Science.gov

Sample records for aegean extensional province

  1. Temporal patterns of detachment faulting along Cycladic extensional metamorphic domes, Aegean region

    NASA Astrophysics Data System (ADS)

    Schneider, D. A.; Grasemann, B.; Heizler, M.; Vogel, H.; Iglseder, C.

    2007-12-01

    The Aegean region together with the surrounding mainland areas are known for Miocene to Recent active, notably extensional tectonics that are the result of the retreating Hellenic slab, gravitational collapse of the region and, since the Late Miocene to Early Pliocene, the westward escape of Anatolia relative to Eurasia. Project ACCEL (Aegean Core Complexes along an Extended Lithosphere) has collected an extensive modern structural dataset for the islands of Kea, Kithnos, and Serifos of the western Cyclades. On all three islands, crustal-scale, low-angle frictional-viscous shear zones have been identified and record strikingly consistent SSW-directed extensional kinematics together with a WNE-ESE shortening component. The geology of Kea is dominated by highly-strained, greenschist-facies schists, calc-silicates and marbles; a major, 100's m thick ultramylonite zone defines this northern island as a structural dome. White mica Ar-Ar thermochronometry performed on variably deformed units from different structural levels yield consistent Early Miocene (15-19 Ma) cooling ages across the entire island. Other pervasively deformed shallow crustal regions of the Cyclades (Tinos and Andros; b-type domes of Jolivet et al. 2004) also record similar Early Miocene cooling. Comparable geology and structure is exposed on Serifos although locally deformed under amphibolite-facies conditions and intruded in the south by a Late Miocene granodiorite. A major high strain zone that is present on the island is localized along an earlier (Late Eocene) granitic pluton. White micas from mylonites and gneisses along this shear zone and from rocks in the southern portion of the island yield Late Miocene (8-9 Ma) cooling ages, whereas greenschist-facies units in northern Serifos that are dominated by a different structural record of several phases of folding yield Oligocene (30-34 Ma) mica Ar-Ar cooling ages. Oligocene ages are similarly reported from Evvia and Sifnos, which are noted for

  2. Geochemical and Sr-Nd Isotopic Compositions of Cenozoic Granitoids in Western Anatolia (Turkey): Spatial and Temporal Evolution of Continental Magmatism and Extension in the Aegean Province

    NASA Astrophysics Data System (ADS)

    Altunkaynak, S.; Genc, C.; Dilek, Y.

    2008-12-01

    Western Anatolia (Turkey) is part of the Aegean extensional province, which is situated in an active collision zone between the African and Eurasian Plates. The Cenozoic magmatism in western Anatolia started after the collision of the Sakarya continent (SC) and Anatolide-Tauride continental blocks (ATP) in the late Paleocene. The collisional front is today marked by the Izmir-Ankara suture zone (IASZ), which includes late Cretaceous Tethyan ophiolites, melanges, and HP/LT blueschist assemblages. Comparison of the isotope geochemistry and the petrogenesis of different plutons on both sides of the IASZ provide important geochronological and geochemical constraints on the nature of the late Cenozoic magmatism associated with crustal extension in the Aegean province. Irrespective of the lithological make-up of the collided blocks, the Oligo-Miocene granitoids that were emplaced into the SB and ATP show similar major and trace element and Sr-Nd isotopic compositions, indicating common melt sources and evolutionary trends. These granitoids are mainly metaluminous, medium to high-K calc-alkaline rocks with their silica contents ranging from 57.0 wt.% to 72.2 wt.%. They display enrichment in LILE and strong negative anomalies in Nb, Ta, P, Ti, and Zr, and they have initial 87Sr/86Sr values of 0.705186 - 0.711437 and 143Nd/ 143Nd values of 0.512615-0.512266. These isotopic signatures and trace element characteristics are considered to reflect the composition of the magmas derived from a metasomatized lithospheric mantle beneath NW Anatolia and from the overlying mafic lower crust. This inferred melt source readily explains the I-type granitoid nature of most Cenozoic plutons in western Anatolia regardless of their temporal and spatial position. The heat and the basaltic material to induce this partial melting were provided by aesthenospheric upwelling caused by partial lithospheric delamination and/or convective thinning. Slab rollback of the Hellenic subduction zone may

  3. Tectono-stratigraphic evolution through successive extensional events of the Anydros Basin, hosting Kolumbo volcanic field at the Aegean Sea, Greece

    NASA Astrophysics Data System (ADS)

    Nomikou, P.; Hübscher, C.; Ruhnau, M.; Bejelou, K.

    2016-03-01

    The structural evolution of the South Aegean Sea is little explored due to the lack of marine seismic data. Our present day understanding is mainly based on some island outcrops and GPS measurements. In this study we discuss the rather incremental opening of the Anydros Basin in the Pliocene during six major tectonic pulses and the subsequent basin fill processes by interpreting seismic data and derived time isochore maps. Between the active pulses basin floor tilting persisted on a much lower rate. Seismic data illustrate the depositional processes in the emerging Anydros Basin. The observation of onlap fill strata, divergent reflection pattern, moat channels and contourite drifts imply that deposition was controlled by turbidity and contour currents as well as the tilting basin floor. The metamorphic Attico-Cycladic basement shows a rise that aligns along an NW-SE directed axis crossing Anydros island. This axis marks a structural change of the Santorini-Amorgos Ridge and thus represents a major structural boundary. Dip angles of NE-SW trending major faults, like the Santorini-Amorgos Fault, indicate normal faulting to be the superior mechanism forming the present horst and graben environment. Hence, the area is likely to be in a state of NW-SE directed extensional stresses forming the asymmetric graben structure of Anydros. Secondary fault clusters strike the same direction but show much steeper dip angles, possibly indicating strike-slip movement or resulting from deformational stresses along the hinge zones of the normal faults. The majority of the faults we discovered are located in the area of earthquake clusters, which is another indication of recent faulting. Ring faults around Kolumbo submarine volcano, result from caldera collapse and mark the diameter of the magma chamber approximately to 20 km.

  4. Detachment Faulting and Hanging-wall Segmentation in the Gulf Extensional Province, Baja California

    NASA Astrophysics Data System (ADS)

    Seiler, C.; Fletcher, J. M.; Quigley, M. C.; Gleadow, A. J.; Kohn, B. P.

    2007-12-01

    The opening of the Gulf of California, caused by the re-localization of the Pacific -- North America plate boundary, is a premier example of an incipient passive margin. The San Felipe area in northern Baja California comprises a typical basin and range-style topography, produced by Neogene extension affecting the Gulf Extensional Province (GEP). The > 100 km long Sierra San Pedro Mártir (SSPM) escarpment is defined by an east-down normal fault system, separating the unextended western part of the peninsula from the GEP. The hanging-wall of the SSPM fault is characterized by several fault-bound blocks that have been rotated around both vertical and horizontal axes. The Las Cuevitas and the Santa Rosa detachments are two major fault systems in the Sierra San Felipe that are responsible for segmentation of the hanging-wall of the SSPM fault. The curvilinear, NE to NNW striking Las Cuevitas Detachment extends for more than 43 km and brings Neogene volcanics and sediments in contact with the Mesozoic basement of the footwall. The detachment dips at 15-50° and accommodates more than 4-6 km of east-down displacement. Faulting appears to preferentially occur at the contact of Mesozoic metamorphics to granitoid intrusives with transfer faults translating deformation between the faulted contacts. Fission track and (U-Th)/He thermochronology constrain the initiation of deformation on the Las Cuevitas detachment to the latest Miocene. The > 45 km long and equally curvilinear Santa Rosa Detachment system consists of a low-angle normal fault system (15-35° dip) with transfer zones facilitating the transfer of strain between individual segments of the detachment fault. The slip direction varies between top-to-the-east and top-to-the-south, a possible explanation for the change in strike from NW to NE to NW. The roughly 4-5 km offset of Neogene volcanic and sedimentary deposits has created the necessary space for syntectonic deposition in the Santa Rosa Basin. The onset of

  5. Enigmatic compressional structures in an extensional province: Eku field, OML 67, offshore Nigeria

    SciTech Connect

    Quinones, M.; Evans, R.; Alofe, K.; Onyeise, B.

    1996-12-31

    Acquisition of 3-D seismic data over OML 67-70 and a detailed reservoir description study done on the Eku field, have allowed identification of previously unrecognized compressional features. Situated within a depocenter between arcuate normal growth faults, the Eku structure consists of a shale-cored anticlinal fold and fold-and-thrust separated by a zone of lateral displacement. The crests of the folds have been eroded at a major unconformity at the base of the Qua Iboe shale (Early Pliocene). In the absence of definitive biostratigraphic data, correlations among the various fault-blocks are based on the character of sedimentary packages and sequences on wireline logs. Combined with analysis of the geometry of faults and folds, the correlations support a description of pulsatory movement of folding and faulting, that ultimately culminated in extensional reactivation of earlier regional extension and the not coincident. The effect of the anticipated reservoir sections, and deformation, both compressional, was gravity-driven and on shale detachments. A working hypothesis to explain the disparity in direction of earlier extension and subsequent compression is that thermal expansion that accompanied formation of the Cameroon volcanic line to the east of the Niger Delta in Miocene time, caused a change in the direction of structuring, allowing downslope gravity-driven compression to be superimposed on pre-existing extensional features.

  6. Enigmatic compressional structures in an extensional province: Eku field, OML 67, offshore Nigeria

    SciTech Connect

    Quinones, M.; Evans, R. ); Alofe, K.; Onyeise, B. )

    1996-01-01

    Acquisition of 3-D seismic data over OML 67-70 and a detailed reservoir description study done on the Eku field, have allowed identification of previously unrecognized compressional features. Situated within a depocenter between arcuate normal growth faults, the Eku structure consists of a shale-cored anticlinal fold and fold-and-thrust separated by a zone of lateral displacement. The crests of the folds have been eroded at a major unconformity at the base of the Qua Iboe shale (Early Pliocene). In the absence of definitive biostratigraphic data, correlations among the various fault-blocks are based on the character of sedimentary packages and sequences on wireline logs. Combined with analysis of the geometry of faults and folds, the correlations support a description of pulsatory movement of folding and faulting, that ultimately culminated in extensional reactivation of earlier regional extension and the not coincident. The effect of the anticipated reservoir sections, and deformation, both compressional, was gravity-driven and on shale detachments. A working hypothesis to explain the disparity in direction of earlier extension and subsequent compression is that thermal expansion that accompanied formation of the Cameroon volcanic line to the east of the Niger Delta in Miocene time, caused a change in the direction of structuring, allowing downslope gravity-driven compression to be superimposed on pre-existing extensional features.

  7. Low-Angle Normal Faults in the Gulf of California Extensional Province: Constraints on Mechanics

    NASA Astrophysics Data System (ADS)

    Axen, G. J.

    2005-12-01

    The mechanics and tectonic role(s) of low-angle normal faults (LANFs or detachments) remain controversial. Four LANFs evolved in the Gulf of California rift as integral parts of the late Cenozoic Pac-N.Am. dextral-extensional plate boundary. They cut older intrusive and metamorphic rocks and late Cenozoic syntectonic marine and nonmarine upper plate strata. These LANFs display only brittle tectonites, with slip generally <20 km. Only the southern Cañada David fault remains active; its northern part was deactivated by the Laguna Salada fault. Unlike "typical" LANFs, isostatic footwall rebound is minimal or absent, especially for east-dipping LANFs that root toward axial basins underlain by new mafic crust, the density of which may have impeded rebound. Significant LANFs formed only north of Puertecitos, B.C., where the rift axis and western flank trend about 20 degrees more northerly than elsewhere, and where the angle between the rift axis and the relative plate-motion vector is largest. Thus, LANF formation may be favored above some threshold (e.g., of extension rate, minimum work criterion, etc.) reflected by this angle. The west Salton detachment cuts gently across older, steeper foliation or isotropic granitoids, so its orientation was not controlled by anisotropy. It is exposed within kilometers of its breakaway, where it intersected an older, low relief erosion surface, demonstrating that the fault dipped gently to within ~1 km or less of Earth's surface. Thus, if models are correct in which LANF dip is controlled by rotated stress-fields, then stress rotation occurred even at very shallow depths. Some such models invoke basal shear traction to rotate the stress field; such boundary conditions might fit the NW Gulf if it opened largely in response to shear between oceanic microplates and the overlying continent. These models predict uniform LANF dip directions, but three LANFs dip east and one (Cañada David) dips west, so it seems unlikely that this, or any

  8. Apatite fission track evidence for Miocene extensional faulting east-central Nevada, northern Basin and Range province

    SciTech Connect

    Miller, E.L.; Dumitru, T.A. . Geology Dept.); Gans, P.B. . Geological Sciences Dept.); Brown, R.W. . Geology Dept.)

    1993-04-01

    Apatite fission track ages indicates that a large component of motion along many of the present range-bounding faults occurred in the Early to Middle Miocene, tilting and uplifting rocks through the apatite annealing zone (120--60 C) between 18--13 Ma (n = 20, Deep Creeks), 18--15 Ma (northern Snake Range, n = 20), 25--17 Ma (n = 7, southern Snake Range), 24--15 Ma (Egan Range, n = 6), 23--18 Ma (Kern Mts., n = 2) and 28--16 ma (Schell Creek Range, n = 2). Long track length distributions indicate rapid cooling through the 120--60 C interval followed by residence at low, near surface temperatures. The data set also indicates that the combined Deep Creek-Kern Mountains-northern and southern Snake Range constitutes a single coherent footwall crustal block beneath a > 150 km-long system of east-dipping Miocene faults which includes at least the eastern portions of faults that have been mapped as the Snake Range decollement (NSRD). Conglomerates deposited in hanging wall basins along this fault system contain metamorphic and granitic boulders whose FT ages are coeval with footwall unroofing. The deposits themselves are now known to be younger than previously reported (Oligocene) as ages from boulders are Miocene. The thick (> 2 km) sequences of synorogenic conglomerate indicates rapid unroofing; large slide blocks attest to generation of steep, fault-controlled topography. Faults that cut this sequence are now known to be younger than 15 Ma. Thus, protracted extensional faulting affected the region, beginning in the Early Oligocene and continuing to the Recent, but a significant part of this extension, including a large component of the slip on the NSRD, was accomplished in the Early to Middle Miocene. Data from this region is compatible with a growing base of apatite fission track data from elsewhere in the northern Basin and Range, which, together with geologic relationships, suggest an important episode of Miocene extension and Basin and Range development.

  9. Subduction and slab tearing dynamics constrained by thermal anomalies in the Anatolia-Aegean region

    NASA Astrophysics Data System (ADS)

    Roche, Vincent; Guillou-Frottier, Laurent; Jolivet, Laurent; Loiselet, Christelle; Bouchot, Vincent

    2015-04-01

    Most previous geodynamic studies treat subduction zones with backward migration (rollback), slab tearing or slab breakoff by numerical or laboratory experiments and by integrating seismicity, tomography data and geochemical studies. Here we investigate these processes in the Aegean-Anatolian domain and particularly the western side of Turkey (western Anatolia) by incorporating thermal regime of the crust, and in particular the geothermal fields as anomalies that could reflect the thermal state of Aegean subduction zone at depth. This domain is characterized by 1) extensional crustal deformation which progressively localized during the Aegean slab retreat from late Eocene to Present, enabling the development of a hot backarc domain; this extension accelerated between 15 and 8 Ma coeval with a fast rotation of the Hellenides and 2) since the latest Miocene, extension is coupled with the development of the North Anatolian Fault that accommodates the westward escape of the Anatolian block. Both the acceleration of extension in the Middle Miocene and the recent escape of Anatolia have been proposed to result from several slab tearing events, the first one being located below western Turkey and the Eastern Aegean Sea, a second one below eastern Turkey and a last one below the Corinth Rift (Faccenna et al., 2006; Jolivet et al., 2013). The distribution of magmatism and mineral resources has been suggested to be largely controlled by these retreat and tearing events (Menant et al., submitted). The development of a widespread active geothermal province in western Anatolia is unlikely to simply result from the Quaternary magmatism whose volcanism part has a too limited extent. Conversely, the long wavelength east-west variation of surface heat flow density could reflect deep thermal processes in the lower crust and/or deeper, and we thus look for possible connections with larger-scale mantle dynamics. We use the distribution of thermal anomalies at different scales and the 3

  10. Tectonic implications of spatial variation of b-values and heat flow in the Aegean region

    NASA Astrophysics Data System (ADS)

    Kalyoncuoglu, U. Yalcin; Elitok, Ömer; Dolmaz, M. Nuri

    2013-03-01

    The Aegean region is tectonically a complex area characterized mainly by the subduction of African oceanic lithosphere beneath the Aegean continental lithosphere including extensional subbasins and mantle driven block rotations. In this study, spatial distribution of earthquakes, b-value distribution, and heat flow data have been analyzed to reveal the deep structural features of the Aegean region. b-value distributions show two low NE-SW and NW-SE trending b-anomaly zones in the western and eastern side of the Crete, implying slab tear within the Aegean slab. Earthquake foci distribution indicates that the Aegean slab steepens in the eastern side of the Crete, compared to its western side. Earthquake foci reach maximum depth of 180 km along the Cycladic arc axis, suggesting northward subducted slab geometry. The low seismic activities and high b-value anomalies within Aegean basin, except North Aegean Trough, can be compared to higher heat flow. We concluded that collision-induced westward mantle flow beneath Turkey followed by hard collision between Arabian-Eurasian continental plates played a major role in the evolution of clockwise rotational retreat of the Aegean slab and slab steepening to the east of the Crete.

  11. Lyotropics Under Extensional Flow

    NASA Astrophysics Data System (ADS)

    Idziak, Stefan H. J.; Welch, Sarah E.; Kisilak, Marsha; Mugford, Chas; Sirota, Eric B.

    2000-03-01

    X-ray diffraction has been used to study the effects of extensional flow on a soft, flexible lamellar membrane system comprised of sodium dodecyl sulfate (SDS), dodecane, pentanol and water. The intermembrane spacing is observed to decrease discontinuously as a function of the flow rate. A new x-ray extensional flow cell suitable for the study of any non-viscous fluid under extensional flow was developed for these measurements.

  12. Parameters influencing the location and characteristics of volcanic eruptions in a youthful extensional setting: Insights from the Virunga Volcanic Province, in the Western Branch of the East African Rift System

    NASA Astrophysics Data System (ADS)

    Smets, Benoît; d'Oreye, Nicolas; Kervyn, Matthieu; Kervyn, François

    2016-04-01

    The East African Rift System (EARS) is often mentioned as the modern archetype for rifting and continental break-up (Calais et al., 2006, GSL Special Publication 259), showing the complex interaction between rift faults, magmatism and pre-existing structures of the basement. Volcanism in the EARS is characterized by very active volcanoes, several of them being among the most active on Earth (Wright et al., 2015, GRL 42). Such intense volcanic activity provides useful information to study the relationship between rifting, magmatism and volcanism. This is the case of the Virunga Volcanic Province (VVP) located in the central part of the Western Branch of the EARS, which hosts two of the most active African volcanoes, namely Nyiragongo and Nyamulagira. Despite the intense eruptive activity in the VVP, the spatial distribution of volcanism and its relationship with the extensional setting remain little known. Here we present a study of the interaction between tectonics, magmatism and volcanism at the scale of the Kivu rift section, where the VVP is located, and at the scale of a volcano, by studying the dense historical eruptive activity of Nyamulagira. Both the complex Precambrian basement and magmatism appear to contribute to the development of the Kivu rift. The presence of transfer zones north and south of the Lake Kivu rift basin favoured the development of volcanic provinces at these locations. Rift faults, including reactivated Precambrian structures influenced the location of volcanism within the volcanic provinces and the rift basin. At a more local scale, the historical eruptive activity of Nyamulagira highlights that, once a composite volcano developed, the gravitational stress field induced by edifice loading becomes the main parameter that influence the location, duration and lava volume of eruptions.

  13. A key extensional metamorphic complex reviewed and restored: The Menderes Massif of western Turkey

    NASA Astrophysics Data System (ADS)

    van Hinsbergen, Douwe J. J.

    2010-09-01

    This paper provides a review of the structure and metamorphism of the Menderes Massif in western Turkey, and subsequently a map-view restoration of its Neogene unroofing history. Exhumation of this massif — among the largest continental extensional provinces in the world — is generally considered to have occurred along extensional detachments with a NE-SW stretching direction. Restoration of the early Miocene history, however, shows that these extensional detachments can only explain part of the exhumation history of the Menderes Massif, and that NE-SW stretching can only be held accountable for half, or less, of the exhumation. Restoration back to ˜ 15 Ma is relatively straightforward, and is mainly characterised by a previously reported 25-30° vertical axis rotation difference between the northern Menderes Massif, and the Southern Menderes Massif and overlying HP nappes, Lycian Nappes and Bey Dağları about a pivot point close to Denizli. To the west of this pole, the rotation was accommodated by exhumation of the Central Menderes core complex since middle Miocene times, and to the east probably by shortening. At the end of the early Miocene, the Menderes Massif formed a rectangular, NE-SW trending tectonic window of ˜ 150 × 100 km. Geochronology suggests unroofing between ˜ 25 and 15 Ma. The north-eastern Menderes Massif was exhumed along the early Miocene Simav detachment, over a distance of ≤ 50 km. The accommodation of the remainder of the exhumation is enigmatic, but penetrative NE-SW stretching lineations throughout the Menderes Massif suggest a prominent role of NE-SW extension. This, however, requires that the eastern margin of the Menderes Massif, bordering a region without significant extension, is a transform fault with an offset of ˜ 150 km, cutting through the Lycian Nappes. For this, there is no evidence. The Lycian Nappes — a non-metamorphic stack of sedimentary thrust slices and an overlying ophiolite and ophiolitic mélange

  14. Frequent underwater volcanism in the central Aegean Sea

    NASA Astrophysics Data System (ADS)

    Huebscher, C.; Ruhnau, M.; Dehghani, G. A.

    2012-04-01

    The extinction of the Minoan culture in the mid second millennium BCE is a well known consequence of the Plinian eruption of Thera volcano (Santorini Island). Santorini is a member of the South Aegean arc forming a chain from the Gulf of Saronikos (Susaki, Egina, Poros, Methana) at West, to an area close to the Anatolian coast at East (Kos, Nisyros and minor islands), through the central part (Milos and Santorini island groups). Underwater volcanic activity was manifested historically only once. During 1649-1650 CE the Kolumbo underwater volcano evolved about 8 km northeast of Santorini. As a consequence of this eruption volcanic ash covered the entire Aegean area and a hazardous tsunami was triggered. Here we show by means of reflection seismic and magnetic data that underwater volcanism occurred more frequently in the central Aegean Sea than previously assumed. Seismic data show that Kolumbo constitutes of five vertically stacked cones of pyroclastic sediment plus at least four smaller cones on the flank of the volcano. The formation of Kolumbo started synchronous with Santorini Island. The entire volume of the Kolumbo pyroclastic cones is estimated to more than 15 cubic-kilometers. Several small-scale cones have been detected in the Anyhdros Basin some km north-east of Kolumbo, being previously interpreted as mud volcanoes by other authors. However, the similarity of seismic and magnetic signatures of these cones and Kolumbo strongly suggest that these cones were also created by underwater volcanism. Volcanic cones, Kolumbo and Santorini are situated along a NE-SW striking graben system that evolved during five extensional tectonic pulses in the Pliocene.

  15. Late Cenozoic extensional faulting in Central-Western Peloponnesus, Greece

    NASA Astrophysics Data System (ADS)

    Skourtsos, E.; Fountoulis, I.; Mavroulis, S.; Kranis, H.

    2012-04-01

    A series of forearc-dipping, orogen-parallel extensional faults are found in the central-western Peloponnesus, (south-western Aegean) which control the western margin of Mt Mainalon. The latter comprises HP/LT rocks of the Phyllites-Quartzites Unit (PQ), overlain by the carbonates and flysch of the Tripolis Unit while the uppermost nappe is the Pindos Unit, a sequence of Mesozoic pelagic sequence, topped by a Paleocene flysch. Most of the extensional structures were previously thought of as the original thrust between the Pindos and Tripolis Units. However, the cross-cutting relationships among these structures indicate that these are forearc (SW-dipping) extensional faults, downthrowing the Pindos thrust by a few tens or hundreds of meters each, rooting onto different levels of the nappe pile. In SW Mainalon the lowermost of the extensional faults is a low-angle normal fault dipping SW juxtaposing the metamorphic rocks of the PQ Unit against the non-metamorphic sequence of the Tripolis Unit. High-angle normal faults, found further to the west, have truncated or even sole onto the low-angle ones and control the eastern margin of the Quaternary Megalopolis basin. All these extensional structures form the eastern boundary of a series of Neogene-Quaternary tectonic depressions, which in turn are separated by E-W horsts. In the NW, these faults are truncated by NE to NNE-striking, NW-dipping faults, which relay the whole fault activity to the eastern margin of the Pyrgos graben. The whole extensional fault architecture has resulted (i) in the Pindos thrust stepping down from altitudes higher than 1000 m in Mainalon in the east, to negative heights in North Messinia and Southern Ilia in the west; and (ii) the gradual disappearance of the Phyllite-Quartzite metamorphics of Mainalon towards the west. The combination of these extensional faults (which may reach down to the Ionian décollement) with the low-angle floor thrusts of the Pindos, Tripolis and Ionian Units leads

  16. A continuum model of continental deformation above subduction zones - Application to the Andes and the Aegean

    NASA Technical Reports Server (NTRS)

    Wdowinski, Shimon; O'Connell, Richard J.; England, Philip

    1989-01-01

    A continuum model of continental deformation above subduction zones was developed that combines the viscous sheet and the corner flow models; the continental lithosphere is described by a two-dimensional sheet model that considers basal drag resulting from the viscous asthenosphere flow underneath, and a corner flow model with a deforming overlying plate and a rigid subducting plate is used to calculate the shear traction that acts on the base of the lithosphere above a subduction zone. The continuum model is applied to the Andes and the Aegean deformations, which represent, respectively, compressional and extensional tectonic environments above subduction zones. The models predict that, in a compressional environment, a broad region of uplifted topography will tend to develop above a more steeply dippping slab, rather than above a shallower slab, in agreement with observations in the various segments of the central Andes. For an extensional environment, the model predicts that a zone of compression can develop near the trench, and that extensional strain rate can increase with distance from the trench, as is observed in the Aegean.

  17. Extensional Flow of Bulk Polymers

    NASA Technical Reports Server (NTRS)

    Peng, T. J.

    1972-01-01

    A study was made of the behavior of polyisobutylene under motion at a constant stretch history for both strip biaxial extensional flow and simple extensional flow. Steady-state non-Newtonian viscosities were observed at various constant stretch histories. Newtonian viscosities for both strip biaxial and simple extensional flow were found to be in agreement with the classical theory. The results of the study provide an essential part of the experimental background necessary for the development of a new general stress-strain-time relation for uncrosslinked and lightly crosslinked polymers.

  18. Dynamic Modeling of Back-arc Extension in the Aegean Sea and Western Anatolia

    NASA Astrophysics Data System (ADS)

    Mazlum, Ziya; Göğüş, Oğuz H.; Sözbilir, Hasan; Karabulut, Hayrullah; Pysklywec, Russell N.

    2015-04-01

    Western Anatolian-Aegean regions are characterized by large-scale lithospheric thinning and extensional deformation. While many geological observations suggest the formation of rift basins, normal faulting, exhumation of metamorphic rocks, and back-arc volcanism, the primary cause and the geodynamic driving mechanisms for the lithospheric thinning and extension are not well understood. Previous studies suggest three primary geodynamic hypotheses to address the extension in the Aegean-west Anatolia: 1) Slab retreat/roll-back model, inferred by the southward younging magmatism and metamorphic exhumations; 2) Gravitational collapse of the overthickened (post orogenic) lithosphere, interpreted by the structural studies that suggests tectonic mode switching from contraction to extension; 3) Lateral extrusion (escape tectonics) associated with the continental collision in East Anatolia. We use 2-D thermo-mechanical numerical subduction experiments to investigate how subduction retreat and related back-arc basin opening are controlled by a) changing length and thickness of the subducting plate, b) the dip angle of the subducting slab and c) various thickness and thermal properties of the back-arc lithosphere. Subsequently, we explore the surface response to the subduction retreat model in conjunction with the gravitational (orogenic) collapse in the presumed back-arc region. Quantitative model predictions (e.g., crustal thickness, extension rate) are tested against a wide range of available geological and geophysical observations from the Aegean and west Anatolia regions and these results are reconciled with regional tectonic observations. Our model results are interpreted in the context of different surface response in the extensional regime (back-arc) for the Aegean and western Anatolia, where these two regions have been presumably segmented by the right lateral transfer fault system (Izmir-Balıkesir transfer zone).

  19. Mantle convection in the Middle East: Reconciling Afar upwelling, Arabia indentation and Aegean trench rollback

    NASA Astrophysics Data System (ADS)

    Faccenna, Claudio; Becker, Thorsten W.; Jolivet, Laurent; Keskin, Mehmet

    2013-08-01

    The Middle East region represents a key site within the Tethyan domain where continental break-up, collision, backarc extension and escape tectonics are kinematically linked together. We perform global mantle circulation computations to test the role of slab pull and mantle upwellings as driving forces for the kinematics of the Arabia-Anatolia-Aegean (AAA) system, evaluating different boundary conditions and mantle density distributions as inferred from seismic tomography or slab models. Model results are compared with geodetically inferred crustal motions, residual topography, and shear wave splitting measurements. The AAA velocity field with respect to Eurasia shows an anti-clockwise toroidal pattern, with increasing velocities toward the Aegean trench. The best match to these crustal motions can be obtained by combining the effect of slab pull exerted in the Aegean with a mantle upwelling underneath Afar and, more generally, with the large-scale flow associated with a whole mantle, Tethyan convection cell. Neogene volcanism for AAA is widespread, not only in the extensional or subduction settings, but also within plates, such as in Syria-Jordan-Israel and in Turkey, with geochemical fingerprints similar of those of the Afar lava. In addition, morphological features show large uplifting domains far from plate boundaries. We speculate that the tectonic evolution of AAA is related to the progressive northward entrainment of upwelling mantle material, which is itself associated with the establishment of the downwelling part of a convection cell through the segmented Tethyan slab below the northern Zagros and Bitlis collision zone. The recently established westward flow dragged Anatolia and pushed the Aegean slab south-westward, thus accelerating backarc extension. Our model reconciles Afar plume volcanism, the collision in the Bitlis mountains and northern Zagros, and the rapid increase of Aegean trench rollback in a single coherent frame of large scale mantle

  20. Instability of floating extensional flows

    NASA Astrophysics Data System (ADS)

    Sayag, Roiy; Worster, Grae

    2015-11-01

    We study the propagation of a viscous fluid over a thin layer of a denser and inviscid fluid. The viscous fluid is released axisymmetrially at constant flux, and is driven by gravity. Near the origin, where the viscous layer is thick, the flow is dominated by vertical shear. In the outer region where the viscous layer is thinner, it floats over the inviscid layer and the dominant stress is extensional. The floating region of such flows remains axisymmetric when the viscous fluid is Newtonian. In contrast, when the viscous fluid is non Newtonian, the floating region can be distributed in an array of extensional tongues. We use experimental and theoretical analysis to study the symmetry breaking of the extensional region. Experiments using polymeric fluids show that the characteristic wavelength of the tongues increases with flux. Theoretically, we model the symmetry breaking as flow instability of a power-law fluid that becomes Newtonian at low strain rates. Our model predicts unstable modes at the strongly non-Newtonian limit, and stable, axisymmetric mode in the Newtonian limit.

  1. PREFACE: Donald D Harrington Symposium on the Geology of the Aegean

    NASA Astrophysics Data System (ADS)

    Catlos, Elizabeth J.

    2008-03-01

    This volume of the IOP Conference Series: Earth and Environmental Sciences presents a selection of papers given at the Donald D Harrington Symposium on the Geology of the Aegean held on the campus of the University of Texas at Austin on April 28-30, 2008. Donald D Harrington was born in Illinois in 1899 and moved westward after serving in the Army Air Corps during World War I. Mr Harrington took a position as a landman with Marlin Oil Company in Oklahoma. When the Texas Panhandle oil boom hit in 1926, he moved to Amarillo, Texas, where he met Sybil Buckingham—the granddaughter of one of Amarillo's founding families. They married in 1935 and went on to build one of the most successful independent oil and gas operations in Texas history. The couple created the Don and Sybil Harrington Foundation in 1951 to support worthy causes such as museums, medical research, education, and the arts. At the Harrington Symposium on the Geology of the Aegean, researchers presented papers organized under five general themes: (1) the geology of Aegean in general (2) the geologic history of specific domains within the Aegean (Cyclades, Menderes, Kazdag, Rhodope, Crete, southern Balkans, etc) (3) the dynamic tectonic processes that occur within the Aegean (4) its geo-archeological history, natural history and hazards and (5) comparisons of the Aegean to regions elsewhere (e.g., Basin and Ranges; Asian extensional terranes). The Aegean is a locus of dynamic research in a variety of fields, and the symposium provided an opportunity for geologists from a range of disciplines to interact and share new results and information about their research in the area. At the opening reception in the Harry S Ransom Center, Dr Clark Burchfiel (Massachusetts Institute of Technology, USA) provided a keynote address on the outstanding geologic problems of the Aegean region. His paper in this volume outlines a framework for future studies. We also call attention to a paper in this volume by Dr Y

  2. Moment tensor inversion of the January 8, 2013 (Mw=5.7) and May 24, 2014 (Mw 6.8) North Aegean Earthquakes: seismicity and active tectonics of the North Aegean Region

    NASA Astrophysics Data System (ADS)

    Kalafat, Dogan; Kekovali, Kivanc; Pinar, Ali

    2015-04-01

    parallel to the North Aegean Trough (NAT). Strike slip faulting is changing to oblique, with significant component of extension, as one goes from the Aegean to the coastal area of NW and Western Turkey. The sources region of the North Aegean earthquakes is influenced by both the Aegean extensional regime and the strike-slip regime in the western part of the North Anatolin Fault Zone. Strike-slip faulting is changing to oblique, with significant component of extension, as one goes from the Aegean to the coastal area of Western Turkey. This study was supported by Bogazici University Research Projects Commission under SRP/BAP project No. 6040 and MarDIM SATREPS project.

  3. Inversion of Extensional Sedimentary Basins

    NASA Astrophysics Data System (ADS)

    Buiter, Susanne J. H.; Pfiffner, O. Adrian

    The evolution of extensional sedimentary basins is governed by the surrounding stress field and can, therefore, be expected to be highly sensitive to variations in these stresses. Important changes in basin geometry are to be expected in the case of an even short-lived reversal from extension to compression. We investigate the evolu- tion of fold and thrust structures which form in compression after extension, when basin forming processes have come to a complete stop. To this purpose, we use a two- dimensional, viscoplastic model and start our experiments from a pre-existing exten- sional geometry. We illustrate the sensitivity of the evolving structures to inherited extensional geometry, sedimentary and erosional processes, and material properties. One series of our model experiments involves the upper- to middle crust only in order to achieve a high detail in the basin area. We find that our results agree with examples from nature and analogue studies in, among others, the uplift and rotation of syn-rift sediments, the propagation of shear zones into the post-rift sediments and, in specific cases, the development of back-thrusts or basement short-cut faults. We test the out- come of these models by performing a second series of model simulations in which basins on a continental margin are inverted through their progressive approach of a subduction zone. These latter models are on the scale of the whole upper mantle.

  4. Geometry, thermal structure and kinematics of the metamorphic dome of Ikaria (eastern Cyclades, Greece): implication for Aegean tectonics

    NASA Astrophysics Data System (ADS)

    Beaudoin, Alexandre; Laurent, Valentin; Augier, Romain; Jolivet, Laurent; Lahfid, Abdeltif; Arbaret, Laurent; Rabillard, Aurélien

    2014-05-01

    The Aegean domain has been characterized since the Oligocene by extensional tectonics caused by the southward retreat of the African slab subducting beneath Eurasia. Structures and associated kinematics relative to this extensional tectonics are well constrained in the western Cyclades and the Menderes massif of western Turkey. Major extensional detachments such as the North Cycladic Detachment System (NCDS) or the Simav Detachment have accommodated the exhumation of a series of metamorphic core complexes (MCC) from Andros-Tinos-Mykonos in the west to the northern Menderes massif in the east. However, the transition between the NCDS and the Simav Detachment is currently not understood. This transition is located above a large-scale tear in the Aegean slab and its effects on the kinematics of deformation and P-T-t evolution of the overlying thinned crust are not known. The geology of Ikaria Island, located in this region, remains poorly known and the few existing studies are strikingly conflicting. This work attempts to clarify the geology of Ikaria by a new geological mapping and structural field study coupled with a thermometric study by Raman spectrometry of carbonaceous material (RSCM). Foliation over the whole island defines a structural dome, lately intruded by intrusive granitic bodies. Lineation shows a ca. N-S ductile stretching associated with an overall top-to-the-North sense of shear. Final exhumation of the dome was thus completed by a system of two top-to-the-North detachments, operating in the ductile and then the brittle fields. The proposed tectono-metamorphic evolution of the dome is consistent with the evolution of the northern Aegean area, suggesting that Ikaria belongs to the Aegean MCC and that the NCDS continues eastward. Besides, the distribution of RSCM temperatures within the dome and the presence of migmatites in the western part of the island comply with the description of migmatite-cored MCC such as Naxos or Mykonos. A better

  5. Petroleum exploration and geology of the Aegean

    SciTech Connect

    Bartling, T.C.; Gips, J.

    1988-08-01

    The present-day Aegean Sea covers several graben and/or half-graben basins filled with more than 12,000 ft of sedimentary rocks. The normal faulting observed on seismic record sections indicates a tensional tectonic regime. There is a marked coincidence of modern basins and bathymetric highs with paleobasins and highs. A stratigraphic section of marine clastics of Eocene through Miocene-Pliocene age have been encountered in the seven wildcat wells drilled. Cretaceous-age rocks must be considered basement for petroleum exploration because, except for an area in the eastern Aegean, Cretaceous and older rocks were metamorphosed during the Alpine orogenies. The Eocene is a transgressive clastic sequence. The Oligocene is conformable with the underlying Eocene. The Miocene is predominantly a regressive clastic sequence. This series ended with evaporitic conditions. The Messinian evaporite is an excellent seismic marker and is the seal for the one producing field in the Aegean Sea. Source rocks and reservoir rocks are found in both the Eocene and the Miocene. Four of the seven wildcats drilled have encountered hydrocarbon shows. Prinos field, discovered in 1974, was put on production in 1981 and is currently producing at design capacity of 25,000 to 28,000 bbl of oil per day. Cumulative production is approximately 50 million bbl. Prinos field is only 7 mi from metamorphic basement outcrop, yet field wells have penetrated more than 10,000 ft of Tertiary marine clastics.

  6. Microfluidic extensional rheometry using stagnation point flow.

    PubMed

    Haward, S J

    2016-07-01

    Characterization of the extensional rheometry of fluids with complex microstructures is of great relevance to the optimization of a wide range of industrial applications and for understanding various natural processes, biological functions, and diseases. However, quantitative measurement of the extensional properties of complex fluids has proven elusive to researchers, particularly in the case of low viscosity, weakly elastic fluids. For some time, microfluidic platforms have been recognized as having the potential to fill this gap and various approaches have been proposed. This review begins with a general discussion of extensional viscosity and the requirements of an extensional rheometer, before various types of extensional rheometers (particularly those of microfluidic design) are critically discussed. A specific focus is placed on microfluidic stagnation point extensional flows generated by cross-slot type devices, for which some important developments have been reported during the last 10 years. Additional emphasis is placed on measurements made on relevant biological fluids. Finally, the operating limits of the cross-slot extensional rheometer (chiefly imposed by the onset of elastic and inertial flow instabilities) are discussed. PMID:27099647

  7. Extensional Flow Induced Crystallization of Polyethylene

    NASA Astrophysics Data System (ADS)

    Nicholson, David; Locker, C. Rebecca; Tsou, Andy; Rutledge, Gregory

    2014-03-01

    The majority of manufactured polyethylene is used in films mostly through the blown film fabrication process where extensional flow induced crystallization is a critical component in affecting the development of crystalline morphology and amorphous topology. In order to optimize the blown film performance, it is critical to understand the mechanism of extensional flow induced crystallization of polyethylene. Model high density polyethylene with a Mn of 20,000 g/mol and a PDI (polydispersity) of 2 and lower were synthesized by organometallic catalysts. Extensional flow induced crystallization of these materials was measured using the SER (Sentmanat Extensional Rheometer) either at a given rate with varying temperatures or vice versa. A continuum model was applied to analyze the flow induced crystallization data. All samples after extensional flow were quenched in ice water and the resulting morphology was characterized using SAXS and WAXS. The extensional rate was found to be effective in modifying morphology whereas the temperature was not; neither temperature nor strain rate affected the final film crystallinity. With an increase in extensional rate, crystallites became thinner and narrower with potentially higher connectivity which could lead to higher toughness.

  8. Extensional Rheology of Granular Staples

    NASA Astrophysics Data System (ADS)

    Franklin, Scott

    2013-03-01

    Collections of U-shaped granular materials (e.g. staples) show a surprising resistance to being pulled apart. We conduct extensional stress-strain experiments on staple piles with vary arm/spine (barb) ratio. The elongation is not smooth, with the pile growing in bursts, reminiscent of intruder motion through ordinary and rod-like granular materials. The force-distance curve shows a power-law scaling, consistent with previous intruder experiments. Surprisingly, there is significant plastic creep of the pile as particles rearrange slightly in response to the increasing force. There is a broad distribution of yield forces that does not seem to evolve as the pile lengthens, suggesting that each yield event is independent of the pile's history. The distribution of yield forces can be interpreted in the context of a Weibullian weakest-link theory that predicts the maximum pile strength to decrease sharply with increasing pile length. From this interpretation arise length and force scales that may be used to characterize the sample. This research supported in part by the NSF (CBET-#1133722) and ACS-PRF (#51438-UR10).

  9. On the thermohaline engine of the Aegean Sea

    NASA Astrophysics Data System (ADS)

    Zervakis, V.; Tragou, E.; Maderich, V.; Papadopoulos, A.; Georgopoulos, D.

    2003-04-01

    The deep basins of the North Aegean are filled with locally formed very dense water, despite the very high stratification of the upper water column resulting from the outflow of very light, brackish water from the Black Sea into the Mediterranean. Furthermore, the Aegean is a source of deep and bottom water, which occasionally overflows into the Eastern Mediterranean. The interaction between the North and South Aegean, and the relative importance of the basins as dense water formation sites, is still unknown. In this study we attempt an assessment of the exchange between the North and South Aegean through buoyancy budget estimations. This will provide a first-order estimate of the North Aegean contribution to the interannual variability of the Eastern Mediterranean Deep Waters, as well as a better understanding of the thermohaline circulation within the Aegean Sea. Our budget estimation consists of comparing the buoyancy change of the deep basins between successive CTD campaigns with the time integrated buoyancy flux through the surface (considering the Dardanelles outflow as a surface flux). Surface buoyancy exchanges are estimated using heat and freshwater data from the ECMWF dataset. For the buoyancy forcing through the Dardanelles we exploit the output of a state-of-the-art hydraulic model simulating the exchange flow through the Turkish Straits system, developed and fine-tuned in the framework of a bilateral Greek-Ukrainian project. For the buoyancy content estimation of the deep basins we isolate periods where there are enough CTD observations covering most of the North and South Aegean. Considering one box per basin, the results suggest that the North Aegean behaves as a dilution basin throughout the year, constituting a source of buoyancy for the South Aegean. However, this contradicts the fact that the North Aegean contains by far the densest waters. This paradox can be explained by introducing two-layer boxes, using the vertical buoyancy flux through the

  10. Structure and evolution of the Sporadhes basin of the North Aegean trough, northern Aegean sea

    NASA Astrophysics Data System (ADS)

    Brooks, M.; Ferentinos, G.

    1980-09-01

    Air gun and sparker profiling data from the northwest Aegean Sea provide detailed information on the structure of the Sporadhes basin (the western part of the North Aegean trough) and the adjacent shallow water area of Thermaicos Bay. Both areas are underlain by a thick postorogenic sedimentary sequence that exhibits "growth folds" (supratenuous folds attributable to synsedimentary tectonism) and associated antithetic faulting attributable to gravity creep down the limbs of the developing folds. The Sporadhes basin is an asymmetrical graben closely similar to Gulf Coast structures (down-to-basin faults) that have been modelled experimentally by Cloos (1968). Major listric faulting characterises the southern margin of the basin and the wide northern flank represents an associated downbend or reverse drag structure with antithetic faulting. Magmatism may occur in the axial zone of the basin. The Sporadhes basin has been formed in a late Cenozoic tensile stress regime and its evolution is discussed in terms of the regional tectonics and the process of back-arc extension. The structure and evolution of the northern Aegean area and the Pannonian basin are shown to be closely similar.

  11. Shear and extensional properties of kefiran.

    PubMed

    Piermaría, Judith; Bengoechea, Carlos; Abraham, Analía Graciela; Guerrero, Antonio

    2016-11-01

    Kefiran is a neutral polysaccharide constituted by glucose and galactose produced by Lactobacillus kefiranofaciens. It is included into kefir grains and has several health promoting properties. In the present work, shear and extensional properties of different kefiran aqueous dispersions (0.5, 1 and 2% wt.) were assessed and compared to other neutral gums commonly used in food, cosmetic and pharmaceutics industries (methylcellulose, locust bean gum and guar gum). Kefiran showed shear flow characteristics similar to that displayed by other representative neutral gums, although it always yielded lower viscosities at a given concentration. For each gum system it was possible to find a correlation between dynamic and steady shear properties by a master curve including both the apparent and complex viscosities. When studying extensional properties of selected gums at 2% wt. by means of a capillary break-up rheometer, kefiran solutions did not show important extensional properties, displaying a behaviour close the Newtonian. PMID:27516254

  12. A new contribution to the Late Quaternary tephrostratigraphy of the Mediterranean: Aegean Sea core LC21

    NASA Astrophysics Data System (ADS)

    Satow, C.; Tomlinson, E. L.; Grant, K. M.; Albert, P. G.; Smith, V. C.; Manning, C. J.; Ottolini, L.; Wulf, S.; Rohling, E. J.; Lowe, J. J.; Blockley, S. P. E.; Menzies, M. A.

    2015-06-01

    Tephra layers preserved in marine sediments can contribute to the reconstruction of volcanic histories and potentially act as stratigraphic isochrons to link together environmental records. Recent developments in the detection of volcanic ash (tephra) at levels where none is macroscopically visible (so-called 'crypto-tephra') have greatly enhanced the potential of tephrostratigraphy for synchronising environmental and archaeological records by expanding the areas over which tephras are found. In this paper, crypto-tephra extraction techniques allow the recovery of 8 non-visible tephra layers to add to the 9 visible layers in a marine sediment core (LC21) from the SE Aegean Sea to form the longest, single core record of volcanic activity in the Aegean Sea. Using a novel, shard-specific methodology, sources of the tephra shards are identified on the basis of their major and trace element single-shard geochemistry, by comparison with geochemical data from proximal Mediterranean volcanic stratigraphies. The results indicate that the tephra layers are derived from 14 or 15 separate eruptions in the last ca 161 ka BP: 9 from Santorini; 2 or 3 from Kos, Yali, or Nisyros; 2 from the Campanian province; and one from Pantelleria. The attributions of these tephra layers indicate that 1) inter-Plinian eruptions from Santorini may have produced regionally significant tephra deposits, 2) marine tephrostratigraphies can provide unique and invaluable data to eruptive histories for island volcanoes, and 3) tephra from both Pantelleria and Campania may be used to correlate marine records from the Aegean Sea to those from the Tyrrhenian, Adriatic and Ionian Seas.

  13. South Aegean Geodynamic And Tsunami Monitoring Platform

    NASA Astrophysics Data System (ADS)

    Paradissis, Demitris; Drakatos, George; Marinou, Aggeliki; Anastasiou, Demitris; Alatza, Stauroula; Zacharis, Vangelis; Papanikolaou, Xanthos; Melis, Nicolaos; Kalogeras, Ioannis; Chouliaras, Gerasimos; Evangelidis, Christos; Makropoulos, Konstantinos

    2015-04-01

    The Aegean Sea is one of the most tectonically and seismically active areas in the world, thus constituting a Natural Laboratory. For the first time, a permanent multiparametric platform of networks that combine different (both terrestrial and space oriented) techniques, is established, in order to monitor the tectonic and volcanic activity in the area and produce an on-line database available both to the scientific community and the public. This platform includes continuous GNSS networks, tide-gauge sensors, accelerometers and seismographs. All the available existing infrastructure has been upgraded, enlarged and modernized resulting in a collaborative operation. New instrumentation has been installed in carefully selected sites. All the available data are analysed using state of the art processing software. Raw data and products will be available through a project dedicated portal. The multiparametric data and results gathered will be integrated and combined with the existing archive owned by the participating institutes to produce a thoroughgoing view of the underlying geophysical processes. The island of Santorini will serve as a focused study case for the project, due to the special tectono-volcanic interest and because of the already existing dense multiparametric network. Our goal is to provide permanent infrastructure and knowledge both to enlighten ambiguous scientific hypothesis and serve as a focal point for further scientific research.

  14. Monitoring sea level fluctuation in South Aegean

    NASA Astrophysics Data System (ADS)

    Zacharis, Vangelis; Paradissis, Demitris; Drakatos, George; Marinou, Aggeliki; Melis, Nicolaos; Anastasiou, Demitris; Alatza, Stavroula; Papanikolaou, Xanthos

    2015-04-01

    The complexity of the geological setting of the South Aegean is well-known, among the scientific community. The subduction zone coupled with the latest unrest of the Santorini volcano, as well as the particular morphology of the earth's surface and seabed pose a poorly understood source of tsunami hazard. A sparse network of tide gauges that operate in the area for varying periods of time is strengthened by the establishment of new sensors at carefully selected locations, by the Institute of Geodynamics of the National Observatory of Athens, and the Dionyssos Satellite Observatory and the Laboratory of Higher Geodesy of the National Technical University of Athens. These new instruments, aided by a rather dense network of GNSS receivers, provide a more concrete basis for the development, testing and evaluation of a near real-time model of the sea level changes in the area. Moreover, integration with various other sensors allows to understand and assess the level of tsunami risk in the area.

  15. Magma interaction processes in syn-extensional granitoids: The Tertiary Menderes Metamorphic Core Complex, western Turkey

    NASA Astrophysics Data System (ADS)

    Erkül, Sibel Tatar; Erkül, Fuat

    2012-06-01

    Western Turkey, which forms the eastern part of the Aegean region, was subjected to continental extension that led to formation of metamorphic core complexes and associated syn-extensional granitoids. This study deals with petrogenesis of the syn-extensional Early Miocene Alaçamdağ (AG) and Middle Miocene Salihli (SG) granitoids and associated mafic microgranular enclaves (MME) in order to better understand the time-progressive evolution of the mantle sources beneath the extended continental crust in western Turkey. AG and SG granitoids consist of undeformed and ductility deformed granitoids together with abundant MMEs. They are calc-alkaline to high-K calc-alkaline rocks that are metaluminous to slightly peraluminous. Mg# of AG host rocks is slightly lower than that of SG host rocks. AG host rocks have higher Na2O, Ba, Rb, Rb/La and lower Al2O3, CaO, MgO, TiO2, Zr/Y values than those of the SG host rocks. AG and SG host rocks differ from those of MMEs, with their lower Al2O3, CaO, MgO, Fe2O3, TiO2, Sr, V, Mg# and higher SiO2 values. MMEs are intermediate, corresponding to monzonite, monzodiorite (in AG) and diorite (in SG) compositions and are more mafic with respect to their host rocks. In the primitive mantle (PM) normalized trace element patterns, host rock and MME samples have similar trace element patterns. All of these rocks are enriched in large ion lithophile elements (LILEs, Cs, Rb, Ba, Th, K and Sr) and strongly depleted high field strength elements (HFSEs, Ta, Nb, P, Ti) compared to the primitive mantle. The isotope ratios of the syn-extensional AG and SG rocks display increasing radiogenic strontium and decreasing radiogenic neodymium. Isotopic values for the AG and SG host rocks and MME samples are 87Sr/86Sr (AG host) = 0.708835-0.710206 and ɛNd(t) (AG host) = (- 5.36 to - 7.36); 87Sr/86Sr (AG MME) = 0.709107-0.709801 and ɛNd(t) (AG MME) = - 5.36 to - 7.36; 87Sr/86Sr (AG MME)=0.709107-0.709801 and ɛNd(t) (AG MME)=-5.55 to -6.51; 87Sr/86Sr (SG

  16. Nestedness in centipede (Chilopoda) assemblages on continental islands (Aegean, Greece)

    NASA Astrophysics Data System (ADS)

    Simaiakis, Stylianos Michail; Martínez-Morales, Miguel Angel

    2010-05-01

    In natural ecosystems, species assemblages among isolated ecological communities such as continental islands often show a nested pattern in which biotas of sites with low species richness are non-random subsets of biotas of richer sites. The distribution of centipede (Chilopoda) species in the central and south Aegean archipelago was tested for nestedness. To achieve this aim we used distribution data for 53 species collected on 24 continental Aegean islands (Kyklades and Dodekanisa). Based on the first-order jackknife estimator, most of islands were comprehensively surveyed. In order to quantify nestedness, we used the nestedness temperature calculator (NTC) as well as the nestedness metric based on overlap and decreasing Fill (NODF). NTC indicated that data exhibited a high degree of nestedness in the central and south Aegean island complexes. As far as the Kyklades and Dodekanisa are concerned, NTC showed less nested centipede structures than the 24 islands. Likewise, NODF revealed a significant degree of nestedness in central and south Aegean islands. It also showed that biotas matrices without singletons were more nested than the complete ones (Aegean, Kyklades and Dodekanisa). The two commonest centipede taxa (lithobiomorphs and geophilomorphs) contributed differently to centipede assemblages. In the Kyklades and Dodekanisa, geophilomorphs did not show a reliable nested arrangement unlike lithobiomorphs. In relation to the entire data set, nestedness was positively associated with the degree of isolation. In the Kyklades altitudinal range best explained nestedness patterns, while in Dodekanisa habitat heterogeneity proved to be more important for the centipede communities. Island area does not seem to be a significant explanatory variable. Some of our results from the Kyklades were critically compared with those for terrestrial isopod and land snail nested assemblages from the same geographical area. The complex geological and palaeogeographical history of

  17. Seismicity of the 24 May 2014 Mw 7.0 Aegean Sea earthquake sequence along the North Aegean Trough

    NASA Astrophysics Data System (ADS)

    Görgün, Ethem; Görgün, Burçak

    2015-11-01

    The northern Aegean Sea was hit by a large size (Mw = 7.0) earthquake on 2014 May 24. Centroid moment tensor solutions for 40 events with moment magnitudes (Mw) between 3.3 and 7.0 are computed by applying a waveform inversion method on data from the Turkish and Greek broadband seismic networks. The time span of data covers the period between 2014 May 24 and 2014 June 26. The mainshock is a shallow focus strike-slip event at a depth of 15 km. Focal depths of aftershocks range from 6 to 30 km. The seismic moment (Mo) of the mainshock is estimated as 4.60 × 1019 Nm. The calculated rupture duration of the North Aegean Sea mainshock is 40 s. The focal mechanisms of the aftershocks are mainly strike-slip faulting with a minor normal component. The geometry of focal mechanisms reveals a strike-slip faulting regime with NE-SW trending direction of T-axis in the entire activated region. A stress tensor inversion of focal mechanism data is performed to acquire a more accurate picture of the northern Aegean Sea stress field along the North Aegean Trough. The stress tensor inversion results indicate a predominant strike-slip stress regime with a NW-SE oriented maximum principal compressive stress (σ1). In the development of the North Aegean Trough in Aegean Sea is in good agreement with the resolved stress tensors. With respect the newly determined focal mechanisms, the effect of the propagating of the North Anatolian Fault into Aegean Sea is very clearly pronounced. According to high-resolution hypocenter relocation of the North Aegean Sea seismic sequence, three main clusters are revealed. The aftershock activity in the observation period between 2014 May 24 and 2014 July 31 extends from the mainshock cluster from NE to the SW direction. Seismic cross-sections indicate that a complex pattern of the hypocenter distribution with the activation of seventeen segments. The eastern cluster is associated with a fault plane trending mainly ENE-WSW and dipping vertical, while the

  18. Flow between eccentric cylinders: a shear-extensional controllable flow

    NASA Astrophysics Data System (ADS)

    Tian, Guoqiang; Wang, Mengmeng; Wang, Xiaolin; Jin, Gang

    2016-05-01

    In this work the non-Newtonian fluid between eccentric cylinders is simulated with finite element method. The flow in the annular gap between the eccentric rotating cylinders was found to be a shear-extensional controllable flow. The influence of rotating speed, eccentricity as well as the radius ratio on the extensional flow in the vicinity of the minimum gap between the inner and outer cylinder was quantitatively investigated. It was found that both the strengths of shear flow and extensional flow could be adjusted by changing the rotating speed. In respect to extensional flow, it was also observed that the eccentricity and radius ratio exert significant influences on the ratio of extensional flow. And it should be noted that the ratio of extensional flow in the mix flow could be increased when increasing the eccentricity and the ratio of shear flow in the mix flow could be increased when increasing the radius ratio.

  19. Extensional duplex in the Purcell Mountains of southeastern British Columbia

    SciTech Connect

    Root, K.G. )

    1990-05-01

    An extensional duplex consisting of fault-bounded blocks (horses) located between how-angle normal faults is exposed in Proterozoic strata in the Purcell Mountains of British Columbia, Canada. This is one of the first documented extensional duplexes, and it is geometrically and kinematically analogous to duplexes developed in contractional and strike-slip fault systems. The duplex formed within an extensional fault with a ramp and flat geometry when horses were sliced from the ramp and transported within the fault system.

  20. Extensional tectonics on continents and the transport of heat and matter

    NASA Technical Reports Server (NTRS)

    Neugebauer, H. J.

    1985-01-01

    Intracontinental zones of extensional tectonic style are commonly of finite width and length. Associated sedimentary troughs are fault-controlled. The evolution of those structures is accompanied by volcanic activity of variable intensity. The characteristic surface structures are usually underlaid by a lower crust of the transitional type while deeper subcustal areas show delayed travel times of seismic waves especially at young tectonic provinces. A correspondence between deep-seated processes and zones of continental extension appears obvious. A sequential order of mechanisms and their importance are discussed in the light of modern data compilations and quantitative kinematic and dynamic approaches. The Cenozoic exensional tectonics related with the Rhine River are discussed.

  1. A quantitative evaluation of models for Aegean crustal deformation

    NASA Astrophysics Data System (ADS)

    Nyst, M.; Thatcher, W.

    2003-04-01

    Modeling studies of eastern Mediterranean tectonics show that Aegean deformation is mainly determined by WSW directed expulsion of Anatolia and SW directed extension due to roll-back of African lithosphere along the Hellenic trench. How motion is transferred across the Aegean remains a subject of debate. The two most widely used hypotheses for Aegean tectonics assert fundamentally different mechanisms. The first model describes deformation as a result of opposing rotations of two rigid microplates separated by a zone of extension. In the second model most motion is accommodated by shear on a series of dextral faults and extension on graben systems. These models make different quantitative predictions for the crustal deformation field that can be tested by a new, spatially dense GPS velocity data set. To convert the GPS data into crustal deformation parameters we use different methods to model complementary aspects of crustal deformation. We parameterize the main fault and plate boundary structures of both models and produce representations for the crustal deformation field that range from purely rigid rotations of microplates, via interacting, elastically deforming blocks separated by crustal faults to a continuous velocity gradient field. Critical evaluation of these models indicates strengths and limitations of each and suggests new measurements for further refining understanding of present-day Aegean tectonics.

  2. Magnetotelluric Investigation of the South Aegean Volcanic Arc, Greece

    NASA Astrophysics Data System (ADS)

    Kalisperi, Despina; Romano, Gerardo; Smirnov, Maxim; Kouli, Maria; Perrone, Angela; Makris, John P.; Vallianatos, Filippos

    2014-05-01

    The South Aegean Volcanic Arc (SAVA) is a chain of volcanic islands in the South Aegean resulting from the subduction of the African tectonic plate beneath the Eurasian plate. It extends from Methana, northwest, to the Island of Nisyros southeast (450 km total length). SAVA comprises a series of dormant and historically active volcanoes, with the most prominent to be Aegina, Methana, Milos, Santorini, Kolumbo, Kos and Nisyros. The aim of the ongoing research project "MagnetoTellurics in studying Geodynamics of the hEllenic ARc (MT-GEAR)" is to contribute to the investigation of the geoelectric structure of Southern Aegean, and particularly to attempt to image the Hellenic Subduction Zone. In this context, onshore magnetotelluric (MT) measurements were recently carried out on the central and eastern part of SAVA (Milos, Santorini, Nisyros and Kos Islands). Data were collected using two MT systems running simultaneously plus a remote reference station installed in Omalos plateau (Western Crete). Robust MT data analysis of the broad-band MT soundings and the resulting model of the conductivity structure of the South Aegean Volcanic Arc is presented. The research is co-funded by the European Social Fund (ESF) and National Resources under the Operational Programme 'Education and Lifelong Learning (EdLL) within the context of the Action 'Supporting Postdoctoral Researchers' in the framework of the project title "MagnetoTellurics in studying Geodynamics of the hEllenic ARc (MT-GEAR)".

  3. Asymmetric Vesicle Instability in Extensional Flow

    NASA Astrophysics Data System (ADS)

    Spann, Andrew; Zhao, Hong; Shaqfeh, Eric

    2012-11-01

    Previous researchers have chronicled the breakup of drops in an extensional flow as they stretch into a dumbbell shape with a long thin neck. Motivated by recent experimental observations, we study an apparently similar problem with vesicles, which are deformable but incompressible membranes that conserve area and volume. First, we simulate vesicles in an unbounded uniaxial extensional flow which are given general radial perturbations from an initially stable symmetric equilibrium state. For sufficiently low reduced volume (< 0.74 at matched inner/outer viscosity) there exists a capillary number at which an asymmetric perturbation mode will grow, resulting in the formation of an asymmetric dumbbell shape with a thin connecting cylindrical bridge analogous to the shapes associated with drop breakup. Our simulations help elucidate a mechanism for this instability based on a competition between internal pressure differentials in the vesicle resulting from the membrane bending force and ambient flow. We compare and contrast this transition to the ``standard'' drop breakup transition. Funded by NSF GRFP and Stanford Graduate Fellowship.

  4. a Structural and Thermochronological Study of Santorini Detachment in Santorini Island, Aegean Sea

    NASA Astrophysics Data System (ADS)

    Marsellos, A.; Foster, D. A.; Min, K. K.; Kamenov, G. D.; Kidd, W. S.; Garver, J. I.; Kyriakopoulos, K.

    2012-12-01

    Extension in the Aegean has been very prominent since early Miocene expressed by a series of detachments, opening of the Cretan basin, arc expansion and plutons, with a peak of extensional activity at 10-16 Ma across the south Aegean. In Santorini, which is the southernmost Cyclades island and closest to the forearc, intrusion of an unexposed pluton to a depth equivalent to modern sea level took place at about 9.5 Ma (Skarpelis et al., 1992). In this study, Zircon fission-track (ZFT) and apatite (U-Th)/He (AHe) data from the Athinios metamorphic rocks exposed in Santorini caldera distinguish an upper metamorphic cooling unit associated with Early-Middle Eocene exhumation (46.3 ± 2.8 Ma, ZFT; 49.34 ± 2.9 Ma, AHe) from a lower metamorphic unit of Middle-Late Miocene (10.9 ± 0.7 Ma, ZFT; 9.4 ± 0.3 Ma, AHe) exhumation ages. The upper unit shows mineral lineations that range from N-S to NE-SW trending while the lower unit shows lineations ranging from N-S to NW-SE trending. U-Pb (LA-MC-ICP-MS) zircon data from mica-schists in the lower Santorini metamorphic unit show a prominent Pan-African signature similar to the Phyllite-quartzite unit (PQU) rocks exposed along the forearc in Kythera, Peloponnese and western Crete. The NW-SE stretching lineations in the lower unit imply an arc-parallel extension. Similar arc-parallel extension took place between 10-13 in PQU rocks in the west Crete-Kythera-south Peloponnese area (Marsellos et al., 2010). The lower unit shows ductile structures affected by top to the S shearing while the upper unit by top to the N shearing. A 3D projection of the mineral lineation dip angles along N-S direction shows a C' shear band of top to the N shearing that has affected the entire structural stack. Early brittle structures, which appear to be re-oriented normal faults, and show top to the S displacement. Later normal faults show similar shear sense. A tectonic model that could explain the above structures shows that initial exhumation of the

  5. Aegean tectonics: Strain localisation, slab tearing and trench retreat

    NASA Astrophysics Data System (ADS)

    Jolivet, Laurent; Faccenna, Claudio; Huet, Benjamin; Labrousse, Loïc; Le Pourhiet, Laetitia; Lacombe, Olivier; Lecomte, Emmanuel; Burov, Evguenii; Denèle, Yoann; Brun, Jean-Pierre; Philippon, Mélody; Paul, Anne; Salaün, Gwenaëlle; Karabulut, Hayrullah; Piromallo, Claudia; Monié, Patrick; Gueydan, Frédéric; Okay, Aral I.; Oberhänsli, Roland; Pourteau, Amaury; Augier, Romain; Gadenne, Leslie; Driussi, Olivier

    2013-06-01

    We review the geodynamic evolution of the Aegean-Anatolia region and discuss strain localisation there over geological times. From Late Eocene to Present, crustal deformation in the Aegean backarc has localised progressively during slab retreat. Extension started with the formation of the Rhodope Metamorphic Core Complex (Eocene) and migrated to the Cyclades and the northern Menderes Massif (Oligocene and Miocene), accommodated by crustal-scale detachments and a first series of core complexes (MCCs). Extension then localised in Western Turkey, the Corinth Rift and the external Hellenic arc after Messinian times, while the North Anatolian Fault penetrated the Aegean Sea. Through time the direction and style of extension have not changed significantly except in terms of localisation. The contributions of progressive slab retreat and tearing, basal drag, extrusion tectonics and tectonic inheritance are discussed and we favour a model (1) where slab retreat is the main driving engine, (2) successive slab tearing episodes are the main causes of this stepwise strain localisation and (3) the inherited heterogeneity of the crust is a major factor for localising detachments. The continental crust has an inherited strong heterogeneity and crustal-scale contacts such as major thrust planes act as weak zones or as zones of contrast of resistance and viscosity that can localise later deformation. The dynamics of slabs at depth and the asthenospheric flow due to slab retreat also have influence strain localisation in the upper plate. Successive slab ruptures from the Middle Miocene to the Late Miocene have isolated a narrow strip of lithosphere, still attached to the African lithosphere below Crete. The formation of the North Anatolian Fault is partly a consequence of this evolution. The extrusion of Anatolia and the Aegean extension are partly driven from below (asthenospheric flow) and from above (extrusion of a lid of rigid crust).

  6. Extremely Shallow Extensional Faulting Near Geothermal Fields

    NASA Astrophysics Data System (ADS)

    Hudnut, K. W.; Wei, S.; Donnellan, A.; Fielding, E. J.; Graves, R. W.; Helmberger, D. V.; Liu, Z.; Parker, J. W.; Treiman, J. A.

    2013-12-01

    Surface faulting has been discovered in association with a shallow extensional M 4.9 earthquake, the source properties of which have also been studied by modeling of broadband seismic data and geodetic imagery. This M 4.9 and also a M 4.6 shallow normal event occurred late in the Brawley Swarm of August 2012, a dominantly strike-slip sequence with events up to M 5.5 (Hauksson et al., SRL 2013 and Wei et al., GRL 2013). The point source waveform inversions reveal normal mechanisms and centroid depths of ~2.5 km for both events, while the modeling of the geodetic data indicates a compatible depth of ~2.0 km. The M 4.9 event had unusually large (~40 cm) and sudden (~1.0 - 1.5 km/sec) slip, considering its extremely shallow depth. The earlier and larger strike-slip events during the Aug. 2012 swarm were on a left-lateral SW-NE oriented vertical planar cross-fault, whereas the M 4.6 and M 4.9 occurred on a SSW-NNE oriented, west-dipping plane. Airborne imagery obtained using Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) revealed a surface fault rupture that was subsequently confirmed and documented in the field in May 2013. A pre-existing but previously un-mapped fault sustained west-down surface slip of up to 18 × 2 cm along breaks extending ~3.5 km along a NNE orientation, and ruptured beneath and under a railroad track and pipeline (without breaking them). UAVSAR and seismological data were used jointly to image the source properties of the M 4.9 earthquake in detail. Typically, the uppermost few kms of right-lateral faults in the Salton Trough exhibit creep, especially after larger earthquakes, as in 1979 and 1987. On this basis, general models of stable sliding within the uppermost few kms have been developed. In this case, however, the joint inversion indicates that seismic energy was radiated by slip of up to 40 cm on a fault plane extending from the surface to a depth of only ~3 km, extending ~4 km along-strike, and dipping ~45° west, with west

  7. Magmatic Trigger for Extensional Collapse? Character and Significance of Pre-Extensional Volcanic Activity in the Whipple Mountains Region, Lower Colorado River Extensional Corridor

    NASA Astrophysics Data System (ADS)

    Fidler, M. K.; Gans, P. B.

    2014-12-01

    The character and timing of voluminous Miocene volcanic activity associated with regional crustal extension in the lower Colorado River Extensional Corridor (CREC) shed light on the interplay between tectonic and magmatic processes in the area. New 40Ar/39Ar ages from holocrystaline groundmass separates of mafic lava flows and phenocrystic plagioclase, biotite, hornblende, and sanidine from silicic extrusive rocks, combined with LA-ICPMS U-Pb ages of zircon from the more altered intermediate to silicic rocks provide important new constraints on the ages of pre-, syn-, and post-extensional volcanic sequences in the vicinity of the Whipple Mountains metamorphic core complex. Local eruptive activity began ~20.5 Ma and persisted for 1.5 million years prior to the inception of major extensional faulting and tilting at ~19 Ma, as recorded by upper plate tilt blocks. The pre-extensional sequences are homoclinal, steeply tilted, and disconformably overlie older arkosic sedimentary rocks. There is no compelling evidence for angular unconformities or growth faulting during this earliest pre-extensional volcanic activity. These early erupted units are dominantly mafic, forming ≥1 km thick sections of olivine-basalt and olv-cpx-plag basaltic andesite lava flows punctuated by rare aphyric to crystal poor dacite ignimbrites. Plag±pyx±bio±hbl dacite lava flows and domes with associated pyroclastic deposits appear late in the pre-extensional sequence, immediately prior to and during the onset of major extensional faulting. These crystal-poor to aphyric silicic rocks show abundant evidence of magma mingling and may represent hybridized partial melts generated by the influx of basaltic magma into the crust. The pre-extensional sequence is locally overlain by ~18.5 to 18.8 Ma syn- and post-extensional volcanic and sedimentary rocks along a pronounced 30-60° angular unconformity, indicating very rapid extension during the early stages of the CREC's development. This overall

  8. The Aegean Sea marine security decision support system

    NASA Astrophysics Data System (ADS)

    Perivoliotis, L.; Krokos, G.; Nittis, K.; Korres, G.

    2011-05-01

    As part of the integrated ECOOP (European Coastal Sea Operational observing and Forecasting System) project, HCMR upgraded the already existing standalone Oil Spill Forecasting System for the Aegean Sea, initially developed for the Greek Operational Oceanography System (POSEIDON), into an active element of the European Decision Support System (EuroDeSS). The system is accessible through a user friendly web interface where the case scenarios can be fed into the oil spill drift model component, while the synthetic output contains detailed information about the distribution of oil spill particles and the oil spill budget and it is provided both in text based ECOOP common output format and as a series of sequential graphics. The main development steps that were necessary for this transition were the modification of the forcing input data module in order to allow the import of other system products which are usually provided in standard formats such as NetCDF and the transformation of the model's calculation routines to allow use of current, density and diffusivities data in z instead of sigma coordinates. During the implementation of the Aegean DeSS, the system was used in operational mode in order support the Greek marine authorities in handling a real accident that took place in North Aegean area. Furthermore, the introduction of common input and output files by all the partners of EuroDeSS extended the system's interoperability thus facilitating data exchanges and comparison experiments.

  9. The Aegean sea marine security decision support system

    NASA Astrophysics Data System (ADS)

    Perivoliotis, L.; Krokos, G.; Nittis, K.; Korres, G.

    2011-10-01

    As part of the integrated ECOOP (European Coastal Sea Operational observing and Forecasting System) project, HCMR upgraded the already existing standalone Oil Spill Forecasting System for the Aegean Sea, initially developed for the Greek Operational Oceanography System (POSEIDON), into an active element of the European Decision Support System (EuroDeSS). The system is accessible through a user friendly web interface where the case scenarios can be fed into the oil spill drift model component, while the synthetic output contains detailed information about the distribution of oil spill particles and the oil spill budget and it is provided both in text based ECOOP common output format and as a series of sequential graphics. The main development steps that were necessary for this transition were the modification of the forcing input data module in order to allow the import of other system products which are usually provided in standard formats such as NetCDF and the transformation of the model's calculation routines to allow use of current, density and diffusivities data in z instead of sigma coordinates. During the implementation of the Aegean DeSS, the system was used in operational mode in order to support the Greek marine authorities in handling a real accident that took place in North Aegean area. Furthermore, the introduction of common input and output files by all the partners of EuroDeSS extended the system's interoperability thus facilitating data exchanges and comparison experiments.

  10. Extensional Rheology of Fire Ant Aggregates

    NASA Astrophysics Data System (ADS)

    Franklin, Scott; Kern, Matthew; Phonekeo, Sulisay; Hu, David

    We explore the extensional rheology and self-healing of fire ant (Solenopsis invicta) aggregations, mechanically entangled ensembles used to form rafts, bivouacs or bridges. Macroscopic experiments create quasi-two dimensional piles and measure the force required to impose a constant end-velocity. This force fluctuates, reminiscent of similar experiments on geometrically cohesive granular materials. Heterogeneous chains develop, with isolated ants often the sole link between top and bottom. Finally, the maximum pile strength scales sub-linearly with the number of ants, with the maximum force per ant decreasing as the pile grows. We reproduce these behaviors with a simple model that represents ants feet as discs connected by a spring (the ''leg''). Discs move randomly, and stick to one another when in contact. Discs in contact un-stick at random with a probability that decreases as the spring (leg) is stretched, modeling an ant's tendency to hold on longer when stretched. Simulations qualitatively reproduces the fluctuating force, chain formation and sublinear scaling of maximum force with particle number and give insight into underlying mechanisms that govern the ants' behaviors. Funded in part by NSF DMR #1133722.

  11. Undulating membrane structure under mixed extensional-shear flow

    NASA Astrophysics Data System (ADS)

    Idziak, S. H. J.; Welch, S. E.; Kisilak, M.; Mugford, C.; Potvin, G.; Veldhuis, L.; Sirota, E. B.

    2001-10-01

    We report on studies using a new X-ray extensional flow cell to examine, for the first time, the structure of undulating lamellar lyotropic liquid crystal systems under extensional flow. The extensional component of the flow profile produced within this cell causes the lamellae to orient. We find that, although the intermembrane spacing does not change at low flow rates, it suddenly decreases after a critical flow rate has been attained due to the stretching and straightening of the lamellae. The effects of the shear component of flow on this oriented system have been examined in the context of a theoretical model developed by Ramaswamy.

  12. The Termination Of The Northwest Basin And Range Into A Northwest Trending Extensional Fault System

    NASA Astrophysics Data System (ADS)

    Trench, D.; Meigs, A.

    2007-12-01

    Extensional provinces terminate along-strike where extension dissipates to zero, at transform faults, or at triple junctions. Termination of the northern Basin and Range province in western North America has long been thought to be controlled by an intracontinental transform fault, the Brothers Fault zone (BFz). New mapping in the boundary region between a major Basin and Range fault, the Hart Mountain fault system (HFz), and the BFz was conducted to test this model and to determine the structural and temporal relationship between the two fault zones. Stratigraphic separation and topography were used to determine fault orientations, displacement gradients, and sense of motion in the two fault zones. N-S trending faults of the HFz show predominantly normal displacement. Displacement in the HFz decreases northward from a maximum of ~940 m at Hart Mountain to ~173 m to 0 m at the BFz. Fault orientations smoothly change from the N-S Basin and Range trend in the south to the NW BFz trend in the north. Topography and stratigraphic separation indicate that the BFz is a series of isolated faults with maximum slip of ~106 m and lengths of up to a few kilometers. Piercing points within the BFz indicate that down-to-the-north motion predominates with the fault system and that strike-slip motion is minimal. Uncertainty on observed fault displacements is + 5m. Stratigraphic separation of the Rattlesnake Tuff indicates that activity on the NW trending fault system post-dates the 7 Ma tuff. That displacement along the HFz effectively goes to zero at the BFz suggests Basin and Range faults have propagated northward into an existing northeast- facing extensional province represented by the BFz.

  13. Grabens on Io: Evidence for Extensional Tectonics

    NASA Astrophysics Data System (ADS)

    Hoogenboom, T.; Schenk, P.

    2012-12-01

    Io may well be the most geologically active body in the solar system. A variety of volcanic features have been identified, including a few fissure eruptions, but tectonism is generally assumed to be limited to compression driven mountain formation (Schenk et al., 2001). A wide range of structural features can also be identified including scarps, lineaments, faults, and circular depressions (pits and patera rims). Narrow curvilinear graben (elongated, relatively depressed crustal unit or block that is bounded by faults on its sides) are also scattered across Io's volcanic plains. These features are dwarfed by the more prominent neighboring volcanoes and mountains, and have been largely ignored in the literature. Although they are likely to be extensional in origin, their relationship to local or global stress fields is unknown. We have mapped the locations, length and width of graben on Io using all available Voyager and Galileo images with a resolution better than 5 km. We compare the locations of graben with existing volcanic centers, paterae and mountain data to determine the degree of correlation between these geologic features and major topographic variations (basins/swells) in our global topographic map of Io (White et al., 2011). Graben are best observed in > 1-2 km low-sun angle images. Approximately 300 images were converted from ISIS to ArcMap format to allow easy comparison with the geological map of Io (Williams et al., 2012) along with previous higher resolution structural mapping of local areas (e.g. Crown et al., 1992). We have located >45 graben to date. Typically 1-3 kilometers across, some of these features can stretch for over 500 kilometers in length. Their formation may be related to global tidal stresses or local deformation. Io's orbit is eccentric and its solid surface experiences daily tides of up to ˜0.1 km, leading to repetitive surface strains of 10-4 or greater. These tides flex and stress the lithosphere and can cause it to fracture

  14. Modeling of Tsunami Propagation and Inundation in the Aegean Sea

    NASA Astrophysics Data System (ADS)

    Aydin, B.; Moore, C. W.; Kalligeris, N.; Kanoglu, U.

    2011-12-01

    Several tsunami forecasting systems have been developed based on pre-computed tsunami scenario databases with the aim to provide early warning to tsunami-prone regions worldwide. NOAA's tsunami forecasting system for the United States is such a system, based on the concept of a pre-computed tsunami scenario database consisting of 100km x 50km fault planes with a slip value of 1m, referred to as tsunami source functions. These source functions are placed along the subduction zones in several rows, covering known faults throughout the major ocean basins. Linearity of the tsunami propagation in the open ocean allows scaling and/or combination of the pre-computed tsunami source functions since propagation of tsunamis in deep sea is linear. In real time, a specific tsunami scenario can be obtained by inverting deep-ocean buoy measurements providing initial and boundary conditions for site-specific, high-resolution, nonlinear forecast models. The database can also be used to generate different scenario events to produce tsunami inundation maps for target shorelines. To date, tsunami source functions have not been computed along the subduction zones in Aegean Sea even though there are considerable number of tsunami events causing damages. Although one might argue that the possibility of such an event is rare, the coastlines are densely populated, developed, and hosts millions of tourists during the summer months. Therefore, even though the risk of an event might be small, the hazard is high. Considering the long shorelines and the general lack of public knowledge about preparedness, a tsunami event in the region would be disastrous. A database for historical tsunami events in the Aegean Sea has been compiled, providing potential source locations. This data has allowed us to create a tsunami propagation database for Aegean Sea. Once finalized, this pre-computed scenario database will be extremely useful in developing tsunami resilient communities in the region.

  15. Comparison of hypocentre parameters of earthquakes in the Aegean region

    NASA Astrophysics Data System (ADS)

    Özel, Nurcan M.; Shapira, Avi; Harris, James

    2007-06-01

    The Aegean Sea is one of the more seismically active areas in the Euro-Mediterranean region. The seismic activity in the Aegean Sea is monitored by a number of local agencies that contribute their data to the International Seismological Centre (ISC). Consequently, the ISC Bulletin may serve as a reliable reference for assessing the capabilities of local agencies to monitor moderate and low magnitude earthquakes. We have compared bulletins of the Kandilli Observatory and Earthquake Research Institute (KOERI) and the ISC, for the period 1976-2003 that comprises the most complete data sets for both KOERI and ISC. The selected study area is the East Aegean Sea and West Turkey, bounded by latitude 35-41°N and by longitude 24-29°E. The total number of events known to occur in this area, during 1976-2003 is about 41,638. Seventy-two percent of those earthquakes were located by ISC and 75% were located by KOERI. As expected, epicentre location discrepancy between ISC and KOERI solutions are larger as we move away from the KOERI seismic network. Out of the 22,066 earthquakes located by both ISC and KOERI, only 4% show a difference of 50 km or more. About 140 earthquakes show a discrepancy of more than 100 km. Focal Depth determinations differ mainly in the subduction zone along the Hellenic arc. Less than 2% of the events differ in their focal depth by more than 25 km. Yet, the location solutions of about 30 events differ by more than 100 km. Almost a quarter of the events listed in the ISC Bulletin are missed by KOERI, most of them occurring off the coast of Turkey, in the East Aegean. Based on the frequency-magnitude distributions, the KOERI Bulletin is complete for earthquakes with duration magnitudes Md > 2.7 (both located and assigned magnitudes) where as the threshold magnitude for events with location and magnitude determinations by ISC is mb > 4.0. KOERI magnitudes seem to be poorly correlated with ISC magnitudes suggesting relatively high uncertainty in the

  16. Shear zones developed between extensional and compressional tectonic regimes: recent deformation of the Burdur Fethiye Shear Zone as a case study

    NASA Astrophysics Data System (ADS)

    Elitez, İrem; Yaltırak, Cenk; Aktuǧ, Bahadır

    2016-04-01

    The southwestern Turkey is one of the most tectonically active areas of the eastern Mediterranean and therefore is a controversial region from the geodynamic point of view. This complex tectonic regime is dominated by the westward escape of Anatolia related to North Anatolian Fault, Aegean back-arc extension regime due to roll-back of Hellenic Arc, the subduction transform edge propagator (STEP) fault zone related to the motion of Hellenic and Cyprus arcs and compressional regime of Tauride Mountains. In addition to that, an active subduction and seamounts moving towards the north determine the tectonic frame of the Eastern Mediterranean. Many researchers suggest either the existence of a single left lateral fault or the nonexistence of a fault zone between Western Anatolia and Western Taurides. According to the integration of digital elevation data, non-commercial GoogleEarth satellite images and field studies, a 300 km-long 75-90 km-wide NE-SW-trending left lateral shear zone, the Burdur-Fethiye Shear Zone, is located among these tectonic structures. By using GPS velocities and focal mechanism solutions of earthquakes, it is understood that most of the previous studies turn a blind eye to the hundreds of faults related to a left-lateral shear zone which will have an important role in the Mediterrenean tectonics. The Burdur-Fethiye Shear Zone is like a zipper driven by the relative velocity differences due to the Aegean back-arc extensional system and Western Taurides compressional region and presents a high seismic activity. The GPS vectors reflect remarkable velocity differences on land and relatedly the significant topographic differences can be clearly observed. According to the GPS vectors, the Aegean region moves 4-12 mm/yr faster than the wesward escape of the Anatolia towards southwest and the velocities are low in the Western Taurides. The left-lateral differential motion across the Burdur-Fethiye Shear Zone varies from 3-4 mm/yr in the north side to 8

  17. Severe accidents due to windsurfing in the Aegean Sea.

    PubMed

    Kalogeromitros, A; Tsangaris, H; Bilalis, D; Karabinis, A

    2002-06-01

    Windsurfing is a popular sport and has recently become an Olympic event. As an open-air water activity that requires the participant to be in perfect physical condition, windsurfers may be prone to accidents when certain basic rules or procedures are violated. The current study monitored severe injuries due to windsurfing over a period of 12 months in the Aegean Sea in Greece. Our study revealed 22 cases of severe accidents due to windsurfing, with a wide range of injuries including head injuries, spinal cord injuries, and severe fractures of the extremities. Prolonged hospitalization, severe disability and two deaths occurred as consequences of these accidents. The study examined the characteristics of these patients and the possible risk factors and conditions associated with the accidents. We also focused on the most common types of injuries and reviewed the mechanisms that may provoke them. Water sports and particularly windsurfing represent a major challenge for the emergency medical system, especially in the Aegean Sea. Hundreds of islands, kilometres of isolated coasts, millions of tourists, an extended summer period and rapidly changing weather create conditions that constantly test the efficacy of the emergency services. The development of an appropriate infrastructure and maximum control of the risk factors causing these accidents could reduce the morbidity and mortality that, unfortunately but rather predictably, accompany this popular summer activity. PMID:12131638

  18. Brittle failure mode plots for compressional and extensional tectonic regimes

    NASA Astrophysics Data System (ADS)

    Sibson, Richard H.

    1998-05-01

    Equations governing different macroscopic modes of brittle rock failure (extensional fracturing, extensional-shear fracturing, compressional shear failure and reshear of existing faults) can be represented on plots of differential stress vs effective vertical stress for a set of material properties. Such plots can be constructed for different tectonic regimes and correlated to depth for particular fluid pressure conditions, allowing easy evaluation of the physical controls on brittle rock failure, and ready comparison of the fields occupied by the three failure modes in different tectonic settings. They emphasize the relative ease, in terms of differential stress and fluid-pressure levels, of deforming a rock mass by brittle fracturing and faulting in extensional regimes compared with compressional. Aside from their relevance to general structural mechanics, these generic failure plots have wide-ranging application to understanding the initial development and progressive evolution of fault-fracture systems, both in sedimentary basins and as hosting structures for hydrothermal mineralization in different tectonic settings.

  19. The link between tectonic and sedimentation in an asymmetric extensional basin: the late Miocene evolution of the Sarajevo-Zenica basin, Bosnia and Hercegovina

    NASA Astrophysics Data System (ADS)

    Andric, Nevena; Sant, Karin; Matenco, Liviu; Tomljenovic, Bruno; Pavelic, Davor; Mandic, Oleg; Hrvatovic, Hazim; Demir, Vedad

    2015-04-01

    Extensional back-arc basins develop in overriding tectonic plates during the slab retreat, as often observed for instance in the Panonian, Aegean or Western Mediterranean domains. In this type of basins, pre-existing major thrusts or nappe contacts inherited from the earlier orogenic evolution provide contrasts in rheology and localize the extensional deformation along large-scale asymmetric detachments. Their footwall exhumation is associated with the formation of asymmetric extensional basins in the hanging-wall controlled by normal faults forming half-graben geometries. In such tectonically active basins, the architecture of the sedimentary infill is controlled dominantly by the balance between pulses of tectonic subsidence along normal faults driving accommodation space and coeval moments of tectonic exhumation controlling the variations in sediment supply. In such systems, deformation migrates in space and time in the direction of the extensional transport affecting the spatial architecture of the basin infill. One optimal place to study the interplay between tectonic and sedimentation in asymmetric extensional basins is the Dinarides orogenic area, where the back-arc extension was responsible for the creation of a large number of small-scale basins that are part of the Oligo-Miocene Dinaride lake system. The Sarajevo-Zenica basin is the largest basin in this intra-mountain system and is located near the transition between the External and Internal Dinarides. The basin formed in the hanging-wall of a large-scale top-NNE detachment associated with the exhumation of the Mid-Bosnian Schists Mountains in its footwall. The basin was filled with Upper Oligocene - Pliocene alluvial-fluvial and lacustrine sediments characterized by an endemic fossil fauna. The study of basin normal faults and associated syn-kinematic sedimentation has demonstrated that the deformation migrates SW-wards in time. This is indicated by the NE-tapering syn-kinematic wedges, the migration

  20. The role of extensional viscosity in frog tongue projection

    NASA Astrophysics Data System (ADS)

    Noel, Alexis; Wagner, Caroline; McKinley, Gareth; Mendelson, Joe; Hu, David

    2014-11-01

    Frogs and other amphibians capture insects through high-speed tongue projection, some achieving tongue accelerations of over fifty times gravity. In this experimental study, we investigate how a frog's sticky saliva enables high-speed prey capture. At the Atlanta zoo, we used high-speed video to film the trajectory of frog tongues during prey capture. We have also designed and built a portable extensional rheometer; by following the capillary-driven thinning in the diameter of a thread of saliva we characterize the relaxation time and extensional viscosity and so infer the adhesive force between the frog tongue and prey.

  1. Assimilating Ferry Box data into the Aegean Sea model

    NASA Astrophysics Data System (ADS)

    Korres, G.; Ntoumas, M.; Potiris, M.; Petihakis, G.

    2014-12-01

    Operational monitoring and forecasting of marine environmental conditions is a necessary tool for the effective management and protection of the marine ecosystem. It requires the use of multi-variable real-time measurements combined with advanced physical and ecological numerical models. Towards this, a FerryBox system was originally installed and operated in the route Piraeus-Heraklion in 2003 for one year. Early 2012 the system was upgraded and moved to a new high-speed ferry traveling daily in the same route as before. This route is by large traversing the Cretan Sea being the largest and deepest basin (2500 m) in the south Aegean Sea. The HCMR Ferry Box is today the only one in the Mediterranean and thus it can be considered as a pilot case. The analysis of FerryBox SST and SSS in situ data revealed the presence of important regional and sub-basin scale physical phenomena, such as wind-driven coastal upwelling and the presence of a mesoscale cyclone to the north of Crete. In order to assess the impact of the FerryBox SST data in constraining the Aegean Sea hydrodynamic model which is part of the POSEIDON forecasting system, the in situ data were assimilated using an advanced multivariate assimilation scheme based on the Singular Evolutive Extended Kalman (SEEK) filter, a simplified square-root extended Kalman filter that operates with low-rank error covariance matrices as a way to reduce the computational burden. Thus during the period mid-August 2012-mid January 2013 in addition to the standard assimilating parameters, daily SST data along the ferryboat route from Piraeus to Heraklion were assimilated into the model. Inter-comparisons between the control run of the system (model run that uses only the standard data set of observations) and the experiment where the observational data set is augmented with the FerryBox SST data produce interesting results. Apart from the improvement of the SST error, the additional assimilation of daily of FerryBox SST

  2. Old stories and lost pieces of the Eastern Mediterranean puzzle: a new approach to the tectonic evolution of the Western Anatolia and the Aegean Sea

    NASA Astrophysics Data System (ADS)

    Yaltırak, Cenk; Engin Aksu, Ali; Hall, Jeremy; Elitez, İrem

    2015-04-01

    During the last 20 or so years, the tectonic evolution of Aegean Sea and Western Anatolia has been dominantly explained by back-arc extension and escape tectonics along the North Anatolian Fault. Various datasets have been considered in the construction of general tectonic models, including the geometry of fault patterns, paleomagnetic data, extensional directions of the core complexes, characteristic changes in magmatism and volcanism, the different sense of Miocene rotation between the opposite sides of the Aegean Sea, and the stratigraphy and position of the Miocene and Pliocene-Quaternary basins. In these models, the roles of the Burdur-Fethiye Shear Zone, the Trakya-Eskişehir Fault Zone, the Anaximander Mountains and Isparta Angle have almost never been taken into consideration. The holistic evaluation of numerous land and marine researches in the Aegean Sea and western Anatolia suggest the following evolutionary stages: 1. during the early Miocene, Greece and western Anatolia were deformed under the NE-SW extensional tectonics associated with the back-arc extension, when core complexes and supra-detachment basins developed, 2. following the collision of the Anaximander Mountains and western Anatolia in early Miocene , the Isparta Angle locked this side of the western arc by generating a triangle-shaped compressional structure, 3. while the Isparta Angle penetrated into the Anatolia, the NE-striking Burdur-Fethiye Shear Zone in the west and NW-striking Trakya-Eskişehir Fault Zone in the north developed along the paleo-tectonic zones , 4. the formation of these two tectonic structures allowed the counterclockwise rotation of the western Anatolia in the middle Miocene and this rotation removed the effect of the back-arc extension on the western Anatolian Block, 5. the counterclockwise rotation developed with the early westward escape of the Western Anatolian reached up to 35-40o and Trakya-Eskişehir Fault Zone created a total dextral displacement of about 200

  3. Early farmers from across Europe directly descended from Neolithic Aegeans.

    PubMed

    Hofmanová, Zuzana; Kreutzer, Susanne; Hellenthal, Garrett; Sell, Christian; Diekmann, Yoan; Díez-Del-Molino, David; van Dorp, Lucy; López, Saioa; Kousathanas, Athanasios; Link, Vivian; Kirsanow, Karola; Cassidy, Lara M; Martiniano, Rui; Strobel, Melanie; Scheu, Amelie; Kotsakis, Kostas; Halstead, Paul; Triantaphyllou, Sevi; Kyparissi-Apostolika, Nina; Urem-Kotsou, Dushka; Ziota, Christina; Adaktylou, Fotini; Gopalan, Shyamalika; Bobo, Dean M; Winkelbach, Laura; Blöcher, Jens; Unterländer, Martina; Leuenberger, Christoph; Çilingiroğlu, Çiler; Horejs, Barbara; Gerritsen, Fokke; Shennan, Stephen J; Bradley, Daniel G; Currat, Mathias; Veeramah, Krishna R; Wegmann, Daniel; Thomas, Mark G; Papageorgopoulou, Christina; Burger, Joachim

    2016-06-21

    Farming and sedentism first appeared in southwestern Asia during the early Holocene and later spread to neighboring regions, including Europe, along multiple dispersal routes. Conspicuous uncertainties remain about the relative roles of migration, cultural diffusion, and admixture with local foragers in the early Neolithization of Europe. Here we present paleogenomic data for five Neolithic individuals from northern Greece and northwestern Turkey spanning the time and region of the earliest spread of farming into Europe. We use a novel approach to recalibrate raw reads and call genotypes from ancient DNA and observe striking genetic similarity both among Aegean early farmers and with those from across Europe. Our study demonstrates a direct genetic link between Mediterranean and Central European early farmers and those of Greece and Anatolia, extending the European Neolithic migratory chain all the way back to southwestern Asia. PMID:27274049

  4. Early farmers from across Europe directly descended from Neolithic Aegeans

    PubMed Central

    Hofmanová, Zuzana; Kreutzer, Susanne; Hellenthal, Garrett; Sell, Christian; Diekmann, Yoan; Díez-del-Molino, David; van Dorp, Lucy; López, Saioa; Kousathanas, Athanasios; Link, Vivian; Kirsanow, Karola; Cassidy, Lara M.; Martiniano, Rui; Strobel, Melanie; Scheu, Amelie; Kotsakis, Kostas; Halstead, Paul; Triantaphyllou, Sevi; Kyparissi-Apostolika, Nina; Ziota, Christina; Adaktylou, Fotini; Gopalan, Shyamalika; Bobo, Dean M.; Winkelbach, Laura; Blöcher, Jens; Unterländer, Martina; Leuenberger, Christoph; Çilingiroğlu, Çiler; Horejs, Barbara; Gerritsen, Fokke; Shennan, Stephen J.; Bradley, Daniel G.; Currat, Mathias; Veeramah, Krishna R.; Thomas, Mark G.; Papageorgopoulou, Christina; Burger, Joachim

    2016-01-01

    Farming and sedentism first appeared in southwestern Asia during the early Holocene and later spread to neighboring regions, including Europe, along multiple dispersal routes. Conspicuous uncertainties remain about the relative roles of migration, cultural diffusion, and admixture with local foragers in the early Neolithization of Europe. Here we present paleogenomic data for five Neolithic individuals from northern Greece and northwestern Turkey spanning the time and region of the earliest spread of farming into Europe. We use a novel approach to recalibrate raw reads and call genotypes from ancient DNA and observe striking genetic similarity both among Aegean early farmers and with those from across Europe. Our study demonstrates a direct genetic link between Mediterranean and Central European early farmers and those of Greece and Anatolia, extending the European Neolithic migratory chain all the way back to southwestern Asia. PMID:27274049

  5. Sustainable use of water in the Aegean Islands.

    PubMed

    Gikas, Petros; Tchobanoglous, George

    2009-06-01

    Water demands in the Aegean Islands have increased steadily over the last decade as a result of a building boom for new homes, hotels, and resorts. The increase in water demand has resulted in the disruption of past sustainable water management practices. At present, most freshwater needs are met through the use of the limited groundwater, desalinated seawater, and freshwater importation. Wastewater reclamation, not used extensively, can serve as an alternative source of water, for a variety of applications now served with desalinated and imported water. Three alternative processes: desalination, importation, and water reclamation are compared with respect to cost, energy requirements and long-term sustainability. Based on the comparisons made, water reclamation and reuse should be components of any long-term water resources management strategy. PMID:19243876

  6. Extensional faulting in southern Klamath Mountains, California

    NASA Astrophysics Data System (ADS)

    Schweickert, Richard A.; Irwin, William P.

    1989-02-01

    Large northeast striking normal faults in the southern Klamath Mountains may indicate that substantial crustal extension occurred during Tertiary time. Some of these faults form grabens in the Jurassic and older bedrock of the province. The grabens contain continental Oligocene or Miocene deposits (Weaverville Formation), and in two of them the Oligocene or Miocene is underlain by Lower Cretaceous marine formations (Great Valley sequence). At the La Grange gold placer mine the Oligocene or Miocene strata dip northwest into the gently southeast dipping mylonitic footwall surface of the La Grange fault. The large normal displacement required by the relations at the La Grange mine is also suggested by omission of several kilometers of structural thickness of bedrock units across the northeast continuation of the La Grange fault, as well as by significant changes in bedrock across some northeast striking faults elsewhere in the Central Metamorphic and Eastern Klamath belts. The Trinity ultramafic sheet crops out in the Eastern Klamath terrane as part of a broad northeast trending arch that may be structurally analogous to the domed lower plate of metamorphic core complexes found in eastern parts of the Cordillera. The northeast continuation of the La Grange fault bounds the southeastern side of the Trinity arch in the Eastern Klamath terrane and locally cuts out substantial lower parts of adjacent Paleozoic strata of the Redding section. Faults bounding the northwestern side of the Trinity arch generally trend northeast and juxtapose stacked thrust sheets of lower Paleozoic strata of the Yreka terrane against the Trinity ultramafic sheet. Geometric relations suggest that the Tertiary extension of the southern Klamath Mountains was in NW-SE directions and that the Redding section and the southern part of the Central Metamorphic terrane may be a large Tertiary allochthon detached from the Trinity ultramafic sheet. Paleomagnetic data indicate a lack of rotation about a

  7. Extensional behavior of rod suspension in dilute polymer solution

    NASA Astrophysics Data System (ADS)

    Han, Hyejin; Kim, Chongyoup

    2015-08-01

    Extensional viscosity of rod particle suspensions in polymer solutions is studied experimentally. Rod particle suspensions were prepared by dispersing FeOOH rods in polyacrylamide (molecular weight of 5-6 M) solutions in a glycerin-water mixture. The diameter of rod particles was 100 nm and the aspect ratio was 4.3, 8.7 and 15.6. Particle volume fraction was 0.005-0.02. The extensional viscosity was measured by the capillary thinning method using the commercially available CaBER. Under the experimental condition both the polymer solution and particle suspensions are dilute. Particle-particle interaction is neglected in the solutions which are stretched by the extensional flow at the bulk. The result shows that extensional viscosity of the rod suspension in polymer solution decreases with the increase in particle volume fraction. The decrease is ascribed to the change in polymer conformation from the stretched state in the bulk flow to the less stretched state in shear flow developed near the particle to match the no-slip condition at the particle surface.

  8. The extensional rheology of non-Newtonian materials

    NASA Technical Reports Server (NTRS)

    Spiegelberg, Stephen H.; Gaudet, Samuel; Mckinley, Gareth H.

    1994-01-01

    It has been proposed to measure the extensional viscosity function of a non-Newtonian polymer solution in a reduced gravity environment as part of the Advanced Fluid Module. In ground-based extensional measurements, the no-sip boundary condition at solid-fluid interfaces always result in appreciable shear gradients in the test fluid; however the removal of gravitational body forces permits controlled extensional deformation of containerless test samples and the first unambiguous measurements of this kind. Imperative to successful implementation of this experiment is the generation and subsequent deformation of a stable cylindrical column of test fluid. A study of the generation and deformation of liquid bridges demonstrates that Newtonian liquid bridges undergo capillary breakup as anticipated when stretched beyond a critical aspect ratio; non-Newtonian liquid bridges, however, are stabilized by the strain-hardening phenomenon exhibited by these materials. Numerical simulations of Newtonian breakup are compared with experimental results, and show that previous ground-based attempts at measuring the extensional viscosity of Newtonian fluids are of limited accuracy.

  9. Experimental uncertainties in extensional rheometry of liquids by fiber drawing

    SciTech Connect

    Secor, R.B.; Schunk, P.R.; Hunter, T.B.; Stitt, T.F.; Macosko, C.W.; Scriven, L.E. )

    1989-11-01

    Drawing of liquid filaments from a circular die is the most successful method to date for determining the response of polymer solutions in uniaxial extension. Reported here is an analysis of the experimental uncertainties in fiber-drawing extensional rheometry and the effect they have on the results. In fiber drawing, measurements of the liquid flowrate, the variation of the fiber diameter along its length, and the force exerted on the die are used to determine the extension rate and the corresponding extensional stress. Experimental uncertainty in the flowrate measurement ordinarily is of little consequence, but the same is not true of the uncertainties in the diameter profile and the force measurement. The optical measurement of the diameter profile is limited by diffraction and chromatic aberration. The precision of the force measurement is limited by uncertainty in the nulling procedure. In addition, competition among contending forces limits the operating range of reliable extensional measurements. At low stress levels ({similar to}10{sup 3} dynes/cm{sup 2}), inertial, gravitational, and surface tension forces dominate over viscous forces and destroy the precision of the extensional stress measurement. At high stress levels ({similar to}10{sup 6} dynes/cm{sup 2}), cavitation may be limiting. The magnitude of the gravity force determines minimum attainable extension rates ({similar to}10 s{sup {minus}1}) whereas instabilities limit the maximum ones. These operating limits are supported by experiments on glycerine and solutions of several water-soluble polymers; polyacrylamide, hydroxymethylcellulose, xanthan, and guar.

  10. Relationships between subduction and extension in the Aegean region: evidence from granite plutons of the Biga Peninsula, NW Turkey

    NASA Astrophysics Data System (ADS)

    Black, K. N.; Catlos, E. J.; Oyman, T.; Demirbilek, M.

    2012-04-01

    The Biga Peninsula is a tectonically complex region in western Turkey characterized by Tethyan sutures overprinted by extensional grabens, active fault strands of the North Anatolian Shear Zone, and numerous granitoid plutons. Two end-member models for the initiation of extension in the Biga region have been proposed, both of which focus on the role of igneous assemblages. The first model involves the emplacement of a hot mantle plume that thins and weakens crust and isostatic doming drives extension. The second has regional tensional stresses as the driving force, and magmatism is a consequence of decompression. Here we focus on understanding the timing and geochemical evolution of three granitoid plutons located in and just south of the Biga Peninsula to understand which end-member model could be applicable to the Aegean region. The Kestanbolu pluton is located north of the proposed Vardar Suture Zone, whereas the Eybek and Kozak plutons are north of the Izmir-Ankara Suture Zone. These sutures may mark regions of the closure of branches of the NeoTethyan Ocean. To better understand their sources and tectonic evolution, we acquired geochemical and geochronological data, and cathodoluminescence (CL) images of the rocks. Previously reported ages of the plutons range from Late Eocene to Middle Miocene. Here we acquired in situ (in thin section) ion microprobe U-Pb ages of zircon grains found in a range of textural relationships. Ages from the Kozak pluton range from 37.8±5.4 Ma to 10.3±2.4 Ma (238U/206Pb, ±1σ) with two ages from a single grain of 287±26 Ma and 257±18 Ma. We also found Oligocene to Late Miocene zircon grains in the Kestanbolu pluton, whereas zircons from the Eybek pluton range from 34.3±4.8 Ma to 21.2±1.7 Ma. Samples collected from the Kozak and Eybek plutons are magnesian, calc-alkalic, and metaluminous, whereas the Kestanbolu rocks are magnesian, alkali-calcic, and metaluminous with one ferroan sample and one peraluminous sample. Trace

  11. Vertical and wide-angle seismic exploration of crustal structure, and the active evolution of the North Aegean Trough between the Sea of Marmara and Gulf of Corinth

    NASA Astrophysics Data System (ADS)

    Sachpazi, M.; Vigner, A.; Laigle, M.; Hirn, A.; Roussos, N.

    2003-04-01

    The North Aegean Trough (NAT), which is the deepest among Aegean marine troughs, is bordered by the termination of the North Anatolian Fault, and thus marks the interaction of this strike-slip fault with mainland Greece and the extensional Aegean domain. In the development of academic exploration of active regions at the scale of the whole crust, with marine multichannel seismics (MCS), the STREAMERS acquisition almost ten years ago provided a first hint of the feasibility there and in other parts of the Aegean and Ionian seas (Sachpazi et al., Tectonophysics 1996), and a template for later MCS and coincident wide-angle reflection surveying. These profiles were acquired by the French N/O Nadir, with an only 96-channel streamer 2.4 km length, and with an only 840 cu. in. generator capacity of a 8 gun array, but for the first time shot in the "single-bubble" mode that was developed in this survey. With respect to the present standard set by 2001 cruises in the Gulf of Corinth (US R/V Maurice Ewing, Taylor et al. this meeting) and in the Sea of Marmara (French N/O Nadir, Hirn et al., EGS 2002 and this meeting) this was a 2 to 3 times shorter streamer cable, a 2 to 4 times smaller number of hydrophone groups, and a 10 to 3 times smaller source. The SEISGREECE survey, with a source 3 times that of STREAMERS but other parameters as modest, explored the Gulf of Corinth and the Cyclades and added profiles in the North Aegean to this early attempt. A first result of merging the two surveys was to lend credence to possible structures detected by the first single profile. This revealed an active, recent normal-fault imaged down to 10 km depth, that cuts at a N 110°E strike the northern side of the NAT (Laigle et al., Geology, 2000). Indeed although processing has been hampered by the modest streamer length and only 16 or 24-fold coverage, the data now resolve clearly the sedimentary structure, image the basement, detect intra-basement faults, an upper crustal reflective zone

  12. Physical and chemical processes of air masses in the Aegean Sea during Etesians: Aegean-GAME airborne campaign.

    PubMed

    Tombrou, M; Bossioli, E; Kalogiros, J; Allan, J D; Bacak, A; Biskos, G; Coe, H; Dandou, A; Kouvarakis, G; Mihalopoulos, N; Percival, C J; Protonotariou, A P; Szabó-Takács, B

    2015-02-15

    High-resolution measurements of gas and aerosols' chemical composition along with meteorological and turbulence parameters were performed over the Aegean Sea (AS) during an Etesian outbreak in the framework of the Aegean-GAME airborne campaign. This study focuses on two distinct Etesian patterns, with similarities inside the Marine Atmospheric Boundary Layer (MABL) and differences at higher levels. Under long-range transport and subsidence the pollution load is enhanced (by 17% for CO, 11% for O3, 28% for sulfate, 62% for organic mass, 47% for elemental carbon), compared to the pattern with a weaker synoptic system. Sea surface temperature (SST) was a critical parameter for the MABL structure, turbulent fluxes and pollutants' distribution at lower levels. The MABL height was below 500 m asl over the eastern AS (favoring higher accumulation), and deeper over the western AS. The most abundant components of total PM1 were sulfate (40-50%) and organics (30-45%). Higher average concentrations measured over the eastern AS (131 ± 76 ppbv for CO, 62.5 ± 4.1 ppbv for O3, 5.0 ± 1.1 μg m(-3) for sulfate, 4.7 ± 0.9 μg m(-3) for organic mass and 0.5 ± 0.2 μg m(-3) for elemental carbon). Under the weaker synoptic system, cleaner but more acidic air masses prevailed over the eastern part, while distinct aerosol layers of different signature were observed over the western part. The Aitken and accumulation modes contributed equally during the long-range transport, while the Aitken modes dominated during local or medium range transport. PMID:25460953

  13. Strain Localization Within a Syn-Tectonic Pluton in a Back-Arc Extensional Context: the Naxos granodiorite (Cyclades, Greece)

    NASA Astrophysics Data System (ADS)

    Bessiere, Eloïse; Rabillard, Aurélien; Arbaret, Laurent; Jolivet, Laurent; Augier, Romain; Menant, Armel

    2016-04-01

    Naxos Island is part of the central Cyclades (Aegean Sea, Greece) where a series of migmatite-cored metamorphic domes were exhumed below large-scale detachment systems during a Cenozoic back-arc extension. On Naxos, the Miocene exhumation history of the high-temperature metamorphic dome was notably achieved through two anastomosing and closely spaced top-to-the-north detachments belonging to the Naxos-Paros detachment system. According to previous contributions, the late exhumation stages were accompanied by the emplacement of a syn-kinematic I-type granodiorite that intruded a ductile-then-brittle detachment. Later the detachment migrated at the interface between the pluton and the metamorphic unit under ductile-to-brittle conditions. To clarify how extensional deformation was precisely distributed within the pluton, a multi-scale approach from field observations to laboratory investigations was undertaken. Through macro- to micro-structural observations, we show a continuous deformation history from magmatic to solid-state ductile/brittle conditions under an overall north-directed shearing deformation. The early magmatic or sub-solidus deformation is evidenced in a large part of the granodiorite, notably in its southern part where the original intrusive contact is still preserved. Solid-state deformation is recorded further north when approaching the detachment zone, highlighted by a thicker cataclastic zone and numerous pseudotachylite veins. From these field observations, we defined six strain facies, leading us to propose a qualitative strain map of the Naxos granodiorite. Based on field pictures and X-ray tomography of oriented samples collected along the strain gradient, we quantified the intensity of mineralogical fabrics in 2D and 3D. This step required the treatment of 600 rocks samples and pictures using SPO2003 (Shape Preferred Orientation) and Intercepts2003. Measured shape variations of the strain ellipsoid thus corroborate the large-scale strain

  14. Static Stress Changes Inverted from Microseismicity in Eastern Aegean Sea

    NASA Astrophysics Data System (ADS)

    Leptokaropoulos, Konstantinos; Papadimitriou, Eleftheria; Orlecka-Sikora, Beata; Karakostas, Vassilios

    2014-05-01

    In this study we attempted to derive static stress field variations from the changes of earthquake production rates in Kusadasi bay and Samos island (eastern Aegean), by applying the Dieterich et al. (2000) Rate/State formulation. The calculation of stress changes from earthquake occurrence rates fluctuations should be obtained from catalogues which achieve adequate spatial and temporal resolution and well determined hypocenter coordinates. For this reason we took advantage of the data from a regional network operating since July of 2007, providing continuous monitoring of microseismicity, along with data available from seismological stations of the permanent Hellenic Unified Seismological Network (HUSN). The high accuracy and large sized regional catalogue is utilized for inverting seismicity rate changes into stress variation through a Rate/State dependent friction model. After explicitly determining the physical parameters incorporating in the modeling (reference seismicity rates, characteristic relaxation time, constitutive properties of fault zones) we investigated stress changes in both space and time regime and their possible connection with earthquake clustering and fault interactions. The main interest is focused on the June 2009 Samos Mw=5.1 event, which was followed by an intense seismic activity for several days. We attempt to reproduce and interpret stress changes both before and after the initiation of this seismic burst. The differences between the earthquake occurrence rates before and after the main shock are used as input data in a stress inversion algorithm based upon the Rate/State dependent friction concept in order to provide an estimation of stress changes. Diverse assumptions and combinations of the parameters values are tested for the model performance and sensitivity to be evaluated. The approach followed here could provide evidence of the robustness of the seismicity rate changes usage as a stress meter for both positive and negative

  15. Pannonian Basin Province, Central Europe (Province 4808) -Petroleum Geology, Total Petroleum Systems, and Petroleum Resource Assessment

    USGS Publications Warehouse

    Dolton, Gordon L.

    2006-01-01

    This report deals with the Pannonian Basin Province of Central Europe and summarizes the petroleum geology, which was the basis for assessment, and presents results of that assessment. The Pannonian Basin Province consists of a large compound extensional basin of Neogene age overlying Paleogene basins and interior elements of the greater Alpine foldbelt. Within it, six total petroleum systems (TPS) are defined and six assessment units established for estimation of undiscovered oil and gas resources. Other speculative TPSs were identified but not included for quantitative assessment within this study.

  16. Single Polymer Dynamics under Large Amplitude Oscillatory Extensional (LAOE) Flow

    NASA Astrophysics Data System (ADS)

    Zhou, Yuecheng; Schroeder, Charles M.

    Over the past two decades, advances in fluorescence imaging and particle manipulation have enabled the direct observation of single polymer dynamics in model flows such as shear flow and planar extensional flow. The vast majority of single polymer studies, however, has focused on chain dynamics using simple transient step forcing functions. In order to study single polymer dynamics in non-idealized model flows, there is a clear need to implement more complicated transient flow forcing functions. In bulk rheology, large amplitude oscillatory shear (LAOS) was widely used to study the linear and nonlinear viscoelasticity of materials, but not yet been applied to molecular rheology. In this work, we directly probe single polymer dynamics using oscillatory extensional flow in precisely controlled microfluidic devices. We are able to generate large and small amplitude sinusoidal oscillatory extensional flow in a cross-slot microfluidic device while imaging the conformational dynamics of a single polymer trapped at the stagnation point. In this flow, polymer chains are stretched, squeezed, and rotated between extensional/compressional axes in a highly dynamic and transient manner. Using this technique, we studied the dynamics and coil-stretch transition of a single λ-DNA as a function of the Weissenberg number (Wi) and Deborah number (De). Moreover, we use Brownian dynamics simulation to map a wide range of Pipkin space for polymers from linear steady-state conditions to non-linear unsteady-states. Our results reveal a critical Wi at the coil-stretch transition that is function of the De in LAOE flow. Department of Materials Science and Engineering.

  17. An experimental investigation of dyke injection under regional extensional stress

    NASA Astrophysics Data System (ADS)

    Daniels, K. A.; Menand, T.

    2015-03-01

    Dyke injection is a fundamental process of magma transport in the crust, occurring in all tectonic settings. The effect of extensional stress regimes on dyke injections is particularly important to understanding a wide spectrum of processes including continental rifting and volcanic activity. Yet dyke injection in extensional regimes has been relatively understudied. In addition, the effect of dyke-dyke interaction modifying the surrounding stress field and leading to dyke rotation about the vertical axis has not been addressed. We present the results from 23 laboratory analogue experiments investigating lateral dyke injections in a remote extensional stress field. This study is unique in that it addresses the effect of both extension and dyke-dyke interaction on the lateral propagation and rotation of dykes. The experiments study the interrelationship between successive lateral dyke injections by examining dyke injection thickness, injection spacing, injection orientation, extension, and structural relationship. A relationship between the rotation angle between two successive intrusions and the distance separating them under given extensional stress conditions is established. The rotation angle depends on two dimensionless numbers: the ratio of fluid overpressure of the first injection and remote tensile stress, and the ratio of the spacing between injections and the height of the first intrusion. The experiments show how the stress field is perturbed by an intrusion and how the remote stress field is locally relieved by this intrusion. The results show furthermore that measuring or estimating the rotation angles between successive intrusions within rift zones allows the spatial distribution of these intrusions to be estimated. In the case of the actively spreading Red Sea rift in Afar, Ethiopia, we find that the vast majority of the dykes are predicted to intrude within 10 km of each other and most frequently between 4 and 5 km, in good agreement with independent

  18. Subglacial extensional fracture development and implications for Alpine Valley evolution

    NASA Astrophysics Data System (ADS)

    Leith, Kerry; Moore, Jeffrey R.; Amann, Florian; Loew, Simon

    2014-01-01

    stresses induced through exhumation and tectonic processes play a key role in the topographic evolution of alpine valleys. Using a finite difference model combining the effects of tectonics, erosion, and long-term bedrock strength, we assess the development of near-surface in situ stresses and predict bedrock behavior in response to glacial erosion in an Alpine Valley (the Matter Valley, southern Switzerland). Initial stresses are derived from the regional tectonic history, which is characterized by ongoing transtensional or extensional strain throughout exhumation of the brittle crust. We find that bedrock stresses beneath glacial ice in an initial V-shaped topography are sufficient to induce localized extensional fracturing in a zone extending laterally 600 m from the valley axis. The limit of this zone is reflected in the landscape today by a valley "shoulder," separating linear upper mountain slopes from the deep U-shaped inner valley. We propose that this extensional fracture development enhanced glacial quarrying between the valley shoulder and axis and identify a positive feedback where enhanced quarrying promoted valley incision, which in turn increased in situ stress concentrations near the valley floor, assisting erosion and further driving rapid U-shaped valley development. During interglacial periods, these stresses were relieved through brittle strain or topographic modification, and without significant erosion to reach more highly stressed bedrock, subsequent glaciation caused a reduction in differential stress and suppressed extensional fracturing. A combination of stress relief during interglacial periods, and increased ice accumulation rates in highly incised valleys, will reduce the likelihood of repeat enhanced erosion events.

  19. Late Quaternary sedimentation on the North Aegean continental margin, Greece

    SciTech Connect

    Piper, D.J.W. ); Perissoratis, C. )

    1991-01-01

    The late Quaternary seismic stratigraphy of the North Aegean continental shelf and adjacent basins has been interpreted from boomer and 3.5-kHz seismic profiles. Ages derived from shallow cores and offshore wells, and relative offsets on small synsedimentary faults, provide chronological control. Sea level history inferred from seismic stratigraphy correlates with the global eustatic sea level record based on oxygen isotopic curves. The present depth of the delta plain formed on the outer shelf during the late stage 6 lowstand provides a dated and originally horizontal marker for estimating rates of tectonic subsidence. Gross distribution of sediment facies is similar in both tectonically stable and active areas. The shell break formed by delta progradation, but is marked by faults in most places because of the accommodation provided by graben subsidence rates of 0.3-1.5 mm/yr. Standard sequence stratigraphic analysis can be applied to these sediments deposited during high-amplitude Quaternary sea level oscillations. High rates of subsidence result in the preservation an unusually complete record of sea level change. Major lowstand progradation is dependent on the duration, rather than the magnitude, of sea level lowstand. The long glaciations in isotopic stages 6, 12, 16, and 22 resulted in the most prominent seaward progradation on the margin. Sandy lowstand turbidite deposits formed only when there was rapid fall in sea level; otherwise sand was trapped on delta tops and silty muds were deposited in deep water.

  20. Post-orogenic extension and metamorphic core complexes in a heterogeneous crust: the role of crustal layering inherited from collision. Application to the Cyclades (Aegean domain)

    NASA Astrophysics Data System (ADS)

    Huet, Benjamin; Le Pourhiet, Laetitia; Labrousse, Loic; Burov, Evgenii; Jolivet, Laurent

    2011-02-01

    The development of metamorphic core complexes (MCC) corresponds to a mode of lithospheric continental stretching that follows collision. In most of the models that explain the formation of the MCC, high thermal gradients are necessary to weaken the lower crust and to induce its ascent. Such models fail to explain the exhumation of high pressure-low temperature metamorphic rocks in metamorphic core complex structures as observed in the Cycladic Blueschists in the Aegean domain. Besides, account for the lithological crustal stratification induced from collision has never been tested. In this paper, we use fully coupled thermomechanical modelling to investigate the impact of structural heritage and initial thermal gradient on the behaviour of the post-orogenic continental lithosphere. The models are designed and validated by petrological, structural and time data from the Cyclades. As a result, high thermal gradients (Moho temperature higher than 800°C) are neither necessary nor always sufficient to induce the development of a metamorphic core complex. At the contrary, the rheological layering of the crust inherited from collision is a first-order parameter controlling the development of extensional structures in post-orogenic settings. `Cold' MCC can develop if the crust is made of a strong nappe thrust on top of weaker metamorphic cover and basement units, as observed in the Cyclades.

  1. Upper Cenozoic organic-rich sequences (offshore and onshore the south Aegean sea)

    SciTech Connect

    Anastasakis, G.

    1988-08-01

    The upper Cenozoic sedimentary column of the south Aegean Sea is composed mostly of marine sediments which have been deposited after the Seravallian breakup of the south Aegean landmass. Extensive submarine coring has revealed the frequent occurrence of Quaternary dark, organic-rich layers in the cores retrieved from water depths greater than 180 m. Moreover, deep-sea drilling (DSDP leg 42A) in the south Aegean basin recovered organic-rich layers as old as late Miocene. Onshore the south Aegean Sea islands, organic-rich sediments are found at the north and south territories of the region, on Milos and Crete islands. Especially on the island of Crete and south of it, on the smaller islands of Gavdos and Koufonisi, these organic-rich sediments represent a considerable portion of the widespread upper Cenozoic sediments. Stratigraphically they cover the interval between upper Seravallian and lower Pleistocene. The organic carbon content of all these mostly calcareous lithofacies, the so-called sapropels, ranges mostly between 0.5 and 6.5%. The most reliably chronostratigraphically correlated upper Pleistocene sapropels display similar compositional characteristics across the entire basin. Certain Pleistocene and older organic-rich layers contain increased proportions of siliceous tests. However the entire range of sapropels in the region (except those within the Messinian evaporites) can be described adequately by the same lithofacies association. To demonstrate this the authors compare the lower Tortonian Faneromeni Formation on Crete with the upper Quaternary sediments from the south Aegean Sea.

  2. Distribution pattern and genetic structure of Aedes zammitii (Diptera: Culicidae) along the Mediterranean and Aegean coasts of Turkey.

    PubMed

    Yavasoglu, Sare Ilknur; Simsek, Fatih Mehmet; Ulger, Celal

    2016-06-01

    The Mariae species complex, consisting of Aedes mariae, Aedes phoeniciae, and Aedes zammitii, has a limited distribution worldwide. All three species are found in rocky habitats on the coastal areas of Mediterranean countries. Aedes phoeniciae and Ae. zammitii are two members of the Mariae complex that exist in Turkey. The aim of this study was to determine the distribution pattern and genetic structure of Ae. zammitii along the Mediterranean and Aegean regions. For this purpose, larval and adult samples of Ae. zammitii were collected from 19 different rocky habitats along the coastal regions of Antalya, Muğla, Aydın, İzmir, Balıkesir, and Çanakkale provinces. DNA isolation was performed primarily from collected samples, and mitochondrial NADH dehydrogenase 4 (ND4) gene was amplified by polymerase chain reaction. Based on ND4 sequence analyses, 21 haplotypes were detected along the distribution range of the species. Analyses of molecular variance (AMOVA) and spatial analyses of molecular variance (SAMOVA) indicated six groups, and most of the variation was among groups, demonstrating the population structuring at group level. Isolation by distance analyses (IBD) showed a correlation between geographic and genetic distances. PMID:27232138

  3. Chronology for the Aegean Late Bronze Age 1700-1400 B.C.

    PubMed

    Manning, Sturt W; Ramsey, Christopher Bronk; Kutschera, Walter; Higham, Thomas; Kromer, Bernd; Steier, Peter; Wild, Eva M

    2006-04-28

    Radiocarbon (carbon-14) data from the Aegean Bronze Age 1700-1400 B.C. show that the Santorini (Thera) eruption must have occurred in the late 17th century B.C. By using carbon-14 dates from the surrounding region, cultural phases, and Bayesian statistical analysis, we established a chronology for the initial Aegean Late Bronze Age cultural phases (Late Minoan IA, IB, and II). This chronology contrasts with conventional archaeological dates and cultural synthesis: stretching out the Late Minoan IA, IB, and II phases by approximately 100 years and requiring reassessment of standard interpretations of associations between the Egyptian and Near Eastern historical dates and phases and those in the Aegean and Cyprus in the mid-second millennium B.C. PMID:16645092

  4. Coastal Transport Integrated System in the Aegean Sea Islands: Framework, Methodology, Data Issues and Preliminary Results

    NASA Astrophysics Data System (ADS)

    Pantazis, D. N.; Stratakis, P.; Karathanasis, C.; Gkadolou, E.; Pagounis, V.; Chronis, K.; Gatsiou, M.; Moumouri-Frag, F.; Tsekos, P.

    2013-05-01

    Greece has more than one hundred inhabited islands, the majority of them are geographically scattered in small distances in the Aegean Sea. The Aegean Sea suffers systematically from two major issues. First, many islands are not served quite frequently with the continent or other islands' major ports. It is a situation rather problematic for the habitants of the islands who wish to travel, for the patients in need to be transferred to metropolitan hospitals, for the goods transport from and to islands. Second, there is a crucial issue in the Aegean Sea regarding the so-called "thin lines". Governments spend every year tens of million euros in subsidies in order to sustain the thin lines. Our aim is the development of an integrated and holistic spatial information system to effectively design coastal transportation lines to combat the above mentioned problems. This paper will present the project framework, the methodology followed, data issues and preliminary results.

  5. Tsunami Propagation Database for the Mediterranean and Aegean Seas

    NASA Astrophysics Data System (ADS)

    Kanoglu, U.; Hoto, O.; Kalligeris, N.; Flouri, E.; Aydin, B.; Moore, C. W.; Synolakis, C. E.

    2012-12-01

    Pre-computed tsunami scenario databases are common tools to develop long- or short-term forecasting methodologies and hazard assessment approaches for tsunami-prone regions worldwide. The benefits of such databases include the possibility of probabilistic studies (Gonzalez et al., 2009, J. Geophys. Res. 114, Article Number: C11023), inundation mapping (Barberopoulou et al., 2011, Pure Appl. Geophys. 168(11), 2133-2146), or real-time forecasting (Wei et al., 2008, Geophys. Res. Lett. 35(4), Article Number: L04609). As a result, several tsunami propagation databases have been developed including one by NOAA's Pacific Marine Environmental Laboratory (PMEL), and another by the Australian Bureau of Meteorology (BOM). Pre-computed tsunami scenario databases utilize different approaches. PMEL's tsunami propagation database is based on the concept of a pre-computed tsunami scenarios consisting of propagation results from 100km x 50km fault planes with a slip value of 1m referred to as tsunami source functions. PMEL's source functions are placed along the subduction zones in several rows, covering known faults throughout the major ocean basins. Linearity of the tsunami propagation in the open ocean allows scaling and/or combination of the pre-computed tsunami source functions to generate a desired scenario. The BOM database considers five earthquakes with magnitudes changing from 7.0 to 9.0 at each location with 100km intervals along the subduction zone. However, to date, no similar approach has been computed along the subduction zones in the Aegean and Mediterranean Seas, even though, historically, there have been a considerable number of tsunami events which caused damage in the region (Ambraseys and Synolakis, 2010, J. Earthquake Eng. 14 (3), 309-330, Article Number: PII 919600673). A new project was initiated between Greece and Turkey supported by General Secretariat for Research & Technology, The Ministry for Development (GSRT) of Greece and The Scientific and

  6. Sphingophosphonolipids, phospholipids, and fatty acids from Aegean jellyfish Aurelia aurita.

    PubMed

    Kariotoglou, D M; Mastronicolis, S K

    2001-11-01

    The goal of this study is to elucidate and identify several sphingophosphonolipids from Aurelia aurita, an abundant but harmless Aegean jellyfish, in which they have not previously been described. Total lipids of A. aurita were 0.031-0.036% of fresh tissue, and the lipid phosphorus content was 1.3-1.7% of total lipids. Phosphonolipids were 21.7% of phospholipids and consisted of a major ceramide aminoethylphosphonate (CAEP-I; 18.3%), as well as three minor CAEP (II, III, IV) methyl analogs at 1.3, 1.1, and 1.0%, respectively. The remaining phospholipid composition was: phosphatidylcholine, 44.5%, including 36.2% glycerylethers; phosphatidylethanolamine, 18.6%, including 4.5% glycerylethers; cardiolipin, 5.6%; phosphatidylinositol, 2.6%; and lysophosphatidylcholine, 5.0%. In CAEP-I, saturated fatty acids of 14-18 carbon chain length were 70.8% and were combined with 57.3% dihydroxy bases and 23.4% trihydroxy bases. The suite of the three minor CAEP methyl analogs were of the same lipid class based on the head group, but they separated into three different components because of their polarity as follows: CAEP-II and CAEP-III differentiation from the major CAEP-I was mainly due to the increased fatty acid unsaturation and not to a different long-chain base, but the CAEP-IV differentiation from CAEP-I, apart from fatty acid unsaturation, was due to the increased content of hydroxyl groups originated from both hydroxy fatty acids and trihydroxy long-chain bases. Saturated fatty acids were predominant in total (76.7%), polar (83.0%), and neutral lipids (67.6%) of A. aurita. The major phospholipid components of A. aurita were comparable to those previously found in a related organism (Pelagia noctiluca), which can injure humans. PMID:11795859

  7. Teleconnections, Midlatitude Cyclones and Aegean Sea Turbulent Heat Flux Variability on Daily Through Decadal Time Scales

    NASA Technical Reports Server (NTRS)

    Romanski, Joy; Romanou, Anastasia; Bauer, Michael; Tselioudis, George

    2013-01-01

    We analyze daily wintertime cyclone variability in the central and eastern Mediterranean during 1958-2001, and identify four distinct cyclone states, corresponding to the presence or absence of cyclones in each basin. Each cyclone state is associated with wind flows that induce characteristic patterns of cooling via turbulent (sensible and latent) heat fluxes in the eastern Mediterranean basin and Aegean Sea. The relative frequency of occurrence of each state determines the heat loss from the Aegean Sea during that winter, with largest heat losses occurring when there is a storm in the eastern but not central Mediterranean (eNOTc), and the smallest occurring when there is a storm in the central but not eastern Mediterranean (cNOTe). Time series of daily cyclone states for each winter allow us to infer Aegean Sea cooling for winters prior to 1985, the earliest year for which we have daily heat flux observations. We show that cyclone states conducive to Aegean Sea convection occurred in 1991/1992 and 1992/1993, the winters during which deep water formation was observed in the Aegean Sea, and also during the mid-1970s and the winters of 1963/1964 and 1968/1969. We find that the eNOTc cyclone state is anticorrelated with the North Atlantic Oscillation (NAO) prior to 1977/1978. After 1977/1978, the cNOTe state is anticorrelated with both the NAO and the North Caspian Pattern (NCP), showing that the area of influence of large scale atmospheric teleconnections on regional cyclone activity shifted from the eastern to the central Mediterranean during the late 1970s. A trend toward more frequent occurrence of the positive phase of the NAO produced less frequent cNOTe states since the late 1970s, increasing the number of days with strong cooling of the Aegean Sea surface waters.

  8. Extensional flow of blood analog solutions in microfluidic devices

    PubMed Central

    Sousa, P. C.; Pinho, F. T.; Oliveira, M. S. N.; Alves, M. A.

    2011-01-01

    In this study, we show the importance of extensional rheology, in addition to the shear rheology, in the choice of blood analog solutions intended to be used in vitro for mimicking the microcirculatory system. For this purpose, we compare the flow of a Newtonian fluid and two well-established viscoelastic blood analog polymer solutions through microfluidic channels containing both hyperbolic and abrupt contractions∕expansions. The hyperbolic shape was selected in order to impose a nearly constant strain rate at the centerline of the microchannels and achieve a quasihomogeneous and strong extensional flow often found in features of the human microcirculatory system such as stenoses. The two blood analog fluids used are aqueous solutions of a polyacrylamide (125 ppm w∕w) and of a xanthan gum (500 ppm w∕w), which were characterized rheologically in steady-shear flow using a rotational rheometer and in extension using a capillary breakup extensional rheometer (CaBER). Both blood analogs exhibit a shear-thinning behavior similar to that of whole human blood, but their relaxation times, obtained from CaBER experiments, are substantially different (by one order of magnitude). Visualizations of the flow patterns using streak photography, measurements of the velocity field using microparticle image velocimetry, and pressure-drop measurements were carried out experimentally for a wide range of flow rates. The experimental results were also compared with the numerical simulations of the flow of a Newtonian fluid and a generalized Newtonian fluid with shear-thinning behavior. Our results show that the flow patterns of the two blood analog solutions are considerably different, despite their similar shear rheology. Furthermore, we demonstrate that the elastic properties of the fluid have a major impact on the flow characteristics, with the polyacrylamide solution exhibiting a much stronger elastic character. As such, these properties must be taken into account in the

  9. Folding associated with extensional faulting: Sheep Range detachment, southern Nevada

    SciTech Connect

    Guth, P.L.

    1985-01-01

    The Sheep Range detachment is a major Miocene extensional fault system of the Great Basin. Its major faults have a scoop shape, with straight, N-S traces extending 15-30 km and then abruptly turning to strike E-W. Tertiary deformation involved simultaneous normal faulting, sedimentation, landsliding, and strike-slip faulting. Folds occur in two settings: landslide blocks and drag along major faults. Folds occur in landslide blocks and beneath them. Most folds within landslide blocks are tight anticlines, with limbs dipping 40-60 degrees. Brecciation of the folds and landslide blocks suggests brittle deformation. Near Quijinump Canyon in the Sheep Range, at least three landslide blocks (up to 500 by 1500 m) slid into a small Tertiary basin. Tertiary limestone beneath the Paleozoic blocks was isoclinally folded. Westward dips reveal drag folds along major normal faults, as regional dips are consistently to the east. The Chowderhead anticline is the largest drag fold, along an extensional fault that offsets Ordovician units 8 km. East-dipping Ordovician and Silurian rocks in the Desert Range form the hanging wall. East-dipping Cambrian and Ordovician units in the East Desert Range form the foot wall and east limb of the anticline. Caught along the fault plane, the anticline's west-dipping west limb contains mostly Cambrian units.

  10. Interior provinces in Alaska

    SciTech Connect

    Kirschner, C.E.; Fisher, M.A.; Bruns, T.R.; Stanley, R.G.

    1985-04-01

    Three types of interior provinces have been tested by exploratory drilling for their petroleum potential: three Tertiary nonmarine basins, two Jurassic and Cretaceous flysch and fold belts, and a Paleozoic thrust belt. Although the presence of hydrocarbons has not yet been demonstrated, the present data base is too limited to make a definitive assessment of hydrocarbon potential. During the 1983-84 field seasons, the authors acquired new gravity data and collected rock samples in and adjacent to the Yukon flats and the Nenana basins. These basins contain upper Tertiary, primarily nonmarine, sedimentary rock in extensional graben and half-graben complexes that are superimposed across preexisting terrane boundaries. The location and development of the basins result from strike-slip motion along the Tintina and Denali fault systems. Adjacent to the basins and within the fault systems are thick sections of nonmarine lower Tertiary coal-bearing rocks in deformed basin remnants. If these lower Tertiary rocks are present beneath the upper Tertiary fill, their greater depth and advanced maturation could enhance the hydrocarbon generative potential. Gravity modelling suggests the Tertiary fill is at least 3 km thick in the deeper parts of the basins and may be significantly thicker.

  11. Cluster analysis of indermediate deep events in the southeastern Aegean

    NASA Astrophysics Data System (ADS)

    Ruscic, Marija; Becker, Dirk; Brüstle, Andrea; Meier, Thomas

    2015-04-01

    The Hellenic subduction zone (HSZ) is the seismically most active region in Europe where the oceanic African litosphere is subducting beneath the continental Aegean plate. Although there are numerous studies of seismicity in the HSZ, very few focus on the eastern HSZ and the Wadati-Benioff-Zone of the subducting slab in that part of the HSZ. In order to gain a better understanding of the geodynamic processes in the region a dense local seismic network is required. From September 2005 to March 2007, the temporary seismic network EGELADOS has been deployed covering the entire HSZ. It consisted of 56 onshore and 23 offshore broadband stations with addition of 19 stations from GEOFON, NOA and MedNet to complete the network. Here, we focus on a cluster of intermediate deep seismicity recorded by the EGELADOS network within the subducting African slab in the region of the Nysiros volcano. The cluster consists of 159 events at 80 to 190 km depth with magnitudes between 0.2 and 4.1 that were located using nonlinear location tool NonLinLoc. A double-difference earthquake relocation using the HypoDD software is performed with both manual readings of onset times and differential traveltimes obtained by separate cross correlation of P- and S-waveforms. Single event locations are compared to relative relocations. The event hypocenters fall into a thin zone close to the top of the slab defining its geometry with an accuracy of a few kilometers. At intermediate depth the slab is dipping towards the NW at an angle of about 30°. That means it is dipping steeper than in the western part of the HSZ. The edge of the slab is clearly defined by an abrupt disappearance of intermediate depths seismicity towards the NE. It is found approximately beneath the Turkish coastline. Furthermore, results of a cluster analysis based on the cross correlation of three-component waveforms are shown as a function of frequency and the spatio-temporal migration of the seismic activity is analysed.

  12. The influence of Black Sea Water inflow and its synoptic time-scale variability in the North Aegean Sea hydrodynamics

    NASA Astrophysics Data System (ADS)

    Mavropoulou, Apostolia-Maria; Mantziafou, Anneta; Jarosz, Ewa; Sofianos, Sarantis

    2016-02-01

    The exchange water fluxes between the Black Sea and the North Aegean Sea through the Dardanelles Strait constitute an essential factor for the general circulation of the region. The Black Sea Water (BSW) inflow to the Aegean plays an important role in the hydrography and circulation of the basin and can affect the North Aegean deep water formation processes. Numerical experiments evaluating the influence of the time-scale variability (synoptic and seasonal) and the seasonality (period of maximum/minimum) of the Black Sea Water inflow on the dynamics of the North Aegean basin were performed. The experiments were carried out for the period from August 2008 to October 2009, using observed upper and lower-layer fluxes from the Dardanelles Strait, high-resolution atmospheric forcing, and boundary conditions derived from an operational system (ALERMO). The large-scale spatial patterns of the circulation and the seasonal variability of the North Aegean circulation show that dynamics of the basin can effectively absorb most of the Black Sea Water inflow variability. The overall cyclonic circulation of the North Aegean Sea and the predominant cyclonic and anti-cyclonic features are robust and are little affected by the different lateral fluxes. However, differences in the seasonality of the BSW inflow have an important impact in the North Aegean water column structure, while the synoptic variability observed in the Black Sea Water inflow affects the kinetic energy of the basin and the pathway of the Black Sea Water plume.

  13. Psychiatric Morbidity and Social Capital in Rural Communities of the Greek North Aegean Islands

    ERIC Educational Resources Information Center

    Tseloni, Andromachi; Zissi, Anastasia; Skapinakis, Petros

    2010-01-01

    Which facets of social capital affect mental health in rural settings? This study explores the association between different aspects of social capital and psychiatric morbidity in rural communities of the Greek North Aegean islands. A large number of individual and community characteristics that may influence psychiatric morbidity are concurrently…

  14. Shallow structure and recent evolution of the Aegean Sea deduced from the seismic reflection analysis

    SciTech Connect

    Laure, M.; Mascle, J.

    1988-08-01

    Together with the Tyrrhenian Sea, the Aegean Sea represents one of two marine basins still developing as a consequence of the subduction of the African lithosphere beneath Europe. Despite many geophysical similarities with the Tyrrhenian Sea, the Aegean displays a specific structural segmentation characterized by two distinct domains separated by the central Aegean. To the north of the basin, the so-called North Aegean trough likely represents the western marine extension of the transtensive Anatolian transform fault zone. The northern margin of this area contains a series of disconnected, often thickly sedimented small basins that probably initiated during the late Miocene as a consequence of a dominantly north-south extension; typical uppermost Miocene (Messinian) formations can be observed on seismic grounds. To the south, the Cretan Sea shows clear evidence of important distensive events occurring during two main episodes and following two main trends; a dominantly north-south-directed extension is responsibile for most of the structural features detected along both the Cretan and southern Cyclades margins.

  15. The two-stage Aegean extension, slow-localized vs fast-distributed

    NASA Astrophysics Data System (ADS)

    Brun, Jean-Pierre; Gueydan, Frédéric; Kydonakis, Konstantinos; Philippon, Melody; Sokoutis, Dimitrios; Beniest, Anouk; Gorini, Christian

    2015-04-01

    Aegean extension is a process driven by slab rollback that since 45 Ma shows a two-stage evolution. From 45 to 13 Ma it is accommodated by localized deformation leading to i) the exhumation of high-pressure metamorphic rocks from mantle to crustal depths, ii) the exhumation of high-temperature rocks in core complexes and iii) the deposition of Paleogene sedimentary basins. Since 13 Ma, extension is distributed over the whole Aegean domain giving a widespread development of onshore and offshore Neogene sedimentary basins. The 3D reconstruction at Aegean scale of this two-stage evolution shows that the rate of trench retreat was around 0.6 cm/y during the first 30 My and then accelerated up to 3.2 cm/y during the last 13 My. Using available tomographic evidence, timing of metamorphic and sedimentary processes, paleomagnetic data and geometry and kinematics of deformation, we propose that the sharp transition in trench retreat and deformation mode, localized vs distributed, at 13 Ma was controlled to slab tearing. Moreover, the development of dextral NE-SW strike-slip faults and related pull-apart basins in the North Aegean domain, from the Cyclades to the Rhodope, strongly suggests that this sharp transition also corresponds to the onset of Anatolia westward escape.

  16. [Leishmaniasis in Greece: the sandflies of the Ionian islands and Aegean Sea].

    PubMed

    Pesson, B; Leger, N; Madulo-Leblond, G

    1984-01-01

    Three entomological investigations have been carried out during the summers 1979, 1980 and 1982 in Ionian islands: Corfu, Cephalonia and Zante and in four Aegean Sea islands: the western Andros and Tinos (Cyclades) and eastern Samos and Ikaria. Systematic sampling with oiled paper traps produced 24 184 sandflies. Captures are analysed for each species. PMID:6465795

  17. Lifelong Learning and Vocational Training Programmes in Northern Aegean (Greece): Weaknesses, Possibilities and Prospects

    ERIC Educational Resources Information Center

    Giavrimis, Panagiotis; Papanis, Efstratios; Mitrellou, Sotiria; Nikolarea, Ekaterini

    2009-01-01

    This study presents, discusses and assesses the findings of a research into lifelong learning through Vocational Training Centres (VTCs) in the region of Northern Aegean, Greece. In the first part, the paper introduces its readers to the theoretical framework of lifelong education, whereas in the second part it makes a brief historical overview of…

  18. Eastern Mediterranean geodynamics revised: a new Aegean extension realm in space, time and direction identified in the western Cyclades

    NASA Astrophysics Data System (ADS)

    Grasemann, B.; Edwards, M.; Schneider, D.; Iglseder, C.; Zámolyi, A.; Rambousek, C.; Mueller, M.; Voit, K.; Thoeni, M.; Kloetzli, U.; Exner, U.

    2006-12-01

    The Eastern Mediterranean is renowned for its striking geodynamic features; strong seismicity with distinctive spatial and subsurface distributions, lucid slab tomography and accelerated slab retreat bourne out by some of the globally greatest angular velocities for continental crust displacement. The key questions of historical persistence of or precursor(s) to this setting are addressed by the early blueschist genesis and exhumation during collision and subsequent later-orogenic extension. The extension, in particular, is critical to the geodynamic models; the magnitude, distribution, kinematics, thermal structure and overall timetable are key variables. When and how did extension migrate /switch to the Cretan region and the presently active Gulf of Corinth? Most constraints have hitherto come from the central and western Cyclades (e.g. Naxos, Mykonos, Tinos, Paros) where an overall N-NE directed kinematics of Mid-Late Miocene extension (including any attendant melting) are documented through structural analyses, crystallisation and/or cooling geochronology and geobarometry. The eastern Cyclades meanwhile have lacked such comprehensive study. Project ACCEL (Aegean Core Complexes along an Extended Lithosphere) has obtained equivalent datasets for the eastern Cyclades that identify a realm of opposite kinematic sense (S-SW directed) crustal extension coeval with anatexis and multiple crustal failure that are apparently protracted since Eocene to Late Miocene; much earlier than for the central and western Cyclades. On Serifos island, P/T conditions (from petrology and deformation mechanisms), zircon U-Pb TIMS crystallisation ages, Rb-Sr cooling ages and structural surveying reveal that a major granodiorite intrusion syn- to post-dates a top-to-SSW, mid-upper crustal, mylonitic lithospheric-scale extensional detachment. This entire package further cross-cuts an earlier top-to-SSW, lower-mid crustal, high strain zone that mylonitises an S-type granite whose zircons

  19. Structure and seismic stratigraphy of deep Tertiary basins in the northern Aegean Sea

    NASA Astrophysics Data System (ADS)

    Beniest, Anouk; Brun, Jean-Pierre; Smit, Jeroen; Deschamps, Rémy; Hamon, Youri; Crombez, Vincent; Gorini, Christian

    2015-04-01

    Whereas active basin formation in the Aegean Sea is illustrated by seafloor bathymetry, the sedimentary and tectonic history of Tertiary basins is poorly known as existing offshore industrial seismic and well-log data are not easily accessible. We studied the evolution of the northern Aegean Sea with a focus on the North Aegean Trough and the Northern Skyros Basin, which are amongst the deepest basins of the northern Aegean domain. Structural and seismic stratigraphic interpretation of a 2D seismic dataset retrieved in the 1970's is combined with the well-investigated records of the onshore deep basins of northern Greece and Western Turkey. A general seismic signature chart was established using onshore basin stratigraphy and poorly-constrained well data. The studied domain shows two sharp unconformities that correspond to the Eocene-Oligocene transition and the Miocene-Pliocene shift, respectively. These transitions were then used as pillars for a more detailed structural and seismic stratigraphic interpretation. A NW-SE trending seismic line that cross-cuts the southern part of the NE-SW-trending North Aegean Through displays the main features that are observed in the area: 1) an overall basin geometry that is rather symmetrical; 2) pre-Pliocene units affected by steep normal faults; 3) a rather constant thickness of Oligocene sediments that define a depocenter with an apparent NW-SE orientation; 4) an ablation of Miocene sediments by erosion, likely related to the Messinian Salinity Crises (MSC); (5) thick deltaic/turbiditic deposits in the NE-SW oriented central through of Neogene age; 6) trans-tensional growth patterns in Pliocene and Quaternary sediments that combine NE-SW steeply dipping fault zones, more likely corresponding to strike-slip corridors, and E-W-trending normal faults. The evidence listed above suggest that, in the northern Aegean Sea, (1) extension started at the latest during the Late Eocene/Early Oligocene (data quality does not allow for a

  20. Phytoplankton size-based dynamics in the Aegean Sea (Eastern Mediterranean)

    NASA Astrophysics Data System (ADS)

    Ignatiades, L.; Psarra, S.; Zervakis, V.; Pagou, K.; Souvermezoglou, E.; Assimakopoulou, G.; Gotsis-Skretas, O.

    2002-07-01

    This study represents one component of the large MTP-II-MATER (MAST-III) multidisiplinary project in the Mediterranean supported by EU. Data were collected during three cruises performed in Spring and Autumn 1997 and Spring 1998 from six stations of the North and five stations of the South Aegean Sea. The work assessed the spatial, vertical and temporal variations of size fractionated chlorophyll α, primary production (in situ), photosynthetic parameters (in situ) and the taxonomic composition of phytoplankton. The population structure and dynamics were greatly influenced by the different hydrographic conditions prevailing in the Northern and Southern Aegean Sea due to the influence of Black Sea and Levantine Sea waters, respectively. The picoplankton fraction (0.2-1.2 μm) predominated and accounted for the 56% to 49% of total chl α and the 51% to 41% of total primary production in the N. and S. Aegean Sea, respectively. Throughout the sampling area, the levels of nano+microplankton (>3.0 μm) were next in abundance proportions of total chl α (21-31%) and primary production (20-33%) and the levels of the ultraplankton (1.2-3.0 μm) were the lowest, contributing the 18-22% of total chl α and the 20-23% of total primary production. There was a highly significant ( P≤0.005-0.01) spatial, vertical and temporal influence on the biomass and productivity of all size classes in the N. Aegean and of most of them in S. Aegean. Light utilization efficiency ( ɛ%) and quantum yield ( ϕmax) exhibited a temporal trend having higher values in Spring than in Autumn as well as a trend affected by cell size, being higher for picoplankton in relation to ultraplankton and nano+microplankton. Assimilation ratios ( PB) increased with cell size. Daily primary production in the N. Aegean (81.36 mg C m -2 day -1) was higher than that in the S. Aegean (38.88 mg C m -2 day -1) but both are characterized as the most oligotrophic areas of the eastern Mediterranean.

  1. Black Sea and Mediterranean Sea interaction: influence of the North Aegean dynamics

    NASA Astrophysics Data System (ADS)

    Androulidakis, Yannis; Krestenitis, Yannis; Kourafalou, Vassiliki

    2013-04-01

    The brackish Black Sea Waters outflow to the Aegean Sea, through the Dardanelles Straits, affects and determines significantly the hydrodynamic and physical characteristics of the Aegean Sea. At the same time, it affects several biological parameters, like chl-a concentrations, and, therefore, the general quality of the marine environment. The investigation and mathematical simulation of the North Aegean's physical oceanography contributes to the knowledge and understanding of the buoyant waters' circulation initial conditions in the wider East Mediterranean region. The implementation and adaptation of the 3-d hydrodynamic mathematical model HYCOM (Hybrid Coordinate Ocean Model) in the North Aegean Sea (1/50οx1/50o), significantly contributes to the investigation of the area's hydrodynamic circulation. HYCOM, due to its hybrid coordinate operation, can describe at a satisfactory level, all the different topography and mixing cases of the complicated N. Aegean region. In addition, the high resolution atmospheric forcing and the nesting with a data assimilated broader Mediterranean HYCOM model along the southern open boundary of the North Aegean model, benefit the quality of the results and constitutes an important tool on the description and understanding of the Black Sea influence to the region's dynamics. A fundamental objective is the application and comparison of different Dardanelles outflow parameterizations based a) on the Black Sea water budget, b) on current measurements from a telemetric station in Limnos Island, and c) on historical time series. The Black Sea Waters plume evolution and the circulation patterns are dependant on the outflow rate magnitude, the flow distribution inside the straits and the prevailing winds. The long-term simulation covers the period of the last 20 years (1990-2010), investigating several physical characteristics of the North Aegean Sea, such as the deep water masses evolution, the major Black Sea waters circulation patterns

  2. Microbial activities at the benthic boundary layer in the Aegean Sea

    NASA Astrophysics Data System (ADS)

    Bianchi, A.; Tholosan, O.; Garcin, J.; Polychronaki, T.; Tselepides, A.; Buscail, R.; Duineveld, G.

    2003-05-01

    During the Aegean Sea component of the EU MTP-MATER project, benthic samples were acquired along a depth gradient from two continental margins in the Aegean Sea. Sampling was undertaken during spring and summer 1997 and the microbial metabolic activities measured (Vmax for aminopeptidase activity, 14C-glutamate respiration and assimilation) displayed seasonal variability even in deep-sea conditions. The metabolic rates encountered in the North Aegean (average depth 566±234 m), were approximately five-fold higher than in the deeper (1336±140 m) Southern part of the Aegean. The aminopeptidase rates, however, were the exception with higher values recorded in the more oligotrophic sediments of the Southern stations (1383±152 vs. 766±297 nmol MCA cm -2 h -1). A discrepancy in bacterial metabolism also appeared in the near bottom waters. In the Southern stations, 80% of the glutamate uptake was used for energy yielding processes and only 20% devoted to biomass production, while in the North Aegean, most of the used glutamate was incorporated into bacterial cells. During the early burial stages, bacterial mineralization rates estimated from 14C-glutamate respiration decreased drastically compared to the rates of biopolymer hydrolysis estimated by aminopeptidase assays. Thus, at the 2-cm depth layer, these rates were only 32 and up to 77% of the corresponding average values, respectively, in the superficial layer. Such a discrepancy between the evolution of these two metabolic activities is possibly due to the rapid removal of readily utilizable monomers in the surface deposits. The correlation between bacterial respiration and total organic carbon, or total organic nitrogen, is higher in the surficial sediment (0-2 and 2-4 cm) than in the underlying layer. Conversely, it is only at 4-cm depth layer that the hydrolysis rates appear correlated with organic carbon and nitrogen concentrations. This pattern confirms the drastic degradation of organic matter during the

  3. Extensional hard linkages, eastern Gulf of Suez, Egypt

    NASA Astrophysics Data System (ADS)

    McClay, Ken; Khalil, Samir

    1998-06-01

    The Araba Abu Durba area on the eastern margin of the Gulf of Suez exhibits two superb outcrop examples of extensional hard linkages in a rift basin. Here, three large, domino-style, basement-cored, northeast-dipping fault blocks are formed by a series of major northwest-trending normal faults. These are offset by two north-northeast trending sinistral oblique-slip transfer faults that terminate in horsetail normal fault splays. The transfer faults do not extend across the entire rift basin. Detailed mapping and structural analysis show that they developed by breakage of initial low-strain relay ramps along reactivated north-northeast trending basement fabrics between overlapping northwest-trending normal fault segments. Paleostrain analysis of fault-slip indicators shows that both the normal and the sinistral oblique-slip transfer faults were formed synchronously in response to northeast-southwest extension, perpendicular to the main northwest rift trend.

  4. Microfluidic converging/diverging channels optimised for homogeneous extensional deformation

    PubMed Central

    Zografos, K.; Oliveira, M. S. N.

    2016-01-01

    In this work, we optimise microfluidic converging/diverging geometries in order to produce constant strain-rates along the centreline of the flow, for performing studies under homogeneous extension. The design is examined for both two-dimensional and three-dimensional flows where the effects of aspect ratio and dimensionless contraction length are investigated. Initially, pressure driven flows of Newtonian fluids under creeping flow conditions are considered, which is a reasonable approximation in microfluidics, and the limits of the applicability of the design in terms of Reynolds numbers are investigated. The optimised geometry is then used for studying the flow of viscoelastic fluids and the practical limitations in terms of Weissenberg number are reported. Furthermore, the optimisation strategy is also applied for electro-osmotic driven flows, where the development of a plug-like velocity profile allows for a wider region of homogeneous extensional deformation in the flow field. PMID:27478523

  5. Microfluidic converging/diverging channels optimised for homogeneous extensional deformation.

    PubMed

    Zografos, K; Pimenta, F; Alves, M A; Oliveira, M S N

    2016-07-01

    In this work, we optimise microfluidic converging/diverging geometries in order to produce constant strain-rates along the centreline of the flow, for performing studies under homogeneous extension. The design is examined for both two-dimensional and three-dimensional flows where the effects of aspect ratio and dimensionless contraction length are investigated. Initially, pressure driven flows of Newtonian fluids under creeping flow conditions are considered, which is a reasonable approximation in microfluidics, and the limits of the applicability of the design in terms of Reynolds numbers are investigated. The optimised geometry is then used for studying the flow of viscoelastic fluids and the practical limitations in terms of Weissenberg number are reported. Furthermore, the optimisation strategy is also applied for electro-osmotic driven flows, where the development of a plug-like velocity profile allows for a wider region of homogeneous extensional deformation in the flow field. PMID:27478523

  6. Extensional instability in electro-osmotic microflows of polymer solutions

    NASA Astrophysics Data System (ADS)

    Bryce, R. M.; Freeman, M. R.

    2010-03-01

    Fluid transport in microfluidic systems typically is laminar due to the low Reynolds number characteristic of the flow. The inclusion of suspended polymers imparts elasticity to fluids, allowing instabilities to be excited when substantial polymer stretching occurs. For high molecular weight polymer chains we find that flow velocities achievable by standard electro-osmotic pumping are sufficient to excite extensional instabilities in dilute polymer solutions. We observe a dependence in measured fluctuations on polymer concentration which plateaus at a threshold corresponding to the onset of significant molecular crowding in macromolecular solutions; plateauing occurs well below the overlap concentration. Our results show that electro-osmotic flows of complex fluids are disturbed from the steady regime, suggesting potential for enhanced mixing and requiring care in modeling the flow of complex liquids such as biopolymer suspensions.

  7. The Extensional Rheology of Non-Newtonian Materials

    NASA Technical Reports Server (NTRS)

    Spiegelberg, Stephen H.; McKinley, Gareth H.

    1996-01-01

    The evolution of the transient extensional stresses in dilute and semi-dilute viscoelastic polymer solutions are measured with a filament stretching rheometer of a design similar to that first introduced by Sridhar, et al. The solutions are polystyrene-based (PS) Boger fluids that are stretched at constant strain rates ranging from 0.6 less than or equal to epsilon(0) less than or equal to 4s(exp -1) and to Hencky strains of epsilon greater than 4. The test fluids all strain harden and Trouton ratios exceeding 1000 are obtained at high strains. The experimental data strain hardens at lower strain levels than predicted by bead-spring FENE models. In addition to measuring the transient tensile stress growth, we also monitor the decay of the tensile viscoelastic stress difference in the fluid column following cessation of uniaxial elongation as a function of the total imposed Hencky strain and the strain rate. The extensional stresses initially decay very rapidly upon cessation of uniaxial elongation followed by a slower viscoelastic relaxation, and deviate significantly from FENE relaxation predictions. The relaxation at long times t is greater than or equal to 5 s, is compromised by gravitational draining leading to non-uniform filament profiles. For the most elastic fluids, partial decohension of the fluid filament from the endplates of the rheometer is observed in tests conducted at high strain rates. This elastic instability is initiated near the rigid endplate fixtures of the device and it results in the progressive breakup of the fluid column into individual threads or 'fibrils' with a regular azimuthal spacing. These fibrils elongate and bifurcate as the fluid sample is elongated further. Flow visualization experiments using a modified stretching device show that the instability develops as a consequence of an axisymmetry-breaking meniscus instability in the nonhomogeneous region of highly deformed fluid near the rigid endplate.

  8. Extensional Relaxation Times and Pinch-off Dynamics of Dilute Polymer Solutions

    NASA Astrophysics Data System (ADS)

    Dinic, Jelena; Zhang, Yiran; Jimenez, Leidy; Sharma, Vivek

    2015-11-01

    We show that visualization and analysis of capillary-driven thinning and pinch-off dynamics of the columnar neck in an asymmetric liquid bridge created by dripping-onto-substrate can be used for characterizing the extensional rheology of complex fluids. Using a particular example of dilute, aqueous PEO solutions, we show the measurement of both the extensional relaxation time and extensional viscosity of weakly elastic, polymeric complex fluids with low shear viscosity η< 20 mPa .s and relatively short relaxation time, λ <1 ms. Characterization of elastic effects and extensional relaxation times in these dilute solutions is beyond the range measurable in the standard geometries used in commercially available shear and extensional rheometers (including CaBER, capillary breakup extensional rheometer). As the radius of the neck that connects a sessile drop to a nozzle is detected optically, and the extensional response for viscoelastic fluids is characterized by analyzing their elastocapillary self-thinning, we refer to this technique as optically-detected elastocapillary self-thinning dripping-onto-substrate (ODES-DOS) extensional rheometry.

  9. Aspects of three-dimensional strain at the margin of the extensional orogen, Virgin River depression area, Nevada, Utah, and Arizona

    USGS Publications Warehouse

    Anderson, R.E.; Barnhard, T.P.

    1993-01-01

    The Virgin River depression and surrounding mountains are Neogene features that are partly contiguous with the little-strained rocks of the structural transition to the Colorado Plateau province. This contiguity makes the area ideally suited for evaluating the sense, magnitude, and kinematics of Neogene deformation. Analysis along the strain boundary shows that, compared to the adjacent little-strained area, large-magnitude vertical deformation greatly exceeds extensional deformation and that significant amounts of lateral displacement approximately parallel the province boundary. Isostatic rebound following tectonic denudation is an unlikely direct cause of the strong vertical structural relief adjacent to the strain boundary. Instead, the observed structures are first-order features defining a three-dimensional strain field produced by approximately east-west extension, vertical structural attenuation, and extension-normal shortening. All major structural elements of the strain-boundary strain field are also found in the adjacent Basin and Range. -from Authors

  10. Anelastic attenuation structure of the southern Aegean subduction area

    NASA Astrophysics Data System (ADS)

    Ventouzi, Chrisanthi; Papazachos, Constantinos; Papaioannou, Christos; Hatzidimitriou, Panagiotis

    2014-05-01

    The study of the anelastic attenuation structure plays a very important role for seismic wave propagation and provides not only valuable constraints for the Earth's interior (temperature, relative viscosity, slab dehydration and melt transport) but also significant information for the simulation of strong ground motions. In order to investigate the attenuation structure of the broader Southern Aegean subduction area, acceleration spectra of intermediate depth earthquakes produced from data provided by two local networks which operated in the area were used. More specifically, we employed data from approximately 400 intermediate-depth earthquakes, as these were recorded from the EGELADOS seismic monitoring project which consisted of 65 land stations and 24 OBS recorders and operated during 2005-2007, as well as data from the earlier installed CYCNET local network, which operated during 2002-2005. A frequency-independent path attenuation operator t* was computed for both P and S arrivals for each waveform, using amplitude spectra generated by the recorded data of the aforementioned networks. Initially, estimated P and S traveltimes were examined and modeled as a function of epicentral distance for different groups of focal depths, using data from the CYCNET network in order to obtain the expected arrival information when original arrival times were not available. Two approaches to assess the spectral-decay were adopted for t* determination. Initially, an automated approach was used, where t* was automatically calculated from the slope of the acceleration spectrum, assuming an ω2 source model for frequencies above the corner frequency, fc. Estimation of t* was performed in the frequency band of 0.2 to 25 Hz, using only spectra with a signal-to-noise ratio larger than 3 for a frequency range of at least 4Hz for P-waves and 1Hz for S-waves, respectively. In the second approach, the selection of the linearly-decaying part of the spectra where t* was calculated, was

  11. Mantle Response to Collision, Slab Breakoff & Lithospheric Tearing in Anatolian Orogenic Belts, and Cenozoic Geodynamics of the Aegean-Eastern Mediterranean Region

    NASA Astrophysics Data System (ADS)

    Dilek, Yildirim; Altunkaynak, Safak

    2010-05-01

    ) to the southern margin of Eurasia, and by related slab breakoff events. Exhumation of middle to lower crustal rocks and the formation of extensional metamorphic domes occurred in the backarc region of this progressively southward-migrated trench and the Tethyan (Afro-Arabian) slab throughout the Cenozoic. Thus, slab retreat played a major role in the Cenozoic geodynamic evolution of the Aegean and Western Anatolian regions. However, the subducting African lithospheric slab beneath the Aegean-Western Anatolian region is delimited to the east by a subduction-transform edge propagator (STEP) fault, which corresponds to the sharp cusp between the Hellenic and Cyprus trenches whose surface expression is marked by the Isparta Angle in the Western Taurides. This lithospheric tear in the downgoing African plate allowed the mantle to rise beneath SW Anatolia, inducing decompressional melting of shallow asthenosphere and producing linearly distributed alkaline magmatism younging in the direction of tear propagation (southward). The N-S-trending potassic and ultra-potassic volcanic fields stretching from the Kirka and Afyon-Suhut region (~17 Ma) in the north to the Isparta-Gölcük area (4.6 Ma-Recent) in the south are the result of this melting of the sub-slab (asthenospheric) mantle, which was metasomatized by recent subduction events in the region. Asthenospheric low velocities detected through Pn tomographic imaging in this region support the existence of shallow asthenosphere beneath the Isparta Angle at present. These observations suggest that currently there is no active subduction underneath much of Western Anatolia.

  12. Analysis of Neogene deformation between Beaver, Utah, and Barstow, California: suggestions for altering the extensional paradigm

    USGS Publications Warehouse

    Anderson, R. Ernest; Beard, L. Sue; Mankinen, Edward A.; Hillhouse, John W.

    2013-01-01

    For more than two decades, the paradigm of large-magnitude (~250 km), northwest-directed (~N70°W) Neogene extensional lengthening between the Colorado Plateau and Sierra Nevada at the approximate latitude of Las Vegas has remained largely unchallenged, as has the notion that the strain integrates with coeval strains in adjacent regions and with plate-boundary strain. The paradigm depends on poorly constrained interconnectedness of extreme-case lengthening estimated at scattered localities within the region. Here we evaluate the soundness of the inferred strain interconnectedness over an area reaching 600 km southwest from Beaver, Utah, to Barstow, California, and conclude that lengthening is overestimated in most areas and, even if the estimates are valid, lengthening is not interconnected in a way that allows for published versions of province-wide summations. We summarize Neogene strike slip in 13 areas distributed from central Utah to Lake Mead. In general, left-sense shear and associated structures define a broad zone of translation approximately parallel to the eastern boundary of the Basin and Range against the Colorado Plateau, a zone we refer to as the Hingeline shear zone. Areas of steep-axis rotation (ranging to 2500 km2) record N-S shortening rather than unevenly distributed lengthening. In most cases, the rotational shortening and extension-parallel folds and thrusts are coupled to, or absorb, strike slip, thus providing valuable insight into how the discontinuous strike-slip faults are simply parts of a broad zone of continuous strain. The discontinuous nature of strike slip and the complex mixture of extensional, contractional, and steep-axis rotational structures in the Hingeline shear zone are similar to those in the Walker Lane belt in the west part of the Basin and Range, and, together, the two record southward displacement of the central and northern Basin and Range relative to the adjacent Colorado Plateau. Understanding this province

  13. On dense water formation in shelves of the Aegean Sea during the year 1987

    NASA Astrophysics Data System (ADS)

    Salusti, Ettore; Bellacicco, Marco; Anagnostou, Christos; Rinaldi, Eleonora; Tripsanas, Efthymios

    2015-04-01

    We here investigate the role of the rather virgin year 1987, when some modern data are available but before the main EMT event. A combination of field, satellite and numerical model temperature and salinity data from PROTHEUS, as well as a coupled ocean-atmosphere model, are used to implement theoretical models. After its formation over a sloping shelf of some important points in the Aegean Sea, due to the strong cold winter winds, a dense water patch can either have a dramatic downflow or can start a slow geostrophic descent along shelves and then following isobaths, best described by streamtube models. The most important, among these shelves characterized by a strong air sea interaction, have been identified from satellite data. The Northernmost shelves are those north of the island of Samothrace and in the Northern Thermaikos Gulf. In agreement with the field measuraments of Georgopoulos et al. (1987) also the shallow shelf between Limnos and Goceada was a source of very dense water, as well as thr shelf between Lesbos and the Turkish coast. Most probably also the shelves around the Cycladic Plateau were affected by strong winds and contributed to the Aegean Sea deep water formation. In addition, other theoretical models of wind-induced coastal upwelling allow to infer temperature and salinity information of dense water dynamics along the shallow coasts and shelves of the Aegean Sea. All this allows a heuristic application of classical T/S diagrams to estimate Northern Aegean dense water evolution and spreading, that nicely supports the early ideas of Zervakis et al. (2000). A complex situation about the Cycladic Plateau dynamics is also analyzed in correlation with sediment locations. Indeed seismic-reflection profiles confirm the presence of a contourite location along the northeast Cyclades Plateau shelves. All this interestingly opens novel prospective about the dense water coastal formation shelves. In synthesis such field, numerical and satellite data

  14. Petrogenetic evolution of the Early Miocene Alaçamdağ volcano-plutonic complex, northwestern Turkey: implications for the geodynamic framework of the Aegean region

    NASA Astrophysics Data System (ADS)

    Erkül, Sibel Tatar

    2012-01-01

    Extensional-tectonic processes have generated extensive magmatic activity that produced volcanic/plutonic rocks along an E-W-trending belt across north-western Turkey; this belt includes granites and coeval volcanic rocks of the Alaçamdağ volcano-plutonic complex. The petrogenesis of the Early Miocene Alaçamdağ granitic and volcanic rocks are here investigated by means of whole-rock Sr-Nd isotopic data along with field, petrographic and whole-rock geochemical studies. Geological and geochemical data indicate two distinct granite facies having similar mineral assemblages, their major distinguishing characteristic being the presence or absence of porphyritic texture as defined by K-feldspar megacrysts. I-type Alaçamdağ granitic stocks have monzogranitic-granodioritic compositions and contain a number of mafic microgranular enclaves of monzonitic, monzodioritic/monzogabbroic composition. Volcanic rocks occur as intrusions, domes, lava flows, dykes and volcanogenic sedimentary rocks having (first episode) andesitic and dacitic-trachyandesitic, and (second episode) dacitic, rhyolitic and trachytic-trachydacitic compositions. These granitic and volcanic rocks are metaluminous, high-K, and calc-alkaline in character. Chondrite-normalised rare earth element patterns vary only slightly such that all of the igneous rocks of the Alaçamdağ have similar REE patterns. Primitive-mantle-normalised multi-element diagrams show that these granitic and volcanic rocks are strongly enriched in LILE and LREE pattern, high (87Sr/86Sr)i and low ɛ Nd( t) ratios suggesting Alaçamdağ volcano-plutonic rocks to have been derived from hybrid magma that originated mixing of co-eval lower crustal-derived more felsic magma and enriched subcontinental lithospheric mantle-derived more mafic magmas during extensional processes, and the crustal material was more dominant than the mantle contribution. The Alaçamdağ volcano-plutonic complex rocks may form by retreat of the Hellenic/Aegean

  15. Isotopic evidence of source variations in commingled magma systems: Colorado River extensional corridor, Arizona and Nevada

    SciTech Connect

    Metcalf, R.V.; Smith, E.I.; Martin, M.W. . Dept. of Geoscience); Gonzales, D.A.; Walker, J.D. . Isotope Geochronology Lab.)

    1993-04-01

    Mixing of mantle derived mafic and crustal derived felsic magmas is a major Province-wide process forming Tertiary intermediate magmas within the Basin and Range. Major variations in magma sources, however, may exist in temporally and spatially related systems. Such variations are exemplified by two closely spaced plutons within the northern Colorado River extensional corridor. The 15.96 Ma Mt. Perkins pluton (MPP) was emplaced in three major phases: phase 1 (oldest) gabbro; phase 2 quartz diorite to hornblende granodiorite; and phase 3 biotite granodiorite ([+-]hbld). Phases 2 and 3 contain mafic microgranitoid enclaves (MME) that exhibit evidence of magma mingling. Combined data from phase 2 and 3 rocks, including MMW, shows positive [sup 87]Sr/[sup 86]Sr and negative [var epsilon]Nd correlations vs. SiO[sub 2] (50--72 wt %). Phase 2 rocks, which plot between phase 2 MME and MME-free phase 3 granodiorite, represent hybrid magmas formed by mixing of mantle and crustal derived magmas. Phase 1 gabbro falls off isotope-SiO[sub 2] trends and represents a separate mantle derived magma. The 13.2 Ma Wilson Ridge pluton (WRP), <20 km north of MPP, is cogenetic with the river Mountains volcano (RMV). In WRP an early diorite was intruded by a suite of monzodiorite to quartz monzonite. The monzodiorite portion contains MME and mafic schlieren representing mingled and mixed mafic magmas. The WRP and MPP represent two closely spaced isotopically distinct and separate magma systems. There are five magma sources. The two felsic mixing end members represent two different crustal magma sources. Two mantle sources are presented by MPP phase 1 gabbro and phase 2 MME, reflecting lithospheric and asthenospheric components, respectively. The latter represents the oldest reported Tertiary asthenospheric component within the region. A single lithospheric mantle source, different from the MPP gabbro, is indicated for the mafic mixing end member in the WRP-RMV suite.

  16. Quantitative Identification and Analysis of Sub-Seismic Extensional Structure System: Technique Schemes and Processes

    NASA Astrophysics Data System (ADS)

    Ou, C.; Chen, W.

    2014-12-01

    Quantitative characterization of complex sub-seismic extensional structure system that essentially controls petroleum exploitation is difficult to implement in seismic profile interpretation. This research, based on a case study in block M of Myanmar, established a set of quantitative treatment schemes and technique processes for the identification of sub-seismic low-displacement (SSLD) extensional faults or fractures upon structural deformation restoration and geometric inversion. Firstly, the master-subsidiary inheritance relations and configuration characterization of the seismic-scale extensional fault systems are determined by analyzing the structural pattern. Besides, three-dimensional (3D) pattern and characteristics of the seismic-scale extensional structure have been illustrated by 3D structure model built upon seismic sections. Moreover, according to the dilatancy obtained from structural restoration on the basis of inclined shear method, as well as the fracture-flow index, potential SSLD extensional faults or fractures have been quantitatively identified. Application of the technique processes to the sub-seismic low-displacement extensional structures in block M in Myanmar is instructive to quantitatively interpret those SSLD extensional structure systems in practice. The work was supported by National Basic Research Program of China (2014CB239205) and the National Science and Technology Major Project of China (20011ZX05030-005-003).

  17. Quantitative identification and analysis of sub-seismic extensional structure system: technique schemes and processes

    NASA Astrophysics Data System (ADS)

    Chenghua, Ou; Chen, Wei; Ma, Zhonggao

    2015-06-01

    Quantitative characterization of complex sub-seismic extensional structure system that essentially controls petroleum exploitation is difficult to implement in seismic profile interpretation. This research, based on a case study in block M of Myanmar, established a set of quantitative treatment schemes and technique processes for the identification of sub-seismic low-displacement (SSLD) extensional faults or fractures upon structural deformation restoration and geometric inversion. Firstly, the master-subsidiary inheritance relations and configuration of the seismic-scale extensional fault systems are determined by analyzing the structural pattern. Besides, three-dimensional (3D) pattern and characteristics of the seismic-scale extensional structure have been illustrated by a 3D structure model built upon seismic sections. Moreover, according to the dilatancy obtained from structural restoration on the basis of inclined shear method, as well as the fracture-flow index, potential SSLD extensional faults or fractures have been quantitatively identified. Application of the technique processes to the sub-seismic low-displacement extensional structures in block M in Myanmar is instructive to quantitatively interpret those SSLD extensional structure systems in practice.

  18. Monitoring natural and artificial radioactivity enhancement in the Aegean Sea using floating measuring systems.

    PubMed

    Tsabaris, C

    2008-11-01

    In the present work, the enhancement of radioactivity due to rainfall in the Aegean Sea using floating measuring systems was observed and quantified. The data were acquired with a NaI underwater detection system, which was installed on a floating measuring system at a depth of 3m. The results of natural and artificial radioactivity are discussed taking into account the rainfall intensity and wind direction. The activity concentration of (214)Bi increased up to (991+/-102)Bq/m(3) after strong rainfall in the North Aegean Sea in winter (humid period) with east wind direction. On other hand, the maximum activity concentration reached the level of (110+/-10)Bq/m(3) in summer (dry period) during south winds. PMID:18495486

  19. The Effect of Step-Stretch Parameters on Capillary Breakup Extensional Rheology (CaBER) Measurements

    NASA Astrophysics Data System (ADS)

    Rothstein, Jonathan P.; Miller, Erik; Moldenaers, Paula; Clasen, Christian

    2008-07-01

    Extensional rheometry has only recently been developed into a commercially available tool with the introduction of the capillary breakup extensional rheometer (CaBER). CaBER is currently being used to measure the transient extensional viscosity evolution of mid to low-viscosity viscoelastic fluids. The elegance of capillary breakup extensional experiments lies in the simplicity of the procedure. An initial step-strain is applied to generate a fluid filament. What follows is a self-driven uniaxial extensional flow in which surface tension is balanced by the extensional stresses resulting from the capillary thinning of the liquid bridge. In this paper, we present a series of experiments in which the step-strain parameters of final length and the extension rate of the stretch were varied and their effects on the measured extensional viscosity and extensional relaxation time were recorded. To focus on the parameter effects, well-characterized surfactant wormlike micelle solutions, polymer solutions and immiscible polymer blends were used to include a range of characteristic relaxation times and morphologies. Our experimental results demonstrate a strong dependence of extensional rheology on step-stretch conditions. In addition, numerical simulations were performed using the appropriate constitutive models to assist in both the interpretation of the CaBER results and the optimization of the experimental protocol. From our results, it is clear that any rheological results obtained using the CaBER technique must be properly considered in the context of the stretch parameters and the effects that pre-conditioning has on viscoelastic fluids.

  20. Shear History Extensional Rheology Experiment: A Proposed ISS Experiment

    NASA Technical Reports Server (NTRS)

    Hall, Nancy R.; Logsdon, Kirk A.; Magee, Kevin S.

    2007-01-01

    The Shear History Extensional Rheology Experiment (SHERE) is a proposed International Space Station (ISS) glovebox experiment designed to study the effect of preshear on the transient evolution of the microstructure and viscoelastic tensile stresses for monodisperse dilute polymer solutions. Collectively referred to as Boger fluids, these polymer solutions have become a popular choice for rheological studies of non-Newtonian fluids and are the non-Newtonian fluid used in this experiment. The SHERE hardware consists of the Rheometer, Camera Arm, Interface Box, Cabling, Keyboard, Tool Box, Fluid Modules, and Stowage Tray. Each component will be described in detail in this paper. In the area of space exploration, the development of in-situ fabrication and repair technology represents a critical element in evolution of autonomous exploration capability. SHERE has the capability to provide data for engineering design tools needed for polymer parts manufacturing systems to ensure their rheological properties have not been impacted in the variable gravity environment and this will be briefly addressed.

  1. Cell stretching in extensional flows for assaying cell mechanics

    NASA Astrophysics Data System (ADS)

    Gossett, Daniel; Tse, Henry; Adeyiga, Oladunni; Yang, Otto; Rao, Jianyu; di Carlo, Dino

    2013-03-01

    There is growing evidence that cell deformability is a useful indicator of cell state and may be a label-free biomarker of metastatic potential, degree of differentiation, and leukocyte activation. In order for deformability measurements to be clinically valuable given the heterogeneity of biological samples, there exists a need for a high-throughput assay of this biophysical property. We developed a robust method for obtaining high-throughput (>1,000 cells/sec) single-cell mechanical measurements which employs coupled hydrodynamic lift forces and curvature-induced secondary flows to uniformly position cells in flow, extensional flow stretching, high-speed imaging, and automated image analysis to extract diameter and deformability parameters. Using this method we have assayed numerous in vitro models of cellular transformations and clinical fluids where malignant cells manifest. We found transformations associated with increased motility or invasiveness increased deformability and the presence of large and deformable cells within clinical pleural fluids correlated well with cytological diagnoses of malignancy. This agrees with the hypothesis that cancerous cells are deformable by necessity-to be able to transverse tight endothelial gaps and invade tissues.

  2. Propagation of extensional waves in a piezoelectric semiconductor rod

    NASA Astrophysics Data System (ADS)

    Zhang, C. L.; Wang, X. Y.; Chen, W. Q.; Yang, J. S.

    2016-04-01

    We studied the propagation of extensional waves in a thin piezoelectric semiconductor rod of ZnO whose c-axis is along the axis of the rod. The macroscopic theory of piezoelectric semiconductors was used which consists of the coupled equations of piezoelectricity and the conservation of charge. The problem is nonlinear because the drift current is the product of the unknown electric field and the unknown carrier density. A perturbation procedure was used which resulted in two one-way coupled linear problems of piezoelectricity and the conservation of charge, respectively. The acoustic wave and the accompanying electric field were obtained from the equations of piezoelectricity. The motion of carriers was then determined from the conservation of charge using a trigonometric series. It was found that while the acoustic wave was approximated by a sinusoidal wave, the motion of carriers deviates from a sinusoidal wave qualitatively because of the contributions of higher harmonics arising from the originally nonlinear terms. The wave crests become higher and sharper while the troughs are shallower and wider. This deviation is more pronounced for acoustic waves with larger amplitudes.

  3. Evolution of freshwater crab diversity in the Aegean region (Crustacea: Brachyura: Potamidae).

    PubMed

    Jesse, Ruth; Grudinski, Melanie; Klaus, Sebastian; Streit, Bruno; Pfenninger, Markus

    2011-04-01

    The aim of this study was to estimate the influence of the palaeogeographic and climatic history of the Aegean region on the diversity of freshwater crabs of the genus Potamon and to test whether this area served as source or reservoir in species diversity. Necessary species delimitation was accomplished by phylogenetic analyses of the mitochondrial markers COX1 and ND1, partial 16S rRNA gene and the tRNALeu gene. We found 14 genetic lineages of which nine could be assigned to previously recognised species. Temporal estimates of the splitting pattern in the phylogeny of Potamon indicated that a combination of geological and climatic events influenced their diversification. Within Potamon, the lineages separated into a western group and an eastern group. This first split in the genus occurred approximately 8.3-5.5 Mya, thus possibly correlated with the Messinian salinity crisis. A likelihood approach to geographic range evolution suggested for most species, occurring in the Aegean area, an origin in the Middle East. Moreover, there were no insular endemics in the central Aegean archipelago, therefore low sea-levels during the Pleistocene glacial periods possibly enabled dispersal to these islands, but subsequent rise in sea-level did not cause speciation. Nevertheless, the diversification of most lineages occurred during the Pleistocene epoch thus coinciding with Quaternary fluctuations of the climate. PMID:21216297

  4. Divergence preceding island formation among Aegean insular populations of the freshwater snail genus Pseudorientalia (Caenogastropoda: Truncatelloidea).

    PubMed

    Szarowska, Magdalena; Hofman, Sebastian; Osikowski, Artur; Falniowski, Andrzej

    2014-10-01

    Freshwater snails that inhabit islands are excellent model organisms for testing relationships between geological events and phylogeography, especially in the Aegean region. Although many Aegean islands were searched in the present study, species of the genus Pseudorientalia were only found on Lesvos, Samos, and Chios. Phylogenetic relationships between specimens living on these three islands were analysed using COI and 16S rRNA molecular markers and morphological data. A high level of diversity was found between islands. Genetic distances between clades showed differences high enough for the samples from different islands to be considered distinct species (p-distance: 0.105-0.133). These results are also supported by obvious morphological differences in shell morphology between islands. The mean divergence time between the Lesvos clade and Samos/Chios clade was 24.13 ± 3.30 Mya; between the Samos and Chios clades the divergence time was 14.80 ± 1.11 Mya. Our data suggest that high divergence may have occurred between Pseudorientalia populations during the Upper and Middle Miocene, when the Aegean region was part of a united landmass. It is possible that the observed highly divergent Pseudorientalia clades are relicts of high regional diversity that existed in the past. PMID:25284387

  5. Large-scale bioprospecting of cyanobacteria, micro- and macroalgae from the Aegean Sea.

    PubMed

    Montalvão, Sofia; Demirel, Zeliha; Devi, Prabha; Lombardi, Valter; Hongisto, Vesa; Perälä, Merja; Hattara, Johannes; Imamoglu, Esra; Tilvi, Supriya Shet; Turan, Gamze; Dalay, Meltem Conk; Tammela, Päivi

    2016-05-25

    Marine organisms constitute approximately one-half of the total global biodiversity, being rich reservoirs of structurally diverse biofunctional components. The potential of cyanobacteria, micro- and macroalgae as sources of antimicrobial, antitumoral, anti-inflammatory, and anticoagulant compounds has been reported extensively. Nonetheless, biological activities of marine fauna and flora of the Aegean Sea have remained poorly studied when in comparison to other areas of the Mediterranean Sea. In this study, we screened the antimicrobial, antifouling, anti-inflammatory and anticancer potential of in total 98 specimens collected from the Aegean Sea. Ethanol extract of diatom Amphora cf capitellata showed the most promising antimicrobial results against Candida albicans while the extract of diatom Nitzschia communis showed effective results against Gram-positive bacterium, S. aureus. Extracts from the red alga Laurencia papillosa and from three Cystoseira species exhibited selective antiproliferative activity against cancer cell lines and an extract from the brown alga Dilophus fasciola showed the highest anti-inflammatory activity as measured in primary microglial and astrocyte cell cultures as well as by the reduction of proinflammatory cytokines. In summary, our study demonstrates that the Aegean Sea is a rich source of species that possess interesting potential for developing industrial applications. PMID:26902670

  6. Focal Mechanisms at the convergent plate boundary in Southern Aegean, Greece.

    NASA Astrophysics Data System (ADS)

    Moshou, Alexandra; Papadimitriou, Eleftheria; Drakatos, George; Evangelidis, Christos; Karakostas, Vasilios; Vallianatos, Filippos; Makropoulos, Konstantinos

    2014-05-01

    Greece is characterized by high seismicity, mainly due to the collision between the European and the African lithospheric plates and the dextral strike slip motion along the North Anatolia Fault zone and North Aegean Trough. The subduction of the Eastern Mediterranean oceanic plate along the Hellenic Arc under the Aegean microplate along with the accompanied roll back of the descending slab is considered the main tectonic feature of the region (Papazachos and Comninakis 1971; Makropoulos and Burton 1984; Papazachos et al. 2000a, b). The divergent motion between the Aegean block and mainland Europe is indicated by an extension zone in the northern Aegean, with Crete and Aegean diverging from mainland Europe at a rate of about 3.5 cm yr-1 with Africa moving northward relative to Europe at a rate of about 1 cm yr-1 (Dewey et al., 1989; Papazachos et al., 1998; Mc-Clusky et al., 2000; Reilinger et al., 2006). In this tectonically complicated area diverge types of deformation are manifested, in addition to the dominant subduction processes. Aiming to shed more light in the seismotectonic properties and faulting seismological data from the Hellenic Unified Seismological Network (HUSN) were selected and analyzed for determining focal mechanisms using the method of moment tensor inversion, additional to the ones being available from the routine moment tensor solutions and several publications. Thus, 31 new fault plane solutions for events with magnitude M>4.0, are presented in this study, by using the software of Ammon (Randall et al., 1995). For this scope the data from at least 4 stations were used with an adequate azimuthal coverage and with an epicentral distance not more than 350 km. The preparation of the data includes the deconvolution of instruments response, then the velocity was integrated to displacement and finally the horizontal components were rotated to radial and transverse. Following, the signal was inverted using the reflectivity method of Kennett (1983

  7. Dynamic linear viscoelastic properties and extensional failure of asphalt binders

    NASA Astrophysics Data System (ADS)

    Ruan, Yonghong

    properties at both high and low temperatures. Polymeric modifiers improve asphalt binders' ductility greatly, improvement that diminishes with aging. The extensional flow of modified binders is strikingly different from that of straight asphalts.

  8. Shear History Extensional Rheology Experiment II (SHERE II) Microgravity Rheology with Non-Newtonian Polymeric Fluids

    NASA Technical Reports Server (NTRS)

    Jaishankar, Aditya; Haward, Simon; Hall, Nancy Rabel; Magee, Kevin; McKinley, Gareth

    2012-01-01

    The primary objective of SHERE II is to study the effect of torsional preshear on the subsequent extensional behavior of filled viscoelastic suspensions. Microgravity environment eliminates gravitational sagging that makes Earth-based experiments of extensional rheology challenging. Experiments may serve as an idealized model system to study the properties of lunar regolith-polymeric binder based construction materials. Filled polymeric suspensions are ubiquitous in foods, cosmetics, detergents, biomedical materials, etc.

  9. A detailed seismic zonation model for shallow earthquakes in the broader Aegean area

    NASA Astrophysics Data System (ADS)

    Vamvakaris, D. A.; Papazachos, C. B.; Papaioannou, Ch. A.; Scordilis, E. M.; Karakaisis, G. F.

    2016-01-01

    In the present work we propose a new seismic zonation model of area type sources for the broader Aegean area, which can be readily used for seismic hazard assessment. The definition of this model is based not only on seismicity information but incorporates all available seismotectonic and neotectonic information for the study area, in an attempt to define zones which show not only a rather homogeneous seismicity release but also exhibit similar active faulting characteristics. For this reason, all available seismological information such as fault plane solutions and the corresponding kinematic axes have been incorporated in the analysis, as well as information about active tectonics, such as seismic and active faults. Moreover, various morphotectonic features (e.g. relief, coastline) were also considered. Finally, a revised seismic catalogue is employed and earthquake epicentres since historical times (550 BC-2008) are employed, in order to define areas of common seismotectonic characteristics, that could constitute a discrete seismic zone. A new revised model of 113 earthquake seismic zones of shallow earthquakes for the broader Aegean area is finally proposed. Using the proposed zonation model, a detailed study is performed for the catalogue completeness for the recent instrumental period.Using the defined completeness information, seismicity parameters (such as G-R values) for the 113 new seismic zones have been calculated, and their spatial distribution was also examined. The spatial variation of the obtained b values shows an excellent correlation with the geotectonic setting in the area, in good agreement with previous studies. Moreover, a quantitative estimation of seismicity is performed in terms of the mean return period, Tm, of large (M ≥ 6.0) earthquakes, as well as the most frequent maximum magnitude, Mt, for a typical time period (T = 50 yr), revealing significant spatial variations of seismicity levels within the study area. The new proposed

  10. Zircon crystallization and recycling in the magma chamber of the rhyolitic Kos Plateau Tuff (Aegean arc)

    USGS Publications Warehouse

    Bachman, O.; Charlier, B.L.A.; Lowenstern, J. B.

    2007-01-01

    In contrast to most large-volume silicic magmas in continental arcs, which are thought to evolve as open systems with significant assimilation of preexisting crust, the Kos Plateau Tuff magma formed dominantly by crystal fractionation of mafic parents. Deposits from this ~60 km3 pyroclastic eruption (the largest known in the Aegean arc) lack xenocrystic zircons [secondary ion mass spectrometry (SIMS) U-Pb ages on zircon cores never older than 500 ka] and display Sr-Nd whole-rock isotopic ratios within the range of European mantle in an area with exposed Paleozoic and Tertiary continental crust; this evidence implies a nearly closed-system chemical differentiation. Consequently, the age range provided by zircon SIMS U-Th-Pb dating is a reliable indicator of the duration of assembly and longevity of the silicic magma body above its solidus. The age distribution from 160 ka (age of eruption by sanidine 40Ar/39Ar dating; Smith et al., 1996) to ca. 500 ka combined with textural characteristics (high crystal content, corrosion of most anhydrous phenocrysts, but stability of hydrous phases) suggest (1) a protracted residence in the crust as a crystal mush and (2) rejuvenation (reduced crystallization and even partial resorption of minerals) prior to eruption probably induced by new influx of heat (and volatiles). This extended evolution chemically isolated from the surrounding crust is a likely consequence of the regional geodynamics because the thinned Aegean microplate acts as a refractory container for magmas in the dying Aegean subduction zone (continent-continent subduction).

  11. Zircon crytallization and recycling in the magma chamber of the rhyolitic Kos Plateau Tuff (Aegean arc)

    USGS Publications Warehouse

    Bachman, O.; Charlier, B.L.A.; Lowenstern, J. B.

    2007-01-01

    In contrast to most large-volume silicic magmas in continental arcs, which are thought to evolve as open systems with significant assimilation of preexisting crust, the Kos Plateau Miff magma formed dominantly by crystal fractionation of mafic parents. Deposits from this ??? 60 km3 pyroclastic eruption (the largest known in the Aegean arc) lack xenocrystic zircons [secondary ion mass spectrometry (SIMS) U-Pb ages on zircon cores never older than 500 ka] and display Sr-Nd whole-rock isotopic ratios within the range of European mantle in an area with exposed Paleozoic and Tertiary continental crust; this evidence implies a nearly closed-system chemical differentiation. Consequently, the age range provided by zircon SIMS U-Th-Pb dating is a reliable indicator of the duration of assembly and longevity of the silicic magma body above its solidus. The age distribution from 160 ka (age of eruption by sanidine 40Ar/39Ar dating; Smith et al., 1996) to ca. 500 ka combined with textural characteristics (high crystal content, corrosion of most anhydrous phenocrysts, but stability of hydrous phases) suggest (1) a protracted residence in the crust as a crystal mush and (2) rejuvenation (reduced crystallization and even partial resorption of minerals) prior to eruption probably induced by new influx of heat (and volatiles). This extended evolution chemically isolated from the surrounding crust is a likely consequence of the regional geodynamics because the thinned Aegean microplate acts as a refractory container for magmas in the dying Aegean subduction zone (continent-continent subduction). ?? 2007 Geological Society of America.

  12. Modelling the impact of Black Sea water inflow on the North Aegean Sea hydrodynamics

    NASA Astrophysics Data System (ADS)

    Tzali, Margarita; Sofianos, Sarantis; Mantziafou, Anneta; Skliris, Nikolaos

    2010-06-01

    The impact of the Black Sea Water (BSW) inflow on the circulation and the water mass characteristics of the North Aegean Sea is investigated using a high-resolution 3D numerical model. Four climatological numerical experiments are performed exploring the effects of the exchange amplitude at the Dardanelles Straits in terms of the mean annual volume exchanged and the amplitude of its seasonal cycle. Larger inflow of low salinity BSW influences the water characteristics of the whole basin. The largest salinity reduction is encountered in the upper layers of the water column, and the most affected region is the northeastern part of the basin. The winter insulation character of the BSW layer (low-salinity layer) is reduced by the seasonal cycle of the inflow (minimum during winter). The maximum atmospheric cooling coincides with the minimum BSW inflow rate, weakening the vertical density gradients close to the surface and thus facilitating the vertical mixing. The inflow rate of BSW into the North Aegean Sea constitutes an essential factor for the circulation in the basin. Increased inflow rate results into considerably higher kinetic energy, stronger circulation and reinforcement of the mesoscale circulation features. Although the position of the front between BSW and waters of Levantine origin does not vary significantly with the intensity of the BSW inflow rate, the flow along the front becomes stronger and more unstable as the inflow rate increases, forming meanders and rings. The changes in the intensity of BSW inflow rate overpower the wind and thermohaline forcing and largely determine the general circulation of the North Aegean Sea.

  13. Monitoring seismic velocity changes caused by the 2014 Northern Aegean earthquake using continuous ambient noise records

    NASA Astrophysics Data System (ADS)

    Evangelidis, Christos; Daskalakis, Emmanouil; Tsogka, Chrysoula

    2016-04-01

    The 24 May 2014 Northern Aegean earthquake (6.9 Mw), an event on the Northern Aegean Trough (NAT), ruptured on two different fault segments with a total ruptured length of ~100 km. For the second delayed segment, rupture propagated eastward from the hypocenter for ˜65 km with a supershear velocity (5.5 km/s). Low-aftershock seismicity on the supershear segment implies a simple and linear fault geometry there. An effort to monitor temporal seismic velocity changes across the ruptured area of the Northern Aegean earthquake is underway. In recent years, neighboring seismic broadband stations near active faults have been successfully used to detect such changes. The crosscorrelation functions (CCF) of ambient noise records between stations yields the corresponding traveltimes for those inter-station paths. Moreover, the auto-correlation functions (ACF) at each station produce the seismic responce for a coincident source and receiver position. Possible temporal changes of the measured traveltimes from CCFs and ACFs correspond to seismic velocity changes. Initially, we investigate the characteristics and sources of the ambient seismic noise as recorded at permanent seismic stations installed around NAT at the surrounding islands and in mainland Greece and Turkey. The microseismic noise levels show a clear seasonal variation at all stations. The noise levels across the double frequency band (DF; period range 4-8 s) reflect the local sea-weather conditions within a range of a few hundred kilometers. Three years of continuous seismic records framing the main shock have been analysed from ~15 stations within a radius of 100 km from the epicentre. We observe a clear decrease of seismic velocities most likely corresponding to the co-seismic shaking. The spatial variation of this velocity drop is imaged from all inter-station paths that correspond to CCF measurements and for station sites that correspond to ACF measurements. Thus, we explore a possible correlation between co

  14. Three-dimensional instantaneous dynamics modeling of present-day Aegean subduction

    NASA Astrophysics Data System (ADS)

    Glerum, Anne; Thieulot, Cedric; Pranger, Casper; van Hinsbergen, Douwe; Fraters, Menno; Spakman, Wim

    2015-04-01

    The Aegean region (Eastern Mediterranean) is exemplary of the interaction between crustal tectonics, plate motion, subduction and mantle flow: African subduction underneath the region has been continuous for at least the last 100 My, leading to about 2100-2500 km of subducted lithosphere residing in the mantle (van Hinsbergen et al., 2005). During this subduction, decoupled upper continental and oceanic crust accreted into a wedge of stacked nappes. In turn, these nappes have been significantly extended, predominantly during the last 25 My, due to the retreat of the African slab relative to Eurasia (van Hinsbergen and Schmid, 2012). As a first step to better understanding the coupling of the tectonic evolution of the crust and the underlying mantle dynamics, we are developing 3-D numerical models of the instantaneous dynamics of the present-day Aegean subduction system using the finite element code ASPECT (Kronbichler et al., 2012). The instantaneous models are set up with initial slab geometries derived from tomography and realistic plate boundary configurations and incorporate the major crustal weak zones of the overriding plate. Our modeling results in predictions of flow fields and stress, strain rate and rotation rate fields for the present-day tectonic setting of the Aegean region. By comparing our various model predictions to the widely available observations, such as focal mechanisms, GPS velocities and seismic anisotropy, we aim at an improved understanding of how mantle flow, subduction morphology and possibly slab segmentation, as well as the rheological behavior of the overriding plate, control present-day tectonic deformation. We expect to show preliminary results of this comparison. Kronbichler, M., Heister, T. and Bangerth, W. (2012), High Accuracy Mantle Convection Simulation through Modern Numerical Methods, Geophysical Journal International, 191, 12-29. Van Hinsbergen, D. J. J., Hafkenscheid, E., Spakman, W., Meulenkamp, J. E. and Wortel, R. (2005

  15. Recent extensional tectonics on the Moon revealed by the Lunar Reconnaissance Orbiter Camera

    NASA Astrophysics Data System (ADS)

    Watters, Thomas R.; Robinson, Mark S.; Banks, Maria E.; Tran, Thanh; Denevi, Brett W.

    2012-03-01

    Large-scale expressions of lunar tectonics--contractional wrinkle ridges and extensional rilles or graben--are directly related to stresses induced by mare basalt-filled basins. Basin-related extensional tectonic activity ceased about 3.6 Gyr ago, whereas contractional tectonics continued until about 1.2 Gyr ago. In the lunar highlands, relatively young contractional lobate scarps, less than 1 Gyr in age, were first identified in Apollo-era photographs. However, no evidence of extensional landforms was found beyond the influence of mare basalt-filled basins and floor-fractured craters. Here we identify previously undetected small-scale graben in the farside highlands and in the mare basalts in images from the Lunar Reconnaissance Orbiter Camera. Crosscut impact craters with diameters as small as about 10m, a lack of superposed craters, and graben depths as shallow as ~1m suggest these pristine-appearing graben are less than 50 Myr old. Thus, the young graben indicate recent extensional tectonic activity on the Moon where extensional stresses locally exceeded compressional stresses. We propose that these findings may be inconsistent with a totally molten early Moon, given that thermal history models for this scenario predict a high level of late-stage compressional stress that might be expected to completely suppress the formation of graben.

  16. New discovery and geological significance of Late Silurian-Carboniferous extensional structures in Tarim Basin

    NASA Astrophysics Data System (ADS)

    Li, Yue-Jun; Wen, Lei; Yang, Hai-Jun; Zhang, Guang-Ya; Shi, Jun; Peng, Geng-Xin; Hu, Jian-Feng; Luo, Jun-Cheng; Huang, Zhi-Bin; Chen, Yan-Gui; Zhang, Qiang

    2015-02-01

    Late Silurian-Carboniferous extensional structures have been discovered after careful interpretation of seismic reflection data in western Manjiaer Sag, Central Tarim Basin in central Asia. The extensional structures comprise numerous small normal faults in nearly N-S strike direction. Groups of normal faults in profile show features suggestive of negative flower structures and small horst-graben structures. Based on growth index calculation, these extensional structures formed in the Late Silurian period, continued activity in the Devonian and Carboniferous and then ceased at the end of Carboniferous. The peak-stage of normal fault activity occurred in Late Silurian. Late Silurian-Carboniferous normal faults also developed in the Tazhong and Tabei areas, which implies that Tarim Basin were under regional extensional tectonic setting during that periods. The extensional structure in southern Tarim resulted from the post-orogeny stress relaxation of the Kunlun Early Paleozoic orogenic belt, and those in northern Tarim resulted from the Paleozoic back-arc rifting which led to the opening of South Tianshan ocean.

  17. Nappe-Bounding Shear Zones Initiated On Syn-Tectonic, Pegmatite-Filled Extensional Shear Fractures During Deep-Crustal Nappe Flow In A Large Hot Orogen

    NASA Astrophysics Data System (ADS)

    Culshaw, Nicholas; Gerbi, Christopher; Marsh, Jeffrey; Regan, Peter

    2014-05-01

    The Central Gneiss Belt (CGB) of the Proterozoic western Grenville Province is an extensive exposure of the mid-crustal levels (upper amphibolite facies, lesser granulites) of a large hot orogen. Numerical models give a credible prediction of structure and metamorphism accompanying CGB deep-crustal nappe flow and define a temporal framework based on four developmental phases: thickening, heating, nappe-flow and post convergence extensional spreading. These phases are diachronous in direction of orogen propagation and imply a spatial framework: externides (close to orogen-craton boundary) containing moderately inclined thickening and/or extensional structures, and internides containing thickening structures overprinted by sub-horizontal nappe flow structures, which may be locally overprinted by those due to extensional spreading. Although on average of granitoid composition, CGB nappes differ in rheology, varying from fertile and weak (unmetamorphosed before Grenville, meltable) to infertile and strong (metamorphosed at high grade before Grenville, unmeltable) or mixed fertile-infertile protoliths. Deformation style varies from diffuse in fertile nappes, weakened by pervasive melting, to localised in shear zones on boundaries or interiors of infertile nappes. Specifically, in terms of deformation phase and location within the orogen, shear zones occur as: thickening structures of externides, early thickening- and later overprinting nappe-flow structures of infertile internide nappes, and extension-related shear zones in externides and internides. Many of the nappe-flow shear zones of the internides are associated with pegmatites. One example has been recognized of a preserved progression from small-scale fracture arrays to regional shear zone. The sequence is present on a km-scale and initiates in the interior of a nappe of layered granulite with arrays of pegmatite filled extensional-shear fractures (mm to cm width) displaying amphibolized margins. The fracture

  18. Waterspouts of the Adriatic, Ionian and Aegean Sea and their meteorological environment

    NASA Astrophysics Data System (ADS)

    Sioutas, Michalis V.; Keul, Alexander G.

    2007-02-01

    The synoptic and mesoscale conditions associated with waterspout occurrence in the Adriatic, Ionian and Aegean Sea are examined in an attempt to quantitatively assess the meteorological environment favourable to the development of waterspouts. For this study, synoptic circulation patterns have been examined for 28 waterspout events in the central-eastern Mediterranean. The waterspouts were reported within the summer and fall of 2002, from July to November, a period of unusually high whirlwind activity. The Adriatic was most active during July, August and September and the Ionian and Aegean during September, October and November. Of the examined waterspout cases, 13 out of the total of 28 were found to be fair-weather waterspouts, while 15 represent tornadic events. For waterspout days, the frequency and distribution of four basic synoptic types, namely, south-west flow (SW), long-wave trough (LW), closed low (CLOSED) and short-wave trough (SWT), were investigated. The particular synoptic features that contributed to the development of waterspout activity were examined, based on five selected waterspout case studies. The mesoscale environment was explored using thermodynamic indices, moisture and wind parameters as derived by operational soundings from the nearest sites (preferably upwind) and closest in time to the waterspout occurrences. The results present an analysis of waterspout types in conjunction to thermodynamic and wind parameters for the purpose of determining synoptic patterns and mesoscale conditions most relevant to waterspout occurrences in these sea areas of the Mediterranean.

  19. The Etesian wind system and wind energy potential over the Aegean Sea

    NASA Astrophysics Data System (ADS)

    Dafka, Stella; Xoplaki, Elena; Garcia-Bustamante, Elena; Toreti, Andrea; Zanis, Prodromos; Luterbacher, Juerg

    2013-04-01

    The Mediterranean region lies in an area of great climatic interest since it is influenced by some of the most relevant mechanisms of the global climate system. In the frame of the three Europe 2020 priorities for a smart, sustainable and inclusive economy delivering high levels of employment, productivity and social cohesion, the Mediterranean energy plan is of paramount importance at the European level, being an area with a significant potential for renewable energy from natural sources that could play an important role in responding to climate change effects over the region. We present preliminary results on a study of the Etesian winds in the past, present and future time. We investigate the variability and predictability of the wind field over the Aegean. Statistical downscaling based on several methodologies will be applied (e.g. canonical correlation analysis and multiple linear regression). Instrumental time series, Era-Interim and the 20CR reanalyses will be used. Large-scale climate drivers as well as the influence of local/regional factors and their interaction with the Etesian wind field will be addressed. Finally, the Etesian wind resources on the present and future climate will be assessed in order to identify the potential areas suitable for the establishment of wind farms and the production of wind power in the Aegean Sea.

  20. Volcano-tectonic evolution of the polygenetic Kolumbo submarine volcano/Santorini (Aegean Sea)

    NASA Astrophysics Data System (ADS)

    Hübscher, Christian; Ruhnau, M.; Nomikou, P.

    2015-01-01

    Here we show for the first time the 3D-structural evolution of an explosive submarine volcano by means of reflection seismic interpretation. Four to five vertically stacked circular and cone-shaped units consisting mainly of volcaniclastics build the Kolumbo underwater volcano which experienced its first eruption > 70 ka ago and its last explosive eruption 1650 AD, 7 km NE of Santorini volcano (southern Aegean Sea). The summed volume of volcaniclastics is estimated to range between 13-22 km3. The entire Kolumbo volcanic complex has a height of ≥ 1 km and a diameter of ≥ 11 km. All volcaniclastic units reveal the same transparent reflection pattern strongly suggesting that explosive underwater volcanism was the prevalent process. Growth faults terminate upwards at the base of volcaniclastic units, thus representing a predictor to an eruption phase. Similarities in seismic reflection pattern between Kolumbo and near-by volcanic cones imply that the smaller cones evolved through explosive eruptions as well. Hence, the central Aegean Sea experienced several more explosive eruptions (≥ 23) than previously assumed, thus justifying further risk assessment. However, the eruption columns from the smaller volcanic cones did not reach the air and- consequently - no sub-aerial pyroclastic surge was created. The Anydros basin that hosts Kolumbo volcanic field opened incrementally NW to SE and parallel to the Pliny and Strabo trends during four major tectonic pulses prior to the onset of underwater volcanism.

  1. Habitat Selection and Temporal Abundance Fluctuations of Demersal Cartilaginous Species in the Aegean Sea (Eastern Mediterranean)

    PubMed Central

    Maravelias, Christos D.; Tserpes, George; Pantazi, Maria; Peristeraki, Panagiota

    2012-01-01

    Predicting the occurrence of keystone top predators in a multispecies marine environment, such as the Mediterranean Sea, can be of considerable value to the long-term sustainable development of the fishing industry and to the protection of biodiversity. We analysed fisheries independent scientific bottom trawl survey data of two of the most abundant cartilaginous fish species (Scyliorhinus canicula, Raja clavata) in the Aegean Sea covering an 11-year sampling period. The current findings revealed a declining trend in R. clavata and S. canicula abundance from the late ′90 s until 2004. Habitats with the higher probability of finding cartilaginous fish present were those located in intermediate waters (depth: 200–400 m). The present results also indicated a preferential species' clustering in specific geographic and bathymetric regions of the Aegean Sea. Depth appeared to be one of the key determining factors for the selection of habitats for all species examined. With cartilaginous fish species being among the more biologically sensitive fish species taken in European marine fisheries, our findings, which are based on a standardized scientific survey, can contribute to the rational exploitation and management of their stocks by providing important information on temporal abundance trends and habitat preferences. PMID:22536389

  2. Eltrombopag for the Treatment of Immune Thrombocytopenia: The Aegean Region of Turkey Experience

    PubMed Central

    Özdemirkıran, Füsun; Payzın, Bahriye; Kiper, H. Demet; Kabukçu, Sibel; Akgün Çağlıyan, Gülsüm; Kahraman, Selda; Sevindik, Ömür Gökmen; Ceylan, Cengiz; Kadıköylü, Gürhan; Şahin, Fahri; Keskin, Ali; Arslan, Öykü; Özcan, Mehmet Ali; Görgün, Gülnur; Bolaman, Zahit; Büyükkeçeçi, Filiz; Bilgir, Oktay; Alacacıoğlu, İnci; Vural, Filiz; Tombuloğlu, Murat; Gökgöz, Zafer; Saydam, Güray

    2015-01-01

    Objective: Immune thrombocytopenia (ITP) is an immune-mediated disease characterized by transient or persistent decrease of the platelet count to less than 100x109/L. Although it is included in a benign disease group, bleeding complications may be mortal. With a better understanding of the pathophysiology of the disease, thrombopoietin receptor agonists, which came into use in recent years, seem to be an effective option in the treatment of resistant cases. This study aimed to retrospectively assess the efficacy, long-term safety, and tolerability of eltrombopag in Turkish patients with chronic ITP in the Aegean region of Turkey. Materials and Methods: Retrospective data of 40 patients with refractory ITP who were treated with eltrombopag in the Aegean region were examined and evaluated. Results: The total rate of response was 87%, and the median duration of response defined as the number of the platelets being over 50x109/L was 19.5 (interquartile range: 5-60) days. In one patient, venous sinus thrombosis was observed with no other additional risk factors due to or related to thrombosis. Another patient with complete response and irregular follow-up for 12 months was lost due to sudden death as the result of probable acute myocardial infarction. Conclusion: Although the responses to eltrombopag were satisfactory, patients need to be monitored closely for overshooting platelet counts as well as thromboembolic events. PMID:25914025

  3. Trichoptera biodiversity of the Aegean and Adriatic sea basins in the republic of Kosovo.

    PubMed

    Ibrahimi, Halil; Kučinić, Mladen; Gashi, Agim; Grapci-Kotori, Linda

    2014-01-01

    We present the first preliminary inventory of Trichoptera taxa in the Aegean and Adriatic Sea basins in Kosovo that have previously received poor and fragmentary attention. Adult caddisflies were collected using ultraviolet (UV) light traps in 13 stations in areas of the Aegean Sea and Adriatic Sea drainage basins in Kosovo. Nineteen species out of 82, reported in this article, are first records for the Kosovo caddisfly fauna. Five genera are recorded for the first time in Kosovo: Brachycentrus, Ecclisopteryx, Psilopteryx, Thremma, and Oecetis. During this investigation, we found several Southeastern European endemic and rare species whose previous known distribution was limited to particular areas of this region, as well as other species whose distribution is considerably enlarged by this investigation: Polycentropus ierapetra, Polycentropus irroratus, Chaetopteryx stankovici, Drusus schmidi, Drusus tenellus, Potamophylax goulandriourum, Oecetis notata, and Notidobia melanoptera. Even though this article is a result of a limited sampling effort, it increases the number of Trichoptera taxa recorded for the Republic of Kosovo to 131. PMID:25434031

  4. Vertical distribution of marine cyanobacteria Synechococcus spp. in the Black, Marmara, Aegean, and eastern Mediterranean seas

    NASA Astrophysics Data System (ADS)

    Uysal, Zahit

    2006-08-01

    The vertical distributions of the unicellular cyanobacteria Synechococcus were studied in several highly contrasting seas: the Black Sea, Sea of Marmara, Aegean Sea, and Mediterranean Sea. Cell abundances varied significantly on both vertical and horizontal scales in all physically and spatially discrete water masses. Epifluorescence microscope cell counts from all seas clearly showed that majority of the population remains suspended in the surface-mixed layer and decreases gradually towards the base of the euphotic zone. Surface spatial distributions in the Black Sea were heterogeneous. Salinity, rather than temperature, seemed to have the greatest impact on the surface distribution of cells in this highly eutrophic sea. Changes in abundance in the mixed layer were small compared to the abrupt changes below the halocline, especially in the Black Sea and the Sea of Marmara. In contrast to the Black Sea, the major population remains suspended above the depth of fluorescence maximum in the Aegean and eastern Mediterranean seas. Significant correlations ( r>P0.01) were observed between cell counts and physical and chemical parameters with depth in the Black Sea. In all seas, cells at subsurface chlorophyll- a maximum layer (SCML) reflected brighter and longer fluorescence than those present at the surface and below. Cell size derived from flow cytometry indicated the presence of larger cells at the surface mixed layer compared to those at depth.

  5. Capillary break-up, gelation and extensional rheology of hydrophobically modified cellulose ethers

    NASA Astrophysics Data System (ADS)

    Sharma, Vivek; Haward, Simon; Pessinet, Olivia; Soderlund, Asa; Threlfall-Holmes, Phil; McKinley, Gareth

    2012-02-01

    Cellulose derivatives containing associating hydrophobic groups along their hydrophilic polysaccharide backbone are used extensively in the formulations for inks, water-borne paints, food, nasal sprays, cosmetics, insecticides, fertilizers and bio-assays to control the rheology and processing behavior of multi-component dispersions. These complex dispersions are processed and used over a broad range of shear and extensional rates. The presence of hydrophobic stickers influences the linear and nonlinear rheology of cellulose ether solutions. In this talk, we systematically contrast the difference in the shear and extensional rheology of a cellulose ether: ethy-hydroxyethyl-cellulose (EHEC) and its hydrophobically-modified analog (HMEHEC) using microfluidic shear rheometry at deformation rates up to 10^6 inverse seconds, cross-slot flow extensional rheometry and capillary break-up during jetting as a rheometric technique. Additionally, we provide a constitutive model based on fractional calculus to describe the physical gelation in HMEHEC solutions.

  6. Pinch-off dynamics, extensional viscosity and relaxation time of dilute and ultradilute aqueous polymer solutions

    NASA Astrophysics Data System (ADS)

    Biagioli, Madeleine; Dinic, Jelena; Jimenez, Leidy Nallely; Sharma, Vivek

    Free surface flows and drop formation processes present in printing, jetting, spraying, and coating involve the development of columnar necks that undergo spontaneous surface-tension driven instability, thinning, and pinch-off. Stream-wise velocity gradients that arise within the thinning neck create and extensional flow field, which induces micro-structural changes within complex fluids that contribute elastic stresses, changing the thinning and pinch-off dynamics. In this contribution, we use dripping-onto-substrate (DoS) extensional rheometry technique for visualization and analysis of the pinch-off dynamics of dilute and ultra-dilute aqueous polyethylene oxide (PEO) solutions. Using a range of molecular weights, we study the effect of both elasticity and finite extensibility. Both effective relaxation time and the transient extensional viscosity are found to be strongly concentration-dependent even for highly dilute solutions.

  7. Hellenic Seismological Network of Crete (HSNC): a new permanent seismological network in the Southern Aegean

    NASA Astrophysics Data System (ADS)

    Vallianatos, F.

    2009-04-01

    The Aegean region which comprises the Hellenic arc and the adjacent areas of the Greek mainland, the Aegean Sea and western Turkey, is one of the most seismically active zones of the world and the most active in western Eurasia due to the convergence between the African and Eurasian lithospheric plates. The seismic activity especially in the southern Aegean area is very intense and extends up to a depth of about 180 km. The seismicity of South Aegean is extremely high and is characterised by the frequent occurrence of large shallow and intermediate depth earthquakes. Crete marks the forearc high of the modern Hellenic subduction zone in the eastern Mediterranean. In order to in order to provide modern instrumental coverage of seismicity in the South Aegean, as well as some more insight into the stress and deformation fields, tectonics, structure and dynamics of the Hellenic Arc from which will be possible to retrieve information about the rupture process, a seismological network of high dynamic range is installed. It is called HSNC (Hellenic Seismological Network of Crete) and consists of 11 permanent seismological stations equipped with short period and broadband seismographs coupled with 3rd generation 24bit data loggers as well as from 4 accelerographs. HSNC is rapidly expanded and expected to have complete 18 permanent seismological stations and 12 accelerographs by the end of April 2009. Data transmission and telemetry is based on conventional TCP/IP communication using a hybrid network consisting of dedicated wired ADSL links as well as VSAT links by using the private satellite hub located at lab of Geophysics & Seismology (LGS) at Chania, Crete. Data centre is equipped with a high performance computing cluster capable of providing real time estimations as well as to support great number experimental investigations using the on line or offline data streams. Prototype software solutions are developed for monitoring and controlling network elements, to automate

  8. Spatial and temporal relations between coronae and extensional belts, northern Lada Terra, Venus

    NASA Astrophysics Data System (ADS)

    Baer, G.; Schubert, G.; Bindschadler, D. L.; Stofan, E. R.

    1994-04-01

    Preliminary studies of the distribution of coronae and volcanic rises on Venus show that many of these features tend to cluster along zones of rifting and extension. The plains north of Lada Terra are crossed by two such extensional belts. Each belt is composed of grabens, ridges, faults, volcanic flows, coronae and coronalike features. The longer and more prominent belt is the NW trending Alpha-Lada extensional belt, which is over 6000 km long and 50-200 km wide, and includes the coronae Eve, Tamfana, Carpo, Selu, Derceto, Otygen, and an unnamed corona south of Otygen. The second belt is the NNE trending Derceto-Quetzalpetlatl extensional belt, which is about 2000 km long and in places over 300 km wide, and includes the coronae Sarpanitum, Eithinoha, and Quetzalpetlatl. The two belts intersect at the 1600 x 600 km wide Derceto volcanic plateau. It is apparent that deformation along the two belts overlapped in time, though deformation along the Alpha-Lada extensional belt probably continued after the deformation along the Derceto-Quetzalpetlatl extensional belt terminated. In certain areas, volcanism originated in grabens within the extensional belts, whereas in other areas, such as in Eve, Selu, Derceto, and Quetzalpetlatl, volcanism originated in the coronae and flowed into the lower parts of the extensional belts. Regional extension has affected the evolution of all the coronae at some stage of their development. Regional deformation occurred before the initiation of Derceto and Eithinoha of their development. Regional deformation occurred before the initiation of Derceto and Eithinoha and after the initiation of Carpo, Tamfana, Otygen, and Sarpanitum. It is thus unlikely that coronae formation along the belts is solely a consequence of the regional extension, and it is also unlikely that regional extension has been caused solely by the coronae. No corona along the belts was formed subsequent to the cessation of the regional extension. We therefore suggest that

  9. Copepod communities, production and grazing in the Turkish Straits System and the adjacent northern Aegean Sea during spring

    NASA Astrophysics Data System (ADS)

    Zervoudaki, S.; Christou, E. D.; Assimakopoulou, G.; Örek, H.; Gucu, A. C.; Giannakourou, A.; Pitta, P.; Terbiyik, T.; Yϋcel, N.; Moutsopoulos, T.; Pagou, K.; Psarra, S.; Özsoy, E.; Papathanassiou, E.

    2011-06-01

    The Mediterranean and the Black Seas are connected through Bosphorus, Marmara Sea and Dardanelles (Turkish Straits System, TSS). In this study, we examined the spatial distribution of copepods and investigate their production and grazing. The aim was to understand the transfer of phytoplankton/microzooplankton production up the food chain in TSS and Aegean Sea during spring. The phytoplankton and microzooplankton biomass and production showed a clear decreasing trend from Bosphorus to the Aegean Sea, whereas copepod biomass did not reveal any distinct trend and only the number of copepod species increased from Bosphorus to the Aegean Sea. Production of copepods and egg production showed similar trends except for the Bosphorus, where production of copepods was very low due to the low copepod biomass in this area. In all areas, the copepod carbon demand was largely met by phytoplankton and microzooplankton production. However, only a low amount of primary production was consumed by copepods and production appeared to flow mostly through other pathways (microbial loop) and/or sediment on the bottom. The results of this study confirm the hypothesis that there is a substantial differentiation within pelagic food web structure and carbon flow from Bosphorus to the Aegean Sea.

  10. Tsunami Warning System for the Eastern Mediterranean, Aegean and Black Seas

    NASA Astrophysics Data System (ADS)

    Necmioglu, Ocal; Meral Ozel, Nurcan; Kalafat, Dogan; Comoglu, Mustafa; Ozer Sozdinler, Ceren; Yılmazer, Mehmet; Cevdet Yalçıner, Ahmet

    2015-04-01

    Bogazici University - KOERI is providing a Tsunami Warning System to Eastern Mediterranean, Aegean and Black Seas since 1 July 2012 as a Candidate Tsunami Service Provider (CTSP) within the ICG/NEAMTWS Framework. KOERI continues to operate 129 BB and 86 strong motion and 6 short period sensors. The regional coverage includes 77 stations from GFZ and additional 16 stations through bilateral agreements. During 2014, Romania and Russian Federation have subscribed to its services thanks to 2nd Tsunami Exercise of NEAMTWS - NEAMWave14, reaching a total of 11 NEAMTWS Member States as subscribers. No further progress could have been made in 2014 in the integration of the existing national-tide gauge stations due to the updated plans of the General Command of Mapping in charge of the operation of the national tide-gauge network. Collaborative activities with EC-JRC continued where a comprehensive tsunami scenario database for the Eastern Mediterranean, Aegean and Black Seas has been produced. In addition, KOERI also participated in EC-JRCs Global Tsunami Informal Monitoring Service Project and analyzed 16 tsunamigenic events around the globe. CTSP-TR continued to participate in the Communication Test Exercises (CTE) and Regular CTEs (RegCTE), and acted as the Message Provider for the NEAMWave14 Black Sea Scenario, where Black Sea was covered fort he first time in a NEAMTWS Tsunami Exercise. New Operational Centre has been built and full integration is expected in the first half of 2015. Data preparation activities for the inundation maps at TFPs continued. KOERI also continued to improve its TWS through its involvement of EC funded FP-7 Projects ASTARTE and MARSite and currently focuses on a detailed NEAMTWS Performance Monitoring Framework with associated Key Performance Indicators. This presentation provides a status overview of the operational system while focusing on selected events, such as 12 October 2013 Mw 6.6 and 24 May 2014 Mw 6.9 Northern Aegean earthquakes

  11. 8 January 2013 Mw=5.7 North Aegean Sea Earthquake Sequence

    NASA Astrophysics Data System (ADS)

    Kürçer, Akın; Yalçın, Hilal; Gülen, Levent; Kalafat, Doǧan

    2014-05-01

    The deformation of the North Aegean Sea is mainly controlled by the westernmost segments of North Anatolian Fault Zone (NAFZ). On January 8, 2013, a moderate earthquake (Mw= 5.7) occurred in the North Aegean Sea, which may be considered to be a part of westernmost splay of the NAFZ. A series of aftershocks were occurred within four months following the mainschock, which have magnitudes varying from 1.9 to 5.0. In this study, a total of 23 earthquake moment tensor solutions that belong to the 2013 earthquake sequence have been obtained by using KOERI and AFAD seismic data. The most widely used Gephart & Forsyth (1984) and Michael (1987) methods have been used to carry out stress tensor inversions. Based on the earthquake moment tensor solutions, distribution of epicenters and seismotectonic setting, the source of this earthquake sequence is a N75°E trending pure dextral strike-slip fault. The temporal and spatial distribution of earthquakes indicate that the rupture unilaterally propagated from SW to NE. The length of the fault has been calculated as approximately 12 km. using the afterschock distribution and empirical equations, suggested by Wells and Coppersmith (1994). The stress tensor analysis indicate that the dominant faulting type in the region is strike-slip and the direction of the regional compressive stress is WNW-ESE. The 1968 Aghios earthquake (Ms=7.3; Ambraseys and Jackson, 1998) and 2013 North Aegean Sea earthquake sequences clearly show that the regional stress has been transferred from SW to NE in this region. The last historical earthquake, the Bozcaada earthquake (M=7.05) had been occurred in the northeast of the 2013 earthquake sequence in 1672. The elapsed time (342 year) and regional stress transfer point out that the 1672 earthquake segment is probably a seismic gap. According to the empirical equations, the surface rupture length of the 1672 Earthquake segment was about 47 km, with a maximum displacement of 170 cm and average displacement

  12. An alternative approach to probabilistic seismic hazard analysis in the Aegean region using Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Weatherill, Graeme; Burton, Paul W.

    2010-09-01

    The Aegean is the most seismically active and tectonically complex region in Europe. Damaging earthquakes have occurred here throughout recorded history, often resulting in considerable loss of life. The Monte Carlo method of probabilistic seismic hazard analysis (PSHA) is used to determine the level of ground motion likely to be exceeded in a given time period. Multiple random simulations of seismicity are generated to calculate, directly, the ground motion for a given site. Within the seismic hazard analysis we explore the impact of different seismic source models, incorporating both uniform zones and distributed seismicity. A new, simplified, seismic source model, derived from seismotectonic interpretation, is presented for the Aegean region. This is combined into the epistemic uncertainty analysis alongside existing source models for the region, and models derived by a K-means cluster analysis approach. Seismic source models derived using the K-means approach offer a degree of objectivity and reproducibility into the otherwise subjective approach of delineating seismic sources using expert judgment. Similar review and analysis is undertaken for the selection of peak ground acceleration (PGA) attenuation models, incorporating into the epistemic analysis Greek-specific models, European models and a Next Generation Attenuation model. Hazard maps for PGA on a "rock" site with a 10% probability of being exceeded in 50 years are produced and different source and attenuation models are compared. These indicate that Greek-specific attenuation models, with their smaller aleatory variability terms, produce lower PGA hazard, whilst recent European models and Next Generation Attenuation (NGA) model produce similar results. The Monte Carlo method is extended further to assimilate epistemic uncertainty into the hazard calculation, thus integrating across several appropriate source and PGA attenuation models. Site condition and fault-type are also integrated into the hazard

  13. Post-Miocene extension in Central Anatolia; It's linkage to Aegean extension

    NASA Astrophysics Data System (ADS)

    Rojay, Bora; Özsayın, Erman

    2013-04-01

    Post-Miocene extension in Central Anatolia; It's linkage to Aegean extension Anatolian Plate, -where Central Anatolia situated on-, escapes westward onto African plate along Eastern Mediterranean-Cyprus subduction zone, sliding by North and East Anatolian faults. Central Anatolia is bounded by dextral North Anatolian Fault from north, Taurides from south and it is fragmented by strike slip faults evolving under N-S compression in east and by Aegean horst and grabens evolving under N-S extension in west. To be able to delineate and understand the deformational order in Central Anatolia and its linkage to Aegean region, various sectors with the Anatolia are chosen, namely, Ankara region (Beypazarı to Kazan Miocene basins), Eskişehir region (Mihallıçık to İnönü Miocene basins) in Central Anatolia, Gediz-Alaşehir Graben and Efes areas in Western Anatolia are selected. To sum up, in a wide region from Central Anatolia to Western Anatolia, i. Unconformities btw uppermost Late Miocene and Plio-Quaternary, and btw Plio-Quaternary and Quaternary are clearly identified in both regions, ii) ENE-WSW to N-S compression (intense post-Late Miocene - pre-Pliocene folding) with almost E-W extension operates during post-Miocene (during Pliocene) is followed by a short lived strike slip deformation during Early Pliocene, and finally by NW-SE to WNW-ESE oriented multi directional extension during post-Plio-Quaternary. And in Gediz-Alaşehir Graben and Efes (western Anatolia); a continuous NNE-SSW to NE-SW multi directed extension since post-Late Miocene following almost N-S compression (post-Early Miocene) operated. Dextral strike slip faulting with normal components and normal faulting with right lateral strike slip components are recorded on same fault planes, iii) Quaternary normal faulting post dates folding, reverse and strike slip faulting in both regions. However, right lateral strike slip faulting is recorded to the NW tip of the normal faults like Efes, Manisa and

  14. Holocene Climatic Optimum centennial-scale paleoceanography in the NE Aegean (Mediterranean Sea)

    NASA Astrophysics Data System (ADS)

    Triantaphyllou, Maria V.; Gogou, Alexandra; Dimiza, Margarita D.; Kostopoulou, Sofia; Parinos, Constantine; Roussakis, Grigoris; Geraga, Maria; Bouloubassi, Ioanna; Fleitmann, Dominik; Zervakis, Vassilis; Velaoras, Dimitris; Diamantopoulou, Antonia; Sampatakaki, Angeliki; Lykousis, Vassilis

    2016-02-01

    Combined micropaleontological and geochemical analyses of the high-sedimentation gravity core M-4G provided new centennial-scale paleoceanographic data for sapropel S1 deposition in the NE Aegean Sea during the Holocene Climatic Optimum. Sapropel layer S1a (10.2-8.0 ka) was deposited in dysoxic to oxic bottom waters characterized by a high abundance of benthic foraminiferal species tolerating surface sediment and/or pore water oxygen depletion (e.g., Chilostomella mediterranensis, Globobulimina affinis), and the presence of Uvigerina mediterranea, which thrives in oxic mesotrophic-eutrophic environments. Preservation of organic matter (OM) is inferred based on high organic carbon as well as loliolide and isololiolide contents, while the biomarker record and the abundances of eutrophic planktonic foraminifera document enhanced productivity. High inputs of terrigenous OM are attributed to north Aegean borderland riverine inputs. Both alkenone-based sea surface temperatures (SSTs) and δO18 G. bulloides records indicate cooling at 8.2 ka (S1a) and ~7.8 ka (S1 interruption). Sapropelic layer S1b (7.7-6.4 ka) is characterized by rather oxic conditions; abundances of foraminiferal species tolerant to oxygen depletion are very low compared with the U. mediterranea rise. Strongly fluctuating SSTs demonstrate repeated cooling and associated dense water formation, with a major event at 7.4 ka followed by cold spells at 7.0, 6.8, and 6.5 ka. The prominent rise of the carbon preference index within the S1b layer indicates the delivery of less degraded terrestrial OM. The increase of algal biomarkers, labile OM-feeding foraminifera and eutrophic planktonic species pinpoints an enhanced in situ marine productivity, promoted by more efficient vertical convection due to repeated cold events. The associated contributions of labile marine OM along with fresher terrestrial OM inputs after ~7.7 ka imply sources alternative/additional to the north Aegean riverine borderland sources for

  15. Early Cretaceous extensional reworking of the Triassic HP-UHP metamorphic orogen in Eastern China

    NASA Astrophysics Data System (ADS)

    Lin, Wei; Ji, Wenbin; Faure, Michel; Wu, Lin; Li, Qiuli; Shi, Yonghong; Scharer, Urs; Wang, Fei; Wang, Qingchen

    2015-11-01

    Corresponding to the Early Mesozoic continental subduction between the North China Block (NCB) and the South China Block (SCB), the Tongbaishan-Hong'an-Dabieshan-Sulu massifs are famous for their HP-UHP metamorphism. More than 50% of the HP-UHP Orogenic Belt was significantly reworked by Early Cretaceous extensional tectonics. This Early Cretaceous event with a fast cooling period, at 130-120 Ma, superimposed on the Early Mesozoic HP-UHP orogenic belt and intensively changed the architecture of this orogen. Each individual segment documents different Early Cretaceous extensional structures, namely the central Tongbaishan domain is a metamorphic core complex (MCC) represented by an A-type non-cylindrical antiform; the central Dabieshan domain is a typical Cordilleran-type migmatite-cored MCC; the Southern Sulu UHP domain is a "wedge-shaped" structure exhumed by a simple detachment fault. These late stage extensional structures expose the previous HP-UHP orogenic belt as fragments along the NCB-SCB boundary. The geodynamic setting of this Early Cretaceous extensional tectonics along the HP-UHP orogen is a part of a 1000 km-scale crustal extension belt that is widespread in eastern Eurasia continent from Trans-Baikal to the central part of SCB. Convective erosion or delamination of the mantle lithosphere might be considered as a possible mechanism for mantle removal.

  16. Early Cretaceous extensional reworking of the Triassic HP-UHP metamorphic orogen in Eastern China

    NASA Astrophysics Data System (ADS)

    Lin, W.; Ji, W.; Faure, M.; Wu, L.; Li, Q. L.; Shi, Y.; Scharer, U.; Wang, F.; Wang, Q.

    2015-12-01

    Corresponding to the Early Mesozoic continental subduction between the North China Block (NCB) and the South China Block (SCB), the Tongbaishan-Hong'an-Dabieshan-Sulu massifs are famous for their HP-UHP metamorphism. More than 50% of the HP-UHP Orogenic Belt was significantly reworked by Early Cretaceous extensional tectonics. This Early Cretaceous event with a fast cooling period, at 130-120 Ma, superimposed on the Early Mesozoic HP-UHP orogenic belt and intensively changed the architecture of this orogen. Each individual segment documents different Early Cretaceous extensional structures, namely the central Tongbaishan domain is a metamorphic core complex (MCC) represented by an A-type non-cylindrical antiform; the central Dabieshan domain is a typical Cordilleran-type migmatite-cored MCC; the Southern Sulu UHP domain is a "wedge-shaped" structure exhumed by a simple detachment fault. These late stage extensional structures expose the previous HP-UHP orogenic belt as fragments along the NCB-SCB boundary. The geodynamic setting of this Early Cretaceous extensional tectonics along the HP-UHP orogen is a part of a 1000 km-scale crustal extension belt that is widespread in eastern Eurasia continent from Trans-Baikal to the central part of the South China Block. Convective erosion or delamination of the mantle lithosphere might be considered as a possible mechanism for mantle removal.

  17. Significance of extensional stresses to red blood cell lysis in a shearing flow.

    PubMed

    Down, Linden A; Papavassiliou, Dimitrios V; O'Rear, Edgar A

    2011-06-01

    Traditionally, an empirical power-law model relating hemolysis to shear stress and exposure time has been used to estimate hemolysis related to flow--however, this basis alone has been insufficient in attempts to predict hemolysis through computational fluid dynamics. Because of this deficiency, we sought to re-examine flow features related to hemolysis in a shearing flow by computationally modeling a set of classic experiments performed in a capillary tube. Simulating 21 different flows of varying entrance contraction ratio, flowrate and viscosity, we identified hemolysis threshold streamlines and analyzed the stresses present. Constant damage thresholds for radial and axial extensional stresses of approximately 3000 Pa for exposure times on the order of microseconds were observed, while no such threshold was found for the maximum shear stress or gradient of the shear stress. The extensional flow seen at the entrance of the capillary appears to be most consistently related to hemolysis. An account of how extensional stresses can lead to lysis of a red cell undergoing tank-tread motion in a shearing flow is provided. This work shows that extensional components of the stress tensor are integral in causing hemolysis for some flows, and should be considered when attempting to predict hemolysis computationally. PMID:21298343

  18. Interaction Between Magmatism and Continental Extension, Insight From an Extensional Terrain in the Iranian Plateau

    NASA Astrophysics Data System (ADS)

    Malekpour Alamdari, A.; Axen, G. J.; Hassanzadeh, J.

    2014-12-01

    Our knowledge about the spatial and temporal relationship between continental extension and its related magmatism is mainly from the western US where removal of a flat subducting slab from under the continent controlled thermal weakening and some extensional collapse. The Iranian plateau, where flat-slab subduction and its subsequent rollback is suggested for the Tertiary magmatic evolution, is an ideal place to see if a similar interaction exists. Between the Late Cretaceous and, at least, the Early Eocene, large-scale continental extension affected the NE Iranian plateau. An ~100 km-long, SE tilted upper to mid-crustal section was exhumed by slip along a low-angle, NW-dipping detachment fault. From SE to NW (young to old) this section includes late Cretaceous pelagic limestones of the Kashmar ophiolites, Late and Early Cretaceous sedimentary rocks, and the Late Triassic and older crystalline rocks of the Biarjmand-Shotor Kuh metamorphic core complex. Little pre-extensional magmatic activity exists in the tilted sequence and in surrounding regions, as Late Jurassic and Early Cretaceous dikes. Similarly, syn-extensional magmatism is absent. In contrast, the tilted sequence is unconformably overlain by >4000 m of volcanic rocks with age ranging from the Middle Eocene (explosive, calc-alkaline?) to the Late Eocene (effusive, alkaline). The absence of considerable pre-extensional magmatism in the NE Iranian plateau does not support magma underplating, subsequent thermal weakening and collapse as a mechanism for the extension in this region. It also indicates that the models that consider waning of volcanism as a controlling mechanism for triggering of extensional faulting (Sonder & Jones, 1999) is not applicable for this region. The amagmatic extension may reflect magma crystallization at depth due to reduced confining pressure resulted from active normal faulting and fracturing (Gans & Bohrson, 1998). The extension and related asthenospheric rise may be developed in

  19. Volcanic history of the Colorado River extensional corridor: Active or passive rifting

    SciTech Connect

    Howard, K.A. )

    1993-04-01

    Magmatism and extension began nearly simultaneously in the Colorado River extensional corridor (CREC) between 34 and 35[degree] N. Initial eruptions of basanite at 23--19.5 Ma were low-volume but spanned a region now twice as wide as the 100-km-wide corridor. Extensional tilting of this age was local. A large flux of calc-alkaline basalt, andesite, dacite, and rhyolite was erupted at 22--18.5 Ma. They accumulated to average thicknesses of [approximately]1 km in the early CREC basin, and were accompanied by extensional tilting. Dike swarms, necks, and plutons represent intrusive equivalents. Plutons concentrate in the central belt of metamorphic core complexes, the most highly extended areas. Massive eruption at 18.5 Ma of the rhyolitic Peach Springs Tuff marked an ensuing lowered rate of volcanic output, a change to bimodal volcanism, much tilting and extension, and deposition of thick (to [approximately]2 km) synextensional clastic sediments 18--14 Ms. By 14--12 Ma, extensional tilting had largely ceased, and eruptions were sparse and basaltic only, as they have been since. Basalt compositions reveal changing patterns of trace-element composition that bear on sources. The early basanites have OIB-like compositions on spidergram plots, suggesting origin from the asthenosphere as would be expected from initiation of rifting driven by hot mantle upwelling. Basalts 20--12 Ma show low concentrations of Nb and Ta as in subduction-related arc magmas. Post-extensional basalts erupted 15--10 Ma exhibit a transition back toward primitive compositions seen in Quaternary alkalic basalts.

  20. Performance of Statistical Temporal Downscaling Techniques of Wind Speed Data Over Aegean Sea

    NASA Astrophysics Data System (ADS)

    Gokhan Guler, Hasan; Baykal, Cuneyt; Ozyurt, Gulizar; Kisacik, Dogan

    2016-04-01

    Wind speed data is a key input for many meteorological and engineering applications. Many institutions provide wind speed data with temporal resolutions ranging from one hour to twenty four hours. Higher temporal resolution is generally required for some applications such as reliable wave hindcasting studies. One solution to generate wind data at high sampling frequencies is to use statistical downscaling techniques to interpolate values of the finer sampling intervals from the available data. In this study, the major aim is to assess temporal downscaling performance of nine statistical interpolation techniques by quantifying the inherent uncertainty due to selection of different techniques. For this purpose, hourly 10-m wind speed data taken from 227 data points over Aegean Sea between 1979 and 2010 having a spatial resolution of approximately 0.3 degrees are analyzed from the National Centers for Environmental Prediction (NCEP) The Climate Forecast System Reanalysis database. Additionally, hourly 10-m wind speed data of two in-situ measurement stations between June, 2014 and June, 2015 are considered to understand effect of dataset properties on the uncertainty generated by interpolation technique. In this study, nine statistical interpolation techniques are selected as w0 (left constant) interpolation, w6 (right constant) interpolation, averaging step function interpolation, linear interpolation, 1D Fast Fourier Transform interpolation, 2nd and 3rd degree Lagrange polynomial interpolation, cubic spline interpolation, piecewise cubic Hermite interpolating polynomials. Original data is down sampled to 6 hours (i.e. wind speeds at 0th, 6th, 12th and 18th hours of each day are selected), then 6 hourly data is temporally downscaled to hourly data (i.e. the wind speeds at each hour between the intervals are computed) using nine interpolation technique, and finally original data is compared with the temporally downscaled data. A penalty point system based on

  1. Symbiosis of sea anemones and hermit crabs: different resource utilization patterns in the Aegean Sea

    NASA Astrophysics Data System (ADS)

    Vafeiadou, Anna-Maria; Antoniadou, Chryssanthi; Chintiroglou, Chariton

    2012-09-01

    The small-scale distribution and resource utilization patterns of hermit crabs living in symbiosis with sea anemones were investigated in the Aegean Sea. Four hermit crab species, occupying shells of nine gastropod species, were found in symbiosis with the sea anemone Calliactis parasitica. Shell resource utilization patterns varied among hermit crabs, with Dardanus species utilizing a wide variety of shells. The size structure of hermit crab populations also affected shell resource utilization, with small-sized individuals inhabiting a larger variety of shells. Sea anemone utilization patterns varied both among hermit crab species and among residence shells, with larger crabs and shells hosting an increased abundance and biomass of C. parasitica. The examined biometric relationships suggested that small-sized crabs carry, proportionally to their weight, heavier shells and increased anemone biomass than larger ones. Exceptions to the above patterns are related either to local resource availability or to other environmental factors.

  2. Biodiversity of zoobenthic hard-substrate sublittoral communities in the Eastern Mediterranean (North Aegean Sea)

    NASA Astrophysics Data System (ADS)

    Antoniadou, Chryssanthi; Chintiroglou, Chariton

    2005-03-01

    The spatial dispersion of zoobenthos from sublittoral hard substrate communities in the northern part of the Aegean Sea has been studied during summer 1997 and 1998. Material was collected by SCUBA diving, by totally scraping off five replicate quadrates (400 cm 2 each) at three depth levels (15, 30, 40 m) from six sites located in Chalkidiki peninsula, plus one in Kavala Gulf. The examination of the 19,343 living specimens collected revealed the presence of 314 species. Though the multivariate analyses showed high similarity between stations, the structure of this sciaphilic algal community seems to have an increased spatial heterogeneity. Four distinct facies were recorded in accordance with the occurrence of different algal forms, the degree of hard substrate inclination and the water clarity. A short review on the biodiversity of sublittoral communities in the Mediterranean revealed the affinity between the western and the eastern basin and also among the photophilic and the sciaphilic algal communities.

  3. (137)Cs vertical distribution at the deep basins of the North and Central Aegean Sea, Greece.

    PubMed

    Tsabaris, C; Zervakis, V; Kaberi, H; Delfanti, R; Georgopoulos, D; Lampropoulou, M; Kalfas, C A

    2014-06-01

    Large volume seawater samples were collected for the determination of (137)Cs concentration along with depth in the deep basins of North and Central Aegean Sea. The vertical (137)Cs distribution showed maximum concentration at the bottom of the basins, while the minimum values corresponded to the intermediate layer, where Levantine water exists. The surface (137)Cs activity is found to lie between the two limits and is originated from the Black Sea waters. The typical oceanographic advection-diffusion balance model is modified to a diffusion-settling-decay balance model to better understand the vertical distribution and variation of the (137)Cs concentration in the deep basins. In addition, the diffusivity of each basin, as well as the settling speed of particulate (137)Cs is also estimated. The results are compared with theoretical approach as well as with previous data. PMID:24534571

  4. STS-56 ESC Earth observation of Limnos Island in the Aegean Sea

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-56 electronic still camera (ESC) Earth observation image taken aboard Discovery, Orbiter Vehicle (OV) 103, shows Limnos Island in the Aegean Sea. The image was recorded with a 300mm lens on the Hand-held, Earth-oriented, Real-time, Cooperative, User-friendly, Location-targeting and Environmental System (HERCULES). HERCULES is a device that makes it simple for Shuttle crewmembers to take pictures of Earth as they merely point a modified 35mm camera and shoot any interesting feature, whose latitude and longitude are automatically determined in real time. In this observation, the center coordinates are 39.9 degrees north latitude and 25.3 degrees east longitude. The camera was in shutter priority mode with a 1/500-second shutter speed and -2/3 exposure compensation. Digital file name is ESC03037.IMG.

  5. Earthquakes Versus Surface Deformation: Qualitative and Quantitative Relationships From The Aegean

    NASA Astrophysics Data System (ADS)

    Pavlides, S.; Caputo, R.

    Historical seismicity of the Aegean Region has been revised in order to associate major earthquakes to specific seismogenic structures. Only earthquakes associated to normal faulting have been considered. All available historical and seismotectonic data relative to co-seismic surface faulting have been collected in order to evaluate the surface rup- ture length (SRL) and the maximum displacement (MD). In order to perform Seismic Hazard analyses, empirical relationships between these parameters and the magnitude have been inferred and the best fitting regression functions have been calculated. Both co-seismic fault rupture lengths and maximum displacements show a logarithmic re- lationships, but our data from the Aegean Region have systematically lower values than the same parameters world-wide though they are similar to those of the East- ern Mediterranean-Middle East region. The upper envelopes of our diagrams (SRL vs Mw and MD vs Mw) have been also estimated and discussed, because they give useful information of the wort-case scenarios; these curces will be also discussed. Further- more, geological and morphological criteria have been used to recognise the tectonic structures along which historical earthquakes occurred in order to define the geolog- ical fault length (GFL). Accordingly, the SRL/GFL ratio seems to have a bimodal distribution with a major peak about 0.8-1.0, indicating that several earthquakes break through almost the entire geological fault length, and a second peak around 0.5, re- lated to the possible segmentation of these major neotectonic faults. In contrast, no relationships can be depicted between the SRL/GFL ratio and the magnitude of the corresponding events.

  6. Exploration of the Black, Aegean, and Mediterranean Seas Aboard E/V Nautilus

    NASA Astrophysics Data System (ADS)

    Bell, K. L.; Ballard, R. D.; Brennan, M. L.; Raineault, N. A.; Shank, T. M.; Mayer, L. A.; Roman, C.; Mitchell, G. A.; Coleman, D. F.

    2012-12-01

    In the summer of 2012, the Exploration Vessel (E/V) Nautilus undertook a two-month expedition to the Black, Aegean, and Mediterranean Seas. The primary goal of the Nautilus is to create a focus of international leadership for the development and integration of leading-edge technologies, educational programs, field operations, and public outreach programs for ocean exploration, in partnership with the NOAA Office of Ocean Exploration, National Geographic Society, Office of Naval Research, and corporate partners. To do so, the program uses a complement of deep submergence vehicle systems and telepresence technologies to engage scientists, educators and the public, both at sea and ashore, allowing them to become integral members of the on-board exploration team. When discoveries are made, experts ashore are notified and brought aboard virtually within a short period of time to help guide shipboard response before the ship moves on. The 2012 expedition is comprised of four areas of interest. Extensive sidescan mapping took place off the Turkish coasts of the southern Black Sea and eastern Aegean Sea, and was followed by remotely operated vehicle (ROV) dives on targets of archaeological, geological, and biological interest. In the Black Sea, additional work was done on the porewater chemistry of the sediments in the oxic, suboxic, and anoxic zones. Nautilus returned to the Anaximander Seamounts, including Kazan, Amserdam, Thessaloniki, and Athina, to further explore active and formerly active seep sites located in 2010. Finally, based on biological and geological discoveries made on Eratosthenes Seamount in the eastern Mediterranean Sea, we returned to further study chemosynthetic vent communities and tectonic processes.;

  7. Progress of KOERI Tsunami Warning System for the Eastern Mediterranean, Aegean and Black Seas

    NASA Astrophysics Data System (ADS)

    Necmioglu, Ocal; Meral Ozel, Nurcan; Ozer Sozdinler, Ceren; Yilmazer, Mehmet; Cokacar, Tulay; Comoglu, Mustafa; Pinar, Ali; Kekovali, Kivanc

    2016-04-01

    This presentation provides a progress report on the activities of the Bogazici University / Kandilli Observatory and Earthquake Research Institute - Regional Earthquake and Tsunami Monitoring Center (KOERI-RETMC) which provides services as a Candidate Tsunami Service Provider (CTSP) of ICG/NEAMTWS in the Eastern Mediterranean, Aegean and Black Seas since 1 July 2012. KOERI continues to operate 178 BB and 97 strong motion and 6 short period sensors and the regional coverage includes 77 stations from GFZ and additional 16 stations through bilateral agreements. One radar-type tide-gauge has been installed in Fethiye within the framework of "Inexpensive Device for Sea-Level Measurement" (IDSL) initiative offered as donation by the EC/JRC and planning is in progress for the possible installation of three more IDSLs in selected locations in the Aegean Sea coast of Turkey. The capabilities and the limitations of HF Radar technology for the purpose of tsunami detection in the Eastern Mediterranean has been identified and the maturity and the applicability of these systems for the possible use under the Tsunami Warning System has been determined. The development of the TsuComp as a user-friendly interface to be used in the assessment of tsunamigenic potential and as a single-point entry for message dissemination has been finalized. The work towards the creation of Tsunami Inundation Maps at the Tsunami Forecast Points in Turkey is near finalization. This work is partially funded by project ASTARTE - Assessment, Strategy And Risk Reduction for Tsunamis in Europe - FP7-ENV2013 6.4-3, Grant 603839. The authors would like to thank EC/JRC and Mr. Alessandro Annunziato for their continuous support in the operational activities of RETMC and IDSL initiative.

  8. Centennial-scale paleoceanography during sapropel S1 deposition in the NE Aegean (Mediterranean Sea)

    NASA Astrophysics Data System (ADS)

    Triantaphyllou, Maria; Gogou, Alexandra; Dimiza, Margarita; Kostopoulou, Sofia; Parinos, Constantine; Roussakis, Grigoris; Geraga, Maria; Skampa, Elisavet; Bouloubassi, Ioanna; Fleitmann, Dominik; Zervakis, Vassilis; Velaoras, Dimitris; Diamantopoulou, Antonia; Sampatakaki, Angeliki; Lykousis, Vassilis

    2016-04-01

    Combined micropaleontological and geochemical analyses in the high-sedimentation gravity core M-4G, provided new centennial scale paleoceanographic data for the sapropel S1 deposition in the NE Aegean Sea. Sapropel layer S1a (10.2-8.0 ka) is deposited in dysoxic to oxic bottom waters; sediments are characterized by the high abundance of benthic foraminifers Chilostomella mediterranensis and Globobulimina affinis that are able to tolerate surface sediment and/or pore water oxygen depletion and the presence of the oxic mesotrophic-eutrophic U. mediterranea. Adequate preservation of organic matter is proven by the high organic carbon and loliolide and isololiolide contents, whereas the biomarker record and the abundances of eutrophic planktonic foraminifera document enhanced productivity. Both alkenone-based SSTs and δO18 G. bulloides records indicate coolings at 8.2 ka (S1a) and at ~7.8 ka (S1 interruption). Sapropelic layer S1b (7.7-6.4 ka) is characterized by rather oxic conditions marked by the prominent increase of U. mediterranea. The highly fluctuating SSTs demonstrate repeated coolings and associated dense water formation; major event at 7.4 ka, followed by cold spells at 7.0, 6.8, 6.5 ka. Besides, the increase of algal biomarkers, labile organic matter-feeding foraminifera and eutrophic planktonic species pinpoints rise in in situ marine productivity, which is enhanced by more efficient vertical convection due to repeated cold events. The associated contributions of labile marine organic matter (OM) along with fresher terrestrial OM inputs after ~7.7 ka BP imply alternative/ additional than the north Aegean riverine borderland sources for the influx of organic matter at the south Limnos Basin, also related to the inflow of highly productive Marmara/Black Sea waters

  9. Modern Tectonic Deformation in the Active Basin-And Province Northwest of Beijing, China

    NASA Astrophysics Data System (ADS)

    Mi, S.; Wen, X.

    2012-12-01

    Our study region is the northwest of Beijing, northern north China. The most typical extensional active tectonic area of the China continent, called the active basin-and-range province northwest of Beijing, exist there. This active tectonic province is made up of several NE-trending Quaternary graben basins and horst ranges between basins. An about 1500-year-long written historical record has suggested that there have been no major earthquakes with magnitude 7 or greater occurred in most of the study region since AD 512. So, the characteristic of modern tectonic deformation of the study region and its implication for the future seismic potential of major earthquakes are important scientific issues. In this study, based on data of regional GPS station velocities and active tectonics, combining relocated earthquake distribution, we make a preliminary analysis on the characteristic of the modern tectonic deformation of the study region. We design three zones across deferent segments of the active basin-and-range province to analyze both the present tectonic deformation from the GPS velocity profiles and the major fault's downward-extents from the relocated hypocenters. Our analyses reveal that: (1) Significant NNW-ward and SSE-ward horizontal extension exists on different segments of the active basin-and-range province northwest of Beijing at rates of 2 to 3mm /yr, accompanied with right-lateral shear deformation at 1 to 2mm/yr. (2) On the present tectonic deformation, the southeastern margin of the Datong-Yangyuan basin, the biggest graben basin of the active tectonic province, shows as a turning belt of the extensional rates, suggesting that relatively high tensile strain accumulation could exist there. (3)On the northeastern segment of the studied active basin-and-range province, both the Zhangjiakou-Yanhui graben basin and the Beijing graben basin have also been being in significant extensional and shear deformation. (4) The relocated hypocenter distribution have

  10. Extensional tectonics, halokinesis, eustacy in the Norwegian Central Graben, North Sea: A testing ground for sequence and seismic stratigraphic principles

    SciTech Connect

    Spencer, P.A.; Prosser, S.D.

    1996-12-31

    The Norwegian Central Graben is a mature hydrocarbon province with proven reserves within the Upper Jurassic succession. Several phases of extensional tectonics ranging from the Permo-Triassic to the Upper Jurassic, and a thick mobile salt section, serve to complicate a clear regional understanding of the area. A full integration of structural interpretation, seismic and sequence stratigraphic principles, biostratigraphy and core studies is required to achieve a realistic interpretation and predict Upper Jurassic facies distributions within this complex area. Utilizing some 30 wells, regional seismic data and biostratigraphy, candidate sequence boundaries and regionally correlatable flooding surfaces (e.g. Eudoxus), have been identified. Horizon flattening on these surfaces has allowed the recognition of thickening-away reflection geometries adjacent to salt features and divergent geometries into graben boundary faults. This facilitates the identification of the dominant local or regional controls on accommodation space creation. Detailed seismic facies analysis was then used to reveal the relative expansion or suppression of depositional systems tracts as a response to either regional or local structural controls. It was subsequently possible to place these systems within a biostratigraphically constrained regional framework. Mapping the base Zechstein, base Jurassic and base Cretaceous horizons has provided a map view of the active faults and slopes controlling sediment transport at any given time. This provided the third dimension essential in depicting the spatial distribution of depositional systems, and is a crucial component of any sequence stratigraphic interpretation. A regional picture of the progressive evolution of this complex area has been thus been derived, and the effect of both regional and local controls on sequence stratigraphic expressions has been determined.

  11. Extensional tectonics, halokinesis, eustacy in the Norwegian Central Graben, North Sea: A testing ground for sequence and seismic stratigraphic principles

    SciTech Connect

    Spencer, P.A. ); Prosser, S.D. )

    1996-01-01

    The Norwegian Central Graben is a mature hydrocarbon province with proven reserves within the Upper Jurassic succession. Several phases of extensional tectonics ranging from the Permo-Triassic to the Upper Jurassic, and a thick mobile salt section, serve to complicate a clear regional understanding of the area. A full integration of structural interpretation, seismic and sequence stratigraphic principles, biostratigraphy and core studies is required to achieve a realistic interpretation and predict Upper Jurassic facies distributions within this complex area. Utilizing some 30 wells, regional seismic data and biostratigraphy, candidate sequence boundaries and regionally correlatable flooding surfaces (e.g. Eudoxus), have been identified. Horizon flattening on these surfaces has allowed the recognition of thickening-away reflection geometries adjacent to salt features and divergent geometries into graben boundary faults. This facilitates the identification of the dominant local or regional controls on accommodation space creation. Detailed seismic facies analysis was then used to reveal the relative expansion or suppression of depositional systems tracts as a response to either regional or local structural controls. It was subsequently possible to place these systems within a biostratigraphically constrained regional framework. Mapping the base Zechstein, base Jurassic and base Cretaceous horizons has provided a map view of the active faults and slopes controlling sediment transport at any given time. This provided the third dimension essential in depicting the spatial distribution of depositional systems, and is a crucial component of any sequence stratigraphic interpretation. A regional picture of the progressive evolution of this complex area has been thus been derived, and the effect of both regional and local controls on sequence stratigraphic expressions has been determined.

  12. Climate variability and socio-environmental changes in the northern Aegean (NE Mediterranean) during the last 1500 years

    NASA Astrophysics Data System (ADS)

    Gogou, Alexandra; Triantaphyllou, Maria; Xoplaki, Elena; Izdebski, Adam; Parinos, Constantine; Dimiza, Margarita; Bouloubassi, Ioanna; Luterbacher, Juerg; Kouli, Katerina; Martrat, Belen; Toreti, Andrea; Fleitmann, Dominik; Rousakis, Gregory; Kaberi, Helen; Athanasiou, Maria; Lykousis, Vasilios

    2016-03-01

    We provide new evidence on sea surface temperature (SST) variations and paleoceanographic/paleoenvironmental changes over the past 1500 years for the north Aegean Sea (NE Mediterranean). The reconstructions are based on multiproxy analyses, obtained from the high resolution (decadal to multi-decadal) marine record M2 retrieved from the Athos basin. Reconstructed SSTs show an increase from ca. 850 to 950 AD and from ca. 1100 to 1300 AD. A cooling phase of almost 1.5 °C is observed from ca. 1600 AD to 1700 AD. This seems to have been the starting point of a continuous SST warming trend until the end of the reconstructed period, interrupted by two prominent cooling events at 1832 ± 15 AD and 1995 ± 1 AD. Application of an adaptive Kernel smoothing suggests that the current warming in the reconstructed SSTs of the north Aegean might be unprecedented in the context of the past 1500 years. Internal variability in atmospheric/oceanic circulations systems as well as external forcing as solar radiation and volcanic activity could have affected temperature variations in the north Aegean Sea over the past 1500 years. The marked temperature drop of approximately ∼2 °C at 1832 ± 15 yr AD could be related to the 1809 ΑD 'unknown' and the 1815 AD Tambora volcanic eruptions. Paleoenvironmental proxy-indices of the M2 record show enhanced riverine/continental inputs in the northern Aegean after ca. 1450 AD. The paleoclimatic evidence derived from the M2 record is combined with a socio-environmental study of the history of the north Aegean region. We show that the cultivation of temperature-sensitive crops, i.e. walnut, vine and olive, co-occurred with stable and warmer temperatures, while its end coincided with a significant episode of cooler temperatures. Periods of agricultural growth in Macedonia coincide with periods of warmer and more stable SSTs, but further exploration is required in order to identify the causal links behind the observed phenomena. The Black Death

  13. Climate variability and socio-environmental changes in the northern Aegean (NE Mediterranean) during the last 1500 years

    NASA Astrophysics Data System (ADS)

    Gogou, Alexandra; Triantaphyllou, Maria; Xoplaki, Elena; Izdebski, Adam; Parinos, Constantine; Dimiza, Margarita; Bouloubassi, Ioanna; Luterbacher, Juerg; Kouli, Katerina; Martrat, Belen; Toreti, Andrea; Fleitmann, Dominik; Rousakis, Gregory; Kaberi, Helen; Athanasiou, Maria; Lykousis, Vasilios

    2016-04-01

    We provide new evidence on sea surface temperature (SST) variations and paleoceanographic/paleoenvironmental changes over the past 1500 years for the north Aegean Sea (NE Mediterranean). The reconstructions are based on multiproxy analyses, obtained from the high resolution (decadal to multi-decadal) marine record M2 retrieved from the Athos basin. Reconstructed SSTs show an increase from ca. 850 to 950 AD and from ca. 1100 to 1300 AD. A cooling phase of almost 1.5 °C is observed from ca. 1600 AD to 1700 AD. This seems to have been the starting point of a continuous SST warming trend until the end of the reconstructed period, interrupted by two prominent cooling events at 1832 ± 15 AD and 1995 ± 2 AD. Application of an adaptive Kernel smoothing suggests that the current warming in the reconstructed SSTs of the north Aegean might be unprecedented in the context of the past 1500 years. Internal variability in atmospheric/oceanic circulations systems as well as external forcing as solar radiation and volcanic activity could have affected temperature variations in the north Aegean Sea over the past 1500 years. The marked temperature drop of approximately ~2°C at 1832 ± 15 yr AD could be related to the 1809 ΑD 'unknown' and the 1815 AD Tambora volcanic eruptions. Paleoenvironmental proxy-indices of the M2 record show enhanced riverine/continental inputs in the northern Aegean after ca. 1450 AD. The palaeoclimatic evidence derived from M2 record is combined with a socio-environmental study of the history of the north Aegean region. We show that the cultivation of temperature-sensitive crops, i.e. walnut, vine and olive, co-occurred with stable and warmer temperatures, while its end coincided with a significant episode of cooler temperatures. Periods of agricultural growth in Macedonia coincide with periods of warmer and more stable SSTs, but further exploration is required in order to identify the causal links behind the observed phenomena. The Black Death likely

  14. Accretion of the Archean Slave province

    NASA Astrophysics Data System (ADS)

    Kusky, T. M.

    1989-01-01

    Continental rift models have long been applied to the Archean Slave province of northwestern Canada. A reassessment of these models shows them to be incompatible with observed geological relations and suggests that contractional tectonic models may be more appropriate than extensional ones. Regions composed of different rock suites (e.g., orthogneisses vs. mafic volcanics) are separated by high-strain zones recording large displacements. It is proposed that the high-strain zones separate four distinct terranes that have been juxtaposed during collisional orogenesis. From west to east, these include the Anton terrane, interpreted as an Archean microcontinent; the Sleepy Dragon terrane, possibly an exhumed more eastern part of the Anton terrane; the Contwoyto terrane, a westward-verging fold and thrust belt containing tectonic slivers of greenstone volcanics; and the Hackett River volcanic terrane, interpreted as an Archean island arc. The Contwoyto and Hackett River terranes represent a paired accretionary prism and island-arc system that formed above an east-dipping subduction zone. These collided with the Anton microcontinent, producing a basement nappe, expressed as the Sleepy Dragon terrane, during the main accretion event within the Slave province. The whole tectonic assemblage was intruded by late-kinematic to postkinematic granitoids.

  15. A Miocene onset of the modern extensional regime in the Isparta Angle: constraints from the Yalvaç Basin (southwest Turkey)

    NASA Astrophysics Data System (ADS)

    Koç, Ayten; Kaymakci, Nuretdin; van Hinsbergen, Douwe J. J.; Vissers, Reinoud L. M.

    2016-01-01

    The pre-Neogene Tauride fold-and-thrust belt, comprising Cretaceous ophiolites and metamorphic rocks and non-metamorphic carbonate thrust slices in southern Turkey, is flanked and overlain by Neogene sedimentary basins. These include poorly studied intra-montane basins including the Yalvaç Basin. In this paper, we study the stratigraphy, sedimentology and structure of the Yalvaç Basin, which has a Middle Miocene and younger stratigraphy. Our results show that the basin formed as a result of multi-directional extension, with NE-SW to E-W extension dominating over subordinate NW-SE to N-S extension. We show that faults bounding the modern basin also governed basin formation, with proximal facies close to the basin margins grading upwards and basinwards into lacustrine deposits representing the local depocentre. The Yalvac Basin was a local basin, but a similar, contemporaneous history recently reconstructed from the Altınapa Basin, ~100 km to the south, shows that multi-directional extension dominated by E-W extension was a regional phenomenon. Extension is still active today, and we conclude that this tectonic regime in the study area has prevailed since Middle Miocene times. Previously documented E-W shortening in the Isparta Angle along the Aksu Thrust, ~100 km to the southwest of our study area, is synchronous with the extensional history documented here, and E-W extension to its east shows that Anatolian westwards push is likely not the cause. Synchronous E-W shortening in the heart and E-W extension in the east of the Isparta Angle may be explained by an eastwards-dipping subduction zone previously documented with seismic tomography and earthquake hypocentres. We suggest that this slab surfaces along the Aksu thrust and creates E-W overriding plate extension in the east of the Isparta Angle. Neogene and modern Anatolian geodynamics may thus have been driven by an Aegean, Antalya and Cyprus slab segment that each had their own specific evolution.

  16. Extensional tectonics in the northeastern Betics (SE Spain): case study of extension in a multilayered upper crust with contrasting rheologies

    NASA Astrophysics Data System (ADS)

    Booth-Rea, Guillermo; Azañón, Jose Miguel; García-Dueñas, Víctor

    2004-11-01

    Extension in the northeastern Betics took place along two main directions, corresponding to a minimum of two successive orthogonal extensional systems with N-NW and W-SW sense of shear, respectively. Strain was strongly localised within weaker metapelites and gypsum, leading to the development of several extensional detachments, which accommodated the thinning produced by extensional ramps and listric faults within the stronger carbonate rocks. Extension along several detachments led to the preservation in a single thinned section of layers representative of different crustal depths of a previously thickened upper crust. The N- to NW-directed extensional system was formed by brittle to brittle-ductile detachments, which were active during the Upper Oligocene and Lower Miocene, coeval to vertical ductile thinning of underlying greenschist-facies metamorphic rocks. The W- to SW-directed extensional system, active during the Middle and Upper Miocene, shows multiple slip surfaces, which transferred displacement to a brittle detachment with a ramp-flat geometry that stepped down into the footwall of the previous NW-directed system. The geometry of both extensional systems was determined by the rheological heterogeneity of the studied crustal section. Further Upper Miocene extension was accommodated by radial extension with a dominant set of SW-directed listric faults, which tilted the aforementioned detachments and exhumed them in the core of km-scale elongated extensional domes.

  17. The Miocene to Pleistocene filling of a mature extensional basin in Trans-Pecos Texas: geomorphic and hydrologic controls on deposition

    NASA Astrophysics Data System (ADS)

    Langford, Richard P.; Jackson, Mary L. W.; Whitelaw, Mick J.

    1999-10-01

    Northwest Eagle Flat Basin, in Trans-Pecos (West) Texas, is a Late Tertiary-Quaternary extensional basin in the Basin and Range Province. The basin has largely filled with sediment, so that bedrock uplands only crop out around its rim. Movement on normal faults has effectively ceased, and the geomorphology and deposition differ from active extensional basins, where tectonism is the primary control on basin evolution. Eagle Flat differs from typical extensional basins because progressive changes in basin morphology caused by the aggrading basin-fill were the principal controls on sedimentation. A low-gradient alluvial basin floor expanded to cover the former, fault-defined basin margins. The playa lies on what was upland through the Miocene and Early Pliocene. Only the upper few meters of basin-fill crop out; however, a suite of 88 cores was drilled in the southern part of the basin. Nine of the cores and one trench were sampled for paleomagnetic reversal dating. Correlating the dated cores with interspersed cores allowed us to piece together the basin filling-history and explain how the mature features developed. The cores record the gradual burial of the southern half of the basin. The oldest basin-fill strata were cored in the deepest part of the basin, 219 m below the surface, at ˜12 Ma, in the Miocene. After deposition of 50 m of alluvial-fan gravel along the trend of an inferred normal fault, the basin floor aggraded and expanded. By the 780-ka Brunhes-Matuyama reversal, basin-floor drainage had reversed and was from the north. Sediment accumulation ended during the mid-Pleistocene. A fine-grained sediment supply that did not decrease, and outpaced subsidence was the primary control on basin deposition. This caused a progressive loss of relief and drainage-basin area as uplands were buried under the aggrading basin sediments. After the basin-margin faults were buried, the shape of the basin and its filling-history were little controlled by the original

  18. Prediction of cryogenic cavitation around hydrofoil by an extensional Schnerr-Sauer cavitation model

    NASA Astrophysics Data System (ADS)

    Sun, T. Z.; Wei, Y. J.; Wang, C.

    2015-12-01

    Developing a robust computational strategy to address the rich physics characteristic involved in the thermodynamic effects on the cryogenic cavitation remains a challenging problem. The objective of this present study is to model the numerical methodology to simulate the cryogenic cavitation by implanting the thermodynamic effects to the Schnerr-Sauer cavitation model, and coupling the energy equation considered the latent heat. For this purpose, cavitating flows are investigated over a three dimensional hydrofoil in liquid hydrogen and nitrogen. Experimental measurements of pressure and temperature are utilized to validate the extensional Schnerr-Sauer cavitation model. Specifically, the further analysis of the cavitation solution with respect to the thermodynamic term is conducted. The results show that the extensional Schnerr-Sauer cavitation model predicts better accuracy to the quasi-steady cavitation over hydrofoil in the two cryogenic fluids.

  19. Geometry and kinematics of extensional structures in the alpine foreland basin of southeastern France

    NASA Astrophysics Data System (ADS)

    Roure, F.; Brun, J.-P.; Colletta, B.; Van Den Driessche, J.

    1992-05-01

    The basin of southeastern France is developed between the Bresse Graben and the Mediterranean Sea. In this area, the Western European Oligocene rift system is locally superimposed on early Jurassic (Liassic) extensional structures of the Tethyan palaeomargin, and was later involved in Neogene compressive deformation of the Alpine foreland. The aim of this paper is to reconstruct the initial configuration of both thin-skinned and deep-seated Oligocene structures that are now locally inverted, and to separate the effects of Oligocene extension from Liassic extension. Cross-section balancing techniques have been applied to complex multiphase structures whose present geometries are clearly controlled by surface and subsurface geology. The resulting Oligocene configurations are compared with laboratory models and are discussed in terms of the regional extensional history.

  20. Towards an absolute chronology for the Aegean iron age: new radiocarbon dates from Lefkandi, Kalapodi and Corinth.

    PubMed

    Toffolo, Michael B; Fantalkin, Alexander; Lemos, Irene S; Felsch, Rainer C S; Niemeier, Wolf-Dietrich; Sanders, Guy D R; Finkelstein, Israel; Boaretto, Elisabetta

    2013-01-01

    The relative chronology of the Aegean Iron Age is robust. It is based on minute stylistic changes in the Submycenaean, Protogeometric and Geometric styles and their sub-phases. Yet, the absolute chronology of the time-span between the final stages of Late Helladic IIIC in the late second millennium BCE and the archaic colonization of Italy and Sicily toward the end of the 8(th) century BCE lacks archaeological contexts that can be directly related to events carrying absolute dates mentioned in Egyptian/Near Eastern historical sources, or to well-dated Egyptian/Near Eastern rulers. The small number of radiocarbon dates available for this time span is not sufficient to establish an absolute chronological sequence. Here we present a new set of short-lived radiocarbon dates from the sites of Lefkandi, Kalapodi and Corinth in Greece. We focus on the crucial transition from the Submycenaean to the Protogeometric periods. This transition is placed in the late 11(th) century BCE according to the Conventional Aegean Chronology and in the late 12(th) century BCE according to the High Aegean Chronology. Our results place it in the second half of the 11(th) century BCE. PMID:24386150

  1. Focal mechanism determinations of earthquakes along the North Anatolian fault, beneath the Sea of Marmara and the Aegean Sea

    NASA Astrophysics Data System (ADS)

    Nakano, Masaru; Citak, Seckin; Kalafat, Doğan

    2015-09-01

    We determined the centroid moment tensor (CMT) solutions of earthquakes that occurred along the North Anatolian fault (NAF) beneath the Sea of Marmara and the Aegean Sea, using data obtained from Turkey's broad-band seismograph network. The CMT solution of the 2014 Aegean Sea earthquake ( Mw 6.9) represents a strike-slip fault, consistent with the geometry of the NAF, and the source-time function indicates that this event comprised several distinct subevents. Each subevent is considered to have ruptured a different fault segment. This observation indicates the existence of a mechanical barrier, namely a NAF segment boundary, at the hypocenter. CMT solutions of background seismicity beneath the Aegean Sea represent strike-slip or normal faulting along the NAF or its branch faults. The tensional axes of these events are oriented northeast-southwest, indicating a transtensional tectonic regime. Beneath the Sea of Marmara, the CMT solutions represent mostly strike-slip faulting, consistent with the motion of the NAF, but we identified a normal fault event with a tensional axis parallel to the strike of the NAF. This mechanism indicates that a pull-apart basin, marking a segment boundary of the NAF, is developing there. Because ruptures of a fault system and large earthquake magnitudes are strongly controlled by the fault system geometry and fault length, mapping fault segments along NAF can help to improve the accuracy of scenarios developed for future disastrous earthquakes in the Marmara region.

  2. Interranual variability in horizontal patterns of larval fish assemblages in the northeastern Aegean Sea (eastern Mediterranean) during early summer

    NASA Astrophysics Data System (ADS)

    Isari, Stamatina; Fragopoulu, Nina; Somarakis, Stylianos

    2008-09-01

    Larval fish community structure was studied in the northeastern Aegean Sea (NEA) over an area influenced by the advection of Black Sea water (BSW). Sampling was carried out in early summer during a period of 4 years (2003-2006). Taxonomic composition and abundance presented high variability in space that remained relatively constant among years. Tow depth and indicators of trophic conditions in the upper water column (i.e., zooplankton displacement volume, fluorescence) explained significantly the structure of larval assemblages during all surveys. The northern continental shelf (Thracian and Strymonikos shelf), where a large amount of enriched, low salinity BSW is retained, was dominated by larvae of epipelagic species, mainly anchovy ( Engraulis encrasicolus). Interannual changes in horizontal extension of the BSW seemed to match closely observed changes in the distribution of anchovy larvae. Mesopelagic fish larvae were particularly abundant beyond the continental shelf (over the North Aegean Trough) where a strong frontal structure is created between the low salinity waters of BSW origin and the high salinity waters of the Aegean Sea. Larvae of certain mesopelagic species (e.g., Ceratoscopelus maderensis) may occasionally be transported inshore when the prevailing current meanders towards the coast or feeds anticyclonic gyres over the continental shelf.

  3. Extensional flow of hyaluronic acid solutions in an optimized microfluidic cross-slot devicea

    PubMed Central

    Haward, S. J.; Jaishankar, A.; Oliveira, M. S. N.; Alves, M. A.; McKinley, G. H.

    2013-01-01

    We utilize a recently developed microfluidic device, the Optimized Shape Cross-slot Extensional Rheometer (OSCER), to study the elongational flow behavior and rheological properties of hyaluronic acid (HA) solutions representative of the synovial fluid (SF) found in the knee joint. The OSCER geometry is a stagnation point device that imposes a planar extensional flow with a homogenous extension rate over a significant length of the inlet and outlet channel axes. Due to the compressive nature of the flow generated along the inlet channels, and the planar elongational flow along the outlet channels, the flow field in the OSCER device can also be considered as representative of the flow field that arises between compressing articular cartilage layers of the knee joints during running or jumping movements. Full-field birefringence microscopy measurements demonstrate a high degree of localized macromolecular orientation along streamlines passing close to the stagnation point of the OSCER device, while micro-particle image velocimetry is used to quantify the flow kinematics. The stress-optical rule is used to assess the local extensional viscosity in the elongating fluid elements as a function of the measured deformation rate. The large limiting values of the dimensionless Trouton ratio, Tr ∼ O(50), demonstrate that these fluids are highly extensional-thickening, providing a clear mechanism for the load-dampening properties of SF. The results also indicate the potential for utilizing the OSCER in screening of physiological SF samples, which will lead to improved understanding of, and therapies for, disease progression in arthritis sufferers. PMID:24738010

  4. Structural modeling of carbonaceous mesophase amphotropic mixtures under uniaxial extensional flow.

    PubMed

    Golmohammadi, Mojdeh; Rey, Alejandro D

    2010-07-21

    The extended Maier-Saupe model for binary mixtures of model carbonaceous mesophases (uniaxial discotic nematogens) under externally imposed flow, formulated in previous studies [M. Golmohammadi and A. D. Rey, Liquid Crystals 36, 75 (2009); M. Golmohammadi and A. D. Rey, Entropy 10, 183 (2008)], is used to characterize the effect of uniaxial extensional flow and concentration on phase behavior and structure of these mesogenic blends. The generic thermorheological phase diagram of the single-phase binary mixture, given in terms of temperature (T) and Deborah (De) number, shows the existence of four T-De transition lines that define regions that correspond to the following quadrupolar tensor order parameter structures: (i) oblate (perpendicular, parallel), (ii) prolate (perpendicular, parallel), (iii) scalene O(perpendicular, parallel), and (iv) scalene P(perpendicular, parallel), where the symbols (perpendicular, parallel) indicate alignment of the tensor order ellipsoid with respect to the extension axis. It is found that with increasing T the dominant component of the mixture exhibits weak deviations from the well-known pure species response to uniaxial extensional flow (uniaxial perpendicular nematic-->biaxial nematic-->uniaxial parallel paranematic). In contrast, the slaved component shows a strong deviation from the pure species response. This deviation is dictated by the asymmetric viscoelastic coupling effects emanating from the dominant component. Changes in conformation (oblate <==> prolate) and orientation (perpendicular <==> parallel) are effected through changes in pairs of eigenvalues of the quadrupolar tensor order parameter. The complexity of the structural sensitivity to temperature and extensional flow is a reflection of the dual lyotropic/thermotropic nature (amphotropic nature) of the mixture and their cooperation/competition. The analysis demonstrates that the simple structures (biaxial nematic and uniaxial paranematic) observed in pure discotic

  5. The rheology of aqueous solutions of ethyl hydroxy-ethyl cellulose (EHEC) and its hydrophobically modified analogue (hmEHEC): extensional flow response in capillary break-up, jetting (ROJER) and in a cross-slot extensional rheometer.

    PubMed

    Sharma, Vivek; Haward, Simon J; Serdy, James; Keshavarz, Bavand; Soderlund, Asa; Threlfall-Holmes, Phil; McKinley, Gareth H

    2015-04-28

    Cellulose derivatives containing associating hydrophobic groups along their hydrophilic backbone are used as rheology modifiers in the formulation of water-based spray paints, medicinal sprays, cosmetics and printable inks. Jetting and spraying applications of these materials involve progressive thinning and break-up of a fluid column or sheet into drops. Strong extensional kinematics develop in the thinning fluid neck. In viscous Newtonian fluids, inertial and viscous stresses oppose the surface tension-driven instability. In aqueous solutions of polymers such as Ethyl Hydroxy-Ethyl Cellulose (EHEC), chain elongation provides additional elastic stresses that can delay the capillary-driven pinch-off, influencing the sprayability or jettability of the complex fluid. In this study, we quantify the transient response of thinning filaments of cellulose ether solutions to extensional flows in a Capillary Break-up Extensional Rheometer (CaBER) and in a forced jet undergoing break-up using Rayleigh Ohnesorge Jetting Extensional Rheometry (ROJER). We also characterize the steady state molecular deformations using measurements of the flow-induced birefringence and excess pressure drop in an extensional stagnation point flow using a Cross-Slot Extensional Rheometer (CSER). We show that under the high extension rates encountered in jetting and spraying, the semi-dilute solutions of hydrophobically modified ethyl hydroxy-ethyl cellulose (hmEHEC) exhibit extensional thinning, while the unmodified bare chains of EHEC display an increase in extensional viscosity, up to a plateau value. For both EHEC and hmEHEC dispersions, the low extensibility of the cellulose derivatives limits the Trouton ratio observed at the highest extension rates attained (close to 10(5) s(-1)) to around 10-20. The reduction in extensional viscosity with increasing extension rate for the hydrophobically modified cellulose ether is primarily caused by the disruption of a transient elastic network that is

  6. Extensional collapse along the Sevier Desert reflection, northern Sevier Desert basin, western United States

    NASA Astrophysics Data System (ADS)

    Coogan, James C.; Decelles, Peter G.

    1996-10-01

    Newly released and previously published seismic reflection data from the northern Sevier Desert basin provide a complete seismic transect between the tilted western margin of the basin and the eastern breakaway zone. When tied to well and surface age data, the transect delineates a continuum of extensional fault and basin fill geometries that developed between late Oligocene and Pleistocene time across the basin. A minimum of 18 km of top-to-the-west normal displacement is estimated across the Sevier Desert from only the most conspicuous growth geometries and offsets across listric normal faults that sole downward into the Sevier Desert reflection (SDR). The SDR clearly marks a normal fault zone beneath the entire basin, where stratal truncations are imaged for 50% of the 39 km length of the reflection east of the Cricket Mountains block. Restoration of extensional displacement along this entire 39 km fault length is necessary to reconstruct the pre-Oligocene configuration and erosion level of Sevier thrust sheets across the Sevier Desert area. The SDR normal fault zone underlies the former topographic crest of the Sevier orogenic belt, where it accommodated extensional collapse after cessation of regional contractile tectonism.

  7. Backstripping differentiation to detect primary geochemical trends along the Aegean arc

    NASA Astrophysics Data System (ADS)

    Elburg, Marlina; Smet, Ingrid

    2014-05-01

    The present active volcanic arc in the Aegean runs from the centre of Methana in the west through Santorini to Nisyros in the east. The arc is built on (stretched) continental crust of African derivation. None of the analysed whole-rock samples, either from literature or our own data set, is primary, based on a combination of Mg-number, Ni- or Cr-contents. Although samples with (moderately) high values for one or the other exist, they appear to be influenced by magma mixing processes. Therefore, any along-arc trends observed potentially suffer from the effects of crystal fractionation with or without mixing and crustal contamination, obscuring along-arc differences related to varying inputs into the sub-arc mantle. Simple graphical extrapolation to more primitive compositions on variation diagrams is one way to strip the effects of the combination of differentiation processes. The main problem with this approach is the assumption that the observed variation is a faithful representation of all differentiation processes that acted on the primary magma. It is therefore unlikely to work if magma mixing is the process dominating the observed variation, as is the case for Methana. Moreover, it is possible that the first stage of differentiation, modifying the primary magma, is different in nature to the later processes, because it might take place at greater depth. These problems are compounded by the 'lumping' approach of looking at the variation within the whole volcanic centre, which obscures the potential presence of different magma series. While keeping these caveats in mind, there appears to be a difference in the composition of the subducted slab component in Nisyros compared to the more westerly centres, with high Ba, Sr and Nb contents, and low Pb-isotope ratios. This could be related to sedimentary input from the Nile drainage system. Santorini shows the lowest 'slab contribution' in terms of fluid-mobile elements, and generally lower ratios of the more to less

  8. Measurement of extensional viscosity using the falling drop technique. Final report, October 27, 1992--September 27, 1996

    SciTech Connect

    Jones, D.K.; Wildman, D.J. |

    1998-02-01

    In the falling drop technique, a drop is formed by slowly extruding a liquid downward through a small tube. The drop eventually falls, and fluid adheres to both the tube and the drop, creating a distinct extending fiber. Extensional viscosity may be determined by measuring the dimensions of the fiber as it extends. The flow of fluid in a falling drop has been modeled in order to determine extensional viscosity by measuring the extending fiber. A falling drop rheometer was built, and fiber dimensions were measured using two digital cameras and an image processing system. Extensional viscosity was measured for various solutions of glycerol, xanthan gum, and water. The falling drop technique proved to be an effective extensional rheometer for a range of solution concentrations. 6 refs., 3 figs., 1 tab.

  9. Temporal and spatial variations in provenance of Eastern Mediterranean Sea sediments: Implications for Aegean and Aeolian arc volcanism

    NASA Astrophysics Data System (ADS)

    Klaver, Martijn; Djuly, Thomas; de Graaf, Stefan; Sakes, Alex; Wijbrans, Jan; Davies, Gareth; Vroon, Pieter

    2015-03-01

    The Eastern Mediterranean Sea (EMS) is the last remnant of the Tethys Ocean that has been subducted to the north since the Jurassic. Subduction has led to the formation of multiple island arcs in the EMS region where the Aeolian and Aegean arcs are currently active. The EMS is surrounded by continents and receives a large sediment input, part of which is transported down with the subducting slab into the mantle and potentially contributes a major flux to the arc volcanism. An along-arc gradient in the composition of subducting sediment has been evoked to explain the distinct geochemical signature of the easternmost volcanic centre of the Aegean arc, but direct evidence for this proposal is lacking. We present a detailed study of the mineralogical, major-, trace elements and Sr-Nd-Hf-Pb isotope composition of 45 Neogene EMS sediment samples obtained from Deep Sea Drilling Project (DSDP) and Ocean Drilling Program (ODP) drill sites and box cores to characterise their geochemical composition, distinguish provenance components and investigate the temporal and spatial variation in provenance to evaluate the potential changing contribution of subducted EMS sediment to Aegean and Aeolian arc volcanism. Based on trace element characteristics of EMS sediments, we can distinguish four provenance components. Nile sediment and Sahara dust are the main components, but contributions from the Tethyan ophiolite belt and arc volcanic rocks in the north are also recognised. Pliocene and Quaternary EMS sediment records a strong geochemical gradient where Nile River sediment entering the EMS in the east is progressively diluted by Sahara Desert dust towards the west. Pre-Messinian samples, however, have a remarkably homogeneous composition with Nile sediment characteristics. We relate this rapid increase in Sahara dust contribution to a late Miocene climate shift leading to decreased Nile runoff and aridification of the Sahara region. EMS sediment has a restricted range in Pb isotopes

  10. Eocene extensional exhumation of basement and arc rocks along southwesternmost Peru, Central Andes.

    NASA Astrophysics Data System (ADS)

    Noury, Mélanie; Bernet, Matthias; Sempéré, Thierry

    2014-05-01

    The overthickened crust of the current Central Andes is commonly viewed as the result of tectonic shortening. However, in the present-day terrestrial forearc and arc of southwesternmost Peru, crustal thickness increases from 30 km along the coastline to >60 km below the active arc, whereas the upper crust exhibits little to no evidence of crustal shortening and, in constrast, many extensional features. How (and when) crustal overthickness was acquired in this region is thus little understood. Because crustal overthickening often results in extensional collapse and/or significant erosion, here we address this issue through a regional-scale study of exhumation using fission-track thermochronology. The limited fission-track data previously available in the area suggested that exhumation began during the Mesozoic. In this study, we present new apatite and zircon fission-track data obtained along the current terrestrial forearc of southwesternmost Peru. This relatively restricted area presents the interest of providing extensive outcrops of Precambrian to Ordovician basement and Early Jurassic to Late Cretaceous arc plutons. In order to compare the chronology of exhumation of these units, we performed extensive sampling for fission-track dating, as well as structural mapping. Our results indicate that the basement rocks and Jurassic plutons that crop out in the Arequipa region, where the crust is now >50 km-thick, experienced a rapid cooling through the 240-110°C temperature range between ~65 and ~35 Ma. This period of rapid exhumation coincided in time with the accumulation of terrestrial forearc deposits (the Lower Moquegua Group), that exhibit many syn-sedimentary extensional features and are bounded by conspicuous normal faults, specifically along the region where intense activity of the main arc between ~90 and ~60 Ma had led to voluminous magma emplacement. This close succession of (1) intense magmatic activity and (2) regional-scale exhumation associated with

  11. Mesozooplankton stable isotope composition in Cyprus coastal waters and comparison with the Aegean Sea (eastern Mediterranean)

    NASA Astrophysics Data System (ADS)

    Hannides, Cecelia C. S.; Zervoudaki, Soultana; Frangoulis, Constantin; Lange, Manfred A.

    2015-03-01

    Here we use bulk and amino acid-specific stable nitrogen (N) isotope analysis (AA-CSIA) to evaluate seasonal and regional change in mesozooplankton dynamics for the first time in coastal waters of the eastern Mediterranean. Cyprus mesozooplankton δ15N values were significantly higher in late winter (2.3‰) than in summer (1.2‰), and in all cases were less than the δ15N values of mesozooplankton in the northeast Aegean Sea (NEA; 3.4‰). AA-CSIA indicates that these differences can primarily be attributed to seasonal and regional change in mesozooplankton community trophic structure, with overall trophic position increasing by 0.2-0.3 in winter as compared to summer around Cyprus, and trophic position higher in the NEA than in Cyprus by 0.3-0.6. Such differences are most likely related to the larger contribution of carnivorous mesozooplankton observed in winter around Cyprus and in the NEA. Overall, our findings indicate change in bulk mesozooplankton δ15N value in the eastern Mediterranean is primarily driven by change in community trophic position, rather than variability in δ15N value at the base of the food web.

  12. Conspicuous male coloration impairs survival against avian predators in Aegean wall lizards, Podarcis erhardii.

    PubMed

    Marshall, Kate L A; Philpot, Kate E; Stevens, Martin

    2015-09-01

    Animal coloration is strikingly diverse in nature. Within-species color variation can arise through local adaptation for camouflage, sexual dimorphism and conspicuous sexual signals, which often have conflicting effects on survival. Here, we tested whether color variation between two island populations of Aegean wall lizards (Podarcis erhardii) is due to sexual dimorphism and differential survival of individuals varying in appearance. On both islands, we measured attack rates by wild avian predators on clay models matching the coloration of real male and female P. erhardii from each island population, modeled to avian predator vision. Avian predator attack rates differed among model treatments, although only on one island. Male-colored models, which were more conspicuous against their experimental backgrounds to avian predators, were accordingly detected and attacked more frequently by birds than less conspicuous female-colored models. This suggests that female coloration has evolved primarily under selection for camouflage, whereas sexually competing males exhibit costly conspicuous coloration. Unexpectedly, there was no difference in avian attack frequency between local and non-local model types. This may have arisen if the models did not resemble lizard coloration with sufficient precision, or if real lizards behaviorally choose backgrounds that improve camouflage. Overall, these results show that sexually dimorphic coloration can affect the risk of predator attacks, indicating that color variation within a species can be caused by interactions between natural and sexual selection. However, more work is needed to determine how these findings depend on the island environment that each population inhabits. PMID:26442582

  13. Bacterial pollution, activity and heterotrophic diversity of the northern part of the Aegean Sea, Turkey.

    PubMed

    Çiftçi Türetken, Pelin S; Altuğ, Gülşen

    2016-02-01

    Isolation and characterization studies of marine heterotrophic bacteria are important to describe and understand eco-metobolism of the marine environments. In this study, diversity and community structures of the culturable heterotrophic bacteria, metabollicaly active bacteria and bacterial pollution in the coastal and offshore areas of Gökçeada Island, in the Northern Aegean Sea, Turkey were investigated from March 2012 to November 2013. The primary hydrographic parameters were recorded in situ. The frequency of the metabolically active bacteria was determined by using a modified staining technique. The indicator bacteria were determined by using membrane filtration technique; 126 bacteria isolates, 24 of them first records for this region, were identified using an automated micro-identification system, VITEK2 Compact30. The results showed that detected bacterial community profiles were significantly different when compared with previous studies conducted in polluted marine areas of Turkey. High frequency of faecal bacteria detected at station 2 indicated that increasing human activities and terrestrial pollution sources are shaping factors for possible risks, regarding recreational uses of this region, in the summer seasons. PMID:26832724

  14. Offshore wind speed and wind power characteristics for ten locations in Aegean and Ionian Seas

    NASA Astrophysics Data System (ADS)

    Bagiorgas, Haralambos S.; Mihalakakou, Giouli; Rehman, Shafiqur; Al-Hadhrami, Luai M.

    2012-08-01

    This paper utilizes wind speed data measured at 3 and 10 m above water surface level using buoys at 10 stations in Ionian and Aegean Seas to understand the behaviour of wind and thereafter energy yield at these stations using 5 MW rated power offshore wind turbine. With wind power densities of 971 and 693 W/m2 at 50 m above water surface level, Mykonos and Lesvos were found to be superb and outstanding windy sites with wind class of 7 and 6, respectively. Other locations like Athos, Santorini and Skyros with wind power density of more than 530 W/m2 and wind class of 5 were found to be the excellent sites. Around 15-16% higher winds were observed at 10 m compared to that at 3 m. Lower values of wind speed were found during summer months and higher during winter time in most of the cases reported in the present work. Slightly decreasing (~2% per year) linear trends were observed in annual mean wind speed at Lesvos and Santorini. These trends need to be verified with more data from buoys or from nearby onshore meteorological stations. At Athos and Mykonos, increasing linear trends were estimated. At all the stations the chosen wind turbine could produce energy for more than 70% of the time. The wind speed distribution was found to be well represented by Weibull parameters obtained using Maximum likelihood method compared to WAsP and Method of Moments.

  15. The Sponge Community of a Subtidal Area with Hydrothermal Vents: Milos Island, Aegean Sea

    NASA Astrophysics Data System (ADS)

    Pansini, M.; Morri, C.; Bianchi, C. N.

    2000-11-01

    Sponges were sampled by SCUBA diving at six subtidal rocky sites, three of which were close to hydrothermal vents, a common feature on the sea-floor off the south-east coast of Milos. Twenty-five species (2 Calcarea and 23 Demospongiae) were found, few compared with the 589 recorded for the Mediterranean, but an important addition to the scant information on the sponge fauna of the Aegean Sea. The number of species found at vent sites was consistently higher than that found at non-vent sites, but no vent-obligate species could be identified. However, Geodia cydonium and three species of Cliona ( C. copiosa, C. nigricans and C. rhodensis) showed a tendency to colonize vent areas. The former might take advantage of increased silica availability, the latter of the enhanced deposition of carbonates near vents. Substratum cover by sponges (estimated from wire-framed photographs of 0·7 m 2), varied greatly both among and within sites, mostly according to slope. Most sponge species preferred vertical to overhanging, shaded substrata. Proximity to vents seemed to have little or no influence on sponge cover, notwithstanding a primary effect on species diversity.

  16. Polychaetes associated with the sciaphilic alga community in the northern Aegean Sea: spatial and temporal variability

    NASA Astrophysics Data System (ADS)

    Antoniadou, C.; Nicolaidou, A.; Chintiroglou, C.

    2004-10-01

    Polychaete biodiversity has received little attention despite its importance in biomonitoring. This study describes polychaete diversity, and its spatial and temporal variability in infralittoral, hard substrate assemblages. Seven stations were chosen in the central area of the northern Aegean Sea. At each station, one to three depth levels were set (15, 30 and 40 m). Five replicates were collected by scuba diving with a quadrat sampler (400 cm2) from each station and depth level during summer for the spatial analysis, and seasonally for the study of temporal changes. Common biocoenotic methods were employed (estimation of numerical abundance, mean dominance, frequency, Margalef's richness, Shannon-Weaver index and Pielou's evenness). A total of 5,494 individuals, belonging to 79 species, were counted and classified. Diversity indices were always high. Clustering and multidimensional scaling techniques indicated a high heterogeneity of the stations, although these were all characterized by the sciaphilic alga community. A clear seasonal pattern was not detectable. Summer and autumn samples discriminate, while winter and spring form an even group. The abundance/biomass comparison indicated a dominance of k-strategy patterns, characteristic of stable communities.

  17. Pesticide residues in fruits and vegetables from the Aegean region, Turkey.

    PubMed

    Bakırcı, Gözde Türköz; Yaman Acay, Dilek Bengü; Bakırcı, Fatih; Ötleş, Semih

    2014-10-01

    The purpose of this study was to investigate pesticide residues in fruits and vegetables from the Aegean region of Turkey. A total of 1423 samples of fresh fruit and vegetables were collected from 2010 to 2012. The samples were analysed to determine the concentrations of 186 pesticide residues. The analyses utilized ultrahigh performance liquid chromatography coupled with tandem mass spectrometry (UPLC/MS/MS) and gas chromatography with an electron capture detector (GC-ECD) confirmed by gas chromatography with mass spectrometry (GC-MS) after a multi-residue extraction procedure (the QuEChERS method). The results were evaluated according to maximum residue limits (MRLs) for each commodity and pesticide by Turkish Regulation. All pomegranate, cauliflower and cabbage samples were pesticides-free. A total of 754 samples contained detectable residues at or below MRLs, and 48 (8.4%) of the fruit samples and 83 (9.8%) of the vegetable samples contained pesticide residues above MRLs. MRL values were most often exceeded in arugula, cucumber, lemon, and grape commodities. All detected pesticides in apricot, carrot, kiwifruit and leek were below the MRLs. Acetamiprid, chlorpyriphos and carbendazim were the most detected pesticide residues. PMID:24799252

  18. Macrobenthic community structure over the continental margin of Crete (South Aegean Sea, NE Mediterranean)

    NASA Astrophysics Data System (ADS)

    Tselepides, Anastasios; Papadopoulou, Konstantia-N.; Podaras, Dimitris; Plaiti, Wanda; Koutsoubas, Drosos

    2000-08-01

    Macrobenthic faunal composition, abundance, biomass and diversity together with a suite of sedimentary environmental parameters were investigated on a seasonal basis in order to determine factors regulating faunal distribution over the oligotrophic continental margin of the island of Crete (South Aegean Sea, North Eastern Mediterranean). Macrofaunal species composition was similar to that of the western Mediterranean and the neighboring Atlantic having several common dominant species. Mean benthic biomass, abundance and diversity decreased with depth, with a major transition zone occurring at 540 m, beyond which values declined sharply. At comparable depths biomass and abundance values were considerably lower to those found in the Atlantic, high-lighting the extreme oligotrophy of the area. The continental margin of Crete was characterised by a high diversity upper continental shelf environment (dominated by surface deposit feeding polychaetes) and a very low diversity slope and deep-basin environment (dominated by carnivorous and filter feeding polychaetes). Classification and ordination analyses revealed the existence of four principle clusters divided by a faunal boundary between 200 and 540 m, as well as beyond 940 m depth. Significant correlations between macrofauna and sediment parameters led to the conclusion that besides depth, food availability (as manifested by the concentration of chloroplastic pigments) is the principle regulating factor in the system. Such being the case, the prevailing hydrographic features that structure the pelagic food web and are directly responsible for the propagation of organic matter to the benthos also affect its community structure.

  19. Long-Term Marine Traffic Monitoring for Environmental Safety in the Aegean Sea

    NASA Astrophysics Data System (ADS)

    Giannakopoulos, T.; Gyftakis, S.; Charou, E.; Perantonis, S.; Nivolianitou, Z.; Koromila, I.; Makrygiorgos, A.

    2015-04-01

    The Aegean Sea is characterized by an extremely high marine safety risk, mainly due to the significant increase of the traffic of tankers from and to the Black Sea that pass through narrow straits formed by the 1600 Greek islands. Reducing the risk of a ship accident is therefore vital to all socio-economic and environmental sectors. This paper presents an online long-term marine traffic monitoring work-flow that focuses on extracting aggregated vessel risks using spatiotemporal analysis of multilayer information: vessel trajectories, vessel data, meteorological data, bathymetric / hydrographic data as well as information regarding environmentally important areas (e.g. protected high-risk areas, etc.). A web interface that enables user-friendly spatiotemporal queries is implemented at the frontend, while a series of data mining functionalities extracts aggregated statistics regarding: (a) marine risks and accident probabilities for particular areas (b) trajectories clustering information (c) general marine statistics (cargo types, etc.) and (d) correlation between spatial environmental importance and marine traffic risk. Towards this end, a set of data clustering and probabilistic graphical modelling techniques has been adopted.

  20. Reconstructing Holocene sea surface salinity changes in the Northern Aegean Sea: evidence from morphological variations of Emiliania huxleyi-coccoliths

    NASA Astrophysics Data System (ADS)

    Herrle, Jens O.; Gebühr, Christina; Bollmann, Jörg; Giesenberg, Annika; Kranzdorf, Philip

    2013-04-01

    The Aegean Sea is a key area for our understanding of the impact of changes in the hydrological cycle on ocean circulation in the Mediterranean Sea. The Aegean Sea appears to be very sensitive to climate changes in Europe because of its small volume and the position between high- and low-latitude climate regimes. Therefore, it is assumed to record environmental change, especially changes in sea surface water salinity (SSS) without a significant time lag with respect to the forcing process (Rohling et al., 2002). However, up to date, SSS cannot be easily reconstructed from geological archives because several assumptions need to be made that lead to a significant error of the salinity estimates (e.g. Rohling, 2000). Here, we present the first high resolution SSS reconstruction from a Holocene sediment core based on a recently developed transfer function using the morphological variation of Emiliania huxleyi coccoliths (Bollmann & Herrle 2007, Bollmann et al., 2009). The core is located in the northern Aegean Sea (eastern Mediterranean Basin) and covers the time period 3 -11ka ago. Sea surface water salinity in the Aegean Sea has varied in concert with temperature oscillations as recorded in Greenland ice cores (iGISP2 ice core δ18O record) with a periodicity of about 900 years (Schulz & Paull, 2002). Four major SSS events can be identified at about 3.9, 4.7, 6.4, 7.4, and 8.2 ka in the northern Aegean Sea that correlate with increases in GISP2 δ18O (Schulz & Paull, 2002) as well as decreasing percentages of tree pollen studied at the same core expect for 3.9 ka (Kotthoff et al., 2008). The most prominent salinity increase occurred during the short-lived 8.2 kyr cold event (e.g., Rohling & Pälike, 2005), which was most likely triggered by a melt-water related perturbation of the Atlantic Meridional Overturning and associated decrease of ocean heat transport to the North Atlantic. We suggest that the salinity fluctuations in the northern Aegean Sea are related to

  1. Role of extensional tectonics in the formation of Talladega belt--Blue Ridge successor basins

    SciTech Connect

    Tull, J.F. . Dept. of Geology)

    1993-03-01

    Polydeformed and metamorphosed sequences occurring unconformably above the Cambrian-Ordovician (C-O) miogeoclinal sequence are nested within the Talladega belt (Talladega Group-TG) and Blue Ridge (Mineral Bluff Group-MBG). These successor basin sequences are 2.5--3 km thick and have a possible age range from Ordovician to Devonian, representing the youngest stratigraphic units east of the foreland. They are dominated by turbiditic metaclastic rocks derived from erosion of Grenville basement and its overlying cover of clastic and carbonate rock. Bimodal volcanic rocks occur in the TG, and within-plate mafic extrusive rocks are found in the MBG. The TG consists of a coarsening, thickening, and shallowing upward sequence with a submarine fan-like unit (Lay Dam Formation-LDF) at the base. The LDF contains a thick proximal boulder-bearing olistostromal facies with debris fan lobes stacked vertically and shed from a proximal fault scarp to the SE or S. The vertical stacking of olistostromal deposits, absence of crystalline-cored thrust sheets of this age at the structural top of the basin, and other relationships indicate that the basin did not result from detached deformation to the SE or transcurrent faulting, but rather from extensional faulting. Relationships within the C-O carbonate sequence (Sylacauga Marble Group) unconformably below the TG indicate that the TG basin developed above shallow shelf miogeoclinal rocks inboard of the continental margin hinge line, and thus indicate that Silurian-Devonian extensional structures affected relatively thick Laurentian crust. Similarities in lithofacies and stratigraphic sequence between the TG and MBG indicate that the settling of the MBG may have also been within an extensional basin but basin boundary faults have not yet been identified within the structural block below the pre-MBG unconformity. This basin developed above Laurentian crust previously thinned during late Protozoic rifting.

  2. Origin and role of fluids involved in the seismic cycle of extensional faults in carbonate rocks

    NASA Astrophysics Data System (ADS)

    Smeraglia, Luca; Berra, Fabrizio; Billi, Andrea; Boschi, Chiara; Carminati, Eugenio; Doglioni, Carlo

    2016-09-01

    We examine the potentially-seismic right-lateral transtensional-extensional Tre Monti Fault (central Apennines, Italy) with structural and geochemical methods and develop a conceptual evolutionary model of extensional faulting with fluid involvement in shallow (≤3 km depth) faults in carbonate rocks. In the analysed fault zone, multiscale fault rock structures include injection veins, fluidized ultracataclasite layers, and crackle breccias, suggesting that the fault slipped seismically. We reconstructed the relative chronology of these structures through cross-cutting relationship and cathodoluminescence analyses. We then used C- and O-isotope data from different generations of fault-related mineralizations to show a shift from connate (marine-derived) to meteoric fluid circulation during exhumation from 3 to ≤1 km depths and concurrent fluid cooling from ∼68 to <30 °C. Between ∼3 km and ∼1 km depths, impermeable barriers within the sedimentary sequence created a semi-closed hydrological system, where prevalently connate fluids circulated within the fault zone at temperatures between 60° and 75 °C. During fault zone exhumation, at depths ≤1 km and temperatures <30 °C, the hydrological circulation became open and meteoric-derived fluids progressively infiltrated and circulated within the fault zone. The role of these fluids during syn-exhumation seismic cycles of the Tre Monti Fault has been substantially passive along the whole fault zone, the fluids being passively redistributed at hydrostatic pressure following co-seismic dilatancy. Only the principal fault has been characterized, locally and transiently, by fluid overpressures. The presence of low-permeability clayey layers in the sedimentary sequence contributed to control the type of fluids infiltrating into the fault zone and possibly their transient overpressures. These results can foster the comprehension of seismic faulting at shallow depths in carbonate rocks of other fold-thrust belts

  3. The Moho in extensional tectonic settings: insights from thermo-mechanical models

    NASA Astrophysics Data System (ADS)

    Cloetingh, Sierd; Burov, Evgenii; Liviu, Matenco

    2013-04-01

    We review consequences for the crustal and lithospheric configuration of different models for the thermo-mechanical evolution of continental lithosphere in extensional tectonic settings. The lithospheric memory is key for the interplay of lithospheric stresses and rheological structure of the extending lithosphere and for its later tectonic reactivation. Other important factors are the temporal and spatial migration of extension and the interplay of rifting and surface processes. The mode of extension and the duration of the rifting phase required to lead to continental break-up is to a large extent controlled by the interaction of the extending plate with slab dynamics. We compare predictions from numerical models with observational constraints from a number of rifted back-arc basin settings and intraplate domains at large distance from convergent plate boundaries. We discuss the record of vertical motions during and after rifting in the context of stretching models developed to quantify rifted basin formation. The finite strength of the lithosphere has an important effect on the formation of extensional basins. This applies both to the geometry of the basin shape as well as to the record of vertical motions during and after rifting. We demonstrate a strong connection between the bulk rheological properties of Europe's lithosphere and the evolution of some of Europe's main rifts and back-arc system. The thermomechanical structure of the lithosphere has a major impact on continental breakup and associated basin migration processes, with direct relationships between rift duration and extension velocities, thermal evolution, and the role of mantle plumes. Compressional reactivation has important consequences for post-rift inversion, borderland uplift, and denudation, as illustrated by polyphase deformation of extensional back-arc basins in the Black Sea and the Pannonian Basin.

  4. Numerical Modeling of Extensional Necking Instabilities: Application to Ganymede's Grooved Terrain

    NASA Technical Reports Server (NTRS)

    Bland, M. T.; Showman, A. P.

    2005-01-01

    Ganymede s pervasive 5-10 km-wavelength grooves have been suggested to result from a necking instability during an epoch of lithospheric extension, but to date few quantitative studies of groove formation have been performed. We present two-dimensional numerical models of necking instabilities under conditions that are appropriate to Ganymede at the time of groove formation. Preliminary simulations indicate that extensional necking instabilities can occur under a range of conditions, many of which may be relevant to Ganymede. The form of the surface topography produced by these instabilities varies as a function of the strain rate, amount of extension, initial topographic perturbation, and rheological parameters.

  5. Extensional and Flexural Waves in a Thin-Walled Graphite/Epoxy Tube

    NASA Technical Reports Server (NTRS)

    Prosser, William H.; Gorman, Michael R.; Dorighi, John

    1992-01-01

    Simulated acoustic emission signals were induced in a thin-walled graphite/epoxy tube by means of lead breaks (Hsu-Neilsen source). The tube is of similar material and layup to be used by NASA in fabricating the struts of Space Station Freedom. The resulting waveforms were detected by broad band ultrasonic transducers and digitized. Measurements of the velocities of the extensional and flexural modes were made for propagation directions along the tube axis (0 degrees), around the tube circumference (90 degrees) and at an angle of 45 degrees. These velocities were found to be in agreement with classical plate theory.

  6. The role of extensional inheritance and surface processes on mountain belt evolution

    NASA Astrophysics Data System (ADS)

    Erdos, Zoltan; Huismans, Ritske S.; van der Beek, Peter

    2015-04-01

    The crustal structure of collisional orogens around the world shows a wide range of deformation styles from narrow, asymmetric doubly vergent wedges like the Pyrenees to wide, plateau-like orogens such as the Zagros mountain belt in Iran. Inherited structures and surface processes are widely regarded as factors playing significant role in the evolution of such mountain belts. These parameters have been studied extensively throughout the last decades, yet questions still remain about their exact effects on the style of orogenic development. We use lithospheric scale plane-strain thermo-mechanical model experiments to study the effects of extensional inheritance and surface processes on the internal structure of contractional orogens and their foreland basins. Extensional inheritance is modeled explicitly by forward modeling the formation of a rift basin before reversing the velocity boundary conditions to model its inversion. Surface processes are modeled through the combination of a simple sedimentation algorithm, where all negative topography is filled up to a prescribed reference level, and an elevation-dependent erosion model. We test the sensitivity of our models to the amount of crustal extension, and to the length of post-rift thermal relaxation. Moreover, the interaction of thin-skinned and thick-skinned tectonics is explored with the use of a shallow frictionally weak detachment at the base of a pre-deformation sedimentary layer. Our results show that extensional inheritance facilitates the propagation of basement deformation in the retro-wedge and increases the width of the orogen. Additionally, sedimentation increases the length-scale of both thin-skinned and thick-skinned thrust sheets and results in a wider orogen while erosion helps to localize deformation resulting in a narrower orogen. However, the length of post-rift thermal relaxation seems to have very little effect on the following mountain building. A comparison of the modeled behaviors to the

  7. Relations between extensional tectonics and magmatism within the Southern Oklahoma aulacogen

    NASA Astrophysics Data System (ADS)

    McConnell, D. A.; Gilbert, M. C.

    Variations in the geometry, distribution and thickness of Cambrian igneous and sedimentary units within southwest Oklahoma are related to a late Proterozoic - early Paleozoic rifting event which formed the Southern Oklahoma aulacogen. These rock units are exposed in the Wichita Mountains, southwest Olkahoma, located on the northern margin of a Proterozoic basin, identified in the subsurface by COCORP reflection data. Overprinting of the Cambrian extensional event by Pennyslvanian tectonism obsured the influence of pre-existing basement structures and contrasting basement lithologies upon the initial development of the aulacogen.

  8. Relations between extensional tectonics and magmatism within the Southern Oklahoma aulacogen

    NASA Technical Reports Server (NTRS)

    Mcconnell, D. A.; Gilbert, M. C.

    1985-01-01

    Variations in the geometry, distribution and thickness of Cambrian igneous and sedimentary units within southwest Oklahoma are related to a late Proterozoic - early Paleozoic rifting event which formed the Southern Oklahoma aulacogen. These rock units are exposed in the Wichita Mountains, southwest Olkahoma, located on the northern margin of a Proterozoic basin, identified in the subsurface by COCORP reflection data. Overprinting of the Cambrian extensional event by Pennyslvanian tectonism obsured the influence of pre-existing basement structures and contrasting basement lithologies upon the initial development of the aulacogen.

  9. Volcanic Centers of the Northern McCullough Range, Southern Nevada USA: a View of Pre- Extensional Volcanism in the Colorado River Extensional Corridor

    NASA Astrophysics Data System (ADS)

    Honn, D. K.; Johnsen, R.; Smith, E. I.

    2007-05-01

    The northern McCullough Range, just south of Las Vegas, Nevada, is being developed by the US Bureau of Land Management as the Sloan Canyon National Conservation Area to preserve its natural history. Compared to adjacent ranges, the northern McCullough Range was relatively undeformed by Miocene extension in the Colorado River Extensional Corridor. Therefore, the well preserved volcanic centers within the McCullough Range provide an excellent opportunity to study pre-extensional volcanism. There are at least seven volcanic centers in the northern McCullough Range; this study focuses on the Cactus Hill, McCullough Wash, and Eldorado Valley Volcanoes in the central McCullough Range, and the Henderson Caldera in the northern McCullough Range. The Cactus Hill volcano is a 200 m thick section of flows and agglomerates that form a broad basalt-andesite cone, nearly 2 km in diameter. This cone is cut by two (2-3 m wide) basalt dikes and at least 8 dacite domes. Each of the domes is associated with a broad debris apron. The McCullough Wash volcano is composed of at least 6 dacite domes and carapace breccias that reflect periods of dome growth and collapse. The Eldorado Valley Volcano, another series of dacite domes and flows, is the source of a 250 m thick breccia unit (Eldorado Valley breccia). The breccia is a block and ash deposit (with beds up to 1.5 m thick) containing spectacular blocks (1 cm - 3 m in diameter) and bombs (10 cm - 6 m in diameter) that are interbedded with flows from the McCullough Wash and Cactus Hill volcanoes. Interbedding of dacite breccia of the Eldorado Valley Volcano with dacitic, andesitic and basaltic dome debris from the Cactus Hill volcano reflect coeval mafic and felsic volcanism. The Henderson caldera at the northern tip of the McCullough Range is formed by a arc of domes that erupted a series of biotite dacite flows. The caldera is also filled by domes and flows of hornblende andesite, ash-flow tuff and mesobreccia deposits. The tuff of

  10. Extension in the Aegean nappe-stacks: Numerical Model and their Geological Validation

    NASA Astrophysics Data System (ADS)

    Lecomte, E.; Huet, B.; Le Pourhiet, L.; Labrousse, L.; Jolivet, L.

    2010-12-01

    After mountain building, the crust exhibits complex structure. Especially, thickening achieved by nappe-stacking induces rheological heterogenities at all scales: from the fault scale up to the crustal scale. This process is likely to influence post-orogenic evolution. However, it is generally not considered in numerical models. In this study, we consider the impact of pre-existing thrusts and nappes structures on the mode of post-orogenic extension. We focus on thermomechanical modeling of reactivation of convergent structures inherited from compression. The Aegean domain that experienced extension after the formation of the Hellenides is considered as a natural laboratory. Natural data are used to constrain a priori the geometry and rheology of the models and to validate them a posteriori. Three problems at different scales are considered. Firstly, we model the reactivation of a thrust as a low angle normal fault. Recent studies show that Aegean detachments were active in the brittle field with very shallow dips. These observations are in contradiction with the classical fault mechanics theory. In order to reconcile both point of view, we propose a new model by introducing an elasto-plastic frictional fault gouge that is able to compact. Our models show that plastic strain on badly oriented faults is favored by compaction of the fault gouge. Secondly, we model the formation of the Corinth rift. The Phyllite-Quartizte nappe is introduced in the upper crust as a weak shallow-dipping layer between the Pindos and Tripolitza massive carbonate nappes. The competence contrast between this nappe and its surrounding controls the dynamics of rifting. High competence contrast leads to the formation of crustal-scale planar faults rooting on the brittle ductile transition of the crust and thin-skinned listric faults rooting on the nappe itself. This model is consistent with the observed microseismicity patterns, the asymmetry of the Corinth Gulf, and the kinematics of fault

  11. Microseismicity in the southeastern Aegean using data of the temporary EGELADOS network

    NASA Astrophysics Data System (ADS)

    Brüstle, A.; Küperkoch, L.; Meier, T.; Friederich, W.; Egelados Working Group

    2009-04-01

    The temporary broadband EGELADOS network covered the entire Hellenic Subduction Zone from October 2005 to April 2007. Seismic events are detected and identified by an STA/LTA-trigger and a grid-search algorithm, where relative travel times of pre-defined masterevents are compared to observed differential trigger times. Because of the high seismicity, we focus on the south-eastern part of the Hellenic Subduction Zone including the forearc around Rhodes, Karpathos and Kassos and the volcanic arc around Nisyros. In addition, the considered region covers the transition zone from the Aegean to the Anatolian microplates at the west coast of Turkey. For this region more than 1800 of the 2646 events, triggered during the first 6 months of the experiment, were identified as local earthquakes and localised. The other triggers represent earthquakes outside the working region, multiply triggered events, teleseismic events or noise, respectively. Microseismicity down to a magnitude of about ML 1.8 is detected completely. In regions with an increased station density, microseismicity may be observed completely down to magnitudes of ML 1. High shallow microseismicity is observed in the forearc with clusters southeast of Crete (Ptolemy trench), south of Karpathos and southwest of Amorgos within the volcanic arc. A continuous seismically active zone strikes along the EW trending rift of the Gulf of Gökova to western Kos and changes its direction to NS by crossing the volcanic island Nisyros and extruding into the forearc near Kassos. Intermediate depth seismicity of the subducting slab is located in the volcanic arc between Astypalea and Tilos. The strong attenuation of the S-waves of intermediate depth events points to low Q in the mantle wedge above the subducting African lithosphere. In contrast, S-waves propagating within the slab from the source to the stations in the forearc are much less attenuated.

  12. Microseismicity in the SE Aegean using data of he temporary EGELADOS network

    NASA Astrophysics Data System (ADS)

    Brüstle, Andrea; Küperkoch, Ludger; Meier, Thomas; Friederich, Wolfgang; Egelados Working Group

    2010-05-01

    The temporary broadband EGELADOS network covered the entire Hellenic Subduction Zone from October 2005 to April 2007. Seismic events are detected and identified by an STA/LTA-trigger and a grid-search algorithm, where relative travel times of pre-defined masterevents are compared to observed differential trigger times. Because of the high seismicity, we will focus on this poster on the south-eastern part of the Hellenic Subduction Zone including the forearc around Rhodes, Karpathos and Kassos and the volcanic arc around Nisyros. In addition, the considered region covers the transition zone from the Aegean to the Anatolian microplates at the west coast of Turkey. In this region we have located more than 3500 local earthquakes in 13 months of the network. Microseismicity down to a magnitude of about ML 1.8 is detected completely. In regions with an increased station density, microseismicity may be observed completely down to magnitudes of ML 1. High shallow microseismicity is observed in the forearc with clusters southeast of Crete (Ptolemy trench), south of Karpathos and southwest of Amorgos within the volcanic arc. A continuous seismically active zone strikes along the EW trending rift of the Gulf of Goekova to western Kos and changes its direction to NS by crossing the volcanic island Nisyros and extruding into the forearc near Kassos. Intermediate depth seismicity of the subducting slab is located in the volcanic arc between Astypalea and Tilos. The strong attenuation of the S-waves of intermediate depth events points to low Q in the mantle wedge above the subducting African lithosphere. In contrast, S-waves propagating within the slab from the source to the stations in the forearc are much less attenuated.

  13. The 24 May 2014 Mw 6.9 Gokceada, North Aegean Sea Earthquake and Its Aftershocks

    NASA Astrophysics Data System (ADS)

    Baydar Gorgun, B.; Gorgun, E.

    2014-12-01

    On 2014 May 24, the Gokceada Island in northern Aegean Sea region was hit by an Mw = 6.9 earthquake. The Gokceada earthquake occurred 43 km SW of Gokceada Island. Centroid moment tensors for 42 events with Mw between 3.5 and 6.9 are computed by applying a waveform inversion method. The time span of data covers the period between 2014 May 24 - June 26. The mainshock is a shallow focus strike-slip event at a depth of 15 km. Focal depths of aftershocks range from 5 to 25 km. The seismic moment (M0) of the mainshock is estimated 2.53 × 1019 Nm. The focal mechanisms of the aftershocks are mainly strike-slip faulting with a variable and sometimes significant normal component. This geometry indicates a strike-slip faulting regime with NE-SW trending direction of T-axis in the entire activated region. A Stress tensor inversion of focal mechanism data is performed to obtain a more accurate picture of the Gokceada earthquake stress field. The stress tensor inversion results show a predominant strike-slip stress regime with a NW-SE to NNE-SSW oriented maximum horizontal compressive stress (SH). The secondary fault system striking mostly E-W is activated generally with normal faulting in the east of the mainshock. This difference in mechanism suggests that towards the east, a different fault system is activated with respect to the NE-SW trending strike-slip faults beneath Gokceada Island and more to the west. Thus, to first order, the Gokceada Island earthquake region is characterized by a homogeneous intraplate stress field.

  14. Miocene extension and extensional folding in an anticlinal segment of the Black Mountains accommodation zone, Colorado River extensional corridor, southwestern United States

    NASA Astrophysics Data System (ADS)

    Varga, Robert J.; Faulds, James E.; Snee, Lawrence W.; Harlan, Stephen S.; Bettison-Varga, Lori

    2004-02-01

    Recent studies demonstrate that rifts are characterized by linked tilt domains, each containing a consistent polarity of normal faults and stratal tilt directions, and that the transition between domains is typically through formation of accommodation zones and generally not through production of throughgoing transfer faults. The mid-Miocene Black Mountains accommodation zone of southern Nevada and western Arizona is a well-exposed example of an accommodation zone linking two regionally extensive and opposing tilt domains. In the southeastern part of this zone near Kingman, Arizona, east dipping normal faults of the Whipple tilt domain and west dipping normal faults of the Lake Mead domain coalesce across a relatively narrow region characterized by a series of linked, extensional folds. The geometry of these folds in this strike-parallel portion of the accommodation zone is dictated by the geometry of the interdigitating normal faults of opposed polarity. Synclines formed where normal faults of opposite polarity face away from each other whereas anticlines formed where the opposed normal faults face each other. Opposed normal faults with small overlaps produced short folds with axial trends at significant angles to regional strike directions, whereas large fault overlaps produce elongate folds parallel to faults. Analysis of faults shows that the folds are purely extensional and result from east/northeast stretching and fault-related tilting. The structural geometry of this portion of the accommodation zone mirrors that of the Black Mountains accommodation zone more regionally, with both transverse and strike-parallel antithetic segments. Normal faults of both tilt domains lose displacement and terminate within the accommodation zone northwest of Kingman, Arizona. However, isotopic dating of growth sequences and crosscutting relationships show that the initiation of the two fault systems in this area was not entirely synchronous and that west dipping faults of the

  15. Miocene extension and extensional folding in an anticlinal segment of the Black Mountains accommodation zone, Colorado River extensional corridor, southwestern United States

    USGS Publications Warehouse

    Varga, R.J.; Faulds, J.E.; Snee, L.W.; Harlan, S.S.; Bettison-Varga, L.

    2004-01-01

    Recent studies demonstrate that rifts are characterized by linked tilt domains, each containing a consistent polarity of normal faults and stratal tilt directions, and that the transition between domains is typically through formation of accommodation zones and generally not through production of throughgoing transfer faults. The mid-Miocene Black Mountains accommodation zone of southern Nevada and western Arizona is a well-exposed example of an accommodation zone linking two regionally extensive and opposing tilt domains. In the southeastern part of this zone near Kingman, Arizona, east dipping normal faults of the Whipple tilt domain and west dipping normal faults of the Lake Mead domain coalesce across a relatively narrow region characterized by a series of linked, extensional folds. The geometry of these folds in this strike-parallel portion of the accommodation zone is dictated by the geometry of the interdigitating normal faults of opposed polarity. Synclines formed where normal faults of opposite polarity face away from each other whereas anticlines formed where the opposed normal faults face each other. Opposed normal faults with small overlaps produced short folds with axial trends at significant angles to regional strike directions, whereas large fault overlaps produce elongate folds parallel to faults. Analysis of faults shows that the folds are purely extensional and result from east/northeast stretching and fault-related tilting. The structural geometry of this portion of the accommodation zone mirrors that of the Black Mountains accommodation zone more regionally, with both transverse and strike-parallel antithetic segments. Normal faults of both tilt domains lose displacement and terminate within the accommodation zone northwest of Kingman, Arizona. However, isotopic dating of growth sequences and crosscutting relationships show that the initiation of the two fault systems in this area was not entirely synchronous and that west dipping faults of the

  16. Quaternary volcanism and tectonic history of the Suwa-Yatsugatake Volcanic Province, Central Japan

    NASA Astrophysics Data System (ADS)

    Nishiki, Kuniaki; Takahashi, Kou; Matsumoto, Akikazu; Miyake, Yasuyuki

    2011-06-01

    Beneath central Japan, where three island arcs meet, the Pacific and Philippine Sea plates are both subducting, resulting in a complex tectonic history. The Suwa-Yatsugatake Volcanic Province (SYVP) consists of five groups of volcanoes (the Circum-Lake Suwa, Utsukushigahara, Kirigamine, Yabashira, and Yatsugatake volcanoes). The province is characterized by an enormous amount of volcanic activity, with lava flows and volcaniclastic rocks spread over a vast area of more than 1200 km 2, and with a total eruption volume exceeding 400 km 3. We determined the K-Ar ages of 41 samples of the SYVP with the aim of elucidating temporal and spatial changes in the tectonic and volcanic activities of central Japan. According to these new dates and previously reported radiogenic ages, we lead to conclude that volcanic activity has been occurring intermittently in the province since ca. 2.2 Ma. Volcanic activity in the SYVP can be classified into three phases, separated by dormant periods. Among these three phases, the volcanism during Phase II (1.6-0.7 Ma) is characteristic of an extensional stress field, such as voluminous outpourings of andesitic lava, and the existence of the WNW-ESE Oiwake Graben. Since ca. 5 Ma, Central Japan has been situated in a regional compressional stress field. However, in the SYVP, the stress field was locally extensional during Phase II. Here we propose a model in which the Izu Block, which lies above the Philippine Sea Plate, collided with Central Japan, resulting in enhanced NW-SE regional compressional stresses, but local extensional stresses in the SYVP due to the existence of a massive quantity of magma, and the geometry of the Itoigawa-Shizuoka Tectonic Line. We consider the volcanic activity in the SYVP to have been pulse-like, resulting from successive, intermittent collisions between Central Japan and blocks on the Philippine Sea Plate.

  17. X-ray scattering investigation of structural relaxation in an ordered block copolymer melt subjected to uniaxial extensional flow

    NASA Astrophysics Data System (ADS)

    Burghardt, Wesley; McCready, Erica

    2012-02-01

    The structural dynamics of an ordered styrene-ethylene butylene-styrened triblock copolymer have been studied in uniaxial extensional flow using in situ x-ray scattering. Experiments were performed in a custom instrument consisting of an SER extensional flow fixture housed in a convection oven designed to facilitate x-ray access. Use of synchrotron radiation provided sufficient time resolution to study the structural response during inception of uniaxial flow, and as a function of time following flow cessation. The sample studied here exhibits hexagonally packed cylindrical microdomains of polystyrene embedded in a poly(ethylene butylene) matrix. Application of extensional flow produces multiple structural effects, including deformation of the microphase-separated morphology, and a complex reorientation process in which elongated PS microdomains progressively orient along the stretching axis. A series of experiments was run in which samples were stretching to varying Hencky strains, allowing investigation of the nature of structural relaxation from a variety of flow-induced structural states induced during extensional flow. Significant differences in structural relaxation are found depending on the total applied extensional strain.

  18. The importance of flow history in mixed shear and extensional flows

    NASA Astrophysics Data System (ADS)

    Wagner, Caroline; McKinley, Gareth

    2015-11-01

    Many complex fluid flows of experimental and academic interest exhibit mixed kinematics with regions of shear and elongation. Examples include flows through planar hyperbolic contractions in microfluidic devices and through porous media or geometric arrays. Through the introduction of a ``flow-type parameter'' α which varies between 0 in pure shear and 1 in pure elongation, the local velocity fields of all such mixed flows can be concisely characterized. It is tempting to then consider the local stress field and interpret the local state of stress in a complex fluid in terms of shearing or extensional material functions. However, the material response of such fluids exhibit a fading memory of the entire deformation history. We consider a dilute solution of Hookean dumbbells and solve the Oldroyd-B model to obtain analytic expressions for the entire stress field in any arbitrary mixed flow of constant strain rate and flow-type parameter α. We then consider a more complex flow for which the shear rate is constant but the flow-type parameter α varies periodically in time (reminiscent of flow through a periodic array or through repeated contractions and expansions). We show that the flow history and kinematic sequencing (in terms of whether the flow was initialized as shearing or extensional) is extremely important in determining the ensuing stress field and rate of dissipated energy in the flow, and can only be ignored in the limit of infinitely slow flow variations.

  19. Extensional Rheology Experiment Developed to Investigate the Rheology of Dilute Polymer Solutions in Microgravity

    NASA Technical Reports Server (NTRS)

    Logsdon, Kirk A.

    2001-01-01

    A fundamental characteristic of fluid is viscosity; that is, the fluid resists forces that cause it to flow. This characteristic, or parameter, is used by manufacturers and end-users to describe the physical properties of a specific material so that they know what to expect when a material, such as a polymer, is processed through an extruder, a film blower, or a fiber-spinning apparatus. Normally, researchers will report a shear viscosity that depends on the rate of an imposed shearing flow. Although this type of characterization is sufficient for some processes, simple shearing experiments do not provide a complete picture of what a processor may expect for all materials. Extensional stretching flows are common in many polymer-processing operations such as extrusion, blow molding, and fiber spinning. Therefore, knowledge of the complete rheological (ability to flow and be deformed) properties of the polymeric fluid being processed is required to accurately predict and account for the flow behavior. In addition, if numerical simulations are ever able to serve as a priori design tools for optimizing polymer processing operations such as those described above, an accurate knowledge of the extensional viscosity of a polymer system and its variation with temperature, concentration, molecular weight, and strain rate is critical.

  20. Dip analysis as a tool for estimating regional kinematics in extensional terranes

    NASA Astrophysics Data System (ADS)

    Scott, Deborah L.; Braun, Jean; Etheridge, Michael A.

    1994-03-01

    In basin analyses that rely almost solely on seismic reflection data to configure the underlying structure, it has become common practice to use extensional fault geometries to infer kinematic histories. This procedure relies on the existence of fault geometries predicted by ideal orthogonal extension and assumes the structure is well constrained. In areas where data are sparse or of equivocal quality this often leads to circular analysis. That is, ideal orthogonal extension is assumed to have been operative, then under-constrained fault geometries are mapped according to model predictions. Fault geometries so derived are subsequently used as evidence that orthogonal extension was operative and that the direction of extension is determinable. We develop an alternative tool for inferring kinematics which is independent of fault geometries. The method relies on the empirical evidence that the dip of the hangingwall(s) is systematic and predictable in extensional systems, even when fault geometries are non-ideal. Although not without significant limitations, dip analysis can provide additional constraints for structural and kinematic interpretations, especially where seismic reflection data are the main source of information and dip domains define discrete crustal blocks.

  1. Characterizing Printability of Complex Fluids using Dripping-Onto-Substrate Extensional Rheometry

    NASA Astrophysics Data System (ADS)

    Sharma, Vivek; Dinic, Jelena; Jimenez, Leidy N.; Biagioli, Madeleine; Estrada, Alexandro

    2015-11-01

    Liquid transfer and drop formation/deposition processes involved in printing, jetting, spraying and coating involve the formation of columnar necks that undergo spontaneous surface tension-driven instability, thinning and pinch-off. The thinning and pinch-off dynamics are determined by the relative magnitude of capillary forces, and inertial, viscous stresses for simple (Newtonian and inelastic) fluids. Stream-wise velocity gradients that arise within the thinning columnar neck create an extensional flow field, which induces micro-structural changes within complex fluids, contributing extra elastic stresses that change thinning and pinch-off dynamics. Though it is well-established that the quantitative analysis of neck thinning can provide a measure of extensional rheology response and arguably printability, such measurements require bespoke instrumentation not available, or easily replicated, in most laboratories. In this contribution, we describe a method that relies on understanding, visualization and analysis of capillary-driven self-thinning dynamics in an asymmetric liquid bridge formed by dripping a finite volume of fluid from a nozzle onto a substrate.

  2. Quaternary extensional growth folding beneath Reno, Nevada, imaged by urban seismic profiling

    USGS Publications Warehouse

    Stephenson, William J.; Frary, Roxy N.; Louie, John; Odum, Jackson K.

    2013-01-01

    We characterize shallow subsurface faulting and basin structure along a transect through heavily urbanized Reno, Nevada, with high‐resolution seismic reflection imaging. The 6.8 km of P‐wave data image the subsurface to approximately 800 m depth and delineate two subbasins and basin uplift that are consistent with structure previously inferred from gravity modeling in this region of the northern Walker Lane. We interpret two primary faults that bound the uplift and deform Quaternary deposits. The dip of Quaternary and Tertiary strata in the western subbasin increases with greater depth to the east, suggesting recurrent fault motion across the westernmost of these faults. Deformation in the Quaternary section of the western subbasin is likely evidence of extensional growth folding at the edge of the Truckee River through Reno. This deformation is north of, and on trend with, previously mapped Quaternary fault strands of the Mt. Rose fault zone. In addition to corroborating the existence of previously inferred intrabasin structure, these data provide evidence for an active extensional Quaternary fault at a previously unknown location within the Truckee Meadows basin that furthers our understanding of both the seismotectonic framework and earthquake hazards in this urbanized region.

  3. Reflection of drill-string extensional waves at the bit-rock contact

    NASA Astrophysics Data System (ADS)

    Poletto, Flavio; Malusa, Massimo

    2002-06-01

    Downward propagating extensional waves are partially reflected at the bit-rock contact. The evaluation of the reflection coefficient is important to obtain while drilling information about the acoustic properties of the formations. The scope of this work is to estimate the bit-rock reflection coefficient, assuming a flat drill bit in perfect contact with the formation. Using the low-frequency approximation, which holds when the wavelength is much larger than the lateral dimensions of the borehole, the drill-string is assumed to be a laterally free rod, and the formation an homogeneous and isotropic medium. This work shows that the reflection coefficient of the extensional waves depends, along with the elastic properties of the formation, on the ratio of the cross sections of the drill-string and borehole. The impedance of the drilled rock can be calculated from the measured reflection coefficient, which is related to the amplitude of waves produced in the string and in the formation by a working drill-bit. copyright 2002 Acoustical Society of America.

  4. Pattern of extensional faulting in pelagic carbonates of the Unbria-Marche Apennines of central Italy

    SciTech Connect

    Alvarez, W. )

    1990-05-01

    The Umbria-Marche Apennines provide a new region in which the nature passive-margin extensional faulting can be studied in outcrop. In these dominantly pelagic carbonate rocks of Jurassic and Cretaceous age, horsts acted as shallow, nonvolcani seamounts, while tilted half grabens formed deeper basins. One well-exposed seamount-basin transition agrees in general with the model of listric normal faulting and tilted half grabens, but shows interesting and significant divergences when studied in detail. A small sedimentary wedge at the faulted margin of a horst-block seamount thickens unexpectedly toward the adjacent basin. This wedge developed because of local convex-upward curvature of the shallowest part of a fault which at depth must have concave-up, listric geometry. The local sedimentary wedge resulted from deposition on the hanging wall as it tilted, followed by differential compaction of younger limestones that lapped onto the gentle slope leading from the horst-block seamount toward the basin. The map pattern of listric normal faulting in the Umbria-Marche Apennines suggests that both principal strain axes were extensional, in contrast to the usual pattern of listric faults crossed by transfer faults.

  5. Quantification and restoration of extensional deformation along the Western Iberia and Newfoundland rifted margins

    NASA Astrophysics Data System (ADS)

    Sutra, Emilie; Manatschal, Gianreto; Mohn, Geoffroy; Unternehr, Patrick

    2013-08-01

    Many recent papers describe the structure of the Iberia and Newfoundland rifted margins; however, none of them propose kinematic restorations of the complete rift system to quantify the amount of extension necessary to exhume mantle and initiate seafloor spreading. In our study, we use two pairs of cross sections considered as conjugate lines: one across the Galicia Bank-Flemish Cap and the other across the Southern Iberia Abyssal Plain-Flemish Pass. Both transects have been imaged by reflection- and refraction-seismic methods and have been drilled during Ocean Drilling Program Legs 103, 149, 173, and 210. Drilling penetrated parts of the rift stratigraphy and the underlying basement. The cross sections can therefore be considered as the best-documented conjugate transects across present-day hyperextended, magma-poor rifted margins. The aim of this paper is threefold: (1) provide a detailed description of the crustal architecture of the two conjugate sections, (2) define the extensional structures and their ages, and (3) quantify the amount of strain and strain rate accommodated along these lines. This paper proposes a quantitative description of extension along the Iberia-Newfoundland rift system and discusses the limitations and problems in quantifying extensional deformation along hyperextended rifted margins.

  6. Magma genesis of the pre-extensional early miocene silicic pyroclastic rocks of the Pannonian Basin

    NASA Astrophysics Data System (ADS)

    Olah, I.; Harangi, Sz.

    2003-04-01

    The Neogene evolution of the Pannonian Basin was accompanied with various volcanic activities started with explosive eruptions of silicic magmas followed by formation of calc-alkaline and alkaline volcanic rocks and subordinate potassic-ultrapotassic volcanic products. The Miocene silicic ignimbrites and pyroclastic fall deposits cover a large region in the Pannonian Basin and therefore have a great stratigraphic significance. In addition, they have strong geodynamic implications because they were formed just before and coeval with the extensional formation of the Pannonian Basin. Traditionally, they are divided into three horizons; however, our new geochemical and volcanologic data do not prove the existence of these three separate units. In this paper, we are focusing on the oldest, pre-extensional silicic pyroclastic rocks. Based on the detailed investigation of the main mineral phases (e.g., plagioclases, amphibole, biotite) and the accessory minerals, especially zircons, we suggest a complex magmagenesis including mixing of mantle derived and crustal derived melts. Detailed zircon morphology studies involving the method of Pupin and CL image analysis proved that it could be used to correlate the scattered localities. In addition, these data showed systematic change in the magmagenesis of the different occurrences. Early Miocene silicic ignimbrites from the southern part of the Pannonian Basin contain greater mantle component, whereas those from the northern regions could involve more crustal component. In addition, zoning patterns and mineral chemical data of the pehnocrysts suggest non-equilibrium crystallization process in an open system magma chamber.

  7. FROM MICROCONTINENTS TO EXTENSIONAL ALLOCHTHONS: WITNESSES OF HOW CONTINENTS BREAK APART? (Invited)

    NASA Astrophysics Data System (ADS)

    Peron-Pinvidic, G.; Manatschal, G.

    2009-12-01

    It is well known that extensional processes can lead to different crustal configurations, depending notably on lithospheric composition, thermal structure and extension rate. Thereby, rifted margins are characterized, worldwide, by distinct tectonic, geological and magmatic contexts. Direct comparisons are not straightforward. However, even if different, these margins also present a limited number of crustal features that are regularly observed and described such as micro-continents, continental ribbons, H blocks, extensional allochthons and outer highs. If some of these structures have been proposed to be issued from plume-related events and strength differences between oceanic and continental lithosphere, it is still unclear how these different types of crustal bodies are generated and consequently what they may tell us about the underlying processes and associated tectonic evolution. However, we believe each of these features, by their similarities and differences, point to distinct processes (stretching, thinning, exhumation, magmatism, spreading). The aim of this contribution is to present these different "building stones", describe their characteristics and positions within the margins, and discuss the underlying tectonic processes and stratigraphic relationships related to their formation. We propose, using the example of the North Atlantic, that the superposition of specific deformation modes may explain the various types of crustal blocks and, as a consequence, that the occurrence of these various blocks are the witnesses of particular rifting processes.

  8. Seismic properties and mineral crystallographic preferred orientations from EBSD data: Results from a crustal-scale detachment system, Aegean region

    NASA Astrophysics Data System (ADS)

    Cossette, Élise; Schneider, David; Audet, Pascal; Grasemann, Bernhard; Habler, Gerlinde

    2015-05-01

    The crystallographic preferred orientations (CPOs) were measured on a suite of samples representative of different structural depths along the West Cycladic Detachment System, Greece. Electron backscatter diffraction (EBSD) analyses were conducted on calcitic and mica schists, impure quartzites, and a blueschist, and the average seismic properties of the rocks were calculated with the Voigt-Reuss-Hill average of the single minerals' elastic stiffness tensor. The calcitic and quartzitic rocks have P- and S-wave velocity anisotropies (AVp, AVs) averaging 8.1% and 7.1%, respectively. The anisotropy increases with depth represented by the blueschist, with AVp averaging 20.3% and AVs averaging 14.5%, due to the content of aligned glaucophane and mica, which strongly control the seismic properties of the rocks. Localised anisotropies of very high magnitudes are caused by the presence of mica schists as they possess the strongest anisotropies, with values of ~ 25% for AVp and AVs. The direction of the fast and slow P-wave velocities occurs parallel and perpendicular to the foliation, respectively, for most samples. The fast propagation has the same NE-SW orientation as the lithospheric stretching direction experienced in the Cyclades since the Late Oligocene. The maximum shear wave anisotropy is subhorizontal, similarly concordant with mineral alignment that developed during extension in the Aegean. Radial anisotropy in the Aegean mid-crust is strongly favoured to azimuthal anisotropy by our results.

  9. Timing Aegean extension: Evidence from in situ U-Pb geochronology and cathodoluminescence imaging of granitoids from NW Turkey

    NASA Astrophysics Data System (ADS)

    Black, Karen N.; Catlos, Elizabeth J.; Oyman, Tolga; Demirbilek, Mehmet

    2013-11-01

    The Biga Peninsula of NW Turkey hosts granitoid plutons that record the timing of extension in the Aegean region. Here we focus on three plutons, the Kozak, Eybek, and Kestanbol and apply new methods to obtain a detailed tectonic history of their generation and exhumation. In situ (in thin section) ion microprobe zircon geochronology and color cathodoluminescence (CL) imaging of zircon grains and whole thin sections show these granites experienced magma mixing, brittle deformation, and significant fluid-rock interactions. Zircon ages range from the Late Eocene to Late Miocene with two ages from a single grain that are Permian. The Late Eocene-Early Oligocene ages record the end stages of subduction during the closure of a branch of the Neo-Tethyan Ocean, whereas Late Oligocene-Late Miocene ages record the plutons' extension and exhumation. We present a model in which Kozak, Eybek, and Kestanbol magmas were initially generated by fluid-flux melting from dehydration of the subducting Anatolide-Tauride block, as evidenced by the Late Eocene to Early Oligocene ages. Late Oligocene ages document the initiation of extension in the Biga Peninsula region and correlate to ages timing exhumation of the Kazdağ Massif. Early Miocene ages indicate continued Aegean extension in the southern Biga Peninsula region at this time.

  10. A parasitological, molecular and serological survey of Hepatozoon canis infection in dogs around the Aegean coast of Turkey.

    PubMed

    Karagenc, Tulin Ilhan; Pasa, Serdar; Kirli, Gulcan; Hosgor, Murat; Bilgic, Huseyin Bilgin; Ozon, Yavuz Hakan; Atasoy, Abidin; Eren, Hasan

    2006-01-30

    Canine hepatozoonosis is caused by the tick-borne protozoon Hepatozoon spp. The prevalence of the infection in the Aegean coast of Turkey was investigated by examination of blood smear parasitology and polymerase chain reaction (PCR) using blood samples from 349 dogs collected from Central Aydin, Kusadasi, Selcuk, Central Manisa, Bodrum and Marmaris within the Aegean coast of Turkey. The indirect fluorescent antibody test (IFAT) for the detection of Hepatozoon canis antibodies was also used to detect the exposure rate to H. canis. PCR amplifying a 666bp fragment of 18S rRNA gene of Hepatozoon spp. was used in the epidemiological survey. The prevalence of Hepatozoon spp. infection was 10.6% by blood smear parasitology and 25.8% by PCR. IFAT revealed that 36.8% of serum samples were positive for antibodies reactive with Hepatozoon spp. The PCR products of 18S rRNA gene of Hepatozoon spp. isolated from six infected dogs, one isolate originating from each of the six different locations, were sequenced. The results of sequence analysis indicate that they are closely related to Indian and Japanese isolates of H. canis. This is the first epidemiological study on the prevalence of H. canis infection in the dog, in Turkey. PMID:16229952

  11. Late cretaceous extensional tectonics and associated igneous activity on the northern margin of the Gulf of Mexico Basin

    NASA Technical Reports Server (NTRS)

    Bowen, R. L.; Sundeen, D. A.

    1985-01-01

    Major, dominantly compressional, orogenic episodes (Taconic, Acadian, Alleghenian) affected eastern North America during the Paleozoic. During the Mesozoic, in contrast, this same region was principally affected by epeirogenic and extensional tectonism; one episode of comparatively more intense tectonic activity involving extensive faulting, uplift, sedimentation, intrusion and effusion produced the Newark Series of eposits and fault block phenomena. This event, termed the Palisades Disturbance, took place during the Late Triassic - Earliest Jurassic. The authors document a comparable extensional tectonic-igneous event occurring during the Late Cretaceous (Early Gulfian; Cenomanian-Santonian) along the southern margin of the cratonic platform from Arkansas to Georgia.

  12. The influence of regional extensional tectonic stress on the eruptive behaviour of subduction-zone volcanoes

    NASA Astrophysics Data System (ADS)

    Tost, M.; Cronin, S. J.

    2015-12-01

    Regional tectonic stress is considered a trigger mechanism for explosive volcanic activity, but the related mechanisms at depth are not well understood. The unique geological setting of Ruapehu, New Zealand, allows investigation on the effect of enhanced regional extensional crustal tension on the eruptive behaviour of subduction-zone volcanoes. The composite cone is located at the southwestern terminus of the Taupo Volcanic Zone, one of the most active silicic magma systems on Earth, which extends through the central part of New Zealand's North Island. Rhyolitic caldera eruptions are limited to its central part where crustal extension is highest, whereas lower extension and additional dextral shear dominate in the southwestern and northeastern segments characterized by andesitic volcanism. South of Ruapehu, the intra-arc rift zone traverses into a compressional geological setting with updoming marine sequences dissected by reverse and normal faults. The current eruptive behaviour of Ruapehu is dominated by small-scaled vulcanian eruptions, but our studies indicate that subplinian to plinian eruptions have frequently occurred since ≥340 ka and were usually preceded by major rhyolitic caldera unrest in the Taupo Volcanic Zone. Pre-existing structures related to the NNW-SSE trending subduction-zone setting are thought to extend at depth and create preferred pathways for the silicic magma bodies, which may facilitate the development of large (>100 km3) dyke-like upper-crustal storage systems prior to major caldera activity. This may cause enhanced extensional stress throughout the entire intra-arc setting, including the Ruapehu area. During periods of caldera dormancy, the thick crust underlying the volcano and the enhanced dextral share rate likely impede ascent of larger andesitic magma bodies, and storage of andesitic melts dominantly occurs within small-scaled magma bodies at middle- to lower-crustal levels. During episodes of major caldera unrest, ascent and

  13. Geodynamic features along the Christianna-Santorini-Kolumbo tectonic line (South Aegean Sea, Greece)

    NASA Astrophysics Data System (ADS)

    Nomikou, Paraskevi; Papanikolaou, Dimitrios; Carey, Steve; Bejelou, Konstantina; Sakellariou, Dimitris; Kilias, Stefanos; Camilli, Rich; Escartin, Javier; Bell, Kathrine; Parks, Michelle

    2013-04-01

    Numerous oceanographic surveys have been conducted in Santorini Volcanic Group (South Aegean Sea) since 2001, revealing the spectacular morphology of the seafloor (multibeam data) and the sub-seafloor stratigraphic horizons (seismic profiles). Technological advancements in seafloor exploration such as ROVs and a submersible, enabled us to observe products of submarine volcanism that were previously inaccessible. In addition, gravity and box coring, geological and biological samples have been collected from selected areas for further analysis. The offshore geophysical survey in Santorini shows that recent volcanism occurred along a NE-SW tectonic zone named as Christianna-Santorini-Kolumbo (CSK) line. Christiana islets and three newly discovered submarine volcanic domes, with small colonies of yellow, presumably sulfur-reducing hydrothermal bacteria, occur in the southwestern part of the line. The presently active intra caldera volcanic domes of Palea and Nea Kameni islands and the low temperature (17-24°C) vent mounds covered by yellowish bacterial mat occupy the middle part of the line. The Santorini vent field is linked with the Kolumbo normal fault onshore which is likely controlling the pathways of hydrothermal circulation within the caldera. The most prominent feature at the NE part of this zone, is Kolumbo submarine volcanic chain which is extended 20Km with several volcanic domes aligned along this direction. The Kolumbo volcano had an explosive eruption in 1650 that killed 70 people on Santorini. The hydrothermal vent field in the crater floor of Kolumbo consists dominantly of active and inactive sulfide-sulfate structures in the form of vertical spires and pinnacles, mounds and flanges along a NE-SW trend, with temperatures up to 220°C and vigorous CO2 gas emission. For several years, the highest frequency of earthquakes was concentrated mainly in the vicinity of Kolumbo volcano. However, during 2011-2012 both seismic and geodetic unrest began abruptly

  14. Carbonate assimilation during magma evolution at Nisyros (Greece), South Aegean Arc: Evidence from clinopyroxenite xenoliths

    NASA Astrophysics Data System (ADS)

    Spandler, Carl; Martin, Lukas H. J.; Pettke, Thomas

    2012-08-01

    To contribute to the understanding of magma evolution in arc settings we investigate the oldest volcanic unit (Kanafià Synthem) of Nisyros volcano, located in the eastern Aegean Sea (Greece). The unit consists of porphyritic pillow lavas of basaltic andesite composition with trace element signatures that are characteristic of island-arc magmas. Two lava types are distinguished on the basis of geochemistry and the presence or absence of xenoliths, with the xenolith-bearing lavas having distinctly elevated Sr, MREE/HREE and MgO/Fe2O3 compared to the xenolith-free lavas. Xenoliths include relatively rare quartzo-feldspathic fragments that represent continental-type material, and coarse clinopyroxenite xenoliths that consist largely of aluminous and calcic clinopyroxene, and accessory aluminous spinel. Anorthite-diopside reaction selvages preserved around the clinopyroxenite xenoliths demonstrate disequilibrium between the xenoliths and the host magma. The xenolith clinopyroxene is distinctly enriched in most lithophile trace elements compared to clinopyroxene phenocrysts in the host magmas. A notable exception is the Sr concentration, which is similar in both clinopyroxene types. The high Al and low Na contents of the clinopyroxenites preclude a cumulate, deep metamorphic, or mantle origin for these xenoliths. Instead, their composition and mineralogy are diagnostic of skarn rocks formed by magma-carbonate interaction in the mid/upper crust. The Kanafià lavas are interpreted to have undergone crystal fractionation, magma mixing/mingling and crustal assimilation while resident in the upper crust. We show that magma-carbonate reaction and associated skarn formation does not necessarily result in easily recognised modification of the melt composition, with the exception of increasing Sr contents. Carbonate assimilation also releases significant CO2, which will likely form a free vapour phase due to the low CO2 solubility of arc magmas. In the broader context, we stress

  15. Early thermal profiles and lithospheric strength of Ganymede from extensional tectonic features

    SciTech Connect

    Golombek, M.P.; Banerdt, W.B.

    1986-11-01

    The early thermal profiles and the lithospheric stability and strength of Ganymede are quantitatively determined on the basis of brittle lithosphere thickness estimates derived from the width and spacing of extensional tectonic features, together with lithospheric strength envelopes for ice. Plots of the brittle and ductile yield stress vs. depth for the icy lithosphere of Ganymede exhibit a linear increase in brittle strength with depth to a maximum at the brittle-ductile transition that is followed by an exponential decrease in ductile yield stress with depth. The results obtained imply that the thermal gradient and lithospheric strength have varied laterally by factor as great as 5, and that Ganymede underwent cooling in a highly inhomogeneous fashion with lateral thermal anomalies. The present analysis furnishes reasons for the stability of large cratered terrain remnants. 47 references.

  16. Effects of partial liquid/gas saturation on extensional wave attenuation in Berea sandstone

    NASA Astrophysics Data System (ADS)

    Yin, C.-S.; Batzle, M. L.; Smith, B. J.

    1992-07-01

    Extensional wave attenuation measurements on Berea sandstone were made during increasing (imbibition) and decreasing (drainage) brine saturations. Measurements on samples with both open-pore and closed-pore surfaces were made using the resonant-bar technique. The frequency dependence was examined using the forced-deformation method. The attenuation was found to be dependent on saturation history as well as degree of saturation and boundary flow conditions. The sample with open-pore surface had a larger attenuation which peaked at greater brine saturations than the sample with closed-pore surface. During drainage, the attenuation reached a maximum at about 90% brine saturation as opposed to about 97% brine saturation during imbibition. The variation of the size and number of air pockets within the rock can account for this discrepancy. The magnitude of the attenuation peak value decreases substantially with decreasing frequency to the extent that no attenuation peak with saturation was apparent at seismic frequencies, say, below 100 Hz.

  17. Isostatic uplift, crustal attenuation, and the evolution of an extensional detachment system in southwestern Nevada

    SciTech Connect

    Scott, R.B.

    1987-12-31

    Geological and geophysical evidence supports the existence of extensional detachments, between the Sheep Range and Death Valley. It is proposed that geographically separated pieces of detachments between Death Valley and the Sheep Range are parts of a regional detachment system that has evolved since the Miocene, and that the system consists of lenses of strata separated by an anastomosing network of low- and high-angle normal faults. This manuscript emphasizes the probability that isostatic uplift within the region of greatest crustal attenuation in this system, the Bullfrog Hills core complex, controlled the evolution of the detachment system between the breakaway zone a the Sheep Range and the core complex. Features in this system are described from east to west, which is the apparent direction of tectonic transport.

  18. Interfacial dynamics of a liposome deforming in an axisymmetric extensional flow

    NASA Astrophysics Data System (ADS)

    Gonzalez-Mancera, Andres; Eggleton, Charles D.

    2007-03-01

    Liposomes are self-enclosed structures composed of curved lipid bilayer membranes which entrap part of the solvent in which they freely float. They are predominantly made from amphiphilic molecules, a special class of surface-active molecules. Liposomes have various applications in science and technology including drug delivery systems, medical diagnostics and they can also be used as simple cellular models for basic research. We simulated the deformation of a liposome in an axisymmetric extensional flow using the boundary integral method. The liposome deforms due to hydrodynamic loading on the interface. The dynamics of the system are characterized by the competition between the hydrodynamic and interfacial forces. The lipid bilayer membrane can be modeled as a hyperelastic continuous material or a liquid-liquid interface with a highly packed surfactant layer. We compare the deformation behavior of liposomes with both types of interfaces and identify similarities and differences between the two models.

  19. The Mint River Fault: an Extensional Detachment in the York Mountains, Seward Peninsula, Alaska

    NASA Astrophysics Data System (ADS)

    Toro, J.; Burnette, L.; Amato, J.; Repetski, J.; Gehrels, G.

    2005-12-01

    The role of crustal extension in the origin of the gneiss domes of the Bering Strait region of Alaska and Russia has been debated for over a decade. Alternative models for gneiss dome formation include 1) thermal re-equilibration after crustal thickening by arc collision (Lieberman, 1988; Patrick and Evans, 1989); 2) extensional collapse of the crust during with mid-Cretaceous magmatism (Miller et al., 1992; Amato et al., 1994) and 3) thermally-induced diapiric rise of the high-grade rocks (Calvert et al., 1999). One major difference with the classic metamorphic core complexes of the Basin and Range is that, because of deep exhumation, evidence for mid-Cretaceous supra-crustal extension has not been widely documented in the Bering Strait region. In the York Mountains, the one area of the Seward Peninsula where unmetamorphosed rocks are preserved, the structure was originally described as a thrust belt (Sainsbury, 1969). New detailed mapping, structural analysis, 40Ar/39Ar thermochronology, and conodont biostratigraphy carried out in the York Mountains show that the Mint River Fault, which is the basal detachment of the supposed thrust belt, is actually a low angle extensional detachment fault. This fault separates polydeformed low greenschist grade rocks in the lower plate from unmetamorphosed Lower Ordovician to Silurian carbonates in the upper plate. The upper plate is cut by three major normal faults, the largest of which has about 4 km of down-to-the-south slip. These faults also tilt the Early Paleozoic carbonate succession. A younger-on-older relationship across one of the mayor faults is documented by conodont biostratigraphy demonstrating that these are not thrusts, as was previously believed. Stress inversion, based on minor brittle faults in the upper plate, indicates a direction of extension of 194, which is consistent with the strike of major normal faults. No direct evidence of bedding-plane thrusting could be documented, although minor folds do exist

  20. Tertiary basin development and tectonic implications, Whipple detachment system, Colorado River extensional corridor, California and Arizona

    NASA Technical Reports Server (NTRS)

    Nielson, J. E.; Beratan, K. K.

    1990-01-01

    This paper reports on geologic mapping, stratigraphic and structural observations, and radiometric dating of Miocene deposits of the Whipple detachment system, Colorado River extensional corridor of California and Arizona. From these data, four regions are distinguished in the study area that correspond to four Miocene depositional basins. It is shown that these basins developed in about the same positions, relative to each other and to volcanic sources, as they occupy at present. They formed in the early Miocene from a segmentation of the upper crust into blocks bounded by high-angle faults that trended both parallel and perpendicular to the direction of extension and which were terminated at middle crustal depths by a low-angle detachment fault.

  1. A Geothermal GIS for Nevada: Defining Regional Controls and Favorable Exploration Terrains for Extensional Geothermal Systems

    USGS Publications Warehouse

    Coolbaugh, M.F.; Taranik, J.V.; Raines, G.L.; Shevenell, L.A.; Sawatzky, D.L.; Bedell, R.; Minor, T.B.

    2002-01-01

    Spatial analysis with a GIS was used to evaluate geothermal systems in Nevada using digital maps of geology, heat flow, young faults, young volcanism, depth to groundwater, groundwater geochemistry, earthquakes, and gravity. High-temperature (>160??C) extensional geothermal systems are preferentially associated with northeast-striking late Pleistocene and younger faults, caused by crustal extension, which in most of Nevada is currently oriented northwesterly (as measured by GPS). The distribution of sparse young (160??C) geothermal systems in Nevada are more likely to occur in areas where the groundwater table is shallow (<30m). Undiscovered geothermal systems may occur where groundwater levels are deeper and hot springs do not issue at the surface. A logistic regression exploration model was developed for geothermal systems, using young faults, young volcanics, positive gravity anomalies, and earthquakes to predict areas where deeper groundwater tables are most likely to conceal geothermal systems.

  2. Comparison of the Single Molecule Dynamics of Linear and Circular DNAs in Planar Extensional Flows

    NASA Astrophysics Data System (ADS)

    Li, Yanfei; Hsiao, Kai-Wen; Brockman, Christopher; Yates, Daniel; McKenna, Gregory; Schroeder, Charles; San Francisco, Michael; Kornfield, Julie; Anderson, Rae

    2015-03-01

    Chain topology has a profound impact on the flow behaviors of single macromolecules. The absence of free ends separates circular polymers from other chain architectures, i.e., linear, star, and branched. In the present work, we study the single chain dynamics of large circular and linear DNA molecules by comparing the relaxation dynamics, steady state coil-stretch transition, and transient molecular individualism behaviors for the two types of macromolecules. To this end, large circular DNA molecules were biologically synthesized and studied in a microfluidic device that has a cross-slot geometry to develop a stagnation point extensional flow. Although the relaxation time of rings scales in the same way as for the linear analog, the circular polymers show quantitatively different behaviors in the steady state extension and qualitatively different behaviors during a transient stretch. The existence of some commonality between these two topologies is proposed. Texas Tech University John R. Bradford Endowment.

  3. Assessment of ENSEMBLES regional climate models for the representation of monthly wind characteristics in the Aegean Sea (Greece): Mean and extremes analysis

    NASA Astrophysics Data System (ADS)

    Anagnostopoulou, Christina; Tolika, Konstantia; Tegoulias, Ioannis; Velikou, Kondylia; Vagenas, Christos

    2013-04-01

    The main scope of the present study is the assessment of the ability of three of the most updated regional climate models, developed under the frame of the European research project ENSEMBLES (http://www.ensembles-eu.org/), to simulate the wind characteristics in the Aegean Sea in Greece. The examined models are KNMI-RACMO2, MPI-MREMO, and ICTP - RegCM3. They all have the same spatial resolution (25x25km) and for their future projections they are using the A1B SRES emission scenarios. Their simulated wind data (speed and direction) were compared with observational data from several stations over the domain of study for a time period of 25 years, from 1980 to 2004 on a monthly basis. The primer data were available every three or six hours from which we computed the mean daily wind speed and the prevailing daily wind direction. It should be mentioned, that the comparison was made for the grid point that was the closest to each station over land. Moreover, the extreme speed values were also calculated both for the observational and the simulated data, in order to assess the ability of the models in capturing the most intense wind conditions. The first results of the study showed that the prevailing winds during the winter and spring months have a north - northeastern or a south - south western direction in most parts of the Aegean sea. The models under examination seem to capture quite satisfactorily this pattern as well as the general characteristics of the winds in this area. During summer, winds in the Aegean Sea have mainly north direction and the models have quite good agreement both in simulating this direction and the wind speed. Concerning the extreme wind speed (percentiles) it was found that for the stations in the northern Aegean all the models overestimate the extreme wind indices. For the eastern parts of the Aegean the KNMI and the MPI model underestimate the extreme wind speeds while on the other hand the ICTP model overestimates them. Finally for the

  4. Carbonate sedimentation in an extensional active margin: Cretaceous history of the Haymana region, Pontides

    NASA Astrophysics Data System (ADS)

    Okay, Aral I.; Altiner, Demir

    2016-03-01

    The Haymana region in Central Anatolia is located in the southern part of the Pontides close to the İzmir-Ankara suture. During the Cretaceous, the region formed part of the south-facing active margin of the Eurasia. The area preserves a nearly complete record of the Cretaceous system. Shallow marine carbonates of earliest Cretaceous age are overlain by a 700-m-thick Cretaceous sequence, dominated by deep marine limestones. Three unconformity-bounded pelagic carbonate sequences of Berriasian, Albian-Cenomanian and Turonian-Santonian ages are recognized: Each depositional sequence is preceded by a period of tilting and submarine erosion during the Berriasian, early Albian and late Cenomanian, which corresponds to phases of local extension in the active continental margin. Carbonate breccias mark the base of the sequences and each carbonate sequence steps down on older units. The deep marine carbonate deposition ended in the late Santonian followed by tilting, erosion and folding during the Campanian. Deposition of thick siliciclastic turbidites started in the late Campanian and continued into the Tertiary. Unlike most forearc basins, the Haymana region was a site of deep marine carbonate deposition until the Campanian. This was because the Pontide arc was extensional and the volcanic detritus was trapped in the intra-arc basins and did not reach the forearc or the trench. The extensional nature of the arc is also shown by the opening of the Black Sea as a backarc basin in the Turonian-Santonian. The carbonate sedimentation in an active margin is characterized by synsedimentary vertical displacements, which results in submarine erosion, carbonate breccias and in the lateral discontinuity of the sequences, and differs from blanket like carbonate deposition in the passive margins.

  5. In Situ Observation of Plastic Foaming under Static Condition, Extensional Flow and Shear Flow

    NASA Astrophysics Data System (ADS)

    Wong, Anson Sze Tat

    Traditional blowing agents (e.g., hydrochlorofluorocarbons) in plastic foaming processes has been phasing out due to environmental regulations. Plastic foaming industry is forced to employ greener alternatives (e.g., carbon dioxide, nitrogen), but their foaming processes are technologically challenging. Moreover, to improve the competitiveness of the foaming industry, it is imperative to develop a new generation of value-added plastic foams with cell structures that can be tailored to different applications. In this context, the objective of this thesis is to achieve a thorough understanding on cell nucleation and growth phenomena that determine cell structures in plastic foaming processes. The core research strategy is to develop innovative visualization systems to capture and study these phenomena. A system with accurate heating and cooling control has been developed to observe and study crystallization-induced foaming behaviors of polymers under static conditions. The cell nucleation and initial growth behavior of polymers blown with different blowing agents (nitrogen, argon and helium, and carbon dioxide-nitrogen mixtures) have also been investigated in great detail. Furthermore, two innovative systems have been developed to simulate the dynamic conditions in industrial foaming processes: one system captures a foaming process under an easily adjustable and uniform extensional strain in a high temperature and pressure environment, while the other achieves the same target, but with shear strain. Using these systems, the extensional and shear effects on bubble nucleation and initial growth processes has been investigated independently in an isolated manner, which has never been achieved previously. The effectiveness of cell nucleating agents has also been evaluated under dynamic conditions, which have led to the identification of new foaming mechanisms based on polymer-chain alignment and generation of microvoids under stress. Knowledge generated from these

  6. Transpressive inversion of a Mesozoic extensional forced fold system with an intermediate décollement level in the Basque-Cantabrian Basin (Spain)

    NASA Astrophysics Data System (ADS)

    Tavani, Stefano; Carola, Eloi; Granado, Pablo; Quintã, Anna; MuñOz, Josep Anton

    2013-03-01

    In the Basque-Cantabrian Basin (Spain), normal faulting and associated folding occurred during Late Jurassic to Early Cretaceous rifting. Cenozoic Pyrenean thick-skinned transpressive inversion in the western parts of the basin preserved the first-order extensional architecture. Integration of geological maps and seismic profiles has permitted to fully constrain the style of extensional deformation and subsequent inversion in the western portion of the Basque-Cantabrian Basin. Extensional faults offset the Paleozoic basement up to Lower Triassic rocks. The presence of an efficient décollement level represented by Triassic evaporites produced the decoupling between basement rocks and the Upper Triassic to Middle Jurassic prerift cover sequence. Extensional forced folding occurred in the cover, driven by basement faulting and the migration of evaporites toward the hanging wall of the extensional faults, with salt welds developing away from them. Upper Jurassic to Lower Cretaceous syn-rift sediments deposited synchronously with forced folding, which led to the development of extensional growth geometries associated with both master faults and nearly-transverse faults. Syn-rift growth sequences are characterized by downlap and onlap relationships with the underlying prerift units, interpreted as the result of along-strike variations of master fault extensional displacement rate. Cenozoic Pyrenean contraction generated the right-lateral transpressive inversion of basement master faults and the almost dip-slip reactivation of transverse extensional faults.

  7. Prediction of bending set, wave efficacy, and hair damage using an extensional permanent waving treatment and the 20% index value.

    PubMed

    Ueno, Yuzo; Namiki, Hideo

    2015-01-01

    To predict "wave efficacy" as evaluated by hairdressers, an extensional permanent waving treatment was performed on human hair fibers using various wave lotions manufactured in Japan. Glass columns devised for the purpose were equipped with a tensile tester in order to increase the measurement accuracy. Notably, the observed set agreed with the theoretical set. In addition, the data for the extensional set exhibited good correlation with the bending set and the wave efficacy assessed in a beauty parlor, and hair damage was estimated by the characteristic change in the 20% index. The following facts were experimentally determined. First, the Young's modulus of the hair fibers after extensional permanent waving treatment continually decreased with an increase in the reduction of the fibers and then abruptly decreased at 80% reduction. Second, the reduction of hair treated with the ammonium salt of thioglycolic acid followed pseudo first-order kinetics only during the initial stage of the reaction, independent of the pH level. Third, the 20% index of the individual virgin hairs remained constant in water at 30°C and also correlated with the Young's modulus of the hair after extensional permanent waving treatment. PMID:26152046

  8. Suppositions, Extensionality, and Conditionals: A Critique of the Mental Model Theory of Johnson-Laird and Byrne (2002)

    ERIC Educational Resources Information Center

    Evans, Jonathan St. B. T.; Over, David E.; Handley, Simon J.

    2005-01-01

    P. N. Johnson-Laird and R. M. J. Byrne proposed an influential theory of conditionals in which mental models represent logical possibilities and inferences are drawn from the extensions of possibilities that are used to represent conditionals. In this article, the authors argue that the extensional semantics underlying this theory is equivalent to…

  9. A high-resolution geochronological and geochemical study on Aegean carbonate deposits, SW Turkey

    NASA Astrophysics Data System (ADS)

    Ünal-İmer, Ezgi; Uysal, I. Tonguç; Işık, Veysel; Zhao, Jian-Xin; Shulmeister, James

    2014-05-01

    Vein and breccia carbonates precipitated in highly fractured/faulted carbonate bedrock were investigated using high-resolution U-series geochronology, as well as through microstructural and geochemical studies including Sr-O-C isotope and REE element analyses. The study area (Kumlubük and Amos vein systems), located south of the town of Marmaris in SW Turkey, is a part of an active large-scale extensional system. Field studies show that the calcite veins generally occur sub-vertically and strike mostly NW and EW, in agreement with the regional N-S extensional stress regime. Microscopic observations indicate that the calcite veins formed through crack-seal mechanism, typically accompanied/initiated by intensive hydraulic fracturing of wall-rock evidenced by the presence of widespread breccia deposits. Vein textures are dominated by elongated, fibrous, and blocky calcites. Successive fracturing and layering of calcite with sharp contacts are traceable along the fluid inclusion bands occurring parallel to the wall rock boundary. In particular, inclusion trails aligned perpendicular to the wall-rock and calcite crystal elongation give information about the vein dilation (crack opening) vector and growth direction. High-resolution U-series dating (11-272 ka BP) and geochemical compositions of the vein and breccia samples were used to investigate the long-term behaviour as well as the general identity of the CO2-bearing fluids within deformed crust. The seismic nature of calcite veining is further assessed by stable isotopic ratio (δ18O and δ13C) plots against vein depths (distance from the wall-rock). The average δ18OPDBvalue for Kumlubük veins is -3.79o, while Amos has an average value of -4.05o. Similarly, average carbon isotope ratio (-8.30o) of the Kumlubük veins is slightly higher than that is observed for the Amos veins (-9.66o). Isotopic compositions are interpreted to reflect cyclic (or episodic) CO2 variations. This suggests the presence of several fluid

  10. Stochastic strong ground motion simulations for the intermediate-depth earthquakes of the south Aegean subduction zone

    NASA Astrophysics Data System (ADS)

    Kkallas, Harris; Papazachos, Konstantinos; Boore, David; Margaris, Vasilis

    2015-04-01

    We have employed the stochastic finite-fault modelling approach of Motazedian and Atkinson (2005), as described by Boore (2009), for the simulation of Fourier spectra of the Intermediate-depth earthquakes of the south Aegean subduction zone. The stochastic finite-fault method is a practical tool for simulating ground motions of future earthquakes which requires region-specific source, path and site characterizations as input model parameters. For this reason we have used data from both acceleration-sensor and broadband velocity-sensor instruments from intermediate-depth earthquakes with magnitude of M 4.5-6.7 that occurred in the south Aegean subduction zone. Source mechanisms for intermediate-depth events of north Aegean subduction zone are either collected from published information or are constrained using the main faulting types from Kkallas et al. (2013). The attenuation parameters for simulations were adopted from Skarladoudis et al. (2013) and are based on regression analysis of a response spectra database. The site amplification functions for each soil class were adopted from Klimis et al., (1999), while the kappa values were constrained from the analysis of the EGELADOS network data from Ventouzi et al., (2013). The investigation of stress-drop values was based on simulations performed with the EXSIM code for several ranges of stress drop values and by comparing the results with the available Fourier spectra of intermediate-depth earthquakes. Significant differences regarding the strong-motion duration, which is determined from Husid plots (Husid, 1969), have been identified between the for-arc and along-arc stations due to the effect of the low-velocity/low-Q mantle wedge on the seismic wave propagation. In order to estimate appropriate values for the duration of P-waves, we have automatically picked P-S durations on the available seismograms. For the S-wave durations we have used the part of the seismograms starting from the S-arrivals and ending at the

  11. Living benthic foraminifera as an environmental proxy in coastal ecosystems: A case study from the Aegean Sea (Greece, NE Mediterranean)

    NASA Astrophysics Data System (ADS)

    Koukousioura, Olga; Dimiza, Margarita D.; Triantaphyllou, Maria V.; Hallock, Pamela

    2011-12-01

    The species composition of the epiphytic benthic foraminiferal fauna was compared at two coastal locations in the Aegean Sea. Samples were collected during August 2001 and July 2003 along the southeastern coast of Andros Island at Korthi Gulf, where there are minimal anthropogenic activities, and at Kastro Gulf, with substantial anthropogenic influence. This study represents the first application of the FORAM Index (FI), which is a single-metric index for water quality originally developed for western Atlantic reef foraminiferal assemblages, to Mediterranean assemblages. Multivariate analyses distinguished three clusters of sample sites representing three foraminiferal assemblages. Samples dominated by the mixotrophic species, A. lobifera, were collected primarily from sites along the northern coasts of both gulfs. Characteristics of this assemblage, including relatively high dominance (D = 0.27-0.51), lower Shannon-Wiener diversity (H' = 1.3-2.1) and high FI (6.6-8.2), all reflect oligotrophic environmental conditions typical of pristine waters of the Aegean Sea. A. lobifera was typically the most common species in the second assemblage, though relative abundances of heterotrophic taxa were higher, resulting in somewhat higher diversity (H' = 1.6-2.4) and lower dominance (D = 0.14-0.36). These indices, as well as the FI range of 3.5-7.0 indicated somewhat more prevalent organic carbon resources but still relatively high water quality. This assemblage was found along the southern coast of Korthi Gulf and at more interior sites in northern Kastro Gulf. The third assemblage was dominated by smaller heterotrophic species, including notable proportions of the stress-tolerant taxa Ammonia spp. and Elphidium spp., and had few or no A. lobifera. Diversity (H' = 1.4-2.0) and dominance (D = 0.22-0.47) indices were similar to those for the first assemblage, but FI values were much lower (2.0-3.4). Samples characterized by this assemblage were collected only from the southern

  12. The origin of tectonic lineation in extensional basins: Combined neutron texture and magnetic analyses on ''undeformed'' clays [rapid communication

    NASA Astrophysics Data System (ADS)

    Cifelli, F.; Mattei, M.; Chadima, M.; Hirt, A. M.; Hansen, A.

    2005-06-01

    In extensional sedimentary basins fine-grained sediments that appear undeformed at the outcrop scale can carry a magnetic fabric consistent with the regional deformation pattern. The origin of the magnetic lineation, which is often found in extensional basins, is not yet well understood. In clays from extensional basins in southern Italy, the magnetic lineation is tectonically controlled and oriented perpendicular to the main normal faults. A combined analysis of magnetic and mineral fabrics was made to gain insight into the processes that lead to a lineation in extensional settings. Low-field, high-field and low-temperature susceptibility measurements were used to distinguish the ferrimagnetic and paramagnetic contributions to the magnetic susceptibility and its anisotropy. The magnetic anisotropy of the sediments is predominantly carried by paramagnetic phyllosilicates. Neutron texture analysis was used to evaluate the spatial distribution of chlorite basal planes. Results demonstrate that the orientation of the magnetic lineation is related to the spatial distribution of chlorite, lying parallel to the common axis of differently oriented basal planes. A quantitative correlation between the magnetic and rock fabric was made comparing the low- and high-field magnetic anisotropy (AMS, HFA) to the theoretical anisotropy calculated from the chlorite-preferred orientation. A good linear correlation is found between the degree of theoretical anisotropy and the AMS and HFA. Results show that the integrated approach of magnetic and mineral fabric investigations represents a valid alternative tool for detecting grain scale and regional deformation patterns in weakly deformed extensional basins, where macroscopic evidence of deformation is often not visible.

  13. Using Statistical Seismicity Constraints in Geodetic Inversions of Crustal Kinematics: Examples from the Aegean Region

    NASA Astrophysics Data System (ADS)

    ozeren, M. S.; Klein, E. C.; Kreemer, C.

    2013-12-01

    Despite the advent of space geodesy, the question of strain rate inversion using geodetic data is still a matter of debate. Traditionally, Global Positioning System (GPS) inversion algorithms aim to obtain a best-fit with GPS velocities, while satisfying the kinematic compatibility conditions. Yet, the strain rates that come out of these inversions are non-unique for a variety of reasons. Perhaps, the most important source of non-uniqueness in the inversion is the way in which the variance-covariance operators are formulated. Even for the isotropic case, there are more than a few ways to approach these formulations (e.g., specifying a priori defined non-uniform distributions rather than single, uniform distributions). Here, we experiment with seismicity-based variance-covariance matrices using a grid system composed of quadrilateral cells. Specifically we imbed the seismicity of the Aegean region directly into the a priori variance-covariance matrices. We normalize the contributions of seismicity within individual cells and from neighboring cells by seismogenic volume. Because recorded seismicity predates emplacement of GPS stations, we use only that portion of the seismic catalog for which we have GPS observations. Unlike Kostrov relation-based inversions that directly link the strain rates to the moment tensor sums, we take the seismicity as a rate-process (assuming that the rates do not change significantly within the time scale we are looking at) and feed this into the variances without any directional information. We do not use the seismicity as a numerical measure of the total seismic deformation; we instead use it as a measure for the capacity of the upper crustal material to deform. This is analogous to simplified effective medium approaches employed in engineering. The earthquakes are spatially non-uniform and likely cause some inelastic deformation in addition to the elastic deformation within the cells used for our numerical calculations. Although these

  14. Potential Health Hazard Assessment in Terms of Some Heavy Metals Determined in Demersal Fishes Caught in Eastern Aegean Sea.

    PubMed

    Yabanli, Murat; Alparslan, Yunus

    2015-10-01

    A heavy metal risk assessment based on estimated daily intake (EDI) and target hazard quotient was made for children and adults. Five fish species captured from the eastern Aegean Sea were analyzed for Cr, Cu, Cd, Hg and Pb by inductively coupled plasma spectroscopy in muscle tissue of red mullet (Mullus barbatus), surmullet (Mullus surmuletus), sand steenbras (Lithognathus mormyrus), common two-banded seabream (Diplodus vulgaris) and common pandora (Pagellus erythinus). The ranges for mean metal concentration (mg/kg wet wt) in the five species were 0.27-0.39 Cr, 0.12-0.22 Cu, 0.09-0.10 Hg and 0.10-0.12 Pb. All means were identical for Cd at 0.03 mg/kg wet wt. The EDI values for each metal were ascertained not to exceed the tolerable daily intake amount. Fish did not contain sufficiently high levels of these metals to pose a carcinogenic risk. PMID:26109309

  15. Inferences on the Mesozoic evolution of the North Aegean from the isotopic record of the Chalkidiki block

    NASA Astrophysics Data System (ADS)

    Kydonakis, Konstantinos; Brun, Jean-Pierre; Poujol, Marc; Monié, Patrick; Chatzitheodoridis, Elias

    2016-07-01

    The Chalkidiki block is a major domain in the North Aegean that, contrary to other domains in the region, largely escaped thermal perturbations during Tertiary extension. As a result, the Chalkidiki block is an ideal candidate to glean information related to the timing of Mesozoic thermal events using appropriate geochronological techniques. We have undertaken a laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) study (U-Th-Pb on monazites and U-Pb on zircons) coupled with 40Ar/39Ar dating on nine samples from various structural levels within the thrust system of the Chalkidiki block. The eastern, and structurally lower part of the system revealed a complete isotopic reset of Carboniferous - Early Triassic monazites coeval with partial monazite destruction, REE-mobilisation and formation of apatite-allanite-epidote coronas at ~ 132 Ma, a reaction that is commonly observed in amphibolite-facies rocks. These coronas formed after crystallisation of garnet (i.e., at T > 580 °C) and, in all probability, either close to the peak-temperature conditions (~ 620 °C) on a prograde path or during retrogression between the peak-temperature and the low-temperature boundary of the amphibolite facies. Cooling of these rocks and arrival at mid-crustal levels occurred at 95-100 Ma. By contrast, the western, and structurally uppermost part of the system went through the same event by 120-125 Ma. Further structural considerations with respect to medium-temperature geochronology data imply that syn-metamorphic thrusting must have ceased by early Late Cretaceous. We emphasize that, with the sole exception of the Chalkidiki block, no pre-45 Ma medium-temperature geochronology data are preserved in other North Aegean domains, a feature that is clearly related to the extension-induced thermal perturbation of the region during the Tertiary.

  16. Underthrusting and exhumation: A comparison between the External Hellenides and the ``hot'' Cycladic and ``cold'' South Aegean core complexes (Greece)

    NASA Astrophysics Data System (ADS)

    van Hinsbergen, D. J. J.; Zachariasse, W. J.; Wortel, M. J. R.; Meulenkamp, J. E.

    2005-04-01

    After their emplacement in the course of the late Mesozoic and the Cenozoic, the Hellenic nappes became fragmented during late orogenic extension since the late Eocene. Here we focus on the transition of underthrusting during nappe emplacement to exhumation during late orogenic extension. To this end, we compared previously published data on the structural geological and metamorphic history of the underthrusted parts of the Tripolitza and Ionian nappes, which were exhumed in the Cycladic and South Aegean windows, with newly obtained data on the sedimentary, stratigraphic, and structural development of the part of these nappes in the foreland, in front of the subduction thrust. The results allow the identification of two major events: Event 1 took place around the Eocene-Oligocene transition and marks the onset of underthrusting of the Tripolitza nappe below the Pindos nappe and the Ionian nappe below the Tripolitza nappe, respectively. This led to the uplift and erosion of the Pindos unit and the onset of deposition of the Tripolitza and Ionian flysch in front of the Pindos thrust, together with the formation of mylonites at the base of the metamorphosed portions of the Pindos unit related to the underthrusting of the Tripolitza unit. Event 2 occurred in the latest Oligocene to earliest Miocene and marks the decoupling of the Ionian unit from the underthrusting plate, the accretion of the Tripolitza and Ionian units to the overriding plate, and the onset of late orogenic extension and exhumation in the overriding plate. This led to the formation of the South Aegean and Cycladic core complexes and the subsidence of the Klematia-Paramythia half-graben throughout the early Miocene.

  17. Forecasting skill assessment of an oil spill simulation system in the NE Aegean and atmospheric forcing perturbation experiments

    NASA Astrophysics Data System (ADS)

    Kailas, Marios; Chrysagi, Eyrydice; Sofianos, Sarantis

    2016-04-01

    In the present study, the predictive skill of an oil spill simulation system implemented in the Northern Aegean Sea was evaluated using field observations from surface drifters, provided in the framework of the TOSCA project. The system produces satisfactory results as in most cases the forecasting error is quite small, allowing the operational use of the forecast. In order to examine the sensitivity of the forecast to atmospheric forcing, additional simulations with perturbed atmospheric conditions were performed, using a time-shifting technique. In most experiments the differences between the simulations are relatively small, most likely due to slow oceanic response to variations in the wind fields. From the individual simulations an ensemble forecast was created, the results of which were also compared with the observations. The results suggest that by applying this method a safer forecast can be provided, especially regarding cases for which the wind-driven circulation is predominant. However, in cases where the circulation is characterized by intense velocity gradients (in the NE Aegean this is associated with the thermohaline front created by the Black Sea Water inflow), larger differences are present. They are related to imprecise representation of the location of the front. In these cases, the ensemble method produced no significant improvement since the relatively small differences between the trajectories of the ensemble members indicate that the position of the front in not significantly affected by the wind perturbations, based on the spatio-temporal scales examined. It is concluded that in regions with large spatio-temporal variability, an ensemble forecast produced by simulations generated from perturbed initial conditions could possibly lead to more robust results.

  18. Death Valley turtlebacks: Mesozoic contractional structures overprinted by Cenozoic extension and metamorphism beneath syn-extensional plutons

    NASA Astrophysics Data System (ADS)

    Pavlis, T. L.; Miller, M.; Serpa, L.

    2008-07-01

    The term turtleback was first coined to describe the curvilinear fault surfaces that produced a distinctive geomorphic form in the Black Mountains east of Death Valley, and although it was decades before their full significance was appreciated, they remain one of the most distinctive features of the extensional structure of the Death Valley region. Historically the interpretation of the features has varied markedly, and misconceptions about their character continue to abound, including descriptions in popular field guides for the area. It the 1990's, however, the full history of the systems began to be apparent from several key data: 1) the dating of the plutonic assemblage associated with the turtlebacks demonstrated that late Miocene, syn-extensional plutonism was fundamental to their formation; 2) the plutonic assemblage forms an intrusive sheet structurally above the turtlebacks, indicating a tie between much of the high grade metamorphism and Cenozoic plutonism; 3) a modern analog for the syn-extensional plutonism in the Black Mountains was recognized beneath Death Valley with the imaging of a mid-crustal magma body; 4) the Neogene structural history was worked out in the turtlebacks showing that folding of early-formed shear zones formed the turtleback anticlinoria but overprinting by brittle faults produced the final form as they cut obliquely across the older structure; and 5) the pre-extensional structural history was clarified, demonstrating that Mesozoic basement-involved thrust systems are present within the turtlebacks, but have been overprinted by the extensional system. An unresolved issue is the significance of Eocene U-Pb dates for pegmatites within the region, but presumably these relate somehow to the pre-extensional history. Miller and Pavlis (2005; E. Sci. Rev.) reviewed many features of the turtlebacks, and our working model for the region is that the turtlebacks originated as mid-crustal ductile-thrust systems within the Cordilleran fold

  19. Anatomy of an extensional shear zone in the mantle, Lanzo massif, Italy

    NASA Astrophysics Data System (ADS)

    Kaczmarek, Mary-Alix; Tommasi, AndréA.

    2011-08-01

    Analysis of the microstructures in the km-scale mantle shear zone that separates the northern and the central parts of the Lanzo peridotite massif provides evidence of an evolution in time and space of deformation processes accommodating shearing in the shallow mantle within an extensional setting. This shear zone displays an asymmetric distribution of deformation facies. From south to north, gradual reorientation of the foliation of coarse porphyroclastic plagioclase-bearing peridotites is followed by development of protomylonites, mylonites, and mm-scale ultramylonite bands. A sharp grain size gradient marks the northern boundary. Early deformation under near-solidus conditions in the south is recorded by preservation of weakly deformed interstitial plagioclase and almost random clinopyroxene and plagioclase crystal orientations. Feedback between deformation and melt transport probably led to melt focusing and strain weakening in the shear zone. Overprint of melt-rock reaction microstructures by solid-state deformation and decrease in recrystallized grain size in the protomylonites and mylonites indicate continued deformation under decreasing temperature. Less enriched peridotite compositions and absence of ultramafic dykes or widespread melt-impregnation microstructures north of the shear zone and clinopyroxene and amphibole enrichment in the mylonites and ultramylonites suggest that the shear zone acted as both a thermal barrier and a high-permeability channel for late crystallizing fluids. These observations, together with chemical data indicating faster cooling of central Lanzo relative to the northern body, corroborate that this shear zone is a mantle detachment fault. All deformation facies have crystal preferred orientations consistent with deformation by dislocation creep with dominant activation of the (010)[100] and (100)[001] systems in olivine and orthopyroxene, respectively. Dynamic recrystallization produces dispersion of olivine CPO but not a

  20. Late Quaternary Arc-parallel Extension of the Kongur Extensional System (KES), Chinese Pamir

    NASA Astrophysics Data System (ADS)

    Chen, Jie; Schoenbohm, Lindsay M.; Yuan, Zhaode; Li, Wenqiao; Li, Tao; Owen, Lewis A.; Sobel, Edward R.; Hedrick, Kate

    2015-04-01

    Active deformation in the Chinese Pamir plateau is dominated by east-west extension along the active Kongur extensional system (KES). The KES lies along the northeastern margin of the Pamir at the western end of the Himalayan-Tibetan orogenic belt, and is part of a regional fault system which accommodates east-west extension in the hanging wall of the active Main Pamir Thrust (MPT). Previous work has shown that the MPT has been active since at least the Late Oligocene and accommodates northward motion of the Pamir salient over the Tarim and Tajik basins. It has been proposed that North-directed thrusting along the Main Pamir thrust has been interpreted to be related to east-west extension in the northern Pamir by either extensional collapse of over-thickened crust, or radial thrusting, or oroclinal bending along the Main Pamir Thrust. Alternatively, the east-west extension is related to northward propagation of the right-slip Karakoram fault. A newer model relates the extension to gravitational collapse of the Pamir into the Tadjik depression. Clearly the precise driver remains poorly understood. To better understand the nature of extension in the Pamir and to test the existing models, late Quaternary slip rate along the KES need to be defined using geomorphic mapping, geodetic surveying, Be-10 surface exposure and depth profile dating to quantify rates of fault slip using multiple landforms as strain markers such as offset outwash terraces, lateral moraines, and landslides at five sites, to identify spatial patterns in deformation rates. The preliminary results show that the overall extension direction is subhorizontal, is oriented E-W, and occurs at a high rate of about 7 mm/yr along the Muji and Qimugan faults to the north and deceased to about 1 mm/yr at Kuzigan to the south near Tashkurgan town, which matches the pattern of GPS data. A regional compilation from this study and existing data shows that recent extension along the KES is arc-parallel extension

  1. Droplet Deformation in an Extensional Flow: The Role of Surfactant Physical Chemistry

    NASA Technical Reports Server (NTRS)

    Stebe, Kathleen J.

    1996-01-01

    Surfactant-induced Marangoni effects strongly alter the stresses exerted along fluid particle interfaces. In low gravity processes, these stresses can dictate the system behavior. The dependence of Marangoni effects on surfactant physical chemistry is not understood, severely impacting our ability to predict and control fluid particle flows. A droplet in an extensional flow allows the controlled study of stretching and deforming interfaces. The deformations of the drop allow both Marangoni stresses, which resist tangential shear, and Marangoni elasticities, which resist surface dilatation, to develop. This flow presents an ideal model system for studying these effects. Prior surfactant-related work in this flow considered a linear dependence of the surface tension on the surface concentration, valid only at dilute surface concentrations, or a non-linear framework at concentrations sufficiently dilute that the linear approximation was valid. The linear framework becomes inadequate for several reasons. The finite dimensions of surfactant molecules must be taken into account with a model that includes surfaces saturation. Nonideal interactions between adsorbed surfactant molecules alter the partitioning of surfactant between the bulk and the interface, the dynamics of surfactant adsorptive/desorptive exchange, and the sensitivity of the surface tension to adsorbed surfactant. For example, cohesion between hydrocarbon chains favors strong adsorption. Cohesion also slows the rate of desorption from interfaces, and decreases the sensitivity of the surface tension to adsorbed surfactant. Strong cohesive interactions result in first order surface phase changes with a plateau in the surface tension vs surface concentration. Within this surface concentration range, the surface tension is decoupled from surface concentration gradients. We are engaged in the study of the role of surfactant physical chemistry in determining the Marangoni stresses on a drop in an extensional

  2. Deep seismic investigation of crustal extensional structures in the Danish Basin along the ESTRID-2 profile

    NASA Astrophysics Data System (ADS)

    Sandrin, A.; Thybo, H.

    2008-05-01

    The crust and uppermost mantle in the Danish Basin are investigated by modelling the P-wave velocity distribution along the north-south trending seismic profile ESTRID-2. Seismic tomography and ray inversion modelling demonstrate a variable depth to the top of the crystalline crust, from ~10 km in the northern part of the profile, to ~2 km depth in the southernmost part. The crystalline crust shows very high P-wave velocity in the central part of the profile, with ~6.7 km s-1 at depths as shallow as 12 km, and ~7.3-7.5 km s-1 in the lowermost crust. These values confirm previous results obtained along the orthogonal ESTRID-1 profile and the Eugeno-S profile 2. This high velocity zone in the middle to lower crust is interpreted as a mafic intrusion, which explains a positive gravity anomaly of ~50 mGal (Silkeborg Gravity High). The total length of the intrusion is at least 80 km in the east-west direction and ~25- 35 km in the north-south direction. The estimated thickness of the intrusion, from its top to the Moho level is ~18-20 km, which gives a total minimum volume of ~40-50 000 km3. The reflectivity properties of the Moho discontinuity are variable along the profile. Below the intrusion, the PmP signal is very weak, due to the small velocity contrast between the lowermost crust (~7.4 km s-1) and uppermost mantle (~7.6-7.7 km s-1). The main Moho reflection has a `reverberative' character to the south of the intrusion. This feature is interpreted by layering at the Moho level, possibly due to magmatic underplating. The occurrence of a large crustal mafic intrusion associated with magmatic underplating may be related to extensional/transtensional tectonism in the Tornquist Fan area in the Late Palaeozoic. The extensional event probably caused the opening of a plumbing system for intrusion of mantle derived magma into the crust. The ascending magma may have been injected at upper-middle crustal levels and, during the late phases of the development, `squeezed

  3. Timing of Early Proterozoic collisional and extensional events in the granulite-gneiss-charnockite-granite complex, Lake Baikal, USSR: A U-Pb, Rb-Sr, and Sm-Nd isotopic study

    SciTech Connect

    Aftalion, M. ); Bibikova, E.V. ); Bowes, D.R. ); Hopwood, A.M. ); Perchuk, L.L. )

    1991-11-01

    In the Sharyzhalgay Complex of the Lake Baikal region in eastern Siberia Early Proterozoic collisional and extensional events were separated by ca. 100 m.yr. The earlier collisional event, associated with the development of granulites and gneisses as the result of high-grade dynamothermal metamorphism, took place close to 1965 {plus minus} 4 Ma. A {sup 207}Pb/{sup 204}Pb vs. {sup 206}Pb/{sup 204}Pb isochron for zircon from five size fractions and a six point Rb-Sr whole-rock errorchron give generally corresponding ages of 1956 {plus minus} 8 and 1963 {plus minus} 163 Ma, respectively. The later extensional event, associated with charnockitization due to the uprise of fluids and heat in a regime corresponding to the middle to upper crustal levels of a Basin and Range-type province, was initiated in the 1880-1860 Ma period. The event was continued with magmatic emplacement of granitic masses into the deep levels of caldera-like structures, possibly during the upper time range of lower concordia intercept ages of 1817 +30/{minus}32 and 1797 +40/{minus}44 Ma for two distinctly different zircon populations in a pyroxene-bearing granodiorite interpreted as an evolved (and contaminated) product of the mantle-derived magma that was the source of CO{sub 2} involved in the charnockitization. Upper intercept ages of 2784 +48/{minus}45 and 2775 +61/{minus}55 Ma indicate late Archean crust at depth as the source region of the incorporated zircon. T{sub DM} ages from Sm-Nd isotopic data show that the protolith of the lithologically layered supracrustal assemblage, subsequently polyphase deformed and polymetamorphosed in Early Proterozoic times, was also formed in Early Proterozoic (not Archean) times.

  4. Vein attribute scaling in strike-slip and extensional fault damage zones affecting the platform carbonates in the Jabal Qusaybah anticline, Salakh Arc, Oman

    NASA Astrophysics Data System (ADS)

    Clemenzi, Luca; Balsamo, Fabrizio; Storti, Fabrizio; Solum, John; Taberner, Conxita; Tueckmantel, Christian

    2015-04-01

    Understanding factors that determine deformation intensity and vein attributes in fault damage zones is important to predict fracture patterns and fault system permeability in the subsurface. In this contribution we present a new dataset on vein attributes collected along 26 fault zones (extensional and strike-slip) developed in the Cretaceous platform carbonates of the Natih Formation during the growth of the Jabal Qusaybah anticline, in the foreland basin of the Oman Mountains. Extensional and strike slip fault zones accommodated comparable displacements (~0.1 up to ~100 m), but were active at different burial depths. Extensional fault zones developed at shallow burial depth (<1-2 km) during late-stage folding and strike-slip faulting, and are laterally restricted by sub-vertical strike-slip fault zones. Vein aperture (A), eight (H), and spacing (S) were measured in vertical sections by scanlines across 10 strike-slip and 16 extensional fault damage zones, and then statistically analyzed. In both strike-slip and extensional fault damage zones vein aperture and height generally increase approaching the master slip surfaces, while vein spacing decreases approaching them. Deformation intensity, calculated as vein H/S ratio per meter, exponentially increases moving from background host rock toward master slip surfaces. Furthermore, the mean vein H/S ratio calculated in each damage zone increases also with increasing fault displacement in extensional fault zones, whereas it remain almost constant in strike-slip fault zones. Different vein pattern evolutions in the two fault systems are due to the presence of sub-vertical strike-slip fault zones which provided mechanical barriers that hindered the lateral propagation of extensional fault zones. During extensional faulting, the vertical downthrown was not inhibited, thus resulting in a progressively higher deformation intensity in laterally-restricted, extensional fault damage zones.

  5. Midcontinent U.S. fault and fold zones: A legacy of Proterozoic intracratonic extensional tectonism?

    NASA Astrophysics Data System (ADS)

    Marshak, Stephen; Paulsen, Timothy

    1996-02-01

    The U.S. continental interior (midcontinent) contains numerous fault and fold zones. Seismic and drilling data indicate that some of these zones first formed as Proterozoic-Eocambrian rift faults, but the origin of most remains enigmatic. We propose that the enigmatic fault and fold zones also began as Proterozoic-Eocambrian normal faults. We base our hypothesis on the following: (1) enigmatic zones parallel known rifts, (2) the structural style of enigmatic zones mirrors the structural style of known rifts, (3) the map pattern of some enigmatic zones (e.g., the La Salle deformation belt of Illinois) resembles the map pattern of contemporary rifts, and (4) it is easier to rupture an intact craton by normal faulting than by reverse or strike-slip faulting. These zones, along with known rifts, represent the legacy of widespread extensional tectonism that brittlely broke up the craton into fault-bounded blocks prior to deposition of Phanerozoic platform cover. Once formed, midcontinent fault and fold zones remained weak, allowing cratonic blocks to jostle relative to one another during the Phanerozoic, thereby inverting faults (and creating transpressional or transtensional structural assemblages), localizing seismicity, and channeling (or releasing) ore-generating fluids.

  6. Second-order theories for extensional vibrations of piezoelectric crystal plates and strips.

    PubMed

    Lee, Peter C Y; Edwards, Nicholas P; Lin, Wen-Sen; Syngellakis, Stavros

    2002-11-01

    An infinite system of two-dimensional (2-D) equations for piezoelectric plates with general symmetry and faces in contact with vacuum is derived from the 3-D equations of linear piezoelectricity in a manner similar to that of previous work, in which an infinite system of 2-D equations for plates with electroded faces was derived. By using a new truncation procedure, second-order equations for piezoelectric plates with faces in contact with either vacuums or electrodes are extracted from the aforementioned infinite systems of equations, respectively. The second-order equations for plates with or without electrodes are shown to predict accurate dispersion curves by comparing to the corresponding curves from the 3-D equations in a range up to the cut-off frequencies of the first symmetric thickness-stretch and the second symmetric thickness-shear modes without introducing any correction factors. Furthermore, a system of 1-D second-order equations for strips with rectangular cross section is deduced from the 2-D second-order equations by averaging variables across the narrow width of the plate. The present 1-D equations are used to study the extensional vibrations of barium titanate strips of finite length and narrow rectangular cross section. Predicted frequency spectra are compared with previously calculated results and experimental data. PMID:12484472

  7. Probable Middle Cambrian and Middle-Late Ordovician seismites, a record of extensional to compressional tectonics

    SciTech Connect

    Pope, M.C.; Read, J.F. . Dept. of Geology)

    1992-01-01

    Facies resembling seismites, in situ shock deformation of sediments related to earthquake activity, appear to be developed in a Middle Cambrian intrashelf basinal setting in Virginia, and in a Middle-Late Ordovician foreland basin setting throughout Virginia and Kentucky. The Middle Cambrian facies developed during Rome trough and Conasauga basin extensional tectonics, whereas the Middle and Late Ordovician examples developed during eastward subduction of the North American plate (Taconic Orogeny). The seismites are characterized by contorted bedding, abundant ball and pillow structures, upward injection of sediment, in-place foundering of large blocks with erosional tops, development of mud-supported chaotic conglomerate fabrics and perhaps compacted sediment filled dikes in shale. The seismites occur in both clastic and carbonate, fine-to-carose grained sediments and vary in scale from centimeters to meters. The contorted bedding probably relates to seismically induced liquefaction of sediments within the upper few meters of section, whereas ball and pillow formation and sediment injection is due to water escape. The low sedimentation rates in the intrashelf basin and on the foreland ramp would tend to preclude these features resulting from high sedimentation rates causing loading of water-rich mud sections, even though some beds related to storm deposition. In fact, most of the storm beds, even thicker ones, show little evidence of ball and pillow formation. Seismites may provide an important temporal record of earthquakes affecting these basins, and need to be recognized if one is to separate tectonic from eustatic effects in these basins.

  8. The motion induced between radial extensional plates with one or both plates shrinking

    NASA Astrophysics Data System (ADS)

    Weidman, Patrick; Perocco, Enrico

    2015-11-01

    Flow between the radial extensional motion of parallel plates is studied when one plate stretches at rate a while the other shrinks at rate b, and also when both plates shrink. The flow is governed by the stretching ratio σ = b / | a | and the Reynolds number R = | a | h2 / ν , where h is the plate separation distance and ν is the fluid kinematic viscosity. When both plates shrink one can find solutions in the region σ < - 1 from those found in the region - 1 <= σ <= 0 . This feature is not available when one plate stretches and the other shrinks, and thus σ must be varied over the region σ <= 0 . The R = 0 solutions and their large- R asymptotic behaviors are determined. Using two numerical techniques, no bifurcated solutions were encountered. Results are presented for upper and lower wall shear stresses, radial pressure gradients, and radial velocity profiles for these axisymmetric flows. A region of zero wall shear stress exists for stretching/shrinking plates whilst the wall shear stresses for shrinking/shrinking plates are never zero. An interesting singular limit in solution behavior as R --> ∞ is found for the shrinking/shrinking plate flow.

  9. Nonlinear flap-lag-extensional vibrations of rotating, pretwisted, preconed beams including Coriolis effects

    NASA Technical Reports Server (NTRS)

    Subrahmanyam, K. B.; Kaza, K. R. V.

    1985-01-01

    The effects of pretwist, precone, setting angle, Coriolis forces and second degree geometric nonlinearities on the natural frequencies, steady state deflections and mode shapes of rotating, torsionally rigid, cantilevered beams were studied. The governing coupled equations of flap lag extensional motion are derived including the effects of large precone and retaining geometric nonlinearities up to second degree. The Galerkin method, with nonrotating normal modes, is used for the solution of both steady state nonlinear equations and linear perturbation equations. Parametric indicating the individual and collective effects of pretwist, precone, Coriolis forces and second degree geometric nonlinearities on the steady state deflection, natural frequencies and mode shapes of rotating blades are presented. It is indicated that the second degree geometric nonlinear terms, which vanish for zero precone, can produce frequency changes of engineering significance. Further confirmation of the validity of including those generated by MSC NASTRAN. It is indicated that the linear and nonlinear Coriolis effects must be included in analyzing thick blades. The Coriolis effects are significant on the first flatwise and the first edgewise modes.

  10. Upper Mantle Seismic Velocity Structure Beneath Eastern Africa and the Origin of Cenozoic Extensional Tectonism (Invited)

    NASA Astrophysics Data System (ADS)

    Nyblade, A.; Julia, J.; Adams, A. N.; Mulibo, G. D.; Tugume, F. A.

    2009-12-01

    The seismic structure of the upper mantle beneath eastern Africa will be reviewed using results from body wave tomography, surface wave tomography, and images of the 410 and 660 km discontinuities. Most of the data used for obtaining these results come from temporary deployments of broadband seismic stations in Ethiopia, Kenya, Uganda and Tanzania over the past decade. The ensemble of seismic results point to a deep-seated low velocity zone beneath the East African rift system that extends from the uppermost mantle, through the upper mantle, and into the mantle transition zone. The low velocity anomaly may also extend through the mantle transition zone and link with the low velocity zone in the lower mantle under southern Africa, commonly referred to as the African Superplume. This is in contrast to southern Africa, were there is little evidence for a pronounced low velocity anomaly in the upper mantle. The existence of a seismic low velocity zone beneath eastern African that extends to depths of more than 500 km supports the possibility that there is a geodynamic connection between the African Superplume and the origin of Cenozoic extensional tectonism in eastern Africa.

  11. Salt diapirs in the Dead Sea basin and their relationship to Quaternary extensional tectonics

    USGS Publications Warehouse

    Al-Zoubi, A.; ten Brink, U.S.

    2001-01-01

    Regional extension of a brittle overburden and underlying salt causes differential loading that is thought to initiate the rise of reactive diapirs below and through regions of thin overburden. We present a modern example of a large salt diapir in the Dead Sea pull-apart basin, the Lisan diapir, which we believe was formed during the Quaternary due to basin transtension and subsidence. Using newly released seismic data that are correlated to several deep wells, we determine the size of the diapir to be 13 x 10 km. its maximum depth 7.2 km. and its roof 125 m below the surface. From seismic stratigraphy, we infer that the diapir started rising during the early to middle Pleistocene as this section of the basin underwater rapid subsidence and significant extension of the overburden. During the middle to late Pleistocene, the diapir pierced through the extensionally thinned overburden, as indicated by rim synclines, which attest to rapid salt withdrawal from the surrounding regions. Slight positive topography above the diapir and shallow folded horizons indicate that it is still rising intermittently. The smaller Sedom diapir, exposed along the western bounding fault of the basin is presently rising and forms a 200 m-high ridge. Its initiation is explained by localized E-W extension due monoclinal draping over the edge of a rapidly subsiding basin during the early to middle Pleistocene, and its continued rise by lateral squeezing due to continued rotation of the Amazyahu diagonal fault. ?? 2001 Elsevier Science Ltd. All rights reserved.

  12. Extensional tectonic influence on lower and upper cretaceous stratigraphy and reservoirs, southern Powder River basin, Wyoming

    SciTech Connect

    Mitchell, G.C.; Rogers, M.H.

    1993-04-01

    The southern Powder River basin has been influenced significantly by an extensional system affecting Lower Cretaceous, Upper Cretaceous and Tertiary units. The system is composed of small throw, nearly vertical normal faults which are identified in the Cretaceous marine shales and that we believe are basement derived. Resultant fractures were present at erosional/depositional surfaces, both marine and nonmarine, that, in part, controlled erosion and subsequent deposition of Lower and Upper Cretaceous rocks. The normal faults also affected coal deposition in the Tertiary, now exposed at the surface. The erosion and resultant deposition formed extensive stratigraphic traps in Cretaceous units in both conventional and unconventional reservoirs. These reservoirs are interbedded with mature source rocks that have generated and expelled large amounts of hydrocarbons. Resulting overpressuring in the Fall River through the Niobrara formations has kept fractures open and has preserved primary porosity in the reservoirs. The normal faults offset thin sandstone reservoirs forming permeability barriers. Associated fractures may have provided vertical pathways for organic acids that assisted development of secondary porosity in Upper Cretaceous sandstones. These normal...faults and fractures provide significant potential for the use of horizontal drilling techniques to evaluate fractured, overpressured conventional and unconventional reservoirs.

  13. Late Cretaceous extensional unroofing in the Funeral Mountains metamorphic core complex, California

    SciTech Connect

    Applegate, J.D.R.; Hodges, K.V. ); Walker, J.D. )

    1992-06-01

    New filed and geochronologic data document the existence of Late Cretaceous extensional structures in the Death Valley region, California-Nevada. The authors have mapped two major, low-angle, ductile shear zones that omit stratigraphy in the footwall of the Funeral Mountains metamorphic core complex. Intervening strata have been strongly attenuated. Although stratigraphic offset across the shear zones is only 1.5 km, the presence of a large metamorphic discontinuity suggests that the amount of unroofing must be much greater. The timing of shear-zone formation, attenuation, and subsequent northwest-vergent folding is constrained by U-Pb geochronology on (1) prekinematic or synkinematic and (2) postkinematic pegmatites. Deformation was taking place by 72 Ma and had ended by 70 Ma. These results support earlier petrologic and geochronologic data that suggested substantial unroofing of the Funeral Mountains in Late Cretaceous time and add to a growing body of evidence for widespread Mesozoic extension in the hinterland of the Sevier thrust belt.

  14. Microbial Communities of Terrestrial Springs in Extensional Settings of the Western U.S.A.

    NASA Astrophysics Data System (ADS)

    Takacs-Vesbach, C.; Hall, J.; Crossey, L. J.; Karlstrom, K. E.; Fischer, T.; Cron, B.

    2008-12-01

    Gas and water chemistry from hot springs, gas vents, travertine-bearing cool springs, and high-pCO2 groundwaters of the western U.S. indicate a regionally extensive flux of deeply sourced volatiles through spring vents. We use the term "continental smokers" to emphasize and test analogs to mid-ocean vent systems, and are currently concentrating on vents in the Rocky Mountain/Colorado Plateau region as part of the Colorado Rockies and Experiment and Seismic transects (CREST). Measurable mantle-derived helium components (3He/4He = 0.10 to 2.1 RA) occur in nearly all springs in Colorado and New Mexico suggesting direct fast fluid pathways from the mantle to the surface hydrologic system. Important components of the CO2 are also derived from the mantle. We surveyed the geochemistry and microbial diversity of more than forty deeply sourced terrestrial springs that ranged in temperatures from 9° to 70°C. We hypothesize that degassing in continental extensional settings supports microbial assemblages that are analogous to chemolithotrophic communities at mid-ocean ridges and continental volcanic hydrothermal systems. Geochemical characteristics of the fluids and gases structure and sustain distinctive geomicrobiological communities as indicated by the widespread presence of archaea and thermophilic organisms in cool as well as hot springs.

  15. Micro-scale extensional rheometry using hyperbolic converging/diverging channels and jet breakup.

    PubMed

    Keshavarz, Bavand; McKinley, Gareth H

    2016-07-01

    Understanding the elongational rheology of dilute polymer solutions plays an important role in many biological and industrial applications ranging from microfluidic lab-on-a-chip diagnostics to phenomena such as fuel atomization and combustion. Making quantitative measurements of the extensional viscosity for dilute viscoelastic fluids is a long-standing challenge and it motivates developments in microfluidic fabrication techniques and high speed/strobe imaging of millifluidic capillary phenomena in order to develop new classes of instruments. In this paper, we study the elongational rheology of a family of dilute polymeric solutions in two devices: first, steady pressure-driven flow through a hyperbolic microfluidic contraction/expansion and, second, the capillary driven breakup of a thin filament formed from a small diameter jet ([Formula: see text]). The small length scale of the device allows very large deformation rates to be achieved. Our results show that in certain limits of low viscosity and elasticity, jet breakup studies offer significant advantages over the hyperbolic channel measurements despite the more complex implementation. Using our results, together with scaling estimates of the competing viscous, elastic, inertial and capillary timescales that control the dynamics, we construct a dimensionless map or nomogram summarizing the operating space for each instrument. PMID:27375824

  16. Marangoni Effects of a Drop in an Extensional Flow: The Role of Surfactant Physical Chemistry

    NASA Technical Reports Server (NTRS)

    Stebe, Kathleen J.; Balasubramaniam, R. (Technical Monitor)

    2002-01-01

    While the changes in stresses caused by surfactant adsorption on non-deforming interfaces have been fairly well established, prior to this work, there were few studies addressing how surfactants alter stresses on strongly deforming interfaces. We chose the model problem of a drop in a uniaxial extensional flow to study these stress conditions To model surfactant effects at fluid interfaces, a proper description of the dependence of the surface tension on surface concentration, the surface equation of state, is required. We have adopted a surface equation of state that accounts for the maximum coverage limit; that is, because surfactants have a finite cross sectional area, there is an upper bound to the amount of surfactant that can adsorb in a monolayer. The surface tension reduces strongly only when this maximum coverage is approached. Since the Marangoni stresses go as the derivative of the surface equation of state times the surface concentration gradient, the non-linear equation of state determines both the effect of surfactants in the normal stress jump, (which is balanced by the product of the mean curvature of the interface times the surface tension), and the tangential stress jump, which is balanced by Marangoni stresses. First, the effects of surface coverage and intermolecular interactions among surfactants which drive aggregation of surfactants in the interface were studied. (see Pawar and Stebe, Physics of Fluids).

  17. Energy trapping of thickness-extensional modes in thin film bulk acoustic wave filters

    NASA Astrophysics Data System (ADS)

    Zhao, Zinan; Qian, Zhenghua; Wang, Bin

    2016-01-01

    This paper presents the thickness-extensional vibration of a rectangular piezoelectric thin film bulk acoustic wave filter with two pairs of electrodes symmetrically deposited on the center of the zinc oxide film. The two-dimensional scalar differential equations which were first derived to describe in-plane vibration distribution by Tiersten and Stevens are employed. The Ritz method with trigonometric functions as basis functions is used based on a variational formulation developed in our previous paper. Free vibration resonant frequencies and corresponding modes are obtained. The modes may separate into symmetric and antisymmetric ones for such a structurally symmetric filter. Trapped modes with vibrations mainly under the driving electrodes are exhibited. The six corner-type regions of the filter neglected by Tiersten and Stevens for an approximation are taken into account in our analysis. Results show that their approximation can lead to an inaccuracy on the order of dozens of ppm for the fundamental mode, which is quite significant in filter operation and application.

  18. Rotation of late Cenozoic extensional stresses, Yucca Flat region, Nevada Test Site, Nevada

    SciTech Connect

    Ander, H.D.

    1984-12-31

    The Nevada Test Site (NTS) is located in the southern Basin and Range where the geology is typified by complexly deformed Paleozoic sedimentary rocks underlying Tertiary and Quaternary volcanics and alluvium all displaced by Cenozoic normal faults. The purpose of this study is to interpret the history of change in Cenozoic extensional stress orientations using ash-flow distributions, surface fault configurations, and slickenside analyses. Extensive drill hole data collected from Yucca Flat within NTS were used to construct isopach and structure contour maps of Cenozoic units occupying the northerly-trending basin. The configuration of these units indicates that the north-south-trending faults controlling present day basin morphology were inactive during deposition of the volcanic rocks from approximately 25 to 11 myBP. However, after 11 myBP, the overlying sedimentary sequence was strongly influenced by these faults and consequent basin development. In particular, an inordinately thick section of late Tertiary and Quaternary alluvium occurs at the southwestern end of Yucca Flat. Southwest-striking faults at the southwestern and of Yucca flat are postulated to be deflected at their northeast ends, becoming continuous with the north-south basin forming fault sets.

  19. Mechanoelectrochemistry of PPy(DBS) from correlated characterization of electrochemical response and extensional strain.

    PubMed

    Northcutt, Robert G; Sundaresan, Vishnu-Baba

    2015-12-28

    This paper investigates nanostructured morphology-dependent charge storage and coupled mechanical strain of polypyrrole membranes doped with dodecylbenzenesulfonate (PPy(DBS)). Nanoscale features introduced in PPy(DBS) using phospholipid vesicles as soft-templates create a uniform and long-range order to the polymer morphology, and lead to higher specific capacitance. It is widely stated that nanostructured architecture offer reduced mechanical loading at higher charge capacities, but metrics and methods to precisely quantify coupled localized strains do not exist. Towards this goal, we demonstrate the use of scanning electrochemical microscope with shear force imaging hardware (SECM-SF) to precisely measure charge storage function and volumetric strain simultaneously, and define two metrics--filling efficiency and chemomechanical coupling coefficient to compare nanostructured morphologies and thicknesses. For thin membranes (smaller charge densities), planar and vesicle-templated membranes have comparable mechanoelectrochemical response. For thick membranes (0.4 to 0.8 C cm(-2)), a 15% increase in charge storage is associated with 50% reduction in extensional strain. These results allow for the formulation of rules to design nanostructured PPy(DBS)-based actuators and energy storage devices. PMID:26583690

  20. Simultaneous normal faulting and extensional flexuring during rifting: an example from the southernmost Upper Rhine Graben

    NASA Astrophysics Data System (ADS)

    Ustaszewski, Kamil; Schumacher, Markus E.; Schmid, Stefan M.

    2005-09-01

    The southern end of the Upper Rhine Graben (URG) is formed by a major continental transfer zone, which was localised by the reactivation of ENE-oriented basement faults of Late Palaeozoic origin. A combination of subcrop data (derived from exploration wells and reflection seismic lines) and palaeostress analysis provided new constraints on the timing and kinematics of interacting basement faults. Rifting in the southern URG began in the Upper Priabonian under regional WNW ESE-directed extension, oriented roughly perpendicular to the graben axis. In the study area, this led to the formation of NNE-trending half-grabens. Simultaneously, ENE-trending basement faults, situated in the area of the future Rhine-Bresse Transfer Zone (RBTZ), were reactivated in a sinistrally transtensive mode. In the sedimentary cover the strike-slip component was accommodated by the development of en-échelon aligned extensional flexures. Flexuring and interference between the differently oriented basement faults imposed additional, but locally confined extension in the sedimentary cover, which deviated by as much as 90° from the regional WNW ESE extension. The interference of regional and local stresses led to a regime approaching radial extension at the intersection between the URG and RBTZ.

  1. Assessment of undiscovered oil and gas resources of the East Coast Mesozoic basins of the Piedmont, Blue Ridge Thrust Belt, Atlantic Coastal Plain, and New England Provinces, 2011

    USGS Publications Warehouse

    Milici, Robert C.; Coleman, James L., Jr.; Rowan, Elisabeth L.; Cook, Troy A.; Charpentier, Ronald R.; Kirschbaum, Mark A.; Klett, Timothy R.; Pollastro, Richard M.; Schenk, Christopher J.

    2012-01-01

    During the early opening of the Atlantic Ocean in the Mesozoic Era, numerous extensional basins formed along the eastern margin of the North American continent from Florida northward to New England and parts of adjacent Canada. The basins extend generally from the offshore Atlantic continental margin westward beneath the Atlantic Coastal Plain to the Appalachian Mountains. Using a geology-based assessment method, the U.S. Geological Survey estimated a mean undiscovered natural gas resource of 3,860 billion cubic feet and a mean undiscovered natural gas liquids resource of 135 million barrels in continuous accumulations within five of the East Coast Mesozoic basins: the Deep River, Dan River-Danville, and Richmond basins, which are within the Piedmont Province of North Carolina and Virginia; the Taylorsville basin, which is almost entirely within the Atlantic Coastal Plain Province of Virginia and Maryland; and the southern part of the Newark basin (herein referred to as the South Newark basin), which is within the Blue Ridge Thrust Belt Province of New Jersey. The provinces, which contain these extensional basins, extend across parts of Georgia, South Carolina, North Carolina, Virginia, Maryland, Delaware, Pennsylvania, New Jersey, New York, Connecticut, and Massachusetts.

  2. Coeval gravity-driven and thick-skinned extensional tectonics in the mid-Cretaceous of the western Pyrenees

    NASA Astrophysics Data System (ADS)

    Bodego, Arantxa; Agirrezabala, Luis M.

    2010-05-01

    The Mesozoic Basque-Cantabrian Basin in the western Pyrenees constitutes a peri-cratonic basin originated by rifting related to the Cretaceous opening of the Bay of Biscay. During the mid-Cretaceous the basin experienced important extensional/transtensional tectonics, which controlled the deposition of thick sedimentary successions. Many extensional structures have been documented in the basin but their thin-skinned/thick-skinned character is an unresolved question. In this field-based study, we characterize contemporaneous thin-skinned and thick-skinned deformations that took place during the filling of the mid-Cretaceous Lasarte sub-basin, located in the northeastern margin of the Basque-Cantabrian Basin (western Pyrenees). Most of these extensional structures and associated growth strata are preserved and allow us to characterize and date different deformation phases. Moreover, verticalization and overturning of the successions during Tertiary compression allow mapping the geometry of the extensional structures at depth. The Lasarte sub-basin constitutes a triangular sag bordered by three major basement-involved faults, which trend N, E and NE, respectively. These trends, common in the Variscan fault pattern of Pyrenees, suggest that they are old faults reactivated during the mid-Cretaceous extension. Stratigraphy of the area shows very thin to absent Aptian-Albian (and older) deposits above the upward border blocks, whereas on the downward blocks (sub-basin interior) contemporaneous thick successions were deposited (up to 1500 m). The sub-basin fill is composed of different sedimentary systems (from alluvial to siliciclastic and carbonate platforms) affected by syndepositional extensional faults (and related folds). These faults die out in a southwestward dipping (~4°) detachment layer composed of Triassic evaporites and clays. A NE-SW cross-section of the sub-basin shows NW- to N-trending six planar and two listric extensional faults and associated folds

  3. Flag-lag-torsional dynamics of extensional and inextensional rotor blades in hover and in forward flight

    NASA Technical Reports Server (NTRS)

    Crespodasilva, M. R. M.

    1981-01-01

    The formulation of differential equations of motion for both extensional and inextensional rotor blades, and the effect of cubic nonlinearities was examined. The developed differential equations are reduced to a set of three integro partial differential equations for a hingeless blade by eliminating the extension variable. Aerodynamic forces are modelled using Greenberg's extension of Theodorsen's strip theory. Equations of motion are expanded into polynomial nonlinearities to evaluate the motion of the system.

  4. Variation of the Earth tide-seismicity compliance parameter the last 50 years for the west site of the Aegean Volcanic Arc, Greece

    NASA Astrophysics Data System (ADS)

    Contadakis, M. E.; Arabelos, D. N.; Vergos, G.; Spatalas, S.

    2015-07-01

    Based on the results of our studies for the tidal triggering effect on the seismicity of the Hellenic area, we consider the confidence level of earthquake occurrence - tidal period accordance as an index of tectonic stress criticality for earthquake occurrence and we check if the recent increase in the seismic activity at the west site of the Aegean Volcanic Arc indicate faulting maturity for a stronger earthquake. In this paper we present the results of this test which are positive.

  5. Peeking through the trapdoor: Historical biogeography of the Aegean endemic spider Cyrtocarenum Ausserer, 1871 with an estimation of mtDNA substitution rates for Mygalomorphae.

    PubMed

    Kornilios, P; Thanou, E; Kapli, P; Parmakelis, A; Chatzaki, M

    2016-05-01

    The Aegean region, located in the Eastern Mediterranean, is an area of rich biodiversity and endemism. Its position, geographical configuration and complex geological history have shaped the diversification history of many animal taxa. Mygalomorph spiders have drawn the attention of researchers, as excellent model systems for phylogeographical investigations. However, phylogeographic studies of spiders in the Aegean region are scarce. In this study, we focused on the phylogeography of the endemic ctenizid trap-door spider Cyrtocarenum Ausserer, 1871. The genus includes two morphologically described species: C. grajum (C.L. Koch, 1836) and C. cunicularium (Olivier, 1811). We sampled 60 specimens from the distributions of both species and analyzed four mitochondrial and two nuclear markers. Cyrtocarenum served as an example to demonstrate the importance of natural history traits in the inference of phylogeographic scenarios. The mtDNA substitution rates inferred for the genus are profoundly higher compared to araneomorph spiders and other arthropods, which seems tightly associated with their biology. We evaluate published mtDNA substitution rates followed in the literature for mygalomorph spiders and discuss potential pitfalls. Following gene tree (maximum likelihood, Bayesian inference) and species tree approaches ((*)BEAST), we reconstructed a time-calibrated phylogeny of the genus. These results, combined with a biogeographical ancestral-area analysis, helped build a biogeographic scenario that describes how the major palaeogeographic and palaeoclimatic events of the Aegean may have affected the distribution of Cyrtocarenum lineages. The diversification of the genus seems to have begun in the Middle Miocene in the present west Aegean area, while major phylogenetic events occurred at the Miocene-Pliocene boundary for C. cunicularium, probably related to the Messinian Salinity Crisis. Our results also demonstrate the clear molecular distinction of the two

  6. SAXS/WAXS studies of flow-induced crystallization of poly(1-butene) in uniaxial extensional flow

    NASA Astrophysics Data System (ADS)

    McCready, Erica; Burghardt, Wesley

    2014-03-01

    We report studies of flow-induced crystallization of poly(1-butene) in uniaxial extensional flow. Flow was produced using an SER extensional flow fixture housed in a custom built convection oven designed to provide x-ray access for in situ studies of polymer structure using synchrotron x-ray scattering techniques. Samples were loaded into the SER fixture, heated well into the melt, and then cooled to a temperature at which quiescent crystallization would be prohibitively slow. A short interval of uniaxial extensional flow was then applied, after which simultaneous wide- and small-angle x-ray scattering (SAXS and WAXS) patterns were collected to study the phase transformation kinetics and morphology of the subsequent accelerated crystallization. The degree of crystallite orientation was generally found to decrease over the course of the crystallization. WAXS measurements yielded systematically higher degrees of crystallite orientation than SAXS. Both SAXS and WAXS gave generally consistent results for the extent of crystallization, although the SAXS invariant showed a decrease at long times that is not mirrored in the WAXS data. The impact of both deformation rate and total applied strain on the crystallization process were examined.

  7. Extensional deformation structures within a convergent orogen: The Val di Lima low-angle normal fault system (Northern Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Clemenzi, Luca; Molli, Giancarlo; Storti, Fabrizio; Muchez, Philippe; Swennen, Rudy; Torelli, Luigi

    2014-09-01

    A low-angle extensional fault system affecting the non metamorphic rocks of the carbonate dominated Tuscan succession is exposed in the Lima valley (Northern Apennines, Italy). This fault system affects the right-side-up limb of a kilometric-scale recumbent isoclinal anticline and is, in turn, affected by superimposed folding and late-tectonic high-angle extensional faulting. The architecture of the low-angle fault system has been investigated through detailed structural mapping and damage zone characterization. Pressure-depth conditions and paleofluid evolution of the fault system have been studied through microstructural, mineralogical, petrographic, fluid inclusion and stable isotope analyses. Our results show that the low-angle fault system was active during exhumation of the Tuscan succession at about 180°C and 5 km depth, with the involvement of low-salinity fluids. Within this temperature - depth framework, the fault zone architecture shows important differences related to the different lithologies involved in the fault system and to the role played by the fluids during deformation. In places, footwall overpressuring influenced active deformation mechanisms and favored shear strain localization. Our observations indicate that extensional structures affected the central sector of the Northern Apennines thrust wedge during the orogenic contractional history, modifying the fluid circulation through the upper crust and influencing its mechanical behavior.

  8. SAXS studies of the structure of a BCC-ordered block copolymer melt subjected to uniaxial extensional flow

    NASA Astrophysics Data System (ADS)

    Burghardt, Wesley; McCready, Erica

    We report in situ small-angle x-ray scattering (SAXS) investigations of a spherically-ordered block copolymer melt with a low styrene content (13%) resulting in spherical polystyrene microdomains ordered in BCC lattice. Melt annealing after clearing above the ODT produces ordered samples that have a macroscopically random orientation distribution of BCC 'grains'. Melt samples are subjected to uniaxial extensional flow in a counter-rotating drum extensional flow fixture housed in an oven with synchrotron x-ray access. During flow, initially isotropic diffraction rings in SAXS patterns become deformed, reflecting distortion of the BCC lattice. Diffracted intensity also concentrates azimuthally, indicating macroscopic alignment of the BCC lattice. There is evidence that extensional flow leads to progressive disordering of the BCC structure, with loss of higher order peaks and the emergence of a diffuse 'halo' of scattering. While the primary diffraction peak is visible in directions parallel and perpendicular to the stretching direction, the deformation of the lattice d-spacing follows affine deformation. Indications of ordering persist to higher strains in samples stretched at higher extension rates, and evidence of affine lattice deformation persists to very high strains (Hencky

  9. Extensional salt tectonics in the partially inverted Cotiella post-rift basin (south-central Pyrenees): structure and evolution

    NASA Astrophysics Data System (ADS)

    López-Mir, Berta; Muñoz, Josep Anton; García-Senz, Jesús

    2015-03-01

    The Cotiella Massif in the south-central Pyrenees hosts upper Cretaceous gravity-driven extensional faults which were developed in the Bay of Biscay-Pyrenean paleorift margin of the Atlantic Ocean. They accommodate up to 6 km of post-rift carbonates above relict upper Triassic salt. Subsequent Pyrenean contractional deformation preserved the main extensional features, but most of the upper Triassic salt was expulsed and then dissolved, leaving little indications of the original salt volume. Nonetheless, several distinctive salt-related features are still recognizable both at outcrop and at basin scale, providing an exposed analogue for salt-floored extensional basins developed on passive margins. Based on field research, we re-interpret the tectonic evolution of the area and suggest that passive diapirs were coeval with gravity-driven extension during the development of the Cotiella basin. The given interpretations are supported with detailed geological maps, original structural data, cross sections and outcrop photographs. The discovery of previously unknown post-rift salt structures in the Cotiella Massif is an extra element to consider in the paleogeographic reconstructions of the upper Cretaceous passive margin of the Bay of Biscay-Pyrenean realm and consequently helps in our understanding of the evolution of current Atlantic-type margins.

  10. The rift architecture and extensional tectonics of the South China Sea

    NASA Astrophysics Data System (ADS)

    Cameselle, Alejandra L.; Ranero, César R.; Barckhausen, Udo; Franke, Dieter

    2016-04-01

    Non-volcanic rifted continental margins are classically described as the product of lithospheric stretching and breakup leading to mantle exhumation, and subsequent seafloor spreading. However, recent studies question this model and indicate a wider range of structural evolutions, that challenge the existing model (e.g. Australia-Antarctic Rift System (Direen et al. 2007, 2011); the Tyrrhenian basin (Prada et al., 2014) or the South China Sea (Cameselle et al. 2015)). Rifting in the South China Sea developed from a series of extensional events, from early Eocene to Late Oligocene, resulting in a V-shape oceanic basin affected by the occurrence of several spreading centers, ridges, transform faults and post-spreading volcanism. In recent years, this marginal basin - the largest in East Asia - has increasingly become one of the key sites for the study of rifting and continental break-up. Its relative small size - compared to many classic, Atlantic-type continental margin settings - allows to easily match conjugated rifted margins and its relative youth promotes the preservation of its original nature. To examine the rifting evolution of the South China Sea, we have reprocessed with modern algorithms multichannel seismic profiles acquired during Sonne49 and BGR84 cruises across the three major subbasins: NW, SW and East subbasins. State-of-the-art of processing techniques have been used to increase the signal to noise ratio, including Tau-P and Wiener predictive deconvolution, multiple attenuation by both radon filtering and wave-equation-based surface-related multiple elimination (SRME) and time migration. To complement seismic interpretation, available vintage multichannel seismic data have been reprocessed with a post-stack flow, including Wiener deconvolution, FK-filtering, space and time variant band-pass filter and time migration. The improving quality of the seismic images shows a range of features including post-rift and syn-rift sediments, the structure of

  11. Hydrothermal dolomitization of basinal deposits controlled by a synsedimentary fault system in Triassic extensional setting, Hungary

    NASA Astrophysics Data System (ADS)

    Hips, Kinga; Haas, János; Győri, Orsolya

    2016-06-01

    Dolomitization of relatively thick carbonate successions occurs via an effective fluid circulation mechanism, since the replacement process requires a large amount of Mg-rich fluid interacting with the CaCO3 precursor. In the western end of the Neotethys, fault-controlled extensional basins developed during the Late Triassic spreading stage. In the Buda Hills and Danube-East blocks, distinct parts of silica and organic matter-rich slope and basinal deposits are dolomitized. Petrographic, geochemical, and fluid inclusion data distinguished two dolomite types: (1) finely to medium crystalline and (2) medium to coarsely crystalline. They commonly co-occur and show a gradual transition. Both exhibit breccia fabric under microscope. Dolomite texture reveals that the breccia fabric is not inherited from the precursor carbonates but was formed during the dolomitization process and under the influence of repeated seismic shocks. Dolomitization within the slope and basinal succession as well as within the breccia zones of the underlying basement block is interpreted as being related to fluid originated from the detachment zone and channelled along synsedimentary normal faults. The proposed conceptual model of dolomitization suggests that pervasive dolomitization occurred not only within and near the fault zones. Permeable beds have channelled the fluid towards the basin centre where the fluid was capable of partial dolomitization. The fluid inclusion data, compared with vitrinite reflectance and maturation data of organic matter, suggest that the ascending fluid was likely hydrothermal which cooled down via mixing with marine-derived pore fluid. Thermal gradient is considered as a potential driving force for fluid flow.

  12. Testing fault displacement-length scaling relations through analogue modeling in an extensional setting

    NASA Astrophysics Data System (ADS)

    Bonini, L.; Basili, R.; Burrato, P.; Kastelic, V.; Toscani, G.; Seno, S.; Valensise, G.

    2013-12-01

    The scaling relation between displacement and length of faults plays a crucial role in understanding the growth history of individual faults and their possible linkage and reactivation in future ruptures. Displacement-length relations are commonly based on empirical data. The measurement of fault geometric properties, however, is generally affected by large scattering due not only to intrinsic difficulties of making observations in natural cases (outcrop availability, seismic profiles), but also to the variety of geological factors that may affect the rupture patterns. These can be the interaction between the present-day tectonic regime and an inherited structural fabric, or that between a master fault at depth and shallow structural features. As an alternative to field observations, analogue modeling provides an opportunity to investigate the faulting processes in a controlled environment. During the last decade, the ability of scaled models to properly reproduce such geological processes has greatly improved thanks to the introduction of new materials (e.g. wet kaolin) suitable for reproducing brittle deformation in the upper crust and hi-tech monitoring systems (e.g. laser scanner, particle image velocimetry) with the ability of capturing structural details and performing accurate measurements. We use a dedicated apparatus with such properties to gain insights on the evolution of extensional faults through a suite of experiments which includes (a) setups in homogeneous material to test our ability in meeting general criteria related with fault displacement-length parameters; and (b) increasing complexities attained by inserting various pre-existing fault patterns to analyze how shallow mechanical discontinuities affect our ability to characterize a major fault at depth. Our results show that pre-existing faults can either halt or favor fault development and growth depending on their location/orientation with respect to the applied stress field and suggest the

  13. Tectonic and gravity extensional collapses in overpressured cohesive and frictional wedges

    NASA Astrophysics Data System (ADS)

    Yuan, X. P.; Leroy, Y. M.; Maillot, B.

    2015-03-01

    Two modes of extensional collapse in a cohesive and frictional wedge of arbitrary topography, finite extent, and resting on an inclined weak décollement are examined by analytical means. The first mode consists of the gravitational collapse by the action of a half-graben, rooting on the décollement and pushing seaward the frontal part of the wedge. The second mode results from the tectonics extension at the back wall with a similar half-graben kinematics and the landward sliding of the rear part of the wedge. The predictions of the maximum strength theorem, equivalent to the kinematic approach of limit analysis and based on these two collapse mechanisms, not only match exactly the solutions of the critical Coulomb wedge theory, once properly amended, but generalizes them in several aspects: wedge of finite size, composed of cohesive material and of arbitrary topography. This generalization is advantageous to progress in our understanding of many laboratory experiments and field cases. For example, it is claimed from analytical results validated by experiments that the stability transition for a cohesive, triangular wedge occurs with the activation of the maximum length of the décollement. It is shown that the details of the topography, for the particular example of the Mejillones peninsula (North Chile) is, however, responsible for the selection of a short length-scale, dynamic instability corresponding to a frontal gravitational instability. A reasonable amount of cohesion is sufficient for the pressures proposed in the literature to correspond to a stability transition and not with a dynamically unstable state.

  14. Structural control of geothermal reservoirs in extensional tectonic settings: An example from the Upper Rhine Graben

    NASA Astrophysics Data System (ADS)

    Meixner, Jörg; Schill, Eva; Grimmer, Jens C.; Gaucher, Emmanuel; Kohl, Thomas; Klingler, Philip

    2016-01-01

    In extensional tectonic settings major structural elements such as graben boundary faults are typically oriented subparallel to the maximum horizontal stress component SHmax. They are often structurally accompanied by transfer zones that trend subparallel to the extension direction. In the Upper Rhine Graben, such transfer faults are typically characterized by strike-slip or oblique-slip kinematics. A major re-orientation of the regional stress field by up to 90° of the Upper Rhine Graben in the Early Miocene led to the present-day normal and strike-slip faulting regimes in the North and South of the Upper Rhine Graben, respectively, and a transition zone in-between. Consequently, conditions for fault frictional failure changed significantly. Moreover, it has been observed during tracer and stimulation experiments that such transfer faults may be of major importance for the hydraulic field of geothermal reservoirs under the present stress condition, especially, when located between production and injection well. In this context we have investigated slip and dilation tendencies (TS and TD) of major structural elements at reservoir scale for two representative geothermal sites, Bruchsal (Germany) and Riehen (Switzerland), located close to the Eastern Main Boundary Fault of the Upper Rhine Graben. We have evaluated the quality and uncertainty range of both tendencies with respect to potential variation in SHmax orientation. Despite significant differences in orientation of the structures and the stress regimes, the resulting variation of TS and TD reveal major similarities concerning the reactivation potential of both, the graben-parallel structures and the transfer faults. The conditions of criticality for tensile failure and non-criticality for shear failure suggest that transfer faults are most likely naturally permeable structures with low stimulation potential. This is in agreement with the absence of both immediate tracer recovery and seismicity in the studied

  15. Modern Tectonic Deformation in the Active Basin-and-Range Province Northwest of Beijing, China

    NASA Astrophysics Data System (ADS)

    Mi, Suting; Wen, Xueze

    2013-04-01

    Our study region is the northwest of Beijing, northern north China. The most typical extensional active tectonic area of the China continent, called the active basin-and-range province northwest of Beijing, exist there. This active tectonic province is made up of several NE-trending Quaternary graben basins and horst ranges between basins. An about 1500-year-long written historical record has suggested that there have been no major earthquakes with magnitude 7 or greater occurred in most of the study region since AD 512. So, the characteristic of modern tectonic deformation of the study region and its implication for the future seismic potential of major earthquakes are important scientific issues. In this study, based on data of regional GPS station velocities and active tectonics, combining relocated earthquake distribution, we make a preliminary analysis on the characteristic of the modern tectonic deformation of the study region. We design three zones across deferent segments of the active basin-and-range province to analyze both the present tectonic deformation from the GPS velocity profiles and the major fault's downward-extents from the relocated hypocenters. Our analyses reveal that: (1) Significant NNW-ward and SSE-ward horizontal extension exists on different segments of the active basin-and-range province northwest of Beijing at rates of 2 to 3mm /yr, accompanied with right-lateral shear deformation at 1 to 2mm/yr. (2) On the western and middle segments of the active basin and range province, most of the total horizontal extension and shear deformation happen in the width from the Huangqihai basin to the Datong-Yanggao basin , suggesting that some major faults in this width could have had relatively-high strain build-up. (3) It is possible that one or more basement detachment belts exist under the active basins, and it or they possibly dip(s) southeastern-ward. (4) The modern tectonic extensional rate is up to 2 to 3mm /yr in the study region. However

  16. Lithospheric strength in the southern Aegean and its significance for the nucleation of the 9 July 1956 Amorgos earthquake

    NASA Astrophysics Data System (ADS)

    Konstantinou, Konstantinos

    2010-05-01

    The 9 July 1956 Amorgos earthquake (Mw 7.6) was the largest event that hit Greece during the last century while it was also followed by a tsunami that inundated the coastal areas of the southern Aegean. This study investigates the rheological properties of the 1956 rupture zone between Amorgos and Santorini islands, in an effort to place some constraints on the nucleation depth and rupture extent of this large event. The seismic velocities inferred from tomographic and surface wave dispersion studies of the area are first correlated with laboratory determined velocities of known rock types. It is found that the lithosphere in the southern Aegean can be approximated by three layers representing the upper/lower crust and upper mantle consisting of quartzite, diabase and peridotite respectively. Geotherms are calculated by using an analytical solution to the one-dimensional heat conduction equation, while Yield Strength Envelopes (YSEs) are produced after assuming laboratory estimated parameters of brittle and ductile deformation for each rock type. The depth frequency of earthquakes in the area, as well as other independent observations favour the YSE calculated for a wet upper crust/upper mantle, a dry lower crust and a geotherm corresponding to a low surface heat flow of 62 mW m-2. In this YSE, the upper mantle exhibits maximum strength at 33 km becoming more ductile at greater depths. The lower crust retains significant strength and therefore cannot flow as it did during the early stages of extension, but it is relatively weaker than the upper mantle confirming the 'jelly sandwich' model previously proposed for the continental lithosphere. The downdip rupture width of the Amorgos event can be estimated from empirical relationships to be 26 km which means that its rupture may have extended from the depth of peak strength in the upper mantle (33 km) to 7 km upwards. Such a scenario agrees well with recent modelling results indicating that the Amorgos tsunami was

  17. Review of variations in Mw < 7 earthquake motions on position and tec (Mw = 6.5 aegean sea earthquake sample)

    NASA Astrophysics Data System (ADS)

    Yildirim, O.; Inyurt, S.; Mekik, C.

    2015-10-01

    Turkey is a country located in Middle Latitude zone and in which tectonic activity is intensive. Lastly, an earthquake of magnitude 6.5Mw occurred at Aegean Sea offshore on date 24 May 2014 at 12:25 UTC and it lasted approximately 40 s. The said earthquake was felt also in Greece, Romania and Bulgaria in addition to Turkey. In recent years seismic origin ionospheric anomaly detection studies have been done with TEC (Total Electron Contents) generated from GNSS (Global Navigation Satellite System) signals and the findings obtained have been revealed. In this study, TEC and positional variations have been examined seperately regarding the earthquake which occurred in the Aegean Sea. Then The correlation of the said ionospheric variation with the positional variation has been investigated. For this purpose, total fifteen stations have been used among which the data of four numbers of CORS-TR stations in the seismic zone (AYVL, CANA, IPSA, YENC) and IGS and EUREF stations are used. The ionospheric and positional variations of AYVL, CANA, IPSA and YENC stations have been examined by Bernese 5.0v software. When the (PPP-TEC) values produced as result of the analysis are examined, it has been understood that in the four stations located in Turkey, three days before the earthquake at 08:00 and 10:00 UTC, the TEC values were approximately 4 TECU above the upper limit TEC value. Still in the same stations, one day before the earthquake at 06:00, 08:00 and 10:00 UTC, it is being shown that the TEC values were approximately 5 TECU below the lower limit TEC value. On the other hand, the GIM-TEC values published by the CODE center have been examined. Still in all stations, it has been observed that three days before the earthquake the TEC values in the time portions of 08:00 and 10:00 UTC were approximately 2 TECU above, one day before the earthquake at 06:00, 08:00 and 10:00 UTC, the TEC values were approximately 4 TECU below the lower limit TEC value. Again, by using the same

  18. Review of variations in Mw < 7 earthquake motions on position and TEC (Mw = 6.5 Aegean Sea earthquake sample)

    NASA Astrophysics Data System (ADS)

    Yildirim, Omer; Inyurt, Samed; Mekik, Cetin

    2016-02-01

    Turkey is a country located in the middle latitude zone, where tectonic activity is intensive. Recently, an earthquake of magnitude 6.5 Mw occurred offshore in the Aegean Sea on 24 May 2014 at 09:25 UTC, which lasted about 40 s. The earthquake was also felt in Greece, Romania, and Bulgaria in addition to Turkey. In recent years, ionospheric anomaly detection studies have been carried out because of seismicity with total electron content (TEC) computed from the global navigation satellite system's (GNSS) signal delays and several interesting findings have been published. In this study, both TEC and positional variations have been examined separately following a moderate size earthquake in the Aegean Sea. The correlation of the aforementioned ionospheric variation with the positional variation has also been investigated. For this purpose, a total of 15 stations was used, including four continuously operating reference stations in Turkey (CORS-TR) and stations in the seismic zone (AYVL, CANA, IPSA, and YENC), as well as international GNSS service (IGS) and European reference frame permanent network (EPN) stations. The ionospheric and positional variations of the AYVL, CANA, IPSA, and YENC stations were examined using Bernese v5.0 software. When the precise point positioning TEC (PPP-TEC) values were examined, it was observed that the TEC values were approximately 4 TECU (total electron content unit) above the upper-limit TEC value at four stations located in Turkey, 3 days before the earthquake at 08:00 and 10:00 UTC. At the same stations, on the day before the earthquake at 06:00, 08:00, and 10:00 UTC, the TEC values were approximately 5 TECU below the lower-limit TEC value. The global ionosphere model TEC (GIM-TEC) values published by the Centre for Orbit Determination in Europe (CODE) were also examined. Three days before the earthquake, at all stations, it was observed that the TEC values in the time period between 08:00 and 10:00 UTC were approximately 2 TECU

  19. Velocity and deformation fields in the North Aegean domain, Greece, and implications for fault kinematics, derived from GPS data 1993-2009

    NASA Astrophysics Data System (ADS)

    Müller, M. D.; Geiger, A.; Kahle, H.-G.; Veis, G.; Billiris, H.; Paradissis, D.; Felekis, S.

    2013-06-01

    GPS rates based on data of an extended continuous and campaign-type GPS network in the North Aegean domain are presented. The data processed for the time period 1993-2009 is used to analyze the complex kinematic and deformation fields in the North Aegean Sea and adjacent regions. The presence of slowly deforming areas is investigated. Southern Bulgaria, eastern Macedonia and Thrace move uniformly southward relative to Eurasia (1.5-3.5 mm/yr). Western Macedonia, Epirus, Thessaly and Central Greece rotate rather coherently clockwise. The region comprising the islands of Limnos, Agios Efstratios and Alonnisos moves like a counterclockwise rotating slowly deforming block. The new GPS rates allow a quantification of the spatial change of strike-slip motion and locking depth along the North Aegean trough. Dextral strike-slip motion diminishes from east toward west amounting to 21.2 mm/yr along the Saros basin and 12.5 mm/yr south of the Chalkidiki peninsula. Less than 5 mm/yr (50 nstrain/yr shear strain rate) is transferred from the Sporades islands/Pelion toward Northern Evia. The locking depth is shallow for the Ganos fault and the western Saros basin (5.6-8.9 km). It is deeper between the Sporades islands and Pelion (~ 17.7 km) corresponding to a more diffuse shear zone. An elementary finite element model is applied to derive slip rates of the three main ENE-WSW to NE-SW trending dextral strike-slip faults in the North Aegean. Large-scale N-S to NNE-SSW extension in the North Aegean domain is analyzed by employing finite element and GPS based strain rate analyses. Pronounced extension (> 100 nstrain) is associated with known tectonic structures (e.g., Mygdonian graben, northern Gulf of Evia). In offshore areas such as the Sporades basin the correspondence between GPS derived extension rates and active fault structures is not entirely evident. However, important constraints are provided for seismotectonic interpretations.

  20. Re-examination of models for the origin of granite-rhyolite provinces in the midcontinent region, USA

    SciTech Connect

    Van Schmus, W.R. . Dept. of Geology)

    1993-03-01

    New isotopic data for the 1.47 Ga Eastern Granite-Rhyolite Province and the 1.37 Ga Southern Granite-Rhyolite Province require re-examination of models for the origin of these suites of rock. For the most part, eNd(t) values for the granite-rhyolite provinces and A-type plutons intrusive into adjacent Early proterozoic basement are compatible with origin through melting of 1.8 Ga continental crust. However, new data shows that southeastern parts of the granite-rhyolite provinces yield positive [var epsilon]Nd(t) data is an E-W trending belt of intermediate values in northern Oklahoma; [var epsilon]Nd(t) data south of this belt, in s. Oklahoma, are equivalent to that in Kansas and Nebraska, reflecting cal 1.8 Ga lower crust. The granite-rhyolite provinces are not related to any well defined tectonic event, and they have commonly been referred to as anorogenic. The thermal event responsible for producing the silicic melts may have been associated with an extensional regime, in view of the a-type character of the granites.

  1. Submarine canyon, slope, and shelf sedimentation in an upper Eocene-Oligocene progradational system (Limnos Island, north Aegean Sea, Greece)

    SciTech Connect

    Roussos, N.

    1988-08-01

    The only well-exposed outcrops of a post-Alpine late Eocene-Oligocene basin in the north Aegean Sea are at Limnos Island. These mostly consist of typical slope deposits overlain by remnants of shallow marine shelf and continental (braided-river) deposits. Three main slope lithofacies are distinguished. Canyon deposits consist of thick-bedded, massive, and pebbly sandstones (facies B), conglomerates (facies A), pebbly mudstone where the matrix shows flow (facies F), rock falls (nummulitic limestones), and zones of slump folds in sandstones (facies F). Channelized facies of massive sandstones, classical turbidites, and thin interbeds of sandstone and mudstone (facies E - probably overbank or levee deposits) are associated with canyon deposits. Pelagic and hemipelagic slope deposits consist of mudstone (facies G) and thin-bedded sandstone (facies D) with occasional small to medium-scale slump folds. These mud-rich slope deposits are incised by several channels filled with conglomerates, thick massive sandstones with well-developed dish structures, and turbidites interbedded with thin layers of mudstone (facies C). This unit composes a typical thinning and fining-upward sequence.

  2. Dynamics of Late Quaternary North African humid periods documented in the clay mineral record of central Aegean Sea sediments

    NASA Astrophysics Data System (ADS)

    Ehrmann, Werner; Seidel, Martin; Schmiedl, Gerhard

    2013-08-01

    The ratio between the clay minerals kaolinite and chlorite has been investigated in high resolution in a late Quaternary sediment core from the central Aegean Sea. The record spans the last ca. 105 ka. The kaolinite/chlorite ratio was used to reconstruct the fine-grained aeolian dust influx from the North African deserts, mainly derived from desiccated lake depressions. It therewith can be used as a proxy for wind activity, aridity and vegetation cover in the source area. The data document three major humid phases in North Africa bracketing the formation of sapropel layers S4, S3 and S1. They occur at > 105-95 ka, 83.5-72 ka and 14-2 ka. The first two phases are characterised by relatively abrupt lower and upper boundaries suggesting a non-linear response of vegetation to precipitation, with critical hydrological thresholds. In contrast, the onset and termination of the last humid period were more gradual. Highest kaolinite/chlorite ratios indicating strongest aeolian transport and aridity occur during Marine Isotope Stage (MIS) 5b, at ca. 95-84 ka. The long-term decrease in kaolinite/chlorite ratios during the last glacial period indicates a gradual decline of deflatable lake sediments in the source areas.

  3. The 210Po and 210Pb levels in surface sediment samples in the Izmir Bay (Aegean Sea-Turkey).

    PubMed

    Saçan, Sezen; Uğur, Aysun; Sunlu, Uğur; Büyükişik, Baha; Aksu, Mehmet; Sunlu, F Sanem

    2010-02-01

    Bottom sediments reflect in general the relative contamination of a sea area. Therefore, a great deal of monitoring work has been dedicated to the analysis of bottom sediments. Izmir Bay is a very important pollution centre in Turkish Aegean coast region due to a densely populated community, industrial complex and maritime transportation, and there are many streams flowing into the bay that pass through a number of industrial and agricultural areas. It had received the majority of domestic and industrial wastewaters until the wastewater treatment plant was constructed. It is well known that sediments play an important role as reservoirs of a fraction of the pollution in aquatic systems. Therefore, sediment samples were collected monthly from three stations which are located in the inner part of the bay during the period January to December 2003. Temporal variations and seasonal changes on their (210)Po and (210)Pb contents were examined, and the activity concentrations of (210)Po and (210)Pb were found to vary from 43+/-6 to 132+/-12 and 27+/-5 to 91+/-9 Bq kg(-1) dry wt, respectively. The highest values of those natural radionuclides were measured at Karşiyaka Station because of the current systems of the bay. Seasonally, the (210)Pb levels were found to increase during the winter time for all the stations. PMID:19242813

  4. The application of an age-structured model to the north Aegean anchovy fishery: an evaluation of different management measures.

    PubMed

    Politikos, D V; Tzanetis, D E; Nikolopoulos, C V; Maravelias, C D

    2012-05-01

    The objective of this paper is the integration of existing biological and fishery knowledge of anchovy into a unified modelling framework in order to advance our understanding of species' population dynamics under different fishing strategies. The model simulates the anchovy biomass by combining an age-specific growth equation and a continuous age-structured population model based on the McKendrick-Von Foerster equation. Model predictions were compared to the biomass estimates and annual catches during the period 2003-2008. The present work provided direct evidence for the significance of the prespawning period as a critical life period for the management of anchovy stock in the Aegean Sea. It was found that the introduction of additional management measures could increase the profits in the long run for the fishery. However, for these to become apparent they will require a minimum of four years. Results also indicated that the reduction of fishing mortality directed at the spawning stock (recruitment overfishing) and the selective harvesting of younger individuals may be a plausible means of increasing stock's total anchovy biomass. Finally, as a criterion of long-term population survival, we have considered the mathematical notation of persistence. The numerical criteria of persistence in the present model indicated that the anchovy population could be considered viable. PMID:22426444

  5. Impact of the river nutrient load variability on the North Aegean ecosystem functioning over the last decades

    NASA Astrophysics Data System (ADS)

    Tsiaras, K. P.; Petihakis, G.; Kourafalou, V. H.; Triantafyllou, G.

    2014-02-01

    The impact of river load variability on the North Aegean ecosystem functioning over the last decades (1980-2000) was investigated by means of a coupled hydrodynamic/biogeochemical model simulation. Model results were validated against available SeaWiFS Chl-a and in situ data. The simulated food web was found dominated by small cells, in agreement with observations, with most of the carbon channelled through the microbial loop. Diatoms and dinoflagellates presented a higher relative abundance in the more productive coastal areas. The increased phosphate river loads in the early 80s resulted in nitrogen and silicate deficiency in coastal, river-influenced regions. Primary production presented a decreasing trend for most areas. During periods of increased phosphate/nitrate inputs, silicate deficiency resulted in a relative decrease of diatoms, triggering an increase of dinoflagellates. Such an increase was simulated in the late 90s in the Thermaikos Gulf, in agreement with the observed increased occurrence of Harmful Algal Blooms. Microzooplankton was found to closely follow the relative increase of dinoflagellates under higher nutrient availability, showing a faster response than mesozooplankton. Sensitivity simulations with varying nutrient river inputs revealed a linear response of net primary production and plankton biomass. A stronger effect of river inputs was simulated in the enclosed Thermaikos Gulf, in terms of productivity and plankton composition, showing a significant increase of dinoflagellates relative abundance under increased nutrient loads.

  6. Some aspects of the biology and ecology of Knipowitschia caucasica (Teleostei: Gobiidae) in the Evros Delta (North Aegean Sea)

    NASA Astrophysics Data System (ADS)

    Kevrekidis, T.; Kokkinakis, A. K.; Koukouras, A.

    1990-06-01

    Some aspects of the biology and ecology of the goby Knipowitschia caucasica were studied over a period of 13 months in a poly-to euhaline area in the Evros Delta (North Aegean Sea). This fish grows rapidly in the summer and autumn after hatching, matures after its first winter, breeds from the end of April to the end of July, and grows rapidly again in July September. The older males perish after their second February, whereas some females have a second breeding season at the end of April/beginning of May, shortly before their death. The fish grows to about 40 mm in total length. There is a positive correlation between the total length (TL) and the standard length (SL) or the cleaned body weight (CW). SL increases slower than TL, whereas CW increases slower than TL in immature individuals and faster in males and females. There is no difference between immature individuals, males and females, in the growth rate of SL, TL and CW, TL. The mean monthly values of the condition factor varies from 0.289 to 0.576 in females and from 0.313 to 0.548 in males. The overall sex ratio of females to males is 1: 1.46. Fecundity ranges from 60 to 217 eggs with a mean value of 109.8 and depends upon size, whereas relative fecundity varies between 968 and 2170 with a mean of 1558. The fish feeds predominantly on benthic amphipods and polychaetes.

  7. Total and inorganic arsenic levels in some marine organisms from Izmir Bay (Eastern Aegean Sea): a risk assessment.

    PubMed

    Kucuksezgin, Filiz; Gonul, Lutfi Tolga; Tasel, Didem

    2014-10-01

    The arsenic compounds in marine biota were evaluated from Izmir Bay (Eastern Aegean) and found that inorganic arsenic occurred as a minor fraction. No information is available on the annual variations of arsenic in important edible biota species from Izmir Bay. Fish and mussel samples were taken from different regions of Izmir Bay between 2009 and 2011 (n=854 individual specimens). The average percentages of inorganic arsenic to total arsenic for all biota samples were 3.43±3.38% with a range of 0.11-11.8%. The importance of speciation analysis for arsenic is supported by our work, because arsenic is ubiquitous in the ecosystem, and flexible toxicity of arsenic is based on chemical form. The average total As levels in Mullus barbatus were 6 times higher than Diplodus annularis and Mytilus galloprovincialis. This study also revealed that spatial variation influenced the arsenic levels in the fish samples and the highest concentrations of arsenic were found in Gediz site. Our study showed that estimated daily intakes of arsenic via consumption of flesh fish and shell fish were below the BMDL0.5 values established by FAO/WHO. PMID:25048921

  8. Using Facilities And Potential Of Geothermal Resources In The Canakkale Province - NW Turkey

    NASA Astrophysics Data System (ADS)

    Deniz, Ozan; Acar Deniz, Zahide

    2016-04-01

    Turkey, due to its geological location, has a rich potential in point of geothermal resources. Çanakkale province is located northwestern (NW) part of Turkey and it has important geothermal fields in terms of geothermal energy potential. Geothermal resources reach to the surface both effects of past volcanic activity and extensions of fault zones associated with complex tectonic systems in the region. The aim of this study is to summarize hydrogeochemical characteristics, using facilities and potential of hot springs and spas located in the Çanakkale province. There are 13 geothermal fields in the region and the surface temperatures of hot springs are ranging between 28 centigrade degree and 175 centigrade degree. Hydrogeochemical compositions of thermal water display variable chemical compositions. Na, Ca, SO4, HCO3 and Cl are the dominant ions in these waters. Thermal waters of Tuzla and Kestanbol geothermal fields which is located the near coastal area can be noted NaCl type. Because these two geothermal waters have high TDS values, scaling problems are seen around the hot springs and pipelines. Geothermal waters in the province are meteoric origin according to oxygen-18, deuterium and tritium isotopes data. Long underground residence times of these waters and its temperatures have caused both more water - rock interaction and low tritium values. Geothermal energy is utilized in many areas in Turkey today. It is generally used for space heating, balneotherapy and electricity generation. Explorations of geothermal resources and investments in geothermal energy sector have risen rapidly in the recent years particularly in western Turkey. High-temperature geothermal fields are generally located in this region related to the Aegean Graben System and the North Anotalian Fault Zone. All geothermal power plants in Turkey are located in this region. Considering the Çanakkale province, most geothermal fields are suitable for multipurpose usage but many of them have

  9. Ductile strain rate recorded in the Symvolon syn-extensional plutonic body (Rhodope core complex, Greece)

    NASA Astrophysics Data System (ADS)

    Cirrincione, Rosolino; Fazio, Eugenio; Ortolano, Gaetano; Fiannacca, Patrizia; Kern, Hartmut; Mengel, Kurt; Pezzino, Antonino; Punturo, Rosalda

    2016-04-01

    Sciences, 90 (1), 77-87. • Punturo, R., Cirrincione, R., Fazio, E., Fiannacca, P., Kern, H., Mengel, K., Ortolano G., and Pezzino, A. (2014). Microstructural, compositional and petrophysical properties of mylonitic granodiorites from an extensional shear zone (Rhodope Core complex, Greece). Geological Magazine, 151 (6), 1051-1071.

  10. Sedimentary response to tectonism in the extensional Chihuahua trough, Cretaceous of Southern North America

    NASA Astrophysics Data System (ADS)

    Budhathoki, P.; Langford, R. P.; Pavlis, T. L.

    2009-12-01

    During the Jurassic and Cretaceous, the Chihuahua Trough formed an extensional basin, extending from the Gulf of Mexico to Southern Arizona, along the Present Border of the United States and Mexico. West of the Big Bend of Texas, Jurassic and Cretaceous sediments are less than 150 m thick, and in many areas are absent. The sedimentary package thickens to over 3km within the trough. The Albian Cox Sandstone is one of the most areally extensive formations and consists of interbedded fluvial coastal and shallow marine sandstones and shales. In this study area, shales (10-70 m) are thicker more than sandstone beds (2-10 m). This unit is overlain by Finlay formation, a fine crystalline gray limestone and underlain by Bluff Mesa formation, a fossiliferous shallow marine limestone. Cross-bedded, brown, fine to medium grained sandstone, interbedded with siltstone, shale and limestone are characteristic lithology of the Cox. The Indio Mountains of Trans-Pecos Texas offer an ideal location to study how this package accommodates the deformation associated with the subsiding Chihuahua trough. A continuous outcrop extends over 30 km oblique to the basin margin and thickens from approximately 375 m on the northern side to 437 m on the southern side of the 10 km section studied so far. One important mechanism is rotation of the strata into the basin, followed by truncation along sequence boundaries. The lower two sequence in the southern Indio mountains are rotated down to the basin relative to Finlay. The lowest sequences thicken from an erosional pinch out towards the South. Shale beds thicken within the rotated strata and accommodate some of the tilting. For example, Thickness of the shale bed varies from 18 m to 70 m within a 2 km distance. However, erosional truncation of the tilted strata accounts for most of the increases in thickness within sequences. The base of the formation has been rotated about 6 degrees south relative to the top of the formation. Another observed

  11. 40Ar/39Ar constraints on the activity of the Temsamane extensional detachment (eastern Rif, Morocco)

    NASA Astrophysics Data System (ADS)

    Jabaloy Sánchez, A.; Booth-Rea, G.; Azdimousa, A.; Asebriy, L.; Vázquez-Vílchez, M.; Martínez-Martínez, J. M.; Gabites, J.

    2012-04-01

    The subducted North Maghrebian passive margin was exhumed by an upper crustal brittle-ductile extensional detachment and brittle low-angle normal faults in a continental subduction transform setting. The Temsamane detachment in the eastern Rif is defined by a ductile shear zone approximately 100 m thick with a low-angle ramp geometry that cuts down into the Temsamane fold-nappe stack. The shear zone shows southwestward kinematics and separates epizone metapelites of the Temsamane units below from the epizone to diagenetic rocks of the Tanger-Ketama-Aknoul units above. To the east, the detachment becomes brittle, branching into a listric-fan that cuts through 10-6 Ma sediments and volcanoclastics in the Tres Forcas cape. New 40Ar/39Ar radiometric ages on amphiboles and micas from the footwall of the Temsamane detachment indicate that the metamorphic peak was reached in the footwall (Temsamane units) at ca. 21 Ma, producing the amphibolite epidote facies in the Ras Afrou Unit. The cooling of the footwall rocks below the 325 °C occurred between the 16 and 13 Ma, while apatite fission track ages indicate that the cooling below the 120 °C occurred at ca. 11 Ma. The 40Ar/39Ar radiometric ages on amphiboles and micas of the metamorphic klippes over the Temsamene units (Ait-Amrâne massif) indicates that the Jurassic marbles of the Tanger-Ketama Unit reached their metamorphic peak at ca. 80 Ma, in agreement with previously published K/Ar ages in micas. The rocks of the Tanger-Ketama Unit cooled below the 120 °C between 17.0 ± 2.4 Ma and 13.9 ± 1.8 Ma. We interpret the increase of cooling rates of the footwall rocks between 15-13 Ma and 11 Ma as due to the activity of the Temsamane detachment fault. Thus, both the North Maghrebian and the South Iberian subducted passive margins were exhumed in the Betic and Rif branches of the Gibraltar arc by SW-directed brittle-ductile detachments during the Late Miocene in an oblique collisional setting.

  12. Synchronous late Pleistocene extensional faulting and basaltic volcanism in pluvial Fort Rock basin, central Oregon

    NASA Astrophysics Data System (ADS)

    Mackey, B. H.; Castonguay, S. R.; Wallace, P. J.; Weldon, R. J.

    2012-12-01

    Central Oregon, where northern Basin and Range extension intersects the High Lava Plains, exhibits widespread extensional faulting and Quaternary basaltic volcanism, yet the relations between the processes are complex and chronology is poorly constrained. Here we use cosmogenic 3He exposure dating of basalt to quantify the timing of normal faulting and emplacement of a related cinder cone volcanic field on the margins of pluvial Fort Rock Lake. The N15W striking North Christmas Valley fault system offsets High Lava Plains volcanics forming a ~3 km wide graben that transects the eastern Fort Rock Basin. Several young volcanic vents, including the ~740 ka Green Mountain (GM) shield volcano, and younger Four Craters lava field (4C), are aligned parallel with, and bounded by the graben. The western edge of the graben is expressed as an enigmatic monocline with up to10 m vertical throw and a prominent vertical hinge crack due to folding of the overlying GM lava flows. Younger basalt flows of the 4C field abut and flow into this crack, known as the 'Crack in the Ground' fault. Exposure dating of the 4C lava field on the eastern flank of GM indicates an emplacement age of 13 ka, which is largely consistent across multiple flows emerging from the 4 linearly aligned cinder cones. In addition, we dated the GM basalt exposed in the sub-vertical walls of the crack (the fault wall), which are cleanly separated by up to 10 m, but with uneroded (and in places identically matching) crack walls. Samples were taken >3 m below ground surface to avoid pre-faulting inheritance, and required considerable shielding corrections, but return a consistent exposure age of ~13 ka. This suggests substantial crack opening occurred at the same time the 4C lava was emplaced. A small fault offsets the 4C lava where it flows across the Crack, and dating the fault wall of this younger lava also generated an exposure age of 13 ka, indicating it must have ruptured shortly after the 4C lava cooled

  13. Experimental modelling of tectonics-erosion-sedimentation interactions in compressional, extensional, and strike-slip settings

    NASA Astrophysics Data System (ADS)

    Graveleau, Fabien; Strak, Vincent; Dominguez, Stéphane; Malavieille, Jacques; Chatton, Marina; Manighetti, Isabelle; Petit, Carole

    2015-09-01

    Tectonically controlled landforms develop morphologic features that provide useful markers to investigate crustal deformation and relief growth dynamics. In this paper, we present results of morphotectonic experiments obtained with an innovative approach combining tectonic and surface processes (erosion, transport, and sedimentation), coupled with accurate model monitoring techniques. This approach allows for a qualitative and quantitative analysis of landscape evolution in response to active deformation in the three end-member geological settings: compression, extension, and strike-slip. Experimental results outline first that experimental morphologies evolve significantly at a short time scale. Numerous morphologic markers form continuously, but their lifetime is generally short because erosion and sedimentation processes tend to destroy or bury them. For the compressional setting, the formation of terraces above an active thrust appears mainly controlled by narrowing and incision of the main channel through the uplifting hanging-wall and by avulsion of deposits on fan-like bodies. Terrace formation is irregular even under steady tectonic rates and erosional conditions. Terrace deformation analysis allows retrieving the growth history of the structure and the fault slip rate evolution. For the extensional setting, the dynamics of hanging-wall sedimentary filling appears to control the position of the base level, which in turn controls footwall erosion. Two phases of relief evolution can be evidenced: the first is a phase of relief growth, and the second is a phase of upstream propagation of topographic equilibrium that is reached first in the sedimentary basin. During the phase of relief growth, the formation of triangular facets occurs by degradation of the fault scarp, and their geometry (height) becomes stationary during the phase of upstream propagation of the topographic equilibrium. For the strike-slip setting, the complex morphology of the wrench zone

  14. Tectonostratigraphic reconstruction Cretaceous volcano-sedimentary in the northwestern Andes: from extensional tectonics to arc accretion.

    NASA Astrophysics Data System (ADS)

    Zapata, S.; Patino, A. M.; Cardona, A.; Mejia, D.; Leon, S.; Jaramillo, J. S.; Valencia, V.; Parra, M.; Hincapie, S.

    2014-12-01

    Active continental margins characterized by continuous convergence experienced overimposed tectonic configurations that allowed the formation of volcanic arcs, back arc basins, transtensional divergent tectonics or the accretion of exotic volcanic terranes. Such record, particularly the extensional phases, can be partially destroyed and obscure by multiple deformational events, the accretion of exotic terranes and strike slip fragmentation along the margin. The tectonic evolution of the northern Andes during the Mesozoic is the result of post Pangea extension followed by the installation of a long-lived Jurassic volcanic arc (209 - 136 ma) that apparently stops between 136 Ma and 110 Ma. The Quebradagrande Complex has been define as a single Lower Cretaceous volcano-sedimentary unit exposed in the western flank of the Central Cordillera of the Colombian Andes that growth after the Late Jurassic to Early Cretaceous magmatic hiatus. The origin of this unit have been related either to an oceanic volcanic arc or a marginal basin environment. The existence of such contrasting models reflect the regional perspective followed in published studies and the paucity of detail analysis of the volcano-sedimentary sequences.We integrate multiple approaches including structural mapping, stratigraphy, geochemistry, U-Pb provenance and geochronology to improve the understanding of this unit and track the earlier phases of accumulation that are mask on the overimposed tectonic history. Our preliminary results suggest the existence of different volcano-sedimentary units that accumulated between 100 Ma and 82 Ma.The older Lower Cretaceous sequences was deposited over Triassic metamorphic continental crust and include a upward basin deepening record characterized by thick fan delta conglomerates, followed by distal turbidites and a syn-sedimentary volcanic record at 100 ma. The other sequence include a 85 - 82 Ma fringing arc that was also formed close to the continental margin or

  15. Superposed local and regional paleostresses: Fault-slip analysis of Neogene extensional faulting near coeval caldera complexes, Yucca Flat, Nevada

    SciTech Connect

    Minor, S.A.

    1995-06-10

    Numerous reduced stress tensors are computed by multiple inversions of 906 temporally and spatially partitioned fault-slip data from the Yucca Flat region in the southwest Nevada volcanic field to constrain the Neogene paleostress and faulting history and to investigate how the regional tectonic stress field was affected by local caldera magmatism. Perturbed, shallow (<400 m), pre-11 Ma paleostress configurations, determined west and northwest of present (post-11 Ma) Yucca Flat basin, existed during mild extensional faulting and are attributed to superposition of transient caldera-magmatic stresses on the regional stress field. A brief ({approximately} 0.5 m.y.) change to a strike-slip stress state occurred at about 13 Ma and was accompanied by small-offset, quasi-conjugate strike-slip faulting. This stress state was most distinct, relative to a normalslip state, near calderas where stress solutions and fault relations indicate closer affinities to a reverse-slip state. Inferred 11.6-11.45 Ma paleostress tensors indicate radial tension associated with either initial caldera collapse or local post-collapse topographic modification of the stress field. Post-11 Ma normal-slip stress tensors are associated with normal- and oblique-slip faults that accommodated subsidence and eastward extension of Yucca Flat basin away from the caldera complexes. These tensors do not indicate stress modifications due to residual caldera-related effects and thus were used to infer post-11 Ma regional stress changes. The stress field has rotated as much as 65{degrees} clockwise since 11 Ma during extensional development of Yucca Flat basin, with most of the rotation and extension occurring before about 8.5 Ma. Results suggest that shallow magmatism and caldera development can strongly alter extensional tectonic stress fields, fault patterns, and slip directions in the uppermost crust out to distances of roughly two magma chamber radii away from a magma body. 59 refs., 11 figs., 2 tabs.

  16. AMS fabric and tectonic evolution of Quaternary intramontane extensional basins in the Picentini Mountains (southern Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Porreca, M.; Mattei, M.

    2012-04-01

    In this work, we report the results of combined geological, structural, and anisotropy of magnetic susceptibility (AMS) studies carried out on Quaternary deposits in the Picentini Mountains, southern Apennines (Italy). The study concerns four small continental basins, Acerno, Tizzano, Iumaiano, and Piano del Gaudo, related to fluvial-lacustrine depositional environments, ranging in altitude from 600 to 1,200 m a.s.l. and strongly incised during recent time. Stratigraphic and structural analyses, integrated by low- and high-field anisotropy of magnetic susceptibility (AMS), show that the formation of these basins has been controlled by extensional and transtensional tectonics. Most of the AMS sites exhibit a well-defined magnetic foliation parallel to the bedding planes. A well-defined magnetic lineation has also been measured within the foliation planes. In the Iumaiano, Tizzano, and Piano del Gaudo basins, magnetic lineations cluster around NNE-SSW trend and are parallel to the stretching directions inferred by structural analysis of faults and fractures. On the basis of structural, sedimentological, and high-field AMS data, we suggest a tectonic origin for the magnetic lineation, analogously to what has been observed in other weakly deformed sediments from Neogene and Quaternary extensional basins of the Mediterranean region. Our results demonstrate that onset and the evolution of the investigated basins have been mainly controlled since lower Pleistocene by NW-SE normal and transtensional faults. This deformation pattern is consistent with a prevalent NE-SW extensional tectonic regime, still active in southern Apennines, as revealed by seismological and geodetic data.

  17. Extensional vs contractional Cenozoic deformation in Ibiza (Balearic Promontory, Spain): Integration in the West Mediterranean back-arc setting

    NASA Astrophysics Data System (ADS)

    Etheve, Nathalie; Frizon de Lamotte, Dominique; Mohn, Geoffroy; Martos, Raquel; Roca, Eduard; Blanpied, Christian

    2016-07-01

    Based on field work and seismic reflection data, we investigate the Cenozoic tectono-sedimentary evolution offshore and onshore Ibiza allowing the proposal of a new tectonic agenda for the region and its integration in the geodynamic history of the West Mediterranean. The late Oligocene-early Miocene rifting event, which characterizes the Valencia Trough and the Algerian Basin, located north and south of the study area respectively, is also present in Ibiza and particularly well-expressed in the northern part of the island. Among these two rifted basins initiated in the frame of the European Cenozoic Rift System, the Valencia Trough failed rapidly while the Algerian Basin evolved after as a back-arc basin related to the subduction of the Alpine-Maghrebian Tethys. The subsequent middle Miocene compressional deformation was localized by the previous extensional faults, which were either inverted or passively translated depending on their initial orientation. Despite the lateral continuity between the External Betics and the Balearic Promontory, it appears from restored maps that this tectonic event cannot be directly related to the Betic orogen, but results from compressive stresses transmitted through the Algerian Basin. A still active back-arc asthenospheric rise likely explains the stiff behavior of this basin, which has remained poorly deformed up to recent time. During the late Miocene a new extensional episode reworked the southern part of the Balearic Promontory. It is suggested that this extensional deformation developed in a trans-tensional context related to the westward translation of the Alboran Domain and the coeval right-lateral strike-slip movement along the Emile Baudot Escarpment bounding the Algerian Basin to the north.

  18. Three extensional basin types associated with detachment-style faulting, early Miocene of the central Mojave Desert

    SciTech Connect

    Fillmore, R.P.; Walker, J.D. . Dept. of Geology)

    1993-04-01

    Three distinct extensional basin types, formed synchronously in different structural settings, have been identified in the central Mojave Desert and provide a basis for the paleogeographic reconstruction of extension of the central Mojave metamorphic core complex (CMMCC). From west to east, the Tropico, Pickhandle, and Clews basins formed in the footwall, on the breakaway, and well within the hanging wall of the east-rooting detachment fault system of the CMMCC. The Tropico basin was created by crustal-scale flexure of the little extended footwall behind the breakaway of the detachment. The basin was shallow and areally extensive. Lower strata on the eastern margin comprise fluvial sandstone derived from the adjacent highland; these grade up into lacustrine deposits. The Pickhandle rift basin is a half graben that was bounded to the west by the detachment escarpment. Initially the basin was deep and narrow, and elongate parallel to the detachment. Basin fill consists of megabreccia, conglomerate derived from both the footwall and hanging wall, and synextensional volcanic rocks. The Clews basin developed within the hanging wall, and synextensional volcanic rocks. The Clews basin developed within the hanging wall. Basal lacustrine strata record initial downwarping. The overlying coarsening-upwards clastic sequence, derived from the east, reflects the propagation of a west-dipping normal fault on the east basin margin that is interpreted to sole into the detachment that probably extended beneath the area from the west. Sediment deposited in extensional basins contain a record of early phase extension that is not obtainable by other types of studies. The recognition of footwall-uplift, breakaway rift, and intra-hanging wall basin types in highly extended terranes may aid in the reconstruction of features that have been modified, such as the position of the detachment breakaway zone, and the areal extent of extensional deformation.

  19. Permian evolution of sandstone composition in a complex back-arc extensional to foreland basin: The Bowen Basin, eastern Australia

    SciTech Connect

    Baker, J.C. . Centre for Microscopy and Microanalysis); Fielding, C.R. . Dept. of Earth Sciences); Caritat, P de . Dept. of Geology); Wilkinson, M.M. )

    1993-09-01

    The Bowen Basin is a Permo-Triassic, back-arc extensional to foreland basin that developed landward of an intermittently active continental volcanic arc associated with the eastern Australian convergent plate margin. The basin has a complex, polyphase tectonic history that began with limited back-arc crustal extension during the Early Permian. This created a series of north-trending grabens and half grabens which, in the west, accommodated quartz-rich sediment derived locally from surrounding, uplifted continental basement. In the east, coeval calc-alkaline, volcanolithic-rich, and volcaniclastic sediment was derived from the active volcanic arc. This early extensional episode was followed by a phase of passive thermal subsidence accompanied by episodic compression during the late Early Permian to early Late Permian, with little contemporaneous volcanism. In the west, quartzose sediment was shed from stable, polymictic, continental basement immediately to the west and south of the basin, whereas volcanolithic-rich sediment that entered the eastern side of the basin during this time was presumably derived from the inactive, and possibly partly submerged volcanic arc. During the late Late Permian, flexural loading and increased compression occurred along the eastern margin of the Bowen Basin, and renewed volcanism took place in the arc system to the east. Reactivation of this arc led to westward and southward spread of volcanolithic-rich sediment over the entire basin. Accordingly, areas in the west that were earlier receiving quartzose, craton-derived sediment from the west and south were overwhelmed by volcanolithic-rich, arc-derived sediment from the east and north. This transition from quartz-rich, craton-derived sediments to volcanolithic-rich, arc-derived sediments is consistent with the interpreted back-arc extensional to foreland basin origin for the Bowen Basin.

  20. Extensional geometries as a result of regional scale thrusting: tectonic slides of the Dunlewy-NW Donegal area, Ireland

    NASA Astrophysics Data System (ADS)

    Hutton, Donald H. W.; Alsop, G. Ian

    1995-09-01

    The synmetamorphic ductile dislocations, known in the British Caledonian literature as 'Tectonic Slides', pose a classical structural problem. That is, despite being associated with synchronous contractional folds and cleavages the low angle dislocations have the effect, in many celebrated cases, of juxtaposing younger over older rocks: a geometry normally associated with extensional rather than contractional deformation. Recent models have attempted to demonstrate that this is the result of thrust reactivation of original, sedimentary, extensional growth faults. The Appin Group Dalradian metasediments of the complex and small Dunlewy area of NW Donegal, Ireland, contain the following geometric elements: (a) an early strike-swing-related stratigraphic facies change; (b) a major inter-deformational dolerite sheet; (c) major regional recumbent folds and slides; (d) major structures related to the 400 Ma sinistral Main Donegal Granite shear zone. This solution to the structural geometry reveals that the early mid-crustal (~11 km depth) D2 Ardsbeg-Dunlewy Slide is a thrust to the northwest. Its hangingwall contains rocks two-thirds of which are younger than the rocks of the footwall, together with major recumbent folds, coeval with the underlying thrust, which face downwards into the thrust in the direction of transport. Rather than thrust reactivation of an original extensional growth fault, we find that both stratigraphic and structural constraints are satisfied by a double thrusting model, with fault-bend folding onto an upper ramp of an earlier formed but penecontemporaneous and kinematically linked major fold pair. This solution to the geology also allows us to recognize that the regional (pre-granite) structure of the Dalradian of NW Donegal is a series of major D2 synmetamorphic thrust bounded nappes possibly involving up to 250 km of northwesterly overthrusting.

  1. Effects of an extensional tectonic stress on magmatic reservoir failure and magma propagation within the Venusian lithosphere

    NASA Astrophysics Data System (ADS)

    Le Corvec, N.; McGovern, P. J., Jr.; Grosfils, E. B.; Goldman, R. T.; Albright, J. A.

    2015-12-01

    Failure of magmatic reservoirs and propagation of magmas is controlled in part by the state of stress within the lithosphere. Such stresses are induced by a range of loadings (e.g., gravitational and magmatic). Additional stresses can be introduced by flexural deformation of the lithosphere due to a large volcanic edifice or mantle plume loading, or as a consequence of the regional tectonic environment. Rifting environments, for instance are the results of extensional stresses at the surface of planets (e.g., Devana Chasma on Venus). The resulting stress field may influence the failure of a magmatic reservoir and the propagation of magmas. To explore this scenario, we created 3D elastic models of the Venusian lithosphere using COMSOL Multiphysics, in which an extensional stress was applied. The stress state was implemented through horizontal deformation created by orthogonal contraction and extension on the outer boundaries of the quarter symmetry model. A spherical reservoir is embedded within the lithosphere to represent a magma chamber. In these models, we analyzed magma reservoir stability at different depths, the amount of overpressure needed to reach failure, and the type of resulting intrusions within the 3D model for three distinct environments: 1- lithostatic; 2- upward flexure due to a rising mantle plume; and 3- downward flexure due to a basaltic shield volcano. Preliminary results show that as the extensional stress increases: magmatic reservoirs become unstable at shallow depth and the amount of overpressure needed to reach failure decreases. In addition, the failure location along the reservoir flank rotates to parallel the horizontal contraction, which favors the formation of lateral dikes along the magma reservoir flanks over vertical dikes at the summit.

  2. Magnetic fabric results in weakly deformed deposits from extensional and compressional domains of the Northern Apennines (Italy)

    NASA Astrophysics Data System (ADS)

    Caricchi, Chiara; Cifelli, Francesca; Kissel, Catherine; Sagnotti, Leonardo; Mattei, Massimo

    2016-04-01

    Since 1960s the anisotropy of magnetic susceptibility (AMS) analysis has been used to reconstruct the deformation history of rocks, and many studies have been published regarding the relationships between magnetic fabric and tectonics. Nevertheless, an active scientific debate still exists on the tectonic or sedimentary origin of the magnetic fabric observed in sedimentary rocks in which visible evidence of deformation is lacking. In this work, we present results from AMS analyses carried out on weakly deformed fine-grained sediments from the Northern Apennines (Italy). We analyzed pre-, syn- and post- orogenic sequences, which differ in age, composition, depositional environment, degrees of deformation and tectonic regimes. The AMS fabric of these weakly deformed sediments is characterized by a magnetic foliation sub-parallel to the bedding plane, and a magnetic lineation well-defined in this plane. The sediments are characterized by strongly oblate magnetic susceptibility ellipsoids suggesting that magnetic fabric results from both compaction process and tectonic load during diagenesis and orogenic events. The orientation of the magnetic lineation with respect to the main tectonic elements depends on the regional tectonic context, and in particular it varies between extensional and compressional tectonic regimes. In the pre- and syn- orogenic deposits of the more internal arc of the Apennine chain, the lineation is mostly NNW-SSE, parallel to the main compressional structures (folds and thrusts), suggesting a tectonic origin of the magnetic lineation with an acquisition related to the Apennines compressional phases. Instead, in the post-orogenic deposits of the extensional basins developed along the Tuscan Tyrrhenian Margin, magnetic lineation is oriented ENE-WSW, almost perpendicular to the main extensional faults which represent the main deformation elements of the area. Our results indicate a distinctive linkage between the magnetic fabric and the local

  3. Thermal, chemical and isotopic homogenization of syn-extensional I-type plutons and mafic microgranular enclaves

    NASA Astrophysics Data System (ADS)

    Tatar Erkül, Sibel; Erkül, Fuat; Uysal, İbrahim

    2015-04-01

    Magma mixing and mingling processes are common phenomenon in the evolution of granitoid magmas. This study deals with examination of mineral chemical, geochemical and isotopic characteristics of enclaves and enclosing syn-extensional granite bodies in western Turkey to make an attempt to solve problems regarding their origin. Mafic microgranular enclaves have granodiorite, quartz monzonite, monzonite and monzodiorite compositions, are subalkaline/calc-alkaline and high-K in character and display typical mixing/mingling textures. Mafic enclaves have partially overlapping geochemical characteristics onto their host rocks in terms of mobile elements and their isotopes while distinct immobile element patterns occur within host rocks and enclaves. Contrasting geochemistry of enclaves is mainly defined by their low SiO2 and high MgO, Mg# and high Fe2O3 contents. Chondrite-normalized spidergrams of enclaves also reveal two contrasting patterns. One is relatively enriched in rare earth element content and the other is slightly enriched and displays relatively flat pattern. 87Sr/86Sr and 143Nd/144Nd contents of enclaves imply considerable amount of crustal input. Crustally derived felsic magma coeval with mafic magma have been chemically, thermally and mechanically exchanged with each other and resulting homogenization led to compositional and isotopic equilibration of mafic and felsic magmas. Fractional crystallization, mixing and the following crustal contamination were responsible for the final composition of syn-extensional granitoids. Such processes appear to have been widely occurred in continental extensional regime that caused melting and mixing of crustal and mantle sources at MOHO depth.

  4. Quantitative analysis of the extensional tectonics of Tharsis bulge, Mars - Geodynamic implications

    NASA Astrophysics Data System (ADS)

    Thomas, P. G.; Allemand, P.

    1993-07-01

    The amount of horizontal strain on the Martian Tharsis bulge is quantified in order to provide further information on the tectonic evolution of this province. About 10 percent of the Tharsis surface bulge exhibits elliptical impact craters, which are the largest strain markers in the solar system. It is shown that these strain ellipses indicate more strain than could be due to the bulge building alone. The existence of such intensely deformed areas, the direction of the extensive strain, the localization of these areas on the bulge crest or on the top of topographic slopes, and the evidence of nonthinned crust under these areas may all be explained by gravitational slidings of the bulge surface over the topographic slope. This sliding would be possible because of the presence of a decollement level two kilometers below the surface, and because of the prefracturation which have made the detachment possible.

  5. Petroleum system in supra-salt strata of extensional forced-fold systems. Examples from the Basque-Cantabrian Basin (Spain).

    NASA Astrophysics Data System (ADS)

    Tavani, Stefano; Granado, Pablo

    2014-05-01

    The Mesozoic Basque-Cantabrian Basin holds the only onshore productive oilfield of Spain. There, as well as in the other uncommercial oil fields of the area, structural traps were formed by the Cenozoic Pyrenean inversion of rifting-related Mesozoic extensional forced folds. The availability of a large data set of seismic profiles, well data, oil shows, and the world-class exposures of reservoir and seal levels, make the area an outstanding analogue for petroleum plays in extensional settings with supra-salt reservoirs. The aim of this contribution is to present and discuss the 3D geometry, kinematics, and deformation pattern associated with extensional forced folding, and their relationships with the petroleum system. Our work indicates that during extensional deformation the severe mobilization of Triassic evaporites has imposed the structural decoupling between faulted basement rocks and the folded cover that includes the reservoir and seal units. Two sets of basement faults were active during this extensional stage: master faults striking WNW-ESE and transverse faults striking NE-SW. Extensional forced folding occurred along both fault sets, which has implied severe stretching of the supra-salt pre-rift carbonate sequence during hanging-wall downthrown. Such a stretching has poorly affected the central portions of master faults, where basement faults have rapidly penetrated into the cover sequence after a short period of forced folding. Conversely, along the tip regions of the master faults and along the main transverse faults, ongoing extensional forced folding has produced intense layer-parallel stretching of the carbonate cover sequence. Field work documents that this stretching has produced intense extensional faulting and jointing in the pre-rift carbonate sequence, which has enhanced its permeability. The same stretching has occurred in the overlying syn-rift siliciclastic sequence, but with an upward decreasing intensity. In this portion of the

  6. Regional geomorphology and history of Titan's Xanadu province

    USGS Publications Warehouse

    Radebaugh, J.; Lorenz, R.D.; Wall, S.D.; Kirk, R.L.; Wood, C.A.; Lunine, J.I.; Stofan, E.R.; Lopes, R M.C.; Valora, P.; Farr, T.G.; Hayes, A.; Stiles, B.; Mitri, G.; Zebker, H.; Janssen, M.; Wye, L.; LeGall, A.; Mitchell, K.L.; Paganelli, F.; West, R.D.; Schaller, E.L.; The Cassini Radar Team

    2011-01-01

    Titan's enigmatic Xanadu province has been seen in some detail with instruments from the Cassini spacecraft. The region contains some of the most rugged, mountainous terrain on Titan, with relief over 2000 m. Xanadu contains evolved and integrated river channels, impact craters, and dry basins filled with smooth, radar-dark material, perhaps sediments from past lake beds. Arcuate and aligned mountain chains give evidence of compressional tectonism, yet the overall elevation of Xanadu is puzzlingly low compared to surrounding sand seas. Lineations associated with mountain fronts and valley floors give evidence of extension that probably contributed to this regional lowering. Several locations on Xanadu's western and southern margins contain flow-like features that may be cryovolcanic in origin, perhaps ascended from lithospheric faults related to regional downdropping late in its history. Radiometry and scatterometry observations are consistent with a water–ice or water–ammonia–ice composition to its exposed, eroded, fractured bedrock; both microwave and visible to near-infrared (v-nIR) data indicate a thin overcoating of organics, likely derived from the atmosphere. We suggest Xanadu is one of the oldest terrains on Titan and that its origin and evolution have been controlled and shaped by compressional and then extensional tectonism in the icy crust and ongoing erosion by methane rainfall.

  7. Alaska: A twenty-first-century petroleum province

    USGS Publications Warehouse

    Bird, K.J.

    2001-01-01

    Alaska, the least explored of all United States regions, is estimated to contain approximately 40% of total U.S. undiscovered, technically recoverable oil and natural-gas resources, based on the most recent U.S. Department of the Interior (U.S. Geological Survey and Minerals Management Service) estimates. Northern Alaska, including the North Slope and adjacent Beaufort and Chukchi continental shelves, holds the lion's share of the total Alaskan endowment of more than 30 billion barrels (4.8 billion m3) of oil and natural-gas liquids plus nearly 200 trillion cubic feet (5.7 trillion m3) of natural gas. This geologically complex region includes prospective strata within passive-margin, rift, and foreland-basin sequences. Multiple source-rock zones have charged several regionally extensive petroleum systems. Extensional and compressional structures provide ample structural objectives. In addition, recent emphasis on stratigraphic traps has demonstrated significant resource potential in shelf and turbidite systems in Jurassic to Tertiary strata. Despite robust potential, northern Alaska remains a risky exploration frontier - a nexus of geologic complexity, harsh economic conditions, and volatile policy issues. Its role as a major petroleum province in this century will depend on continued technological innovations, not only in exploration and drilling operations, but also in development of huge, currently unmarketable natural-gas resources. Ultimately, policy decisions will determine whether exploration of arctic Alaska will proceed.

  8. Carbon fluxes from hydrothermal vents off Milos, Aegean Volcanic Arc, and the influence of venting on the surrounding ecosystem.

    NASA Astrophysics Data System (ADS)

    Dando, Paul; Aliani, Stefano; Bianchi, Nike; Kennedy, Hilary; Linke, Peter; Morri, Carla

    2014-05-01

    The island of Milos, in the Aegean Sea, has extensive hydrothermal fields to the east and southeast of the island with additional venting areas near the entrance to and within the central caldera. A calculation of the total area of the vent fields, based on ship and aerial surveys, suggested that the hydrothermal fields occupy 70 km2, twice the area previously estimated. The vents ranged in water depth from the intertidal to 300 m. As a result of the low depths there was abundant free gas release: in places water boiled on the seabed. The stream of gas bubbles rising through the sandy seabed drove a shallow re-circulation of bottom seawater. The majority of the water released with the gas, with a mean pH of 5.5, was re-circulated bottom water that had become acidified in contact with CO2 gas and was often diluted by admixture with the vapour phase from the deeper fluids. The major component of the free gas, 80%, was CO2, with an estimated total flux of 1.5-7.5 x 1012 g a-1. The methane flux, by comparison, was of the order of 1010 g a.-1 Using methane as a tracer it was shown that the major gas export from the vents was below the thermocline towards the southwest, in agreement with the prevailing currents. Areas of hydrothermal brine seepage occurred between the gas vents and occasional brine pools were observed in seabed depressions. Under relatively calm conditions, many of the brine seeps were covered by thick minero-bacterial mats consisting of silica and sulphur and surrounded by mats of diatoms and cyanobacteria. The minerals were not deposited in the absence of bacteria. Storms disrupted the mats, leading to an export of material to the surrounding area. Stable isotope data from sediments and sediment trap material suggested that exported POM was processed by zooplankton. The combined effects of the geothermal heating of the seabed, the large gas flux, variation in the venting and the effect of the brine seeps had a dramatic effect on the surrounding

  9. The continental Etirol-Levaz slice (Western Alps, Italy): Tectonometamorphic evolution of an extensional allochthon

    NASA Astrophysics Data System (ADS)

    Ewerling, Kathrin; Obermüller, Gerrit; Kirst, Frederik; Froitzheim, Nikolaus; Nagel, Thorsten; Sandmann, Sascha

    2013-04-01

    The Etirol-Levaz slice (ELS) in the western Valtournenche of Italy is a continental fragment trapped between two oceanic units, the eclogite-facies Zermatt-Saas Zone in the footwall and the greenschist-facies Combin Zone in the hanging wall. It has been interpreted as an extensional allochthon derived from the Adriatic continental margin and stranded inside the Piemont-Ligurian oceanic domain during Jurassic rifting (Dal Piaz et al., 2001; Beltrando et al., 2010). The slice consists of Variscan high-grade gneisses, micaschists and metabasics overprinted under eclogite-facies conditions during Early Tertiary Alpine subduction. Eclogites generally consist of garnet + omphacite ± epidote ± amphibole ± phengite ± quartz. We investigate their metamorphic history using equilibrium phase diagrams, mineral compositions, and textural relations between prograde, peak, and retrograde phases. In sample FD328, garnets have compositions of Alm52-61 Grs18-41 Prp5-22 Sps0.5-2 and typical growth zoning. Some garnet grains are brittlely fractured, strongly corroded and overgrown by epidote. Amphibole occurs as a major phase in the matrix and shows a progressive evolution from glaucophane in the core to pargasitic hornblende towards the rim. Sample FD329 with a particular Ca-rich bulk composition (18.3 wt% Ca) displays two distinct garnet generations. Perfectly euhedral cores show compositions of Grs42-45 Alm47-51 Prp3-6 Sps2-7 and typical prograde growth zoning. These cores are overgrown by irregularly shaped rims characterised by an initial rise in Mn and the Fe-Mg ratio. Omphacite in this sample with jadeite-contents of 19-28 mol% apparently has been fractured and annealed by jadeite-poor (7-12 mol%) omphacite suggesting brittle behaviour at eclogite-facies conditions or two high-pressure stages with lower metamorphic conditions in between. We discuss whether the ELS experienced the same monocyclic metamorphic history as the Zermatt-Saas Zone or not. Some of our observations

  10. Evidence for Neoarchaean extensional faults in the Vredefort Dome, South Africa.

    NASA Astrophysics Data System (ADS)

    mashabela, sello

    2013-04-01

    -2643 Ma) of the Ventersdorp Supergroup. The association potentially means that the Vredefort collar hosts rotated Ventersdorp-age extensional faults or a rift system of faults that predate impact-induced structures. 1. Manzi, M.S.D., Durrheim, R.J., Hein, K.A.A., King N., 2012. 3D edge detection seismic attributes used to map potential conduits for water and methane in deep gold mines in the Witwatersrand basin, South Africa. Geophysics 77 (5), 1-16. 2. Manzi, M., Gibson, M. A.S., Hein, K.A.A., King, N., Durrheim, R.J., 2012. Application of 3D Seismic techniques in evaluation of ore resources in the West Wits Line goldfield and portions of the West Rand Goldfield, South Africa. Geophysics 77, 1-9. 3. Manzi, M., Hein, K.A.A., King, N, Durrheim, R.J., submitted. NeoArchaean tectonic history of the Witwatersrand Basin and Ventersdorp Supergroup: New Constraints from high-resolution 3D seismic reflection data. Tectonophysics

  11. Coalescence of surfactant covered drops in extensional flows: Effects of the interfacial diffusivity

    NASA Astrophysics Data System (ADS)

    Vannozzi, Carolina

    2012-08-01

    Boundary integral simulations and scaling theory were employed to study the effects of insoluble surfactant surface diffusivity Ds and concentration Γ on the coalescence process of two equal-sized viscous drops. The drops underwent head-on collisions in a biaxial extensional flow, in the Stokes flow limit and low capillary numbers. The simulations were compared with the drainage time experiments of Yoon et al. [Phys. Fluids 19, 023102 (2007), 10.1063/1.2409735] concerned with a polymeric system, polybutadiene (PBd) drops in a polydimethylsyloxane (PDMS) matrix, stabilized by block-copolymers acting as insoluble surfactants to explain the mechanism underneath their findings. An ad hoc equation of state, derived by mean field theory, specific for the block-copolymers in the experiments of Yoon et al., able to match the experimental surface tension data without fitting parameters, was used. We were able to reproduce the experimental drainage time data, although an additional attractive force, besides the usual van der Waals interactions, had to be introduced for high block-copolymer concentrations, probably as a result of the entropic attraction between the two facing dry brushes formed in the thin film between the two drops. According to simulations, the puzzling experimental drainage time transition for low surfactant concentrations, from high drainage time to low drainage time as Ca increases, was a consequence of the oscillating behavior of the minimum film thickness, which takes place for Marangoni numbers Ma < 5 and surface Peclet number Pes > 60. In this regard, a master curve was obtained for the scaled relative minimum film thickness attained during the oscillation as a function of Ma. This enabled to determine both the minimum value of the dimensionless attractive forces to avoid coalescence for each concentration studied and the range of Ma that favors early coalescence. The coalescence process was found very sensitive to Pes and for Pes O(100-1000) even

  12. A review of tectonics and sedimentation in a forearc setting: Hellenic Thrace Basin, North Aegean Sea and Northern Greece

    NASA Astrophysics Data System (ADS)

    Maravelis, A. G.; Boutelier, D.; Catuneanu, O.; Seymour, K. St.; Zelilidis, A.

    2016-04-01

    Exposure of the forearc region of the North Aegean Sea, Greece, offers insight into evolving convergent margins. The sedimentary fill of the Thrace Basin during the Late Eocene to Oligocene time provides a record of subduction-driven processes, such as growth of magmatic arcs and construction of accretionary complexes. This large sediment repository received sediment from two sources. The southern (outboard) basin margin reflects the active influence of the exhumed accretionary prism (e.g. Pindic Cordillera or Biga peninsula), while the northern (inboard) margin records the effect of the magmatic arc in the Rhodope region. The forearc basin sedimentary fills shoal upward into shallow-marine strata but are dominated mainly by deep-marine facies. The depositional trend and stacking pattern are dominated by progradational patterns. This trend, which is observed in both basin margins, is related to tectonic deformation rather than sea-level fluctuations. Additional evidence for this tectonic uplift comes from the backstripping analysis. The accretionary complex provided material into the forearc basin. This material was transported northeast and formed a sand-rich turbidity system that evolved upslope into shallow-marine deposits. Stratigraphic data indicate that this turbidity system exhibits a successive landward (inboard) migration of the depocenter. Provenance data utilizing sandstone petrography, conglomerate clast composition, and bulk-rock geochemistry suggest that this system reflects an increased influx of mafic material into the basin. Volcanic arc-derived material was transported south and east and accumulated in deep-marine settings. Both stratigraphic and provenance data indicate a seaward (outboard) migration of the basin depocenter and a significant increase in felsic detritus into the forearc.

  13. Ductile nappe stacking and refolding in the Cycladic Blueschist Unit: insights from Sifnos Island (south Aegean Sea)

    NASA Astrophysics Data System (ADS)

    Aravadinou, Eirini; Xypolias, Paraskevas; Chatzaras, Vasileios; Iliopoulos, Ioannis; Gerogiannis, Nikolaos

    2015-10-01

    New geological and structural mapping combined with kinematic and amphibole chemistry analyses is used to investigate the deformation history of the Cycladic Blueschist Unit (CBU) on Sifnos Island (Cyclades, Aegean Sea). We concentrate on north Sifnos, an area characterized by exceptionally well-preserved eclogites and blueschists. Our data show that the early, main phase (D2) of ductile deformation in the CBU occurred synchronous with the transition from prograde to close-to-peak retrograde conditions. This deformation phase took place at middle Eocene and is related to ESE-directed thrusting that emplaced the metavolcano-sedimentary subunit over the Marble subunit. The subsequent exhumation-related (D3) deformation is characterized by gently NE-plunging folds and NE-directed contractional shear zones that formed parallel to the axial planes of folds. NE-directed shearing occurred under blueschist and transitional blueschist-/greenschist-facies conditions during late Eocene-Oligocene and caused the restacking of the early nappe pile. We suggest that a mechanism of ductile extrusion of the CBU in a tectonic setting of net compression could explain better the recorded exhumation-related deformation than a mechanism of syn- and post-orogenic extension. Our new kinematic results in combination with previous works in the Cyclades area reveal a regional scale change in tectonic transport direction from (W)NW-(E)SE at Late Cretaceous-middle Eocene to (E)NE-(W)SW at late Eocene-Oligocene times. The observed change in transport direction may be governed by the relative motion of Africa with respect to Europe during Alpine orogeny.

  14. Zircon U-Pb, O, and Hf isotopic constraints on Mesozoic magmatism in the Cyclades, Aegean Sea, Greece

    NASA Astrophysics Data System (ADS)

    Fu, Bin; Bröcker, Michael; Ireland, Trevor; Holden, Peter; Kinsley, Leslie P. J.

    2015-01-01

    Compared to the well-documented Cenozoic magmatic and metamorphic rocks of the Cyclades, Aegean Sea, Greece, the geodynamic context of older meta-igneous rocks occurring in the marble-schist sequences and mélanges of the Cycladic Blueschist Unit is as yet not fully understood. Here, we report O-Hf isotopic compositions of zircons ranging in age from ca. 320 Ma to ca. 80 Ma from metamorphic rocks exposed on the islands of Andros, Ios, Sifnos, and Syros with special emphasis on Triassic source rocks. Ion microprobe (SHRIMP II) single spot oxygen isotope analysis of pre-Cretaceous zircons from various felsic gneisses and meta-gabbros representing both the marble-schist sequences and the mélanges of the study area yielded a large range in δ18O values, varying from 2.7 ‰ to 10.1 ‰ VSMOW, with one outlier at -0.4 %. Initial ɛHf values (-12.5 to +15.7) suggest diverse sources for melts formed between Late Carboniferous to Late Cretaceous time that record derivation from mantle and reworked older continental crust. In particular, variable δ18O and ɛHf( t) values for Triassic igneous zircons suggest that magmatism of this age is more likely rift- than subduction-related. The significant crustal component in 160 Ma meta-gabbros from Andros implies that some Jurassic gabbroic rocks of the Hellenides are not part of SSZ-type (supra-subduction zone) ophiolites that are common elsewhere along the margin of the Pelagonian zone.

  15. Tracing metal pollution sources of plants and soils in Güzelhisar Basin of Aegean Region, Turkey

    NASA Astrophysics Data System (ADS)

    Czarnecki, Sezin; Görsch, Carolin; Colak Esetlili, Bihter; Esetlili, Tolga; Tepecik, Mahmut; Kurucu, Yusuf; Anac, Dilek; Düring, Rolf-Alexander

    2016-04-01

    The study area Güzelhisar Basin is 6 km far from the city Aliaga, Aegean Region in the west part of Turkey which represents a rather industrialized area having five large iron and steel mills, but also areas of agriculture. A grid system of 2.5 km to the east and 2.5 km to the west of the Güzelhisar Stream was studied. The area was grouped into three main areas as West, Middle, and East region. Every 500 meters soil samples were taken after the rainfall (April-May) in 2014 from the GPS determined points at 0-30 and 30-60 cm depth. Soil reaction of the study area was determined within the range from 5.87 to 6.61. Even though, the West and the Middle regions had weak carbonate concentrations, the East region was poor in carbonates and relatively high electrical conductivity was measured. Topsoil contamination was examined by all investigated elements with the exception of Cd. An increase in pseudo total metal contents of Cr, Cu, Mn, Ni, and Zn was observed with the increasing distance from the coast with a simultaneous decrease in pH. Moreover, high plant metal concentrations [mg kg‑¹, ± sd] were detected for B [20.7 ± 23.9], Cu [7.99 ± 5.17], Mn (79.3 ± 89.2), Ni (3.50 ± 3.48), and Zn (25.5 ± 20.1). Transfer of the elements from soil to plants increased in the following order: Co < As < Cr < Pb < Mn < Ni < Cu < Zn < Cd << B.

  16. Simulating anchovy's full life cycle in the northern Aegean Sea (eastern Mediterranean): A coupled hydro-biogeochemical-IBM model

    NASA Astrophysics Data System (ADS)

    Politikos, D.; Somarakis, S.; Tsiaras, K. P.; Giannoulaki, M.; Petihakis, G.; Machias, A.; Triantafyllou, G.

    2015-11-01

    A 3-D full life cycle population model for the North Aegean Sea (NAS) anchovy stock is presented. The model is two-way coupled with a hydrodynamic-biogeochemical model (POM-ERSEM). The anchovy life span is divided into seven life stages/age classes. Embryos and early larvae are passive particles, but subsequent stages exhibit active horizontal movements based on specific rules. A bioenergetics model simulates the growth in both the larval and juvenile/adult stages, while the microzooplankton and mesozooplankton fields of the biogeochemical model provide the food for fish consumption. The super-individual approach is adopted for the representation of the anchovy population. A dynamic egg production module, with an energy allocation algorithm, is embedded in the bioenergetics equation and produces eggs based on a new conceptual model for anchovy vitellogenesis. A model simulation for the period 2003-2006 with realistic initial conditions reproduced well the magnitude of population biomass and daily egg production estimated from acoustic and daily egg production method (DEPM) surveys, carried out in the NAS during June 2003-2006. Model simulated adult and egg habitats were also in good agreement with observed spatial distributions of acoustic biomass and egg abundance in June. Sensitivity simulations were performed to investigate the effect of different formulations adopted for key processes, such as reproduction and movement. The effect of the anchovy population on plankton dynamics was also investigated, by comparing simulations adopting a two-way or a one-way coupling of the fish with the biogeochemical model.

  17. Source of the tsunami generated by the 1650 AD eruption of Kolumbo submarine volcano (Aegean Sea, Greece)

    NASA Astrophysics Data System (ADS)

    Ulvrova, Martina; Paris, R.; Nomikou, P.; Kelfoun, K.; Leibrandt, S.; Tappin, D. R.; McCoy, F. W.

    2016-07-01

    The 1650 AD explosive eruption of Kolumbo submarine volcano (Aegean Sea, Greece) generated a destructive tsunami. In this paper we propose a source mechanism of this poorly documented tsunami using both geological investigations and numerical simulations. Sedimentary evidence of the 1650 AD tsunami was found along the coast of Santorini Island at maximum altitudes ranging between 3.5 m a.s.l. (Perissa, southern coast) and 20 m a.s.l. (Monolithos, eastern coast), corresponding to a minimum inundation of 360 and 630 m respectively. Tsunami deposits consist of an irregular 5 to 30 cm thick layer of dark grey sand that overlies pumiceous deposits erupted during the Minoan eruption and are found at depths of 30-50 cm below the surface. Composition of the tsunami sand is similar to the composition of the present-day beach sand but differs from the pumiceous gravelly deposits on which it rests. The spatial distribution of the tsunami deposits was compared to available historical records and to the results of numerical simulations of tsunami inundation. Different source mechanisms were tested: earthquakes, underwater explosions, caldera collapse, and pyroclastic flows. The most probable source of the 1650 AD Kolumbo tsunami is a 250 m high water surface displacement generated by underwater explosion with an energy of ~ 2 × 1016 J at water depths between 20 and 150 m. The tsunamigenic explosion(s) occurred on September 29, 1650 during the transition between submarine and subaerial phases of the eruption. Caldera subsidence is not an efficient tsunami source mechanism as short (and probably unrealistic) collapse durations (< 5 min) are needed. Pyroclastic flows cannot be discarded, but the required flux (106 to 107 m3 · s- 1) is exceptionally high compared to the magnitude of the eruption.

  18. Source of the tsunami generated by the 1650 AD eruption of Kolumbo submarine volcano (Aegean Sea, Greece)

    NASA Astrophysics Data System (ADS)

    Ulvrova, Martina; Paris, Raphael; Nomikou, Paraskevi; Tappin, Dave

    2016-04-01

    The 1650 AD explosive eruption of Kolumbo submarine volcano (Aegean Sea, Greece) generated a destructive tsunami. In this paper we propose a source mechanism of this poorly documented tsunami using both geological investigations and numerical simulations. Sedimentary evidences of the 1650 AD tsunami were found along the coast of Santorini Island at maximum altitudes ranging between 3.5 m a.s.l. (Perissa, southern coast) and 20 m a.s.l. (Monolithos, eastern coast), corresponding to a minimum inundation of 360 and 630 m respectively. Tsunami deposits correspond to an irregular 5 to 30 cm thick layer of dark grey sand intercalated in soil at depths between 30 and 50 cm. Composition of the tsunami sand is similar to the composition of the present-day beach and clearly differs from the pumiceous gravelly soil. Spatial distribution of the tsunami deposits was confronted to available historical records and to the results of numerical simulations of tsunami inundation. Different scenarios of source mechanism were tested: earthquakes, underwater explosions, caldera collapse, and pyroclastic flows. The most probable source of the 1650 AD Kolumbo tsunami is a 250 m high water surface displacement generated by underwater explosion with an energy of ~2 E15 J at water depths between 20 and 150 m. The tsunamigenic explosion(s) occurred on September 29, 1650 during the transition between submarine and subaerial phases. Caldera subsidence is not an efficient source of tsunami, as short (and probably unrealistic) collapse durations (< 5 minutes) are needed. Pyroclastic flows cannot be discarded, but the required flux (E6 to E7 m³.s-1) is exceptionally high compared to the magnitude of the eruption.

  19. The Pinto shear zone; a Laramide synconvergent extensional shear zone in the Mojave Desert region of the southwestern United States

    USGS Publications Warehouse

    Wells, M.L.; Beyene, M.A.; Spell, T.L.; Kula, J.L.; Miller, D.M.; Zanetti, K.A.

    2005-01-01

    The Pinto shear zone is one of several Late Cretaceous shear zones within the eastern fringe of the Mesozoic magmatic arc of the southwest Cordilleran orogen that developed synchronous with continued plate convergence and backarc shortening. We demonstrate an extensional origin for the shear zone by describing the shear-zone geometry and kinematics, hanging wall deformation style, progressive changes in deformation temperature, and differences in hanging wall and footwall thermal histories. Deformation is constrained between ???74 and 68 Ma by 40Ar/39Ar thermochronology of the exhumed footwall, including multi-diffusion domain modeling of K-feldspar. We discount the interpretations, applied in other areas of the Mojave Desert region, that widespread Late Cretaceous cooling results from refrigeration due to subduction of a shallowly dipping Laramide slab or to erosional denudation, and suggest alternatively that post-intrusion cooling and exhumation by extensional structures are recorded. Widespread crustal melting and magmatism followed by extension and cooling in the Late Cretaceous are most consistent with production of a low-viscosity lower crust during anatexis and/or delamination of mantle lithosphere at the onset of Laramide shallow subduction. ?? 2005 Elsevier Ltd. All rights reserved.

  20. Megabreccia deposits in an extensional basin: The Miocene-Pliocene Horse Camp Formation, east-central Nevada

    SciTech Connect

    Schmitt, J.G.; Brown, C.L. )

    1991-06-01

    Three varieties of megabreccia deposits are present in alluvial-lacustrine extensional basin fill of the Miocene-Pliocene Horse Camp Formation of east-central Nevada. Coherent debris sheets (150-300 m thick; up to 1,500 m long) consist of Oligocene-Miocene volcanic rock masses which are internally fractured yet retain their stratigraphic integrity. Fracture zones show variable amounts of displacement (up to 5 cm) and brecciation. These debris sheets overlie horizontally stratified sandstone and laminated claystone interpreted as playa deposits and are overlain by lithified grus. Emplacement of these coherent debris sheets was by landslide or block slide. Associated deposits of large boulders within playa facies suggest gliding of blocks broken from the edges of the landslides across wet playa surfaces. Large (1.6 - 2.4 km-long) allochthonous blocks consist of intact Paleozoic and Tertiary volcanic stratigraphic sequences which are brecciated and attenuated. Brecciation is accompanied in places by incorporation of muddy sand matrix. These blocks may be fragments of the upper plate of low-angle detachment faults which broke away as gravity-driven blocks from the nearby Horse Range and slid along the uplifted former detachment surface into the adjacent Horse Camp basin. Megabreccia deposits characterize Teritary extensional basins in western North America. Detailed analysis of their stratigraphic, sedimentologic, and structural relations can provide a better understanding of the complex tectonosedimentary history of these basins.

  1. Seismic reflection geometry of the Newark basin margin in Eastern Pennsylvania. Evidence for extensional reactivation of Paleozoic thrust faults

    SciTech Connect

    Ratcliffe, N.M.; Burton, W.C.; D'Angelo, R.M.; Costain, J.K.

    1986-07-01

    Low-angle 25/sup 0/ to 35/sup 0/ dips have been determined for the border fault of the Newark basin near Riegelsville, Pennsylvania, based on a VIBROSEIS profile and two continuously-cored drill holes across faults at the basin margin. A group of moderately strong planar reflections in a zone 0.5 km thick in gneiss and carbonate rocks of the footwall block coincide with the updip projection of imbricate fault slices and mylonites associated with the Musconetcong thrust system of Drake and others (1967). Contrasts in acoustic impedance among mylonitic dolostone and mylonitic gneiss and their protoliths, determined from measurements on core samples, are sufficiently large to account for reflections seen in the footwall block. Analysis of drill core and surface outcrops supports the conclusion that low-angle extensional faulting in the Early Mesozoic was localized by reactivation of Paleozoic imbricate thrust faults in the basement rocks. Extension in the NW-SE quadrant was approximately perpendicular to the strike of the ancient thrust faults in Eastern Pennsylvania and a passive origin of the Newark basin here is suggested. The data presented here represent some of the most explicit three-dimensional information obtained thus far, in the Eastern United States, in support of the concept of fault reactivation in controlling formation of Early Mesozoic extensional basins.

  2. Low-angle extensional faulting, reactivated mylonites, and seismic reflection geometry of the Newark basin margin in eastern Pennsylvania

    SciTech Connect

    Ratcliffe, N.M.; Burton, W.C.; D'Angelo, R.M.; Costain, J.K.

    1986-09-01

    Low-angle 25/sup 0/ to 35/sup 0/ dips have been determined for the border fault of the Newark basin near Riegelsville, Pennsylvania, on the basis of a Vibroseis profile and two continuously cored drill holes across faults at the basin margin. A group of moderately strong planar reflections in a zone 0.5 km thick in gneiss and carbonate rocks of the footwall block coincides with the updip projection of imbricate fault slices and mylonites associated with the Musconetcong thrust system of Drake et al. (1967). Contrasts in acoustic impedance among mylonitic dolostone and mylonitic gneiss and their protoliths, determined from measurements on samples from a third cored hole, are sufficiently large to account for reflections seen in the footwall block. Analysis of drill core and surface outcrops supports the conclusion that low-angle extensional faulting in the early Mesozoic was localized by reactivation of Paleozoic imbricate thrust faults in the basement rocks. Extension in the northwest-southeast quadrant was approximately perpendicular to the strike of the ancient thrust faults in eastern Pennsylvania. The data presented here are the most explicit three-dimensional information obtained thus far in the eastern US in support of the concept of fault reactivation in controlling formation of early Mesozoic extensional basins.

  3. A disarticulated lava cone, Burney Spring Mountain, Shasta County, USA: implications for extensional tectonics in the southern Cascades

    NASA Astrophysics Data System (ADS)

    Kersten, Kevin Robert

    Burney Spring Mountain is a 2556 ka lava cone situated in the northernmost part of the Lassen segment of the Cascade Range. Dominated in volume by lava flows ranging from olivine basalts to augite, hypersthene andesites, Burney Spring Mountain is also comprised of localized ash fall tuffs, a pyroclastic flow, a scoria cone and a debris flow. Lavas originate from a central vent. A robust survey of the stratigraphy shows that Burney Spring Mountain is composed of at least two magma batches. A paleomagnetic survey reveals that the characteristic remanent magnetization of Burney Spring Mountain is heavily influenced by faulting and that when structural corrections are applied to the data the sampled lava flows show a uniform direction of characteristic magnetization, indicative of an eruption period of a few hundred years. Mapping reveals that two vents (Burney Spring Mountain and the scoria cone) form a linear array that parallels local normal faults suggesting that Burney Spring Mountain formed under an extensional tectonic regime. This suggest that extension was occurring in the Lassen segment of the Cascade volcanic arc as early as 2556 ka, making it the earliest known evidence of extension. Burney Spring Mountain is mineralogically and chemically similar to younger volcanoes to the south such as those of the Poison Lake chain, the Prospect Peak chain and the Sugarloaf chain. Their chemical similarity and formation under extensional tectonics suggests a common origin. Plate 1 contains maps and unit descriptions

  4. The Pinto shear zone; a Laramide synconvergent extensional shear zone in the Mojave Desert region of the southwestern United States

    NASA Astrophysics Data System (ADS)

    Wells, Michael L.; Beyene, Mengesha A.; Spell, Terry L.; Kula, Joseph L.; Miller, David M.; Zanetti, Kathleen A.

    2005-09-01

    The Pinto shear zone is one of several Late Cretaceous shear zones within the eastern fringe of the Mesozoic magmatic arc of the southwest Cordilleran orogen that developed synchronous with continued plate convergence and backarc shortening. We demonstrate an extensional origin for the shear zone by describing the shear-zone geometry and kinematics, hanging wall deformation style, progressive changes in deformation temperature, and differences in hanging wall and footwall thermal histories. Deformation is constrained between ˜74 and 68 Ma by 40Ar/ 39Ar thermochronology of the exhumed footwall, including multi-diffusion domain modeling of K-feldspar. We discount the interpretations, applied in other areas of the Mojave Desert region, that widespread Late Cretaceous cooling results from refrigeration due to subduction of a shallowly dipping Laramide slab or to erosional denudation, and suggest alternatively that post-intrusion cooling and exhumation by extensional structures are recorded. Widespread crustal melting and magmatism followed by extension and cooling in the Late Cretaceous are most consistent with production of a low-viscosity lower crust during anatexis and/or delamination of mantle lithosphere at the onset of Laramide shallow subduction.

  5. Tectonic fabrics vs. mineralogical artifacts in AMS analysis: A case study of the Western Morocco extensional Triassic basins

    NASA Astrophysics Data System (ADS)

    Oliva-Urcia, B.; Casas, A. M.; Moussaid, B.; Villalaín, J. J.; El Ouardi, H.; Soto, R.; Torres-López, S.; Román-Berdiel, T.

    2016-03-01

    New magnetic fabric data from 48 sites in Upper Triassic red beds from the Argana, Asni and Tizi n'Tichka areas in the western High Atlas, in combination with rock magnetic analyses, SEM observations and qualitative chemical analyses, reveal that mineralization processes can affect the primary (extensional) or secondary (post-depositional) magnetic fabrics. Twenty out of the 48 analyzed sites show tectonic-related fabrics consistent with the rifting stage (primary). Their orientation suggests that the extensional Atlasic (for the Asni area) and Atlantic (for Argana area) distinct directions prevailing during Liassic times are already present in the Upper Triassic sediments. The other 28 sites show axes switching (including different possibilities, kmax-kmin or kint-kmin), indicating their secondary development related to mineralogical changes after deposition. However, orientation of magnetic susceptibility axes (without considering their relative value) is consistent with the main directions obtained for the rifting stage. This magnetic fabric study also suggests that (i) extension had a small transtensional component and (ii) there is a limited influence of compressional inversion tectonics.

  6. The relationship of extensional and compressional tectonics to a Precambrian fracture system in the eastern overthrust belt, USA

    NASA Technical Reports Server (NTRS)

    Pohn, H.

    1985-01-01

    The central and southern Appalachians have a long history of interrelated extensional and compressional tectonics. It is proposed that each episode was controlled by a reactivation of a fracture system in the Precambrian basement. Proprietary seismic-reflection profiles show a system of down-to-the-east Precambrian extensional faults. When under renewed extension, these faults produce features such as the western border faults of Mesozoic basins, and when under compression, probably produce tectonic ramps in the overlying sedimentary cover rocks as well as the spatially and genetically related Alleghenian folds. This system, which parallels the Appalachian trend, is cut by a system of cross-strike hinge or scissors faults that have probable strike-slip movements. Reactivation of this cross-strike system appears to have produced lateral ramps that connect decollements at different stratigraphic levels and caused abrupt changes in fold wavelength along strikes. Continued reactivation of this cross-strike system is suggested by east-west border faults and Precambrian highs between Mesozoic basins. The present activity of this system is suggested by the fact that more than 35% of recent earthquakes are coincident with cross-strike faults and lateral ramps.

  7. Controls on cross-sectional geometry of extensional basins, east-central Nevada -- A seismic-stratigraphic approach

    SciTech Connect

    Potter, C.J.; Grow, J.A.; Miller, J.J. )

    1993-04-01

    A 110-km regional seismic profile in east-central Nevada crosses Neogene east-tilted half-grabens in (from west to east) Railroad Valley (RRV), White River Valley, Cave Valley (CV), Muleshoe Valley and Lake Valley. Variations in the internal architecture of these basins may be related to two factors: (1) differences in structural evolution and (2) position of cross section (i.e., the seismic profile) with respect to major depocenters, accommodation zones, and other along-strike transitions in basin geometry. A detailed grid of seismic data in Railroad Valley and proprietary data from other basins show that without adequate three-dimensional seismic control, one should carefully consider factor (2) before generalizing about factor (1). As illustrations, the authors compare cross section derived from the seismic data across RRV (latitude of Grant Canyon) and CV (latitude of Sidehill Pass). In summary, data from RRV and CV illustrate the complexity of broad basin-bounding extensional fault zones and suggest that listric faulting and stratal rotation are characteristic of basin depocenters, whereas translation above planar bounding faults is characteristic of parts of extensional basins that are removed from the depocenter.

  8. Preserved extensional structures in an inverted Cretaceous rift basin, northwestern Argentina: Outcrop examples and implications for fault reactivation

    NASA Astrophysics Data System (ADS)

    Monaldi, CéSar R.; Salfity, José A.; Kley, Jonas

    2008-02-01

    During the Cretaceous-Eocene interval a system of intracontinental rift basins, the Salta group rift, evolved in northwestern Argentina. Individual segments of the rift later suffered different degrees of inversion during Cenozoic shortening. The Tres Cruces subbasin, on the west side of the Eastern Cordillera, was strongly deformed, being now part of a thick-skinned thrust belt with a predominantly N-S structural trend. On its eastern border, tilting due to folding and thrusting and subsequent erosion have produced exceptional outcrops of preserved east-trending extensional structures including half grabens, rollover anticlines, and extensional fault-propagation folds. Farther west, the synrift succession is only intermittently exposed, although the interference of north- and east-trending structures as well as peculiar, dome-shaped anticlines with spur-like extensions suggest that north- and east-trending Cretaceous faults were reactivated, particularly near their intersections. Compilation of published data and analysis of our new data focused on the Salta rift indicates three main factors favoring the contractional reactivation of normal faults: dip angles lower than approximately 60°, especially for faults striking roughly normal to contraction; strikes no closer to the contraction direction than approximately 30°; and low downdip fault curvatures. Occasional dip-slip reactivation of east-trending faults does not match the present and long-term Andean stress regimes and presents an unresolved problem.

  9. On the recent seismic activity in North-Eastern Aegean Sea including the M(w)5.8 earthquake on 8 January 2013.

    PubMed

    Sarlis, Nicholas V

    2013-01-01

    In the last week of November 2012, we announced that a strong electrotelluric disturbance, which we judged to be a Seismic Electric Signal (SES) activity, was recorded at station Assiros located in Northern Greece. This disturbance was actually followed by an Mw5.8 earthquake on 8 January 2013 in North-Eastern Aegean Sea. Here we show that, by analyzing this SES activity and employing the natural time analysis of subsequent seismicity, we estimated the epicentral location, magnitude and occurrence time which are reasonably compatible with those of the Mw5.8 event. PMID:24213207

  10. On the recent seismic activity in North-Eastern Aegean Sea including the Mw5.8 earthquake on 8 January 2013

    PubMed Central

    SARLIS, Nicholas V.

    2013-01-01

    In the last week of November 2012, we announced that a strong electrotelluric disturbance, which we judged to be a Seismic Electric Signal (SES) activity, was recorded at station Assiros located in Northern Greece. This disturbance was actually followed by an Mw5.8 earthquake on 8 January 2013 in North-Eastern Aegean Sea. Here we show that, by analyzing this SES activity and employing the natural time analysis of subsequent seismicity, we estimated the epicentral location, magnitude and occurrence time which are reasonably compatible with those of the Mw5.8 event. PMID:24213207

  11. Extensional Failure of "Pre-Stressed" Lithosphere Above a Subduction Zone May Have Contributed to the Size of the Tohoku-Oki Earthquake and Tsunami

    NASA Astrophysics Data System (ADS)

    Buck, W. R.; Lavier, L. L.; Petersen, K. D.

    2015-12-01

    The Tohoku-oki earthquake was not only the costliest natural disaster in history it was the best monitored. The unprecedented data set showed that anomalously large lateral motion of the seafloor near the trench contributed to the size of the tsunami. Also, for the first time it was shown that a large subduction earthquake was followed by extensional aftershocks in a broad region of the upper plate (up to 250 km from the Japan Trench). Several observations suggest that the near-trench seafloor motion and the extensional aftershocks are linked. For example, a seismically imaged fault, just landward of the region of large seafloor motion, slipped in a normal sense during the earthquake. Also, inspired by the Tohoku data, researchers have searched for and found upper plate extensional aftershocks associated with several other subduction earthquakes that produced large tsunami. Extension of the upper plate can be driven by a reduction in the dip of a subducting slab. Such a dip change is suggested by the post-Miocene westward migration of the volcanic arc in Honshu. Numerical models show that a long-term reduction in slab dip can generate enough extensional stress to cause normal faulting over a broad region of the upper plate. The time step of the numerical model is then reduced to treat the inter-seismic time scale of 100-1000 years, when the subduction interface is locked. The interface dip continues to be reduced during the inter-seismic period, but extensional fault slip is suppressed by the relative compression of the upper plate caused by continued convergence. The relief of compressional stresses during dynamic weakening of the megathrust triggers a release of bending-related extensional strain energy. This extensional yielding can add significantly to the co-seismic radiated seismic energy and seafloor deformation. This mechanism is analogous to the breaking of a pre-stressed concrete beam supporting a bending moment when the compressional pre-stress is

  12. Late Variscan postcollisional extensional events in the Danubian domain (Romania): the Motru Dyke System

    NASA Astrophysics Data System (ADS)

    Campeanu, Mara; Balica, Constantin; Balintoni, Ioan; Stremtan, Cosmin

    2013-04-01

    trace elements concentrations as compared to the felsic ones, even though their trends are similar. The high values of Al concentrations (exceeding 14%) correlated to the Na concentrations and the absence of Eu anomalies in the REE distributions, exclude the plagioclase fractionation in the bulk generation of these melts. Sr and Nd isotopic data from several components of the MDS, do not comply with the previous assumptions regarding source, yet indicates a heterogeneous source of mixed mantle and dominant crustal origin. The negative values of initial Nd (assuming an age of 300 Ma), for 12 out of 13 collected samples ranging from - 13.0 to + 5.7 (with clustering between -6 and 0) and the relatively high 87Sr/86Sr initial ratios (0.70745-0.73746) point clearly to a mixing of sub-crustal and crustal derived melts. Trace elements concentrations along with the radiogenic isotope data support the assumption of an enriched mixed mantle source with crustal components that is also sustained by the presence of inherited zircon grains in MDS. Therefore we can constrain the emplacement age of MDS to Late Paleozoic (i.e. Carboniferous). It is very likely that they might have been generated during the post-collisional late Variscan extensional event, in a very likely relation to lower crustal delamination that might have triggered the partial melting of the uppermost mantle, which could have induced the partial melting of crustal components. [1] Balintoni, I., Balica, C., 2012. Avalonian, Ganderian and East Cadomian terranes in South Carpathians, Romania, and Pan-African events recorded in their basement. Mineralogy and Petrology - DOI: 10.1007/s00710-012-0206-x [2] Berza, T., Seghedi, A., 1975. The pre-Silurian filonian complex from Motru Basin (in Romanian) Dări de Seamă ale Institutului de Geologie şi Geofizică, LXI/1, 131-149. [3] Féménias, O., Berza, T., Tatu, M., Diot, H., Demaiffe, D., 2008. Nature and signifiance of a Cambro-Ordovician high-K, calc-alkaline sub

  13. K-T magmatism of western Rajasthan, India: Manifestation of Reunion plume activity or extensional lithospheric tectonics?

    NASA Astrophysics Data System (ADS)

    Sharma, K.

    2004-12-01

    A number of alkaline plutons have been recorded at the K-T (Cretaceous-Tertiary) boundary in western Rajasthan, India. Significant magmatism occurred at Mundwara, Barmer, Sarnu-Dandali and Tavider. The evolution of the Cambay-Sanchor-Barmer rift during the K-T period resulted in these alkaline complexes at the rift margins. Sedimentary basins are developed in the Barmer and Jaiselmer regions. The magmatism of Mundwara and Sarnu-Dandali is dated at 68.50 Ma and considered as an early pulse of Deccan volcanism. Several workers correlated K-T sedimentary basin evolution, magmatism and other tectonic features of western Rajasthan with the Reunion plume-interaction in the northwestern Indian shield. Alkaline igneous complexes along the rift from the southern part are reported from Phenai Mata, Amba Dongar and Seychelles. The Seychelles was part of the northwestern Indian shield prior to Deccan volcanism. The Mundwara igneous complex represents three distinct circular plutonic bodies - Toa, Mer and Mushala, which are situated in the periphery of an area three kilometers in radius. Besides these, there are numerous concentric and radial dykes of lamprophyre, carbonatite, dolerite and amphibolite. All these three bodies represent different phases of intrusion and are not similar to each other. The alkaline rocks of Sarnu-Dandali occur as dykes and isolated plugs in the desert sand. Carbonatite dykes are also reported from southeast of Barmer. The Tavider outcrop is devoid of any plutonic rock and consists of rhyolite, andesite and basalt. These rocks occur along the Precambrian Malani magmatic lineaments. The development of the Cambay-Sanchor-Barmer rift caused reactivation of Precambrian fractures and resulted in magmatism at the basin margin. The Gondwanaland fragmentation during the Mesozoic era caused extensional tectonics in the northwestern Indian shield. This led to the development of rift basins in Gujarat and western Rajasthan. Deccan volcanism, separation of the

  14. Extensional deformation of the Guadalquivir Basin: rate of WSW-ward tectonic displacement from Upper Tortonian sedimentary rocks

    NASA Astrophysics Data System (ADS)

    Roldán, Francisco J.; Azañón, Jose Miguel; Rodríguez-Fernández, Jose; María Mateos, Rosa

    2016-04-01

    The Guadalquivir Basin (Upper Tortonian-Quaternary sedimentary infilling) has been considered the foreland basin of the Betic Orogen built up during its collision with the Sudiberian margin. The basin is currently restricted to its westernmost sector, in the Cadiz Gulf, because the Neogene-Quaternary uplift of the Betic Cordillera has produced the emersion of their central and eastern parts. The upper Tortonian chronostratigraphic unit is the oldest one and it was indistinctly deposited on the South Iberian paleomargin and the External units from the Betic Cordillera. However, these rocks are undeformed on the Sudiberian paleomargin while they are deeply affected by brittle deformation on the External Betic Zone. Outcrops of Upper Tortonian sedimentary rocks on External Betic Zone are severely fragmented showing allocthonous characters with regard to those located on the Sudiberian paleomargin. This post- Upper Tortonian deformation is not well known in the External Zones of the Cordillera where the most prominent feature is the ubiquity of a highly deformed tecto-sedimentary unit outcropping at the basement of the Guadalquivir sedimentary infilling. This tecto-sedimentary unit belongs to the Mass Wasting Extensional Complex (Rodríguez-Fernández, 2014) formed during the collision and westward migration of the Internal Zone of the Betic Cordillera (15-8,5 Ma). In the present work, we show an ensemble of tectonic, geophysical and cartographic data in order to characterize the post-Upper Tortonian deformation. For this, seismic reflection profiles have been interpreted with the help of hidrocarbon boreholes to define the thickness of the Upper Tortonian sedimentary sequence. All these data provide an estimation of the geometrical and kinematic characteristics of the extensional faults, direction of movement and rate of displacement of these rocks during Messinian/Pliocene times. References Rodríguez-Fernández, J., Roldan, F. J., J.M. Azañón y Garcia-Cortes, A

  15. Active Extensional Structures Discovered by the Airborne LiDAR Mapping in the Tatun Volcanic Region, Taiwan

    NASA Astrophysics Data System (ADS)

    Chan, Y.; Chang, K.; Chen, R.; Lee, J.; Hsieh, Y.

    2006-12-01

    Complex tectonic deformation is present in northern Taiwan where the Philippine Sea plate is subducting under the Eurasian plate and the Okinawa trough is opening to the east. The Tatun volcanic region and the Taipei metropolitan basin are considered the products resulted from such complex tectonic environment. Furthermore, contractional deformation was prevailed in the earlier stage, as evidenced by several major thrust faults truncating the Tertiary strata. However, the expected nowadays extensional deformation is not fully characterized, for example, the Shanchiao fault bounding the western Taipei basin and its northern extension into the Tatun volcanic region. Based on industrial seismic profiles, it appeared that several well developed normal faults reactivated pre-existing thrust faults offshore northern Taiwan. These normal faults likely extend into the land where the Tatun volcanics erupted through and covered on the Tertiary strata. It is our intentions to better inspect the deformational pattern existing within the Tatun volcanic region where forests dominate on the surface making field investigation difficult. In this study we apply high-resolution airborne LiDAR-derived digital terrain model to characterize possible joints, fractures, and faults in the Tatun volcanic region. The LiDAR-derived DTM was processed so that bare ground is revealed using virtual removal of forests. The derived 2-m DTM was then examined to map out topographic features possibly resulted from the linear geologic structures. We discovered clear distribution and pattern of the joints and fractures in the Tatun volcanic region for the first time. The mapped structural patterns reveal strong evidence for regional extensional deformation in northern Taiwan, especially within the Tatun volcanic region. We also uncovered branches of normal faults extending possibly from the Shanchiao fault into the Tatun volcanic region. The discovered normal fault, perhaps active, cut across flat

  16. An integrated zircon geochronological and geochemical investigation into the Miocene plutonic evolution of the Cyclades, Aegean Sea, Greece: part 2—geochemistry

    NASA Astrophysics Data System (ADS)

    Bolhar, Robert; Ring, Uwe; Kemp, Anthony I. S.; Whitehouse, Martin J.; Weaver, Steve D.; Woodhead, Jon D.; Uysal, I. Tonguc; Turnbull, Rose

    2012-12-01

    Zircons from 14 compositionally variable granitic rocks were examined in detail using CL image-guided micro-analysis to unravel the complex magmatic history above the southward retreating Hellenic subduction zone system in the Aegean Sea. Previously published U-Pb ages document an episodic crystallisation history from 17 to 11 Ma, with peraluminous (S-type) granitic rocks systematically older than closely associated metaluminous (I-type) granitic rocks. Zircon O- and Hf isotopic data, combined with trace element compositions, are highly variable within and between individual samples, indicative of open-system behaviour involving mantle-derived melts and evolved supracrustal sources. Pronounced compositional and thermal fluctuations highlight the role of magma mixing and mingling, in accord with field observations, and incremental emplacement of distinct melt batches coupled with variable degrees of crustal assimilation. In the course of partial fusion, more fertile supracrustal sources dominated in the earlier stages of Aegean Miocene magmatism, consistent with systematically older crystallisation ages of peraluminous granitic rocks. Differences between zircon saturation and crystallisation temperatures (deduced from zircon Ti concentrations), along with multimodal crystallisation age spectra for individual plutons, highlight the complex and highly variable physico-compositional and thermal evolution of silicic magma systems. The transfer of heat and juvenile melts from the mantle varied probably in response to episodic rollback of the subducting lithospheric slab, as suggested by punctuated crystallisation age spectra within and among individual granitic plutons.

  17. Tectonomagmatic relationship between the Sierra Madre Occidental ignimbrite flare-up and the southern Basin and Range province

    NASA Astrophysics Data System (ADS)

    Aguirre-Diaz, G. J.; Labarthe-Hernandez, G.

    2004-12-01

    The Sierra Madre Occidental (SMO) is a Mid-Tertiary, large-volume, ignimbrite province at least 1,200 km long and 200-500 km wide, extending continuously from the U.S.-Mexico border (31\\deg N) to its intersection with the Mexican Volcanic Belt (21\\deg N). Considering the average thickness of 1,000 m for the ignimbrite plateau, based on several measured sections along the province, and the average wide of the province of 300 km, a conservative estimate of the physical volume of the SMO ignimbrites is about 360,000 km3. The southern part of the Basin and Range province is in Mexico. This extensional province overlaps in space and time with the SMO ignimbrite flare-up and formed NW- to NE-trending normal faults that bound many large grabens, which are particularly long and deep in the southern SMO. Basin and Range faulting occurred between at least 32 Ma and 12 Ma with both limits probably extending until the Eocene and the Quaternary. Ignimbrite activity can be as old as 51 Ma and as young as 17-16 Ma, but most of the ignimbrite volume was erupted in the 38-23 Ma period. Thus, the ignimbrite flare-up can be defined as a period of intense explosive volcanic activity that produced enormous volumes of silicic ignimbrite sheets, which took place mainly between 38 and 23 Ma in Mexico. The ignimbrite flare-up coincided in time with peaks in Basin and Range faulting, and the ignimbrite activity apparently migrated from the east-northeast to the west-southwest, i.e., from central Chihuahua (38-27 Ma) to Durango-Tayoltita-Nazas (32-29 Ma) to Zacatecas-Tepic (24-23 Ma), finishing by 16 Ma at Jalisco-Nayarit, as deduced from the compilation of geologic works done in the SMO. It is unknown yet whether there was a west-southward migration of Basin and Range faulting and if the ignimbrite flare-up occurred episodically as peaks (38-27 Ma, 32-29 Ma, and 24-23 Ma) or was continuous. Nevertheless, by the time that the ignimbrite flare-up started, the Basin and Range extension was

  18. Entrepreneur achievement. Liaoning province.

    PubMed

    Zhao, R

    1994-03-01

    This paper reports the successful entrepreneurial endeavors of members of a 20-person women's group in Liaoning Province, China. Jing Yuhong, a member of the Family Planning Association at Shileizi Village, Dalian City, provided the basis for their achievements by first building an entertainment/study room in her home to encourage married women to learn family planning. Once stocked with books, magazines, pamphlets, and other materials on family planning and agricultural technology, dozens of married women in the neighborhood flocked voluntarily to the room. Yuhong also set out to give these women a way to earn their own income as a means of helping then gain greater equality with their husbands and exert greater control over their personal reproductive and social lives. She gave a section of her farming land to the women's group, loaned approximately US$5200 to group members to help them generate income from small business initiatives, built a livestock shed in her garden for the group to raise marmots, and erected an awning behind her house under which mushrooms could be grown. The investment yielded $12,000 in the first year, allowing each woman to keep more than $520 in dividends. Members then soon began going to fairs in the capital and other places to learn about the outside world, and have successfully ventured out on their own to generate individual incomes. Ten out of twenty women engaged in these income-generating activities asked for and got the one-child certificate. PMID:12287775

  19. Assessment of SMOS Salinity and SST in the Aegean Sea (Greece) and correlations with MODIS SST measurements. Exploring the SSS and SST correlation to 137Cs inventory

    NASA Astrophysics Data System (ADS)

    Sykioti, Olga; Florou, Heleni

    2014-05-01

    A program concept has been developed to utilize sea surface salinity (SSS) and sea surface temperature (SST) information for the inventory of artificial radionuclides, which are conservative and part of the sea salinity. As a pilot study, activity concentrations of 137Cs in the Aegean Sea (Greece) are combined to SMOS and other satellite data so as to develop an innovative tool for the remote radioactivity detection either for routine observations and emergency recordings. The presented first results are a part of an effort to attempt for the integration in space and time of field measurements to the respective satellite observations of salinity variations by model simulations, which might be also applicable for the prediction of the radiological impact of potential accidental events. The presented results involve the first assessment of SMOS SSS and SST measurements over the Aegean Sea. SMOS measurements are averaged over a surface of 40x40 sq km at an average distance of 100 km from the coastline. For this reason, totally thirty nine pixels from SMOS Level 2 data cover part of the Aegean Sea. Two time series are created that include all available measurements spanning December 2011 to current date, from descending and ascending passes, each one representing an acquisition frequency of about three days. The average SSS values in the Aegean Sea are 37-38psu following no distinct seasonal pattern. A general trend of increasing values is observed from north to south. Noise and uncertainty in the measurements are most probably due to land and RFI contamination. High island density is combined with radiofrequency interferences generated by illegal man-made emissions. The latter is a detected common issue in specific areas worldwide, such as the Mediterranean Sea. On the other hand, SST follows a clear typical seasonal variation pattern with maximum values observed in August and minimum ones around March and a general trend of increasing values from north to south

  20. Depositional environment, foraminifer content and ESR ages of Quaternary Gediz Delta Sediments (Eastern Aegean Sea, İzmir-Western Turkey)

    NASA Astrophysics Data System (ADS)

    Gökçe Benli, Ekin; Aydın, Hülya; İşintek, İsmail; Engin, Birol; Şengöçmen, Berna

    2016-04-01

    Sediments and fossil content of Gediz Delta (Eastern Aegean Sea - İzmir) were examined based on the drilling core samples of the YSK-C and SK-246 drilling. W-SW part of the Delta is represented by continental delta sediments up to 6 meters and shallow marine detritic sediments up to 35 meters in the YSK-C drilling. Continental part consists of an soiled, graveled, muddy and sandy sediment in terms of rich organic substance. As for marine part, it consists of bioclast, muddy, fine graveled sand and by repetition of pebble, sand and bioclast bearing mud layers. Bioclasts comprise of bivalvia, echinoid, ostracod, gastropod, foramifer and bryozoa fragments. Benthic foraminiferal fauna determinated in the marine levels are represented by 55 bethic, 2 planktonic species. These foraminifers and bioclasts reflect that the W-SW part of the delta, has been occured in marine conditions between 8-31m deep. E-NE part of the delta is generally represented by continental sediments up to 43.5m in SK-246 drilling. In addition, it includes marine levels in 18-19 m, 23-24 m and 36-37,5 m intervals. Continental sediments of E-NE part is generally represented by calcareous and sandy mud rocks which mostly includes ash, tuff, and pebble derived from Neogene volcanic rocks. As for marine levels, it is composed of calcareous mud stones and calcareous clay stones including very thin gastropod, bivalvia and ostracod in 18- 19 and 36-37.5 meters whereas it is represented by sandy mud stones including a great deal of bentic foraminifer, bivalvia, bryozoa, echinoid, gastropod in 23-24 metres. Thus show that E-NE part of the delta is usually in continental condition but it is occasionally covered by sea. In aging studies of YSK-C core done by ESR method, age of 8-9 m interval is determined to be 11. 376 ± 0,067 Ka; however ages of 10-11m and 24-25 m intervals are revealed to be 16.466 ± 0,016 Ka and 15.344 ± 0,021 Ka respectively; finally age of 25-26 m interval is found to be 19.995 ± 0

  1. Evolution and fluxes of 137Cs in the Black Sea/Turkish Straits System/North Aegean Sea

    NASA Astrophysics Data System (ADS)

    Delfanti, R.; Özsoy, E.; Kaberi, H.; Schirone, A.; Salvi, S.; Conte, F.; Tsabaris, C.; Papucci, C.

    2014-07-01

    The vertical profiles of 137Cs were determined in the North Aegean, Marmara and Black Seas, to assess inventories and fluxes of the radionuclide in these basins. The inventory of 137Cs in the Western Black Sea integrated from the surface down to 400 m water depth is 3.4 ± 0.1 kBq m- 2, which is surprisingly close to the amount determined in 1988, decay corrected to 2007 (2.9 ± 0.1 kBq m- 2). On the other hand, based on the comparison of profiles roughly 20 years apart, it is estimated that about 1 kBq m- 2 has been transferred from above the halocline to depths below the halocline, emphasizing the effective redistribution of tracers within the same period. We estimate that about 12 TBq y- 1 of 137Cs presently leaves the Black Sea with the upper layer flow through the Bosphorus and only 2 TBq y- 1 is returned with the lower layer inflow of Mediterranean water from the Marmara Sea. Accounting for river fluxes, estimated on the order of 2 TBq y- 1 few years after the Chernobyl accident, and possibly decreased by now, we can thus estimate a net rate of loss of about 8-10 TBq y- 1. Investigating the effective redistribution in the upper water column, the supply by the inflowing Mediterranean water alone does not explain the increase of 137Cs concentration and inventory at intermediate depths in the Western Black Sea. The most important mechanism transferring 137Cs and dissolved contaminants from the surface water to the sub-pycnocline layer appears to be the turbulent entrainment of a larger quantity of Black Sea water into the inflowing plume of Mediterranean water through mixing processes on the southwestern shelf and continental slope following its exit from the Bosphorus. This process produces an extra export of some10 TBq y- 1 of 137Cs from the surface to the sub-pycnocline depths of the Black Sea, a quantity comparable in magnitude to the total export out from the basin. It is the entrainment flux resulting from the mixing, and the further advection and

  2. Structural analysis of three extensional detachment faults with data from the 2000 Space-Shuttle Radar Topography Mission

    USGS Publications Warehouse

    Spencer, J.E.

    2010-01-01

    The Space-Shuttle Radar Topography Mission provided geologists with a detailed digital elevation model of most of Earth's land surface. This new database is used here for structural analysis of grooved surfaces interpreted to be the exhumed footwalls of three active or recently active extensional detachment faults. Exhumed fault footwalls, each with an areal extent of one hundred to several hundred square kilometers, make up much of Dayman dome in eastern Papua New Guinea, the western Gurla Mandhata massif in the central Himalaya, and the northern Tokorondo Mountains in central Sulawesi, Indonesia. Footwall curvature in profile varies from planar to slightly convex upward at Gurla Mandhata to strongly convex upward at northwestern Dayman dome. Fault curvature decreases away from the trace of the bounding detachment fault in western Dayman dome and in the Tokorondo massif, suggesting footwall flattening (reduction in curvature) following exhumation. Grooves of highly variable wavelength and amplitude reveal extension direction, although structural processes of groove genesis may be diverse.

  3. Use of Landsat Thematic Mapper images in regional correlation of syntectonic strata, Colorado river extensional corridor, California and Arizona

    NASA Technical Reports Server (NTRS)

    Beratan, K. K.; Blom, R. G.; Crippen, R. E.; Nielson, J. E.

    1990-01-01

    Enhanced Landsat TM images were used in conjunction with field work to investigate the regional correlation of Miocene rocks in the Colorado River extensional corridor of California and Arizona. Based on field investigations, four sequences of sedimentary and volcanic strata could be recognized in the Mohave Mountains (Arizona) and the eastern Whipple Mountains (California), which display significantly different relative volumes and organization of lithologies. The four sequences were also found to have distinctive appearances on the TM image. The recognition criteria derived from field mapping and image interpretation in the Mohave Mountains and Whipple Mountains were applied to an adjacent area in which stratigraphic affinities were less well known. The results of subsequent field work confirmed the stratigraphic and structural relations suggested by the Tm image analysis.

  4. Design and fabrication of a length-extensional mode rectangular X-cut quartz resonator with zero temperature coefficient.

    PubMed

    Yokoyama, Yukio; Kawashima, Hirofumi; Kanie, Hisashi

    2006-05-01

    Rectangular X-cut quartz crystal resonators with cut angles theta > 5.0 degrees and aspect ratios Rzy (= width 2z0/length 2y0) from 0.3 to 0.5 are investigated. The resonators oscillate mode is a length-extensional mode. A semiempirical frequency equation was derived from the stress expressed in terms of the trigonometric and the hyperbolic transcendental functions with constants estimated by the regression curve fit to the stress simulated by the finite-element method (FEM). Contours on which a point satisfies a zero first order temperature coefficient condition are shown in a cut angle theta and Rzy diagram. We proved that a fabricated resonator with Rzy = 0.400 and theta = 16.0 degrees, whose design parameter is located in the area of the contour, had a zero temperature coefficient. PMID:16764439

  5. Distributed and localized faulting in extensional settings: Insight from the North Ethiopian Rift-Afar transition area

    NASA Astrophysics Data System (ADS)

    Soliva, Roger; Schultz, Richard A.

    2008-04-01

    Extensional fault systems in the Earth's crust can exhibit two end-member geometries that we identify as distributed and localized faulting regimes. A satellite image analysis of fault populations from the Main Ethiopian Rift-Afar area reveals that the rift architecture contains these two faulting regimes. The occurrence of these regimes reveals a jump in the scale of fault segmentation and linkage. Strain localization at rift border zones exhibits particularly large-scale fault linkage and a power law size distribution. This regime replaces prior distributed fault systems, showing small-scale fault linkage and an exponential size distribution. The distributed faulting is interpreted as confined to the thick trap basalt carapace. We show that continental fault systems can develop by a combination of these two geometries, and we demonstrate how to quantitatively decipher the jump between them.

  6. The effect of shear and extensional viscosities on atomization of Newtonian and non-Newtonian fluids in ultrasonic inhaler.

    PubMed

    Broniarz-Press, L; Sosnowski, T R; Matuszak, M; Ochowiak, M; Jabłczyńska, K

    2015-05-15

    The paper contains results of the experimental study on atomization process of aqueous solutions of glycerol and aqueous solutions of glycerol-polyacrylamide (Rokrysol WF1) in an ultrasonic inhaler. In experiments the different concentration aqueous solutions of glycerol and glycerol-polyacrylamide have been tested. The results have been obtained by the use of laser diffraction technique. The differences between characteristics of ultrasonic atomization for test liquids have been observed. The analysis of drop size histograms shows that the different sizes of drops have been formed during atomization process. The present study confirmed the previous reports which suggested that the drops size changes with the increase in viscosity of solution changes in spray characteristics were also observed. It has been shown that the shear and extensional viscosities affect the process of atomization. PMID:25735665

  7. Syn-extensional lithogenetic sequences of the Soledad basin, central Transverse Ranges: Implications for detachment-fault models

    SciTech Connect

    Hendrix, E.D. )

    1993-04-01

    The Soledad Basin (central Transverse Ranges, CA) contains the first recognized example of mid-Tertiary detachment-faulting west of the San Andreas fault. Displacements along the Pelona detachment fault and syn-extensional upper-plate sedimentation occurred between [approximately] 26--18 Ma, resulting in deposition of at least 4 separate lithogenetic sequences (LS) which record distinct phases of crustal response to extension. The 1st LS (lower Vasquez Fm.) predates syn-extensional volcanism and records initial basin subsidence along small, discontinuous faults. The 2nd LS (middle Vasquez Fm.) consists of both volcanic and sedimentary strata and signals simultaneous onset of magmatism and initial development of a well-defined network of high-angle, upper-plate normal faults, creating 2 separate sub-basins. Resulting alluvial fans were non-entrenched, implying that subsidence rates, and thus vertical displacement rates on high-angle faults, equaled or exceeded an estimated average sedimentation rate of 1.4 mm/yr. The 3rd LS (upper Vasquez Fm.) reflects transition to a single, well-integrated depositional basin characterized by streamflood sedimentation. This suggests an enlarged drainage basin and a decrease in subsidence rate relative to sedimentation rate, triggered possibly by uplift of the detachment lower-plate. The 4th LS (Tick Canyon Fm.) lies with angular unconformity above the 3rd LS and contains the 1st clasts eroded from the detachment lower plate. Detachment faulting in the Soledad basin appears to involve, in part, reactivation of structural zones of weakness along the Vincent thrust. Preliminary reconstructions of Soledad extension imply 25--30 km of displacement along the Pelona detachment fault system at an averaged slip rate of 3.6--4.3 mm/yr.

  8. Extensional geometries in the northern Grant Range, east-central Nevada - Implications for oil occurrences in Railroad Valley

    SciTech Connect

    Lund, K.; Perry, W.J. Jr. ); Beard, L.S. )

    1991-06-01

    Tertiary heterogeneous extension in the northern Grant Range, Nevada, is manifested by a stacked array of curviplanar low-angle attenuation faults that formed concurrent with arching. Attenuation was controlled by lithologic character, structural depth, and geometry of the arch. Extension appears to be greater on the west side of the range than on the east. On the east side of the range, the stacked array of low-angle attenuation faults is subparallel to bedding and attenuation is distributed across many stacked fault zones; except at highest crustal levels, these faults are blind. On the west side of the range, the low-angle attenuation faults of the stacked array merge into a single, major down-to-the-west fault zone across which as much as 19,000 ft of strata are omitted. Arching of the fault array resulted in an extensional culmination. Cross sections incorporating seismic and drill-hole data suggest that the low-angle attenuation faults (particularly the major down-to-the-west attenuation fault) seen in the range extend into Railroad Valley on the west side of the range with no significant offset by high-angle normal faults. Thus, the topographic expression of Grant Range and Railroad Valley may be due to the synchronous arching and low-angle faulting. These data indicate that both petroleum source and reservoir rocks in Railroad Valley oil fields are located in relatively immature but extensively fractured rocks of the upper plate to the extensional ramp. Lower plate rocks are metamorphosed, illustrate ductile behavior, and lack significant porosity and permeability.

  9. Structural style in a young flexure-induced oblique extensional system, north-western Bonaparte Basin, Australia

    NASA Astrophysics Data System (ADS)

    Saqab, Muhammad Mudasar; Bourget, Julien

    2015-08-01

    In the north-western Bonaparte Basin (North West Shelf of Australia) Neogene to Recent flexure-induced extension superimposed obliquely over the Mesozoic rift structures. Thus, the area offers a good opportunity to investigate the dynamics and architecture of oblique extension fault systems. Analysis of basin-scale 2D and 3D seismic data along the Vulcan sub-basin shows that Neogene deformation produced a new set of extensional, en échelon faults, at places accompanied by the reactivation of the Mesozoic faults. The pre-existing Mesozoic structures strongly control the distribution of the Neogene-Recent deformation, both at regional and local scales. Main controls on the Neogene-Recent fault style, density and segmentation/linkage include: (1) the orientation of the underlying Mesozoic structures, (2) the obliqueness of the younger extension relative to the rift-inherited faults, and (3) the proximity to the Timor Trough. Three types of vertical relationships have been observed between Mesozoic and Neogene-Recent faults. Hard linkages seems to develop when both fault systems trend parallel, therefore increasing risks for trap integrity. It is suggested that the orientation of maximum horizontal stress (SHmax) relative to the Mesozoic faults, forming hydrocarbon traps, is critical for their potential seal/leak behaviour. Stratigraphic growth across the faults indicates that main fault activity occurred during the Plio-Pleistocene, which corresponds to the timing of tectonic loading on Timor Island and the development of lithospheric flexure. Synchronism of normal faulting with flexural bending suggests that extensional deformation on the descending Australian margin accompanied the formation of the Timor Trough.

  10. River Mediated Development of an Active Extensional Culmination: the Yulong Mountains, Southwestern China

    NASA Astrophysics Data System (ADS)

    Studnicki-Gizbert, C.; Whipple, K.; Burchfiel, B. C.

    2008-12-01

    The Yulong Xueshan (Jade Dragon Snow Mountains) are an isolated range of anomalously high and steep mountains bisected by the Jinsha (Yangzi) river in Western Yunnan province, in the eastern Tibetan borderlands. The range is defined and bounded by a closed network of active transtensional faults, whose most recent major rupture was a M 7.0 quake in 1997. Some of the deepest regional structural and stratigraphic levels are exposed in a domal culmination in the footwalls of these faults and at the bottom of the nearly 4km deep gorge cut by the Jinsha river. Within the gorge, the Jinsha river becomes extremely narrow and steep, suggesting adjustment to anomalously high rates of surface uplift. Geomorphic arguments suggest erosion rates of between 1 to 5 mm/yr. These rates are consistent with independently derived estimates of ~3 mm/yr based on stratigraphic and structural evidence. We argue that the anomalous exhumation and uplift rates we infer for the Yulong mountains are the result of the interaction of (1) vigorous river incision controlled erosional processes that balance rock uplift rates; (2) a closed network of normal faults that accommodate differential rock uplift rates; (3) weak middle to lower crust that flows in response to imposed surface loads. Localized uplift probably began in response to unloading along the range bounding faults, but high erosion rates are responsible for sustaining the anomalous, localized rock uplift that continues to the present. Unlike other described examples where localized exhumation along a major river is associated with a river capture event, in the Yulong mountains the closed network of normal faults permit the range to respond independently of its surroundings (and therefore have effectively no flexural strength) and accommodates localized uplift. A final key characteristic of this system is that it is superimposed upon a landscape that was already characterized by the significant incision and entrenchment of the major

  11. Upper Cretaceous-Paleocene extensional phase in the Golfo San Jorge basin (Argentina): Growth-fault model, paleoseismicity and paleostress analysis

    NASA Astrophysics Data System (ADS)

    Foix, Nicolás; Paredes, José Matildo; Giacosa, Raúl Eduardo

    2012-02-01

    A total of 170 synsedimentary normal faults preserved in the marine Salamanca Formation (Early Paleocene of the Golfo San Jorge basin) were described from exposures of the Northern Flank of the basin. The result of the paleostress analysis of those normal faults indicates an NE-SW (49°) extensional direction during Early Paleocene times. Synsedimentary normal faults and seismites in the unit demonstrate the occurrence of an extensional tectonic event coeval with the deposition of the Salamanca Formation. Available 3D seismic surveys of the subsurface of the basin allowed recognizing asymmetric, fault-bounded Upper Cretaceous-Paleocene depocentres, identifying at least two main tectonic pulses in this extensional phase. The mapping of normal faults from seismic attributes (e.g. time slices) is WNW-ESE (278°-98°), a trend that apart significantly from outcrop results. The major faults in the subsurface that affect the Early Paleocene succession are the result of the extensional reactivation of Lower Cretaceous normal faults, which are mainly related to pre-existing structures in the basement of the basin. The D/L ratio of normal faults in the subsurface give smaller values than those based on theoretical relationships, being considered as sub-displaced normal faults. These low D-L values imply that the length of the major Paleocene faults was reached earlier by inheritance of previous faults. In addition, the subsurface lengths of faults allowed estimating paleoearthquake magnitudes greater to M ≈ 5 from empirical relations, matching with previous results obtained from the analysis of soft-sediment deformational structures preserved in the Salamanca Formation. This study displays at several scales the nature, origin and tectonic products of the Upper Cretaceous-Paleocene extensional phase in the Golfo San Jorge basin.

  12. Scenario based tsunami wave height estimation towards hazard evaluation for the Hellenic coastline and examples of extreme inundation zones in South Aegean

    NASA Astrophysics Data System (ADS)

    Melis, Nikolaos S.; Barberopoulou, Aggeliki; Frentzos, Elias; Krassanakis, Vassilios

    2016-04-01

    A scenario based methodology for tsunami hazard assessment is used, by incorporating earthquake sources with the potential to produce extreme tsunamis (measured through their capacity to cause maximum wave height and inundation extent). In the present study we follow a two phase approach. In the first phase, existing earthquake hazard zoning in the greater Aegean region is used to derive representative maximum expected earthquake magnitude events, with realistic seismotectonic source characteristics, and of greatest tsunamigenic potential within each zone. By stacking the scenario produced maximum wave heights a global maximum map is constructed for the entire Hellenic coastline, corresponding to all expected extreme offshore earthquake sources. Further evaluation of the produced coastline categories based on the maximum expected wave heights emphasizes the tsunami hazard in selected coastal zones with important functions (i.e. touristic crowded zones, industrial zones, airports, power plants etc). Owing to its proximity to the Hellenic Arc, many urban centres and being a popular tourist destination, Crete Island and the South Aegean region are given a top priority to define extreme inundation zoning. In the second phase, a set of four large coastal cities (Kalamata, Chania, Heraklion and Rethymno), important for tsunami hazard, due i.e. to the crowded beaches during the summer season or industrial facilities, are explored towards preparedness and resilience for tsunami hazard in Greece. To simulate tsunamis in the Aegean region (generation, propagation and runup) the MOST - ComMIT NOAA code was used. High resolution DEMs for bathymetry and topography were joined via an interface, specifically developed for the inundation maps in this study and with similar products in mind. For the examples explored in the present study, we used 5m resolution for the topography and 30m resolution for the bathymetry, respectively. Although this study can be considered as

  13. The Late Cretaceous I- and A-type granite association of southeast China: Implications for the origin and evolution of post-collisional extensional magmatism

    NASA Astrophysics Data System (ADS)

    Zhao, Jiao-Long; Qiu, Jian-Sheng; Liu, Liang; Wang, Rui-Qiang

    2016-01-01

    We present new geochronological, mineralogical, and geochemical data for granitic plutons that crop out within the Zhoushan archipelago, northeastern coastal Zhejiang Province, in order to constrain their origin, and the genetic relationship between the I- and A-type granites. These granites can be divided into two groups: (1) the northern I-type Putuoshan (PTS) and Dadong'ao (DDA) plutons; and (2) the southern A-type Daqingshan (DQS), Taohuadao (THD), and Xiazhidao (XZD) plutons. Zircon LA-ICP-MS U-Pb dating yielded ages of 98-96 Ma for the northern I-type plutons and 89-86 Ma for the southern A-type plutons. All of these granites are highly siliceous, K-rich, and have similar total alkali and total rare earth element (REE) abundances. However, there are also geochemical differences between the I-type and the A-type granites. The northern I-type alkali-feldspar granites are high-K calc-alkaline, metaluminous to mildly peraluminous, contain low concentrations of the high field strength elements (HFSE; e.g., Nb, Ta, Zr, and Hf), and have low Ga/Al ratios (2.04-2.44). In contrast, the southern A-type granites are peralkaline and F-rich, and have lower CaO and Al2O3 concentrations, and higher Fe2O3T and HFSE concentrations and Ga/Al ratios (3.25-3.86). Meanwhile, they have slightly higher heavy REE (HREE) concentrations, and are more depleted in Ba, Sr, P, Ti, and Eu than the northern I-type granites. Both the I- and A-type granites have homogeneous whole-rock Nd and highly variable zircon Hf isotopic compositions. Of note, the southern peralkaline A-type granites appear to have more radiogenic Nd and Hf isotope compositions than the northern I-type granites. The present data, together with the results of a previous study on mafic enclaves within the PTS pluton, suggest that the northern I-type alkali-feldspar granites were generated by mixing of mantle-derived material with crustal-derived magmas that formed by dehydration melting of mica-bearing basaltic rocks

  14. Heat flow in the Basin and Range province and thermal effects of tectonic extension

    USGS Publications Warehouse

    Lachenbruch, A.H.

    1978-01-01

    In regions of tectonic extension, vertical convective transport of heat in the lithosphere is inevitable. The resulting departure of lithosphere temperature and thickness from conduction-model estimates depends upon the mechanical mode of extension and upon how rapidly extension is (and has been) taking place. Present knowledge of these processes is insufficient to provide adequate constraints on thermal models. The high and variable regional heat flow and the intense local heat discharge at volcanic centers in the Basin and Range province of the United States could be accounted for by regional and local variations in extensional strain rate without invoking anomalous conductive heat flow from the asthenosphere. Anomalous surface heat flow typical of the province could be generated by distributed extension at average rates of about 1/2 to 1%/m.y., similar to rates estimated from structural evidence. To account for higher heat flow in subregions like the Battle mountain High, these rates would be increased by a factor of about 3, and locally at active bimodal volcanic centers, by an order of magnitude more. ?? 1978 Birkha??user Verlag.

  15. A new metamorphic map of Syros Island (Aegean Sea, Greece): implications for strain localization from prograde to retrograde path

    NASA Astrophysics Data System (ADS)

    Laurent, Valentin; Jolivet, Laurent; Roche, Vincent; Augier, Romain; Scaillet, Stéphane; Cardello, Luca

    2015-04-01

    The Aegean domain is located in the eastern part of the Mediterranean and has undergone a complex Alpine history that can be summarized in two successive episodes: (1) The formation of the Hellenides-Taurides belt due to the convergence between Eurasia and Africa; during this episode, a series of oceanic and continental nappes entered the subduction zone and were thrust on top of each other in a HP-LT metamorphic context. (2) From 35-30 Ma, an acceleration of slab retreat led to the collapse of the belt and the formation of large detachments. The island of Syros (Cycladic Blueschists belt) is worldwide known for the excellent preservation of HP-LT tectonic and metamorphic features associated with these processes, possibly providing one of the best places to study the deformation and metamorphic evolution of the subduction interface. Syros has recorded a complex deformation history during both the prograde and retrograde phase that resulted in the juxtaposition of two main units: (1) the Cycladic Blueschists Unit (CBU), and (2) the Vari unit cropping out in the SE of the island. Conflicting tectonic interpretations have been proposed to explain the evolution of the island, in part reflecting the lack of consensus about the detailed tectonic structure of the CBU. A new geological and metamorphic map of Syros is proposed to better characterize the different structures related to prograde and/or retrograde deformation stages. High-resolution field-mapping, combined with detailed structural-petrological observations, allows us to subdivide the CBU into three sub-units separated by major ductile shear zones. From top to bottom, these are: 1) the Kampos, 2) the Chroussa, and 3) the Posidonia units. Each of these units experienced similar peak eclogite-facies conditions (ca. 20 kbar - 550 °C), variably overprinted under blueschist- and greenschist-facies conditions across the nappe pile. New ductile structures have been discovered. Among those, a new large-scale top

  16. The advance of Kos Plateau Tuff ignimbrite into the marine realm of the Kalymnos Basin, SE Aegean Sea.

    NASA Astrophysics Data System (ADS)

    Markakis, Emmanouil; Anastasakis, George

    2013-04-01

    The 161 ka Kos Plateau Tuff (KPT) eruption is considered to be the largest explosive Quaternary event in the eastern Mediterranean. It produced pumice rafts followed by "non-welded ignimbrites" that are up to 30m thick, especially widespread on Kos island and covering an area of > 80 Km2 that includes mainly islands and present marine regions. Pyroclastic flows travelled from the proposed vent, that lies between and around Yali and Nisyros islands, across present land and sea, the total volume of the tuff has been estimated as at least 100km3. KPT products principally consist of rhyolitic ash and pumice. Post 2010 Athens University oceanographic missions have mapped the seafloor around the volcanic islands of the SE Aegean Sea. Here we present new data on seafloor morphology and Upper Quaternary seafloor stratigraphy of the Kalymnos basin that extends over an area over 70km2 and map the advance and deposition of the KPT that was previously unknown in this region. The Kalymnos basin is roughly triangular in shape and essentially consists of two sedimentation depocenters: a) a roughly elliptical 400 m deep northern segment that is developed sub-parallel to Kalymnos Island and its W-SW shelf; b) a rather physiographically complex western sector developed NE of Astipalea island and reaching depths of over 620m. High resolution sparker profiles from the west Kos-Kalymnos shelf reveal an outstanding seismic stratigraphy of stacked and prograded coastal clinoform packets capped by erosional transgressive surfaces that record Quaternary eustatic lowstands deposits of sea level with clinoforms developing during forced regression and the erosional surfaces during transgression. We show that a massive gravity flow deposit is intercalated with the shelf sediments. Above it low sea level MIS 6 and 2 sedimentary sequences are fully developed and below stage 8-10 sediments are erratically preserved over stages 12 and 16 sediments. This gravity flow deposit swept across the shelf

  17. April 16, 2015 Crete Island Earthquake (Mw=5.9) Series and its Seismotectonic Significance, Southern Aegean Sea

    NASA Astrophysics Data System (ADS)

    Yalçın, Hilal; Kürçer, Akın; Gülen, Levent

    2016-04-01

    The active deformation of the southern Aegean Sea is a result of the northward motion of the African and Arabian Plates with respect to the Eurasian Plate in the Eastern Mediterranean Region. The Hellenic subduction zone plays a key role in the active tectonics of the region. On 16 April, 2015, a moderate earthquake occurred on the eastern part of Hellenic arc (south of Crete island), with a moment magnitude of Mw=5.9. A series of aftershocks were occurred within four months following the mainshock, which have magnitudes varying from Mw = 3.4 to 5.4. Source parameters of the 16 April 2015 earthquake have been modeled in order to reveal the regional stress tensor and the tectonic style of the region. In this study, the source parameters of the main shock and 36 aftershocks that have magnitudes M≥3.4 have been determined and modeled by seismic moment tensor waveform inversion method developed by Sokos and Zahradnik (2006) algorithm using the near-field and regional waveforms. The depth of earthquakes are varied from 2 to 61 km. Stress tensor can describe reliably principle stress axes (σ1, σ2, σ3), their relative size and stress field variations. Stress tensor inversions have been carried out using the Micheal method (1984, 1987). In this study, 16 April 2015 Crete Earthquake mainshock (Mw=5.9), a total of 36 earthquake moment tensor solutions that belong to the Crete earthquake sequence and 24 earthquake moment tensor solutions of previous main shocks in the region have been compiled and used in the stress inversion calculation. Orientations of σ1, σ2 and σ3 were computed and the principal directions are projected onto a lower hemisphere Wulff net. The best fit was attained for Phi = 0.38+/‑0.13609 and indicated that the stress regime revealed strike-slip faulting with reverse component and for the azimuth and plunge pair of (-161.6°, 21.7°) for σ1, (-11.1°, 65.4°) for σ2 and (103.8°, 10.9°) for σ3. At the final step of the study, Gutenberg and

  18. Extensional Detachment faulting in melange rocks. Plurikilometres migration by W the External Zone (Cordillera Bética, Spain)

    NASA Astrophysics Data System (ADS)

    Roldán, Francisco Javier; Azañon, Jose Miguel; Rodríguez, Jose; Mateos, Rosa Maria

    2014-05-01

    The synthesis and correlation of units carried out in the continuous geological map (Roldán et al., 2012), has revealed a fragmentation of the carbonate outcrops belong to the Subbetic Domain (García-Hernández et al., 1980). Subbetic NW verging thrust and fold axial traces have not lateral continuity and Jurassic carbonate outscrops appear as klippes on the olistotromic unit. These ductile structures that can be observed in the internal structure of these jurassic blocks are unrelated to the brittle-ductile deformation bands observed at the basal pelitic levels. Basal detachments are rooted in: a) the Olistostromic unit, a Upper Langhian-Lower Serravallian breccia constituted by gypsum-bearing clay and marls; b) Cretaceous-Tertiary marly sedimentary rocks (Rodríguez-Fernández, et al., 2013) . In both kind of rocks, cataclastic structures allows to infer a top-to-the WSW displacement. Paleostress measurements, made on these detachments levels, are compatible with a extensional regime (Roldán et al., 2012). At the same time, the analysis and interpretation of subsurface data (seismic surveys and borehole testing) shows that the Subbetic Domain (External Subbetic, Molina 1987) are affected by westward low-angle normal faults. A balanced cross-section, based on morphological and cartographic data in the area between Sierra de Cabra and Sierra de Alta Coloma (Valdepeñas de Jaén), shows plurikilometric displacements which has been produced during Late Serravallian-Early Tortonian times. References: García-Hernández, M., López-Garrido, A.C., Rivas, P., Sanz de Galdeano, C., Vera, J.A. (1980): Mesozoic paleogeographic evolution of the zones of the Betic Cordillera. Geol. Mijnb. 59 (2). 155-168. Molina, J.M. (1987). Análisis de facies del Mesozoico en el Subbético. Tesis Doctoral, Univ. Granada. 518 p. Rodríguez-Fernández, J., Roldán, F. J., Azañón, J.M. y García-Cortés, A. (2013). El colapso gravitacional del frente orogénico a lpino en el Dominio Subb

  19. Recurrent intrusions of transitional waters of Eastern Mediterranean origin in the Cretan Sea as a tracer of Aegean Sea dense water formation events

    NASA Astrophysics Data System (ADS)

    Velaoras, Dimitris; Krokos, George; Theocharis, Alexander

    2015-06-01

    Available temperature and salinity data in the Cretan Sea from 1955 up to 2014 as well as literature sources were revisited in order to trace the appearance of low salinity, temperature, oxygen and nutrient-rich waters inside the basin at depths below the intermediate layer. First appearing as far back as 1961 in literature, these waters were found originating in the layers that separate intermediate and deep waters of the Eastern Mediterranean Sea (EMed) and were named Transitional Mediterranean Water (TMW) in the 1990s. Data analysis showed that the appearance of TMW in the Cretan Sea is a recurrent phenomenon connected to water mass exchanges between the Aegean Sea and the EMed. In particular, the inflow of TMW in the Cretan basin acts as compensation for the outflow of equally dense or denser masses from the Aegean. This export is a result of dense water formation (DWF) events taking place inside the Aegean Sea triggering TMW compensatory inflow into the Cretan Sea through the Cretan Straits. In this context, TMW intrusions in the Cretan basin can be used as a tracer of DWF in the Aegean Sea while the depth of the intrusion can provide valuable information about the intensity of the DWF event. The importance of TMW intrusions is not solely restricted to the tracing and evaluation of DWF events but could additionally expand to the impact on local ecological processes as TMW is a nutrient carrier for the oligotrophic Cretan Sea. It is obvious that this low salinity, temperature and oxygen layer is what was later named TMW. The core temperature, salinity and oxygen values reported by Miller (1974) fall within the range of values observed during the PELAGOS project in 1994, as noted in Section 'Presence of low salinity water masses below the intermediate layer in the Cretan Sea during the EMT event'. Using the same dataset provided by MEDATLAS 2002 database, a salinity transect along the Cretan Sea is reconstructed in Fig. 5. The bottle data originate from the

  20. Bio-indicator bacteria & environmental variables of the coastal zones: The example of the Güllük Bay, Aegean Sea, Turkey.

    PubMed

    Kalkan, Samet; Altuğ, Gülşen

    2015-06-15

    In this study bio-indicator bacteria and environmental variable parameters were investigated in the coastal areas of the Güllük Bay, Aegean Sea, Turkey. The seawater samples which were taken from surface (0-30cm) were tested regarding total and fecal coliform, streptococci and nutrients from May to February in 2012-2013. The primary hydrographic parameters were recorded using multiparameter (YSI 556) in situ at the sampling stations. The highest fecal pollution stress and indicator bacteria values were observed in the period between June and August. The finding showed that bacterial pollution sources of the study area, especially in the summer season, under the control of increasing anthropogenic activities. The finding showed that terrestrial pollution sources carry a potential risk for public and ecosystem health and the sustainable use of living sources. Precautions should be formulated and put into action immediately in order to protect the region from bacteriological risks. PMID:25956440

  1. Eastern-Mediterranean ventilation variability during sapropel S1 formation, evaluated at two sites influenced by deep-water formation from Adriatic and Aegean Seas

    NASA Astrophysics Data System (ADS)

    Filippidi, A.; Triantaphyllou, M. V.; De Lange, G. J.

    2016-07-01

    Present-day bottom-water ventilation in the Eastern Mediterranean basin occurs through deep-water convection originating from the two marginal basins, i.e. Adriatic and Aegean Seas. In the paleo record, long periods of enhanced deep-water formation have been alternating with shorter periods of reduced deep-water formation. The latter is related mainly to low-latitude humid climate conditions and the enhanced deposition and preservation of organic-rich sediment units (sapropels). This study focuses on sedimentary archives of the most-recent sapropel S1, retrieved from two sites under the direct influence of the two deep-water formation areas. Restricted oxygen conditions have developed rapidly at the beginning of S1 deposition in the Adriatic site, but bottom-water conditions have not persistently remained anoxic during the full interval of sapropel deposition. In fact, the variability in intensity and persistence of sedimentary redox conditions at the two deep-water formation sites is shown to be related to brief episodes of climate cooling. In the Adriatic site, sapropel deposition appears to have been interrupted twice. The 8.2 ka event, only recovered at the Adria site, is characterized by gradually increasing suboxic to possibly intermittently oxic conditions and decreasing Corg fluxes, followed by an abrupt re-establishment of anoxic conditions. Another important event that disrupted sapropel S1 formation, has taken place at ca. 7.4 cal ka BP. The latter event has been recovered at both sites. In the Adriatic site it is followed by a period of sedimentary conditions that gradually change from suboxic to more permanently oxic, as deduced from the Mn/Al pattern. Using the same proxy for suboxic/oxic sedimentary redox conditions, we observe that conditions in the Aegean Sea site shift to more permanently oxic from the 7.4 ka event onwards. However, at both sites the accumulation and preservation of enhanced amounts of organic matter have continued under these

  2. Syn-orogenic extensional pulses within the contractional history of thrust wedges. The Val di Lima low-angle normal fault case study, Northern Apennines, Italy.

    NASA Astrophysics Data System (ADS)

    Clemenzi, Luca; Molli, Giancarlo; Storti, Fabrizio; Muchez, Philippe; Swennen, Rudy; Torelli, Luigi

    2014-05-01

    In this contribution we describe the Val di Lima low-angle fault system, a kilometric-scale extensional structure exposed in the central sector of the Northern Apennines thrust wedge, Italy. The low-angle extensional fault system delaminates the right-side-up limb of a km-scale recumbent isoclinal anticline that affects the carbonate-dominated Late Triassic to early Early Miocene non-metamorphic Tuscan succession. The low-angle fault system, in turn, is affected by superimposed folding and late-tectonic high-angle extensional faulting. The three-dimensional configuration of the low-angle fault system has been investigated through detailed structural mapping and restoration of the superimposed deformations, while the fault damage zone architecture has been characterized in outcrops with appropriate exposure. Pressure-depth conditions and palaeofluid evolution of the fault system have been studied through microstructural, mineralogical, petrographic, fluid inclusion and stable isotope analysis of fault rocks and fault-related calcite and quartz veins. Our results show that the low-angle fault system was active during exhumation of the Tuscan succession, at estimated conditions of about 180°C and 5.2 km depth. The fault system had a twofold influence on fluid circulation within the orogenic wedge: i) it allowed the migration of low-salinity fluids, due to the increased permeability along the fault zone; ii) it favored footwall fluid overpressures where the fault core acted as an efficient hydraulic barrier. Abundant fluid circulation in fault damage zones also characterized the late-stage evolution of the low-angle fault system, allowing the recrystallization of calcite veins and limestone host rocks at shallower conditions (~ 4 km). Within this P-T framework, the fault zone architecture shows important differences, related to the different lithologies involved in the fault system and to the role played by the fluids during deformation. In particular, footwall fluid

  3. Active Extensional Faulting at the Southern Half-Graben Belt of the Tepic-Zacoalco Rift, Western Mexico

    NASA Astrophysics Data System (ADS)

    Rosas-Elguera, J.; Ferrari, L.; Delgado, M.; Uribe, A.; Valdivia, L.; Castillo, R.

    2003-12-01

    In the past decade much debate has centered upon the kinematics and the mechanism of continental deformation in western Mexico and the motion of the Jalisco block relative to North America. Two distinct models have been proposed. The first one suggest a NW-motion of the Jalisco block that would implies a right-lateral faulting along the Tepic-Zacoalco rift (TZR). More recently others authors have documented a N-NE extensional tectonics active since late Miocene and suggested that the continental boundaries of the Jalisco block, are older structures reactivated by plate boundary forces. Studies on the crustal seismicity and the kinematics of Quaternary faults provide another constraint on the direction of motion between the Jalisco block and North America. On November 4, 5, 6, and 7, 1995, one month after the October 09, 1995, Manzanillo earthquake (Mw = 8.0), a swarm of small events was felt in the Amatlan de Ca¤as half-graben and recorded by the regional seismic network of Comision Federal de Electricidad. The coda magnitude of the largest event was Mc = 2.5-3.6 and the events were located depth ranging from 6 to 10 km. This seismic activity provoked that people from Pie de la Cuesta and Yerbabuena villages were evacuated. After that a seismic station equipped with an analogic seismograph MEQ-800 at Pie de la Cuesta was installed for three months. During the same time, October, 1995, some houses distributed along a WNW trend in Ameca city underwent severe damages, they are. The digital elevations model of the Ameca city suggest that several structures tectonics are shorter than 2 km are present in the area. The present direction of motion of the Rivera plate relative to North America plate along Middle America Trench has been estimated between N19° E to N48° E (e.g. Bandy et al., 1996). During the October 09, 1995, subduction-related earthquake (Mw = 8.0) a GPS network recorded a SW motion of the Jalisco block which could be associated to an elastic deformation

  4. Coupled Source-to-Sink and Geodynamic Modeling of Extensional Basins: A Case Study of the Gulf of Corinth, Greece.

    NASA Astrophysics Data System (ADS)

    Smithells, R. A.

    2015-12-01

    Many studies investigate rift evolution with geodynamic models, giving insight into the architecture and morphology of extensional basins. Recent advances in modeling allow better temporal and spatial resolution in surface processes when coupled with geodynamic processes, allowing modeling the interactions between sediment erosion and deposition with rift development. Here we use a combination of dynamic forward modeling and landscape evolution models to determine feedback and interaction of sediment erosion and deposition with rift development and fault localization. The Gulf of Corinth is an ideal basin to study the effect of surface processes on rifting because it can be considered a closed system for sediment erosion and deposition. It is a young rift, not affected by subsequent overprinting and there is a large amount of data from offshore seismic surveys and onshore fieldwork to constrain its evolution. We reconstruct paleo topography of the catchment area by removing the effects of fault activity and sediment erosion. The reconstructed topography is used to model different scenarios for landscape evolution and the results determine the relative importance of regional and fault related uplift and subsidence on the drainage evolution in the Gulf of Corinth. The landscape models are also used to constrain source area and total amount of sediment eroded from the catchment area. The eroded onshore volume and the amount of sediment deposited offshore are compared in order to reconstruct the source-to-sink balance for the Gulf of Corinth. Our results constrain the evolution of the catchment area and timings of drainage reversals that occurred in the fluvial systems of the Gulf of Corinth. Coupled forward tectonic-surface process modeling is used to investigate feedback between rift formation and the surface processes and to determine its role in developing asymmetry and fault migration in an extensional setting. In this study we investigate the effect of a mature

  5. Early Miocene Kirka-Phrigian caldera, western Anatolia - an example of large volume silicic magma generation in extensional setting

    NASA Astrophysics Data System (ADS)

    Seghedi, Ioan; Helvacı, Cahit

    2014-05-01

    Large rhyolitic ignimbrite occurrences are close connected to the Early Miocene initiation of extensional processes in the central-west Anatolia along Taşvanlı-Afyon zones. Field correlations, petrographical, geochemical and geochronological data lead to a substantial reinterpretation of the ignimbrite surrounding Kırka area, known from its world-class borate deposits, as representing the climatic event of a caldera collapse, unknown up to now and newly named "Kırka-Phrigian caldera". The caldera, which is roughly oval (24 km x 15km) in shape, one of the largest in Turkey, is supposed to have been formed in a single stage collapse event, at ~19 Ma that generated huge volume extracaldera outflow ignimbrites. Transtensive/distensive tectonic stresses since 25 Ma ago resulted in the NNW-SSE elongation of the magma chamber and influenced the roughly elliptical shape of the subsided block (caldera floor) belonging to the apex of Eskişehir-Afyon-Isparta volcanic area. Intracaldera post-collapse sedimentation and volcanism (at ~ 18 Ma) was controlled through subsidence-related faults with generation of a series of volcanic structures (mainly domes) showing a large compositional range from saturated silicic rhyolites and crystal-rich trachytes to undersaturated lamproites. Such volcanic rock association is typical for lithospheric extension. In this scenario, enriched mantle components within the subcontinental lithospheric mantle will begin to melt via decompression melting during the initiation of extension. Interaction of these melts with crustal rocks, fractionation processes and crustal anatexis driven by the heat contained in the ascending mantle melts produced the silicic compositions in a large crustal reservoir. Such silicic melts generated the initial eruptions of Kırka-Phrigian caldera ignimbrites. The rock volume and geochemical evidence suggests that silicic volcanic rocks come from a long-lived magma chamber that evolved episodically; after caldera

  6. Extensional Basins in a Convergent Margin: Oligocene-Early Miocene Salar de Atacama and Calama basins, Central Andes

    NASA Astrophysics Data System (ADS)

    Jordan, T. E.; Mpodozis, C.; Blanco, N.; Pananont, P.; Dávila, F.

    2004-12-01

    The Salar de Atacama Basin (SdAB) is the largest and most persistent sedimentary basin of northern Chile, accumulating nonmarine sediment from Cretaceous to modern times. Its northwestern neighbor, the Calama, was a Cenozoic basin. Although SdAB was in the backarc zone early in the Andean orogeny, both are now forearc basins. Others demonstrated that the basins overlie anomalously cold, strong, and dense crust and lithosphere. We focus on an extensional Oligocene basin stage. Interpretation of the basin-controlling faults is based on seismic reflection studies supported by field relations. The SdAB is limited to the west by the NNE-trending, steeply east-dipping, Paciencia Fault (PF). The PF experienced 5-7 km of down-to-the-east offset during the Oligocene-early Miocene. Syntectonic strata, an arid succession of siliciclastics and evaporites, are asymmetric, with thicknesses of 5000 m and abundant halite adjacent to the PF, and of 1000 m with fine detrital clastic strata 25 km farther east. Relations in conglomeratic growth strata that overlap the PF also demonstrate normal displacement during sediment accumulation. Seismic data reveal that a buried normal fault with 1-1.5 km down-to-the-east displacement limits the western margin of the Oligocene-Miocene Calama siliciclastic basin fill. Regionally, Oligocene-early Miocene margin-parallel strike-slip deformation dominated northwest of the basins, contributing sinistral offset (West Fissure Fault) to the northern segment of the long-lived Domeyko Fault System. The new SdAB and Calama data reveal that a 20,000 km2 domain of extensional basins existed within the dominantly strike-slip region. Even if PF and the fault in the Calama Basin were transtensional, the proportion of extension to strike-slip displacement is much greater in these basins than elsewhere in northern Chile. Further study is required to understand what combination of factors caused this kinematic distinction as well as delayed the onset of CVZ

  7. Crustal rheology of the Santorini-Amorgos zone: Implications for the nucleation depth and rupture extent of the 9 July 1956 Amorgos earthquake, southern Aegean

    NASA Astrophysics Data System (ADS)

    Konstantinou, K. I.

    2010-12-01

    The 9 July 1956 Amorgos earthquake (Mw 7.6) was the largest event that hit Greece during the last century followed by a tsunami that inundated the coastal areas of the southern Aegean. This study investigates the rheological properties of the 1956 rupture zone between Amorgos and Santorini islands, in an effort to place some constraints on the nucleation depth and rupture extent of this large event. The seismic velocities inferred from tomographic and surface wave dispersion studies of the area are first correlated with laboratory determined velocities of known rock types. It is found that the lithosphere in the southern Aegean can be approximated by three layers representing the upper/lower crust and upper mantle consisting of quartzite, diabase and peridotite, respectively. Geotherms are calculated by using an analytical solution to the one-dimensional heat conduction equation, while Yield Strength Envelopes (YSEs) are produced after assuming laboratory estimated parameters of brittle and ductile deformation for each rock type. The depth frequency of earthquakes in the area, as well as other independent observations favour the YSE calculated for a wet upper crust/upper mantle, a dry lower crust and a geotherm corresponding to a surface heat flow of 62 mW m -2. In this YSE, the upper mantle exhibits maximum strength at 33 km becoming more ductile at greater depths. The lower crust retains significant strength and therefore cannot flow as it did during the early stages of extension, but it is relatively weaker than the upper mantle confirming the 'jelly sandwich' model previously proposed for the continental lithosphere. The downdip rupture width of the Amorgos event can be estimated from empirical relationships to be 26 km which means that its rupture may have extended from the depth of peak strength in the upper mantle (33 km) to 7 km upwards. Such a scenario agrees well with recent modelling results indicating that the Amorgos tsunami was probably caused by

  8. Isotope geochemistry of recent magmatism in the Aegean arc: Sr, Nd, Hf, and O isotopic ratios in the lavas of Milos and Santorini-geodynamic implications

    USGS Publications Warehouse

    Briqueu, L.; Javoy, M.; Lancelot, J.R.; Tatsumoto, M.

    1986-01-01

    In this comparative study of variations in the isotopic compositions (Sr, Nd, O and Hf) of the calc-alkaline magmas of the largest two volcanoes, Milos and Santorini, of the Aegean arc (eastern Mediterranean) we demonstrate the complexity of the processes governing the evolution of the magmas on the scale both of the arc and of each volcano. On Santorini, the crustal contamination processes have been limited, effecting the magma gradually during its differentiation. The most differentiated lavas (rhyodacite and pumice) are also the most contaminated. On Milos, by contrast, these processes are very extensive. They are expressed in the 143Nd/144Nd vs. 87Sr/86Sr diagram as a continuous mixing curve between a mantle and a crustal end member pole defined by schists and metavolcanic rocks outcropping on these volcanoes. In contrast with Santorini, the least differentiated lavas on Milos are the most contaminated. These isotopic singularities can be correlated with the geodynamic evolution of the Aegean subduction zone, consisting of alternating tectonic phases of distension and compression. The genesis of rhyolitic magmas can be linked to the two phases of distension, and the contamination of the calc-alkaline mantle-derived magmas with the intermediate compressive phase. The isotopic characteristics of uncontaminated calc-alkaline primitive magmas of Milos and Santorini are directly comparable to those of magmas generated in subduction zones for which a contribution of subducted sediments to partial melts from the mantle is suggested, such as in the Aleutian, Sunda, and lesser Antilles island arcs. However, in spite of the importance of the sediment pile in the eastern Mediterranen oceanic crust (6-10 km), the contribution of the subducted terrigenous materials remains of limited amplitude. ?? 1986.

  9. The mantle sources beneath the Afar volcanic province and their interplay with extension

    NASA Astrophysics Data System (ADS)

    Pik, Raphael; Stab, Martin; Ancellin, Marie-Anne; Medynski, Sarah; Cloquet, Christophe; Ayalew, Dereje; Yirgu, Gezahegn; Chazot, Gilles; Vye-Brown, Charlotte; Bellahsen, Nicolas; Leroy, Sylvie

    2015-04-01

    The evolution of mantle sources beneath the Ethiopian volcanic province has long been discussed and debated with a long-lived controversy in identifying mantle reservoirs and locating them in the mantle. One interpretation of the isotopic composition of erupted lavas considers that the Afar mantle plume composition is best expressed by recent lavas from Afar and Gulf of Aden (e.g. Erta Ale, Manda Inakir and the 45°E torus anomaly on the Gulf of Aden) implying that all other volcanics (including other active segments and the initial flood basalt province) result from mixing of this plume component with additional lithospheric and asthenospheric components. A completely opposite view considers that the initial Oligocene continental flood basalts best represent the isotopic composition of the Afar mantle plume, which is subsequently mixed in various proportions with continental lithospheric mantle for generating some of the specific signature of Miocene and Quaternary volcanics. The precise and correct identification of mantle components involved in the generation of magmas is of particular importance because this is the only way to document the participation of mantle during extension and its potential role in break-up processes. In this contribution we provide new isotopic data for central Afar and we revisit the whole data set of the Ethiopian volcanic province and African/Arabian intraplate volcanics in order to: (i) precisely identify the distinct mantle components implicated, (ii) discuss their location and evolution in space and time, and (3) link the evolution of mantle with extensional processes beneath the Afar province. This new interpretation of geochemical data allows reconsidering the evolution of mantle in the course of rift evolution. In terms of mantle sources, two populations of active segments are frontally opposed in the volcanic province: those that share exactly the same composition with plume related CFBs (e.g. the Manda Hararo and the Main

  10. Geochronology and geochemistry of middle Permian-Middle Triassic intrusive rocks from central-eastern Jilin Province, NE China: Constraints on the tectonic evolution of the eastern segment of the Paleo-Asian Ocean

    NASA Astrophysics Data System (ADS)

    Wang, Zi-Jin; Xu, Wen-Liang; Pei, Fu-Ping; Wang, Zhi-Wei; Li, Yu; Cao, Hua-Hua

    2015-12-01

    To constrain the Permian-Early Mesozoic tectonic evolution of the eastern segment of the Paleo-Asian Ocean, we conducted zircon U-Pb dating and whole-rock geochemical analyses on six middle Permian-Middle Triassic intrusive plutons in central-eastern Jilin Province, NE China. Zircons from the six plutons display distinct oscillatory zoning and striped absorption in cathodoluminescence (CL) images, and Th/U ratios of 0.11-1.41, indicating a magmatic origin. Zircon U-Pb dating indicates that the intrusive rocks formed in the middle Permian (ca. 260 Ma) to Middle Triassic (ca. 245 Ma). In central-eastern Jilin Province, the middle Permian and Middle Triassic plutons are composed mainly of strongly deformed monzogranites with affinities to adakitic rocks, which are formed from partial melting of thickened mafic lower crust. In contrast, the late Permian-the Early Triassic plutons in central-eastern Jilin Province consist of a bimodal association (including gabbros and granitoids) and deformed monzonites, which typically form in extensional settings. These observations, along with the results of previous studies on early-middle Permian granitoids in western Jilin Province, indicate that the eastern segment of the Paleo-Asian Ocean underwent the initial closure in central-western Jilin Province during the middle Permian and the final closure in eastern Jilin Province in the Middle Triassic.

  11. Deformation microstructures and diagenesis in sandstone adjacent to an extensional fault: Implications for the flow and entrapment of hydrocarbons

    SciTech Connect

    Hippler, S.J. )

    1993-04-01

    Microstructural and diagenetic analyses of the North Scapa Sandstone in the hanging wall of the North Scapa fault, Orkney, Scotland, provide insight into the relationship between faulting and fluid flow during basin development. The results demonstrate the influence of this relationship on fault sealing processes and hydrocarbon migration. During development of the Orcadian basin in the Middle Devonian, the fault moved in an extensional sense. Dilatancy associated with cataclastic deformation caused localization of fluid flow and resulted in the precipitation of quartz and illite cement in the North Scapa Sandstone up to 1 m from the fault plane. This diagenetic event, coupled with cataclastic grain-size reduction, significantly reduced the porosity and permeability of the sandstone directly adjacent to the fault. These processes are effective sealing mechanisms within the sandstone. Lacustrine source rocks in the Orcadian basin reached maturation during the latest Devonian to middle Carboniferous. At the end of this time, the basin was uplifted, and the North Scapa fault was reactivated in a normal, but dominantly oblique-slip sense. This later deformation was accommodated directly outside the sealed zone and resulted in the development of broad (10-20 cm) breccia zones and narrow (<10 cm) cataclastic bands. Further dilatancy associated with the cataclastic deformation channelized hydrocarbon flow through the high-strain breccia zones and cataclastic bands. These observations indicate that fault activity that is broadly coincident with maturation and expulsion of hydrocarbons within a basin can directly influence the location of migration pathways. 81 refs., 14 figs., 1 tab.

  12. Comparison of quartz tuning forks and AlN-based extensional microresonators for viscosity measurements in oil/fuel mixtures

    NASA Astrophysics Data System (ADS)

    Toledo, J.; Manzaneque, T.; Hernando-García, J.; Vazquez, J.; Ababneh, A.; Seidel, H.; Lapuerta, M.; Sánchez-Rojas, J. L.

    2013-05-01

    In-situ monitoring of the physical properties of liquids is of great interest in the automotive industry. For example, lubricants are subject to dilution with diesel fuel as a consequence of late-injection processes, which are necessary for regenerating diesel particulate filters. This dilution can be determined by tracking the viscosity and the density of the lubricant. Here we report the test of two in-plane movement based resonators to explore their capability to monitor oil dilution with diesel and biodiesel. One of the resonators is the commercially available millimeter-sized quartz tuning fork, working at 32.7 kHz. The second resonator is a state-of-the-art micron-sized AlN-based rectangular plate, actuated in the first extensional mode in the MHz range. Electrical impedance measurements were carried out to characterize the performance of the structures in various liquid media in a wide range of viscosities. These measurements were completed with the development of low-cost electronic circuits to track the resonance frequency and the quality factor automatically, these two parameters allow to obtain the viscosity of various fluids under investigation, as in the case of dilution of lubricant SAE 15W40 and biodiesel.

  13. Thermochronometrically constrained anatomy and evolution of a Miocene extensional accommodation zone and tilt domain boundary: The southern Wassuk Range, Nevada

    NASA Astrophysics Data System (ADS)

    Gorynski, Kyle E.; Stockli, Daniel F.; Douglas Walker, J.

    2013-06-01

    (AHe) and Zircon (ZHe) (U-Th)/He thermochronometric data from the southern Wassuk Range (WR) coupled with 40Ar/39Ar age data from the overlying tilted Tertiary section are used to constrain the thermal evolution of an extensional accommodation zone and tilt-domain boundary. AHe and ZHe data record two episodes of rapid cooling related to the tectonic exhumation of the WR fault block beginning at ~15 and ~4 Ma. Extension was accommodated through fault-block rotation and variably tilted the southern WR to the west from ~60°-70° in the central WR to ~15°-35° in the southernmost WR and Pine Grove Hills, and minimal tilting in the Anchorite Hills and along the Mina Deflection to the south. Middle Miocene geothermal gradient estimates record heating immediately prior to large-magnitude extension that was likely coeval with the extrusion of the Lincoln Flat andesite at ~14.8 Ma. Geothermal gradients increase from ~19° ± 4°C/km to ≥ 65° ± 20°C/km toward the Mina Deflection, suggesting that it was the focus of Middle Miocene arc magmatism in the upper crust. The decreasing thickness of tilt blocks toward the south resulted from a shallowing brittle/ductile transition zone. Postmagmatic Middle Miocene extension and fault-block advection were focused in the northern and central WR and coincidentally moderated the large lateral thermal gradient within the uppermost crust.

  14. Brittle extension of the continental crust along a rooted system of low-angle normal faults: Colorado River extensional corridor

    NASA Technical Reports Server (NTRS)

    John, B. E.; Howard, K. A.

    1985-01-01

    A transect across the 100 km wide Colorado River extensional corridor of mid-Tertiary age shows that the upper 10 to 15 km of crystalline crust extended along an imbricate system of brittle low-angle normal faults. The faults cut gently down a section in the NE-direction of tectonic transport from a headwall breakaway in the Old Woman Mountains, California. Successively higher allochthons above a basal detachment fault are futher displaced from the headwall, some as much as tens of kilometers. Allochthonous blocks are tilted toward the headwall as evidenced by the dip of the cappoing Tertiary strata and originally horizontal Proterozoic diabase sheets. On the down-dip side of the corridor in Arizona, the faults root under the unbroken Hualapai Mountains and the Colorado Plateau. Slip on faults at all exposed levels of the crust was unidirectional. Brittle thinning above these faults affected the entire upper crust, and wholly removed it locally along the central corridor or core complex region. Isostatic uplift exposed metamorphic core complexes in the domed footwall. These data support a model that the crust in California moved out from under Arizona along an asymmetric, rooted normal-slip shear system. Ductile deformation must have accompanied mid-Tertiary crustal extension at deeper structural levels in Arizona.

  15. Major Late Miocene cooling of the middle crust associated with extensional orogenesis in the Funeral Mountains, California

    NASA Astrophysics Data System (ADS)

    Holm, Daniel K.; Dokka, Roy K.

    1991-09-01

    The Funeral Mountains of the Death Valley region consist of a metamorphic core complex that underlies the Miocene Boundary Canyon detachment fault. Fissiontrack age determinations on sphene, zircon, and apatite from the highest grade portions of the Funeral Mountains (collected in Monarch Canyon) indicate rapid cooling from above ˜285°C at 9-10 Ma. The steep dT/dt slope implied by the cooling path envelope as well as its synchroneity with development of the Boundary Canyon detachment suggests tectonic unroofing of between 9.5 and 17 km since ˜10 Ma (assuming typical geothermal gradients prior to detachment development of between ˜20-30°C/km). Previous studies report muscovite 40Ar/39Ar plateau ages from the same area indicating that the Funeral Mountains core may have cooled below ˜350°C between 110-55 Ma. These data, when combined with the fission track ages, suggest residence of the metamorphic terrain at 285-350°C from Late Cretaceous to late Miocene time. Recent studies, using petrologic constraints, have suggested that much of the unroofing of the Funeral Mountains, as well as development of tectonite fabrics, occurred during Mesozoic extension. Recognition of temperatures in the 300°C range during Miocene time suggests some of the ductile extensional fabrics may be late Miocene in age.

  16. Quantification of Both Normal and Right-Lateral Late Quaternary Activity Along the Kongur Shan Extensional System, Chinese Pamir

    NASA Astrophysics Data System (ADS)

    Chevalier, M. L.; Pan, J.; Liu, D.; Wang, M.; Lu, H.; Li, H.

    2014-12-01

    The Pamir Mountains, located at the western end of the Indo-Asian collision zone, are one of the most tectonically active regions in central Asia. The Kongur Shan extensional system (KES), located in the Chinese Pamir, accommodates EW extension due to the India/Asia collision and has been the focus on numerous Cenozoic studies, whereas there are very few late Quaternary studies. The KES is mostly normal, except towards its NW end, where it becomes right-lateral strike-slip, along the Muji segment. From Muji to Tashkorgan, we investigated 6 sites, where active normal and/or strike-slip faults cut and offset abandoned river channels or alluvial fans and terraces, which allows us to quantify both the normal and strike-slip motions at different locations along the KES. Our preliminary results yield vertical and right-lateral rates of ~1.8 and >3.2 mm/yr along the northern KES (Muji to Bulunkou) during the Holocene, and of ~1.9-2.7 and ~1 mm/yr along the southern KES (near Taheman) since ~30 ka. These preliminary rates, consistent with GPS data and Cenozoic rates, imply that the EW extension rate due to the northward indentation of the Pamir salient as well as due to the clockwise rotation of the rigid Tarim basin, is partly accommodated by the Muji-Tashkorgan pull-apart basin, and is faster in the north than in the south (from ~5 to ~2 mm/yr).

  17. Extensional Flow of a Polystyrene Boger Fluid Through a 4:1:4 Axisymmetric Contraction/Expansion

    NASA Technical Reports Server (NTRS)

    Rothstein, Jonathan P.; McKinley, Gareth H.

    1999-01-01

    The creeping flow of a dilute (0.025 wt%) monodisperse polystyrene/polystyrene Boger fluid through a 4:1:4 axisymmetric contraction/expansion is experimentally observed for a wide range of Deborah numbers. Pressure drop measurements across the orifice plate show a large extra pressure drop that increases monotonically with Deborah number above the value observed for a similar Newtonian fluid at the same flow rate. This enhancement in the dimensionless pressure drop is not associated with the onset of a flow instability, yet it is not predicted by existing steady-state or transient numerical computations with simple dumbbell models. It is conjectured that this extra pressure drop is the result of an additional dissipative contribution to the polymeric stress arising from a stress-conformation hysteresis in the strong non-homogeneous extensional flow near the contraction plane. Such a hysteresis has been independently measured and computed in recent studies of homogeneous transient uniaxial stretching of PS/PS Boger fluids. Flow visualization and velocity field measurements using digital particle image velocimetry (DPIV) show large upstream growth of the corner vortex with increasing Deborah number. At large Deborah numbers, the onset of an elastic instability is observed, first locally as small amplitude fluctuations in the pressure measurements, and then globally as an azimuthal precessing of the upstream corner vortex accompanied by periodic oscillations in the pressure drop across the orifice.

  18. Buckling of cornstarch solutions after pinch-off: evidence for a jamming transition at high extensional rates

    NASA Astrophysics Data System (ADS)

    Roche, Matthieu; Akkaya, Oyku M.; Kellay, Hamid; Stone, Howard A.

    2010-11-01

    We studied the behavior of density-matched cornstarch solutions during and after pinch-off from a needle. We observed an exponential slowing down in the thinning dynamics of the bridge connecting the droplet to the needle during which the bridge adopts a cylindrical shape. At this stage, the flow is mainly extensional allowing us to explore the behavior of starch solutions at extension rates greater than 10 s-1. The bridge continues to thin and then destabilizes leading to break-up in multiple parts. These parts retract on themselves and buckle. We show that this buckling behavior can be understood as a consequence of a liquid-to-solid transition of starch solutions during thinning. Using microscopy, we demonstrate that the neck is inhomogeneous during the last stages of pinch-off: the thinner sections of the neck are fluid while the thicker regions are jammed. We explain buckling by showing that the bridge deforms around its fluid sections, making this system analogous to a chain of solid links connected by fluid bridges.

  19. Fore arc tectonothermal evolution of the El Oro metamorphic province (Ecuador) during the Mesozoic

    NASA Astrophysics Data System (ADS)

    Riel, Nicolas; Martelat, Jean-Emmanuel; Guillot, Stéphane; Jaillard, Etienne; Monié, Patrick; Yuquilema, Jonatan; Duclaux, Guillaume; Mercier, Jonathan

    2014-10-01

    The El Oro metamorphic province of SW Ecuador is a composite massif made of juxtaposed terranes of both continental and oceanic affinity that has been located in a fore-arc position since Late Paleozoic times. Various geochemical, geochronological, and metamorphic studies have been undertaken on the El Oro metamorphic province, providing an understanding of the origin and age of the distinct units. However, the internal structures and geodynamic evolution of this area remain poorly understood. Our structural analysis and thermal modeling in the El Oro metamorphic province show that this fore-arc zone underwent four main geological events. (1) During Triassic times (230-225 Ma), the emplacement of the Piedras gabbroic unit at crustal-root level (~9 kbar) triggered partial melting of the metasedimentary sequence under an E-W extensional regime at pressure-temperature conditions ranging from 4.5 to 8.5 kbar and from 650 to 900°C for the migmatitic unit. (2) At 226 Ma, the tectonic underplating of the Arenillas-Panupalí oceanic unit (9 kbar and 300°C) thermally sealed the fore-arc region. (3) Around the Jurassic-Cretaceous boundary, the shift from trench-normal to trench-parallel subduction triggered the exhumation and underplating of the high-pressure, oceanic Raspas Ophiolitic Complex (18 kbar and 600°C) beneath the El Oro Group (130-120 Ma). This was followed by the opening of a NE-SW pull-apart basin, which tilted the massif along an E-W subhorizontal axis (110 Ma). (4) In Late Cretaceous times, an N-S compressional event generated heterogeneous deformation due to the presence of the Cretaceous Celica volcanic arc, which acted as a buttress and predominantly affected the central and eastern part of the massif.

  20. From colloidal spheres to nanofibrils: extensional flow properties of mineral pigment and mixtures with micro and nanofibrils under progressive double layer suppression.

    PubMed

    Dimic-Misic, Katarina; Hummel, Michael; Paltakari, Jouni; Sixta, Herbert; Maloney, Thad; Gane, Patrick

    2015-05-15

    Suspensions of mineral pigment and cellulose fibrillar derivatives are materials regularly found in the forest products industries, particularly in paper and board production. Many manufacturing processes, including forming and coating employ flow geometries incorporating extensional flow. Traditionally, colloidal mineral pigment suspensions have been considered to show little to no non-linear behaviour in extensional viscosity. Additionally, recently, nanofibrillar materials, such as microfibrillar (MFC) and nanofibrillar cellulose (NFC), collectively termed MNFC, have been confirmed by their failure to follow the Cox-Merz rule to behave more as particulate material rather than showing polymeric rheological properties when dispersed in water. Such suspensions and their mixtures are currently intensively investigated to enable them to generate likely enhanced composite material properties. The processes frequently involve exposure to increasing levels of ionic strength, coming either from the weak solubility of pigments, such as calcium carbonate, or retained salts arising from the feed fibre source processing. By taking the simple case of polyacrylate stabilised calcium carbonate suspension and comparing the extensional viscosity as a function of post extension capillary-induced Hencky strain on a CaBER extensional rheometer over a range of increasing salt concentration, it has been shown that the regime of constriction changes as the classic DLVO double layer is progressively suppressed. This change is seen to lead to a characteristic double (bimodal) measured viscosity response for flocculated systems. With this novel characteristic established, more complex mixed suspensions of calcium carbonate, clay and MNFC have been studied, and the effects of fibrils versus flocculation identified and where possible separated. This technique is suggested to enable a better understanding of the origin of viscoelasticity in these important emerging water-based suspensions

  1. Geometry of miocene extensional deformation, lower Colorado River Region, Southeastern California and Southwestern Arizona: Evidence for the presence of a regional low-angle normal fault

    NASA Technical Reports Server (NTRS)

    Tosdal, R. M.; Sherrod, D. R.

    1985-01-01

    The geometry of Miocene extensional deformation, which changes along a 120 km-long, northeast-trending transect from the southestern Chocolate Mountains, southeastern California, to the Trigo and southern Dome Rock Mountains, southwestern Arizona is discussed. Based upon regional differences in the structural response to extension and estimated extensional strain, the transet can be divided into three northwesterly-trending structural domains. From southwest to northeast, these domains are: (1) southestern Chocolate-southernmost Trigo Mountains; (2) central to northern Trigo Mountains; and (3) Trigo Peaks-southern Dome Rock Mountains. All structures formed during the deformation are brittle in style; fault rocks are composed of gouge, cohesive gouge, and local microbreccia. In each structural domain, exposed lithologic units are composed of Mesozoic crystalline rocks unconformably overlain by Oligocene to Early Miocene volcanic and minor interbedded sedimentary rocks. Breccia, conglomerate, and sandstone deposited synchronously with regional extension locally overlie the volcanic rocks. Extensional deformation largely postdated the main phase of volcanic activity, but rare rhyolitic tuff and flows interbedded with the syndeformational clastic rocks suggest that deformation began during the waning stages of valcanism. K-Ar isotopic ages indicate that deformation occurred in Miocene time, between about 22 and m.y. ago.

  2. Distinct magnetic fabric in weakly deformed sediments from extensional basins and fold-and-thrust structures in the Northern Apennine orogenic belt (Italy)

    NASA Astrophysics Data System (ADS)

    Caricchi, Chiara; Cifelli, Francesca; Kissel, Catherine; Sagnotti, Leonardo; Mattei, Massimo

    2016-02-01

    We report on results from anisotropy of magnetic susceptibility (AMS) analyses carried out on weakly deformed fine-grained sediments from the Northern Apennine orogenic system (Italy). We sampled 63 sites from preorogenic, synorogenic, and postorogenic sequences, which differ in age, composition, depositional environment, degrees of deformation, and tectonic regimes. The magnetic fabric is typical of weakly deformed sediments, with a magnetic foliation subparallel to the bedding plane and a magnetic lineation well defined in this plane. Northern Apennine chain deposits are characterized by strongly oblate magnetic susceptibility ellipsoids, indicating that the magnetic fabric is the result of both compaction process and tectonic load experienced by the sediments during diagenesis and orogenic events. The orientation of magnetic lineation is significantly different depending whether the studied sites underwent extensional or compressional tectonic regimes. In the Northern Apennine chain, the magnetic lineation is mostly oriented NNW-SSE, parallel to the main compressional structures. It suggests a tectonic origin of the magnetic lineation with an acquisition related to the Apennines compressional phases. In the extensional Tuscan Tyrrhenian margin, magnetic lineation is oriented ENE-WSW, almost perpendicular to the main extensional faults, which represent the main deformation elements of the area. Our results demonstrate a close relationship between the shape and orientation of magnetic fabric and the tectonic history of rocks, confirming that AMS represents a valuable tool to investigate the tectonic history of weakly deformed sedimentary rocks.

  3. Time dependent structural architecture of subsidiary fracturing and stress pattern in the tip region of an extensional growth fault system, Tarquinia basin, Italy

    NASA Astrophysics Data System (ADS)

    Balsamo, F.; Storti, F.; Piovano, B.; Salvini, F.; Cifelli, F.; Lima, C.

    2008-06-01

    Fault tip regions, relay ramps and accommodation zones in between major segments of extensional fault systems provide zones of additional structural and stratigraphic complexities and also significantly affect their hydraulic behaviour. The great interest for both academic and industrial purposes encouraged specific studies of fault tip regions that, in some cases, produced controversial results. We approached the study of fault tip regions by integrating structural, AMS and stratigraphic analyses of the tip of an extensional growth fault system in the Tarquinia basin, on the Tyrrhenian side of the Northern Apennines. Detailed structural mapping indicates the occurrence of systematic relationships between the orientation of the main subsidiary fault zones, the orientation and position of the two main joint sets developed in the fault damage zones, and the overprinting relationships between the two main joint sets themselves. Microstructural analysis of fault core rocks indicates a progression of deformation from soft-sediment to brittle conditions. The AMS study supports the evolution of deformation under a constantly oriented stress field. By combining this multidisciplinary information we propose an evolutionary model for the tip of the extensional growth fault system that accounts for the progressively changing sediment rheological properties, and for the time dependent subsidiary deformation pattern by invoking the interplay between the regional stress field and the local, kinematically-derived one by fault activity. We also speculate on the overall implications for fluid flow of the proposed evolutionary model.

  4. Oblique transfer of extensional strain between basins of the middle Rio Grande rift, New Mexico: fault kinematic and paleostress constraints

    USGS Publications Warehouse

    Minor, Scott A.; Hudson, Mark R.; Caine, Jonathan Saul; Thompson, Ren A.

    2013-01-01

    The structural geometry of transfer and accommodation zones that relay strain between extensional domains in rifted crust has been addressed in many studies over the past 30 years. However, details of the kinematics of deformation and related stress changes within these zones have received relatively little attention. In this study we conduct the first-ever systematic, multi-basin fault-slip measurement campaign within the late Cenozoic Rio Grande rift of northern New Mexico to address the mechanisms and causes of extensional strain transfer associated with a broad accommodation zone. Numerous (562) kinematic measurements were collected at fault exposures within and adjacent to the NE-trending Santo Domingo Basin accommodation zone, or relay, which structurally links the N-trending, right-stepping en echelon Albuquerque and Española rift basins. The following observations are made based on these fault measurements and paleostresses computed from them. (1) Compared to the typical northerly striking normal to normal-oblique faults in the rift basins to the north and south, normal-oblique faults are broadly distributed within two merging, NE-trending zones on the northwest and southeast sides of the Santo Domingo Basin. (2) Faults in these zones have greater dispersion of rake values and fault strikes, greater dextral strike-slip components over a wide northerly strike range, and small to moderate clockwise deflections of their tips. (3) Relative-age relations among fault surfaces and slickenlines used to compute reduced stress tensors suggest that far-field, ~E-W–trending σ3 stress trajectories were perturbed 45° to 90° clockwise into NW to N trends within the Santo Domingo zones. (4) Fault-stratigraphic age relations constrain the stress perturbations to the later stages of rifting, possibly as late as 2.7–1.1 Ma. Our fault observations and previous paleomagnetic evidence of post–2.7 Ma counterclockwise vertical-axis rotations are consistent with increased

  5. Active interplay between strike-slip and extensional structures in a Back-Arc environment, Bay of Plenty, New Zealand

    NASA Astrophysics Data System (ADS)

    Barnes, P. M.; Lamarche, G.; Bull, J. M.

    2003-12-01

    Active continental back-arc tectonics associated with the oblique Hikurangi subduction zone, North Island, New Zealand, is characterized by (1) extensional deformation distributed across a 40-50 km-wide zone, but presently concentrated in the east within the 20 km-wide, NE-striking Taupo Fault Belt (TFB) and Whakatane Graben (WG); (2) c. 12mm/yr extension rate at the Bay of Plenty coast; (3) 1-3 mm/yr subsidence in the WG; and (4) a seismogenic zone estimated to be 6-9 km thick. A component of the oblique convergence within the plate boundary is partitioned to the east onto the adjacent North Island Dextral Fault Belt (NIDFB), a large NNE-trending strike-slip fault system traversing the entire North Island. At the Bay of Plenty coast, the NIDFB strikes north, with an estimated strike-slip rate of at least 1 mm/yr. Both normal and strike-slip fault systems extend beneath the continental shelf in the Bay of Plenty, and because of differences in their strike, they converge and interact. Detailed mapping of faults using marine seismic reflection profiles and multibeam bathymetric data reveals the structure of the WG. Tilted basement blocks are associated with large west-dipping faults, numerous antithetic secondary faults, and domino-style fault arrays. Eastward migration of the principal extension zone during the last c. 1 Myrs has resulted in the encroachment and oblique overprinting of the NIDFB by the WG. The structure and geometry of the White Island Fault (WIF), currently the principal fault along the eastern margin of the graben, results from interaction and linkage of the two fault systems. The displacement profile of this fault reveals relatively young NE-striking sections that obliquely link more northerly-striking, inherited components of the NIDFB. Understanding of the fault structure and evolution may have implications for the interpretation of earthquake potential close to urban centres.

  6. Tuff of Bridge Spring: A mid-Miocene ash-flow tuff, northern Colorado River extensional corridor, Nevada and Arizona

    SciTech Connect

    Smith, E.I.; Morikawa, S.A.; Martin, M.W. . Dept. of Geoscience); Gonzales, D.A.; Walker, J.D. . Isotope Geochronology Lab.)

    1993-04-01

    The Tuff of Bridge Spring (TBS) (15.19[+-]0.02 Ma; Gans, 1991) is a compositionally variable dacite to rhyolite ash-flow tuff that crops out over 1800 sq. km in the northern Colorado River extensional corridor. The TBS varies in composition from 59.5 to 74 wt. % SiO[sub 2] and typically contains phenocrysts of sanidine, plagioclase, biotite, clinopyroxene, [+-] sphene, [+-] apatite, [+-] zircon, and [+-] hornblende. The TBS is thickest and displays its greatest compositional range in the center of its area of exposure. The McCullough Range section contains at least three chemically distinct flow units that vary in composition from dacite to rhyolite. The basal and uppermost units are normally zoned and the middle unit is reversely zoned. The complex chemical zonation and zoning reversals in the TBS indicate that it erupted from a magma chamber that was periodically injected by both mafic and felsic magmas. Sections at the edge of the exposure area are thin, contain only one or two chemically definable flow units and have a limited compositional range. To the west at Sheep Mountain, TBS is 2.9 m thick and ranges from 70.2--71.7 wt % SiO[sub 2]. To the east in the White Hills, TBS is 14 m thick and ranges from 59.5--65.3 wt % SiO[sub 2]. This chemical and field data indicate that although the TBS is regionally extensive, individual flow units are not. Isotopic data and chemistry suggest that all sections of the TBS are cogenetic. Comparisons of chemical, geochronological and isotopic data between the TBS and nearby coeval plutons indicate that the Aztec Wash (Eldorado Mts., Nevada) and Mt. Perkins (Black Mountain, Arizona) plutons are possible source for the TBS. Both plutons exhibit ample evidence of magma mixing and commingling, processes that may produce compositional zonation such as that observed in the TBS.

  7. Extensional tectonics during the igneous emplacement of the mafic-ultramafic rocks of the Barberton greenstone belt

    NASA Technical Reports Server (NTRS)

    Dewit, M. J.

    1986-01-01

    The simatic rocks (Onverwacht Group) of the Barberton greenstone belt are part of the Jamestown ophiolite complex. This ophiolite, together with its thick sedimentary cover occupies a complex thrust belt. Field studies have identified two types of early faults which are entirely confined to the simatic rocks and are deformed by the later thrusts and associated folds. The first type of fault (F1a) is regional and always occurs in the simatic rocks along and parallel to the lower contacts of the ophiolite-related cherts (Middle Marker and equivalent layers). These fault zones have previously been referred to both as flaser-banded gneisses and as weathering horizons. In general the zones range between 1-30m in thickness. Displacements along these zones are difficult to estimate, but may be in the order of 1-100 km. The structures indicate that the faults formed close to horizontal, during extensional shear and were therefore low angle normal faults. F1a zones overlap in age with the formation of the ophiolite complex. The second type of faults (F1b) are vertical brittle-ductile shear zones, which crosscut the complex at variable angles and cannot always be traced from plutonic to overlying extrusive (pillowed) simatic rocks. F1b zones are also apparently of penecontemporaneous origin with the intrusive-extrusive igneous processs. F1b zones may either represent transform fault-type activity or represent root zones (steepened extensions) of F1a zones. Both fault types indicate extensive deformation in the rocks of the greenstone belt prior to compressional overthrust tectonics.

  8. Origin and evolution of extensional faults within the ductile-to-brittle transition, Badwater Turtleback, Death Valley, CA

    SciTech Connect

    Miller, M.G. . Geological Sciences)

    1992-01-01

    Field relations in the footwall of the Badwater Turtleback suggest a model for two geometrically distinct sets of brittle faults. The model shows how extensional brittle faults may (1) initiate within mylonite zones as a result of strain incompatibilities, and (2) become inactive as a function of decreased dip angles. Cross-cutting relations indicate that, as the footwall cooled, late stages of ductile strain concentrated in calcite marble shear zones while brittle faults formed within the other rocks. These faults fall into two groups: decollement-style faults (DSF) and high angle faults (HAF). They must have formed concurrently with calcite mylonitization because they locally terminate at the calcite shear zones. DSF are subparallel to mylonitic foliation and locally re-occupy calcite shear zones. They are moderately nonplanar, discontinuous at scales of 10--100m, and show limited evidence for transport parallel to stretching lineations in adjacent mylonites. HAF cut foliation at high angles. These faults either (1) end downwards into unfractured calcite mylonite, (2) cut calcite mylonite and join underlying DSF, or (3) cut calcite mylonite and DSF. Where they join DSF, HAF are strongly listric and maintain integrity as distinct slip surfaces within the DSF zone (see inset). DSF formed at rheological boundaries and at places where actively deforming calcite marble pinched out into brittle rocks. HAF formed in brittle upper plates of calcite marble shear zones to accommodate differences in strain between brittle and nonbrittle rock. With continued strain and consequent cooling and eastward tilting of the footwall, calcite shear zones stopped deforming ductility, became occupied by DSF, and gradually rotated to lower angles.

  9. Extensional tectonics of a part of the southwestern White Pine Range, Nevada: Implications for petroleum occurrence in Railroad Valley

    SciTech Connect

    Langrock, H.; Taylor, W.J.

    1995-06-01

    Extension exerts controls on migration and trapping of petroleum in rift settings, such as the Great Basin. Extensional controls are critical to the accumulation of petroleum in Nevada, including in Pine and Railroad Valleys. In these fields, reservoir permeability increased due to extension-related fracturing. These fractured reservoirs and structural traps may be contained within upper plates to regional detachments. Just northeast of Nevada`s most productive oil fields, a regionally extensive detachment is exposed in the White Pine Range. This detachment, the Blackrock fault, is a presently low, angle normal fault which dips <30{degrees} along most of its surface trace. The Blackrock fault is nonplanar and exhibits drastic changes in both orientation and geometry along its length. The amount of stratigraphic separation across the fault is also highly variable ranging from <30 to {approximately}3800 m. Upper plate structures to the Blackrock fault may influence oil fields in Railroad Valley. Rocks in the hanging wall of the Blackrock fault are more intensely faulted than rocks in the footwall. The upper plate faults strike north, northwest, east, and northeast. The {approximately}east-striking faults are youngest because they typically cut the other structures. These faults are closely spaced and largely interconnected which allows migration of hydrocarbons. Most of the hanging wall faults are high-angle normal faults which cut both Paleozoic and Oligocene rocks. In the Blackrock upper plate, Paleozoic, carbonate and minor siliciclastic rocks are unconformably overlain by Oligocene tuffs and tuffaceous sedimentary rocks of the Garret Ranch Group with interbedded rhyolites. Upper plate fracturing of the Paleozoic rocks and Garret Ranch Group is important because parts of both sections are producing reservoirs in Railroad Valley.

  10. Relation between extensional geometry of the northern Grant Range and oil occurrences in railroad valley, East-Central Nevada

    SciTech Connect

    Lund, K.; Perry, W.J. Jr. ); Beard, L.S. )

    1993-06-01

    In the northern Grant Range, heterogeneous Neogene extension was dominated by synchronous arching and attenuation. Attenuation was accomplished along a stacked set of attenuation faults that formed at low angles to bedding as the Paleozoic carbonate and Paleogene rocks arched about a north-northwest axis. The style and amount of attenuation was controlled by lithologic character and structural depth of rock units and by geometry of the arch. On the steeper west side of the Grant Range arch, the curviplanar low-angle attenuation faults converge into a single shallowly west-dipping fault zone along which the stratigraphic juxtaposition of Mississippian units over Middle Cambrian units and Late Cretaceous granite marks the zone of maximum attenuation. Arching and heterogeneous extension resulted from uplift of the Grant Range relative to the structural basin of Railroad Valley to the west. This structural differentiation is a complex zone of subparallel-to-bedding, shallow-dipping attenuation faults rather than as a simple high-angle range-front fault. Seismic and drill-hole data indicate that low-angle attenuation faults in the range extend into Railroad Valley and control the structure buried in the valley. Mississippian and Paleocene to Eocene petroleum source rocks and Devonian to Oligocene reservoir rocks in Railroad Valley oil fields are in extensively fractured rocks of the upper plate to the major extensional fault system. Thus, relatively cold upper-plate rocks, immature with respect to hydrocarbon generation, were brought relatively down into contact with hotter lower-plate rocks by Neogene attenuation faulting. Oil in Railroad Valley, which is sourced from rocks as young as Eocene, was probably generated by this juxtaposition during Neogene crustal attenuation, and subsequently migrated into upper-plate fractured reservoirs. 101 refs., 10 figs.

  11. Tectonic beheading of fluvial valleys in the Maestrat grabens (eastern Spain): Insights into slip rates of Pleistocene extensional faults

    NASA Astrophysics Data System (ADS)

    Simón, José L.; Pérez-Cueva, Alejandro J.; Calvo-Cases, Adolfo

    2013-05-01

    Interaction between faulting and landscape evolution in regions of active tectonics allows us to use subtle geomorphological markers for estimating fault slip rates. Geomorphic features of two valleys connected with the bottom of the Alcalà de Xivert graben, at the Maestrat graben system (eastern Spain), suggest that they correspond to the lowest segments of ancient valleys whose original heads were located at the axis of the neighbouring Irta range. They were beheaded owing to displacement of the Torreblanca and Irta faults during a period of active extensional faulting in Middle Pleistocene times. These faults produced a negative inversion of the relief, sinking a narrow graben (the Ametler graben) at the middle of the Irta range whose alluvial infill buried the midsegments of the beheaded valleys. This hypothesis has been tested by applying two geomorphic indices, the Stream-gradient index (SL) and the Valley width/height ratio (Vf), as well as by considering surface and subsoil information about the sedimentary infill of the Ametler graben. From this evolutionary model, after reconstructing hypothetical longitudinal profiles of the ancient rivers, and taking into account a new absolute age obtained for the alluvial infill of the Ametler graben, slip rates at the northern segment of the Torreblanca fault have been approached. The throw rate has been constrained between a minimum of 0.04-0.07 mm/year for the last 1.9 to 2.6 Ma, and a maximum of 0.26-0.30 mm/year for the last 253.3 ± 18.0 ky. These values are comparable to those averaged on other active faults in the central-eastern Iberian Chain for the overall Late Pliocene-Pleistocene times. Nevertheless, the Torreblanca fault shows exceptionally high activity within the context of the Maestrat and Catalonian grabens, which can explain its deep imprint in landscape evolution.

  12. Proterozoic history of the Borborema province (NE Brazil): Correlations with neighboring cratons and Pan-African belts and implications for the evolution of western Gondwana

    NASA Astrophysics Data System (ADS)

    Neves, SéRgio Pacheco

    2003-08-01

    Geological and geochronological correlations between Borborema province (NE Brazil) and neighboring cratons and Brasiliano/Pan-African belts indicate that the Amazonian, West African, and São Francisco/Congo cratons and the basement of the Araguaia, Borborema, Nigerian, and Cameroon provinces were part of the Atlantica supercontinent. This continent was established at the end of the Transamazonian/Eburnean cycle (˜2.0 Ga) and, apart from ubiquitous taphrogenesis in the 1.8-1.7 Ga interval, remained largely unaffected for the following 1 Ga. Around 1 Ga an important magmatic event in Borborema province correlates with rifting episodes and anorogenic magmatism in the São Francisco, Congo, and Amazonian cratons. These events are interpreted as failed attempts to break up Atlantica, which at this time may have been part of the larger Rodinia supercontinent. Renewed extensional conditions in Borborema province during the middle and late Neoproterozoic are attributed to far-field stresses transmitted to the interior of Atlantica by outwardly dipping subduction zones that encircled its northern (present day coordinates) portion. The rarity of petrotectonic assemblages typical of subduction zone environments indicates that extension did not evolve enough to form large oceans basins and thus that the Borborema province essentially includes reworked intracontinental domains. Regional deformation and metamorphism, starting at 650-640 Ma, and shear zone development, beginning at 590-595 Ma, were continuously developed through time and were synchronous throughout most of the Borborema, Araguaia, Cameroon, and Nigerian provinces. Postorogenic conditions were reached 540-530 Myr ago, while active deformation was still occurring in other belts that accreted around Atlantica to form western Gondwana.

  13. Extensional Tectonics and Paleoclimate of the Albertine and Edward Rifts: Constraints from Integrated Seismic Reflection and Topographic Studies

    NASA Astrophysics Data System (ADS)

    Karp, T.; McGlue, M. M.; Scholz, C. A.; Kasande, R.; Mugisha, F.

    2004-12-01

    Lakes Albert and Edward are among the largest lakes in Africa and form substantial reservoirs for tropical precipitation within the Upper Nile Watershed (UNW), the equatorial headwaters supporting annual discharge of the main Nile River into the Mediterranean Sea. Extensional processes forming Lakes Albert and Edward have driven landscape evolution, manifested in significant topography and reversed drainages networks. Consequently, the UNW, including Lakes Albert, Edward, Victoria, and Kyoga, and their riverine connections, provide an important case study for drainage basin evolution in actively extending continental lithosphere. In addition to multiple scales of tectonic deformation, high frequency climate change affects the basins in the UNW, which record moisture signals from both the Indian and Atlantic Oceans. Paleoclimate proxy data indicate the desiccation of Lake Victoria and cessation of Victoria Nile flow during the Last Glacial Maximum (22 - 18 ka). However, the response of Lakes Albert and Edward during this time period is not fully resolved. In 2003, 1600 line km of multichannel seismic reflection and high resolution echo-sounder data were collected from Lake Albert, while 200 km of 1 kHz seismic reflection data were collected from Lake Edward. In conjunction with recently released digital elevation models, we investigate both tectonic and climatic processes operative in the basins. In Lake Albert, we are able to map depth to pre-rift basement, basin boundary fault as well as intrabasinal fault geometries that control both bathymetry and sediment distribution. Shallow reflections suggest desiccation of the lake, probably during the LGM; these results tie well with published sediment core data. Acoustic data from Lake Edward record two regression events, although this lake apparently escaped LGM desiccation, and may contain a complete, high-resolution archive of Quaternary climate change in its deep-water sequences. Our interpretations provide another

  14. The tectonic evolution of Cenozoic extensional basins, northeast Brazil: Geochronological constraints from continental basalt 40Ar/39Ar ages

    NASA Astrophysics Data System (ADS)

    de Souza, Zorano Sérgio; Vasconcelos, Paulo Marcos; Knesel, Kurt Michael; da Silveira Dias, Luiz Gustavo; Roesner, Eduardo Henrique; Cordeiro de Farias, Paulo Roberto; de Morais Neto, João Marinho

    2013-12-01

    The Boa Vista and Cubati Basins, Paraíba, Brazil, are NW-SE extension-related intracratonic basins that resulted from tectonic stresses after the opening of the South Atlantic. These basins contain lacustrine fossiliferous sediments, bentonite beds, and basalt flows that preserve Cenozoic continental records. 40Ar/39Ar ages for six whole-rocks from two distinct basaltic flows underlying the sediments in the Boa Vista basin are 27.3 ± 0.8 and 25.4 ± 1.3 Ma, while three grains from a basaltic flow overlying the sediments yield 22.0 ± 0.2 Ma. The sediments at the nearby Cubati Basin are overlain by a basalt flow with ages of ˜25.4 Ma. Three whole-rocks from an NE-SW-trending trachytic dyke cross cutting the sediments at the Boa Vista Basin yield 40Ar/39Ar ages of ˜12.45 ± 0.06, 12.59 ± 0.07, and 12.58 ± 0.07 Ma. Three whole-rocks from a nearby volcanic plug (Chupador) yield an age of 23.4 ± 0.1 Ma. The geochronological results combined with stratigraphic correlations between the two basins allow bracketing the age of the main sedimentary and bentonic units within the Boa Vista and Cubati Basins between 25.5 ± 1.3 and 24.9 ± 0.1 Ma. The ages, combined with field observations reveal that the formation of the Boa Vista and Cubati basins is associated with mantle-derived magmas channelled through reactivated Precambrian shear zones. Our geochronological results suggest that a temporal link with the Fernando de Noronha and Saint Helena hot spots can be excluded as possible sources of the Boa Vista and Cubati magmas. Rather, the extensional tectonics in the 30-20 Ma interval, long after Gondwana break-up, may be associated with the re-activation of continental-scale shear zones that channelled small batches of mantle-derived magmas.

  15. Extensional faulting in the Taupo Volcanic Zone, New Zealand: stress/strain cycling and deformation partitioning from numerical models

    NASA Astrophysics Data System (ADS)

    Dempsey, D. E.; Ellis, S. M.; Archer, R.; Rowland, J. V.

    2010-12-01

    The Taupo Volcanic Zone of New Zealand’s Central North Island is characterized by widespread normal faulting that accommodates a high proportion of the region’s 7-15 mm yr-1 tectonic extension. Abundant volcanism and geothermal activity are accompanied by seismicity to depths of ~6-8 km. This suggests a shallow brittle-ductile transition (BDT) consistent with the high heat flow (700-800 mW m-1) observed in the region. Fault structures vary from arrays of short strands with lengths of 0.1-1 km to extensive, solitary strands several 10’s of km in length. Fault dip at the surface is estimated to be 55-70o but may shallow near seismogenic depths. Using the finite element software package Abaqus a model is developed to describe movements on a single normal fault under extensional boundary conditions. A visco-elasto-plastic rheology describes crustal deformation and accounts for a transition from brittle to ductile behavior at ~7 km depth. Faults are modeled as internal contact surfaces extending from the surface to depth and whose slip behavior is prescribed by varying the surface coefficient of friction. Fault rupture is cyclical and occurs every 300-1000 years. Over several cycles dip-slip fault displacement is observed to partition into three zones. In the upper crust (~0-7 km) slip is predominantly rigid body and corresponds to minimal elastic straining. Below this, within a ~3 km deep mid-crustal region corresponding to the BDT, dip-slip gradually reduces to zero, accommodated by the development of elastic strain. In the lower crust dip-slip and elastic strain are nearly zero and thus fault behavior is absent. During the period of quiescence following a seismic episode a region of increased visco-elastic creep develops in the lower crust, driven in part by the stress stored elastically in the accommodation zone directly above. Localization of elastic strain in the mid-crust may have implications for hydrothermal fluid flow hosted therein. Pore fluid pressure

  16. Thermal history and extensional exhumation of a high-temperature crystalline complex (Hırkadağ Massif, Central Anatolia)

    NASA Astrophysics Data System (ADS)

    Lefebvre, Côme; Kalijn Peters, M.; Wehrens, Philip C.; Brouwer, Fraukje M.; van Roermund, Herman L. M.

    2015-12-01

    The Central Anatolian Crystalline Complex (CACC) is a large continental domain exposed in central Turkey that was affected by high temperature metamorphism during the Late Cretaceous. As a result of this event, Paleozoic sediments became metamorphosed, initially under Barrovian conditions, then overprinted locally by high temperature-low pressure metamorphism, and intruded by widespread batholiths. In this study we focus on the crystalline Hırkadağ Massif located in the central part of the CACC, where we applied an integrated approach involving metamorphic, structural and geochronological analysis in order to elucidate its tectonic history from burial to exhumation. Our metamorphic study reveals that conditions of metamorphism reached ~ 7-8 kbar/700 °C and were relatively homogeneous at the scale of the Hırkadağ Massif. Coeval with the regional metamorphism, the rocks were intensely deformed as reflected by isoclinal folding, the development of a pervasive foliation and top-to-the-SE shearing. This was followed by decompression to pressures of ~ 3-4 kbar at 800 °C, which may be linked to the emplacement of local granodioritic intrusions at ~ 77 Ma. Subsequent cooling of the Hırkadağ high-grade metamorphic and intrusive rocks is indicated by 40Ar/39Ar cooling ages of 68.8 ± 0.9 Ma (biotite) and 67.0 ± 1.2 Ma (potassium feldspar). Evidence for tectonic exhumation has been identified within the marbles at the NE margin of the Hırkadağ Massif, in the form of discrete protomylonitic and mylonitic shear bands showing a consistent N40-60 top-to-NE sense of shear. Further east, the contact between brecciated mylonitic marbles and non-metamorphic conglomerates preserves the typical structural features of an upper-crustal detachment fault. Restoration of the Hırkadağ Massif and the CACC to their late Cretaceous configuration suggests that the LP-HT metamorphism, magmatism and extensional structures evolved as a result of the development and exhumation of a ~ N

  17. Interaction between regional and local tectonic forcing along a complex Quaternary extensional basin: Upper Tiber Valley, Northern Apennines, Italy

    NASA Astrophysics Data System (ADS)

    Pucci, S.; Mirabella, F.; Pazzaglia, F.; Barchi, M. R.; Melelli, L.; Tuccimei, P.; Soligo, M.; Saccucci, L.

    2014-10-01

    In extending areas undergoing regional tectonic uplift, the persistence of subsidence at a normal-fault hanging-wall depends on the competition between regional and local tectonic effects. When regional uplift exceeds the subsidence of the hanging-wall block, denudation prevails at both the hanging-wall and the foot-wall. When local tectonic subsidence exceeds regional uplift, sedimentation occurs over the hanging-wall block, supplied by foot-wall erosion. We analyzed a Pliocene-Quaternary continental basin, currently crossed by the Tiber River in Italy. The tectono-sedimentary evolution of the basin developed at the hanging-wall of a regional low-angle extensional detachment, the Alto Tiberina Fault, in the axial region of the Northern Apennines of Italy. This area is affected by regional uplift on the order of 0.5-1.0 mm/yr. The present-day activity of the fault is revealed by both microseismicity and geodetic (GPS) data. We investigated the mid- (10-100 ka) and long-term (0.5-3.0 Ma) evolution of the three depocenters by studying the continental Pleistocene succession infilling the basin as well as fluvial terraces and higher paleosurfaces carved into the Pleistocene deposits. By using surficial geologic data and an interpretation of a set of seismic reflection profiles, we show that the three depocenters experienced a fairly similar evolution during the Pliocene-Early Pleistocene, when a 1000-m-thick continental succession was deposited. On the contrary, geomorphological observations indicate that, at the beginning of the Middle Pleistocene, a switch occurred in the evolution of the three depocenters. In the northernmost Sansepolcro sub-basin, bounding normal faults are active and hanging-wall subsidence outpaces regional uplift. Concurrently, in the Umbertide and Ponte Pattoli sub-basins uplift dominates over the hanging-wall subsidence, promoting river incision and exhumation of the Pleistocene deposits. For these two depocenters, by means of terrace

  18. Quaternary extensional and compressional tectonics revealed from Quaternary landforms along Kosi River valley, outer Kumaun Lesser Himalaya, Uttarakhand

    NASA Astrophysics Data System (ADS)

    Luirei, Khayingshing; Bhakuni, S. S.; Kothyari, Girish Ch.; Tripathi, Kavita; Pant, P. D.

    2016-04-01

    A portion of the Kosi River in the outer Kumaun Lesser Himalaya is characterized by wide river course situated south of the Ramgarh Thrust, where huge thickness (~200 m) of the landslide deposits and two to three levels of unpaired fan terraces are present. Brittle normal faults, suggesting extensional tectonics, are recognized in the Quaternary deposits and bedrocks as further supported by surface morphology. Trending E-W, these faults measure from 3 to 5 km in length and are traced as discontinuous linear mini-horst and fault scarps (sackungen) exposed due to cutting across by streams. Active normal faults have displaced the coarsely laminated debris fan deposits at two sites located 550 m apart. At one of the sites, the faults look like bookshelf faulting with the maximum displacement of ~2 m and rotation of the Quaternary boulders along the fault plane is observed. At another site, the maximum displacement measures about 0.60 cm. Thick mud units deposited due to blocking of the streams by landslides are observed within and above the fan deposit. Landslide debris fans and terrace landforms are widely developed; the highest level of fan is observed ~1240 m above mean sea level. At some places, the reworking of the debris fans by streams is characterized by thick laminated sand body. Along the South Almora Thrust and Ramgarh Thrust zones, the valleys are narrow and V-shaped where Quaternary deposits are sparse due to relatively rapid uplift across these thrusts. Along the South Almora Thrust zone, three to four levels of fluvial terraces are observed and have been incised by river exposing the bedrocks due to recent movement along the RT and SAT. Abandoned channel, tilted mud deposits, incised meandering, deep-cut V-shaped valleys and strath terraces indicate rapid uplift of the area. Thick mud sequences in the Quaternary columns indicate damming of streams. A ~10-km-long north-south trending transverse Garampani Fault has offset the Ramgarh Thrust producing

  19. Automatic identification of fault surfaces through Object Based Image Analysis of a Digital Elevation Model in the submarine area of the North Aegean Basin

    NASA Astrophysics Data System (ADS)

    Argyropoulou, Evangelia

    2015-04-01

    The current study was focused on the seafloor morphology of the North Aegean Basin in Greece, through Object Based Image Analysis (OBIA) using a Digital Elevation Model. The goal was the automatic extraction of morphologic and morphotectonic features, resulting into fault surface extraction. An Object Based Image Analysis approach was developed based on the bathymetric data and the extracted features, based on morphological criteria, were compared with the corresponding landforms derived through tectonic analysis. A digital elevation model of 150 meters spatial resolution was used. At first, slope, profile curvature, and percentile were extracted from this bathymetry grid. The OBIA approach was developed within the eCognition environment. Four segmentation levels were created having as a target "level 4". At level 4, the final classes of geomorphological features were classified: discontinuities, fault-like features and fault surfaces. On previous levels, additional landforms were also classified, such as continental platform and continental slope. The results of the developed approach were evaluated by two methods. At first, classification stability measures were computed within eCognition. Then, qualitative and quantitative comparison of the results took place with a reference tectonic map which has been created manually based on the analysis of seismic profiles. The results of this comparison were satisfactory, a fact which determines the correctness of the developed OBIA approach.

  20. Fault slip source models for the 2014 Mw 6.9 Samothraki-Gökçeada earthquake (North Aegean Trough) combining geodetic and seismological observations

    NASA Astrophysics Data System (ADS)

    Saltogianni, Vasso; Gianniou, Michail; Taymaz, Tuncay; Yolsal-ćevikbilen, Seda; Stiros, Stathis

    2015-12-01

    The 24 May 2014, Mw 6.9, Samothraki-Gökçeada shallow (depth: 11 km) earthquake along the North Aegean Trough (NAT), at the westward extension of the North Anatolian Fault Zone (NAFZ), is investigated using constraints from seismological and geodetic data. A point source solution based on teleseismic long-period P and SH waveforms suggests an essentially strike-slip faulting mechanism consisting of two subevents, while from a finite fault inversion of broadband data the rupture area and slip history were estimated. Analysis of data from 11 permanent GPS stations indicated significant coseismic horizontal displacement but no significant vertical or postseismic slip. Okada-type inversion of horizontal slip vectors, using the new TOPological INVersion algorithm, allowed precise modeling of the fault rupture both as single and preferably as double strike-slip faulting reaching the surface. Variable slip models were also computed. The independent seismological and geodetic fault rupture models are broadly consistent with each other and with structural and seismological data and indicate reactivation of two adjacent fault segments separated by a bend of the NAT. The 2014 earthquake was associated with remote clusters of low-magnitude aftershocks, produced low accelerations, and filled a gap in seismicity along the NAT in the last 50 years; faulting in the NAT seems not directly related to the sequence of recent faulting farther east, along the NAFZ and the seismic gap in the Marmara Sea near Istanbul.

  1. Implementation of a reduced order Kalman filter to assimilate ocean color data into a coupled physical-biochemical model of the North Aegean Sea.

    NASA Astrophysics Data System (ADS)

    Kalaroni, Sofia; Tsiaras, Kostas; Economou-Amilli, Athena; Petihakis, George; Politikos, Dimitrios; Triantafyllou, George

    2013-04-01

    Within the framework of the European project OPEC (Operational Ecology), a data assimilation system was implemented to describe chlorophyll-a concentrations of the North Aegean, as well the impact on the European anchovy (Engraulis encrasicolus) biomass distribution provided by a bioenergetics model, related to the density of three low trophic level functional groups of zooplankton (heterotrophic flagellates, microzooplankton and mesozooplankton). The three-dimensional hydrodynamic-biogeochemical model comprises two on-line coupled sub-models: the Princeton Ocean Model (POM) and the European Regional Seas Ecosystem Model (ERSEM). The assimilation scheme is based on the Singular Evolutive Extended Kalman (SEEK) filter and its variant that uses a fixed correction base (SFEK). For the initialization, SEEK filter uses a reduced order error covariance matrix provided by the dominant Empirical Orthogonal Functions (EOF) of model. The assimilation experiments were performed for year 2003 using SeaWiFS chlorophyll-a data during which the physical model uses the atmospheric forcing obtained from the regional climate model HIRHAM5. The assimilation system is validated by assessing the relevance of the system in fitting the data, the impact of the assimilation on non-observed biochemical parameters and the overall quality of the forecasts.

  2. Brachyopa minima (Diptera: Syrphidae), a new species from Greece with notes on the biodiversity and conservation of the genus Brachyopa Meigen in the Northern Aegean Islands.

    PubMed

    Pérez-Bañón, Celeste; Radenković, Snezana; Vujić, Ante; Petanidou, Theodora

    2016-01-01

    An on-going study of the hoverfly fauna of the Northern Aegean Islands (Greece) has revealed the presence of four species of the genus Brachyopa Meigen. During the survey the following species were found: B. bicolor (Fallén), B. quadrimaculosa Thompson in Kaplan & Thompson, B. minima Vujić & Pérez-Bañón sp. nov. and an unidentified species very close to B. pilosa (Collin). Morphological characters and mitochondrial COI barcodes were used to link different life stages of B. minima, and to identify a larval specimen of B. bicolor. In this study adult and larval morphology and habitat preferences for B. minima are described. The description of larval morphology of B. bicolor and Brachyopa sp. aff. pilosa is amended too. An identification key to the adults of the B. quadrimaculosa group sensu Kassebeer (2002) in the Eastern Mediterranean (Greece, Israel and Turkey) is provided. The importance of specific microhabitats for the continued existence of these taxa is discussed. PMID:27395920

  3. Marine pollution risk in a coastal city: use of an eco-genotoxic tool as a stress indicator in mussels from the Eastern Aegean Sea.

    PubMed

    Kacar, Asli; Pazi, Idil; Gonul, Tolga; Kucuksezgin, Filiz

    2016-08-01

    Coastal areas, such as bays, estuaries, and harbors, are heavily polluted since these areas are the settlements to which toxic chemicals from industrial and domestic wastes are discharged. The genetic damage was evaluated using bioindicator mussel Mytilus galloprovincialis caused by toxic chemicals (metals and polycyclic aromatic hydrocarbons) in İzmir and Çandarlı Bays (the Eastern Aegean Sea) through comet assay. Three sampling sites from the two bays were selected and the study was conducted during the spring and autumn periods. The highest levels of DNA damage expressed as %Tail-DNA were observed in İzmir Bay (34.60 % Tail-DNA) in the spring. Analysis of the correlation between PAHs and metals in mussels and %T-DNA in the hemolymph and gill cells showed a statistically significant positive correlation between %T-DNA and ∑PAH, chromium (p < 0.05). This study determined the pollution level of the İzmir and Çandarlı Bays by using the DNA damage to the mussel, which can identify the effects of environmental pollutants at the cellular levels. These results confirm that comet assay can be used to determine the temporal and spatial differences of DNA damage, and as a suitable tool for the measurement of genotoxicity in regions with low pollutant concentrations. PMID:27146544

  4. A three-step model to assess shoreline and offshore susceptibility to oil spills: the South Aegean (Crete) as an analogue for confined marine basins.

    PubMed

    Alves, Tiago M; Kokinou, Eleni; Zodiatis, George

    2014-09-15

    This study combines bathymetric, geomorphological, geological data and oil spill predictions to model the impact of oil spills in two accident scenarios from offshore Crete, Eastern Mediterranean. The aim is to present a new three-step method of use by emergency teams and local authorities in the assessment of shoreline and offshore susceptibility to oil spills. The three-step method comprises: (1) real-time analyses of bathymetric, geomorphological, geological and oceanographic data; (2) oil dispersion simulations under known wind and sea current conditions; and (3) the compilation of final hazard maps based on information from (1) and (2) and on shoreline susceptibility data. The results in this paper show that zones of high to very-high susceptibility around the island of Crete are related to: (a) offshore bathymetric features, including the presence of offshore scarps and seamounts; (b) shoreline geology, and (c) the presence near the shore of sedimentary basins filled with unconsolidated deposits of high permeability. Oil spills, under particular weather and oceanographic conditions, may quickly spread and reach the shoreline 5-96 h after the initial accident. As a corollary of this work, we present the South Aegean region around Crete as a valid case-study for confined marine basins, narrow seaways, or interior seas around island groups. PMID:25113103

  5. Chemistry of amphiboles and clinopyroxenes from Euganean (NE Italy) cumulitic enclaves: implications for the genesis of melts in an extensional setting

    NASA Astrophysics Data System (ADS)

    Bartoli, O.; Meli, S.; Sassi, R.; Magaraci, D.

    2009-04-01

    The magmatism of the Euganean Volcanic District (Veneto Volcanic Province, VVP) developed in the last phases of the Alpine orogenesis; the geochemical and geophysical data are consistent with an extensional geodynamic context (Milani et al., 1999). Cumulitic gabbroic enclaves occur within the Euganean trachytes, and Bartoli et al. (2008) pointed to their cogenetic origin with the Euganean host lavas. Sr isotopic data suggest that these cumulates derived from uncontaminated mantle-derived liquids. We analysed both cumulus and intercumulus amphiboles and clinopyroxenes by electron microprobe and LA-ICP-MS. The cumulus-intercumulus Cpx are diopsides and augites. The Mg#Cpx varies in a wide range (Mg#cumulus-Cpx= 0.74-0.84 and Mg#intercumulus-Cpx= 0.67-0.68). They show a MREE enrichment relative to LREE and HREE (LaN/SmN= 0.46-0.68 and TbN/YbN= 2.18-4.77). No significant Eu anomaly (Eu/Eu* = 0.78-1.23) was observed. On a chondrite-normalized spiderdiagram Cpx exhibits significant Pb and Co negative anomalies, and less evident negative anomalies for Sr and Zr. La, Sm and HREE increase, whereas Ba, Ti, Li and V decrease from core to rim. These Cpx exhibit high Cr contents (701-2958 ppm). Moreover, they display trace element differences when compared to Cpx from MORB gabbros. We analyzed also amphiboles: pargasites, edenites and kaersutites. In the cumulus Amph Mg# varies in the range 0.60-0.69, whereas in the intercumulus assemblage from 0.57 to 0.63. The high K2O and TiO2 contents are distinct from that of amphiboles in MORB gabbros. LREE are enriched relative to HREE (LaN/YbN = 5.07-7.56). Moreover, TbN/YbN = 2.50-4.02 indicates a HREE depletion relative to MREE. REE patterns lack a significant Eu anomaly (Eu/Eu* = 1.06-1.19). From core to rim Th and U decrease in cumulus crystals, but they increase in the intercumulus Amph. Ba (258-282 ppm) is enriched relative to other LILE and Nb-Ta are enriched relative to LREE. Cr varies in the range 423-594 ppm. The similar REE

  6. Transverse versus longitudinal extension in the foredeep-peripheral bulge system: Role of Cretaceous structural inheritances during early Miocene extensional faulting in inner central Apennines belt

    NASA Astrophysics Data System (ADS)

    Tavani, S.; Vignaroli, G.; Parente, M.

    2015-07-01

    This study reports on the Rocca di Cave extensional fault system, which is located in the Prenestini Mountains (Central Italy) of the Apennines fold-and-thrust belt and presently represents the oldest exposure of early orogenic foreland fault system of the Apennines. This fault system was oriented perpendicular to the strike of the foredeep-peripheral bulge system, indicating that the onset of convergence was marked by a foredeep-parallel extension, instead of the commonly observed foredeep-perpendicular stretching associated with lithosphere flexuring. The studied fault system is formed by a 10 km long and 2 km wide E-W elongated area that includes two mutually orthogonal sets of faults oriented about E-W and N-S, respectively. E-W and, mainly, N-S striking faults developed during a preorogenic (Santonian to Campanian in age) E-W oriented extension kinematics, which caused first uplift and erosion and then drowning of the Cretaceous carbonate platform and the onset of a pelagic environment. Both fault sets were later reactivated in the early Miocene, when the area was forming part of the foreland region ahead of the eastward migrating Apennines fold-and-thrust belt and was undergoing local N-S oriented, i.e., foredeep-parallel, stretching. This extensional stage implied the sedimentation of hundreds of meters of synkinematic strata in the northern block of the Rocca di Cave Fault System, coevally with episodes of subaerial erosion in areas of the southern block. Further extensional and right-lateral reactivation of inherited faults occurred in the late Miocene, during the progressive incorporation of the area into the Apennines belt.

  7. Multidisciplinary study of the Tindari Fault (Sicily, Italy) separating ongoing contractional and extensional compartments along the active Africa-Eurasia convergent boundary

    NASA Astrophysics Data System (ADS)

    De Guidi, G.; Lanzafame, G.; Palano, M.; Puglisi, G.; Scaltrito, A.; Scarfì, L.

    2013-03-01

    The Africa-Eurasia convergence in Sicily and southern Calabria is currently expressed by two different tectonic and geodynamic domains: the western region, governed by a roughly N-S compression generated by a continental collision; the eastern one, controlled by a NW-SE extension related to the south-east-directed expansion of the Calabro-Peloritan Arc. The different deformation pattern of these two domains is accommodated by a right-lateral shear zone (Aeolian-Tindari-Letojanni fault system) which, from the Ionian Sea, north of Mt. Etna, extends across the Peloritani chain to the Aeolian Islands. In this work, we study the evidence of active tectonics characterizing this shear zone, through the analysis of seismic and geodetic data acquired by the INGV networks in the last 15 years. The study is completed by structural and morphological surveys carried out between Capo Tindari and the watershed of the chain. The results allowed defining a clear structural picture depicting the tectonic interferences between the two different geodynamic domains. The results indicate that, besides the regional ~ N130°E horizontal extensional stress field, another one, NE-SW-oriented, is active in the investigated area. Both tension axes are mutually independent and have been active up to the present at different times. The coexistence of these different active horizontal extensions is the result of complex interactions between several induced stresses: 1) the regional extension (NW-SE) related to the slab rollback and back-arc extension; 2) the strong uplift of the chain; 3) the accommodation between compressional and extensional tectonic regimes along the Aeolian-Tindari-Letojanni faults, through a SSE-NNW right-lateral transtensional displacement. In these conditions, the greater and recurring uplift activity is not able to induce a radial extensional dynamics, but, under the "directing" action of the shear system, it can only act on the regional extension (NW-SE) and produce the

  8. Prolonged plume volcanism in the Caribbean Large Igneous Province: New insights from Curaçao and Haiti

    NASA Astrophysics Data System (ADS)

    Loewen, Matthew W.; Duncan, Robert A.; Kent, Adam J. R.; Krawl, Kyle

    2013-10-01

    We present 36 new 40Ar-39Ar incremental heating age determinations from the Caribbean Large Igneous Province (CLIP) providing evidence for extended periods of volcanic activity and suggest a new tectonomagmatic model for the province's timing and construction. These new 40Ar-39Ar ages for the Curaçao Lava Formation (CLF) and Haiti's Dumisseau Formation show evidence for active CLIP volcanism from 94 to 63 Ma. No clear changes in geochemical character are evident over this period. The CLF has trace element signatures (e.g., Zr/Nb = 10-20) and flat rare earth element (REE) trends consistent with plume volcanism. The Dumisseau Formation also has plume-like geochemistry and steeper REE trends similar to ocean island basalts. Volcanism in the Dumisseau Formation appears to have largely ceased by 83 Ma while at Curaçao it continued until 63 Ma. A rapidly surfacing and melting plume head alone does not fit this age distribution. Instead, we propose that the residual Galapagos plume head, following initial ocean plateau construction, was advected eastward by asthenospheric flow induced by subducting oceanic lithosphere. Slab rollback at the Lesser Antilles and Central America subduction zones created an extensional regime within the Caribbean plate. Mixing of plume with upwelling asthenospheric mantle provided a source for intermittent melting and eruption through the original plateau over a ˜30 Ma period.

  9. April 7, 2009, Mw 5.5 aftershock of the L'Aquila earthquake: seismogenic fault geometry and its implication for the central Apennines active extensional tectonics (Italy).

    NASA Astrophysics Data System (ADS)

    Adinolfi, Guido Maria; Lavecchia, Giusy; De Matteis, Raffaella; Nardis Rita, De; Francesco, Brozzetti; Federica, Ferrarini; Zollo, Aldo

    2015-04-01

    On April 6, 2009 (at 01:32 UTC) a Mw 6.3 earthquake hit the town of L'Aquila (central Italy) and surrounding villages causing fatalities and severe damage in the area. After few days, a nearly 40-km-long extensional fault system was activated generating both northward and southward seismicity migration along the NW-SE trending sector of central Apennines. During the intense aftershocks sequence, different sesmogenic sources with a distinct geometry, size and the degree of involvement were reactivated. Among the relevant aftershocks with Mw 5.0 to 5.5, the largest one occurred on April 7 (at 17:47 UTC), 9 km SE-ward of the mainshock involving a source seated at much greater depths (~14 km). Despite the enormous number of studies of the 2009 L'Aquila earthquake, mainly focused on the various geological and seismological aspects of the main Paganica source, the April 7 strongest aftershock (Mw 5.5) has not yet been deeply investigated. Consistent geometric and kinematic correlations between the geological and seismological data about this seismogenic source are missing. There are still open questions concerning its unresolved geometry and the unknown style of the central Apennines structure activated at greater depths during the 2009 L'Aquila seismic sequence. Furthermore, some authors (Lavecchia et al., 2012) have supposed that the April 7, 2009 aftershock (Mw 5.5) occurred onto an high dip segment (~50°) of an east-dipping extensional basal detachment with a potential surface expression outcropping in the area of the eastern Sabina-Simbruini Mts. In this work we propose a seismological analysis of the April 7, 2009 aftershock (Mw 5.5) rupture process. In order to define the unresolved source geometry, we computed the focal mechanism through the time domain, moment tensor full waveform inversion (Dreger and Helmberger, 1993). Also, we estimated the apparent source time functions (ASTFs) by deconvolution of the impulse response of the medium from the recorded data

  10. Fault zone development and strain partitioning in an extensional strike-slip duplex: A case study from the Mesozoic Atacama fault system, Northern Chile

    NASA Astrophysics Data System (ADS)

    Cembrano, J.; González, G.; Arancibia, G.; Ahumada, I.; Olivares, V.; Herrera, V.

    2005-05-01

    Upper crustal strike-slip duplexes provide an excellent opportunity to address the fundamental question of fault zone development and strain partitioning in an evolving system. Detailed field mapping of the Mesozoic Atacama fault system in the Coastal Cordillera of Northern Chile documents the progressive development of second- and third-order faults forming a duplex at a dilational jog between two overstepping master faults: the sinistral strike-slip, NNW-striking, Jorgillo and Bolfin faults. These are constituted by a meter-wide core of foliated S-C ultracataclasite and cataclasite, flanked by a damage zone of protocataclasite, splay faults and veins. Lateral separation of markers along master faults is on the order of a few kilometers. Second-order, NW-striking, oblique-slip subsidiary fault zones do not show foliated ultracataclasite; lateral sinistral separations are in the range of ˜ 10 to 200 m with a relatively minor normal dip-slip component. In turn, third-order, east-west striking normal faults exhibit centimetric displacement. Oblique-slip (sinistral-normal) fault zones located at the southern termination of the Bolfin fault form a well-developed imbricate fan structure. They exhibit a relatively simple architecture of extensional and extensional-shear fractures bound by low displacement shear fractures. Kinematic analysis of fault slip data from mesoscopic faults within the duplex area, document that the NW-striking and the EW-striking faults accommodate transtension and extension, respectively. Examination of master and subsidiary faults of the duplex indicates a strong correlation between total displacement and internal fault structure. Faults started from arrays of en echelon extensional/extensional-shear fractures that then coalesced into throughgoing strike-slip faults. Further displacement leads to the formation of discrete bands of cataclasite and ultracataclasite that take up a significant part of the total displacement. We interpret that the

  11. Basement-cover relationships in the Grampian Caledonides of Scotland - extensional strain preceding continental rupture and generation of the Laurentian ocean-continent transition zone

    NASA Astrophysics Data System (ADS)

    Leslie, Graham; Smith, Martin; Gillespie, Martin; Thomas, Christopher; Krabbendam, Maarten

    2010-05-01

    Ancient rift and passive margin basins can frequently only be studied in outcrop after uplift following orogenesis. Such basins are thus deformed, metamorphosed and partially eroded as a consequence of closure of the oceanic system in which the passive margin was originally established. As a result there are significant challenges in restoration and interpretation of the original basin geometries and lithostratigraphical relationships. The mid-Neoproterozoic to Cambrian Dalradian Supergroup of Scotland and Ireland was intensively deformed and metamorphosed by mid-Ordovician arc-accretion (c. 460 Ma) during the Caledonian Orogeny. Nevertheless, we can determine a history of stretching and break-up associated with rupture of the Neoproterozoic supercontinent of Rodinia and opening of Iapetus. Continental fragments apparently separated from the passive margin during rift-drift transition. The extensional structures bounding the various fragments subsequently exerted control on the collisional geometry and acted as nuclei for deformation structures during Caledonian orogenesis. Reading the record of Neoproterozoic extension in the Scottish Caledonides is further complicated by the need to unravel the structural record at the boundary between the Dalradian Supergroup and underlying early-Neoproterozoic metamorphic basement. The depositional age of the Dalradian succession is not well constrained but the oldest strata could pre-date 800 Ma. If such should be the case, then the thick siliciclastic deposits characteristic of the lower Dalradian Grampian Group succession accumulated before 800 Ma during an early stretching phase (distributed high angle faulting) that led to crustal thinning (low-angle shearing). A major low-angle, regional-scale ductile shear zone in the upper levels of the underlying basement is arranged sub-parallel to the present structural base of the Dalradian. The high-temperature regional metamorphism in basement is c. 830 Ma old while the ductile

  12. Assessment of undiscovered petroleum resources of the Amerasia Basin Petroleum Province

    USGS Publications Warehouse

    Houseknecht, David W.; Bird, Kenneth J.; Garrity, Christopher P.

    2012-01-01

    The Amerasia Basin Petroleum Province encompasses the Canada Basin and the sediment prisms along the Alaska and Canada margins, outboard from basinward margins (hingelines) of the rift shoulders that formed during extensional opening of the Canada Basin. The province includes the Mackenzie delta and slope, the outer shelves and marine slopes along the Arctic margins of Alaska and Canada, and the deep Canada Basin. The province is divided into four assessment units (AUs): (1) The Canning-Mackenzie deformed margin AU is that part of the rifted margin where the Brooks Range orogenic belt has overridden the rift shoulder and is deforming the rifted-margin prism of sediment outboard of the hingeline. This is the only part of the Amerasia Basin Province that has been explored and—even though more than 3 billion barrels of oil equivalent (BBOE) of oil, gas, and condensate have been discovered—none has been commercially produced. (2) The Alaska passive margin AU is the rifted-margin prism of sediment lying beneath the Beaufort outer shelf and slope that has not been deformed by tectonism. (3) The Canada passive margin AU is the rifted-margin prism of sediment lying beneath the Arctic outer shelf and slope (also known as the polar margin) of Canada that has not been deformed by tectonism. (4) The Canada Basin AU includes the sediment wedge that lies beneath the deep Canada Basin, north of the marine slope developed along the Alaska and Canada margins. Mean estimates of risked, undiscovered, technically recoverable resources include more than 6 billion barrels of oil (BBO), more than 19 trillion cubic feet (TCF) of associated gas, and more than 16 TCF of nonassociated gas in the Canning-Mackenzie deformed margin AU; about 1 BBO, about 3 TCF of associated gas, and about 3 TCF of nonassociated gas in the Alaska passive margin AU; and more than 2 BBO, about 7 TCF of associated gas, and about 8 TCF of nonassociated gas in the Canada passive margin AU. Quantities of natural

  13. The Mozambique Ridge - A Large Igneous Province with a Complicated Emplacement History

    NASA Astrophysics Data System (ADS)

    Fischer, M. D.; Uenzelmann-Neben, G.

    2015-12-01

    The Mozambique Ridge (MozR), a supposed part of the South African Large Igneous Province (LIP) in the southwestern Indian Ocean, consists of four major geomorphological units associated with multiple phases of volcanic activity between 140 Ma and 120 Ma. High-resolution seismic reflection data collected in 2014 reveals various magmatic centres within each of the geomorphological units. Intra-basement reflections can be identified up to several hundred ms TWT below top of basement. These are interpreted to represent massive lava flow units, which are characteristic of oceanic plateau eruptions. Additionally to primary volcanic features associated with the initial formation of the different segments of the MozR we identify secondary volcanic features indicating magmatic reactivation after its initial build-up. The internal reflections generally dip away from their magmatic centres and individual reflectors are typically traced for 5-15 km. Several faults cutting through basement and older sedimentary units are interpreted as extensional tectonic features.Our observations hence provide further arguments for a LIP origin of the MozR. Still, this LIP obviously was subject to multiple magmatic and tectonic phases during its development, which we may relate with the opening of the South African gateway associated with Gondwana break-up and the separation of MozR from the conjugate parts of the proposed South African LIP. Further investigations will show whether more recent deformation can be traced back to further propagation of the East African Rift system.

  14. The Tertiary structural and thermal evolution of the Central Alps—compressional and extensional structures in an orogenic belt

    NASA Astrophysics Data System (ADS)

    Steck, Albrecht; Hunziker, Johannes

    1994-11-01

    The Western Alpine Arc has been created during the Cretaceous and the Tertiary orogenies. The interference patterns of the Tertiary structures suggest their formation during continental collision of the European and the Adriatic Plates, with an accompanying anticlockwise rotation of the Adriatic indenter. Extensional structures are mainly related to ductile deformation by simple shear. These structures developed at a deep tectonic level, in granitic crustal rocks, at depths in excess of 10 km. In the early Palaeogene period of the Tertiary Orogeny, the main Tertiary nappe emplacement resulted from a NW-thrusting of the Austroalpine, Penninic and Helvetic nappes. Heating of the deep zone of the Upper Cretaceous and Tertiary nappe stack by geothermal heat flow is responsible for the Tertiary regional metamorphism, reaching amphibolite-facies conditions in the Lepontine Gneiss Dome (geothermal gradient 25°C/km). The Tertiary thrusting occurred mainly during prograde metamorphic conditions with creation of a penetrative NW-SE-oriented stretching lineation, X I(finite extension), parallel to the direction of simple shear. Earliest cooling after the culmination of the Tertiary metamorphism, some 38 Ma ago, is recorded by the cooling curves of the Monte Rosa and Mischabel nappes to the west and the Suretta Nappe to the east of the Lepontine Gneiss Dome. The onset of dextral transpression, with a strong extension parallel to the mountain belt, and the oldest S-vergent "backfolding" took place some 35 to 30 Ma ago during retrograde amphibolite-facies conditions and before the intrusion of the Oligocene dikes north of the Periadriatic Line. The main updoming of the Lepontine Gneiss Dome started some 32-30 Ma ago with the intrusion of the Bergell tonalités and granodiorites, concomitant with S-vergent backfolding and backthrusting and dextral strike-slip movements along the Tonale and Canavese Lines (Argand's Insubric phase). Subsequently, the center of main updoming

  15. Constraints on the pre-extensional paleoelevation of the central Basin and Range from carbonate clumped-isotope paleothermometry

    NASA Astrophysics Data System (ADS)

    Niemi, N. A.; Lechler, A. R.; Hren, M. T.; Lohmann, K. C.

    2011-12-01

    Large-magnitude Cenozoic extension across the Basin and Range has been constrained on the basis of a wide variety of geological and geophysical studies. Despite this regional extension, and associated crustal thinning, the Basin and Range maintains high (>1 km) regional elevations, and a fairly uniform, and typical thickness, continental crust. A number of geodynamic models have been proposed to explain these apparent contradictions, and a potentially useful discriminant between these models are the different predictions each makes for the paleoelevation history of the Basin and Range. We present new carbonate clumped-isotope paleothermometry data that bears on this paleoelevation history. Clumped isotope paleothermometry from lacustrine micrites in two Paleocene sections provides constraints on the paleoelevation of east-central Nevada prior to large-magnitude regional extension and core complex formation in Eocene time. The Goler Formation, which outcrops in the El Paso Mountains, east of the Sierra Nevada, has a known paleoelevation at or near sea-level and yields paleotemperatures on the order of 40°C (Universal Reference Frame (URF) Δ47 = 0.63-0.65). Lacustrine micrites from the age-equivalent Sheep Pass Formation in the Egan Range, Nevada, yield paleotemperatures of ~23-26°C (Δ47 = 0.69-0.71). Using a typical range of terrestrial lapse rates, the temperature difference between these two sites is indicative of a paleoelevation for the Sheep Pass Formation of 2500-3000 m, or perhaps as much as 1000 m higher than the elevation of present-day exposure. In the central Basin and Range, where large-magnitude upper crustal extension is generally well-constrained to have occurred later than 15 Ma, paleotemperatures of two pre-extensional (16-20 Ma) lacustrine micrites in the Death Valley region are ~25-28°C (Δ47 = 0.69-0.70). Lacustrine micrites within the Bena gravel (~17 Ma), exposed in the western Sierra Nevada, and deposited at sea-level on the paleo

  16. Paleozoic crudes of Tomsk province

    SciTech Connect

    Smol'yaninova, N.M.; Mashukova, Z.I.; Nemirovskaya, G.V.

    1983-01-01

    The Paleozoic crudes typically have low densities at 20/sup 0/C, low contents of resins, high viscosities at 20/sup 0/C, rather high solid points, and high contents of solid paraffins. The Paleozoic crudes are in no way inferior in quality to the Mesozoic crudes of Tomsk province, and are even better in some respects (yields of high-V.I. and medium-V.I. oils). They can be processed with either a fuel/lube or petrochemical refining scheme. Finds that the crudes from the Ostaninsk and SeveroOstaninsk fields, in terms of their paraffin and sulfur contents and other indexes, are similar to the Jurassic crudes of the Zhetybai field on the Mangyshlak peninsula. These 2 crudes and the Chkalovsk crude, even though the high wax contents offer problems in production and transportation, can serve as good raw materials for fuel and oil production, and also for the manufacture of liquid and solid paraffins.

  17. Intramontane basin development related to contractional and extensional structure interaction at the termination of a major sinistral fault: The Huércal-Overa Basin (Eastern Betic Cordillera)

    NASA Astrophysics Data System (ADS)

    Pedrera, Antonio; Galindo-Zaldívar, Jesús; Tello, Alejandro; Marín-Lechado, Carlos

    2010-05-01

    Among the classical minor structural associations on the termination of transcurrent faults are horsetail splays formed by reverse, normal or strike-slip faults developing duplexes. However, temporal and spatial coexistence of contractional and extensional structures is very rarely documented. We discuss the relationships of contractional and extensional structures and associated sedimentary depocenters at the termination of a major strike-slip fault in the Eastern Betic Cordillera. Field mapping, kinematic fault analysis, paleostress determination and gravity prospecting in the Huércal-Overa Basin, at the southern termination of the NE-SW Alhama de Murcia transcurrent fault (AMF), are used to establish the relationships of tectonic structures and associated sedimentary depocenters. Here, ENE-WSW and WNW-ESE folds interact with two sets of normal faults having the same orientation as well as ENE-WSW reverse faults. Progressive unconformities associated with folds reveal that the beginning of the AMF activity occurred in the Tortonian. The folds progressively grew and rotated from ENE-WSW up to WNW-ESE close to the transcurrent fault. We propose that the development of the normal faults developed during short-term episodes characterized by vertical major stress axis and are, in turn, related to gravitational instability linked to the thickening of a crust relatively hot at depth. This setting may have become predominant in between the main activity, compressive pulses along transcurrent faults.

  18. The role of small-scale extensional faulting in the evolution of basin geometries. An example from the late Palaeozoic Petrel Sub-basin, northwest Australia

    NASA Astrophysics Data System (ADS)

    Baxter, K.

    1998-03-01

    During continental extension, the kinematic collapse of the hangingwall of major normal faults and the subsequent isostatic response imposes a strong control on the evolving basin geometry. The interaction of the flexural wavelength. and the magnitude and location of faults may allow the development of basin geometries which deviate from a classic half-graben style, particularly if some of this deformation is below the scale of observation (commonly seismic reflection data). In particular the development of a lateral partitioning between large- and small-scale faults within a basin may exert a significant control on the resulting basin geometry. Using the Petrel Sub-basin in northwest Australia as an example, it is demonstrated that an extensional basin geometry consisting of a classic half-graben can be overprinted by a significant 'sag' geometry which can be related to the lateral offset of sub-resolution faulting. This lateral partitioning and resulting basin geometry may also have an application to other extensional basins, particularly if a mechanism is present to allow this partitioning of fault styles to develop. In the Petrel Sub-basin this has been related to the presence of older basement features of the Halls Creek Mobile Zone beneath the axis of the basin. However, a comparison with physical models also suggests that this may be applicable to basins formed by oblique rifting (a component of which may also be present within the Petrel Sub-basin), particularly if this is imposed upon a weak zone or suture within the upper mantle.

  19. TR method (TRM): A separation and stress inversion method for heterogeneous fault-slip data driven by Andersonian extensional and compressional stress regimes

    NASA Astrophysics Data System (ADS)

    Tranos, Markos D.

    2015-10-01

    The recently proposed TR method (TRM) which uses the slip preference of the faults to separate heterogeneous fault-slip data in extensional and compressional Andersonian stress regimes, is enhanced so as to determine stress tensors with the use of the Wallace-Bott slip criterion. Published natural fault-slip data from the extensional region of Tympaki, Crete, Greece and artificial fault-slip data modeled from the Chelungpu thrust, activated during the 1999 Chi-Chi earthquake in Taiwan, have been used as case studies. In the first case, the fault-slip data previously considered as homogeneous might actually be of heterogeneous origin as they determine two distinct stress tensors that both fit well with the neotectonic faulting deformation of the region. In the second case, where the fault-slip data belonging to three different subsets are of low diversity, the TRM succeeds in defining the driving stress tensors. The Misfit Angle minimization criterion can adequately separate the fault-slip data between two subsets when the percentage of the "Stress Tensor Discriminator Faults" is higher than approximately 70%.

  20. Analysis of coupled fast-shear and extensional vibrations of a LiTaO3 crystal plate with a ferroelectric inversion layer.

    PubMed

    Ma, Tingfeng; Pei, Jieyu; Wang, Ji; Du, Jianke; Zhang, Chao; Huang, Bin; Yuan, Lili; Yu, Fapeng

    2016-05-01

    The resonance vibrations of LiTaO3 fast-shear overtone mode resonators with a ferroelectric inversion layer are analyzed. In addition to the fast-shear mode, the coupled extensional mode is considered. Different from most of the LiTaO3 resonators studied in the literature that are based on the slow-shear mode, the resonator in this paper operates with the fast-shear overtone mode. Results show that the capacitance ratio assumes maxima at two resonances, which are identified to be the second overtone modes of fast-shear and extension, respectively. It is found that the thickness of the inversion layer has obvious influences on the capacitance ratio of fast-shear and extensional modes. This condition may provide a simple method to adjust capacitance ratios of piezoelectric resonators. The influence mechanisms are also discussed. Besides, the effect of the cut angle of the crystal on the mode shape of vibrations is also investigated. The results can be used as important basis of parameters designs of LiTaO3 resonators operating on the fast-shear overtone mode. PMID:27250157

  1. Time-Domain Moment Tensors for shallow ( h ≤ 40 km) earthquakes in the broader Aegean Sea for the years 2006 and 2007: The database of the Aristotle University of Thessaloniki

    NASA Astrophysics Data System (ADS)

    Roumelioti, Zafeiria; Kiratzi, Anastasia; Benetatos, Christoforos

    2011-03-01

    We present a catalog of moment tensor (MT) solutions and moment magnitudes, Mw, for 119 shallow ( h ≤ 40 km) earthquakes in Greece and its surrounding lands (34°N-42°N, 19°E-30°E) for the years 2006 and 2007, computed with the 1D Time-Domain Moment Tensor inversion method (TDMT_INV code of Dreger, 2003). Magnitudes range from 3.2 ≤ Mw ≤ 5.7. Green's functions (GF) have been pre-computed to build a library, for a number of velocity profiles applicable to the broader Aegean Sea region, to be used in the inversion of observed broad band waveforms (10-50 s). All MT solutions are the outcome of a long series of tests of different reported source locations and hypocenter depths. Quality factors have been assigned to each MT solution based on the number of stations used in the inversion and the goodness of fit between observed and synthetic waveforms. In general, the focal mechanisms are compatible with previous knowledge on the seismotectonics of the Aegean area. The new data provide evidence for strike-slip faulting along NW-SE trending structures at the lower part of Axios basin, close to the heavily industrialized, and presently subsiding, region of the city of Thessaloniki. Normal faulting along E-W trending planes is observed at the Strimon basin, and in Orfanou Gulf in northern Greece. A sequence of events in the east Aegean Sea close to the coastline with western Anatolia sheds light on an active structure bounding the north coastline of Psara-Chios Islands about 20-25 km in length exhibiting right lateral strike-slip faulting.

  2. Wild fire effects on floristic diversity in three thermo-Mediterranean vegetation types in a small islet of eastern Aegean sea

    NASA Astrophysics Data System (ADS)

    Abraham, Eleni; Kyriazopoulos, Apostolos; Korakis, George; Parissi, Zoi; Chouvardas, Dimitrios

    2014-05-01

    Sclerophyllus scrub formations, the main vegetation type in many islands of the Aegean area, are characterized by their high biodiversity. Dominant shrub species of sclerophyllus formations are well adapted to dry season conditions by various anatomical and physiological mechanisms. As a result, their biomass acts as very flammable fine fuel, and consequently wild fires are very common in these ecosystems. Wildfire effects on vegetation and biodiversity in the Mediterranean basin have been studied and the results are diverse depending mainly on vegetation type and frequency of fire. The aim of this study was to evaluate the effects of wildfire on floristic diversity and species composition in three thermo-Mediterranean vegetation types 1) Sacropoterium spinosum phrygana, 2) low formations of Cistus creticus and 3) low formations of Cistus creticus in abandoned terraces. The research was conducted in Enoussa islet, which is located northeastern of Chios Island, in May 2013 (one year after the fire). Vegetation sampling was performed along five transects placed in recently burned and in adjacent unburned sites of each vegetation type. The plant cover and the floristic composition were measured, while diversity, evenness and dominance indices were determined for the vegetation data. Vegetation cover and the floristic diversity were significant lower and higher respectively in burned areas in comparison to the unburned. The woody species followed by the annual grasses and the annual forbs dominated in both burned and unburned areas. However, the woody species were significantly decreased in the burned areas in all vegetation types, while the annual grasses only in the burned areas of Sacropoterium spinosum phrygana and Cistus creticus in abandoned terraces. Inversely, the annual forbs significantly increased in the burned sites of Cistus creticus formations. The highest value of Morisita-Horn Index of similarity between burned and unburned sites (beta diversity) was

  3. Tracing organic and inorganic pollution sources of agricultural crops and water resources in Güzelhisar Basin of the Aegean Region - Turkey

    NASA Astrophysics Data System (ADS)

    Czarnecki, Sezin; Colak Esetlili, Bihter; Esetlili, Tolga; Tepecik, Mahmut; Anac, Dilek; Düring, Rolf-Alexander

    2014-05-01

    The study area Güzelhisar Basin is 6 km far from the city Aliaga, Aegean Region in Turkey which represents a rather industrialized area having five large iron and steel factories, but also areas of agriculture. Steel industry in Aliaga is causing metal pollution. Around Güzelhisar Basin and nearby, the dominant crop fields are cotton, maize, vegetables, olive trees and vineyards. Güzelhisar stream and dam water is used for irrigation of the agricultural land. Due to contamination from metal industry in Aliaga, organic farming is not allowed in this region. Industrial activities in the region present a threat on sustainable agriculture. The region is a multi-impacted area in terms of several pollutant sources affecting soil and water quality. The overall objective of the project is to trace back plant nutrients (N, P, K, Ca, Mg, Na, Fe, Mn, Zn, Cu, and B), hazardous substances (i. e. persistent organic pollutants), radionuclides (40K, 232Th, 226Ra/238U), and metal contents (As, Cd, Cr, Co, Cu, Hg, Mn, Ni, Pb, and Zn) by examining the soils, agricultural crops and natural plants from Güzelhisar Basin and water and sediments from Güzelhisar stream and dam. Spatial distribution of pollution will be evaluated by regionalization methods. For this, an advanced analytical methodology will be applied which provides an understanding of sources and occurrence of the respective substances of concern. An innovative multi-tracer approach comprising organic