Mosquitoes tested at the CDC demonstrated no phenotypic resistance. A variety of factors could be responsible for the discrepancies between the field and lab data, but temperature and larval nutrition are probably most important. Knowledge of localized resistance and underlying mechanisms helps in making rational decisions in selection of appropriate and effective insecticides in the event of a dengue outbreak.

  5. Historical inability to control Aedes aegypti as a main contributor of fast dispersal of chikungunya outbreaks in Latin America.

    PubMed

    Fernández-Salas, Ildefonso; Danis-Lozano, Rogelio; Casas-Martínez, Mauricio; Ulloa, Armando; Bond, J Guillermo; Marina, Carlos F; Lopez-Ordóñez, Teresa; Elizondo-Quiroga, Armando; Torres-Monzón, Jorge A; Díaz-González, Esteban E

    2015-12-01

    The arrival of chikungunya fever (CHIKF) in Latin American countries has been expected to trigger epidemics and challenge health systems. Historically considered as dengue-endemic countries, abundant Aedes aegypti populations make this region highly vulnerable to chikungunya virus (CHIKV) circulation. This review describes the current dengue and CHIKF epidemiological situations, as well as the role of uncontrolled Ae. aegypti and Aedes albopictus vectors in spreading the emerging CHIKV. Comments are included relating to the vector competence of both species and failures of surveillance and vector control measures. Dengue endemicity is a reflection of these abundant and persistent Aedes populations that are now spreading CHIKV in the Americas. This article forms part of a symposium in Antiviral Research on "Chikungunya discovers the New World."

  6. Investigating the genetics of Bti resistance using mRNA tag sequencing: application on laboratory strains and natural populations of the dengue vector Aedes aegypti

    PubMed Central

    Paris, Margot; Marcombe, Sebastien; Coissac, Eric; Corbel, Vincent; David, Jean-Philippe; Després, Laurence

    2013-01-01

    Mosquito control is often the main method used to reduce mosquito-transmitted diseases. In order to investigate the genetic basis of resistance to the bio-insecticide Bacillus thuringiensis subsp. israelensis (Bti), we used information on polymorphism obtained from cDNA tag sequences from pooled larvae of laboratory Bti-resistant and susceptible Aedes aegypti mosquito strains to identify and analyse 1520 single nucleotide polymorphisms (SNPs). Of the 372 SNPs tested, 99.2% were validated using DNA Illumina GoldenGate® array, with a strong correlation between the allelic frequencies inferred from the pooled and individual data (r = 0.85). A total of 11 genomic regions and five candidate genes were detected using a genome scan approach. One of these candidate genes showed significant departures from neutrality in the resistant strain at sequence level. Six natural populations from Martinique Island were sequenced for the 372 tested SNPs with a high transferability (87%), and association mapping analyses detected 14 loci associated with Bti resistance, including one located in a putative receptor for Cry11 toxins. Three of these loci were also significantly differentiated between the laboratory strains, suggesting that most of the genes associated with resistance might differ between the two environments. It also suggests that common selected regions might harbour key genes for Bti resistance. PMID:24187584

  7. Understanding productivity, a key to Aedes aegypti surveillance.

    PubMed

    Tun-Lin, W; Kay, B H; Barnes, A

    1995-12-01

    The objective of this work was to define criteria that could be applied to achieve faster, more economical, and accurate assessment of vector populations for control of dengue viruses. During 1989-1990, 1,349 premises were surveyed in Townsville, Charters Towers and Mingela/Ravenswood, Queensland, Australia. In each locality, 1.9-8.4% of premises contained three or more containers with Aedes aegypti immature forms and were designated as key premises. Comparison of surveys in Townsville from 1989 to 1990 indicated that positive premises (i.e., those with at least one container with Ae. aegypti present) were 3.22 times more likely to remain positive than negative houses to become positive the following year. The Ae. aegypti population in Townsville was seen to be totally associated with garden receptacles, discarded household items, and trash but one well and one rainwater tank were responsible for 28% of all immature forms recorded in the 1,349 premises inspected. These breeding sites of high productivity were designated as key containers. At Charters Towers, Mingela, and Ravenswood, rainwater tanks were seen as the most important key container because although they constituted 13-29% of positive containers, they supported 60-63% of the immature forms. This study demonstrates that there is a certain degree of stability with regard to positive premises and that some of these, or some container types, contribute disproportionately to the Ae. aegypti population. Control programs could be made more efficient if efforts were concentrated on these sites of key vector productivity.

  8. Comparative efficacy of existing surveillance tools for Aedes aegypti in Western Kenya.

    PubMed

    Yalwala, Sancto; Clark, Jeffrey; Oullo, David; Ngonga, Daniel; Abuom, David; Wanja, Elizabeth; Bast, Joshua

    2015-12-01

    All traditional surveillance techniques for Aedes aegypti have been developed for the cosmopolitan domestic subspecies Ae. aegypti aegypti, and not the sylvatic subspecies, Ae. aegypti formosus. The predominant form in Western Kenya is Ae. aegypti formosus that is rarely associated with human habitations but is linked to transmission of sylvatic dengue virus strains. We compared five surveillance methods for their effectiveness in sampling Ae. aegypti formosus with the goal of determining a sustainable surveillance strategy in Kenya. The methods included larval and pupal surveys, oviposition trapping, BG-Sentinel trapping, resting boxes, and backpack aspirations. Larval and pupal surveys collected the highest number of Ae. aegypti formosus (51.3%), followed by oviposition traps (45.7%), BG-Sentinel traps (3.0%), and zero collected with either backpack aspiration or resting box collections. No Ae. aegypti formosus larvae or pupae were found indoors. The results indicate that oviposition traps and outdoor larval and pupal surveys were better surveillance methods for Ae. aegypti formosus in Western Kenya. PMID:26611965

  9. Comparative efficacy of existing surveillance tools for Aedes aegypti in Western Kenya.

    PubMed

    Yalwala, Sancto; Clark, Jeffrey; Oullo, David; Ngonga, Daniel; Abuom, David; Wanja, Elizabeth; Bast, Joshua

    2015-12-01

    All traditional surveillance techniques for Aedes aegypti have been developed for the cosmopolitan domestic subspecies Ae. aegypti aegypti, and not the sylvatic subspecies, Ae. aegypti formosus. The predominant form in Western Kenya is Ae. aegypti formosus that is rarely associated with human habitations but is linked to transmission of sylvatic dengue virus strains. We compared five surveillance methods for their effectiveness in sampling Ae. aegypti formosus with the goal of determining a sustainable surveillance strategy in Kenya. The methods included larval and pupal surveys, oviposition trapping, BG-Sentinel trapping, resting boxes, and backpack aspirations. Larval and pupal surveys collected the highest number of Ae. aegypti formosus (51.3%), followed by oviposition traps (45.7%), BG-Sentinel traps (3.0%), and zero collected with either backpack aspiration or resting box collections. No Ae. aegypti formosus larvae or pupae were found indoors. The results indicate that oviposition traps and outdoor larval and pupal surveys were better surveillance methods for Ae. aegypti formosus in Western Kenya.

  10. Papyracillic acid and its derivatives as biting deterrents against Aedes aegypti(Diptera: Culicidae): structure–activity relationships

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aedes aegypti L. is the major vector of the arboviruses responsible for dengue fever, one of the most devastating human diseases. Papyracillic acid, the main phytotoxin produced by Ascochyta agropyrina var. nana, was evaluated in a preliminary screening together with other fungal phytotoxins, cyclo...

  11. Finding Aedes aegypti in a natural breeding site in an urban zone, Sao Paulo, Southeastern Brazil

    PubMed Central

    Lima-Camara, Tamara Nunes; Urbinatti, Paulo Roberto; Chiaravalloti-Neto, Francisco

    2016-01-01

    ABSTRACT This is the description of how nine Aedes aegypti larvae were found in a natural breeding site in the Pinheiros neighborhood, city of Sao Paulo, SP, Southeastern Brazil. The record was conducted in December 2014, during an entomological surveillance program of dengue virus vectors, with an active search of potential breeding sites, either artificial or natural. Finding Ae. aegypti larvae in a tree hole shows this species’ ability to use both artificial and natural environments as breeding sites and habitats, which points towards the importance of maintaining continuous surveillance on this mosquito in all kinds of water-holding containers. PMID:26982959

  12. History of domestication and spread of Aedes aegypti--a review.

    PubMed

    Powell, Jeffrey R; Tabachnick, Walter J

    2013-01-01

    The adaptation of insect vectors of human diseases to breed in human habitats (domestication) is one of the most important phenomena in medical entomology. Considerable data are available on the vector mosquito Aedes aegypti in this regard and here we integrate the available information including genetics, behaviour, morphology, ecology and biogeography of the mosquito, with human history. We emphasise the tremendous amount of variation possessed by Ae. aegypti for virtually all traits considered. Typological thinking needs to be abandoned to reach a realistic and comprehensive understanding of this important vector of yellow fever, dengue and Chikungunya.

  13. Widespread evidence for interspecific mating between Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in nature.

    PubMed

    Bargielowski, I E; Lounibos, L P; Shin, D; Smartt, C T; Carrasquilla, M C; Henry, A; Navarro, J C; Paupy, C; Dennett, J A

    2015-12-01

    Aedes aegypti and Aedes albopictus, two important vectors of the dengue and chikungunya viruses to humans, often come in contact in their invasive ranges. In these circumstances, a number of factors are thought to influence their population dynamics, including resource competition among the larval stages, prevailing environmental conditions and reproductive interference in the form of satyrization. As the distribution and abundance of Ae. aegypti and Ae. albopictus have profound epidemiological implications, understanding the competitive interactions that influence these patterns in nature is important. While evidence for resource competition and environmental factors had been gathered from the field, the evidence for reproductive interference, though strongly inferred through laboratory trials, remained sparse (one small-scale field trial). In this paper we demonstrate that low rates (1.12-3.73%) of interspecific mating occur in nature among populations of these species that have co-existed sympatrically from 3 to 150yrs. Finally this report contributes a new species-specific primer set for identifying the paternity of sperm extracted from field collected specimens.

  14. Investigations of Koutango Virus Infectivity and Dissemination Dynamics in Aedes aegypti Mosquitoes

    PubMed Central

    de Araújo Lobo, Jaime M; Christofferson, Rebecca C; Mores, Christopher N

    2014-01-01

    Aedes aegypti has already been implicated in the emergence of dengue and chikungunya viruses in the southern US. Vector competence is the ability of a mosquito species to support transmission of an arbovirus, which is bounded by its ability to support replication and dissemination of the virus through the mosquito body to the salivary glands to be expectorated in the saliva at the time of feeding on a vertebrate host. Here, we investigate the vector competence of A. aegypti for the arbovirus koutango by orally challenging mosquitoes with two titers of virus. We calculated the effective vector competence, a cumulative measure of transmission capability weighted by mosquito survival, and determined that A. aegypti was competent at the higher dose only. We conclude that further investigation is needed to determine the infectiousness of vertebrate hosts to fully assess the emergence potential of this virus in areas rich in A. aegypti. PMID:25574140

  15. Dispersal of Male Aedes aegypti in a Coastal Village in Southern Mexico

    PubMed Central

    Valerio, Laura; Facchinelli, Luca; Ramsey, Janine M.; Scott, Thomas W.

    2012-01-01

    Most Aedes aegypti dispersal studies have focused on females because of their central role in dengue virus transmission. Only a few mark-release-recapture (MRR) studies provided insights into male Ae. aegypti dispersal. To fill this knowledge gap, we conducted five male Ae. aegypti MRR experiments in a coastal village in southern Mexico. Small and large male cohorts were marked with fluorescent dusts, released outside buildings, and recaptures were carried out by using backpack aspirators. Recapture rates ranged between 0.35% and 6.55% and median distance traveled was 12–166 meters. A statistically significant difference in median distance traveled with large males dispersing farther than small ones was detected only in one experiment (MRR5: U = 3.5, P < 0.01). Male dispersal data will be useful for constructing and estimating parameter values and validating models that will be used to plan the most effective release strategies for genetically modified male Ae. aegypti. PMID:22492152

  16. Dispersal of male Aedes aegypti in a coastal village in southern Mexico.

    PubMed

    Valerio, Laura; Facchinelli, Luca; Ramsey, Janine M; Bond, J Guillermo; Scott, Thomas W

    2012-04-01

    Most Aedes aegypti dispersal studies have focused on females because of their central role in dengue virus transmission. Only a few mark-release-recapture (MRR) studies provided insights into male Ae. aegypti dispersal. To fill this knowledge gap, we conducted five male Ae. aegypti MRR experiments in a coastal village in southern Mexico. Small and large male cohorts were marked with fluorescent dusts, released outside buildings, and recaptures were carried out by using backpack aspirators. Recapture rates ranged between 0.35% and 6.55% and median distance traveled was 12-166 meters. A statistically significant difference in median distance traveled with large males dispersing farther than small ones was detected only in one experiment (MRR5: U = 3.5, P < 0.01). Male dispersal data will be useful for constructing and estimating parameter values and validating models that will be used to plan the most effective release strategies for genetically modified male Ae. aegypti. PMID:22492152

  17. Phylogeography of Aedes (Stegomyia) aegypti (L.) and Aedes (Stegomyia) albopictus (Skuse) (Diptera: Culicidae) based on mitochondrial DNA variations.

    PubMed

    Mousson, Laurence; Dauga, Catherine; Garrigues, Thomas; Schaffner, Francis; Vazeille, Marie; Failloux, Anna-Bella

    2005-08-01

    Aedes (Stegomyia) aegypti (l.) and Aedes (Stegomyia) albopictus (Skuse) are the most important vectors of the dengue and yellow-fever viruses. Both took advantage of trade developments to spread throughout the tropics from their native area: A. aegypti originated from Africa and a. albopictus from South-East Asia. We investigated the relationships between A. aegypti and A. albopictus mosquitoes based on three mitochondrial-DNA genes (cytochrome b, cytochrome oxidase I and NADH dehydrogenase subunit 5). Little genetic variation was observed for a. albopictus, probably owing to the recent spreading of the species via human activities. For A. aegypti, most populations from South America were found to be genetically similar to populations from South-East Asia (Thailand and Vietnam), except for one sample from Boa Vista (northern Amazonia), which was more closely related to samples from Africa (Guinea and Ivory Coast). This suggests that African populations of A. aegypti introduced during the slave trade have persisted in Boa Vista, resisting eradication campaigns.

  18. [Oviposition and dispersion of Aedes aegypti in an urban environment].

    PubMed

    Reiter, P

    1996-01-01

    It is generally accepted that female Aedes aegypti do not fly more than 50-100 m in their entire lifetime, yet the rapidity with which this species colonizes new areas, and the explosive nature of dengue and yellow fever epidemics appear to contradict this. Using molecular methods, we have confirmed that the Ae. aegypti females lay small numbers of eggs at many sites. The distribution of available sites implies that the female may fly a considerable distance to deposit her whole egg batch. We developed a method of monitor dispersal during oviposition by labelling the eggs of the mosquito with rubidium, a relatively rare, non-radioactive element. Eggs laid by females fed in the laboratory on blood containing rubidium were collected in the field with ovitraps and assayed by atomic emission spectroscopy. Our study revealed rapid dispersal over our entire study area, more than 800 m in diameter. We conclude that dispersal may be driven by the availability of oviposition sites. Marked eggs were collected for up to 7 days after feeding, suggesting that the gonotrophic cycle in the field is longer than generally assumed. This implies that calculations of longevity based on ovarian dissection and estimates of the duration of the gonotrophic cycle may need to be revised. Novel studies on sugar feeding and blood feeding are also mentioned.

  19. Genetic structure of Aedes aegypti populations determined using pairwise comparisons.

    PubMed

    Patarro, T de F; Guirado, M M; Ravazzi, L M; Bicudo, H E M de C

    2013-01-01

    The biological characteristics of Aedes aegypti (Diptera, Culicidae), which is a vector of dengue and yellow fever, make this organism a good model for studying population structure and the events that may influence it under the effect of human activity. We assessed the genetic variability of five A. aegypti populations using RAPD-PCR technique and six primers. Four populations were from Brazil and one was from the USA. A total of 165 polymorphic DNA loci were generated. Considering the six primers and the five populations, the mean value of inter-population genetic diversity (Gst) was 0.277, which is considered high according to the Wright classification. However, pairwise comparisons of the populations gave variable Gst values ranging from 0.044 to 0.289. This variation followed the population's geographic distance to some extent but was also influenced by human activity. The lowest Gst values were obtained in the comparison of populations from cities with intensive commercial and medical contacts. These mosquito populations were previously classified as insecticide resistant, susceptible, or with decreased susceptibility; this parameter apparently had an effect on the Gst values obtained in the pairwise comparisons.

  20. Reappearance of Aedes aegypti (Diptera: Culicidae) in Lima, Peru.

    PubMed

    Andrade, C S; Cáceres, A G; Vaquerizo, A; Ibañez-Bernal, S; Cachay, L S

    2001-07-01

    We report here the reappearance of Aedes aegypti in the Rimac district, and summarize the history of this mosquito species in Peru since its first detection in 1852. On March 17 2000 were found Ae. aegypti and Culex quinquefasciatus in Mariscal Castilla town, Flor de Amancaes, San Juan de Amancaes, El Altillo and Santa Rosa in the Rimac district, Lima Province. PMID:11500764

  1. Larval development of Aedes aegypti and Aedes albopictus in peri-urban brackish water and its implications for transmission of arboviral diseases.

    PubMed

    Ramasamy, Ranjan; Surendran, Sinnathamby N; Jude, Pavilupillai J; Dharshini, Sangaralingam; Vinobaba, Muthuladchumy

    2011-11-01

    Aedes aegypti (Linnaeus) and Aedes albopictus Skuse mosquitoes transmit serious human arboviral diseases including yellow fever, dengue and chikungunya in many tropical and sub-tropical countries. Females of the two species have adapted to undergo preimaginal development in natural or artificial collections of freshwater near human habitations and feed on human blood. While there is an effective vaccine against yellow fever, the control of dengue and chikungunya is mainly dependent on reducing freshwater preimaginal development habitats of the two vectors. We show here that Ae. aegypti and Ae. albopictus lay eggs and their larvae survive to emerge as adults in brackish water (water with <0.5 ppt or parts per thousand, 0.5-30 ppt and >30 ppt salt are termed fresh, brackish and saline respectively). Brackish water with salinity of 2 to 15 ppt in discarded plastic and glass containers, abandoned fishing boats and unused wells in coastal peri-urban environment were found to contain Ae. aegypti and Ae. albopictus larvae. Relatively high incidence of dengue in Jaffna city, Sri Lanka was observed in the vicinity of brackish water habitats containing Ae. aegypti larvae. These observations raise the possibility that brackish water-adapted Ae. aegypti and Ae. albopictus may play a hitherto unrecognized role in transmitting dengue, chikungunya and yellow fever in coastal urban areas. National and international health authorities therefore need to take the findings into consideration and extend their vector control efforts, which are presently focused on urban freshwater habitats, to include brackish water larval development habitats.

  2. Heat Sensitivity of wMel Wolbachia during Aedes aegypti Development

    PubMed Central

    Beier, John C.; Devine, Gregor J.; Hugo, Leon E.

    2016-01-01

    The wMel strain of Wolbachia bacteria is known to prevent dengue and Zika virus transmission in the mosquito vector Aedes aegypti. Accordingly, the release of wMel-infected A. aegypti in endemic regions has been recommended by the World Health Organization as a potential strategy for controlling dengue and Zika outbreaks. However, the utility of this approach could be limited if high temperatures in the aquatic habitats where A. aegypti develop are detrimental to Wolbachia. We exposed wMel-infected A. aegypti eggs and larvae to fluctuating daily temperatures of 30–40°C for three, five, or seven days during their development. We found that Wolbachia levels in females emerging from heat treatments were significantly lower than in the controls that had developed at 20–30°C. Notably, seven days of high temperatures starting at the egg stage reduced Wolbachia levels in emerging females to less than 0.1% of the wMel control levels. However, after adult females returned to 20–30°C for 4–7 days, they experienced differing degrees of Wolbachia recovery. Our findings suggest that the spread of Wolbachia in wild A. aegypti populations and any consequent protection from dengue and Zika viruses might be limited in ecosystems that experience periods of extreme heat, but Wolbachia levels recover partially after temperatures return to normal. PMID:27459519

  3. Heat Sensitivity of wMel Wolbachia during Aedes aegypti Development.

    PubMed

    Ulrich, Jill N; Beier, John C; Devine, Gregor J; Hugo, Leon E

    2016-07-01

    The wMel strain of Wolbachia bacteria is known to prevent dengue and Zika virus transmission in the mosquito vector Aedes aegypti. Accordingly, the release of wMel-infected A. aegypti in endemic regions has been recommended by the World Health Organization as a potential strategy for controlling dengue and Zika outbreaks. However, the utility of this approach could be limited if high temperatures in the aquatic habitats where A. aegypti develop are detrimental to Wolbachia. We exposed wMel-infected A. aegypti eggs and larvae to fluctuating daily temperatures of 30-40°C for three, five, or seven days during their development. We found that Wolbachia levels in females emerging from heat treatments were significantly lower than in the controls that had developed at 20-30°C. Notably, seven days of high temperatures starting at the egg stage reduced Wolbachia levels in emerging females to less than 0.1% of the wMel control levels. However, after adult females returned to 20-30°C for 4-7 days, they experienced differing degrees of Wolbachia recovery. Our findings suggest that the spread of Wolbachia in wild A. aegypti populations and any consequent protection from dengue and Zika viruses might be limited in ecosystems that experience periods of extreme heat, but Wolbachia levels recover partially after temperatures return to normal.

  4. Heat Sensitivity of wMel Wolbachia during Aedes aegypti Development.

    PubMed

    Ulrich, Jill N; Beier, John C; Devine, Gregor J; Hugo, Leon E

    2016-07-01

    The wMel strain of Wolbachia bacteria is known to prevent dengue and Zika virus transmission in the mosquito vector Aedes aegypti. Accordingly, the release of wMel-infected A. aegypti in endemic regions has been recommended by the World Health Organization as a potential strategy for controlling dengue and Zika outbreaks. However, the utility of this approach could be limited if high temperatures in the aquatic habitats where A. aegypti develop are detrimental to Wolbachia. We exposed wMel-infected A. aegypti eggs and larvae to fluctuating daily temperatures of 30-40°C for three, five, or seven days during their development. We found that Wolbachia levels in females emerging from heat treatments were significantly lower than in the controls that had developed at 20-30°C. Notably, seven days of high temperatures starting at the egg stage reduced Wolbachia levels in emerging females to less than 0.1% of the wMel control levels. However, after adult females returned to 20-30°C for 4-7 days, they experienced differing degrees of Wolbachia recovery. Our findings suggest that the spread of Wolbachia in wild A. aegypti populations and any consequent protection from dengue and Zika viruses might be limited in ecosystems that experience periods of extreme heat, but Wolbachia levels recover partially after temperatures return to normal. PMID:27459519

  5. Patterns of Geographic Expansion of Aedes aegypti in the Peruvian Amazon

    PubMed Central

    Guagliardo, Sarah Anne; Barboza, José Luis; Morrison, Amy C.; Astete, Helvio; Vazquez-Prokopec, Gonzalo; Kitron, Uriel

    2014-01-01

    Background and Objectives In the Peruvian Amazon, the dengue vector Aedes aegypti is abundant in large urban centers such as Iquitos. In recent years, it has also been found in a number of neighboring rural communities with similar climatic and socioeconomic conditions. To better understand Ae. aegypti spread, we compared characteristics of communities, houses, and containers in infested and uninfested communities. Methods We conducted pupal-demographic surveys and deployed ovitraps in 34 communities surrounding the city of Iquitos. Communities surveyed were located along two transects: the Amazon River and a 95km highway. We calculated entomological indices, mapped Ae. aegypti presence, and developed univariable and multivariable logistic regression models to predict Ae. aegypti presence at the community, household, or container level. Results Large communities closer to Iquitos were more likely to be infested with Ae. aegypti. Within infested communities, houses with Ae. aegypti had more passively-filled containers and were more often infested with other mosquito genera than houses without Ae. aegypti. For containers, large water tanks/drums and containers with solar exposure were more likely to be infested with Ae. aegypti. Maps of Ae. aegypti presence revealed a linear pattern of infestation along the highway, and a scattered pattern along the Amazon River. We also identified the geographical limit of Ae. aegypti expansion along the highway at 19.3 km south of Iquitos. Conclusion In the Peruvian Amazon, Ae. aegypti geographic spread is driven by human transportation networks along rivers and highways. Our results suggest that urban development and oviposition site availability drive Ae. aegypti colonization along roads. Along rivers, boat traffic is likely to drive long-distance dispersal via unintentional transport of mosquitoes on boats. PMID:25101786

  6. Coexistence of Philodina roseola (Rotifera: Bdelloidea) with larvae of Aedes aegypti in India.

    PubMed

    Muniaraj, M; Sathish Babu, R

    2014-06-01

    The vector mosquitoes, Aedes aegypti and Aedes albopictus of dengue and Chikungunya fever are closely associated with human habitations and adapted to feed on human blood. They undergo larval and pupal development in natural and artificial freshwater collections in the urban and peri-urban environment. Although reports are available about the feeding behaviour of the thriving mosquito larvae, much information is still required to understand the successful survival of Aedes mosquitoes in small and temporary water collections. This study was undertaken to determine the co-existence and prevalence of Philodina roseola and other Bdelloid rotifers in the container habitats of Ae. aegypti mosquitoes. The investigation was conducted in 43 villages which belong to four districts in South India, affected by the epidemic of either dengue or Chikungunya fever. A total of 2093 houses and 12980 containers were examined for Aedes breeding and those containers with Aedes larvae were chosen for further investigation. The investigation showed that, the P. roseola was found associated in 502 (98.2%) containers, P. roseola along with other Philodina sp. in 126 containers (25%) and P. roseola along with other Philodina sp. and other Bdelloid rotifers found in 93 containers (19%). Since the members of the genus Philodina can survive desiccation, reproduce by parthenogenesis, can be transported by wind easily and more importantly, it can incorporate the genome of other organisms including viruses, understanding the co-existence and relationship of Philodina sp. with Aedes larvae would be helpful in the control of Aedes breeding and the control measures can be designed keeping the association of Bdelloids with Aedes in mind.

  7. Identification of dengue virus in Aedes mosquitoes and patients' sera from Si Sa Ket Province, Thailand.

    PubMed

    Teerasut, Chai; Petphuwadee, Udom; Thammapalo, Suwich; Jampangern, Wipawee; Limkittikul, Kriengsak

    2012-05-01

    Dengue fever (DF), dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS) are the re-emerging infectious diseases caused by dengue (DEN) virus, transmitted by Aedes mosquito. There are more than 100,000 cases of dengue infection and more than 100 deaths annually in Thailand. Virological surveillance for DEN viruses is used as an early warning system to predict outbreaks. The seroprevalence of infection and serotypes of DEN virus in 116 pediatric patients at Si Sa Ket Province, Thailand were analyzed during June to September 2004. At the same period, Aedes mosquitoes were caught from patients' and their neighbors' houses, from control houses, located in villages with no report of dengue infection during the previous 3 years. The majority of DHF cases were secondary infections of DEN-2 and DEN-4 serotypes. Of the 1,652 Aedes mosquitoes collected 1,583 were Ae. aegypti and 69 Ae. albopictus. Ten mosquitoes from each house were pooled and dengue viruses were determined using RT-PCR assay; only 1 positive pooled was found. Although the dengue infection rate in the field caught mosquitoes was low, the existing dengue virus control program in transmission areas by aerial spraying to destroy the larva breeding sites should be continued.

  8. A stochastic population dynamics model for Aedes aegypti: formulation and application to a city with temperate climate.

    PubMed

    Otero, Marcelo; Solari, Hernán G; Schweigmann, Nicolás

    2006-11-01

    Aedes aegypti is the main vector for dengue and urban yellow fever. It is extended around the world not only in the tropical regions but also beyond them, reaching temperate climates. Because of its importance as a vector of deadly diseases, the significance of its distribution in urban areas and the possibility of breeding in laboratory facilities, Aedes aegypti is one of the best-known mosquitoes. In this work the biology of Aedes aegypti is incorporated into the framework of a stochastic population dynamics model able to handle seasonal and total extinction as well as endemic situations. The model incorporates explicitly the dependence with temperature. The ecological parameters of the model are tuned to the present populations of Aedes aegypti in Buenos Aires city, which is at the border of the present day geographical distribution in South America. Temperature thresholds for the mosquito survival are computed as a function of average yearly temperature and seasonal variation as well as breeding site availability. The stochastic analysis suggests that the southern limit of Aedes aegypti distribution in South America is close to the 15 degrees C average yearly isotherm, which accounts for the historical and current distribution better than the traditional criterion of the winter (July) 10 degrees C isotherm. PMID:16832731

  9. A stochastic population dynamics model for Aedes aegypti: formulation and application to a city with temperate climate.

    PubMed

    Otero, Marcelo; Solari, Hernán G; Schweigmann, Nicolás

    2006-11-01

    Aedes aegypti is the main vector for dengue and urban yellow fever. It is extended around the world not only in the tropical regions but also beyond them, reaching temperate climates. Because of its importance as a vector of deadly diseases, the significance of its distribution in urban areas and the possibility of breeding in laboratory facilities, Aedes aegypti is one of the best-known mosquitoes. In this work the biology of Aedes aegypti is incorporated into the framework of a stochastic population dynamics model able to handle seasonal and total extinction as well as endemic situations. The model incorporates explicitly the dependence with temperature. The ecological parameters of the model are tuned to the present populations of Aedes aegypti in Buenos Aires city, which is at the border of the present day geographical distribution in South America. Temperature thresholds for the mosquito survival are computed as a function of average yearly temperature and seasonal variation as well as breeding site availability. The stochastic analysis suggests that the southern limit of Aedes aegypti distribution in South America is close to the 15 degrees C average yearly isotherm, which accounts for the historical and current distribution better than the traditional criterion of the winter (July) 10 degrees C isotherm.

  10. Surveillance and control of Aedes aegypti in epidemic areas of Taiwan.

    PubMed

    Lin, T H

    1994-12-01

    Aedes aegypti is the main, if not the only, vector of dengue fever in Taiwan. The dengue epidemics that have occurred in Taiwan correlate with the distribution of Aedes aegypti which is limited to south of the Tropic of Cancer. During the 1987 outbreak of dengue fever in Taiwan, the average larval density for the months July-December in the five cities and counties of southern Taiwan was 2,284 larvae per 100 households. After control measures were taken, the average annual larval density in the years from 1988 to 1993 declined to 1,580, 671, 442, 178, 110, and 88 larvae per 100 households, respectively. During 1987-1988, the number of confirmed cases and the Breteau index of Aedes aegypti showed an obvious positive relationship (r = 0.74) in the most heavily infected 25 cities and towns. Our Institute has conducted eight training courses since 1989 for 176 health workers who serve in their respective areas as local scouts for monitoring Aedes larval density. The number of cities and towns surveyed by them in the years 1990-1993 was 116, 149, 254, and 156, respectively. The number of households covered by space spraying with permethrin was 43, 183 in 1991, 11,186 in 1992 and 4,856 in 1993. Residual spraying with alphacypermethrin was applied to houses in areas where the Breteau index was above 35. The number of houses treated in the years 1990-1993 was 4,735, 32,279, 33,726 and 17,848, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Changing Domesticity of Aedes aegypti in Northern Peninsular Malaysia: Reproductive Consequences and Potential Epidemiological Implications

    PubMed Central

    Saifur, Rahman G. M.; Dieng, Hamady; Hassan, Ahmad Abu; Salmah, Md Rawi Che; Satho, Tomomitsu; Miake, Fumio; Hamdan, Ahmad

    2012-01-01

    Background The domestic dengue vector Aedes aegypti mosquitoes breed in indoor containers. However, in northern peninsular Malaysia, they show equal preference for breeding in both indoor and outdoor habitats. To evaluate the epidemiological implications of this peridomestic adaptation, we examined whether Ae. aegypti exhibits decreased survival, gonotrophic activity, and fecundity due to lack of host availability and the changing breeding behavior. Methodology/Principal Findings This yearlong field surveillance identified Ae. aegypti breeding in outdoor containers on an enormous scale. Through a sequence of experiments incorporating outdoors and indoors adapting as well as adapted populations, we observed that indoors provided better environment for the survival of Ae. aegypti and the observed death patterns could be explained on the basis of a difference in body size. The duration of gonotrophic period was much shorter in large-bodied females. Fecundity tended to be greater in indoor acclimated females. We also found increased tendency to multiple feeding in outdoors adapted females, which were smaller in size compared to their outdoors breeding counterparts. Conclusion/Significance The data presented here suggest that acclimatization of Ae. aegypti to the outdoor environment may not decrease its lifespan or gonotrophic activity but rather increase breeding opportunities (increased number of discarded containers outdoors), the rate of larval development, but small body sizes at emergence. Size is likely to be correlated with disease transmission. In general, small size in Aedes females will favor increased blood-feeding frequency resulting in higher population sizes and disease occurrence. PMID:22363516

  12. Field evaluations of disposable sticky lures for surveillance of Aedes aegypti (Stegomyia aegypti) and Culex quinquefasciatus in Jakarta.

    PubMed

    Kay, B H; Brown, M D; Siti, Z; Bangs, M J

    2013-09-01

    From December 1997 to April 1998, disposable sticky lures (1608 lure days) were trialled in homes in north Jakarta, Indonesia as surveillance tools for Aedes aegypti (Stegomyia aegypti) (Diptera: Culicidae) and Culex quinquefasciatus (Diptera: Culicidae), referenced to indoor resting adult collections (92 × 10 min). The lures collected 89.4% of the total of 1339 Ae. aegypti and 92.1% of the total of 1272 Cx. quinquefasciatus collected by all methods. Because there were no significant differences with respect to numbers collected in bedrooms, living rooms and kitchens, bedrooms were selected for subsequent trials for reasons of convenience. The main trials involved a replicated complete block design with L-lysine and sodium carbonate. Lures without attractant or with four different dilutions of L-lysine collected 3.4-8.5 times more Ae. aegypti and 4.2-8.1 times more Cx. quinquefasciatus than were collected by mouth aspirator. Lures with or without dilutions of sodium carbonate collected 2.7-5.0 times more Ae. aegypti and 1.8-4.2 times more Cx. quinquefasciatus than aspirator collections. The precision associated with catches of sticky lures was better than that for aspirator collections. Although olfactants generally improved the numbers of mosquitoes collected, the differences in catch between lures with and without attractants were usually non-significant. Any deficit in catch may be offset by increasing the surveillance period to ≥30 days to detect all four dengue serotypes from infected mosquitoes.

  13. Regulation of Aedes aegypti Population Dynamics in Field Systems: Quantifying Direct and Delayed Density Dependence

    PubMed Central

    Walsh, Rachael K.; Aguilar, Cristobal L.; Facchinelli, Luca; Valerio, Laura; Ramsey, Janine M.; Scott, Thomas W.; Lloyd, Alun L.; Gould, Fred

    2013-01-01

    Transgenic strains of Aedes aegypti have been engineered to help control transmission of dengue virus. Although resources have been invested in developing the strains, we lack data on the ecology of mosquitoes that could impact the success of this approach. Although studies of intra-specific competition have been conducted using Ae. aegypti larvae, none of these studies examine mixed age cohorts at densities that occur in the field, with natural nutrient levels. Experiments were conducted in Mexico to determine the impact of direct and delayed density dependence on Ae. aegypti populations. Natural water, food, and larval densities were used to estimate the impacts of density dependence on larval survival, development, and adult body size. Direct and delayed density-dependent factors had a significant impact on larval survival, larval development, and adult body size. These results indicate that control methods attempting to reduce mosquito populations may be counteracted by density-dependent population regulation. PMID:23669230

  14. Mass trapping with MosquiTRAPs does not reduce Aedes aegypti abundance

    PubMed Central

    Degener, Carolin Marlen; de Ázara, Tatiana Mingote Ferreira; Roque, Rosemary Aparecida; Rösner, Susanne; Rocha, Eliseu Soares Oliveira; Kroon, Erna Geessien; Codeço, Cláudia Torres; Nobre, Aline Araújo; Ohly, Jörg Johannes; Geier, Martin; Eiras, Álvaro Eduardo

    2015-01-01

    The objective of this study was to evaluate the effectiveness of Aedes aegypti mass trapping using the sticky trap MosquiTRAP (MQT) by performing a cluster randomised controlled trial in Manaus, state of Amazonas, Brazil. After an initial questionnaire and baseline monitoring of adult Ae. aegypti abundance with BG-Sentinel (BGS) traps in six clusters, three clusters were randomly assigned to the intervention arm where each participating household received three MQTs for mass trapping during 17 months. The remaining three clusters (control arm) did not receive traps. The effect of mass trapping on adult Ae. aegypti abundance was monitored fortnightly with BGS traps. During the last two months of the study, a serological survey was conducted. After the study, a second questionnaire was applied in the intervention arm. Entomological monitoring indicated that MQT mass trapping did not reduce adult Ae. aegypti abundance. The serological survey indicated that recent dengue infections were equally frequent in the intervention and the control arm. Most participants responded positively to questions concerning user satisfaction. According to the results, there is no evidence that mass trapping with MQTs can be used as a part of dengue control programs. The use of this sticky trap is only recommendable for dengue vector monitoring. PMID:25946154

  15. Development and laboratory evaluation of chemically-based baited ovitrap for the monitoring of Aedes aegypti.

    PubMed

    Baak-Baak, Carlos M; Rodríguez-Ramírez, Américo D; García-Rejón, Julián E; Ríos-Delgado, Silvany; Torres-Estrada, José L

    2013-06-01

    Aedes (Stegomyia) aegypti is considered to be the most important dengue vector worldwide. Studies were conducted to design and evaluate a chemically-based baited ovitrap for monitoring Ae. aegypti under laboratory conditions. Several known chemical attractants and three types of ovitraps (ovitraps A, B, and C) were evaluated throughout the oviposition bioassays. Oviposition responses of gravid female Ae. aegypti were evaluated to n-heneicosane, 3-methylindole (skatole), 4-methylphenol (p-cresol), and phenol. Female Ae. aegypti were attracted to all the evaluated compounds. Among them, n-heneicosane at a concentration of 10 ppm (mg/l), skatole from 50 to 1000 ppm, p-cresol at 100 ppm, and phenol at 50 ppm showed a significant positive oviposition response. A blend of the four chemical attractants increased the oviposition response; 67% of the eggs were deposited in the treatment compared to the control. Female Ae. aegypti were significantly more attracted to ovitrap A loaded with the four-component synthetic blend compared to the standard ovitrap in the oviposition bioassays. The compound used in ovitrap A retained its attractant property for up to three days. The chemically-based baited ovitrap may be considered as an option to be integrated during the monitoring of dengue virus vectors in México. PMID:23701623

  16. Local Evolution of Pyrethroid Resistance Offsets Gene Flow Among Aedes aegypti Collections in Yucatan State, Mexico

    PubMed Central

    Saavedra-Rodriguez, Karla; Beaty, Meaghan; Lozano-Fuentes, Saul; Denham, Steven; Garcia-Rejon, Julian; Reyes-Solis, Guadalupe; Machain-Williams, Carlos; Loroño-Pino, Maria Alba; Flores-Suarez, Adriana; Ponce-Garcia, Gustavo; Beaty, Barry; Eisen, Lars; Black, William C.

    2015-01-01

    The mosquito Aedes aegypti is the major vector of the four serotypes of dengue virus (DENV1–4). Previous studies have shown that Ae. aegypti in Mexico have a high effective migration rate and that gene flow occurs among populations that are up to 150 km apart. Since 2000, pyrethroids have been widely used for suppression of Ae. aegypti in cities in Mexico. In Yucatan State in particular, pyrethroids have been applied in and around dengue case households creating an opportunity for local selection and evolution of resistance. Herein, we test for evidence of local adaptation by comparing patterns of variation among 27 Ae. aegypti collections at 13 single nucleotide polymorphisms (SNPs): two in the voltage-gated sodium channel gene para known to confer knockdown resistance, three in detoxification genes previously associated with pyrethroid resistance, and eight in putatively neutral loci. The SNPs in para varied greatly in frequency among collections, whereas SNPs at the remaining 11 loci showed little variation supporting previous evidence for extensive local gene flow. Among Ae. aegypti in Yucatan State, Mexico, local adaptation to pyrethroids appears to offset the homogenizing effects of gene flow. PMID:25371186

  17. Genetic Diversity of Brazilian Aedes aegypti: Patterns following an Eradication Program

    PubMed Central

    Monteiro, Fernando A.; Shama, Renata; Martins, Ademir J.; Gloria-Soria, Andrea; Brown, Julia E.; Powell, Jeffrey R.

    2014-01-01

    Background Aedes aegypti is the most important vector of dengue fever in Brazil, where severe epidemics have recently taken place. Ae. aegypti in Brazil was the subject of an intense eradication program in the 1940s and 50s to control yellow fever. Brazil was the largest country declared free of this mosquito by the Pan-American Health Organization in 1958. Soon after relaxation of this program, Ae. aegypti reappeared in this country, and by the early 1980s dengue fever had been reported. The aim of this study is to analyze the present-day genetic patterns of Ae. aegypti populations in Brazil. Methodology/Principal Findings We studied the genetic variation in samples of 11 widely spread populations of Ae. aegypti in Brazil based on 12 well-established microsatellite loci. Our principal finding is that present-day Brazilian Ae. aegypti populations form two distinct groups, one in the northwest and one in the southeast of the country. These two groups have genetic affinities to northern South American countries and the Caribbean, respectively. This is consistent with what has been reported for other genetic markers such as mitochondrial DNA and allele frequencies at the insecticide resistance gene, kdr. Conclusions/Significance We conclude that the genetic patterns in present day populations of Ae. aegypti in Brazil are more consistent with a complete eradication of the species in the recent past followed by re-colonization, rather than the alternative possibility of expansion from residual pockets of refugia. At least two colonizations are likely to have taken place, one from northern South American countries (e.g., Venezuela) that founded the northwestern group, and one from the Caribbean that founded the southeastern group. The proposed source areas were never declared free of Ae. aegypti. PMID:25233218

  18. Shifting Patterns of Aedes aegypti Fine Scale Spatial Clustering in Iquitos, Peru

    PubMed Central

    LaCon, Genevieve; Morrison, Amy C.; Astete, Helvio; Stoddard, Steven T.; Paz-Soldan, Valerie A.; Elder, John P.; Halsey, Eric S.; Scott, Thomas W.; Kitron, Uriel; Vazquez-Prokopec, Gonzalo M.

    2014-01-01

    Background Empiric evidence shows that Aedes aegypti abundance is spatially heterogeneous and that some areas and larval habitats produce more mosquitoes than others. There is a knowledge gap, however, with regards to the temporal persistence of such Ae. aegypti abundance hotspots. In this study, we used a longitudinal entomologic dataset from the city of Iquitos, Peru, to (1) quantify the spatial clustering patterns of adult Ae. aegypti and pupae counts per house, (2) determine overlap between clusters, (3) quantify the temporal stability of clusters over nine entomologic surveys spaced four months apart, and (4) quantify the extent of clustering at the household and neighborhood levels. Methodologies/Principal Findings Data from 13,662 household entomological visits performed in two Iquitos neighborhoods differing in Ae. aegypti abundance and dengue virus transmission was analyzed using global and local spatial statistics. The location and extent of Ae. aegypti pupae and adult hotspots (i.e., small groups of houses with significantly [p<0.05] high mosquito abundance) were calculated for each of the 9 entomologic surveys. The extent of clustering was used to quantify the probability of finding spatially correlated populations. Our analyses indicate that Ae. aegypti distribution was highly focal (most clusters do not extend beyond 30 meters) and that hotspots of high vector abundance were common on every survey date, but they were temporally unstable over the period of study. Conclusions/Significance Our findings have implications for understanding Ae. aegypti distribution and for the design of surveillance and control activities relying on household-level data. In settings like Iquitos, where there is a relatively low percentage of Ae. aegypti in permanent water-holding containers, identifying and targeting key premises will be significantly challenged by shifting hotspots of Ae. aegypti infestation. Focusing efforts in large geographic areas with historically

  19. Dynamics of the "popcorn" Wolbachia infection in outbred Aedes aegypti informs prospects for mosquito vector control.

    PubMed

    Yeap, H L; Mee, P; Walker, T; Weeks, A R; O'Neill, S L; Johnson, P; Ritchie, S A; Richardson, K M; Doig, C; Endersby, N M; Hoffmann, A A

    2011-02-01

    Forty percent of the world's population is at risk of contracting dengue virus, which produces dengue fever with a potentially fatal hemorrhagic form. The wMelPop Wolbachia infection of Drosophila melanogaster reduces life span and interferes with viral transmission when introduced into the mosquito Aedes aegypti, the primary vector of dengue virus. Wolbachia has been proposed as an agent for preventing transmission of dengue virus. Population invasion by Wolbachia depends on levels of cytoplasmic incompatibility, fitness effects, and maternal transmission. Here we characterized these traits in an outbred genetic background of a potential target population of Ae. aegypti using two crossing schemes. Cytoplasmic incompatibility was strong in this background, and the maternal transmission rate of Wolbachia was high. The infection substantially reduced longevity of infected adult females, regardless of whether adults came from larvae cultured under high or low levels of nutrition or density. The infection reduced the viability of diapausing and nondiapausing eggs. Viability was particularly low when eggs were laid by older females and when diapausing eggs had been stored for a few weeks. The infection affected mosquito larval development time and adult body size under different larval nutrition levels and densities. The results were used to assess the potential for wMelPop-CLA to invade natural populations of Ae. aegypti and to develop recommendations for the maintenance of fitness in infected mosquitoes that need to compete against field insects. PMID:21135075

  20. Aedes aegypti (L.) in Latin American and Caribbean region: With growing evidence for vector adaptation to climate change?

    PubMed

    Chadee, Dave D; Martinez, Raymond

    2016-04-01

    Within Latin America and the Caribbean region the impact of climate change has been associated with the effects of rainfall and temperature on seasonal outbreaks of dengue but few studies have been conducted on the impacts of climate on the behaviour and ecology of Aedes aegypti mosquitoes.This study was conducted to examine the adaptive behaviours currently being employed by A. aegypti mosquitoes exposed to the force of climate change in LAC countries. The literature on the association between climate and dengue incidence is small and sometimes speculative. Few laboratory and field studies have identified research gaps. Laboratory and field experiments were designed and conducted to better understand the container preferences, climate-associated-adaptive behaviour, ecology and the effects of different temperatures and light regimens on the life history of A. aegypti mosquitoes. A. aegypti adaptive behaviours and changes in container preferences demonstrate how complex dengue transmission dynamics is, in different ecosystems. The use of underground drains and septic tanks represents a major behaviour change identified and compounds an already difficult task to control A. aegypti populations. A business as usual approach will exacerbate the problem and lead to more frequent outbreaks of dengue and chikungunya in LAC countries unless both area-wide and targeted vector control approaches are adopted. The current evidence and the results from proposed transdisciplinary research on dengue within different ecosystems will help guide the development of new vector control strategies and foster a better understanding of climate change impacts on vector-borne disease transmission.

  1. Aedes aegypti (L.) in Latin American and Caribbean region: With growing evidence for vector adaptation to climate change?

    PubMed

    Chadee, Dave D; Martinez, Raymond

    2016-04-01

    Within Latin America and the Caribbean region the impact of climate change has been associated with the effects of rainfall and temperature on seasonal outbreaks of dengue but few studies have been conducted on the impacts of climate on the behaviour and ecology of Aedes aegypti mosquitoes.This study was conducted to examine the adaptive behaviours currently being employed by A. aegypti mosquitoes exposed to the force of climate change in LAC countries. The literature on the association between climate and dengue incidence is small and sometimes speculative. Few laboratory and field studies have identified research gaps. Laboratory and field experiments were designed and conducted to better understand the container preferences, climate-associated-adaptive behaviour, ecology and the effects of different temperatures and light regimens on the life history of A. aegypti mosquitoes. A. aegypti adaptive behaviours and changes in container preferences demonstrate how complex dengue transmission dynamics is, in different ecosystems. The use of underground drains and septic tanks represents a major behaviour change identified and compounds an already difficult task to control A. aegypti populations. A business as usual approach will exacerbate the problem and lead to more frequent outbreaks of dengue and chikungunya in LAC countries unless both area-wide and targeted vector control approaches are adopted. The current evidence and the results from proposed transdisciplinary research on dengue within different ecosystems will help guide the development of new vector control strategies and foster a better understanding of climate change impacts on vector-borne disease transmission. PMID:26796862

  2. Evidence for Aedes aegypti (Diptera: Culicidae) Oviposition on Boats in the Peruvian Amazon.

    PubMed

    Guagliardo, Sarah Anne; Morrison, Amy C; Luis Barboza, Jose; Wesson, Dawn M; Ponnusamy, Loganathan; Astete, Helvio; Vazquez-Prokopec, Gonzalo; Kitron, Uriel

    2015-07-01

    Dengue vector Aedes aegypti L. is invading peri-urban and rural areas throughout Latin America. Our previous research in the Peruvian Amazon has shown that river boats are heavily infested with immature and adult Ae. aegypti mosquitoes, likely playing a major role in their long-distance dispersal and successful invasion. However, the presence of immature mosquitoes provides no information about the timing of oviposition, and whether it took place in the boats. Here, we used baited ovitraps deployed on river boats to test the hypothesis that Ae. aegypti oviposition occurs during boat travel. We deployed 360 ovitraps on 60 different barges during August and October of 2013, and February 2014 (with 20 barges sampled during each month). We found that Ae. aegypti mosquitoes in 22 individual ovitraps from 15 of the 60 barges (premise index 25%) across all sampling dates. Further, the distribution of Ae. aegypti egg abundance was highly aggregated: 2.6% of traps (N=7) were responsible for 71.8% of eggs found, and 1.5% of traps (N=4) were responsible for all (100%) of the larvae found. Similarly, 5% of boats were responsible for the 71.47% of eggs. Our results provide strong evidence that Ae. aegypti oviposition commonly occurs during boat travel. Baited ovitraps could represent a cost-effective means of monitoring and controlling mosquito populations on boats. PMID:26335482

  3. Evidence for Aedes aegypti (Diptera: Culicidae) Oviposition on Boats in the Peruvian Amazon.

    PubMed

    Guagliardo, Sarah Anne; Morrison, Amy C; Luis Barboza, Jose; Wesson, Dawn M; Ponnusamy, Loganathan; Astete, Helvio; Vazquez-Prokopec, Gonzalo; Kitron, Uriel

    2015-07-01

    Dengue vector Aedes aegypti L. is invading peri-urban and rural areas throughout Latin America. Our previous research in the Peruvian Amazon has shown that river boats are heavily infested with immature and adult Ae. aegypti mosquitoes, likely playing a major role in their long-distance dispersal and successful invasion. However, the presence of immature mosquitoes provides no information about the timing of oviposition, and whether it took place in the boats. Here, we used baited ovitraps deployed on river boats to test the hypothesis that Ae. aegypti oviposition occurs during boat travel. We deployed 360 ovitraps on 60 different barges during August and October of 2013, and February 2014 (with 20 barges sampled during each month). We found that Ae. aegypti mosquitoes in 22 individual ovitraps from 15 of the 60 barges (premise index 25%) across all sampling dates. Further, the distribution of Ae. aegypti egg abundance was highly aggregated: 2.6% of traps (N=7) were responsible for 71.8% of eggs found, and 1.5% of traps (N=4) were responsible for all (100%) of the larvae found. Similarly, 5% of boats were responsible for the 71.47% of eggs. Our results provide strong evidence that Ae. aegypti oviposition commonly occurs during boat travel. Baited ovitraps could represent a cost-effective means of monitoring and controlling mosquito populations on boats.

  4. Evidence for Aedes aegypti (Diptera: Culicidae) Oviposition on Boats in the Peruvian Amazon

    PubMed Central

    Guagliardo, Sarah Anne; Morrison, Amy C.; Luis Barboza, Jose; Wesson, Dawn M.; Ponnusamy, Loganathan; Astete, Helvio; Vazquez-Prokopec, Gonzalo; Kitron, Uriel

    2015-01-01

    Dengue vector Aedes aegypti L. is invading peri-urban and rural areas throughout Latin America. Our previous research in the Peruvian Amazon has shown that river boats are heavily infested with immature and adult Ae. aegypti mosquitoes, likely playing a major role in their long-distance dispersal and successful invasion. However, the presence of immature mosquitoes provides no information about the timing of oviposition, and whether it took place in the boats. Here, we used baited ovitraps deployed on river boats to test the hypothesis that Ae. aegypti oviposition occurs during boat travel. We deployed 360 ovitraps on 60 different barges during August and October of 2013, and February 2014 (with 20 barges sampled during each month). We found that Ae. aegypti mosquitoes in 22 individual ovitraps from 15 of the 60 barges (premise index 25%) across all sampling dates. Further, the distribution of Ae. aegypti egg abundance was highly aggregated: 2.6% of traps (N = 7) were responsible for 71.8% of eggs found, and 1.5% of traps (N = 4) were responsible for all (100%) of the larvae found. Similarly, 5% of boats were responsible for the 71.47% of eggs. Our results provide strong evidence that Ae. aegypti oviposition commonly occurs during boat travel. Baited ovitraps could represent a cost-effective means of monitoring and controlling mosquito populations on boats. PMID:26335482

  5. Biogeography of the two major arbovirus mosquito vectors, Aedes aegypti and Aedes albopictus (Diptera, Culicidae), in Madagascar

    PubMed Central

    2012-01-01

    Background In the past ten years, the Indian Ocean region has been the theatre of severe epidemics of chikungunya and dengue. These outbreaks coincided with a high increase in populations of Aedes albopictus that outcompete its sister taxon Aedes aegypti in most islands sampled. The objective of this work was to update the entomological survey of the two Aedes species in the island of Madagascar which has to face these arboviroses. Methods The sampling of Aedes mosquitoes was conducted during two years, from October 2007 to October 2009, in fifteen localities from eight regions of contrasting climates. Captured adults were identified immediately whereas immature stages were bred until adult stage for determination. Phylogenetic analysis was performed using two mtDNA genes, COI and ND5 and trees were constructed by the maximum likelihood (ML) method with the gene time reversible (GTR) model. Experimental infections with the chikungunya virus strain 06.21 at a titer of 107.5 pfu/mL were performed to evaluate the vector competence of field-collected mosquitoes. Disseminated infection rates were measured fourteen days after infection by immunofluorescence assay performed on head squashes. Results The species Aedes aegypti was detected in only six sites in native forests and natural reserves. In contrast, the species Aedes albopictus was found in 13 out of the 15 sites sampled. Breeding sites were mostly found in man-made environments such as discarded containers, used tires, abandoned buckets, coconuts, and bamboo cuts. Linear regression models showed that the abundance of Ae. albopictus was significantly influenced by the sampling region (F = 62.00, p < 2.2 × 10-16) and period (F = 36.22, p = 2.548 × 10-13), that are associated with ecological and climate variations. Phylogenetic analysis of the invasive Ae. albopictus distinguished haplotypes from South Asia and South America from those of Madagascar, but the markers used were not discriminant enough to discern

  6. Mosquitocidal and Oviposition Repellent Activities of the Extracts of Seaweed Bryopsis pennata on Aedes aegypti and Aedes albopictus.

    PubMed

    Yu, Ke-Xin; Wong, Ching-Lee; Ahmad, Rohani; Jantan, Ibrahim

    2015-08-04

    The ever-increasing threat from infectious diseases and the development of insecticide resistance in mosquito populations drive the global search for new natural insecticides. The aims of this study were to evaluate the mosquitocidal activity of the extracts of seaweed Bryopsis pennata against dengue vectors Aedes aegypti and Aedes albopictus, and determine the seaweed's toxic effect on brine shrimp nauplii (as a non-target organism). In addition, the chemical compositions of the active larvicidal extract and fraction were analyzed by using liquid chromatography-mass spectrometry (LC-MS). Chloroform extract exhibited strong ovicidal activity (with LC50 values of 229.3 and 250.5 µg/mL) and larvicidal activity against Ae. aegypti and Ae. albopictus. The larvicidal potential of chloroform extract was further ascertained when its A7 fraction exhibited strong toxic effect against Ae. aegypti (LC50 = 4.7 µg/mL) and Ae. albopictus (LC50 = 5.3 µg/mL). LC-MS analysis of the chloroform extract gave a tentative identification of 13 compounds; Bis-(3-oxoundecyl) tetrasulfide was identified as the major compound in A7 fraction. Methanol extract showed strong repellent effect against female oviposition, along with weak adulticidal activity against mosquito and weak toxicity against brine shrimp nauplii. The mosquitocidal results of B. pennata suggest further investigation for the development of effective insecticide.

  7. Mosquitocidal and Oviposition Repellent Activities of the Extracts of Seaweed Bryopsis pennata on Aedes aegypti and Aedes albopictus.

    PubMed

    Yu, Ke-Xin; Wong, Ching-Lee; Ahmad, Rohani; Jantan, Ibrahim

    2015-01-01

    The ever-increasing threat from infectious diseases and the development of insecticide resistance in mosquito populations drive the global search for new natural insecticides. The aims of this study were to evaluate the mosquitocidal activity of the extracts of seaweed Bryopsis pennata against dengue vectors Aedes aegypti and Aedes albopictus, and determine the seaweed's toxic effect on brine shrimp nauplii (as a non-target organism). In addition, the chemical compositions of the active larvicidal extract and fraction were analyzed by using liquid chromatography-mass spectrometry (LC-MS). Chloroform extract exhibited strong ovicidal activity (with LC50 values of 229.3 and 250.5 µg/mL) and larvicidal activity against Ae. aegypti and Ae. albopictus. The larvicidal potential of chloroform extract was further ascertained when its A7 fraction exhibited strong toxic effect against Ae. aegypti (LC50 = 4.7 µg/mL) and Ae. albopictus (LC50 = 5.3 µg/mL). LC-MS analysis of the chloroform extract gave a tentative identification of 13 compounds; Bis-(3-oxoundecyl) tetrasulfide was identified as the major compound in A7 fraction. Methanol extract showed strong repellent effect against female oviposition, along with weak adulticidal activity against mosquito and weak toxicity against brine shrimp nauplii. The mosquitocidal results of B. pennata suggest further investigation for the development of effective insecticide. PMID:26247928

  8. In silico models for predicting vector control chemicals targeting Aedes aegypti

    PubMed Central

    Devillers, J.; Lagneau, C.; Lattes, A.; Garrigues, J.C.; Clémenté, M.M.; Yébakima, A.

    2014-01-01

    Human arboviral diseases have emerged or re-emerged in numerous countries worldwide due to a number of factors including the lack of progress in vaccine development, lack of drugs, insecticide resistance in mosquitoes, climate changes, societal behaviours, and economical constraints. Thus, Aedes aegypti is the main vector of the yellow fever and dengue fever flaviviruses and is also responsible for several recent outbreaks of the chikungunya alphavirus. As for the other mosquito species, the A. aegypti control relies heavily on the use of insecticides. However, because of increasing resistance to the different families of insecticides, reduction of Aedes populations is becoming increasingly difficult. Despite the unquestionable utility of insecticides in fighting mosquito populations, there are very few new insecticides developed and commercialized for vector control. This is because the high cost of the discovery of an insecticide is not counterbalanced by the ‘low profitability’ of the vector control market. Fortunately, the use of quantitative structure–activity relationship (QSAR) modelling allows the reduction of time and cost in the discovery of new chemical structures potentially active against mosquitoes. In this context, the goal of the present study was to review all the existing QSAR models on A. aegypti. The homology and pharmacophore models were also reviewed. Specific attention was paid to show the variety of targets investigated in Aedes in relation to the physiology and ecology of the mosquito as well as the diversity of the chemical structures which have been proposed, encompassing man-made and natural substances. PMID:25275884

  9. In silico models for predicting vector control chemicals targeting Aedes aegypti.

    PubMed

    Devillers, J; Lagneau, C; Lattes, A; Garrigues, J C; Clémenté, M M; Yébakima, A

    2014-01-01

    Human arboviral diseases have emerged or re-emerged in numerous countries worldwide due to a number of factors including the lack of progress in vaccine development, lack of drugs, insecticide resistance in mosquitoes, climate changes, societal behaviours, and economical constraints. Thus, Aedes aegypti is the main vector of the yellow fever and dengue fever flaviviruses and is also responsible for several recent outbreaks of the chikungunya alphavirus. As for the other mosquito species, the A. aegypti control relies heavily on the use of insecticides. However, because of increasing resistance to the different families of insecticides, reduction of Aedes populations is becoming increasingly difficult. Despite the unquestionable utility of insecticides in fighting mosquito populations, there are very few new insecticides developed and commercialized for vector control. This is because the high cost of the discovery of an insecticide is not counterbalanced by the 'low profitability' of the vector control market. Fortunately, the use of quantitative structure-activity relationship (QSAR) modelling allows the reduction of time and cost in the discovery of new chemical structures potentially active against mosquitoes. In this context, the goal of the present study was to review all the existing QSAR models on A. aegypti. The homology and pharmacophore models were also reviewed. Specific attention was paid to show the variety of targets investigated in Aedes in relation to the physiology and ecology of the mosquito as well as the diversity of the chemical structures which have been proposed, encompassing man-made and natural substances.

  10. On the analysis of parasite effect for Aedes aegypti and Aedes albopictus population

    NASA Astrophysics Data System (ADS)

    Kallista, Meta; Aldila, Dipo; Nuraini, Nuning; Soewono, Edy

    2014-03-01

    It has been reported in some countries that the population of Aedes aegypti has been significantly reduced by the invasion of Aedes albopictus. There has been a hypothesis explaining this phenomenon of which investigated the influence of parasites pathogenesis to the competition between these two mosquito species in the fields. Ascogregarina taiwanensis and Ascogregarina culicis are known as parasites that infect Aedes albopictus and Aedes aegypti, respectively. Several studies have concluded that Ascogregarina taiwanensis caused high fatality for Aedes aegypti larvae, but Ascogregarina culicis was not pathogenic to Aedes albopictus larvae. Therefore, Ascogregarina taiwanensis may contribute to reduce the number of populations Aedes aegypti in the fields. Inspired by these facts, a mathematical model depicting interaction between parasites and mosquitoes is constructed in this paper. In this model are included six dynamic mosquito compartments, i.e. egg, larvae, infected larvae, adult, infected adult and one dynamic compartment for parasite. Derivation of the existence criteria and the stability analysis of parasite-free equilibrium as well as the basic offspring for the model are presented. Numerical simulations for sensitivity analysis indicating the invasive species for variation parameters are shown.

  11. Aedes cadherin mediates the in vivo toxicity of the Cry11Aa toxin to Aedes aegypti.

    PubMed

    Lee, Su-Bum; Chen, Jianwu; Aimanova, Karlygash G; Gill, Sarjeet S

    2015-06-01

    Cadherin plays an important role in the toxicity of Bacillus thuringiensis Cry proteins. We previously cloned a full-length cadherin from Aedes aegypti larvae and reported this protein binds Cry11Aa toxin from B. thuringiensis subsp. israelensis with high affinity, ≈16.7nM. Based on these results, we investigated if Aedes cadherin is involved in the in vivo toxicity of Cry11Aa toxin to Ae. aegypti. We established a mosquito cell line stably expressing the full-length Aedes cadherin and transgenic mosquitoes with silenced Aedes cadherin expression. Cells expressing the Aedes cadherin showed increased sensitivity to Cry11Aa toxin. Cry11Aa toxin at 400nM killed approximately 37% of the cells in 3h. Otherwise, transgenic mosquitoes with silenced Aedes cadherin expression showed increased tolerance to Cry11Aa toxin. Furthermore, cells expressing Aedes cadherin triggered Cry11Aa oligomerization. These results show the Aedes cadherin plays a pivotal role in Cry11Aa toxicity to Ae. aegypti larvae by mediating Cry11Aa oligomerization. However, since high toxicity was not obtained in cadherin-expressing cells, an additional receptor may be needed for manifestation of full toxicity. Moreover, cells expressing Aedes cadherin were sensitive to Cry4Aa and Cry11Ba, but not Cry4Ba. However transgenic mosquitoes with silenced Aedes cadherin expression showed no tolerance to Cry4Aa, Cry4Ba, and Cry11Ba toxins. These results suggest that while Aedes cadherin may mediate Cry4Aa and Cry11Ba toxicity, this cadherin but is not the main receptor of Cry4Aa, Cry4Ba and Cry11Ba toxin in Ae. aegypti.

  12. Comparing dengue and chikungunya emergence and endemic transmission in A. aegypti and A. albopictus.

    PubMed

    Manore, Carrie A; Hickmann, Kyle S; Xu, Sen; Wearing, Helen J; Hyman, James M

    2014-09-01

    Chikungunya and dengue are re-emerging mosquito-borne infectious diseases that are of increasing concern as human travel and expanding mosquito ranges increase the risk of spread. We seek to understand the differences in transient and endemic behavior of chikungunya and dengue; risk of emergence for different virus-vector assemblages; and the role that virus evolution plays in disease dynamics and risk. To address these questions, we adapt a mathematical mosquito-borne disease model to chikungunya and dengue in Aedes aegypti and Aedes albopictus mosquitoes. We derive analytical threshold conditions and important dimensionless parameters for virus transmission; perform sensitivity analysis on quantities of interest such as the basic reproduction number, endemic equilibrium, and first epidemic peak; and compute distributions for the quantities of interest across parameter ranges. We found that chikungunya and dengue exhibit different transient dynamics and long-term endemic levels. While the order of most sensitive parameters is preserved across vector-virus combinations, the magnitude of sensitivity is different across scenarios, indicating that risk of invasion or an outbreak can change with vector-virus assemblages. We found that the dengue - A. aegypti and new Rèunion strain of chikungunya - A. albopictus systems represent the highest risk across the range of parameters considered. These results inform future experimental and field research efforts and point toward effective mitigation strategies adapted to each disease. PMID:24801860

  13. Comparing dengue and chikungunya emergence and endemic transmission in A. aegypti and A. albopictus.

    PubMed

    Manore, Carrie A; Hickmann, Kyle S; Xu, Sen; Wearing, Helen J; Hyman, James M

    2014-09-01

    Chikungunya and dengue are re-emerging mosquito-borne infectious diseases that are of increasing concern as human travel and expanding mosquito ranges increase the risk of spread. We seek to understand the differences in transient and endemic behavior of chikungunya and dengue; risk of emergence for different virus-vector assemblages; and the role that virus evolution plays in disease dynamics and risk. To address these questions, we adapt a mathematical mosquito-borne disease model to chikungunya and dengue in Aedes aegypti and Aedes albopictus mosquitoes. We derive analytical threshold conditions and important dimensionless parameters for virus transmission; perform sensitivity analysis on quantities of interest such as the basic reproduction number, endemic equilibrium, and first epidemic peak; and compute distributions for the quantities of interest across parameter ranges. We found that chikungunya and dengue exhibit different transient dynamics and long-term endemic levels. While the order of most sensitive parameters is preserved across vector-virus combinations, the magnitude of sensitivity is different across scenarios, indicating that risk of invasion or an outbreak can change with vector-virus assemblages. We found that the dengue - A. aegypti and new Rèunion strain of chikungunya - A. albopictus systems represent the highest risk across the range of parameters considered. These results inform future experimental and field research efforts and point toward effective mitigation strategies adapted to each disease.

  14. Comparing dengue and chikungunya emergence and endemic transmission in A. aegypti and A. albopictus

    PubMed Central

    Manore, Carrie A.; Hickmann, Kyle S.; Xu, Sen; Wearing, Helen J.; Hyman, James M.

    2014-01-01

    Chikungunya and dengue are re-emerging mosquito-borne infectious diseases that are of increasing concern as human travel and expanding mosquito ranges increase the risk of spread. We seek to understand the differences in transient and endemic behavior of chikungunya and dengue; risk of emergence for different virus-vector assemblages; and the role that virus evolution plays in disease dynamics and risk. To address these questions, we adapt a mathematical mosquito-borne disease model to chikungunya and dengue in Aedes aegypti and Aedes albopictus mosquitoes. We derive analytical threshold conditions and important dimensionless parameters for virus transmission; perform sensitivity analysis on quantities of interest such as the basic reproduction number, endemic equilibrium, and first epidemic peak; and compute distributions for the quantities of interest across parameter ranges. We found that chikungunya and dengue exhibit different transient dynamics and long-term endemic levels. While the order of most sensitive parameters is preserved across vector-virus combinations, the magnitude of sensitivity is different across scenarios, indicating that risk of invasion or an outbreak can change with vector-virus assemblages. We found that the dengue-A. aegypti and new Rèunion strain of chikungunya-A. albopictus systems represent the highest risk across the range of parameters considered. These results inform future experimental and field research efforts and point toward effective mitigation strategies adapted to each disease. PMID:24801860

  15. Costs of Three Wolbachia Infections on the Survival of Aedes aegypti Larvae under Starvation Conditions

    PubMed Central

    Ross, Perran A.; Endersby, Nancy M.; Hoffmann, Ary A.

    2016-01-01

    The mosquito Aedes aegypti, the principal vector of dengue virus, has recently been infected experimentally with Wolbachia: intracellular bacteria that possess potential as dengue biological control agents. Wolbachia depend on their hosts for nutrients they are unable to synthesize themselves. Consequently, competition between Wolbachia and their host for resources could reduce host fitness under the competitive conditions commonly experienced by larvae of Ae. aegypti in the field, hampering the invasion of Wolbachia into natural mosquito populations. We assess the survival and development of Ae. aegypti larvae under starvation conditions when infected with each of three experimentally-generated Wolbachia strains: wMel, wMelPop and wAlbB, and compare their fitness to wild-type uninfected larvae. We find that all three Wolbachia infections reduce the survival of larvae relative to those that are uninfected, and the severity of the effect is concordant with previously characterized fitness costs to other life stages. We also investigate the ability of larvae to recover from extended food deprivation and find no effect of Wolbachia on this trait. Aedes aegypti larvae of all infection types were able to resume their development after one month of no food, pupate rapidly, emerge at a large size, and exhibit complete cytoplasmic incompatibility and maternal transmission. A lowered ability of Wolbachia-infected larvae to survive under starvation conditions will increase the threshold infection frequency required for Wolbachia to establish in highly competitive natural Ae. aegypti populations and will also reduce the speed of invasion. This study also provides insights into survival strategies of larvae when developing in stressful environments. PMID:26745630

  16. Promising Aedes aegypti repellent chemotypes identified through integrated QSAR, virtual screening, synthesis, and bioassay.

    PubMed

    Oliferenko, Polina V; Oliferenko, Alexander A; Poda, Gennadiy I; Osolodkin, Dmitry I; Pillai, Girinath G; Bernier, Ulrich R; Tsikolia, Maia; Agramonte, Natasha M; Clark, Gary G; Linthicum, Kenneth J; Katritzky, Alan R

    2013-01-01

    Molecular field topology analysis, scaffold hopping, and molecular docking were used as complementary computational tools for the design of repellents for Aedes aegypti, the insect vector for yellow fever, chikungunya, and dengue fever. A large number of analogues were evaluated by virtual screening with Glide molecular docking software. This produced several dozen hits that were either synthesized or procured from commercial sources. Analysis of these compounds by a repellent bioassay resulted in a few highly active chemicals (in terms of minimum effective dosage) as viable candidates for further hit-to-lead and lead optimization effort.

  17. Promising Aedes aegypti Repellent Chemotypes Identified through Integrated QSAR, Virtual Screening, Synthesis, and Bioassay

    PubMed Central

    Oliferenko, Polina V.; Oliferenko, Alexander A.; Poda, Gennadiy I.; Osolodkin, Dmitry I.; Pillai, Girinath G.; Bernier, Ulrich R.; Tsikolia, Maia; Agramonte, Natasha M.; Clark, Gary G.; Linthicum, Kenneth J.; Katritzky, Alan R.

    2013-01-01

    Molecular field topology analysis, scaffold hopping, and molecular docking were used as complementary computational tools for the design of repellents for Aedes aegypti, the insect vector for yellow fever, chikungunya, and dengue fever. A large number of analogues were evaluated by virtual screening with Glide molecular docking software. This produced several dozen hits that were either synthesized or procured from commercial sources. Analysis of these compounds by a repellent bioassay resulted in a few highly active chemicals (in terms of minimum effective dosage) as viable candidates for further hit-to-lead and lead optimization effort. PMID:24039693

  18. Activities of some Brazilian plants against larvae of the mosquito Aedes aegypti.

    PubMed

    de Mendonça, Fernando A C; da Silva, K F S; dos Santos, K K; Ribeiro Júnior, K A L; Sant'Ana, A E G

    2005-12-01

    The insecticidal activities of extracts and oils of seventeen medicinal plants of Brazil have been determined using an Aedes aegypti larvicidal bioassay. Oils from Anacardium occidentalis, Copaifera langsdorffii, Carapa guianensis, Cymbopogon winterianus and Ageratum conyzoides showed high activities with LC50 values of 14.5, 41, 57, 98 and 148 microg/l, respectively. The most active ethanolic extract tested was that from the stem of Annona glabra which presented an LC50 value of 27 microg/l. The potential application of cashew nut oil, an industrial by-product with low commercial value, in the control of the vector of dengue and yellow fever, may be proposed.

  19. Novel estimates of Aedes aegypti (Diptera: Culicidae) population size and adult survival based on Wolbachia releases.

    PubMed

    Ritchie, Scott A; Montgomery, Brian L; Hoffmann, Ary A

    2013-05-01

    The size of Aedes aegypti (L.) mosquito populations and adult survival rates have proven difficult to estimate because of a lack of consistent quantitative measures to equate sampling methods, such as adult trapping, to actual population size. However, such estimates are critical for devising control methods and for modeling the transmission of dengue and other infectious agents carried by this species. Here we take advantage of recent releases of Wolbachia-infected Ae. aegypti coupled with the results of ongoing monitoring to estimate the size of adult Ae. aegypti populations around Cairns in far north Queensland, Australia. Based on the association between released adults infected with Wolbachia and data from Biogents Sentinel traps, we show that data from two locations are consistent with population estimates of approximately 5-10 females per house and daily survival rates of 0.7-0.9 for the released Wolbachia-infected females. Moreover, we estimate that networks of Biogents Sentinel traps at a density of one per 15 houses capture around 5-10% of the adult population per week, and provide a rapid estimate of the absolute population size of Ae. aegypti. These data are discussed with respect to release rates and monitoring in future Wolbachia releases and also the levels of suppression required to reduce dengue transmission. PMID:23802459

  20. Seasonal Genetic Changes of Aedes aegypti (Diptera: Culicidae) Populations in Selected Sites of Cebu City, Philippines.

    PubMed

    Sayson, S L; Gloria-Soria, A; Powell, J R; Edillo, F E

    2015-07-01

    Aedes aegypti (L.) is the primary vector of dengue virus in the Philippines, where dengue is endemic. We examined the genetic changes of Ae. aegypti collected from three selected sites in Cebu city, Philippines, during the relatively wet (2011-2012) and dry seasons (2012 and 2013). A total of 493 Ae. aegypti adults, reared in the laboratory from field-collected larvae, were analyzed using 11 microsatellite loci. Seasonal variation was observed in allele frequencies and allelic richness. Average genetic differentiation (DEST=0.018; FST=0.029) in both dry seasons was higher, due to reduced Ne, than in the wet season (DEST=0.006; FST=0.009). Thus, average gene flow was higher in the wet season than in the dry seasons. However, the overall FST estimate (0.02) inclusive of the two seasons showed little genetic differentiation as supported by Bayesian clustering analysis. Results suggest that during the dry season the intense selection that causes a dramatic reduction of population size favors heterozygotes, leading to small pockets of mosquitoes (refuges) that exhibit random genetic differentiation. During the wet season, the genetic composition of the population is reconstituted by the expansion of the refuges that survived the preceding dry season. Source reduction of mosquitoes during the nonepidemic dry season is thus recommended to prevent dengue re-emergence in the subsequent wet season.

  1. Septic tanks as larval habitats for the mosquitoes Aedes aegypti and Culex quinquefasciatus in Playa-Playita, Puerto Rico.

    PubMed

    Burke, R; Barrera, R; Lewis, M; Kluchinsky, T; Claborn, D

    2010-06-01

    Adult Aedes aegypti (Linnaeus) (Diptera: Culicidae) were previously recovered from emergence traps on septic tanks in southeastern Puerto Rico. In this study we quantified immature mosquito abundance and its relationship with structural variables of the septic tanks and chemical properties of the water containing raw sewage. A miniaturized floating funnel trap was used to sample 89 septic tanks for larvae in the Puerto Rican community of Playa-Playita. Aedes aegypti larvae were recovered from 18% of the sampled tanks (10.3 larvae per septic tank per day). Larval presence was positively associated with cracking of the septic tank walls and uncovered access ports. Larval abundance was positively associated with cracking of the septic tank walls and larger tank surface areas, and inversely associated with the total dissolved solids (TDS). Culex quinquefasciatus (Say) larvae were also recovered from 74% of the septic tanks (129.6 larvae per septic tank per day). Larval presence was negatively associated with TDS in the water and larval abundance was positively associated with cracking of the septic tank walls. A screened, plastic emergence trap was used to sample 93 septic tanks within the community for Ae. aegypti and Cx. quinquefasciatus adults. Aedes aegypti adults were recovered from 49% of the sampled tanks (8.7 adults per septic tank per day) and Cx. quinquefasciatus adults were recovered from 97% of the sampled tanks (155.5 adults per septic tank per day). Aedes aegypti adult presence was positively associated with cracking, uncapped openings and septic water pH. The Ae. aegypti adult counts were positively associated with cracking and inversely associated with TDS and conductivity. This study marks the first published record of the recovery of Ae. aegypti larvae from holding tanks containing raw sewage in the Caribbean region. Our study indicates that Ae. aegypti larvae are present in sewage water and that septic tanks have at least the potential to maintain

  2. Cytochromr b expression and RNAi knockdown in Aedes aegypti.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cytochrome b, coded by mitochondrial DNA, is one of the cytochromes involved in the electron transport in the respiratory chain of mitochondria. Cytochrome b is a critical intermediate in mitoptosis, i.e. a mitochondrial death pathway. To reveal whether cytochrome b of the mosquito Aedes aegypti (Ae...

  3. USDA Research on New Strategies for Controlling Aedes aegypti.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    USDA researchers are currently studying new methods to control Aedes aegypti. One involves molecular pesticides which target critical genes/proteins (such as inhibitors of apoptosis proteins, IAPs) in mosquitoes using RNA interference (RNAi). RNAi constructs are evaluated in vivo in adult mosquito...

  4. A review on symmetries for certain Aedes aegypti models

    NASA Astrophysics Data System (ADS)

    Freire, Igor Leite; Torrisi, Mariano

    2015-04-01

    We summarize our results related with mathematical modeling of Aedes aegypti and its Lie symmetries. Moreover, some explicit, group-invariant solutions are also shown. Weak equivalence transformations of more general reaction diffusion systems are also considered. New classes of solutions are obtained.

  5. A preliminary study of the population genetics of Aedes aegypti (Diptera: Culicidae) from Mexico using microsatellite and AFLP markers.

    PubMed

    Ravel, S; Monteny, N; Velasco Olmos, D; Escalante Verdugo, J; Cuny, G

    2001-03-30

    Dengue fever recently reemerged in the Americas. Because vaccines are still under development, dengue prevention depends entirely on vector control. Since Aedes aegypti (Linnaeus, 1762) is the principal vector of this arbovirus, knowledge of the genetic structure of the insect is therefore required to maintain effective vector control strategies and to estimate levels of gene flow from which movement can be inferred. This preliminary study uses microsatellite and amplified fragment length polymorphism (AFLP) markers, to provide insights into genetic diversity of A. aegypti populations from different districts of two towns, located in the north-west of Mexico, Hermosillo and Guaymas. Although the microsatellites used were found to display limited polymorphism, they allowed discrimination between mosquitoes from the northern and the southern districts of Hermosillo. Using AFLP markers, clustering of individuals from the same town and from the same district was observed. Data from microsatellite and AFLP markers analysis both suggest that reinvasion of A. aegypti probably occurs from Guaymas to Hermosillo.

  6. Selective inhibitors of digestive enzymes from Aedes aegypti larvae identified by phage display.

    PubMed

    Soares, Tatiane Sanches; Soares Torquato, Ricardo Jose; Alves Lemos, Francisco Jose; Tanaka, Aparecida Sadae

    2013-01-01

    Dengue is a serious disease transmitted by the mosquito Aedes aegypti during blood meal feeding. It is estimated that the dengue virus is transmitted to millions of individuals each year in tropical and subtropical areas. Dengue control strategies have been based on controlling the vector, Ae. aegypti, using insecticide, but the emergence of resistance poses new challenges. The aim of this study was the identification of specific protease inhibitors of the digestive enzymes from Ae. aegypti larvae, which may serve as a prospective alternative biocontrol method. High affinity protein inhibitors were selected by all of the digestive serine proteases of the 4th instar larval midgut, and the specificity of these inhibitors was characterized. These inhibitors were obtained from a phage library displaying variants of HiTI, a trypsin inhibitor from Haematobia irritans, that are mutated in the reactive loop (P1-P4'). Based on the selected amino acid sequence pattern, seven HiTI inhibitor variants were cloned, expressed and purified. The results indicate that the HiTI variants named T6 (RGGAV) and T128 (WNEGL) were selected by larval trypsin-like (IC(50) of 1.1 nM) and chymotrypsin-like enzymes (IC(50) of 11.6 nM), respectively. The variants T23 (LLGGL) and T149 (GGVWR) inhibited both larval chymotrypsin-like (IC(50) of 4.2 nM and 29.0 nM, respectively) and elastase-like enzymes (IC(50) of 1.2 nM for both). Specific inhibitors were successfully obtained for the digestive enzymes of Ae. aegypti larvae by phage display. Our data also strongly suggest the presence of elastase-like enzymes in Ae. aegypti larvae. The HiTI variants T6 and T23 are good candidates for the development as a larvicide to control the vector.

  7. Spatial and temporal dynamics of Aedes aegypti larval sites in Bello, Colombia.

    PubMed

    Arboleda, Sair; Jaramillo-O, Nicolás; Peterson, A Townsend

    2012-06-01

    Counts of immature stages of the mosquito Aedes aegypti have been used to calculate several entomological indices of dengue vector abundance. Some studies have concluded that these indices can be used as indicators of dengue epidemic risk, while other studies have failed to find a predictive relationship. Ecological niche models have been able to predict distributional patterns in space and time, not only of vectors, but also of the diseases that they transmit. In this study, we used Landsat 7 ETM+ images and two niche-modeling algorithms to estimate the local-landscape ecological niche and the dynamics of Ae. aegypti larval habitats in Bello, Colombia, and to evaluate their potential spatial and temporal distribution. Our models showed low omission error with high confidence levels: about 13.4% of the area presents conditions consistently suitable for breeding across the entire study period (2002-2008). The proportion of neighborhoods predicted to be suitable showed a positive association with dengue case rates, whereas the vector-focused Bretau index had no relationship to case rates. As a consequence, niche models appear to offer a superior option for predictive evaluation of dengue transmission risk and anticipating the potential for outbreaks. PMID:22548535

  8. Human-Mediated Marine Dispersal Influences the Population Structure of Aedes aegypti in the Philippine Archipelago

    PubMed Central

    Fonzi, Eugenio; Higa, Yukiko; Bertuso, Arlene G.; Futami, Kyoko; Minakawa, Noboru

    2015-01-01

    Background Dengue virus (DENV) is an extraordinary health burden on global scale, but still lacks effective vaccine. The Philippines is endemic for dengue fever, but massive employment of insecticides favored the development of resistance mutations in its major vector, Aedes aegypti. Alternative vector control strategies consist in releasing artificially modified mosquitos in the wild, but knowledge on their dispersal ability is necessary for a successful implementation. Despite being documented that Ae. aegypti can be passively transported for long distances, no study to date has been aimed at understanding whether human marine transportation can substantially shape the migration patterns of this mosquito. With thousands of islands connected by a dense network of ships, the Philippines is an ideal environment to fill this knowledge gap. Methodology/principal findings Larvae of Ae. aegypti from 15 seaports in seven major islands of central-western Philippines were collected and genotyped at seven microsatellite loci. Low genetic structure and considerable gene flow was found in the area. Univariate and multivariate regression analyses suggested that anthropic factors (specifically the amount of processed cargo and human population density) can explain the observed population structure, while geographical distance was not correlated. Interestingly, cargo shipments seem to be more efficient than passenger ships in transporting Ae. aegypti. Bayesian clustering confirmed that Ae. aegypti from busy ports are more genetically similar, while populations from idle ports are relatively structured, regardless of the geographical distance that separates them. Conclusions/significance The results confirmed the pivotal role of marine human-mediated long-range dispersal in determining the population structure of Ae. aegypti. Hopefully corroborated by further research, the present findings could assist the design of more effective vector control strategies. PMID:26039311

  9. Evidence for an Overwintering Population of Aedes aegypti in Capitol Hill Neighborhood, Washington, DC.

    PubMed

    Lima, Andrew; Lovin, Diane D; Hickner, Paul V; Severson, David W

    2016-01-01

    Aedes aegypti is an invasive, highly anthropophilic mosquito and a major vector for dengue and chikungunya. Population persistence in the continental United States is reportedly limited to southward of the average 10°C winter isotherm, which in the east, bisects Alabama, Mississippi, Georgia, and South Carolina. We report on summer collections and genotypic analyses of Ae. aegypti collected in the Capitol Hill neighborhood in Washington, DC (WDC). Analysis of a 441-bp fragment of the mitochondrial cytochrome oxidase I gene sequence identified the same two haplotype sequences during 2011-2014, and placed these within two discrete groups known to be derived from lineages resident in the Americas. Analysis of 10 microsatellite loci for specimens collected during 2011-2014 revealed no evidence for introgression of new alleles across years. Overall, our data support a conclusion that this represents a resident WDC population, likely maintained during winter months in a subterranean habitat that facilitates year-round survival.

  10. Influence of breeding site availability on the oviposition behaviour of Aedes aegypti.

    PubMed

    Abreu, Filipe Vieira Santos de; Morais, Maira Moreira; Ribeiro, Sérvio Pontes; Eiras, Álvaro Eduardo

    2015-08-01

    Despite the importance of the mosquito Aedes aegypti in the transmission of arboviruses, such as yellow fever, Chikungunya fever and dengue fever, some aspects of their behaviour remain unknown. In the present study, the oviposition behaviour of Ae. aegypti females that were exposed to different densities of breeding sites (2, 4, 8 and 16) was evaluated in laboratory and semi-field conditions. The number of breeding sites that were used was proportional to the number available, but tended towards stabilisation. Females used four-six breeding sites on average, with a maximum of 11. A high percentage of eggs was observed in the water, along with the presence of a breeding site termed "favourite", which received at least 40% of the eggs. The results are discussed in ecological, evolutionary and epidemiological approaches.

  11. The genetics of chemoreception in the labella and tarsi of Aedes aegypti.

    PubMed

    Sparks, Jackson T; Bohbot, Jonathan D; Dickens, Joseph C

    2014-05-01

    The yellow-fever mosquito Aedes aegypti is a major vector of human diseases, such as dengue, yellow fever, chikungunya and West Nile viruses. Chemoreceptor organs on the labella and tarsi are involved in human host evaluation and thus serve as potential foci for the disruption of blood feeding behavior. In addition to host detection, these contact chemoreceptors mediate feeding, oviposition and conspecific recognition; however, the molecular landscape of chemoreception in these tissues remains mostly uncharacterized. Here we report the expression profile of all putative chemoreception genes in the labella and tarsi of both sexes of adult Ae. aegypti and discuss their possible roles in the physiology and behavior of this important disease vector.

  12. Influence of breeding site availability on the oviposition behaviour of Aedes aegypti

    PubMed Central

    de Abreu, Filipe Vieira Santos; Morais, Maira Moreira; Ribeiro, Sérvio Pontes; Eiras, Álvaro Eduardo

    2015-01-01

    Despite the importance of the mosquito Aedes aegypti in the transmission of arboviruses, such as yellow fever, Chikungunya fever and dengue fever, some aspects of their behaviour remain unknown. In the present study, the oviposition behaviour of Ae. aegypti females that were exposed to different densities of breeding sites (2, 4, 8 and 16) was evaluated in laboratory and semi-field conditions. The number of breeding sites that were used was proportional to the number available, but tended towards stabilisation. Females used four-six breeding sites on average, with a maximum of 11. A high percentage of eggs was observed in the water, along with the presence of a breeding site termed “favourite”, which received at least 40% of the eggs. The results are discussed in ecological, evolutionary and epidemiological approaches. PMID:26154742

  13. Baseline data on Aedes aegypti populations in Santo Domingo, Dominican Republic.

    PubMed

    Tidwell, M A; Williams, D C; Carvalho Tidwell, T; Peña, C J; Gwinn, T A; Focks, D A; Zaglul, A; Mercedes, M

    1990-09-01

    Baseline field studies were conducted from April 1987 to July 1988 on Aedes aegypti in Santo Domingo, an endemic area for dengue fever. Premise, container and Breteau indices were measured in one treated area and 2 nearby control areas. These indices averaged 69.6, 46.3 and 142.1, respectively. The principal larval habitats of Ae. aegypti were 208-liter (55-gal) concrete-lined drums. The estimated daily adult production was approximately 60 per house. Adult mosquito populations were monitored using oviposition traps and by sweep net collections. There was no correlation between adult abundance and the larval indices. Monitoring the natural adult densities was more efficient for evaluating the impact of ULV malathion application than the use of standard bioassay procedures.

  14. Identification of Essential Containers for Aedes Larval Breeding to Control Dengue in Dhaka, Bangladesh

    PubMed Central

    Ferdousi, Farhana; Yoshimatsu, Shoji; Ma, Enbo; Sohel, Nazmul; Wagatsuma, Yukiko

    2015-01-01

    Dengue fever (DF), one of the most important emerging arboviral diseases, is transmitted through the bite of container breeding mosquitoes Aedes aegypti and Aedes albopictus. A household entomological survey was conducted in Dhaka from August through October 2000 to inspect water-holding containers in indoor, outdoor, and rooftop locations for Aedes larvae. The objective of this study was to determine mosquito productivity of each container type and to identify some risk factors of households infested with Aedes larvae. Of 9,222 households inspected, 1,306 (14.2%) were positive for Aedes larvae. Of 38,777 wet containers examined, 2,272 (5.8%) were infested with Aedes larvae. Containers used to hold water, such as earthen jars, tanks, and drums were the most common containers for larval breeding. Tires in outdoor and rooftop locations of the households were also important for larval breeding. Although present in abundance, buckets were of less importance. Factors such as independent household, presence of a water storage system in the house, and fully/partly shaded outdoors were found to be significantly associated with household infestation of Aedes larvae. Identification and subsequent elimination of the most productive containers in a given area may potentially reduce mosquito density to below a level at which dengue transmission may be halted. PMID:26865829

  15. Identification of Essential Containers for Aedes Larval Breeding to Control Dengue in Dhaka, Bangladesh.

    PubMed

    Ferdousi, Farhana; Yoshimatsu, Shoji; Ma, Enbo; Sohel, Nazmul; Wagatsuma, Yukiko

    2015-12-01

    Dengue fever (DF), one of the most important emerging arboviral diseases, is transmitted through the bite of container breeding mosquitoes Aedes aegypti and Aedes albopictus. A household entomological survey was conducted in Dhaka from August through October 2000 to inspect water-holding containers in indoor, outdoor, and rooftop locations for Aedes larvae. The objective of this study was to determine mosquito productivity of each container type and to identify some risk factors of households infested with Aedes larvae. Of 9,222 households inspected, 1,306 (14.2%) were positive for Aedes larvae. Of 38,777 wet containers examined, 2,272 (5.8%) were infested with Aedes larvae. Containers used to hold water, such as earthen jars, tanks, and drums were the most common containers for larval breeding. Tires in outdoor and rooftop locations of the households were also important for larval breeding. Although present in abundance, buckets were of less importance. Factors such as independent household, presence of a water storage system in the house, and fully/partly shaded outdoors were found to be significantly associated with household infestation of Aedes larvae. Identification and subsequent elimination of the most productive containers in a given area may potentially reduce mosquito density to below a level at which dengue transmission may be halted.

  16. Field Efficacy of New Larvicide Products for Control of Multi-Resistant Aedes aegypti Populations in Martinique (French West Indies)

    PubMed Central

    Marcombe, Sébastien; Darriet, Frédéric; Agnew, Philip; Etienne, Manuel; Yp-Tcha, Marie-Michelle; Yébakima, André; Corbel, Vincent

    2011-01-01

    World-wide dengue vector control is hampered by the spread of insecticide resistance in Aedes aegypti. We report the resistance status of a wild Ae. aegypti population from Martinique (Vauclin) to conventional larvicides (Bacillus thuringiensis var israeliensis [Bti] and temephos) and potential alternatives (spinosad, diflubenzuron, and pyriproxyfen). The efficacy and residual activity of these insecticides were evaluated under simulated and field conditions. The Vauclin strain exhibited a high level of resistance to temephos, a tolerance to insect growth regulators, and full susceptibility to spinosad and Bti. In simulated trials, pyriproxyfen and Bti showed long residual activities in permanent breeding containers (28 and 37 weeks), whereas under field conditions they failed to curtail Ae. aegypti populations after four weeks. Conversely, diflubenzuron and spinosad showed a residual efficacy of 16 weeks, suggesting that these chemicals may be promising alternatives to Bti and temephos for controlling insecticide-resistant Ae. aegypti populations. PMID:21212213

  17. Field efficacy of new larvicide products for control of multi-resistant Aedes aegypti populations in Martinique (French West Indies).

    PubMed

    Marcombe, Sébastien; Darriet, Frédéric; Agnew, Philip; Etienne, Manuel; Yp-Tcha, Marie-Michelle; Yébakima, André; Corbel, Vincent

    2011-01-01

    World-wide dengue vector control is hampered by the spread of insecticide resistance in Aedes aegypti. We report the resistance status of a wild Ae. aegypti population from Martinique (Vauclin) to conventional larvicides (Bacillus thuringiensis var israeliensis [Bti] and temephos) and potential alternatives (spinosad, diflubenzuron, and pyriproxyfen). The efficacy and residual activity of these insecticides were evaluated under simulated and field conditions. The Vauclin strain exhibited a high level of resistance to temephos, a tolerance to insect growth regulators, and full susceptibility to spinosad and Bti. In simulated trials, pyriproxyfen and Bti showed long residual activities in permanent breeding containers (28 and 37 weeks), whereas under field conditions they failed to curtail Ae. aegypti populations after four weeks. Conversely, diflubenzuron and spinosad showed a residual efficacy of 16 weeks, suggesting that these chemicals may be promising alternatives to Bti and temephos for controlling insecticide-resistant Ae. aegypti populations.

  18. Larvicide and oviposition deterrent effects of fruit and leaf extracts from Melia azedarach L. on Aedes aegypti (L.) (Diptera: Culicidae).

    PubMed

    Coria, C; Almiron, W; Valladares, G; Carpinella, C; Ludueña, F; Defago, M; Palacios, S

    2008-05-01

    Aedes aegypti (L.) (Diptera: Culicidae), the main urban vector of dengue, has developed resistance to various insecticides, making its control increasingly difficult. We explored the effects of Argentine Melia azedarach L. (Meliaceae) fruit and senescent leaf extracts on Ae. aegypti larval development and survival, by rearing cohorts of first instar mosquitoes in water with different extract concentrations. We also analysed oviposition deterrent activity in choice tests with extract-treated ovitraps. The leaf extract showed a strong larvicide activity, with all larvae dying before pupation, and significantly delayed development time. It strongly inhibited oviposition by Ae. aegypti females. The fruit extract showed much weaker effects. This first report of highly effective larvicidal, growth regulating and oviposition deterrent activity of a senescent leaf extract of M. azedarach against Ae. aegypti, suggests that such extract could represent a promising tool in the management of this mosquito pest.

  19. Larval Development of Aedes aegypti and Aedes albopictus in Peri-Urban Brackish Water and Its Implications for Transmission of Arboviral Diseases

    PubMed Central

    Ramasamy, Ranjan; Surendran, Sinnathamby N.; Jude, Pavilupillai J.; Dharshini, Sangaralingam; Vinobaba, Muthuladchumy

    2011-01-01

    Aedes aegypti (Linnaeus) and Aedes albopictus Skuse mosquitoes transmit serious human arboviral diseases including yellow fever, dengue and chikungunya in many tropical and sub-tropical countries. Females of the two species have adapted to undergo preimaginal development in natural or artificial collections of freshwater near human habitations and feed on human blood. While there is an effective vaccine against yellow fever, the control of dengue and chikungunya is mainly dependent on reducing freshwater preimaginal development habitats of the two vectors. We show here that Ae. aegypti and Ae. albopictus lay eggs and their larvae survive to emerge as adults in brackish water (water with <0.5 ppt or parts per thousand, 0.5–30 ppt and >30 ppt salt are termed fresh, brackish and saline respectively). Brackish water with salinity of 2 to 15 ppt in discarded plastic and glass containers, abandoned fishing boats and unused wells in coastal peri-urban environment were found to contain Ae. aegypti and Ae. albopictus larvae. Relatively high incidence of dengue in Jaffna city, Sri Lanka was observed in the vicinity of brackish water habitats containing Ae. aegypti larvae. These observations raise the possibility that brackish water-adapted Ae. aegypti and Ae. albopictus may play a hitherto unrecognized role in transmitting dengue, chikungunya and yellow fever in coastal urban areas. National and international health authorities therefore need to take the findings into consideration and extend their vector control efforts, which are presently focused on urban freshwater habitats, to include brackish water larval development habitats. PMID:22132243

  20. [Aedes (Stegomyia) aegypti (Linnaeus, 1762) breeding sites in native bromeliads in Vitória City, ES].

    PubMed

    Varejão, José Benedito Malta; Santos, Claudiney Biral dos; Rezende, Helder Ricas; Bevilacqua, Luiz Carlos; Falqueto, Aloísio

    2005-01-01

    Some insects that are vectors of human diseases have accompanied man in his migrations throughout the world and breed exclusively in the proximity of human dwellings. The mosquito Aedes aegypti has been responsible for epidemics of dengue in Brazil and its presence also constitutes a serious risk for future outbreaks of urban yellow fever. The failure of campaigns to eradicate this species justifies the search for alternative breeding sites, which may be beyond the reach of present control measures. In this study the occurrence of Aedes aegypti breeding sites in native bromeliads on rocky slopes was investigated in five areas of Vitória, capital of the Brazilian State of Espírito Santo, ES. Water contained in the bromeliads was collected with the aid of a suction apparatus to search for culicid larvae. The degree of infestation of buildings in adjacent urban areas was evaluated simultaneously. Culicid larvae were found in bromeliads in four of the five areas investigated, Aedes aegypti being present in two areas. The presence of breeding sites in bromeliads was not related to indices of infestation of buildings in adjacent areas. Further studies are necessary to define whether breeding sites in bromeliads constitute primary foci of Aedes aegypti, or are a consequence of high infestation levels in urban areas.

  1. Microclimate and human factors in the divergent ecology of Aedes aegypti along the Arizona, U.S./Sonora, MX border.

    PubMed

    Hayden, Mary H; Uejio, Christopher K; Walker, Kathleen; Ramberg, Frank; Moreno, Rafael; Rosales, Cecilia; Gameros, Mercedes; Mearns, Linda O; Zielinski-Gutierrez, Emily; Janes, Craig R

    2010-08-01

    This study examined the association of human and environmental factors with the presence of Aedes aegypti, the vector for dengue fever and yellow fever viruses, in a desert region in the southwest United States and northwest Mexico. Sixty-eight sites were longitudinally surveyed along the United States-Mexico border in Tucson, AZ, Nogales, AZ, and Nogales, Sonora during a 3-year period. Aedes aegypti presence or absence at each site was measured three times per year using standard oviposition traps. Maximum and minimum temperature and relative humidity were measured hourly at each site. Field inventories were conducted to measure human housing factors potentially affecting mosquito presence, such as the use of air-conditioning and evaporative coolers, outdoor vegetation cover, and access to piped water. The results showed that Ae. aegypti presence was highly variable across space and time. Aedes aegypti presence was positively associated with highly vegetated areas. Other significant variables included microclimatic differences and access to piped water. This study demonstrates the importance of microclimate and human factors in predicting Ae. aegypti distribution in an arid environment.

  2. Susceptibility of field-collected Aedes aegypti (L.) (Diptera: Culicidae) to Bacillus thuringiensis israelensis and temephos.

    PubMed

    Loke, S R; Andy-Tan, W A; Benjamin, S; Lee, H L; Sofian-Azirun, M

    2010-12-01

    The susceptibility status of field-collected Aedes aegypti (L.) from a dengue endemic area to Bacillus thuringiensis israelensis (Bti) and temephos was determined. Since August 2007, biweekly ovitrap surveillance (OS) was conducted for 12 mo in 2 sites, A & B, in Shah Alam, Selangor. Site A was treated with a Bti formulation, VectoBac® WG at 500 g/ha, from December 2007 - June 2008 while Site B was subjected to routine dengue vector control activities conducted by the local municipality. Aedes aegypti larvae collected from OS in both sites were bred until F3 and evaluated for their susceptibility. The larvae were pooled according to 3 time periods, which corresponded to Bti treatment phases in site A: August - November 2007 (Bti pre-treatment phase); December 2007 - June 2008 (Bti treatment phase); and July - September 2008 (Bti post-treatment phase). Larvae were bioassayed against Bti or temephos in accordance with WHO standard methods. Larvae collected from Site A was resistant to temephos, while incipient temephos resistant was detected in Site B throughout the study using WHO diagnostic dosage of 0.02 mg/L. The LC50 of temephos ranged between 0.007040 - 0.03799 mg/L throughout the year in both sites. Resistance ratios (LC50) indicated that temephos resistance increased with time, from 1.2 - 6.7 folds. The LC50 of Ae. aegypti larvae to Bti ranged between 0.08890 - 0.1814 mg/L throughout the year in both sites, showing uniform susceptibility of field larvae to Bti, in spite of Site A receiving 18 Bti treatments over a period of 7 mo. No cross-resistance of Ae. aegypti larvae from temephos to Bti was detected. PMID:21399591

  3. Climate change and the potential global distribution of Aedes aegypti: spatial modelling using GIS and CLIMEX.

    PubMed

    Khormi, Hassan M; Kumar, Lalit

    2014-05-01

    We examined the potential added risk posed by global climate change on the dengue vector Aedes aegypti abundance using CLIMEX, a powerful tool for exploring the relationship between the fundamental and realised niche of any species. After calibrating the model using data from several knowledge domains, including geographical distribution records, we estimated potential distributions of the mosquito under current and future potential scenarios. The impact of climate change on its potential distribution was assessed with two global climate models, the CSIRO-Mk3.0 and the MIROC-H, run with two potential, future emission scenarios (A1B and A2) published by the Intergovernmental Panel on Climate Change. We compared today's climate situation with two arbitrarily chosen future time points (2030 and 2070) to see the impact on the worldwide distribution of A. aegypti . The model for the current global climate indicated favourable areas for the mosquito within its known distribution in tropical and subtropical areas. However, even if much of the tropics and subtropics will continue to be suitable, the climatically favourable areas for A. aegypti globally are projected to contract under the future scenarios produced by these models, while currently unfavourable areas, such as inland Australia, the Arabian Peninsula, southern Iran and some parts of North America may become climatically favourable for this mosquito species. The climate models for the Aedes dengue vector presented here should be useful for management purposes as they can be adapted for decision/making regarding allocation of resources for dengue risk toward areas where risk infection remains and away from areas where climatic suitability is likely to decrease in the future. PMID:24893017

  4. Climate change and the potential global distribution of Aedes aegypti: spatial modelling using GIS and CLIMEX.

    PubMed

    Khormi, Hassan M; Kumar, Lalit

    2014-05-01

    We examined the potential added risk posed by global climate change on the dengue vector Aedes aegypti abundance using CLIMEX, a powerful tool for exploring the relationship between the fundamental and realised niche of any species. After calibrating the model using data from several knowledge domains, including geographical distribution records, we estimated potential distributions of the mosquito under current and future potential scenarios. The impact of climate change on its potential distribution was assessed with two global climate models, the CSIRO-Mk3.0 and the MIROC-H, run with two potential, future emission scenarios (A1B and A2) published by the Intergovernmental Panel on Climate Change. We compared today's climate situation with two arbitrarily chosen future time points (2030 and 2070) to see the impact on the worldwide distribution of A. aegypti . The model for the current global climate indicated favourable areas for the mosquito within its known distribution in tropical and subtropical areas. However, even if much of the tropics and subtropics will continue to be suitable, the climatically favourable areas for A. aegypti globally are projected to contract under the future scenarios produced by these models, while currently unfavourable areas, such as inland Australia, the Arabian Peninsula, southern Iran and some parts of North America may become climatically favourable for this mosquito species. The climate models for the Aedes dengue vector presented here should be useful for management purposes as they can be adapted for decision/making regarding allocation of resources for dengue risk toward areas where risk infection remains and away from areas where climatic suitability is likely to decrease in the future.

  5. Seasonal Differences in Density But Similar Competitive Impact of Aedes albopictus (Skuse) on Aedes aegypti (L.) in Rio de Janeiro, Brazil

    PubMed Central

    Camara, Daniel Cardoso Portela; Codeço, Claudia Torres; Juliano, Steven A.; Lounibos, L. Philip; Riback, Thais Irene Souza; Pereira, Glaucio Rocha; Honorio, Nildimar Alves

    2016-01-01

    Previous studies have shown that the negative effects of density of Ae. albopictus on Ae. aegypti exceed those of Ae. aegypti on Ae. albopictus for population growth, adult size, survivorship, and developmental rate. This competitive superiority has been invoked to explain the displacement of Ae. aegypti by Ae. albopictus in the southeastern USA. In Brazil, these species coexist in many vegetated suburban and rural areas. We investigated a related, but less-well-studied question: do effects of Ae. albopictus on Ae. aegypti larval development and survival occur under field conditions at realistic densities across multiple seasons in Brazil? We conducted additive competition experiments in a vegetated area of Rio de Janeiro where these species coexist. We tested the hypothesis that Ae. aegypti (the focal species, at a fixed density) suffers negative effects on development and survivorship across a gradient of increasing densities of Ae. albopictus (the associate species) in three seasons. The results showed statistically significant effects of both season and larval density on Ae. aegypti survivorship, and significant effects of season on development rate, with no significant season-density interactions. Densities of Aedes larvae in these habitats differed among seasons by a factor of up to 7x. Overall, Spring was the most favorable season for Ae. aegypti survivorship and development. Results showed that under natural conditions the negative competitive effects of Ae. albopictus on Ae. aegypti were expressed primarily as lower survivorship. Coexistence between Ae. aegypti and Ae. albopictus in vegetated areas is likely affected by seasonal environmental differences, such as detrital resource levels or egg desiccation, which can influence competition between these species. Interactions between these Aedes are important in Brazil, where both species are well established and widely distributed and vector dengue, Zika and chikungunya viruses. PMID:27322537

  6. Seasonal Differences in Density But Similar Competitive Impact of Aedes albopictus (Skuse) on Aedes aegypti (L.) in Rio de Janeiro, Brazil.

    PubMed

    Camara, Daniel Cardoso Portela; Codeço, Claudia Torres; Juliano, Steven A; Lounibos, L Philip; Riback, Thais Irene Souza; Pereira, Glaucio Rocha; Honorio, Nildimar Alves

    2016-01-01

    Previous studies have shown that the negative effects of density of Ae. albopictus on Ae. aegypti exceed those of Ae. aegypti on Ae. albopictus for population growth, adult size, survivorship, and developmental rate. This competitive superiority has been invoked to explain the displacement of Ae. aegypti by Ae. albopictus in the southeastern USA. In Brazil, these species coexist in many vegetated suburban and rural areas. We investigated a related, but less-well-studied question: do effects of Ae. albopictus on Ae. aegypti larval development and survival occur under field conditions at realistic densities across multiple seasons in Brazil? We conducted additive competition experiments in a vegetated area of Rio de Janeiro where these species coexist. We tested the hypothesis that Ae. aegypti (the focal species, at a fixed density) suffers negative effects on development and survivorship across a gradient of increasing densities of Ae. albopictus (the associate species) in three seasons. The results showed statistically significant effects of both season and larval density on Ae. aegypti survivorship, and significant effects of season on development rate, with no significant season-density interactions. Densities of Aedes larvae in these habitats differed among seasons by a factor of up to 7x. Overall, Spring was the most favorable season for Ae. aegypti survivorship and development. Results showed that under natural conditions the negative competitive effects of Ae. albopictus on Ae. aegypti were expressed primarily as lower survivorship. Coexistence between Ae. aegypti and Ae. albopictus in vegetated areas is likely affected by seasonal environmental differences, such as detrital resource levels or egg desiccation, which can influence competition between these species. Interactions between these Aedes are important in Brazil, where both species are well established and widely distributed and vector dengue, Zika and chikungunya viruses. PMID:27322537

  7. [Effect of lethal ovitrap on the longevity of females of Aedes aegypti (Diptera: Culicidae)].

    PubMed

    Gama, Renata Antonaci; Eiras, Alvaro Eduardo; Resende, Marcelo Carvalho de

    2007-01-01

    Oviposition traps with added insecticide may work as a new method for controlling the females of the Aedes aegypti mosquito. Females of Aedes aegypti were placed in contact with lethal ovitraps with aging. The mortality rate ranged from 60.3% to 100%. The effect of aging the slats impregnated with deltamethrin was significant in relation to the percentage mortality among Aedes aegypti females. PMID:18200416

  8. The Premise Condition Index: a tool for streamlining surveys of Aedes aegypti.

    PubMed

    Tun-Lin, W; Kay, B H; Barnes, A

    1995-12-01

    Premise inspections and treatment of the larval habitats of container-breeding Aedes aegypti are extremely labor intensive. Since this means of control is the only one available in relation to dengue fever, this report presents an effective approach for streamlining premise surveys in north Queensland, Australia. From a survey of 877 premises in Townsville, Charters Towers, and Mingela/Ravenswood in 1990, occupier and premise variables were collected to examine any relationships with the presence of Ae. aegypti. Statistical modeling of these parameters using multiple and simple Poisson regression indicated that for both adjusted and unadjusted models respectively, the degree of shade and tidiness of the yard had strong correlations with both the proportion of positive premises and the numbers of infested containers therein. Condition of the house was also a significant variable in the unadjusted model. On this basis, the Premise Condition Index is proposed as a rapid assessment tool that can increase efficiency of detecting positive premises and containers by 270-370%. Although habitat selection by Aedes varies throughout the world, this approach could be used as a model for control of vectors of both dengue and yellow fever.

  9. Arbovirus Surveillance and First Report of Chikungunya Virus in Wild Populations of Aedes aegypti from Guerrero, Mexico.

    PubMed

    Dzul-Manzanilla, Felipe; Martínez, Norma E; Cruz-Nolasco, Maximina; Gutiérrez-Castro, Cipriano; López-Damián, Leonardo; Ibarra-López, Jesús; Martini, Andres; Torres-Leyva, Joel; Bibiano-Marín, Wilbert; Tornez-Benitez, Citlalli; Ayora-Talavera, Guadalupe; Manrique-Saide, Pablo

    2015-09-01

    We carried out dengue (DENV) and chikungunya virus (CHIKV) surveillance in wild populations of Aedes aegypti from Guerrero, Mexico, from 2012 to 2014 following a standard national protocol of the Mexican Dengue Control Program. A total of 284 pools (15-30 specimens/pool) of female mosquitoes were tested with real-time reverse transcriptase-polymerase chain reaction to detect DENV and CHIKV. We report for the 1st time the detection of CHIKV from field-collected mosquitoes at Acapulco and Juchitán in 2014. Results from DENV are also reported.

  10. An eco-physiological model of the impact of temperature on Aedes aegypti life history traits.

    PubMed

    Padmanabha, Harish; Correa, Fabio; Legros, Mathieu; Nijhout, H Fredrick; Lord, Cynthia; Lounibos, L Philip

    2012-12-01

    Physiological processes mediate the impact of ecological conditions on the life histories of insect vectors. For the dengue/chikungunya mosquito, Aedes aegypti, three life history traits that are critical to urban population dynamics and control are: size, development rate and starvation mortality. In this paper we make use of prior laboratory experiments on each of these traits at 2°C intervals between 20 and 30°C, in conjunction with eco-evolutionary theory and studies on A.aegypti physiology, in order to develop a conceptual and mathematical framework that can predict their thermal sensitivity. Our model of reserve dependent growth (RDG), which considers a potential tradeoff between the accumulation of reserves and structural biomass, was able to robustly predict laboratory observations, providing a qualitative improvement over the approach most commonly used in other A.aegypti models. RDG predictions of reduced size at higher temperatures, but increased reserves relative to size, are supported by the available evidence in Aedes spp. We offer the potentially general hypothesis that temperature-size patterns in mosquitoes are driven by a net benefit of finishing the growing stage with proportionally greater reserves relative to structure at warmer temperatures. By relating basic energy flows to three fundamental life history traits, we provide a mechanistic framework for A.aegypti development to which ecological complexity can be added. Ultimately, this could provide a framework for developing and field testing hypotheses on how processes such as climate variation, density dependent regulation, human behavior or control strategies may influence A.aegypti population dynamics and disease risk.

  11. Germ band retraction as a landmark in glucose metabolism during Aedes aegypti embryogenesis

    PubMed Central

    2010-01-01

    Background The mosquito A. aegypti is vector of dengue and other viruses. New methods of vector control are needed and can be achieved by a better understanding of the life cycle of this insect. Embryogenesis is a part of A. aegypty life cycle that is poorly understood. In insects in general and in mosquitoes in particular energetic metabolism is well studied during oogenesis, when the oocyte exhibits fast growth, accumulating carbohydrates, lipids and proteins that will meet the regulatory and metabolic needs of the developing embryo. On the other hand, events related with energetic metabolism during A. aegypti embryogenesis are unknown. Results Glucose metabolism was investigated throughout Aedes aegypti (Diptera) embryonic development. Both cellular blastoderm formation (CBf, 5 h after egg laying - HAE) and germ band retraction (GBr, 24 HAE) may be considered landmarks regarding glucose 6-phosphate (G6P) destination. We observed high levels of glucose 6-phosphate dehydrogenase (G6PDH) activity at the very beginning of embryogenesis, which nevertheless decreased up to 5 HAE. This activity is correlated with the need for nucleotide precursors generated by the pentose phosphate pathway (PPP), of which G6PDH is the key enzyme. We suggest the synchronism of egg metabolism with carbohydrate distribution based on the decreasing levels of phosphoenolpyruvate carboxykinase (PEPCK) activity and on the elevation observed in protein content up to 24 HAE. Concomitantly, increasing levels of hexokinase (HK) and pyruvate kinase (PK) activity were observed, and PEPCK reached a peak around 48 HAE. Glycogen synthase kinase (GSK3) activity was also monitored and shown to be inversely correlated with glycogen distribution during embryogenesis. Conclusions The results herein support the hypothesis that glucose metabolic fate changes according to developmental embryonic stages. Germ band retraction is a moment that was characterized as a landmark in glucose metabolism during Aedes

  12. Why do female Aedes aegypti (Diptera: Culicidae) feed preferentially and frequently on human blood?

    PubMed

    Harrington, L C; Edman, J D; Scott, T W

    2001-05-01

    Adult female Aedes aegypti (L.), the vector of dengue and yellow fever viruses, have an affinity for feeding on human blood and a tendency to forego feeding on sugar. This observation challenges two tenets of mosquito biology: (1) mosquitoes imbibe plant carbohydrates for synthesis of energy reserves and blood for reproduction and (2) egg production is reduced when mosquitoes feed on human blood compared with blood from other species. Sub-optimal amounts of the amino acid isoleucine in human blood (particularly free isoleucine in plasma) are thought to be responsible for lowered egg production when human blood is ingested. We tested the hypothesis that feeding on human blood is associated with a selective advantage for Ae. aegypti and is an underlying reason for this mosquito's intimate and epidemiologically important relationship with human beings. Our five experiments examined the effects of different isoleucine concentrations on accumulated energy reserves, frequency of host contact, survival, and egg production. When mosquitoes imbibed blood meals over a 7- to 10-d period and were not fed sugar, increased isoleucine concentration decreased energy reserves and did not increase egg production. Aedes aegypti took smaller but more frequent blood meals when feeding on a low-isoleucine human host daily compared with a high-isoleucine mouse host. Previous reports that isoleucine enhances egg production were confirmed only when females were fed sugar, an unusual behavior for most domestic Ae. aegypti populations. Females fed human blood and water had greater age-specific survival (l(x)), reproductive output (m(x)), and cumulative net replacement (R0) than cohorts fed human blood plus sugar or isoleucine-rich mouse blood with or without access to sugar. The unique isoleucine concentration of human blood is associated with Ae. aegypti's unusual propensity to feed preferentially and frequently on humans--a behavior that increases this mosquito's fitness, synthesis of

  13. Phylogeography and spatio-temporal genetic variation of Aedes aegypti (Diptera: Culicidae) populations in the Florida Keys.

    PubMed

    Brown, Julia E; Obas, Vanessa; Morley, Valerie; Powell, Jeffrey R

    2013-03-01

    Aedes aegypti (L.) is the principal mosquito vector of dengue fever, the second-most deadly vector-borne disease in the world. In Ae. aegypti and other arthropod disease vectors, genetic markers can be used to inform us about processes relevant to disease spread, such as movement of the vectors across space and the temporal stability of vector populations. In late 2009, 27 locally acquired cases of dengue fever were reported in Key West, FL. The last dengue outbreak in the region occurred in 1934. In this study, we used 12 microsatellite loci to examine the genetic structure of 10 Ae. aegypti populations from throughout the Florida Keys and Miami to assess gene flow along the region's main roadway, the Overseas Highway. We also assessed temporal genetic stability of populations in Key West to determine whether the recent outbreak could have been the result of a new introduction of mosquitoes. Though a small amount of geographic genetic structure was detected, our results showed high overall genetic similarity among Ae. aegypti populations sampled in southeastern Florida. No temporal genetic signal was detected in Key West populations collected before and after the outbreak. Consequently, there is potential for dengue transmission across southeastern Florida; renewed mosquito control and surveillance measures should be taken.

  14. Oral toxicity of Photorhabdus luminescens and Xenorhabdus nematophila (Enterobacteriaceae) against Aedes aegypti (Diptera: Culicidae).

    PubMed

    da Silva, Onilda Santos; Prado, Geronimo Rodrigues; da Silva, João Luiz Rosa; Silva, Carlos Eugenio; da Costa, Marisa; Heermann, Ralf

    2013-08-01

    Dengue fever is an important vector-borne disease, mainly transmitted by Aedes aegypti. To date, there are no vaccines or effective drugs available against this arboviral disease. As mosquito control is practically the only method available to control dengue fever, alternative and cost-effective pest control strategies need to be explored. The gram-negative enteric bacteria Xenorhabdus and Photorhabdus are symbiotically associated with nematode parasites, which themselves are highly pathogenic for insect larvae. Here, we evaluate the oral toxicity of these entomopathogenic bacteria in A. aegypti larvae. The susceptibility of larvae (third late or fourth early instars) was assessed by exposing them to suspensions containing Photorhabdus luminescens or Xenorhabdus nematophila, respectively. Two diet treatments were tested with larvae fed on pet food and unfed larvae. After 24 h, larvae began to die when exposed to the bacteria. Exposure to P. luminescens killed 73% of the fed and 83% of the unfed larvae, respectively. In comparison, X. nematophila was less pathogenic, killing 52% of the larvae in the fed and 42% in the unfed treatment. Remarkably, cannibalism was observed in all bioassays after exposing larvae to either of the bacterial species. To our knowledge, this is the first report demonstrating the efficiency of these entomopathogenic bacteria for oral A. aegypti killing. Our results provide a promising basis for using these bacteria as bioinsecticides for mosquito control in the future.

  15. Spatial genetic structure of Aedes aegypti mosquitoes in mainland Southeast Asia.

    PubMed

    Hlaing, Thaung; Tun-Lin, Willoughby; Somboon, Pradya; Socheat, Duong; Setha, To; Min, Sein; Thaung, Sein; Anyaele, Okorie; De Silva, Babaranda; Chang, Moh Seng; Prakash, Anil; Linton, Yvonne; Walton, Catherine

    2010-07-01

    Aedes aegypti mosquitoes originated in Africa and are thought to have spread recently to Southeast Asia, where they are the major vector of dengue. Thirteen microsatellite loci were used to determine the genetic population structure of A. aegypti at a hierarchy of spatial scales encompassing 36 sites in Myanmar, Cambodia and Thailand, and two sites in Sri Lanka and Nigeria. Low, but significant, genetic structuring was found at all spatial scales (from 5 to >2000 km) and significant F IS values indicated genetic structuring even within 500 m. Spatially dependent genetic-clustering methods revealed that although spatial distance plays a role in shaping larger-scale population structure, it is not the only factor. Genetic heterogeneity in major port cities and genetic similarity of distant locations connected by major roads, suggest that human transportation routes have resulted in passive long-distance migration of A. aegypti. The restricted dispersal on a small spatial scale will make localized control efforts and sterile insect technology effective for dengue control. Conversely, preventing the establishment of insecticide resistance genes or spreading refractory genes in a genetic modification strategy would be challenging. These effects on vector control will depend on the relative strength of the opposing effects of passive dispersal. PMID:25567928

  16. Oral toxicity of Photorhabdus luminescens and Xenorhabdus nematophila (Enterobacteriaceae) against Aedes aegypti (Diptera: Culicidae).

    PubMed

    da Silva, Onilda Santos; Prado, Geronimo Rodrigues; da Silva, João Luiz Rosa; Silva, Carlos Eugenio; da Costa, Marisa; Heermann, Ralf

    2013-08-01

    Dengue fever is an important vector-borne disease, mainly transmitted by Aedes aegypti. To date, there are no vaccines or effective drugs available against this arboviral disease. As mosquito control is practically the only method available to control dengue fever, alternative and cost-effective pest control strategies need to be explored. The gram-negative enteric bacteria Xenorhabdus and Photorhabdus are symbiotically associated with nematode parasites, which themselves are highly pathogenic for insect larvae. Here, we evaluate the oral toxicity of these entomopathogenic bacteria in A. aegypti larvae. The susceptibility of larvae (third late or fourth early instars) was assessed by exposing them to suspensions containing Photorhabdus luminescens or Xenorhabdus nematophila, respectively. Two diet treatments were tested with larvae fed on pet food and unfed larvae. After 24 h, larvae began to die when exposed to the bacteria. Exposure to P. luminescens killed 73% of the fed and 83% of the unfed larvae, respectively. In comparison, X. nematophila was less pathogenic, killing 52% of the larvae in the fed and 42% in the unfed treatment. Remarkably, cannibalism was observed in all bioassays after exposing larvae to either of the bacterial species. To our knowledge, this is the first report demonstrating the efficiency of these entomopathogenic bacteria for oral A. aegypti killing. Our results provide a promising basis for using these bacteria as bioinsecticides for mosquito control in the future. PMID:23728731

  17. Oral Susceptibility of Singapore Aedes (Stegomyia) aegypti (Linnaeus) to Zika Virus

    PubMed Central

    Ng, Lee Ching; Tan, Cheong Huat

    2012-01-01

    Background Zika virus (ZIKV) is a little known flavivirus that caused a major outbreak in 2007, in the South-western Pacific Island of Yap. It causes dengue-like syndromes but with milder symptoms. In Africa, where it was first isolated, ZIKV is mainly transmitted by sylvatic Aedes mosquitoes. The virus has also been isolated from Ae. aegypti and it is considered to be the vector involved in the urban transmission of the virus. Transmission of the virus by an African strain of Ae. aegypti has also been demonstrated under laboratory conditions. The aim of the present study is to describe the oral susceptibility of a Singapore strain of Ae. aegypti to ZIKV, under conditions that simulate local climate. Methodology/Principal Findings To assess the receptivity of Singapore's Ae. aegypti to the virus, we orally exposed a local mosquito strain to a Ugandan strain of ZIKV. Upon exposure, fully engorged mosquitoes were maintained in an environmental chamber set at 29°C and 70–75% RH. Eight mosquitoes were then sampled daily from day 1 to day 7, and subsequently on days 10 and 14 post exposure (pe). The virus titer of the midgut and salivary glands of each mosquito were determined using a tissue culture infectious dose50 (TCID50) assay. High midgut infection and salivary gland dissemination rates were observed. By day 5 after the infectious blood meal, ZIKV was found in the salivary glands of more than half of the mosquitoes tested (62%); and by day 10, all mosquitoes were potentially infective. Conclusions/Significance This study showed that Singapore's urban Ae. aegypti are susceptible and are potentially capable of transmitting ZIKV. The virus could be established in Singapore should it be introduced. Nevertheless, Singapore's current dengue control strategy is applicable to control ZIKV. PMID:22953014

  18. Food as a limiting factor for Aedes aegypti in water-storage containers.

    PubMed

    Arrivillaga, Jazzmin; Barrera, Roberto

    2004-06-01

    An understanding of the ecological factors that regulate natural populations of Aedes aegypti mosquitoes can improve control and reduce the incidence of dengue (DF) and dengue hemorrhagic fever (DHF) in tropical areas. We investigated whether immature Ae. aegypti in water-storage containers from an urban area were under food limitation. We used starvation resistance (number of days alive without food) as an indicator of the feeding history in third-instar Ae. aegypti larvae. Resistance to starvation and other measures of immature success, such as development time, survival, and adult mass, were investigated across a wide range of feeding conditions in the laboratory. Resistance to starvation of third-instar larvae and body mass of adults emerging from pupae collected in water-storage containers in an urban area were compared with the laboratory results. If resistance to starvation and adult mass of field-collected Ae. aegypti corresponded with the lower levels of feeding in the laboratory, then food limitation could be inferred in field-collected larvae. Results showed that resistance to starvation was well correlated with previous feeding levels and with the other measures of immature success. Both resistance to starvation and adult body mass of field-collected specimens corresponded with the lower levels of feeding in the laboratory. Therefore, it was concluded that food limitation or competition is likely to be a regulatory factor in water-storage containers in the urban area. It is recommended that any control measure applied to immature Ae. aegypti in water-storage containers should eliminate all or most of the individuals, otherwise unintended, undesirable results might occur, such as the production of more and larger adults.

  19. EFFICACY OF THAI NEEM OIL AGAINST AEDES AEGYPTI (L.) LARVAE.

    PubMed

    Silapanuntakul, Suthep; Keanjoom, Romnalin; Pandii, Wongdyan; Boonchuen, Supawadee; Sombatsiri, Kwanchai

    2016-05-01

    Trees with larvicidal activity may be found in Thailand. We conducted this study to evaluate the efficacy and length of efficacy of Thai neem (Azadirachta siamensis) oil emulsion and an alginate bead of Thai neem oil formulation against early fourth stage Aedes aegypti larvae using a dipping test. The Thai neem oil emulsion had significantly greater larvicidal activity than the alginate bead formulation at 12 to 60 hours post-exposure (p < 0.01). The Thai neem oil formulation resulted in 100% mortality among the early fourth stage Aedes aegypti larvae at 48 hours, while the alginate bead formulation resulted in 98% larval mortality at 84 hours and 100% mortality at 96 hours. The mean larval mortality using the Thai neem oil emulsion dropped to < 25% by 12 days and with the alginate beads dropped to < 25% by 15 days of exposure.

  20. EFFICACY OF THAI NEEM OIL AGAINST AEDES AEGYPTI (L.) LARVAE.

    PubMed

    Silapanuntakul, Suthep; Keanjoom, Romnalin; Pandii, Wongdyan; Boonchuen, Supawadee; Sombatsiri, Kwanchai

    2016-05-01

    Trees with larvicidal activity may be found in Thailand. We conducted this study to evaluate the efficacy and length of efficacy of Thai neem (Azadirachta siamensis) oil emulsion and an alginate bead of Thai neem oil formulation against early fourth stage Aedes aegypti larvae using a dipping test. The Thai neem oil emulsion had significantly greater larvicidal activity than the alginate bead formulation at 12 to 60 hours post-exposure (p < 0.01). The Thai neem oil formulation resulted in 100% mortality among the early fourth stage Aedes aegypti larvae at 48 hours, while the alginate bead formulation resulted in 98% larval mortality at 84 hours and 100% mortality at 96 hours. The mean larval mortality using the Thai neem oil emulsion dropped to < 25% by 12 days and with the alginate beads dropped to < 25% by 15 days of exposure. PMID:27405123

  1. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus

    PubMed Central

    Kraemer, Moritz UG; Sinka, Marianne E; Duda, Kirsten A; Mylne, Adrian QN; Shearer, Freya M; Barker, Christopher M; Moore, Chester G; Carvalho, Roberta G; Coelho, Giovanini E; Van Bortel, Wim; Hendrickx, Guy; Schaffner, Francis; Elyazar, Iqbal RF; Teng, Hwa-Jen; Brady, Oliver J; Messina, Jane P; Pigott, David M; Scott, Thomas W; Smith, David L; Wint, GR William; Golding, Nick; Hay, Simon I

    2015-01-01

    Dengue and chikungunya are increasing global public health concerns due to their rapid geographical spread and increasing disease burden. Knowledge of the contemporary distribution of their shared vectors, Aedes aegypti and Aedes albopictus remains incomplete and is complicated by an ongoing range expansion fuelled by increased global trade and travel. Mapping the global distribution of these vectors and the geographical determinants of their ranges is essential for public health planning. Here we compile the largest contemporary database for both species and pair it with relevant environmental variables predicting their global distribution. We show Aedes distributions to be the widest ever recorded; now extensive in all continents, including North America and Europe. These maps will help define the spatial limits of current autochthonous transmission of dengue and chikungunya viruses. It is only with this kind of rigorous entomological baseline that we can hope to project future health impacts of these viruses. DOI: http://dx.doi.org/10.7554/eLife.08347.001 PMID:26126267

  2. [Ecology of Aedes aegypti and Aedes albopictus in the Americas and disease transmission].

    PubMed

    Rey, Jorge R; Lounibos, Philip

    2015-01-01

    The recent range expansion of the mosquito Aedes albopictus has been associated in some areas by declines in abundance or local elimination of Aedes aegypti, but the two species still coexist in large regions of the Americas. We offer a summary of the possible mechanisms responsible for the abundance and displacement pattern observed and of their significance in terms of disease transmission. Among these mechanisms we may mention the competition for limiting resources, the differences in the ability to withstand starvation, the apparent competition through differential effects of the parasite Ascogregarina taiwanensis, and the inhibition of Ae. aegypti egg development by Ae. albopictus larvae. Habitat segregation has been proposed as a mechanism promoting the coexistence of the two species through avoidance of direct competition. Aedes aegypti predominates in urban areas, Ae. albopictus in rural ones, and both species coexist in the suburbs. There is also evidence that in certain areas, habitat segregation in terms of distance from the coast can influence the distribution of both species. Another possible cause of the rapid disappearance of Ae. aegypti is reproductive interference between the species. According to this hypothesis, asymmetric effects of interspecific mating favor Ae. albopictus. This type of reproductive interference can result in the elimination of sympatric populations of the affected species and can be one of the major causes for the swiftness with which Ae. aegypti disappeared from some places in the Americas following invasions by Ae. albopictus.

  3. Genome engineering with CRISPR-Cas9 in the mosquito Aedes aegypti.

    PubMed

    Kistler, Kathryn E; Vosshall, Leslie B; Matthews, Benjamin J

    2015-04-01

    The mosquito Aedes aegypti is a potent vector of the chikungunya, yellow fever, and dengue viruses, responsible for hundreds of millions of infections and over 50,000 human deaths per year. Mutagenesis in Ae. aegypti has been established with TALENs, ZFNs, and homing endonucleases, which require the engineering of DNA-binding protein domains to provide genomic target sequence specificity. Here, we describe the use of the CRISPR-Cas9 system to generate site-specific mutations in Ae. aegypti. This system relies on RNA-DNA base-pairing to generate targeting specificity, resulting in efficient and flexible genome-editing reagents. We investigate the efficiency of injection mix compositions, demonstrate the ability of CRISPR-Cas9 to generate different types of mutations via disparate repair mechanisms, and report stable germline mutations in several genomic loci. This work offers a detailed exploration into the use of CRISPR-Cas9 in Ae. aegypti that should be applicable to non-model organisms previously out of reach of genetic modification. PMID:25818303

  4. Lethal ovitrap deployment for Aedes aegypti control: potential implications for non-target organisms.

    PubMed

    Long, Sharron A; Jacups, Susan P; Ritchie, Scott A

    2015-06-01

    In Australia, dengue control combines source reduction with lethal ovitraps to reduce Aedes aegypti populations during outbreaks. Lethal ovitraps are considered a sustainable and environmentally friendly method of controlling container-inhabiting mosquitoes, however, to-date, this claim has not been quantified. This study assesses the potential impact of lethal ovitraps on non-target organisms when used to control Ae. aegypti in tropical Australia. For retention of specimens, we substituted standard sticky ovitraps for lethal ovitraps. We collected 988 Ae. aegypti and 44,132 non-target specimens over 13 months from 16 sites. Although Ae. aegypti comprised only 2.2% of the total collection, they were were the eighth most dominant taxa collected, on the 93(rd) percentile. Of the non-target organisms, Collembola were the dominant taxa, 44.2%, with 36.8% and 10.5% Diptera and Hymenoptera, respectively. Of the Dipterans, 61% were family Phoridae. Lethal ovitraps were visited by 90 insect or invertebrate families in total. Ovitraps are attractive to Collembola, Phoridae, Sciaridae, Formicidae, and Culicidae, with minimal attraction by Apidae and other commonly monitored non-target organisms. For container-inhabiting mosquitoes, LOs are cost effective operationally, requiring minimal staff resources for placement and retrieval. PMID:26047194

  5. Genetics and morphology of Aedes aegypti (Diptera: Culicidae) in septic tanks in Puerto Rico.

    PubMed

    Somers, Gerard; Brown, Julia E; Barrera, Roberto; Powell, Jeffrey R

    2011-11-01

    Dengue viruses, primarily transmitted by the mosquito Aedes aegypti (L.), affect an estimated 50-100 million people yearly. Traditional approaches to control mosquito population numbers, such as the use of pesticides, have had only limited success. Atypical mosquito behavior may be one reason why current vector control efforts have been less efficacious than expected. In Puerto Rico, for example, adult Ae. aegypti have been observed emerging from septic tanks. Interestingly, adults emerging from septic tanks are larger on average than adults collected from surface containers. To determine whether adults colonizing septic tanks constitute a separate Ae. aegypti population, we used 12 previously validated microsatellite loci to examine adult mosquitoes collected from both septic tanks and surface containers, but found no evidence to suggest genetic differentiation. Size differences between septic tank and surface mosquitoes were reduced when nutrient levels were held constant across experimental groups. Despite the absence of evidence suggesting a genetic difference between experimental groups in this study, Ae. aegypti emerging from septic tanks may still represent a more dangerous phenotype and should be given special consideration when developing vector control programs and designing public health interventions in the future. PMID:22238867

  6. Behavioral Response of Aedes aegypti Mosquito towards Essential Oils Using Olfactometer

    PubMed Central

    Uniyal, Ashish; Tikar, Sachin N; Mendki, Murlidhar J; Singh, Ram; Shukla, Shakti V; Agrawal, Om P; Veer, Vijay; Sukumaran, Devanathan

    2016-01-01

    Background: Aedes aegypti mosquito is responsible for transmitting human diseases like dengue and chikungunya. Personal or space protection with insect repellents is a practical approach to reducing human mosquito contact, thereby minimizing disease transmission. Essential oils are natural volatile substances from plants used as protective measure against blood-sucking mosquitoes. Methods: Twenty-three essential oils were evaluated for their repellent effect against Ae. aegypti female mosquito in laboratory conditions using Y-tube olfactometer. Results: The essential oils exhibited varying degree of repellency. Litsea oil showed 50.31%, 60.2 %, and 77.26% effective mean repellency at 1 ppm, 10 ppm and 100 ppm respectively, while DEET exhibited 59.63%, 68.63%, 85.48% and DEPA showed 57.97%, 65.43%, and 80.62% repellency at respective above concentrations. Statistical analysis revealed that among the tested essential oils, litsea oil had effective repellency in comparison with DEET and DEPA against Ae. aegypti mosquito at all concentration. Essential oils, DEET and DEPA showed significant repellence against Ae. aegypti (P< 0.05) at all 3 concentration tested. Conclusion: Litsea oil exhibited effective percentage repellency similar to DEET and DEPA. The essential oils are natural plant products that may be useful for developing safer and newer herbal based effective mosquito repellents. PMID:27308295

  7. Larvicidal activity of some Euphorbiaceae plant extracts against Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae).

    PubMed

    Rahuman, A Abdul; Gopalakrishnan, Geetha; Venkatesan, P; Geetha, Kannappan

    2008-04-01

    Larvicidal activity of ethyl acetate, butanol, and petroleum ether extracts of five species of Euphorbiaceae plants, Jatropha curcas, Pedilanthus tithymaloides, Phyllanthus amarus, Euphorbia hirta, and Euphorbia tirucalli, were tested against the early fourth instar larvae of Aedes aegypti L. and Culex quinquefasciatus (Say). The larval mortality was observed after 24 h of exposure. All extracts showed low larvicidal effects; however, the highest larval mortality was found in petroleum ether extract. The LC50 value of petroleum ether extracts of J. curcas, P. tithymaloides, P. amarus, E. hirta, and E. tirucalli were 8.79, 55.26, 90.92, 272.36, and 4.25 ppm, respectively, against A. aegypti and 11.34, 76.61, 113.40, 424.94, and 5.52 ppm, respectively, against C quinquefasciatus. Of the various ratios tested, the petroleum ether extracts of J. curcas and E. tirucalli were observed to be more efficient than the other plant extracts. It is, therefore, suggested that E. tirucalli can be applied as an ideal potential larvicide against A. aegypti and C. quinquefasciatus. This is an ideal ecofriendly approach for the control of the dengue vector, A. aegypti, and the lymphatic filariasis vector, C. quinquefasciatus.

  8. Lethal ovitrap deployment for Aedes aegypti control: potential implications for non-target organisms.

    PubMed

    Long, Sharron A; Jacups, Susan P; Ritchie, Scott A

    2015-06-01

    In Australia, dengue control combines source reduction with lethal ovitraps to reduce Aedes aegypti populations during outbreaks. Lethal ovitraps are considered a sustainable and environmentally friendly method of controlling container-inhabiting mosquitoes, however, to-date, this claim has not been quantified. This study assesses the potential impact of lethal ovitraps on non-target organisms when used to control Ae. aegypti in tropical Australia. For retention of specimens, we substituted standard sticky ovitraps for lethal ovitraps. We collected 988 Ae. aegypti and 44,132 non-target specimens over 13 months from 16 sites. Although Ae. aegypti comprised only 2.2% of the total collection, they were were the eighth most dominant taxa collected, on the 93(rd) percentile. Of the non-target organisms, Collembola were the dominant taxa, 44.2%, with 36.8% and 10.5% Diptera and Hymenoptera, respectively. Of the Dipterans, 61% were family Phoridae. Lethal ovitraps were visited by 90 insect or invertebrate families in total. Ovitraps are attractive to Collembola, Phoridae, Sciaridae, Formicidae, and Culicidae, with minimal attraction by Apidae and other commonly monitored non-target organisms. For container-inhabiting mosquitoes, LOs are cost effective operationally, requiring minimal staff resources for placement and retrieval.

  9. Isolation, primary culture and morphological characterization of oenocytes from Aedes aegypti pupae.

    PubMed

    Martins, G F; Guedes, B A M; Silva, L M; Serrão, J E; Fortes-Dias, C L; Ramalho-Ortigão, J M; Pimenta, P F P

    2011-04-01

    Oenocytes are ectodermic cells that participate in a number of critical physiological roles such as detoxification and lipid storage and metabolism in insects. In light of the lack of information on oenocytes from Aedes aegypti and the potential role of these cells in the biology of this major yellow fever and dengue vector, we developed a protocol to purify and maintain Ae. aegypti pupa oenocytes in primary culture. Ae. aegypti oenocytes were cultured as clustered and as isolated ovoid cells with a smooth surface. Our results demonstrate that these cells remain viable in cell culture for at least two months. We also investigated their morphology in vivo and in vitro using light, confocal, scanning and transmission electron microscopes. This work is the first successful attempt in isolating and maintaining Ae. aegypti oenocytes in culture, and a significant step towards understanding the role of this cell type in this important disease vector. The purification and the development of primary cultures of insect oenocytes will allow future studies of their metabolism in producing and secreting compounds.

  10. Genetics and morphology of Aedes aegypti (Diptera: Culicidae) in septic tanks in Puerto Rico.

    PubMed

    Somers, Gerard; Brown, Julia E; Barrera, Roberto; Powell, Jeffrey R

    2011-11-01

    Dengue viruses, primarily transmitted by the mosquito Aedes aegypti (L.), affect an estimated 50-100 million people yearly. Traditional approaches to control mosquito population numbers, such as the use of pesticides, have had only limited success. Atypical mosquito behavior may be one reason why current vector control efforts have been less efficacious than expected. In Puerto Rico, for example, adult Ae. aegypti have been observed emerging from septic tanks. Interestingly, adults emerging from septic tanks are larger on average than adults collected from surface containers. To determine whether adults colonizing septic tanks constitute a separate Ae. aegypti population, we used 12 previously validated microsatellite loci to examine adult mosquitoes collected from both septic tanks and surface containers, but found no evidence to suggest genetic differentiation. Size differences between septic tank and surface mosquitoes were reduced when nutrient levels were held constant across experimental groups. Despite the absence of evidence suggesting a genetic difference between experimental groups in this study, Ae. aegypti emerging from septic tanks may still represent a more dangerous phenotype and should be given special consideration when developing vector control programs and designing public health interventions in the future.

  11. Similarity solutions for systems arising from an Aedes aegypti model

    NASA Astrophysics Data System (ADS)

    Freire, Igor Leite; Torrisi, Mariano

    2014-04-01

    In a recent paper a new model for the Aedes aegypti mosquito dispersal dynamics was proposed and its Lie point symmetries were investigated. According to the carried group classification, the maximal symmetry Lie algebra of the nonlinear cases is reached whenever the advection term vanishes. In this work we analyze the family of systems obtained when the wind effects on the proposed model are neglected. Wide new classes of solutions to the systems under consideration are obtained.

  12. Investigating the Potential Range Expansion of the Vector Mosquito Aedes Aegypti in Mexico with NASA Earth Science Remote Sensing Results

    NASA Technical Reports Server (NTRS)

    Crosson, W. L.; Estes, M. G.; Estes, S. M.; Hayden, M.; Monaghan, A. J.; Eisen, L.; Lozano-Fuentes, S.; Ochoa, C.; Tapia, B.; Welsh-Rodriquez, C. M.; Quattrochi, D.; MorenoMadrinan, M. J.

    2012-01-01

    In tropical and sub ]tropical regions, the mosquito Aedes aegypti is the major vector for the virus causing dengue, a serious public health issue in these areas. Through ongoing NSF- and NASA-funded studies, field surveys of Aedes aegypti and an integrated modeling approach are being used to improve our understanding of the potential range of the mosquito to expand toward heavily populated high elevation areas such as Mexico City under various climate change and socio ]economic scenarios. This work serves three primary objectives: (1) Employ NASA remotely-sensed data to supplement the environmental monitoring and modeling component of the project. These data-- for example, surface temperature, precipitation, vegetation indices, soil moisture and elevation-- are critical for understanding the habitat necessary for mosquito survival and abundance; (2) Implement training sessions to instruct scientists and students from Mexico and the U.S. on how to use remote sensing and implement the NASA SERVIR Regional Visualization and Monitoring System; (3) Employ the SERVIR framework to optimize the dissemination of key project results in order to increase their societal relevance and benefits in developing climate adaptation strategies. Field surveys of larval, pupal and adult Aedes aegypti, as well as detailed physical and social household characteristics, were conducted in the summers of 2011and 2012 at geographic scales from the household to the community along a transect from sea level to 2400 m ASL. These data are being used in models to estimate Aedes aegypti habitat suitability. In 2011, Aedes aegypti were identified at an elevation of over 2150 m in Puebla, the highest elevation at which this species has been observed.

  13. Investigating the Potential Range Expansion of the Vector Mosquito Aedes aegypti in Mexico with NASA Earth Science Remote Sensing Results

    NASA Astrophysics Data System (ADS)

    Crosson, W. L.; Eisen, L.; Estes, M. G.; Estes, S. M.; Hayden, M.; Lozano-Fuentes, S.; Monaghan, A. J.; Moreno Madriñán, M. J.; Ochoa, C.; Quattrochi, D.; Tapia, B.; Welsh-Rodriguez, C. M.

    2012-12-01

    In tropical and sub-tropical regions, the mosquito Aedes aegypti is the major vector for the virus causing dengue, a serious public health issue in these areas. Through ongoing NSF- and NASA-funded studies, field surveys of Aedes aegypti and an integrated modeling approach are being used to improve our understanding of the potential range of the mosquito to expand toward heavily populated high elevation areas such as Mexico City under various climate change and socio-economic scenarios. This work serves three primary objectives: (1) Employ NASA remotely-sensed data to supplement the environmental monitoring and modeling component of the project. These data -- for example, surface temperature, precipitation, vegetation indices, soil moisture and elevation -- are critical for understanding the habitat necessary for mosquito survival and abundance; (2) Implement training sessions to instruct scientists and students from Mexico and the U.S. on how to use remote sensing and implement the NASA SERVIR Regional Visualization and Monitoring System; (3) Employ the SERVIR framework to optimize the dissemination of key project results in order to increase their societal relevance and benefits in developing climate adaptation strategies. Field surveys of larval, pupal and adult Aedes aegypti, as well as detailed physical and social household characteristics, were conducted in the summers of 2011and 2012 at geographic scales from the household to the community along a transect from sea level to 2400 m ASL. These data are being used in models to estimate Aedes aegypti habitat suitability. In 2011, Aedes aegypti were identified at an elevation of over 2150 m in Puebla, the highest elevation at which this species has been observed.

  14. Integrated proteomic and transcriptomic analysis of the Aedes aegypti eggshell

    PubMed Central

    2014-01-01

    Background Mosquito eggshells show remarkable diversity in physical properties and structure consistent with adaptations to the wide variety of environments exploited by these insects. We applied proteomic, transcriptomic, and hybridization in situ techniques to identify gene products and pathways that participate in the assembly of the Aedes aegypti eggshell. Aedes aegypti population density is low during cold and dry seasons and increases immediately after rainfall. The survival of embryos through unfavorable periods is a key factor in the persistence of their populations. The work described here supports integrated vector control approaches that target eggshell formation and result in Ae. aegypti drought-intolerant phenotypes for public health initiatives directed to reduce mosquito-borne diseases. Results A total of 130 proteins were identified from the combined mass spectrometric analyses of eggshell preparations. Conclusions Classification of proteins according to their known and putative functions revealed the complexity of the eggshell structure. Three novel Ae. aegypti vitelline membrane proteins were discovered. Odorant-binding and cysteine-rich proteins that may be structural components of the eggshell were identified. Enzymes with peroxidase, laccase and phenoloxidase activities also were identified, and their likely involvements in cross-linking reactions that stabilize the eggshell structure are discussed. PMID:24707823

  15. Contact Irritant Responses of Aedes aegypti Using Sublethal Concentration and Focal Application of Pyrethroid Chemicals

    PubMed Central

    Manda, Hortance; Shah, Pankhil; Polsomboon, Suppaluck; Chareonviriyaphap, Theeraphap; Castro-Llanos, Fanny; Morrison, Amy; Burrus, Roxanne G.; Grieco, John P.; Achee, Nicole L.

    2013-01-01

    Background Previous studies have demonstrated contact irritant and spatial repellent behaviors in Aedes aegypti following exposure to sublethal concentrations of chemicals. These sublethal actions are currently being evaluated in the development of a push-pull strategy for Ae. aegypti control. This study reports on mosquito escape responses after exposure to candidate chemicals for a contact irritant focused push-pull strategy using varying concentrations and focal application. Methods Contact irritancy (escape) behavior, knockdown and 24 hour mortality rates were quantified in populations of female Ae. aegypti under laboratory conditions and validated in the field (Thailand and Peru) using experimental huts. Evaluations were conducted using varying concentrations and treatment surface area coverage (SAC) of three pyrethroid insecticides: alphacypermethrin, lambacyhalothrin and deltamethrin. Results Under laboratory conditions, exposure of Ae. aegypti to alphacypermethrin using the standard field application rate (FAR) resulted in escape responses at 25% and 50% SAC that were comparable with escape responses at 100% SAC. Significant escape responses were also observed at <100% SAC using ½FAR of all test compounds. In most trials, KD and 24 hour mortality rates were higher in mosquitoes that did not escape than in those that escaped. In Thailand, field validation studies indicated an early time of exit (by four hours) and 40% increase in escape using ½FAR of alphacypermethrin at 75% SAC compared to a matched chemical-free control. In Peru, however, the maximum increase in Ae. aegypti escape from alphacypermethrin-treated huts was 11%. Conclusions/Significance Results presented here suggest a potential role for sublethal and focal application of contact irritant chemicals in an Ae. aegypti push-pull strategy to reduce human–vector contact inside treated homes. However, the impact of an increase in escape response on dengue virus transmission is currently unknown

  16. Imidacloprid impairs the post-embryonic development of the midgut in the yellow fever mosquito Stegomyia aegypti (=Aedes aegypti).

    PubMed

    Fernandes, K M; Gonzaga, W G; Pascini, T V; Miranda, F R; Tomé, H V V; Serrão, J E; Martins, G F

    2015-09-01

    The mosquito Stegomyia aegypti (=Aedes aegypti) (Diptera: Culicidae) is a vector for the dengue and yellow fever viruses. As blood digestion occurs in the midgut, this organ constitutes the route of entry of many pathogens. The effects of the insecticide imidacloprid on the survival of St. aegypti were investigated and the sub-lethal effects of the insecticide on midgut development were determined. Third instar larvae were exposed to different concentrations of imidacloprid (0.15, 1.5, 3.0, 6.0 and 15.0 p.p.m.) and survival was monitored every 24 h for 10 days. Midguts from imidacloprid-treated insects at different stages of development were dissected and processed for analyses by transmission electron microscopy, immunofluorescence microscopy and terminal deoxynucleotidyl transferase dUTP nick-end labelling (TUNEL) assays. Imidacloprid concentrations of 3.0 and 15.0 p.p.m. were found to affect midgut development similarly. Digestive cells of the fourth instar larvae (L4) midgut exposed to imidacloprid had more multilamellar bodies, abundantly found in the cell apex, and more electron-lucent vacuoles in the basal region compared with those from untreated insects. Moreover, imidacloprid interfered with the differentiation of regenerative cells, dramatically reducing the number of digestive and endocrine cells and leading to malformation of the midgut epithelium in adults. The data demonstrate that imidacloprid can reduce the survival of mosquitoes and thus indicate its potentially high efficacy in the control of St. aegypti populations.

  17. Neuropeptidomics of the mosquito Aedes aegypti

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Neuropeptidomic data were collected on the mosquito Ae. aegypti which is considered the most tractable mosquito species for physiological and endocrine studies. The data were solely obtained by direct mass spectrometric profiling, including tandem fragmentation, of selected tissues from single speci...

  18. Temporal distribution of Aedes aegypti in different districts of Rio de Janeiro, Brazil, measured by two types of traps.

    PubMed

    Honório, N A; Codeço, C T; Alves, F C; Magalhães, M A F M; Lourenço-De-Oliveira, R

    2009-09-01

    Dengue dynamics in Rio de Janeiro, Brazil, as in many dengue-endemic regions of the world, is seasonal, with peaks during the wet-hot months. This temporal pattern is generally attributed to the dynamics of its mosquito vector Aedes aegypti (L.). The objectives of this study were to characterize the temporal pattern of Ae. aegypti population dynamics in three neighborhoods of Rio de Janeiro and its association with local meteorological variables; and to compare positivity and density indices obtained with ovitraps and MosquiTraps. The three neighborhoods are distinct in vegetation coverage, sanitation, water supply, and urbanization. Mosquito sampling was carried out weekly, from September 2006 to March 2008, a period during which large dengue epidemics occurred in the city. Our results show peaks of oviposition in early summer 2007 and late summer 2008, detected by both traps. The ovitrap provided a more sensitive index than MosquiTrap. The MosquiTrap detection threshold showed high variation among areas, corresponding to a mean egg density of approximately 25-52 eggs per ovitrap. Both temperature and rainfall were significantly related to Ae. aegypti indices at a short (1 wk) time lag. Our results suggest that mean weekly temperature above 22-24 degrees C is strongly associated with high Ae. aegypti abundance and consequently with an increased risk of dengue transmission. Understanding the effects of meteorological variables on Ae. aegypti population dynamics will help to target control measures at the times when vector populations are greatest, contributing to the development of climate-based control and surveillance measures for dengue fever in a hyperendemic area. PMID:19769029

  19. Dual African Origins of Global Aedes aegypti s.l. Populations Revealed by Mitochondrial DNA

    PubMed Central

    Moore, Michelle; Sylla, Massamba; Goss, Laura; Burugu, Marion Warigia; Sang, Rosemary; Kamau, Luna W.; Kenya, Eucharia Unoma; Bosio, Chris; Munoz, Maria de Lourdes; Sharakova, Maria; Black, William Cormack

    2013-01-01

    Background Aedes aegypti is the primary global vector to humans of yellow fever and dengue flaviviruses. Over the past 50 years, many population genetic studies have documented large genetic differences among global populations of this species. These studies initially used morphological polymorphisms, followed later by allozymes, and most recently various molecular genetic markers including microsatellites and mitochondrial markers. In particular, since 2000, fourteen publications and four unpublished datasets have used sequence data from the NADH dehydrogenase subunit 4 mitochondrial gene to compare Ae. aegypti collections and collectively 95 unique mtDNA haplotypes have been found. Phylogenetic analyses in these many studies consistently resolved two clades but no comprehensive study of mtDNA haplotypes have been made in Africa, the continent in which the species originated. Methods and Findings ND4 haplotypes were sequenced in 426 Ae. aegypti s.l. from Senegal, West Africa and Kenya, East Africa. In Senegal 15 and in Kenya 7 new haplotypes were discovered. When added to the 95 published haplotypes and including 6 African Aedes species as outgroups, phylogenetic analyses showed that all but one Senegal haplotype occurred in a basal clade while most East African haplotypes occurred in a second clade arising from the basal clade. Globally distributed haplotypes occurred in both clades demonstrating that populations outside Africa consist of mixtures of mosquitoes from both clades. Conclusions Populations of Ae. aegypti outside Africa consist of mosquitoes arising from one of two ancestral clades. One clade is basal and primarily associated with West Africa while the second arises from the first and contains primarily mosquitoes from East Africa PMID:23638196

  20. [Detection of Aedes (Stegomyia) Aegypti L. mosquitoes in Sochi city].

    PubMed

    Riabova, T E; Iunicheva, Iu V; Markovich, N Ia; Ganushkina, L A; Orabeĭ, V G; Sergiev, V P

    2005-01-01

    Few Aedes aegypti females were found when collecting the mosquitoes attacking human beings in the Central District of Sochi in August to September 2001-2004. Ae. aegypti, a vector of dangerous causative agents of diseases, such as yellow and Aden fevers, appeared on the Black Sea coast of the Caucasus is recorded after its long absence. By taking into account the potential epidemic value of Ae. aegypti, it is necessary to make a monitoring in the cities, towns, and settlements to establish the spread, number, and the breading sites of mosquitoes in the given area and to prevent their mass reproduction. The effectiveness of Ae. albopictus as a vector of Aden fever has been established in different regions of the world. Entomological surveys for Ae. albopictus should be made in the areas of Russia where Ae. aegypti mosquitoes were distributed early in the past century, particularly in the southern port towns and settlements of Russia. Ae. albopictus is potentially able to spread to the north further than is Ae. aegypti.

  1. Aedes (Stegomyia) aegypti in the continental United States: a vector at the cool margin of its geographic range.

    PubMed

    Eisen, Lars; Moore, Chester G

    2013-05-01

    After more than a half century without recognized local dengue outbreaks in the continental United States, there were recent outbreaks of autochthonous dengue in the southern parts of Texas (2004-2005) and Florida (2009-2011). This dengue reemergence has provoked interest in the extent of the future threat posed by the yellow fever mosquito, Aedes (Stegomyia) aegypti (L.), the primary vector of dengue and yellow fever viruses in urban settings, to human health in the continental United States. Ae. aegypti is an intriguing example of a vector species that not only occurs in the southernmost portions of the eastern United States today but also is incriminated as the likely primary vector in historical outbreaks of yellow fever as far north as New York, Philadelphia, and Boston, from the 1690s to the 1820s. For vector species with geographic ranges limited, in part, by low temperature and cool range margins occurring in the southern part of the continental United States, as is currently the case for Ae. aegypti, it is tempting to speculate that climate warming may result in a northward range expansion (similar to that seen for Ixodes tick vectors of Lyme borreliosis spirochetes in Scandinavia and southern Canada in recent decades). Although there is no doubt that climate conditions directly impact many aspects of the life history of Ae. aegypti, this mosquito also is closely linked to the human environment and directly influenced by the availability of water-holding containers for oviposition and larval development. Competition with other container-inhabiting mosquito species, particularly Aedes (Stegomyia) albopictus (Skuse), also may impact the presence and local abundance of Ae. aegypti. Field-based studies that focus solely on the impact of weather or climate factors on the presence and abundance of Ae. aegypti, including assessments of the potential impact of climate warming on the mosquito's future range and abundance, do not consider the potential confounding

  2. Larvicidal activity against Aedes aegypti of Foeniculum vulgare essential oils from Portugal and Cape Verde.

    PubMed

    Rocha, Diara Kady; Matosc, Olivia; Novoa, Maria Teresa; Figueiredo, Ana Cristina; Delgado, Manuel; Moiteiro, Cristina

    2015-04-01

    Dengue is a potentially fatal mosquito-borne infection with 50 million cases per year and 2.5 billion people vulnerable to the disease. This major public health problem has recurrent epidemics in Latin America and occurred recently in Cape Verde and Madeira Island. The lack of anti-viral treatment or vaccine makes the control of mosquito vectors a high option to prevent virus transmission. Essential oil (EO) constituents can affect insect's behaviour, being potentially effective in pest control. The present study evaluated the potential use of Foenicultm vulgare (fennel) EO in the control of the dengue vector Aedes aegypti. EOs isolated from fennel aerial parts collected in Cape Verde and from a commercial fennel EO of Portugal were analysed by NMR, GC and GC-MS. trans-Anethole (32 and 30%, respectively), limonene (28 and 18%, respectively) and fenchone (10% in both cases) were the main compounds identified in the EOs isolated from fennel from Cape Verde and Portugal, respectively. The larvicidal activity of the EOs and its major constituents were evaluated, using WHO procedures, against third instar larvae ofAe. aegypti for 24 h. Pure compounds, such as limonene isomers, were also assayed. The lethal concentrations LC50, C90 and LC99 were determined by probit analysis using mortality rates of bioassays. A 99% mortality of Ae. aegypti larvae was estimated at 37.1 and 52.4 µL L-1 of fennel EOs from Cape Verde and Portugal, respectively. Bioassays showed that fennel EOs from both countries displayed strong larvicidal effect against Ae. aegypti, the Cape Verde EO being as active as one of its major constituents, (-)-limonene.

  3. Larvicidal activity against Aedes aegypti of Foeniculum vulgare essential oils from Portugal and Cape Verde.

    PubMed

    Rocha, Diara Kady; Matosc, Olivia; Novoa, Maria Teresa; Figueiredo, Ana Cristina; Delgado, Manuel; Moiteiro, Cristina

    2015-04-01

    Dengue is a potentially fatal mosquito-borne infection with 50 million cases per year and 2.5 billion people vulnerable to the disease. This major public health problem has recurrent epidemics in Latin America and occurred recently in Cape Verde and Madeira Island. The lack of anti-viral treatment or vaccine makes the control of mosquito vectors a high option to prevent virus transmission. Essential oil (EO) constituents can affect insect's behaviour, being potentially effective in pest control. The present study evaluated the potential use of Foenicultm vulgare (fennel) EO in the control of the dengue vector Aedes aegypti. EOs isolated from fennel aerial parts collected in Cape Verde and from a commercial fennel EO of Portugal were analysed by NMR, GC and GC-MS. trans-Anethole (32 and 30%, respectively), limonene (28 and 18%, respectively) and fenchone (10% in both cases) were the main compounds identified in the EOs isolated from fennel from Cape Verde and Portugal, respectively. The larvicidal activity of the EOs and its major constituents were evaluated, using WHO procedures, against third instar larvae ofAe. aegypti for 24 h. Pure compounds, such as limonene isomers, were also assayed. The lethal concentrations LC50, C90 and LC99 were determined by probit analysis using mortality rates of bioassays. A 99% mortality of Ae. aegypti larvae was estimated at 37.1 and 52.4 µL L-1 of fennel EOs from Cape Verde and Portugal, respectively. Bioassays showed that fennel EOs from both countries displayed strong larvicidal effect against Ae. aegypti, the Cape Verde EO being as active as one of its major constituents, (-)-limonene. PMID:25973508

  4. Temporal abundance of Aedes aegypti in Manaus, Brazil, measured by two trap types for adult mosquitoes

    PubMed Central

    Degener, Carolin Marlen; de Ázara, Tatiana Mingote Ferreira; Roque, Rosemary Aparecida; Codeço, Cláudia Torres; Nobre, Aline Araújo; Ohly, Jörg Johannes; Geier, Martin; Eiras, Álvaro Eduardo

    2014-01-01

    A longitudinal study was conducted in Manaus, Brazil, to monitor changes of adult Aedes aegypti (L.) abundance. The objectives were to compare mosquito collections of two trap types, to characterise temporal changes of the mosquito population, to investigate the influence of meteorological variables on mosquito collections and to analyse the association between mosquito collections and dengue incidence. Mosquito monitoring was performed fortnightly using MosquiTRAPs (MQT) and BG-Sentinel (BGS) traps between December 2008-June 2010. The two traps revealed opposing temporal infestation patterns, with highest mosquito collections of MQTs during the dry season and highest collections of BGS during the rainy seasons. Several meteorological variables were significant predictors of mosquito collections in the BGS. The best predictor was the relative humidity, lagged two weeks (in a positive relationship). For MQT, only the number of rainy days in the previous week was significant (in a negative relationship). The correlation between monthly dengue incidence and mosquito abundance in BGS and MQT was moderately positive and negative, respectively. Catches of BGS traps reflected better the dynamic of dengue incidence. The findings help to understand the effects of meteorological variables on mosquito infestation indices of two different traps for adult dengue vectors in Manaus. PMID:25494470

  5. Effects of essential oils on Aedes aegypti larvae: alternatives to environmentally safe insecticides.

    PubMed

    Silva, W J; Dória, G A A; Maia, R T; Nunes, R S; Carvalho, G A; Blank, A F; Alves, P B; Marçal, R M; Cavalcanti, S C H

    2008-05-01

    The essential oils from leaves of Hyptis fruticosa (Lamiaceae) Salzm., H. pectinata (Lamiaceae) Poit., and Lippia gracilis (Verbenaceae) HBK were investigated for their larvicidal activity against Aedes aegypti and analyzed by GC/MS. Fifty-nine compounds, representing 91.28-98.39% of the essential oils, have been identified. A standard solution was used to make 20 mL solutions ranging from 30 to 2000 ppm. Twenty larvae between third and fourth stages were added to the essential oil solution. A mortality count was conducted 24 h after treatment. Essential oils LC50 and their confidence limits at 95% probability were calculated by the methods of Reed-Muench and Pizzi, respectively. The essential oil of Lippia gracilis showed potent insecticidal effect against Aedes aegypti larvae, the vector of dengue fever. Carvacrol and caryophyllene oxide were the main responsible for the activity of L. gracilis and H. pectinata. Minor compounds are probably acting synergistically to achieve H. fruticosa activity. PMID:17662602

  6. Host-feeding pattern of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in heterogeneous landscapes of South Andaman, Andaman and Nicobar Islands, India.

    PubMed

    Sivan, Arun; Shriram, A N; Sunish, I P; Vidhya, P T

    2015-09-01

    Mosquito foraging behavior is a determinant of host-vector contact and has an impact on the risk of arboviral epidemics. Therefore, blood-feeding patterns is a useful tool for assessing the role in pathogen transmission by vector mosquitoes. Competent vectors of dengue and chikungunya viz. Aedes aegypti and Aedes albopictus are widely prevalent in the Andaman and Nicobar archipelago. Considering the vector potential, medical importance of both these mosquito species and lack of information on host-feeding patterns, blood meal analysis of both these vector mosquitoes was undertaken. Biogents Sentinel traps were used for sampling blooded mosquitoes, for identifying the source of blood meal by agar gel-precipitin test. We identified vertebrate source of 147 and 104 blood meals in Ae. aegypti and Ae. albopictus from heterogeneous landscapes in South Andaman district. Results revealed that Ae. aegypti (88 %) and Ae. albopictus (49 %) fed on human and a small proportion on mammals and fowls, indicative of predominance of anthropophilism. Ae. aegypti predominantly fed on human blood (94.2 %-densely built urban, 89.8 %-low vegetation coverage, and 78.3 %-medium vegetation coverage). Anthropophilism in Ae. albopictus was maximal in densely built urban (90.5 %) and progressively decreased from low vegetation-vegetation/forested continuum (66.7, 36.4, and 8.7 %), indicating plasticity in feeding across these landscapes. Epidemiological significance of the findings is discussed. PMID:26220560

  7. The wMel Strain of Wolbachia Reduces Transmission of Chikungunya Virus in Aedes aegypti

    PubMed Central

    Aliota, Matthew T.; Walker, Emma C.; Uribe Yepes, Alexander; Dario Velez, Ivan; Christensen, Bruce M.; Osorio, Jorge E.

    2016-01-01

    Background New approaches to preventing chikungunya virus (CHIKV) are needed because current methods are limited to controlling mosquito populations, and they have not prevented the invasion of this virus into new locales, nor have they been sufficient to control the virus upon arrival. A promising candidate for arbovirus control and prevention relies on the introduction of the intracellular bacterium Wolbachia into Aedes aegypti mosquitoes. This primarily has been proposed as a tool to control dengue virus (DENV) transmission; however, evidence suggests Wolbachia infections confer protection for Ae. aegypti against CHIKV. Although this approach holds much promise for limiting virus transmission, at present our understanding of the ability of CHIKV to infect, disseminate, and be transmitted by wMel-infected Ae. aegypti currently being used at Wolbachia release sites is limited. Methodology/Principal Findings Using Ae. aegypti infected with the wMel strain of Wolbachia that are being released in Medellin, Colombia, we report that these mosquitoes have reduced vector competence for CHIKV, even with extremely high viral titers in the bloodmeal. In addition, we examined the dynamics of CHIKV infection over the course of four to seven days post feeding. Wolbachia-infected mosquitoes remained non-infective over the duration of seven days, i.e., no infectious virus was detected in the saliva when exposed to bloodmeals of moderate viremia, but CHIKV-exposed, wild type mosquitoes did have viral loads in the saliva consistent with what has been reported elsewhere. Finally, the presence of wMel infection had no impact on the lifespan of mosquitoes as compared to wild type mosquitoes following CHIKV infection. Conclusions/Significance These results could have an impact on vector control strategies in areas where Ae. aegypti are transmitting both DENV and CHIKV; i.e., they argue for further exploration, both in the laboratory and the field, on the feasibility of expanding this

  8. Genetic Diversity and Phylogeny of Aedes aegypti, the Main Arbovirus Vector in the Pacific

    PubMed Central

    Calvez, Elodie; Guillaumot, Laurent; Millet, Laurent; Marie, Jérôme; Bossin, Hervé; Rama, Vineshwaran; Faamoe, Akata; Kilama, Sosiasi; Teurlai, Magali; Mathieu-Daudé, Françoise; Dupont-Rouzeyrol, Myrielle

    2016-01-01

    Background The Pacific region is an area unique in the world, composed of thousands of islands with differing climates and environments. The spreading and establishment of the mosquito Aedes aegypti in these islands might be linked to human migration. Ae. aegypti is the major vector of arboviruses (dengue, chikungunya and Zika viruses) in the region. The intense circulation of these viruses in the Pacific during the last decade led to an increase of vector control measures by local health authorities. The aim of this study is to analyze the genetic relationships among Ae. aegypti populations in this region. Methodology/Principal Finding We studied the genetic variability and population genetics of 270 Ae. aegypti, sampled from 9 locations in New Caledonia, Fiji, Tonga and French Polynesia by analyzing nine microsatellites and two mitochondrial DNA regions (CO1 and ND4). Microsatellite markers revealed heterogeneity in the genetic structure between the western, central and eastern Pacific island countries. The microsatellite markers indicate a statistically moderate differentiation (FST = 0.136; P < = 0.001) in relation to island isolation. A high degree of mixed ancestry can be observed in the most important towns (e.g. Noumea, Suva and Papeete) compared with the most isolated islands (e.g. Ouvea and Vaitahu). Phylogenetic analysis indicated that most of samples are related to Asian and American specimens. Conclusions/Significance Our results suggest a link between human migrations in the Pacific region and the origin of Ae. aegypti populations. The genetic pattern observed might be linked to the island isolation and to the different environmental conditions or ecosystems. PMID:26799213

  9. Spatial Patterns of High Aedes aegypti Oviposition Activity in Northwestern Argentina

    PubMed Central

    Estallo, Elizabet Lilia; Más, Guillermo; Vergara-Cid, Carolina; Lanfri, Mario Alberto; Ludueña-Almeida, Francisco; Scavuzzo, Carlos Marcelo; Introini, María Virginia; Zaidenberg, Mario; Almirón, Walter Ricardo

    2013-01-01

    Background In Argentina, dengue has affected mainly the Northern provinces, including Salta. The objective of this study was to analyze the spatial patterns of high Aedes aegypti oviposition activity in San Ramón de la Nueva Orán, northwestern Argentina. The location of clusters as hot spot areas should help control programs to identify priority areas and allocate their resources more effectively. Methodology Oviposition activity was detected in Orán City (Salta province) using ovitraps, weekly replaced (October 2005–2007). Spatial autocorrelation was measured with Moran’s Index and depicted through cluster maps to identify hot spots. Total egg numbers were spatially interpolated and a classified map with Ae. aegypti high oviposition activity areas was performed. Potential breeding and resting (PBR) sites were geo-referenced. A logistic regression analysis of interpolated egg numbers and PBR location was performed to generate a predictive mapping of mosquito oviposition activity. Principal Findings Both cluster maps and predictive map were consistent, identifying in central and southern areas of the city high Ae. aegypti oviposition activity. A logistic regression model was successfully developed to predict Ae. aegypti oviposition activity based on distance to PBR sites, with tire dumps having the strongest association with mosquito oviposition activity. A predictive map reflecting probability of oviposition activity was produced. The predictive map delimitated an area of maximum probability of Ae. aegypti oviposition activity in the south of Orán city where tire dumps predominate. The overall fit of the model was acceptable (ROC = 0.77), obtaining 99% of sensitivity and 75.29% of specificity. Conclusions Distance to tire dumps is inversely associated with high mosquito activity, allowing us to identify hot spots. These methodologies are useful for prevention, surveillance, and control of tropical vector borne diseases and might assist National Health

  10. The Aquaporin Gene Family of the Yellow Fever Mosquito, Aedes aegypti

    PubMed Central

    Drake, Lisa L.; Boudko, Dmitri Y.; Marinotti, Osvaldo; Carpenter, Victoria K.; Dawe, Angus L.; Hansen, Immo A.

    2010-01-01

    Background The mosquito, Aedes aegypti, is the principal vector of the Dengue and yellow fever viruses. During feeding, an adult female can take up more than its own body weight in vertebrate blood. After a blood meal females excrete large amounts of urine through their excretion system, the Malpighian tubules (MT). Diuresis starts within seconds after the mosquito starts feeding. Aquaporins (AQPs) are a family of membrane transporters that regulate the flow of water, glycerol and other small molecules across cellular membranes in both prokaryotic and eukaryotic cells. Our aim was to identify aquaporins that function as water channels, mediating transcellular water transport in MTs of adult female Ae. aegypti. Methodology/Principal Findings Using a bioinformatics approach we screened genome databases and identified six putative AQPs in the genome of Ae. aegypti. Phylogenetic analysis showed that five of the six Ae. aegypti AQPs have high similarity to classical water-transporting AQPs of vertebrates. Using microarray, reverse transcription and real time PCR analysis we found that all six AQPs are expressed in distinct patterns in mosquito tissues/body parts. AaAQP1, 4, and 5 are strongly expressed in the adult female MT. RNAi-mediated knockdown of the MT-expressed mosquito AQPs resulted in significantly reduced diuresis. Conclusions/Significance Our results support the notion that AQP1, 4, and 5 function as water transporters in the MTs of adult female Ae. aegypti mosquitoes. Our results demonstrate the importance of these AQPs for mosquito diuresis after blood ingestion and highlight their potential as targets for the development of novel vector control strategies. PMID:21249121

  11. A Trypsin Inhibitor from Clitoria fairchildiana Cotyledons is Active Against Digestive Enzymes of Aedes aegypti Larvae.

    PubMed

    de Oliveira, Lucilene O; Fernandes, Kátia V S; Pádua, Dayanni de Souza; Carvalho, André de O; Lemos, Francisco J A; Gomes, Valdirene M; Oliveira, Antônia E A; Ferreira, André T da Silva; Perales, Jonas

    2015-01-01

    Aedes aegypti, the principal mosquito vector of yellow fever, dengue fever and chikungunya fever virus-transmitted diseases, is an insect closely associated with humans and their housing habitats. As there is no commercially available vaccine, prevention is the most suggested form of avoiding disease spreading and a number of studies are being developed in order to give support to vector control operations. The present study reports on the identification of a trypsin inhibitor isolated from cotyledons of the Clitoria fairchildiana amazonic tree seeds, which was able to reduce by 87.93 % the activity of digestive enzymes of fourth instar A. aegypti larva. A partial amino acid sequence showed strong similarity with sequences from several trypsin inhibitors already reported in the literature. The 13,000 Da isolated inhibitor was seen to be active solely against trypsin-like enzymes, neither acting on papain, α-amylase nor on other serine proteases, such as elastase, chymotrypsin or subtilisin. At least six from seven active digestive proteases from A. aegypti larvae, visualized by zymography, were severely affected soon after exposed to the inhibitor. The strong and specific action of the isolated inhibitor against trypsin digestive enzymes of this insect vector led us to believe that this protein may be a good candidate for a prospective alternative biocontrol method. PMID:26156641

  12. Silencing of P-glycoprotein increases mortality in temephos-treated Aedes aegypti larvae.

    PubMed

    Figueira-Mansur, J; Ferreira-Pereira, A; Mansur, J F; Franco, T A; Alvarenga, E S L; Sorgine, M H F; Neves, B C; Melo, A C A; Leal, W S; Masuda, H; Moreira, M F

    2013-12-01

    Re-emergence of vector-borne diseases such as dengue and yellow fever, which are both transmitted by the Aedes aegypti mosquito, has been correlated with insecticide resistance. P-glycoproteins (P-gps) are ATP-dependent efflux pumps that are involved in the transport of substrates across membranes. Some of these proteins have been implicated in multidrug resistance (MDR). In this study, we identified a putative P-glycoprotein in the Ae. aegypti database based on its significantly high identity with Anopheles gambiae, Culex quinquefasciatus, Drosophila melanogaster and human P-gps. The basal ATPase activity of ATP-binding cassette transporters in larvae was significantly increased in the presence of MDR modulators (verapamil and quinidine). An eightfold increase in Ae. aegypti P-gp (AaegP-gp) gene expression was detected in temephos-treated larvae as determined by quantitative PCR. To analyse the potential role of AaegP-gp in insecticide efflux, a temephos larvicide assay was performed in the presence of verapamil. The results showed an increase of 24% in temephos toxicity, which is in agreement with the efflux reversing effect. RNA interference (RNAi)-mediated silencing of the AaegP-gp gene caused a significant increase in temephos toxicity (57%). In conclusion, we have demonstrated for the first time in insects that insecticide-induced P-gp expression can be involved in the modulation of insecticide efflux. PMID:23980723

  13. Temperature, Larval Diet, and Density Effects on Development Rate and Survival of Aedes aegypti (Diptera: Culicidae)

    PubMed Central

    Couret, Jannelle; Dotson, Ellen; Benedict, Mark Q.

    2014-01-01

    Many environmental factors, biotic and abiotic interact to influence organismal development. Given the importance of Aedes aegypti as a vector of human pathogens including dengue and yellow fever, understanding the impact of environmental factors such as temperature, resource availability, and intraspecific competition during development is critical for population control purposes. Despite known associations between developmental traits and factors of diet and density, temperature has been considered the primary driver of development rate and survival. To determine the relative importance of these critical factors, wide gradients of conditions must be considered. We hypothesize that 1) diet and density, as well as temperature influence the variation in development rate and survival, 2) that these factors interact, and this interaction is also necessary to understand variation in developmental traits. Temperature, diet, density, and their two-way interactions are significant factors in explaining development rate variation of the larval stages of Ae. aegypti mosquitoes. These factors as well as two and three-way interactions are significantly associated with the development rate from hatch to emergence. Temperature, but not diet or density, significantly impacted juvenile mortality. Development time was heteroskedastic with the highest variation occurring at the extremes of diet and density conditions. All three factors significantly impacted survival curves of experimental larvae that died during development. Complex interactions may contribute to variation in development rate. To better predict variation in development rate and survival in Ae. aegypti, factors of resource availability and intraspecific density must be considered in addition, but never to the exclusion of temperature. PMID:24498328

  14. Silencing of P-glycoprotein increases mortality in temephos-treated Aedes aegypti larvae.

    PubMed

    Figueira-Mansur, J; Ferreira-Pereira, A; Mansur, J F; Franco, T A; Alvarenga, E S L; Sorgine, M H F; Neves, B C; Melo, A C A; Leal, W S; Masuda, H; Moreira, M F

    2013-12-01

    Re-emergence of vector-borne diseases such as dengue and yellow fever, which are both transmitted by the Aedes aegypti mosquito, has been correlated with insecticide resistance. P-glycoproteins (P-gps) are ATP-dependent efflux pumps that are involved in the transport of substrates across membranes. Some of these proteins have been implicated in multidrug resistance (MDR). In this study, we identified a putative P-glycoprotein in the Ae. aegypti database based on its significantly high identity with Anopheles gambiae, Culex quinquefasciatus, Drosophila melanogaster and human P-gps. The basal ATPase activity of ATP-binding cassette transporters in larvae was significantly increased in the presence of MDR modulators (verapamil and quinidine). An eightfold increase in Ae. aegypti P-gp (AaegP-gp) gene expression was detected in temephos-treated larvae as determined by quantitative PCR. To analyse the potential role of AaegP-gp in insecticide efflux, a temephos larvicide assay was performed in the presence of verapamil. The results showed an increase of 24% in temephos toxicity, which is in agreement with the efflux reversing effect. RNA interference (RNAi)-mediated silencing of the AaegP-gp gene caused a significant increase in temephos toxicity (57%). In conclusion, we have demonstrated for the first time in insects that insecticide-induced P-gp expression can be involved in the modulation of insecticide efflux.

  15. Differential transcription profiles in Aedes aegypti detoxification genes after temephos selection.

    PubMed

    Saavedra-Rodriguez, K; Strode, C; Flores, A E; Garcia-Luna, S; Reyes-Solis, G; Ranson, H; Hemingway, J; Black, W C

    2014-04-01

    The mosquito Aedes aegypti is the main vector of Dengue and Yellow Fever flaviviruses. The organophosphate insecticide temephos is a larvicide that is used globally to control Ae. aegypti populations; many of which have in turn evolved resistance. Target site alteration in the acetylcholine esterase of this species has not being identified. Instead, we tracked changes in transcription of metabolic detoxification genes using the Ae. aegypti 'Detox Chip' microarray during five generations of temephos selection. We selected for temephos resistance in three replicates in each of six collections, five from Mexico, and one from Peru. The response to selection was tracked in terms of lethal concentrations. Uniform upregulation was seen in the epsilon class glutathione-S-transferase (eGST) genes in strains from Mexico prior to laboratory selection, while eGSTs in the Iquitos Peru strain became upregulated after five generations of temephos selection. While expression of many carboxyl/cholinesterase esterase (CCE) genes increased with selection, no single esterase was consistently upregulated and this same pattern was noted in the cytochrome P450 monooxygenase (CYP) genes and in other genes involved in reduction or oxidation of xenobiotics. Bioassays using glutathione-S-transferase (GST), CCE and CYP inhibitors suggest that various CCEs instead of GSTs are the main metabolic mechanism conferring resistance to temephos. We show that temephos-selected strains show no cross resistance to permethrin and that genes associated with temephos selection are largely independent of those selected with permethrin in a previous study.

  16. Spatial and temporal country-wide survey of temephos resistance in Brazilian populations of Aedes aegypti

    PubMed Central

    Chediak, Mateus; G Pimenta, Fabiano; Coelho, Giovanini E; Braga, Ima A; Lima, José Bento P; Cavalcante, Karina Ribeiro LJ; de Sousa, Lindemberg C; de Melo-Santos, Maria Alice V; Macoris, Maria de Lourdes da G; de Araújo, Ana Paula; Ayres, Constância Flávia J; Andrighetti, Maria Teresa M; Gomes, Ricristhi Gonçalves de A; Campos, Kauara B; Guedes, Raul Narciso C

    2016-01-01

    The organophosphate temephos has been the main insecticide used against larvae of the dengue and yellow fever mosquito (Aedes aegypti) in Brazil since the mid-1980s. Reports of resistance date back to 1995; however, no systematic reports of widespread temephos resistance have occurred to date. As resistance investigation is paramount for strategic decision-making by health officials, our objective here was to investigate the spatial and temporal spread of temephos resistance in Ae. aegypti in Brazil for the last 12 years using discriminating temephos concentrations and the bioassay protocols of the World Health Organization. The mortality results obtained were subjected to spatial analysis for distance interpolation using semi-variance models to generate maps that depict the spread of temephos resistance in Brazil since 1999. The problem has been expanding. Since 2002-2003, approximately half the country has exhibited mosquito populations resistant to temephos. The frequency of temephos resistance and, likely, control failures, which start when the insecticide mortality level drops below 80%, has increased even further since 2004. Few parts of Brazil are able to achieve the target 80% efficacy threshold by 2010/2011, resulting in a significant risk of control failure by temephos in most of the country. The widespread resistance to temephos in Brazilian Ae. aegypti populations greatly compromise effective mosquito control efforts using this insecticide and indicates the urgent need to identify alternative insecticides aided by the preventive elimination of potential mosquito breeding sites. PMID:27143489

  17. Stable transformation of the yellow fever mosquito, Aedes aegypti, with the Hermes element from the housefly.

    PubMed

    Jasinskiene, N; Coates, C J; Benedict, M Q; Cornel, A J; Rafferty, C S; James, A A; Collins, F H

    1998-03-31

    The mosquito Aedes aegypti is the world's most important vector of yellow fever and dengue viruses. Work is currently in progress to control the transmission of these viruses by genetically altering the capacity of wild Ae. aegypti populations to support virus replication. The germ-line transformation system reported here constitutes a major advance toward the implementation of this control strategy. A modified Hermes transposon carrying a 4.7-kb fragment of genomic DNA that includes a wild-type allele of the Drosophila melanogaster cinnabar (cn) gene was used to transform a white-eyed recipient strain of Ae. aegypti. Microinjection of preblastoderm mosquito embryos with this construct resulted in 50% of the emergent G0 adults showing some color in their eyes. Three transformed families were recovered, each resulting from an independent insertion event of the cn+-carrying transposon. The cn+ gene functioned as a semidominant transgene and segregated in Mendelian ratios. Hermes shows great promise as a vector for efficient, heritable, and stable transformation of this important mosquito vector species.

  18. Temperature, larval diet, and density effects on development rate and survival of Aedes aegypti (Diptera: Culicidae).

    PubMed

    Couret, Jannelle; Dotson, Ellen; Benedict, Mark Q

    2014-01-01

    Many environmental factors, biotic and abiotic interact to influence organismal development. Given the importance of Aedes aegypti as a vector of human pathogens including dengue and yellow fever, understanding the impact of environmental factors such as temperature, resource availability, and intraspecific competition during development is critical for population control purposes. Despite known associations between developmental traits and factors of diet and density, temperature has been considered the primary driver of development rate and survival. To determine the relative importance of these critical factors, wide gradients of conditions must be considered. We hypothesize that 1) diet and density, as well as temperature influence the variation in development rate and survival, 2) that these factors interact, and this interaction is also necessary to understand variation in developmental traits. Temperature, diet, density, and their two-way interactions are significant factors in explaining development rate variation of the larval stages of Ae. aegypti mosquitoes. These factors as well as two and three-way interactions are significantly associated with the development rate from hatch to emergence. Temperature, but not diet or density, significantly impacted juvenile mortality. Development time was heteroskedastic with the highest variation occurring at the extremes of diet and density conditions. All three factors significantly impacted survival curves of experimental larvae that died during development. Complex interactions may contribute to variation in development rate. To better predict variation in development rate and survival in Ae. aegypti, factors of resource availability and intraspecific density must be considered in addition, but never to the exclusion of temperature.

  19. Targeting gene expression to the female larval fat body of transgenic Aedes aegypti mosquitoes.

    PubMed

    Totten, D C; Vuong, M; Litvinova, O V; Jinwal, U K; Gulia-Nuss, M; Harrell, R A; Beneš, H

    2013-02-01

    As the fat body is a critical tissue for mosquito development, metamorphosis, immune and reproductive system function, the characterization of regulatory modules targeting gene expression to the female mosquito fat body at distinct life stages is much needed for multiple, varied strategies for controlling vector-borne diseases such as dengue and malaria. The hexameric storage protein, Hexamerin-1.2, of the mosquito Aedes atropalpus is female-specific and uniquely expressed in the fat body of fourth instar larvae and young adults. We have identified in the Hex-1.2 gene, a short regulatory module that directs female-, tissue-, and stage-specific lacZ reporter gene expression using a heterologous promoter in transgenic lines of the dengue vector Aedes aegypti. Male transgenic larvae and pupae of one line expressed no Escherichia coli β-galactosidase or transgene product; in two other lines reporter gene activity was highly female-biased. All transgenic lines expressed the reporter only in the fat body; however, lacZ mRNA levels were no different in males and females at any stage examined, suggesting that the gene regulatory module drives female-specific expression by post-transcriptional regulation in the heterologous mosquito. This regulatory element from the Hex-1.2 gene thus provides a new molecular tool for transgenic mosquito control as well as functional genetic analysis in aedine mosquitoes.

  20. Suppression of a Field Population of Aedes aegypti in Brazil by Sustained Release of Transgenic Male Mosquitoes.

    PubMed

    Carvalho, Danilo O; McKemey, Andrew R; Garziera, Luiza; Lacroix, Renaud; Donnelly, Christl A; Alphey, Luke; Malavasi, Aldo; Capurro, Margareth L

    2015-01-01

    The increasing burden of dengue, and the relative failure of traditional vector control programs highlight the need to develop new control methods. SIT using self-limiting genetic technology is one such promising method. A self-limiting strain of Aedes aegypti, OX513A, has already reached the stage of field evaluation. Sustained releases of OX513A Ae. aegypti males led to 80% suppression of a target wild Ae. aegypti population in the Cayman Islands in 2010. Here we describe sustained series of field releases of OX513A Ae. aegypti males in a suburb of Juazeiro, Bahia, Brazil. This study spanned over a year and reduced the local Ae. aegypti population by 95% (95% CI: 92.2%-97.5%) based on adult trap data and 81% (95% CI: 74.9-85.2%) based on ovitrap indices compared to the adjacent no-release control area. The mating competitiveness of the released males (0.031; 95% CI: 0.025-0.036) was similar to that estimated in the Cayman trials (0.059; 95% CI: 0.011-0.210), indicating that environmental and target-strain differences had little impact on the mating success of the OX513A males. We conclude that sustained release of OX513A males may be an effective and widely useful method for suppression of the key dengue vector Ae. aegypti. The observed level of suppression would likely be sufficient to prevent dengue epidemics in the locality tested and other areas with similar or lower transmission. PMID:26135160

  1. Suppression of a Field Population of Aedes aegypti in Brazil by Sustained Release of Transgenic Male Mosquitoes

    PubMed Central

    Garziera, Luiza; Lacroix, Renaud; Donnelly, Christl A.; Alphey, Luke; Malavasi, Aldo; Capurro, Margareth L.

    2015-01-01

    The increasing burden of dengue, and the relative failure of traditional vector control programs highlight the need to develop new control methods. SIT using self-limiting genetic technology is one such promising method. A self-limiting strain of Aedes aegypti, OX513A, has already reached the stage of field evaluation. Sustained releases of OX513A Ae. aegypti males led to 80% suppression of a target wild Ae. aegypti population in the Cayman Islands in 2010. Here we describe sustained series of field releases of OX513A Ae. aegypti males in a suburb of Juazeiro, Bahia, Brazil. This study spanned over a year and reduced the local Ae. aegypti population by 95% (95% CI: 92.2%-97.5%) based on adult trap data and 81% (95% CI: 74.9-85.2%) based on ovitrap indices compared to the adjacent no-release control area. The mating competitiveness of the released males (0.031; 95% CI: 0.025-0.036) was similar to that estimated in the Cayman trials (0.059; 95% CI: 0.011 – 0.210), indicating that environmental and target-strain differences had little impact on the mating success of the OX513A males. We conclude that sustained release of OX513A males may be an effective and widely useful method for suppression of the key dengue vector Ae. aegypti. The observed level of suppression would likely be sufficient to prevent dengue epidemics in the locality tested and other areas with similar or lower transmission. PMID:26135160

  2. Suppression of a Field Population of Aedes aegypti in Brazil by Sustained Release of Transgenic Male Mosquitoes.

    PubMed

    Carvalho, Danilo O; McKemey, Andrew R; Garziera, Luiza; Lacroix, Renaud; Donnelly, Christl A; Alphey, Luke; Malavasi, Aldo; Capurro, Margareth L

    2015-01-01

    The increasing burden of dengue, and the relative failure of traditional vector control programs highlight the need to develop new control methods. SIT using self-limiting genetic technology is one such promising method. A self-limiting strain of Aedes aegypti, OX513A, has already reached the stage of field evaluation. Sustained releases of OX513A Ae. aegypti males led to 80% suppression of a target wild Ae. aegypti population in the Cayman Islands in 2010. Here we describe sustained series of field releases of OX513A Ae. aegypti males in a suburb of Juazeiro, Bahia, Brazil. This study spanned over a year and reduced the local Ae. aegypti population by 95% (95% CI: 92.2%-97.5%) based on adult trap data and 81% (95% CI: 74.9-85.2%) based on ovitrap indices compared to the adjacent no-release control area. The mating competitiveness of the released males (0.031; 95% CI: 0.025-0.036) was similar to that estimated in the Cayman trials (0.059; 95% CI: 0.011-0.210), indicating that environmental and target-strain differences had little impact on the mating success of the OX513A males. We conclude that sustained release of OX513A males may be an effective and widely useful method for suppression of the key dengue vector Ae. aegypti. The observed level of suppression would likely be sufficient to prevent dengue epidemics in the locality tested and other areas with similar or lower transmission.

  3. Experimental Transmission of Mayaro Virus by Aedes aegypti

    PubMed Central

    Long, Kanya C.; Ziegler, Sarah A.; Thangamani, Saravanan; Hausser, Nicole L.; Kochel, Tadeusz J.; Higgs, Stephen; Tesh, Robert B.

    2011-01-01

    Outbreaks of Mayaro fever have been associated with a sylvatic cycle of Mayaro virus (MAYV) transmission in South America. To evaluate the potential for a common urban mosquito to transmit MAYV, laboratory vector competence studies were performed with Aedes aegypti from Iquitos, Peru. Oral infection in Ae. aegypti ranged from 0% (0/31) to 84% (31/37), with blood meal virus titers between 3.4 log10 and 7.3 log10 plaque-forming units (PFU)/mL. Transmission of MAYV by 70% (21/30) of infected mosquitoes was shown by saliva collection and exposure to suckling mice. Amount of viral RNA in febrile humans, determined by real-time polymerase chain reaction, ranged from 2.7 to 5.3 log10 PFU equivalents/mL. Oral susceptibility of Ae. aegypti to MAYV at titers encountered in viremic humans may limit opportunities to initiate an urban cycle; however, transmission of MAYV by Ae. aegypti shows the vector competence of this species and suggests potential for urban transmission. PMID:21976583

  4. Repellent activity of selected essential oils against Aedes aegypti.

    PubMed

    Choochote, W; Chaithong, U; Kamsuk, K; Jitpakdi, A; Tippawangkosol, P; Tuetun, B; Champakaew, D; Pitasawat, B

    2007-07-01

    Essential oils extracted from ten plant species were screened for repellency against Aedes aegypti mosquitoes. Three oils; Zanthoxylum piperitum, Anethum graveolens and Kaempferia galanga, exerted protection against A. aegypti, with median complete-protection times of 1, 0.5 and 0.25 h, respectively. The protection times were increased significantly by incorporating 10% vanillin. The highest potential was established from Z. piperitum oil +10% vanillin (2.5 h, range=1-2.5 h). Mixtures from pairs of the effective oils possessed slight repellency that ranged from 0-0.5 h. None of the oil combinations repelled A. aegypti for longer than their constituent oil alone. With vanillin added, however, each oil mixture provided improved protection, which was approximately equal to oil on its own. GC/MS analysis revealed that the main component of Z. piperitum fruit oil was limonene (37.99%), with minor amounts of sabinene (13.30%) and beta-myrcene (7.17%). Repellent testing of stored samples of Z. piperitum fruit oil against A. aegypti demonstrated that repellent activity of those kept at -20 degrees C or 4 degrees C was present for a period of at least 3 months. Therefore, the essential oil of Z. piperitum fruit may prove useful in the development of mosquito repellents as an effective personal protection measure against mosquito bites. PMID:17512681

  5. Life table characteristics of Aedes aegypti (Diptera:Culicidae) from Saudi Arabia.

    PubMed

    Sowilem, Mohamed M; Kamal, Hany A; Khater, Emad I

    2013-06-01

    Aedes aegypti (= Stegomyia aegypti) mosquito is a world vector of important arboviral diseases like dengue and Rift Valley fever. Despite its wide distribution in the western and southern regions of Saudi Arabia, where dengue outbreaks have occurred, its ecology is largely unknown. In this study we report on the main life table developmental attributes of a laboratory colony of Ae. aegypti reared from field-collected larvae from Madinah Province, west of Saudi Arabia. Females were maintained on daily blood meal and sugar. The female fecundity was ~62 eggs/female at an overall rate of 72% hatchability. The mean time needed for eggs to hatch into larvae was 4.5 d. The mean pupation time (P50) was 11.53 days (d). The proportion of immature survivorships were 0.69 for 1(st) larva to pupa (P/I), 0.98 for pupa to adult (A/P) and an overall 0.67 for 1(st) larva to adult (A/I). Males emerged faster than females with mean emergence time (E50) of 12.83 and 15.31 d, respectively. The average developmental velocity (V) showed that males (V= 0.081) developed faster than females (V= 0.068). The male/female sex ratio at adult emergence was 0.48, and insignificantly different from the 1:1 ratio. The adult mean life expectancy at emergence (eo) was 17.14 d for females compared to 9.59 d for males. The net reproductive rate (Ro) was 101.04 and the intrinsic rate of increase (rm) was 0.15 with a mean generation time (G) of 30.7 d. The instantaneous mean of birth (B) and death rate (D) were 0.30 and 0.15, respectively, with rm/B of 0.529 and B/D of 2.281. Compared to other Ae. aegypti strains from different geographic and ecological settings, the Saudi strain had a relatively low colonization potential. This is the first report on life table characteristics for Ae. aegypti from the Arabian Peninsula, and provides base-line information for wider studies on its natural populations. This is particularly important for understanding its population dynamics in relation to dengue

  6. Multi-scale analysis of the associations among egg, larval and pupal surveys and the presence and abundance of adult female Aedes aegypti (Stegomyia aegypti) in the city of Merida, Mexico.

    PubMed

    Manrique-Saide, P; Coleman, P; McCall, P J; Lenhart, A; Vázquez-Prokopec, G; Davies, C R

    2014-09-01

    Despite decades of research, there is still no agreement on which indices of Aedes aegypti (Stegomyia aegypti) (Diptera: Culicidae) presence and abundance better quantify entomological risk for dengue. This study reports the results of a multi-scale, cross-sectional entomological survey carried out in 1160 households in the city of Merida, Mexico to establish: (a) the correlation between levels of Ae. aegypti presence and abundance detected with aspirators and ovitraps; (b) which immature and egg indices correlate with the presence and abundance of Ae. aegypti females, and (c) the correlations amongst traditional Aedes indices and their modifications for pupae at the household level and within medium-sized geographic areas used for vector surveillance. Our analyses show that ovitrap positivity was significantly associated with indoor adult Ae. aegypti presence [odds ratio (OR) = 1.50; P = 0.03], that the presence of pupae is associated with adult presence at the household level (OR = 2.27; P = 0.001), that classic Aedes indices are informative only when they account for pupae, and that window screens provide a significant level of protection against peridomestic Ae. aegypti (OR = 0.59; P = 0.02). Results reinforce the potential of using both positive collections in outdoor ovitraps and the presence of pupae as sensitive indicators of indoor adult female presence. PMID:24797405

  7. Multi-scale analysis of the associations among egg, larval and pupal surveys and the presence and abundance of adult female Aedes aegypti (Stegomyia aegypti) in the city of Merida, Mexico.

    PubMed

    Manrique-Saide, P; Coleman, P; McCall, P J; Lenhart, A; Vázquez-Prokopec, G; Davies, C R

    2014-09-01

    Despite decades of research, there is still no agreement on which indices of Aedes aegypti (Stegomyia aegypti) (Diptera: Culicidae) presence and abundance better quantify entomological risk for dengue. This study reports the results of a multi-scale, cross-sectional entomological survey carried out in 1160 households in the city of Merida, Mexico to establish: (a) the correlation between levels of Ae. aegypti presence and abundance detected with aspirators and ovitraps; (b) which immature and egg indices correlate with the presence and abundance of Ae. aegypti females, and (c) the correlations amongst traditional Aedes indices and their modifications for pupae at the household level and within medium-sized geographic areas used for vector surveillance. Our analyses show that ovitrap positivity was significantly associated with indoor adult Ae. aegypti presence [odds ratio (OR) = 1.50; P = 0.03], that the presence of pupae is associated with adult presence at the household level (OR = 2.27; P = 0.001), that classic Aedes indices are informative only when they account for pupae, and that window screens provide a significant level of protection against peridomestic Ae. aegypti (OR = 0.59; P = 0.02). Results reinforce the potential of using both positive collections in outdoor ovitraps and the presence of pupae as sensitive indicators of indoor adult female presence.

  8. Detection of insemination status in live Aedes aegypti females

    PubMed Central

    Carrasquilla, María C.; Lounibos, L. Philip

    2015-01-01

    Using the technique described in this report, the presence or absence of sperm in spermathecae of female Aedes aegypti is detectable without dissection. Spermathecae of a lightly anesthetized female can be visualized by phase contrast microscopy through the distended abdomen, after the intersegmental membranes are stretched by ventral placement of a glass cover slip. Most females recovered after the procedure were capable of subsequent reproductive activities. Albeit tedious, this technique preserves the female alive for subsequent experiments or observations. Its extension to other mosquito species, or other Diptera and insects, will depend on spermathecal and sperm visibility through the distended abdomen. PMID:25721054

  9. LABORATORY EVALUATION OF THE DEVELOPMENT OF Aedes aegypti IN TWO SEASONS: INFLUENCE OF DIFFERENT PLACES AND DIFFERENT DENSITIES

    PubMed Central

    Lopes, Tatiana Forte; Holcman, Marcia Moreira; Barbosa, Gerson Laurindo; Domingos, Maria de Fatima; Barreiros, Rosa Maria Oliveira Veiga

    2014-01-01

    Aedes aegypti is an important vector in Brazil being the main vector of the dengue-fever. This paper employs survival curves to describe the time in days from larvae to adult forms of Aedes aegypti raised, individually and collectively, and compares it during winter and spring when positioned inside and outside a laboratory. The study was conducted in São Vicente, a coastal city in Southeastern Brazil. The lowest water temperature in winter and in spring was 20 °C and the highest was 26 °C in spring. Higher and more stable temperatures were measured in the intra compared to the peri in both seasons. Consequently, larvae positioned in the intra resulted in the lowest median time to develop in the individual and collective experiment (nine and ten days, respectively). At least 25% of the larvae positioned in the intra in the individual experiment in the spring took only seven days to reach adulthood. Sex ratios and the median time development by sex did not show significant differences. These results indicate that efforts to control Aedes aegypti must be continuous and directed mainly to prevent the intra-domiciliary sites that can be infested in a week in order to reduce the human-vector contact. PMID:25229215

  10. Laboratory evaluation of the development of Aedes aegypti in two seasons: influence of different places and different densities.

    PubMed

    Lopes, Tatiana Forte; Holcman, Marcia Moreira; Barbosa, Gerson Laurindo; Domingos, Maria de Fatima; Barreiros, Rosa Maria Oliveira Veiga

    2014-01-01

    Aedes aegypti is an important vector in Brazil being the main vector of the dengue-fever. This paper employs survival curves to describe the time in days from larvae to adult forms of Aedes aegypti raised, individually and collectively, and compares it during winter and spring when positioned inside and outside a laboratory. The study was conducted in São Vicente, a coastal city in Southeastern Brazil. The lowest water temperature in winter and in spring was 20 °C and the highest was 26 °C in spring. Higher and more stable temperatures were measured in the intra compared to the peri in both seasons. Consequently, larvae positioned in the intra resulted in the lowest median time to develop in the individual and collective experiment (nine and ten days, respectively). At least 25% of the larvae positioned in the intra in the individual experiment in the spring took only seven days to reach adulthood. Sex ratios and the median time development by sex did not show significant differences. These results indicate that efforts to control Aedes aegypti must be continuous and directed mainly to prevent the intra-domiciliary sites that can be infested in a week in order to reduce the human-vector contact.

  11. Effect of Moringa oleifera flower extract on larval trypsin and acetylcholinesterase activities in Aedes aegypti.

    PubMed

    Pontual, Emmanuel Viana; Napoleão, Thiago Henrique; Dias de Assis, Caio Rodrigo; de Souza Bezerra, Ranilson; Xavier, Haroudo Satiro; Navarro, Daniela Maria do Amaral Ferraz; Coelho, Luana Cassandra Breitenbach Barroso; Paiva, Patrícia Maria Guedes

    2012-03-01

    Aedes aegypti control is crucial to reducing dengue fever. Aedes aegypti larvae have developed resistance to organophosporous insecticides and the use of natural larvicides may help manage larval resistance by increasing elements in insecticide rotation programs. Here, we report on larvicidal activity of Moringa oleifera flower extract against A. aegypti L(1), L(2), L(3), and L(4) as well as the effect of flower extract on gut trypsin and whole-larval acetylcholinesterase from L(4.) In addition, the heated flower extract was investigated for larvicidal activity against L(4) and effect on larval gut trypsin. Moringa oleifera flower extract contains a proteinaceous trypsin inhibitor (M. oleifera flower trypsin inhibitor, MoFTI), triterpene (β-amyrin), sterol (β-sitosterol) as well as flavonoids (kaempferol and quercetin). Larvicidal activity was detected against L(2), L(3), and L(4) (LC(50) of 1.72%, 1.67%, and 0.92%, respectively). Flower extract inhibited L(4) gut trypsin (MoFTI K(i) = 0.6 nM) and did not affect acetylcholinesterase activity. In vivo assay showed that gut trypsin activity from L(4) treated with M. oleifera flower extract decreased over time (0-1,440 min) and was strongly inhibited (98.6%) after 310 min incubation; acetylcholinesterase activity was not affected. Thermal treatment resulted in a loss of trypsin inhibitor and larvicidal activities, supporting the hypothesis that flower extract contains a proteinaceous trypsin inhibitor that may be responsible for the deleterious effects on larval mortality. PMID:22392801

  12. A dengue vector surveillance by human population-stratified ovitrap survey for Aedes (Diptera: Culicidae) adult and egg collections in high dengue-risk areas of Taiwan.

    PubMed

    Wu, Huai-Hui; Wang, Chih-Yuan; Teng, Hwa-Jen; Lin, Cheo; Lu, Liang-Chen; Jian, Shu-Wan; Chang, Niann-Tai; Wen, Tzai-Hung; Wu, Jhy-Wen; Liu, Ding-Ping; Lin, Li-Jen; Norris, Douglas E; Wu, Ho-Sheng

    2013-03-01

    Aedes aegypti L. is the primary dengue vector in southern Taiwan. This article is the first report on a large-scale surveillance program to study the spatial-temporal distribution of the local Ae. aegytpi population using ovitraps stratified according to the human population in high dengue-risk areas. The sampling program was conducted for 1 yr and was based on weekly collections of eggs and adults in Kaohsiung City. In total, 10,380 ovitraps were placed in 5,190 households. Paired ovitraps, one indoors and one outdoors were used per 400 people. Three treatments in these ovitraps (paddle-shaped wooden sticks, sticky plastic, or both) were assigned by stratified random sampling to two areas (i.e., metropolitan or rural, respectively). We found that the sticky plastic alone had a higher sensitivity for detecting the occurrence of indigenous dengue cases than other treatments with time lags of up to 14 wk. The wooden paddle alone detected the oviposition of Ae. aegypti throughout the year in this study area. Furthermore, significantly more Ae. aegypti females were collected indoors than outdoors. Therefore, our survey identified the whole year oviposition activity, spatial-temporal distribution of the local Ae. aegypti population and a 14 wk lag correlation with dengue incidence to plan an effectively proactive control. PMID:23540112

  13. Community-Based Control of Aedes aegypti By Using Mesocyclops in Southern Vietnam

    PubMed Central

    Nam, Vu Sinh; Yen, Nguyen Thi; Duc, Hoang Minh; Tu, Tran Cong; Thang, Vu Trong; Le, Nguyen Hoang; San, Le Hoang; Loan, Luu Le; Huong, Vu Thi Que; Khanh, Ly Huynh Kim; Trang, Huynh Thi Thuy; Lam, Leonie Z. Y.; Kutcher, Simon C.; Aaskov, John G.; Jeffery, Jason A. L.; Ryan, Peter A.; Kay, Brian H.

    2012-01-01

    We previously reported a new community-based mosquito control strategy that resulted in elimination of Aedes aegypti (Linn.) in 40 of 46 communes in northern and central Vietnam, and with annual recurrent total costs (direct and indirect) of only $0.28–$0.89 international dollars per person. This control strategy was extended to four provinces in southern Vietnam in Long An and Hau Giang (2004–2007) and to Long An, Ben Tre, and Vinh Long (2005–2010). In a total of 14 communes with 124,743 residents, the mean ± SD of adult female Ae. aegypti was reduced from 0.93 ± 0.62 to 0.06 ± 0.09, and the reduction of immature Ae. aegypti averaged 98.8%. By the final survey, no adults could be collected in 6 of 14 communes, and one commune, Binh Thanh, also had no immature forms. Although the community-based programs also involved community education and clean-up campaigns, the prevalence of Mesocyclops in large water storage containers > 50 liters increased from 12.77 ± 8.39 to 75.69 ± 9.17% over periods of 15–45 months. At the conclusion of the study, no confirmed dengue cases were detected in four of the five communes for which diagnostic serologic analysis was performed. The rate of progress was faster in communes that were added in stages to the program but the reason for this finding was unclear. At the completion of the formal project, sustainability funds were set up to provide each commune with the financial means to ensure that community-based dengue control activities continued. PMID:22556087

  14. Diffusion of community empowerment strategies for Aedes aegypti control in Cuba: a muddling through experience.

    PubMed

    Pérez, Dennis; Lefèvre, Pierre; Castro, Marta; Toledo, María Eugenia; Zamora, Gilberto; Bonet, Mariano; Van der Stuyft, Patrick

    2013-05-01

    Effective participatory strategies in dengue control have been developed and assessed as small-scale efforts. The challenge is to scale-up and institutionalize these strategies within dengue control programs. We describe and critically analyze the diffusion process of an effective empowerment strategy within the Cuban Aedes aegypti control program, focusing on decision-making at the national level, to identify ways forward to institutionalize such strategies in Cuba and elsewhere. From 2005 to 2009, we carried out a process-oriented case study. We used participant observation, in-depth interviews with key informants involved in the diffusion process and document analysis. In a first phase, the data analysis was inductive. In a second phase, to enhance robustness of the analysis, emerging categories were contrasted with Rogers' five-stage conceptual model of the innovation-decision process, which was eventually used as the analytical framework. The diffusion of the empowerment strategy was a continuous and dynamic process. Adoption was a result of the perceived potential match between the innovative empowerment strategy and the performance gap of the Ae. aegypti control program. During implementation, the strategy was partially modified by top level Ae. aegypti control program decision-makers to accommodate program characteristics. However, structure, practices and organizational culture of the control program did not change significantly. Thus rejection occurred. It was mainly due to insufficient dissemination of know-how and underlying principles of the strategy by innovation developers, but also to resistance to change. The innovation-diffusion process has produced mitigated results to date, and the control program is still struggling to find ways to move forward. Improving the innovation strategy by providing the necessary knowledge about the innovation and addressing control program organizational changes is crucial for successful diffusion of empowerment

  15. Efficacy of topical permethrin as repellent against Aedes aegypti's bites.

    PubMed

    Miot, Hélio Amante; Ferreira, Daniela Pinho; Mendes, Fabiana Guandalini; Carrenho, Flávia Roberta Hernandes; de Oliveira Amui, Isabela; Carneiro, Carlos Augusto Sá; Madeira, Newton Goulart

    2008-01-01

    Mosquitoes are the most important vectors of infectious diseases and their bites are related to several adverse skin reactions. Permethrin impregnated clothes are an efficient strategy against arthropods' bites; however, its topical efficacy as a repellent has not been well established. We studied the response to permethrin lotion 5 percent and N,N-Diethyl-meta-toluamide (DEET) spray 50 percent applied to the unprotected forearms of 10 volunteers. Each arm was exposed to 20 female mosquitoes of Aedes aegypti. We performed 71 bilateral comparative measurements evaluating the timing for the first bites. The average times for the arm without the product, with permethrin 5 percent, and with DEET 50 percent were: 7.9 seconds, 336.2 seconds and 7512.1 seconds. The results showed a significant difference between repellency times between either product and unprotected controls. In addition, there was a significant difference in time to first bite between permethrin and DEET treated arms (p<0.01). Permethrin affords some repellent activity against Aedes aegypti bites in this experimental setting. However, permethrin's profile of repellency was significantly inferior to that of DEET.

  16. Aedes aegypti (L.) and Aedes albopictus (Skuse) in Singapore City. 1. Distribution and density.

    PubMed

    Chan, Y C; Chan, K L; Ho, B C

    1971-01-01

    The distribution and density of Ae. aegypti and Ae. albopictus in Singapore were assessed from extensive larval surveys carried out from 1966 to 1968 to evaluate their respective roles in the epidemiology of dengue haemorrhagic fever and to study their ecology in the urban areas. Ten urban areas where the majority of dengue haemorrhagic fever cases occurred were surveyed.The results showed that both species were common in the city, with Ae. aegypti being the dominant species. The distribution of Ae. aegypti was more uniform and related to the prevailing housing types and conditions. Its premise index was highest in slum houses, intermediate in shop houses, and lowest in multistorey flats. Ae. albopictus, on the other hand, did not seem to be related to the prevailing housing type in its distribution but tended to be more widespread in areas with open spaces.The larval density index (the average number of larvae per housing unit) was higher for Ae. aegypti than for Ae. albopictus, in agreement with the relative densities shown by their premise indices. The larval density index correlated well with the premise index and correlated best with the infested-receptacle index. For practical purposes, the most suitable, convenient, and reliable measure of density of Ae. aegypti population seems to be the infested-receptacle index.An attempt was made to estimate the rate of dispersal of Ae. aegypti from a stable population to an adjacent area of multistorey flats. The rate of dispersal, estimated from the premise index and the larval density index, was approximately 2% per year of the "donor" population.

  17. Redeployment of a conserved gene regulatory network during Aedes aegypti development.

    PubMed

    Suryamohan, Kushal; Hanson, Casey; Andrews, Emily; Sinha, Saurabh; Scheel, Molly Duman; Halfon, Marc S

    2016-08-15

    Changes in gene regulatory networks (GRNs) underlie the evolution of morphological novelty and developmental system drift. The fruitfly Drosophila melanogaster and the dengue and Zika vector mosquito Aedes aegypti have substantially similar nervous system morphology. Nevertheless, they show significant divergence in a set of genes co-expressed in the midline of the Drosophila central nervous system, including the master regulator single minded and downstream genes including short gastrulation, Star, and NetrinA. In contrast to Drosophila, we find that midline expression of these genes is either absent or severely diminished in A. aegypti. Instead, they are co-expressed in the lateral nervous system. This suggests that in A. aegypti this "midline GRN" has been redeployed to a new location while lost from its previous site of activity. In order to characterize the relevant GRNs, we employed the SCRMshaw method we previously developed to identify transcriptional cis-regulatory modules in both species. Analysis of these regulatory sequences in transgenic Drosophila suggests that the altered gene expression observed in A. aegypti is the result of trans-dependent redeployment of the GRN, potentially stemming from cis-mediated changes in the expression of sim and other as-yet unidentified regulators. Our results illustrate a novel "repeal, replace, and redeploy" mode of evolution in which a conserved GRN acquires a different function at a new site while its original function is co-opted by a different GRN. This represents a striking example of developmental system drift in which the dramatic shift in gene expression does not result in gross morphological changes, but in more subtle differences in development and function of the late embryonic nervous system.

  18. Characterization of Bacillus thuringiensis isolates with potential for control of Aedes aegypti (Linnaeus, 1762) (Diptera: Culicidae).

    PubMed

    Santos, F P; Lopes, J; Vilas-Bôas, G T; Zequi, J A C

    2012-04-01

    Aedes aegypti (Linnaeus) is the vector of dengue virus in Brazil. Bioinsecticides based on Bacillus thuringiensis have shown satisfactory results in the control of Diptera, due to the production of proteins called Cry and Cyt. The aim of the present study was to select B. thuringiensis isolates carrying the cry and cyt genes, which are efficient in the control of Ae. aegypti. A collection of 27 isolates of B. thuringiensis, derived from various regions in Brazil, was evaluated using selective bioassays against A. aegypti larvae. Of the 27 isolates, five showed 100% larval mortality at a concentration of 0.05 ppm and the toxicity of these isolates in quantitative bioassays did not differ significantly at temperatures of 15, 25 and 35 °C. In addition, these isolates showed statistical differences for the LC50 values only above pH 9, which indicates a maintenance in insecticide potential in a wide range of alkaline pH values. This result is promising, considering that waste treatment reservoirs generally show an acid pH and higher temperatures. These isolates were also evaluated by PCR using specific primers for the genes cry4A, cry4B, cry10A, cry11, cyt1 and cyt2. The analyses demonstrated that all the five isolates showed amplification products for all the studied genes showing four different Cry proteins, besides Cyt proteins. The obtained results of bioassays and PCR demonstrates the great potential for the use of these isolates in controlling populations of Ae. Aegypti and perhaps other species of mosquitoes in a wide range of environments.

  19. Redeployment of a conserved gene regulatory network during Aedes aegypti development.

    PubMed

    Suryamohan, Kushal; Hanson, Casey; Andrews, Emily; Sinha, Saurabh; Scheel, Molly Duman; Halfon, Marc S

    2016-08-15

    Changes in gene regulatory networks (GRNs) underlie the evolution of morphological novelty and developmental system drift. The fruitfly Drosophila melanogaster and the dengue and Zika vector mosquito Aedes aegypti have substantially similar nervous system morphology. Nevertheless, they show significant divergence in a set of genes co-expressed in the midline of the Drosophila central nervous system, including the master regulator single minded and downstream genes including short gastrulation, Star, and NetrinA. In contrast to Drosophila, we find that midline expression of these genes is either absent or severely diminished in A. aegypti. Instead, they are co-expressed in the lateral nervous system. This suggests that in A. aegypti this "midline GRN" has been redeployed to a new location while lost from its previous site of activity. In order to characterize the relevant GRNs, we employed the SCRMshaw method we previously developed to identify transcriptional cis-regulatory modules in both species. Analysis of these regulatory sequences in transgenic Drosophila suggests that the altered gene expression observed in A. aegypti is the result of trans-dependent redeployment of the GRN, potentially stemming from cis-mediated changes in the expression of sim and other as-yet unidentified regulators. Our results illustrate a novel "repeal, replace, and redeploy" mode of evolution in which a conserved GRN acquires a different function at a new site while its original function is co-opted by a different GRN. This represents a striking example of developmental system drift in which the dramatic shift in gene expression does not result in gross morphological changes, but in more subtle differences in development and function of the late embryonic nervous system. PMID:27341759

  20. Vector Competence of Aedes aegypti and Aedes polynesiensis Populations from French Polynesia for Chikungunya Virus

    PubMed Central

    Richard, Vaea; Paoaafaite, Tuterarii; Cao-Lormeau, Van-Mai

    2016-01-01

    Background From October 2014 to March 2015, French Polynesia experienced for the first time a chikungunya outbreak. Two Aedes mosquitoes may have contributed to chikungunya virus (CHIKV) transmission in French Polynesia: the worldwide distributed Ae. aegypti and the Polynesian islands-endemic Ae. polynesiensis mosquito. Methods To investigate the vector competence of French Polynesian populations of Ae. aegypti and Ae. polynesiensis for CHIKV, mosquitoes were exposed per os at viral titers of 7 logs tissue culture infectious dose 50%. At 2, 6, 9, 14 and 21 days post-infection (dpi), saliva was collected from each mosquito and inoculated onto C6/36 mosquito cells to check for the presence of CHIKV infectious particles. Legs and body (thorax and abdomen) of each mosquito were also collected at the different dpi and submitted separately to viral RNA extraction and CHIKV real-time RT-PCR. Results CHIKV infection rate, dissemination and transmission efficiencies ranged from 7–90%, 18–78% and 5–53% respectively for Ae. aegypti and from 39–41%, 3–17% and 0–14% respectively for Ae. polynesiensis, depending on the dpi. Infectious saliva was found as early as 2 dpi for Ae. aegypti and from 6 dpi for Ae. polynesiensis. Our laboratory results confirm that the French Polynesian population of Ae. aegypti is highly competent for CHIKV and they provide clear evidence for Ae. polynesiensis to act as an efficient CHIKV vector. Conclusion As supported by our findings, the presence of two CHIKV competent vectors in French Polynesia certainly contributed to enabling this virus to quickly disseminate from the urban/peri-urban areas colonized by Ae. aegypti to the most remote atolls where Ae. polynesiensis is predominating. Ae. polynesiensis was probably involved in the recent chikungunya outbreaks in Samoa and the Cook Islands. Moreover, this vector may contribute to the risk for CHIKV to emerge in other Polynesian islands like Fiji, and more particularly Wallis where there

  1. New Candidates for Plant-Based Repellents Against Aedes aegypti.

    PubMed

    Misni, Norashiqin; Nor, Zurainee Mohamed; Ahmad, Rohani

    2016-06-01

    Based on an ethnobotanical study on use for plant species against mosquito bites in the Kota Tinggi District, Johor State, Malaysia, 3 plants selected for study, Citrus aurantifolia (leaves), Citrus grandis (fruit peel), and Alpinia galanga (rhizome), were extracted using hydrodistillation to produce essential oils. These essential oils were then formulated as a lotion using a microencapsulation process and then tested for their repellent effect against Aedes aegypti. N,N-diethyl-m-toluamide (deet) was also prepared in the same formulation and tested for repellency as controls. Four commercial plant-based repellent (KAPS(®), MozAway(®), BioZ Natural(®), and Mosiquard(®)) also were incorporated in the bioassay for comparison purposes. Bioassays revealed that at 20% concentration all repellent formulations demonstrated complete protection for 2 h and >90% for 4 h post-application. The A. galanga-based formulation provided the greatest level of protection (98.91%), which extended for 4 h post-application and was not significantly different from deet at similar concentration. When compared with commercial plant-based repellents (KAPS(®), MozAway(®), and BioZ Natural(®)), the 3 lotion formulations showed significantly better protection against Ae. aegypti bites, providing >90% protection for 4 h. In conclusion, our 3 plant-based lotion formulations provided acceptable levels of protection against host-seeking Ae. aegypti and should be developed.

  2. New Candidates for Plant-Based Repellents Against Aedes aegypti.

    PubMed

    Misni, Norashiqin; Nor, Zurainee Mohamed; Ahmad, Rohani

    2016-06-01

    Based on an ethnobotanical study on use for plant species against mosquito bites in the Kota Tinggi District, Johor State, Malaysia, 3 plants selected for study, Citrus aurantifolia (leaves), Citrus grandis (fruit peel), and Alpinia galanga (rhizome), were extracted using hydrodistillation to produce essential oils. These essential oils were then formulated as a lotion using a microencapsulation process and then tested for their repellent effect against Aedes aegypti. N,N-diethyl-m-toluamide (deet) was also prepared in the same formulation and tested for repellency as controls. Four commercial plant-based repellent (KAPS(®), MozAway(®), BioZ Natural(®), and Mosiquard(®)) also were incorporated in the bioassay for comparison purposes. Bioassays revealed that at 20% concentration all repellent formulations demonstrated complete protection for 2 h and >90% for 4 h post-application. The A. galanga-based formulation provided the greatest level of protection (98.91%), which extended for 4 h post-application and was not significantly different from deet at similar concentration. When compared with commercial plant-based repellents (KAPS(®), MozAway(®), and BioZ Natural(®)), the 3 lotion formulations showed significantly better protection against Ae. aegypti bites, providing >90% protection for 4 h. In conclusion, our 3 plant-based lotion formulations provided acceptable levels of protection against host-seeking Ae. aegypti and should be developed. PMID:27280349

  3. Larvicidal and ovicidal properties of leaf and seed extracts of Delonix elata (L.) Gamble (family: Fabaceae) against malaria (Anopheles stephensi Liston) and dengue (Aedes aegypti Linn.) (Diptera: Culicidae) vector mosquitoes.

    PubMed

    Marimuthu, Govindarajan; Rajamohan, Sivakumar; Mohan, Rajeswari; Krishnamoorthy, Yogalakshmi

    2012-07-01

    Mosquito-borne diseases with an economic impact create loss in commercial and labor outputs, particularly in countries with tropical and subtropical climates. Mosquito control is facing a threat because of the emergence of resistance to synthetic insecticides. Extracts from plants may be alternative sources of mosquito control agents because they constitute a rich source of bioactive compounds that are biodegradable into nontoxic products and potentially suitable for use to control mosquitoes. Insecticides of botanical origin may serve as suitable alternative biocontrol techniques in the future. In view of the recently increased interest in developing plant origin insecticides as an alternative to chemical insecticide, this study was undertaken to assess the larvicidal and ovicidal potential of the crude hexane, benzene, chloroform, ethyl acetate, and methanol solvent extracts from the medicinal plant Delonix elata against the medically important mosquito vectors, Anopheles stephensi and Aedes aegypti (Diptera: Culicidae). The larval mortality was observed after 24 h of exposure. All extracts showed moderate larvicidal effects; however, the highest larval mortality was found in methanol extract of leaf of D. elata against the larvae of A. stephensi and A. aegypti with the LC(50) and LC(90) values being 93.59 and 111.83, and 163.69 and 202.77 ppm, respectively. Compared to leaf extracts, seeds have low potency against two mosquitoes with the LC(50) and LC(90) values being 115.28 and 139.04, and 225.07 and 273.03 ppm, respectively. The mean percent hatchability of the eggs was observed after 48 h post-treatment. The percent hatchability was inversely proportional to the concentration of extract and directly proportional to the eggs. All the five solvent extracts showed moderate ovicidal activity; however, the methanol extract showed the highest ovicidal activity. One hundred percent mortality was observed at 300 ppm for leaf methanol extract and 500 ppm for seed

  4. The developmental transcriptome of the mosquito Aedes aegypti, an invasive species and major arbovirus vector.

    PubMed

    Akbari, Omar S; Antoshechkin, Igor; Amrhein, Henry; Williams, Brian; Diloreto, Race; Sandler, Jeremy; Hay, Bruce A

    2013-09-04

    Mosquitoes are vectors of a number of important human and animal diseases. The development of novel vector control strategies requires a thorough understanding of mosquito biology. To facilitate this, we used RNA-seq to identify novel genes and provide the first high-resolution view of the transcriptome throughout development and in response to blood feeding in a mosquito vector of human disease, Aedes aegypti, the primary vector for Dengue and yellow fever. We characterized mRNA expression at 34 distinct time points throughout Aedes development, including adult somatic and germline tissues, by using polyA+ RNA-seq. We identify a total of 14,238 novel new transcribed regions corresponding to 12,597 new loci, as well as many novel transcript isoforms of previously annotated genes. Altogether these results increase the annotated fraction of the transcribed genome into long polyA+ RNAs by more than twofold. We also identified a number of patterns of shared gene expression, as well as genes and/or exons expressed sex-specifically or sex-differentially. Expression profiles of small RNAs in ovaries, early embryos, testes, and adult male and female somatic tissues also were determined, resulting in the identification of 38 new Aedes-specific miRNAs, and ~291,000 small RNA new transcribed regions, many of which are likely to be endogenous small-interfering RNAs and Piwi-interacting RNAs. Genes of potential interest for transgene-based vector control strategies also are highlighted. Our data have been incorporated into a user-friendly genome browser located at www.Aedes.caltech.edu, with relevant links to Vectorbase (www.vectorbase.org).

  5. Phylogeography of Aedes aegypti (yellow fever mosquito) in South Florida: mtDNA evidence for human-aided dispersal.

    PubMed

    Damal, Kavitha; Murrell, Ebony G; Juliano, Steven A; Conn, Jan E; Loew, Sabine S

    2013-09-01

    The invasive dengue vector Aedes aegypti has persisted for > 200 years in South Florida in the United States. We tested the hypotheses that Florida's landscape creates dispersal barriers and corridors and that long-distance human-aided dispersal structures populations of Ae. aegypti. We evaluated the phylogeography of 362 individuals from Florida's East and West Coasts with a 760-bp (418- and 342-bp fragments of ND5 and ND4, respectively) mitochondrial sequence. Populations from these two coasts were not significantly differentiated, suggesting that limited urbanization in central Florida is not a strong barrier to gene flow. Evidence for long-distance dispersal between Ft. Lauderdale and the West and Ft. Myers and the East indicates the importance of human-aided dispersal. West Coast populations showed no genetic differentiation, indicating that West Coast rivers and bays did not significantly impede gene flow. Phylogeographic analysis of haplotypes showed two distinct matrilines with no geographic patterns, suggesting multiple introductions or balancing selection.

  6. Insecticidal and genotoxic potential of two semi-synthetic derivatives of dillapiole for the control of Aedes (Stegomyia) aegypti (Diptera: Culicidae).

    PubMed

    Domingos, Pedro Rauel Cândido; da Silva Pinto, Ana Cristina; dos Santos, Joselita Maria Mendes; Rafael, Míriam Silva

    2014-09-15

    The effects of two semi-synthetic dillapiole derivatives, ethyl-ether dillapiole and n-butyl ether dillapiole, on eggs and larvae of Aedes aegypti were studied in view of the need for expansion and renovation of strategic action to control this mosquito - the vector of Dengue virus -, which currently shows a high resistance to chemical insecticides. Eggs and third-instar larvae of A. aegypti that had been exposed to different concentrations of these two compounds showed toxicity and susceptibility, with 100% mortality. Classical cytogenetic assays showed genotoxicity caused by the two compounds in A. aegypti from the cumulative effect of nuclear abnormalities, indicating that these derivatives may be potential alternatives to control A. aegypti.

  7. Resistance Status to the Insecticides Temephos, Deltamethrin, and Diflubenzuron in Brazilian Aedes aegypti Populations

    PubMed Central

    Viana-Medeiros, Priscila Fernandes; Araújo, Simone Costa; Martins, Ademir J.; Lima, José Bento Pereira

    2016-01-01

    Insecticides are still largely applied in public health to control disease vectors. In Brazil, organophosphates (OP) and pyrethroids (PY) are used against Aedes aegypti for years. Since 2009 Insect Growth Regulators (IGR) are also employed in the control of larvae. We quantified resistance to temephos (OP), deltamethri