Science.gov

Sample records for aedes aegypti results

  1. Microevolution of Aedes aegypti.

    PubMed

    Louise, Caroline; Vidal, Paloma Oliveira; Suesdek, Lincoln

    2015-01-01

    Scientific research into the epidemiology of dengue frequently focuses on the microevolution and dispersion of the mosquito Aedes aegypti. One of the world's largest urban agglomerations infested by Ae. aegypti is the Brazilian megalopolis of Sao Paulo, where >26,900 cases of dengue were reported until June 2015. Unfortunately, the dynamics of the genetic variability of Ae. aegypti in the Sao Paulo area have not been well studied. To reduce this knowledge gap, we assessed the morphogenetic variability of a population of Ae. aegypti from a densely urbanised neighbourhood of Sao Paulo. We tested if allelic patterns could vary over a short term and if wing shape could be a predictor of the genetic variation. Over a period of 14 months, we examined the variation of genetic (microsatellites loci) and morphological (wing geometry) markers in Ae. aegypti. Polymorphisms were detected, as revealed by the variability of 20 microsatellite loci (115 alleles combined; overall Fst = 0.0358) and 18 wing landmarks (quantitative estimator Qst = 0.4732). These levels of polymorphism are higher than typically expected to an exotic species. Allelic frequencies of the loci changed over time and temporal variation in the wing shape was even more pronounced, permitting high reclassification levels of chronological samples. In spite of the fact that both markers underwent temporal variation, no correlation was detected between their dynamics. We concluded that microevolution was detected despite the short observational period, but the intensities of change of the markers were discrepant. Wing shape failed from predicting allelic temporal variation. Possibly, natural selection (Qst>Fst) or variance of expressivity of wing phenotype are involved in this discrepancy. Other possibly influential factors on microevolution of Ae. aegypti are worth searching. Additionally, the implications of the rapid evolution and high polymorphism of this mosquito vector on the efficacy of control methods have

  2. Microevolution of Aedes aegypti

    PubMed Central

    Louise, Caroline; Vidal, Paloma Oliveira; Suesdek, Lincoln

    2015-01-01

    Scientific research into the epidemiology of dengue frequently focuses on the microevolution and dispersion of the mosquito Aedes aegypti. One of the world’s largest urban agglomerations infested by Ae. aegypti is the Brazilian megalopolis of Sao Paulo, where >26,900 cases of dengue were reported until June 2015. Unfortunately, the dynamics of the genetic variability of Ae. aegypti in the Sao Paulo area have not been well studied. To reduce this knowledge gap, we assessed the morphogenetic variability of a population of Ae. aegypti from a densely urbanised neighbourhood of Sao Paulo. We tested if allelic patterns could vary over a short term and if wing shape could be a predictor of the genetic variation. Over a period of 14 months, we examined the variation of genetic (microsatellites loci) and morphological (wing geometry) markers in Ae. aegypti. Polymorphisms were detected, as revealed by the variability of 20 microsatellite loci (115 alleles combined; overall Fst = 0.0358) and 18 wing landmarks (quantitative estimator Qst = 0.4732). These levels of polymorphism are higher than typically expected to an exotic species. Allelic frequencies of the loci changed over time and temporal variation in the wing shape was even more pronounced, permitting high reclassification levels of chronological samples. In spite of the fact that both markers underwent temporal variation, no correlation was detected between their dynamics. We concluded that microevolution was detected despite the short observational period, but the intensities of change of the markers were discrepant. Wing shape failed from predicting allelic temporal variation. Possibly, natural selection (Qst>Fst) or variance of expressivity of wing phenotype are involved in this discrepancy. Other possibly influential factors on microevolution of Ae. aegypti are worth searching. Additionally, the implications of the rapid evolution and high polymorphism of this mosquito vector on the efficacy of control methods

  3. Rhamnolipids: solution against Aedes aegypti?

    PubMed Central

    Silva, Vinicius L.; Lovaglio, Roberta B.; Von Zuben, Claudio J.; Contiero, Jonas

    2015-01-01

    Aedes aegypti mosquitoes are the primary transmitters of dengue fever, urban yellow fever, and chikungunya viruses. This mosquito has developed resistance to the insecticides currently used to control their populations. These chemical insecticides are harmful to the environment and can have negative effects on human health. Rhamnolipids are environmentally compatible biological surfactants, but their insecticidal activity has not been extensively studied. The present study evaluated the potential larvicidal, insecticidal, and repellent activities of rhamnolipids against A. aegypti. At concentrations of 800, 900, and 1000 mg/L, rhamnolipids eliminated all mosquito larvae in 18 h and killed 100% of adults at 1000 mg/L. According to the results it may be conclude that rhamnolipids should be applied to control larvae and mosquitos besides present the repellency activity against A. aegypti. PMID:25762986

  4. Dispersal of Engineered Male Aedes aegypti Mosquitoes

    PubMed Central

    Capurro, Margareth L.; Alphey, Luke; Donnelly, Christl A.; McKemey, Andrew R.

    2015-01-01

    Background Aedes aegypti, the principal vector of dengue fever, have been genetically engineered for use in a sterile insect control programme. To improve our understanding of the dispersal ecology of mosquitoes and to inform appropriate release strategies of ‘genetically sterile’ male Aedes aegypti detailed knowledge of the dispersal ability of the released insects is needed. Methodology/Principal Findings The dispersal ability of released ‘genetically sterile’ male Aedes aegypti at a field site in Brazil has been estimated. Dispersal kernels embedded within a generalized linear model framework were used to analyse data collected from three large scale mark release recapture studies. The methodology has been applied to previously published dispersal data to compare the dispersal ability of ‘genetically sterile’ male Aedes aegypti in contrasting environments. We parameterised dispersal kernels and estimated the mean distance travelled for insects in Brazil: 52.8m (95% CI: 49.9m, 56.8m) and Malaysia: 58.0m (95% CI: 51.1m, 71.0m). Conclusions/Significance Our results provide specific, detailed estimates of the dispersal characteristics of released ‘genetically sterile’ male Aedes aegypti in the field. The comparative analysis indicates that despite differing environments and recapture rates, key features of the insects’ dispersal kernels are conserved across the two studies. The results can be used to inform both risk assessments and release programmes using ‘genetically sterile’ male Aedes aegypti. PMID:26554922

  5. Flavivirus susceptibility in Aedes aegypti.

    PubMed

    Black, William C; Bennett, Kristine E; Gorrochótegui-Escalante, Norma; Barillas-Mury, Carolina V; Fernández-Salas, Ildefonso; de Lourdes Muñoz, María; Farfán-Alé, José A; Olson, Ken E; Beaty, Barry J

    2002-01-01

    Aedes aegypti is the primary vector of yellow fever (YF) and dengue fever (DF) flaviviruses worldwide. In this review we focus on past and present research on genetic components and environmental factors in Aedes aegypti that appear to control flavivirus transmission. We review genetic relationships among Ae. aegypti populations throughout the world and discuss how variation in vector competence is correlated with overall genetic differences among populations. We describe current research into how genetic and environmental factors jointly affect distribution of vector competence in natural populations. Based on this information, we propose a population genetic model for vector competence and discuss our recent progress in testing this model. We end with a discussion of approaches being taken to identify the genes that may control flavivirus susceptibility in Ae. aegypti. PMID:12234528

  6. Investigating the Potential Range Expansion of the Vector Mosquito Aedes Aegypti in Mexico with NASA Earth Science Remote Sensing Results

    NASA Technical Reports Server (NTRS)

    Crosson, W. L.; Estes, M. G.; Estes, S. M.; Hayden, M.; Monaghan, A. J.; Eisen, L.; Lozano-Fuentes, S.; Ochoa, C.; Tapia, B.; Welsh-Rodriquez, C. M.; Quattrochi, D.; MorenoMadrinan, M. J.

    2012-01-01

    In tropical and sub ]tropical regions, the mosquito Aedes aegypti is the major vector for the virus causing dengue, a serious public health issue in these areas. Through ongoing NSF- and NASA-funded studies, field surveys of Aedes aegypti and an integrated modeling approach are being used to improve our understanding of the potential range of the mosquito to expand toward heavily populated high elevation areas such as Mexico City under various climate change and socio ]economic scenarios. This work serves three primary objectives: (1) Employ NASA remotely-sensed data to supplement the environmental monitoring and modeling component of the project. These data-- for example, surface temperature, precipitation, vegetation indices, soil moisture and elevation-- are critical for understanding the habitat necessary for mosquito survival and abundance; (2) Implement training sessions to instruct scientists and students from Mexico and the U.S. on how to use remote sensing and implement the NASA SERVIR Regional Visualization and Monitoring System; (3) Employ the SERVIR framework to optimize the dissemination of key project results in order to increase their societal relevance and benefits in developing climate adaptation strategies. Field surveys of larval, pupal and adult Aedes aegypti, as well as detailed physical and social household characteristics, were conducted in the summers of 2011and 2012 at geographic scales from the household to the community along a transect from sea level to 2400 m ASL. These data are being used in models to estimate Aedes aegypti habitat suitability. In 2011, Aedes aegypti were identified at an elevation of over 2150 m in Puebla, the highest elevation at which this species has been observed.

  7. Investigating the Potential Range Expansion of the Vector Mosquito Aedes aegypti in Mexico with NASA Earth Science Remote Sensing Results

    NASA Astrophysics Data System (ADS)

    Crosson, W. L.; Eisen, L.; Estes, M. G.; Estes, S. M.; Hayden, M.; Lozano-Fuentes, S.; Monaghan, A. J.; Moreno Madriñán, M. J.; Ochoa, C.; Quattrochi, D.; Tapia, B.; Welsh-Rodriguez, C. M.

    2012-12-01

    In tropical and sub-tropical regions, the mosquito Aedes aegypti is the major vector for the virus causing dengue, a serious public health issue in these areas. Through ongoing NSF- and NASA-funded studies, field surveys of Aedes aegypti and an integrated modeling approach are being used to improve our understanding of the potential range of the mosquito to expand toward heavily populated high elevation areas such as Mexico City under various climate change and socio-economic scenarios. This work serves three primary objectives: (1) Employ NASA remotely-sensed data to supplement the environmental monitoring and modeling component of the project. These data -- for example, surface temperature, precipitation, vegetation indices, soil moisture and elevation -- are critical for understanding the habitat necessary for mosquito survival and abundance; (2) Implement training sessions to instruct scientists and students from Mexico and the U.S. on how to use remote sensing and implement the NASA SERVIR Regional Visualization and Monitoring System; (3) Employ the SERVIR framework to optimize the dissemination of key project results in order to increase their societal relevance and benefits in developing climate adaptation strategies. Field surveys of larval, pupal and adult Aedes aegypti, as well as detailed physical and social household characteristics, were conducted in the summers of 2011and 2012 at geographic scales from the household to the community along a transect from sea level to 2400 m ASL. These data are being used in models to estimate Aedes aegypti habitat suitability. In 2011, Aedes aegypti were identified at an elevation of over 2150 m in Puebla, the highest elevation at which this species has been observed.

  8. Desiccation resistance in Aedes aegypti and Aedes albopictus eggs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Causative influences that impact the separation of Aedes aegypti and Aedes albopictus populations in different geographic areas were determined. The eggs of Ae. albopictus and Ae. aegypti collected from McAllen and Brownsville, Texas, and laboratory populations of these two species were subjected t...

  9. Temporal genetic stability of Stegomyia aegypti (= Aedes aegypti) populations.

    PubMed

    Gloria-Soria, A; Kellner, D A; Brown, J E; Gonzalez-Acosta, C; Kamgang, B; Lutwama, J; Powell, J R

    2016-06-01

    The mosquito Stegomyia aegypti (= Aedes aegypti) (Diptera: Culicidae) is the primary vector of viruses that cause yellow fever, dengue and Chikungunya fever. In the absence of effective vaccines, the reduction of these diseases relies on vector control strategies. The success of these strategies is tightly linked to the population dynamics of target populations. In the present study, 14 collections from St. aegypti populations separated by periods of 1-13 years were analysed to determine their temporal genetic stability. Although temporal structure is discernible in most populations, the degree of temporal differentiation is dependent on the population and does not obscure the geographic structure of the various populations. The results suggest that performing detailed studies in the years prior to and after population reduction- or modification-based control interventions at each target field site may be useful in assessing the probability of success. PMID:26744174

  10. Permethrin induces overexpression of multiple genes in Aedes aegypti.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using the PCR-select subtractive cDNA hybridization technique, 18 different genes were isolated from a permethrin-treated vs acetone-treated Aedes aegypti subtractive library. QPCR results revealed that eight of the 18 gene’s transcriptional levels in permethrin-treated Ae. aegypti were at least 2- ...

  11. Workbook on Identification of Aedes Aegypti Larvae.

    ERIC Educational Resources Information Center

    Pratt, Harry D.; And Others

    This self-instructional booklet is designed to enable yellow fever control workers to identify the larvae of "Aedes aegypti." The morphological features of mosquito larvae are illustrated in this partially programed text, and the distinguishing features of "A. aegypti" indicated. A glossary is included. (AL)

  12. Thiosemicarbazones as Aedes aegypti larvicidal.

    PubMed

    da Silva, João Bosco P; Navarro, Daniela Maria do A F; da Silva, Aluizio G; Santos, Geanne K N; Dutra, Kamilla A; Moreira, Diogo Rodrigo; Ramos, Mozart N; Espíndola, José Wanderlan P; de Oliveira, Ana Daura T; Brondani, Dalci José; Leite, Ana Cristina L; Hernandes, Marcelo Zaldini; Pereira, Valéria R A; da Rocha, Lucas F; de Castro, Maria Carolina A B; de Oliveira, Beatriz C; Lan, Que; Merz, Kenneth M

    2015-07-15

    A set of aryl- and phenoxymethyl-(thio)semicarbazones were synthetized, characterized and biologically evaluated against the larvae of Aedes aegypti (A. aegypti), the vector responsible for diseases like Dengue and Yellow Fever. (Q)SAR studies were useful for predicting the activities of the compounds not included to create the QSAR model as well as to predict the features of a new compound with improved activity. Docking studies corroborated experimental evidence of AeSCP-2 as a potential target able to explain the larvicidal properties of its compounds. The trend observed between the in silico Docking scores and the in vitro pLC50 (equals -log LC50, at molar concentration) data indicated that the highest larvicidal compounds, or the compounds with the highest values for pLC50, are usually those with the higher docking scores (i.e., greater in silico affinity for the AeSCP-2 target). Determination of cytotoxicity for these compounds in mammal cells demonstrated that the top larvicide compounds are non-toxic. PMID:26087027

  13. Mathematical model of temephos resistance in Aedes aegypti mosquito population

    NASA Astrophysics Data System (ADS)

    Aldila, D.; Nuraini, N.; Soewono, E.; Supriatna, A. K.

    2014-03-01

    Aedes aegypti is the main vector of dengue disease in many tropical and sub-tropical countries. Dengue became major public concern in these countries due to the unavailability of vaccine or drugs for dengue disease in the market. Hence, the only way to control the spread of DF and DHF is by controlling the vectors carrying the disease, for instance with fumigation, temephos or genetic manipulation. Many previous studies conclude that Aedes aegypti may develop resistance to many kind of insecticide, including temephos. Mathematical model for transmission of temephos resistance in Aedes aegypti population is discussed in this paper. Nontrivial equilibrium point of the system and the corresponding existence are shown analytically. The model analysis have shown epidemiological trends condition that permits the coexistence of nontrivial equilibrium is given analytically. Numerical results are given to show parameter sensitivity and some cases of worsening effect values for illustrating possible conditions in the field.

  14. Effect of temperature on the population dynamics of Aedes aegypti

    NASA Astrophysics Data System (ADS)

    Yusoff, Nuraini; Tokachil, Mohd Najir

    2015-10-01

    Aedes aegypti is one of the main vectors in the transmission of dengue fever. Its abundance may cause the spread of the disease to be more intense. In the study of its biological life cycle, temperature was found to increase the development rate of each stage of this species and thus, accelerate the process of the development from egg to adult. In this paper, a Lefkovitch matrix model will be used to study the stage-structured population dynamics of Aedes aegypti. In constructing the transition matrix, temperature will be taken into account. As a case study, temperature recorded at the Subang Meteorological Station for year 2006 until 2010 will be used. Population dynamics of Aedes aegypti at maximum, average and minimum temperature for each year will be simulated and compared. It is expected that the higher the temperature, the faster the mosquito will breed. The result will be compared to the number of dengue fever incidences to see their relationship.

  15. Stage-Structured Population Dynamics of AEDES AEGYPTI

    NASA Astrophysics Data System (ADS)

    Yusoff, Nuraini; Budin, Harun; Ismail, Salemah

    Aedes aegypti is the main vector in the transmission of dengue fever, a vector-borne disease affecting world population living in tropical and sub-tropical countries. Better understanding of the dynamics of its population growth will help in the efforts of controlling the spread of this disease. In looking at the population dynamics of Aedes aegypti, this paper explored the stage-structured modeling of the population growth of the mosquito using the matrix population model. The life cycle of the mosquito was divided into five stages: eggs, larvae, pupae, adult1 and adult2. Developmental rates were obtained for the average Malaysian temperature and these were used in constructing the transition matrix for the matrix model. The model, which was based only on temperature, projected that the population of Aedes aegypti will blow up with time, which is not realistic. For further work, other factors need to be taken into account to obtain a more realistic result.

  16. Burchellin: study of bioactivity against Aedes aegypti

    PubMed Central

    2014-01-01

    Background The dengue mosquito Aedes aegypti Linnaeus, 1762 is a widespread insect pest of serious medical importance. Since no effective vaccine is available for treating dengue, the eradication or control of the main mosquito vector is regarded as essential. Since conventional insecticides have limited success, plants may be an alternative source of larvicidal agents, since they contain a rich source of bioactive chemicals. The aim of this study was to evaluate the larvicidal activity of the neolignan burchellin isolated from Ocotea cymbarum (Lauraceae), a plant from the Amazon region, against third instar larvae of A. aegypti. Methods Burchellin obtained from O. cymbarum was analyzed. The inhibitory activity against A. aegypti eggs and larvae and histological changes in the digestive system of treated L3 larvae were evaluated. In addition, nitric oxide synthase activity and nitric oxide levels were determined, and cytotoxicity bioassays performed. Results The data showed that burchellin interfered with the development cycle of the mosquito, where its strongest toxic effect was 100% mortality in larvae (L3) at concentrations ≥ 30 ppm. This compound did not show target cell toxicity in peritoneal macrophages from BALB/c mice, and proved to have molecular stability when dissolved in water. The L3 and L4 larvae treated with the compound showed cellular destruction and disorganization, cell spacing, and vacuolization of epithelial cells in small regions of the midgut. Conclusion The neolignan burchellin proved to be a strong candidate for a natural, safe and stable phytolarvicidal to be used in population control of A. aegypti. PMID:24713267

  17. A review on symmetries for certain Aedes aegypti models

    NASA Astrophysics Data System (ADS)

    Freire, Igor Leite; Torrisi, Mariano

    2015-04-01

    We summarize our results related with mathematical modeling of Aedes aegypti and its Lie symmetries. Moreover, some explicit, group-invariant solutions are also shown. Weak equivalence transformations of more general reaction diffusion systems are also considered. New classes of solutions are obtained.

  18. Aedes aegypti and Aedes albopictus Habitat Preferences in South Texas, USA

    PubMed Central

    Champion, Samantha R; Vitek, Christopher J

    2014-01-01

    The South Texas region has a historical record of occasional dengue outbreaks. The recent introduction of chikungunya virus to the Caribbean suggests that this disease may be a concern as well. Six different cities and three field habitat types (residential, tire shops, and cemeteries) were examined for evidence of habitat and longitudinal preference of two vector species, Aedes aegypti and Aedes albopictus. A. aegypti was more prevalent in tire shop sites, while A. albopictus was more prevalent in cemetery sites. In residential sites, the relative abundance of the two species varied with longitude, with A. albopictus being more abundant near the coast, and A. aegypti being more abundant inland. There was also a temporal variation, with A. aegypti declining in frequency over time in residential sites. These results have implications for control strategies and disease risk and suggest a greater need for increased surveillance and research in the region. PMID:25520559

  19. Aedes aegypti and Aedes albopictus Habitat Preferences in South Texas, USA.

    PubMed

    Champion, Samantha R; Vitek, Christopher J

    2014-01-01

    The South Texas region has a historical record of occasional dengue outbreaks. The recent introduction of chikungunya virus to the Caribbean suggests that this disease may be a concern as well. Six different cities and three field habitat types (residential, tire shops, and cemeteries) were examined for evidence of habitat and longitudinal preference of two vector species, Aedes aegypti and Aedes albopictus. A. aegypti was more prevalent in tire shop sites, while A. albopictus was more prevalent in cemetery sites. In residential sites, the relative abundance of the two species varied with longitude, with A. albopictus being more abundant near the coast, and A. aegypti being more abundant inland. There was also a temporal variation, with A. aegypti declining in frequency over time in residential sites. These results have implications for control strategies and disease risk and suggest a greater need for increased surveillance and research in the region. PMID:25520559

  20. FISH landmarks for Aedes aegypti chromosomes.

    PubMed

    Brown, S E; Knudson, D L

    1997-05-01

    Aedes aegypti metaphase chromosome landmarks have been developed so that each chromosome of the haploid genome can be unambiguously identified and oriented by fluorescence in situ hybridization (FISH) and digital imaging microscopy. The FISH tags were derived from three cosmids that contain repetitive Ae. aegypti sequences and their unique FISH tagging characteristics are demonstrated. The sequence of the three chromosomal tags revealed that the chromosome 1 tag is an 18S fragment from the ribosomal cistron, and the other two chromosomal tags are repeats found in Ae. aegypti with no apparent similarity to known sequences. A single plasmid that contains the three chromosomes tag sequences has been constructed to simplify future FISH physical mapping. PMID:9099584

  1. Spatial Stability of Adult Aedes aegypti Populations

    PubMed Central

    Barrera, Roberto

    2011-01-01

    Vector control programs could be more efficient by identifying the location of highly productive sites of Aedes aegypti. This study explored if the number of female adults of Ae. aegypti in BG-Sentinel traps was clustered and if their spatial distribution changed in time in two neighborhoods in San Juan, Puerto Rico. Traps were uniformly distributed across each neighborhood (130 m from each other), and samples were taken every 3 weeks. Global and local spatial autocorrelations were explored. Spatial stability existed if the rank order of trap captures was kept in time. There was lack of global autocorrelation in both neighborhoods, precluding their stratification for control purposes. Hot and cold spots were identified, revealing the highly focal nature of Ae. aegypti. There was significant spatial stability throughout the study in both locations. The consistency in trap productivity in time could be used to increase the effectiveness of vector and dengue control programs. PMID:22144449

  2. Intraspecific Competition and Population Dynamics of Aedes aegypti

    NASA Astrophysics Data System (ADS)

    Paixão, C. A.; Charret, I. C.; Lima, R. R.

    2012-04-01

    We report computational simulations for the evolution of the population of the dengue vector, Aedes aegypti mosquitoes. The results suggest that controlling the mosquito population, on the basis of intraspecific competition at the larval stage, can be an efficient mechanism for controlling the spread of the epidemic. The results also show the presence of a kind of genetic evolution in vector population, which results mainly in increasing the average lifespan of individuals in adulthood.

  3. Laboratory evaluation of the response of Aedes aegypti and Aedes albopictus uninfected and infected with dengue virus to deet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Laboratory studies were conducted to compare the response of Aedes aegypti (L.) and Aedes albopictus (Skuse) adults, uninfected and infected with four serotypes of dengue virus, to a repellent containing 5% deet. The results showed that mosquitoes infected with the four serotypes of dengue respond i...

  4. EFFICACY OF THAI NEEM OIL AGAINST AEDES AEGYPTI (L.) LARVAE.

    PubMed

    Silapanuntakul, Suthep; Keanjoom, Romnalin; Pandii, Wongdyan; Boonchuen, Supawadee; Sombatsiri, Kwanchai

    2016-05-01

    Trees with larvicidal activity may be found in Thailand. We conducted this study to evaluate the efficacy and length of efficacy of Thai neem (Azadirachta siamensis) oil emulsion and an alginate bead of Thai neem oil formulation against early fourth stage Aedes aegypti larvae using a dipping test. The Thai neem oil emulsion had significantly greater larvicidal activity than the alginate bead formulation at 12 to 60 hours post-exposure (p < 0.01). The Thai neem oil formulation resulted in 100% mortality among the early fourth stage Aedes aegypti larvae at 48 hours, while the alginate bead formulation resulted in 98% larval mortality at 84 hours and 100% mortality at 96 hours. The mean larval mortality using the Thai neem oil emulsion dropped to < 25% by 12 days and with the alginate beads dropped to < 25% by 15 days of exposure. PMID:27405123

  5. Midgut bacterial dynamics in Aedes aegypti.

    PubMed

    Terenius, Olle; Lindh, Jenny M; Eriksson-Gonzales, Karolina; Bussière, Luc; Laugen, Ane T; Bergquist, Helen; Titanji, Kehmia; Faye, Ingrid

    2012-06-01

    In vector mosquitoes, the presence of midgut bacteria may affect the ability to transmit pathogens. We have used a laboratory colony of Aedes aegypti as a model for bacterial interspecies competition and show that after a blood meal, the number of species (culturable on Luria-Bertani agar) that coexist in the midgut is low and that about 40% of the females do not harbor any cultivable bacteria. We isolated species belonging to the genera Bacillus, Elizabethkingia, Enterococcus, Klebsiella, Pantoea, Serratia, and Sphingomonas, and we also determined their growth rates, antibiotic resistance, and ex vivo inhibition of each other. To investigate the possible existence of coadaptation between midgut bacteria and their host, we fed Ae. aegypti cohorts with gut bacteria from human, a frog, and two mosquito species and followed the bacterial population growth over time. The dynamics of the different species suggests coadaptation between host and bacteria, and interestingly, we found that Pantoea stewartii isolated from Ae. aegypti survive better in Ae. aegypti as compared to P. stewartii isolated from the malaria mosquito Anopheles gambiae. PMID:22283178

  6. Cytotoxicity of piperamides towards Aedes aegypti (Diptera: Culicidae).

    PubMed

    Maleck, Marise; Ferreira, Bruna; Mallet, Jacenir; Guimarães, Anthony; Kato, Massuo

    2014-03-01

    The effectiveness of the amides piplartine and piperlonguminine isolated from Piper species for controlling L3 and L4 of Aedes aegypti (L.) was assessed through bioassays at concentrations ranging from 1 to 300 g/l ml. Piplartine reduced the mosquito development period and caused larval mortality only at concentrations > 100 microg/ml, whereas piperlonguminine resulted in an extended period of mosquito development (10 microg/ml) and caused 100% larval mortality (30 microg/ml) within 24 h. The toxicity and cytotoxic effects of piperlonguminine on epithelial cells of the digestive system of Ae. aegypti were viewed using transmission electron microscopy, which indicated vacuolization of cytoplasm, mitochondrial swelling and leaking of nuclear material. Piperlonguminine was the more effective amide, showing toxic activity with LD50 of approximately 12 microg/ml against the larvae of Ae. aegypti. PMID:24724297

  7. Aedes aegypti resistance to temephos in Argentina.

    PubMed

    Seccacini, Emilia; Lucia, Alejandro; Zerba, Eduardo; Licastro, Susana; Masuh, Hector

    2008-12-01

    Monitoring of resistance of Aedes aegypti to temephos was implemented in the provinces of Formosa and Misiones, Argentina, as a response to the need to improve the vigilance for the dengue vector in areas of high risk of dengue. Eggs collected in each locality were reared, and susceptibility to temephos was assayed using larval bioassays. A weak decrease in susceptibility of larvae to temephos was observed in Clorinda and Puerto Iguazú, indicating an incipient resistance with a resistance ratio of 3. No control failures have been observed yet, and this program should allow the early detection of a real problem in our country. PMID:19181076

  8. Comparison of the insecticide susceptibilities of laboratory strains of Aedes aegypti and Aedes albopictus.

    PubMed

    Gómez, Andrea; Seccacini, Emilia; Zerba, Eduardo; Licastro, Susana

    2011-12-01

    A susceptible strain of Aedes albopictus derived from the Gainesville strain (Florida, USA) was established in our laboratory. The larvicidal efficacies of the neurotoxic insecticides temephos, permethrin and the pure cis and trans-permethrin isomers and the microbial insecticide Bacillus thuringiensis israelensis (Bti) against Ae. albopictus were estimated and compared to a susceptible strain of Aedes aegypti. The larvicidal effect of insect growth regulator pyriproxyfen was also evaluated in both mosquito strains. The median lethal concentration/median emergency inhibition values for Ae. aegypti and Ae. albopictus, respectively, were: temephos, 3.058 and 6.632 ppb, permethrin, 3.143 and 4.933 ppb, cis-permethrin, 4.457 and 10.068 ppb, trans-permethrin, 1.510 and 3.883 ppb, Bti, 0.655 and 0.880 ppb and pyriproxyfen, 0.00774 and 0.01642 ppb. Ae. albopictus was more tolerant than Ae. aegypti to all six larvicides evaluated. The order of susceptibility for Ae. aegypti was pyriproxyfen > Bti > trans-permethrin > temephos > permethrin > cis-permethrin and for Ae. albopictus was pyriproxyfen > Bti > trans-permethrin > permethrin > temephos > cis-permethrin. Because both species can be found together in common urban, suburban and rural breeding sites, the results of this work provide baseline data on the susceptibility of Ae. albopictus to insecticides commonly used for controlling Ae. aegypti in the field. PMID:22241122

  9. Differentiation of Aedes aegypti and Aedes notoscriptus (Diptera: Culicidae) eggs using scanning electron microscopy.

    PubMed

    Faull, Katherine J; Williams, Craig R

    2016-05-01

    Aedes notoscriptus and Aedes aegypti are both peri-domestic, invasive container-breeding mosquitoes. While the two potential arboviral vectors are bionomically similar, their sympatric distribution in Australia is limited. In this study, analyses of Ae. aegypti and Ae. notoscriptus eggs were enabled using scanning electron microscopy. Significant variations in egg length to width ratio and outer chorionic cell field morphology between Ae. aegypti and Ae. notoscriptus enabled distinction of the two species. Intraspecific variations in cell field morphology also enabled differentiation of the separate populations of both species, highlighting regional and global variation. Our study provides a comprehensive comparative analysis of inter- and intraspecific egg morphological and morphometric variation between two invasive container-breeding mosquitoes. The results indicate a high degree of intraspecific variation in Ae. notoscriptus egg morphology when compared to the eggs of Ae. aegypti. Comparative morphological analyses of Ae. aegypti and Ae. notoscriptus egg attributes using SEM allows differentiation of the species and may be helpful in understanding egg biology in relation to biotope of origin. PMID:26845557

  10. Gene flow networks among American Aedes aegypti populations

    PubMed Central

    Gonçalves da Silva, Anders; Cunha, Ivana C L; Santos, Walter S; Luz, Sérgio L B; Ribolla, Paulo E M; Abad-Franch, Fernando

    2012-01-01

    The mosquito Aedes aegypti, the dengue virus vector, has spread throughout the tropics in historical times. While this suggests man-mediated dispersal, estimating contemporary connectivity among populations has remained elusive. Here, we use a large mtDNA dataset and a Bayesian coalescent framework to test a set of hypotheses about gene flow among American Ae. aegypti populations. We assessed gene flow patterns at the continental and subregional (Amazon basin) scales. For the Americas, our data favor a stepping-stone model in which gene flow is higher among adjacent populations but in which, at the same time, North American and southeastern Brazilian populations are directly connected, likely via sea trade. Within Amazonia, the model with highest support suggests extensive gene flow among major cities; Manaus, located at the center of the subregional transport network, emerges as a potentially important connecting hub. Our results suggest substantial connectivity across Ae. aegypti populations in the Americas. As long-distance active dispersal has not been observed in this species, our data support man-mediated dispersal as a major determinant of the genetic structure of American Ae. aegypti populations. The inferred topology of interpopulation connectivity can inform network models of Ae. aegypti and dengue spread. PMID:23144654

  11. Reappearance of Aedes aegypti (Diptera: Culicidae) in Lima, Peru.

    PubMed

    Andrade, C S; Cáceres, A G; Vaquerizo, A; Ibañez-Bernal, S; Cachay, L S

    2001-07-01

    We report here the reappearance of Aedes aegypti in the Rimac district, and summarize the history of this mosquito species in Peru since its first detection in 1852. On March 17 2000 were found Ae. aegypti and Culex quinquefasciatus in Mariscal Castilla town, Flor de Amancaes, San Juan de Amancaes, El Altillo and Santa Rosa in the Rimac district, Lima Province. PMID:11500764

  12. The Aedes aegypti genome: a comparative perspective.

    PubMed

    Waterhouse, R M; Wyder, S; Zdobnov, E M

    2008-02-01

    The sequencing of the second mosquito genome, Aedes aegypti, in addition to Anopheles gambiae, is a major milestone that will drive molecular-level and genome-wide high-throughput studies of not only these but also other mosquito vectors of human pathogens. Here we overview the ancestry of the mosquito genes, list the major expansions of gene families that may relate to species adaptation processes, as exemplified by CYP9 cytochrome P450 genes, and discuss the conservation of chromosomal gene arrangements among the two mosquitoes and fruit fly. Many more invertebrate genomes are expected to be sequenced in the near future, including additional vectors of human pathogens (see http://www.vectorbase.org), and further comparative analyses will become increasingly refined and informative, hopefully improving our understanding of the genetic basis of phenotypical differences among these species, their vectorial capacity, and ultimately leading to the development of novel disease control strategies. PMID:18237279

  13. Larvicidal activity of Tagetes minuta (marigold) toward Aedes aegypti.

    PubMed

    Green, M M; Singer, J M; Sutherland, D J; Hibben, C R

    1991-06-01

    The steam distilled oils of 3 species of marigold, Tagetes patula, T. erecta and T. minuta, were tested for larvicidal activity toward third instar Aedes aegypti; activity at 10 ppm was demonstrated only for T. minuta. The larvicidal property of the whole oil dispersed in water persisted for at least 9 days. The terpene, ocimenone, which is a part of the whole oil, was found to be larvicidal only at a higher concentration than the whole oil and to lose its activity within 24 h after dispersal in water. These results suggest a potential utilization of oil of T. minuta or its components for the control of Ae. aegypti and other species of mosquitoes. PMID:1895085

  14. Aedes aegypti (L.) and Aedes albopictus (Skuse) in Singapore City

    PubMed Central

    Chan, Y. C.; Chan, K. L.; Ho, B. C.

    1971-01-01

    The distribution and density of Ae. aegypti and Ae. albopictus in Singapore were assessed from extensive larval surveys carried out from 1966 to 1968 to evaluate their respective roles in the epidemiology of dengue haemorrhagic fever and to study their ecology in the urban areas. Ten urban areas where the majority of dengue haemorrhagic fever cases occurred were surveyed. The results showed that both species were common in the city, with Ae. aegypti being the dominant species. The distribution of Ae. aegypti was more uniform and related to the prevailing housing types and conditions. Its premise index was highest in slum houses, intermediate in shop houses, and lowest in multistorey flats. Ae. albopictus, on the other hand, did not seem to be related to the prevailing housing type in its distribution but tended to be more widespread in areas with open spaces. The larval density index (the average number of larvae per housing unit) was higher for Ae. aegypti than for Ae. albopictus, in agreement with the relative densities shown by their premise indices. The larval density index correlated well with the premise index and correlated best with the infested-receptacle index. For practical purposes, the most suitable, convenient, and reliable measure of density of Ae. aegypti population seems to be the infested-receptacle index. An attempt was made to estimate the rate of dispersal of Ae. aegypti from a stable population to an adjacent area of multistorey flats. The rate of dispersal, estimated from the premise index and the larval density index, was approximately 2% per year of the ”donor” population. PMID:5316745

  15. Vector Competence of Aedes aegypti and Aedes polynesiensis Populations from French Polynesia for Chikungunya Virus

    PubMed Central

    Richard, Vaea; Paoaafaite, Tuterarii; Cao-Lormeau, Van-Mai

    2016-01-01

    Background From October 2014 to March 2015, French Polynesia experienced for the first time a chikungunya outbreak. Two Aedes mosquitoes may have contributed to chikungunya virus (CHIKV) transmission in French Polynesia: the worldwide distributed Ae. aegypti and the Polynesian islands-endemic Ae. polynesiensis mosquito. Methods To investigate the vector competence of French Polynesian populations of Ae. aegypti and Ae. polynesiensis for CHIKV, mosquitoes were exposed per os at viral titers of 7 logs tissue culture infectious dose 50%. At 2, 6, 9, 14 and 21 days post-infection (dpi), saliva was collected from each mosquito and inoculated onto C6/36 mosquito cells to check for the presence of CHIKV infectious particles. Legs and body (thorax and abdomen) of each mosquito were also collected at the different dpi and submitted separately to viral RNA extraction and CHIKV real-time RT-PCR. Results CHIKV infection rate, dissemination and transmission efficiencies ranged from 7–90%, 18–78% and 5–53% respectively for Ae. aegypti and from 39–41%, 3–17% and 0–14% respectively for Ae. polynesiensis, depending on the dpi. Infectious saliva was found as early as 2 dpi for Ae. aegypti and from 6 dpi for Ae. polynesiensis. Our laboratory results confirm that the French Polynesian population of Ae. aegypti is highly competent for CHIKV and they provide clear evidence for Ae. polynesiensis to act as an efficient CHIKV vector. Conclusion As supported by our findings, the presence of two CHIKV competent vectors in French Polynesia certainly contributed to enabling this virus to quickly disseminate from the urban/peri-urban areas colonized by Ae. aegypti to the most remote atolls where Ae. polynesiensis is predominating. Ae. polynesiensis was probably involved in the recent chikungunya outbreaks in Samoa and the Cook Islands. Moreover, this vector may contribute to the risk for CHIKV to emerge in other Polynesian islands like Fiji, and more particularly Wallis where there

  16. Modelling adult Aedes aegypti and Aedes albopictus survival at different temperatures in laboratory and field settings

    PubMed Central

    2013-01-01

    Background The survival of adult female Aedes mosquitoes is a critical component of their ability to transmit pathogens such as dengue viruses. One of the principal determinants of Aedes survival is temperature, which has been associated with seasonal changes in Aedes populations and limits their geographical distribution. The effects of temperature and other sources of mortality have been studied in the field, often via mark-release-recapture experiments, and under controlled conditions in the laboratory. Survival results differ and reconciling predictions between the two settings has been hindered by variable measurements from different experimental protocols, lack of precision in measuring survival of free-ranging mosquitoes, and uncertainty about the role of age-dependent mortality in the field. Methods Here we apply generalised additive models to data from 351 published adult Ae. aegypti and Ae. albopictus survival experiments in the laboratory to create survival models for each species across their range of viable temperatures. These models are then adjusted to estimate survival at different temperatures in the field using data from 59 Ae. aegypti and Ae. albopictus field survivorship experiments. The uncertainty at each stage of the modelling process is propagated through to provide confidence intervals around our predictions. Results Our results indicate that adult Ae. albopictus has higher survival than Ae. aegypti in the laboratory and field, however, Ae. aegypti can tolerate a wider range of temperatures. A full breakdown of survival by age and temperature is given for both species. The differences between laboratory and field models also give insight into the relative contributions to mortality from temperature, other environmental factors, and senescence and over what ranges these factors can be important. Conclusions Our results support the importance of producing site-specific mosquito survival estimates. By including fluctuating temperature regimes

  17. Functional Development of the Octenol Response in Aedes aegypti

    PubMed Central

    Bohbot, Jonathan D.; Durand, Nicolas F.; Vinyard, Bryan T.; Dickens, Joseph C.

    2013-01-01

    Attraction of female Aedes aegypti mosquitoes to 1-octen-3-ol (octenol), CO2, lactic acid, or ammonia emitted by vertebrate hosts is not only contingent on the presence of odorants in the environment, but is also influenced by the insect’s physiological state. For anautogenous mosquito species, like A. aegypti, newly emerged adult females neither respond to host odors nor engage in blood-feeding; the bases for these behaviors are poorly understood. Here we investigated detection of two components of an attractant blend emitted by vertebrate hosts, octenol, and CO2, by female A. aegypti mosquitoes using electrophysiological, behavioral, and molecular approaches. An increase in sensitivity of octenol olfactory receptor neurons (ORNs) was correlated with an increase in odorant receptor gene (Or) expression and octenol-mediated attractive behavior from day 1 to day 6 post-emergence. While the sensitivity of octenol ORNs was maintained through day 10, behavioral responses to octenol decreased as did the ability of females to discriminate between octenol and octenol + CO2. Our results show differing age-related roles for the peripheral receptors for octenol and higher order neural processing in the behavior of female mosquitoes. PMID:23471139

  18. Macroclimate determines the global range limit of Aedes aegypti.

    PubMed

    Capinha, César; Rocha, Jorge; Sousa, Carla A

    2014-09-01

    Aedes aegypti is the main vector of dengue and a number of other diseases worldwide. Because of the domestic nature of this mosquito, the relative importance of macroclimate in shaping its distribution has been a controversial issue. We have captured here the worldwide macroclimatic conditions occupied by A. aegypti in the last century. We assessed the ability of this information to predict the species' observed distribution using supra-continental spatially-uncorrelated data. We further projected the distribution of the colonized climates in the near future (2010-2039) under two climate-change scenarios. Our results indicate that the macroclimate is largely responsible for setting the maximum range limit of A. aegypti worldwide and that in the near future, relatively wide areas beyond this limit will receive macroclimates previously occupied by the species. By comparing our projections, with those from a previous model based strictly on species-climate relationships (i.e., excluding human influence), we also found support for the hypothesis that much of the species' range in temperate and subtropical regions is being sustained by artificial environments. Altogether, these findings suggest that, if the domestic environments commonly exploited by this species are available in the newly suitable areas, its distribution may expand considerably in the near future. PMID:24643859

  19. Formulas of components of citronella oil against mosquitoes (Aedes aegypti).

    PubMed

    Hsu, Wey-Shin; Yen, Jui-Hung; Wang, Yei-Shung

    2013-01-01

    The mosquito Aedes aegypti is an epidemic vector of several diseases such as dengue fever and yellow fever. Several pesticides are used to control the mosquito population. Because of their frequent use, some mosquitoes have developed resistance. In this study, we used the Y-tube olfactometer to test essential oils of Cymbopogon species and screened specific formulas of components as repellents against Ae. aegypti. At 400 μL, the extracted oil of citronella grass (Cymbopogon nardus) and myrcene produced a low-active response by inhibiting mosquito host-seeking activity. Citronella grass, lemon grass (Cymbopogon citratus), citral and myrcene also produced a low-treatment response to repellents, for more potential to affect host-seeking behavior. Furthermore, the mixture of citral, myrcene, and citronellal oil (C:M:Ci = 6:4:1) greatly affected and inhibited host-seeking behavior (76% active response; 26% treatment response with 40 μL; 42.5%, 18% with 400 μL; and 19%, 23% with 1000 μL). As compared with the result for N,N-diethyl-3-methylbenzamide (DEET; 44%, 22% with 400 μL), adjusting the composition formulas of citronella oil had a synergistic effect, for more effective repellent against Ae. aegypti. PMID:23998314

  20. Aedes aegypti (L.) and Aedes albopictus (Skuse) in Singapore City

    PubMed Central

    Chan, K. L.; Chan, Y. C.; Ho, B. C.

    1971-01-01

    There is a current belief stemming from statements made in the literature that Ae. aegypti is displacing Ae. albopictus in a number of cities of South-East Asia and in Calcutta, India. A critical review of these works showed that either the observations were inconclusive or the methods of collection were biased for one or the other species. Extensive surveys of the larval habitats of the two species in Singapore showed that the sharing of breeding habitats was uncommon in both urban and rural areas. In the laboratory, Ae. aegypti took a slightly shorter time to complete its development from egg-hatching to adult emergence. It is concluded that information available at present is insufficient to interpret the Ae. aegypti—Ae. albopictus population balance resulting from interspecific competition in Singapore. The pattern of distribution of the two species is unlikely to be the result of competitive displacement; it is, rather, probable that this pattern results from factors that favour the rapid increase and spread of one species over the other. It is suggested that Ae. aegypti in the city is favoured by rapid and extensive urbanization and by the higher fecundity and shorter life cycle of the species. PMID:5316748

  1. On the analysis of parasite effect for Aedes aegypti and Aedes albopictus population

    NASA Astrophysics Data System (ADS)

    Kallista, Meta; Aldila, Dipo; Nuraini, Nuning; Soewono, Edy

    2014-03-01

    It has been reported in some countries that the population of Aedes aegypti has been significantly reduced by the invasion of Aedes albopictus. There has been a hypothesis explaining this phenomenon of which investigated the influence of parasites pathogenesis to the competition between these two mosquito species in the fields. Ascogregarina taiwanensis and Ascogregarina culicis are known as parasites that infect Aedes albopictus and Aedes aegypti, respectively. Several studies have concluded that Ascogregarina taiwanensis caused high fatality for Aedes aegypti larvae, but Ascogregarina culicis was not pathogenic to Aedes albopictus larvae. Therefore, Ascogregarina taiwanensis may contribute to reduce the number of populations Aedes aegypti in the fields. Inspired by these facts, a mathematical model depicting interaction between parasites and mosquitoes is constructed in this paper. In this model are included six dynamic mosquito compartments, i.e. egg, larvae, infected larvae, adult, infected adult and one dynamic compartment for parasite. Derivation of the existence criteria and the stability analysis of parasite-free equilibrium as well as the basic offspring for the model are presented. Numerical simulations for sensitivity analysis indicating the invasive species for variation parameters are shown.

  2. Cytochromr b expression and RNAi knockdown in Aedes aegypti.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cytochrome b, coded by mitochondrial DNA, is one of the cytochromes involved in the electron transport in the respiratory chain of mitochondria. Cytochrome b is a critical intermediate in mitoptosis, i.e. a mitochondrial death pathway. To reveal whether cytochrome b of the mosquito Aedes aegypti (Ae...

  3. Pyrethroid resistance is widespread among Florida populations of Aedes aegypti

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aedes aegypti is an efficient vector of a number of diseases that affect man and is of increasing concern because of the reemergence of dengue and recent identification of locally acquired chikungunya in Florida. Pesticide resistance in this species has been demonstrated in several neighboring coun...

  4. Functional development of the octenol response in aedes aegypti

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Attraction of female Aedes aegypti mosquitoes to 1-octen-3-ol (octenol), CO2, lactic acid or ammonia emitted by vertebrate hosts is not only contingent on the presence of odorants in the environment, but is also influenced by the insect’s physiological state. For anautogenous mosquito species, lik...

  5. The wMel strain of Wolbachia Reduces Transmission of Zika virus by Aedes aegypti

    PubMed Central

    Aliota, Matthew T.; Peinado, Stephen A.; Velez, Ivan Dario; Osorio, Jorge E.

    2016-01-01

    Zika virus (ZIKV) is causing an explosive outbreak of febrile disease in the Americas. There are no effective antiviral therapies or licensed vaccines for this virus, and mosquito control strategies have not been adequate to contain the virus. A promising candidate for arbovirus control and prevention relies on the introduction of the intracellular bacterium Wolbachia into Aedes aegypti mosquitoes. This primarily has been proposed as a tool to control dengue virus (DENV) transmission; however, evidence suggests Wolbachia infections confer protection for Ae. aegypti against other arboviruses. At present, it is unknown whether or not ZIKV can infect, disseminate, and be transmitted by Wolbachia-infected Ae. aegypti. Using Ae. aegypti infected with the wMel strain of Wolbachia that are being released in Medellin, Colombia, we report that these mosquitoes have reduced vector competence for ZIKV. These results support the use of Wolbachia biocontrol as a multivalent strategy against Ae. aegypti-transmitted viruses. PMID:27364935

  6. The wMel strain of Wolbachia Reduces Transmission of Zika virus by Aedes aegypti.

    PubMed

    Aliota, Matthew T; Peinado, Stephen A; Velez, Ivan Dario; Osorio, Jorge E

    2016-01-01

    Zika virus (ZIKV) is causing an explosive outbreak of febrile disease in the Americas. There are no effective antiviral therapies or licensed vaccines for this virus, and mosquito control strategies have not been adequate to contain the virus. A promising candidate for arbovirus control and prevention relies on the introduction of the intracellular bacterium Wolbachia into Aedes aegypti mosquitoes. This primarily has been proposed as a tool to control dengue virus (DENV) transmission; however, evidence suggests Wolbachia infections confer protection for Ae. aegypti against other arboviruses. At present, it is unknown whether or not ZIKV can infect, disseminate, and be transmitted by Wolbachia-infected Ae. aegypti. Using Ae. aegypti infected with the wMel strain of Wolbachia that are being released in Medellin, Colombia, we report that these mosquitoes have reduced vector competence for ZIKV. These results support the use of Wolbachia biocontrol as a multivalent strategy against Ae. aegypti-transmitted viruses. PMID:27364935

  7. Comparative efficacy of existing surveillance tools for Aedes aegypti in Western Kenya.

    PubMed

    Yalwala, Sancto; Clark, Jeffrey; Oullo, David; Ngonga, Daniel; Abuom, David; Wanja, Elizabeth; Bast, Joshua

    2015-12-01

    All traditional surveillance techniques for Aedes aegypti have been developed for the cosmopolitan domestic subspecies Ae. aegypti aegypti, and not the sylvatic subspecies, Ae. aegypti formosus. The predominant form in Western Kenya is Ae. aegypti formosus that is rarely associated with human habitations but is linked to transmission of sylvatic dengue virus strains. We compared five surveillance methods for their effectiveness in sampling Ae. aegypti formosus with the goal of determining a sustainable surveillance strategy in Kenya. The methods included larval and pupal surveys, oviposition trapping, BG-Sentinel trapping, resting boxes, and backpack aspirations. Larval and pupal surveys collected the highest number of Ae. aegypti formosus (51.3%), followed by oviposition traps (45.7%), BG-Sentinel traps (3.0%), and zero collected with either backpack aspiration or resting box collections. No Ae. aegypti formosus larvae or pupae were found indoors. The results indicate that oviposition traps and outdoor larval and pupal surveys were better surveillance methods for Ae. aegypti formosus in Western Kenya. PMID:26611965

  8. Dengue virus 3 genotype I in Aedes aegypti mosquitoes and eggs, Brazil, 2005-2006.

    PubMed

    Vilela, Ana P P; Figueiredo, Leandra B; dos Santos, João R; Eiras, Alvaro E; Bonjardim, Cláudio A; Ferreira, Paulo C P; Kroon, Erna G

    2010-06-01

    Dengue virus type 3 genotype I was detected in Brazil during epidemics in 2002-2004. To confirm this finding, we identified this virus genotype in naturally infected field-caught Aedes aegypti mosquitoes and eggs. Results showed usefulness of virus investigations in vectors as a component of active epidemiologic surveillance. PMID:20507754

  9. Dengue Virus 3 Genotype I in Aedes aegypti Mosquitoes and Eggs, Brazil, 2005–2006

    PubMed Central

    Vilela, Ana P.P.; Figueiredo, Leandra B.; dos Santos, João R.; Eiras, Álvaro E.; Bonjardim, Cláudio A.; Ferreira, Paulo C.P.

    2010-01-01

    Dengue virus type 3 genotype I was detected in Brazil during epidemics in 2002–2004. To confirm this finding, we identified this virus genotype in naturally infected field-caught Aedes aegypti mosquitoes and eggs. Results showed usefulness of virus investigations in vectors as a component of active epidemiologic surveillance. PMID:20507754

  10. Comparison of Vector Competence of Aedes mediovittatus and Aedes aegypti for Dengue Virus: Implications for Dengue Control in the Caribbean

    PubMed Central

    Poole-Smith, B. Katherine; Hemme, Ryan R.; Delorey, Mark; Felix, Gilberto; Gonzalez, Andrea L.; Amador, Manuel; Hunsperger, Elizabeth A.; Barrera, Roberto

    2015-01-01

    Background Aedes mediovittatus mosquitoes are found throughout the Greater Antilles in the Caribbean and often share the same larval habitats with Ae. Aegypti, the primary vector for dengue virus (DENV). Implementation of vector control measures to control dengue that specifically target Ae. Aegypti may not control DENV transmission in Puerto Rico (PR). Even if Ae. Aegypti is eliminated or DENV refractory mosquitoes are released, DENV transmission may not cease when other competent mosquito species like Ae. Mediovittatus are present. To compare vector competence of Ae. Mediovittatus and Ae. Aegypti mosquitoes, we studied relative infection and transmission rates for all four DENV serotypes. Methods To compare the vector competence of Ae. Mediovittatus and Ae. Aegypti, mosquitoes were exposed to DENV 1–4 per os at viral titers of 5–6 logs plaque-forming unit (pfu) equivalents. At 14 days post infectious bloodmeal, viral RNA was extracted and tested by qRT-PCR to determine infection and transmission rates. Infection and transmission rates were analyzed with a generalized linear model assuming a binomial distribution. Results Ae. Aegypti had significantly higher DENV-4 infection and transmission rates than Ae. mediovittatus. Conclusions This study determined that Ae. Mediovittatus is a competent DENV vector. Therefore dengue prevention programs in PR and the Caribbean should consider both Ae. Mediovittatus and Ae. Aegypti mosquitoes in their vector control programs. PMID:25658951

  11. Patterns of Geographic Expansion of Aedes aegypti in the Peruvian Amazon

    PubMed Central

    Guagliardo, Sarah Anne; Barboza, José Luis; Morrison, Amy C.; Astete, Helvio; Vazquez-Prokopec, Gonzalo; Kitron, Uriel

    2014-01-01

    Background and Objectives In the Peruvian Amazon, the dengue vector Aedes aegypti is abundant in large urban centers such as Iquitos. In recent years, it has also been found in a number of neighboring rural communities with similar climatic and socioeconomic conditions. To better understand Ae. aegypti spread, we compared characteristics of communities, houses, and containers in infested and uninfested communities. Methods We conducted pupal-demographic surveys and deployed ovitraps in 34 communities surrounding the city of Iquitos. Communities surveyed were located along two transects: the Amazon River and a 95km highway. We calculated entomological indices, mapped Ae. aegypti presence, and developed univariable and multivariable logistic regression models to predict Ae. aegypti presence at the community, household, or container level. Results Large communities closer to Iquitos were more likely to be infested with Ae. aegypti. Within infested communities, houses with Ae. aegypti had more passively-filled containers and were more often infested with other mosquito genera than houses without Ae. aegypti. For containers, large water tanks/drums and containers with solar exposure were more likely to be infested with Ae. aegypti. Maps of Ae. aegypti presence revealed a linear pattern of infestation along the highway, and a scattered pattern along the Amazon River. We also identified the geographical limit of Ae. aegypti expansion along the highway at 19.3 km south of Iquitos. Conclusion In the Peruvian Amazon, Ae. aegypti geographic spread is driven by human transportation networks along rivers and highways. Our results suggest that urban development and oviposition site availability drive Ae. aegypti colonization along roads. Along rivers, boat traffic is likely to drive long-distance dispersal via unintentional transport of mosquitoes on boats. PMID:25101786

  12. On the Seasonal Occurrence and Abundance of the Zika Virus Vector Mosquito Aedes Aegypti in the Contiguous United States

    PubMed Central

    Monaghan, Andrew J.; Morin, Cory W.; Steinhoff, Daniel F.; Wilhelmi, Olga; Hayden, Mary; Quattrochi, Dale A.; Reiskind, Michael; Lloyd, Alun L.; Smith, Kirk; Schmidt, Chris A.; Scalf, Paige E.; Ernst, Kacey

    2016-01-01

    Introduction: An ongoing Zika virus pandemic in Latin America and the Caribbean has raised concerns that travel-related introduction of Zika virus could initiate local transmission in the United States (U.S.) by its primary vector, the mosquito Aedes aegypti. Methods: We employed meteorologically driven models for 2006-2015 to simulate the potential seasonal abundance of adult Aedes aegypti for fifty cities within or near the margins of its known U.S. range. Mosquito abundance results were analyzed alongside travel and socioeconomic factors that are proxies of viral introduction and vulnerability to human-vector contact.     Results: Meteorological conditions are largely unsuitable for Aedes aegypti over the U.S. during winter months (December-March), except in southern Florida and south Texas where comparatively warm conditions can sustain low-to-moderate potential mosquito abundance. Meteorological conditions are suitable for Aedes aegypti across all fifty cities during peak summer months (July-September), though the mosquito has not been documented in all cities. Simulations indicate the highest mosquito abundance occurs in the Southeast and south Texas where locally acquired cases of Aedes-transmitted viruses have been reported previously. Cities in southern Florida and south Texas are at the nexus of high seasonal suitability for Aedes aegypti and strong potential for travel-related virus introduction. Higher poverty rates in cities along the U.S.-Mexico border may correlate with factors that increase human exposure to Aedes aegypti.     Discussion: Our results can inform baseline risk for local Zika virus transmission in the U.S. and the optimal timing of vector control activities, and underscore the need for enhanced surveillance for Aedes mosquitoes and Aedes-transmitted viruses. PMID:27066299

  13. The Effects of Midgut Serine Proteases on Dengue Virus Type 2 Infectivity of Aedes aegypti

    PubMed Central

    Brackney, Doug E.; Foy, Brian D.; Olson, Ken E.

    2009-01-01

    Dengue viruses (DENV) cause significant morbidity and mortality worldwide and are transmitted by the mosquito Aedes aegypti. Mosquitoes become infected after ingesting a viremic bloodmeal, and molecular mechanisms involved in bloodmeal digestion may affect the ability of DENV to infect the midgut. We used RNA interference (RNAi) to silence expression of four midgut serine proteases and assessed the effect of each RNAi phenotype on DENV-2 infectivity of Aedes aegypti. Silencing resulted in significant reductions in protease mRNA levels and correlated with a reduction in activity except in the case of late trypsin. RNA silencing of chymotrypsin, early and late trypsin had no effect on DENV-2 infectivity. However, silencing of 5G1 or the addition of soybean trypsin inhibitor to the infectious bloodmeals significantly increased midgut infection rates. These results suggest that some midgut serine proteases may actually limit DENV-2 infectivity of Ae. aegypti. PMID:18689635

  14. Cumulative mortality of Aedes aegypti larvae treated with compounds.

    PubMed

    Torres, Sandra Maria; Cruz, Nadine Louise Nicolau da; Rolim, Vitor Pereira de Matos; Cavalcanti, Maria Inês de Assis; Alves, Leucio Câmara; Silva Júnior, Valdemiro Amaro da

    2014-06-01

    OBJECTIVE To evaluate the larvicidal activity of Azadirachta indica, Melaleuca alternifolia, carapa guianensis essential oils and fermented extract of Carica papaya against Aedes aegypti (Linnaeus, 1762) (Diptera: Culicidae). METHODS The larvicide test was performed in triplicate with 300 larvae for each experimental group using the third larval stage, which were exposed for 24h. The groups were: positive control with industrial larvicide (BTI) in concentrations of 0.37 ppm (PC1) and 0.06 ppm (PC2); treated with compounds of essential oils and fermented extract, 50.0% concentration (G1); treated with compounds of essential oils and fermented extract, 25.0% concentration (G2); treated with compounds of essential oils and fermented extract, 12.5% concentration (G3); and negative control group using water (NC1) and using dimethyl (NC2). The larvae were monitored every 60 min using direct visualization. RESULTS No mortality occurred in experimental groups NC1 and NC2 in the 24h exposure period, whereas there was 100% mortality in the PC1 and PC2 groups compared to NC1 and NC2. Mortality rates of 65.0%, 50.0% and 78.0% were observed in the groups G1, G2 and G3 respectively, compared with NC1 and NC2. CONCLUSIONS The association between three essential oils from Azadirachta indica, Melaleuca alternifolia, Carapa guianensis and fermented extract of Carica papaya was efficient at all concentrations. Therefore, it can be used in Aedes aegypti Liverpool third larvae stage control programs. PMID:25119939

  15. Cumulative mortality of Aedes aegypti larvae treated with compounds

    PubMed Central

    Torres, Sandra Maria; da Cruz, Nadine Louise Nicolau; Rolim, Vitor Pereira de Matos; Cavalcanti, Maria Inês de Assis; Alves, Leucio Câmara; da Silva, Valdemiro Amaro

    2014-01-01

    OBJECTIVE To evaluate the larvicidal activity of Azadirachta indica, Melaleuca alternifolia, carapa guianensis essential oils and fermented extract of Carica papaya against Aedes aegypti (Linnaeus, 1762) (Diptera: Culicidae). METHODS The larvicide test was performed in triplicate with 300 larvae for each experimental group using the third larval stage, which were exposed for 24h. The groups were: positive control with industrial larvicide (BTI) in concentrations of 0.37 ppm (PC1) and 0.06 ppm (PC2); treated with compounds of essential oils and fermented extract, 50.0% concentration (G1); treated with compounds of essential oils and fermented extract, 25.0% concentration (G2); treated with compounds of essential oils and fermented extract, 12.5% concentration (G3); and negative control group using water (NC1) and using dimethyl (NC2). The larvae were monitored every 60 min using direct visualization. RESULTS No mortality occurred in experimental groups NC1 and NC2 in the 24h exposure period, whereas there was 100% mortality in the PC1 and PC2 groups compared to NC1 and NC2. Mortality rates of 65.0%, 50.0% and 78.0% were observed in the groups G1, G2 and G3 respectively, compared with NC1 and NC2. CONCLUSIONS The association between three essential oils from Azadirachta indica, Melaleuca alternifolia, Carapa guianensis and fermented extract of Carica papaya was efficient at all concentrations. Therefore, it can be used in Aedes aegypti Liverpool third larvae stage control programs. PMID:25119939

  16. Bdelloid rotifer, Philodina species in the breeding containers of Aedes aegypti and Aedes albopictus.

    PubMed

    Muniaraj, M; Arunachalam, N; Paramasivan, R; Mariappan, T; Philip Samuel, P; Rajamannar, V

    2012-12-01

    The vector mosquitoes of dengue and chikungunya fever, Aedes aegypti and Aedes albopictus have adapted to feed on humans and undergo larval and pupal development in natural and artificial freshwater collections. Although several studies reported, still, much information is required to understand the successful survival of Aedes mosquitoes in small temporary containers. In an investigation conducted in the chikungunya affected areas of Kerala state, India, the presence of Bdelloid rotifer, Philodina in 95% of breeding habitats of Ae. aegypti and Ae. albopictus was recorded. The role of Philodina in the breeding containers was investigated. It was found that while in control the number of Philodina was found increasing in the water sample during the study period of seven days, the number found decreased in the containers with larvae of Aedes. The gut content analysis also confirmed the presence of the rotating wheel, corona of Philodina in some of the specimen suggests its role as major larval food. PMID:23202612

  17. Chikungunya virus susceptibility & variation in populations of Aedes aegypti (Diptera: Culicidae) mosquito from India

    PubMed Central

    Gokhale, Mangesh D.; Paingankar, Mandar S.; Sudeep, Anakathil B.; Parashar, Deepti

    2015-01-01

    Background & objectives: Although having immense clinical relevance, yet only a few studies have been targeted to understand the chikungunya virus (CHIKV) susceptibility and growth in Aedes aegypti populations from India. This study was undertaken to investigate CHIKV susceptibility and growth kinetics in Ae. aegypti along with genetic heterogeneity of Ae. aegypti populations. Methods: Dose dependent CHIKV susceptibility and growth kinetic studies for three CHIKV strains reported from India were carried out in Ae. aegypti mosquito populations. The phenotypic variation and genetic heterogeneity in five Ae. aegypti populations were investigated using multivariate morphometrics and allozyme variation studies. Results: The dissemination and growth kinetics studies of the three CHIKV strains showed no selective advantage for a particular strain of CHIKV in Ae. aegypti. At 100 per cent infection rate, five geographic Ae. aegypti populations showed differences in dissemination to three CHIKV strains. Morphometric studies revealed phenotypic variation in all the studied populations. The allelic frequencies, F statistics, and Nei's genetic identity values showed that genetic differences between the populations were small, but significant. Interpretation & conclusions: The results obtained in this study suggest that genetic background of the vector strongly influences the CHIKV susceptibility in Ae. aegypti. PMID:26905240

  18. Multiple factors contribute to anautogenous reproduction by the mosquito Aedes aegypti.

    PubMed

    Gulia-Nuss, Monika; Elliot, Anne; Brown, Mark R; Strand, Michael R

    2015-11-01

    Aedes aegypti is an anautogenous mosquito that must blood feed on a vertebrate host to produce and lay a clutch of eggs. The rockpool mosquito, Georgecraigius atropalpus, is related to A. aegypti but is a facultatively autogenous species that produces its first clutch of eggs shortly after emerging without blood feeding. Consumption of a blood meal by A. aegypti triggers the release of ovary ecdysteroidogenic hormone (OEH) and insulin-like peptide 3 (ILP3) from the brain, which stimulate egg formation. OEH and ILP3 also stimulate egg formation in G. atropalpus but are released at eclosion independently of blood feeding. These results collectively suggest that blood meal dependent release of OEH and ILP3 is one factor that prevents A. aegypti from reproducing autogenously. Here, we examined two other factors that potentially inhibit autogeny in A. aegypti: teneral nutrient reserves and the ability of OEH and ILP3 to stimulate egg formation in the absence of blood feeding. Measures of nutrient reserves showed that newly emerged A. aegypti females had similar wet weights but significantly lower protein and glycogen reserves than G. atropalpus females when larvae were reared under identical conditions. OEH stimulated non-blood fed A. aegypti females to produce ecdysteroid hormone and package yolk into oocytes more strongly than ILP3. OEH also reduced host seeking and blood feeding behavior, yet females produced few mature eggs. Overall, our results indicate that multiple factors prevent A. aegypti from reproducing autogenously. PMID:26255841

  19. Molecular Analysis of the Aedes aegypti Carboxypeptidase Gene Family

    PubMed Central

    Isoe, Jun; Zamora, Jorge; Miesfeld, Roger L.

    2009-01-01

    To gain a better understanding of coordinate regulation of protease gene expression in the mosquito midgut, we undertook a comprehensive molecular study of digestive carboxypeptidases in Aedes aegypti. Through a combination of cDNA cloning using degenerate PCR primers, and database mining of the recently completed Ae. aegypti genome, we cloned and characterized 18 Ae. aegypti carboxypeptidase genes. Bioinformatic analysis revealed that 11 of these genes belong to the carboxypeptidase A family (AaCPA-I through AaCPA-XI), and seven to the carboxypeptidase B gene family (AaCPB-I through AaCPB-VII). Phylogenetic analysis of 32 mosquito carboxypeptidases from five different species indicated that most of the sequence divergence in the carboxypeptidase gene family occurred prior to the separation of Aedes and Anopheles mosquito lineages. Unlike the CPA genes that are scattered throughout the Ae. aegypti genome, six of seven CPB genes were found to be located within a single 120 kb genome contig, suggesting that they most likely arose from multiple gene duplication events. Quantitative expression analysis revealed that 11 of the Ae. aegypti carboxypeptidase genes were induced up to 40-fold in the midgut in response to blood meal feeding, with peak expression times ranging from 3-36 hours post-feeding depending on the gene. PMID:18977440

  20. Multiple QTL Determine Dorsal Abdominal Scale Patterns in the Mosquito Aedes aegypti.

    PubMed

    Mori, Akio; Tsuda, Yoshio; Takagi, Masahiro; Higa, Yukiko; Severson, David W

    2016-09-01

    The mosquito, Aedes aegypti (L.) originated in Sub-Saharan Africa as a dark form sylvan species (A. aegypti formosus). Evolution of A. aegypti aegypti type form as a human commensal facilitated its colonization of most semitropical and tropical areas. We investigated the genetic basis for abdominal white scale presence that represents the diagnostic for sylvan A. aegypti formosus (scales absent), from type form (scales present) and A. aegypti queenslandensis form (dense scaling). We performed quantitative trait locus (QTL) mapping using 3 criteria for scale patterns among 192 F1 intercross progeny from matings between a queenslandensis type and an aegypti type form. Results identified 3 QTL determining scale patterns and indicated that classification criteria impact robustness of QTL LOD support. Dark- and light-colored forms exist in sympatry, but vary in multiple phenotypic characteristics, including preferences for vertebrate host, oviposition container, house-entering behavior, and dengue vector competence. Markers associated with 2 QTL regions reflected major reductions in recombination frequencies compared with the standard type form linkage map, suggestive of inversion polymorphisms associated with observed linkage disequilibrium between type-specific characteristics. Understanding the genic basis for differences in A. aegypti forms could inform efforts to develop new mosquito and arboviral disease control strategies. PMID:27130203

  1. History of domestication and spread of Aedes aegypti - A Review

    PubMed Central

    Powell, Jeffrey R; Tabachnick, Walter J

    2013-01-01

    The adaptation of insect vectors of human diseases to breed in human habitats (domestication) is one of the most important phenomena in medical entomology. Considerable data are available on the vector mosquito Aedes aegypti in this regard and here we integrate the available information including genetics, behaviour, morphology, ecology and biogeography of the mosquito, with human history. We emphasise the tremendous amount of variation possessed by Ae. aegypti for virtually all traits considered. Typological thinking needs to be abandoned to reach a realistic and comprehensive understanding of this important vector of yellow fever, dengue and Chikungunya. PMID:24473798

  2. Atmospheric control of Aedes aegypti populations in Buenos Aires (Argentina) and its variability

    NASA Astrophysics Data System (ADS)

    de Garín, A.; Bejarán, R. A.; Carbajo, A. E.; de Casas, S. C.; Schweigmann, N. J.

    The mosquito Aedes aegypti is the main urban vector responsible for the transmission of dengue fever and dengue hemorrhagic fever. The city of Buenos Aires, Argentina, is located at the southern end of the world distribution of the species. The population abundance of Ae. aegypti is mainly regulated by environmental factors. We calculated the potential number of times that a female could lay eggs during its mean life expectancy, based on potential egg production and daily meteorological records. The model considers those variables implying physical hazard to the survival of Ae. aegypti, mosquito flying activity and oviposition. The results, obtained after calibration and validation of the model with field observations, show significant correlation (P<0.001) for different lags depending on the life stage. From these results, more favorable atmospheric conditions for Ae. aegypti reproduction (linked to the urban climatic change) can be observed. The climatic variability in the last decade resembles conditions at the end of 19th century.

  3. Identification of germline transcriptional regulatory elements in Aedes aegypti

    NASA Astrophysics Data System (ADS)

    Akbari, Omar S.; Papathanos, Philippos A.; Sandler, Jeremy E.; Kennedy, Katie; Hay, Bruce A.

    2014-02-01

    The mosquito Aedes aegypti is the principal vector for the yellow fever and dengue viruses, and is also responsible for recent outbreaks of the alphavirus chikungunya. Vector control strategies utilizing engineered gene drive systems are being developed as a means of replacing wild, pathogen transmitting mosquitoes with individuals refractory to disease transmission, or bringing about population suppression. Several of these systems, including Medea, UDMEL, and site-specific nucleases, which can be used to drive genes into populations or bring about population suppression, utilize transcriptional regulatory elements that drive germline-specific expression. Here we report the identification of multiple regulatory elements able to drive gene expression specifically in the female germline, or in the male and female germline, in the mosquito Aedes aegypti. These elements can also be used as tools with which to probe the roles of specific genes in germline function and in the early embryo, through overexpression or RNA interference.

  4. Transposition of the Hermes element in embryos of the vector mosquito, Aedes aegypti.

    PubMed

    Sarkar, A; Yardley, K; Atkinson, P W; James, A A; O'Brochta, D A

    1997-05-01

    Using a plasmid-based transpositional recombination assay in vivo, we have demonstrated that Hermes, a short inverted repeat type transposable element from Musca domestica, can transpose in Aedes aegypti embryos. Hermes transpositions in Ae. aegypti have all the characteristics observed during Hermes transposition in its host M. domestica and in related species. These characteristics include an absolute dependence on the expression of the Hermes transposase and a preference for the integration site GTNCAGAC (P < 0.05). In addition, the rate of Hermes transposition in Ae. aegypti (0.286 transpositions per 10,000 donor plasmids screened) was comparable to that observed in Drosophila melanogaster under similar conditions. These results suggest that Hermes can be developed into a gene vector and genetic engineering tool for Ae. aegypti and related mosquitoes. PMID:9219363

  5. Similarity solutions for systems arising from an Aedes aegypti model

    NASA Astrophysics Data System (ADS)

    Freire, Igor Leite; Torrisi, Mariano

    2014-04-01

    In a recent paper a new model for the Aedes aegypti mosquito dispersal dynamics was proposed and its Lie point symmetries were investigated. According to the carried group classification, the maximal symmetry Lie algebra of the nonlinear cases is reached whenever the advection term vanishes. In this work we analyze the family of systems obtained when the wind effects on the proposed model are neglected. Wide new classes of solutions to the systems under consideration are obtained.

  6. The global compendium of Aedes aegypti and Ae. albopictus occurrence

    PubMed Central

    Kraemer, Moritz U. G.; Sinka, Marianne E.; Duda, Kirsten A.; Mylne, Adrian; Shearer, Freya M.; Brady, Oliver J.; Messina, Jane P.; Barker, Christopher M.; Moore, Chester G.; Carvalho, Roberta G.; Coelho, Giovanini E.; Van Bortel, Wim; Hendrickx, Guy; Schaffner, Francis; Wint, G. R. William; Elyazar, Iqbal R. F.; Teng, Hwa-Jen; Hay, Simon I.

    2015-01-01

    Aedes aegypti and Ae. albopictus are the main vectors transmitting dengue and chikungunya viruses. Despite being pathogens of global public health importance, knowledge of their vectors’ global distribution remains patchy and sparse. A global geographic database of known occurrences of Ae. aegypti and Ae. albopictus between 1960 and 2014 was compiled. Herein we present the database, which comprises occurrence data linked to point or polygon locations, derived from peer-reviewed literature and unpublished studies including national entomological surveys and expert networks. We describe all data collection processes, as well as geo-positioning methods, database management and quality-control procedures. This is the first comprehensive global database of Ae. aegypti and Ae. albopictus occurrence, consisting of 19,930 and 22,137 geo-positioned occurrence records respectively. Both datasets can be used for a variety of mapping and spatial analyses of the vectors and, by inference, the diseases they transmit. PMID:26175912

  7. Larvicidal activity of Tagetes erecta against Aedes aegypti.

    PubMed

    Marques, Márcia M M; Morais, Selene M; Vieira, Icaro G P; Vieira, Mariano G S; Raquel, Ana; Silva, A; De Almeida, Raimundo Rafael; Guedes, Maria Izabel F

    2011-06-01

    The aim of this study was to evaluate the activity of essential oil from Tagetes erecta against 3rd instars of Aedes aegypti and to determine the amounts of larvicidal thiophenes in all plant tissues. The oil obtained by steam distillation and analyzed by gas chromatography/mass spectrometry showed 14 compounds. The main compounds were piperitone (45.72%), D-limonene (9.67%), and piperitenone (5.89%). The essential oil was active against larvae of Ae. aegypti, with LC50 of 79.78 microg/ml and LC90 of 100.84 microg/ml. The larvicidal thiophene contents were higher in the roots and flowers as demonstrated by high-performance liquid chromatography analysis. Thus, T. erecta constitutes a good source of varied compounds showing larvicidal activity against Ae. aegypti. PMID:21805850

  8. Male accessory gland substances from Aedes albopictus affect the locomotor activity of Aedes aegypti females

    PubMed Central

    Lima-Camara, Tamara Nunes; Codeço, Claudia Torres; Honório, Nildimar Alves; Bruno, Rafaela Vieira; Peixoto, Alexandre Afranio; Lounibos, Leon Philip

    2013-01-01

    Dengue is one of the world’s most important mosquito-borne diseases and is usually transmitted by one of two vector species: Aedes aegypti or Aedes albopictus . These two diurnal mosquitoes are frequently found coexisting in similar habitats, enabling interactions between adults, such as cross-mating. The objective of this study was to assess cross-mating between Ae. aegypti females and Ae. albopictus males under artificial conditions and evaluate the locomotor activity of Ae. aegypti virgin females injected with male accessory gland (MAG) homogenates to infer the physiological and behavioural responses to interspecific mating. After seven days of exposure, 3.3-16% of Ae. aegypti females mated with Ae. albopictus males. Virgin Ae. aegypti females injected with conspecific and heterospecific MAGs showed a general decrease in locomotor activity compared to controls and were refractory to mating with conspecific males. The reduction in diurnal locomotor activity induced by injections of conspecific or heterospecific MAGs is consistent with regulation of female reproductive activities by male substances, which are capable of sterilising female Ae. aegypti through satyrisation by Ae. albopictus . PMID:24473799

  9. Neuropeptidomics of the mosquito Aedes aegypti

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Neuropeptidomic data were collected on the mosquito Ae. aegypti which is considered the most tractable mosquito species for physiological and endocrine studies. The data were solely obtained by direct mass spectrometric profiling, including tandem fragmentation, of selected tissues from single speci...

  10. Changing Domesticity of Aedes aegypti in Northern Peninsular Malaysia: Reproductive Consequences and Potential Epidemiological Implications

    PubMed Central

    Saifur, Rahman G. M.; Dieng, Hamady; Hassan, Ahmad Abu; Salmah, Md Rawi Che; Satho, Tomomitsu; Miake, Fumio; Hamdan, Ahmad

    2012-01-01

    Background The domestic dengue vector Aedes aegypti mosquitoes breed in indoor containers. However, in northern peninsular Malaysia, they show equal preference for breeding in both indoor and outdoor habitats. To evaluate the epidemiological implications of this peridomestic adaptation, we examined whether Ae. aegypti exhibits decreased survival, gonotrophic activity, and fecundity due to lack of host availability and the changing breeding behavior. Methodology/Principal Findings This yearlong field surveillance identified Ae. aegypti breeding in outdoor containers on an enormous scale. Through a sequence of experiments incorporating outdoors and indoors adapting as well as adapted populations, we observed that indoors provided better environment for the survival of Ae. aegypti and the observed death patterns could be explained on the basis of a difference in body size. The duration of gonotrophic period was much shorter in large-bodied females. Fecundity tended to be greater in indoor acclimated females. We also found increased tendency to multiple feeding in outdoors adapted females, which were smaller in size compared to their outdoors breeding counterparts. Conclusion/Significance The data presented here suggest that acclimatization of Ae. aegypti to the outdoor environment may not decrease its lifespan or gonotrophic activity but rather increase breeding opportunities (increased number of discarded containers outdoors), the rate of larval development, but small body sizes at emergence. Size is likely to be correlated with disease transmission. In general, small size in Aedes females will favor increased blood-feeding frequency resulting in higher population sizes and disease occurrence. PMID:22363516

  11. Resistance of Aedes aegypti to temephos and adaptive disadvantages

    PubMed Central

    Diniz, Morgana Michele Cavalcanti de Souza Leal; Henriques, Alleksandra Dias da Silva; Leandro, Renata da Silva; Aguiar, Dalvanice Leal; Beserra, Eduardo Barbosa

    2014-01-01

    OBJECTIVE To evaluate the resistance of Aedes aegypti to temephos Fersol 1G (temephos 1% w/w) associated with the adaptive disadvantage of insect populations in the absence of selection pressure. METHODS A diagnostic dose of 0.28 mg a.i./L and doses between 0.28 mg a.i./L and 1.40 mg a.i./L were used. Vector populations collected between 2007 and 2008 in the city of Campina Grande, state of Paraíba, were evaluated. To evaluate competition in the absence of selection pressure, insect populations with initial frequencies of 20.0%, 40.0%, 60.0%, and 80.0% resistant individuals were produced and subjected to the diagnostic dose for two months. Evaluation of the development of aquatic and adult stages allowed comparison of the life cycles in susceptible and resistant populations and construction of fertility life tables. RESULTS No mortality was observed in Ae. aegypti populations subjected to the diagnostic dose of 0.28 mg a.i./L. The decreased mortality observed in populations containing 20.0%, 40.0%, 60.0%, and 80.0% resistant insects indicates that temephos resistance is unstable in the absence of selection pressure. A comparison of the life cycles indicated differences in the duration and viability of the larval phase, but no differences were observed in embryo development, sex ratio, adult longevity, and number of eggs per female. CONCLUSIONS The fertility life table results indicated that some populations had reproductive disadvantages compared with the susceptible population in the absence of selection pressure, indicating the presence of a fitness cost in populations resistant to temephos. PMID:25372168

  12. Insecticide susceptibility of Aedes aegypti populations from Senegal and Cape Verde Archipelago

    PubMed Central

    2012-01-01

    Background Two concomitant dengue 3 (DEN-3) epidemics occurred in Cape Verde Archipelago and Senegal between September and October 2009. Aedes aegypti was identified as the vector of these epidemics as several DEN-3 virus strains were isolated from this species in both countries. The susceptibility to pyrethroids, organochlorine, organophosphates and carbamate was investigated in two field strains of Aedes aegypti from both countries using WHO diagnostic bioassay kits in order to monitor their the current status of insecticide susceptibility. Findings The two tested strains were highly resistant to DDT. The Cape Verde strain was found to be susceptible to all others tested insecticides except for propoxur 0.1%, which needs further investigation. The Dakar strain was susceptible to fenitrothion 1% and permethrin 0.75%, but displayed reduced susceptibility to deltamethrin, lambda-cyhalothrin and propoxur. Conclusions As base-line results, our observations stress a careful management of insecticide use for the control of Ae. aegypti. Indeed, they indicate that DDT is no longer efficient for the control of Ae. aegypti populations in Cape Verde and Dakar and further suggest a thorough follow-up of propoxur susceptibility status in both sites and that of deltamethrin and lambda-cyhalothrin in Ae. aegypti populations in Dakar. Thus, regular monitoring of susceptibility is greatly needed as well as the knowing if this observed resistance/susceptibility is focal or not and for observed resistance, the use of biochemical methods is needed with detailed comparison of resistance levels over a large geographic area. Keywords Aedes aegypti, Insecticides, Susceptibility, Cape Verde, Senegal PMID:23088621

  13. Proteomic Identification of Dengue Virus Binding Proteins in Aedes aegypti Mosquitoes and Aedes albopictus Cells

    PubMed Central

    Muñoz, Maria de Lourdes; Limón-Camacho, Gustavo; Tovar, Rosalinda; Diaz-Badillo, Alvaro; Mendoza-Hernández, Guillermo; Black, William C.

    2013-01-01

    The main vector of dengue in America is the mosquito Aedes aegypti, which is infected by dengue virus (DENV) through receptors of midgut epithelial cells. The envelope protein (E) of dengue virus binds to receptors present on the host cells through its domain III that has been primarily recognized to bind cell receptors. In order to identify potential receptors, proteins from mosquito midgut tissue and C6/36 cells were purified by affinity using columns with the recombinant E protein domain III (rE-DIII) or DENV particles bound covalently to Sepharose 4B to compare and evaluate their performance to bind proteins including putative receptors from female mosquitoes of Ae. aegypti. To determine their identity mass spectrometric analysis of purified proteins separated by polyacrylamide gel electrophoresis was performed. Our results indicate that both viral particles and rE-DIII bound proteins with the same apparent molecular weights of 57 and 67 kDa. In addition, viral particles bound high molecular weight proteins. Purified proteins identified were enolase, beta-adrenergic receptor kinase (beta-ARK), translation elongation factor EF-1 alpha/Tu, and cadherin. PMID:24324976

  14. Comparative study on nocturnal behavior of Aedes aegypti and Aedes albopictus.

    PubMed

    Kawada, Hitoshi; Takemura, Shin-Ya; Arikawa, Kentaro; Takagi, Masahiro

    2005-05-01

    Nocturnal behavior of nonblood-fed females of Aedes aegypti (L.) and Aedes albopictus (Skuse) was studied using an automatic recording device equipped with a photoelectric sensor. Carbon dioxide, heating, and the contrast of the black and white colors were used as attractive cues for mosquitoes. The nocturnal host-seeking activity positively correlated with the increasing light intensity in both species. Ae. aegypti was found to be more sensitive to light than Ae. albopictus. The threshold of light intensity for the activation of the nocturnal host-seeking activity was <0.1 lx (approximately 0.01 foot candle) in Ae. aegypti and >10 lx (approximately 1 foot candle) in Ae. albopictus. Complete darkness during the daytime deactivated the host-seeking activity of both species, irrespective of their increasing flight activity controlled by their intrinsic circadian rhythms. This finding suggested that visual cues are indispensable for host-seeking behavior. The eye parameter value, the product of the ommatidial diameter, and the interommatidial angle were significantly larger in Ae. aegypti than those in Ae. albopictus, indicating that the eye of Ae. aegypti is more adapted to a darker environment. PMID:15962780

  15. Aedes aegypti (L.) and Aedes albopictus (Skuse) in Singapore City

    PubMed Central

    Chan, K. L.; Ho, B. C.; Chan, Y. C.

    1971-01-01

    Detailed information on the breeding habitats of Ae. aegypti and Ae. albopictus is necessary when planning programmes for their control. The larval habitats of the two species in 10 city areas were counted and classified according to type, frequency of occurrence, location, and function. Of all the breeding habitats recorded 95% were domestic containers. The most common Ae. aegypti breeding habitats were ant traps, earthenware jars, bowls, tanks, tin cans, and drums, ant traps being the most common indoors and earthenware jars the most common out doors. Breeding habitats for Ae. albopictus were commonly found in earthen ware jars, tin cans, ant traps, rubber tires, bowls, and drums; ant traps were the most common indoor habitat and tin cans were most common outdoors. The majority of Ae. aegypti breeding habitats were found indoors, while only half of all the Ae. albopictus breeding habitats were indoors. The indoor and outdoor distribution of breeding habitats of both species was not related to the type of housing in the area. The distribution of the type of breeding habitats, however, was related to the type of housing in the area. Ant traps were common to all areas, but water-storage containers and unused containers were common in slum-house and shop-house areas. Flats, however, had more containers used for keeping plants and flowers. The most common breeding habitats of Ae. aegypti and Ae. albopictus are discussed in relation to the habits of the people. It is concluded that control of the two species will depend largely on a change in such habits, either through public health education or by some form of law enforcement. PMID:5316746

  16. Repellent activity of herbal essential oils against Aedes aegypti (Linn.) and Culex quinquefasciatus (Say.)

    PubMed Central

    Sritabutra, Duangkamon; Soonwera, Mayura

    2013-01-01

    Objective To determine the mosquito repellent activity of herbal essential oils against female Aedes aegypti and Culex quinquefasciatus. Methods On a volunteer's forearm, 0.1 mL of each essential oil was applied to 3 cm×10 cm of exposed skin. The protection time was recorded for 3 min after every 30 min. Results Essential oil from clove oil in olive oil and in coconut oil gave the longest lasting period of 76.50 min and 96.00 min respectively against Aedes aegypti. The citronella grass oil in olive oil, citronella grass oil in coconut oil and lemongrass oil in coconut oil exhibited protection against Culex quinquefasciatus at 165.00, 105.00, and 112.50 min respectively. Conclusions The results clearly indicated that clove, citronella and lemongrass oil were the most promising for repellency against mosquito species. These oils could be used to develop a new formulation to control mosquitoes.

  17. Insecticidal and repellent activity of Siparuna guianensis Aubl. (Negramina) against Aedes aegypti and Culex quinquefasciatus.

    PubMed

    Aguiar, Raimundo Wagner Souza; dos Santos, Suetonio Fernandes; da Silva Morgado, Fabricio; Ascencio, Sergio Donizeti; de Mendonça Lopes, Magnólia; Viana, Kelvinson Fernandes; Didonet, Julcemar; Ribeiro, Bergmann Morais

    2015-01-01

    This study investigated the toxic effects of essential oils isolated from Siparuna guianensis against Aedes aegypti, Culex quinquefasciatus (eggs, larvae, pupae, and adult) and Aedes albopictus (C6/36) cells. The oviposition-deterring activity, egg viability, and repellence activity in the presence of different essential oils concentrations were determined. The essential oils showed high toxicity to all developmental stages of A. aegypti and C. quinquefasciatus. Furthermore, the oils also showed high repellent activity towards the adult stage of mosquitoes (0.025 to 0.550 μg/cm2 skin conferred 100% repellence up to 120 min) and in contact with cultured insect cells (C6/36) induced death possibly by necrosis. The results presented in this work show the potential of S. guianensis essential oils for the development of an alternative and effective method for the natural control of mosquitoes in homes and urban areas. PMID:25646797

  18. Insecticidal and Repellent Activity of Siparuna guianensis Aubl. (Negramina) against Aedes aegypti and Culex quinquefasciatus

    PubMed Central

    Aguiar, Raimundo Wagner Souza; dos Santos, Suetonio Fernandes; da Silva Morgado, Fabricio; Ascencio, Sergio Donizeti; de Mendonça Lopes, Magnólia; Viana, Kelvinson Fernandes; Didonet, Julcemar; Ribeiro, Bergmann Morais

    2015-01-01

    This study investigated the toxic effects of essential oils isolated from Siparuna guianensis against Aedes aegypti, Culex quinquefasciatus (eggs, larvae, pupae, and adult) and Aedes albopictus (C6/36) cells. The oviposition-deterring activity, egg viability, and repellence activity in the presence of different essential oils concentrations were determined. The essential oils showed high toxicity to all developmental stages of A. aegypti and C. quinquefasciatus. Furthermore, the oils also showed high repellent activity towards the adult stage of mosquitoes (0.025 to 0.550 μg/cm2 skin conferred 100% repellence up to 120 min) and in contact with cultured insect cells (C6/36) induced death possibly by necrosis. The results presented in this work show the potential of S. guianensis essential oils for the development of an alternative and effective method for the natural control of mosquitoes in homes and urban areas. PMID:25646797

  19. Immunotoxicity activity of the major essential oils of Valeriana fauriei Briq against Aedes aegypti L.

    PubMed

    Chung, Ill-Min; Kim, Eun-Hye; Moon, Hyung-In

    2011-03-01

    The rhizomes and roots of Valeriana fauriei were extracted and the major essential oil composition and immunotoxicity effects were studied. The analyses were conducted by gas chromatography-mass spectroscopy (GC-MS) revealed that the essential oils of V. fauriei. The V. fauriei essential oil (VFEO) yield was 1.93%, and GC/MS analysis revealed that its major constituents were bornyl acetate (32.83%), terpinyl acetate (3.82%), bornyl isovalerate (2.11%), β-sesquiphellandrene (2.21%), sesquiterpene alcohol (7.32%), and cedrol (2.45%). The essential oil had a significant toxic effect against early fourth-stage larvae of Aedes aegypti L with an LC(50) value of 30.44 ppm and an LC(90) value of 82.64 ppm. The results could be useful in search for newer, safer, and more effective natural immunotoxicity agents against Aedes aegypti L. PMID:20462349

  20. Nepenthes ampullaria (Nepenthaceae) Pitchers Are Unattractive to Gravid Aedes aegypti and Aedes albopictus (Diptera: Culicidae).

    PubMed

    Chou, Lee Yiung; Dykes, Gary A; Wilson, Robyn F; Clarke, Charles M

    2016-02-01

    Nepenthes pitcher plants are colonized by a variety of specialized arthropods. As Aedes mosquitoes are container breeders, Nepenthes pitchers are a potential candidate oviposition site for vector species, such as Aedes aegypti (L.) and Aedes albopictus (Skuse). However, Aedes spp. are not commonly encountered in Nepenthes pitchers, and the environment inside the pitchers of some species is lethal to them. One exception is Nepenthes ampullaria Jack, whose pitchers are known to be colonized by Ae. albopictus on very rare occasions. Given that Ae. albopictus larvae can survive in N. ampullaria pitcher fluids, we sought to determine why pitcher colonization is rare, testing the hypothesis that gravid Aedes mosquitoes are deterred from ovipositing into container habitats that have similar characteristics to N. ampullaria pitchers. Using plastic ovitraps of different sizes, colors, and with different types of fluids (based on the characteristics of N. ampullaria pitchers), we compared oviposition rates by Aedes mosquitoes in urban and rural areas within the geographical range of N. ampullaria near Kuala Lumpur, Malaysia. Ovitraps that were black and large (>250-ml capacity) accumulated significantly more eggs than ovitraps that were smaller, or green in color. In terms of size and color, small, green ovitraps are analogous to N. ampullaria pitchers, indicating that these pitchers are not particularly attractive to gravid Ae. albopictus. Although Aedes spp. are capable of colonizing N. ampullaria pitchers, the pitchers are relatively unattractive to gravid females and do not represent a significant habitat for larvae of dengue vectors at present. PMID:26518035

  1. Oxime derivatives with larvicidal activity against Aedes aegypti L.

    PubMed

    Lima, Tamires Cardoso; Santos, Sandra Regina Lima; Uliana, Marciana P; Santos, Roseli La Corte; Brocksom, Timothy John; Cavalcanti, Sócrates Cabral de Holanda; de Sousa, Damião Pergentino

    2015-08-01

    Oximes containing secondary metabolites constitute an important group of bioactive compounds and have been described and frequently updated in the literature due to their pharmacological properties. Thus, the aim of this study was to evaluate the larvicidal activity of a series of fourteen structurally related [1,4]-Benzoquinone mono-oximes on third-instar Aedes aegypti larvae and to investigate structure-activity relationships (SAR) of these compounds. Results of larvicidal assay revealed that all oximes were found to have larvicidal activity. Compound 2,6-dimethyl-[1,4]-benzoquinone oxime tosylate (11) was the most bioactive (LC50 = 9.858 ppm), followed by 2-methyl-[1,4]-benzoquinone oxime tosylate (9) (LC50 = 14.450 ppm). [1,4]-benzoquinone oxime (1) exhibited the lowest potency, with an LC50 = 121.181 ppm. The molecular characteristics which may help to understand the assayed compounds larvicidal activity were identified. SAR indicates that the addition of alkyl groups attached to the ring, number, position in the unsaturated cyclic structure, and size of these groups influence the larvicidal activity. Moreover, the lipophilicity seems to play an important role in increasing the larvicidal effect, because, in general, tosyl-containing products were more potent than products containing free OH. PMID:25956398

  2. Evidence for Aedes aegypti (Diptera: Culicidae) Oviposition on Boats in the Peruvian Amazon.

    PubMed

    Guagliardo, Sarah Anne; Morrison, Amy C; Luis Barboza, Jose; Wesson, Dawn M; Ponnusamy, Loganathan; Astete, Helvio; Vazquez-Prokopec, Gonzalo; Kitron, Uriel

    2015-07-01

    Dengue vector Aedes aegypti L. is invading peri-urban and rural areas throughout Latin America. Our previous research in the Peruvian Amazon has shown that river boats are heavily infested with immature and adult Ae. aegypti mosquitoes, likely playing a major role in their long-distance dispersal and successful invasion. However, the presence of immature mosquitoes provides no information about the timing of oviposition, and whether it took place in the boats. Here, we used baited ovitraps deployed on river boats to test the hypothesis that Ae. aegypti oviposition occurs during boat travel. We deployed 360 ovitraps on 60 different barges during August and October of 2013, and February 2014 (with 20 barges sampled during each month). We found that Ae. aegypti mosquitoes in 22 individual ovitraps from 15 of the 60 barges (premise index 25%) across all sampling dates. Further, the distribution of Ae. aegypti egg abundance was highly aggregated: 2.6% of traps (N=7) were responsible for 71.8% of eggs found, and 1.5% of traps (N=4) were responsible for all (100%) of the larvae found. Similarly, 5% of boats were responsible for the 71.47% of eggs. Our results provide strong evidence that Ae. aegypti oviposition commonly occurs during boat travel. Baited ovitraps could represent a cost-effective means of monitoring and controlling mosquito populations on boats. PMID:26335482

  3. Pyrethroid resistance in Aedes aegypti larvae (Diptera: Culicidae) from Singapore.

    PubMed

    Koou, Sin-Ying; Chong, Chee-Seng; Vythilingam, Indra; Ng, Lee-Ching; Lee, Chow-Yang

    2014-01-01

    We report the first comprehensive insecticide susceptibility status ofAedes aegypti (L.) larvae from Singapore. The study indicated that Ae. aegypti is susceptible to temephos, although resistance (RR50 = 1.29-4.43-fold) couldbe developing. Of high concern is the detection of moderate to high resistance to permethrin (RR50 = 29-47-fold) and etofenprox (RR50 = 14-34-fold). Biolarvicide Bacillus thuringiensis israelensis (Bti) remains effective. The insecticide susceptibility profile of Ae. aegypti larvae was found to be homogenous among the different sites studied across the island city. The addition of synergists piperonyl butoxide, S,S,S,-tributyl phosphorotrithioate, and triphenyl phosphate generally failed to enhance the toxicity of the insecticides investigated, suggesting an insignificant role of metabolic-based resistance, and a possible involvement of target site resistance. Further biochemical investigation of specific metabolic enzyme activities suggested that detoxifying enzymes, mono-oxygenases, esterases, glutathione S-transferases, and altered acetylcholinesterases, generally did not contribute to the resistance observed. This study clearly demonstrated that pyrethroid resistance is widespread among Ae. aegypti population and lowered susceptibility to organophosphates is developing. PMID:24605467

  4. Repellent activity of selected essential oils against Aedes aegypti.

    PubMed

    Choochote, W; Chaithong, U; Kamsuk, K; Jitpakdi, A; Tippawangkosol, P; Tuetun, B; Champakaew, D; Pitasawat, B

    2007-07-01

    Essential oils extracted from ten plant species were screened for repellency against Aedes aegypti mosquitoes. Three oils; Zanthoxylum piperitum, Anethum graveolens and Kaempferia galanga, exerted protection against A. aegypti, with median complete-protection times of 1, 0.5 and 0.25 h, respectively. The protection times were increased significantly by incorporating 10% vanillin. The highest potential was established from Z. piperitum oil +10% vanillin (2.5 h, range=1-2.5 h). Mixtures from pairs of the effective oils possessed slight repellency that ranged from 0-0.5 h. None of the oil combinations repelled A. aegypti for longer than their constituent oil alone. With vanillin added, however, each oil mixture provided improved protection, which was approximately equal to oil on its own. GC/MS analysis revealed that the main component of Z. piperitum fruit oil was limonene (37.99%), with minor amounts of sabinene (13.30%) and beta-myrcene (7.17%). Repellent testing of stored samples of Z. piperitum fruit oil against A. aegypti demonstrated that repellent activity of those kept at -20 degrees C or 4 degrees C was present for a period of at least 3 months. Therefore, the essential oil of Z. piperitum fruit may prove useful in the development of mosquito repellents as an effective personal protection measure against mosquito bites. PMID:17512681

  5. Experimental Transmission of Mayaro Virus by Aedes aegypti

    PubMed Central

    Long, Kanya C.; Ziegler, Sarah A.; Thangamani, Saravanan; Hausser, Nicole L.; Kochel, Tadeusz J.; Higgs, Stephen; Tesh, Robert B.

    2011-01-01

    Outbreaks of Mayaro fever have been associated with a sylvatic cycle of Mayaro virus (MAYV) transmission in South America. To evaluate the potential for a common urban mosquito to transmit MAYV, laboratory vector competence studies were performed with Aedes aegypti from Iquitos, Peru. Oral infection in Ae. aegypti ranged from 0% (0/31) to 84% (31/37), with blood meal virus titers between 3.4 log10 and 7.3 log10 plaque-forming units (PFU)/mL. Transmission of MAYV by 70% (21/30) of infected mosquitoes was shown by saliva collection and exposure to suckling mice. Amount of viral RNA in febrile humans, determined by real-time polymerase chain reaction, ranged from 2.7 to 5.3 log10 PFU equivalents/mL. Oral susceptibility of Ae. aegypti to MAYV at titers encountered in viremic humans may limit opportunities to initiate an urban cycle; however, transmission of MAYV by Ae. aegypti shows the vector competence of this species and suggests potential for urban transmission. PMID:21976583

  6. Effect of triflumuron, a chitin synthesis inhibitor, on Aedes aegypti, Aedes albopictus and Culex quinquefasciatus under laboratory conditions

    PubMed Central

    2013-01-01

    Background Resistance to traditional insecticides represents a threat to the control of disease vectors. The insect growth regulators (IGR) are a potential alternative to control mosquitoes, including resistant populations. The chitin synthesis inhibitors (CSI) are IGRs, which interfere with the insect molting process and represent one major class of compounds against Aedes aegypti populations resistant to the larvicide organophosphate temephos. In the present study, we evaluated the efficacy of the CSI triflumuron on Culex quinquefasciatus, Aedes albopictus and against several Ae. aegypti field populations. Methods The efficacy of triflumuron, against Cx. quinquefasciatus and Ae. albopictus was evaluated with laboratory strains through dose–response assays. Additionaly, this CSI was tested against seven Ae. aegypti field populations exhibiting distinct resistance levels to both temephos and the pyrethroid deltamethrin. Aedes aegypti populations were exposed to both a dose that inhibits 99% of the adult emergence of mosquitoes from the susceptible reference strain, Rockefeller, (EI99 = 3.95 μg/L) and the diagnostic dose (DD), corresponding to twice the EI99. Results Our results indicate that triflumuron was effective in emergence inhibition (EI) of Cx. quinquefasciatus (EI50= 5.28 μg/L; EI90= 12.47 μg/L) and Ae. albopictus (EI50= 1.59 μg/L; EI90= 2.63 μg/L). Triflumuron was also effective against seven Ae. aegypti Brazilian populations resistant to both temephos and deltamethrin. Exposure of all the Ae. aegypti populations to the triflumuron EI99 of the susceptible reference strain, Rockefeller, resulted in complete inhibition of adult emergence, suggesting no cross-resistance among traditional insecticides and this CSI. However, a positive correlation between temephos resistance and tolerance to triflumuron was observed. Conclusion The results suggest that triflumuron represents a potential tool for the control of disease vectors in public

  7. Genome sequence of Aedes aegypti, a major arbovirus vector.

    PubMed

    Nene, Vishvanath; Wortman, Jennifer R; Lawson, Daniel; Haas, Brian; Kodira, Chinnappa; Tu, Zhijian Jake; Loftus, Brendan; Xi, Zhiyong; Megy, Karyn; Grabherr, Manfred; Ren, Quinghu; Zdobnov, Evgeny M; Lobo, Neil F; Campbell, Kathryn S; Brown, Susan E; Bonaldo, Maria F; Zhu, Jingsong; Sinkins, Steven P; Hogenkamp, David G; Amedeo, Paolo; Arensburger, Peter; Atkinson, Peter W; Bidwell, Shelby; Biedler, Jim; Birney, Ewan; Bruggner, Robert V; Costas, Javier; Coy, Monique R; Crabtree, Jonathan; Crawford, Matt; Debruyn, Becky; Decaprio, David; Eiglmeier, Karin; Eisenstadt, Eric; El-Dorry, Hamza; Gelbart, William M; Gomes, Suely L; Hammond, Martin; Hannick, Linda I; Hogan, James R; Holmes, Michael H; Jaffe, David; Johnston, J Spencer; Kennedy, Ryan C; Koo, Hean; Kravitz, Saul; Kriventseva, Evgenia V; Kulp, David; Labutti, Kurt; Lee, Eduardo; Li, Song; Lovin, Diane D; Mao, Chunhong; Mauceli, Evan; Menck, Carlos F M; Miller, Jason R; Montgomery, Philip; Mori, Akio; Nascimento, Ana L; Naveira, Horacio F; Nusbaum, Chad; O'leary, Sinéad; Orvis, Joshua; Pertea, Mihaela; Quesneville, Hadi; Reidenbach, Kyanne R; Rogers, Yu-Hui; Roth, Charles W; Schneider, Jennifer R; Schatz, Michael; Shumway, Martin; Stanke, Mario; Stinson, Eric O; Tubio, Jose M C; Vanzee, Janice P; Verjovski-Almeida, Sergio; Werner, Doreen; White, Owen; Wyder, Stefan; Zeng, Qiandong; Zhao, Qi; Zhao, Yongmei; Hill, Catherine A; Raikhel, Alexander S; Soares, Marcelo B; Knudson, Dennis L; Lee, Norman H; Galagan, James; Salzberg, Steven L; Paulsen, Ian T; Dimopoulos, George; Collins, Frank H; Birren, Bruce; Fraser-Liggett, Claire M; Severson, David W

    2007-06-22

    We present a draft sequence of the genome of Aedes aegypti, the primary vector for yellow fever and dengue fever, which at approximately 1376 million base pairs is about 5 times the size of the genome of the malaria vector Anopheles gambiae. Nearly 50% of the Ae. aegypti genome consists of transposable elements. These contribute to a factor of approximately 4 to 6 increase in average gene length and in sizes of intergenic regions relative to An. gambiae and Drosophila melanogaster. Nonetheless, chromosomal synteny is generally maintained among all three insects, although conservation of orthologous gene order is higher (by a factor of approximately 2) between the mosquito species than between either of them and the fruit fly. An increase in genes encoding odorant binding, cytochrome P450, and cuticle domains relative to An. gambiae suggests that members of these protein families underpin some of the biological differences between the two mosquito species. PMID:17510324

  8. Toxicities of certain larvicides to resistant and susceptible Aedes aegypti

    PubMed Central

    Klassen, W.; Keppler, W. J.; Kitzmiller, J. B.

    1965-01-01

    In a study of the toxicological characteristics of dieldrin-resistant and DDT-resistant strains of Aedes aegypti, combined with an evaluation of certain larvicides, 14 cyclodienes, 13 DDT-type compounds, 18 organophosphorus compounds, several carbamates and a number of other compounds were tested against larvae of A. aegypti. Telodrin and GC-9160 proved to be toxic against a highly dieldrin-resistant strain. Against highly DDT-resistant strains the toxicity of DDT could be enhanced by piperonyl butoxide, DMC or WARF, that of deutero-DDT by DMC, and that of methoxychlor by piperonyl butoxide. Prolan and Bulan were found to be slightly less effective than deutero-DDT against highly DDT-resistant strains. Among the more recent organophosphorus compounds found to exceed fenthion in toxicity are AC-52160, Stauffer N-2404, Folithion, Bayer 52957 and SD-7438. The effectiveness of dimethrin could be enhanced with piperonyl butoxide. PMID:5294255

  9. Real-time PCR Tests in Dutch Exotic Mosquito Surveys; Implementation of Aedes aegypti and Aedes albopictus Identification Tests, and the Development of Tests for the Identification of Aedes atropalpus and Aedes japonicus japonicus (Diptera: Culicidae).

    PubMed

    van de Vossenberg, B T L H; Ibáñez-Justicia, A; Metz-Verschure, E; van Veen, E J; Bruil-Dieters, M L; Scholte, E J

    2015-05-01

    Since 2009, The Netherlands Food and Consumer Product Safety Authority carries out surveys focusing on, amongst others, the presence of invasive mosquito species (IMS). Special attention is given to exotic container-breeding Aedes species Aedes aegypti (L.), Aedes albopictus (Skuse), Aedes atropalpus (Coquillett), and Aedes japonicus japonicus (Theobald). This study describes the implementation of real-time PCR tests described by Hill et al. (2008) for the identification of Ae. aegypti and Ae. albopictus, and the development of two novel real-time PCR tests for the identification of Ae. atropalpus and Ae. j. japonicus. Initial test showed that optimization of elements of the Ae. aegypti and Ae. albopictus tests was needed. Method validation tests were performed to determine if the implemented and newly developed tests are fit for routine diagnostics. Performance criteria of analytical sensitivity, analytical specificity, selectivity, repeatability, and reproducibility were determined. In addition, experiments were performed to determine the influence of environmental conditions on the usability of DNA extracted from mosquito specimens trapped in BG-Sentinel traps. The real-time PCR tests were demonstrated to be sensitive, specific, repeatable, reproducible, and are less prone to false negative results compared to partial cytochrome c oxidase I gene sequencing owing to the DNA fragmentation caused by environmental influences. PMID:26334807

  10. Regulation of Aedes aegypti Population Dynamics in Field Systems: Quantifying Direct and Delayed Density Dependence

    PubMed Central

    Walsh, Rachael K.; Aguilar, Cristobal L.; Facchinelli, Luca; Valerio, Laura; Ramsey, Janine M.; Scott, Thomas W.; Lloyd, Alun L.; Gould, Fred

    2013-01-01

    Transgenic strains of Aedes aegypti have been engineered to help control transmission of dengue virus. Although resources have been invested in developing the strains, we lack data on the ecology of mosquitoes that could impact the success of this approach. Although studies of intra-specific competition have been conducted using Ae. aegypti larvae, none of these studies examine mixed age cohorts at densities that occur in the field, with natural nutrient levels. Experiments were conducted in Mexico to determine the impact of direct and delayed density dependence on Ae. aegypti populations. Natural water, food, and larval densities were used to estimate the impacts of density dependence on larval survival, development, and adult body size. Direct and delayed density-dependent factors had a significant impact on larval survival, larval development, and adult body size. These results indicate that control methods attempting to reduce mosquito populations may be counteracted by density-dependent population regulation. PMID:23669230

  11. Mosquitocidal and Oviposition Repellent Activities of the Extracts of Seaweed Bryopsis pennata on Aedes aegypti and Aedes albopictus.

    PubMed

    Yu, Ke-Xin; Wong, Ching-Lee; Ahmad, Rohani; Jantan, Ibrahim

    2015-01-01

    The ever-increasing threat from infectious diseases and the development of insecticide resistance in mosquito populations drive the global search for new natural insecticides. The aims of this study were to evaluate the mosquitocidal activity of the extracts of seaweed Bryopsis pennata against dengue vectors Aedes aegypti and Aedes albopictus, and determine the seaweed's toxic effect on brine shrimp nauplii (as a non-target organism). In addition, the chemical compositions of the active larvicidal extract and fraction were analyzed by using liquid chromatography-mass spectrometry (LC-MS). Chloroform extract exhibited strong ovicidal activity (with LC50 values of 229.3 and 250.5 µg/mL) and larvicidal activity against Ae. aegypti and Ae. albopictus. The larvicidal potential of chloroform extract was further ascertained when its A7 fraction exhibited strong toxic effect against Ae. aegypti (LC50 = 4.7 µg/mL) and Ae. albopictus (LC50 = 5.3 µg/mL). LC-MS analysis of the chloroform extract gave a tentative identification of 13 compounds; Bis-(3-oxoundecyl) tetrasulfide was identified as the major compound in A7 fraction. Methanol extract showed strong repellent effect against female oviposition, along with weak adulticidal activity against mosquito and weak toxicity against brine shrimp nauplii. The mosquitocidal results of B. pennata suggest further investigation for the development of effective insecticide. PMID:26247928

  12. Population structure of the mosquito Aedes aegypti (Stegomyia aegypti) in Pakistan.

    PubMed

    Rasheed, S B; Boots, M; Frantz, A C; Butlin, R K

    2013-12-01

    Eleven microsatellite markers were used to determine the genetic population structure and spread of Aedes aegypti (Stegomyia aegypti) (Diptera: Culicidae) in Pakistan using mosquitoes collected from 13 different cities. There is a single genetic cluster of Ae. aegypti in Pakistan with a pattern of isolation by distance within the population. The low level of isolation by distance suggests the long-range passive dispersal of this mosquito, which may be facilitated by the tyre trade in Pakistan. A decrease in genetic diversity from south to north suggests a recent spread of this mosquito from Karachi. A strong negative correlation between genetic distance and the quality of road connections shows that populations in cities connected by better road networks are less differentiated, which suggests the human-aided passive dispersal of Ae. aegypti in Pakistan. Dispersal on a large spatial scale may facilitate the strategy of introducing transgenic Ae. aegypti or intracellular bacteria such as Wolbachia to control the spread of dengue disease in Pakistan, but it also emphasizes the need for simple measures to control container breeding sites. PMID:23662926

  13. Experience- and age-mediated oviposition behaviour in the yellow fever mosquito Stegomyia aegypti (=Aedes aegypti).

    PubMed

    Ruktanonchai, N W; Lounibos, L P; Smith, D L; Allan, S A

    2015-09-01

    In repeated behaviours such as those of feeding and reproduction, past experiences can inform future behaviour. By altering their behaviour in response to environmental stimuli, insects in highly variable landscapes can tailor their behaviour to their particular environment. In particular, female mosquitoes may benefit from plasticity in their choice of egg-laying site as these sites are often temporally variable and clustered. The opportunity to adapt egg-laying behaviour to past experience also exists for mosquito populations as females typically lay eggs multiple times throughout their lives. Whether experience and age affect egg-laying (or oviposition) behaviour in the mosquito Stegomyia aegypti (=Aedes aegypti) (Diptera: Culicidae) was assessed using a wind tunnel. Initially, gravid mosquitoes were provided with a cup containing either repellent or well water. After ovipositing in these cups, the mosquitoes were blood-fed and introduced into a wind tunnel. In this wind tunnel, an oviposition cup containing repellent was placed in the immediate vicinity of the gravid mosquitoes. A cup containing well water was placed at the opposite end of the tunnel so that if the females flew across the chamber, they encountered the well water cup, in which they readily laid eggs. Mosquitoes previously exposed to repellent cups became significantly more likely to later lay eggs in repellent cups, suggesting that previous experience with suboptimal oviposition sites informs mosquitoes of the characteristics of nearby oviposition sites. These results provide further evidence that mosquitoes modify behaviour in response to environmental information and are demonstrated in a vector species in which behavioural plasticity may be ecologically and epidemiologically meaningful. PMID:25982411

  14. Interpopulation differences in competitive effect and response of the mosquito Aedes aegypti and resistance to invasion by a superior competitor

    PubMed Central

    Juliano, S. A.

    2012-01-01

    Geographic variation in species interactions can have major effects on species distributions and can be important for the resistance of resident communities to invasive species. We tested the hypothesis that coexistence or replacement of a resident North American mosquito Aedes aegypti with the invasive Aedes albopictus is affected by interpopulation variation in the inherent competitive ability of A. aegypti and variation in the fecundity–size relationship. We postulated that such variation creates differential population-level outcomes of competition with A. albopictus. We compared competitive abilities of eight North American populations of A. aegypti, four populations sympatric to A. albopictus, and four populations allopatric to A. albopictus. Competition among larvae from each A. aegypti population and a single A. albopictus population was tested in laboratory microcosms in a response-surface design. We found origin of A. aegypti influences its competitive response to competition from A. albopictus and competitive effect on A. albopictus. A. aegypti from allopatric sites preformed better in competition with A. albopictus than did A. aegypti from sympatric sites because they had a stronger average effect on A. albopictus. This average was strongly influenced by the allopatric population from Miami. Competitive effect and response were uncorrelated among populations, indicating inconsistent ranking of A. aegypti in competitive effect and response. Although A. albopictus is generally a superior competitor to A. aegypti, a stronger competitive effect of particular A. aegypti populations on invading A. albopictus may contribute to competition-mediated biotic resistance to the invader. These results suggest that interpopulation variation in competitive ability of A. aegypti may contribute to failure of A. albopictus to invade parts of the southeastern United States and offer evidence of a contribution to biotic resistance by an inferior competitor. Geographic

  15. Oviposition Behavior in Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in Response to the Presence of Heterospecific and Conspecific Larvae.

    PubMed

    Gonzalez, Paula V; González Audino, Paola A; Masuh, Héctor M

    2016-03-01

    In mosquitoes, location of suitable sites for oviposition requires a set of visual, tactile, and olfactory cues that influences females before laying their eggs. The ability of gravid females to distinguish among potential oviposition sites that will or will not support the growth, development, and survival of their progeny is critical. Aedes aegypti (L.) and Aedes albopictus (Skuse) share ecological niches, being highly competitive in larval stage. We studied the oviposition behavior of both species in the presence of larvae of one or the other species (heterospecific or conspecific larvae). The number of eggs laid by gravid females on oviposition sites (water with different or the same species of Aedes larvae) were compared. The presence and density of heterospecific or conspecific larvae had a positive or negative effect on the ovipositional responses, measured as an oviposition activity index. For both species, the oviposition was not affected by heterospecific larvae with densities between 10 and 100 larvae in water, but a strong attractant behavior was observed for a density of 500 larvae in water. For Ae. albopictus in the presence of larvae of the same species (conspecific oviposition), we observed an attractant effect for larvae density of 10 but not for 100 or 500 larvae in water. Instead, for Ae. aegypti, we observed attraction only for 100 larvae, not for 10 or 500 larvae. Results presented here provide an additional insight about oviposition behavior responses of gravid females in the presence of conspecific and heterospecific larvae in breeding sites. PMID:26634825

  16. Behavioral responses of two dengue virus vectors, Aedes aegypti and Aedes albopictus (Diptera: Culicidae), to DUET TM and its components

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ultralow volume (ULV) droplets of DUET TM, prallethrin and sumithrin at a sublethal dose were applied to unfed (non bloodfed) and bloodfed female Aedes aegypti Linn. and Aedes albopictus (Skuse) in a wind tunnel. Control spray droplets only contained inactive ingredients. Individual mosquitoes wer...

  17. Prevalence of Aedes aegypti Linnaeus and Aedes albopictus Skuse in Koderma, Jharkhand.

    PubMed

    Singh, R K; Dhiman, R C; Dua, V K

    2011-09-01

    Entomological survey was carried out in different localities of Koderma district of Jharkhand with a view to study the prevalence, distribution and stratification of areas for Aedes mosquito species. A total of 233 houses were covered during house to house larval and adult survey. Aedes breeding could be detected in 157 houses. In all, a total of 942 domestic water containers were searched, out of which 461 were found positive. The overall house index(HI) container index(CI) breteau index(B1) and pupal index(PI) were 67.38%, 48.94%, 197.85% and 79.4%, respectively. The survey revealed that Aedes aegypti Linnaeus and Aedes albopictus Skuse are well established in Koderma with most of the areas showing high adult and larval indices. The preventive strategy needs to be directed towards minimizing the breeding potential of Aedes and water management practice by individuals along with implementation of urban bye-laws as well as IEC activities to contain Aedes breeding in future. PMID:23781636

  18. Biogeography of the two major arbovirus mosquito vectors, Aedes aegypti and Aedes albopictus (Diptera, Culicidae), in Madagascar

    PubMed Central

    2012-01-01

    Background In the past ten years, the Indian Ocean region has been the theatre of severe epidemics of chikungunya and dengue. These outbreaks coincided with a high increase in populations of Aedes albopictus that outcompete its sister taxon Aedes aegypti in most islands sampled. The objective of this work was to update the entomological survey of the two Aedes species in the island of Madagascar which has to face these arboviroses. Methods The sampling of Aedes mosquitoes was conducted during two years, from October 2007 to October 2009, in fifteen localities from eight regions of contrasting climates. Captured adults were identified immediately whereas immature stages were bred until adult stage for determination. Phylogenetic analysis was performed using two mtDNA genes, COI and ND5 and trees were constructed by the maximum likelihood (ML) method with the gene time reversible (GTR) model. Experimental infections with the chikungunya virus strain 06.21 at a titer of 107.5 pfu/mL were performed to evaluate the vector competence of field-collected mosquitoes. Disseminated infection rates were measured fourteen days after infection by immunofluorescence assay performed on head squashes. Results The species Aedes aegypti was detected in only six sites in native forests and natural reserves. In contrast, the species Aedes albopictus was found in 13 out of the 15 sites sampled. Breeding sites were mostly found in man-made environments such as discarded containers, used tires, abandoned buckets, coconuts, and bamboo cuts. Linear regression models showed that the abundance of Ae. albopictus was significantly influenced by the sampling region (F = 62.00, p < 2.2 × 10-16) and period (F = 36.22, p = 2.548 × 10-13), that are associated with ecological and climate variations. Phylogenetic analysis of the invasive Ae. albopictus distinguished haplotypes from South Asia and South America from those of Madagascar, but the markers used were not discriminant enough to discern

  19. The effect of Piper aduncum Linn. (Family: Piperaceae) essential oil as aerosol spray against Aedes aegypti (L.) and Aedes albopictus Skuse.

    PubMed

    Misni, Norashiqin; Othman, Hidayatulfathi; Sulaiman, Sallehudin

    2011-08-01

    The bioefficacy of Piper aduncum L. essential oil formulated in aerosol cans was evaluated against Aedes aegypti and Aedes albopictus in a simulated room. The aerosol spray test was based on the Malaysian test standard for aerosol (MS 1221:1991UDC 632.982.2 modified from WHO 2009 methodology) and examined the knockdown effect within 20 minutes of exposure. Mortality rate after 24 hour of holding period was also determined. A commercial aerosol spray (0.09% prallethrin 0.05% d-phenothrin) was also tested as a comparison. Our results showed that the knockdown effect of the commercial aerosol spray and P. aduncum essential oil spray (8% and 10% concentrations) was significantly higher in Ae. albopictus adult females, when compared with that of Ae. aegypti adult females (P<0.05). There was a significant difference in knockdown between commercial aerosol spray and essential oil spray for both Aedes spp. (P<0.05). The essential oil induced significantly higher mortality in Ae. aegypti (80%) than in Ae. albopictus (71.6%) (P<0.05). The commercial aerosol spray caused 97.7% and 86.5% mortality against Ae. aegypti and Ae. albopictus respectively (P<0.05). Based on these data, P. aduncum essential oil has the potential to be used as an aerosol spray against Aedes spp. PMID:22041743

  20. Biocontrol evaluation of extracts and a major component, clusianone, from Clusia fluminensis Planch. & Triana against Aedes aegypti

    PubMed Central

    Anholeti, Maria C; Duprat, Rodrigo C; Figueiredo, Maria R; Kaplan, Maria AC; Santos, Marcelo Guerra; Gonzalez, Marcelo S; Ratcliffe, Norman A; Feder, Denise; Paiva, Selma R; Mello, Cicero B

    2015-01-01

    Studies evaluated the effects of hexanic extracts from the fruits and flowers ofClusia fluminensis and the main component of the flower extract, a purified benzophenone (clusianone), against Aedes aegypti. The treatment of larvae with the crude fruit or flower extracts from C. fluminensis did not affect the survival ofAe. aegypti (50 mg/L), however, the flower extracts significantly delayed development of Ae. aegypti. In contrast, the clusianone (50 mg/L) isolate from the flower extract, representing 54.85% of this sample composition, showed a highly significant inhibition of survival, killing 93.3% of the larvae and completely blocking development of Ae. aegypti. The results showed, for the first time, high activity of clusianone against Ae. aegypti that both killed and inhibited mosquito development. Therefore, clusianone has potential for development as a biopesticide for controlling insect vectors of tropical diseases. Future work will elucidate the mode of action of clusianone isolated from C. fluminensis. PMID:26200711

  1. Biocontrol evaluation of extracts and a major component, clusianone, from Clusia fluminensis Planch. & Triana against Aedes aegypti.

    PubMed

    Anholeti, Maria C; Duprat, Rodrigo C; Figueiredo, Maria R; Kaplan, Maria Ac; Santos, Marcelo Guerra; Gonzalez, Marcelo S; Ratcliffe, Norman A; Feder, Denise; Paiva, Selma R; Mello, Cicero B

    2015-08-01

    Studies evaluated the effects of hexanic extracts from the fruits and flowers of Clusia fluminensis and the main component of the flower extract, a purified benzophenone (clusianone), against Aedes aegypti. The treatment of larvae with the crude fruit or flower extracts from C. fluminensis did not affect the survival ofAe. aegypti (50 mg/L), however, the flower extracts significantly delayed development of Ae. aegypti. In contrast, the clusianone (50 mg/L) isolate from the flower extract, representing 54.85% of this sample composition, showed a highly significant inhibition of survival, killing 93.3% of the larvae and completely blocking development of Ae. aegypti. The results showed, for the first time, high activity of clusianone against Ae. aegypti that both killed and inhibited mosquito development. Therefore, clusianone has potential for development as a biopesticide for controlling insect vectors of tropical diseases. Future work will elucidate the mode of action of clusianone isolated from C. fluminensis. PMID:26200711

  2. Seasonal Differences in Density But Similar Competitive Impact of Aedes albopictus (Skuse) on Aedes aegypti (L.) in Rio de Janeiro, Brazil.

    PubMed

    Camara, Daniel Cardoso Portela; Codeço, Claudia Torres; Juliano, Steven A; Lounibos, L Philip; Riback, Thais Irene Souza; Pereira, Glaucio Rocha; Honorio, Nildimar Alves

    2016-01-01

    Previous studies have shown that the negative effects of density of Ae. albopictus on Ae. aegypti exceed those of Ae. aegypti on Ae. albopictus for population growth, adult size, survivorship, and developmental rate. This competitive superiority has been invoked to explain the displacement of Ae. aegypti by Ae. albopictus in the southeastern USA. In Brazil, these species coexist in many vegetated suburban and rural areas. We investigated a related, but less-well-studied question: do effects of Ae. albopictus on Ae. aegypti larval development and survival occur under field conditions at realistic densities across multiple seasons in Brazil? We conducted additive competition experiments in a vegetated area of Rio de Janeiro where these species coexist. We tested the hypothesis that Ae. aegypti (the focal species, at a fixed density) suffers negative effects on development and survivorship across a gradient of increasing densities of Ae. albopictus (the associate species) in three seasons. The results showed statistically significant effects of both season and larval density on Ae. aegypti survivorship, and significant effects of season on development rate, with no significant season-density interactions. Densities of Aedes larvae in these habitats differed among seasons by a factor of up to 7x. Overall, Spring was the most favorable season for Ae. aegypti survivorship and development. Results showed that under natural conditions the negative competitive effects of Ae. albopictus on Ae. aegypti were expressed primarily as lower survivorship. Coexistence between Ae. aegypti and Ae. albopictus in vegetated areas is likely affected by seasonal environmental differences, such as detrital resource levels or egg desiccation, which can influence competition between these species. Interactions between these Aedes are important in Brazil, where both species are well established and widely distributed and vector dengue, Zika and chikungunya viruses. PMID:27322537

  3. Seasonal Differences in Density But Similar Competitive Impact of Aedes albopictus (Skuse) on Aedes aegypti (L.) in Rio de Janeiro, Brazil

    PubMed Central

    Camara, Daniel Cardoso Portela; Codeço, Claudia Torres; Juliano, Steven A.; Lounibos, L. Philip; Riback, Thais Irene Souza; Pereira, Glaucio Rocha; Honorio, Nildimar Alves

    2016-01-01

    Previous studies have shown that the negative effects of density of Ae. albopictus on Ae. aegypti exceed those of Ae. aegypti on Ae. albopictus for population growth, adult size, survivorship, and developmental rate. This competitive superiority has been invoked to explain the displacement of Ae. aegypti by Ae. albopictus in the southeastern USA. In Brazil, these species coexist in many vegetated suburban and rural areas. We investigated a related, but less-well-studied question: do effects of Ae. albopictus on Ae. aegypti larval development and survival occur under field conditions at realistic densities across multiple seasons in Brazil? We conducted additive competition experiments in a vegetated area of Rio de Janeiro where these species coexist. We tested the hypothesis that Ae. aegypti (the focal species, at a fixed density) suffers negative effects on development and survivorship across a gradient of increasing densities of Ae. albopictus (the associate species) in three seasons. The results showed statistically significant effects of both season and larval density on Ae. aegypti survivorship, and significant effects of season on development rate, with no significant season-density interactions. Densities of Aedes larvae in these habitats differed among seasons by a factor of up to 7x. Overall, Spring was the most favorable season for Ae. aegypti survivorship and development. Results showed that under natural conditions the negative competitive effects of Ae. albopictus on Ae. aegypti were expressed primarily as lower survivorship. Coexistence between Ae. aegypti and Ae. albopictus in vegetated areas is likely affected by seasonal environmental differences, such as detrital resource levels or egg desiccation, which can influence competition between these species. Interactions between these Aedes are important in Brazil, where both species are well established and widely distributed and vector dengue, Zika and chikungunya viruses. PMID:27322537

  4. Effect of confertifolin from Polygonum hydropiper L. against dengue vector mosquitoes Aedes aegypti L.

    PubMed

    Maheswaran, Rajan; Ignacimuthu, Savarimuthu

    2015-06-01

    The essential oil from the leaves of Polygonum hydropiper L. (Polygonaceae) was tested against Aedes aegypti L. The LC50 values were 190.72 and 234.37 ppm against second and fourth instar larvae of A. aegypti, respectively. Confertifolin (6,6,9a-trimethy l-4,5,5a,6,7,8,9,9a-octahydronaphtho [1,2-c] furan-3 (1H)-one) was isolated from the essential oil of P. hydropiper leaves using silica gel column chromatography. The LC50 values were 2.90 and 2.96 ppm for second and fourth instar larvae of A. aegypti, respectively. At 10 ppm, the concentration of confertifolin showed ovicidal activity of 100, 100, and 77.6 % on 0-6, 6-12, and 12-18 h old eggs; the repellent activity was 323.2 min; and oviposition deterrent activity was 97.52 % and adulticidal activity was 100 % against A. aegypti. The results were statistically significant at P < 0.05 level. The results suggested that confertifolin as an effective major constituent against A. aegypti and might be considered as a potent source for the production of superior natural mosquitocides. PMID:25523289

  5. New Candidates for Plant-Based Repellents Against Aedes aegypti.

    PubMed

    Misni, Norashiqin; Nor, Zurainee Mohamed; Ahmad, Rohani

    2016-06-01

    Based on an ethnobotanical study on use for plant species against mosquito bites in the Kota Tinggi District, Johor State, Malaysia, 3 plants selected for study, Citrus aurantifolia (leaves), Citrus grandis (fruit peel), and Alpinia galanga (rhizome), were extracted using hydrodistillation to produce essential oils. These essential oils were then formulated as a lotion using a microencapsulation process and then tested for their repellent effect against Aedes aegypti. N,N-diethyl-m-toluamide (deet) was also prepared in the same formulation and tested for repellency as controls. Four commercial plant-based repellent (KAPS(®), MozAway(®), BioZ Natural(®), and Mosiquard(®)) also were incorporated in the bioassay for comparison purposes. Bioassays revealed that at 20% concentration all repellent formulations demonstrated complete protection for 2 h and >90% for 4 h post-application. The A. galanga-based formulation provided the greatest level of protection (98.91%), which extended for 4 h post-application and was not significantly different from deet at similar concentration. When compared with commercial plant-based repellents (KAPS(®), MozAway(®), and BioZ Natural(®)), the 3 lotion formulations showed significantly better protection against Ae. aegypti bites, providing >90% protection for 4 h. In conclusion, our 3 plant-based lotion formulations provided acceptable levels of protection against host-seeking Ae. aegypti and should be developed. PMID:27280349

  6. Differential Susceptibilities of Aedes aegypti and Aedes albopictus from the Americas to Zika Virus

    PubMed Central

    Vazeille, Marie; Yebakima, André; Girod, Romain; Goindin, Daniella; Dupont-Rouzeyrol, Myrielle; Lourenço-de-Oliveira, Ricardo; Failloux, Anna-Bella

    2016-01-01

    Background Since the major outbreak in 2007 in the Yap Island, Zika virus (ZIKV) causing dengue-like syndromes has affected multiple islands of the South Pacific region. In May 2015, the virus was detected in Brazil and then spread through South and Central America. In December 2015, ZIKV was detected in French Guiana and Martinique. The aim of the study was to evaluate the vector competence of the mosquito spp. Aedes aegypti and Aedes albopictus from the Caribbean (Martinique, Guadeloupe), North America (southern United States), South America (Brazil, French Guiana) for the currently circulating Asian genotype of ZIKV isolated from a patient in April 2014 in New Caledonia. Methodology/Principal Findings Mosquitoes were orally exposed to an Asian genotype of ZIKV (NC-2014-5132). Upon exposure, engorged mosquitoes were maintained at 28°±1°C, a 16h:8h light:dark cycle and 80% humidity. 25–30 mosquitoes were processed at 4, 7 and 14 days post-infection (dpi). Mosquito bodies (thorax and abdomen), heads and saliva were analyzed to measure infection, dissemination and transmission, respectively. High infection but lower disseminated infection and transmission rates were observed for both Ae. aegypti and Ae. albopictus. Ae. aegypti populations from Guadeloupe and French Guiana exhibited a higher dissemination of ZIKV than the other Ae. aegypti populations examined. Transmission of ZIKV was observed in both mosquito species at 14 dpi but at a low level. Conclusions/Significance This study suggests that although susceptible to infection, Ae. aegypti and Ae. albopictus were unexpectedly low competent vectors for ZIKV. This may suggest that other factors such as the large naïve population for ZIKV and the high densities of human-biting mosquitoes contribute to the rapid spread of ZIKV during the current outbreak. PMID:26938868

  7. Rapid identification of Aedes albopictus, Aedes scutellaris, and Aedes aegypti life stages using real-time polymerase chain reaction assays.

    PubMed

    Hill, Lydia A; Davis, Joseph B; Hapgood, George; Whelan, Peter I; Smith, Greg A; Ritchie, Scott A; Cooper, R D; van den Hurk, Andrew F

    2008-12-01

    In 2005, a widespread infestation of Aedes albopictus was discovered in the Torres Strait, the region between northern Australia and New Guinea. To contain this species, an eradication program was implemented in 2006. However, the progress of this program is impeded by the difficulty of morphologically separating Ae. albopictus larvae from the endemic species Aedes scutellaris. In this study, three real-time TaqMan polymerase chain reaction assays that target the ribosomal internal transcribed spacer 1 region were developed to rapidly identify Aedes aegypti, Ae. albopictus, and Ae. scutellaris from northern Australia. Individual eggs, larvae, pupae, and adults, as well as the species composition of mixed pools were accurately identified. The assay method was validated using 703 field-collected specimens from the Torres Strait. PMID:19052295

  8. Edhazardia aedis, a microsporidian pathogen of Aedes aegypti: Possibilities and challenges for classical biocontrol in South America

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Edhazardia aedis, a pathogen of Aedes aegypti, has a complex life cycle involving both horizontal and vertical transmission affecting two successive generations of the host. Usually, one sporulation sequence occurs in the adult female (infected orally as a larva) and results in the formation of bin...

  9. Global temperature constraints on Aedes aegypti and Ae. albopictus persistence and competence for dengue virus transmission

    PubMed Central

    2014-01-01

    Background Dengue is a disease that has undergone significant expansion over the past hundred years. Understanding what factors limit the distribution of transmission can be used to predict current and future limits to further dengue expansion. While not the only factor, temperature plays an important role in defining these limits. Previous attempts to analyse the effect of temperature on the geographic distribution of dengue have not considered its dynamic intra-annual and diurnal change and its cumulative effects on mosquito and virus populations. Methods Here we expand an existing modelling framework with new temperature-based relationships to model an index proportional to the basic reproductive number of the dengue virus. This model framework is combined with high spatial and temporal resolution global temperature data to model the effects of temperature on Aedes aegypti and Ae. albopictus persistence and competence for dengue virus transmission. Results Our model predicted areas where temperature is not expected to permit transmission and/or Aedes persistence throughout the year. By reanalysing existing experimental data our analysis indicates that Ae. albopictus, often considered a minor vector of dengue, has comparable rates of virus dissemination to its primary vector, Ae. aegypti, and when the longer lifespan of Ae. albopictus is considered its competence for dengue virus transmission far exceeds that of Ae. aegypti. Conclusions These results can be used to analyse the effects of temperature and other contributing factors on the expansion of dengue or its Aedes vectors. Our finding that Ae. albopictus has a greater capacity for dengue transmission than Ae. aegypti is contrary to current explanations for the comparative rarity of dengue transmission in established Ae. albopictus populations. This suggests that the limited capacity of Ae. albopictus to transmit DENV is more dependent on its ecology than vector competence. The recommendations, which we

  10. Diversity of containers and buildings infested with Aedes aegypti in Puerto Iguazú, Argentina.

    PubMed

    Costa, Federico; Fattore, Gladys; Abril, Marcelo

    2012-09-01

    Aedes aegypti is the main domestic vector of the dengue virus. Control measures to prevent dengue transmission focus on the treatment and elimination of this vector's oviposition sites. There is limited biological information on Ae. aegypti in Argentina. The aim of this study was to characterize Ae. aegypti oviposition sites in the city of Puerto Iguazú, Argentina. We surveyed an area covering nine neighborhoods in 2005. We identified 191 premises as positive for Ae. aegypti, giving a general house index of 9.6%. Premises classified as residential and vacant lots presented the highest number of infested premises, with 9% and 22% respectively. The total number of surveyed containers was 29,600. The overall container index (CI) was 1.1. The most frequently infested containers were water tanks (CI = 37). These preliminary results suggest that vacant lots and water tanks provide suitable breeding areas and environmental conditions, improving the chances of Ae. aegypti survival in Puerto Iguazú. PMID:23033195

  11. Oviposition and Embryotoxicity of Indigofera suffruticosa on Early Development of Aedes aegypti (Diptera: Culicidae).

    PubMed

    Vieira, Jeymesson Raphael Cardoso; Leite, Roberta Maria Pereira; Lima, Izabela Rangel; Navarro, Daniela do Amaral Ferraz; Bianco, Everson Miguel; Leite, Sônia Pereira

    2012-01-01

    Aqueous extract of Indigofera suffruticosa leaves obtained by infusion was used to evaluate the oviposition, its effect on development of eggs and larvae, and morphological changes in larvae of Aedes aegypti. The bioassays were carried out with aqueous extract in different concentrations on eggs, larvae, and female mosquitoes, and the morphological changes were observed in midgut of larvae. The extract showed repellent activity on A. aegypti mosquitoes, reducing significantly the egg laying by females with control substrate (343 (185-406)) compared with the treated substrate (88 (13-210)). No eclosion of A. aegypti eggs at different concentrations studied was observed. The controleclodedin 35%. At concentration of 250 μg/mL, 93.3% of larvae remained in the second instar of development and at concentrations of 500, 750, and 1000 μg/mL the inhibitory effect was lower with percentages of 20%, 53.3%, and 46.6%, respectively. Morphological changes like disruption on the peritrophic envelope (PE), discontinued underlying epithelium, increased gut lumen, and segments with hypertrophic aspects were observed in anterior region of medium midgut of larvae of A. aegypti. The results showed repellent activity, specific embryotoxicity, and general growth retardation in A. aegypti by medium containing aqueous extract of I. suffruticosa leaves. PMID:21822443

  12. Oviposition and Embryotoxicity of Indigofera suffruticosa on Early Development of Aedes aegypti (Diptera: Culicidae)

    PubMed Central

    Vieira, Jeymesson Raphael Cardoso; Leite, Roberta Maria Pereira; Lima, Izabela Rangel; Navarro, Daniela do Amaral Ferraz; Bianco, Everson Miguel; Leite, Sônia Pereira

    2012-01-01

    Aqueous extract of Indigofera suffruticosa leaves obtained by infusion was used to evaluate the oviposition, its effect on development of eggs and larvae, and morphological changes in larvae of Aedes aegypti. The bioassays were carried out with aqueous extract in different concentrations on eggs, larvae, and female mosquitoes, and the morphological changes were observed in midgut of larvae. The extract showed repellent activity on A. aegypti mosquitoes, reducing significantly the egg laying by females with control substrate (343 (185–406)) compared with the treated substrate (88 (13–210)). No eclosion of A. aegypti eggs at different concentrations studied was observed. The controleclodedin 35%. At concentration of 250 μg/mL, 93.3% of larvae remained in the second instar of development and at concentrations of 500, 750, and 1000 μg/mL the inhibitory effect was lower with percentages of 20%, 53.3%, and 46.6%, respectively. Morphological changes like disruption on the peritrophic envelope (PE), discontinued underlying epithelium, increased gut lumen, and segments with hypertrophic aspects were observed in anterior region of medium midgut of larvae of A. aegypti. The results showed repellent activity, specific embryotoxicity, and general growth retardation in A. aegypti by medium containing aqueous extract of I. suffruticosa leaves. PMID:21822443

  13. Evidence of limited polyandry in a natural population of Aedes aegypti.

    PubMed

    Richardson, Joshua B; Jameson, Samuel B; Gloria-Soria, Andrea; Wesson, Dawn M; Powell, Jeffrey

    2015-07-01

    The mosquito Aedes aegypti is a vector of yellow fever, dengue, and chikungunya. Control of the insect is crucial to stop the spread of dengue and chikungunya, so it is critically important to understand its mating behavior. Primarily, based on laboratory behavior, it has long been assumed that Ae. aegypti females mate once in their lifetime. However, multiple inseminations have been observed in semi-field and laboratory settings, and in closely related species. Here, we report the first evidence of polyandry in a natural population of Ae. aegypti. Female Ae. aegypti were captured around the New Orleans, LA, metropolitan area. They were offered a blood meal and allowed to lay eggs, which were reared to the third-instar larval stage. A parentage analysis using four microsatellite loci was performed. Out of 48 families, 3 showed evidence of multiple paternity. An expanded analysis of these three families found that one family group included offspring contributed by three fathers, and the other two included offspring from two fathers. This result establishes that polyandry can occur in a small proportion of Ae. aegypti females in a natural setting. This could complicate future genetic control efforts and has implications for sampling for population genetics. PMID:25870424

  14. The Siren's Song: Exploitation of Female Flight Tones to Passively Capture Male Aedes aegypti (Diptera: Culicidae).

    PubMed

    Johnson, Brian J; Ritchie, Scott A

    2016-01-01

    The need to capture male mosquitoes has intensified recently as a result of a number of male-based sterile insect technique (SIT) and population-modification programs focused on Aedes aegypti (L.) having initiated field releases. Here, we report the results of the successful exploitation of the attraction of male Ae. aegypti to female flight tones to enhance male collections in nonmechanical passive (nonbattery powered) Gravid Aedes Traps (GAT). Prior to field studies, male attraction to female flight tones of 484 and 560 Hz, as well as to a male flight tone of 715 Hz, were assessed in a series of controlled release-recapture and semifield trials. These trials determined that a pure tone of 484 Hz was significantly more attractive to free-flying males than the other flight tones and enabled their collection in sound-baited GATs (ca. 95% capture rate after 2 h; 484 Hz at 65 dB). In contrast, gravid females were unresponsive to male or female flight tones and were evenly distributed among sound-baited and control GATs. Importantly, under normal field conditions sound-baited GATs (484 Hz at 70 dB) captured significantly more male Ae. aegypti per 24-h trap interval (1.3 ± 0.37) than controls (0.2 ± 0.13). Overall, sound-bated GATs captured approximately twice as many Ae. aegypti (male and female; 3.0 ± 0.68 per interval, 30 total) than controls (1.5 ± 0.56 per interval, 15 total). These results reveal that sound-baited GATs are a simple and effective surveillance tool for Ae. aegypti that would allow current male-based SIT and population-modification programs to effectively monitor males in their target populations. PMID:26502754

  15. Impact of deltamethrin-impregnated container covers on Aedes aegypti oviposition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    USDA researchers are studying novel methods to control Aedes aegypti. One approach focuses on prevention of oviposition by female Ae. aegypti. In collaboration with Vestergaard Frandsen Ltd., deltamethrin-treated PermaNet® Container Covers (jar lids) were evaluated with different configurations of...

  16. Repellents Inhibit P450 Enzymes in Stegomyia (Aedes) aegypti

    PubMed Central

    Jaramillo Ramirez, Gloria Isabel; Logan, James G.; Loza-Reyes, Elisa; Stashenko, Elena; Moores, Graham D.

    2012-01-01

    The primary defence against mosquitoes and other disease vectors is often the application of a repellent. Despite their common use, the mechanism(s) underlying the activity of repellents is not fully understood, with even the mode of action of DEET having been reported to be via different mechanisms; e.g. interference with olfactory receptor neurones or actively detected by olfactory receptor neurones on the antennae or maxillary palps. In this study, we discuss a novel mechanism for repellence, one of P450 inhibition. Thirteen essential oil extracts from Colombian plants were assayed for potency as P450 inhibitors, using a kinetic fluorometric assay, and for repellency using a modified World Health Organisation Pesticide Evaluations Scheme (WHOPES) arm-in cage assay with Stegomyia (Aedes) aegypti mosquitoes. Bootstrap analysis on the inhibition analysis revealed a significant correlation between P450-inhibition and repellent activity of the oils. PMID:23152795

  17. Behavioral responses of Aedes aegypti, Aedes albopictus, Culex quinquefasciatus, and Anopheles minimus against various synthetic and natural repellent compounds.

    PubMed

    Sathantriphop, Sunaiyana; White, Sabrina A; Achee, Nicole L; Sanguanpong, Unchalee; Chareonviriyaphap, Theeraphap

    2014-12-01

    The behavioral responses of colony populations of Aedes aegypti, Aedes albopictus, Culex quinquefasciatus, and Anopheles minimus to four essential oils (citronella, hairy basil, catnip, and vetiver), two standard repellents (DEET and picaridin), and two synthetic pyrethroids (deltamethrin and permethrin) were conducted in the laboratory using an excito-repellency test system. Results revealed that Cx. quinquefasciatus and An. minimus exhibited much stronger behavioral responses to all test compounds (65-98% escape for contact, 21.4-94.4% escape for non-contact) compared to Ae. aegypti (3.7-72.2% escape (contact), 0-31.7% (non-contact)) and Ae. albopictus (3.5-94.4% escape (contact), 11.2-63.7% (non-contact)). In brief, essential oil from vetiver elicited the greatest irritant responses in Cx. quinquefasciatus (96.6%) and An. minimus (96.5%) compared to the other compounds tested. The synthetic pyrethroids caused a stronger contact irritant response (65-97.8% escape) than non-contact repellents (0-50.8% escape for non-contact) across all four mosquito species. Picaridin had the least effect on all mosquito species. Findings from the current study continue to support the screening of essential oils from various plant sources for protective properties against field mosquitoes. PMID:25424262

  18. Contact Irritant Responses of Aedes aegypti Using Sublethal Concentration and Focal Application of Pyrethroid Chemicals

    PubMed Central

    Manda, Hortance; Shah, Pankhil; Polsomboon, Suppaluck; Chareonviriyaphap, Theeraphap; Castro-Llanos, Fanny; Morrison, Amy; Burrus, Roxanne G.; Grieco, John P.; Achee, Nicole L.

    2013-01-01

    Background Previous studies have demonstrated contact irritant and spatial repellent behaviors in Aedes aegypti following exposure to sublethal concentrations of chemicals. These sublethal actions are currently being evaluated in the development of a push-pull strategy for Ae. aegypti control. This study reports on mosquito escape responses after exposure to candidate chemicals for a contact irritant focused push-pull strategy using varying concentrations and focal application. Methods Contact irritancy (escape) behavior, knockdown and 24 hour mortality rates were quantified in populations of female Ae. aegypti under laboratory conditions and validated in the field (Thailand and Peru) using experimental huts. Evaluations were conducted using varying concentrations and treatment surface area coverage (SAC) of three pyrethroid insecticides: alphacypermethrin, lambacyhalothrin and deltamethrin. Results Under laboratory conditions, exposure of Ae. aegypti to alphacypermethrin using the standard field application rate (FAR) resulted in escape responses at 25% and 50% SAC that were comparable with escape responses at 100% SAC. Significant escape responses were also observed at <100% SAC using ½FAR of all test compounds. In most trials, KD and 24 hour mortality rates were higher in mosquitoes that did not escape than in those that escaped. In Thailand, field validation studies indicated an early time of exit (by four hours) and 40% increase in escape using ½FAR of alphacypermethrin at 75% SAC compared to a matched chemical-free control. In Peru, however, the maximum increase in Ae. aegypti escape from alphacypermethrin-treated huts was 11%. Conclusions/Significance Results presented here suggest a potential role for sublethal and focal application of contact irritant chemicals in an Ae. aegypti push-pull strategy to reduce human–vector contact inside treated homes. However, the impact of an increase in escape response on dengue virus transmission is currently unknown

  19. Interspecific Cross-Mating Between Aedes aegypti and Aedes albopictus Laboratory Strains: Implication of Population Density on Mating Behaviors.

    PubMed

    Marcela, P; Hassan, A Abu; Hamdan, A; Dieng, H; Kumara, T K

    2015-12-01

    Mating behavior between Aedes aegypti and Ae. albopictus, established colony strains were examined under laboratory conditions (30-cm(3) screened cages) for 5 consecutive days. The effect of selected male densities (30, 20, 10) and female density (20) on the number of swarming, mating pairs, eggs produced, and inseminated females were evaluated. Male densities significantly increased swarming behavior, mating pairs, and egg production of heterospecific females, but female insemination was reduced. Aedes aegypti males mate more readily with heterospecific females than do Ae. albopictus males. The current study suggests that Ae. aegypti males were not species-specific in mating, and if released into the field as practiced in genetically modified mosquito techniques, they may mate with both Ae. aegypti and Ae. albopictus females, hence reducing populations of both species by producing infertile eggs. PMID:26675452

  20. Bromeliad-inhabiting mosquitoes in an urban botanical garden of dengue endemic Rio de Janeiro. Are bromeliads productive habitats for the invasive vectors Aedes aegypti and Aedes albopictus?

    PubMed Central

    Mocellin, Márcio Goulart; Simões, Taynãna César; do Nascimento, Teresa Fernandes Silva; Teixeira, Maria Lucia França; Lounibos, Leon Philip; de Oliveira, Ricardo Lourenço

    2012-01-01

    Immatures of both Aedes aegypti and Aedes albopictus have been found in water-holding bromeliad axils in Brazil. Removal of these plants or their treatment with insecticides in public and private gardens have been undertaken during dengue outbreaks in Brazil despite uncertainty as to their importance as productive habitats for dengue vectors. From March 2005-February 2006, we sampled 120 randomly selected bromeliads belonging to 10 species in a public garden less than 200 m from houses in a dengue-endemic neighborhood in Rio de Janeiro. A total of 2,816 mosquito larvae and pupae was collected, with an average of 5.87 immatures per plant per collection. Culex (Microculex) pleuristriatus and Culex spp of the Ocellatus Group were the most abundant culicid species, found in all species of bromeliads; next in relative abundance were species of the genus Wyeomyia. Only two individuals of Ae. aegypti (0.07%) and five of Ae. albopictus (0.18%) were collected from bromeliads. By contrast, immatures of Ae. aegypti were found in manmade containers in nearly 5% of nearby houses. These results demonstrate that bromeliads are not important producers of Ae. aegypti and Ae. albopictus and, hence, should not be a focus for dengue control. However, the results of this study of only one year in a single area may not represent outcomes in other urban localities where bromeliads, Ae. aegypti and dengue coincide in more disturbed habitats. PMID:20140379

  1. Origin of the Dengue Fever Mosquito, Aedes aegypti, in California

    PubMed Central

    Gloria-Soria, Andrea; Brown, Julia E.; Kramer, Vicki; Hardstone Yoshimizu, Melissa; Powell, Jeffrey R.

    2014-01-01

    Dengue fever is among the most widespread vector-borne infectious diseases. The primary vector of dengue is the Aedes aegypti mosquito. Ae. aegypti is prevalent in the tropics and sub-tropics and is closely associated with human habitats outside its native range of Africa. While long established in the southeastern United States of America where dengue is re-emerging, breeding populations have never been reported from California until the summer of 2013. Using 12 highly variable microsatellite loci and a database of reference populations, we have determined that the likely source of the California introduction is the southeastern United States, ruling out introductions from abroad, from the geographically closer Arizona or northern Mexico populations, or an accidental release from a research laboratory. The power to identify the origin of new introductions of invasive vectors of human disease relies heavily on the availability of a panel of reference populations. Our work demonstrates the importance of generating extensive reference databases of genetically fingerprinted human-disease vector populations to aid public health efforts to prevent the introduction and spread of vector-borne diseases. PMID:25077804

  2. Dengue virus-infected Aedes aegypti in the home environment.

    PubMed

    Garcia-Rejon, Julian; Loroño-Pino, Maria Alba; Farfan-Ale, Jose Arturo; Flores-Flores, Luis; Del Pilar Rosado-Paredes, Elsy; Rivero-Cardenas, Nubia; Najera-Vazquez, Rosario; Gomez-Carro, Salvador; Lira-Zumbardo, Victor; Gonzalez-Martinez, Pedro; Lozano-Fuentes, Saul; Elizondo-Quiroga, Darwin; Beaty, Barry J; Eisen, Lars

    2008-12-01

    We determined abundance of Aedes aegypti mosquitoes and presence of dengue virus (DENV) in females collected from premises of laboratory-confirmed dengue patients over a 12-month period (March 2007 to February 2008) in Merida, Mexico. Backpack aspiration from 880 premises produced 1,836 females and 1,292 males indoors (predominantly from bedrooms) and 102 females and 108 males from patios/backyards. The mean weekly indoor catch rate per home peaked at 7.8 females in late August. Outdoor abundances of larvae or pupae were not predictive of female abundance inside the home. DENV-infected Ae. aegypti females were recovered from 34 premises. Collection of DENV-infected females from homes of dengue patients up to 27 days after the onset of symptoms (median, 14 days) shows the usefulness of indoor insecticide application in homes of suspected dengue patients to prevent their homes from becoming sources for dispersal of DENV by persons visiting and being bitten by infected mosquitoes. PMID:19052309

  3. The Aedes aegypti Toll Pathway Controls Dengue Virus Infection

    PubMed Central

    Xi, Zhiyong; Ramirez, Jose L.; Dimopoulos, George

    2008-01-01

    Aedes aegypti, the mosquito vector of dengue viruses, utilizes its innate immune system to ward off a variety of pathogens, some of which can cause disease in humans. To date, the features of insects' innate immune defenses against viruses have mainly been studied in the fruit fly Drosophila melanogaster, which appears to utilize different immune pathways against different types of viruses, in addition to an RNA interference–based defense system. We have used the recently released whole-genome sequence of the Ae. aegypti mosquito, in combination with high-throughput gene expression and RNA interference (RNAi)-based reverse genetic analyses, to characterize its response to dengue virus infection in different body compartments. We have further addressed the impact of the mosquito's endogenous microbial flora on virus infection. Our findings indicate a significant role for the Toll pathway in regulating resistance to dengue virus, as indicated by an infection-responsive regulation and functional assessment of several Toll pathway–associated genes. We have also shown that the mosquito's natural microbiota play a role in modulating the dengue virus infection, possibly through basal-level stimulation of the Toll immune pathway. PMID:18604274

  4. Origin of the dengue fever mosquito, Aedes aegypti, in California.

    PubMed

    Gloria-Soria, Andrea; Brown, Julia E; Kramer, Vicki; Hardstone Yoshimizu, Melissa; Powell, Jeffrey R

    2014-01-01

    Dengue fever is among the most widespread vector-borne infectious diseases. The primary vector of dengue is the Aedes aegypti mosquito. Ae. aegypti is prevalent in the tropics and sub-tropics and is closely associated with human habitats outside its native range of Africa. While long established in the southeastern United States of America where dengue is re-emerging, breeding populations have never been reported from California until the summer of 2013. Using 12 highly variable microsatellite loci and a database of reference populations, we have determined that the likely source of the California introduction is the southeastern United States, ruling out introductions from abroad, from the geographically closer Arizona or northern Mexico populations, or an accidental release from a research laboratory. The power to identify the origin of new introductions of invasive vectors of human disease relies heavily on the availability of a panel of reference populations. Our work demonstrates the importance of generating extensive reference databases of genetically fingerprinted human-disease vector populations to aid public health efforts to prevent the introduction and spread of vector-borne diseases. PMID:25077804

  5. Rapid evolution of reduced receptivity to interspecific mating in the dengue vector Aedes aegypti in response to satyrization by invasive Aedes albopictus

    PubMed Central

    Bargielowski, I.; Lounibos, L.P.

    2013-01-01

    In this paper we examine the effect of reproductive interference on the dynamics of two mosquito vectors of public health concern and add to the growing literature on the strength and speed with which interspecific reproductive interference may drive evolution. Recent evidence supports a role for asymmetric reproductive interference, or satyrization, in competitive displacements of Aedes aegypti by Aedes albopictus. However, populations of A. aegypti sympatric with A. albopictus in nature evolve resistance to satyrization. Here we report that A. aegypti from Tucson, Arizona (USA), where A. albopictus are not known to occur, are satyrization-susceptible. Furthermore, in cage experiments we demonstrate rapid evolution in satyrization-susceptible lines. Exposing allopatric strains of A. aegypti to A. albopictus in cages led to significant reductions, within 1–3 generations, in the frequency of reproductive interference. We also demonstrate that satyrization-resistant A. aegypti females derived from selection experiments are significantly slower to mate with conspecific males, suggesting a cost for the evolution of satyrization-resistance. Results show how interspecific interactions between these vector species are rapidly evolving, with implications for the arboviral diseases, especially dengue and chikungunya, which they transmit. PMID:24563572

  6. Human-Mediated Marine Dispersal Influences the Population Structure of Aedes aegypti in the Philippine Archipelago

    PubMed Central

    Fonzi, Eugenio; Higa, Yukiko; Bertuso, Arlene G.; Futami, Kyoko; Minakawa, Noboru

    2015-01-01

    Background Dengue virus (DENV) is an extraordinary health burden on global scale, but still lacks effective vaccine. The Philippines is endemic for dengue fever, but massive employment of insecticides favored the development of resistance mutations in its major vector, Aedes aegypti. Alternative vector control strategies consist in releasing artificially modified mosquitos in the wild, but knowledge on their dispersal ability is necessary for a successful implementation. Despite being documented that Ae. aegypti can be passively transported for long distances, no study to date has been aimed at understanding whether human marine transportation can substantially shape the migration patterns of this mosquito. With thousands of islands connected by a dense network of ships, the Philippines is an ideal environment to fill this knowledge gap. Methodology/principal findings Larvae of Ae. aegypti from 15 seaports in seven major islands of central-western Philippines were collected and genotyped at seven microsatellite loci. Low genetic structure and considerable gene flow was found in the area. Univariate and multivariate regression analyses suggested that anthropic factors (specifically the amount of processed cargo and human population density) can explain the observed population structure, while geographical distance was not correlated. Interestingly, cargo shipments seem to be more efficient than passenger ships in transporting Ae. aegypti. Bayesian clustering confirmed that Ae. aegypti from busy ports are more genetically similar, while populations from idle ports are relatively structured, regardless of the geographical distance that separates them. Conclusions/significance The results confirmed the pivotal role of marine human-mediated long-range dispersal in determining the population structure of Ae. aegypti. Hopefully corroborated by further research, the present findings could assist the design of more effective vector control strategies. PMID:26039311

  7. Embryonic desiccation resistance in Aedes aegypti: presumptive role of the chitinized Serosal Cuticle

    PubMed Central

    Rezende, Gustavo Lazzaro; Martins, Ademir Jesus; Gentile, Carla; Farnesi, Luana Cristina; Pelajo-Machado, Marcelo; Peixoto, Alexandre Afrânio; Valle, Denise

    2008-01-01

    Background One of the major problems concerning dengue transmission is that embryos of its main vector, the mosquito Aedes aegypti, resist desiccation, surviving several months under dry conditions. The serosal cuticle (SC) contributes to mosquito egg desiccation resistance, but the kinetics of SC secretion during embryogenesis is unknown. It has been argued that mosquito SC contains chitin as one of its components, however conclusive evidence is still missing. Results We observed an abrupt acquisition of desiccation resistance during Ae. aegypti embryogenesis associated with serosal cuticle secretion, occurring at complete germ band extension, between 11 and 13 hours after egglaying. After SC formation embryos are viable on dry for at least several days. The presence of chitin as one of the SC constituents was confirmed through Calcofluor and WGA labeling and chitin quantitation. The Ae. aegypti Chitin Synthase A gene (AaCHS1) possesses two alternatively spliced variants, AaCHS1a and AaCHS1b, differentially expressed during Ae. aegypti embryonic development. It was verified that at the moment of serosal cuticle formation, AaCHS1a is the sole variant specifically expressed. Conclusion In addition to the peritrophic matrix and exoskeleton, these findings confirm chitin is also present in the mosquito serosal cuticle. They also point to the role of the chitinized SC in the desiccation resistance of Ae. aegypti eggs. AaCHS1a expression would be responsible for SC chitin synthesis. With this embryological approach we expect to shed new light regarding this important physiological process related to the Ae. aegypti life cycle. PMID:18789161

  8. Influence of breeding site availability on the oviposition behaviour of Aedes aegypti.

    PubMed

    Abreu, Filipe Vieira Santos de; Morais, Maira Moreira; Ribeiro, Sérvio Pontes; Eiras, Álvaro Eduardo

    2015-08-01

    Despite the importance of the mosquito Aedes aegypti in the transmission of arboviruses, such as yellow fever, Chikungunya fever and dengue fever, some aspects of their behaviour remain unknown. In the present study, the oviposition behaviour of Ae. aegypti females that were exposed to different densities of breeding sites (2, 4, 8 and 16) was evaluated in laboratory and semi-field conditions. The number of breeding sites that were used was proportional to the number available, but tended towards stabilisation. Females used four-six breeding sites on average, with a maximum of 11. A high percentage of eggs was observed in the water, along with the presence of a breeding site termed "favourite", which received at least 40% of the eggs. The results are discussed in ecological, evolutionary and epidemiological approaches. PMID:26154742

  9. Immunotoxicity activity of the major essential oil of Filipendula glaberrima against Aedes aegypti L.

    PubMed

    Lee, Sung-Jae; Moon, Hyung-In

    2010-12-01

    The aerial parts of Filipendula glaberrima were extracted and the composition and immunotoxicity effects of major essential oils were studied. The analyses conducted by gas chromatography and mass spectroscopy (GC-MS) revealed the essential oils of F. glaberrima. The F. glaberrima essential oil (FGEO) yield was 0.046%, and GC/MS analysis revealed that its major constituents were β-farnesol (2.96%), l-α-terpineol (2.43%), benzenemethanol (2.87%), (Z)-3-hexen-1-ol (5.23%), and 2,6-bis(1,1-dimethylethyl)-4-methylphenol (1.91%). The essential oil had a significant toxic effect against early fourth stage larvae of Aedes aegypti L with an LC(50) value of 28.43 ppm and an LC(90) value of 76.21 ppm. The results could be useful in search for newer, safer, and more effective natural immunotoxicity agents against A. aegypti. PMID:20175741

  10. Influence of breeding site availability on the oviposition behaviour of Aedes aegypti

    PubMed Central

    de Abreu, Filipe Vieira Santos; Morais, Maira Moreira; Ribeiro, Sérvio Pontes; Eiras, Álvaro Eduardo

    2015-01-01

    Despite the importance of the mosquito Aedes aegypti in the transmission of arboviruses, such as yellow fever, Chikungunya fever and dengue fever, some aspects of their behaviour remain unknown. In the present study, the oviposition behaviour of Ae. aegypti females that were exposed to different densities of breeding sites (2, 4, 8 and 16) was evaluated in laboratory and semi-field conditions. The number of breeding sites that were used was proportional to the number available, but tended towards stabilisation. Females used four-six breeding sites on average, with a maximum of 11. A high percentage of eggs was observed in the water, along with the presence of a breeding site termed “favourite”, which received at least 40% of the eggs. The results are discussed in ecological, evolutionary and epidemiological approaches. PMID:26154742

  11. Immunotoxicity activity of sesquiterpenoids from black galingale (Kaempferia parviflora Wall. Ex. Baker) against Aedes aegypti L.

    PubMed

    Moon, Hyung-In; Cho, Sang-Buem; Lee, Jun-Hyeong; Paik, Hyun-Dong; Kim, Soo-Ki

    2011-06-01

    The roots of black galingale (Kaempferia parviflora) were chloroform-extracted and the isolated two sesquiterpene and immunotoxicity effects were studied. The structures and stereochemistry of these compounds were established on the basis of analysis of spectra including UV, MS, (1)H-NMR, and (13)C-NMR as follows: 1 (4α-acetoxycadina-2,9-diene-1,8-dione), 2 (1α,3α,4β-trihydroxy-9-cadinen-8-one). Compound 2 had a significant toxic effect against early fourth-stage larvae of Aedes aegypti L. with an LC(50) value of 0.7 μM and an LC(90) value of 3.8 μM. The results could be useful in search for newer, safer, and more effective natural immunotoxicity agents against A. aegypti. PMID:20925462

  12. Winter Refuge for Aedes aegypti and Ae. albopictus Mosquitoes in Hanoi during Winter

    PubMed Central

    Tsunoda, Takashi; Cuong, Tran Chi; Dong, Tran Duc; Yen, Nguyen Thi; Le, Nguyen Hoang; Phong, Tran Vu; Minakawa, Noboru

    2014-01-01

    Dengue occurs throughout the year in Hanoi, Vietnam, despite winter low temperatures <10°C. During July 2010 to March 2012, we surveyed monthly for Aedes larvae and pupae in 120 houses in 8 Hanoi districts. Aedes albopictus preferred discarded containers in summer and pupal density drastically decreased in winter. Aedes aegypti preferred concrete tanks and this preference increased in winter. Even in winter, the lowest water temperature found in concrete tanks was >14°C, exceeding the developmental zero point of Ae. aegypti. Although jars, drums and concrete tanks were the dominant containers previously (1994–97) in Hanoi, currently the percentage of residences with concrete tanks was still high while jars and drums were quite low. Our study showed that concrete tanks with broken lids allowing mosquitoes access were important winter refuge for Ae. aegypti. We also indicate a concern about concrete tanks serving as foci for Ae. aegypti to expand their distribution in cooler regions. PMID:24752230

  13. Mass trapping with MosquiTRAPs does not reduce Aedes aegypti abundance

    PubMed Central

    Degener, Carolin Marlen; de Ázara, Tatiana Mingote Ferreira; Roque, Rosemary Aparecida; Rösner, Susanne; Rocha, Eliseu Soares Oliveira; Kroon, Erna Geessien; Codeço, Cláudia Torres; Nobre, Aline Araújo; Ohly, Jörg Johannes; Geier, Martin; Eiras, Álvaro Eduardo

    2015-01-01

    The objective of this study was to evaluate the effectiveness of Aedes aegypti mass trapping using the sticky trap MosquiTRAP (MQT) by performing a cluster randomised controlled trial in Manaus, state of Amazonas, Brazil. After an initial questionnaire and baseline monitoring of adult Ae. aegypti abundance with BG-Sentinel (BGS) traps in six clusters, three clusters were randomly assigned to the intervention arm where each participating household received three MQTs for mass trapping during 17 months. The remaining three clusters (control arm) did not receive traps. The effect of mass trapping on adult Ae. aegypti abundance was monitored fortnightly with BGS traps. During the last two months of the study, a serological survey was conducted. After the study, a second questionnaire was applied in the intervention arm. Entomological monitoring indicated that MQT mass trapping did not reduce adult Ae. aegypti abundance. The serological survey indicated that recent dengue infections were equally frequent in the intervention and the control arm. Most participants responded positively to questions concerning user satisfaction. According to the results, there is no evidence that mass trapping with MQTs can be used as a part of dengue control programs. The use of this sticky trap is only recommendable for dengue vector monitoring. PMID:25946154

  14. Association of Human Immune Response to Aedes aegypti Salivary Proteins with Dengue Disease Severity

    PubMed Central

    Machain-Williams, Carlos; Mammen, Mammen P; Zeidner, Nordin S; Beaty, Barry J; Prenni, Jessica E.; Nisalak, Ananda

    2011-01-01

    SUMMARY Dengue viruses (DENV; family Flaviviridae, genus Flavivirus) are transmitted by Aedes aegypti mosquitoes and can cause dengue fever (DF), a relatively benign disease, or more severe dengue haemorrhagic fever (DHF). Arthropod saliva contains proteins delivered into the bite wound that can modulate the host haemostatic and immune responses to facilitate the intake of a blood meal. The potential effects on DENV infection of previous exposure to Ae. aegypti salivary proteins have not been investigated. We collected Ae. aegypti saliva, concentrated the proteins, and fractionated them by non-denaturing polyacrylamide gel electrophoresis (PAGE). By use of immunoblots we analysed reactivity with the mosquito salivary proteins (MSP) of sera from 96 Thai children diagnosed with secondary DENV infections leading either to DF or DHF, or with no DENV infection, and found that different proportions of each patient group had serum antibodies reactive to specific Ae. aegypti salivary proteins. Our results suggest that prior exposure to MSP might play a role in the outcome of DENV infection in humans. PMID:21995849

  15. Behavioral Response of Aedes aegypti Mosquito towards Essential Oils Using Olfactometer

    PubMed Central

    Uniyal, Ashish; Tikar, Sachin N; Mendki, Murlidhar J; Singh, Ram; Shukla, Shakti V; Agrawal, Om P; Veer, Vijay; Sukumaran, Devanathan

    2016-01-01

    Background: Aedes aegypti mosquito is responsible for transmitting human diseases like dengue and chikungunya. Personal or space protection with insect repellents is a practical approach to reducing human mosquito contact, thereby minimizing disease transmission. Essential oils are natural volatile substances from plants used as protective measure against blood-sucking mosquitoes. Methods: Twenty-three essential oils were evaluated for their repellent effect against Ae. aegypti female mosquito in laboratory conditions using Y-tube olfactometer. Results: The essential oils exhibited varying degree of repellency. Litsea oil showed 50.31%, 60.2 %, and 77.26% effective mean repellency at 1 ppm, 10 ppm and 100 ppm respectively, while DEET exhibited 59.63%, 68.63%, 85.48% and DEPA showed 57.97%, 65.43%, and 80.62% repellency at respective above concentrations. Statistical analysis revealed that among the tested essential oils, litsea oil had effective repellency in comparison with DEET and DEPA against Ae. aegypti mosquito at all concentration. Essential oils, DEET and DEPA showed significant repellence against Ae. aegypti (P< 0.05) at all 3 concentration tested. Conclusion: Litsea oil exhibited effective percentage repellency similar to DEET and DEPA. The essential oils are natural plant products that may be useful for developing safer and newer herbal based effective mosquito repellents. PMID:27308295

  16. Mass trapping with MosquiTRAPs does not reduce Aedes aegypti abundance.

    PubMed

    Degener, Carolin Marlen; de Ázara, Tatiana Mingote Ferreira; Roque, Rosemary Aparecida; Rösner, Susanne; Rocha, Eliseu Soares Oliveira; Kroon, Erna Geessien; Codeço, Cláudia Torres; Nobre, Aline Araújo; Ohly, Jörg Johannes; Geier, Martin; Eiras, Álvaro Eduardo

    2015-06-01

    The objective of this study was to evaluate the effectiveness of Aedes aegypti mass trapping using the sticky trap MosquiTRAP (MQT) by performing a cluster randomised controlled trial in Manaus, state of Amazonas, Brazil. After an initial questionnaire and baseline monitoring of adult Ae. aegypti abundance with BG-Sentinel (BGS) traps in six clusters, three clusters were randomly assigned to the intervention arm where each participating household received three MQTs for mass trapping during 17 months. The remaining three clusters (control arm) did not receive traps. The effect of mass trapping on adult Ae. aegypti abundance was monitored fortnightly with BGS traps. During the last two months of the study, a serological survey was conducted. After the study, a second questionnaire was applied in the intervention arm. Entomological monitoring indicated that MQT mass trapping did not reduce adult Ae. aegypti abundance. The serological survey indicated that recent dengue infections were equally frequent in the intervention and the control arm. Most participants responded positively to questions concerning user satisfaction. According to the results, there is no evidence that mass trapping with MQTs can be used as a part of dengue control programs. The use of this sticky trap is only recommendable for dengue vector monitoring. PMID:25946154

  17. Complex Modulation of the Aedes aegypti Transcriptome in Response to Dengue Virus Infection

    PubMed Central

    Bonizzoni, Mariangela; Dunn, W. Augustine; Campbell, Corey L.; Olson, Ken E.; Marinotti, Osvaldo; James, Anthony A.

    2012-01-01

    Dengue fever is the most important arboviral disease world-wide, with Aedes aegypti being the major vector. Interactions between the mosquito host and dengue viruses (DENV) are complex and vector competence varies among geographically-distinct Ae. aegypti populations. Additionally, dengue is caused by four antigenically-distinct viral serotypes (DENV1–4), each with multiple genotypes. Each virus genotype interacts differently with vertebrate and invertebrate hosts. Analyses of alterations in mosquito transcriptional profiles during DENV infection are expected to provide the basis for identifying networks of genes involved in responses to viruses and contribute to the molecular-genetic understanding of vector competence. In addition, this knowledge is anticipated to support the development of novel disease-control strategies. RNA-seq technology was used to assess genome-wide changes in transcript abundance at 1, 4 and 14 days following DENV2 infection in carcasses, midguts and salivary glands of the Ae. aegypti Chetumal strain. DENV2 affected the expression of 397 Ae. aegypti genes, most of which were down-regulated by viral infection. Differential accumulation of transcripts was mainly tissue- and time-specific. Comparisons of our data with other published reports reveal conservation of functional classes, but limited concordance of specific mosquito genes responsive to DENV2 infection. These results indicate the necessity of additional studies of mosquito-DENV interactions, specifically those focused on recently-derived mosquito strains with multiple dengue virus serotypes and genotypes. PMID:23209765

  18. Novel estimates of Aedes aegypti (Diptera: Culicidae) population size and adult survival based on Wolbachia releases.

    PubMed

    Ritchie, Scott A; Montgomery, Brian L; Hoffmann, Ary A

    2013-05-01

    The size of Aedes aegypti (L.) mosquito populations and adult survival rates have proven difficult to estimate because of a lack of consistent quantitative measures to equate sampling methods, such as adult trapping, to actual population size. However, such estimates are critical for devising control methods and for modeling the transmission of dengue and other infectious agents carried by this species. Here we take advantage of recent releases of Wolbachia-infected Ae. aegypti coupled with the results of ongoing monitoring to estimate the size of adult Ae. aegypti populations around Cairns in far north Queensland, Australia. Based on the association between released adults infected with Wolbachia and data from Biogents Sentinel traps, we show that data from two locations are consistent with population estimates of approximately 5-10 females per house and daily survival rates of 0.7-0.9 for the released Wolbachia-infected females. Moreover, we estimate that networks of Biogents Sentinel traps at a density of one per 15 houses capture around 5-10% of the adult population per week, and provide a rapid estimate of the absolute population size of Ae. aegypti. These data are discussed with respect to release rates and monitoring in future Wolbachia releases and also the levels of suppression required to reduce dengue transmission. PMID:23802459

  19. Bioactivity of selected plant essential oils against the yellow fever mosquito Aedes aegypti larvae.

    PubMed

    Cheng, Sen-Sung; Chang, Hui-Ting; Chang, Shang-Tzen; Tsai, Kun-Hsien; Chen, Wei-June

    2003-08-01

    The bioactivity of 14 essential oils from five plants has been studied using the brine shrimp lethality test and the Aedes aegypti larvicidal assay. All essential oils screened had LC50 values smaller than 200 microg/ml, showing significant lethality against brine shrimp. In addition, nine of the 14 essential oils tested showed toxicity against the fourth-instar A. aegypti larvae in 24 h (LC50<100 microg/ml). Of these, the leaf and bark essential oils of Cryptomeria japonica demonstrated high larvicidal activity, the most active being the leaf essential oil of C. japonica, with a LC50=37.6 microg/ml (LC90=71.9 microg/ml), followed by the bark essential oil of C. japonica also showing high activity against A. aegypti larvae, with a LC50=48.1 microg/ml (LC90=130.3 microg/ml). The results obtained from this study suggest that the leaf and bark essential oils of C. japonica are promising as larvicides against A. aegypti larvae and could be useful in the search for new natural larvicidal compounds. PMID:12676507

  20. Widespread evidence for interspecific mating between Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in nature.

    PubMed

    Bargielowski, I E; Lounibos, L P; Shin, D; Smartt, C T; Carrasquilla, M C; Henry, A; Navarro, J C; Paupy, C; Dennett, J A

    2015-12-01

    Aedes aegypti and Aedes albopictus, two important vectors of the dengue and chikungunya viruses to humans, often come in contact in their invasive ranges. In these circumstances, a number of factors are thought to influence their population dynamics, including resource competition among the larval stages, prevailing environmental conditions and reproductive interference in the form of satyrization. As the distribution and abundance of Ae. aegypti and Ae. albopictus have profound epidemiological implications, understanding the competitive interactions that influence these patterns in nature is important. While evidence for resource competition and environmental factors had been gathered from the field, the evidence for reproductive interference, though strongly inferred through laboratory trials, remained sparse (one small-scale field trial). In this paper we demonstrate that low rates (1.12-3.73%) of interspecific mating occur in nature among populations of these species that have co-existed sympatrically from 3 to 150yrs. Finally this report contributes a new species-specific primer set for identifying the paternity of sperm extracted from field collected specimens. PMID:26296606

  1. Promising Aedes aegypti Repellent Chemotypes Identified through Integrated QSAR, Virtual Screening, Synthesis, and Bioassay

    PubMed Central

    Oliferenko, Polina V.; Oliferenko, Alexander A.; Poda, Gennadiy I.; Osolodkin, Dmitry I.; Pillai, Girinath G.; Bernier, Ulrich R.; Tsikolia, Maia; Agramonte, Natasha M.; Clark, Gary G.; Linthicum, Kenneth J.; Katritzky, Alan R.

    2013-01-01

    Molecular field topology analysis, scaffold hopping, and molecular docking were used as complementary computational tools for the design of repellents for Aedes aegypti, the insect vector for yellow fever, chikungunya, and dengue fever. A large number of analogues were evaluated by virtual screening with Glide molecular docking software. This produced several dozen hits that were either synthesized or procured from commercial sources. Analysis of these compounds by a repellent bioassay resulted in a few highly active chemicals (in terms of minimum effective dosage) as viable candidates for further hit-to-lead and lead optimization effort. PMID:24039693

  2. [Lethal effect of Cuban Myrtaceae on Aedes aegypti (Diptera Cuilicidae)].

    PubMed

    Aguilera, Lucita; Navarro, Agustín; Tacoronte, Juan E; Leyva, Maureen; Marquetti, María C

    2003-01-01

    The biological activity of the essential foliar oils from 2 Cuban endemic Myrtaceae: Eugenia melanadenia and Psidium rotundatum on A. aegypti larvae was evaluated for the first time at the laboratory level. The probit-log analysis of the results showed the larvicidal effect of both oils with values of CL50 = 0.0085% and CL95 = 0.0104% for E. melanadenia and CL50 = 0.0063% and CL95 = 0.0071% for O. rotundatum. Besides, the diagnostic concentration for both essential oils are given and the possible implications of these findings on field populations of A. aegypti are suggessted. PMID:15849965

  3. Weather Variability Associated with Aedes (Stegomyia) aegypti (Dengue Vector) Oviposition Dynamics in Northwestern Argentina

    PubMed Central

    Estallo, Elizabet L.; Ludueña-Almeida, Francisco F.; Introini, María V.; Zaidenberg, Mario; Almirón, Walter R.

    2015-01-01

    This study aims to develop a forecasting model by assessing the weather variability associated with seasonal fluctuation of Aedes aegypti oviposition dynamic at a city level in Orán, in northwestern Argentina. Oviposition dynamics were assessed by weekly monitoring of 90 ovitraps in the urban area during 2005-2007. Correlations were performed between the number of eggs collected weekly and weather variables (rainfall, photoperiod, vapor pressure of water, temperature, and relative humidity) with and without time lags (1 to 6 weeks). A stepwise multiple linear regression analysis was performed with the set of meteorological variables from the first year of study with the variables in the time lags that best correlated with the oviposition. Model validation was conducted using the data from the second year of study (October 2006- 2007). Minimum temperature and rainfall were the most important variables. No eggs were found at temperatures below 10°C. The most significant time lags were 3 weeks for minimum temperature and rains, 3 weeks for water vapor pressure, and 6 weeks for maximum temperature. Aedes aegypti could be expected in Orán three weeks after rains with adequate min temperatures. The best-fit forecasting model for the combined meteorological variables explained 70 % of the variance (adj. R2). The correlation between Ae. aegypti oviposition observed and estimated by the forecasting model resulted in rs = 0.80 (P < 0.05). The forecasting model developed would allow prediction of increases and decreases in the Ae. aegypti oviposition activity based on meteorological data for Orán city and, according to the meteorological variables, vector activity can be predicted three or four weeks in advance. PMID:25993415

  4. Weather Variability Associated with Aedes (Stegomyia) aegypti (Dengue Vector) Oviposition Dynamics in Northwestern Argentina.

    PubMed

    Estallo, Elizabet L; Ludueña-Almeida, Francisco F; Introini, María V; Zaidenberg, Mario; Almirón, Walter R

    2015-01-01

    This study aims to develop a forecasting model by assessing the weather variability associated with seasonal fluctuation of Aedes aegypti oviposition dynamic at a city level in Orán, in northwestern Argentina. Oviposition dynamics were assessed by weekly monitoring of 90 ovitraps in the urban area during 2005-2007. Correlations were performed between the number of eggs collected weekly and weather variables (rainfall, photoperiod, vapor pressure of water, temperature, and relative humidity) with and without time lags (1 to 6 weeks). A stepwise multiple linear regression analysis was performed with the set of meteorological variables from the first year of study with the variables in the time lags that best correlated with the oviposition. Model validation was conducted using the data from the second year of study (October 2006- 2007). Minimum temperature and rainfall were the most important variables. No eggs were found at temperatures below 10 °C. The most significant time lags were 3 weeks for minimum temperature and rains, 3 weeks for water vapor pressure, and 6 weeks for maximum temperature. Aedes aegypti could be expected in Orán three weeks after rains with adequate min temperatures. The best-fit forecasting model for the combined meteorological variables explained 70 % of the variance (adj. R(2)). The correlation between Ae. aegypti oviposition observed and estimated by the forecasting model resulted in rs = 0.80 (P < 0.05). The forecasting model developed would allow prediction of increases and decreases in the Ae. aegypti oviposition activity based on meteorological data for Orán city and, according to the meteorological variables, vector activity can be predicted three or four weeks in advance. PMID:25993415

  5. Human Antibody Response to Aedes aegypti Saliva in an Urban Population in Bolivia: A New Biomarker of Exposure to Dengue Vector Bites

    PubMed Central

    Doucoure, Souleymane; Mouchet, François; Cournil, Amandine; Le Goff, Gilbert; Cornelie, Sylvie; Roca, Yelin; Giraldez, Mabel Guerra; Simon, Zaira Barja; Loayza, Roxanna; Misse, Dorothée; Flores, Jorge Vargas; Walter, Annie; Rogier, Christophe; Herve, Jean Pierre; Remoue, Franck

    2012-01-01

    Aedes mosquitoes are important vectors of re-emerging diseases in developing countries, and increasing exposure to Aedes in the developed world is currently a source of concern. Given the limitations of current entomologic methods, there is a need for a new effective way for evaluating Aedes exposure. Our objective was to evaluate specific antibody responses to Aedes aegypti saliva as a biomarker for vector exposure in a dengue-endemic urban area. IgG responses to saliva were strong in young children and steadily waned with age. Specific IgG levels were significantly higher in persons living in sites with higher Ae. aegypti density, as measured by using entomologic parameters. Logistic regression showed a significant correlation between IgG to saliva and exposure level, independently of either age or sex. These results suggest that antibody responses to saliva could be used to monitor human exposure to Aedes bites. PMID:22848099

  6. The Sublethal Effects of the Entomopathic Fungus Leptolegnia chapmanii on Some Biological Parameters of the Dengue Vector Aedes aegypti

    PubMed Central

    Pelizza, S.A.; Scorsetti, A.C.; Tranchida, M.C.

    2013-01-01

    The mosquito Aedes aegypti (L.) (Diptera: Culicidae) is the primary vector of dengue in the Americas. The use of chemical insecticides is recommended during outbreaks of dengue in order to reduce the number of adult mosquitoes; however, because Ae. aegypti is highly synanthropic, the use of insecticides in densely populated areas is a dangerous practice. Leptolegnia chapmanii Seymour (Straminipila: Peronosporomycetes) is an entomopathogenic microorganism that has demonstrated marked pathogenicity toward the larvae of a number of mosquito species, with little or no effect on non-target insects. Therefore, the purpose of this study was to determine the sublethal effects of L. chapmanii on fecundity, number of gonotrophic cycles, fertility, and relationship between wing length and fecundity in Ae. aegypti females. Ae. aegypti females that survived infection with L. chapmanii laid fewer eggs, had a smaller number of gonotrophic cycles, had shorter wings, and were less fertile than controls. This is the first study on the sublethal effects experienced by specimens of Ae. aegypti that survived infection with zoospores of L. chapmanii. Although field studies should be carried out, the results obtained in this study are encouraging because the high and rapid larval mortality caused by L. chapmanii coupled with the reduction of reproductive capacity in Ae. aegypti females seem to cause a significant reduction in the number of adults in the mid and long term, thereby reducing the health risks associated with Ae. aegypti. PMID:23901823

  7. Truck-mounted area-wide application of pyriproxyfen targeting Aedes aegypti and Aedes albopictus in northeast Florida

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was conducted to determine the efficacy of truck-mounted ULV applications of pyriproxyfen against Aedes aegypti larvae in artificial water containers and wild adult Ae. albopictus populations in an urban setting. The study was conducted over a 3 ½ month period (Jun – Oct 2012), during wh...

  8. An Integrated Linkage, Chromosome, and Genome Map for the Yellow Fever Mosquito Aedes aegypti

    PubMed Central

    Timoshevskiy, Vladimir A.; Severson, David W.; deBruyn, Becky S.; Black, William C.; Sharakhov, Igor V.; Sharakhova, Maria V.

    2013-01-01

    Background Aedes aegypti, the yellow fever mosquito, is an efficient vector of arboviruses and a convenient model system for laboratory research. Extensive linkage mapping of morphological and molecular markers localized a number of quantitative trait loci (QTLs) related to the mosquito's ability to transmit various pathogens. However, linking the QTLs to Ae. aegypti chromosomes and genomic sequences has been challenging because of the poor quality of polytene chromosomes and the highly fragmented genome assembly for this species. Methodology/Principal Findings Based on the approach developed in our previous study, we constructed idiograms for mitotic chromosomes of Ae. aegypti based on their banding patterns at early metaphase. These idiograms represent the first cytogenetic map developed for mitotic chromosomes of Ae. aegypti. One hundred bacterial artificial chromosome clones carrying major genetic markers were hybridized to the chromosomes using fluorescent in situ hybridization. As a result, QTLs related to the transmission of the filarioid nematode Brugia malayi, the avian malaria parasite Plasmodium gallinaceum, and the dengue virus, as well as sex determination locus and 183 Mbp of genomic sequences were anchored to the exact positions on Ae. aegypti chromosomes. A linear regression analysis demonstrated a good correlation between positions of the markers on the physical and linkage maps. As a result of the recombination rate variation along the chromosomes, 12 QTLs on the linkage map were combined into five major clusters of QTLs on the chromosome map. Conclusion This study developed an integrated linkage, chromosome, and genome map—iMap—for the yellow fever mosquito. Our discovery of the localization of multiple QTLs in a few major chromosome clusters suggests a possibility that the transmission of various pathogens is controlled by the same genomic loci. Thus, the iMap will facilitate the identification of genomic determinants of traits responsible

  9. Mesocyclops longisetus effects on survivorship of Aedes aegypti immature stages in car tyres.

    PubMed

    Manrique-Saide, P; Ibáñez-Bernal, S; Delfín-González, H; Parra Tabla, V

    1998-10-01

    The effect of the introduction of the entomophagous copepod Mesocyclops longisetus (Acuacultura F.C.B. strain) on the survival of Aedes aegypti immature stages in car tyres was evaluated under semi-natural conditions in the municipality of Merida, Yucatan, Mexico. Life tables were constructed for the immature stages of the mosquito in the presence and absence of M. longisetus, and the survival data were compared using log-linear models. The data set was adjusted using the GLIM statistical package and the quality of adjustment was evaluated with a chi-squared test. Survivorship curves were constructed for each treatment. In the absence of M. longisetus, the survivorship of Ae. aegypti immature stages averaged 9%. The highest mortality rate was observed during the fourth larval instar (54%) and the resulting survival pattern corresponded to a type II survivorship curve. The mortality rate of Ae. aegypti first-instar larvae (fifty per tyre) increased more than 200-fold in the presence of M. longisetus (twenty per tyre) and the highest mortality was during the first two larval instars, where it reached 98.9%, with a resulting survivorship of 0.2%. Overall mortality was sixfold greater in the presence of the copepod than in its absence. The survival pattern of immature stages of Ae. aegypti in the presence of the copepod corresponded to a type III survivorship curve. As M. longisetus was so effective against Ae. aegypti immature stages in tyres under seminatural conditions, its long-term effectiveness should be evaluated under socially and ecologically realistic field conditions in Mexico. PMID:9824822

  10. Aedes aegypti (Diptera: Culicidae) in Mauritania: First Report on the Presence of the Arbovirus Mosquito Vector in Nouakchott.

    PubMed

    Mint Lekweiry, Khadijetou; Ould Ahmedou Salem, Mohamed Salem; Ould Brahim, Khyarhoum; Ould Lemrabott, Mohamed Aly; Brengues, Cécile; Faye, Ousmane; Simard, Frédéric; Ould Mohamed Salem Boukhary, Ali

    2015-07-01

    Aedes aegypti L. (Diptera: Culicidae) is a major vector of yellow fever, dengue, and chikungunya viruses throughout tropical and subtropical areas of the world. Although the southernmost part of Mauritania along the Senegal river has long been recognized at risk of yellow fever transmission, Aedes spp. mosquitoes had never been reported northwards in Mauritania. Here, we report the first observation of Aedes aegypti aegypti (L.) and Aedes (Ochlerotatus) caspius (Pallas, 1771) in the capital city, Nouakchott. We describe the development sites in which larvae of the two species were found, drawing attention to the risk for emergence of arbovirus transmission in the city. PMID:26335483

  11. Screening of Methanolic Plant Extracts against Larvae of Aedes aegypti and Anopheles stephensi in Mysore

    PubMed Central

    Mohankumar, Thirumalapura Krishnaiah; Shivanna, Kumuda Sathigal; Achuttan, Vijayan Valiakottukal

    2016-01-01

    Background: Mosquitoes transmit serious human diseases, causing millions of death every year. Vector control is facing a threat due to the emergence of resistance to synthetic insecticides. Insecticides of botanical origin may serve as suitable alternative biocontrol techniques in the future. Nine different locally available medicinally important plants suspected to posse larvicidal property were screened against fourth instar larvae of Aedes aegypti and Anopheles stephensi to a series of concentrations of the methanolic extracts. Methods: Susceptibility tests on Ae. aegypti and An. stephensi were conducted using standard WHO methods. The larvae of two mosquito species were exposed to methanolic extracts and mortality counts were made after 24 hours of exposure as per WHO method. Larvae of Ae. aegypti were more susceptible than that of An. stephensi. Results: Among the nine plant species tested, Annona reticulata leaf extract was more effective against Ae. aegypti larvae with LC50 and LC90 values of 95.24 and 262.64 ppm respectively and against An. stephensi larvae 262.71 and 636.94 ppm respectively. The least efficacy was in Cosmos bipinnatus with LC50 and LC90 values of 442.6 and 1225.93 ppm against Ae. aegypti and LC50 and LC90 values of 840.69 and 1334.01 ppm of Thespesia populnea against An. stephensi. Conclusion: The crude methanolic extract of the An. reticulata with good larvicidal efficacy could be considered for further characterization to control mosquito vectors instead of chemical insecticides. High efficacy found in An. reticulata extract will be considered for further studies to isolate the bioactive compound. PMID:27308289

  12. Excito-repellency of essential oils against an Aedes aegypti (L.) field population in Thailand.

    PubMed

    Boonyuan, Wasana; Grieco, John P; Bangs, Michael J; Prabaripai, Atchariya; Tantakom, Siripun; Chareonviriyaphap, Theeraphap

    2014-06-01

    An investigation of the behavioral responses of Aedes aegypti (= Stegomyia aegypti) to various concentrations of essential oils (2.5, 5, and 10%) extracted from hairy basil (Ocimum americanum Linn), ginger (Zingiber officinale Roscoe), lemongrass (Cymbopogon citratus Stapf), citronella grass (Cymbopogon nardus Rendle), and plai (Zingiber cassumunar Roxb) were performed using an excito-repellency test chamber. Results showed that Ae. aegypti exhibited varying levels of escape response in both the contact and noncontact chambers in response to different essential oils. The magnitude of the behaviors changed in a dose-response fashion depending on the percent volume to volume concentration of oil used. A 2.5% concentration of hairy basil oil produced a significantly greater escape response compared to the other extracts at the same concentration (P< 0.05). Oils of ginger, lemongrass, and citronella produced stronger irritant and repellent responses at the median 5% concentration compared to the lowest and highest concentrations. There was marked suppression of escape for both contact and noncontact tests using 10% concentrations of hairy basil, lemongrass, and citronella, with high knockdown for all three oils after 30 min. Hairy basil and lemongrass had the highest insecticidal activity to Ae. aegypti, with LC50 values of 6.3 and 6.7 percent, respectively. We conclude that the essential oils from native plants tested, and likely many other extracts found in plants, have inherent repellent and irritant qualities that should to be screened and optimized for their behavior-modifying properties against Ae. aegypti and other biting arthropods of public health and pest importance. PMID:24820563

  13. The wMel Strain of Wolbachia Reduces Transmission of Chikungunya Virus in Aedes aegypti

    PubMed Central

    Aliota, Matthew T.; Walker, Emma C.; Uribe Yepes, Alexander; Dario Velez, Ivan; Christensen, Bruce M.; Osorio, Jorge E.

    2016-01-01

    Background New approaches to preventing chikungunya virus (CHIKV) are needed because current methods are limited to controlling mosquito populations, and they have not prevented the invasion of this virus into new locales, nor have they been sufficient to control the virus upon arrival. A promising candidate for arbovirus control and prevention relies on the introduction of the intracellular bacterium Wolbachia into Aedes aegypti mosquitoes. This primarily has been proposed as a tool to control dengue virus (DENV) transmission; however, evidence suggests Wolbachia infections confer protection for Ae. aegypti against CHIKV. Although this approach holds much promise for limiting virus transmission, at present our understanding of the ability of CHIKV to infect, disseminate, and be transmitted by wMel-infected Ae. aegypti currently being used at Wolbachia release sites is limited. Methodology/Principal Findings Using Ae. aegypti infected with the wMel strain of Wolbachia that are being released in Medellin, Colombia, we report that these mosquitoes have reduced vector competence for CHIKV, even with extremely high viral titers in the bloodmeal. In addition, we examined the dynamics of CHIKV infection over the course of four to seven days post feeding. Wolbachia-infected mosquitoes remained non-infective over the duration of seven days, i.e., no infectious virus was detected in the saliva when exposed to bloodmeals of moderate viremia, but CHIKV-exposed, wild type mosquitoes did have viral loads in the saliva consistent with what has been reported elsewhere. Finally, the presence of wMel infection had no impact on the lifespan of mosquitoes as compared to wild type mosquitoes following CHIKV infection. Conclusions/Significance These results could have an impact on vector control strategies in areas where Ae. aegypti are transmitting both DENV and CHIKV; i.e., they argue for further exploration, both in the laboratory and the field, on the feasibility of expanding this

  14. Genetic Diversity and Phylogeny of Aedes aegypti, the Main Arbovirus Vector in the Pacific

    PubMed Central

    Calvez, Elodie; Guillaumot, Laurent; Millet, Laurent; Marie, Jérôme; Bossin, Hervé; Rama, Vineshwaran; Faamoe, Akata; Kilama, Sosiasi; Teurlai, Magali; Mathieu-Daudé, Françoise; Dupont-Rouzeyrol, Myrielle

    2016-01-01

    Background The Pacific region is an area unique in the world, composed of thousands of islands with differing climates and environments. The spreading and establishment of the mosquito Aedes aegypti in these islands might be linked to human migration. Ae. aegypti is the major vector of arboviruses (dengue, chikungunya and Zika viruses) in the region. The intense circulation of these viruses in the Pacific during the last decade led to an increase of vector control measures by local health authorities. The aim of this study is to analyze the genetic relationships among Ae. aegypti populations in this region. Methodology/Principal Finding We studied the genetic variability and population genetics of 270 Ae. aegypti, sampled from 9 locations in New Caledonia, Fiji, Tonga and French Polynesia by analyzing nine microsatellites and two mitochondrial DNA regions (CO1 and ND4). Microsatellite markers revealed heterogeneity in the genetic structure between the western, central and eastern Pacific island countries. The microsatellite markers indicate a statistically moderate differentiation (FST = 0.136; P < = 0.001) in relation to island isolation. A high degree of mixed ancestry can be observed in the most important towns (e.g. Noumea, Suva and Papeete) compared with the most isolated islands (e.g. Ouvea and Vaitahu). Phylogenetic analysis indicated that most of samples are related to Asian and American specimens. Conclusions/Significance Our results suggest a link between human migrations in the Pacific region and the origin of Ae. aegypti populations. The genetic pattern observed might be linked to the island isolation and to the different environmental conditions or ecosystems. PMID:26799213

  15. [Periodicity of oviposition of females of Aedes aegypti (Linnaeus, 1762) (Diptera: Culicidae) in laboratory and field].

    PubMed

    Gomes, Adriana Dos Santos; de Sá Sciavico, Célia J; Eiras, Alvaro Eduardo

    2006-01-01

    The object of this work was to determine of gonotrophic diel pattern of female Aedes aegypti in laboratory and field conditions. Three day-old female mosquitoes were the fed on chicken blood and transferred to bioassay cages. Four oviposition substrates were offered: paper sulfite, filter, butter and towel. The results showed that filter paper received a significantly higher (40.4%) percentage of deposited eggs than the other oviposition substrates. After their first blood meal, females started to oviposit on the 3rd model day; 35.7% of the total number of eggs deposited. The oviposition diel patterns of females were observed every two hours during the photoperiod in the laboratory and in the field. In the laboratory, the periodicity of oviposition showed that the highest egg deposition occurred during the 9th- 12th h of photophase and 1st - 2nd h of scotophase. In the field, the highest egg deposition occurred during the 9th - 12th h of photophase and 1st - 4th h of scotophase. These results point out that Aedes aegypti showed an oviposition periodicity pattern that can subsidize monitoring and or control of vector insect. itis suggested that ovitraps should be placed in the field during the morning hours since the captures occur during afternoon. PMID:17119745

  16. Effect of housing factors on infestation by Aedes aegypti (L.) and Aedes albopictus Skuse in urban Hanoi City, Vietnam.

    PubMed

    Tsuzuki, Ataru; Sunahara, Toshihiko; Duoc, Vu Trong; Le Nguyen, Hoang; Higa, Yukiko; Phong, Tran Vu; Minakawa, Noboru

    2013-11-01

    To determine the effect of housing factors on infestation with Aedes aegypti (L.) and Aedes albopictus Skuse we conducted an entomological survey and inspection of 267 urban houses in Hanoi City, Vietnam. Two hundred ten pupae and 194 adult Ae. aegypti were collected from 19 and 88 houses, respectively. One hundred eighty-one pupae and 24 adult Ae. albopictus were collected from 21 and 14 houses, respectively. The presence of a private well was associated with increasing infestation with Ae. aegypti adults (p = 0.01) and increased the risk of Ae. aegypti and Ae. albopictus pupal presence (p = 0.04 for Ae. aegypti, p = 0.03 for Ae. albopictus). The presence of an outdoor space in the household premises was associated with a higher risk of Ae. albopictus pupal presence (p = 0.004) and a higher risk of high levels of Ae. albopictus adults (p = 0.01); however, it had no association with infestation with Ae. aegypti. The presence of an air-conditioning unit (p = 0.03) and four or more rooms in the residence (p = 0.02) were negatively and positively associated with the risk for Ae. albopictus presence, respectively. PMID:24450235

  17. Age-Stage, Two-Sex Life Table Characteristics of Aedes albopictus and Aedes Aegypti in Penang Island, Malaysia.

    PubMed

    Maimusa, Hamisu A; Ahmad, Abu Hassan; Kassim, Nur Faeza A; Rahim, Junaid

    2016-03-01

    The life table developmental attributes of laboratory colonies of wild strains of Aedes albopictus and Aedes aegypti were analyzed and compared based on the age-stage, two-sex life table. Findings inclusive in this study are: adult preoviposition periods, total preoviposition period, mean intrinsic rate of increase (r), mean finite rate of increase (λ), net reproductive rates (R0), and mean generation time (T). The total preadult development time was 9.47 days for Ae. albopictus and 8.76 days for Ae. aegypti. The life expectancy was 19.01 days for Ae. albopictus and 19.94 days for Ae. aegypti. Mortality occurred mostly during the adult stage. The mean development time for each stage insignificantly correlated with temperature for Ae. albopictus (r  =  -0.208, P > 0.05) and (r  =  -0.312, P > 0.05) for Ae. aegypti. The population parameters suggest that Ae. albopictus and Ae. aegypti populations are r-strategists characterized by a high r, a large R0, and short T. This present study provides the first report to compare the life parameters of Ae. albopictus and Ae. aegypti strains from Penang island, Malaysia. PMID:27105211

  18. Mosquito larvicidal activity of seaweeds extracts against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus

    PubMed Central

    Ali, Mohamed Yacoob Syed; Ravikumar, Sundaram; Beula, Johanson Margaret

    2013-01-01

    Objective To identify the larvicidal activity of the seaweed extracts against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus Methods Seaweed extracts of Ulva lactuca, Caulerpa racemosa (C. racemosa), Sargassum microystum, Caulerpa scalpelliformis, Gracilaria corticata, Turbinaria decurrens, Turbinaria conoides and Caulerpa toxifolia were dissolved in DMSO to prepare a graded series of concentration. The test for the larvicidal effect of seaweeds against mosquitos larvae was conducted in accordance with the WHO standard method. Batches of 25 early 4th instar larvae of three mosquitoes were transferred to 250 mL enamel bowl containing 199 mL of distilled water and 1 mL of plant extracts (10-100 µg). Each experiment was conducted with triplicate with concurrent a control group. Results Among the seaweeds extract, C. racemosa showed toxicity against 4th instar larvae of Aedes aegypti, Culex quinquefasciatus, Anopheles stephensi with equivalent LC50 value (0.055 6±0.010 3) µg/mL, (0.067 5±0.136 0) µg/mL and (0.066 1±0.007 6) µg/mL, respectively. Conclusions The present study concluded that, the mosquito larvicidal property of C. racemosa might be the prospective alternative source to control the mosquitoes.

  19. Socioeconomic and Ecological Factors Influencing Aedes aegypti Prevalence, Abundance, and Distribution in Dhaka, Bangladesh

    PubMed Central

    Dhar-Chowdhury, Parnali; Haque, C. Emdad; Lindsay, Robbin; Hossain, Shakhawat

    2016-01-01

    This study examined household risk factors and prevalence, abundance, and distribution of immature Aedes aegypti and Aedes albopictus, and their association with socioeconomic and ecological factors at urban zonal and household levels in the city of Dhaka, Bangladesh. During the 2011 monsoon, 826 households in 12 randomly selected administrative wards were surveyed for vector mosquitoes. Results revealed that the abundance and distribution of immature Ae. aegypti and Ae. albopictus, and pupae-per-person indices did not vary significantly among the zones with varied socioeconomic status. Of 35 different types of identified wet containers, 30 were infested, and among the 23 pupae-positive container types, nine were defined as the “most productive” for pupae including: disposable plastic containers (12.2% of 550), sealable plastic barrels (12.0%), tires (10.4%), abandoned plastic buckets (9.6%), flower tub and trays (8.5%), refrigerator trays (6.5%), plastic bottles (6.4%), clay pots (4.9%), and water tanks (1.6%). When the function of the containers was assessed, ornamental, discarded, and household repairing and reconstruction-related container categories were found significantly associated with the number of pupae in the households. The purpose of storing water and income variables were significant predictors of possession of containers that were infested by vector mosquitoes. PMID:27022149

  20. Efficacy of photodynamic therapy against larvae of Aedes aegypti: confocal microscopy and fluorescence-lifetime imaging

    NASA Astrophysics Data System (ADS)

    de Souza, L. M.; Pratavieira, S.; Inada, N. M.; Kurachi, C.; Corbi, J.; Guimarães, F. E. G.; Bagnato, V. S.

    2014-03-01

    Recently a few demonstration on the use of Photodynamic Reaction as possibility to eliminate larvae that transmit diseases for men has been successfully demonstrated. This promising tool cannot be vastly used due to many problems, including the lake of investigation concerning the mechanisms of larvae killing as well as security concerning the use of photosensitizers in open environment. In this study, we investigate some of the mechanisms in which porphyrin (Photogem) is incorporated on the Aedes aegypti larvae previously to illumination and killing. Larvae at second instar were exposed to the photosensitizer and after 30 minutes imaged by a confocal fluorescence microscope. It was observed the presence of photosensitizer in the gut and at the digestive tract of the larva. Fluorescence-Lifetime Imaging showed greater photosensitizer concentration in the intestinal wall of the samples, which produces a strong decrease of the Photogem fluorescence lifetime. For Photodynamic Therapy exposition to different light doses and concentrations of porphyrin were employed. Three different light sources (LED, Fluorescent lamp, Sun light) also were tested. Sun light and fluorescent lamp shows close to 100% of mortality after 24 hrs. of illumination. These results indicate the potential use of photodynamic effect against the LARVAE of Aedes aegypti.

  1. Socioeconomic and Ecological Factors Influencing Aedes aegypti Prevalence, Abundance, and Distribution in Dhaka, Bangladesh.

    PubMed

    Dhar-Chowdhury, Parnali; Haque, C Emdad; Lindsay, Robbin; Hossain, Shakhawat

    2016-06-01

    This study examined household risk factors and prevalence, abundance, and distribution of immature Aedes aegypti and Aedes albopictus, and their association with socioeconomic and ecological factors at urban zonal and household levels in the city of Dhaka, Bangladesh. During the 2011 monsoon, 826 households in 12 randomly selected administrative wards were surveyed for vector mosquitoes. Results revealed that the abundance and distribution of immature Ae. aegypti and Ae. albopictus, and pupae-per-person indices did not vary significantly among the zones with varied socioeconomic status. Of 35 different types of identified wet containers, 30 were infested, and among the 23 pupae-positive container types, nine were defined as the "most productive" for pupae including: disposable plastic containers (12.2% of 550), sealable plastic barrels (12.0%), tires (10.4%), abandoned plastic buckets (9.6%), flower tub and trays (8.5%), refrigerator trays (6.5%), plastic bottles (6.4%), clay pots (4.9%), and water tanks (1.6%). When the function of the containers was assessed, ornamental, discarded, and household repairing and reconstruction-related container categories were found significantly associated with the number of pupae in the households. The purpose of storing water and income variables were significant predictors of possession of containers that were infested by vector mosquitoes. PMID:27022149

  2. Breeding Sites of Aedes aegypti: Potential Dengue Vectors in Dire Dawa, East Ethiopia.

    PubMed

    Getachew, Dejene; Tekie, Habte; Gebre-Michael, Teshome; Balkew, Meshesha; Mesfin, Akalu

    2015-01-01

    Background and Objectives. Entomological survey was carried out from May-June to September-October 2014 to investigate the presence of dengue vectors in discarded tires and artificial water containers in houses and peridomestic areas. Methods. A cross-sectional immature stage survey was done indoors and outdoors in 301 houses. Mosquito larval sampling was conducted using pipette or dipper depending on container types. Larvae were identified morphologically and larval indices were also calculated. Results. A total of 750 containers were inspected, and of these 405 were positive for mosquito larvae. A total of 1,873 larvae were collected and morphologically identified as Aedes aegypti (n = 1580: 84.4%) and Culex (n = 293: 15.6%). The larval indices, house index, container index, and breteau index, varied from 33.3 to 86.2, from 23.2 to 73.9, and from 56.5 to 188.9, respectively. Conclusion. Aedes aegypti is breeding in a wide range of artificial containers. To control these mosquitoes, the integration of different methods should be taken into consideration. PMID:26435712

  3. Breeding Sites of Aedes aegypti: Potential Dengue Vectors in Dire Dawa, East Ethiopia

    PubMed Central

    Getachew, Dejene; Tekie, Habte; Gebre-Michael, Teshome; Balkew, Meshesha; Mesfin, Akalu

    2015-01-01

    Background and Objectives. Entomological survey was carried out from May-June to September-October 2014 to investigate the presence of dengue vectors in discarded tires and artificial water containers in houses and peridomestic areas. Methods. A cross-sectional immature stage survey was done indoors and outdoors in 301 houses. Mosquito larval sampling was conducted using pipette or dipper depending on container types. Larvae were identified morphologically and larval indices were also calculated. Results. A total of 750 containers were inspected, and of these 405 were positive for mosquito larvae. A total of 1,873 larvae were collected and morphologically identified as Aedes aegypti (n = 1580: 84.4%) and Culex (n = 293: 15.6%). The larval indices, house index, container index, and breteau index, varied from 33.3 to 86.2, from 23.2 to 73.9, and from 56.5 to 188.9, respectively. Conclusion. Aedes aegypti is breeding in a wide range of artificial containers. To control these mosquitoes, the integration of different methods should be taken into consideration. PMID:26435712

  4. Host-feeding pattern of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in heterogeneous landscapes of South Andaman, Andaman and Nicobar Islands, India.

    PubMed

    Sivan, Arun; Shriram, A N; Sunish, I P; Vidhya, P T

    2015-09-01

    Mosquito foraging behavior is a determinant of host-vector contact and has an impact on the risk of arboviral epidemics. Therefore, blood-feeding patterns is a useful tool for assessing the role in pathogen transmission by vector mosquitoes. Competent vectors of dengue and chikungunya viz. Aedes aegypti and Aedes albopictus are widely prevalent in the Andaman and Nicobar archipelago. Considering the vector potential, medical importance of both these mosquito species and lack of information on host-feeding patterns, blood meal analysis of both these vector mosquitoes was undertaken. Biogents Sentinel traps were used for sampling blooded mosquitoes, for identifying the source of blood meal by agar gel-precipitin test. We identified vertebrate source of 147 and 104 blood meals in Ae. aegypti and Ae. albopictus from heterogeneous landscapes in South Andaman district. Results revealed that Ae. aegypti (88 %) and Ae. albopictus (49 %) fed on human and a small proportion on mammals and fowls, indicative of predominance of anthropophilism. Ae. aegypti predominantly fed on human blood (94.2 %-densely built urban, 89.8 %-low vegetation coverage, and 78.3 %-medium vegetation coverage). Anthropophilism in Ae. albopictus was maximal in densely built urban (90.5 %) and progressively decreased from low vegetation-vegetation/forested continuum (66.7, 36.4, and 8.7 %), indicating plasticity in feeding across these landscapes. Epidemiological significance of the findings is discussed. PMID:26220560

  5. A meta-analysis of the factors influencing development rate variation in Aedes aegypti (Diptera: Culicidae)

    PubMed Central

    2014-01-01

    Background Development rates of Aedes aegypti are known to vary with respect to many abiotic and biotic factors including temperature, resource availability, and intraspecific competition. The relative importance of these factors and their interactions are not well established across populations. We performed meta-analysis on a dataset of development rate estimates from 49 studies. Results Meta-analytic results indicated that the environmental factor of temperature is sufficient to explain development rate variability in Ae. aegypti. While diet and density may greatly impact other developmental phenotypes, these results suggest that for development rate these factors should never be considered to the exclusion of temperature. The effect of temperature on development rate is not homogenous or constant. The sources of heterogeneity of the effect of temperature are difficult to analyze due to lack of consistent reporting of larval rearing methods. Conclusions Temperature is the most important ecological determinant of development rate in Ae. aegypti, but its effect is heterogeneous. Ignoring this heterogeneity is problematic for models of vector population and vector-borne disease transmission. PMID:24495345

  6. Intriguing olfactory proteins from the yellow fever mosquito, Aedes aegypti

    NASA Astrophysics Data System (ADS)

    Ishida, Yuko; Chen, Angela M.; Tsuruda, Jennifer M.; Cornel, Anthon J.; Debboun, Mustapha; Leal, Walter S.

    2004-09-01

    Four antennae-specific proteins (AaegOBP1, AaegOBP2, AaegOBP3, and AaegASP1) were isolated from the yellow fever mosquito, Aedes aegypti and their full-length cDNAs were cloned. RT-PCR indicated that they are expressed in female and, to a lesser extent, in male antennae, but not in control tissues (legs). AaegOBP1 and AaegOBP3 showed significant similarity to previously identified mosquito odorant-binding proteins (OBPs) in cysteine spacing pattern and sequence. Two of the isolated proteins have a total of eight cysteine residues. The similarity of the spacing pattern of the cysteine residues and amino acid sequence to those of previously identified olfactory proteins suggests that one of the cysteine-rich proteins (AaegOBP2) is an OBP. The other (AaegASP1) did not belong to any group of known OBPs. Structural analyses indicate that six of the cysteine residues in AaegOBP2 are linked in a similar pattern to the previously known cysteine pairing in OBPs, i.e., Cys-24 Cys-55, Cys-51 Cys-104, Cys-95 Cys-113. The additional disulfide bridge, Cys-38 Cys-125, knits the extended C-terminal segment of the protein to a predicted α2-helix. As indicated by circular dichroism (CD) spectra, the extra rigidity seems to prevent the predicted formation of a C-terminal α-helix at low pH.

  7. Dietary control of late trypsin gene transcription in Aedes aegypti.

    PubMed

    Noriega, F G; Barillas-Mury, C; Wells, M A

    1994-06-01

    In Aedes aegypti the levels of midgut trypsin activity after feeding are directly proportional to the protein concentration in the meal. The mechanisms of this up-regulatory event were investigated by analyzing the expression of the late trypsin gene under different dietary conditions. Transcription of the gene was dependent on both the quality and quantity of protein in the meal. As measured by Northern blot analysis, the levels of late trypsin gene expression increased up to 100-fold 24 h after feeding on gamma-globulin, hemoglobin or albumin (100 mg/ml). In contrast, gelatin, histone, amino acids, saline or agarose were very poor inducers of transcription. The rates of late trypsin transcription induced during the first 24 h were directly proportional to the concentration of protein in the meal. These data further support the suggestion that the primary mechanism that regulates the synthesis of trypsin in the mosquito midgut is transcriptional regulation of the gene. This regulatory mechanism enables the midgut to maintain the appropriate balance between protease synthesis and the protein content of the meal. PMID:7519098

  8. First Report of Aedes aegypti Transmission of Chikungunya Virus in the Americas.

    PubMed

    Díaz-González, Esteban E; Kautz, Tiffany F; Dorantes-Delgado, Alicia; Malo-García, Iliana R; Laguna-Aguilar, Maricela; Langsjoen, Rose M; Chen, Rubing; Auguste, Dawn I; Sánchez-Casas, Rosa M; Danis-Lozano, Rogelio; Weaver, Scott C; Fernández-Salas, Ildefonso

    2015-12-01

    During a chikungunya fever outbreak in late 2014 in Chiapas, Mexico, entomovirological surveillance was performed to incriminate the vector(s). In neighborhoods, 75 households with suspected cases were sampled for mosquitoes, of which 80% (60) harbored Aedes aegypti and 2.7% (2) Aedes albopictus. A total of 1,170 Ae. aegypti and three Ae. albopictus was collected and 81 pools were generated. Although none of the Ae. albopictus pools were chikungunya virus (CHIKV)-positive, 18 Ae. aegypti pools (22.8%) contained CHIKV, yielding an infection rate of 32.3/1,000 mosquitoes. A lack of herd immunity in conjunction with high mosquito populations, poor vector control services in this region, and targeted collections in locations of human cases may explain the high infection rate in this vector. Consistent with predictions from experimental studies, Ae. aegypti appears to be the principal vector of CHIKV in southern Mexico, while the role of Ae. albopictus remains unknown. PMID:26416113

  9. Ovicidal and repellent activities of botanical extracts against Culex quinquefasciatus, Aedes aegypti and Anopheles stephensi (Diptera: Culicidae)

    PubMed Central

    Govindarajan, M; Mathivanan, T; Elumalai, K; Krishnappa, K; Anandan, A

    2011-01-01

    Objective To determine the ovicidal and repellent activities of methanol leaf extract of Ervatamia coronaria (E. coronaria) and Caesalpinia pulcherrima (C. pulcherrima) against Culex quinquefasciatus (Cx. quinquefasciatus), Aedes aegypti (Ae. aegypti) and Anopheles stephensi (An. stephensi). Methods The ovicidal activity was determined against three mosquito species at various concentrations ranging from 50-450 ppm under the laboratory conditions. The hatch rates were assessed 48 h after treatment. The repellent efficacy was determined against three mosquito species at three concentrations viz., 1.0, 2.5 and 5.0 mg/cm2 under the laboratory conditions. Results The crude extract of E. coronaria exerted zero hatchability (100% mortality) at 250, 200 and 150 ppm for Cx. quinquefasciatus, Ae. aegypti and An. stephensi, respectively. The crude extract of C. pulcherrima exerted zero hatchability (100% mortality) at 375, 300 and 225 ppm for Cx. quinquefasciatus, Ae. aegypti and An. Stephensi, respectively. The methanol extract of E. coronaria found to be more repellenct than C. pulcherrima extract. A higher concentration of 5.0 mg/cm2 provided 100% protection up to 150, 180 and 210 min against Cx. quinquefasciatus, Ae. aegypti and An. stephensi, respectively. The results clearly showed that repellent activity was dose dependent. Conclusions From the results it can be concluded the crude extracts of E. coronaria and C. pulcherrima are an excellent potential for controlling Cx. quinquefasciatus, Ae. aegypti and An. stephensi mosquitoes. PMID:23569723

  10. The Efficacy of Some Commercially Available Insect Repellents for Aedes aegypti (Diptera: Culicidae) and Aedes albopictus (Diptera: Culicidae).

    PubMed

    Rodriguez, Stacy D; Drake, Lisa L; Price, David P; Hammond, John I; Hansen, Immo A

    2015-01-01

    Reducing the number of host-vector interactions is an effective way to reduce the spread of vector-borne diseases. Repellents are widely used to protect humans from a variety of protozoans, viruses, and nematodes. DEET (N,N-Diethyl-meta-toluamide), a safe and effective repellent, was developed during World War II. Fear of possible side effects of DEET has created a large market for "natural" DEET-free repellents with a variety of active ingredients. We present a comparative study on the efficacy of eight commercially available products, two fragrances, and a vitamin B patch. The products were tested using a human hand as attractant in a Y-tube olfactometer setup with Aedes aegypti (Linnaeus) and Aedes albopictus (Skuse), both major human disease vectors. We found that Ae. albopictus were generally less attracted to the test subject's hand compared with Ae, aegypti. Repellents with DEET as active ingredient had a prominent repellency effect over longer times and on both species. Repellents containing p-menthane-3,8-diol produced comparable results but for shorter time periods. Some of the DEET-free products containing citronella or geraniol did not have any significant repellency effect. Interestingly, the perfume we tested had a modest repellency effect early after application, and the vitamin B patch had no effect on either species. This study shows that the different active ingredients in commercially available mosquito repellent products are not equivalent in terms of duration and strength of repellency. Our results suggest that products containing DEET or p-menthane-3,8-diol have long-lasting repellent effects and therefore provide good protection from mosquito-borne diseases. PMID:26443777

  11. The Efficacy of Some Commercially Available Insect Repellents for Aedes aegypti (Diptera: Culicidae) and Aedes albopictus (Diptera: Culicidae)

    PubMed Central

    Rodriguez, Stacy D.; Drake, Lisa L.; Price, David P.; Hammond, John I.; Hansen, Immo A.

    2015-01-01

    Reducing the number of host-vector interactions is an effective way to reduce the spread of vector-borne diseases. Repellents are widely used to protect humans from a variety of protozoans, viruses, and nematodes. DEET (N,N-Diethyl-meta-toluamide), a safe and effective repellent, was developed during World War II. Fear of possible side effects of DEET has created a large market for “natural” DEET-free repellents with a variety of active ingredients. We present a comparative study on the efficacy of eight commercially available products, two fragrances, and a vitamin B patch. The products were tested using a human hand as attractant in a Y-tube olfactometer setup with Aedes aegypti (Linnaeus) and Aedes albopictus (Skuse), both major human disease vectors. We found that Ae. albopictus were generally less attracted to the test subject’s hand compared with Ae, aegypti. Repellents with DEET as active ingredient had a prominent repellency effect over longer times and on both species. Repellents containing p-menthane-3,8-diol produced comparable results but for shorter time periods. Some of the DEET-free products containing citronella or geraniol did not have any significant repellency effect. Interestingly, the perfume we tested had a modest repellency effect early after application, and the vitamin B patch had no effect on either species. This study shows that the different active ingredients in commercially available mosquito repellent products are not equivalent in terms of duration and strength of repellency. Our results suggest that products containing DEET or p-menthane-3,8-diol have long-lasting repellent effects and therefore provide good protection from mosquito-borne diseases. PMID:26443777

  12. Spatial and temporal country-wide survey of temephos resistance in Brazilian populations of Aedes aegypti.

    PubMed

    Chediak, Mateus; G Pimenta, Fabiano; Coelho, Giovanini E; Braga, Ima A; Lima, José Bento P; Cavalcante, Karina Ribeiro Lj; Sousa, Lindemberg C de; Melo-Santos, Maria Alice V de; Macoris, Maria de Lourdes da G; Araújo, Ana Paula de; Ayres, Constância Flávia J; Andrighetti, Maria Teresa M; Gomes, Ricristhi Gonçalves de A; Campos, Kauara B; Guedes, Raul Narciso C

    2016-05-01

    The organophosphate temephos has been the main insecticide used against larvae of the dengue and yellow fever mosquito (Aedes aegypti) in Brazil since the mid-1980s. Reports of resistance date back to 1995; however, no systematic reports of widespread temephos resistance have occurred to date. As resistance investigation is paramount for strategic decision-making by health officials, our objective here was to investigate the spatial and temporal spread of temephos resistance in Ae. aegypti in Brazil for the last 12 years using discriminating temephos concentrations and the bioassay protocols of the World Health Organization. The mortality results obtained were subjected to spatial analysis for distance interpolation using semi-variance models to generate maps that depict the spread of temephos resistance in Brazil since 1999. The problem has been expanding. Since 2002-2003, approximately half the country has exhibited mosquito populations resistant to temephos. The frequency of temephos resistance and, likely, control failures, which start when the insecticide mortality level drops below 80%, has increased even further since 2004. Few parts of Brazil are able to achieve the target 80% efficacy threshold by 2010/2011, resulting in a significant risk of control failure by temephos in most of the country. The widespread resistance to temephos in Brazilian Ae. aegypti populations greatly compromise effective mosquito control efforts using this insecticide and indicates the urgent need to identify alternative insecticides aided by the preventive elimination of potential mosquito breeding sites. PMID:27143489

  13. Spatial and temporal country-wide survey of temephos resistance in Brazilian populations of Aedes aegypti

    PubMed Central

    Chediak, Mateus; G Pimenta, Fabiano; Coelho, Giovanini E; Braga, Ima A; Lima, José Bento P; Cavalcante, Karina Ribeiro LJ; de Sousa, Lindemberg C; de Melo-Santos, Maria Alice V; Macoris, Maria de Lourdes da G; de Araújo, Ana Paula; Ayres, Constância Flávia J; Andrighetti, Maria Teresa M; Gomes, Ricristhi Gonçalves de A; Campos, Kauara B; Guedes, Raul Narciso C

    2016-01-01

    The organophosphate temephos has been the main insecticide used against larvae of the dengue and yellow fever mosquito (Aedes aegypti) in Brazil since the mid-1980s. Reports of resistance date back to 1995; however, no systematic reports of widespread temephos resistance have occurred to date. As resistance investigation is paramount for strategic decision-making by health officials, our objective here was to investigate the spatial and temporal spread of temephos resistance in Ae. aegypti in Brazil for the last 12 years using discriminating temephos concentrations and the bioassay protocols of the World Health Organization. The mortality results obtained were subjected to spatial analysis for distance interpolation using semi-variance models to generate maps that depict the spread of temephos resistance in Brazil since 1999. The problem has been expanding. Since 2002-2003, approximately half the country has exhibited mosquito populations resistant to temephos. The frequency of temephos resistance and, likely, control failures, which start when the insecticide mortality level drops below 80%, has increased even further since 2004. Few parts of Brazil are able to achieve the target 80% efficacy threshold by 2010/2011, resulting in a significant risk of control failure by temephos in most of the country. The widespread resistance to temephos in Brazilian Ae. aegypti populations greatly compromise effective mosquito control efforts using this insecticide and indicates the urgent need to identify alternative insecticides aided by the preventive elimination of potential mosquito breeding sites. PMID:27143489

  14. Stable transformation of the yellow fever mosquito, Aedes aegypti, with the Hermes element from the housefly

    PubMed Central

    Jasinskiene, Nijole; Coates, Craig J.; Benedict, Mark Q.; Cornel, Anthony J.; Rafferty, Cristina Salazar; James, Anthony A.; Collins, Frank H.

    1998-01-01

    The mosquito Aedes aegypti is the world’s most important vector of yellow fever and dengue viruses. Work is currently in progress to control the transmission of these viruses by genetically altering the capacity of wild Ae. aegypti populations to support virus replication. The germ-line transformation system reported here constitutes a major advance toward the implementation of this control strategy. A modified Hermes transposon carrying a 4.7-kb fragment of genomic DNA that includes a wild-type allele of the Drosophila melanogaster cinnabar (cn) gene was used to transform a white-eyed recipient strain of Ae. aegypti. Microinjection of preblastoderm mosquito embryos with this construct resulted in 50% of the emergent G0 adults showing some color in their eyes. Three transformed families were recovered, each resulting from an independent insertion event of the cn+-carrying transposon. The cn+ gene functioned as a semidominant transgene and segregated in Mendelian ratios. Hermes shows great promise as a vector for efficient, heritable, and stable transformation of this important mosquito vector species. PMID:9520437

  15. Stable transformation of the yellow fever mosquito, Aedes aegypti, with the Hermes element from the housefly.

    PubMed

    Jasinskiene, N; Coates, C J; Benedict, M Q; Cornel, A J; Rafferty, C S; James, A A; Collins, F H

    1998-03-31

    The mosquito Aedes aegypti is the world's most important vector of yellow fever and dengue viruses. Work is currently in progress to control the transmission of these viruses by genetically altering the capacity of wild Ae. aegypti populations to support virus replication. The germ-line transformation system reported here constitutes a major advance toward the implementation of this control strategy. A modified Hermes transposon carrying a 4.7-kb fragment of genomic DNA that includes a wild-type allele of the Drosophila melanogaster cinnabar (cn) gene was used to transform a white-eyed recipient strain of Ae. aegypti. Microinjection of preblastoderm mosquito embryos with this construct resulted in 50% of the emergent G0 adults showing some color in their eyes. Three transformed families were recovered, each resulting from an independent insertion event of the cn+-carrying transposon. The cn+ gene functioned as a semidominant transgene and segregated in Mendelian ratios. Hermes shows great promise as a vector for efficient, heritable, and stable transformation of this important mosquito vector species. PMID:9520437

  16. The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti.

    PubMed

    Bian, Guowu; Xu, Yao; Lu, Peng; Xie, Yan; Xi, Zhiyong

    2010-04-01

    Genetic strategies that reduce or block pathogen transmission by mosquitoes have been proposed as a means of augmenting current control measures to reduce the growing burden of vector-borne diseases. The endosymbiotic bacterium Wolbachia has long been promoted as a potential vehicle for introducing disease-resistance genes into mosquitoes, thereby making them refractory to the human pathogens they transmit. Given the large overlap in tissue distribution and intracellular localization between Wolbachia and dengue virus in mosquitoes, we conducted experiments to characterize their interactions. Our results show that Wolbachia inhibits viral replication and dissemination in the main dengue vector, Aedes aegypti. Moreover, the virus transmission potential of Wolbachia-infected Ae. aegypti was significantly diminished when compared to wild-type mosquitoes that did not harbor Wolbachia. At 14 days post-infection, Wolbachia completely blocked dengue transmission in at least 37.5% of Ae. aegypti mosquitoes. We also observed that this Wolbachia-mediated viral interference was associated with an elevated basal immunity and increased longevity in the mosquitoes. These results underscore the potential usefulness of Wolbachia-based control strategies for population replacement. PMID:20368968

  17. Effect of Aedes aegypti exposure to spatial repellent chemicals on BG-Sentinel™ trap catches

    PubMed Central

    2013-01-01

    Background An integrated approach to reduce densities of adult Aedes aegypti inside homes is currently being evaluated under experimentally controlled field conditions. The strategy combines a spatial repellent (SR) treatment (applied indoors) with the Biogents Sentinel™ (BGS) mosquito trap positioned in the outdoor environment. In essence, when combined, the goal is to create a push-pull mechanism that will reduce the probability of human-vector contact. The current study measured BGS recapture rates of Ae. aegypti test cohorts that were exposed to either SR or control (chemical-free) treatments within experimental huts. The objective was to define what, if any, negative impact SR may have on BGS trap efficacy (i.e., reduced BGS collection). Methods Aedes aegypti females were exposed to SR compounds within experimental huts in the form of either treated fabric (DDT and transfluthrin) or mosquito coil (metofluthrin). Test cohorts were released within individual screen house cubicles, each containing 4 BGS traps, following SR exposure according to treatment. Two separate test cohorts were evaluated: (i) immediate release (IR) exposed from 06:00–12:00 hours and released at 12:00 hours and (ii) delayed release (DR) exposed from12:00–18:00 hours and released at 05:30 hours the following day. BGS recapture was monitored at 09:30, 13:30 and 15:30 hours and the cumulative recapture by time point quantified. Results Exposure of Ae. aegypti females to either DDT or metofluthrin did not significantly impact BGS capture as compared to cohorts of non-exposed females. This was true for both IR and DR exposure populations. IR cohorts exposed to transfluthrin resulted in significantly lower BGS recapture compared to matched controls but this effect was primarily due to high mosquito mortality during transfluthrin trials. Conclusion Our data indicate no more than minor and short-lived impacts (i.e., reduced attraction) on BGS trap catches following exposure to the

  18. Seasonal Genetic Changes of Aedes aegypti (Diptera: Culicidae) Populations in Selected Sites of Cebu City, Philippines

    PubMed Central

    Sayson, S. L.; Gloria-Soria, A.; Powell, J. R.; Edillo, F. E.

    2015-01-01

    Aedes aegypti (L.) is the primary vector of dengue virus in the Philippines, where dengue is endemic. We examined the genetic changes of Ae. aegypti collected from three selected sites in Cebu city, Philippines, during the relatively wet (2011–2012) and dry seasons (2012 and 2013). A total of 493 Ae. aegypti adults, reared in the laboratory from field-collected larvae, were analyzed using 11 microsatellite loci. Seasonal variation was observed in allele frequencies and allelic richness. Average genetic differentiation (DEST = 0.018; FST = 0.029) in both dry seasons was higher, due to reduced Ne, than in the wet season (DEST=0.006; FST=0.009). Thus, average gene flow was higher in the wet season than in the dry seasons. However, the overall FST estimate (0.02) inclusive of the two seasons showed little genetic differentiation as supported by Bayesian clustering analysis. Results suggest that during the dry season the intense selection that causes a dramatic reduction of population size favors heterozygotes, leading to small pockets of mosquitoes (refuges) that exhibit random genetic differentiation. During the wet season, the genetic composition of the population is reconstituted by the expansion of the refuges that survived the preceding dry season. Source reduction of mosquitoes during the nonepidemic dry season is thus recommended to prevent dengue re-emergence in the subsequent wet season. PMID:26335470

  19. Spatial genetic structure of Aedes aegypti mosquitoes in mainland Southeast Asia.

    PubMed

    Hlaing, Thaung; Tun-Lin, Willoughby; Somboon, Pradya; Socheat, Duong; Setha, To; Min, Sein; Thaung, Sein; Anyaele, Okorie; De Silva, Babaranda; Chang, Moh Seng; Prakash, Anil; Linton, Yvonne; Walton, Catherine

    2010-07-01

    Aedes aegypti mosquitoes originated in Africa and are thought to have spread recently to Southeast Asia, where they are the major vector of dengue. Thirteen microsatellite loci were used to determine the genetic population structure of A. aegypti at a hierarchy of spatial scales encompassing 36 sites in Myanmar, Cambodia and Thailand, and two sites in Sri Lanka and Nigeria. Low, but significant, genetic structuring was found at all spatial scales (from 5 to >2000 km) and significant F IS values indicated genetic structuring even within 500 m. Spatially dependent genetic-clustering methods revealed that although spatial distance plays a role in shaping larger-scale population structure, it is not the only factor. Genetic heterogeneity in major port cities and genetic similarity of distant locations connected by major roads, suggest that human transportation routes have resulted in passive long-distance migration of A. aegypti. The restricted dispersal on a small spatial scale will make localized control efforts and sterile insect technology effective for dengue control. Conversely, preventing the establishment of insecticide resistance genes or spreading refractory genes in a genetic modification strategy would be challenging. These effects on vector control will depend on the relative strength of the opposing effects of passive dispersal. PMID:25567928

  20. Dynamics of the "popcorn" Wolbachia infection in outbred Aedes aegypti informs prospects for mosquito vector control.

    PubMed

    Yeap, H L; Mee, P; Walker, T; Weeks, A R; O'Neill, S L; Johnson, P; Ritchie, S A; Richardson, K M; Doig, C; Endersby, N M; Hoffmann, A A

    2011-02-01

    Forty percent of the world's population is at risk of contracting dengue virus, which produces dengue fever with a potentially fatal hemorrhagic form. The wMelPop Wolbachia infection of Drosophila melanogaster reduces life span and interferes with viral transmission when introduced into the mosquito Aedes aegypti, the primary vector of dengue virus. Wolbachia has been proposed as an agent for preventing transmission of dengue virus. Population invasion by Wolbachia depends on levels of cytoplasmic incompatibility, fitness effects, and maternal transmission. Here we characterized these traits in an outbred genetic background of a potential target population of Ae. aegypti using two crossing schemes. Cytoplasmic incompatibility was strong in this background, and the maternal transmission rate of Wolbachia was high. The infection substantially reduced longevity of infected adult females, regardless of whether adults came from larvae cultured under high or low levels of nutrition or density. The infection reduced the viability of diapausing and nondiapausing eggs. Viability was particularly low when eggs were laid by older females and when diapausing eggs had been stored for a few weeks. The infection affected mosquito larval development time and adult body size under different larval nutrition levels and densities. The results were used to assess the potential for wMelPop-CLA to invade natural populations of Ae. aegypti and to develop recommendations for the maintenance of fitness in infected mosquitoes that need to compete against field insects. PMID:21135075

  1. Silencing of P-glycoprotein increases mortality in temephos-treated Aedes aegypti larvae.

    PubMed

    Figueira-Mansur, J; Ferreira-Pereira, A; Mansur, J F; Franco, T A; Alvarenga, E S L; Sorgine, M H F; Neves, B C; Melo, A C A; Leal, W S; Masuda, H; Moreira, M F

    2013-12-01

    Re-emergence of vector-borne diseases such as dengue and yellow fever, which are both transmitted by the Aedes aegypti mosquito, has been correlated with insecticide resistance. P-glycoproteins (P-gps) are ATP-dependent efflux pumps that are involved in the transport of substrates across membranes. Some of these proteins have been implicated in multidrug resistance (MDR). In this study, we identified a putative P-glycoprotein in the Ae. aegypti database based on its significantly high identity with Anopheles gambiae, Culex quinquefasciatus, Drosophila melanogaster and human P-gps. The basal ATPase activity of ATP-binding cassette transporters in larvae was significantly increased in the presence of MDR modulators (verapamil and quinidine). An eightfold increase in Ae. aegypti P-gp (AaegP-gp) gene expression was detected in temephos-treated larvae as determined by quantitative PCR. To analyse the potential role of AaegP-gp in insecticide efflux, a temephos larvicide assay was performed in the presence of verapamil. The results showed an increase of 24% in temephos toxicity, which is in agreement with the efflux reversing effect. RNA interference (RNAi)-mediated silencing of the AaegP-gp gene caused a significant increase in temephos toxicity (57%). In conclusion, we have demonstrated for the first time in insects that insecticide-induced P-gp expression can be involved in the modulation of insecticide efflux. PMID:23980723

  2. Oral toxicity of Photorhabdus luminescens and Xenorhabdus nematophila (Enterobacteriaceae) against Aedes aegypti (Diptera: Culicidae).

    PubMed

    da Silva, Onilda Santos; Prado, Geronimo Rodrigues; da Silva, João Luiz Rosa; Silva, Carlos Eugenio; da Costa, Marisa; Heermann, Ralf

    2013-08-01

    Dengue fever is an important vector-borne disease, mainly transmitted by Aedes aegypti. To date, there are no vaccines or effective drugs available against this arboviral disease. As mosquito control is practically the only method available to control dengue fever, alternative and cost-effective pest control strategies need to be explored. The gram-negative enteric bacteria Xenorhabdus and Photorhabdus are symbiotically associated with nematode parasites, which themselves are highly pathogenic for insect larvae. Here, we evaluate the oral toxicity of these entomopathogenic bacteria in A. aegypti larvae. The susceptibility of larvae (third late or fourth early instars) was assessed by exposing them to suspensions containing Photorhabdus luminescens or Xenorhabdus nematophila, respectively. Two diet treatments were tested with larvae fed on pet food and unfed larvae. After 24 h, larvae began to die when exposed to the bacteria. Exposure to P. luminescens killed 73% of the fed and 83% of the unfed larvae, respectively. In comparison, X. nematophila was less pathogenic, killing 52% of the larvae in the fed and 42% in the unfed treatment. Remarkably, cannibalism was observed in all bioassays after exposing larvae to either of the bacterial species. To our knowledge, this is the first report demonstrating the efficiency of these entomopathogenic bacteria for oral A. aegypti killing. Our results provide a promising basis for using these bacteria as bioinsecticides for mosquito control in the future. PMID:23728731

  3. Seasonal Genetic Changes of Aedes aegypti (Diptera: Culicidae) Populations in Selected Sites of Cebu City, Philippines.

    PubMed

    Sayson, S L; Gloria-Soria, A; Powell, J R; Edillo, F E

    2015-07-01

    Aedes aegypti (L.) is the primary vector of dengue virus in the Philippines, where dengue is endemic. We examined the genetic changes of Ae. aegypti collected from three selected sites in Cebu city, Philippines, during the relatively wet (2011-2012) and dry seasons (2012 and 2013). A total of 493 Ae. aegypti adults, reared in the laboratory from field-collected larvae, were analyzed using 11 microsatellite loci. Seasonal variation was observed in allele frequencies and allelic richness. Average genetic differentiation (DEST=0.018; FST=0.029) in both dry seasons was higher, due to reduced Ne, than in the wet season (DEST=0.006; FST=0.009). Thus, average gene flow was higher in the wet season than in the dry seasons. However, the overall FST estimate (0.02) inclusive of the two seasons showed little genetic differentiation as supported by Bayesian clustering analysis. Results suggest that during the dry season the intense selection that causes a dramatic reduction of population size favors heterozygotes, leading to small pockets of mosquitoes (refuges) that exhibit random genetic differentiation. During the wet season, the genetic composition of the population is reconstituted by the expansion of the refuges that survived the preceding dry season. Source reduction of mosquitoes during the nonepidemic dry season is thus recommended to prevent dengue re-emergence in the subsequent wet season. PMID:26335470

  4. Temporal genetic structure of major dengue vector Aedes aegypti from Manaus, Amazonas, Brazil.

    PubMed

    Mendonça, Barbara Alessandra Alves; de Sousa, Adna Cristina Barbosa; de Souza, Anete Pereira; Scarpassa, Vera Margarete

    2014-06-01

    In recent years, high levels of Aedes aegypti infestation and several dengue outbreaks with fatal outcome cases have been reported in Manaus, State of Amazonas, Brazil. This situation made it important to understand the genetic structure and gene flow patterns among the populations of this vector in Manaus, vital pieces of information for their management and development of new control strategies. In this study, we used nine microsatellite loci to examine the effect of seasonality on the genetic structure and gene flow patterns in Ae. aegypti populations from four urban neighborhoods of Manaus, collected during the two main rainy and dry seasons. All loci were polymorphic in the eight samples from the two seasons, with a total of 41 alleles. The genetic structure analyses of the samples from the rainy season revealed genetic homogeneity and extensive gene flow, a result consistent with the abundance of breeding sites for this vector. However, the samples from the dry season were significantly structured, due to a reduction of Ne in two (Praça 14 de Janeiro and Cidade Nova) of the four samples analyzed, and this was the primary factor influencing structure during the dry season. Genetic bottleneck analyses suggested that the Ae. aegypti populations from Manaus are being maintained continuously throughout the year, with seasonal reduction rather than severe bottleneck or extinction, corroborating previous reports. These findings are of extremely great importance for designing new dengue control strategies in Manaus. PMID:24631342

  5. Effect of Moringa oleifera flower extract on larval trypsin and acetylcholinesterase activities in Aedes aegypti.

    PubMed

    Pontual, Emmanuel Viana; Napoleão, Thiago Henrique; Dias de Assis, Caio Rodrigo; de Souza Bezerra, Ranilson; Xavier, Haroudo Satiro; Navarro, Daniela Maria do Amaral Ferraz; Coelho, Luana Cassandra Breitenbach Barroso; Paiva, Patrícia Maria Guedes

    2012-03-01

    Aedes aegypti control is crucial to reducing dengue fever. Aedes aegypti larvae have developed resistance to organophosporous insecticides and the use of natural larvicides may help manage larval resistance by increasing elements in insecticide rotation programs. Here, we report on larvicidal activity of Moringa oleifera flower extract against A. aegypti L(1), L(2), L(3), and L(4) as well as the effect of flower extract on gut trypsin and whole-larval acetylcholinesterase from L(4.) In addition, the heated flower extract was investigated for larvicidal activity against L(4) and effect on larval gut trypsin. Moringa oleifera flower extract contains a proteinaceous trypsin inhibitor (M. oleifera flower trypsin inhibitor, MoFTI), triterpene (β-amyrin), sterol (β-sitosterol) as well as flavonoids (kaempferol and quercetin). Larvicidal activity was detected against L(2), L(3), and L(4) (LC(50) of 1.72%, 1.67%, and 0.92%, respectively). Flower extract inhibited L(4) gut trypsin (MoFTI K(i) = 0.6 nM) and did not affect acetylcholinesterase activity. In vivo assay showed that gut trypsin activity from L(4) treated with M. oleifera flower extract decreased over time (0-1,440 min) and was strongly inhibited (98.6%) after 310 min incubation; acetylcholinesterase activity was not affected. Thermal treatment resulted in a loss of trypsin inhibitor and larvicidal activities, supporting the hypothesis that flower extract contains a proteinaceous trypsin inhibitor that may be responsible for the deleterious effects on larval mortality. PMID:22392801

  6. Bacteria as a source of oviposition attractant for Aedes aegypti mosquitoes.

    PubMed

    Arbaoui, A A; Chua, T H

    2014-03-01

    Since a safe and effective mass vaccination program against dengue fever is not presently available, a good way to prevent and control dengue outbreaks depends mainly on controlling the mosquito vectors. Aedes aegypti mosquito populations can be monitored and reduced by using ovitraps baited with organic infusions. A series of laboratory experiments were conducted which demonstrated that the bacteria in bamboo leaf infusion produce volatile attractants and contact chemical stimulants attractive to the female mosquitoes. The results showed that the female mosquitoes laid most of their eggs (59.9 ± 8.1 vs 2.9 ± 2.8 eggs, P<0.001) in bamboo leaf infusions when compared to distilled water. When the fresh infusion was filtered with a 0.45 μm filter membrane, the female mosquitoes laid significantly more eggs (64.1 ± 6.6 vs 4.9 ± 2.6 eggs, P<0.001) in unfiltered infusion. However when a 0.8 μm filter membrane was used, the female laid significantly more eggs (62.0 ± 4.3 vs 10.1 ± 7.8 eggs, P<0.001) in filtrate compared to a solution containing the residue. We also found that a mixture of bacteria isolated from bamboo leaf infusion serve as potent oviposition stimulants for gravid Aedes mosquitoes. Aedes aegypti laid significantly more eggs (63.3 ± 6.5 vs 3.1 ± 2.4 eggs, P<0.001) in bacteria suspension compared to sterile R2A medium. Our results suggest microbial activity has a role in the production of odorants that mediate the oviposition response of gravid mosquitoes. PMID:24862053

  7. Autophagy and viral diseases transmitted by Aedes aegypti and Aedes albopictus.

    PubMed

    Carneiro, Leticia A M; Travassos, Leonardo H

    2016-03-01

    Despite a long battle that was started by Oswaldo Cruz more than a century ago, in 1903, Brazil still struggles to fight Aedes aegypti and Aedes albopictus, the mosquito vectors of dengue virus (DENV), Chikungynya virus (CHIKV) and Zika virus (ZIKV). Dengue fever has been a serious public health problem in Brazil for decades, with recurrent epidemic outbreaks occurring during summers. In 2015, until November, 1,534,932 possible cases were reported to the Ministry of Healthv. More recently, the less studied CHIKV and ZIKV have gained attention because of a dramatic increase in their incidence (around 400% for CHIKV) and the association of ZIKV infection with a 11-fold increase in the number of cases of microcephaly from 2014 to 2015 in northeast Brazil (1761 cases until December 2015). The symptoms of these three infections are very similar, which complicates the diagnosis. These include fever, headache, nausea, fatigue, and joint pain. In some cases, DENV infection develops into dengue hemorrhagic fever, a life threatening condition characterized by bleeding and decreases in platelet numbers in the blood. As for CHIKV, the most important complication is joint pain, which can last for months. PMID:26774331

  8. LABORATORY EVALUATION OF THE DEVELOPMENT OF Aedes aegypti IN TWO SEASONS: INFLUENCE OF DIFFERENT PLACES AND DIFFERENT DENSITIES

    PubMed Central

    Lopes, Tatiana Forte; Holcman, Marcia Moreira; Barbosa, Gerson Laurindo; Domingos, Maria de Fatima; Barreiros, Rosa Maria Oliveira Veiga

    2014-01-01

    Aedes aegypti is an important vector in Brazil being the main vector of the dengue-fever. This paper employs survival curves to describe the time in days from larvae to adult forms of Aedes aegypti raised, individually and collectively, and compares it during winter and spring when positioned inside and outside a laboratory. The study was conducted in São Vicente, a coastal city in Southeastern Brazil. The lowest water temperature in winter and in spring was 20 °C and the highest was 26 °C in spring. Higher and more stable temperatures were measured in the intra compared to the peri in both seasons. Consequently, larvae positioned in the intra resulted in the lowest median time to develop in the individual and collective experiment (nine and ten days, respectively). At least 25% of the larvae positioned in the intra in the individual experiment in the spring took only seven days to reach adulthood. Sex ratios and the median time development by sex did not show significant differences. These results indicate that efforts to control Aedes aegypti must be continuous and directed mainly to prevent the intra-domiciliary sites that can be infested in a week in order to reduce the human-vector contact. PMID:25229215

  9. Laboratory evaluation of the development of Aedes aegypti in two seasons: influence of different places and different densities.

    PubMed

    Lopes, Tatiana Forte; Holcman, Marcia Moreira; Barbosa, Gerson Laurindo; Domingos, Maria de Fatima; Barreiros, Rosa Maria Oliveira Veiga

    2014-01-01

    Aedes aegypti is an important vector in Brazil being the main vector of the dengue-fever. This paper employs survival curves to describe the time in days from larvae to adult forms of Aedes aegypti raised, individually and collectively, and compares it during winter and spring when positioned inside and outside a laboratory. The study was conducted in São Vicente, a coastal city in Southeastern Brazil. The lowest water temperature in winter and in spring was 20 °C and the highest was 26 °C in spring. Higher and more stable temperatures were measured in the intra compared to the peri in both seasons. Consequently, larvae positioned in the intra resulted in the lowest median time to develop in the individual and collective experiment (nine and ten days, respectively). At least 25% of the larvae positioned in the intra in the individual experiment in the spring took only seven days to reach adulthood. Sex ratios and the median time development by sex did not show significant differences. These results indicate that efforts to control Aedes aegypti must be continuous and directed mainly to prevent the intra-domiciliary sites that can be infested in a week in order to reduce the human-vector contact. PMID:25229215

  10. Insecticidal, repellent and oviposition-deterrent activity of selected essential oils against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus.

    PubMed

    Prajapati, Veena; Tripathi, A K; Aggarwal, K K; Khanuja, S P S

    2005-11-01

    Essential oils extracted from 10 medicinal plants were evaluated for larvicidal, adulticidal, ovicidal, oviposition-deterrent and repellent activities towards three mosquito species; Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus. The essential oils of Juniperus macropoda and Pimpinella anisum were highly effective as both larvicidal and ovicidal. The essential oil of P. anisum showed toxicity against 4th instar larvae of A. stephensi and A. aegypti with equivalent LD95 values of 115.7 microg/ml, whereas it was 149.7 microg/ml against C. quinquefasciatus larvae. Essential oils of Zingiber officinale and Rosmarinus officinalis were found to be ovicidal and repellent, respectively towards the three mosquito species. The essential oil of Cinnamomum zeylanicum resulted into highest repellent (RD95) values of 49.6, 53.9 and 44.2 mg/mat against A. stephensi, A. aegypti and C. quinquefasciatus, respectively apart from oviposition-deterrent potential. PMID:16051081

  11. Redeployment of a conserved gene regulatory network during Aedes aegypti development.

    PubMed

    Suryamohan, Kushal; Hanson, Casey; Andrews, Emily; Sinha, Saurabh; Scheel, Molly Duman; Halfon, Marc S

    2016-08-15

    Changes in gene regulatory networks (GRNs) underlie the evolution of morphological novelty and developmental system drift. The fruitfly Drosophila melanogaster and the dengue and Zika vector mosquito Aedes aegypti have substantially similar nervous system morphology. Nevertheless, they show significant divergence in a set of genes co-expressed in the midline of the Drosophila central nervous system, including the master regulator single minded and downstream genes including short gastrulation, Star, and NetrinA. In contrast to Drosophila, we find that midline expression of these genes is either absent or severely diminished in A. aegypti. Instead, they are co-expressed in the lateral nervous system. This suggests that in A. aegypti this "midline GRN" has been redeployed to a new location while lost from its previous site of activity. In order to characterize the relevant GRNs, we employed the SCRMshaw method we previously developed to identify transcriptional cis-regulatory modules in both species. Analysis of these regulatory sequences in transgenic Drosophila suggests that the altered gene expression observed in A. aegypti is the result of trans-dependent redeployment of the GRN, potentially stemming from cis-mediated changes in the expression of sim and other as-yet unidentified regulators. Our results illustrate a novel "repeal, replace, and redeploy" mode of evolution in which a conserved GRN acquires a different function at a new site while its original function is co-opted by a different GRN. This represents a striking example of developmental system drift in which the dramatic shift in gene expression does not result in gross morphological changes, but in more subtle differences in development and function of the late embryonic nervous system. PMID:27341759

  12. Co-occurrence Patterns of the Dengue Vector Aedes aegypti and Aedes mediovitattus, a Dengue Competent Mosquito in Puerto Rico

    PubMed Central

    Little, Eliza; Barrera, Roberto; Seto, Karen C.; Diuk-Wasser, Maria

    2015-01-01

    Aedes aegypti is implicated in dengue transmission in tropical and subtropical urban areas around the world. Ae. aegypti populations are controlled through integrative vector management. However, the efficacy of vector control may be undermined by the presence of alternative, competent species. In Puerto Rico, a native mosquito, Ae. mediovittatus, is a competent dengue vector in laboratory settings and spatially overlaps with Ae. aegypti. It has been proposed that Ae. mediovittatus may act as a dengue reservoir during inter-epidemic periods, perpetuating endemic dengue transmission in rural Puerto Rico. Dengue transmission dynamics may therefore be influenced by the spatial overlap of Ae. mediovittatus, Ae. aegypti, dengue viruses, and humans. We take a landscape epidemiology approach to examine the association between landscape composition and configuration and the distribution of each of these Aedes species and their co-occurrence. We used remotely sensed imagery from a newly launched satellite to map landscape features at very high spatial resolution. We found that the distribution of Ae. aegypti is positively predicted by urban density and by the number of tree patches, Ae. mediovittatus is positively predicted by the number of tree patches, but negatively predicted by large contiguous urban areas, and both species are predicted by urban density and the number of tree patches. This analysis provides evidence that landscape composition and configuration is a surrogate for mosquito community composition, and suggests that mapping landscape structure can be used to inform vector control efforts as well as to inform urban planning. PMID:21989642

  13. Odonate Nymphs: Generalist Predators and Their Potential in the Management of Dengue Mosquito, Aedes aegypti (Diptera: Culicidae)

    PubMed Central

    Akram, Waseem; Ali-Khan, Hafiz Azhar

    2016-01-01

    Background: Dengue is amongst the most serious mosquito-borne infectious disease with hot spots in tropical and subtropical parts of the world. Unfortunately, no licensed vaccine for the disease is currently available in medicine markets. The only option available is the management of dengue vector mosquito, Aedes aegypti (Diptera: Culicidae). Method: Predatory potential of five odonate nymphs namely Anax parthenope, Bradinopyga geminate, Ischnura forcipata, Rhinocypha quadrimaculata, and Orthetrum sabina were evaluated against the 4th instar larvae of the dengue vector mosquito, Aedes aegypti, under laboratory conditions. The consumption of the mosquito larvae was evaluated at three water volume levels viz., 1 liter, 2 liter and 3 liter. Results: The number of Ae. aegypti larvae consumed varied significantly among the five species, and at different levels of water volume (P< 0.01). However, the interaction between odonate nymphs and the water volumes was statistically non-significant (P> 0.05). Ischnura forcipata consumed the highest number of Ae. aegypti larvae (n=56) followed by A. parthenope (n=47) and B. geminate (n=46). The number of larvae consumed was decreased with increasing search area or water volume, and the highest predation was observed at 1-liter water volume. Conclusion: The odonate nymphs could be a good source of biological agents for the management of the mosquitoes at larval stages. PMID:27308283

  14. Insecticide resistance in two Aedes aegypti (Diptera: Culicidae) strains from Costa Rica.

    PubMed

    Bisset, J A; Marín, R; Rodríguez, M M; Severson, D W; Ricardo, Y; French, L; Díaz, M; Pérez, O

    2013-03-01

    Dengue (family Flaviridae, genus Flavivirus, DENV) and dengue hemorrhagic fever (DHF) are presently important public health problems in Costa Rica. The primary strategy for disease control is based on reducing population densities of the main mosquito vector Aedes aegypti (L.) (Diptera: Culicidae). This is heavily dependent on use of chemical insecticides, thus the development of resistance is a frequent threat to control program effectiveness. The objective of this study was to determine the levels of insecticide resistance and the metabolic resistance mechanisms involved in two Ae. aegypti strains collected from two provinces (Puntarenas and Limon) in Costa Rica. Bioassays with larvae were performed according to World Health Organization guidelines and resistance in adults was measured through standard bottle assays. The activities of beta-esterases, cytochrome P450 monooxygenases, and glutathione S-transferases (GST), were assayed through synergists and biochemical tests, wherein the threshold criteria for each enzyme was established using the susceptible Rockefeller strain. The results showed higher resistance levels to the organophosphate (OP) temephos and the pyrethroid deltamethrin in larvae. The efficacy of commercial formulations of temephos in controlling Ae. aegypti populations was 100% mortality up to 11 and 12 d posttreatment with daily water replacements in test containers. Temephos and deltamethrin resistance in larvae were associated with high esterase activity, but not to cytochrome P450 monooxygenase or GST activities. Adult mosquitoes were resistant to deltamethrin, and susceptible to bendiocarb, chlorpyrifos, and cypermethrin. Because temephos and deltamethrin resistance are emerging at the studied sites, alternative insecticides should be considered. The insecticides chlorpyrifos and cypermethrin could be good candidates to use as alternatives for Ae. aegypti control. PMID:23540124

  15. Mosquito Protein Kinase G Phosphorylates Flavivirus NS5 and Alters Flight Behavior in Aedes aegypti and Anopheles gambiae

    PubMed Central

    Keating, Julie A.; Bhattacharya, Dipankar; Rund, Samuel S.C.; Hoover, Spencer; Dasgupta, Ranjit; Lee, Samuel J.; Duffield, Giles E.

    2013-01-01

    Abstract Many arboviral proteins are phosphorylated in infected mammalian cells, but it is unknown if the same phosphorylation events occur when insects are similarly infected. One of the mammalian kinases responsible for phosphorylation, protein kinase G (PKG), has been implicated in the behavior of multiple nonvector insects, but is unstudied in mosquitoes. PKG from Aedes aegypti was cloned, and phosphorylation of specific viral sites was monitored by mass spectrometry from biochemical and cell culture experiments. PKG from Aedes mosquitoes is able to phosphorylate dengue nonstructural protein 5 (NS5) at specific sites in cell culture and cell-free systems and autophosphorylates its own regulatory domain in a cell-free system. Injecting Aedes aegypti and Anopheles gambiae mosquitoes with a pharmacological PKG activator resulted in increased Aedes wing activity during periods of their natural diurnal/crepuscular activity and increased Anopheles nocturnal locomotor/flight activity. Thus, perturbation of the PKG signaling pathway in mosquitoes alters flight behavior. The demonstrated effect of PKG alterations is consistent with a viral PKG substrate triggering increased PKG activity. This increased PKG activity could be the mechanism by which dengue virus increases flight behavior and possibly facilitates transmission. Whether or not PKG is part of the mechanism by which dengue increases flight behavior, this report is the first to show PKG can modulate behavior in hematophagous disease vectors. PMID:23930976

  16. Toxicity studies for indigenous Bacillus thuringiensis isolates from Malang city, East Java on Aedes aegypti larvae

    PubMed Central

    Gama, Zulfaidah Penata; Nakagoshi, Nobukazu; Suharjono; Setyowati, Faridah

    2013-01-01

    Objective To investigate the toxicity of indigenous Bacillus thuringiensis (B. thuringiensis)isolates from Malang City for controlling Aedes aegypti (Ae. aegypti) larvae. Methods Soil samples were taken from Purwantoro and Sawojajar sub-districts. Bacterial isolation was performed using B. thuringiensis selective media. Phenotypic characteristics of the isolates were obtained with the simple matching method. The growth and prevalence of spores were determined by the Total Plate Count method, and toxicity tests were also performed on the third instar larval stage of Ae. aegypti. The percentage of larval mortality was analysed using probit regression. The LC50 was analysed by ANOVA, and the Tukey HSD interval was 95%. Results Among the 33 selected bacterial isolates, six were obtained (PWR4-31, PWR4-32, SWJ4-2b, SWJ4-4b, SWJ-4k and SWJ5-1) that had a similar phenotype to reference B. thuringiensis. Based on the dendrogram, all of the bacterial isolates were 71% similar. Three isolates that had a higher prevalence of reference B. thuringiensis were PWR4-32, SWJ4-4b and SW5-1, of which the spore prevalence was 52.44%, 23.59%, 34.46%, respectively. These three indigenous isolates from Malang City successfully killed Ae. aegypti larvae. The PWR4-32 isolates were the most effective at killing the larvae. Conclusions Six indigenous B. thuringiensis isolates among the 33 bacterial isolates found in the Sawojajar and Purwantoro sub-districts were toxic to the third instar larvae of Ae. aegypti. The PWR4-32 isolates were identical to the reference B. thuringiensis and had 88% phenotype similarity. The PWR4-32 isolates had the highest spore prevalence (52.44%), and the early stationary phase occurred at 36 h. The PWR4-32 isolates were the most effective at killing Ae. aegypti larvae (LC50-72 h=2.3×108 cells/mL). PMID:23593589

  17. Susceptibility profile of Aedes aegypti from Santiago Island, Cabo Verde, to insecticides.

    PubMed

    Rocha, Hélio Daniel Ribeiro; Paiva, Marcelo Henrique Santos; Silva, Norma Machado; de Araújo, Ana Paula; Camacho, Denise dos Reis da Rosa de Azevedo; Moura, Aires Januário Fernandes da; Gómez, Lara Ferrero; Ayres, Constância Flávia Junqueira; Santos, Maria Alice Varjal de Melo

    2015-12-01

    In 2009, Cabo Verde diagnosed the first dengue cases, with 21,137 cases reported and Aedes aegypti was identified as the vector. Since the outbreak, chemical insecticides and source reduction were used to control the mosquito population. This study aimed to assess the susceptibility of A. aegypti populations from Santiago, Cabo Verde to insecticides and identify the mechanisms of resistance. Samples of A. aegypti eggs were obtained at two different time periods (2012 and 2014), using ovitraps in different locations in Santiago Island to establish the parental population. F1 larvae were exposed to different concentrations of insecticides (Bacillus thuringiensis var israelensis (Bti), diflubenzuron and temephos) to estimate the lethal concentrations (LC90) and calculate the respective rate of resistance (RR90). Semi-field tests using temephos-ABATE(®) were performed to evaluate the persistence of the product. Bottle tests using female mosquitoes were carried out to determine the susceptibility to the adulticides malathion, cypermethrin and deltamethrin. Biochemical and molecular tests were performed to investigate the presence of metabolic resistance mechanisms, associated with the enzymes glutathione S-transferases (GSTs), esterases and mixed-function oxidases (MFO) and to detect mutations or alterations in the sodium channel and acetylcholinesterase genes. A. aegypti mosquitoes from Santiago exhibited resistance to deltamethrin, cypermethrin (mortality<80%) and temephos (RR90=4.4) but susceptibility to malathion (mortality≥98%), Bti and diflubenzuron. The low level of resistance to temephos did not affect the effectiveness of Abate(®). The enzymatic analysis conducted in 2012 revealed slight changes in the activities of GST (25%), MFO (18%), α-esterase (19%) and β-esterase (17%), but no significant changes in 2014. Target site resistance mutations were not detected. Our results suggest that the A. aegypti population from Santiago is resistant to two major

  18. The Developmental Transcriptome of the Mosquito Aedes aegypti, an Invasive Species and Major Arbovirus Vector

    PubMed Central

    Akbari, Omar S.; Antoshechkin, Igor; Amrhein, Henry; Williams, Brian; Diloreto, Race; Sandler, Jeremy; Hay, Bruce A.

    2013-01-01

    Mosquitoes are vectors of a number of important human and animal diseases. The development of novel vector control strategies requires a thorough understanding of mosquito biology. To facilitate this, we used RNA-seq to identify novel genes and provide the first high-resolution view of the transcriptome throughout development and in response to blood feeding in a mosquito vector of human disease, Aedes aegypti, the primary vector for Dengue and yellow fever. We characterized mRNA expression at 34 distinct time points throughout Aedes development, including adult somatic and germline tissues, by using polyA+ RNA-seq. We identify a total of 14,238 novel new transcribed regions corresponding to 12,597 new loci, as well as many novel transcript isoforms of previously annotated genes. Altogether these results increase the annotated fraction of the transcribed genome into long polyA+ RNAs by more than twofold. We also identified a number of patterns of shared gene expression, as well as genes and/or exons expressed sex-specifically or sex-differentially. Expression profiles of small RNAs in ovaries, early embryos, testes, and adult male and female somatic tissues also were determined, resulting in the identification of 38 new Aedes-specific miRNAs, and ~291,000 small RNA new transcribed regions, many of which are likely to be endogenous small-interfering RNAs and Piwi-interacting RNAs. Genes of potential interest for transgene-based vector control strategies also are highlighted. Our data have been incorporated into a user-friendly genome browser located at www.Aedes.caltech.edu, with relevant links to Vectorbase (www.vectorbase.org) PMID:23833213

  19. AN INSULIN-LIKE PEPTIDE REGULATES EGG MATURATION AND METABOLISM IN THE MOSQUITO AEDES AEGYPTI

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ingestion of vertebrate blood is essential for egg maturation and transmission of disease-causing parasites by female mosquitoes. Prior studies with the yellow fever mosquito, Aedes aegypti, indicated blood feeding stimulates egg production by triggering the release of hormones from MNCs in the mosq...

  20. Permethrin Induces Overexpression of Cytochrome c Oxidase Subunit 3 in Aedes aegypti

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using quantitative PCR (QPCR), the relative transcriptional levels of cytochrome c oxidase subunit 3 (CO3) were studied in Aedes aegypti (L.) in response to treatments with acetone, permethrin, or fipronil. The transcriptional levels of CO3 were significantly (p <0.05) higher in acetone-treated Ae. ...

  1. BIOTIC AND ABIOTIC FACTORS AFFECTING LEPTOLEGNIA CHAPMANII INFECTION IN AEDES AEGYPTI L. (DIPTERA: CULICIDAE)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of water volume, container surface area and the density of hosts and fungal zoospores on the infectivity of the oomycete fungus, Leptolegnia chapmanii Seymour to Aedes aegypti (L.) were investigated in the laboratory. Late third or early fourth instar larvae from a laboratory colony of A...

  2. Comparative study of four membranes for evaluation of new insect/arthropod repellents using Aedes aegypti

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Four different membranes: Baudruche; Hemotek, sausage, and silicone-based membrane were evaluated as human skin substitute for an in vitro repellent study using Aedes aegypti. No significant difference was observed in repellent activity (ED50) of DEET among the membranes. Sausage membrane was selec...

  3. Toxicity of Cephalaria species and their individual constituents against Aedes aegypti

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crude acetone and ethanol extracts of the aerial parts of 21 Cephalaria species collected from Turkey were investigated for larvicidal and adult topical activity against Aedes aegypti. The ethanol extracts from C. elazigensis var. purpurea, C. anatolica, and C. elmaliensis possessed the highest mort...

  4. Ovicidal activity of Ageratina adenophora (Family: Asteraceae) against dengue vector, Aedes aegypti (Diptera: Culicidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To determine the ovicidal efficacy of different solvent leaf extracts of Ageratina adenophora against dengue vector Aedes aegypti . Methods: The ovicidal efficacy of the crude leaf extracts of A. adenophora with five different solvents (hexane, benzene, chloroform, ethyl acetate, methanol) and was ...

  5. Public Health Response to Aedes aegypti and Ae. albopictus Mosquitoes Invading California, USA

    PubMed Central

    Kramer, Vicki; Yoshimizu, Melissa Hardstone; Metzger, Marco; Hu, Renjie; Padgett, Kerry; Vugia, Duc J.

    2015-01-01

    Aedes aegypti and Ae. albopictus mosquitoes, primary vectors of dengue and chikungunya viruses, were recently detected in California, USA. The threat of potential local transmission of these viruses increases as more infected travelers arrive from affected areas. Public health response has included enhanced human and mosquito surveillance, education, and intensive mosquito control. PMID:26401891

  6. The maxillary palp of aedes aegypti, a model of multisensory integration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Female yellow-fever mosquitoes, Aedes aegypti, are obligate blood-feeders and vectors of the pathogens that cause dengue fever, yellow fever and Chikungunya. This feeding behavior concludes a series of multisensory events guiding the mosquito to its host from a distance. The antennae and maxillary...

  7. Structure-Activity Relationships of 33 Piperidines as Adulticides against Aedes aegypti(Diptera: Culicidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aedes aegypti (L.) is the primary vector of both dengue and yellow fever. Using insecticides is one of the major ways to control this medically important insect pest. However, few new insecticides have been developed for mosquito control in recent years. As a beginning of our collaborative effort to...

  8. Structure-Activity Relationships of 33 Carboxamides as Toxicants Against Female Aedes aegypti (Diptera: Culicidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aedes aegypti (L.) is the primary vector of both dengue and yellow fever. Use of insecticides is one of the primary ways to control this medically important insect pest. However, few new insecticides have been developed for mosquito control in recent years. As a part of our effort to search for new ...

  9. Toxicity of Acalypha indica (Euphorbiaceae) and Achyranthes aspera (Amaranthaceae) leaf extracts to Aedes aegypti (Diptera: Culicidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alternative control technologies envisioned for the dengue vector Aedes aegypti L. (Diptera: Culicidae) include botanical insecticides, which are believed to pose little threat to the environment or to human health and may provide a practical substitute for synthetic insecticides. In this study, we...

  10. Different Repellents for Aedes aegypti against Blood-Feeding and Oviposition

    PubMed Central

    Afify, Ali; Horlacher, Bérénice; Roller, Johannes; Galizia, C. Giovanni

    2014-01-01

    Methyl N,N-dimethyl anthranilate (MDA), ethyl anthranilate (EA) and butyl anthranilate (BA) were previously shown to repel Aedes aegypti mosquitoes from landing on human skin. However, the effect of these compounds on the orientation of flying mosquitoes in a choice situation and their effect on mosquito oviposition are not yet known. Here, we used a modified Y-tube olfactometer to test the effect of these compounds on the orientation of Aedes aegypti flying towards skin odor (human fingers), and we tested their effect on Aedes aegypti oviposition choice in a cage assay. In both behavioral situations we compared the effect to the well-documented repellent N,N-diethyl-meta-toluamide (DEET). MDA, EA, and DEET inhibited Aedes aegypti from flying towards skin odor while BA had no such effect. Conversely, MDA had no effect on oviposition while EA, BA, and DEET deterred oviposition, with the strongest effect observed for BA. Thus, we confirm that EA and DEET are generally repellent, while MDA is repellent only in a host-seeking context, and BA is deterrent only in an oviposition context. These compounds appear of potential use in mosquito control programs. PMID:25079819

  11. Gustatory receptor expression in the labella and legs of aedes aegypti

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The yellow-fever mosquito, Aedes aegypti, is a dangerous disease vector, infecting a growing number of people every year with dengue, yellow fever and chikungunya viruses. Contact chemoreception in mosquitoes influences a number of behaviors including host-selection, oviposition and feeding. While...

  12. Promising Aedes aegypti repellent chemotypes identified through integrated QSAE, virtual screening, synthesis, and bioassay

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Molecular field topology analysis, scaffold hopping, and molecular docking were used as complementary computational tools for the design of repellents for Aedes aegypti, the insect vector for yellow fever, West Nile fever, and dengue fever. A large number of analogues were evaluated by virtual scree...

  13. Ovicidal activity of Metarhizium brunneum (Mb F52) on dengue fever vector, Aedes aegypti

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ovicidal activity of Metarhizium brunneum F52 (Mb F52) grown from granules was evaluated against Aedes aegypti eggs over time. Survival of larvae from treated eggs was significantly less when compared with untreated eggs at 7, 10 and 14 days post treatment. Only 27 % of treated eggs produced vi...

  14. Mosquito activity of a series of chalcones and 2-pyrazoline derivatives against Aedes aegypti

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aedes aegypti (L.) (Diptera: Culicidae) transmit pathogens to humans, leading to diseases such as yellow fever and dengue fever. Repellents and insecticides are two common interventions to reduce mosquito biting and thereby disease risk. However, overreliance on a chemical or class of chemicals c...

  15. Aerial ULV application of Dibrom against Aedes aegypti in simulated urban and rural residences

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reaching endophilic Aedes aegypti mosquito vectors of dengue located in human residences with aerial ULV pesticide applications is a prominent complication in operational wide area public health mosquito control activities. We conducted separate trials with a military C-130 fixed wing aircraft fitte...

  16. Changes in host-seeking behavior of Puerto Rican Aedes aegypti (L.) following colonization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of colonization on host-seeking behavior of mosquitoes was examined by comparing attraction responses of newly colonized Aedes aegypti (L.) from field-collected eggs in Puerto Rico to that of the Gainesville (Florida) strain, originally from Orlando (Florida) and in colony since 1952. Fe...

  17. Mitochondrial gene cytochrome b developmental and environmental expression in Aedes aegypti.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cytochrome b, coded by mitochondrial DNA, is one of the cytochromes involved in electron transport in the respiratory chain of mitochondria. Cytochrome b is a critical intermediate in a mitochondrial death pathway. To reveal whether cytochrome b of the mosquito Aedes aegypti L. (AeaCytB) is developm...

  18. Aedes aegypti (Diptera: culicidae) biting deterrence: structure-activity relationship of saturated and unsaturated fatty acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study we systematically evaluated for the first time the biting deterrent effects of a series of saturated and unsaturated fatty acids against Aedes aegypti [yellow fever mosquito (Diptera: Culicidae)] using the K & D bioassay system (Klun et al 2005). The saturated fatty acids (C6:0 to C16...

  19. Late-instar Behavior of Aedes aegypti (Diptera: Culicidae) Larvae in Different Thermal and Nutritive Environments.

    PubMed

    Reiskind, Michael H; Janairo, M Shawn

    2015-09-01

    The effects of temperature on ectotherm growth have been well documented. How temperature affects foraging behavior is less well explored, and has not been studied in larval mosquitoes. We hypothesized that temperature changes foraging behavior in the aquatic larval phase of the mosquito, Aedes aegypti L. Based on empirical results in other systems, we predicted that foraging effort would increase at higher temperatures in these insects. We tested this prediction over three temperature conditions at two food levels. We measured behaviors by video recording replicated cohorts of fourth-instar mosquitoes and assessing individual behavior and time budgets using an ethogram. We found both food level and temperature had significant impacts on larval foraging behavior, with more time spent actively foraging at low food levels and at low temperatures, and more occurrences of active foraging at both temperature extremes. These results are contrary to some of our predictions, but fit into theoretical responses to temperature based upon dynamic energy budget models. PMID:26336228

  20. High Level of Vector Competence of Aedes aegypti and Aedes albopictus from Ten American Countries as a Crucial Factor in the Spread of Chikungunya Virus

    PubMed Central

    Vega-Rúa, Anubis; Zouache, Karima; Girod, Romain

    2014-01-01

    ABSTRACT Chikungunya virus (CHIKV) causes a major public health problem. In 2004, CHIKV began an unprecedented global expansion and has been responsible for epidemics in Africa, Asia, islands in the Indian Ocean region, and surprisingly, in temperate regions, such as Europe. Intriguingly, no local transmission of chikungunya virus (CHIKV) had been reported in the Americas until recently, despite the presence of vectors and annually reported imported cases. Here, we assessed the vector competence of 35 American Aedes aegypti and Aedes albopictus mosquito populations for three CHIKV genotypes. We also compared the number of viral particles of different CHIKV strains in mosquito saliva at two different times postinfection. Primarily, viral dissemination rates were high for all mosquito populations irrespective of the tested CHIKV isolate. In contrast, differences in transmission efficiency (TE) were underlined in populations of both species through the Americas, suggesting the role of salivary glands in selecting CHIKV for highly efficient transmission. Nonetheless, both mosquito species were capable of transmitting all three CHIKV genotypes, and TE reached alarming rates as high as 83.3% and 96.7% in A. aegypti and A. albopictus populations, respectively. A. albopictus better transmitted the epidemic mutant strain CHIKV_0621 of the East-Central-South African (ECSA) genotype than did A. aegypti, whereas the latter species was more capable of transmitting the original ECSA CHIKV_115 strain and also the Asian genotype CHIKV_NC. Therefore, a high risk of establishment and spread of CHIKV throughout the tropical, subtropical, and even temperate regions of the Americas is more real than ever. IMPORTANCE Until recently, the Americas had never reported chikungunya (CHIK) autochthonous transmission despite its global expansion beginning in 2004. Large regions of the continent are highly infested with Aedes aegypti and Aedes albopictus mosquitoes, and millions of dengue (DEN

  1. Vector competence of Aedes albopictus and Aedes aegypti (Diptera: Culicidae) for the DEN2-FJ10 and DEN2-FJ11 strains of the dengue 2 virus in Fujian, China.

    PubMed

    Guo, Xiao-Xia; Li, Chun-Xiao; Zhang, Ying-Mei; Xing, Dan; Dong, Yan-De; Zhang, Heng-Duan; Qin, Cheng-Feng; Zhao, Tong-Yan

    2016-09-01

    Dengue is an acute, emerging, infectious disease transmitted by Aedes mosquitoes that has become a serious global public health problem. The DEN2-FJ10 and DEN2-FJ11 strains of the dengue 2 virus were originally isolated from the serum of a patient with dengue fever in Fujian Province, China, in 1999. Our data provide the first assessment of the vector competence of Aedes mosquitoes with respect to the DEN2-FJ10 and DEN2-FJ11 strains of the dengue virus. There were significant differences in the replication rates of these two viral strains in Aedes albopictus and Aedes aegypti (P<0.05); replication of the DEN2-FJ10 strain was greater in Ae. aegypti than in Ae. albopictus 5 days post infection whereas replication of the DEN2-FJ11 was greater in Ae. albopictus than in Ae. aegypti 7 days post infection. The replicative ability of the DEN2-FJ11 strain was greater than that of the DEN2-FJ10 strain in infected Ae. albopictus. In infected Ae. aegypti, rapid proliferation of the DEN2-FJ10 strain occurred earlier than in the DEN2-FJ11 strain. There were no significant differences in the midgut and salivary gland infection rates of Ae. albopictus and Ae. aegypti with respect to either viral strain. Although the DEN2-FJ10 and DEN2-FJ11 strains differ in their virulence to neonatal rats, there was no significant difference in the ability of either Ae. albopictus or Ae. aegypti to transmit the DEN2-FJ10 and DEN2-FJ10 strains of the dengue 2 virus (P>0.05). In summary, our results indicate that Ae. albopictus and Ae. aegypti mosquitoes are moderately competent vectors of the DEN2-FJ10 and DEN2-FJ11 strains of the dengue virus and provide the first evidence of the effect of these two viral strains on the vector competence of mosquitoes in China. PMID:27260668

  2. Larvicidal and pupicidal activities of essential oils from Zingiberaceae plants against Aedes aegypti (Linn.) and Culex quinquefasciatus say mosquitoes.

    PubMed

    Phukerd, Ubol; Soonwera, Mayura

    2013-09-01

    We conducted this study to investigate the efficacy of herbal essential oils from 12 species of Zingiberaceae plants to determine their larvicidal and pupicidal activity against fourth instar larvae and pupae of Aedes aegypti and Culex quinquefasciatus mosquitoes. Probit analysis was used to analyze the data. Larval mortality was recorded at 1, 5, 10, 15, 30 and 60 minutes and 24 hours. Pupal mortality was recorded at 15 and 30 minutes and 1, 3, 6, 12, 24 and 48 hours. All the essential oils tested showed larvicidal activity. Zingiber cassumunar and Amomum biflorum oils proved to have the greatest activity against Ae. aegypti larvae with LT50 of 1.4 minutes and 100% mortality at 5 and 10 minutes, respectively. Boesenbergia rotunda, Curcuma zedoaria and Hedychium coronarium essential oils had activity against Cx. quinquefasciatus larvae with LT50 of 1.7 minutes and 100% mortality at 10 minutes, 5 minutes and 15 minutes, respectively. All the herbal essential oils tested resulted in 100% mortality against Ae. aegypti and Cx. quinquefasciatus larvae at 60 minutes and 30 minutes, respectively. Ae. aegypti and Cx. quinquefasciatus pupae were susceptible to Z. ottensii oil (LT50 of 0.2 hour) and Z. zerumbet oil (LT50 of 0.6 hour) and had pupicidal activity with 100% mortality at 6 and 3 hours, respectively. All the essential oils test had pupicidal activity against Ae. aegypti and Cx. quinquefasciatus by inducing 100% mortality at 48 hours. PMID:24437311

  3. Population dynamics of Aedes aegypti and dengue as influenced by weather and human behavior in San Juan, Puerto Rico.

    PubMed

    Barrera, Roberto; Amador, Manuel; MacKay, Andrew J

    2011-12-01

    Previous studies on the influence of weather on Aedes aegypti dynamics in Puerto Rico suggested that rainfall was a significant driver of immature mosquito populations and dengue incidence, but mostly in the drier areas of the island. We conducted a longitudinal study of Ae. aegypti in two neighborhoods of the metropolitan area of San Juan city, Puerto Rico where rainfall is more uniformly distributed throughout the year. We assessed the impacts of rainfall, temperature, and human activities on the temporal dynamics of adult Ae. aegypti and oviposition. Changes in adult mosquitoes were monitored with BG-Sentinel traps and oviposition activity with CDC enhanced ovitraps. Pupal surveys were conducted during the drier and wetter parts of the year in both neighborhoods to determine the contribution of humans and rains to mosquito production. Mosquito dynamics in each neighborhood was compared with dengue incidence in their respective municipalities during the study. Our results showed that: 1. Most pupae were produced in containers managed by people, which explains the prevalence of adult mosquitoes at times when rainfall was scant; 2. Water meters were documented for the first time as productive habitats for Ae. aegypti; 3. Even though Puerto Rico has a reliable supply of tap water and an active tire recycling program, water storage containers and discarded tires were important mosquito producers; 4. Peaks in mosquito density preceded maximum dengue incidence; and 5. Ae. aegypti dynamics were driven by weather and human activity and oviposition was significantly correlated with dengue incidence. PMID:22206021

  4. Population Dynamics of Aedes aegypti and Dengue as Influenced by Weather and Human Behavior in San Juan, Puerto Rico

    PubMed Central

    Barrera, Roberto; Amador, Manuel; MacKay, Andrew J.

    2011-01-01

    Previous studies on the influence of weather on Aedes aegypti dynamics in Puerto Rico suggested that rainfall was a significant driver of immature mosquito populations and dengue incidence, but mostly in the drier areas of the island. We conducted a longitudinal study of Ae. aegypti in two neighborhoods of the metropolitan area of San Juan city, Puerto Rico where rainfall is more uniformly distributed throughout the year. We assessed the impacts of rainfall, temperature, and human activities on the temporal dynamics of adult Ae. aegypti and oviposition. Changes in adult mosquitoes were monitored with BG-Sentinel traps and oviposition activity with CDC enhanced ovitraps. Pupal surveys were conducted during the drier and wetter parts of the year in both neighborhoods to determine the contribution of humans and rains to mosquito production. Mosquito dynamics in each neighborhood was compared with dengue incidence in their respective municipalities during the study. Our results showed that: 1. Most pupae were produced in containers managed by people, which explains the prevalence of adult mosquitoes at times when rainfall was scant; 2. Water meters were documented for the first time as productive habitats for Ae. aegypti; 3. Even though Puerto Rico has a reliable supply of tap water and an active tire recycling program, water storage containers and discarded tires were important mosquito producers; 4. Peaks in mosquito density preceded maximum dengue incidence; and 5. Ae. aegypti dynamics were driven by weather and human activity and oviposition was significantly correlated with dengue incidence. PMID:22206021

  5. Aedes aegypti (L.) in Latin American and Caribbean region: With growing evidence for vector adaptation to climate change?

    PubMed

    Chadee, Dave D; Martinez, Raymond

    2016-04-01

    Within Latin America and the Caribbean region the impact of climate change has been associated with the effects of rainfall and temperature on seasonal outbreaks of dengue but few studies have been conducted on the impacts of climate on the behaviour and ecology of Aedes aegypti mosquitoes.This study was conducted to examine the adaptive behaviours currently being employed by A. aegypti mosquitoes exposed to the force of climate change in LAC countries. The literature on the association between climate and dengue incidence is small and sometimes speculative. Few laboratory and field studies have identified research gaps. Laboratory and field experiments were designed and conducted to better understand the container preferences, climate-associated-adaptive behaviour, ecology and the effects of different temperatures and light regimens on the life history of A. aegypti mosquitoes. A. aegypti adaptive behaviours and changes in container preferences demonstrate how complex dengue transmission dynamics is, in different ecosystems. The use of underground drains and septic tanks represents a major behaviour change identified and compounds an already difficult task to control A. aegypti populations. A business as usual approach will exacerbate the problem and lead to more frequent outbreaks of dengue and chikungunya in LAC countries unless both area-wide and targeted vector control approaches are adopted. The current evidence and the results from proposed transdisciplinary research on dengue within different ecosystems will help guide the development of new vector control strategies and foster a better understanding of climate change impacts on vector-borne disease transmission. PMID:26796862

  6. Heme Signaling Impacts Global Gene Expression, Immunity and Dengue Virus Infectivity in Aedes aegypti

    PubMed Central

    Bottino-Rojas, Vanessa; Talyuli, Octávio A. C.; Jupatanakul, Natapong; Sim, Shuzhen; Dimopoulos, George; Venancio, Thiago M.; Bahia, Ana C.; Sorgine, Marcos H.; Oliveira, Pedro L.; Paiva-Silva, Gabriela O.

    2015-01-01

    Blood-feeding mosquitoes are exposed to high levels of heme, the product of hemoglobin degradation. Heme is a pro-oxidant that influences a variety of cellular processes. We performed a global analysis of heme-regulated Aedes aegypti (yellow fever mosquito) transcriptional changes to better understand influence on mosquito physiology at the molecular level. We observed an iron- and reactive oxygen species (ROS)-independent signaling induced by heme that comprised genes related to redox metabolism. By modulating the abundance of these transcripts, heme possibly acts as a danger signaling molecule. Furthermore, heme triggered critical changes in the expression of energy metabolism and immune response genes, altering the susceptibility towards bacteria and dengue virus. These findings seem to have implications on the adaptation of mosquitoes to hematophagy and consequently on their ability to transmit diseases. Altogether, these results may also contribute to the understanding of heme cell biology in eukaryotic cells. PMID:26275150

  7. Structure-Activity Relationship Studies on Natural Eremophilanes from Inula helenium as Toxicants Against Aedes aegypti Larvae and Adults

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An Aedes aegypti larval toxicity bioassay was performed on compounds representing many classes of natural compounds including polyacetylenes, phytosterols, flavonoids, sesquiterpenoids, and triterpenoids. Among these compounds studies, two eudesmanolides, alantolactone and isoalantolactone, showed l...

  8. Dispersal of Male Aedes aegypti in a Coastal Village in Southern Mexico

    PubMed Central

    Valerio, Laura; Facchinelli, Luca; Ramsey, Janine M.; Scott, Thomas W.

    2012-01-01

    Most Aedes aegypti dispersal studies have focused on females because of their central role in dengue virus transmission. Only a few mark-release-recapture (MRR) studies provided insights into male Ae. aegypti dispersal. To fill this knowledge gap, we conducted five male Ae. aegypti MRR experiments in a coastal village in southern Mexico. Small and large male cohorts were marked with fluorescent dusts, released outside buildings, and recaptures were carried out by using backpack aspirators. Recapture rates ranged between 0.35% and 6.55% and median distance traveled was 12–166 meters. A statistically significant difference in median distance traveled with large males dispersing farther than small ones was detected only in one experiment (MRR5: U = 3.5, P < 0.01). Male dispersal data will be useful for constructing and estimating parameter values and validating models that will be used to plan the most effective release strategies for genetically modified male Ae. aegypti. PMID:22492152

  9. Resistance in some Caribbean populations of Aedes aegypti to several insecticides.

    PubMed

    Rawlins, S C; Wan, J O

    1995-03-01

    Thirty-four strains of Aedes aegypti larvae from 17 Caribbean countries were bioassayed for sensitivity to temephos, malathion, fenitrothion, fenthion, and chlorpyrifos. There were fairly high levels of resistance in Tortola (10-12-fold resistance) and Antigua (6-9-fold resistance) strains to temephos and to fenthion (Tortola, 7-10-fold; Antigua, 6-10-fold resistance). Most other strains showed some resistance to malathion, fenitrothion, and chlorpyrifos, but only moderate levels. Adult populations of Ae. aegypti--Aruba, Jamaica, Trinidad, Puerto Rico, St. Lucia, and Antigua strains--also showed moderate resistance to malathion. Mosquito control field data supported the laboratory findings. Doubling the diagnostic dosage of temephos for larval Ae. aegypti was only partially effective against a more resistant strain, and even so, the chemical lost its limited efficacy over a short period of time. Integrated strategies for Ae. aegypti control to mitigate the negative effects of insecticide resistance in the Caribbean strains are suggested. PMID:7542312

  10. Dispersal of male Aedes aegypti in a coastal village in southern Mexico.

    PubMed

    Valerio, Laura; Facchinelli, Luca; Ramsey, Janine M; Bond, J Guillermo; Scott, Thomas W

    2012-04-01

    Most Aedes aegypti dispersal studies have focused on females because of their central role in dengue virus transmission. Only a few mark-release-recapture (MRR) studies provided insights into male Ae. aegypti dispersal. To fill this knowledge gap, we conducted five male Ae. aegypti MRR experiments in a coastal village in southern Mexico. Small and large male cohorts were marked with fluorescent dusts, released outside buildings, and recaptures were carried out by using backpack aspirators. Recapture rates ranged between 0.35% and 6.55% and median distance traveled was 12-166 meters. A statistically significant difference in median distance traveled with large males dispersing farther than small ones was detected only in one experiment (MRR5: U = 3.5, P < 0.01). Male dispersal data will be useful for constructing and estimating parameter values and validating models that will be used to plan the most effective release strategies for genetically modified male Ae. aegypti. PMID:22492152

  11. Using GARP to predict the range of Aedes aegypti in China.

    PubMed

    Wang, Gang; Zhang, Hengduan; Cao, Xin; Zhang, Xiaolong; Wang, Guolong; He, Zhihong; Yu, Changhui; Zhao, Tongyan

    2014-03-01

    Dengue fever and dengue hemorrhagic fever are common mosquito-borne diseases in tropical and subtropical regions, and are mainly transmitted by the mosquito Aedes aegypti (Diptera: Culicidae). The international trade of used tires, coupled with its anthropophilic habit, has enabled Ae. aegypti to colonise new areas in China. We used Genetic Algorithum Rule-Set Production (GARP) to predict the putative current distribution of Ae. aegypti based on data on its distribution 20 years ago and compared this predicted distribution with the known current distribution. The putative distribution corresponded perfectly to the existing distribution. We conclude that GARP is a valid method to predict the putative future distribution of Ae. aegypti, and therefore is an important tool for the surveillance of mosquito-borne diseases in general. PMID:24968668

  12. Investigations of Koutango Virus Infectivity and Dissemination Dynamics in Aedes aegypti Mosquitoes

    PubMed Central

    de Araújo Lobo, Jaime M; Christofferson, Rebecca C; Mores, Christopher N

    2014-01-01

    Aedes aegypti has already been implicated in the emergence of dengue and chikungunya viruses in the southern US. Vector competence is the ability of a mosquito species to support transmission of an arbovirus, which is bounded by its ability to support replication and dissemination of the virus through the mosquito body to the salivary glands to be expectorated in the saliva at the time of feeding on a vertebrate host. Here, we investigate the vector competence of A. aegypti for the arbovirus koutango by orally challenging mosquitoes with two titers of virus. We calculated the effective vector competence, a cumulative measure of transmission capability weighted by mosquito survival, and determined that A. aegypti was competent at the higher dose only. We conclude that further investigation is needed to determine the infectiousness of vertebrate hosts to fully assess the emergence potential of this virus in areas rich in A. aegypti. PMID:25574140

  13. Deltamethrin Resistance Mechanisms in Aedes aegypti Populations from Three French Overseas Territories Worldwide

    PubMed Central

    Dusfour, Isabelle; Zorrilla, Pilar; Guidez, Amandine; Issaly, Jean; Girod, Romain; Guillaumot, Laurent; Robello, Carlos; Strode, Clare

    2015-01-01

    Background Aedes aegypti is a cosmopolite mosquito, vector of arboviruses. The worldwide studies of its insecticide resistance have demonstrated a strong loss of susceptibility to pyrethroids, the major class of insecticide used for vector control. French overseas territories such as French Guiana (South America), Guadeloupe islands (Lesser Antilles) as well as New Caledonia (Pacific Ocean), have encountered such resistance. Methodology/Principal Findings We initiated a research program on the pyrethroid resistance in French Guiana, Guadeloupe and New Caledonia. Aedes aegypti populations were tested for their deltamethrin resistance level then screened by an improved microarray developed to specifically study metabolic resistance mechanisms. Cytochrome P450 genes were implicated in conferring resistance. CYP6BB2, CYP6M11, CYP6N12, CYP9J9, CYP9J10 and CCE3 genes were upregulated in the resistant populations and were common to other populations at a regional scale. The implication of these genes in resistance phenomenon is therefore strongly suggested. Other genes from detoxification pathways were also differentially regulated. Screening for target site mutations on the voltage-gated sodium channel gene demonstrated the presence of I1016 and C1534. Conclusion /significance This study highlighted the presence of a common set of differentially up-regulated detoxifying genes, mainly cytochrome P450 genes in all three populations. GUA and GUY populations shared a higher number of those genes compared to CAL. Two kdr mutations well known to be associated to pyrethroid resistance were also detected in those two populations but not in CAL. Different selective pressures and genetic backgrounds can explain such differences. These results are also compared with those obtained from other parts of the world and are discussed in the context of integrative research on vector competence. PMID:26588076

  14. Effect of the chitin synthesis inhibitor triflumuron on the development, viability and reproduction of Aedes aegypti.

    PubMed

    Belinato, Thiago Affonso; Martins, Ademir Jesus; Lima, José Bento Pereira; Lima-Camara, Tamara Nunes de; Peixoto, Alexandre Afrânio; Valle, Denise

    2009-02-01

    The control of Aedes aegypti is impaired due to the development of resistance to chemical insecticides. Insect Growth Regulators (IGR) exhibit distinct mechanisms of action and are considered potential vector control alternatives. Studies regarding the effects of sublethal IGR doses on the viability of resulting adults will contribute to eval-uating their impact in the field. We analyzed several aspects of Ae. aegypti adults surviving exposure to a partially lethal dose of triflumuron, a chitin synthesis inhibitor. A highly significant difference in the proportion of males and females was noted in the triflumuron-exposed group (65.0% males) compared to the controls (50.2% males). Triflumuron affected adult longevity, particularly for females; after 16 days, only 29.2% of males and 13.8% of females were alive, in contrast with 94% survival of the control mosquitoes. The locomotor activity was reduced and the blood-feeding ability of the treated females was also affected (90.4% and 48.4% of the control and triflumuron-exposed females, respectively, successfully ingested blood). Triflumuron-surviving females ingested roughly 30% less blood and laid 25% fewer eggs than the control females. The treated males and females exhibited a diminished ability to copulate, resulting in less viable eggs. PMID:19274375

  15. Proteome of Aedes aegypti in response to infection and coinfection with microsporidian parasites

    PubMed Central

    Duncan, Alison B; Agnew, Philip; Noel, Valérie; Demettre, Edith; Seveno, Martial; Brizard, Jean-Paul; Michalakis, Yannis

    2012-01-01

    Hosts are frequently infected with more than one parasite or pathogen at any one time, but little is known as to how they respond to multiple immune challenges compared to those involving single infections. We investigated the proteome of Aedes aegypti larvae following infection with either Edhazardia aedis or Vavraia culicis, and coinfections involving both. They are both obligate intracellular parasites belonging to the phylum microsporidia and infect natural populations of Ae. aegypti. The results found some proteins only showing modified abundance in response to infections involving E. aedis, while others were only differentially abundant when infections involved V. culicis. Some proteins only responded with modified abundance to the coinfection condition, while others were differentially abundant in response to all three types of infection. As time since infection increased, the response to each of the single parasite infections diverged, while the response to the E. aedis and coinfection treatments converged. Some of the proteins differentially abundant in response to infection were identified. They included two vacuolar ATPases, proteins known to have a role in determining the infection success of intracellular parasites. This result suggests microsporidia could influence the infection success of other intracellular pathogens infecting vector species of mosquito, including viruses, Plasmodium and Wolbachia. PMID:22837817

  16. Effect of mosquito midgut trypsin activity on dengue-2 virus infection and dissemination in Aedes aegypti.

    PubMed

    Molina-Cruz, Alvaro; Gupta, Lalita; Richardson, Jason; Bennett, Kristine; Black, William; Barillas-Mury, Carolina

    2005-05-01

    The effect of mosquito midgut trypsins in dengue serotype 2 flavivirus (DENV-2) infectivity to Aedes aegypti was studied. Addition of soybean trypsin inhibitor (STI) in a DENV-2 infectious blood meal resulted in a 91-97% decrease in midgut DENV-2 RNA copies (qRT-PCR analysis). STI treatment also resulted in slower DENV-2 replication in the midgut, less DENV-2 E protein expression, and decreased dissemination to the thorax and the head. A second uninfected blood meal, 7 days after the STI-treated infectious meal, significantly increased DENV-2 replication in the midgut and recovered oogenesis, suggesting that the lower viral infection caused by STI was in part due to a nutritional effect. Mosquitoes fed DENV-2 digested in vitro with bovine trypsin (before STI addition) exhibited a transient increase in midgut DENV-2 4 days postinfection. Blood digestion and possibly DENV-2 proteolytic processing, mediated by midgut trypsins, influence the rate of DENV-2 infection, replication, and dissemination in Ae. aegypti. PMID:15891140

  17. Biological differences between brackish and fresh water-derived Aedes aegypti from two locations in the Jaffna peninsula of Sri Lanka and the implications for arboviral disease transmission.

    PubMed

    Ramasamy, Ranjan; Jude, Pavilupillai J; Veluppillai, Thabothiny; Eswaramohan, Thampoe; Surendran, Sinnathamby N

    2014-01-01

    The mainly fresh water arboviral vector Aedes aegypti L. (Diptera: Culicidae) can also undergo pre-imaginal development in brackish water of up to 15 ppt (parts per thousand) salt in coastal areas. We investigated differences in salinity tolerance, egg laying preference, egg hatching and larval development times and resistance to common insecticides in Ae. aegypti collected from brackish and fresh water habitats in Jaffna, Sri Lanka. Brackish water-derived Ae. aegypti were more tolerant of salinity than fresh water-derived Ae. aegypti and this difference was only partly reduced after their transfer to fresh water for up to five generations. Brackish water-derived Ae. aegypti did not significantly discriminate between 10 ppt salt brackish water and fresh water for oviposition, while fresh water-derived Ae. aegypti preferred fresh water. The hatching of eggs from both brackish and fresh water-derived Ae. aegypti was less efficient and the time taken for larvae to develop into pupae was prolonged in 10 ppt salt brackish water. Ae. aegypti isolated from coastal brackish water were less resistant to the organophosphate insecticide malathion than inland fresh water Ae. aegypti. Brackish and fresh water-derived Ae. aegypti however were able to mate and produce viable offspring in the laboratory. The results suggest that development in brackish water is characterised by pertinent biological changes, and that there is restricted genetic exchange between coastal brackish and inland fresh water Ae. aegypti isolates from sites 5 km apart. The findings highlight the need for monitoring Ae. aegypti developing in coastal brackish waters and extending vector control measures to their habitats. PMID:25170879

  18. Integration of botanical and bacterial insecticide against Aedes aegypti and Anopheles stephensi.

    PubMed

    Mahesh Kumar, Palanisamy; Kovendan, Kalimuthu; Murugan, Kadarkarai

    2013-02-01

    The present study evaluated the Orthosiphon thymiflorus leaf extract and the bacterial insecticide spinosad, testing the first to fourth instars larvae and pupae of two important vector mosquitoes, viz., Aedes aegypti, Anopheles stephensi. The fresh leaves of O. thymiflorus were washed thoroughly in tap water and shade-dried at room temperature (28 ± 2 °C) for 5 to 8 days. The air-dried materials were powdered separately using a commercial electrical blender. From the plants, 500 g powder was macerated with 1.5 L organic solvents of petroleum ether sequentially for a period of 72 h each and then filtered. The larval and pupal mortality was observed after 24 h of exposure; no mortality was observed in the control group. The first- to fourth-instar larvae and pupae of A. stephensi had values of LC(50) = 309.16, 337.58, 390.42, 429.68, and 513.34 ppm, and A. aegypti had values of LC(50) = 334.78, 366.45, 422.97, 467.94, and 54.02 ppm, respectively. Spinosad against the A. stephensi had values of LC(50) = 384.19, 433.39, 479.17, 519.79, and 572.63 ppm, and A. aegypti had values of LC(50) = 210.68, 241.20, 264.93, 283.27, and 305.85 ppm, respectively. Moreover, in combined treatment, the A. stephensi had values of LC(50) = 202.36, 224.76, 250.84, 288.05, and 324.05 ppm, and A. aegypti had values of LC(50) = 217.70, 246.04, 275.36, 315.29, and 353.80 ppm, respectively. Results showed that the leaf extract of O. thymiflorus and bacterial insecticide spinosad are promising as a good larvicidal and pupicidal against dengue vector, A. aegypti and malarial vector, A. stephensi. This is an ideal eco-friendly approach for the control of target species of vector control programs. PMID:23242266

  19. Factors favoring houseplant container infestation with Aedes aegypti larvae in Marília, São Paulo, Brazil.

    PubMed

    Macoris, M L; Mazine, C A; Andrighetti, M T; Yasumaro, S; Silva, M E; Nelson, M J; Winch, P J

    1997-04-01

    Since reinvasion of São Paulo State by the Aedes aegypti (L.) mosquito in 1985, flower pots and vases have been important larval habitats despite educational messages focusing on their control. The objectives of this study were to characterize flower pots and vases as larval habitats with respect to the quantities present and infested, the types of plants involved, and the specific locations of the mosquito larvae; to explore local names for houseplants; and to examine factors affecting acceptance of control measures. The results showed an average of more than four potential plant-related larval habitats per premises, of which only 0.4% were occupied by the vector. Plant-related containers represented 31% of all the containers with Aedes aegypti larvae. Although a sample of 126 respondents was able to list 105 different houseplant names, 49% of the positive plants were of two types: ferns and the ornamental plant Dieffenbachia avoena. The public's apparent unwillingness to accept recommended anti-aegypti control measures involving houseplants seems related to the relative rarity of aegypti larvae in the very common houseplant containers, the control program's poor credibility as a source of information about plants, and a perception that the recommended control measures are harmful to plants. An intervention currently being planned for dengue control will use educational material that refers specifically to those plants whose containers are most commonly found to harbor aegypti larvae; it will also utilize information sources such as botanists with greater credibility regarding plants; and it will set out alternative plant care recommendations that are more likely to appeal as beneficial to the plants and that will stand a better chance of being accepted. PMID:9149524

  20. Aedes (Stegomyia) aegypti in the continental United States: a vector at the cool margin of its geographic range.

    PubMed

    Eisen, Lars; Moore, Chester G

    2013-05-01

    After more than a half century without recognized local dengue outbreaks in the continental United States, there were recent outbreaks of autochthonous dengue in the southern parts of Texas (2004-2005) and Florida (2009-2011). This dengue reemergence has provoked interest in the extent of the future threat posed by the yellow fever mosquito, Aedes (Stegomyia) aegypti (L.), the primary vector of dengue and yellow fever viruses in urban settings, to human health in the continental United States. Ae. aegypti is an intriguing example of a vector species that not only occurs in the southernmost portions of the eastern United States today but also is incriminated as the likely primary vector in historical outbreaks of yellow fever as far north as New York, Philadelphia, and Boston, from the 1690s to the 1820s. For vector species with geographic ranges limited, in part, by low temperature and cool range margins occurring in the southern part of the continental United States, as is currently the case for Ae. aegypti, it is tempting to speculate that climate warming may result in a northward range expansion (similar to that seen for Ixodes tick vectors of Lyme borreliosis spirochetes in Scandinavia and southern Canada in recent decades). Although there is no doubt that climate conditions directly impact many aspects of the life history of Ae. aegypti, this mosquito also is closely linked to the human environment and directly influenced by the availability of water-holding containers for oviposition and larval development. Competition with other container-inhabiting mosquito species, particularly Aedes (Stegomyia) albopictus (Skuse), also may impact the presence and local abundance of Ae. aegypti. Field-based studies that focus solely on the impact of weather or climate factors on the presence and abundance of Ae. aegypti, including assessments of the potential impact of climate warming on the mosquito's future range and abundance, do not consider the potential confounding

  1. Aedes aegypti larvicide from the ethanolic extract of Piper nigrum black peppercorns.

    PubMed

    Santiago, Viviene S; Alvero, Rita Grace; Villaseñor, Irene M

    2015-01-01

    Due to unavailability of a vaccine and a specific cure to dengue, the focus nowadays is to develop an effective vector control method against the female Aedes aegypti mosquito. This study aims to determine the larvicidal fractions from Piper nigrum ethanolic extracts (PnPcmE) and to elucidate the identity of the bioactive compounds that comprise these larvicidal fractions. Larvicidal assay was performed by subjecting 3rd to 4th A. aegypti instar larvae to PnPcmE of P. nigrum. The PnPcmE exhibited potential larvicidal activity having an LC50 of 7.1246 ± 0.1304 ppm (mean ± Std error). Normal phase vacuum liquid chromatography of the PnPcmE was employed which resulted in five fractions, two of which showed larvicidal activity. The most active of the PnPcmE fractions is PnPcmE-1A, with an LC50 and LC90 of 1.7101 ± 0.0491 ppm and 3.7078 ppm, respectively. Subsequent purification of PnPcmE-1A allowed the identification of the larvicidal compound as oleic acid. PMID:25118563

  2. Resistance Status to the Insecticides Temephos, Deltamethrin, and Diflubenzuron in Brazilian Aedes aegypti Populations

    PubMed Central

    Viana-Medeiros, Priscila Fernandes; Araújo, Simone Costa; Martins, Ademir J.; Lima, José Bento Pereira

    2016-01-01

    Insecticides are still largely applied in public health to control disease vectors. In Brazil, organophosphates (OP) and pyrethroids (PY) are used against Aedes aegypti for years. Since 2009 Insect Growth Regulators (IGR) are also employed in the control of larvae. We quantified resistance to temephos (OP), deltamethrin (PY), and diflubenzuron (IGR) of A. aegypti samples from 12 municipalities distributed throughout the country, collected between 2010 and 2012. High levels of resistance to neurotoxic insecticides were detected in almost all populations: RR95 to temephos varied between 4.0 and 27.1; the lowest RR95 to deltamethrin was 13.1, and values higher than 70.0 were found. In contrast, all samples were susceptible to diflubenzuron (RR95 < 2.3). Biochemical tests performed with larvae and adults discarded the participation of acetylcholinesterase, the OP target, and confirmed involvement of the detoxifying enzymes esterases, mixed function oxidases, and glutathione-S-transferases. The results obtained were discussed taking into account the public chemical control component and the increase in the domestic use of insecticides during dengue epidemic seasons in the evaluated municipalities. PMID:27419140

  3. Emerging role of lipid droplets in Aedes aegypti immune response against bacteria and Dengue virus

    PubMed Central

    Barletta, Ana Beatriz Ferreira; Alves, Liliane Rosa; Nascimento Silva, Maria Clara L.; Sim, Shuzhen; Dimopoulos, George; Liechocki, Sally; Maya-Monteiro, Clarissa M.; Sorgine, Marcos H. Ferreira

    2016-01-01

    In mammals, lipid droplets (LDs) are ubiquitous organelles that modulate immune and inflammatory responses through the production of lipid mediators. In insects, it is unknown whether LDs play any role during the development of immune responses. We show that Aedes aegypti Aag2 cells – an immune responsive cell lineage – accumulates LDs when challenged with Enterobacter cloacae, Sindbis, and Dengue viruses. Microarray analysis of Aag2 challenged with E.cloacae or infected with Dengue virus revealed high transcripts levels of genes associated with lipid storage and LDs biogenesis, correlating with the increased LDs numbers in those conditions. Similarly, in mosquitoes, LDs accumulate in midgut cells in response to Serratia marcescens and Sindbis virus or when the native microbiota proliferates, following a blood meal. Also, constitutive activation of Toll and IMD pathways by knocking-down their respective negative modulators (Cactus and Caspar) increases LDs numbers in the midgut. Our results show for the first time an infection-induced LDs accumulation in response to both bacterial and viral infections in Ae. Aegypti, and we propose a role for LDs in mosquito immunity. These findings open new venues for further studies in insect immune responses associated with lipid metabolism. PMID:26887863

  4. Homodimerization propensity of the intrinsically disordered N-terminal domain of Ultraspiracle from Aedes aegypti.

    PubMed

    Pieprzyk, Joanna; Zbela, Agnieszka; Jakób, Michał; Ożyhar, Andrzej; Orłowski, Marek

    2014-06-01

    The mosquito Aedes aegypti is the principal vector of dengue, one of the most devastating arthropod-borne viral infections in humans. The isoform specific A/B region, called the N-terminal domain (NTD), is hypervariable in sequence and length and is poorly conserved within the Ultraspiracle (Usp) family. The Usp protein together with ecdysteroid receptor (EcR) forms a heterodimeric complex. Up until now, there has been little data on the molecular properties of the isolated Usp-NTD. Here, we describe the biochemical and biophysical properties of the recombinant NTD of the Usp isoform B (aaUsp-NTD) from A. aegypti. These results, in combination with in silico bioinformatics approaches, indicate that aaUsp-NTD exhibits properties of an intrinsically disordered protein (IDP). We also present the first experimental evidence describing the dimerization propensity of the isolated NTD of Usp. These characteristics also appear for other members of the Usp family in different species, for example, in the Usp-NTD from Drosophila melanogaster and Bombyx mori. However, aaUsp-NTD exhibits the strongest homodimerization potential. We postulate that the unique dimerization of the NTD might be important for Usp function by providing an additional platform for interactions, in addition to the nuclear receptor superfamily dimerization via DNA binding domains and ligand binding domains that has already been extensively documented. Furthermore, the unique NTD-NTD interaction that was observed might contribute new insight into the dimerization propensities of nuclear receptors. PMID:24704038

  5. Aedes aegypti Mosquitoes Exhibit Decreased Repellency by DEET following Previous Exposure

    PubMed Central

    Stanczyk, Nina M.; Brookfield, John F. Y.; Field, Linda M.; Logan, James G.

    2013-01-01

    DEET (N,N-Diethyl-m-toluamide) is one of the most widely used mosquito repellents. Although DEET has been shown to be extremely effective, recent studies have revealed that certain individual insects are unaffected by its presence. A genetic basis for this has been shown in Aedes aegypti mosquitoes and the fruit fly Drosophila melanogaster, but, for the triatomine bug, Rhodnius prolixus, a decrease in response to DEET occurred shortly after previous exposure, indicating that non-genetic factors may also be involved in DEET “insensitivity”. In this study, we examined host-seeking behaviour and electrophysiological responses of A. aegypti after pre-exposure to DEET. We found that three hours after pre-exposure the mosquitoes showed behavioural insensitivity, and electroantennography revealed this correlated with the olfactory receptor neurons responding less to DEET. The change in behaviour as a result of pre-exposure to DEET has implications for the use of repellents and the ability of mosquitoes to overcome them. PMID:23437043

  6. Polyandry Depends on Postmating Time Interval in the Dengue Vector Aedes aegypti

    PubMed Central

    Degner, Ethan C.; Harrington, Laura C.

    2016-01-01

    Aedes aegypti is the primary vector of the dengue and chikungunya viruses. After mating, male seminal fluid molecules cause females to become unreceptive to a subsequent mating. This response is often assumed to be immediate and complete, but a growing body of evidence suggests that some females do mate more than once. It is unknown how quickly a female becomes unreceptive to a second mating. Furthermore, the degree to which she remains monandrous after laying several batches of eggs has not been rigorously tested. Therefore, we assessed the rates of polyandry in two sets of experiments using wild-type males and those with fluorescent sperm. The first experiment tested the likelihood of polyandry after postmating intervals of various durations. Most females became refractory to a second mating within 2 hours after mating, and rates of polyandry ranged from 24% immediately after mating to 3% at 20 hours after mating. The second experiment tested whether females were polyandrous after cycles of blood meals and oviposition. No re-insemination was found after one, three, or five such cycles. This study is the first to demonstrate that polyandrous behavior depends on the postmating interval. Our results will inform future applications that depend on an accurate knowledge of Ae. aegypti mating behavior, including models of gene flow, investigations of molecules that drive female mating behavior, and control strategies that deploy genetically modified mosquitoes into the field. PMID:26880776

  7. Emerging role of lipid droplets in Aedes aegypti immune response against bacteria and Dengue virus.

    PubMed

    Barletta, Ana Beatriz Ferreira; Alves, Liliane Rosa; Silva, Maria Clara L Nascimento; Sim, Shuzhen; Dimopoulos, George; Liechocki, Sally; Maya-Monteiro, Clarissa M; Sorgine, Marcos H Ferreira

    2016-01-01

    In mammals, lipid droplets (LDs) are ubiquitous organelles that modulate immune and inflammatory responses through the production of lipid mediators. In insects, it is unknown whether LDs play any role during the development of immune responses. We show that Aedes aegypti Aag2 cells - an immune responsive cell lineage - accumulates LDs when challenged with Enterobacter cloacae, Sindbis, and Dengue viruses. Microarray analysis of Aag2 challenged with E.cloacae or infected with Dengue virus revealed high transcripts levels of genes associated with lipid storage and LDs biogenesis, correlating with the increased LDs numbers in those conditions. Similarly, in mosquitoes, LDs accumulate in midgut cells in response to Serratia marcescens and Sindbis virus or when the native microbiota proliferates, following a blood meal. Also, constitutive activation of Toll and IMD pathways by knocking-down their respective negative modulators (Cactus and Caspar) increases LDs numbers in the midgut. Our results show for the first time an infection-induced LDs accumulation in response to both bacterial and viral infections in Ae. Aegypti, and we propose a role for LDs in mosquito immunity. These findings open new venues for further studies in insect immune responses associated with lipid metabolism. PMID:26887863

  8. Limited Dengue Virus Replication in Field-Collected Aedes aegypti Mosquitoes Infected with Wolbachia

    PubMed Central

    Frentiu, Francesca D.; Zakir, Tasnim; Walker, Thomas; Popovici, Jean; Pyke, Alyssa T.; van den Hurk, Andrew; McGraw, Elizabeth A.; O'Neill, Scott L.

    2014-01-01

    Introduction Dengue is one of the most widespread mosquito-borne diseases in the world. The causative agent, dengue virus (DENV), is primarily transmitted by the mosquito Aedes aegypti, a species that has proved difficult to control using conventional methods. The discovery that A. aegypti transinfected with the wMel strain of Wolbachia showed limited DENV replication led to trial field releases of these mosquitoes in Cairns, Australia as a biocontrol strategy for the virus. Methodology/Principal Findings Field collected wMel mosquitoes that were challenged with three DENV serotypes displayed limited rates of body infection, viral replication and dissemination to the head compared to uninfected controls. Rates of dengue infection, replication and dissemination in field wMel mosquitoes were similar to those observed in the original transinfected wMel line that had been maintained in the laboratory. We found that wMel was distributed in similar body tissues in field mosquitoes as in laboratory ones, but, at seven days following blood-feeding, wMel densities increased to a greater extent in field mosquitoes. Conclusions/Significance Our results indicate that virus-blocking is likely to persist in Wolbachia-infected mosquitoes after their release and establishment in wild populations, suggesting that Wolbachia biocontrol may be a successful strategy for reducing dengue transmission in the field. PMID:24587459

  9. Larvicidal effects of the major essential oil of Pittosporum tobira against Aedes aegypti (L.).

    PubMed

    Chung, Ill-Min; Seo, Su-Hyun; Kang, Eun-Young; Park, Won-Hwan; Moon, Hyung-In

    2010-06-01

    Essential oil obtained from the leaves of Pittosporum tobira was extracted and its chemical composition and larvicidal effects were studied. Analyses were conducted by gas chromatography and mass spectroscopy (GC-MS) to determine the primary constituents of the essential oil of P. tobira. The yield of P. tobira essential oil (PTEO) was 0.1%, and GC-MS analysis identified its major constituents as undecane (31.11%), 4-methyl-1,3-pentadiene (11.34%), (1,3-dimethyl-2-butenyl)benzene (5.45%), and L-limonene (14.08%). The essential oil had a significant toxic effect against early fourth-stage larvae of Aedes aegypti (L.), with an LC(50) value of 58.92 ppm and an LC(90) value of 111.31 ppm. Finally, the LC(50) and LC(90) values of L-limonene were 39.7 ppm and 78.11 ppm. These results could be useful for seeking newer, safer, and more effective natural larvicidal agents against A. aegypti. PMID:19874194

  10. A study of the larvicidal activity of two Croton species from northeastern Brazil against Aedes aegypti.

    PubMed

    Dória, Grace A A; Silva, Wellington J; Carvalho, Gilcia A; Alves, Péricles B; Cavalcanti, Sócrates C H

    2010-06-01

    The essential oils of Croton heliotropiifolius Kunth (Euphorbiaceae) and Croton pulegiodorus Baill. were selected for larvicidal evaluation against Aedes aegypti L. (Diptera: Culicidae) and studied qualitatively and quantitatively by GC and GC-MS. Sixty-one compounds representing 92.03% (C. heliotropiifolius) and 85.68% (C. pulegiodorus) of the essential oils, respectively, have been identified. The major components of C. heliotropiifolius essential oil were identified as beta-caryophyllene (35.82%), bicyclogermacrene (19.98%), and germacrene-D (11.85%). The major components in C. pulegiodorus essential oil were identified as beta-caryophyllene (20.96%), bicyclogermacrene (16.89%), germacrene-D (10.55%), tau-cadinol (4.56%), and beta-copaen-4-alpha-ol (4.35%). The essential oil of C. pulegiodorus (LC50 159 ppm) was more effective against Ae. aegypti than that of C. heliotropiifolius (LC50 544 ppm). In order to verify whether the major compound of both essential oils is the active principle responsible for the larvicidal activity, beta-caryophyllene was purchased and its larvicidal potential was further evaluated. However, beta-caryophyllene (LC50 1038 ppm) showed weak larvicidal potency. Results of larvicidal evaluation suggest the existence of a synergistic effect of minor components in the essential oils. PMID:20645733

  11. Aedes aegypti from temperate regions of South America are highly competent to transmit dengue virus

    PubMed Central

    2013-01-01

    Background Aedes aegypti is extensively spread throughout South America where it has been responsible for large dengue epidemics during the last decades. Intriguingly, dengue transmission has not been reported in Uruguay and is essentially prevalent in subtropical northern Argentina which borders Uruguay. Methods We assessed vector competence for dengue virus (DENV) of Ae. aegypti populations collected in subtropical Argentina (Corrientes) as well as temperate Uruguay (Salto) and Argentina (Buenos Aires) in 2012 using experimental oral infections with DENV-2. Mosquitoes were incubated at 28°C and examined at 14 and 21 days p.i. to access viral dissemination and transmission. Batches of the Buenos Aires mosquitoes were also incubated at 15°C and 20°C. Results Although mosquitoes from temperate Uruguay and Argentina were competent to transmit DENV, those from subtropical Argentina were more susceptible, displaying the highest virus titters in the head and presenting the highest dissemination of infection and transmission efficiency rates when incubated at 28°C. Interestingly, infectious viral particles could be detected in saliva of mosquitoes from Buenos Aires exposed to 15°C and 20°C. Conclusions There is a potential risk of establishing DENV transmission in Uruguay and for the spread of dengue outbreaks to other parts of subtropical and temperate Argentina, notably during spring and summer periods. PMID:24373423

  12. Efficacy of various larvicides against Aedes aegypti immatures in the laboratory.

    PubMed

    Wang, Chih-Yuan; Teng, Hwa-Jen; Lee, Si-Jia; Lin, Cheo; Wu, Jhy-Wen; Wu, Ho-Sheng

    2013-01-01

    We conducted a laboratory study to evaluate the efficacy of control agents against small larvae, large larvae, and pupae of Aedes aegypti to determine an appropriate larvicide regime to employ in emergency dengue control programs. The control agents included Bacillus thuringiensis var. israelensis (Bti), pyriproxyfen (an insect growth regulator), a larvicidal oil, Aquatain AMF (polydimethylsiloxane, a monomolecular film), and temephos at the recommend application dosages and rates. Our results showed that Bti, pyriproxyfen, and temephos were efficacious (100% mortality) against larvae, irrespective of the instar stage, but not against pupae of Ae. aegypti (1.5-7.8% mortality). Aquatain AMF, on the other hand, was very effective at controlling the pupal stage (100% mortality), but had limited efficacy against small larvae (38.0% mortality) and large larvae (78.0% mortality). The larvicidal oil was effective against all immature stages (93.3-100% mortality). Therefore, we concluded that for effectively interrupting the dengue transmission cycle, larvicides that kill the pupal stage (Aquatain AMF or larvicidal oil) should be included in an emergency dengue control program in addition to Bti, pyriproxyfen, or temephos. PMID:23883850

  13. The role of male harassment on female fitness for the dengue vector mosquito Aedes aegypti

    PubMed Central

    Helinski, Michelle E.H.; Harrington, Laura C.

    2014-01-01

    Sexual harassment studies in insects suggest that females can incur several kinds of costs from male harassment and mating. Here, we examined direct and indirect costs of male harassment on components of female fitness in the predominantly monandrous mosquito Aedes aegypti. To disentangle the costs of harassment versus the costs of mating, we held females at a low or high density with males whose claspers were modified to prevent insemination, and compared these to females held with normal males and to those held with females or alone. A reduced longevity was observed when females were held under high density conditions with males or females, regardless if male claspers had been modified. There was no consistent effect of harassment on female fecundity. Net reproductive rate (R0) was higher in females held at low density with normal males compared to females held with males in the other treatments, even though only a small number of females showed direct evidence of remating. Indirect costs and benefits that were not due to harassment alone were observed. Daughters of females held with normal males at high density had reduced longevity compared to daughters from females held without conspecifics. However, their fitness (R0) was higher compared to females in all other treatments. Overall, our results indicate that A. aegypti females do not suffer a fitness cost from harassment of males when kept at moderate densities, and they suggest the potential for benefits obtained from ejaculate components. PMID:25544799

  14. Resistance Status to the Insecticides Temephos, Deltamethrin, and Diflubenzuron in Brazilian Aedes aegypti Populations.

    PubMed

    Bellinato, Diogo Fernandes; Viana-Medeiros, Priscila Fernandes; Araújo, Simone Costa; Martins, Ademir J; Lima, José Bento Pereira; Valle, Denise

    2016-01-01

    Insecticides are still largely applied in public health to control disease vectors. In Brazil, organophosphates (OP) and pyrethroids (PY) are used against Aedes aegypti for years. Since 2009 Insect Growth Regulators (IGR) are also employed in the control of larvae. We quantified resistance to temephos (OP), deltamethrin (PY), and diflubenzuron (IGR) of A. aegypti samples from 12 municipalities distributed throughout the country, collected between 2010 and 2012. High levels of resistance to neurotoxic insecticides were detected in almost all populations: RR95 to temephos varied between 4.0 and 27.1; the lowest RR95 to deltamethrin was 13.1, and values higher than 70.0 were found. In contrast, all samples were susceptible to diflubenzuron (RR95 < 2.3). Biochemical tests performed with larvae and adults discarded the participation of acetylcholinesterase, the OP target, and confirmed involvement of the detoxifying enzymes esterases, mixed function oxidases, and glutathione-S-transferases. The results obtained were discussed taking into account the public chemical control component and the increase in the domestic use of insecticides during dengue epidemic seasons in the evaluated municipalities. PMID:27419140

  15. Shifting Patterns of Aedes aegypti Fine Scale Spatial Clustering in Iquitos, Peru

    PubMed Central

    LaCon, Genevieve; Morrison, Amy C.; Astete, Helvio; Stoddard, Steven T.; Paz-Soldan, Valerie A.; Elder, John P.; Halsey, Eric S.; Scott, Thomas W.; Kitron, Uriel; Vazquez-Prokopec, Gonzalo M.

    2014-01-01

    Background Empiric evidence shows that Aedes aegypti abundance is spatially heterogeneous and that some areas and larval habitats produce more mosquitoes than others. There is a knowledge gap, however, with regards to the temporal persistence of such Ae. aegypti abundance hotspots. In this study, we used a longitudinal entomologic dataset from the city of Iquitos, Peru, to (1) quantify the spatial clustering patterns of adult Ae. aegypti and pupae counts per house, (2) determine overlap between clusters, (3) quantify the temporal stability of clusters over nine entomologic surveys spaced four months apart, and (4) quantify the extent of clustering at the household and neighborhood levels. Methodologies/Principal Findings Data from 13,662 household entomological visits performed in two Iquitos neighborhoods differing in Ae. aegypti abundance and dengue virus transmission was analyzed using global and local spatial statistics. The location and extent of Ae. aegypti pupae and adult hotspots (i.e., small groups of houses with significantly [p<0.05] high mosquito abundance) were calculated for each of the 9 entomologic surveys. The extent of clustering was used to quantify the probability of finding spatially correlated populations. Our analyses indicate that Ae. aegypti distribution was highly focal (most clusters do not extend beyond 30 meters) and that hotspots of high vector abundance were common on every survey date, but they were temporally unstable over the period of study. Conclusions/Significance Our findings have implications for understanding Ae. aegypti distribution and for the design of surveillance and control activities relying on household-level data. In settings like Iquitos, where there is a relatively low percentage of Ae. aegypti in permanent water-holding containers, identifying and targeting key premises will be significantly challenged by shifting hotspots of Ae. aegypti infestation. Focusing efforts in large geographic areas with historically

  16. Vector Competence in West African Aedes aegypti Is Flavivirus Species and Genotype Dependent

    PubMed Central

    Dickson, Laura B.; Sanchez-Vargas, Irma; Sylla, Massamba; Fleming, Karen; Black, William C.

    2014-01-01

    Background Vector competence of Aedes aegypti mosquitoes is a quantitative genetic trait that varies among geographic locations and among different flavivirus species and genotypes within species. The subspecies Ae. aegypti formosus, found mostly in sub-Saharan Africa, is considered to be refractory to both dengue (DENV) and yellow fever viruses (YFV) compared to the more globally distributed Ae. aegypti aegypti. Within Senegal, vector competence varies with collection site and DENV-2 viral isolate, but knowledge about the interaction of West African Ae. aegypti with different flaviviruses is lacking. The current study utilizes low passage isolates of dengue-2 (DENV-2-75505 sylvatic genotype) and yellow fever (YFV BA-55 -West African Genotype I, or YFV DAK 1279-West African Genotype II) from West Africa and field derived Ae. aegypti collected throughout Senegal to determine whether vector competence is flavivirus or virus genotype dependent. Methodology/Principal Findings Eight collections of 20–30 mosquitoes from different sites were fed a bloodmeal containing either DENV-2 or either isolate of YFV. Midgut and disseminated infection phenotypes were determined 14 days post infection. Collections varied significantly in the rate and intensity of midgut and disseminated infection among the three viruses. Conclusions/Significance Overall, vector competence was dependent upon both viral and vector strains. Importantly, contrary to previous studies, sylvatic collections of Ae. aegypti showed high levels of disseminated infection for local isolates of both DENV-2 and YFV. PMID:25275366

  17. Mosquito larvicidal activity of aromatic medicinal plant oils against Aedes aegypti and Culex pipiens pallens.

    PubMed

    Lee, Hoi-Seon

    2006-06-01

    Larvicidal activity of essential oils derived from 11 aromatic medicinal plants against early 4th-stage larvae of Aedes aegypti and Culex pipiens pallens was tested in the laboratory. At 100 ppm, the essential oils of all plants caused 100% mortality against Ae. aegypti and Cx. pipiens pallens. At 25 ppm, the essential oils of Citrus bergamia, Cuminum myrrha, and Pimenta racemosa caused 100% mortality against larvae of Ae. aegypti and Cx. pipiens pallens. The oil of C. begamia caused 32.5% and 24.5% mortality against Ae. aegypti and Cx. pipiens pallens at 12.5 ppm, but 24.2% and 0% mortality against Ae. aegypti and Cx. pipiens pallens at 6.25 ppm, respectively. The oil of P. racemosa caused 52.3% and 38.5% mortality against Ae. aegypti and Cx. pipiens pallens at 12.5 ppm, but 32.2% and 0% mortality against Ae. aegypti and Cx. pipiens pallens at 6.25 ppm, respectively. The larvicidal activity of oils of C. bergamia, C. myrrha, and P. racemosa was significantly reduced when used at 6.25 ppm. These plants warrant further studies as possible agents for mosquito control. PMID:17019775

  18. Evidence of Experimental Vertical Transmission of Emerging Novel ECSA Genotype of Chikungunya Virus in Aedes aegypti

    PubMed Central

    Agarwal, Ankita; Dash, Paban Kumar; Singh, Anil Kumar; Sharma, Shashi; Gopalan, Natarajan; Rao, Putcha Venkata Lakshmana; Parida, Man Mohan; Reiter, Paul

    2014-01-01

    Background Chikungunya virus (CHIKV) has emerged as one of the most important arboviruses of public health significance in the past decade. The virus is mainly maintained through human-mosquito-human cycle. Other routes of transmission and the mechanism of maintenance of the virus in nature are not clearly known. Vertical transmission may be a mechanism of sustaining the virus during inter-epidemic periods. Laboratory experiments were conducted to determine whether Aedes aegypti, a principal vector, is capable of vertically transmitting CHIKV or not. Methodology/Principal Findings Female Ae. aegypti were orally infected with a novel ECSA genotype of CHIKV in the 2nd gonotrophic cycle. On day 10 post infection, a non-infectious blood meal was provided to obtain another cycle of eggs. Larvae and adults developed from the eggs obtained following both infectious and non-infectious blood meal were tested for the presence of CHIKV specific RNA through real time RT-PCR. The results revealed that the larvae and adults developed from eggs derived from the infectious blood meal (2nd gonotrophic cycle) were negative for CHIKV RNA. However, the larvae and adults developed after subsequent non-infectious blood meal (3rd gonotrophic cycle) were positive with minimum filial infection rates of 28.2 (1∶35.5) and 20.2 (1∶49.5) respectively. Conclusion/Significance This study is the first to confirm experimental vertical transmission of emerging novel ECSA genotype of CHIKV in Ae. aegypti from India, indicating the possibilities of occurrence of this phenomenon in nature. This evidence may have important consequence for survival of CHIKV during adverse climatic conditions and inter-epidemic periods. PMID:25080107

  19. Community-Based Control of Aedes aegypti By Using Mesocyclops in Southern Vietnam

    PubMed Central

    Nam, Vu Sinh; Yen, Nguyen Thi; Duc, Hoang Minh; Tu, Tran Cong; Thang, Vu Trong; Le, Nguyen Hoang; San, Le Hoang; Loan, Luu Le; Huong, Vu Thi Que; Khanh, Ly Huynh Kim; Trang, Huynh Thi Thuy; Lam, Leonie Z. Y.; Kutcher, Simon C.; Aaskov, John G.; Jeffery, Jason A. L.; Ryan, Peter A.; Kay, Brian H.

    2012-01-01

    We previously reported a new community-based mosquito control strategy that resulted in elimination of Aedes aegypti (Linn.) in 40 of 46 communes in northern and central Vietnam, and with annual recurrent total costs (direct and indirect) of only $0.28–$0.89 international dollars per person. This control strategy was extended to four provinces in southern Vietnam in Long An and Hau Giang (2004–2007) and to Long An, Ben Tre, and Vinh Long (2005–2010). In a total of 14 communes with 124,743 residents, the mean ± SD of adult female Ae. aegypti was reduced from 0.93 ± 0.62 to 0.06 ± 0.09, and the reduction of immature Ae. aegypti averaged 98.8%. By the final survey, no adults could be collected in 6 of 14 communes, and one commune, Binh Thanh, also had no immature forms. Although the community-based programs also involved community education and clean-up campaigns, the prevalence of Mesocyclops in large water storage containers > 50 liters increased from 12.77 ± 8.39 to 75.69 ± 9.17% over periods of 15–45 months. At the conclusion of the study, no confirmed dengue cases were detected in four of the five communes for which diagnostic serologic analysis was performed. The rate of progress was faster in communes that were added in stages to the program but the reason for this finding was unclear. At the completion of the formal project, sustainability funds were set up to provide each commune with the financial means to ensure that community-based dengue control activities continued. PMID:22556087

  20. Behavioral Response of Aedes aegypti (Diptera: Culicidae) Larvae to Synthetic and Natural Attractants and Repellents.

    PubMed

    Gonzalez, Paula V; González Audino, Paola A; Masuh, Héctor M

    2015-11-01

    Aedes aegypti (L.) (Diptera: Culicidae) is the key vector of three important arboviral diseases: dengue, yellow fever, and chikungunya. Immature stages of this species inhabit human-made containers placed in residential landscapes. In this study, we evaluated a few compounds in a sensitive behavioral assay with Ae. aegypti larvae. The orientation of larvae to different compounds was surveyed using a performance index (PI). The PI represents the response to each odorant, where a value of +1 is indicative of full attraction and -1 represents complete repulsion. The widely used insect repellent N, N-diethyl-m-toluamide elicited a significantly negative PI, as did acetophenone and indole. A yeast extract, a known food source, elicited a significantly positive PI, as did 2-methylphenol, 1-octen-3-ol, 3-methylphenol, and fish food. On the other hand, no response was observed for the essential oil of Eucalyptus grandis x Eucalyptus camaldulensis at the concentration evaluated. Pretreatment of larvae with N-ethylmaleimide and ablation of the antennae resulted in a suppression of behavioral responses. The overall mobility of ablated larvae was indistinguishable from unablated controls, and absence of any visible locomotor dysfunction was observed. This work is a contribution to the study of the chemical ecology of disease vectors with the aim of developing more efficient tools for surveillance and control.Natural and synthetic compounds attractive to Ae. aegypti larvae should be incorporated into integrated pest management programs through the use of baited traps or by improving the efficacy of larvicides commonly used in control campaigns. PMID:26352935

  1. Effect of Chloroxylon swietenia Dc bark extracts against Culex quinquefasciatus, Aedes aegypti, and Anopheles stephensi larvae.

    PubMed

    Balasubramanian, Jayaprasad; Subramanian, Sharavanan; Kaliyan, Veerakumar

    2015-11-01

    Mosquitoes are the vector of more diseases and cause major health problems like malaria, dengue, chikungunya, and lymphatic filariasis. This article deals with the mosquito larvicidal activity of Chloroxylon swietenia Dc bark extracts against late third instar larvae of Culex quinquefasciatus, Aedes aegypti, and Anopheles stephensi. Methanolic crude extract of Ch. swietenia bark was obtained by soxhlet apparatus and aqueous crude extract by cold percolation method. The range of concentrations of the crude extracts used was 50, 100, 150, 200, and 250 ppm. The mortality and lethal concentration (LC50 and LC90) was calculated after a 24-h exposure period. Both the extracts showed trustworthy larvicidal activity. The larvicidal activity of the methanol extract of Ch. swietenia bark was higher than the aqueous extract, and the LC50 and the LC90 values of the methanol extract were found to be 124.70 and 226.26 μg/ml (Ae. aegypti), 130.57 and 234.67 ppm (Cu. quinquefasciatus), and 137.55 and 246.09 ppm (An. stephensi). The LC50 and the LC90 values of the aqueous extract were found to be 133.10 and 238.93 ppm (Ae. aegypti), 136.45 and 242.47 ppm (Cu. quinquefasciatus), and 139.43 and 248.64 ppm (An. stephensi). No mortality was observed in the control. Methanolic crude extract Ch. swietenia bark shows higher activity against An. stephensi than the other two tested larvae and aqueous extract. The results of the present study propose a possible way for further investigations to find out the active molecule responsible for the larvicidal activity of Ch. swietenia bark extracts. PMID:26246308

  2. ATon, abundant novel nonautonomous mobile genetic elements in yellow fever mosquito (Aedes aegypti)

    PubMed Central

    2012-01-01

    Background Mosquitoes are important pathogen vectors affecting human and other animals. Studies on genetic control of mosquito mediated disease transmission gained traction recently due to mosquito transgenesis technology. Active transposons are considered valuable tools to propagate pathogen resistance transgenes among mosquitoes, rendering the whole population recalcitrant to diseases. A major hurdle in this approach is the inefficient remobilization activity after the integration of heterologous transposon vectors bearing transgenes into chromosomes. Therefore, endogenous active transposons in mosquito genomes are highly desirable. Results Starting with the transposable element database of the yellow fever mosquito Aedes aegypti genome, detailed analyses of the members of each TE family were performed to identify sequences with multiple identical copies, an indicator of their latest or current transposition activity. Among a dozen of potentially active TE families, two DNA elements (TF000728 and TF000742 in TEfam) are short and nonautonomous. Close inspection of the elements revealed that these two families were previously mis-categorized and, unlike other known TEs, insert specifically at dinucleotide “AT”. These two families were therefore designated as ATon-I and ATon-II. ATon-I has a total copy number of 294, among which three elements have more than 10 identical copies (146, 61 and 17). ATon-II has a total copy number of 317, among which three elements have more than 10 identical copies (84, 15 and 12). Genome wide searches revealed additional 24 ATon families in A. aegypti genome with nearly 6500 copies in total. Transposon display analysis of ATon-1 family using different A. aegypti strains suggests that the elements are similarly abundant in the tested mosquito strains. Conclusion ATons are novel mobile genetic elements bearing terminal inverted repeats and insert specifically at dinucleotide “AT”. Five ATon families contain elements existing at

  3. H+ V-ATPase-Energized Transporters in Brush Border Membrane Vesicles from Whole Larvae of Aedes Aegypti

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Brush Border Membrane vesicles (BBMVs) from Whole larvae of Aedes aegypti (AeBBMVWs ) contain an H+ V-ATPase (V), a Na+/H+ antiporter, NHA1 (A) and a Na+-coupled, nutrient amino acid transporter, NAT8 (N), VAN for short. All V-ATPase subunits are present in the Ae. aegypti genome and in the vesicles...

  4. Evaluation of Costa Rican copepods (Crustacea: Eudecapoda) for larval Aedes aegypti control with special reference to Mesocyclops thermocyclopoides.

    PubMed

    Schaper, S

    1999-12-01

    This study attempted to find organisms for the biological control of the mosquito Aedes aegypti in Costa Rica. Copepods of the genera Arctodiaptomus, Eucylops, Mesocyclops, Megacyclops, and Thermocyclops were collected in several parts of the country and cultured for laboratory evaluations. Mesocyclops thermocyclopoides was the most successful species in reducing the number of larval Ae. aegypti (7.3 larvae in 24 h at a density of 200 Aedes/liter). Arctodiaptomus dorsalis, Eucyclops cf. bondi, Eucyclops leptacanthus, Megacyclops sp., and Thermocyclops decipens were not effective predators. In cage simulation trials, M. thermocyclopoides showed 100% larval reduction after 4 wk and adult mosquitoes disappeared after 7 wk. The copepod was able to survive in Aechmea sp. bromeliads under laboratory conditions. In field trials under 3 different climatic conditions M. thermocyclopoides survived 2-5 months in bromeliad leaf axils and 3-6 months in used car tires. In tires, this species reduced the number of larval Ae. aegypti 79, 90, and 99% in tropical dry, moderate, and humid climates, respectively. An El Niño phenomenon affected the results by drought, which apparently also caused a decline in the population of the predatory mosquito Toxorhynchites haemorrhoidalis superbus. Considering these severe test conditions, M. thermocyclopoides might be a promising predator for mosquito control in Costa Rica. PMID:10612615

  5. Intermolecular interaction of thiosemicarbazone derivatives to solvents and a potential Aedes aegypti target

    NASA Astrophysics Data System (ADS)

    da Silva, João Bosco P.; Hallwass, Fernando; da Silva, Aluizio G.; Moreira, Diogo Rodrigo; Ramos, Mozart N.; Espíndola, José Wanderlan P.; de Oliveira, Ana Daura T.; Brondani, Dalci José; Leite, Ana Cristina L.; Merz, Kenneth M.

    2015-08-01

    DFT calculations were used to access information about structure, energy and electronic properties of series of phenyl- and phenoxymethyl-(thio)semicarbazone derivatives with demonstrated activity against the larvae of Aedes aegypti in stage L4. The way as the thiosemicarbazone derivatives can interact with solvents like DMSO and water were analyzed from the comparison between calculated and experimental 1H NMR chemical shifts. The evidences of thiosemicarbazone derivatives making H-bond interaction to solvent have provide us insights on how they can interact with a potential A. aegypti's biological target, the Sterol Carrier Protein-2.

  6. Finding Aedes aegypti in a natural breeding site in an urban zone, Sao Paulo, Southeastern Brazil

    PubMed Central

    Lima-Camara, Tamara Nunes; Urbinatti, Paulo Roberto; Chiaravalloti-Neto, Francisco

    2016-01-01

    ABSTRACT This is the description of how nine Aedes aegypti larvae were found in a natural breeding site in the Pinheiros neighborhood, city of Sao Paulo, SP, Southeastern Brazil. The record was conducted in December 2014, during an entomological surveillance program of dengue virus vectors, with an active search of potential breeding sites, either artificial or natural. Finding Ae. aegypti larvae in a tree hole shows this species’ ability to use both artificial and natural environments as breeding sites and habitats, which points towards the importance of maintaining continuous surveillance on this mosquito in all kinds of water-holding containers. PMID:26982959

  7. History of domestication and spread of Aedes aegypti--a review.

    PubMed

    Powell, Jeffrey R; Tabachnick, Walter J

    2013-01-01

    The adaptation of insect vectors of human diseases to breed in human habitats (domestication) is one of the most important phenomena in medical entomology. Considerable data are available on the vector mosquito Aedes aegypti in this regard and here we integrate the available information including genetics, behaviour, morphology, ecology and biogeography of the mosquito, with human history. We emphasise the tremendous amount of variation possessed by Ae. aegypti for virtually all traits considered. Typological thinking needs to be abandoned to reach a realistic and comprehensive understanding of this important vector of yellow fever, dengue and Chikungunya. PMID:24473798

  8. Methods for TALEN evaluation, use, and mutation detection in the mosquito Aedes aegypti

    PubMed Central

    Basu, Sanjay; Aryan, Azadeh; Haac, Mary Etna; Myles, Kevin M.; Adelman, Zach N.

    2016-01-01

    The generation and study of transgenic Aedes aegypti mosquitoes provides an essential tool for elucidating the complex molecular biology of this important vector. Within the field, genetic manipulation has now surpassed the proof of principle stage and is now utilised in both applied and theoretical vector control strategies. The application of new instruments, technologies and techniques allows ever more controlled experiments to be conducted. In this text we describe microinjection of Ae. aegypti embryos in the context of evaluating and performing genomic editing with transcription activator-like effector nucleases (TALENs). PMID:26443221

  9. The Effects of Interspecific Courtship on the Mating Success of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) Males

    PubMed Central

    Bargielowski, Irka; Blosser, Erik; Lounibos, L. P.

    2015-01-01

    Satyrization, a form of asymmetric reproductive interference, has recently been shown to play a role in competitive displacements of Aedes aegypti (L.) by Aedes albopictus (Skuse). Furthermore, female Ae. aegypti from populations in sympatry with Ae. albopictus have evolved reproductive character displacement and changes in mating behavior to reduce interspecific mating. In this article, we examine evolutionary responses of males to interspecific mating and show that satyrization has also evoked reproductive character displacement in males. We demonstrate that the presence of heterospecific females negatively influences conspecific mating success in male Ae. aegypti, most likely due to misdirected courting or mating efforts, and that males of this species from populations in sympatry with Ae. albopictus have evolved to be less influenced by the presence of heterospecific females than their allopatric counterparts. Conversely, we suggest that the presence of conspecifics may, in some circumstances, increase interspecific mating. This study demonstrates that co-occurrences of these two invasive species may lead to evolution and adaptation of reproductive behaviors to changing circumstances. Understanding the processes driving development of mate choice preferences or avoidance mechanisms may help predict future changes in the distribution and abundance of insect vectors or pests.

  10. Synergistic efficacy of botanical blends with and without synthetic insecticides against Aedes aegypti and Culex annulirostris mosquitoes.

    PubMed

    Shaalan, Essam Abdel-Salam; Canyon, Deon Vahid; Younes, Mohamed Wagdy Faried; Abdel-Wahab, Hoda; Mansour, Abdel-Hamid

    2005-12-01

    Increasing insecticide resistance requires strategies to prolong the use of highly effective vector control compounds. The use of combinations of insecticides with other insecticides and phytochemicals is one such strategy that is suitable for mosquito control. In bioassays with Aedes aegypti and Culex annulirostris mosquitoes, binary mixtures of phytochemicals with or without synthetic insecticides produced promising results when each was applied at a LC25 dose. All mixtures resulted in 100% mortality against Cx. annulirostris larvae within 24 h rather than the expected mortality of 50%. All mixtures acted synergistically against Ae. aegypti larvae within the first 24 h except for one mixture that showed an additive effect. We conclude that mixtures are more effective than insecticides or phytochemicals alone and that they enable a reduced dose to be applied for vector control potentially leading to improved resistance management and reduced costs. PMID:16599164

  11. The Impact of Selection with Diflubenzuron, a Chitin Synthesis Inhibitor, on the Fitness of Two Brazilian Aedes aegypti Field Populations

    PubMed Central

    Belinato, Thiago Affonso; Valle, Denise

    2015-01-01

    Several Aedes aegypti field populations are resistant to neurotoxic insecticides, mainly organophoshates and pyrethroids, which are extensively used as larvicides and adulticides, respectively. Diflubenzuron (DFB), a chitin synthesis inhibitor (CSI), was recently approved for use in drinking water, and is presently employed in Brazil for Ae. aegypti control, against populations resistant to the organophosphate temephos. However, tests of DFB efficacy against field Ae. aegypti populations are lacking. In addition, information regarding the dynamics of CSI resistance, and characterization of any potential fitness effects that may arise in conjunction with resistance are essential for new Ae. aegypti control strategies. Here, the efficacy of DFB was evaluated for two Brazilian Ae. aegypti populations known to be resistant to both temephos and the pyrethroid deltamethrin. Laboratory selection for DFB resistance was then performed over six or seven generations, using a fixed dose of insecticide that inhibited 80% of adult emergence in the first generation. The selection process was stopped when adult emergence in the diflubenzuron-treated groups was equivalent to that of the control groups, kept without insecticide. Diflubenzuron was effective against the two Ae. aegypti field populations evaluated, regardless of their resistance level to neurotoxic insecticides. However, only a few generations of DFB selection were sufficient to change the susceptible status of both populations to this compound. Several aspects of mosquito biology were affected in both selected populations, indicating that diflubenzuron resistance acquisition is associated with a fitness cost. We believe that these results can significantly contribute to the design of control strategies involving the use of insect growth regulators. PMID:26107715

  12. The Impact of Selection with Diflubenzuron, a Chitin Synthesis Inhibitor, on the Fitness of Two Brazilian Aedes aegypti Field Populations.

    PubMed

    Belinato, Thiago Affonso; Valle, Denise

    2015-01-01

    Several Aedes aegypti field populations are resistant to neurotoxic insecticides, mainly organophoshates and pyrethroids, which are extensively used as larvicides and adulticides, respectively. Diflubenzuron (DFB), a chitin synthesis inhibitor (CSI), was recently approved for use in drinking water, and is presently employed in Brazil for Ae. aegypti control, against populations resistant to the organophosphate temephos. However, tests of DFB efficacy against field Ae. aegypti populations are lacking. In addition, information regarding the dynamics of CSI resistance, and characterization of any potential fitness effects that may arise in conjunction with resistance are essential for new Ae. aegypti control strategies. Here, the efficacy of DFB was evaluated for two Brazilian Ae. aegypti populations known to be resistant to both temephos and the pyrethroid deltamethrin. Laboratory selection for DFB resistance was then performed over six or seven generations, using a fixed dose of insecticide that inhibited 80% of adult emergence in the first generation. The selection process was stopped when adult emergence in the diflubenzuron-treated groups was equivalent to that of the control groups, kept without insecticide. Diflubenzuron was effective against the two Ae. aegypti field populations evaluated, regardless of their resistance level to neurotoxic insecticides. However, only a few generations of DFB selection were sufficient to change the susceptible status of both populations to this compound. Several aspects of mosquito biology were affected in both selected populations, indicating that diflubenzuron resistance acquisition is associated with a fitness cost. We believe that these results can significantly contribute to the design of control strategies involving the use of insect growth regulators. PMID:26107715

  13. A Multipurpose, High-Throughput Single-Nucleotide Polymorphism Chip for the Dengue and Yellow Fever Mosquito, Aedes aegypti.

    PubMed

    Evans, Benjamin R; Gloria-Soria, Andrea; Hou, Lin; McBride, Carolyn; Bonizzoni, Mariangela; Zhao, Hongyu; Powell, Jeffrey R

    2015-05-01

    The dengue and yellow fever mosquito, Aedes aegypti, contributes significantly to global disease burden. Genetic study of Aedes aegypti is essential to understanding its evolutionary history, competence as a disease vector, and the effects and efficacy of vector control methods. The prevalence of repeats and transposable elements in the Aedes aegypti genome complicates marker development and makes genome-wide genetic study challenging. To overcome these challenges, we developed a high-throughput genotyping chip, Axiom_aegypti1. This chip screens for 50,000 single-nucleotide polymorphisms present in Aedes aegypti populations from around the world. The array currently used genotypes 96 samples simultaneously. To ensure that these markers satisfy assumptions commonly made in many genetic analyses, we tested for Mendelian inheritance and linkage disequilibrium in laboratory crosses and a wild population, respectively. We have validated more than 25,000 of these markers to date, and expect this number to increase with more sampling. We also present evidence of the chip's efficacy in distinguishing populations throughout the world. The markers on this chip are ideal for applications ranging from population genetics to genome-wide association studies. This tool makes rapid, cost-effective, and comparable genotype data attainable to diverse sets of Aedes aegypti researchers, from those interested in potential range shifts due to climate change to those characterizing the genetic underpinnings of its competence to transmit disease. PMID:25721127

  14. A Multipurpose, High-Throughput Single-Nucleotide Polymorphism Chip for the Dengue and Yellow Fever Mosquito, Aedes aegypti

    PubMed Central

    Evans, Benjamin R.; Gloria-Soria, Andrea; Hou, Lin; McBride, Carolyn; Bonizzoni, Mariangela; Zhao, Hongyu; Powell, Jeffrey R.

    2015-01-01

    The dengue and yellow fever mosquito, Aedes aegypti, contributes significantly to global disease burden. Genetic study of Aedes aegypti is essential to understanding its evolutionary history, competence as a disease vector, and the effects and efficacy of vector control methods. The prevalence of repeats and transposable elements in the Aedes aegypti genome complicates marker development and makes genome-wide genetic study challenging. To overcome these challenges, we developed a high-throughput genotyping chip, Axiom_aegypti1. This chip screens for 50,000 single-nucleotide polymorphisms present in Aedes aegypti populations from around the world. The array currently used genotypes 96 samples simultaneously. To ensure that these markers satisfy assumptions commonly made in many genetic analyses, we tested for Mendelian inheritance and linkage disequilibrium in laboratory crosses and a wild population, respectively. We have validated more than 25,000 of these markers to date, and expect this number to increase with more sampling. We also present evidence of the chip’s efficacy in distinguishing populations throughout the world. The markers on this chip are ideal for applications ranging from population genetics to genome-wide association studies. This tool makes rapid, cost-effective, and comparable genotype data attainable to diverse sets of Aedes aegypti researchers, from those interested in potential range shifts due to climate change to those characterizing the genetic underpinnings of its competence to transmit disease. PMID:25721127

  15. Wolbachia Blocks Currently Circulating Zika Virus Isolates in Brazilian Aedes aegypti Mosquitoes.

    PubMed

    Dutra, Heverton Leandro Carneiro; Rocha, Marcele Neves; Dias, Fernando Braga Stehling; Mansur, Simone Brutman; Caragata, Eric Pearce; Moreira, Luciano Andrade

    2016-06-01

    The recent association of Zika virus with cases of microcephaly has sparked a global health crisis and highlighted the need for mechanisms to combat the Zika vector, Aedes aegypti mosquitoes. Wolbachia pipientis, a bacterial endosymbiont of insect, has recently garnered attention as a mechanism for arbovirus control. Here we report that Aedes aegypti harboring Wolbachia are highly resistant to infection with two currently circulating Zika virus isolates from the recent Brazilian epidemic. Wolbachia-harboring mosquitoes displayed lower viral prevalence and intensity and decreased disseminated infection and, critically, did not carry infectious virus in the saliva, suggesting that viral transmission was blocked. Our data indicate that the use of Wolbachia-harboring mosquitoes could represent an effective mechanism to reduce Zika virus transmission and should be included as part of Zika control strategies. PMID:27156023

  16. Site-specific cassette exchange systems in the Aedes aegypti mosquito and the Plutella xylostella moth.

    PubMed

    Haghighat-Khah, Roya Elaine; Scaife, Sarah; Martins, Sara; St John, Oliver; Matzen, Kelly Jean; Morrison, Neil; Alphey, Luke

    2015-01-01

    Genetically engineered insects are being evaluated as potential tools to decrease the economic and public health burden of mosquitoes and agricultural pest insects. Here we describe a new tool for the reliable and targeted genome manipulation of pest insects for research and field release using recombinase mediated cassette exchange (RMCE) mechanisms. We successfully demonstrated the established ΦC31-RMCE method in the yellow fever mosquito, Aedes aegypti, which is the first report of RMCE in mosquitoes. A new variant of this RMCE system, called iRMCE, combines the ΦC31-att integration system and Cre or FLP-mediated excision to remove extraneous sequences introduced as part of the site-specific integration process. Complete iRMCE was achieved in two important insect pests, Aedes aegypti and the diamondback moth, Plutella xylostella, demonstrating the transferability of the system across a wide phylogenetic range of insect pests. PMID:25830287

  17. Site-Specific Cassette Exchange Systems in the Aedes aegypti Mosquito and the Plutella xylostella Moth

    PubMed Central

    Haghighat-Khah, Roya Elaine; Scaife, Sarah; Martins, Sara; St John, Oliver; Matzen, Kelly Jean; Morrison, Neil; Alphey, Luke

    2015-01-01

    Genetically engineered insects are being evaluated as potential tools to decrease the economic and public health burden of mosquitoes and agricultural pest insects. Here we describe a new tool for the reliable and targeted genome manipulation of pest insects for research and field release using recombinase mediated cassette exchange (RMCE) mechanisms. We successfully demonstrated the established ΦC31-RMCE method in the yellow fever mosquito, Aedes aegypti, which is the first report of RMCE in mosquitoes. A new variant of this RMCE system, called iRMCE, combines the ΦC31-att integration system and Cre or FLP-mediated excision to remove extraneous sequences introduced as part of the site-specific integration process. Complete iRMCE was achieved in two important insect pests, Aedes aegypti and the diamondback moth, Plutella xylostella, demonstrating the transferability of the system across a wide phylogenetic range of insect pests. PMID:25830287

  18. Behavioral insensitivity to DEET in Aedes aegypti is a genetically determined trait residing in changes in sensillum function

    PubMed Central

    Stanczyk, Nina M.; Brookfield, John F. Y.; Ignell, Rickard; Logan, James G.

    2010-01-01

    N,N-Diethyl-m-toluamide (DEET) is one of the most effective and commonly used mosquito repellents. However, during laboratory trials a small proportion of mosquitoes are still attracted by human odors despite the presence of DEET. In this study behavioral assays identified Aedes aegypti females that were insensitive to DEET, and the selection of either sensitive or insensitive groups of females with males of unknown sensitivity over several generations resulted in two populations with different proportions of insensitive females. Crossing experiments showed the “insensitivity” trait to be dominant. Electroantennography showed a reduced response to DEET in the selected insensitive line compared with the selected sensitive line, and single sensillum recordings identified DEET-sensitive sensilla that were nonresponders in the insensitive line. This study suggests that behavioral insensitivity to DEET in A. aegypti is a genetically determined dominant trait and resides in changes in sensillum function. PMID:20439757

  19. Effects of immunotoxic activity of the major essential oil of Angelica purpuraefolia Chung against Aedes aegypti L.

    PubMed

    Park, Yool-Jin; Chung, Ill-Min; Moon, Hyung-In

    2010-12-01

    The rhizomes parts of Angelica purpuraefolia were extracted and the major essential oils composition and immunotoxic effects were studied. The analyses were conducted by gas chromatography and mass spectroscopy (GC-MS) revealed that the essential oils of A. purpuraefolia. The A. purpuraefolia essential oil (APEO) yield was 0.37%, and GC/MS analysis revealed that its major constituents were β-Phellandrene (32.11%), Nerolidol (10.11%), Pyrimidine derivative (27.33%), Heptadecane (4.33%), and Celorbicol (6.33%). The essential oil had a significant toxic effect against early fourth-stage larvae of Aedes aegypti L with an LC(50) value of 31.21 ppm and an LC(90) value of 87.22 ppm. The results could be useful in search for newer, safer, and more effective natural immunotoxic agents against A. aegypti. PMID:20163192

  20. Detection of Persistent Chikungunya Virus RNA but not Infectious Virus in Experimental Vertical Transmission in Aedes aegypti from Malaysia.

    PubMed

    Wong, Hui Vern; Vythilingam, Indra; Sulaiman, Wan Yusof Wan; Lulla, Aleksei; Merits, Andres; Chan, Yoke Fun; Sam, I-Ching

    2016-01-01

    Vertical transmission may contribute to the maintenance of arthropod-borne viruses, but its existence in chikungunya virus (CHIKV) is unclear. Experimental vertical transmission of infectious clones of CHIKV in Aedes aegypti mosquitoes from Malaysia was investigated. Eggs and adult progeny from the second gonotrophic cycles of infected parental mosquitoes were tested. Using polymerase chain reaction (PCR), 56.3% of pooled eggs and 10% of adult progeny had detectable CHIKV RNA, but no samples had detectable infectious virus by plaque assay. Transfected CHIKV RNA from PCR-positive eggs did not yield infectious virus in BHK-21 cells. Thus, vertical transmission of viable CHIKV was not demonstrated. Noninfectious CHIKV RNA persists in eggs and progeny of infected Ae. aegypti, but the mechanism and significance are unknown. There is insufficient evidence to conclude that vertical transmission exists in CHIKV, as positive results reported in previous studies were almost exclusively based only on viral RNA detection. PMID:26598564

  1. [The risk of urban yellow fever outbreaks in Brazil by dengue vectors. Aedes aegypti and Aedes albopictus].

    PubMed

    Mondet, B; da Rosa, A P; Vasconcelos, P F

    1996-01-01

    Urban yellow fever (YF) epidemics have disappeared from Brazil since about 50 years, but a selvatic cycle still exist. In many States, cases are more or less numerous each year. Ae. aegypti was eradicated in 1954, re-appeared temporarily in 1967, and then definitively in 1976-1977. Ae. aegypti is a vector of yellow few (YF), but also of dengue, whose first cases were reported in 1982. Today, dengue is endemic in many regions. A second Flavivirus vector, Aedes albopictus is present since about ten years in some States, from which Säo Paulo. The analysis of the YF cases between 1972 and 1994 allowed us to determine the epidemiologic regions. In the first region, the endemic area, the YF virus is circulating "silently" among monkeys, and the emergence of human cases is rare. In the second region, the epidemic area, some epizootics occur in a more or less cyclic way, and human cases can be numerous. Nevertheless, these outbreaks are considered "selvatic" epidemics, as long as Ae. aegypti is not concerned. From the Amazonian region, the virus moves forward along the forest galleries of the Amazone tributaries, from North to South. Actually, dengue epidemics appear in quite all States, and reflect the geographical distribution of Ae. aegypti. Recently, Ae. aegypti was found in the southern part of the Pará State, in the Carajás region considered to be the source of the main YF epidemics. In another hand, Ae. albopictus is now increasing its distribution area, specially in the suburban zones. The ecology of this potential vector, which seems to have a great adaptative capacity, give this vector an intermediate position between the forest galleries, where the YF virus circulates, and the agglomerations infested with Ae. aegypti. Since a few years, the possibility of urban YF is threatening Brazil, it is more and more predictable and we must survey very carefully the epidemiological situation in some regions of the country. PMID:8924767

  2. Vacant Lots: Productive Sites for Aedes (Stegomyia) aegypti (Diptera: Culicidae) in Mérida City, México

    PubMed Central

    BAAK-BAAK, CARLOS M.; ARANA-GUARDIA, ROGER; CIGARROA-TOLEDO, NOHEMI; LOROÑO-PINO, MARÍA ALBA; REYES-SOLIS, GUADALUPE; MACHAIN-WILLIAMS, CARLOS; BEATY, BARRY J.; EISEN, LARS; GARCÍA-REJÓN, JULIÁN E.

    2014-01-01

    We assessed the potential for vacant lots and other non-residential settings to serve as source environments for Aedes (Stegomyia) aegypti (L.) in Mérida City, México. Mosquito immatures were collected, during November 2011 – June 2013, from residential premises (n = 156 site visits) and non-residential settings represented by vacant lots (50), parking lots (18), and streets/sidewalks (28). Collections totaled 46,025 mosquito immatures of 13 species. Ae. aegypti was the most commonly encountered species accounting for 81.0% of total immatures, followed by Culex quinquefasciatus Say (12.1%). Site visits to vacant lots (74.0%) were more likely to result in collection of Ae. aegypti immatures that residential premises (35.9%). Tires accounted for 75.5% of Ae. aegypti immatures collected from vacant lots. Our data suggest that vacant lots should be considered for inclusion in mosquito surveillance and control efforts in Mérida City, as they often are located near homes, commonly have abundant vegetation, and frequently harbor accumulations of small and large discarded water-holding containers that we now have demonstrated to serve as development sites for immature mosquitoes. Additionally, we present data for associations of immature production with various container characteristics, such as storage capacity, water quality and physical location in the environment. PMID:24724299

  3. The effects of plant essential oils on escape response and mortality rate of Aedes aegypti and Anopheles minimus.

    PubMed

    Sathantriphop, Sunaiyana; Achee, Nicole L; Sanguanpong, Unchalee; Chareonviriyaphap, Theeraphap

    2015-12-01

    The High Throughput Screening System (HITSS) has been applied in insecticide behavioral response studies with various mosquito species. In general, chemical or natural compounds can produce a range of insect responses: contact irritancy, spatial repellency, knock-down, and toxicity. This study characterized these actions in essential oils derived from citronella, hairy basil, catnip, and vetiver in comparison to DEET and picaridin against Aedes aegypti and Anopheles minimus mosquito populations. Results indicated the two mosquito species exhibited significantly different (P<0.05) contact irritant escape responses between treatment and control for all tested compound concentrations, except with the minimum dose of picaridin (P>0.05) against Ae. aegypti. Spatial repellency responses were elicited in both mosquito species when exposed to all compounds, but the strength of the repellent response was dependent on compound and concentration. Data show that higher test concentrations had greatest toxic effects on both mosquito populations, but vetiver had no toxic effect on Ae. aegypti and picaridin did not elicit toxicity in either Ae. aegypti or An. minimus at any test concentration. Ultimately, this study demonstrates the ability of the HITSS assay to guide selection of effective plant essential oils for repelling, irritating, and killing mosquitoes. PMID:26611967

  4. Vacant lots: productive sites for Aedes (Stegomyia) aegypti (Diptera: Culicidae) in Mérida City, México.

    PubMed

    Baak-Baak, Carlos M; Arana-Guardia, Roger; Cigarroa-Toledo, Nohemi; Loroño-Pino, Maria Alba; Reyes-Solis, Guadalupe; Machain-Williams, Carlos; Beaty, Barry J; Eisen, Lars; García-Rejón, Julián E

    2014-03-01

    We assessed the potential for vacant lots and other nonresidential settings to serve as source environments for Aedes (Stegomyia) aegypti (L.) (Diptera: Culicidae) in Mérida City, México. Mosquito immatures were collected, during November 2011-June 2013, from residential premises (n = 156 site visits) and nonresidential settings represented by vacant lots (50), parking lots (18), and streets or sidewalks (28). Collections totaled 46,025 mosquito immatures of 13 species. Ae. aegypti was the most commonly encountered species accounting for 81.0% of total immatures, followed by Culex quinquefasciatus Say (12.1%). Site visits to vacant lots (74.0%) were more likely to result in collection of Ae. aegypti immatures than residential premises (35.9%). Tires accounted for 75.5% of Ae. aegypti immatures collected from vacant lots. Our data suggest that vacant lots should be considered for inclusion in mosquito surveillance and control efforts in Mérida City, as they often are located near homes, commonly have abundant vegetation, and frequently harbor accumulations of small and large discarded water-holding containers that we now have demonstrated to serve as development sites for immature mosquitoes. In addition, we present data for associations of immature production with various container characteristics, such as storage capacity, water quality, and physical location in the environment. PMID:24724299

  5. Laboratory evaluation of two native fishes from tropical North Queensland as biological control agents of subterranean Aedes aegypti.

    PubMed

    Russell, B M; Wang, J; Williams, Y; Hearnden, M N; Kay, B H

    2001-06-01

    The ability of 2 freshwater fishes, eastern rainbow fish Melanotaenia splendida splendida and fly-specked hardyhead Craterocephalus stercusmuscarum stercusmuscarum, native to North Queensland to prey on immature Aedes aegypti was evaluated under laboratory conditions. The predation efficiency of the 2 species was compared to the exotic guppy, Poecilia reticulata, which is commonly used as a biological control agent of mosquito larvae. Of the 3 fish species tested, M. s. splendida was shown to be the most promising agent for the biological control of Ae. aegypti that breed in wells. Melanotaenia s. splendida consumed significantly greater numbers of immature Ae. aegypti than P. reticulata, irrespective of developmental stage or light conditions. Unlike C s. stercusmuscarum, M. s. splendida could be handled, transported, and kept in captivity for extended periods with negligible mortality. However, M. s. splendida was also an efficient predator of Litoria caerulea tadpoles, a species of native frog found in wells during the dry season. This result may limit the usefulness of M. s. splendida as a biological control agent of well-breeding Ae. aegypti and suggests that predacious copepods, Mesocyclops spp., are more suitable. However, the use of M. s. splendida as a mosquito control agent in containers that are unlikely to support frog populations (e.g., aquaculture tanks and drinking troughs) should be given serious consideration. PMID:11480819

  6. The effect of chitin synthesis inhibitors on the development of Brugia malayi in Aedes aegypti.

    PubMed

    Mohapatra, R; Ranjit, M R; Dash, A P

    1996-09-01

    Two chitin synthesis inhibitors (CSIs) viz., triflumuron and hexaflumuron interfere++ with the development of Brugia malayi in Aedes aegypti (a black-eyed Liverpool strain). The development of B. malayi was slow in both the treated populations and the infection rate, infectivity rate and L3 load per mosquito decreased significantly (P < 0.001) in comparison with untreated controls. Hexaflumuron was found to be more inhibiting than triflumuron. PMID:8984113

  7. Susceptibility of two different strains of Aedes aegypti (Diptera: Culicidae) to plant oils.

    PubMed

    Tare, Vrushali; Deshpande, Sudhakar; Sharma, Ravindra Nath

    2004-10-01

    The toxicity of 11 oils extracted from plants commonly grown in the Himalayan region was studied using larvae of two Aedes aegypti (L.) strains. A strain from Liverpool, England, was highly susceptible to these oils. The LC50 values were much higher in a local laboratory strain. Daucus carota L. oil was highly toxic in both strains. Differences in the susceptibility of these strains to the action of the test oils and their potential use in integrated pest management are discussed. PMID:15568366

  8. Arbovirus Surveillance and First Report of Chikungunya Virus in Wild Populations of Aedes aegypti from Guerrero, Mexico.

    PubMed

    Dzul-Manzanilla, Felipe; Martínez, Norma E; Cruz-Nolasco, Maximina; Gutiérrez-Castro, Cipriano; López-Damián, Leonardo; Ibarra-López, Jesús; Martini, Andres; Torres-Leyva, Joel; Bibiano-Marín, Wilbert; Tornez-Benitez, Citlalli; Ayora-Talavera, Guadalupe; Manrique-Saide, Pablo

    2015-09-01

    We carried out dengue (DENV) and chikungunya virus (CHIKV) surveillance in wild populations of Aedes aegypti from Guerrero, Mexico, from 2012 to 2014 following a standard national protocol of the Mexican Dengue Control Program. A total of 284 pools (15-30 specimens/pool) of female mosquitoes were tested with real-time reverse transcriptase-polymerase chain reaction to detect DENV and CHIKV. We report for the 1st time the detection of CHIKV from field-collected mosquitoes at Acapulco and Juchitán in 2014. Results from DENV are also reported. PMID:26375910

  9. In silico models for predicting vector control chemicals targeting Aedes aegypti

    PubMed Central

    Devillers, J.; Lagneau, C.; Lattes, A.; Garrigues, J.C.; Clémenté, M.M.; Yébakima, A.

    2014-01-01

    Human arboviral diseases have emerged or re-emerged in numerous countries worldwide due to a number of factors including the lack of progress in vaccine development, lack of drugs, insecticide resistance in mosquitoes, climate changes, societal behaviours, and economical constraints. Thus, Aedes aegypti is the main vector of the yellow fever and dengue fever flaviviruses and is also responsible for several recent outbreaks of the chikungunya alphavirus. As for the other mosquito species, the A. aegypti control relies heavily on the use of insecticides. However, because of increasing resistance to the different families of insecticides, reduction of Aedes populations is becoming increasingly difficult. Despite the unquestionable utility of insecticides in fighting mosquito populations, there are very few new insecticides developed and commercialized for vector control. This is because the high cost of the discovery of an insecticide is not counterbalanced by the ‘low profitability’ of the vector control market. Fortunately, the use of quantitative structure–activity relationship (QSAR) modelling allows the reduction of time and cost in the discovery of new chemical structures potentially active against mosquitoes. In this context, the goal of the present study was to review all the existing QSAR models on A. aegypti. The homology and pharmacophore models were also reviewed. Specific attention was paid to show the variety of targets investigated in Aedes in relation to the physiology and ecology of the mosquito as well as the diversity of the chemical structures which have been proposed, encompassing man-made and natural substances. PMID:25275884

  10. Sustained, Area-Wide Control of Aedes aegypti Using CDC Autocidal Gravid Ovitraps

    PubMed Central

    Barrera, Roberto; Amador, Manuel; Acevedo, Verónica; Hemme, Ryan R.; Félix, Gilberto

    2014-01-01

    We have shown that the Centers for Disease Control and Prevention (CDC) autocidal gravid ovitraps (AGO trap) reduced the Aedes aegypti population and prevented mosquito outbreaks in southern Puerto Rico. After showing treatment efficacy for 1 year, we deployed three traps per home in an area that formerly did not have traps and in a site that served as the intervention area. Two new areas were selected as reference sites to compare the density of Ae. aegypti without traps. We monitored mosquitoes and weather every week in all four sites. The hypotheses were the density of Ae. aegypti in the former reference area converges to the low levels observed in the intervention area, and mosquito density in both areas having control traps is lower than in the new reference areas. Mosquito density in the former reference area decreased 79% and mosquito density in the new reference areas was 88% greater than in the intervention areas. PMID:25223937

  11. Larvicidal effect of andiroba oil, Carapa guianensis (Meliaceae), against Aedes aegypti.

    PubMed

    Silva, Onilda S; Prophiro, Josiane S; Nogared, Juliana C; Kanis, Luiz; Emerick, Sheila; Blazius, Rene D; Romão, Pedro R T

    2006-12-01

    The aim of this work was to evaluate the larvicidal effect of andiroba oil, Carapa guyanensis, against 2 strains of Aedes aegypti. After 8 h after exposure to oil, the lethal concentration (LC)90 and LC95 values for the GCZ (temephos-resistant) strain larvae were 80 and 86 ppm (1st instars), 98 and 106 (2nd instars), 166 and 182 (3rd instars), and 192 and 202 ppm (4th instars), respectively. TheLC90 and LC95 values for the Rockefeller strain larvae were 164 and 182 ppm (1st instars), 212 and 224 (2nd instars), 210 and 226 (3rd instars), and 450 and 490 ppm (4th instars), respectively. Comparison of the 2 laboratory strains of Ae. aegypti in the present study demonstrated significant variation in the susceptibility of larvae to andiroba oil. Whether a higher susceptibility of field populations of Ae. aegypti to andiroba oil occurs remains to be investigated. PMID:17304939

  12. The Drosophila melanogaster cinnabar gene is a cell autonomous genetic marker in Aedes aegypti (Diptera: Culicidae).

    PubMed

    Sethuraman, Nagaraja; O'Brochta, David A

    2005-07-01

    The cinnabar gene of Drosophila melanogaster (Meigen) encodes for kynurenine hydroxylase, an enzyme involved in ommochrome biosynthesis. This gene is commonly included as a visible genetic marker in gene vectors used to create transgenic Aedes aegypti (L.) that are homozygous for the khw allele, the mosquito homolog of cinnabar. Unexpectedly, the phenotype of cells expressing kynurenine hydroxylase in transgenic Ae. aegypti is cell autonomous as demonstrated by the recovery of insects heterozygous for the kynurenine hydroxylase transgene with mosaic eye color patterns. In addition, a transgenic gynandromorph was recovered in which one-half of the insect was expressing the kynurenine hydroxylase transgene, including one eye with red pigmentation, whereas the other half of the insect was homozygous khw and included a white eye. The cell autonomous behavior of cinnabar in transgenic Ae. aegypti is unexpected and increases the utility of this genetic marker. PMID:16119567

  13. Genetic Diversity of Brazilian Aedes aegypti: Patterns following an Eradication Program

    PubMed Central

    Monteiro, Fernando A.; Shama, Renata; Martins, Ademir J.; Gloria-Soria, Andrea; Brown, Julia E.; Powell, Jeffrey R.

    2014-01-01

    Background Aedes aegypti is the most important vector of dengue fever in Brazil, where severe epidemics have recently taken place. Ae. aegypti in Brazil was the subject of an intense eradication program in the 1940s and 50s to control yellow fever. Brazil was the largest country declared free of this mosquito by the Pan-American Health Organization in 1958. Soon after relaxation of this program, Ae. aegypti reappeared in this country, and by the early 1980s dengue fever had been reported. The aim of this study is to analyze the present-day genetic patterns of Ae. aegypti populations in Brazil. Methodology/Principal Findings We studied the genetic variation in samples of 11 widely spread populations of Ae. aegypti in Brazil based on 12 well-established microsatellite loci. Our principal finding is that present-day Brazilian Ae. aegypti populations form two distinct groups, one in the northwest and one in the southeast of the country. These two groups have genetic affinities to northern South American countries and the Caribbean, respectively. This is consistent with what has been reported for other genetic markers such as mitochondrial DNA and allele frequencies at the insecticide resistance gene, kdr. Conclusions/Significance We conclude that the genetic patterns in present day populations of Ae. aegypti in Brazil are more consistent with a complete eradication of the species in the recent past followed by re-colonization, rather than the alternative possibility of expansion from residual pockets of refugia. At least two colonizations are likely to have taken place, one from northern South American countries (e.g., Venezuela) that founded the northwestern group, and one from the Caribbean that founded the southeastern group. The proposed source areas were never declared free of Ae. aegypti. PMID:25233218

  14. Bromeliad-inhabiting mosquitoes in an urban botanical garden of dengue endemic Rio de Janeiro--are bromeliads productive habitats for the invasive vectors Aedes aegypti and Aedes albopictus?

    PubMed

    Mocellin, Márcio Goulart; Simões, Taynãna César; Nascimento, Teresa Fernandes Silva do; Teixeira, Maria Lucia França; Lounibos, Leon Philip; Oliveira, Ricardo Lourenço de

    2009-12-01

    Immatures of both Aedes aegypti and Aedes albopictus have been found in water-holding bromeliad axils in Brazil. Removal of these plants or their treatment with insecticides in public and private gardens have been undertaken during dengue outbreaks in Brazil despite uncertainty as to their importance as productive habitats for dengue vectors. From March 2005-February 2006, we sampled 120 randomly selected bromeliads belonging to 10 species in a public garden less than 200 m from houses in a dengue-endemic neighborhood in Rio de Janeiro. A total of 2,816 mosquito larvae and pupae was collected, with an average of 5.87 immatures per plant per collection. Culex (Microculex) pleuristriatus and Culex spp of the Ocellatus Group were the most abundant culicid species, found in all species of bromeliads; next in relative abundance were species of the genus Wyeomyia. Only two individuals of Ae. aegypti (0.07%) and five of Ae. albopictus(0.18%) were collected from bromeliads. By contrast, immatures of Ae. aegypti were found in manmade containers in nearly 5% of nearby houses. These results demonstrate that bromeliads are not important producers of Ae. aegypti and Ae. albopictus and, hence, should not be a focus for dengue control. However, the results of this study of only one year in a single area may not represent outcomes in other urban localities where bromeliads, Ae. aegypti and dengue coincide in more disturbed habitats. PMID:20140379

  15. Proof of concept for a novel insecticide bioassay based on sugar feeding by adult Aedes aegypti (Stegomyia aegypti).

    PubMed

    Stell, F M; Roe, R M; Arellano, C; Kennedy, L; Thornton, H; Saavedra-Rodriguez, K; Wesson, D M; Black, W C; Apperson, C S

    2013-09-01

    Aedes aegypti L. (Stegomyia aegypti) (Diptera: Culicidae) is the principal vector of dengue and yellow fever viruses in tropical and subtropical regions of the world. Disease management is largely based on mosquito control achieved by insecticides applied to interior resting surfaces and through space sprays. Population monitoring to detect insecticide resistance is a significant component of integrated disease management programmes. We developed a bioassay method for assessing insecticide susceptibility based on the feeding activity of mosquitoes on plant sugars. Our prototype sugar-insecticide feeding bioassay system was composed of inexpensive, disposable components, contained minimal volumes of insecticide, and was compact and highly transportable. Individual mosquitoes were assayed in a plastic cup that contained a sucrose-permethrin solution. Trypan blue dye was added to create a visual marker in the mosquito's abdomen for ingested sucrose-permethrin solution. Blue faecal spots provided further evidence of solution ingestion. With the sugar-insecticide feeding bioassay, the permethrin susceptibility of Ae. aegypti females from two field-collected strains was characterized by probit analysis of dosage-response data. The field strains were also tested by forced contact of females with permethrin residues on filter paper. Dosage-response patterns were similar, indicating that the sugar-insecticide feeding bioassay had appropriately characterized the permethrin susceptibility of the two strains. PMID:23077986

  16. Olfactory learning and memory in the disease vector mosquito Aedes aegypti

    PubMed Central

    Vinauger, Clément; Lutz, Eleanor K.; Riffell, Jeffrey A.

    2014-01-01

    Olfactory learning in blood-feeding insects, such as mosquitoes, could play an important role in host preference and disease transmission. However, standardised protocols allowing testing of their learning abilities are currently lacking, and how different olfactory stimuli are learned by these insects remains unknown. Using a Pavlovian conditioning paradigm, we trained individuals and groups of Aedes aegypti mosquitoes to associate an odorant conditioned stimulus (CS) with a blood-reinforced thermal stimulus (unconditioned stimulus; US). Results showed, first, that mosquitoes could learn the association between L-lactic acid and the US, and retained the association for at least 24 h. Second, the success of olfactory conditioning was dependent upon the CS – some odorants that elicited indifferent responses in naïve mosquitoes, such as L-lactic acid and 1-octen-3-ol, were readily learned, whereas others went from aversive to attractive after training (Z-3-hexen-1-ol) or were untrainable (β-myrcene and benzyl alcohol). Third, we examined whether mosquitoes' ability to learn could interfere with the action of the insect repellent DEET. Results demonstrated that pre-exposure and the presence of DEET in the CS reduced the aversive effects of DEET. Last, the nature of the formed memories was explored. Experiments using cold-shock treatments within the first 6 h post-training (for testing anaesthesia-resistant memory) and a protein synthesis inhibitor (cycloheximide; to disrupt the formation of long-term memory) both affected mosquitoes' performances. Together, these results show that learning is a crucial component in odour responses in A. aegypti, and provide the first evidence for the functional role of different memory traces in these responses. PMID:24737761

  17. siRNA-Mediated Silencing of doublesex during Female Development of the Dengue Vector Mosquito Aedes aegypti.

    PubMed

    Mysore, Keshava; Sun, Longhua; Tomchaney, Michael; Sullivan, Gwyneth; Adams, Haley; Piscoya, Andres S; Severson, David W; Syed, Zainulabeuddin; Duman-Scheel, Molly

    2015-11-01

    The development of sex-specific traits, including the female-specific ability to bite humans and vector disease, is critical for vector mosquito reproduction and pathogen transmission. Doublesex (Dsx), a terminal transcription factor in the sex determination pathway, is known to regulate sex-specific gene expression during development of the dengue fever vector mosquito Aedes aegypti. Here, the effects of developmental siRNA-mediated dsx silencing were assessed in adult females. Targeting of dsx during A. aegypti development resulted in decreased female wing size, a correlate for body size, which is typically larger in females. siRNA-mediated targeting of dsx also resulted in decreased length of the adult female proboscis. Although dsx silencing did not impact female membrane blood feeding or mating behavior in the laboratory, decreased fecundity and fertility correlated with decreased ovary length, ovariole length, and ovariole number in dsx knockdown females. Dsx silencing also resulted in disruption of olfactory system development, as evidenced by reduced length of the female antenna and maxillary palp and the sensilla present on these structures, as well as disrupted odorant receptor expression. Female lifespan, a critical component of the ability of A. aegypti to transmit pathogens, was also significantly reduced in adult females following developmental targeting of dsx. The results of this investigation demonstrate that silencing of dsx during A. aegypti development disrupts multiple sex-specific morphological, physiological, and behavioral traits of adult females, a number of which are directly or indirectly linked to mosquito reproduction and pathogen transmission. Moreover, the olfactory phenotypes observed connect Dsx to development of the olfactory system, suggesting that A. aegypti will be an excellent system in which to further assess the developmental genetics of sex-specific chemosensation. PMID:26544686

  18. siRNA-Mediated Silencing of doublesex during Female Development of the Dengue Vector Mosquito Aedes aegypti

    PubMed Central

    Mysore, Keshava; Sun, Longhua; Tomchaney, Michael; Sullivan, Gwyneth; Adams, Haley; Piscoya, Andres S.; Severson, David W.; Syed, Zainulabeuddin; Duman-Scheel, Molly

    2015-01-01

    The development of sex-specific traits, including the female-specific ability to bite humans and vector disease, is critical for vector mosquito reproduction and pathogen transmission. Doublesex (Dsx), a terminal transcription factor in the sex determination pathway, is known to regulate sex-specific gene expression during development of the dengue fever vector mosquito Aedes aegypti. Here, the effects of developmental siRNA-mediated dsx silencing were assessed in adult females. Targeting of dsx during A. aegypti development resulted in decreased female wing size, a correlate for body size, which is typically larger in females. siRNA-mediated targeting of dsx also resulted in decreased length of the adult female proboscis. Although dsx silencing did not impact female membrane blood feeding or mating behavior in the laboratory, decreased fecundity and fertility correlated with decreased ovary length, ovariole length, and ovariole number in dsx knockdown females. Dsx silencing also resulted in disruption of olfactory system development, as evidenced by reduced length of the female antenna and maxillary palp and the sensilla present on these structures, as well as disrupted odorant receptor expression. Female lifespan, a critical component of the ability of A. aegypti to transmit pathogens, was also significantly reduced in adult females following developmental targeting of dsx. The results of this investigation demonstrate that silencing of dsx during A. aegypti development disrupts multiple sex-specific morphological, physiological, and behavioral traits of adult females, a number of which are directly or indirectly linked to mosquito reproduction and pathogen transmission. Moreover, the olfactory phenotypes observed connect Dsx to development of the olfactory system, suggesting that A. aegypti will be an excellent system in which to further assess the developmental genetics of sex-specific chemosensation. PMID:26544686

  19. Larvicidal potential of silver nanoparticles synthesized from Leucas aspera leaf extracts against dengue vector Aedes aegypti.

    PubMed

    Suganya, Ganesan; Karthi, Sengodan; Shivakumar, Muthugounder S

    2014-05-01

    Vector-borne diseases caused by mosquitoes are one of the major economic and health problems in many countries. The Aedes aegypti mosquito is a vector of several diseases in humans like yellow fever and dengue. Vector control methods involving the use of chemical insecticides are becoming less effective due to development of insecticides resistance, biological magnification of toxic substances through the food chain, and adverse effects on environmental quality and non-target organisms including human health. Application of active toxic agents from plant extracts as an alternative mosquito control strategy was available from ancient times. These are nontoxic, easily available at affordable prices, biodegradable, and show broad-spectrum target-specific activities against different species of vector mosquitoes. Today, nanotechnology is a promising research domain which has wide-ranging application vector control programs. The present study investigates the larvicidal potential of solvent leaf extracts of Leucas aspera and synthesized silver nanoparticles using aqueous leaf extract against fourth instar larvae of Aedes aegypti. Larvae were exposed to varying concentrations of plant extracts and synthesized AgNPs for 24 h. The results were recorded from UV-Vis spectra, x-ray diffraction (XRD), Fourier transform infrared (FT-IR), and scanning electron microscopy (SEM), and were used to characterize and support the biosynthesis of silver nanoparticles. The formation of the AgNPs synthesized from the XRD spectrum compared with Bragg reflections can be indexed to the (111) orientations, respectively, confirmed the presence of AgNPs. The FT-IR spectra of AgNPs exhibited prominent peaks at 3,447.77; 2,923.30; and 1,618.66 cm(-1). The spectra showed sharp and strong absorption band at 1,618.66 cm(-1) assigned to the stretching vibration of (NH) C═O group. The band 1,383 developed for C═C and C═N stretching, respectively, and was commonly found in the proteins. SEM

  20. Copulation Activity, Sperm Production and Conidia Transfer in Aedes aegypti Males Contaminated by Metarhizium anisopliae: A Biological Control Prospect

    PubMed Central

    Russell, Tanya L.; Braks, Marieta A. H.

    2015-01-01

    Background Dengue is the most prevalent arboviral disease transmitted by Aedes aegypti worldwide, whose chemical control is difficult, expensive, and of inconsistent efficacy. Releases of Metarhizium anisopliae—exposed Ae. aegypti males to disseminate conidia among female mosquitoes by mating represents a promising biological control approach against this important vector. A better understanding of fungus virulence and impact on reproductive parameters of Ae. aegypti, is need before testing auto-dissemination strategies. Methodology/Principal Findings Mortality, mating competitiveness, sperm production, and the capacity to auto-disseminate the fungus to females up to the 5thcopulation, were compared between Aedes aegypti males exposed to 5.96 x 107 conidia per cm2 of M. anisopliae and uninfected males. Half (50%) of fungus-exposed males (FEMs) died within the first 4 days post-exposure (PE). FEMs required 34% more time to successively copulate with 5 females (165 ± 3 minutes) than uninfected males (109 ± 3 minutes). Additionally, fungus infection reduced the sperm production by 87% at 5 days PE. Some beneficial impacts were observed, FEMs were able to successfully compete with uninfected males in cages, inseminating an equivalent number of females (about 25%). Under semi-field conditions, the ability of FEMs to search for and inseminate females was also equivalent to uninfected males (both inseminating about 40% females); but for the remaining females that were not inseminated, evidence of tarsal contact (transfer of fluorescent dust) was significantly greater in FEMs compared to controls. The estimated conidia load of a female exposed on the 5th copulation was 5,200 mL-1 which was sufficient to cause mortality. Conclusion/Significance Our study is the first to demonstrate auto-dissemination of M. anisopliae through transfer of fungus from males to female Ae. aegypti during mating under semi-field conditions. Our results suggest that auto-dissemination studies

  1. Study of the distribution and abundance of the eggs of Aedes aegypti and Aedes albopictus according to the habitat and meteorological variables, municipality of São Sebastião, São Paulo State, Brazil

    PubMed Central

    2013-01-01

    Background This study focused on the distribution and abundance of the eggs of Aedes aegypti and Aedes albopictus. Methods Eighty ovitraps were exposed for four days of each month in peri- and intradomiciliary environments of 40 urban residences on 20 street blocks that were drawn monthly in Sebastião, SP, between February 2011 and February 2012. The monthly distribution of positive ovitrap indices (POI) and mean egg counts per trap (MET) of Ae. aegypti and Ae. albopictus were analyzed using the Kruskal-Wallis test, followed by the Dwass-Steel-Critchlow-Fligner (DSCF) test. Spearman's rank correlation coefficient and simple linear regression were used to determine the association between the meteorological variables of temperature and rainfall and the number of ovitraps with eggs and the egg count. Results The POI and MET of Ae. aegypti were higher in peridomiciliary premises. A positive correlation was found between the temperature and the number of ovitraps with eggs and the egg count of this species in domestic environments. There was no difference in the POI and MET of Ae. albopictus between the environments. A positive correlation was found between temperature and positive ovitraps of Ae. albopictus in peridomiciliary premises. The POI and MET of Ae. aegypti were higher than those of Ae. albopictus. Conclusions Peridomiciliary premises were the preferred environments for oviposition of Ae. aegypti. The use of ovitraps for surveillance and vector control is reiterated. PMID:24499530

  2. Surveillance of Aedes aegypti: Comparison of House Index with Four Alternative Traps

    PubMed Central

    Codeço, Claudia T.; Lima, Arthur W. S.; Araújo, Simone C.; Lima, José Bento P.; Maciel-de-Freitas, Rafael; Honório, Nildimar A.; Galardo, Allan K. R.; Braga, Ima A.; Coelho, Giovanini E.; Valle, Denise

    2015-01-01

    Introduction The mosquito Aedes aegypti, vector of dengue, chikungunya and yellow fever viruses, is an important target of vector control programs in tropical countries. Most mosquito surveillance programs are still based on the traditional household larval surveys, despite the availability of new trapping devices. We report the results of a multicentric entomological survey using four types of traps, besides the larval survey, to compare the entomological indices generated by these different surveillance tools in terms of their sensitivity to detect mosquito density variation. Methods The study was conducted in five mid-sized cities, representing variations of tropical climate regimens. Surveillance schemes using traps for adults (BG-Sentinel, Adultrap and MosquiTRAP) or eggs (ovitraps) were applied monthly to three 1 km2 areas per city. Simultaneously, larval surveys were performed. Trap positivity and density indices in each area were calculated and regressed against meteorological variables to characterize the seasonal pattern of mosquito infestation in all cities, as measured by each of the four traps. Results The House Index was consistently low in most cities, with median always 0. Traps rarely produced null indices, pointing to their greater sensitivity in detecting the presence of Ae. aegypti in comparison to the larval survey. Trap positivity indices tend to plateau at high mosquito densities. Despite this, both indices, positivity and density, agreed on the seasonality of mosquito abundance in all cities. Mosquito seasonality associated preferentially with temperature than with precipitation even in areas where temperature variation is small. Conclusions All investigated traps performed better than the House Index in measuring the seasonal variation in mosquito abundance and should be considered as complements or alternatives to larval surveys. Choice between traps should further consider differences of cost and ease-of-use. PMID:25668559

  3. Bioactivity of seagrass against the dengue fever mosquito Aedes aegypti larvae

    PubMed Central

    Ali, M Syed; Ravikumar, S; Beula, J Margaret

    2012-01-01

    Objective To identify the larvicidal activity of the seagrass extracts. Methods Seagrass extracts, Syringodium isoetifolium (S. isoetifolium), Cymodocea serrulata and Halophila beccarii, were dissolved in DMSO to prepare a graded series of concentration. Batches of 25 early 4th instars larvae of Aedes aegypti (Ae. aegypti) were transferred to 250 mL enamel bowl containing 199 mL of distilled water and 1 mL of plant extracts (0.01 mg – 0.1 mg). After 24 h the mortality rate was identified with the formulae [(% of test mortality – % of control mortality)/(100 – % of control mortality)] × 100. Each experiment was conducted with three replicates and a concurrent control group. A control group consisted of 1 mL of DMSO and 199 mL of distilled water only. Results : The root extract of S. isoetifolium showed maximum larvicidal activity with minimum concentration of extract of LC50= 0.0 604 ± 0.0 040)µg/mL with lower confidence limit (LCL) – upper confidence limit (UCL) = (0.051–0.071) and LC90=0.0 972µg/mL followed by leaf extract of S. isoetifolium showed LC50= (0.062 ± 0.005)µg/mL. The regression equation of root and leaf extract of S. isoetifolium for 4th instar larvae were Y= 4.909 + 1.32x (R2= 0.909) and Y= 2.066 + 1.21x (R2 =0.897) respectively. The results of the preliminary phytochemical constituents shows the presence of saponin, steroids, terpenoid, phenols, protein and sugars. Conclusions From the present study the ethanolic extracts of seagrass of S. isoetifolium possesses lead compound for development of larvicidal activity. PMID:23569973

  4. Risk Factors for the Presence of Chikungunya and Dengue Vectors (Aedes aegypti and Aedes albopictus), Their Altitudinal Distribution and Climatic Determinants of Their Abundance in Central Nepal

    PubMed Central

    Dhimal, Meghnath; Gautam, Ishan; Joshi, Hari Datt; O’Hara, Robert B.; Ahrens, Bodo; Kuch, Ulrich

    2015-01-01

    Background The presence of the recently introduced primary dengue virus vector mosquito Aedes aegypti in Nepal, in association with the likely indigenous secondary vector Aedes albopictus, raises public health concerns. Chikungunya fever cases have also been reported in Nepal, and the virus causing this disease is also transmitted by these mosquito species. Here we report the results of a study on the risk factors for the presence of chikungunya and dengue virus vectors, their elevational ceiling of distribution, and climatic determinants of their abundance in central Nepal. Methodology/Principal Findings We collected immature stages of mosquitoes during six monthly cross-sectional surveys covering six administrative districts along an altitudinal transect in central Nepal that extended from Birgunj (80 m above sea level [asl]) to Dhunche (highest altitude sampled: 2,100 m asl). The dengue vectors Ae. aegypti and Ae. albopictus were commonly found up to 1,350 m asl in Kathmandu valley and were present but rarely found from 1,750 to 2,100 m asl in Dhunche. The lymphatic filariasis vector Culex quinquefasciatus was commonly found throughout the study transect. Physiographic region, month of collection, collection station and container type were significant predictors of the occurrence and co-occurrence of Ae. aegypti and Ae. albopictus. The climatic variables rainfall, temperature, and relative humidity were significant predictors of chikungunya and dengue virus vectors abundance. Conclusions/Significance We conclude that chikungunya and dengue virus vectors have already established their populations up to the High Mountain region of Nepal and that this may be attributed to the environmental and climate change that has been observed over the decades in Nepal. The rapid expansion of the distribution of these important disease vectors in the High Mountain region, previously considered to be non-endemic for dengue and chikungunya fever, calls for urgent actions to

  5. Mating competitiveness and life-table comparisons between transgenic and Indian wild-type Aedes aegypti L.

    PubMed Central

    Patil, Prabhakargouda B; Niranjan Reddy, BP; Gorman, Kevin; Seshu Reddy, KV; Barwale, Shirish R; Zehr, Usha B; Nimmo, Derric; Naish, Neil; Alphey, Luke

    2015-01-01

    BACKGROUND OX513A is a genetically engineered strain of Aedes aegypti carrying a repressible, dominantly inherited transgene that confers lethality in immature heterozygous progeny. Released male OX513A adults have proven to be effective for the localised suppression of wild Ae. aegypti, highlighting its potential in vector control. Mating and life-table assessments were used to compare OX513A with reared Ae. aegypti strains collected from New Delhi and Aurangabad regions in India. RESULTS Mating proportions of New Delhi females versus males of OX513A or New Delhi strains were 0.52 and 0.48 respectively, indicating no discrimination by females against either strain, and males of both strains were equally competitive. Developmental time from first instar to adult emergence was significantly longer for OX513A (10.7 ± 0.04 days) than for New Delhi (9.4 ± 0.04 days) and Aurangabad strains (9.1 ± 0.04 days). Differences in mean longevities, female reproductive parameters and population growth parameters between the strains were non-significant. CONCLUSIONS The laboratory study demonstrates that only minor life-table variations of limited biological relevance exist between OX513A and Indian Ae. aegypti populations, and males had equal potential for mating competitiveness. Thus, results support the OX513A strain as a suitable candidate for continued evaluation towards sustainable management of Ae. aegypti populations in India. © 2014 Gangabishan Bhikulal Investment and Trading Limited. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:25078081

  6. Larvicidal & ovicidal efficacy of Pithecellobium dulce (Roxb.) Benth. (Fabaceae) against Anopheles stephensi Liston & Aedes aegypti Linn. (Diptera: Culicidae)

    PubMed Central

    Govindarajan, M.; Rajeswary, M.; Sivakumar, R.

    2013-01-01

    Background & objectives: In view of the recently increased interest in developing plant origin insecticides as an alternative to chemical insecticide, this study was undertaken to assess the larvicidal and ovicidal potential of the crude hexane, benzene, chloroform, ethyl acetate and methanol solvent extracts from the medicinal plant Pithecellobium dulce against the mosquito vectors, Anopheles stephensi and Aedes aegypti (Diptera: Culicidae). Methods: Larvicidal activity of P. dulce plant extracts was studied in the range of 60 to 450 mg/l against early third instar larvae of An. stephensi and Ae. aegypti in the laboratory. The larval mortality was observed after 24 h of exposure. The ovicidal activity was determined against An. stephensi and Ae. aegypti to various concentrations ranging from 100 to 750 mg/l under the laboratory conditions. Mean per cent hatchability of the eggs were observed after 48 h post treatment. Results: All leaf and seed extracts showed moderate larvicidal and ovicidal effects; however, the highest larval mortality was found in methanol extract of leaf of P. dulce against the larvae of An. stephensi and Ae. aegypti with the LC50 and LC90 values 145.43, 155.78 mg/l and 251.23, 279.73 mg/l, respectively. The per cent hatchability was inversely proportional to the concentration of extract and directly proportional to the eggs. Zero hatchability was observed at 400 mg/l for leaf methanol extract and 625 mg/l for seed methanol extract of P. dulce against An. stephensi and Ae. aegypti, respectively. Compared to leaf extracts, seed extracts have low potency against the two mosquitoes. Interpretation & conclusions: The present results suggest that the leaf and seed extracts of P. dulce have the potential to be used as an ideal eco-friendly approach for the control of mosquitoes. PMID:24056567

  7. Local evolution of pyrethroid resistance offsets gene flow among Aedes aegypti collections in Yucatan State, Mexico.

    PubMed

    Saavedra-Rodriguez, Karla; Beaty, Meaghan; Lozano-Fuentes, Saul; Denham, Steven; Garcia-Rejon, Julian; Reyes-Solis, Guadalupe; Machain-Williams, Carlos; Loroño-Pino, Maria Alba; Flores-Suarez, Adriana; Ponce-Garcia, Gustavo; Beaty, Barry; Eisen, Lars; Black, William C

    2015-01-01

    The mosquito Aedes aegypti is the major vector of the four serotypes of dengue virus (DENV1-4). Previous studies have shown that Ae. aegypti in Mexico have a high effective migration rate and that gene flow occurs among populations that are up to 150 km apart. Since 2000, pyrethroids have been widely used for suppression of Ae. aegypti in cities in Mexico. In Yucatan State in particular, pyrethroids have been applied in and around dengue case households creating an opportunity for local selection and evolution of resistance. Herein, we test for evidence of local adaptation by comparing patterns of variation among 27 Ae. aegypti collections at 13 single nucleotide polymorphisms (SNPs): two in the voltage-gated sodium channel gene para known to confer knockdown resistance, three in detoxification genes previously associated with pyrethroid resistance, and eight in putatively neutral loci. The SNPs in para varied greatly in frequency among collections, whereas SNPs at the remaining 11 loci showed little variation supporting previous evidence for extensive local gene flow. Among Ae. aegypti in Yucatan State, Mexico, local adaptation to pyrethroids appears to offset the homogenizing effects of gene flow. PMID:25371186

  8. Heat Sensitivity of wMel Wolbachia during Aedes aegypti Development

    PubMed Central

    Beier, John C.; Devine, Gregor J.; Hugo, Leon E.

    2016-01-01

    The wMel strain of Wolbachia bacteria is known to prevent dengue and Zika virus transmission in the mosquito vector Aedes aegypti. Accordingly, the release of wMel-infected A. aegypti in endemic regions has been recommended by the World Health Organization as a potential strategy for controlling dengue and Zika outbreaks. However, the utility of this approach could be limited if high temperatures in the aquatic habitats where A. aegypti develop are detrimental to Wolbachia. We exposed wMel-infected A. aegypti eggs and larvae to fluctuating daily temperatures of 30–40°C for three, five, or seven days during their development. We found that Wolbachia levels in females emerging from heat treatments were significantly lower than in the controls that had developed at 20–30°C. Notably, seven days of high temperatures starting at the egg stage reduced Wolbachia levels in emerging females to less than 0.1% of the wMel control levels. However, after adult females returned to 20–30°C for 4–7 days, they experienced differing degrees of Wolbachia recovery. Our findings suggest that the spread of Wolbachia in wild A. aegypti populations and any consequent protection from dengue and Zika viruses might be limited in ecosystems that experience periods of extreme heat, but Wolbachia levels recover partially after temperatures return to normal. PMID:27459519

  9. Heat Sensitivity of wMel Wolbachia during Aedes aegypti Development.

    PubMed

    Ulrich, Jill N; Beier, John C; Devine, Gregor J; Hugo, Leon E

    2016-07-01

    The wMel strain of Wolbachia bacteria is known to prevent dengue and Zika virus transmission in the mosquito vector Aedes aegypti. Accordingly, the release of wMel-infected A. aegypti in endemic regions has been recommended by the World Health Organization as a potential strategy for controlling dengue and Zika outbreaks. However, the utility of this approach could be limited if high temperatures in the aquatic habitats where A. aegypti develop are detrimental to Wolbachia. We exposed wMel-infected A. aegypti eggs and larvae to fluctuating daily temperatures of 30-40°C for three, five, or seven days during their development. We found that Wolbachia levels in females emerging from heat treatments were significantly lower than in the controls that had developed at 20-30°C. Notably, seven days of high temperatures starting at the egg stage reduced Wolbachia levels in emerging females to less than 0.1% of the wMel control levels. However, after adult females returned to 20-30°C for 4-7 days, they experienced differing degrees of Wolbachia recovery. Our findings suggest that the spread of Wolbachia in wild A. aegypti populations and any consequent protection from dengue and Zika viruses might be limited in ecosystems that experience periods of extreme heat, but Wolbachia levels recover partially after temperatures return to normal. PMID:27459519

  10. QTL Mapping of Genome Regions Controlling Temephos Resistance in Larvae of the Mosquito Aedes aegypti

    PubMed Central

    Reyes-Solis, Guadalupe del Carmen; Saavedra-Rodriguez, Karla; Suarez, Adriana Flores; Black, William C.

    2014-01-01

    Introduction The mosquito Aedes aegypti is the principal vector of dengue and yellow fever flaviviruses. Temephos is an organophosphate insecticide used globally to suppress Ae. aegypti larval populations but resistance has evolved in many locations. Methodology/Principal Findings Quantitative Trait Loci (QTL) controlling temephos survival in Ae. aegypti larvae were mapped in a pair of F3 advanced intercross lines arising from temephos resistant parents from Solidaridad, México and temephos susceptible parents from Iquitos, Peru. Two sets of 200 F3 larvae were exposed to a discriminating dose of temephos and then dead larvae were collected and preserved for DNA isolation every two hours up to 16 hours. Larvae surviving longer than 16 hours were considered resistant. For QTL mapping, single nucleotide polymorphisms (SNPs) were identified at 23 single copy genes and 26 microsatellite loci of known physical positions in the Ae. aegypti genome. In both reciprocal crosses, Multiple Interval Mapping identified eleven QTL associated with time until death. In the Solidaridad×Iquitos (SLD×Iq) cross twelve were associated with survival but in the reciprocal IqxSLD cross, only six QTL were survival associated. Polymorphisms at acetylcholine esterase (AchE) loci 1 and 2 were not associated with either resistance phenotype suggesting that target site insensitivity is not an organophosphate resistance mechanism in this region of México. Conclusions/Significance Temephos resistance is under the control of many metabolic genes of small effect and dispersed throughout the Ae. aegypti genome. PMID:25330200

  11. Assessing the Effects of Aedes aegypti kdr Mutations on Pyrethroid Resistance and Its Fitness Cost

    PubMed Central

    Brito, Luiz Paulo; Linss, Jutta G. B.; Lima-Camara, Tamara N.; Belinato, Thiago A.; Peixoto, Alexandre A.; Lima, José Bento P.; Valle, Denise; Martins, Ademir J.

    2013-01-01

    Pyrethroids are the most used insecticide class worldwide. They target the voltage gated sodium channel (NaV), inducing the knockdown effect. In Aedes aegypti, the main dengue vector, the AaNaV substitutions Val1016Ile and Phe1534Cys are the most important knockdown resistance (kdr) mutations. We evaluated the fitness cost of these kdr mutations related to distinct aspects of development and reproduction, in the absence of any other major resistance mechanism. To accomplish this, we initially set up 68 crosses with mosquitoes from a natural population. Allele-specific PCR revealed that one couple, the one originating the CIT-32 strain, had both parents homozygous for both kdr mutations. However, this pyrethroid resistant strain also presented high levels of detoxifying enzymes, which synergistically account for resistance, as revealed by biological and biochemical assays. Therefore, we carried out backcrosses between CIT-32 and Rockefeller (an insecticide susceptible strain) for eight generations in order to bring the kdr mutation into a susceptible genetic background. This new strain, named Rock-kdr, was highly resistant to pyrethroid and presented reduced alteration of detoxifying activity. Fitness of the Rock-kdr was then evaluated in comparison with Rockefeller. In this strain, larval development took longer, adults had an increased locomotor activity, fewer females laid eggs, and produced a lower number of eggs. Under an inter-strain competition scenario, the Rock-kdr larvae developed even slower. Moreover, when Rockefeller and Rock-kdr were reared together in population cage experiments during 15 generations in absence of insecticide, the mutant allele decreased in frequency. These results strongly suggest that the Ae. aegypti kdr mutations have a high fitness cost. Therefore, enhanced surveillance for resistance should be priority in localities where the kdr mutation is found before new adaptive alleles can be selected for diminishing the kdr deleterious

  12. Ovary ecdysteroidogenic hormone functions independently of the insulin receptor in the yellow fever mosquito, Aedes aegypti.

    PubMed

    Dhara, Animesh; Eum, Jai-Hoon; Robertson, Anne; Gulia-Nuss, Monika; Vogel, Kevin J; Clark, Kevin D; Graf, Rolf; Brown, Mark R; Strand, Michael R

    2013-12-01

    Most mosquito species must feed on the blood of a vertebrate host to produce eggs. In the yellow fever mosquito, Aedes aegypti, blood feeding triggers medial neurosecretory cells in the brain to release insulin-like peptides (ILPs) and ovary ecdysteroidogenic hormone (OEH). Theses hormones thereafter directly induce the ovaries to produce ecdysteroid hormone (ECD), which activates the synthesis of yolk proteins in the fat body for uptake by oocytes. ILP3 stimulates ECD production by binding to the mosquito insulin receptor (MIR). In contrast, little is known about the mode of action of OEH, which is a member of a neuropeptide family called neuroparsin. Here we report that OEH is the only neuroparsin family member present in the Ae. aegypti genome and that other mosquitoes also encode only one neuroparsin gene. Immunoblotting experiments suggested that the full-length form of the peptide, which we call long OEH (lOEH), is processed into short OEH (sOEH). The importance of processing, however, remained unclear because a recombinant form of lOEH (rlOEH) and synthetic sOEH exhibited very similar biological activity. A series of experiments indicated that neither rlOEH nor sOEH bound to ILP3 or the MIR. Signaling studies further showed that ILP3 activated the MIR but rlOEH did not, yet both neuropeptides activated Akt, which is a marker for insulin pathway signaling. Our results also indicated that activation of TOR signaling in the ovaries required co-stimulation by amino acids and either ILP3 or rlOEH. Overall, we conclude that OEH activates the insulin signaling pathway independently of the MIR, and that insulin and TOR signaling in the ovaries is coupled. PMID:24076067

  13. Modeling the Non-Stationary Climate Dependent Temporal Dynamics of Aedes aegypti

    PubMed Central

    Simões, Taynãna C.; Codeço, Cláudia T.; Nobre, Aline A.; Eiras, Álvaro E.

    2013-01-01

    Background Temperature and humidity strongly affect the physiology, longevity, fecundity and dispersal behavior of Aedes aegypti, vector of dengue fever. Contrastingly, the statistical associations measured between time series of mosquito abundance and meteorological variables are often weak and contradictory. Here, we investigated the significance of these relationships at different time scales. Methods and Findings A time series of the adult mosquito abundance from a medium-sized city in Brazil, lasting 109 weeks was analyzed. Meteorological variables included temperature, precipitation, wind velocity and humidity. As analytical tools, generalized linear models (GLM) with time lags and interaction terms were used to identify average effects while the wavelet analysis was complementarily used to identify transient associations. The fitted GLM showed that mosquito abundance is significantly affected by the interaction between lagged temperature and humidity, and also by the mosquito abundance a week earlier. Extreme meteorological variables were the best predictors, and the mosquito population tended to increase at values above and 54% humidity. The wavelet analysis identified non-stationary local effects of these meteorological variables on abundance throughout the study period, with peaks in the spring-summer period. The wavelet detected weak but significant effects for precipitation and wind velocity. Conclusion Our results support the presence of transient relationships between meteorological variables and mosquito abundance. Such transient association may be explained by the ability of Ae. aegypti to buffer part of its response to climate, for example, by choosing sites with proper microclimate. We also observed enough coupling between the abundance and meteorological variables to develop a model with good predictive power. Extreme values of meteorological variables with time lags, interaction terms and previous mosquito abundance are strong predictors and

  14. Mating-Induced Transcriptome Changes in the Reproductive Tract of Female Aedes aegypti

    PubMed Central

    Degner, Ethan C.; Avila, Frank W.; Villarreal, Susan M.; Pleiss, Jeffrey A.; Wolfner, Mariana F.; Harrington, Laura C.

    2016-01-01

    The Aedes aegypti mosquito is a significant public health threat, as it is the main vector of dengue and chikungunya viruses. Disease control efforts could be enhanced through reproductive manipulation of these vectors. Previous work has revealed a relationship between male seminal fluid proteins transferred to females during mating and female post-mating physiology and behavior. To better understand this interplay, we used short-read RNA sequencing to identify gene expression changes in the lower reproductive tract of females in response to mating. We characterized mRNA expression in virgin and mated females at 0, 6 and 24 hours post-mating (hpm) and identified 364 differentially abundant transcripts between mating status groups. Surprisingly, 60 transcripts were more abundant at 0hpm compared to virgin females, suggesting transfer from males. Twenty of these encode known Ae. aegypti seminal fluid proteins. Transfer and detection of male accessory gland-derived mRNA in females at 0hpm was confirmed by measurement of eGFP mRNA in females mated to eGFP-expressing males. In addition, 150 transcripts were up-regulated at 6hpm and 24hpm, while 130 transcripts were down-regulated at 6hpm and 24hpm. Gene Ontology (GO) enrichment analysis revealed that proteases, a protein class broadly known to play important roles in reproduction, were among the most enriched protein classes. RNAs associated with immune system and antimicrobial function were also up-regulated at 24hpm. Collectively, our results suggest that copulation initiates broad transcriptome changes across the mosquito female reproductive tract, “priming” her for important subsequent processes of blood feeding, egg development and immune defense. Our transcriptome analysis provides a vital foundation for future studies of the consequences of mating on female biology and will aid studies seeking to identify specific gene families, molecules and pathways that support key reproductive processes in the female

  15. Heterogeneous Feeding Patterns of the Dengue Vector, Aedes aegypti, on Individual Human Hosts in Rural Thailand

    PubMed Central

    Harrington, Laura C.; Fleisher, Andrew; Ruiz-Moreno, Diego; Vermeylen, Francoise; Wa, Chrystal V.; Poulson, Rebecca L.; Edman, John D.; Clark, John M.; Jones, James W.; Kitthawee, Sangvorn; Scott, Thomas W.

    2014-01-01

    Background Mosquito biting frequency and how bites are distributed among different people can have significant epidemiologic effects. An improved understanding of mosquito vector-human interactions would refine knowledge of the entomological processes supporting pathogen transmission and could reveal targets for minimizing risk and breaking pathogen transmission cycles. Methodology and principal findings We used human DNA blood meal profiling of the dengue virus (DENV) vector, Aedes aegypti, to quantify its contact with human hosts and to infer epidemiologic implications of its blood feeding behavior. We determined the number of different people bitten, biting frequency by host age, size, mosquito age, and the number of times each person was bitten. Of 3,677 engorged mosquitoes collected and 1,186 complete DNA profiles, only 420 meals matched people from the study area, indicating that Ae. aegypti feed on people moving transiently through communities to conduct daily business. 10–13% of engorged mosquitoes fed on more than one person. No biting rate differences were detected between high- and low-dengue transmission seasons. We estimate that 43–46% of engorged mosquitoes bit more than one person within each gonotrophic cycle. Most multiple meals were from residents of the mosquito collection house or neighbors. People ≤25 years old were bitten less often than older people. Some hosts were fed on frequently, with three hosts bitten nine times. Interaction networks for mosquitoes and humans revealed biologically significant blood feeding hotspots, including community marketplaces. Conclusion and significance High multiple-feeding rates and feeding on community visitors are likely important features in the efficient transmission and rapid spread of DENV. These results help explain why reducing vector populations alone is difficult for dengue prevention and support the argument for additional studies of mosquito feeding behavior, which when integrated with a

  16. Development of a mosquito attractant blend of small molecules against host-seeking Aedes aegypti.

    PubMed

    Saratha, R; Mathew, Nisha

    2016-04-01

    A mosquito's dependence on olfaction in the hunt for human host could be efficiently exploited to protect humans from mosquito bites. The present study is undertaken to make the most attractant compound blend for Aedes aegypti mosquitoes to lure them to traps. Eleven molecules (M1-M11) at different dilutions were screened for attractancy against non-blood-fed adult female mosquitoes in an olfactometer. The results showed that the attractancy was dependent on both the chemical nature of the molecule and the strength of the odor. Out of 11 molecules screened, 9 showed significant attractancy (P < 0.05) when tested individually. The attractancy was in the order of M11 > M7 > M6 > M10 > M9 > M3 > M2 > M1 > M4 with attractancy indices (AIs) 86.11, 55.93, 55.17, 54, 52.94, 52, 50, 43.64, and 32, respectively, at the optimum dilutions. Seven blends (I-VII) were made and were screened for attractancy against Ae. aegypti. All the blends showed significant attractancy (P < 0.05). The attractancy was in the order of blend VII > III > IV > I > VI > V > II with AIs 96.63, 89.19, 65, 57.89, 56.1, 47.13, and 44.44, respectively. Among the seven blends, blend VII with constituent molecules M6, M9, M10, and M11 is the most promising with an AI value of 96.63. This blend will be useful in luring the host-seeking mosquitoes to traps. The field efficacy of these attractant blends may be explored in the future. PMID:26693718

  17. Antiviral Hammerhead Ribozymes Are Effective for Developing Transgenic Suppression of Chikungunya Virus in Aedes aegypti Mosquitoes

    PubMed Central

    Mishra, Priya; Furey, Colleen; Balaraman, Velmurugan; Fraser, Malcolm J.

    2016-01-01

    The chikungunya virus (CHIKV) is an emerging pathogen with widespread distribution in regions of Africa, India, and Asia that threatens to spread into temperate climates with the introduction of its major vector, Aedes albopictus. CHIKV causes a disease frequently misdiagnosed as dengue fever, with potentially life-threatening symptoms that can result in a longer-term debilitating arthritis. The increasing risk of spread from endemic regions via human travel and commerce and the current absence of a vaccine put a significant proportion of the world population at risk for this disease. In this study we designed and tested hammerhead ribozymes (hRzs) targeting CHIKV structural protein genes of the RNA genome as potential antivirals both at the cellular and in vivo level. We employed the CHIKV strain 181/25, which exhibits similar infectivity rates in both Vero cell cultures and mosquitoes. Virus suppression assay performed on transformed Vero cell clones of all seven hRzs demonstrated that all are effective at inhibiting CHIKV in Vero cells, with hRz #9 and #14 being the most effective. piggyBac transformation vectors were constructed using the Ae. aegypti t-RNAval Pol III promoted hRz #9 and #14 effector genes to establish a total of nine unique transgenic Higgs White Eye (HWE) Ae. aegypti lines. Following confirmation of transgene expression by real-time polymerase chain reaction (RT-PCR), comparative TCID50-IFA analysis, in situ Immuno-fluorescent Assays (IFA) and analysis of salivary CHIKV titers demonstrated effective suppression of virus replication at 7 dpi in heterozygous females of each of these transgenic lines compared with control HWE mosquitoes. This report provides a proof that appropriately engineered hRzs are powerful antiviral effector genes suitable for population replacement strategies PMID:27294950

  18. Mortality and reproductive dynamics of Aedes aegypti (Diptera: Culicidae) fed human blood.

    PubMed

    Styer, Linda M; Minnick, Sharon L; Sun, Anna K; Scott, Thomas W

    2007-01-01

    Mortality is a critical factor in determining a mosquito's ability to transmit pathogens. We investigated the effect of human blood feeding and reproduction on mortality of the dengue virus vector, Aedes aegypti, by conducting a life-table study of male and female mosquitoes maintained on one of three diets: 10% sucrose, human blood or human blood plus 10% sucrose. We examined the effect of host availability by offering human blood to mosquitoes every day or every other day. Mortality of females was age-dependent and best fit by a logistic or logistic-Makeham model. The availability of blood increased survival; survival of females fed blood plus sugar was greater than those only fed sugar. There was a peak in mortality of females fed blood alone early in life that coincided with the initiation of oviposition. When females in the blood alone group were offered blood daily, their mortality was significantly lower than when they were offered blood every other day. Unlike some previous studies, females fed blood plus sugar had higher fitness than females fed blood alone. Increased fitness may have been due to differences in housing mosquitoes individually in separate cages versus as a group of many mosquitoes in each cage. It was not due to longer survival of males who had access to sugar as a food source. Our results demonstrate that reproductively active Ae. aegypti exhibit age-dependent mortality, which refutes the assumption of age-independent mosquito mortality and underscores the need to incorporate age-dependent factors into pathogen transmission models and research on mosquito biology in general. PMID:17417961

  19. Antiviral Hammerhead Ribozymes Are Effective for Developing Transgenic Suppression of Chikungunya Virus in Aedes aegypti Mosquitoes.

    PubMed

    Mishra, Priya; Furey, Colleen; Balaraman, Velmurugan; Fraser, Malcolm J

    2016-01-01

    The chikungunya virus (CHIKV) is an emerging pathogen with widespread distribution in regions of Africa, India, and Asia that threatens to spread into temperate climates with the introduction of its major vector, Aedes albopictus. CHIKV causes a disease frequently misdiagnosed as dengue fever, with potentially life-threatening symptoms that can result in a longer-term debilitating arthritis. The increasing risk of spread from endemic regions via human travel and commerce and the current absence of a vaccine put a significant proportion of the world population at risk for this disease. In this study we designed and tested hammerhead ribozymes (hRzs) targeting CHIKV structural protein genes of the RNA genome as potential antivirals both at the cellular and in vivo level. We employed the CHIKV strain 181/25, which exhibits similar infectivity rates in both Vero cell cultures and mosquitoes. Virus suppression assay performed on transformed Vero cell clones of all seven hRzs demonstrated that all are effective at inhibiting CHIKV in Vero cells, with hRz #9 and #14 being the most effective. piggyBac transformation vectors were constructed using the Ae. aegypti t-RNA(val) Pol III promoted hRz #9 and #14 effector genes to establish a total of nine unique transgenic Higgs White Eye (HWE) Ae. aegypti lines. Following confirmation of transgene expression by real-time polymerase chain reaction (RT-PCR), comparative TCID50-IFA analysis, in situ Immuno-fluorescent Assays (IFA) and analysis of salivary CHIKV titers demonstrated effective suppression of virus replication at 7 dpi in heterozygous females of each of these transgenic lines compared with control HWE mosquitoes. This report provides a proof that appropriately engineered hRzs are powerful antiviral effector genes suitable for population replacement strategies. PMID:27294950

  20. Natural vertical transmission of dengue viruses in Aedes aegypti in selected sites in Cebu City, Philippines.

    PubMed

    Edillo, Frances E; Sarcos, Janet R; Sayson, Stephanie L

    2015-12-01

    We attempted to determine the vertical transmission of dengue virus (DENV) in Aedes aegypti in selected sites in Cebu City, Philippines. Mosquito sub-adults were collected monthly from households and the field during the wet-dry-wet season from November, 2011 to July, 2012 and were laboratory-reared to adults. Viral RNA extracts in mosquitoes were assayed by hemi-nested RT-PCR. Results showed that 62 (36.26%; n=679) out of 171 mosquito pools (n=2,871) were DENV+. The minimum infection rate (MIR) of DENV ranged from 0 in wet months to 48.22/1,000 mosquitoes in April, 2012 (mid-dry). DENVs were detected in larvae, pupae, and male and female adults, with DENV-4, DENV-3, and DENV-1, in that rank of prevalence. DENV-1 co-infected with either DENV-3 or -4 or with both in April, 2012; DENV-3 and -4 were present in both seasons. More DENV+ mosquitoes were collected from households than in field premises (p<0.001) and in the dry than in the wet season (p<0.05), with significant interaction (p<0.05) between sites and premises but no interaction between sites and seasons (p>0.05). By Generalized Linear Mixed models, the type of premises nested in sites and monthly total rainfall were significant predictors of monthly dengue cases (p<0.05) and not MIR, season, temperature, and relative humidity. Surveillance of DENV prevalence in Ae. aegypti and detecting their natural foci in the dry season provide an early warning signal of dengue outbreak. PMID:26611963

  1. Alkaline phosphatases and aminopeptidases are altered in a Cry11Aa resistant strain of Aedes aegypti

    PubMed Central

    Lee, Su-Bum; Aimanova, Karlygash G.; Gill, Sarjeet S.

    2014-01-01

    Bacillus thuringiensis subsp. israelensis (Bti) has been widely for the biological control of mosquito populations. However, the mechanism of Bti toxins is still not fully understood. To further elucidate the mechanism of Bti toxins, we developed an Aedes aegypti resistant strain that shows high-level resistance to Cry11Aa toxin. After 27 selections with Cry11Aa toxin, the larvae showed a 124-fold resistance ratio for Cry11Aa (strain G30). G30 larvae showed cross-resistance to Cry4Aa (66-fold resistance), less to Cry4Ba (13-fold), but not to Cry11Ba (2-fold). Midguts from these resistant larvae did not show detectable difference in the processing of the Cry11Aa toxin compared to that in susceptible larvae (WT). Brush border membrane vesicles (BBMV) from resistant larvae bound slightly less Cry11Aa compared to WT BBMV. To identify potential proteins associated with Cry11A resistance, not only transcript changes in the larval midgut were analyzed using Illumina sequencing and qPCR, but alterations of previously identified receptor proteins were investigated using immunoblots. The transcripts of 375 genes were significantly increased and those of 208 genes were down regulated in the resistant larvae midgut compared to the WT. None of the transcripts for previously identified receptors of Cry11Aa (Aedes cadherin, ALP1, APN1, and APN2) were altered in these analyses. The genes for the identified functional receptors in resistant larvae midgut did not contain any mutation in their sequences nor was there any change in their transcript expression levels compared to WT. However, ALP proteins were expressed at reduced levels (~40%) in the resistant strain BBMV. APN proteins and their activity were also slightly reduced in resistance strain. The transcript levels of ALPs (AAEL013330 and AAEL015070) and APNs (AAEL008158, AAEL008162) were significantly reduced. These results strongly suggest that ALPs and APNs could be associated with Cry11Aa resistance in Ae. aegypti. PMID

  2. Alkaline phosphatases and aminopeptidases are altered in a Cry11Aa resistant strain of Aedes aegypti.

    PubMed

    Lee, Su-Bum; Aimanova, Karlygash G; Gill, Sarjeet S

    2014-11-01

    Bacillus thuringiensis subsp. israelensis (Bti) is widely used for the biological control of mosquito populations. However, the mechanism of Bti toxins is still not fully understood. To further elucidate the mechanism of Bti toxins, we developed an Aedes aegypti resistant strain that shows high-level resistance to Cry11Aa toxin. After 27 selections with Cry11Aa toxin, the larvae showed a 124-fold resistance ratio for Cry11Aa (strain G30). G30 larvae showed cross-resistance to Cry4Aa (66-fold resistance), less to Cry4Ba (13-fold), but not to Cry11Ba (2-fold). Midguts from these resistant larvae did not show detectable difference in the processing of the Cry11Aa toxin compared to that in susceptible larvae (WT). Brush border membrane vesicles (BBMV) from resistant larvae bound slightly less Cry11Aa compared to WT BBMV. To identify potential proteins associated with Cry11A resistance, not only transcript changes in the larval midgut were analyzed using Illumina sequencing and qPCR, but alterations of previously identified receptor proteins were investigated using immunoblots. The transcripts of 375 genes were significantly increased and those of 208 genes were down regulated in the resistant larvae midgut compared to the WT. None of the transcripts for previously identified receptors of Cry11Aa (Aedes cadherin, ALP1, APN1, and APN2) were altered in these analyses. The genes for the identified functional receptors in resistant larvae midgut did not contain any mutation in their sequences nor was there any change in their transcript expression levels compared to WT. However, ALP proteins were expressed at reduced levels (∼ 40%) in the resistant strain BBMV. APN proteins and their activity were also slightly reduced in resistance strain. The transcript levels of ALPs (AAEL013330 and AAEL015070) and APNs (AAEL008158, AAEL008162) were significantly reduced. These results strongly suggest that ALPs and APNs could be associated with Cry11Aa resistance in Ae. aegypti. PMID

  3. River Boats Contribute to the Regional Spread of the Dengue Vector Aedes aegypti in the Peruvian Amazon

    PubMed Central

    Guagliardo, Sarah Anne; Morrison, Amy C.; Barboza, Jose Luis; Requena, Edwin; Astete, Helvio; Vazquez-Prokopec, Gonzalo; Kitron, Uriel

    2015-01-01

    Background and Objectives The dramatic range expansion of the dengue vector Aedes aegypti is associated with various anthropogenic transport activities, but little is known about the underlying mechanisms driving this geographic expansion. We longitudinally characterized infestation of different vehicle types (cars, boats, etc.) to estimate the frequency and intensity of mosquito introductions into novel locations (propagule pressure). Methods Exhaustive adult and immature Ae. aegypti collections were performed on six different vehicle types at five ports and two bus/ taxi departure points in the Amazonian city of Iquitos, Peru during 2013. Aquatic vehicles included 32 large and 33 medium-sized barges, 53 water taxis, and 41 speed boats. Terrestrial vehicles sampled included 40 buses and 30 taxis traveling on the only highway in the region. Ae. aegypti adult infestation rates and immature indices were analyzed by vehicle type, location within vehicles, and sampling date. Results Large barges (71.9% infested) and medium barges (39.4% infested) accounted for most of the infestations. Notably, buses had an overall infestation rate of 12.5%. On large barges, the greatest number of Ae. aegypti adults were found in October, whereas most immatures were found in February followed by October. The vast majority of larvae (85.9%) and pupae (76.7%) collected in large barges were produced in puddles formed in cargo holds. Conclusions Because larges barges provide suitable mosquito habitats (due to dark, damp cargo storage spaces and ample oviposition sites), we conclude that they likely serve as significant contributors to mosquitoes’ propagule pressure across long distances throughout the Peruvian Amazon. This information can help anticipate vector population mixing and future range expansions of dengue and other viruses transmitted by Ae. aegypti. PMID:25860352

  4. Low efficacy of delthamethrin-treated net against Singapore Aedes aegypti is associated with kdr-type resistance.

    PubMed

    Pang, S C; Chiang, L P; Tan, C H; Vythilingam, I; Lam-Phua, S G; Ng, L C

    2015-03-01

    There has been a worldwide surge in the number and severity of dengue in the past decades. In Singapore, relentless vector control efforts have been put in to control the disease since the 1960's. Space spraying, fogging, chemical treatment and source reduction are some commonly used methodologies for controlling its vectors, particularly Aedes aegypti. Here, as we explored the use of a commercially available delthamethrin-treated net as an alternative strategy and the efficacy of the treated net was found to be limited. Through bioassays and molecular studies, the failure of the treated net to render high mortality rate was found to be associated with the knockdown resistance (kdr) mutation. This is the first report of kdr- mutations in Singapore's Ae. aegypti. At least one point mutation, either homozygous or heterozygous, at amino acid residue V1016G of DIIS6 or F1269C of DIIIS6 was detected in 93% of field strains of Ae. aegypti. Various permutations of wild type and mutant amino acids of the four alleles were found to result in varying degree of survival rate among local field Ae. aegypti when exposed to the deltamethrin treated net. Together with the association of higher survival rate with the presence of both V1016G and F1269C, the data suggest the role of these mutations in the resistance to the deltamethrin. The high prevalence of these mutations were confirmed in a country wide survey where 70% and 72% of the 201 Ae. aegypti analysed possessed the mutations at residues 1016 and 1269 respectively. The highest mutated frequency combination was found to be heterozygous alleles (VG/FC) at both residues 1016 and 1269 (37.8%), followed by homozygous mutation at allele 1269 (24.4%) and homozygous mutation at allele 1016 (22.9%). The kdr- type of resistance among the vector is likely to undermine the effectiveness of pyrethroids treated materials against these mosquitoes. PMID:25801264

  5. Imidacloprid impairs the post-embryonic development of the midgut in the yellow fever mosquito Stegomyia aegypti (=Aedes aegypti).

    PubMed

    Fernandes, K M; Gonzaga, W G; Pascini, T V; Miranda, F R; Tomé, H V V; Serrão, J E; Martins, G F

    2015-09-01

    The mosquito Stegomyia aegypti (=Aedes aegypti) (Diptera: Culicidae) is a vector for the dengue and yellow fever viruses. As blood digestion occurs in the midgut, this organ constitutes the route of entry of many pathogens. The effects of the insecticide imidacloprid on the survival of St. aegypti were investigated and the sub-lethal effects of the insecticide on midgut development were determined. Third instar larvae were exposed to different concentrations of imidacloprid (0.15, 1.5, 3.0, 6.0 and 15.0 p.p.m.) and survival was monitored every 24 h for 10 days. Midguts from imidacloprid-treated insects at different stages of development were dissected and processed for analyses by transmission electron microscopy, immunofluorescence microscopy and terminal deoxynucleotidyl transferase dUTP nick-end labelling (TUNEL) assays. Imidacloprid concentrations of 3.0 and 15.0 p.p.m. were found to affect midgut development similarly. Digestive cells of the fourth instar larvae (L4) midgut exposed to imidacloprid had more multilamellar bodies, abundantly found in the cell apex, and more electron-lucent vacuoles in the basal region compared with those from untreated insects. Moreover, imidacloprid interfered with the differentiation of regenerative cells, dramatically reducing the number of digestive and endocrine cells and leading to malformation of the midgut epithelium in adults. The data demonstrate that imidacloprid can reduce the survival of mosquitoes and thus indicate its potentially high efficacy in the control of St. aegypti populations. PMID:25968596

  6. Costs of Three Wolbachia Infections on the Survival of Aedes aegypti Larvae under Starvation Conditions

    PubMed Central

    Ross, Perran A.; Endersby, Nancy M.; Hoffmann, Ary A.

    2016-01-01

    The mosquito Aedes aegypti, the principal vector of dengue virus, has recently been infected experimentally with Wolbachia: intracellular bacteria that possess potential as dengue biological control agents. Wolbachia depend on their hosts for nutrients they are unable to synthesize themselves. Consequently, competition between Wolbachia and their host for resources could reduce host fitness under the competitive conditions commonly experienced by larvae of Ae. aegypti in the field, hampering the invasion of Wolbachia into natural mosquito populations. We assess the survival and development of Ae. aegypti larvae under starvation conditions when infected with each of three experimentally-generated Wolbachia strains: wMel, wMelPop and wAlbB, and compare their fitness to wild-type uninfected larvae. We find that all three Wolbachia infections reduce the survival of larvae relative to those that are uninfected, and the severity of the effect is concordant with previously characterized fitness costs to other life stages. We also investigate the ability of larvae to recover from extended food deprivation and find no effect of Wolbachia on this trait. Aedes aegypti larvae of all infection types were able to resume their development after one month of no food, pupate rapidly, emerge at a large size, and exhibit complete cytoplasmic incompatibility and maternal transmission. A lowered ability of Wolbachia-infected larvae to survive under starvation conditions will increase the threshold infection frequency required for Wolbachia to establish in highly competitive natural Ae. aegypti populations and will also reduce the speed of invasion. This study also provides insights into survival strategies of larvae when developing in stressful environments. PMID:26745630

  7. Comparative efficacy of two poeciliid fish in indoor cement tanks against chikungunya vector Aedes aegypti in villages in Karnataka, India

    PubMed Central

    2011-01-01

    Background In 2006, severe outbreaks of Aedes aegypti-transmitted chikungunya occurred in villages in Karnataka, South India. We evaluated the effectiveness of combined information, education and communication (IEC) campaigns using two potential poeciliid larvivorous fish guppy (Poecilia reticulata) and mosquitofish (Gambusia affinis), in indoor cement tanks for Aedes larval control. Methods Trials were conducted in two villages (Domatmari and Srinivaspura) in Tumkur District from March to May 2006 for Poecilia and one village (Balmanda) in Kolar District from July to October 2006 for Gambusia. A survey on knowledge, attitude and practice (KAP) on chikungunya was initially conducted and IEC campaigns were performed before and after fish release in Domatmari (IEC alone, followed by IEC + Poecilia) and Balmanda (IEC + Gambusia). In Srinivaspura, IEC was not conducted. Larval surveys were conducted at the baseline followed by one-week and one-month post-intervention periods. The impact of fish on Aedes larvae and disease was assessed based on baseline and post-intervention observations. Results Only 18% of respondents knew of the role of mosquitoes in fever outbreaks, while almost all (n = 50 each) gained new knowledge from the IEC campaigns. In Domatmari, IEC alone was not effective (OR 0.54; p = 0.067). Indoor cement tanks were the most preferred Ae. aegypti breeding habitat (86.9%), and had a significant impact on Aedes breeding (Breteau Index) in all villages in the one-week period (p < 0.001). In the one-month period, the impact was most sustained in Domatmari (OR 1.58, p < 0.001) then Srinivaspura (OR 0.45, p = 0.063) and Balmanda (OR 0.51, p = 0.067). After fish introductions, chikungunya cases were reduced by 99.87% in Domatmari, 65.48% in Srinivaspura and 68.51% in Balmanda. Conclusions Poecilia exhibited greater survival rates than Gambusia (86.04 vs.16.03%) in cement tanks. Neither IEC nor Poecilia alone was effective against Aedes (p > 0.05). We conclude

  8. Green synthesis of silver nanoparticles using Murraya koenigii leaf extract against Anopheles stephensi and Aedes aegypti.

    PubMed

    Suganya, Ayyappan; Murugan, Kadarkarai; Kovendan, Kalimuthu; Mahesh Kumar, Palanisamy; Hwang, Jiang-Shiou

    2013-04-01

    Mosquitoes transmit serious human diseases, causing millions of deaths every year. The use of synthetic insecticides to control vector mosquitoes has caused physiological resistance and adverse environmental effects in addition to high operational cost. Insecticides of synthesized natural products for vector control have been a priority in this area. In the present study, the activity of silver nanoparticles (AgNPs) synthesized using Murraya koenigii plant leaf extract against first to fourth instars larvae and pupae of Anopheles stephensi and Aedes aegypti was determined. Range of concentrations of synthesized AgNPs (5, 10, 20, 30, and 40 ppm) and ethanol leaf extract (50, 200, 350, 500, and 650 ppm) were tested against the larvae of A. stephensi and A. aegypti. The synthesized AgNPs from M. koenigii leaf were highly toxic than crude leaf ethanol extract in both mosquito species. The results were recorded from UV-Vis spectrum, Fourier transform infrared spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy analysis. Larvae were exposed to varying concentrations of aqueous extract of synthesized AgNPs for 24 h. The maximum mortality was observed in synthesized AgNPs, and ethanol leaf extract of M. koenigii against A. stephensi had LC50 values of 10.82, 14.67, 19.13, 24.35, and 32.09 ppm and 279.33, 334.61, 406.95, 536.11, and 700.16 ppm and LC90 values of 32.38, 42.52, 53.65, 63.51, and 75.26 ppm and 737.37, 843.84, 907.67, 1,187.62, and 1,421.13 ppm. A. aegypti had LC50 values of 13.34, 17.19, 22.03, 27.57, and 34.84 ppm and 314.29, 374.95, 461.01, 606.50, and 774.01 ppm and LC90 values of 36.98, 47.67, 55.95, 67.36, and 77.72 ppm and 777.32, 891.16, 1,021.90, 1,273.06, and 1,509.18 ppm, respectively. These results suggest that the use of M. koenigii synthesized silver nanoparticles can be a rapid, environmentally safer biopesticide which can form a novel approach to develop effective biocides for controlling the target

  9. Operational use of household bleach to "crash and release" Aedes aegypti prior to Wolbachia-infected mosquito release.

    PubMed

    Jacups, Susan P; Ball, Tamara S; Paton, Christopher J; Johnson, Petrina H; Ritchie, Scott A

    2013-03-01

    Dengue (family Flaviviridae, genus Flavivirus, DENV) remains the leading arboviral cause of mortality in the tropics. Wolbachia pipientis has been shown to interrupt DENV transmission and is presently being trialled as a biological control. However, deployment issues have arisen on methods to temporarily suppress wild mosquito populations before Wolbachia-infected mosquito releases. By suppressing wild populations, fewer Ae. aegypti releases are required to achieve a sustainable Wolbachia density threshold. Furthermore, public distress is reduced. This study tests the application of domestic bleach (4% NaCIO) to temporarily "crash" immature Aedes populations in water-filled containers. Spray application NaClO (215 ppm) resulted in a mean 48-h mortality of 100, 100, 97, and 88% of eggs, second-instar larvae, fourth-instar larvae, and pupae, respectively. In the field, NaClO delayed ovipositing by 9 d in cooler months, and 11 d in hotter months, after which oviposition resumed in treated receptacles. We found bleach treatment of pot-plant bases did not cause wilting, yellowing, or dropping of leaves in two ornamental plants species. Domestically available NaClO could be adopted for a "crash and release" strategy to temporarily suppress wild populations of Ae. aegypti in containers before release of Wolbachia-infected mosquitoes. The "crash and release" strategy is also applicable to other mosquito species, e.g., Aedes albopictus (Skuse), in strategies using released mosquitoes. PMID:23540123

  10. Biological activity of selected Lamiaceae and Zingiberaceae plant essential oils against the dengue vector Aedes aegypti L. (Diptera: Culicidae).

    PubMed

    Kalaivani, Kandaswamy; Senthil-Nathan, Sengottayan; Murugesan, Arunachalam Ganesan

    2012-03-01

    The larvicidal activity of hydrodistillate extracts from Mentha piperita L. Ocimum basilicum L. Curcuma longa L. and Zingiber officinale L. were investigated against the dengue vector Aedes aegypti L. (Diptera: Culicidae).The results indicated that the mortality rates at 80, 100, 200 and 400 ppm of M. piperita, Z. officinale, C. longa and O. basilicum concentrations were highest amongst all concentrations of the crude extracts tested against all the larval instars and pupae of A. aegypti. Result of log probit analysis (at 95% confidence level) revealed that lethal concentration LC₅₀ and LC₉₀ values were 47.54 and 86.54 ppm for M. piperita, 40.5 and 85.53 ppm for Z. officinale, 115.6 and 193.3 ppm for C. longa and 148.5 and 325.7 ppm for O. basilicum, respectively. All of the tested oils proved to have strong larvicidal activity (doses from 5 to 350 ppm) against A. aegypti fourth instars, with the most potent oil being M. piperita extract, followed by Z. officinale, C. longa and O. basilicum. In general, early instars were more susceptible than the late instars and pupae. The results achieved suggest that, in addition to their medicinal activities, Lamiaceae and Zingiberaceae plant extracts may also serve as a natural larvicidal agent. PMID:21881945

  11. Larvicidal efficacy screening of Anacardaciae crude extracts on the dengue hemorrhagic vector, Aedes aegypti.

    PubMed

    Zuharah, W F; Fadzly, N; Ali, Y; Zakaria, R; Juperi, S; Asyraf, M; Dieng, H

    2014-06-01

    Vector-borne diseases are still rife because of the re-emergence of diseases transmitted by mosquitoes. The objective of this paper is to evaluate the larvicidal efficacy of crude leaf extract of Mangifera indica, Gluta renghas, and Melanochyla fasciculiflora against vector of dengue hemorrhagic fever, Aedes aegypti. These plant species are endemic species and widely distributed in Malaysian forests. Leaves of Ma. indica, G. renghas and M. fascculiflora were collected from Teluk Bahang National Park, Penang Malaysia. Fractions of leaves were segregated, air-dried, powdered and extracted using Soxhlet with methanol. The solvent was removed by using rotary evaporator to obtain the crude extract. Using WHO standard larval bioassay test method, third instar larvae of Aedes aegypti were exposed to concentration ranging from 200- 4500 ppm of methanol extract for all plant species. Larval mortality was observed after 24 hours exposure. The highest susceptibility and toxicity was recorded by Mangifera indica with the lowest concentration at 800 ppm followed by M. fasciculiflora and G. renghas. This indicates that crude plant extract is very effective in killing Ae. aegypti mosquitoes. This finding may lead to new low cost alternative, environmentally friendly method for mosquito control programs. To our knowledge, this is the first report on larvicidal bioefficacy from endemic Malaysian plants. PMID:25134898

  12. Bicluster Pattern of Codon Context Usages between Flavivirus and Vector Mosquito Aedes aegypti: Relevance to Infection and Transcriptional Response of Mosquito Genes

    PubMed Central

    Behura, Susanta K.; Severson, David W.

    2014-01-01

    The mosquito Aedes aegypti is the primary vector of dengue virus (DENV) infection in most of the subtropical and tropical countries. Besides DENV, yellow fever virus (YFV) is also transmitted by A. aegypti. Susceptibility of A. aegypti to West Nile virus (WNV) has also been confirmed. Although studies have indicated correlation of codon bias between flaviviridae and their animal/insect hosts, it is not clear if codon sequences have any relation to susceptibility of A. aegypti to DENV, YFV and WNV. In the current study, usages of codon context sequences (codon pairs for neighboring amino acids) of the vector (A. aegypti) genome as well as the flaviviral genomes are investigated. We used bioinformatics methods to quantify codon context bias in a genome-wide manner of A. aegypti as well as DENV, WNV and YFV sequences. Mutual information statistics was applied to perform bicluster analysis of codon context bias between vector and flaviviral sequences. Functional relevance of the bicluster pattern was inferred from published microarray data. Our study shows that codon context bias of DENV, WNV and YFV sequences varies in a bicluster manner with that of specific sets of genes of A. aegypti. Many of these mosquito genes are known to be differentially expressed in response to flaviviral infection suggesting that codon context sequences of A. aegypti and the flaviviruses may play a role in the susceptible interaction between flaviviruses and this mosquito. The bias inusages of codon context sequences likely has a functional association with susceptibility of A. aegypti to flaviviral infection. The results from this study will allow us to conduct hypothesis driven tests to examine the role of codon contexts bias in evolution of vector-virus interactions at the molecular level. PMID:24838953

  13. Coordinated changes in JH biosynthesis and JH hemolymph titers in Aedes aegypti mosquitoes

    PubMed Central

    Hernández-Martínez, Salvador; Rivera-Perez, Crisalejandra; Nouzova, Marcela; Noriega, Fernando G.

    2014-01-01

    Juvenile hormone III (JH) is synthesized by the corpora allata (CA) and plays a key role in mosquito development and reproduction. A decrease in JH titer during the last instar larvae allows pupation and metamorphosis to proceed. As the anti-metamorphic role of JH comes to an end, the CA of the late pupa once again synthesizes JH, which plays an essential role in orchestrating reproductive maturation. In spite of the importance of Aedes aegypti as a vector, a detailed study of the changes of JH hemolymph titers during the gonotrophic cycle has never been performed. In the present studies, using a High Performance Liquid Chromatography coupled to a Fluorescent Detector (HPLC-FD) method, we measured changes in JH levels in the hemolymph of female mosquitoes during the pupal and adult stages. Our results revealed tightly concomitant changes in JH biosynthesis and JH hemolymph titers during the gonotrophic cycle of female mosquito. Feeding high sugar diets resulted in an increase of JH titers, and mating also modified JH titers in hemolymph. In addition these studies confirmed that JH titer in mosquitoes is fundamentally determined by the rate of biosynthesis in the CA. PMID:25445664

  14. Insecticidal and repellent activity of Clausena dentata (Rutaceae) plant extracts against Aedes aegypti and Culex quinquefasciatus mosquitoes (Diptera: Culicidae).

    PubMed

    Ramkumar, Govindaraju; Karthi, Sengodan; Muthusamy, Ranganathan; Natarajan, Devarajan; Shivakumar, Muthugounder Subramanian

    2015-03-01

    Mosquito control is facing a threat due to the emergence of resistance to synthetic insecticides. Insecticides of botanical origin may serve as suitable alternative biocontrol agents. The present study is to evaluate adulticidal activity of Clausena dentata plant extract against Aedes aegypti and Culex quinquefasciatus mosquitoes. The adult mortality was observed after 24 h of exposure. The highest mortality was found in acetone extracts against Ae. aegypti and Cx. quinquefasciatus with the LC50 and LC90 4.1783 mg/ml (3.8201-7.1026), 9.3884 mg/ml (7. 8258-13.1820) and 4.2451 mg/ml (3.8547-8.0254), 12.3214 mg/ml (10.9287-16.2220), respectively. Smoke toxicity was observed at 10-min interval for 40 min, and the mortality data were recorded. Result shows that Ae. aegypti and Cx. quinquefasciatus are 85 ± 2 and 89 ± 1.5, respectively. A mortality of 100 % was recorded in the commercial mosquito control. These results suggest that the leaf extracts of C. dentata have a potential to be used as an ideal eco-friendly approach for the control of mosquitoes. PMID:25573693

  15. Human impacts have shaped historical and recent evolution in Aedes aegypti, the dengue and yellow fever mosquito

    PubMed Central

    Brown, Julia E.; Evans, Benjamin R.; Zheng, Wei; Obas, Vanessa; Barrera-Martinez, Laura; Egizi, Andrea; Zhao, Hongyu; Caccone, Adalgisa; Powell, Jeffrey R.

    2013-01-01

    Though anthropogenic impacts are often considered harmful to species, human modifications to the landscape can actually create novel niches to which other species can adapt. These “domestication” processes are especially important in the context of arthropod disease vectors, where ecological overlap of vector and human populations may lead to epidemics. Here, we present results of a global genetic study of one such species, the dengue and yellow fever mosquito, Aedes aegypti, whose evolutionary history and current distribution have been profoundly shaped by humans. We used DNA sequences of four nuclear genes and 1504 SNP markers developed with RAD-tag sequencing to test the hypothesis that Ae. aegypti originated in Africa, where a domestic form arose and spread throughout the tropical and subtropical world with human trade and movement. Results confirmed African ancestry of the species, and supported a single subspeciation event leading to the pantropical domestic form. Additionally, genetic data strongly supported the hypothesis that human trade routes first moved domestic Ae. aegypti out of Africa into the New World, followed by a later invasion from the New World into Southeast Asia and the Pacific. These patterns of domestication and invasion are relevant to many species worldwide, as anthropogenic forces increasingly impact evolutionary processes. PMID:24111703

  16. Human impacts have shaped historical and recent evolution in Aedes aegypti, the dengue and yellow fever mosquito.

    PubMed

    Brown, Julia E; Evans, Benjamin R; Zheng, Wei; Obas, Vanessa; Barrera-Martinez, Laura; Egizi, Andrea; Zhao, Hongyu; Caccone, Adalgisa; Powell, Jeffrey R

    2014-02-01

    Although anthropogenic impacts are often considered harmful to species, human modifications to the landscape can actually create novel niches to which other species can adapt. These "domestication" processes are especially important in the context of arthropod disease vectors, where ecological overlap of vector and human populations may lead to epidemics. Here, we present results of a global genetic study of one such species, the dengue and yellow fever mosquito, Aedes aegypti, whose evolutionary history and current distribution have been profoundly shaped by humans. We used DNA sequences of four nuclear genes and 1504 single nucleotide polymorphism (SNP) markers developed with restriction-site associated DNA (RAD) sequencing to test the hypothesis that Ae. aegypti originated in Africa, where a domestic form arose and spread throughout the tropical and subtropical world with human trade and movement. Results confirmed African ancestry of the species, and supported a single subspeciation event leading to the pantropical domestic form. In addition, genetic data strongly supported the hypothesis that human trade routes first moved domestic Ae. aegypti out of Africa into the New World, followed by a later invasion from the New World into Southeast Asia and the Pacific. These patterns of domestication and invasion are relevant to many species worldwide, as anthropogenic forces increasingly impact evolutionary processes. PMID:24111703

  17. Repellency of essential oils extracted from Thai native plants against Aedes aegypti (Linn.) and Culex quinquefasciatus (Say).

    PubMed

    Phukerd, Ubol; Soonwera, Mayura

    2014-09-01

    Repellent activity of essential oils derived from 10 Thai native plants, belonging to three families were evaluated against female Aedes aegypti and Culex quinquefasciatus and to compare them with a commercial chemical repellents (DEET; N,N-diethyl-3-methylbenzamide 20% w/w; Sketolene Shield). Each test repellent was applied at 1, 5, and 10% concentrations for testing by arm in cage method. The results showed significant differences in repellency among the repellents by mosquito species. The protection time of the essential oils against Ae. aegypti ranged from 3 to 30 min. According to the Culex mosquito, it showed the protection time ranged from 3 to 260 min. 10 % Boesenbergia rotunda essential oil provided the best efficiency, in which protection time was 4.3 h as equal as DEET. The essential oils which exhibited protection time more than 2 h were those of 10% Zingiber zerumbet, Litsea petiolata, Curcuma zedoaria, and Zingiber cassumunar essential oils (3.1, 2.8, 2.6, and 2.3 h, respectively). The biting percentage ranged from 0.9 to 18.0% and 0.8 to 3.6% against Ae. aegypti and Cx. quinquefasciatus, respectively. The results revealed that the potential of essential oil extracted from B. rotunda, Z. zerumbet, L. petiolata, C. zedoaria, and Z. cassumunar had attributes of good repellent and deterred biting. We recommend the five essential oils for further study to develop as commercial repellents. PMID:25088471

  18. Effects of temperature on the life cycle, expansion, and dispersion of Aedes aegypti (Diptera: Culicidae) in three cities in Paraiba, Brazil.

    PubMed

    Marinho, Rafael A; Beserra, Eduardo B; Bezerra-Gusmão, Maria A; Porto, Valbia de S; Olinda, Ricardo A; Dos Santos, Carlos A C

    2016-06-01

    The mosquito Aedes aegypti is the primary vector of dengue and is common throughout tropical and subtropical regions. Its distribution is modulated by environmental factors, such as temperature. This study aimed to evaluate the influence of temperature on the life cycle and expansion of Ae. aegypti populations in the cities of Campina Grande, João Pessoa, and Patos. Samples of Ae. aegypti were collected in the three cities and raised in the laboratory. We assessed the life cycles of the three Ae. aegypti populations under six constant temperatures (16, 22, 28, 33, 36, and 39°C), selected on the basis of historical temperature tendencies of each city. We also used existing climate data to calculate projected temperature increases for all three areas. Our results suggest that Campina Grande, João Pessoa, and Patos will experience, respectively, maximum temperature increases of 0.030°C/year, 0.069°C/year, and 0.061°C/year, and minimum temperature increases of 0.019°C/year, -0.047°C/year, and -0.086°C/year. These projected increases will result in temperatures favorable to the Ae. aegypti life cycle, causing rapid population growth. Therefore, Ae. aegypti populations are likely to expand in the mesoregions represented by these cities. PMID:27232118

  19. Septic tanks as larval habitats for the mosquitoes Aedes aegypti and Culex quinquefasciatus in Playa-Playita, Puerto Rico.

    PubMed

    Burke, R; Barrera, R; Lewis, M; Kluchinsky, T; Claborn, D

    2010-06-01

    Adult Aedes aegypti (Linnaeus) (Diptera: Culicidae) were previously recovered from emergence traps on septic tanks in southeastern Puerto Rico. In this study we quantified immature mosquito abundance and its relationship with structural variables of the septic tanks and chemical properties of the water containing raw sewage. A miniaturized floating funnel trap was used to sample 89 septic tanks for larvae in the Puerto Rican community of Playa-Playita. Aedes aegypti larvae were recovered from 18% of the sampled tanks (10.3 larvae per septic tank per day). Larval presence was positively associated with cracking of the septic tank walls and uncovered access ports. Larval abundance was positively associated with cracking of the septic tank walls and larger tank surface areas, and inversely associated with the total dissolved solids (TDS). Culex quinquefasciatus (Say) larvae were also recovered from 74% of the septic tanks (129.6 larvae per septic tank per day). Larval presence was negatively associated with TDS in the water and larval abundance was positively associated with cracking of the septic tank walls. A screened, plastic emergence trap was used to sample 93 septic tanks within the community for Ae. aegypti and Cx. quinquefasciatus adults. Aedes aegypti adults were recovered from 49% of the sampled tanks (8.7 adults per septic tank per day) and Cx. quinquefasciatus adults were recovered from 97% of the sampled tanks (155.5 adults per septic tank per day). Aedes aegypti adult presence was positively associated with cracking, uncapped openings and septic water pH. The Ae. aegypti adult counts were positively associated with cracking and inversely associated with TDS and conductivity. This study marks the first published record of the recovery of Ae. aegypti larvae from holding tanks containing raw sewage in the Caribbean region. Our study indicates that Ae. aegypti larvae are present in sewage water and that septic tanks have at least the potential to maintain

  20. Mariner transposition and transformation of the yellow fever mosquito, Aedes aegypti.

    PubMed

    Coates, C J; Jasinskiene, N; Miyashiro, L; James, A A

    1998-03-31

    The mariner transposable element is capable of interplasmid transposition in the embryonic soma of the yellow fever mosquito, Aedes aegypti. To determine if this demonstrated mobility could be utilized to genetically transform the mosquito, a modified mariner element marked with a wild-type allele of the Drosophila melanogaster cinnabar gene was microinjected into embryos of a kynurenine hydroxylase-deficient, white-eyed recipient strain. Three of 69 fertile male founders resulting from the microinjected embryos produced families with colored-eyed progeny individuals, a transformation rate of 4%. The transgene-mediated complementation of eye color was observed to segregate in a Mendelian manner, although one insertion segregates with the recessive allele (female-determining) of the sex-determining locus, and a separate insertion is homozygous lethal. Molecular analysis of selected transformed families demonstrated that a single complete copy of the construct had integrated independently in each case and that it had done so in a transposase-mediated manner. The availability of a mariner transformation system greatly enhances our ability to study and manipulate this important vector species. PMID:9520438

  1. Large diurnal temperature fluctuations negatively influence Aedes aegypti (Diptera: Culicidae) life-history traits.

    PubMed

    Carrington, Lauren B; Seifert, Stephanie N; Willits, Neil H; Lambrechts, Louis; Scott, Thomas W

    2013-01-01

    Seasonal variation in dengue virus transmission in northwestern Thailand is inversely related to the magnitude of diurnal temperature fluctuations, although mean temperature does not vary significantly across seasons. We tested the hypothesis that diurnal temperature fluctuations negatively influence epidemiologically important life-history traits of the primary dengue vector, Aedes aegypti (L.), compared with a constant 26 degrees C temperature. A large diurnal temperature range (DTR) (approximately equals 18 degrees C daily swing) extended immature development time (>1 d), lowered larval survival (approximately equals 6%), and reduced adult female reproductive output by 25% 14 d after blood feeding, relative to the constant 26 degreesC temperature. A small DTR (approximately equal 8 degrees C daily swing) led to a negligible or slightly positive effect on the life history traits tested. Our results indicate that there is a negative impact of large DTR on mosquito biology and are consistent with the hypothesis that, in at least some locations, large temperature fluctuations contribute to seasonal reduction in dengue virus transmission. PMID:23427651

  2. Indirect effects of cigarette butt waste on the dengue vector Aedes aegypti (Diptera: Culicidae).

    PubMed

    Dieng, Hamady; Rajasaygar, Sudha; Ahmad, Abu Hassan; Rawi, Che Salmah Md; Ahmad, Hamdan; Satho, Tomomitsu; Miake, Fumio; Zuharah, Wan Fatma; Fukumitsu, Yuki; Saad, Ahmad Ramli; Abdul Hamid, Suhaila; Vargas, Ronald Enrique Morales; Ab Majid, Abdul Hafiz; Fadzly, Nik; Abu Kassim, Nur Faeza; Hashim, Nur Aida; Abd Ghani, Idris; Abang, Fatimah Bt; AbuBakar, Sazaly

    2014-02-01

    Despite major insecticide-based vector control programs, dengue continues to be a major threat to public health in urban areas. The reasons for this failure include the emergence of insecticide resistance and the narrowing of the spectrum of efficient products. Cigarette butts (CBs), the most commonly discarded piece of waste, also represent a major health hazard to human and animal life. CBs are impregnated with thousands of chemical compounds, many of which are highly toxic and none of which has history of resistance in mosquitoes. This study was performed to examine whether exposure to CB alters various biological parameters of parents and their progeny. We examined whether the mosquito changes its ovipositional behaviors, egg hatching, reproductive capacity, longevity and fecundity in response to CB exposure at three different concentrations. Females tended to prefer microcosms containing CBs for egg deposition than those with water only. There were equivalent rates of eclosion success among larvae from eggs that matured in CB and water environments. We also observed decreased life span among adults that survived CB exposure. Extracts of CB waste have detrimental effects on the fecundity and longevity of its offspring, while being attractive to its gravid females. These results altogether indicate that CB waste indirectly affect key adult life traits of Aedes aegypti and could conceivably be developed as a novel dengue vector control strategy, referring to previously documented direct toxicity on the larval stage. But this will require further research on CB waste effects on non-target organisms including humans. PMID:24239749

  3. Effects of Croton rhamnifolioides essential oil on Aedes aegypti oviposition, larval toxicity and trypsin activity.

    PubMed

    Santos, Geanne K N; Dutra, Kamilla A; Lira, Camila S; Lima, Bheatriz N; Napoleão, Thiago H; Paiva, Patrícia M G; Maranhão, Claudia A; Brandão, Sofia S F; Navarro, Daniela M A F

    2014-01-01

    Although numerous reports are available concerning the larvicidal potential of essential oils, very few investigations have focused on their mechanisms of action. In the present study, we have investigated the chemical composition of the leaf oil of Croton rhamnifolioides during storage and its effects on oviposition and survival of larvae of the dengue fever mosquito Aedes aegypti. In addition, we have established a possible mechanism of action for the larvicidal activity of the essential oil. GC-MS analyses revealed marked differences in the composition of oil that had been freshly isolated and that of a sample that had been stored in a sealed amber-glass vial under refrigeration for three years. However, both fresh and stored oil exhibited substantial larvicidal activities with LC50 values of 122.35 and 89.03 ppm, respectively, and oviposition deterrent effects against gravid females at concentrations of 50 and 100 µg·mL-1. These results demonstrate that the larvicidal effect of the essential oil was unchanged during three years of storage even though its chemical composition altered. Hence, the essential oil could be used in the preparation of commercial products. In addition, we observed that the trypsin-like activity of mosquito larvae was inhibited in vitro by the essential oil of C. rhamnifolioides, suggesting that the larvicidal effect may be associated with inhibition of this enzyme. PMID:25317582

  4. Sensitivity of Aedes aegypti adults (Diptera: Culicidae) to the vapors of Eucalyptus essential oils.

    PubMed

    Lucia, Alejandro; Licastro, Susana; Zerba, Eduardo; Gonzalez Audino, Paola; Masuh, Hector

    2009-12-01

    Vapors of essential oils extracted from various species of Eucalyptus (E. gunnii, E. tereticornis, E. grandis, E. camaldulensis, E. dunnii, E. cinerea, E. saligna, E. sideroxylon, E. globulus ssp. globulus, E. globulus ssp. maidenii, E. viminalis and the hybrids E. grandisxE. tereticornis and E. grandisxE. camaldulensis) and their major components were found to be toxic to Aedes aegypti adults, the yellow fever mosquito. An aliquot of each oil was placed in a cylindrical test chamber and the number of knocked-down mosquitoes was recorded as function of time. Knockdown time 50% was then calculated. Results showed that E. viminalis had the fastest knockdown time at of 4.2 min, on the same order as dichlorvos, a standard knockdown agent. A correlation was observed between the content of 1,8-cineole in the Eucalyptus essential oils and the corresponding toxic effect. The correlation between KT(50) values and calculated vapor pressures of the essential oil components showed that the fumigant activity of simple organic compounds in insects is correlated with their volatility. PMID:19592238

  5. Structure of hermes integrations in the germline of the yellow fever mosquito, Aedes aegypti.

    PubMed

    Jasinskiene, N; Coates, C J; James, A A

    2000-02-01

    The Hermes transposable element is derived from the house fly, Musca domestica, and can incorporate into the germline of the yellow fever mosquito, Aedes aegypti. Preliminary Southern analyses indicated that Hermes integrated along with the marker gene into the mosquito genomic DNA. Here we show that Hermes integrations are accompanied by the integration of the donor plasmid as well. In addition, breaks in the donor plasmid DNAs do not occur precisely, or at the end of the terminal inverted repeats, and are accompanied by small deletions in the plasmids. Furthermore, integrations do not cause the typical 8-bp duplications of the target site DNA. No integrations are observed in the absence of a source of Hermes transposase. The Hermes transposase clearly did not catalyse precise cut-and-paste transposition in these transformed lines. It may have integrated the transposon through general recombination or through a partial replicative transposition mechanism. The imprecision of Hermes integration may result from interactions of the transposase with an endogenous hAT-like element in the mosquito genome. PMID:10672066

  6. Further insecticidal activities of essential oils from Lippia sidoides and Croton species against Aedes aegypti L.

    PubMed

    de Lima, Glauber Pacelli Gomes; de Souza, Terezinha Maria; de Paula Freire, Gabrielle; Farias, Davi Felipe; Cunha, Arcelina Pacheco; Ricardo, Nágila Maria Pontes Silva; de Morais, Selene Maia; Carvalho, Ana Fontenele Urano

    2013-05-01

    This study assessed new insecticidal activities of essential oils from Lippia sidoides and Croton species (Croton zehntneri, Croton nepetaefolius, Croton argyrophylloides, and Croton sonderianus) against Aedes aegypti mosquito. In addition, the acute toxicity upon mice was determined. All essential oils showed inhibition of egg hatching, with IC50 values ranging from 66.4 to 143.2 μg mL(-1), larvicidal activity with LC50 ranging from 25.5 to 94.6 μg mL(-1), and pupicidal action with PC50 ranging from 276.8 to over 500 μg mL(-1). Only L. sidoides, C. zehntneri, and C. argyrophylloides essential oils were able to inhibit the oviposition of female gravid mosquitoes with OD50 values of 35.3, 45.3, and 45.8 μg mL(-1), respectively. Oral acute toxicity in mice showed that C. sonderianus and C. argyrophylloides oils are nontoxic (LD50 > 6,000 mg.kg(-1)) while C. nepetaefolius, C. zehntneri, and L. sidoides oils are moderately toxic (LD50 3,840; 3,464, and 2,624 mg.kg(-1), respectively). The results indicate that these oils are promising sources of bioactive compounds, showing low or no toxicity to mammals. PMID:23435925

  7. Spatial analysis of Aedes aegypti immatures in Northern Argentina: clusters and temporal instability.

    PubMed

    Garelli, Fernando M; Espinosa, Manuel O; Gürtler, Ricardo E

    2013-12-01

    The objective of this study was to analyze the spatio-temporal patterns of Aedes aegypti immatures based on four entomological surveys that inspected over 6000 households in a large neighborhood of the city of Clorinda between 2007 and 2008. Global and local spatial point pattern analyses of immature presence or absence, habitat quality (estimated using a previously obtained statistical model) and pupal production were performed. Global analyses showed aggregation of both infestation and habitat quality up to 10 times bigger than previously described, ranging from 150 to 400m between surveys. Pupal production was also clustered but at smaller scales than infestation presence/absence. The location of the clusters was temporally unstable between surveys. There was no spatial structure related to the control strategy; lots treated with temephos and lots uninspected (i.e., closed or refusing) were randomly distributed. These results suggest a combination of exogenous (the aggregation of better quality habitats) and endogenous (dispersal) processes explaining the observed patterns of larger-scale infestation. A spatial targeting strategy at the neighborhood scale would not be as cost-effective in Clorinda as in other sites where stable smaller-scale clusters permit the identification of key premises. PMID:23911331

  8. [Cross resistance to pyrethroids in Aedes aegypti from Cuba induced by the selection with organophosphate malathion].

    PubMed

    Rodríguez, María Magdalena; Bisset, Juan A; Díaz, Cristina; Soca, Lázaro A

    2003-01-01

    A strain from Aedes aegypti (L) collected in the municipality of Santiago de Cuba with low levels of resistance to malathion (1.79x) was subjected to selection pressure aimed at evaluating the evolution of the resistance to this organophosphate and its usefulness for control. After 5 generations of selection (SAN-F5) with malathion, it was not possible to increase the resistance and it was obtained a value of resistance factor (FR50) of 2.22x. None or little cross resistance to the following organophosphate insecticides was observed: fenthion, temephos and fenitrotion; however, it was found an elevated cross resistance to deltamethrin pyrethroid, with a value of 287.5x in the third generation of selection. It was also observed cross resistance to other pyrethroids (lambda-cyhalothrin, cypermethrin and ciflutrine). The mechansim of elevated esterases did not generate resistance to pyrethroids, which was corroborated through inhibition gel studies and through the calculation of the frequency in microtitering plaques. Nevertheless, there was an increase in the frequency of the glutathione-s-transferase mechanism from 0.049 in Santiago de Cuba to 0.42 in SAN-F5, which may be associated with the resistance to pyrethroids. The cross resistance to pyrethroids, mainly to deltamethrin, resulting from the selection with malathion may limit the use of these insecticides in the control unless a good strategy for their use is laid down. PMID:15849966

  9. Limited Specificity in the Injury and Infection Priming against Bacteria in Aedes aegypti Mosquitoes

    PubMed Central

    Vargas, Valeria; Moreno-García, Miguel; Duarte-Elguea, Erika; Lanz-Mendoza, Humberto

    2016-01-01

    Injury and infection priming has been observed in several insect groups, reported as host immune protection against contact with a pathogen caused by a previous infection with the same. However, the specific response against a pathogen has not been demonstrated in all insect species. Investigating the specific priming response in insects is important because their immune strategies probably reflect particular selective pressures exerted by different pathogens. Here, we determined whether previous infection of Aedes aegypti would enhance survival and/or lead to greater and specific AMP expression after a second exposure to the same or a distinct bacterium. Mosquitoes previously immunized with a low dose of Escherichia coli, but not Staphylococcus aureus, showed increased survival. Although the host protection herein demonstrated was not specific, each bacterium elicited differential AMP expression. These results can be explained by the susceptible-primed-infected (SPI) epidemiological model, which poses that in the evolution of memory-like responses (priming), a pivotal role is played by pathogen virulence, associated host damage, and the host capacity of pathogen recognition. PMID:27446016

  10. Studies on repellent activity of seed oils alone and in combination on mosquito, Aedes aegypti.

    PubMed

    Mukesh, Y; Savitri, P; Kaushik, R; Singh, N P

    2014-09-01

    The study was undertaken to investigate the relative repellency of Pongamia pinnata and Azadirachta indica seed oils on vector mosquito, Aedes aegypti under laboratory conditions. The repellents were formulated into 3 groups: seed oils, their mixture and combination of seed oils with three carrier oils viz. olive, mustard and coconut oil. Different formulations of each oil were tested at the concentrations of 1% and 5% on human baits. Efficiency was assessed, based on the total protection time; biting rate and percent protection provided by each formulation. Results showed that 5% formulation of the Pongamia pinnata and Azadirachta indica seed oils, mixed in 1:1 ratio exhibited highest percentage repellency of 85%, protection time of 300 min and bite rate of 6%. 5% concentration of A. indica and P. pinnata seed oil in mustard oil base offered 86.36% and 85% protection respectively with total protection time of 230 and 240 min respectively. The study confirms that Azadirachta indica and Pongamia pinnata have mosquito-repellent potential. When mixed in different ratios or with some carrier oil their efficacy increases 2-fold in some cases. These formulations are very promising for topical use (> 5 hrs complete protection) and are comparable to the protection provided by advanced Odomos mosquito repellent cream available commercially and thus are recommended for field trial. PMID:25204067

  11. Permethrin and dimethyl phthalate as tent fabric treatments against Aedes aegypti.

    PubMed

    Schreck, C E

    1991-12-01

    Tests were conducted to determine the persistence of compounds applied to tents to protect against mosquitoes. Interiors of 2 camping tents were treated by the manufacturer--one with the repellent dimethyl phthalate (DMP) and one with the insecticide permethrin. A third tent was untreated. Tents were set up outdoors and exposed to weathering for one year. Weekly tests were conducted by releasing Aedes aegypti into the tents, then recording knockdown (KD) and biting behavior during a 3-h period. Weather data were collected 24 h/day during the study. Year-long mean KD of mosquitoes exposed in the tent to permethrin was 58.6%, to DMP 2.7% and the control 0.9%. Mean biting was 11.9, 43.8 and 58%, respectively. Under constant exposure to weathering, the permethrin-treated tent gave best results with average protection from bites greater than 96% for 9 months (DMP was less than 31%). Although preliminary, the data suggest permethrin would be effective as a tent treatment to reduce annoyance of mosquitoes. PMID:1787396

  12. Ovary ecdysteroidogenic hormone requires a receptor tyrosine kinase to activate egg formation in the mosquito Aedes aegypti.

    PubMed

    Vogel, Kevin J; Brown, Mark R; Strand, Michael R

    2015-04-21

    Mosquitoes are major disease vectors because most species must feed on blood from a vertebrate host to produce eggs. Blood feeding by the vector mosquito Aedes aegypti triggers the release of two neurohormones, ovary ecdysteroidogenic hormone (OEH) and insulin-like peptides (ILPs), which activate multiple processes required for egg formation. ILPs function by binding to the insulin receptor, which activates downstream components in the canonical insulin signaling pathway. OEH in contrast belongs to a neuropeptide family called neuroparsins, whose receptor is unknown. Here we demonstrate that a previously orphanized receptor tyrosine kinase (RTK) from A. aegypti encoded by the gene AAEL001915 is an OEH receptor. Phylogenetic studies indicated that the protein encoded by this gene, designated AAEL001915, belongs to a clade of RTKs related to the insulin receptor, which are distinguished by an extracellular Venus flytrap module. Knockdown of AAEL001915 by RNAi disabled OEH-mediated egg formation in A. aegypti. AAEL001915 was primarily detected in the mosquito ovary in association with follicular epithelial cells. Both monomeric and dimeric AAEL001915 were detected in mosquito ovaries and transfected Drosophila S2 cells. Functional assays further indicated that OEH bound to dimeric AAEL001915, which resulted in downstream phosphorylation of Ak strain transforming factor (Akt). We hypothesize that orthologs of AAEL001915 in other insects are neuroparsin receptors. PMID:25848040

  13. Role of UPR Pathway in Defense Response of Aedes aegypti against Cry11Aa Toxin from Bacillus thuringiensis

    PubMed Central

    Bedoya-Pérez, Leidy P.; Cancino-Rodezno, Angeles; Flores-Escobar, Biviana; Soberón, Mario; Bravo, Alejandra

    2013-01-01

    The insecticidal Cry toxins are pore-forming toxins produced by the bacteria Bacillus thuringiensis that disrupt insect-midgut cells. Cells can trigger different survival mechanisms to counteract the effects of sub-lytic doses of pore forming toxins. Particularly, two signaling pathways have been demonstrated to play a role in the defense mechanism to other toxins in Caenorhabditis elegans and in mammalian cells. These are the unfolded protein response (UPR) and the sterol regulatory element binding proteins (SREBP) pathways, which are proposed to facilitate membrane repair responses. In this work we analyzed the role of these pathways in Aedes aegypti response to intoxication with Cry11Aa toxin. We show that UPR is activated upon toxin ingestion. The role of these two pathways was analyzed in vivo by using RNA interference. We silenced the expression of specific proteins in A. aegypti larvae. Gene silencing of Ire-1 and Xbp-1 proteins from UPR system, resulted in hypersensitive to Cry11Aa toxin action. In contrast, silencing of Cas-1, Scap and S2P from SREBP pathway had no affect on Cry11Aa toxicity in A. aegypti larvae. However, the role of SREBP pathway requires further studies to be conclusive. Our data indicate that the UPR pathway is involved in the insect defense against Cry toxins. PMID:23594997

  14. Ovicidal and Oviposition Deterrent Activities of Medicinal Plant Extracts Against Aedes aegypti L. and Culex quinquefasciatus Say Mosquitoes (Diptera: Culicidae)

    PubMed Central

    Reegan, Appadurai Daniel; Gandhi, Munusamy Rajiv; Paulraj, Micheal Gabriel; Ignacimuthu, Savarimuthu

    2014-01-01

    Objectives To evaluate the ovicidal and oviposition deterrent activities of five medicinal plant extracts namely Aegle marmelos (Linn.), Limonia acidissima (Linn.), Sphaeranthus indicus (Linn.), Sphaeranthus amaranthoides (burm.f), and Chromolaena odorata (Linn.) against Culex quinquefasciatus and Aedes aegypti mosquitoes. Three solvents, namely hexane, ethyl acetate, and methanol, were used for the preparation of extracts from each plant. Methods Four different concentrations—62.5 parts per million (ppm), 125 ppm, 250 ppm, and 500 ppm—were prepared using acetone and tested for ovicidal and oviposition deterrent activities. One-way analysis of variance (ANOVA) was used to determine the significance of the treatments and means were separated by Tukey's test of comparison. Results Among the different extracts of the five plants screened, the hexane extract of L. acidissima recorded the highest ovicidal activity of 79.2% and 60% at 500 ppm concentration against the eggs of Cx. quinquefasciatus and Ae. aegypti, respectively. Similarly, the same hexane extract of L. acidissima showed 100% oviposition deterrent activity at all the tested concentrations against Cx. quinquefasciatus and Ae. aegypti adult females. Conclusion It is concluded that the hexane extract of L. acidissima could be used in an integrated mosquito management program. PMID:25737834

  15. Ovary ecdysteroidogenic hormone requires a receptor tyrosine kinase to activate egg formation in the mosquito Aedes aegypti

    PubMed Central

    Vogel, Kevin J.; Brown, Mark R.; Strand, Michael R.

    2015-01-01

    Mosquitoes are major disease vectors because most species must feed on blood from a vertebrate host to produce eggs. Blood feeding by the vector mosquito Aedes aegypti triggers the release of two neurohormones, ovary ecdysteroidogenic hormone (OEH) and insulin-like peptides (ILPs), which activate multiple processes required for egg formation. ILPs function by binding to the insulin receptor, which activates downstream components in the canonical insulin signaling pathway. OEH in contrast belongs to a neuropeptide family called neuroparsins, whose receptor is unknown. Here we demonstrate that a previously orphanized receptor tyrosine kinase (RTK) from A. aegypti encoded by the gene AAEL001915 is an OEH receptor. Phylogenetic studies indicated that the protein encoded by this gene, designated AAEL001915, belongs to a clade of RTKs related to the insulin receptor, which are distinguished by an extracellular Venus flytrap module. Knockdown of AAEL001915 by RNAi disabled OEH-mediated egg formation in A. aegypti. AAEL001915 was primarily detected in the mosquito ovary in association with follicular epithelial cells. Both monomeric and dimeric AAEL001915 were detected in mosquito ovaries and transfected Drosophila S2 cells. Functional assays further indicated that OEH bound to dimeric AAEL001915, which resulted in downstream phosphorylation of Ak strain transforming factor (Akt). We hypothesize that orthologs of AAEL001915 in other insects are neuroparsin receptors. PMID:25848040

  16. Semi-Field Evaluation of Metofluthrin-Impregnated Nets on Host-Seeking Aedes aegypti and Anopheles dirus.

    PubMed

    Ponlawat, Alongkot; Kankaew, Prasan; Chanaimongkol, Somporn; Pongsiri, Arissara; Richardson, Jason H; Evans, Brian P

    2016-06-01

    The efficacy of a metofluthrin-impregnated net (MIN) known as the "Mushikonazu" on the house entry behavior of female Aedes aegypti and Anopheles dirus mosquitoes was evaluated using a semi-field 50-m tunnel setup. While the MIN is labeled for the control of chironomids and moth flies, this study determined the feasibility of using the device, given its current construction and metofluthrin formulation, as a spatial repellent against mosquitoes. Sentinel and cone bioassays were used to determine the insecticidal effect of the MIN. A spatial activity index (SAI) was calculated to evaluate responses of the mosquitoes. For the spatial repellent evaluation against Ae. aegypti, the overall mean of SAI was slightly less than 0 at wk 1 after the MIN application and then decreased for the last 4 wk showing a preference to treatment tent. For An. dirus, the mean SAI at wk 1 was positive, indicating a presumed repellent effect of the MIN against An. dirus. For the subsequent 4 wk, the SAI was negative, indicating a preference for the MIN. Results suggested that the MIN may not be a promising approach to repel Ae. aegypti and An. dirus under field conditions in Thailand. However, it remains probable that the MIN may be effective as a spatial repellent if modifications are made to the metofluthrin concentration or formulation and/or the construction of the device. PMID:27280351

  17. Expression profiling and comparative analyses of seven midgut serine proteases from the yellow fever mosquito, Aedes aegypti

    PubMed Central

    Brackney, Doug E.; Isoe, Jun; Black, W.C.; Zamora, Jorge; Foy, Brian D.; Miesfeld, Roger L.; Olson, Ken E.

    2010-01-01

    Aedes aegypti utilizes blood for energy production, egg maturation and replenishment of maternal reserves. The principle midgut enzymes responsible for bloodmeal digestion are endoproteolytic serine-type proteases within the S1.A subfamily. While there are hundreds of serine protease-like genes in the A. aegypti genome, only five are known to be expressed in the midgut. We describe the cloning, sequencing and expression profiling of seven additional serine proteases and provide a genomic and phylogenetic assessment of these findings. Of the seven genes, four are constitutively expressed and three are transcriptionally induced upon blood feeding. The amount of transcriptional induction is strongly correlated among these genes. Alignments reveal that, in general, the conserved catalytic triad, active site and accessory catalytic residues are maintained in these genes and phylogenetic analysis shows that these genes fall within three distinct clades; trypsins, chymotrypsins and serine collagenases. Interestingly, a previously described trypsin consistently arose with other serine collagenases in phylogenetic analyses. These results suggest that multiple gene duplications have arisen within the S1.A subfamily of midgut serine proteases and/or that A. aegypti has evolved an array of proteases with a broad range of substrate specificities for rapid, efficient digestion of bloodmeals. PMID:20100490

  18. Evaluation of contact irritant and spatial repellent behavioral responses of male Aedes aegypti to vector control compounds.

    PubMed

    Said, Sukhaynah H; Grieco, John P; Achee, Nicole L

    2009-12-01

    The objective of this study was to quantify the contact irritant (CI) and spatial repellent (SR) behaviors of male Aedes aegypti upon exposure to standard chemicals currently used for vector control under laboratory conditions. Results indicate that male Ae. aegypti test populations exhibited significant (P < 0.01) escape responses upon contact to varying doses of alphacypermethrin, deltamethrin, permethrin, and DDT. Analysis of data generated from the SR assays indicated that only DDT elicited a significant (P < 0.01) SR response, while alphacypermethrin, deltamethrin, and permethrin elicited no directional movement in the assay system. These findings are consistent with data generated previously using female Ae. aegypti of the same strain. It is hoped that information from this study will be used to stimulate additional research of male vector behavior in response to chemical stimuli. Determining the CI and SR responses of male vectors against chemicals used in current intervention strategies is important in understanding the impact these chemical actions will have on overall vector population dynamics and therefore disease transmission. PMID:20099590

  19. Sialic Acid Expression in the Mosquito Aedes aegypti and Its Possible Role in Dengue Virus-Vector Interactions

    PubMed Central

    Cime-Castillo, Jorge; Delannoy, Philippe; Mendoza-Hernández, Guillermo; Monroy-Martínez, Verónica; Lanz-Mendoza, Humberto; Hernández-Hernández, Fidel de la Cruz; Cabello-Gutiérrez, Carlos; Ruiz-Ordaz, Blanca H.

    2015-01-01

    Dengue fever (DF) is the most prevalent arthropod-borne viral disease which affects humans. DF is caused by the four dengue virus (DENV) serotypes, which are transmitted to the host by the mosquito Aedes aegypti that has key roles in DENV infection, replication, and viral transmission (vector competence). Mosquito saliva also plays an important role during DENV transmission. In this study, we detected the presence of sialic acid (Sia) in Aedes aegypti tissues, which may have an important role during DENV-vector competence. We also identified genome sequences encoding enzymes involved in Sia pathways. The cDNA for Aedes aegypti CMP-Sia synthase (CSAS) was amplified, cloned, and functionally evaluated via the complementation of LEC29.Lec32 CSAS-deficient CHO cells. AedesCSAS-transfected LEC29.Lec32 cells were able to express Sia moieties on the cell surface. Sequences related to α-2,6-sialyltransferase were detected in the Aedes aegypti genome. Likewise, we identified Sia-α-2,6-DENV interactions in different mosquito tissues. In addition, we evaluated the possible role of sialylated molecules in a salivary gland extract during DENV internalization in mammalian cells. The knowledge of early DENV-host interactions could facilitate a better understanding of viral tropism and pathogenesis to allow the development of new strategies for controlling DENV transmission. PMID:25874215

  20. Sialic acid expression in the mosquito Aedes aegypti and its possible role in dengue virus-vector interactions.

    PubMed

    Cime-Castillo, Jorge; Delannoy, Philippe; Mendoza-Hernández, Guillermo; Monroy-Martínez, Verónica; Harduin-Lepers, Anne; Lanz-Mendoza, Humberto; Hernández-Hernández, Fidel de la Cruz; Zenteno, Edgar; Cabello-Gutiérrez, Carlos; Ruiz-Ordaz, Blanca H

    2015-01-01

    Dengue fever (DF) is the most prevalent arthropod-borne viral disease which affects humans. DF is caused by the four dengue virus (DENV) serotypes, which are transmitted to the host by the mosquito Aedes aegypti that has key roles in DENV infection, replication, and viral transmission (vector competence). Mosquito saliva also plays an important role during DENV transmission. In this study, we detected the presence of sialic acid (Sia) in Aedes aegypti tissues, which may have an important role during DENV-vector competence. We also identified genome sequences encoding enzymes involved in Sia pathways. The cDNA for Aedes aegypti CMP-Sia synthase (CSAS) was amplified, cloned, and functionally evaluated via the complementation of LEC29.Lec32 CSAS-deficient CHO cells. AedesCSAS-transfected LEC29.Lec32 cells were able to express Sia moieties on the cell surface. Sequences related to α-2,6-sialyltransferase were detected in the Aedes aegypti genome. Likewise, we identified Sia-α-2,6-DENV interactions in different mosquito tissues. In addition, we evaluated the possible role of sialylated molecules in a salivary gland extract during DENV internalization in mammalian cells. The knowledge of early DENV-host interactions could facilitate a better understanding of viral tropism and pathogenesis to allow the development of new strategies for controlling DENV transmission. PMID:25874215

  1. Vector competence of Aedes aegypti and Aedes vittatus (Diptera: Culicidae) from Senegal and Cape Verde archipelago for West African lineages of chikungunya virus.

    PubMed

    Diagne, Cheikh T; Faye, Oumar; Guerbois, Mathilde; Knight, Rachel; Diallo, Diawo; Faye, Ousmane; Ba, Yamar; Dia, Ibrahima; Faye, Ousmane; Weaver, Scott C; Sall, Amadou A; Diallo, Mawlouth

    2014-09-01

    To assess the risk of emergence of chikungunya virus (CHIKV) in West Africa, vector competence of wild-type, urban, and non-urban Aedes aegypti and Ae. vittatus from Senegal and Cape Verde for CHIKV was investigated. Mosquitoes were fed orally with CHIKV isolates from mosquitoes (ArD30237), bats (CS13-288), and humans (HD180738). After 5, 10, and 15 days of incubation following an infectious blood meal, presence of CHIKV RNA was determined in bodies, legs/wings, and saliva using real-time reverse transcription-polymerase chain reaction. Aedes vittatus showed high susceptibility (50-100%) and early dissemination and transmission of all CHIKV strains tested. Aedes aegypti exhibited infection rates ranging from 0% to 50%. Aedes aegypti from Cape Verde and Kedougou, but not those from Dakar, showed the potential to transmit CHIKV in saliva. Analysis of biology and competence showed relatively high infective survival rates for Ae. vittatus and Ae. aegypti from Cape Verde, suggesting their efficient vector capacity in West Africa. PMID:25002293

  2. CPB1 of Aedes aegypti interacts with DENV2 E protein and regulates intracellular viral accumulation and release from midgut cells.

    PubMed

    Tham, Hong-Wai; Balasubramaniam, Vinod R M T; Tejo, Bimo Ario; Ahmad, Hamdan; Hassan, Sharifah Syed

    2014-12-01

    Aedes aegypti is a principal vector responsible for the transmission of dengue viruses (DENV). To date, vector control remains the key option for dengue disease management. To develop new vector control strategies, a more comprehensive understanding of the biological interactions between DENV and Ae. aegypti is required. In this study, a cDNA library derived from the midgut of female adult Ae. aegypti was used in yeast two-hybrid (Y2H) screenings against DENV2 envelope (E) protein. Among the many interacting proteins identified, carboxypeptidase B1 (CPB1) was selected, and its biological interaction with E protein in Ae. aegypti primary midgut cells was further validated. Our double immunofluorescent assay showed that CPB1-E interaction occurred in the endoplasmic reticulum (ER) of the Ae. aegypti primary midgut cells. Overexpression of CPB1 in mosquito cells resulted in intracellular DENV2 genomic RNA or virus particle accumulation, with a lower amount of virus release. Therefore, we postulated that in Ae. aegypti midgut cells, CPB1 binds to the E protein deposited on the ER intraluminal membranes and inhibits DENV2 RNA encapsulation, thus inhibiting budding from the ER, and may interfere with immature virus transportation to the trans-Golgi network. PMID:25521592

  3. CPB1 of Aedes aegypti Interacts with DENV2 E Protein and Regulates Intracellular Viral Accumulation and Release from Midgut Cells

    PubMed Central

    Tham, Hong-Wai; Balasubramaniam, Vinod R. M. T.; Tejo, Bimo Ario; Ahmad, Hamdan; Hassan, Sharifah Syed

    2014-01-01

    Aedes aegypti is a principal vector responsible for the transmission of dengue viruses (DENV). To date, vector control remains the key option for dengue disease management. To develop new vector control strategies, a more comprehensive understanding of the biological interactions between DENV and Ae. aegypti is required. In this study, a cDNA library derived from the midgut of female adult Ae. aegypti was used in yeast two-hybrid (Y2H) screenings against DENV2 envelope (E) protein. Among the many interacting proteins identified, carboxypeptidase B1 (CPB1) was selected, and its biological interaction with E protein in Ae. aegypti primary midgut cells was further validated. Our double immunofluorescent assay showed that CPB1-E interaction occurred in the endoplasmic reticulum (ER) of the Ae. aegypti primary midgut cells. Overexpression of CPB1 in mosquito cells resulted in intracellular DENV2 genomic RNA or virus particle accumulation, with a lower amount of virus release. Therefore, we postulated that in Ae. aegypti midgut cells, CPB1 binds to the E protein deposited on the ER intraluminal membranes and inhibits DENV2 RNA encapsulation, thus inhibiting budding from the ER, and may interfere with immature virus transportation to the trans-Golgi network. PMID:25521592

  4. A Critical Role of the Nuclear Receptor HR3 in Regulation of Gonadotrophic Cycles of the Mosquito Aedes aegypti

    PubMed Central

    Mane-Padros, Daniel; Cruz, Josefa; Cheng, Andrew; Raikhel, Alexander S.

    2012-01-01

    The orphan nuclear receptor HR3 is essential for developmental switches during insect development and metamorphosis regulated by 20-hydroxyecdysone (20E). Reproduction of female mosquitoes of the major vector of Dengue fever, Aedes aegypti, is cyclic because of its dependence on blood feeding. 20E is an important hormone regulating vitellogenic events in this mosquito; however, any role for HR3 in 20E-driven reproductive events has not been known. Using RNA interference (RNAi) approach, we demonstrated that Aedes HR3 plays a critical role in a timely termination of expression of the vitellogenin (Vg) gene encoding the major yolk protein precursor. It is also important for downregulation of the Target-of-Rapamycin pathway and activation of programmed autophagy in the Aedes fat body at the end of vitellogenesis. HR3 is critical in activating betaFTZ-F1, EcRB and USPA, the expressions of which are highly elevated at the end of vitellogenesis. RNAi depletion of HR3 (iHR3) prior to the first gonadotrophic cycle affects a normal progression of the second gonadotrophic cycle. Most of ovaries 24 h post second blood meal from iHR3 females in the second cycle were small with follicles that were only slightly different in length from of those of resting stage. In addition, these iHR3 females laid a significantly reduced number of eggs per mosquito as compared to those of iMal and the wild type. Our results indicate an important role of HR3 in regulation of 20E-regulated developmental switches during reproductive cycles of A. aegypti females. PMID:23049766

  5. Genetics and Morphology of Aedes aegypti (Diptera: Culicidae) in Septic Tanks in Puerto Rico

    PubMed Central

    SOMERS, GERARD; BROWN, JULIA E.; BARRERA, ROBERTO; POWELL, JEFFREY R.

    2012-01-01

    Dengue viruses, primarily transmitted by the mosquito Aedes aegypti (L.), affect an estimated 50–100 million people yearly. Traditional approaches to control mosquito population numbers, such as the use of pesticides, have had only limited success. Atypical mosquito behavior may be one reason why current vector control efforts have been less efficacious than expected. In Puerto Rico, for example, adult Ae. aegypti have been observed emerging from septic tanks. Interestingly, adults emerging from septic tanks are larger on average than adults collected from surface containers. To determine whether adults colonizing septic tanks constitute a separate Ae. aegypti population, we used 12 previously validated microsatellite loci to examine adult mosquitoes collected from both septic tanks and surface containers, but found no evidence to suggest genetic differentiation. Size differences between septic tank and surface mosquitoes were reduced when nutrient levels were held constant across experimental groups. Despite the absence of evidence suggesting a genetic difference between experimental groups in this study, Ae. aegypti emerging from septic tanks may still represent a more dangerous phenotype and should be given special consideration when developing vector control programs and designing public health interventions in the future. PMID:22238867

  6. Multiple Modes of Action of the Squamocin in the Midgut Cells of Aedes aegypti Larvae.

    PubMed

    da Silva Costa, Marilza; de Paula, Sérgio Oliveira; Martins, Gustavo Ferreira; Zanuncio, José Cola; Santana, Antônio Euzébio Goulart; Serrão, José Eduardo

    2016-01-01

    Annonaceous acetogenins are botanical compounds with good potential for use as insecticides. In the vector, Aedes aegypti (L.) (Diptera: Culicidae), squamocin (acetogenin) has been reported to be a larvicide and cytotoxic, but the modes of action of this molecule are still poorly understood. This study evaluated the changes in the cell morphology, and in the expression of genes, for autophagy (Atg1 and Atg8), for membrane ion transporter V-ATPase, and for water channel aquaporin-4 (Aqp4) in the midgut of A. aegypti larvae exposed to squamocin from Annona mucosa Jacq. (Annonaceae). Squamocin showed cytotoxic action with changes in the midgut epithelium and digestive cells of A. aegypti larvae, increase in the expression for autophagy gene Atg1 and Atg8, decrease in the expression of V-ATPase, decrease in the expression of Aqp4 gene in LC20 and inhibition of Apq4 genes in the midgut of this vector in LC50. These multiple modes of action for squamocin are described for the first time in insects, and they are important because different sites of action of squamocin from A. mucosa may reduce the possibility of resistance of A. aegypti to this molecule. PMID:27532504

  7. TALEN-based gene disruption in the dengue vector Aedes aegypti.

    PubMed

    Aryan, Azadeh; Anderson, Michelle A E; Myles, Kevin M; Adelman, Zach N

    2013-01-01

    In addition to its role as the primary vector for dengue viruses, Aedes aegypti has a long history as a genetic model organism for other bloodfeeding mosquitoes, due to its ease of colonization, maintenance and reproductive productivity. Though its genome has been sequenced, functional characterization of many Ae. aegypti genes, pathways and behaviors has been slow. TALE nucleases (TALENs) have been used with great success in a number of organisms to generate site-specific DNA lesions. We evaluated the ability of a TALEN pair to target the Ae. aegypti kmo gene, whose protein product is essential in the production of eye pigmentation. Following injection into pre-blastoderm embryos, 20-40% of fertile survivors produced kmo alleles that failed to complement an existing kh(w) mutation. Most of these individuals produced more than 20% white-eyed progeny, with some producing up to 75%. Mutant alleles were associated with lesions of 1-7 bp specifically at the selected target site. White-eyed individuals could also be recovered following a blind intercross of G1 progeny, yielding several new white-eyed strains in the genetic background of the sequenced Liverpool strain. We conclude that TALENs are highly active in the Ae. aegypti germline, and have the potential to transform how reverse genetic experiments are performed in this important disease vector. PMID:23555893

  8. Stormwater Drains and Catch Basins as Sources for Production of Aedes aegypti and Culex quinquefasciatus

    PubMed Central

    Arana-Guardia, Roger; Baak-Baak, Carlos M.; Loroño-Pino, María Alba; Machain-Williams, Carlos; Beaty, Barry J.; Eisen, Lars; García-Rejón, Julián E.

    2014-01-01

    We present data showing that structures serving as drains and catch basins for stormwater are important sources for production of the mosquito arbovirus vectors Aedes aegypti and Culex quinquefasciatus in Mérida City, México. We examined 1,761 stormwater drains – located in 45 different neighborhoods spread across the city – over dry and wet seasons from March 2012–March 2013. Of the examined stormwater drains, 262 (14.9%) held water at the time they were examined and 123 yielded mosquito immatures. In total, we collected 64,560 immatures representing nine species. The most commonly encountered species were Cx. quinquefasciatus (n=39,269) and Ae. aegypti (n=23,313). Ae. aegypti and Cx. quinquefasciatus were collected during all 11 months when we found water-filled stormwater drains, and both were found in stormwater drains located throughout Mérida City. We also present data for associations between structural characteristics of stormwater drains or water-related characteristics and the abundance of mosquito immatures. In conclusion, stormwater drains produce massive numbers of Ae. aegypti and Cx. quinquefasciatus across Mérida City, both in the wet and dry seasons, and represent non-residential development sites that should be strongly considered for inclusion in the local mosquito surveillance and control program. PMID:24582840

  9. Larvicidal activity of some Euphorbiaceae plant extracts against Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae).

    PubMed

    Rahuman, A Abdul; Gopalakrishnan, Geetha; Venkatesan, P; Geetha, Kannappan

    2008-04-01

    Larvicidal activity of ethyl acetate, butanol, and petroleum ether extracts of five species of Euphorbiaceae plants, Jatropha curcas, Pedilanthus tithymaloides, Phyllanthus amarus, Euphorbia hirta, and Euphorbia tirucalli, were tested against the early fourth instar larvae of Aedes aegypti L. and Culex quinquefasciatus (Say). The larval mortality was observed after 24 h of exposure. All extracts showed low larvicidal effects; however, the highest larval mortality was found in petroleum ether extract. The LC50 value of petroleum ether extracts of J. curcas, P. tithymaloides, P. amarus, E. hirta, and E. tirucalli were 8.79, 55.26, 90.92, 272.36, and 4.25 ppm, respectively, against A. aegypti and 11.34, 76.61, 113.40, 424.94, and 5.52 ppm, respectively, against C quinquefasciatus. Of the various ratios tested, the petroleum ether extracts of J. curcas and E. tirucalli were observed to be more efficient than the other plant extracts. It is, therefore, suggested that E. tirucalli can be applied as an ideal potential larvicide against A. aegypti and C. quinquefasciatus. This is an ideal ecofriendly approach for the control of the dengue vector, A. aegypti, and the lymphatic filariasis vector, C. quinquefasciatus. PMID:18163189

  10. Genetics and morphology of Aedes aegypti (Diptera: Culicidae) in septic tanks in Puerto Rico.

    PubMed

    Somers, Gerard; Brown, Julia E; Barrera, Roberto; Powell, Jeffrey R

    2011-11-01

    Dengue viruses, primarily transmitted by the mosquito Aedes aegypti (L.), affect an estimated 50-100 million people yearly. Traditional approaches to control mosquito population numbers, such as the use of pesticides, have had only limited success. Atypical mosquito behavior may be one reason why current vector control efforts have been less efficacious than expected. In Puerto Rico, for example, adult Ae. aegypti have been observed emerging from septic tanks. Interestingly, adults emerging from septic tanks are larger on average than adults collected from surface containers. To determine whether adults colonizing septic tanks constitute a separate Ae. aegypti population, we used 12 previously validated microsatellite loci to examine adult mosquitoes collected from both septic tanks and surface containers, but found no evidence to suggest genetic differentiation. Size differences between septic tank and surface mosquitoes were reduced when nutrient levels were held constant across experimental groups. Despite the absence of evidence suggesting a genetic difference between experimental groups in this study, Ae. aegypti emerging from septic tanks may still represent a more dangerous phenotype and should be given special consideration when developing vector control programs and designing public health interventions in the future. PMID:22238867

  11. STUDIES ON AEDES AEGYPTI RESISTANCE TO SOME INSECTICIDES IN THE JAZAN DISTRICT, SAUDI ARABIA.

    PubMed

    Alsheikh, Adel A; Mohammed, W S; Noureldin, E M; Daffalla, O M; Shrwani, Y A; Hobani, K J; Alsheikh, F A; Alzahrani, M H; Binsaeed, A A

    2016-04-01

    The present study provided information on the susceptibility status of the adult and larvae of Aedes aegypti mosquitoes in Jazan region of Saudi Arabia. Bioassay tests were performed on adults and larvae by using WHO recommended concentrations and test kits. Adults of Ae. aegypti mosquitoes were exposed to test papers impregnated with Lambda-cyhalothrin (0.05%), Cyfluthrin (0.15%), Deltamethrin (0.05%), Permethrin (0.75%), Fenitrothion (1%), Bendiocarb (0.1%) and DDT (4%) insecticides. Ae. aegypti mosquitoes were found to be susceptible only to Cyfluthrin; (mortality rate was 100%), whereas variable resistances were observed from the rest of the other insecticides tested (mortality rates ranged between 93.6 and 17%). Larvae were subjected to different concentrations of Diflubenzuron, Methoprene (IGRs) and Temephos (Organophosphate). Adult emergence inhibition (IE₅₀ & IE₉₅) values for the IGRs and the (LC₅₀ & LC₉₅) for Temephos were determined by log-probit regression analysis. Ae. aegypti larvae were resistant to Temephos (LC₅₀ 61.8-LC₉₅ 35600.1 mg/l) and showed high susceptibility to Methoprene than Diflubenzuron (IE₅₀ 0.49-IE₉₅ 10.9 mg/l) and (IE₅₀ 0.86 and IE₉₅ 93.8 mg/l), respectively. Larvae were more susceptible to Methoprene than Diflubenzuron by 1.8 folds. PMID:27363057

  12. Plant essential oils affect the toxicities of carbaryl and permethrin against Aedes aegypti (Diptera: Culicidae).

    PubMed

    Tong, Fan; Bloomquist, Jeffrey R

    2013-07-01

    ABSTRACT Phytochemicals have been considered as alternatives for conventional pesticides because of their low mammalian toxicity and environmental safety. They usually display less potent insecticidal effects than synthetic compounds, but may express as yet unknown modes of action. In the current study, we evaluated 14 plant essential oils for their toxicities and synergistic effects with carbaryl and permethrin against fourth instars of Aedes aegypti (L.) as well as 5-7-d-old adults. Six essential oils showed significant synergistic effects with carbaryl at 10-50 mg/liter, but paradoxically all of them decreased the toxicity of permethrin against Ae. aegypti larvae. None showed toxicity or synergistic effects on Ae. aegypti adults, at doses up to 2,000 ng/ insect. The six essential oils displaying synergistic effects in Ae. aegypti larvae inhibited the in vitro activities of cytochrome P450 monooxygenases and carboxylesterases in the low milligram per liter range. The data indicated that cytochrome P450 monooxygenases and carboxylesterase were probably targets for these natural synergists. Thus, the mechanism of synergism was most likely inhibition of metabolism and not interacting target site effects. PMID:23926781

  13. Multiple Modes of Action of the Squamocin in the Midgut Cells of Aedes aegypti Larvae

    PubMed Central

    de Paula, Sérgio Oliveira; Martins, Gustavo Ferreira; Zanuncio, José Cola

    2016-01-01

    Annonaceous acetogenins are botanical compounds with good potential for use as insecticides. In the vector, Aedes aegypti (L.) (Diptera: Culicidae), squamocin (acetogenin) has been reported to be a larvicide and cytotoxic, but the modes of action of this molecule are still poorly understood. This study evaluated the changes in the cell morphology, and in the expression of genes, for autophagy (Atg1 and Atg8), for membrane ion transporter V-ATPase, and for water channel aquaporin-4 (Aqp4) in the midgut of A. aegypti larvae exposed to squamocin from Annona mucosa Jacq. (Annonaceae). Squamocin showed cytotoxic action with changes in the midgut epithelium and digestive cells of A. aegypti larvae, increase in the expression for autophagy gene Atg1 and Atg8, decrease in the expression of V-ATPase, decrease in the expression of Aqp4 gene in LC20 and inhibition of Apq4 genes in the midgut of this vector in LC50. These multiple modes of action for squamocin are described for the first time in insects, and they are important because different sites of action of squamocin from A. mucosa may reduce the possibility of resistance of A. aegypti to this molecule. PMID:27532504

  14. Toxicity of Cephalaria Species and their Individual Constituents against Aedes aegypti.

    PubMed

    Sarikahya, Nazli Boke; Kayce, Peyker; Tabanca, Nurhayat; Estep, Alden S; Becnel, James J; Khan, Ikhlas A; Kirmizigul, Suheyla

    2015-07-01

    Crude acetone and ethanol extracts of the aerial parts of 21 Cephalaria species collected from Turkey were investigated for larvicidal and adult topical activity against Aedes aegypti. The ethanol extracts from C. elazigensis var. purpurea, C. anatolica, and C. elmaliensis possessed the highest mortality against first instar Ae. aegypti larvae. Luteolin-7-O-β-D-glycoside (1), isolated from C. elmaliensis ethanol extract, demonstrated 33% and 53% mortality at 0.1 μg/mL concentration against first instar ORL (susceptible) and PR (pyrethroid resistant) strains, respectively. C. scoparia acetone extract showed 100% mortality against adult Ae. aegypti. From this extract compounds 2-8 were isolated. Compound 2 (isoorientin) possessed the highest toxicity with 31.7% and 65% mortality at a 10 μg/mL concentration against adult ORL and PR strains, respectively. This is the first screening report of potential insecticides from Cephalaria species against the yellow fever mosquito, Ae. aegypti, and the active compounds (1 and 2) could lead to the development of a new class of insecticide. PMID:26411009

  15. Quantitative trait loci that control vector competence for dengue-2 virus in the mosquito Aedes aegypti.

    PubMed Central

    Bosio, C F; Fulton, R E; Salasek, M L; Beaty, B J; Black, W C

    2000-01-01

    Quantitative trait loci (QTL) affecting the ability of the mosquito Aedes aegypti to become infected with dengue-2 virus were mapped in an F(1) intercross. Dengue-susceptible A. aegypti aegypti were crossed with dengue refractory A. aegypti formosus. F(2) offspring were analyzed for midgut infection and escape barriers. In P(1) and F(1) parents and in 207 F(2) individuals, regions of 14 cDNA loci were analyzed with single-strand conformation polymorphism analysis to identify and orient linkage groups with respect to chromosomes I-III. Genotypes were also scored at 57 RAPD-SSCP loci, 5 (TAG)(n) microsatellite loci, and 6 sequence-tagged RAPD loci. Dengue infection phenotypes were scored in 86 F(2) females. Two QTL for a midgut infection barrier were detected with standard and composite interval mapping on chromosomes II and III that accounted for approximately 30% of the phenotypic variance (sigma(2)(p)) in dengue infection and these accounted for 44 and 56%, respectively, of the overall genetic variance (sigma(2)(g)). QTL of minor effect were detected on chromosomes I and III, but these were not detected with composite interval mapping. Evidence for a QTL for midgut escape barrier was detected with standard interval mapping but not with composite interval mapping on chromosome III. PMID:11014816

  16. Laboratory and field assessment of some kairomone blends for host-seeking Aedes aegypti.

    PubMed

    Williams, Craig R; Bergbauer, Ramona; Geier, Martin; Kline, Daniel L; Bernier, Ulrich R; Russell, Richard C; Ritchie, Scott A

    2006-12-01

    Using laboratory Y-tube olfactometers, the attractiveness of lactic acid and 2 kairomone blends from the United States Department of Agriculture (USDA) and BioGents GmbH (BG) was assessed for attractiveness to Aedes aegypti. Four geographically disparate populations were assessed: North Queensland Australia (NQA), Florida USA, Minas Gerais Brazil (MGB), and Singapore. In descending order, populations were attracted to USDA, BG blends, and lactic acid. MGB was poorly attracted to lactic acid alone. The blends were less attractive than human odor. Proprietary blends were modified, and their attractiveness was assessed to find the optimum attractive mixture for NQA. Adding acetone to BG, and ammonia and caproic acid to USDA, improved attractiveness in the laboratory. Field attractiveness was assessed by coupling the blends with a newly developed BG-Sentinel Ae. aegypti trap. Trials were carried out using the BG blend, BG blend plus acetone, USDA blend, USDA blend plus ammonia and caproic acid, and a control trap with no kairomones. The traps were highly effective, with mean 24-h collections up to 11.15 Ae. aegypti per trap, and this species made up 91.7% of collections. However, the effectiveness of the unbaited control trap indicated that the BG-Sentinel has visual attractive properties for Ae. aegypti and that the kairomone lures added little to trap performance in NQA. PMID:17304931

  17. Transcript profiling of the meiotic drive phenotype in testis of Aedes aegypti using suppressive subtractive hybridization.

    PubMed

    Shin, Dongyoung; Jin, Lizhong; Lobo, Neil F; Severson, David W

    2011-09-01

    The meiotic drive gene in Aedes aegypti is tightly linked with the sex determination locus on chromosome 1, and causes highly male-biased sex ratios. We prepared cDNA libraries from testes from the Ae. aegypti T37 strain (driving) and RED strain (non-driving), and used suppressive subtraction hybridization techniques to enrich for T37 testes-specific transcripts. Expressed sequence tags (ESTs) were obtained from a total of 2784 randomly selected clones from the subtracted T37 (subT37) library as well as the primary libraries for each strain (pT37 and pRED). Sequence analysis identified a total of 171 unique genes in the subT37 library and 299 unique genes among the three libraries. The majority of genes enriched in the subT37 library were associated with signal transduction, development, reproduction, metabolic process and cell cycle functions. Further, as observed with meiotic drive systems in Drosophila and mouse, a number of these genes were associated with signaling cascades that involve the Ras superfamily of regulatory small GTPases. Differential expression of several of these genes was verified in Ae. aegypti pupal testes using qRT-PCR. This study increases our understanding of testes gene expression enriched in adult males from the meiotic drive strain as well as insights into the basic testes transcriptome in Ae. aegypti. PMID:21708167

  18. The Dengue Virus Mosquito Vector Aedes aegypti at High Elevation in México

    PubMed Central

    Lozano-Fuentes, Saul; Hayden, Mary H.; Welsh-Rodriguez, Carlos; Ochoa-Martinez, Carolina; Tapia-Santos, Berenice; Kobylinski, Kevin C.; Uejio, Christopher K.; Zielinski-Gutierrez, Emily; Monache, Luca Delle; Monaghan, Andrew J.; Steinhoff, Daniel F.; Eisen, Lars

    2012-01-01

    México has cities (e.g., México City and Puebla City) located at elevations > 2,000 m and above the elevation ceiling below which local climates allow the dengue virus mosquito vector Aedes aegypti to proliferate. Climate warming could raise this ceiling and place high-elevation cities at risk for dengue virus transmission. To assess the elevation ceiling for Ae. aegypti and determine the potential for using weather/climate parameters to predict mosquito abundance, we surveyed 12 communities along an elevation/climate gradient from Veracruz City (sea level) to Puebla City (∼2,100 m). Ae. aegypti was commonly encountered up to 1,700 m and present but rare from 1,700 to 2,130 m. This finding extends the known elevation range in México by > 300 m. Mosquito abundance was correlated with weather parameters, including temperature indices. Potential larval development sites were abundant in Puebla City and other high-elevation communities, suggesting that Ae. aegypti could proliferate should the climate become warmer. PMID:22987656

  19. Post-integration stability of piggyBac in Aedes aegypti.

    PubMed

    Sethuraman, Nagaraja; Fraser, Malcolm J; Eggleston, Paul; O'Brochta, David A

    2007-09-01

    The post-integration activity of piggyBac transposable element gene vectors in Aedes aegypti mosquitoes was tested under a variety of conditions. The embryos from five independent transgenic lines of Ae. aegypti, each with a single integrated non-autonomous piggyBac transposable element gene vector, were injected with plasmids containing the piggyBac transposase open-reading frame under the regulatory control of the Drosophila melanogaster hsp70 promoter. No evidence for somatic remobilization was detected in the subsequent adults whereas somatic remobilization was readily detected when similar lines of transgenic D. melanogaster were injected with the same piggyBac transposase-expressing plasmid. Ae. aegypti heterozygotes of piggyBac reporter-containing transgenes and piggyBac transposase-expressing transgenes showed no evidence of somatic and germ-line remobilization based on phenotypic and molecular detection methods. The post-integration mobility properties of piggyBac in Ae. aegypti enhance the utility of this gene vector for certain applications, particularly those where any level of vector remobilization is unacceptable. PMID:17681233

  20. Insecticidal action of sodium anacardate from Brazilian cashew nut shell liquid against Aedes aegypti.

    PubMed

    Farias, Davi F; Cavalheiro, Mariana G; Viana, Sayonara M; De Lima, Glauber P G; da Rocha-Bezerra, Lady Clarissa B; Ricardo, Nágila M P S; Carvalho, Ana F U

    2009-09-01

    Aedes aegypti is the major vector of 1 of the most concerning arboviruses of the world, the dengue fever. The only effective way of reducing the incidence of dengue fever is to control the vector mosquito, mainly by application of insecticides to its breeding places. This study was aimed at assessing the insecticidal activity of sodium anacardate, isolated from Brazilian cashew nut shell liquid (CNSL), against the eggs, 3rd instars or pupae of Ae. aegypti. In addition, the acute toxicity of sodium anacardate to mice was also investigated. Sodium anacardate showed toxicity against Ae. aegypti eggs (median effective concentration [EC50] = 162.93 +/- 29.93 microg/ml), larvae (median lethal concentration [LC50] = 55.47 +/- 3.0 microg/ml) and pupae (LC50 = 369.78 - 52.30 microg/ml). On the other hand, even at high dose (0.3 g/kg body weight), this compound did not cause any adverse effects on mice, suggesting that this compound is safe to mammals. Therefore, sodium anacardate may be a viable low-cost alternative to help combat Ae. aegypti. PMID:19852234

  1. Repellence of essential oils of aromatic plants growing in Argentina against Aedes aegypti (Diptera: Culicidae).

    PubMed

    Gleiser, Raquel M; Bonino, Maria A; Zygadlo, Julio A

    2011-01-01

    Mosquitoes are vectors of pathogens to humans and domestic animals and may also have economical impacts. One approach to prevent mosquito-borne diseases is bite deterrence through the application of repellents. Currently, there is an interest to search for alternative bioactive products to the synthetic active ingredients most widely used in insect repellents. Repellence against Aedes aegypti of essential oils extracted from Acantholippia salsoloides, Aloysia catamarcensis, Aloysia polystachya, Lippia integrifolia, Lippia junelliana (Verbenaceae), Baccharis salicifolia, Euphatorium buniifolium, and Tagetes filifolia (Asteraceae) were assessed. Tests were conducted by alternatively exposing untreated and treated forehand to the mosquitoes and counting probing attempts. All essential oils tested were significantly repellent against A. aegypti when compared to untreated controls; L. junelliana was the most repellent and T. filifolia was the least based on the response of the mosquitoes to different concentrations of the essential oils (EO). Repellence may be attributed to the respective main components of each EO. PMID:20838809

  2. Influence of plant abundance on nectar feeding by Aedes aegypti (Diptera: Culicidae) in southern Mexico.

    PubMed

    Martinez-Ibarra, J A; Rodriguez, M H; Arredondo-Jimenez, J I; Yuval, B

    1997-11-01

    The availability of flowering plants affected the sugar feeding rates of female Aedes aegypti (L.) in 4 areas of a small city in southern Mexico. The proportion of mosquitoes containing sugar varied from 8 to 21% in 4 areas in direct relation to blooming plant abundance. Human density was similar in the 4 areas (range, 3.9-5.4 per house), whereas the number of flowering plants per house increased on the outskirts (range, 3.1-5.4 plants per house). Equal proportions of sugar positive females were nulliparous or parous, indicating similar sugar feeding at any age. In addition, nearly 60% of positive females were at the Christophers stage II, indicating a greater need for flight fuel during the early stages of egg development. We conclude that Ae. aegypti feeds frequently on nectar and that this activity is modulated by nectar availability. PMID:9439110

  3. Effect of Wolbachia on insecticide susceptibility in lines of Aedes aegypti.

    PubMed

    Endersby, N M; Hoffmann, A A

    2013-06-01

    Two stable infections of Wolbachia pipientis, wMelPop and wMel, now established in Aedes aegypti, are being used in a biocontrol program to suppress the transmission of dengue. Any effects of Wolbachia infection on insecticide resistance of mosquitoes may undermine the success of this program. Bioassays of Ae. aegypti were conducted to test for differences in response to insecticides between Wolbachia infected (wMelPop, wMel) and uninfected lines. Insecticides screened were bifenthrin, the pyrethroid commonly used for adult knockdown, as well as larvicides: Bacillus thuringiensis var. israelensis, the organophosphate, temephos and the insect growth regulator, s-methoprene. While differences in response between lines were detected for some insecticides, no obvious or consistent effects related to presence of Wolbachia infection were observed. Spreading Wolbachia infections are, therefore, unlikely to affect the efficacy of traditional chemical control of mosquito outbreaks. PMID:23149015

  4. HPTLC analysis of Scoparia dulcis Linn (Scrophulariaceae) and its larvicidal potential against dengue vector Aedes aegypti.

    PubMed

    Wankhar, Wankupar; Srinivasan, Sakthivel; Rathinasamy, Sheeladevi

    2015-01-01

    This study evaluates the larvicidal activity of Scoparia dulcis aqueous extract against dengue vector and determines its major chemical components. The extract was tested at various concentrations ranging from 0.1 to 2 mg/mL against Aedes aegypti larvae. The extracts displayed significant larvicidal efficacy against Ae. aegypt species after 24 h exposure revealing LC50 of 3.3835 (mg/mL) and LC90 of 5.7578 (mg/mL). Finger printing profile carried out by CAMAG automatic TLC sample applicator programmed through WIN CATS software revealed peaks with different Rf values for three different volumes injected: 16, 15 and 18 peaks were spotted for 3, 6 and 9 μL, respectively. Ascending order of Rf values was also ascertained for each peak recorded. This study clearly signifies that S. dulcis extract contains numerous compounds that are known to have larvicidal properties which clearly substantiates its efficacy on Ae. aegypti larvae. PMID:25573588

  5. Assessing the Feasibility of Controlling Aedes aegypti with Transgenic Methods: A Model-Based Evaluation

    PubMed Central

    Legros, Mathieu; Xu, Chonggang; Okamoto, Kenichi; Scott, Thomas W.; Morrison, Amy C.; Lloyd, Alun L.; Gould, Fred

    2012-01-01

    Suppression of dengue and malaria through releases of genetically engineered mosquitoes might soon become feasible. Aedes aegypti mosquitoes carrying a conditionally lethal transgene have recently been used to suppress local vector populations in small-scale field releases. Prior to releases of transgenic insects on a wider scale, however, most regulatory authorities will require additional evidence that suppression will be effective in natural heterogeneous habitats. We use a spatially explicit stochastic model of an Ae. aegypti population in Iquitos, Peru, along with an uncertainty analysis of its predictions, to quantitatively assess the outcome of varied operational approaches for releases of transgenic strains with conditional death of females. We show that population elimination might be an unrealistic objective in heterogeneous populations. We demonstrate that substantial suppression can nonetheless be achieved if releases are deployed in a uniform spatial pattern using strains combining multiple lethal elements, illustrating the importance of detailed spatial models for guiding genetic mosquito control strategies. PMID:23284949

  6. Evidence for an Overwintering Population of Aedes aegypti in Capitol Hill Neighborhood, Washington, DC.

    PubMed

    Lima, Andrew; Lovin, Diane D; Hickner, Paul V; Severson, David W

    2016-01-01

    Aedes aegypti is an invasive, highly anthropophilic mosquito and a major vector for dengue and chikungunya. Population persistence in the continental United States is reportedly limited to southward of the average 10°C winter isotherm, which in the east, bisects Alabama, Mississippi, Georgia, and South Carolina. We report on summer collections and genotypic analyses of Ae. aegypti collected in the Capitol Hill neighborhood in Washington, DC (WDC). Analysis of a 441-bp fragment of the mitochondrial cytochrome oxidase I gene sequence identified the same two haplotype sequences during 2011-2014, and placed these within two discrete groups known to be derived from lineages resident in the Americas. Analysis of 10 microsatellite loci for specimens collected during 2011-2014 revealed no evidence for introgression of new alleles across years. Overall, our data support a conclusion that this represents a resident WDC population, likely maintained during winter months in a subterranean habitat that facilitates year-round survival. PMID:26526922

  7. Effect of two commercial herbicides on life history traits of a human disease vector, Aedes aegypti, in the laboratory setting.

    PubMed

    Morris, Alexandra; Murrell, Ebony G; Klein, Talan; Noden, Bruce H

    2016-07-01

    Some mosquito species utilize the small niches of water that are abundant in farmland habitats. These niches are susceptible to effects from agricultural pesticides, many of which are applied aerially over large tracts of land. One principal form of weed control in agricultural systems involves the development of herbicide-tolerant crops. The impact of sub-agricultural levels of these herbicides on mosquito survival and life-history traits of resulting adults have not been determined. The aim of this study was to test the effect of two commercial herbicides (Beyond and Roundup) on the survivorship, eclosion time, and body mass of Aedes aegypti. First instar A. aegypti larvae were exposed to varying concentrations (270, 550 and 820 μg/m(2) of glyphosate and 0.74, 1.49, 2.24 μL imazamox/m(2)), all treatments being below recommended application rates, of commercial herbicides in a controlled environment and resulting adult mosquitoes were collected and weighed. Exposure to Roundup had a significant negative effect on A. aegypti survivorship at medium and high sub-agricultural application concentrations, and negatively affected adult eclosion time at the highest concentration. However, exposure to low concentrations of Beyond significantly increased A. aegypti survivorship, although adult female mass was decreased at medium sub-agricultural concentrations. These results demonstrate that low concentrations of two different herbicides, which can occur in rural larval habitats as a result of spray drift, can affect the same species of mosquito in both positive and negative ways depending on the herbicide applied. The effects of commercial herbicides on mosquito populations could have an important effect on disease transmission within agricultural settings, where these and other herbicides are extensively applied to reduce weed growth. PMID:26965703

  8. Effective disposal of nitrogen waste in blood-fed Aedes aegypti mosquitoes requires alanine aminotransferase.

    PubMed

    Mazzalupo, Stacy; Isoe, Jun; Belloni, Virginia; Scaraffia, Patricia Y

    2016-01-01

    To better understand the mechanisms responsible for the success of female mosquitoes in their disposal of excess nitrogen, we investigated the role of alanine aminotransferase (ALAT) in blood-fed Aedes aegypti. Transcript and protein levels from the 2 ALAT genes were analyzed in sucrose- and blood-fed A. aegypti tissues. ALAT1 and ALAT2 exhibit distinct expression patterns in tissues during the first gonotrophic cycle. Injection of female mosquitoes with either double-stranded RNA (dsRNA)-ALAT1 or dsRNA ALAT2 significantly decreased mRNA and protein levels of ALAT1 or ALAT2 in fat body, thorax, and Malpighian tubules compared with dsRNA firefly luciferase-injected control mosquitoes. The silencing of either A. aegypti ALAT1 or ALAT2 caused unexpected phenotypes such as a delay in blood digestion, a massive accumulation of uric acid in the midgut posterior region, and a significant decrease of nitrogen waste excretion during the first 48 h after blood feeding. Concurrently, the expression of genes encoding xanthine dehydrogenase and ammonia transporter (Rhesus 50 glycoprotein) were significantly increased in tissues of both ALAT1- and ALAT2-deficient females. Moreover, perturbation of ALAT1 and ALAT2 in the female mosquitoes delayed oviposition and reduced egg production. These novel findings underscore the efficient mechanisms that blood-fed mosquitoes use to avoid ammonia toxicity and free radical damage.-Mazzalupo, S., Isoe, J., Belloni, V., Scaraffia, P. Y. Effective disposal of nitrogen waste in blood-fed Aedes aegypti mosquitoes requires alanine aminotransferase. PMID:26310269

  9. Susceptibility of Aedes aegypti and Culex quinquefasciatus Larvae to gedunin-related limonoids.

    PubMed

    Gurulingappa, Hallur; Tare, Vrushali; Pawar, Pushpa; Tungikar, Vijay; Jorapur, Yogesh R; Madhavi, Sriram; Bhat, Sujata V

    2009-06-01

    The major non-azadirachtin limonoids such as gedunin (1), epoxyazadiradione (3), nimbocinol (4), and nimolicinol (5) from Azadirachta indica A. Juss ('neem') and their derivatives were evaluated for their toxic action against fourth instar larvae of Aedes aegypti L. and Culex quinquefasciatus Say. Gedunin exhibited 100% toxic action against both the mosquito larvae at 50 and 10 ppm. Epoxyazadiradione and epoxynimolicinol also showed significant toxicities (> or =50%) against larvae of both mosquito species at 50 ppm. These neem limonoids can have benefits in mosquito-control programs. PMID:19551731

  10. Insecticide susceptibility of the dengue vector, Aedes aegypti (L.) in Metropolitan Bangkok.

    PubMed

    Komalamisra, Narumon; Srisawat, Raweewan; Phanbhuwong, Theerawit; Oatwaree, Sompis

    2011-07-01

    Mosquito larvae were collected from the houses of dengue infected patients in Bangkok, Thailand from 55 sites (36 out of the 50 districts of Metropolitan Bangkok). Aedes aegypti larvae were tested against temephos using WHO bioassay techniques. Adult mosquitoes were tested for susceptibility to permethrin, deltamethrin, cyfluthrin, malathion and DDT using WHO diagnostic doses. Most of the larvae tested were susceptible to temephos. Only few specimens were resistant to temephos. Most adult mosquitoes were highly susceptible to malathion. Deltamethrin resistance was seen in 6 districts of Bangkok. Variable levels of susceptibility were seen with cyfluthrin. Most of the specimens showed resistance to permethrin and all specimens were resistant to DDT. PMID:22299463

  11. Distinct sets of PIWI proteins produce arbovirus and transposon-derived piRNAs in Aedes aegypti mosquito cells.

    PubMed

    Miesen, Pascal; Girardi, Erika; van Rij, Ronald P

    2015-07-27

    The PIWI-interacting RNA (piRNA) pathway is essential for transposon silencing in many model organisms. Its remarkable efficiency relies on a sophisticated amplification mechanism known as the ping-pong loop. In Alphavirus-infected Aedes mosquitoes, piRNAs with sequence features that suggest ping-pong-dependent biogenesis are produced from viral RNA. The PIWI family in Aedes mosquitoes is expanded when compared to other model organisms, raising the possibility that individual PIWI proteins have functionally diversified in these insects. Here, we show that Piwi5 and Ago3, but none of the other PIWI family members, are essential for piRNA biogenesis from Sindbis virus RNA in infected Aedes aegypti cells. In contrast, the production of piRNAs from transposons relies on a more versatile set of PIWI proteins, some of which do not contribute to viral piRNA biogenesis. These results indicate that functional specialization allows distinct mosquito PIWI proteins to process RNA from different endogenous and exogenous sources. PMID:26068474

  12. Risk Factors for the Presence of Aedes aegypti and Aedes albopictus in Domestic Water-Holding Containers in Areas Impacted by the Nam Theun 2 Hydroelectric Project, Laos

    PubMed Central

    Hiscox, Alexandra; Kaye, Angela; Vongphayloth, Khamsing; Banks, Ian; Piffer, Michele; Khammanithong, Phasouk; Sananikhom, Pany; Kaul, Surinder; Hill, Nigel; Lindsay, Steven W.; Brey, Paul T.

    2013-01-01

    We assessed risk factors for vectors of dengue and chikungunya viruses near a new hydroelectric project, Nam Theun 2, in Laos. Immature stages of Aedes aegypti were found only in sites within 40 km of the urban provincial capital, but Aedes albopictus was found throughout. Aedes aegypti pupae were most common in water storage jars (odds ratio [OR] = 4.72) and tires (OR = 2.99), and Ae. albopictus pupae were associated with tires in 2009 (OR = 10.87) and drums, tires, and jars in 2010 (drums OR = 3.05; tires OR = 3.45, jars OR = 6.59). Compared with water storage vessels, containers used for hygiene, cooking, and drinking were 80% less likely to harbor Ae. albopictus pupae in 2010 (OR = 0.20), and discarded waste was associated with a 3.64 increased odds of infestation. Vector control efforts should focus on source reduction of water storage containers, particularly concrete jars and tires. PMID:23458958

  13. Larvicidal and irritant activities of hexane leaf extracts of Citrus sinensis against dengue vector Aedes aegypti L.

    PubMed Central

    Warikoo, Radhika; Ray, Ankita; Sandhu, Jasdeep Kaur; Samal, Roopa; Wahab, Naim; Kumar, Sarita

    2012-01-01

    Objective To assess the larvicidal and irritant activities of the hexane extracts of leaves of Citrus sinensis (C. sinensis) against the early fourth instars and female adults of Aedes aegypti (Ae. aegypti). Methods The larvicidal potential of the prepared leaf extract was evaluated against early fourth instar larvae of Ae. aegypti using WHO protocol. The mortality counts were made after 24 h and LC50 and LC90 values were calculated. The efficacy of extract as mosquito irritant was assessed by contact irritancy assays. Extract-impregnated paper was placed on a glass plate over which a perspex funnel with a hole on the top was kept inverted. Single female adult, 3-day old unfed/blood-fed, was released inside the funnel. After 3 min of acclimatization time, the time taken for the first take-off and total number of flights undertaken during 15 min were scored. Results The citrus leaf extracts from hexane possessed moderate larvicidal efficiency against dengue vector. The bioassays resulted in an LC50 and LC90 value of 446.84 and 1 370.96 ppm, respectively after 24 h of exposure. However, the extracts were proved to be remarkable irritant against adults Ae. aegypti, more pronounced effects being observed on blood-fed females than unfed females. The extract-impregnated paper was thus proved to be 7–11 times more irritable as compared with the control paper. Conclusions The hexane extracts from C. sinensis leaves are proved to be reasonably larvicidal but remarkably irritant against dengue vector. Further studies are needed to identify the possible role of extract as adulticide, oviposition deterrent and ovicidal agent. The isolation of active ingredient from the extract could help in formulating strategies for mosquito control. PMID:23569887

  14. Modeling the impact on virus transmission of Wolbachia-mediated blocking of dengue virus infection of Aedes aegypti

    PubMed Central

    Ferguson, Neil M.; Kien, Duong Thi Hue; Clapham, Hannah; Aguas, Ricardo; Trung, Vu Tuan; Chau, Tran Nguyen Bich; Popovici, Jean; Ryan, Peter A.; O’Neill, Scott L.; McGraw, Elizabeth A.; Long, Vo Thi; Dui, Le Thi; Nguyen, Hoa L; Van Vinh Chau, Nguyen; Wills, Bridget; Simmons, Cameron P.

    2015-01-01

    Dengue is the most common arboviral infection of humans and a public health burden in over 100 countries. Aedes aegypti mosquitoes stably infected with strains of the intracellular bacterium Wolbachia are resistant to dengue virus (DENV) infection and are being tested in field trials. To mimic field conditions, we experimentally assessed the vector competence of A. aegypti carrying the Wolbachia strains wMel and wMelPop after challenge with viremic blood from dengue patients. We found that wMelPop conferred strong resistance to DENV infection of mosquito abdomen tissue and largely prevented disseminated infection. wMel conferred less resistance to infection of mosquito abdomen tissue, but importantly did reduce the prevalence of mosquitoes with infectious saliva. A mathematical model of DENV transmission incorporating the dynamics of viral infection within humans and mosquitoes was fitted to the data collected. Model predictions suggested that wMel would reduce the basic reproduction number, R0, of DENV transmission by 66–75%. Our results suggest that establishment of wMelPop-infected A. aegypti at high frequency in a dengue endemic setting would result in complete abatement of DENV transmission. Establishment of wMel-infected A. aegypti is also predicted to have a substantial effect on transmission that would be sufficient to eliminate dengue in low or moderate transmission settings, but may be insufficient to achieve complete control in settings where R0 is high. These findings develop a framework for selecting Wolbachia strains for field releases and for calculating their likely impact. PMID:25787763

  15. Evaluation of some aromatic plant extracts for mosquito larvicidal potential against Culex quinquefasciatus, Aedes aegypti, and Anopheles stephensi.

    PubMed

    Jayaraman, M; Senthilkumar, A; Venkatesalu, V

    2015-04-01

    In the present investigation, larvicidal potential of hexane, choloroform, ethyl acetate, acetone, and methanol extracts of seven aromatic plants, viz., Blumea mollis, Chloroxylon swietenia, Clausena anisata, Feronia limnonia, Lantana camera, Plectranthus amboinicus, and Tagetes erecta were screened against Culex quinquefasciatus, Aedes aegypti, and Anopheles stephensi. The larval mortality was observed after 12 and 24 h of exposure period. The results revealed that all the extracts showed varied levels of larvicidal activity against the mosquito species tested. However, the ethyl acetate extract of Chloroxylon swietenia showed the remarkable larvicidal activity against C. quinquefasciatus, Ae. aegypti, and An. stephensi. After 12 h of exposure period, the larvicidal activity was LC50 = 194.22 and LC90 = 458.83 ppm (C. quinquefasciatus), LC50 = 173.04 and LC90 = 442.73 ppm (Ae. aegypti), and LC50 = 167.28 and LC90 = 433.07 ppm (An. stephensi), and the larvicidal activity after 24-h exposure period was LC50 = 94.12 and LC90 = 249.83 ppm (C. quinquefasciatus), LC50 = 80.58 and LC90 = 200.96 ppm (Ae. aegypti), and LC50 = 76.24 and LC90 = 194.51 ppm (An. stephensi). The larvicidal potential of other plant extracts were in order of ethyl acetate extract of Clausena anisata > methanol extract of P. amboinicus > acetone extract of F. limonia > methanol extract of T. erecta > methanol extract of B. mollis > and methanol extract of L. camera. The results of the present study offer a possible way for further investigations to find out the active molecule responsible for the activity. PMID:25630696

  16. Larvicidal potential of silver nanoparticles synthesized from Leucas aspera leaf extracts against dengue vector Aedes aegypti.

    PubMed

    Suganya, Ganesan; Karthi, Sengodan; Shivakumar, Muthugounder S

    2014-03-01

    Vector-borne diseases caused by mosquitoes are one of the major economic and health problems in many countries. Aedes aegypti mosquito is a vector of several diseases in humans like yellow fever and dengue. Vector control methods involving use of chemical insecticides are becoming less effective due to the development of insecticides resistance, biological magnification of toxic substances through the food chain, and adverse effects on environmental quality and nontarget organisms including human health. Application of active toxic agents from plant extracts as an alternative mosquito control strategy was available from ancient times. These are nontoxic, easily available at affordable prices, biodegradable, and show broad-spectrum target-specific activities against different species of vector mosquitoes. Today, nanotechnology is a promising research domain which has a wide ranging application in vector control programs. The present study investigates the larvicidal potential of solvent leaf extracts of Leucas aspera and synthesized silver nanoparticles using aqueous leaf extract against fourth instar larvae of A. aegypti. Larvae were exposed to varying concentrations of plant extracts and synthesized AgNPs for 24 h. The results were recorded from UV-Vis spectra, X-ray diffraction (XRD), Fourier transform infrared (FTIR), and scanning electron microscopy (SEM), and were used to characterize and support the biosynthesis of silver nanoparticles. The formation of the synthesized AgNPs from the XRD spectrum compared with Bragg reflections can be indexed to the (111) orientations, respectively, confirmed the presence of AgNPs. The FTIR spectra of AgNPs exhibited prominent peaks at 3,447.77, 2,923.30, and 1,618.66 cm(-1). The spectra showed sharp and strong absorption band at 1,618.66 cm(-1) assigned to the stretching vibration of (NH) C═O group. The band 1,383 developed for C═C and C═N stretching, respectively, and was commonly found in the proteins. SEM analysis

  17. Establishment of a Wolbachia Superinfection in Aedes aegypti Mosquitoes as a Potential Approach for Future Resistance Management

    PubMed Central

    De Bruyne, Jyotika Taneja; Kien, Duong Hue T.; Hoang, Nhat Le Thanh; Chau, Nguyen Van Vinh; Iturbe-Ormaetxe, Iñaki; Simmons, Cameron P.; O’Neill, Scott L.

    2016-01-01

    Wolbachia pipientis is an endosymbiotic bacterium estimated to chronically infect between 40–75% of all arthropod species. Aedes aegypti, the principle mosquito vector of dengue virus (DENV), is not a natural host of Wolbachia. The transinfection of Wolbachia strains such as wAlbB, wMel and wMelPop-CLA into Ae. aegypti has been shown to significantly reduce the vector competence of this mosquito for a range of human pathogens in the laboratory. This has led to wMel-transinfected Ae. aegypti currently being released in five countries to evaluate its effectiveness to control dengue disease in human populations. Here we describe the generation of a superinfected Ae. aegypti mosquito line simultaneously infected with two avirulent Wolbachia strains, wMel and wAlbB. The line carries a high overall Wolbachia density and tissue localisation of the individual strains is very similar to each respective single infected parental line. The superinfected line induces unidirectional cytoplasmic incompatibility (CI) when crossed to each single infected parental line, suggesting that the superinfection would have the capacity to replace either of the single constituent infections already present in a mosquito population. No significant differences in fitness parameters were observed between the superinfected line and the parental lines under the experimental conditions tested. Finally, the superinfected line blocks DENV replication more efficiently than the single wMel strain when challenged with blood meals from viremic dengue patients. These results suggest that the deployment of superinfections could be used to replace single infections and may represent an effective strategy to help manage potential resistance by DENV to field deployments of single infected strains. PMID:26891349

  18. Aedes aegypti (Diptera: Culicidae) production from non-residential sites in the Amazonian city of Iquitos, Peru.

    PubMed

    Morrison, A C; Sihuincha, M; Stancil, J D; Zamora, E; Astete, H; Olson, J G; Vidal-Ore, C; Scott, T W

    2006-04-01

    Programmes for the surveillance of Aedes aegypti (L.) often focus on residential areas, ignoring non-residential sites. Between November 2003 and October 2004, pupal/demographic surveys were therefore conducted in non-residential sites in the Peruvian city of Iquitos. The sampled sites included schools, factories, ports, public markets, petrol stations, commercial zones, airports, government buildings, animal-production areas, and recreational areas. Compared with the residential sites that had been surveyed a few years earlier, the non-residential sites generally had fewer pupae/ha, even though pupae were found in a high percentage of the sites investigated. Nonetheless, although <56 pupae/ha were observed in the industrial, commercial, recreational and school sites, the river boats in the ports and the areas in and around public markets sometimes had pupal abundances (of 122-213 pupae/ha) that were comparable with those previously recorded in the residential sites. When the relative production of Ae. aegypti was calculated by container type and characteristic (lidded/lidless, indoors/outdoors, and water-use patterns), no single container category was found to be a major producer of Ae. aegypti, with the exception of flower vases in cemeteries. In general, almost all (97%) of the pupae collected in the non-residential sites came from unlidded containers, although 91% of those collected in river boats came from lidded storage areas. With the exception of lumber mills, plant nurseries and markets (where only 39%-60% of the pupae were collected outdoors), >70% of pupal production was outdoors. In commercial areas, 41% of the pupae came from manually-filled containers, compared with <12% in residential sites. These results indicate that non-residential sites can be highly productive for Ae. aegypti and that the role of such sites in dengue transmission requires further investigation. PMID:16630393

  19. Establishment of a Wolbachia Superinfection in Aedes aegypti Mosquitoes as a Potential Approach for Future Resistance Management.

    PubMed

    Joubert, D Albert; Walker, Thomas; Carrington, Lauren B; De Bruyne, Jyotika Taneja; Kien, Duong Hue T; Hoang, Nhat Le Thanh; Chau, Nguyen Van Vinh; Iturbe-Ormaetxe, Iñaki; Simmons, Cameron P; O'Neill, Scott L

    2016-02-01

    Wolbachia pipientis is an endosymbiotic bacterium estimated to chronically infect between 40-75% of all arthropod species. Aedes aegypti, the principle mosquito vector of dengue virus (DENV), is not a natural host of Wolbachia. The transinfection of Wolbachia strains such as wAlbB, wMel and wMelPop-CLA into Ae. aegypti has been shown to significantly reduce the vector competence of this mosquito for a range of human pathogens in the laboratory. This has led to wMel-transinfected Ae. aegypti currently being released in five countries to evaluate its effectiveness to control dengue disease in human populations. Here we describe the generation of a superinfected Ae. aegypti mosquito line simultaneously infected with two avirulent Wolbachia strains, wMel and wAlbB. The line carries a high overall Wolbachia density and tissue localisation of the individual strains is very similar to each respective single infected parental line. The superinfected line induces unidirectional cytoplasmic incompatibility (CI) when crossed to each single infected parental line, suggesting that the superinfection would have the capacity to replace either of the single constituent infections already present in a mosquito population. No significant differences in fitness parameters were observed between the superinfected line and the parental lines under the experimental conditions tested. Finally, the superinfected line blocks DENV replication more efficiently than the single wMel strain when challenged with blood meals from viremic dengue patients. These results suggest that the deployment of superinfections could be used to replace single infections and may represent an effective strategy to help manage potential resistance by DENV to field deployments of single infected strains. PMID:26891349

  20. Ecological links between water storage behaviors and Aedes aegypti production: implications for dengue vector control in variable climates.

    PubMed

    Padmanabha, H; Soto, E; Mosquera, M; Lord, C C; Lounibos, L P

    2010-08-01

    Understanding linkages between household behavior and Aedes aegypti (L.) larval ecology is essential for community-based dengue mitigation. Here we associate water storage behaviors with the rate of A. aegypti pupal production in three dengue-endemic Colombian cities with different mean temperatures. Qualitative, semi-structured interviews and pupal counts were conducted over a 7-15-day period in 235 households containing a water storage vessel infested with larvae. Emptying vessels more often than every 7 days strongly reduced pupal production in all three cities. Emptying every 7-15 days reduced production by a similar magnitude as emptying <7 days in Armenia (21.9 degrees C), has a threefold smaller reduction as compared to <7 days in Bucaramanga (23.9 degrees C), and did not reduce production in Barranquilla (29.0 degrees C). Lidding vessels reduced mosquito production and was most feasible in Barranquilla because of container structure. Vessel emptying strongly correlated with usage in Barranquilla, where many households stored water in case of interruptions in piped service rather than for regular use. In the cooler cities, >90% of households regularly used stored water for washing clothes, generating a weaker correlation between emptying and usage. Emptying was less frequent in the households surveyed in the dry season in all three cities. These results show that A. aegypti production and human behaviors are coupled in a temperature-dependent manner. In addition to biological effects on aquatic stages, climate change may impact A. aegypti production through human behavioral adaptations. Vector control programs should account for geographic variation in temperature and water usage behaviors in designing targeted interventions. PMID:20358255

  1. Aedes aegypti Global Suitability Maps Using a Water Container Energy Balance Model for Dengue Risk Applications

    NASA Astrophysics Data System (ADS)

    Steinhoff, D.

    2015-12-01

    Dengue infections are estimated to total nearly 400 million per year worldwide, with both the geographic range and the magnitude of infections having increased in the past 50 years. The primary dengue vector mosquito Aedes aegypti is closely associated with humans. It lives exclusively in urban and semi-urban areas, preferentially bites humans, and spends its developmental stages in artificial water containers. Climate regulates the development of Ae. aegypti immature mosquitoes in artificial containers. Potential containers for Ae. aegypti immature development include, but are not limited to, small sundry items (e.g., bottles, cans, plastic containers), buckets, tires, barrels, tanks, and cisterns. Successful development of immature mosquitoes from eggs to larvae, pupae, and eventually adults is largely dependent on the availability of water and the thermal properties of the water in the containers. Recent work has shown that physics-based approaches toward modeling container water properties are promising for resolving the complexities of container water dynamics and the effects on immature mosquito development. An energy balance container model developed by the author, termed the Water Height And Temperature in Container Habitats Energy Model (WHATCH'EM), solves for water temperature and height for user-specified containers with readily available weather data. Here we use WHATCH'EM with NASA Earth Science products used as input to construct global suitability maps based on established water temperature ranges for immature Ae. aegypti mosquitoes. A proxy for dengue risk is provided from habitat suitability, but also population estimates, as Ae. aegypti is closely associated with human activity. NASA gridded Global Population of the World data is used to mask out rural areas with low dengue risk. Suitability maps are illustrated for a variety of containers (size, material, color) and shading scenarios.

  2. Spatial Patterns of High Aedes aegypti Oviposition Activity in Northwestern Argentina

    PubMed Central

    Estallo, Elizabet Lilia; Más, Guillermo; Vergara-Cid, Carolina; Lanfri, Mario Alberto; Ludueña-Almeida, Francisco; Scavuzzo, Carlos Marcelo; Introini, María Virginia; Zaidenberg, Mario; Almirón, Walter Ricardo

    2013-01-01

    Background In Argentina, dengue has affected mainly the Northern provinces, including Salta. The objective of this study was to analyze the spatial patterns of high Aedes aegypti oviposition activity in San Ramón de la Nueva Orán, northwestern Argentina. The location of clusters as hot spot areas should help control programs to identify priority areas and allocate their resources more effectively. Methodology Oviposition activity was detected in Orán City (Salta province) using ovitraps, weekly replaced (October 2005–2007). Spatial autocorrelation was measured with Moran’s Index and depicted through cluster maps to identify hot spots. Total egg numbers were spatially interpolated and a classified map with Ae. aegypti high oviposition activity areas was performed. Potential breeding and resting (PBR) sites were geo-referenced. A logistic regression analysis of interpolated egg numbers and PBR location was performed to generate a predictive mapping of mosquito oviposition activity. Principal Findings Both cluster maps and predictive map were consistent, identifying in central and southern areas of the city high Ae. aegypti oviposition activity. A logistic regression model was successfully developed to predict Ae. aegypti oviposition activity based on distance to PBR sites, with tire dumps having the strongest association with mosquito oviposition activity. A predictive map reflecting probability of oviposition activity was produced. The predictive map delimitated an area of maximum probability of Ae. aegypti oviposition activity in the south of Orán city where tire dumps predominate. The overall fit of the model was acceptable (ROC = 0.77), obtaining 99% of sensitivity and 75.29% of specificity. Conclusions Distance to tire dumps is inversely associated with high mosquito activity, allowing us to identify hot spots. These methodologies are useful for prevention, surveillance, and control of tropical vector borne diseases and might assist National Health

  3. Studies on insecticide susceptibility of Aedes aegypti (Linn) and Aedes albopictus (Skuse) vectors of dengue and chikungunya in Andaman and Nicobar Islands, India.

    PubMed

    Sivan, Arun; Shriram, A N; Sunish, I P; Vidhya, P T

    2015-12-01

    Dengue and chikungunya are important arboviral infections in the Andaman Islands. Competent vectors viz. Aedes aegypti and Aedes albopictus are widely prevalent. The most effective proven method for interrupting the transmission of these arboviruses is vector control, mediated through insecticides. Currently, DDT and temephos are the insecticides used for vector control in these islands. Lack of information on susceptibility necessitated assessing the susceptibility profile of A. aegypti and A. albopictus. F1 generation of adult and larvae were assayed, and LT50 and LT90 values were interpreted following the World Health Organization (WHO) protocol. Adults were found resistant to DDT-4 % while susceptible to dieldrin-0.4 %. Against organophosphates, both showed resistance to fenitrothion but susceptible to malathion-5 %. Both species showed resistance to carbamate and bendiocarb-0.1 % while susceptible to propoxur-0.1 %. Of the four synthetic pyrethroids, both were susceptible to deltamethrin-0.05 %, while resistant to permethrin-0.75 %, lambdacyhalothrin-0.05 % and cyfluthrin-0.15 %. Larvae of both species showed resistance to temephos at 0.02 mg/L but susceptible to malathion at 1 mg/L and fenthion at 0.05 mg/L. Currently, there is no prescribed WHO dose for adult-insecticide susceptibility testing. The emergence of resistance to DDT and temephos in the vector population poses a challenge to the on-going vector control measures. The results highlight the need for monitoring resistance to insecticides in the vector population. Impetus for source reduction and alternative choices of control measures are discussed for tackling future threat of arboviral infections in these islands. PMID:26344869

  4. Rapid and non-destructive detection and identification two strains of Wolbachia in Aedes aegypti by near-infrared spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We investigated the potential of using near-infrared spectroscopy (NIRS) to detect the presence of Wolbachia pipientis (wMel) in male and female laboratory-reared Aedes aegypti mosquitoes. The release of Wolbachia transinfected mosquitoes is likely to form a key component of disease control strategi...

  5. A leucokinin mimic elicits aversive behavior in mosquito Aedes aegypti (L.) and inhibits the sugar taste neuron

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insect kinins (leucokinins) are multifunctional peptides acting as neurohormones and neurotransmitters. In females of the mosquito vector Aedes aegypti (L.), aedeskinins are known to stimulate fluid secretion from the renal organs (Malpighian tubules) and hindgut contractions by activating a G prot...

  6. Gustatory receptor neuron responds to DEET and other insect repellents in the yellow fever mosquito, aedes aegypti

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Three gustatory receptor neurons were characterized for contact chemoreceptive sensilla on the labella of female yellow fever mosquitoes, Aedes aegypti. The neuron with the smallest amplitude spike responded to the feeding deterrent, quinine, as well as DEET and other insect repellents. Two other ...

  7. Papyracillic acid and its derivatives as biting deterrents against Aedes aegypti(Diptera: Culicidae): structure–activity relationships

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aedes aegypti L. is the major vector of the arboviruses responsible for dengue fever, one of the most devastating human diseases. Papyracillic acid, the main phytotoxin produced by Ascochyta agropyrina var. nana, was evaluated in a preliminary screening together with other fungal phytotoxins, cyclo...

  8. Laboratory studies of selected ketones, sulfides, and chloroalkanes on the host-seeking behavior of Aedes aegypti.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Synthetic attractant blends formulated from L-lactic acid and several synergists elicit significant attraction of Aedes aegypti (L.) and An. albimanus (Weidemann) in olfactometer bioassays using a triple-cage dual-port olfactometer. The synergists in these blends are commonly acetone and/or dimeth...

  9. Physiological recordings and RNA sequencing of the gustatory appendages of the yellow-fever mosquito Aedes aegypti

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Electrophysiological recording of action potentials from sensory neurons of mosquitoes provides investigators a glimpse into the chemical perception of these disease vectors. We have recently identified a bitter sensing neuron in the labellum of female Aedes aegypti that responds to DEET and other ...

  10. Microsporidiosis (Microspora: Culicosporidae) in Aedes aegypti (Diptera: Culicidae) affects host attraction, blood feeding responses, and the repellency of deet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Infection of Aedes aegypti (L.) (Diptera: Culicidae) with Edhazardia aedis (Microsporidia: Culicosporidae) reduced mean human host attraction and landing/probing rates in female mosquitoes by 53% and 62%, respectively, compared with rates in microsporidia-free females. Infection with E. aedis reduc...

  11. Aedes aegypti pupal/demographic surveys in southern Mexico: consistency and practicality.

    PubMed

    Arredondo-Jiménez, J I; Valdez-Delgado, K M

    2006-04-01

    In interventions aimed at the control of the immature stages of Aedes aegypti (L.), the principal vector of the dengue viruses, attempts are often made to treat or manage all larval habitats in households. When there are resource-constraints, however, a concentration of effort on the types of container that produce the most pupae may be required. Identification of these 'key' container types requires surveys of the immature stages and particularly - since these give the best estimates of the numbers of adults produced - of the numbers of pupae in local containers. Although there has been no clearly defined or standardized protocol for the sampling of Ae. aegypti pupae for many years, a methodology for 'pupal/demographic' surveys, which may allow the risk of dengue outbreaks in a given setting to be estimated, has been recently described. The consistency and practicality of using such surveys has now been investigated in three cities in the Mexican state of Chiapas, Mexico. Using a combination of 'quadrat'- and transect-sampling methods, 600 houses in each city were each sampled twice. Containers within each study household were searched for pupae and larvae. Although 107,297 containers, belonging to 26 categories, were observed, only 16,032 were found to contain water and 96% and 92% of these 'wet' containers contained no pupae and no third- or fourth-instar larvae, respectively. Although the random 'quadrat' sampling gave similar results to sampling along transects, there were statistically significant differences in the numbers of pupae according to container type and locality. The most important containers for pupal production were found to be large cement wash basins, which were present in almost every household investigated and from which 84% (10,257/12,271) of all pupae were collected. A focus on this class of container could serve as the basis of a targeted intervention strategy. When traditional Stegomyia indices were calculated they appeared to be

  12. Bacillus thuringiensis var. israelensis (Bti) Provides Residual Control of Aedes aegypti in Small Containers

    PubMed Central

    Ritchie, Scott A.; Rapley, Luke P.; Benjamin, Seleena

    2010-01-01

    We examined the use of megadoses of VectoBac WG for residual control of Aedes aegypti in 2-L plastic buckets. Doses of 10×, 20×, and 50× the recommended rate of 8 mg/L provided ≥ 90% control for 8, 8, and 23 weeks, respectively. There was no significant difference in mortality between dry (neat) or aqueous mixture of VectoBac WG. Pretreatment of dry containers up to 8 weeks before flooding did not significantly decrease efficacy through 11 success weeks. Thus, megadoses of dry formulations of Bti can be used for residual control of Ae. aegypti in small containers. Furthermore, these doses use small amounts of product (0.08–0.4 g/L) that is more practical to measure than the minute amounts (0.008 g/L) required by the recommended rate, and cost US$2.18 to treat 50 Cairns yards containing an average total of 80 containers. This method could also be used to control Aedes albopictus. PMID:20519600

  13. Dengue Virus Infection of Aedes aegypti Requires a Putative Cysteine Rich Venom Protein

    PubMed Central

    Londono-Renteria, Berlin; Troupin, Andrea; Conway, Michael J; Vesely, Diana; Ledizet, Michael; Roundy, Christopher M.; Cloherty, Erin; Jameson, Samuel; Vanlandingham, Dana; Higgs, Stephen; Fikrig, Erol; Colpitts, Tonya M.

    2015-01-01

    Dengue virus (DENV) is a mosquito-borne flavivirus that causes serious human disease and mortality worldwide. There is no specific antiviral therapy or vaccine for DENV infection. Alterations in gene expression during DENV infection of the mosquito and the impact of these changes on virus infection are important events to investigate in hopes of creating new treatments and vaccines. We previously identified 203 genes that were ≥5-fold differentially upregulated during flavivirus infection of the mosquito. Here, we examined the impact of silencing 100 of the most highly upregulated gene targets on DENV infection in its mosquito vector. We identified 20 genes that reduced DENV infection by at least 60% when silenced. We focused on one gene, a putative cysteine rich venom protein (SeqID AAEL000379; CRVP379), whose silencing significantly reduced DENV infection in Aedes aegypti cells. Here, we examine the requirement for CRVP379 during DENV infection of the mosquito and investigate the mechanisms surrounding this phenomenon. We also show that blocking CRVP379 protein with either RNAi or specific antisera inhibits DENV infection in Aedes aegypti. This work identifies a novel mosquito gene target for controlling DENV infection in mosquitoes that may also be used to develop broad preventative and therapeutic measures for multiple flaviviruses. PMID:26491875

  14. Effects of essential oils on Aedes aegypti larvae: alternatives to environmentally safe insecticides.

    PubMed

    Silva, W J; Dória, G A A; Maia, R T; Nunes, R S; Carvalho, G A; Blank, A F; Alves, P B; Marçal, R M; Cavalcanti, S C H

    2008-05-01

    The essential oils from leaves of Hyptis fruticosa (Lamiaceae) Salzm., H. pectinata (Lamiaceae) Poit., and Lippia gracilis (Verbenaceae) HBK were investigated for their larvicidal activity against Aedes aegypti and analyzed by GC/MS. Fifty-nine compounds, representing 91.28-98.39% of the essential oils, have been identified. A standard solution was used to make 20 mL solutions ranging from 30 to 2000 ppm. Twenty larvae between third and fourth stages were added to the essential oil solution. A mortality count was conducted 24 h after treatment. Essential oils LC50 and their confidence limits at 95% probability were calculated by the methods of Reed-Muench and Pizzi, respectively. The essential oil of Lippia gracilis showed potent insecticidal effect against Aedes aegypti larvae, the vector of dengue fever. Carvacrol and caryophyllene oxide were the main responsible for the activity of L. gracilis and H. pectinata. Minor compounds are probably acting synergistically to achieve H. fruticosa activity. PMID:17662602

  15. Temporal Patterns of Abundance of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) and Mitochondrial DNA Analysis of Ae. albopictus in the Central African Republic

    PubMed Central

    Kamgang, Basile; Ngoagouni, Carine; Manirakiza, Alexandre; Nakouné, Emmanuel; Paupy, Christophe; Kazanji, Mirdad

    2013-01-01

    The invasive Asian tiger mosquito Aedes albopictus (Diptera: Culicidae) was first reported in central Africa in 2000, in Cameroon, with the indigenous mosquito species Ae. aegypti (Diptera: Culicidae). Today, this invasive species is present in almost all countries of the region, including the Central African Republic (CAR), where it was first recorded in 2009. As invasive species of mosquitoes can affect the distribution of native species, resulting in new patterns of vectors and concomitant risk for disease, we undertook a comparative study early and late in the wet season in the capital and the main cities of CAR to document infestation and the ecological preferences of the two species. In addition, we determined the probable geographical origin of invasive populations of Ae. albopictus with two mitochondrial DNA genes, COI and ND5. Analysis revealed that Ae. aegypti was more abundant earlier in the wet season and Ae. albopictus in the late wet season. Used tyres were the most heavily colonized productive larval habitats for both species in both seasons. The invasive species Ae. albopictus predominated over the resident species at all sites in which the two species were sympatric. Mitochondrial DNA analysis revealed broad low genetic diversity, confirming recent introduction of Ae. albopictus in CAR. Phylogeographical analysis based on COI polymorphism indicated that the Ae. albopictus haplotype in the CAR population segregated into two lineages, suggesting multiple sources of Ae. albopictus. These data may have important implications for vector control strategies in central Africa. PMID:24349596

  16. Characterisation of DDT and pyrethroid resistance in Trinidad and Tobago populations of Aedes aegypti.

    PubMed

    Polson, K A; Rawlins, S C; Brogdon, W G; Chadee, D D

    2011-08-01

    Insecticide resistance is an important factor in the effectiveness of Aedes aegypti control and the related spread of dengue. The objectives of this study were to investigate the status of the organochlorine dichlorodiphenyltrichloroethane (DDT) and pyrethroid (permethrin and deltamethrin) resistance in Trinidad and Tobago populations of Ae. aegypti and the underlying biochemical mechanisms. Nine populations of Ae. aegypti larvae from Trinidad and Tobago were assayed to DDT and PYs using the Centers for Disease Control and Prevention (CDC) time-mortality-based bioassay method. A diagnostic dosage (DD) was established for each insecticide using the CAREC reference susceptible Ae. aegypti strain and a resistance threshold (RT), time in which 98-100% mortality was observed in the CAREC strain, was calculated for each insecticide. Mosquitoes which survived the DD and RT were considered as resistant, and the resistance status of each population was categorised based on the WHO criteria with mortality <80% indicative of resistance. Biochemical assays were conducted to determine the activities of α and β esterases, mixed function oxidases (MFO) and glutathione-S-transferases (GST) enzymes which are involved in resistance of mosquitoes to DDT and PYs. Enzymatic activity levels in each population were compared with those obtained for the CAREC susceptible strain, and significant differences were determined by Kruskal-Wallis and Tukey's non-parametric tests (P<0.05). The established DDs were 0.01 mg l(-1), 0.2 mg l(-1) and 1.0 mg l(-1) for deltamethrin, permethrin and DDT, respectively; and the RTs for deltamethrin, permethrin and DDT were 30, 75 and 120 min, respectively. All Ae. aegypti populations were resistant to DDT (<80% mortality); two strains were incipiently resistant to deltamethrin and three to permethrin (80-98% mortality). Biochemical assays revealed elevated levels of α-esterase and MFO enzymes in all Ae. aegypti populations. All, except three populations

  17. Oviposition-Stimulant and Ovicidal Activities of Moringa oleifera Lectin on Aedes aegypti

    PubMed Central

    Santos, Nataly Diniz de Lima; de Moura, Kézia Santana; Napoleão, Thiago Henrique; Santos, Geanne Karla Novais; Coelho, Luana Cassandra Breitenbach Barroso; Navarro, Daniela Maria do Amaral Ferraz; Paiva, Patrícia Maria Guedes

    2012-01-01

    Background Natural insecticides against the vector mosquito Aedes aegypti have been the object of research due to their high level of eco-safety. The water-soluble Moringa oleifera lectin (WSMoL) is a larvicidal agent against A. aegypti. This work reports the effects of WSMoL on oviposition and egg hatching of A. aegypti. Methodology/Principal Findings WSMoL crude preparations (seed extract and 0–60 protein fraction), at 0.1 mg/mL protein concentration, did not affect oviposition, while A. aegypti gravid females laid their eggs preferentially (73%) in vessels containing isolated WSMoL (0.1 mg/mL), compared with vessels containing only distilled water (control). Volatile compounds were not detected in WSMoL preparation. The hatchability of fresh eggs deposited in the solutions in the oviposition assay was evaluated. The numbers of hatched larvae in seed extract, 0–60 protein fraction and WSMoL were 45±8.7 %, 20±11 % and 55±7.5 %, respectively, significantly (p<0.05) lower than in controls containing only distilled water (75–95%). Embryos were visualized inside fresh control eggs, but not within eggs that were laid and maintained in WSMoL solution. Ovicidal activity was also assessed using stored A. aegypti eggs. The protein concentrations able to reduce the hatching rate by 50% (EC50) were 0.32, 0.16 and 0.1 mg/mL for seed extract, 0–60 protein fraction and WSMoL, respectively. The absence of hatching of stored eggs treated with WSMoL at 0.3 mg/mL (EC99) after transfer to medium without lectin indicates that embryos within the eggs were killed by WSMoL. The reduction in hatching rate of A. aegypti was not linked to decrease in bacteria population. Conclusions/Significance WSMoL acted both as a chemical stimulant cue for ovipositing females and ovicidal agent at a given concentration. The oviposition-stimulant and ovicidal activities, combined with the previously reported larvicidal activity, make WSMoL a very interesting candidate in integrated A. aegypti

  18. Evaluation of Three Commercial Backpack Sprayers with Aqualuer® 20-20 Against Caged Adult Aedes Aegypti.

    PubMed

    Conover, Derrick; Fulcher, Ali; Smith, Michael L; Farooq, Muhammad; Gaines, Marcia K; Xue, Rui-De

    2015-06-01

    Three commercially available backpack sprayers were evaluated with Aqualuer® 20-20 (20.6% permethrin, active ingredient; 20.6% piperonyl butoxide, technical) against caged adult Aedes aegypti in semifield trials in northeastern Florida. Two battery-powered sprayers, Birchmeier and Hudson, were compared with the standard hand-pump SOLO 425 sprayer, which is currently used in pest management operations. Physical characteristics, droplet analysis, and overall ease of use were documented. Multiple dilutions of the insecticide were also evaluated. The results indicated that the Birchmeier sprayer was the preferable machine in terms of its physical characteristics and operator use. There was no significant difference in percent mortality of the test mosquitoes between the sprayers. Multiple dilutions ranging from 1:9 to 1:1050 of the insecticide resulted in greater than 80% mean mortality. PMID:26181698

  19. Climate change and the potential global distribution of Aedes aegypti: spatial modelling using GIS and CLIMEX.

    PubMed

    Khormi, Hassan M; Kumar, Lalit

    2014-05-01

    We examined the potential added risk posed by global climate change on the dengue vector Aedes aegypti abundance using CLIMEX, a powerful tool for exploring the relationship between the fundamental and realised niche of any species. After calibrating the model using data from several knowledge domains, including geographical distribution records, we estimated potential distributions of the mosquito under current and future potential scenarios. The impact of climate change on its potential distribution was assessed with two global climate models, the CSIRO-Mk3.0 and the MIROC-H, run with two potential, future emission scenarios (A1B and A2) published by the Intergovernmental Panel on Climate Change. We compared today's climate situation with two arbitrarily chosen future time points (2030 and 2070) to see the impact on the worldwide distribution of A. aegypti . The model for the current global climate indicated favourable areas for the mosquito within its known distribution in tropical and subtropical areas. However, even if much of the tropics and subtropics will continue to be suitable, the climatically favourable areas for A. aegypti globally are projected to contract under the future scenarios produced by these models, while currently unfavourable areas, such as inland Australia, the Arabian Peninsula, southern Iran and some parts of North America may become climatically favourable for this mosquito species. The climate models for the Aedes dengue vector presented here should be useful for management purposes as they can be adapted for decision/making regarding allocation of resources for dengue risk toward areas where risk infection remains and away from areas where climatic suitability is likely to decrease in the future. PMID:24893017

  20. A Trypsin Inhibitor from Clitoria fairchildiana Cotyledons is Active Against Digestive Enzymes of Aedes aegypti Larvae.

    PubMed

    de Oliveira, Lucilene O; Fernandes, Kátia V S; Pádua, Dayanni de Souza; Carvalho, André de O; Lemos, Francisco J A; Gomes, Valdirene M; Oliveira, Antônia E A; Ferreira, André T da Silva; Perales, Jonas

    2015-01-01

    Aedes aegypti, the principal mosquito vector of yellow fever, dengue fever and chikungunya fever virus-transmitted diseases, is an insect closely associated with humans and their housing habitats. As there is no commercially available vaccine, prevention is the most suggested form of avoiding disease spreading and a number of studies are being developed in order to give support to vector control operations. The present study reports on the identification of a trypsin inhibitor isolated from cotyledons of the Clitoria fairchildiana amazonic tree seeds, which was able to reduce by 87.93 % the activity of digestive enzymes of fourth instar A. aegypti larva. A partial amino acid sequence showed strong similarity with sequences from several trypsin inhibitors already reported in the literature. The 13,000 Da isolated inhibitor was seen to be active solely against trypsin-like enzymes, neither acting on papain, α-amylase nor on other serine proteases, such as elastase, chymotrypsin or subtilisin. At least six from seven active digestive proteases from A. aegypti larvae, visualized by zymography, were severely affected soon after exposed to the inhibitor. The strong and specific action of the isolated inhibitor against trypsin digestive enzymes of this insect vector led us to believe that this protein may be a good candidate for a prospective alternative biocontrol method. PMID:26156641

  1. Reduced oviposition of Aedes aegypti gravid females in domestic containers with predatory fish.

    PubMed

    Pamplona, Luciano de Góes Cavalcanti; Alencar, Carlos H; Lima, José Wellington O; Heukelbach, Jörg

    2009-11-01

    The presence of pathogens or predators in water may alter oviposition behaviour of gravid female Aedes aegypti mosquitoes. We evaluated the oviposition behaviour of A. aegypti in recipients containing larvivorous fish (Betta splendens and Poecilia reticulata). In four breeders, fish specimens were placed in 15 l of dechlorined water. Four control breeders only contained dechlorined water. Breeders with eucatex ovitraps and approximately 100 male and female mosquitoes were placed in wire netting cages. During a period of 7 weeks, eggs on the ovitraps were counted weekly. The median number of eggs laid in recipients with B. splendens (32.5/week) was lower than in those with P. reticulata (200.5/week) and the control group (186.5/week; P < 0.0001). The oviposition activity index (OAI) for P. reticulata did not show any considerable difference between posture in deposits with and without fish (-0005). Deposits with B. splendens showed a lower position than those used as controls (-0627). We conclude that B. splendens can be used to effectively prevent gravid A. aegypti females from laying eggs in large water containers. PMID:19754521

  2. The use of Aedes aegypti larvae attractants to enhance the effectiveness of larvicides.

    PubMed

    Gonzalez, Paula V; Harburguer, Laura; González-Audino, Paola A; Masuh, Héctor M

    2016-06-01

    Aedes aegypti (L.) is an important dengue, chikungunya, and yellow fever vector. Immature stages of this species inhabit human-made containers placed in residential landscapes, and the application of larvicides inside containers that cannot be eliminated is still considered a priority in control programs. Larvicidal efficacy is influenced by several factors, including the formulation used, the water quality, and the susceptibility of larvae, among others. If an attractant can be incorporated into a slow-release larvicide formulation, it will be feasible to direct the larvae into the source of insecticide and thereby improving its efficacy. We studied the influence of 1-octen-3ol and 3-methylphenol on the rate of Ae. aegypti larvae mortality using the larvicides Bacillus thuringiensis var. israelensis (Bti), temephos, and spinosad. These chemicals were combined with the larvicides mixed with agar during the bioassays. Mortality was registered every 10 min, and a lethal time 50 (LT50) was calculated. The inclusion of the Ae. aegypti larvae attractants with the larvicides into a solid agar matrix improved their efficiency obtaining a strong and marked reduction in the LT50 compared with the use of larvicides alone. PMID:26922177

  3. Temperature, Larval Diet, and Density Effects on Development Rate and Survival of Aedes aegypti (Diptera: Culicidae)

    PubMed Central

    Couret, Jannelle; Dotson, Ellen; Benedict, Mark Q.

    2014-01-01

    Many environmental factors, biotic and abiotic interact to influence organismal development. Given the importance of Aedes aegypti as a vector of human pathogens including dengue and yellow fever, understanding the impact of environmental factors such as temperature, resource availability, and intraspecific competition during development is critical for population control purposes. Despite known associations between developmental traits and factors of diet and density, temperature has been considered the primary driver of development rate and survival. To determine the relative importance of these critical factors, wide gradients of conditions must be considered. We hypothesize that 1) diet and density, as well as temperature influence the variation in development rate and survival, 2) that these factors interact, and this interaction is also necessary to understand variation in developmental traits. Temperature, diet, density, and their two-way interactions are significant factors in explaining development rate variation of the larval stages of Ae. aegypti mosquitoes. These factors as well as two and three-way interactions are significantly associated with the development rate from hatch to emergence. Temperature, but not diet or density, significantly impacted juvenile mortality. Development time was heteroskedastic with the highest variation occurring at the extremes of diet and density conditions. All three factors significantly impacted survival curves of experimental larvae that died during development. Complex interactions may contribute to variation in development rate. To better predict variation in development rate and survival in Ae. aegypti, factors of resource availability and intraspecific density must be considered in addition, but never to the exclusion of temperature. PMID:24498328

  4. Ecdysis triggering hormone signaling in the yellow fever mosquito Aedes aegypti.

    PubMed

    Dai, Li; Adams, Michael E

    2009-05-15

    At the end of each developmental stage, the yellow fever mosquito Aedes aegypti performs the ecdysis behavioral sequence, a precisely timed series of behaviors that culminates in shedding of the old exoskeleton. Here we describe ecdysis triggering hormone-immunoreactive Inka cells located at branch points of major tracheal trunks and loss of staining coincident with ecdysis. Peptides (AeaETH1, AeaETH2) purified from extracts of pharate 4th instar larvae have--PRXamide C-terminal amino acid sequence motifs similar to ETHs previously identified in moths and flies. Injection of synthetic AeaETHs induced premature ecdysis behavior in pharate larvae, pupae and adults. Two functionally distinct subtypes of ETH receptors (AeaETHR-A, AeaETHR-B) of A. aegypti are identified and show high sensitivity and selectivity to ETHs. Increased ETHR transcript levels and behavioral sensitivity to AeaETHs arising in the hours preceding the 4th instar larva-to-pupa ecdysis are correlated with rising ecdysteroid levels, suggesting steroid regulation of receptor gene expression. Our description of natural and ETH-induced ecdysis in A. aegypti should facilitate future approaches directed toward hormone-based interference strategies for control of mosquitoes as human disease vectors. PMID:19298818

  5. Mobility properties of the Hermes transposable element in transgenic lines of Aedes aegypti.

    PubMed

    Smith, Ryan C; Atkinson, Peter W

    2011-01-01

    The Hermes transposable element has been used to genetically transform a wide range of insect species, including the mosquito, Aedes aegypti, a vector of several important human pathogens. Hermes integrations into the mosquito germline are characterized by the non-canonical integration of the transposon and flanking plasmid and, once integrated, Hermes is stable in the presence of its transposase. In an effort to improve the post-integration mobility of Hermes in the germline of Ae. aegypti, a transgenic helper Mos1 construct expressing Hermes transposase under the control of a testis-specific promoter was crossed to a separate transgenic strain containing a target Hermes transposon. In less than 1% of the approximately 1,500 progeny from jumpstarter lines analyzed, evidence of putative Hermes germline remobilizations were detected. These recovered transposition events occur through an aberrant mechanism and provide insight into the non-canonical cut-and-paste transposition of Hermes in the germ line of Ae. aegypti. PMID:20596755

  6. Mobility properties of the Hermes transposable element in transgenic lines of Aedes aegypti

    PubMed Central

    Smith, Ryan C.

    2010-01-01

    The Hermes transposable element has been used to genetically transform a wide range of insect species, including the mosquito, Aedes aegypti, a vector of several important human pathogens. Hermes integrations into the mosquito germline are characterized by the non-canonical integration of the transposon and flanking plasmid and, once integrated, Hermes is stable in the presence of its transposase. In an effort to improve the post-integration mobility of Hermes in the germline of Ae. aegypti, a transgenic helper Mos1 construct expressing Hermes transposase under the control of a testis-specific promoter was crossed to a separate transgenic strain containing a target Hermes transposon. In less than 1% of the approximately 1,500 progeny from jumpstarter lines analyzed, evidence of putative Hermes germline remobilizations were detected. These recovered transposition events occur through an aberrant mechanism and provide insight into the non-canonical cut-and-paste transposition of Hermes in the germ line of Ae. aegypti. PMID:20596755

  7. Differential transcription profiles in Aedes aegypti detoxification genes after temephos selection.

    PubMed

    Saavedra-Rodriguez, K; Strode, C; Flores, A E; Garcia-Luna, S; Reyes-Solis, G; Ranson, H; Hemingway, J; Black, W C

    2014-04-01

    The mosquito Aedes aegypti is the main vector of Dengue and Yellow Fever flaviviruses. The organophosphate insecticide temephos is a larvicide that is used globally to control Ae. aegypti populations; many of which have in turn evolved resistance. Target site alteration in the acetylcholine esterase of this species has not being identified. Instead, we tracked changes in transcription of metabolic detoxification genes using the Ae. aegypti 'Detox Chip' microarray during five generations of temephos selection. We selected for temephos resistance in three replicates in each of six collections, five from Mexico, and one from Peru. The response to selection was tracked in terms of lethal concentrations. Uniform upregulation was seen in the epsilon class glutathione-S-transferase (eGST) genes in strains from Mexico prior to laboratory selection, while eGSTs in the Iquitos Peru strain became upregulated after five generations of temephos selection. While expression of many carboxyl/cholinesterase esterase (CCE) genes increased with selection, no single esterase was consistently upregulated and this same pattern was noted in the cytochrome P450 monooxygenase (CYP) genes and in other genes involved in reduction or oxidation of xenobiotics. Bioassays using glutathione-S-transferase (GST), CCE and CYP inhibitors suggest that various CCEs instead of GSTs are the main metabolic mechanism conferring resistance to temephos. We show that temephos-selected strains show no cross resistance to permethrin and that genes associated with temephos selection are largely independent of those selected with permethrin in a previous study. PMID:24299217

  8. Intraspecific DNA variation in nuclear genes of the mosquito Aedes aegypti.

    PubMed

    Morlais, I; Severson, D W

    2003-12-01

    Single nucleotide polymorphisms (SNPs) are an abundant source of genetic variation among individual organisms. To assess the usefulness of SNPs for genome analysis in the yellow fever mosquito, Aedes aegypti, we sequenced 25 nuclear genes in each of three strains and analysed nucleotide diversity. The average frequency of nucleotide variation was 12 SNPs per kilobase, indicating that nucleotide variation in Ae. aegypti is similar to that in other organisms, including Drosophila and the malaria vector Anopheles gambiae. Transition polymorphisms outnumbered transversion polymorphisms, at a ratio of about 2:1. We examined codon usage and confirmed that mutational bias favours G and C ending codons. Codon bias was most pronounced in highly expressed genes. Nucleotide diversity estimates indicated that substitution rates are positively correlated in coding and non-coding regions. Nucleotide diversity varied from one gene to another. The unequal distribution of SNPs among Ae. aegypti nuclear genes suggests that single base variations are non-neutral and are subject to selective constraints. Our analysis showed that ubiquitously expressed genes have lower polymorphism rates and are likely under strong purifying selection, whereas tissue specific genes and genes with a putative role in parasite defence exhibit higher levels of polymorphism that may be associated with diversifying selection. PMID:14986924

  9. Quantitative Trait Loci That Control Dengue-2 Virus Dissemination in the Mosquito Aedes aegypti

    PubMed Central

    Bennett, Kristine E.; Flick, Don; Fleming, Karen H.; Jochim, Ryan; Beaty, Barry J.; Black, William C.

    2005-01-01

    The mosquito Aedes aegypti is the most important vector of yellow fever and dengue fever flaviviruses. Ae. aegypti eradication campaigns have not been sustainable and there are no effective vaccines for dengue viruses. Alternative control strategies may depend upon identification of mosquito genes that condition flavivirus susceptibility and may ultimately provide clues for interrupting transmission. Quantitative trait loci affecting the ability of Ae. aegypti to develop a dengue-2 infection in the midgut have been mapped previously. Herein we report on QTL that determine whether mosquitoes with a dengue-2-infected gut can then disseminate the virus to other tissues. A strain selected for high rates of dengue-2 dissemination was crossed to a strain selected for low dissemination rates. QTL were mapped in the F2 and again in an F5 advanced intercross line. QTL were detected at 31 cM on chromosome I, at 32 cM on chromosome II, and between 44 and 52 cM on chromosome III. Alleles at these QTL were additive or dominant in determining rates of dengue-2 dissemination and accounted for ∼45% of the phenotypic variance. The locations of dengue-2 midgut infection and dissemination QTL correspond to those found in earlier studies. PMID:15781707

  10. Release of thiotepa sterilized males into caged populations of Aedes aegypti: life table analysis.

    PubMed

    Gato, René; Companioni, Ariamys; Bruzón, Rosa Y; Menéndez, Zulema; González, Aileen; Rodríguez, Misladys

    2014-04-01

    Successful SIT trials against mosquitoes in the 1960-70s were achieved by sterilizing male mosquitoes using chemosterilants. Their use was discontinued after concerns were raised about the effect of residues on non-target organisms, although scant evidence has been published. Irradiation is an expensive process; chemosterilization could be an affordable option for implementing SIT programs in developing countries. We compare life table parameters of three Aedes aegypti populations comprising different ratios of thiotepa-treated and non-treated males in order to identify the impact on reproductive potential of the presence of sterile males. No difference was observed in the survival of the treated and untreated males. The release of thiotepa sterilized males into caged Ae. aegypti populations had no effect on death or survival probability of the individuals in the cages but the fecundity of females was significantly reduced, as evaluated by hatch rate and stable age structure parameters. The significant decreases in net reproduction rate, finite rate of natural increase and intrinsic rate of natural increase in populations including sterile males are sufficient to indicate that such populations would not be able to proliferate in natural conditions. This suggests that release of Ae. aegypti thiotepa-treated males could be effective in reducing the reproductive capability of the target population and consequently contribute to vector control. PMID:24513037

  11. Differential transcription profiles in Aedes aegypti detoxification genes following temephos selection

    PubMed Central

    Saavedra-Rodriguez, Karla; Strode, Clare; Flores, Adriana E.; Garcia-Luna, Selene; Reyes-Solis, Guadalupe; Ranson, Hilary; Hemingway, Janet; Black, William C.

    2014-01-01

    The mosquito Aedes aegypti is the main vector of Dengue and Yellow Fever flaviviruses. The organophosphate insecticide temephos is a larvicide that is used globally to control Ae. aegypti populations; many of which have in turn evolved resistance. Target site alteration in the acetylcholine esterase of this species has not being identified. Instead, we tracked changes in transcription of metabolic detoxification genes using the Ae. aegypti ‘Detox Chip’ microarray during five generations of temephos selection. We selected for temephos resistance in three replicates in each of six collections, five from México, and one from Perú. The response to selection was tracked in terms of lethal concentrations (LC50). Uniform upregulation was seen in the epsilon class glutathione-S-transferase genes (eGSTs) in strains from México prior to laboratory selection, while eGSTs in the Iquitos Perú strain became upregulated following five generations of temephos selection. While expression of many esterase genes (CCE) increased with selection, no single esterase was consistently upregulated and this same pattern was noted in the cytochrome P450 genes (CYP) and in other genes involved in reduction or oxidation of xenobiotics. Bioassays using GST, CCE and CYP inhibitors suggest that various CCE instead of GSTs are the main metabolic mechanism conferring resistance to temephos. We show that temephos selected strains show no cross resistance to permethrin and that genes associated with temephos selection are largely independent of those selected with permethrin in a previous study. PMID:24299217

  12. Historical inability to control Aedes aegypti as a main contributor of fast dispersal of chikungunya outbreaks in Latin America.

    PubMed

    Fernández-Salas, Ildefonso; Danis-Lozano, Rogelio; Casas-Martínez, Mauricio; Ulloa, Armando; Bond, J Guillermo; Marina, Carlos F; Lopez-Ordóñez, Teresa; Elizondo-Quiroga, Armando; Torres-Monzón, Jorge A; Díaz-González, Esteban E

    2015-12-01

    The arrival of chikungunya fever (CHIKF) in Latin American countries has been expected to trigger epidemics and challenge health systems. Historically considered as dengue-endemic countries, abundant Aedes aegypti populations make this region highly vulnerable to chikungunya virus (CHIKV) circulation. This review describes the current dengue and CHIKF epidemiological situations, as well as the role of uncontrolled Ae. aegypti and Aedes albopictus vectors in spreading the emerging CHIKV. Comments are included relating to the vector competence of both species and failures of surveillance and vector control measures. Dengue endemicity is a reflection of these abundant and persistent Aedes populations that are now spreading CHIKV in the Americas. This article forms part of a symposium in Antiviral Research on "Chikungunya discovers the New World." PMID:26518229

  13. Spatial and Temporal Variation in Aedes aegypti and Aedes albopictus (Diptera: Culicidae) Numbers in the Yogyakarta Area of Java, Indonesia, With Implications for Wolbachia Releases.

    PubMed

    Tantowijoyo, W; Arguni, E; Johnson, P; Budiwati, N; Nurhayati, P I; Fitriana, I; Wardana, S; Ardiansyah, H; Turley, A P; Ryan, P; O'Neill, S L; Hoffmann, A A

    2016-01-01

    of mosquito vector populations, particularly through Wolbachia endosymbionts. The success of these strategies depends on understanding the dynamics of vector populations. In preparation for Wolbachia releases around Yogyakarta, we have studied Aedes populations in five hamlets. Adult monitoring with BioGent- Sentinel (BG-S) traps indicated that hamlet populations had different dynamics across the year; while there was an increase in Aedes aegypti (L.) and Aedes albopictus (Skuse) numbers in the wet season, species abundance remained relatively stable in some hamlets but changed markedly (>2 fold) in others. Local rainfall a month prior to monitoring partly predicted numbers of Ae. aegypti but not Ae. albopictus. Site differences in population size indicated by BG-S traps were also evident in ovitrap data. Egg or larval collections with ovitraps repeated at the same location suggested spatial autocorrelation (<250 m) in the areas of the hamlets where Ae. aegypti numbers were high. Overall, there was a weak negative association (r<0.43) between Ae. aegypti and Ae. albopictus numbers in ovitraps when averaged across collections. Ae. albopictus numbers in ovitraps and BG-S traps were positively correlated with vegetation around areas where traps were placed, while Ae. aegypti were negatively correlated with this feature. These data inform intervention strategies by defining periods when mosquito densities are high, highlighting the importance of local site characteristics on populations, and suggesting relatively weak interactions between Ae. aegypti and Ae. albopictus. They also indicate local areas within hamlets where consistently high mosquito densities may influence Wolbachia invasions and other interventions. PMID:26576934

  14. Integrated control of the dengue vector Aedes aegypti in Liu-Chiu village, Ping-Tung County, Taiwan.

    PubMed

    Wang, C H; Chang, N T; Wu, H H; Ho, C M

    2000-06-01

    Because of an inadequate supply of potable water, villagers of Small Liu-Chiu Isle, Ping-Tung County, Taiwan, store water in containers supporting a large population of Aedes aegypti. In 1989-96, integrated control measures against Ae. aegypti were implemented on the basis of community participation. These measures included release of mosquito larvivorous fish in the drinking water storage facilities, application of larvicides to the water storage facilities in vegetable gardens, removal of discarded and unused containers and tires, improvement of household water storage facilities, and increase of potable water supply. Before implementation of the integrated control measures in 1988, 74% of the water-containing vessels were water storage facilities, and 24% of those were infested by Ae. aegypti. In 1989, the Breteau index for the entire island, indicating the average distribution density for larval Ae. aegypti, was 53.9, as compared to an index of 1.2 in 1996. In 4 villages located at the southwest and middle of the island, Ae. aegypti nearly became extinct because of the enthusiastic participation of the community. Before the implementation of integrated control, Ae. aegypti was the dominant species in containers both inside and outside the household, but after the integrated control, Aedes albopictus became predominant outside. PMID:10901632

  15. Aedes aegypti (L.) and Aedes albopictus (Skuse) in Singapore City. 2. Larval habitats.

    PubMed

    Chan, K L; Ho, B C; Chan, Y C

    1971-01-01

    Detailed information on the breeding habitats of Ae. aegypti and Ae. albopictus is necessary when planning programmes for their control. The larval habitats of the two species in 10 city areas were counted and classified according to type, frequency of occurrence, location, and function. Of all the breeding habitats recorded 95% were domestic containers. The most common Ae. aegypti breeding habitats were ant traps, earthenware jars, bowls, tanks, tin cans, and drums, ant traps being the most common indoors and earthenware jars the most common out doors. Breeding habitats for Ae. albopictus were commonly found in earthen ware jars, tin cans, ant traps, rubber tires, bowls, and drums; ant traps were the most common indoor habitat and tin cans were most common outdoors.The majority of Ae. aegypti breeding habitats were found indoors, while only half of all the Ae. albopictus breeding habitats were indoors. The indoor and outdoor distribution of breeding habitats of both species was not related to the type of housing in the area.The distribution of the type of breeding habitats, however, was related to the type of housing in the area. Ant traps were common to all areas, but water-storage containers and unused containers were common in slum-house and shop-house areas. Flats, however, had more containers used for keeping plants and flowers.The most common breeding habitats of Ae. aegypti and Ae. albopictus are discussed in relation to the habits of the people. It is concluded that control of the two species will depend largely on a change in such habits, either through public health education or by some form of law enforcement. PMID:5316746

  16. Household survey of container-breeding mosquitoes and climatic factors influencing the prevalence of Aedes aegypti (Diptera: Culicidae) in Makkah City, Saudi Arabia

    PubMed Central

    Aziz, Al Thabiany; Dieng, Hamady; Ahmad, Abu Hassan; Mahyoub, Jazem A; Turkistani, Abdulhafis M; Mesed, Hatabbi; Koshike, Salah; Satho, Tomomitsu; Salmah, MR Che; Ahmad, Hamdan; Zuharah, Wan Fatma; Ramli, Ahmad Saad; Miake, Fumio

    2012-01-01

    Objective To investigate the prevalence of container breeding mosquitoes with emphasis on the seasonality and larval habitats of Aedes aegypti (Ae. aegypti) in Makkah City, adjoining an environmental monitoring and dengue incidence. Methods Monthly visits were performed between April 2008 and March 2009 to randomly selected houses. During each visit, mosquito larvae were collected from indoors and outdoors containers by either dipping or pipetting. Mosquitoes were morphologically identified. Data on temperature, relative humidity, rain/precipitations during the survey period was retrieved from governmental sources and analyzed. Results The city was warmer in dry season (DS) than wet season (WS). No rain occurred at all during DS and even precipitations did fall, wetting events were much greater during WS. Larval survey revealed the co-breeding of Aedes, Culex and Anopheles in a variety of artificial containers in and around homes. 32 109 larvae representing 1st , 2nd, 3rd, and 4th stages were collected from 22 618 container habitats. Culicines was far the commonest and Aedes genus was as numerous as the Culex population. Ae. aegypti larval abundance exhibited marked temporal variations, overall, being usually more abundant during WS. Ten types of artificial containers were found with developing larvae. 70% of these habitats were located indoors. 71.42% of indoor containers were permanent and 28.58% was semi-permanent during WS. Cement tanks was the only container type permanent during DS. Ae. aegypti larval indices (CI, HI, BI) recorded were greater during WS. Conclusions Taken together, these results indicate a high risk of dengue transmission in the holy city. PMID:23569860

  17. Aedes aegypti Control Strategies in Brazil: Incorporation of New Technologies to Overcome the Persistence of Dengue Epidemics.

    PubMed

    Araújo, Helena R C; Carvalho, Danilo O; Ioshino, Rafaella S; Costa-da-Silva, André L; Capurro, Margareth L

    2015-01-01

    Dengue is considered to be the most important mosquito-borne viral disease in the world. The Aedes aegypti mosquito, its vector, is highly anthropophilic and is very well adapted to urban environments. Although several vaccine candidates are in advanced stages of development no licensed dengue vaccine is yet available. As a result, controlling the spread of dengue still requires that mosquitoes be targeted directly. We review the current methods of dengue vector control focusing on recent technical advances. We first examine the history of Brazil's National Dengue Control Plan in effect since 2002, and we describe its establishment and operation. With the persistent recurrence of dengue epidemics, current strategies should be reassessed to bring to the forefront a discussion of the possible implementation of new technologies in Brazil's mosquito control program. PMID:26463204

  18. Spatial and temporal patterns in pupal and adult production of the dengue vector Aedes aegypti in Kamphaeng Phet, Thailand.

    PubMed

    Koenraadt, Constantianus J M; Aldstadt, Jared; Kijchalao, Udom; Sithiprasasna, Ratana; Getis, Arthur; Jones, James W; Scott, Thomas W

    2008-08-01

    We investigated how temporal and spatial effects confound the functional relationship between pupal and adult populations of Aedes aegypti and thus the value of pupal numbers as predictors of dengue transmission risk in Kamphaeng Phet, Thailand. We found considerable seasonal shifts in productivity of key containers. Tires contained much less pupae in the dry season than in the wet season. Earthenware jars and cement tanks for washing purposes were consistent producers over the entire study period. Houses in the two villages, with approximately twice as many houses per unit area, were significantly more likely to have adults and pupae. No significant annual, seasonal, or spatial effects on the strength of correlations between pupal and adult populations were found. Except for 2 (of 16) occasions, pupal, and adult populations were correlated strongly in time and space. Our results are consistent with application of the pupal survey technique for assessing dengue transmission risk. PMID:18689629

  19. Aedes aegypti Control Strategies in Brazil: Incorporation of New Technologies to Overcome the Persistence of Dengue Epidemics

    PubMed Central

    Araújo, Helena R. C.; Carvalho, Danilo O.; Ioshino, Rafaella S.; Costa-da-Silva, André L.; Capurro, Margareth L.

    2015-01-01

    Dengue is considered to be the most important mosquito-borne viral disease in the world. The Aedes aegypti mosquito, its vector, is highly anthropophilic and is very well adapted to urban environments. Although several vaccine candidates are in advanced stages of development no licensed dengue vaccine is yet available. As a result, controlling the spread of dengue still requires that mosquitoes be targeted directly. We review the current methods of dengue vector control focusing on recent technical advances. We first examine the history of Brazil’s National Dengue Control Plan in effect since 2002, and we describe its establishment and operation. With the persistent recurrence of dengue epidemics, current strategies should be reassessed to bring to the forefront a discussion of the possible implementation of new technologies in Brazil’s mosquito control program. PMID:26463204

  20. Isolation and identification of mosquito (Aedes aegypti ) biting deterrent fatty acids from male inflorescences of breadfruit (Artocarpus altilis (Parkinson) Fosberg).

    PubMed

    Jones, A Maxwell P; Klun, Jerome A; Cantrell, Charles L; Ragone, Diane; Chauhan, Kamlesh R; Brown, Paula N; Murch, Susan J

    2012-04-18

    Dried male inflorescences of breadfruit ( Artocarpus altilis , Moraceae) are burned in communities throughout Oceania to repel flying insects, including mosquitoes. This study was conducted to identify chemicals responsible for mosquito deterrence. Various crude extracts were evaluated, and the most active, the hydrodistillate, was used for bioassay-guided fractionation. The hydrodistillate and all fractions displayed significant deterrent activity. Exploratory GC-MS analysis revealed more than 100 distinctive peaks, and more than 30 compounds were putatively identified, including a mixture of terpenes, aldehydes, fatty acids, and aromatics. A systematic bioassay-directed study using adult Aedes aegypti females identified capric, undecanoic, and lauric acid as primary deterrent constituents. A synthetic mixture of fatty acids present in the most active fraction and individual fatty acids were all significantly more active than N,N-diethyl-m-toluamide (DEET). These results provide support for this traditional practice and indicate the potential of male breadfruit flowers and fatty acids as mosquito repellents. PMID:22420541

  1. A model for the development of Aedes (Stegomyia) aegypti as a function of the available food.

    PubMed

    Romeo Aznar, Victoria; De Majo, María Sol; Fischer, Sylvia; Francisco, Diego; Natiello, Mario A; Solari, Hernán G

    2015-01-21

    We discuss the preimaginal development of the mosquito Aedes aegypti from the point of view of the statistics of developmental times and the final body-size of the pupae and adults. We begin the discussion studying existing models in relation to published data for the mosquito. The data suggest a developmental process that is described by exponentially distributed random times. The existing data show as well that the idea of cohorts emerging synchronously is verified only in optimal situations created at the laboratory but it is not verified in field experiments. We propose a model in which immature individuals progress in successive stages, all of them with exponentially distributed times, according to two different rates (one food-dependent and the other food-independent). This phenomenological model, coupled with a general model for growing, can explain the existing observations and new results produced in this work. The emerging picture is that the development of the larvae proceeds through a sequence of steps. Some of the steps depend on the available food. While food is in abundance, all steps can be thought as having equal duration, but when food is scarce, those steps that depend on food take considerably longer times. For insufficient levels of food, increase in larval mortality sets in. As a consequence of the smaller rates, the average pupation time increases and the cohort disperses in time. Dispersion, as measured by standard deviation, becomes a quadratic function of the average time indicating that cohort dispersion responds to the same causes than delays in pupation and adult emergence. During the whole developmental process the larva grows monotonically, initially at an exponential rate but later at decreasing rates, approaching a final body-size. Growth is stopped by maturation when it is already slow. As a consequence of this process, there is a slight bias favoring small individuals: Small individuals are born before larger individuals, although

  2. Insecticide-Driven Patterns of Genetic Variation in the Dengue Vector Aedes aegypti in Martinique Island

    PubMed Central

    Paupy, Christophe; Bringuier, Charline; Yebakima, André; Chandre, Fabrice; David, Jean-Philippe; Corbel, Vincent; Despres, Laurence

    2013-01-01

    Effective vector control is currently challenged worldwide by the evolution of resistance to all classes of chemical insecticides in mosquitoes. In Martinique, populations of the dengue vector Aedes aegypti have been intensively treated with temephos and deltamethrin insecticides over the last fifty years, resulting in heterogeneous levels of resistance across the island. Resistance spreading depends on standing genetic variation, selection intensity and gene flow among populations. To determine gene flow intensity, we first investigated neutral patterns of genetic variability in sixteen populations representative of the many environments found in Martinique and experiencing various levels of insecticide pressure, using 6 microsatellites. Allelic richness was lower in populations resistant to deltamethrin, and consanguinity was higher in populations resistant to temephos, consistent with a negative effect of insecticide pressure on neutral genetic diversity. The global genetic differentiation was low, suggesting high gene flow among populations, but significant structure was found, with a pattern of isolation-by-distance at the global scale. Then, we investigated adaptive patterns of divergence in six out of the 16 populations using 319 single nucleotide polymorphisms (SNPs). Five SNP outliers displaying levels of genetic differentiation out of neutral expectations were detected, including the kdr-V1016I mutation in the voltage-gated sodium channel gene. Association tests revealed a total of seven SNPs associated with deltamethrin resistance. Six other SNPs were associated with temephos resistance, including two non-synonymous substitutions in an alkaline phosphatase and in a sulfotransferase respectively. Altogether, both neutral and adaptive patterns of genetic variation in mosquito populations appear to be largely driven by insecticide pressure in Martinique. PMID:24204999

  3. Evidence for gene duplication in the voltage-gated sodium channel gene of Aedes aegypti

    PubMed Central

    Martins, Ademir Jesus; Brito, Luiz Paulo; Linss, Jutta Gerlinde Birggitt; Rivas, Gustavo Bueno da Silva; Machado, Ricardo; Bruno, Rafaela Vieira; Lima, José Bento Pereira; Valle, Denise; Peixoto, Alexandre Afranio

    2013-01-01

    Background and objectives: Mutations in the voltage-gated sodium channel gene (NaV), known as kdr mutations, are associated with pyrethroid and DDT insecticide resistance in a number of species. In the mosquito dengue vector Aedes aegypti, besides kdr, other polymorphisms allowed grouping AaNaV sequences as type ‘A’ or ‘B’. Here, we point a series of evidences that these polymorphisms are actually involved in a gene duplication event. Methodology: Four series of methods were employed: (i) genotypying, with allele-specific PCR (AS-PCR), of two AaNaV sites that can harbor kdr mutations (Ile1011Met and Val1016Ile), (ii) cloning and sequencing of part of the AaNaV gene, (iii) crosses with specific lineages and analysis of the offspring genotypes and (iv) copy number variation assays, with TaqMan quantitative real-time PCR. Results: kdr mutations in 1011 and 1016 sites were present only in type ‘A’ sequences, but never in the same haplotype. In addition, although the 1011Met-mutant allele is widely disseminated, no homozygous (1011Met/Met) was detected. Sequencing revealed three distinct haplotypes in some individuals, raising the hypothesis of gene duplication, which was supported by the genotype frequencies in the offspring of specific crosses. Furthermore, it was estimated that a laboratory strain selected for insecticide resistance had 5-fold more copies of the sodium channel gene compared with a susceptible reference strain. Conclusions and implications: The AaNaV duplication here found might be a recent adaptive response to the intense use of insecticides, maintaining together wild-type and mutant alleles in the same organism, conferring resistance and reducing some of its deleterious effects. PMID:24481195

  4. Molecular Genetic Analysis of Midgut Serine Proteases in Aedes aegypti Mosquitoes

    PubMed Central

    Isoe, Jun; Rascón, Alberto A.; Kunz, Susan; Miesfeld, Roger L.

    2009-01-01

    Digestion of blood meal proteins by midgut proteases provides anautogenous mosquitoes with the nutrients required to complete the gonotrophic cycle. Inhibition of protein digestion in the midgut of blood feeding mosquitoes could therefore provide a strategy for population control. Based on recent reports indicating that the mechanism and regulation of protein digestion in blood fed female Aedes aegypti mosquitoes is more complex than previously thought, we used a robust RNAi knockdown method to investigate the role of four highly expressed midgut serine proteases in blood meal metabolism. We show by Western blotting that the early phase trypsin protein (AaET) is maximally expressed at 3 h post blood meal (PBM), and that AaET is not required for the protein expression of three late phase serine proteases, AaLT (late trypsin), AaSPVI (5G1), and AaSPVII. Using the trypsin substrate analog BApNA to analyze in vitro enzyme activity in midgut extracts from single mosquitoes, we found that knockdown of AaSPVI expression caused a 77.6% decrease in late phase trypsin-like activity, whereas, knockdown of AaLT and AaSPVII expression had no significant effect on BApNA activity. In contrast, injection of AaLT, AaSPVI, and AaSPVII dsRNA inhibited degradation of endogenous serum albumin protein using an in vivo protease assay, as well as, significantly decreased egg production in both the first and second gonotrophic cycles (p<0.001). These results demonstrate that AaLT, AaSPVI, and AaSPVII all contribute to blood protein digestion and oocyte maturation, even though AaSPVI is the only abundant midgut late phase serine protease that appears to function as a classic trypsin enzyme. PMID:19883761

  5. Leucokinin mimetic elicits aversive behavior in mosquito Aedes aegypti (L.) and inhibits the sugar taste neuron.

    PubMed

    Kwon, Hyeogsun; Ali Agha, Moutaz; Smith, Ryan C; Nachman, Ronald J; Marion-Poll, Frédéric; Pietrantonio, Patricia V

    2016-06-21

    Insect kinins (leucokinins) are multifunctional peptides acting as neurohormones and neurotransmitters. In females of the mosquito vector Aedes aegypti (L.), aedeskinins are known to stimulate fluid secretion from the renal organs (Malpighian tubules) and hindgut contractions by activating a G protein-coupled kinin receptor designated "Aedae-KR." We used protease-resistant kinin analogs 1728, 1729, and 1460 to evaluate their effects on sucrose perception and feeding behavior. In no-choice feeding bioassays (capillary feeder and plate assays), the analog 1728, which contains α-amino isobutyric acid, inhibited females from feeding on sucrose. It further induced quick fly-away or walk-away behavior following contact with the tarsi and the mouthparts. Electrophysiological recordings from single long labellar sensilla of the proboscis demonstrated that mixing the analog 1728 at 1 mM with sucrose almost completely inhibited the detection of sucrose. Aedae-KR was immunolocalized in contact chemosensory neurons in prothoracic tarsi and in sensory neurons and accessory cells of long labellar sensilla in the distal labellum. Silencing Aedae-KR by RNAi significantly reduced gene expression and eliminated the feeding-aversion behavior resulting from contact with the analog 1728, thus directly implicating the Aedae-KR in the aversion response. To our knowledge, this is the first report that kinin analogs modulate sucrose perception in any insect. The aversion to feeding elicited by analog 1728 suggests that synthetic molecules targeting the mosquito Aedae-KR in the labellum and tarsi should be investigated for the potential to discover novel feeding deterrents of mosquito vectors. PMID:27274056

  6. The combination of the entomopathogenic fungus Metarhizium anisopliae with the insecticide Imidacloprid increases virulence against the dengue vector Aedes aegypti (Diptera: Culicidae)

    PubMed Central

    2011-01-01

    Background Dengue fever transmitted by the mosquito Aedes aegypti, is one of the most rapidly spreading insect borne diseases, stimulating the search for alternatives to current control measures. The dengue vector A. aegypti has received less attention than anophelene species, although more than 2.5 billion people are at risk of infection worldwide. Entomopathogenic fungi are emerging as potential candidates for the control of mosquitoes. Here we continue our studies on the pathogenicity of the entomopathogenic fungus Metarhizium anisopliae against adult A. aegypti females. With the aim of further reducing mean survival times of A. aegypti exposed to fungus impregnated surfaces, a sub-lethal concentration of the neonicotinoid insecticide Imidacloprid (IMI) was added to fungal suspensions. Results A sub-lethal concentration of IMI that did not significantly alter the daily survival rates or mean survival percentages of mosquitoes was identified to be 0.1 ppm. This sub-lethal concentration was combined with M. anisopliae conidia (1 × 109 conidia mL-1). Both the combined treatment and the conidia alone were able to reduce the survival of A. aegypti compared with untreated or IMI treated mosquitoes. Importantly, mosquito survival following exposure to the combined treatment for 6 and 12 hrs was significantly reduced when compared with mosquitoes exposed to conidia alone. Conclusions This is the first time that a combination of an insecticide and an entomopathogenic fungus has been tested against A. aegypti. Firstly, the study showed the potential of IMI as an alternative to the currently employed pyrethroid adulticides. Secondly, as an alternative to applications of high concentrations of chemical insecticides, we suggest that adult A. aegypti could be controlled by surface application of entomopathogenic fungi and that the efficiency of these fungi could be increased by combining the fungi with ultra-low concentrations of insecticides, resulting in higher mortality

  7. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus

    PubMed Central

    Kraemer, Moritz UG; Sinka, Marianne E; Duda, Kirsten A; Mylne, Adrian QN; Shearer, Freya M; Barker, Christopher M; Moore, Chester G; Carvalho, Roberta G; Coelho, Giovanini E; Van Bortel, Wim; Hendrickx, Guy; Schaffner, Francis; Elyazar, Iqbal RF; Teng, Hwa-Jen; Brady, Oliver J; Messina, Jane P; Pigott, David M; Scott, Thomas W; Smith, David L; Wint, GR William; Golding, Nick; Hay, Simon I

    2015-01-01

    Dengue and chikungunya are increasing global public health concerns due to their rapid geographical spread and increasing disease burden. Knowledge of the contemporary distribution of their shared vectors, Aedes aegypti and Aedes albopictus remains incomplete and is complicated by an ongoing range expansion fuelled by increased global trade and travel. Mapping the global distribution of these vectors and the geographical determinants of their ranges is essential for public health planning. Here we compile the largest contemporary database for both species and pair it with relevant environmental variables predicting their global distribution. We show Aedes distributions to be the widest ever recorded; now extensive in all continents, including North America and Europe. These maps will help define the spatial limits of current autochthonous transmission of dengue and chikungunya viruses. It is only with this kind of rigorous entomological baseline that we can hope to project future health impacts of these viruses. DOI: http://dx.doi.org/10.7554/eLife.08347.001 PMID:26126267

  8. The influence of diet on the use of near-infrared spectroscopy to determine the age of female Aedes aegypti mosquitoes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Interventions targeting adult mosquitoes are used to combat transmission of vector-borne diseases, including dengue. Without available vaccines, targeting the primary vector, Aedes aegypti, is essential to prevent transmission. Older mosquitoes (>/='7 days) are of greatest epidemiological significan...

  9. Mosquito larvicidal properties of Orthisiphon thymiflorus (Roth) Sleesen. (Family: Labiatae) against mosquito vectors, Anopheles stephensi, Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective: To determine the larvicidal activity of hexane, chloroform, ethyl acetate, acetone, and methanol extracts of Orthosiphon thymiflorus leaves against Anopheles stephensi, Culex quinquefasciatus and Aedes aegypti. Methods: Larvicidal activity was determined in laboratory bioassays using var...

  10. Estimation of Aedes aegypti (Diptera: Culicidae) population size and adult male survival in an urban area in Panama

    PubMed Central

    Neira, Marco; Lacroix, Renaud; Cáceres, Lorenzo; Kaiser, Paul E; Young, Josue; Pineda, Lleysa; Black, Isaac; Sosa, Nestor; Nimmo, Derric; Alphey, Luke; McKemey, Andrew

    2014-01-01

    Traditional mosquito control strategies rely heavily on the use of chemical insecticides. However, concerns about the efficiency of traditional control methods, environmental impact and emerging pesticide resistance have highlighted the necessity for developing innovative tools for mosquito control. Some novel strategies, including release of insects carrying a dominant lethal gene (RIDL®), rely on the sustained release of modified male mosquitoes and therefore benefit from a thorough understanding of the biology of the male of the species. In this report we present the results of a mark-release-recapture study aimed at: (i) establishing the survival in the field of laboratory-reared, wild-type male Aedes aegypti and (b) estimating the size of the local adult Ae. aegypti population. The study took place in Panama, a country where recent increases in the incidence and severity of dengue cases have prompted health authorities to evaluate alternative strategies for vector control. Results suggest a life expectancy of 2.3 days for released male mosquitoes (confidence interval: 1.78-2.86). Overall, the male mosquito population was estimated at 58 males/ha (range 12-81 males/ha), which can be extrapolated to an average of 0.64 pupae/person for the study area. The practical implications of these results are discussed. PMID:25410991

  11. Estimation of Aedes aegypti (Diptera: Culicidae) population size and adult male survival in an urban area in Panama.

    PubMed

    Neira, Marco; Lacroix, Renaud; Cáceres, Lorenzo; Kaiser, Paul E; Young, Josue; Pineda, Lleysa; Black, Isaac; Sosa, Nestor; Nimmo, Derric; Alphey, Luke; McKemey, Andrew

    2014-11-01

    Traditional mosquito control strategies rely heavily on the use of chemical insecticides. However, concerns about the efficiency of traditional control methods, environmental impact and emerging pesticide resistance have highlighted the necessity for developing innovative tools for mosquito control. Some novel strategies, including release of insects carrying a dominant lethal gene (RIDL®), rely on the sustained release of modified male mosquitoes and therefore benefit from a thorough understanding of the biology of the male of the species. In this report we present the results of a mark-release-recapture study aimed at: (i) establishing the survival in the field of laboratory-reared, wild-type male Aedes aegypti and (b) estimating the size of the local adult Ae. aegypti population. The study took place in Panama, a country where recent increases in the incidence and severity of dengue cases have prompted health authorities to evaluate alternative strategies for vector control. Results suggest a life expectancy of 2.3 days for released male mosquitoes (confidence interval: 1.78-2.86). Overall, the male mosquito population was estimated at 58 males/ha (range 12-81 males/ha), which can be extrapolated to an average of 0.64 pupae/person for the study area. The practical implications of these results are discussed. PMID:25410991

  12. Estimation of Aedes aegypti (Diptera: Culicidae) population size and adult male survival in an urban area in Panama.

    PubMed

    Neira, Marco; Lacroix, Renaud; Cáceres, Lorenzo; Kaiser, Paul E; Young, Josue; Pineda, Lleysa; Black, Isaac; Sosa, Nestor; Nimmo, Derric; Alphey, Luke; McKemey, Andrew

    2014-08-22

    Traditional mosquito control strategies rely heavily on the use of chemical insecticides. However, concerns about the efficiency of traditional control methods, environmental impact and emerging pesticide resistance have highlighted the necessity for developing innovative tools for mosquito control. Some novel strategies, including release of insects carrying a dominant lethal gene (RIDL®), rely on the sustained release of modified male mosquitoes and therefore benefit from a thorough understanding of the biology of the male of the species. In this report we present the results of a mark-release-recapture study aimed at: (i) establishing the survival in the field of laboratory-reared, wild-type male Aedes aegypti and (b) estimating the size of the local adult Ae. aegypti population. The study took place in Panama, a country where recent increases in the incidence and severity of dengue cases have prompted health authorities to evaluate alternative strategies for vector control. Results suggest a life expectancy of 2.3 days for released male mosquitoes (confidence interval: 1.78-2.86). Overall, the male mosquito population was estimated at 58 males/ha (range 12-81 males/ha), which can be extrapolated to an average of 0.64 pupae/person for the study area. The practical implications of these results are discussed. PMID:25165979

  13. Adult survivorship of the dengue mosquito Aedes aegypti varies seasonally in central Vietnam.

    PubMed

    Hugo, Leon E; Jeffery, Jason A L; Trewin, Brendan J; Wockner, Leesa F; Nguyen, Thi Yen; Nguyen, Hoang Le; Nghia, Le Trung; Hine, Emma; Ryan, Peter A; Kay, Brian H

    2014-02-01

    The survival characteristics of the mosquito Aedes aegypti affect transmission rates of dengue because transmission requires infected mosquitoes to survive long enough for the virus to infect the salivary glands. Mosquito survival is assumed to be high in tropical, dengue endemic, countries like Vietnam. However, the survival rates of wild populations of mosquitoes are seldom measured due the difficulty of predicting mosquito age. Hon Mieu Island in central Vietnam is the site of a pilot release of Ae. aegypti infected with a strain of Wolbachia pipientis bacteria (wMelPop) that induces virus interference and mosquito life-shortening. We used the most accurate mosquito age grading approach, transcriptional profiling, to establish the survival patterns of the mosquito population from the population age structure. Furthermore, estimations were validated on mosquitoes released into a large semi-field environment consisting of an enclosed house, garden and yard to incorporate natural environmental variability. Mosquito survival was highest during the dry/cool (January-April) and dry/hot (May-August) seasons, when 92 and 64% of Hon Mieu mosquitoes had survived to an age that they were able to transmit dengue (12 d), respectively. This was reduced to 29% during the wet/cool season from September to December. The presence of Ae. aegypti older than 12 d during each season is likely to facilitate the observed continuity of dengue transmission in the region. We provide season specific Ae. aegypti survival models for improved dengue epidemiology and evaluation of mosquito control strategies that aim to reduce mosquito survival to break the dengue transmission cycle. PMID:24551251

  14. Larvicidal activity against Aedes aegypti of Foeniculum vulgare essential oils from Portugal and Cape Verde.

    PubMed

    Rocha, Diara Kady; Matosc, Olivia; Novoa, Maria Teresa; Figueiredo, Ana Cristina; Delgado, Manuel; Moiteiro, Cristina

    2015-04-01

    Dengue is a potentially fatal mosquito-borne infection with 50 million cases per year and 2.5 billion people vulnerable to the disease. This major public health problem has recurrent epidemics in Latin America and occurred recently in Cape Verde and Madeira Island. The lack of anti-viral treatment or vaccine makes the control of mosquito vectors a high option to prevent virus transmission. Essential oil (EO) constituents can affect insect's behaviour, being potentially effective in pest control. The present study evaluated the potential use of Foenicultm vulgare (fennel) EO in the control of the dengue vector Aedes aegypti. EOs isolated from fennel aerial parts collected in Cape Verde and from a commercial fennel EO of Portugal were analysed by NMR, GC and GC-MS. trans-Anethole (32 and 30%, respectively), limonene (28 and 18%, respectively) and fenchone (10% in both cases) were the main compounds identified in the EOs isolated from fennel from Cape Verde and Portugal, respectively. The larvicidal activity of the EOs and its major constituents were evaluated, using WHO procedures, against third instar larvae ofAe. aegypti for 24 h. Pure compounds, such as limonene isomers, were also assayed. The lethal concentrations LC50, C90 and LC99 were determined by probit analysis using mortality rates of bioassays. A 99% mortality of Ae. aegypti larvae was estimated at 37.1 and 52.4 µL L-1 of fennel EOs from Cape Verde and Portugal, respectively. Bioassays showed that fennel EOs from both countries displayed strong larvicidal effect against Ae. aegypti, the Cape Verde EO being as active as one of its major constituents, (-)-limonene. PMID:25973508

  15. Inheritance of Resistance to Deltamethrin in Aedes aegypti (Diptera: Culicidae) From Cuba.

    PubMed

    Rodríguez, María Magdalena; Hurtado, Daymi; Severson, David W; Bisset, Juan A

    2014-11-01

    The development of pyrethroid resistance in Aedes aegypti (L) (Diptera: Culicidae) is a serious concern because major A. aegypti control programs are predominantly based on pyrethroid use during epidemic disease outbreaks. Research about the genetic basis for pyrethroid resistance and how it is transmitted among mosquito populations is needed. The objective of this study was to determine how deltamethrin resistance is inherited in the Cuban A. aegypti-resistant reference strain. Here, a field population of A. aegypti from Santiago de Cuba (SAN-F14), subjected to 14 generations of selection for high deltamethrin resistance level (91.25×), was used to prepare reciprocal F1 and backcross progeny with the insecticide-susceptible Rockefeller strain. Bioassays with larvae were performed according to World Health Organization guidelines. The activities of metabolic enzymes were assayed through synergist and biochemical tests. The null hypothesis of the parallelism test between the two probit regression lines of the reciprocal F1 (susceptible females × resistant males and vice versa) was not rejected at the 5% significance level (P = 0.42), indicating autosomal inheritance. The LC50 response of both F1 progenies to deltamethrin was elevated but less than the highly resistant SAN-F14 strain. DLC values for the F1 progenies were 0.91 and 0.87, respectively, suggesting that deltamethrin resistance in the SAN-F14 strain is inherited as an autosomal incompletely dominant trait, involving at least two factors, which implies a faster development of deltamethrin resistance in larvae and lost product effectiveness. Metabolic enzymes including esterases and cytochrome P-450 monooxygenases but not glutathione-S-transferases were involved in deltamethrin resistance in larvae. PMID:26309309

  16. Application of wMelPop Wolbachia Strain to Crash Local Populations of Aedes aegypti

    PubMed Central

    Ritchie, Scott A.; Townsend, Michael; Paton, Chris J.; Callahan, Ashley G.; Hoffmann, Ary A.

    2015-01-01

    The endosymbiotic bacteria Wolbachia pipientis (wMel strain) has been successfully established in several populations of Aedes aegypti, the primary dengue vector. The virulent Wolbachia strain wMelPop is known to cause several pathological impacts (increased egg mortality, life shortening, etc.) reducing overall fitness in the mosquito Ae. aegypti. Increased egg mortality could substantially reduce egg banks in areas with a lengthy monsoonal dry season, and be employed to eliminate local populations. We tested this application under semi-field cage conditions. First, we determined that wMelPop infection significantly reduced the survival of desiccation-resistant eggs of the dengue vector Ae. aegypti, with shade and temperature having a significant impact; nearly all wMelPop-infected eggs failed to hatch after 6 and 10 weeks in summer and winter conditions, respectively. In laboratory selection experiments we found that egg desiccation resistance can be increased by selection, and that this effect of wMelPop infection is due to the nuclear background of the host rather than Wolbachia. We then conducted an invasion of wMelPop within a semi-field cage using sustained weekly releases of wMelPop infected mosquitoes, with fixation achieved after 9 weeks. The egg populations wMelPop infected and an uninfected control were then subjected to a simulated prolonged monsoonal dry season (2.5 months) before flooding to induce hatching. The wMelPop infected eggs suffered significantly greater mortality than the controls, with only 0.67% and 4.35% of respective infected and uninfected eggs held in 99% shade hatching after 80 days. These studies suggest that wMelPop could be used to locally eliminate populations of Ae. aegypti that are exposed to prolonged dry conditions, particularly if combined with vector control. PMID:26204449

  17. A sodium channel variant in Aedes aegypti as a candidate pathogen sensor for viral-associated molecular patterns.

    PubMed

    Lee, Cara; Jones, Alexis; Kainz, Danielle; Khan, Faatima; Carrithers, Michael D

    2015-08-01

    Recent work demonstrated that a splice variant of a human macrophage voltage-gated sodium channel expressed on endosomes acts as an intracellular sensor for dsRNA, a viral-associated molecular pattern. Here our goal was to identify a candidate gene in a clinically relevant invertebrate model with related cellular and pattern recognition properties. The para gene in drosophila and other insects encodes voltage-gated sodium channels with similar electrophysiological properties to those found in vertebrate excitable membranes. A database search revealed that the AAEL006019 gene in Aedes aegypti, the yellow fever mosquito, encodes a voltage-gated sodium channel that is distinct from genes that encode para-like sodium channels. As compared to para-like channels, the protein products from this gene have deletions in the N-terminus and in the DII-DIII linker region. When over-expressed in an Aedes aegypti cell line, CCL-125, the AAEL006019 channel demonstrated cytoplasmic expression on vesicular-like organelles. Electrophysiologic analysis revealed that the channel mediates small inward currents that are enhanced by synthetic mimics of viral-derived ssRNA, R848 and ORN02, but not the dsRNA mimic, poly I:C. R848 treatment of CCL-125 cells that express high levels of the channels led to increased expression of RelA and Ago2, two mediators of insect innate immunity. These results suggest that the AAEL006019 channel acts as an intracellular pathogen sensor for ssRNA molecular patterns. PMID:26086103

  18. Blood Meal-Derived Heme Decreases ROS Levels in the Midgut of Aedes aegypti and Allows Proliferation of Intestinal Microbiota

    PubMed Central

    Oliveira, Jose Henrique M.; Gonçalves, Renata L. S.; Lara, Flavio A.; Dias, Felipe A.; Gandara, Ana Caroline P.; Menna-Barreto, Rubem F. S.; Edwards, Meredith C.; Laurindo, Francisco R. M.; Silva-Neto, Mário A. C.; Sorgine, Marcos H. F.; Oliveira, Pedro L.

    2011-01-01

    The presence of bacteria in the midgut of mosquitoes antagonizes infectious agents, such as Dengue and Plasmodium, acting as a negative factor in the vectorial competence of the mosquito. Therefore, knowledge of the molecular mechanisms involved in the control of midgut microbiota could help in the development of new tools to reduce transmission. We hypothesized that toxic reactive oxygen species (ROS) generated by epithelial cells control bacterial growth in the midgut of Aedes aegypti, the vector of Yellow fever and Dengue viruses. We show that ROS are continuously present in the midgut of sugar-fed (SF) mosquitoes and a blood-meal immediately decreased ROS through a mechanism involving heme-mediated activation of PKC. This event occurred in parallel with an expansion of gut bacteria. Treatment of sugar-fed mosquitoes with increased concentrations of heme led to a dose dependent decrease in ROS levels and a consequent increase in midgut endogenous bacteria. In addition, gene silencing of dual oxidase (Duox) reduced ROS levels and also increased gut flora. Using a model of bacterial oral infection in the gut, we show that the absence of ROS resulted in decreased mosquito resistance to infection, increased midgut epithelial damage, transcriptional modulation of immune-related genes and mortality. As heme is a pro-oxidant molecule released in large amounts upon hemoglobin degradation, oxidative killing of bacteria in the gut would represent a burden to the insect, thereby creating an extra oxidative challenge to the mosquito. We propose that a controlled decrease in ROS levels in the midgut of Aedes aegypti is an adaptation to compensate for the ingestion of heme. PMID:21445237

  19. Larvicidal effect of Eucalyptus grandis essential oil and turpentine and their major components on Aedes aegypti larvae.

    PubMed

    Lucia, Alejandro; Gonzalez Audino, Paola; Seccacini, Emilia; Licastro, Susana; Zerba, Eduardo; Masuh, Hector

    2007-09-01

    In the search for new alternatives for the control of Aedes aegypti the larvicidal activity of Eucalyptus grandis essential oil and pine resin essential oil (turpentine) and their major components (alpha- and beta-pinene and 1,8-cineole) was determined. Gas chromatography-mass spectroscopy analysis of E. grandis essential oil revealed that its major components are alpha-pinene and 1,8-cineole. Similar analysis of turpentine obtained by distillation of the resin pitch of conifers showed that alpha- and beta-pinene are the only major components. Third and early 4th instars of the CIPEIN-susceptible strain of Ae. aegypti were exposed to acetonic solutions of E. grandis essential oil, turpentine, and their major components for 24 h. Turpentine, with an LC50 of 14.7 ppm, was more active than the essential oil of E. grandis (LC50: 32.4 ppm). Larvicidal activity of the essential oil components showed that alpha- and beta-pinene present low LC50 values (15.4 and 12.1 ppm, respectively), whereas pure 1,8-cineole showed an LC50 of 57.2 ppm. These results suggest that alpha-pinene in E. grandis and alpha- and beta-pinene in turpentine serve as the principal larvicidal components of both oils. Results obtained on larvicidal effects of essential oil of Eucalyptus grandis and turpentine could be considered a contribution to the search for new biodegradable larvicides of natural origin. PMID:17939510

  20. Larvicidal efficacies of plants from Midwestern Brazil: melianodiol from Guarea kunthiana as a potential biopesticide against Aedes aegypti

    PubMed Central

    Sarmento, Ulana Chaves; Miguita, Carlos Henrique; Almeida, Luís Henrique de Oliveira; Gaban, Cleusa Rocha Garcia; da Silva, Lilliam May Grespan Estodutto; de Souza, Albert Schiaveto; Garcez, Walmir Silva; Garcez, Fernanda Rodrigues

    2016-01-01

    A total of 36 ethanol extracts from different anatomical parts of 27 plant species (18 families), native to the Pantanal and Cerrado biomes in Midwest Brazil, was assessed for their effect against Aedes aegypti larvae, the vector of dengue, hemorrhagic dengue, Zika and chikungunya fevers. Only the extract obtained from seeds of Guarea kunthiana (Meliaceae) proved active (LC50 = 169.93 μg/mL). A bioassay-guided investigation of this extract led to the isolation and identification of melianodiol, a protolimonoid, as the active constituent (LC50 = 14.44 mg/mL). Meliantriol, which was also obtained from the bioactive fraction, was nevertheless devoid of any larval toxicity, even at the highest concentration tested (LC50 > 100.0 mg/mL). These results indicate that the larvicidal activity of melianodiol stems from the presence of the carbonyl moiety at C-3 in the 21,23-epoxy-21,24,25-trihydroxy-tirucall-7-ene-type skeleton. The structures of both protolimonoids were established on the basis of spectral methods (1H and 13C NMR and MS). This is the first report on the toxicity of melianodiol against Ae. aegypti larvae. Based on the results, melianodiol can be regarded as a potential candidate for use as an ecologically sound biocontrol agent for reducing the larval population of this vector. PMID:27333366

  1. Blood feeding and insulin-like peptide 3 stimulate proliferation of hemocytes in the mosquito Aedes aegypti.

    PubMed

    Castillo, Julio; Brown, Mark R; Strand, Michael R

    2011-10-01

    All vector mosquito species must feed on the blood of a vertebrate host to produce eggs. Multiple cycles of blood feeding also promote frequent contacts with hosts, which enhance the risk of exposure to infectious agents and disease transmission. Blood feeding triggers the release of insulin-like peptides (ILPs) from the brain of the mosquito Aedes aegypti, which regulate blood meal digestion and egg formation. In turn, hemocytes serve as the most important constitutive defense in mosquitoes against pathogens that enter the hemocoel. Prior studies indicated that blood feeding stimulates hemocytes to increase in abundance, but how this increase in abundance is regulated is unknown. Here, we determined that phagocytic granulocytes and oenocytoids express the A. aegypti insulin receptor (AaMIR). We then showed that: 1) decapitation of mosquitoes after blood feeding inhibited hemocyte proliferation, 2) a single dose of insulin-like peptide 3 (ILP3) sufficient to stimulate egg production rescued proliferation, and 3) knockdown of the AaMIR inhibited ILP3 rescue activity. Infection studies indicated that increased hemocyte abundance enhanced clearance of the bacterium Escherichia coli at lower levels of infection. Surprisingly, however, non-blood fed females better survived intermediate and high levels of E. coli infection than blood fed females. Taken together, our results reveal a previously unrecognized role for the insulin signaling pathway in regulating hemocyte proliferation. Our results also indicate that blood feeding enhances resistance to E. coli at lower levels of infection but reduces tolerance at higher levels of infection. PMID:21998579

  2. Larvicidal efficacies of plants from Midwestern Brazil: melianodiol from Guarea kunthiana as a potential biopesticide against Aedes aegypti.

    PubMed

    Sarmento, Ulana Chaves; Miguita, Carlos Henrique; Almeida, Luís Henrique de Oliveira; Gaban, Cleusa Rocha Garcia; Silva, Lilliam May Grespan Estodutto da; Souza, Albert Schiaveto de; Garcez, Walmir Silva; Garcez, Fernanda Rodrigues

    2016-06-20

    A total of 36 ethanol extracts from different anatomical parts of 27 plant species (18 families), native to the Pantanal and Cerrado biomes in Midwest Brazil, was assessed for their effect against Aedes aegypti larvae, the vector of dengue, hemorrhagic dengue, Zika and chikungunya fevers. Only the extract obtained from seeds of Guarea kunthiana (Meliaceae) proved active (LC50 = 169.93 μg/mL). A bioassay-guided investigation of this extract led to the isolation and identification of melianodiol, a protolimonoid, as the active constituent (LC50 = 14.44 mg/mL). Meliantriol, which was also obtained from the bioactive fraction, was nevertheless devoid of any larval toxicity, even at the highest concentration tested (LC50 > 100.0 mg/mL). These results indicate that the larvicidal activity of melianodiol stems from the presence of the carbonyl moiety at C-3 in the 21,23-epoxy-21,24,25-trihydroxy-tirucall-7-ene-type skeleton. The structures of both protolimonoids were established on the basis of spectral methods (1H and 13C NMR and MS). This is the first report on the toxicity of melianodiol against Ae. aegypti larvae. Based on the results, melianodiol can be regarded as a potential candidate for use as an ecologically sound biocontrol agent for reducing the larval population of this vector. PMID:27333366

  3. Mosquito Larvicidal Potential of Gossypium hirsutum (Bt cotton) Leaves Extracts against Aedes aegypti and Anopheles stephensi larvae

    PubMed Central

    Patil, Chandrashekhar D; Borase, Hemant P; Salunkhe, Rahul B; Suryawanshi, Rahul K; Narkhade, Chandrakant P; Salunke, Bipinchandra K; Patil, Satish V

    2014-01-01

    Background: We aimed to extract the ingredients from leaves of Gossypium hirsutum (Bt cotton) using different solvents and evaluate for potential use to control different larval stages of mosquito species, Aedes aegypti and Anopheles stephensi. Methods: Qualitative and quantitative estimation of ingredients from Go. hirsutum (Bt) plant extract was carried out and their inhibitory action against mosquito larvae was determined using mosquito larvicidal assay. Results: LC50 values of water, ethanol, ethyl acetate and hexane extracts for Ae. aegypti were 211.73±21.49, 241.64±19.92, 358.07±32.43, 401.03±36.19 and 232.56±26.00, 298.54±21.78, 366.50±30.59, 387.19±31.82 for 4th instar of An. stephensi, respectively. The water extract displayed lowest LC50 value followed by ethanol, ethyl acetate and hexane. Owing to the comparatively better activity of water extract, its efficacy was further evaluated for mosquito larvicidal activity, which exhibited LC50 values of 133.95±12.79, 167.65±11.34 against 2nd and 3rd instars of Ae. aegypti and 145.48±11.76, 188.10±12.92 against 2nd and 3rd instars of An. stephensi, respectively. Crude protein from the water extract was precipitated using acetone and tested against 2nd, 3rd and 4th instars of Ae. aegypti and An. stephensi. It revealed further decrease in LC50 values as 105.72±25.84, 138.23±23.18, 126.19±25.65, 134.04±04 and 137.88±17.59, 154.25±16.98 for 2nd, 3rd and 4th instars of Ae. aegypti and An. stephensi, respectively. Conclusion: Leaves extracts of Go. hirsutum (Bt) is potential mosquito larvicide and can be used as a potent alternative to chemical insecticides in integrated pest management. PMID:25629069

  4. Adulticidal and smoke toxicity of Cipadessa baccifera (Roth) plant extracts against Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus.

    PubMed

    Ramkumar, Govindaraju; Karthi, Sengodan; Muthusamy, Ranganathan; Natarajan, Devarajan; Shivakumar, Muthugounder S

    2015-01-01

    Mosquito vectors are responsible for the transmission of parasitic and viral infections, including loss in commercial and labor outputs, particularly in developing countries with tropical and subtropical climates. The aim of the present study is to evaluate the adulticidal and smoke toxicity of Cipadessa baccifera (Roth) against three important mosquitoes vectors, Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus (Diptera: Culicidae). Adult mortality was observed after 24-h recovery period. The plant crude extracts showed dose-dependent mortality. At higher concentrations, the adult showed restless movement for some times with abnormal wagging and then died. Among the extracts tested, the highest adulticidal activity was observed in acetone extract against An. stephensi followed by Ae. aegypti and Cx. quinquefasciatus with the LD50 and LD90 values 16.021 (14.080-18.345), 29.095 (25.118-34.089); 23.581 (22.100-28.315), 38.636 (35.321-41.021); and 13.560 (9.479-17.391), 248.35 (203.47-344.43) mg/ml, respectively. No mortality was recorded in the control. Smoke toxicity was observed at 10-min interval for 40 min and the mortality data were recorded. Among the C. baccifera plant powder tested. Smoke toxicity results show that Cx. quinquefasciatus, An. stephensi, and Ae. aegypti shows 88.6 ± 1.8, 78.2 ± 0.5, and 77 ± 1, respectively. One hundred percent mortality was recorded in the commercial mosquito control. The present study shows that C. baccifera leaf powder can be used as an efficient toxicity against mosquitoes. These results suggest that the leaf extracts of C. baccifera have a potential to be used as an ideal eco-friendly approach for the control of mosquitoes. PMID:25320044

  5. Characterization and bioassay for larvicidal activity of Anacardium occidentale (cashew) shell waste fractions against dengue vector Aedes aegypti.

    PubMed

    Torres, Rosalinda C; Garbo, Alicia G; Walde, Rikkamae Zinca Marie L

    2015-10-01

    Recent studies regarding the harmful effects of synthetic larvicides initiated the need to investigate for unconventional measures that are environmentally safe and target-specific against Aedes aegypti larvae. Thus, the main objectives of the study are to evaluate the larvicidal toxicity of the solvent fractions of Anacardium occidentale shell wastes against the third and fourth instar larvae of A. aegypti and to compare the results with the commercial larvicide product. The shell wastes were extracted with 95% EtOH followed by polarity-based fractionation. The fractions were tested for larvicidal activity according to the World Health Organization bioassay method. These were then characterized by quantitative thin-layer chromatographic (TLC) fingerprinting. The hexane fraction gave the strongest activity among the fractions with an LC50 of 4.01 mg/L and LC90 of 11.29 mg/L highly comparable to the commercial larvicide, which exhibited an LC50 of 1.71 mg/L and LC90 of 8.41 mg/L. The dichloromethane fraction exhibited 9.70 mg/L LC50 and 18.44 mg/L LC90. The remarkable toxicity effects exhibited by these fractions indicate their potential to provide core structures from which sustainable and environmentally safe plant-based larvicidal agents can be synthesized. PMID:26099240

  6. LARVICIDAL ACTIVITY OF PERESKIA BLEO (KUNTH) DC. (CACTACEAE) FRUIT ENDOCARP CRUDE AND FRACTIONATED EXTRACTS AGAINST AEDES AEGYPTI (L.) (DIPTERA: CULICIDAE).

    PubMed

    Thongwat, Damrongpan; Ganranoo, Lucksagoon; Chokchaisiri, Ratchanaporn

    2014-11-01

    The use of insecticides can cause adverse effects in vector control, a plant bio-insecticide is an advantageous substitute. Currently, the promising mosquito larvicidal activity from plant extracts has been reported worldwide, including Thailand. In this study, the endocarp of Pereskia bleo (Kunth) DC. fruit was extracted with distilled water and ethanol. Crudes and fractionated groups of the extracts were evaluated for their larvicidal efficacy against the 3rd instar larvae of Aedes aegypti. At 48 hours of exposure, it was found that the activities of the extracts were higher than 24-hour's. The ethanolic extracts showed stronger activities than the aqueous ones, indicating the lower LC50 values of both crude and fractionated group extracts. The most toxic activity was found in a fractionated group of the ethanolic extract, E-Gr3, with significantly lowest LC50 values of 707.94 and 223.12 ppm for 24- and 48-hour detection times, respectively. The bioassay results indicated the larvicidal property against the Ae. aegypti mosquito of the P. bleo plant extracts. A safety for non-target organisms or an action on other mosquito vectors of this plant, should be further investigated. PMID:26466415

  7. Control of larval and egg development in Aedes aegypti with RNA interference against juvenile hormone acid methyl transferase.

    PubMed

    Van Ekert, Evelien; Powell, Charles A; Shatters, Robert G; Borovsky, Dov

    2014-11-01

    RNA interference (RNAi) is a powerful approach for elucidating gene functions in a variety of organisms, including mosquitoes and many other insects. Little has been done, however, to harness this approach in order to control adult and larval mosquitoes. Juvenile hormone (JH) plays a pivotal role in the control of reproduction in adults and metamorphism in larval mosquitoes. This report describes an approach to control Aedes aegypti using RNAi against JH acid methyl transferase (AeaJHAMT), the ultimate enzyme in the biosynthetic pathway of JH III that converts JH acid III (JHA III) into JH III. In female A. aegypti that were injected or fed jmtA dsRNA targeting the AeaJHAMT gene (jmtA) transcript, egg development was inhibited in 50% of the treated females. In mosquito larvae that were fed transgenic Pichia pastoris cells expressing long hair pin (LHP) RNA, adult eclosion was delayed by 3 weeks causing high mortality. Northern blot analyses and qPCR studies show that jmtA dsRNA causes inhibition of jmtA transcript in adults and larvae, which is consistent with the observed inhibition of egg maturation and larval development. Taken together, these results suggest that jmtA LHP RNA expressed in heat inactivated genetically modified P. pastoris cells could be used to control mosquito populations in the marsh. PMID:25111689

  8. Immunotoxicity activity of 1,2,4-trimethoxybenzene from the Paulownia coreana Uyeki. against Aedes aegypti L.

    PubMed

    Chung, Ill-Min; Moon, Hyung-In

    2011-03-01

    The flower parts of Paulownia coreana were extracted and the major essential oils composition and immunotoxicity effects were studied. The analyses were conducted by gas chromatography-mass spectroscopy (GC-MS) revealed that the essential oils of P. coreana. The P. coreana essential oil (PCEO) yield was 0.175%, and GC/MS analysis revealed that its major constituents were benzyl alcohol (13.72%), phenol, 3,4-dimethoxy-methyl ester (3.64%), phenol, 2-methoxy-3-(2-popenyl)-methyl ester (6.24%), 1,2,4-Trimethoxybenzene (8.32%), tricosane (3.28%), and pentacosane (3.26%). The essential oil had a significant toxic effect against early fourth-stage larvae of Aedes aegypti L with an LC(50) value of 31.64 ppm and an LC(90) value of 56.43 ppm. 1,2,4-Trimethoxybenzene was the most toxic among the major components with an LC(50) value near 23.1 ppm. The results could be useful in search for newer, safer, and more effective natural immunotoxicity agents against A. aegypti. PMID:20476845

  9. Larvicidal efficacy of seed oils of Pterocarpus santalinoides and tropical Manihot species against Aedes aegypti and effects on aquatic fauna.

    PubMed

    Adeleke, M A; Popoola, S A; Agbaje, W B; Adewale, B; Adeoye, M D; Jimoh, W A

    2009-10-01

    Botanical larvicides have featured prominently as alternative to synthetic chemical insecticides which are less degradable and toxic to non-target organisms. The larvicidal potentials of the seed oils of Pterocarpus santalinoides and Tropical Manihot species (TMS 30572) were investigated in the laboratory against larvae of Aedes aegypti. The seed oil of each plant was extracted using n-hexane and was graded into different concentrations; 30, 60, 90, 120 and 150 ppm. The toxicity of each of the concentrations was evaluated against 3rd instar larvae of A. aegypti and tadpoles (Buffo spp) as non target aquatic fauna. Both oils were toxic to the larvae though at higher concentrations (120 ppm and 150 ppm) after 24 hours of exposure. The oil of P. santalinoides was more toxic to the larvae (LC50 104.0 ppm and LC90 184.5 ppm) than oil of TMS (LC50 113.5 and LC90 201.2) but the difference in the lethal doses was not statistically significant (P > 0.05). However, mortality was not recorded at any of the graded concentrations in both oils against tadpoles. The results therefore suggest that the seed oils of both plants could be incorporated as botanical insecticides against mosquito vectors with high safety to non-target organisms. PMID:20734705

  10. Delivery of chitosan/dsRNA nanoparticles for silencing of wing development vestigial (vg) gene in Aedes aegypti mosquitoes.

    PubMed

    Ramesh Kumar, D; Saravana Kumar, P; Gandhi, M Rajiv; Al-Dhabi, Naif Abdullah; Paulraj, M Gabriel; Ignacimuthu, S

    2016-05-01

    RNA interference (RNAi) has been used as a gene silencing strategy by the introduction of long double stranded RNA (dsRNA) for the control of pest insects. The aim of the present study was to examine whether the expression of vg gene which is responsible for wing development, can be repressed by chitosan/dsRNA based nanoparticles in Aedes aegypti. The vestigial gene (vg) was amplified from adult mosquito and cloned in pLitmus28i vector. Genetically engineered recombinant plasmid was transformed into RNase III deficient strain for synthesis of bacterially expressed dsRNA. Nanoparticles were prepared via electrostatic interaction between cationic polymer chitosan and anionic nucleic acids (dsRNA). The formation of chitosan/dsRNAnanoparticles and their size were confirmed by Atomic force microscopy (AFM). Chitosan/dsRNA mediated knockdown of Enhanced Green Fluorescence Protein (EGFP) was demonstrated in Sf21 cells. Further, we tested whether such an approach could be used to target vg gene in Ae. aegypti. The results showed that chitosan/dsRNA caused significant mortality, delayed growth development and caused adult wing-malformation. A qRT-PCR analysis confirmed that the chitosan/dsRNA mediated transcriptional level was downregulated. Our findings suggest that vg gene intervention strategies through RNAi can emerge as viable option for pest control. PMID:26794313

  11. Large indoor cage study of the suppression of stable Aedes aegypti populations by the release of thiotepa-sterilised males

    PubMed Central

    Gato, René; Lees, Rosemary Susan; Bruzon, Rosa Y; Companioni, Ariamys; Menendez, Zulema; González, Aileen; Rodríguez, Misladys

    2014-01-01

    The sterile insect technique (SIT) is a promising pest control method in terms of efficacy and environmental compatibility. In this study, we determined the efficacy of thiotepa-sterilised males in reducing the target Aedes aegypti populations. Treated male pupae were released weekly into large laboratory cages at a constant ratio of either 5:1 or 2:1 sterile-to-fertile males. A two-to-one release ratio reduced the hatch rate of eggs laid in the cage by approximately a third and reduced the adult catch rate by approximately a quarter, but a 5:1 release drove the population to elimination after 15 weeks of release. These results indicate that thiotepa exposure is an effective means of sterilising Ae. aegypti and males thus treated are able to reduce the reproductive capacity of a stable population under laboratory conditions. Further testing of the method in semi-field enclosures is required to evaluate the mating competitiveness of sterile males when exposed to natural environmental conditions. If proven effective, SIT using thiotepa-sterilised males may be incorporated into an integrated programme of vector control to combat dengue in Cuba. PMID:24863972

  12. Large indoor cage study of the suppression of stable Aedes aegypti populations by the release of thiotepa-sterilised males.

    PubMed

    Gato, René; Lees, Rosemary Susan; Bruzon, Rosa Y; Companioni, Ariamys; Menendez, Zulema; González, Aileen; Rodríguez, Misladys

    2014-06-01

    The sterile insect technique (SIT) is a promising pest control method in terms of efficacy and environmental compatibility. In this study, we determined the efficacy of thiotepa-sterilised males in reducing the target Aedes aegypti populations. Treated male pupae were released weekly into large laboratory cages at a constant ratio of either 5:1 or 2:1 sterile-to-fertile males. A two-to-one release ratio reduced the hatch rate of eggs laid in the cage by approximately a third and reduced the adult catch rate by approximately a quarter, but a 5:1 release drove the population to elimination after 15 weeks of release. These results indicate that thiotepa exposure is an effective means of sterilising Ae. aegypti and males thus treated are able to reduce the reproductive capacity of a stable population under laboratory conditions. Further testing of the method in semi-field enclosures is required to evaluate the mating competitiveness of sterile males when exposed to natural environmental conditions. If proven effective, SIT using thiotepa-sterilised males may be incorporated into an integrated programme of vector control to combat dengue in Cuba. PMID:24863972

  13. Effect of insecticide resistance on development, longevity and reproduction of field or laboratory selected Aedes aegypti populations.

    PubMed

    Martins, Ademir Jesus; Ribeiro, Camila Dutra e Mello; Bellinato, Diogo Fernandes; Peixoto, Alexandre Afranio; Valle, Denise; Lima, José Bento Pereira

    2012-01-01

    Aedes aegypti dispersion is the major reason for the increase in dengue transmission in South America. In Brazil, control of this mosquito strongly relies on the use of pyrethroids and organophosphates against adults and larvae, respectively. In consequence, many Ae. aegypti field populations are resistant to these compounds. Resistance has a significant adaptive value in the presence of insecticide treatment. However some selected mechanisms can influence important biological processes, leading to a high fitness cost in the absence of insecticide pressure. We investigated the dynamics of insecticide resistance and its potential fitness cost in five field populations and in a lineage selected for deltamethrin resistance in the laboratory, for nine generations. For all populations the life-trait parameters investigated were larval development, sex ratio, adult longevity, relative amount of ingested blood, rate of ovipositing females, size of egglaying and eggs viability. In the five natural populations, the effects on the life-trait parameters were discrete but directly proportional to resistance level. In addition, several viability parameters were strongly affected in the laboratory selected population compared to its unselected control. Our results suggest that mechanisms selected for organophosphate and pyrethroid resistance caused the accumulation of alleles with negative effects on different life-traits and corroborate the hypothesis that insecticide resistance is associated with a high fitness cost. PMID:22431967

  14. Biglutaminyl-biliverdin IX alpha as a heme degradation product in the dengue fever insect-vector Aedes aegypti.

    PubMed

    Pereira, Luiza O R; Oliveira, Pedro L; Almeida, Igor C; Paiva-Silva, Gabriela O

    2007-06-12

    Hemoglobin digestion in the midgut of hematophagous animals results in the release of its prosthetic group, heme, which is a pro-oxidant molecule. Heme enzymatic degradation is a protective mechanism that has been described in several organisms, including plants, bacteria, and mammals. This reaction is catalyzed by heme oxygenase and results in formation of carbon monoxide, ferrous ion, and biliverdin IXalpha. During digestion, a large amount of a green pigment is produced and secreted into the intestinal lumen of Aedes aegypti adult females. In the case of another blood-sucking insect, the kissing-bug Rhodnius prolixus, we have recently shown that heme degradation involves a complex pathway that generates dicysteinyl-biliverdin IX gamma. The light absorption spectrum of the Aedes purified pigment was similar to that of biliverdin, but its mobility on a reverse-phase chromatography column suggested a compound less hydrophobic than biliverdin IXalpha. Structural characterization by ESI-MS revealed that the mosquito pigment is the alpha isomer of biliverdin bound to two glutamine residues by an amide bond. This biglutaminyl-biliverdin is formed by oxidative cleavage of the heme porphyrin ring followed by two subsequent additions of glutamine residues to the biliverdin IXalpha. The role of this pathway in the adaptation of this insect vector to a blood-feeding habit is discussed. PMID:17508725

  15. Laboratory and Simulated Field Bioassays to Evaluate Larvicidal Activity of Pinus densiflora Hydrodistillate, Its Constituents and Structurally Related Compounds against Aedes albopictus, Aedes aegypti and Culex pipiens pallens in Relation to Their Inhibitory Effects on Acetylcholinesterase Activity.

    PubMed

    Lee, Dong Chan; Ahn, Young-Joon

    2013-01-01

    The toxicity of Pinus densiflora (red pine) hydrodistillate, its 19 constituents and 28 structurally related compounds against early third-instar larvae of Aedes albopictus (Ae. albopictus), Aedes aegypti (Ae. aegypti) and Culex pipiens palles (Cx. p. pallens) was examined using direct-contact bioassays. The efficacy of active compounds was further evaluated in semi-field bioassays using field-collected larval Cx. p. pallens. Results were compared with those of two synthetic larvicides, temephos and fenthion. In laboratory bioassays, Pinus densiflora hydrodistillate was found to have 24 h LC50 values of 20.33, 21.01 and 22.36 mg/L against larval Ae. albopictus, Ae. aegypti and Cx. p. pallens respectively. Among the identified compounds, thymol, δ-3-carene and (+)-limonene exhibited the highest toxicity against all three mosquito species. These active compounds were found to be nearly equally effective in field trials as well. In vitro bioassays were conducted to examine the acetylcholinesterase (AChE) inhibitory activity of 10 selected compounds. Results showed that there is a noticeable correlation between larvicidal activity and AChE inhibitory activity. In light of global efforts to find alternatives for currently used insecticides against disease vector mosquitoes, Pinus densiflora hydrodistillate and its constituents merit further research as potential mosquito larvicides. PMID:26464387