Science.gov

Sample records for aegilops speltoides tausch

  1. [Chromosomal localization of the speltoidy gene, introgressed into bread wheat from Aegilops speltoides Tausch., and its interaction with the Q gene of Triticum spelta L].

    PubMed

    Simonov, A V; Pshenichnikova, T A

    2012-11-01

    The differences between bread wheat (Triticum aestivum L.) and spelt (Triticum spelta L.) in the shape of the spike and threshing character are determined by the allelic status of one major Q gene, mapped to the long arm of chromosome 5A. This gene is a member of the APETALA2 family of transcription factors and plays an important role in domestication of wheat. In the present study, using monosomic analysis, we determined the chromosomal localization of the Q(S)gene, introgressed into bread wheat from Aegilops speltoides Tausch. and homoallelic to the Q gene. It was demonstrated that the Q(S) gene was located in chromosome 5A of the bread wheat line from the Arsenal collection. This gene conferred spike speltoidy in the line itself, as well as in its hybrids with bread wheat cultivars. The Q(S) gene dominated over the bread wheat Q gene and was equally effective in the homo-, hemi-, and heterozygous states. In hybrids between the introgression line and a number of spring spelt accessions, interaction between the Q and Q(S) genes was observed, manifested as the formation of superspeltoid spike.

  2. Wheat - Aegilops introgressions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aegilops is the most closely related genus to Triticum in the tribe Triticeae. Aegilops speltoides Tausch (B genome donor) and Ae. tauschii Coss. (D genome donor) contributed two of the three genomes present in common wheat (Triticum aestivum L., 2n = 6x = 42, AABBDD genomes). The Aegilops genus c...

  3. Tandem repeats on an eco-geographical scale: outcomes from the genome of Aegilops speltoides.

    PubMed

    Raskina, Olga; Brodsky, Leonid; Belyayev, Alexander

    2011-07-01

    The chromosomal pattern of tandem repeat fractions of repetitive DNA is one of the most important characteristics of a species. In the present research, we aimed to detect and evaluate the level of intraspecific variability in the chromosomal distribution of species-specific Spelt 1 and Aegilops-Triticum-specific Spelt 52 tandem repeats in Aegilops speltoides and in closely related diploid and polyploid species. There is a distinct eco-geographical gradient in Spelt 1 and Spelt 52 blocks abundance in Ae. speltoides. In marginal populations, the number of Spelt 1 chromosomal blocks could be 12-14 times lower than in the center of the species distribution. Also, in related diploid species, the abundance of Spelt 52 correlates with evolutionary proximity to Ae. speltoides. Finally, the B- and G-genomes of allopolyploid wheats have Spelt 1 chromosomal distribution patterns similar to those of the types of Ae. speltoides with poor and rich contents of Spelt 1, respectively. The observed changes in numbers of blocks of Spelt 1 and Spelt 52 tandem repeats along the eco-geographical gradient may due to their depletion in the marginal populations as a result of increased recombination frequency under stressful conditions. Alternatively, it may be accumulation of tandem repeats in conducive climatic/edaphic environments in the center of the species' geographical distribution. Anyway, we observe a bidirectional shift of repetitive DNA genomic patterns on the population level leading to the formation of population-specific chromosomal patterns of tandem repeats. The appearance of a new chromosomal pattern is considered an important factor in promoting the emergence of interbreeding barriers.

  4. Molecular marker-assisted alien gene introgression of Sr39 for wheat stem rust resistance derived from Aegilops speltoides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In wheat (Triticum aestivum L.), stem rust resistance gene Sr39, derived from Aegilops speltoides, is highly effective against multiple stem rust races including Ug99. However, the gene has not been used in wheat breeding because it is located on a large 2S chromosomal segment in the current transl...

  5. Chromosome evolution in marginal populations of Aegilops speltoides: causes and consequences

    PubMed Central

    Belyayev, Alexander; Raskina, Olga

    2013-01-01

    Background Genome restructuring is an ongoing process in natural plant populations. The influence of environmental changes on the genome is crucial, especially during periods of extreme climatic fluctuations. Interactions between the environment and the organism manifest to the greatest extent at the limits of the species' ecological niche. Thus, marginal populations are expected to exhibit lower genetic diversity and higher genetic differentiation than central populations, and some models assume that marginal populations play an important role in the maintenance and generation of biological diversity. Scope In this review, long-term data on the cytogenetic characteristics of diploid Aegilops speltoides Tauch populations are summarized and discussed. This species is distributed in and around the Fertile Crescent and is proposed to be the wild progenitor of a number of diploid and polyploid wheat species. In marginal populations of Ae. speltoides, numerical chromosomal aberrations, spontaneous aneuploidy, B-chromosomes, rDNA cluster repatterning and reduction in the species-specific and tribe-specific tandem repeats have been detected. Significant changes were observed and occurred in parallel with changes in plant morphology and physiology. Conclusions Considerable genomic variation at the chromosomal level was found in the marginal populations of Ae. speltoides. It is likely that a specific combination of gene mutations and chromosomal repatterning has produced the evolutionary trend in each specific case, i.e. for a particular species or group of related species in a given period of time and in a certain habitat. The appearance of a new chromosomal pattern is considered an important factor in promoting the emergence of interbreeding barriers. PMID:23393097

  6. Development of a diagnostic co-dominant marker for stem rust resistance gene Sr47 introgressed from Aegilops speltoides into durum wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stem rust (caused by Puccinia graminis f. sp. tritici, abbreviated as Pgt) resistance gene Sr47, originally transferred from Aegilops speltoides to durum wheat (Triticum turgidum subsp. durum) line DAS15, confers a high level of resistance to Pgt race TTKSK (known as Ug99). Recently, the durum Rust...

  7. Development of wheat-Aegilops speltoides recombinants and simple PCR-based markers for stem rust resistance genes on the 2S#1 chromosome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wild relatives of wheat are important but underutilized resources for new rust resistance genes because linked negative traits often hinder deployment of these genes in commercial wheats. Here we report reduced alien chromatin recombinants derived from E.R. Sears' wheat-Aegilops speltoides transloca...

  8. Development of wheat-Aegilops speltoides recombinants and simple PCR-based markers for stem rust resistance genes on the 2S#1 chromosome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wild relatives of wheat are important but underutilized resources for new rust resistance genes because linked negative traits often hinder deployment of these genes in commercial wheats. Here we report reduced alien chromatin recombinants derived from E.R. Sears wheat-Aegilops speltoides translocat...

  9. Genetic compensation abilities of Aegilops speltoides chromosomes for homoeologous B-genome chromosomes of polyploid wheat in disomic S(B) chromosome substitution lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The S genome of Aegilops speltoides is closely related to the B and G genomes of polyploid wheats. However, little work has been reported on the genetic relationships between the S-genome and B-genome chromosomes of polyploid wheat. Here we report the isolation of a set of disomic substitutions (DS)...

  10. Expansion of the gamma-gliadin gene family in Aegilops and Triticum

    PubMed Central

    2012-01-01

    Background The gamma-gliadins are considered to be the oldest of the gliadin family of storage proteins in Aegilops/Triticum. However, the expansion of this multigene family has not been studied in an evolutionary perspective. Results We have cloned 59 gamma-gliadin genes from Aegilops and Triticum species (Aegilops caudata L., Aegilops comosa Sm. in Sibth. & Sm., Aegilops mutica Boiss., Aegilops speltoides Tausch, Aegilops tauschii Coss., Aegilops umbellulata Zhuk., Aegilops uniaristata Vis., and Triticum monococcum L.) representing eight different genomes: Am, B/S, C, D, M, N, T and U. Overall, 15% of the sequences contained internal stop codons resulting in pseudogenes, but this percentage was variable among genomes, up to over 50% in Ae. umbellulata. The most common length of the deduced protein, including the signal peptide, was 302 amino acids, but the length varied from 215 to 362 amino acids, both obtained from Ae. speltoides. Most genes encoded proteins with eight cysteines. However, all Aegilops species had genes that encoded a gamma-gliadin protein of 302 amino acids with an additional cysteine. These conserved nine-cysteine gamma-gliadins may perform a specific function, possibly as chain terminators in gluten network formation in protein bodies during endosperm development. A phylogenetic analysis of gamma-gliadins derived from Aegilops and Triticum species and the related genera Lophopyrum, Crithopsis, and Dasypyrum showed six groups of genes. Most Aegilops species contained gamma-gliadin genes from several of these groups, which also included sequences from the genera Lophopyrum, Crithopsis, and Dasypyrum. Hordein and secalin sequences formed separate groups. Conclusions We present a model for the evolution of the gamma-gliadins from which we deduce that the most recent common ancestor (MRCA) of Aegilops/Triticum-Dasypyrum-Lophopyrum-Crithopsis already had four groups of gamma-gliadin sequences, presumably the result of two rounds of duplication of

  11. Screening The Aegilops-Triticum Group For Boron Tolerance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Boron deficient and toxic soils pose a critical problem in wheat production on a world scale. Therefore, 79 accessions from 12 diverse wild wheat (Aegilops speltoides, Ae. longissima, Ae. sharonensis, Ae. bicornis, Ae. searsii, Ae. kotschyi, Ae. peregrina ssp. cylindrostachys, Ae. peregrina ssp. eu...

  12. Targeted introgression of a wheat stem rust resistance gene by DNA marker-assisted chromosome engineering genetics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In wheat (Triticum aestivum L.), stem rust resistance gene Sr39, derived from Aegilops speltoides Tausch, is highly resistant to multiple stem rust races including TTKSK (Ug99). However, the gene has not been used in wheat breeding because of linkage drag associated with the large 2S chromosome segm...

  13. Synthesis and characterization of advanced durum wheat hybrids and addition lines with thinopyrum chromosomes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Durum wheat (Triticum turgidum L., 2n = 4x = 28; AABB genomes) is a natural hybrid – an allotetraploid between two wild species, Triticum urartu Tumanian (AA genome) and Aegilops speltoides Tausch (BB genome). As shown earlier, even at the allotetraploid level, durum wheat can tolerate chromosomal ...

  14. Variations in a hotspot region of chloroplast DNAs among common wheat and Aegilops revealed by nucleotide sequence analysis.

    PubMed

    Guo, Chang-Hong; Terachi, Toru

    2005-08-01

    The second largest BamHI fragment (B2) of the chloroplast DNA in Triticum (wheat) and Aegilops contains a highly variable region (a hotspot), resulting in four types of B2 of different size, i.e. B2l (10.5kb), B2m (10.2kb), B2 (9.6kb) and B2s (9.4kb). In order to gain a better understanding of the molecular nature of the variations in length and explain unexpected identity among B2 of Ae. ovata, Ae. speltoides and common wheat (T. aestivum), the nucleotide sequence between a stop codon of rbcL and a HindIII site in cemA in the hotspot was determined for Ae. ovata, Ae. speltoides, Ae. caudata and Ae. mutica. The total number of nucleotides in the region was 2808, 2810, 3302, and 3594 bp, for Ae. speltoides, Ae. ovata, Ae. caudata and Ae. mutica, respectively, and the sequences were compared with the corresponding ones of Ae. crassa 4x, T. aestivum and Ae. squarrosa. Compared with the largest B2l fragment of Ae. mutica, a 791bp and a 793 bp deletion were found in Ae. speltoides and Ae. ovata, respectively, and the possible site of deletion in the two species is the same as that of T. aestivum. However, a deleted segment in Ae. ovata is 2 bp longer than that of Ae. speltoides (and T. aestivum), demonstrating that recurrent deletions had occurred in the chloroplast genomes of both species. Comparison of the sequences from Ae. caudata and Ae. crassa 4x with that of Ae. mutica revealed a 289 bp and a 61 bp deletion at the same site in Ae. caudata and Ae. crassa 4x, respectively. Sequence comparison using wild Aegilops plants showed that the large length variations in a hotspot are fixed to each species. A considerable number of polymorphisms are observed in a loop in the 3' of rbcL. The study reveals the relative importance of the large and small indels and minute inversions to account for variations in the chloroplast genomes among closely related species.

  15. Plasmon analyses of Triticum (wheat) and Aegilops: PCR–single-strand conformational polymorphism (PCR-SSCP) analyses of organellar DNAs

    PubMed Central

    Wang, Gui-Zhi; Miyashita, Naohiko T.; Tsunewaki, Koichiro

    1997-01-01

    To investigate phylogenetic relationships among plasmons in Triticum and Aegilops, PCR–single-strand conformational polymorphism (PCR-SSCP) analyses were made of 14.0-kb chloroplast (ct) and 13.7-kb mitochondrial (mt)DNA regions that were isolated from 46 alloplasmic wheat lines and one euplasmic line. These plasmons represent 31 species of the two genera. The ct and mtDNA regions included 10 and 9 structural genes, respectively. A total of 177 bands were detected, of which 40.6% were variable. The proportion of variable bands in ctDNA (51.1%) was higher than that of mtDNA (28.9%). The phylogenetic trees of plasmons, derived by two different models, indicate a common picture of plasmon divergence in the two genera and suggest three major groups of plasmons (Einkorn, Triticum, and Aegilops). Because of uniparental plasmon transmission, the maternal parents of all but one polyploid species were identified. Only one Aegilops species, Ae. speltoides, was included in the Triticum group, suggesting that this species is the plasmon and B and G genome donor of all polyploid wheats. ctDNA variations were more intimately correlated with vegetative characters, whereas mtDNA variations were more closely correlated with reproductive characters. Plasmon divergence among the diploids of the two genera largely paralleled genome divergence. The relative times of origin of the polyploid species were inferred from genetic distances from their putative maternal parents. PMID:9405654

  16. Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat

    PubMed Central

    Huang, Shaoxing; Sirikhachornkit, Anchalee; Su, Xiujuan; Faris, Justin; Gill, Bikram; Haselkorn, Robert; Gornicki, Piotr

    2002-01-01

    The classic wheat evolutionary history is one of adaptive radiation of the diploid Triticum/Aegilops species (A, S, D), genome convergence and divergence of the tetraploid (Triticum turgidum AABB, and Triticum timopheevii AAGG) and hexaploid (Triticum aestivum, AABBDD) species. We analyzed Acc-1 (plastid acetyl-CoA carboxylase) and Pgk-1 (plastid 3-phosphoglycerate kinase) genes to determine phylogenetic relationships among Triticum and Aegilops species of the wheat lineage and to establish the timeline of wheat evolution based on gene sequence comparisons. Triticum urartu was confirmed as the A genome donor of tetraploid and hexaploid wheat. The A genome of polyploid wheat diverged from T. urartu less than half a million years ago (MYA), indicating a relatively recent origin of polyploid wheat. The D genome sequences of T. aestivum and Aegilops tauschii are identical, confirming that T. aestivum arose from hybridization of T. turgidum and Ae. tauschii only 8,000 years ago. The diploid Triticum and Aegilops progenitors of the A, B, D, G, and S genomes all radiated 2.5–4.5 MYA. Our data suggest that the Acc-1 and Pgk-1 loci have different histories in different lineages, indicating genome mosaicity and significant intraspecific differentiation. Some loci of the S genome of Aegilops speltoides and the G genome of T. timophevii are closely related, suggesting the same origin of some parts of their genomes. None of the Aegilops genomes analyzed is a close relative of the B genome, so the diploid progenitor of the B genome remains unknown. PMID:12060759

  17. The molecular basis of genetic diversity among cytoplasms of Triticum and Aegilops : 7. Restriction endonuclease analysis of mitochondrial DNAs from polyploid wheats and their ancestral species.

    PubMed

    Terachi, T; Ogihara, Y; Tsunewaki, K

    1990-09-01

    Many related species and strains of common wheat were compared by matching differences among their mitochondrial genomes with their "parent" nuclear genomes. We examined three species of Aegilops, section Sitopsis (Ae. bicornis, Ae. sharonensis, and Ae. speltoides), emmer wheat (Triticum dicoccoides, T. dicoccum, and T. durum), common wheat (T. spelta, T. aestivum, and T. compaction), and timopheevi wheat (T. araraticum, T. timopheevi, and T. zhukovskyi). A single source of the cytoplasm was used in all the species, except Ae. speltoides (two sources), T. araraticum (two), and T. aestivum (three). Following restriction endonuclease analyses, the mitochondrial genomes were found to comprise seven types, and a dendrogram showing their genetic relatedness was constructed, based upon the percentage of common restriction fragments. MtDNAs from T. dicoccum, T. durum, T. aestivum, and T. compactum yielded identical restriction fragment patterns; these differed from T. dicoccoides and T. spelta mtDNAs in only 2.3% of their fragments. The fragment patterns of T. timopheevi and T. zhukovskyi were identical, and these differed from T. araraticum mtDNA by only one fragment. In both the emmer-dinkel and timopheevi groups, mitochondrial genome differentiation is evident, suggesting a diphyletic origin of each group. MtDNAs from four accessions of the Sitopsis species of Aegilops differ greatly from one another, but those of Ae. bicornis, Ae. sharonensis, and Ae. searsii, belonging to the same subsection Emarginata, are relatively similar. MtDNAs of timopheevi species are identical, or nearly so, to those of Ae. speltoides accession (09), suggesting that the latter was the cytoplasm donor to the former, polyploid group. The origin of this polyploid group seems to be rather recent in that the diploid and polyploid species possess nearly identical mitochondrial genomes. We cannot determine, with precision, the cytoplasm donor to the emmer-dinkel group. However, our results do

  18. Molecular and cytogenetic characterization of a durum wheat Aegilops speltoides chromosome translocation conferring resistance to stem rust

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stem rust is a serious disease of wheat that has caused historical epidemics, but it has not been a threat in recent decades in North America due to the eradication of the alternate host and deployment of resistant cultivars. However, the recent emergence of Ug99 (or race TTKS) poses a threat to glo...

  19. Mapping of novel powdery mildew resistance gene Pm53 introgressed from Aegilops speltoides into soft red winter wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Powdery mildew of wheat (Triticum aestivum L.) is a major fungal disease in many areas of the world, caused by Blumeria graminis f.sp. tritici (Bgt). Host plant resistance is the preferred form of disease prevention because it is both economical and environmentally benign. Identification of new resi...

  20. [Comments on the paper by D. Tausch et al. Experiments on the penetration power of various bullets into skin and muscle tissue (author's transl)].

    PubMed

    Dammermann, W

    1979-07-17

    The objections in the following comments on a recent paper by Tausch et al. (1978) are raised principally to the points that the mass of the projectile is given an importance for the penetration which is not justified, and that the inherent uncertainty of the measurement data and the scope of validity of the empirical formulas are not sufficiently taken into account. The discussion on the process of penetration and a discontinuity of the depth of penetration as a function of the velocity of the bullet is of fundamental significance, with consequences for the definition of the critical velocity.

  1. The Molecular Basis of Genetic Diversity among Cytoplasms of TRITICUM and AEGILOPS Species. II. on the Origin of Polyploid Wheat Cytoplasms as Suggested by Chloroplast DNA Restriction Fragment Patterns

    PubMed Central

    Tsunewaki, Koichiro; Ogihara, Yasunari

    1983-01-01

    In attempts to identify the phylogenetic donors of cytoplasm to Emmer-Dinkel and Timopheevi groups of wheat (Triticum), and the Aegilops kotschyi-Ae. variabilis complex, the restriction fragment patterns of chloroplast DNAs of representative species were compared with those of their putative diploid ancestors. The following seven restriction enzymes were used; BamHI, EcoRI, HindIII, KpnI, PstI, SmaI and XhoI. The restriction fragment patterns of an Emmer and a Dinkel (common) wheat were identical with those of Ae. longissima , and different from those of Ae. aucheri, Ae. bicornis, Ae. searsii, Ae. sharonensis, Ae. speltoides, and T. urartu by 4 to 12 fragments. The restriction fragment patterns of a Timopheevi wheat were identical with those of Ae. aucheri, and different from those of all other diploids by four to nine fragments. The restriction fragment patterns of Ae. variabilis were identical to those of Ae. bicornis and Ae. searsii , and different from those of all other species. Thus, we have concluded that Ae. longissima, Ae. aucheri and Ae. bicornis (or Ae. searsii) were the cytoplasm donors to the Emmer-Dinkel and the Timopheevi groups, and the Ae. kotschyi-Ae. variabilis complex, respectively. A diphyletic origin of Emmer and Timopheevi groups is supported by the present results. PMID:17246126

  2. Chloroplast and nuclear microsatellite analysis of Aegilops cylindrica.

    PubMed

    Gandhi, Harish T; Vales, M Isabel; Watson, Christy J W; Mallory-Smith, Carol A; Mori, Naoki; Rehman, Maqsood; Zemetra, Robert S; Riera-Lizarazu, Oscar

    2005-08-01

    Aegilops cylindrica Host (2n = 4x = 28, genome CCDD) is an allotetraploid formed by hybridization between the diploid species Ae. tauschii Coss. (2n = 2x = 14, genome DD) and Ae. markgrafii (Greuter) Hammer (2n = 2x = 14, genome CC). Previous research has shown that Ae. tauschii contributed its cytoplasm to Ae. cylindrica. However, our analysis with chloroplast microsatellite markers showed that 1 of the 36 Ae. cylindrica accessions studied, TK 116 (PI 486249), had a plastome derived from Ae. markgrafii rather than Ae. tauschii. Thus, Ae. markgrafii has also contributed its cytoplasm to Ae. cylindrica. Our analysis of chloroplast and nuclear microsatellite markers also suggests that D-type plastome and the D genome in Ae. cylindrica were closely related to, and were probably derived from, the tauschii gene pool of Ae. tauschii. A determination of the likely source of the C genome and the C-type plastome in Ae. cylindrica was not possible.

  3. Allelic variations of α-gliadin genes from species of Aegilops section Sitopsis and insights into evolution of α-gliadin multigene family among Triticum and Aegilops.

    PubMed

    Huang, Zhuo; Long, Hai; Wei, Yu-Ming; Yan, Ze-Hong; Zheng, You-Liang

    2016-04-01

    The α-gliadins account for 15-30 % of the total storage protein in wheat endosperm and play important roles in the dough extensibility and nutritional quality. On the other side, they act as a main source of toxic peptides triggering celiac disease. In this study, 37 α-gliadins were isolated from three species of Aegilops section Sitopsis. Sequence similarity and phylogenetic analyses revealed novel allelic variation at Gli-2 loci of species of Sitopsis and regular organization of motifs in their repetitive domain. Based on the comprehensive analyses of a large number of known sequences of bread wheat and its diploid genome progenitors, the distributions of four T cell epitopes and length variations of two polyglutamine domains are analyzed. Additionally, according to the organization of repeat motifs, we classified the α-gliadins of Triticum and Aegilops into eight types. Their most recent common ancestor and putative divergence patterns were further considered. This study provides new insights into the allelic variations of α-gliadins in Aegilops section Sitopsis, as well as evolution of α-gliadin multigene family among Triticum and Aegilops species.

  4. Gene flow between wheat and wild relatives: empirical evidence from Aegilops geniculata, Ae. neglecta and Ae. triuncialis

    PubMed Central

    Arrigo, Nils; Guadagnuolo, Roberto; Lappe, Sylvain; Pasche, Sophie; Parisod, Christian; Felber, François

    2011-01-01

    Gene flow between domesticated species and their wild relatives is receiving growing attention. This study addressed introgression between wheat and natural populations of its wild relatives (Aegilops species). The sampling included 472 individuals, collected from 32 Mediterranean populations of three widespread Aegilops species (Aegilops geniculata, Ae. neglecta and Ae. triuncialis) and compared wheat field borders to areas isolated from agriculture. Individuals were characterized with amplified fragment length polymorphism fingerprinting, analysed through two computational approaches (i.e. Bayesian estimations of admixture and fuzzy clustering), and sequences marking wheat-specific insertions of transposable elements. With this combined approach, we detected substantial gene flow between wheat and Aegilops species. Specifically, Ae. neglecta and Ae. triuncialis showed significantly more admixed individuals close to wheat fields than in locations isolated from agriculture. In contrast, little evidence of gene flow was found in Ae. geniculata. Our results indicated that reproductive barriers have been regularly bypassed during the long history of sympatry between wheat and Aegilops. PMID:25568015

  5. [Isolation and characterization of gliadins from Aegilops squarrosa seeds].

    PubMed

    Odintsova, T I; Egorov, Ts A

    1989-03-01

    The major gliadin components were isolated from the seeds of the diploid species Aegilops squarrosa, a putative source of polyploid wheat D-genome. The isolation procedure included gel-filtration and reversed-phase high-performance liquid chromatography (HPLC). The purified proteins were characterized by electrophoretic mobility in polyacrylamide gel using acid Al-lactate system and a system containing sodium dodecyl sulfate. The amino acid composition of isolated omega-gliadins was determined. Using covalent chromatography on thiopropyl-Sepharose 6B it was found that omega-gliadins of A. squarrosa contain no SH-groups and/or S-S-bonds. The N-terminal amino acid sequences of A. squarrosa gliadins were determined. omega-Gliadins were found to contain three types of N-terminal amino acid sequences, one of which, SRQ, in hexaploid wheat is encoded by 1B chromosome. It was shown that some omega-gliadins of A. squarrosa have blocked N-terminal amino acids. The major component of the gamma-fraction was found to contain an N-terminal sequence of gamma 2 type encoded in polyploid wheat by 1D chromosome. Gliadins with electrophoretic mobility in the beta-zone of the spectrum possess the N-terminal sequence of alpha-type. The results obtained are discussed in terms of the origin of polyploid wheat genomes.

  6. Inheritance of dense spike in diploid wheat and Aegilops squarrosa.

    PubMed

    Goncharov, N P; Kondratenko, E Ya; Kawahara, T

    2002-01-01

    The individuals of diploid wheat Triticum boeoticum, T. monococcum and T. sinskajae and goatgrass Aegilops squarrosa were picked out with screening the dense spike characteristics. The dense-spike accessions were discovered in diploid wheat (T. sinskajae) and Ae. squarrosa. Inheritance of the dense spike was studied. The trait was found to be controlled by a recessive gene in T. sinskajae and by an incomplete dominant gene in Ae. squarrosa. The dosage effect of dominant gene C was detected in interspecific pentaploid F1 hybrid plants T. compactum x T. palmovae (2n =35, A(u)A(b)BDD genome). The spike of pentaploid hybrid was not so dense as compared to hexaploid wheat T. compactum. This is the first report showing similarity of the expression of dominant gene C on D genome of the hexaploid wheat to that of dense spike gene in Ae. squarrosa. The existence of dense-spike accessions of Ae. squarrosa allows us to hypothesize that the origin of T. compactum is independent from that of common wheat.

  7. Study of improving the quality of bread and wheat-aegilops hybrids with the biotechnological ways

    NASA Astrophysics Data System (ADS)

    Ganbarzada, Aygun; Hasanova, Sudaba

    2016-08-01

    The great need of the people to bread demands to increase high qualitative grain plants. At present time for solving these problem different methods of biochemistry, genetics and molecular biology are widely used in the process of selection. To investigate biochemical peculiarities of wheat-aegilops hybrids and to define the correlative relation between these characteristics. To investigate the technological peculiarities of wheat- aegilops hybrids and to define the relation between their main biochemical and technological characteristics. The conclusion of this investigation showed the followings- the wheat-aegilops hybrids according to their morphological and biochemical characteristics have approached to wheats. The electrophoretic spectres of the wheat- aegilops hybrids which have stable for their morphological characteristics are homogeny and heterogenic. Hereditarily some group protein components have passed to their tribes from their parents. But spontaneous hybridisation results in taking part the components of other unknown wheats in these electrophoretic spectres. There is a relation between the electrophoretic spectres and the indications of the grain quality.

  8. Introgression of a new stem rust resistance gene from Aegilops markgrafii into wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In a prior study, we reported that an Alcedo/Aegilops markgrafii disomic addition line, AIII(D) (2n=44), was resistant to three races of the Ug99 lineage and five North American races of stem rust pathogen in wheat and the resistance originated from the alien chromosome. In this study, our objectiv...

  9. [Phylogenetic relationships and intraspecific variation of D-genome Aegilops L. as revealed by RAPD analysis].

    PubMed

    Goriunova, S V; Kochieva, E Z; Chikida, N N; Pukhal'skiĭ, V A

    2004-05-01

    RAPD analysis was carried out to study the genetic variation and phylogenetic relationships of polyploid Aegilops species, which contain the D genome as a component of the alloploid genome, and diploid Aegilops tauschii, which is a putative donor of the D genome for common wheat. In total, 74 accessions of six D-genome Aegilops species were examined. The highest intraspecific variation (0.03-0.21) was observed for Ae. tauschii. Intraspecific distances between accessions ranged 0.007-0.067 in Ae. cylindrica, 0.017-0.047 in Ae. vavilovii, and 0.00-0.053 in Ae. juvenalis. Likewise, Ae. ventricosa and Ae. crassa showed low intraspecific polymorphism. The among-accession difference in alloploid Ae. ventricosa (genome DvNv) was similar to that of one parental species, Ae. uniaristata (N), and substantially lower than in the other parent, Ae. tauschii (D). The among-accession difference in Ae. cylindrica (CcDc) was considerably lower than in either parent, Ae. tauschii (D) or Ae. caudata (C). With the exception of Ae. cylindrica, all D-genome species--Ae. tauschii (D), Ae. ventricosa (DvNv), Ae. crassa (XcrDcrl and XcrDcrlDcr2), Ae. juvenalis (XjDjUj), and Ae. vavilovii (XvaDvaSva)--formed a single polymorphic cluster, which was distinct from clusters of other species. The only exception, Ae. cylindrica, did not group with the other D-genome species, but clustered with Ae. caudata (C), a donor of the C genome. The cluster of these two species was clearly distinct from the cluster of the other D-genome species and close to a cluster of Ae. umbellulata (genome U) and Ae. ovata (genome UgMg). Thus, RAPD analysis for the first time was used to estimate and to compare the interpopulation polymorphism and to establish the phylogenetic relationships of all diploid and alloploid D-genome Aegilops species.

  10. Identification of a major QTL controlling the content of B-type starch granules in Aegilops

    PubMed Central

    Howard, Thomas; Rejab, Nur Ardiyana; Griffiths, Simon; Leigh, Fiona; Leverington-Waite, Michelle; Simmonds, James; Uauy, Cristobal; Trafford, Kay

    2011-01-01

    Starch within the endosperm of most species of the Triticeae has a unique bimodal granule morphology comprising large lenticular A-type granules and smaller near-spherical B-type granules. However, a few wild wheat species (Aegilops) are known to lack B-granules. Ae. peregrina and a synthetic tetraploid Aegilops with the same genome composition (SU) were found to differ in B-granule number. The synthetic tetraploid had normal A- and B-type starch granules whilst Ae. peregrina had only A-granules because the B-granules failed to initiate. A population segregating for B-granule number was generated by crossing these two accessions and was used to study the genetic basis of B-granule initiation. A combination of Bulked Segregant Analysis and QTL mapping identified a major QTL located on the short arm of chromosome 4S that accounted for 44.4% of the phenotypic variation. The lack of B-granules in polyploid Aegilops with diverse genomes suggests that the B-granule locus has been lost several times independently during the evolution of the Triticeae. It is proposed that the B-granule locus is susceptible to silencing during polyploidization and a model is presented to explain the observed data based on the assumption that the initiation of B-granules is controlled by a single major locus per haploid genome. PMID:21227932

  11. Introgression of leaf rust and stripe rust resistance from Sharon goatgrass (Aegilops sharonensis Eig) into bread wheat (Triticum aestivum L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Leaf rust and stripe rust are devastating wheat diseases, causing significant yield losses in many regions of the world. The use of resistant varieties is the most efficient way to protect wheat crops from these diseases. Sharon goatgrass (Aegilops sharonensis or AES), which is a diploid wild relati...

  12. Gene Space Dynamics during the Evolution of Aegilops tauschii, Brachypodium distachyon, Oryza sativa, and Sorghum bicolor Genomes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nine different regions totaling 9.7 Mb of the 4.02 Gb Aegilops tauschii genome were sequenced using the Sanger sequencing technology and compared with orthologous Brachypodium distachyon, Oryza sativa (rice) and Sorghum bicolor (sorghum) genomic sequences. The ancestral gene content in these regio...

  13. MlNCD1: A novel Aegilops tauschii derived powdery mildew resistance gene identified in common wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Powdery mildew is a major fungal disease in wheat, especially in cool maritime climates. A novel Aegilops tauschii derived wheat powdery mildew resistance gene present in the germplasm line NC96BGTD1 was genetically characterized as a monogenic trait in field trials using F2 and F4-derived lines fr...

  14. Introgression of stem rust resistance genes SrTA10187 and SrTA10171 from Aegilops tauschii to wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The diploid progenitor of the wheat D genome, Aegilops tauschii, has provided a wealth of genes for resistance to many diseases and insect pests of wheat. Ae. tauschii is a readily accessible pool of genes for wheat breeding as genes can be transferred to elite wheat cultivars though direct hybridi...

  15. [Hybrids of Aegilops cylindrica Host with Triticum durum Desf. and T. aestivum L].

    PubMed

    Avsenin, V I; Motsnyĭ, A I; Rybalka, A I; Faĭt, V I

    2003-01-01

    The hybrids of durum and bread wheat with Ae. cylindrica have been obtained without using an embryo rescue technique. The hybrid output (of pollinated flower number) in the field conditions scored 1.0, 15.3 and 10.0% in the crosses T. durum x Ae. cylindrica, Ae. cylindrica x T. durum and T. aestivum x Ae. cylindrica, respectively. A high level of meiotic chromosome pairing between homologous D genomes of bread wheat and Aegilops has been revealed (c = 80.0-83.7%). The possibility of homoeological pairing between wheat and Ae. cylindrica chromosomes has been shown. Herewith, the correlation between the levels of homological and homoeological pairing is absent. The possibilities of genetic material interchange, including between the tetraploid species, as well as the using of Ae. cylindrica cytoplasm for durum wheat breeding are discussed.

  16. Identification and Analysis of RNA Editing Sites in the Chloroplast Transcripts of Aegilops tauschii L.

    PubMed Central

    Wang, Mengxing; Liu, Hui; Ge, Lingqiao; Xing, Guangwei; Wang, Meng; Weining, Song; Nie, Xiaojun

    2016-01-01

    RNA editing is an important way to convert cytidine (C) to uridine (U) at specific sites within RNA molecules at a post-transcriptional level in the chloroplasts of higher plants. Although it has been systematically studied in many plants, little is known about RNA editing in the wheat D genome donor Aegilops tauschii L. Here, we investigated the chloroplast RNA editing of Ae. tauschii and compared it with other wheat relatives to trace the evolution of wheat. Through bioinformatics prediction, a total of 34 C-to-U editing sites were identified, 17 of which were validated using RT-PCR product sequencing. Furthermore, 60 sites were found by the RNA-Seq read mapping approach, 24 of which agreed with the prediction and six were validated experimentally. The editing sites were biased toward tCn or nCa trinucleotides and 5′-pyrimidines, which were consistent with the flanking bases of editing sites of other seed plants. Furthermore, the editing events could result in the alteration of the secondary structures and topologies of the corresponding proteins, suggesting that RNA editing might impact the function of target genes. Finally, comparative analysis found some evolutionarily conserved editing sites in wheat and two species-specific sites were also obtained. This study is the first to report on RNA editing in Aegilops tauschii L, which not only sheds light on the evolution of wheat from the point of view of RNA editing, but also lays a foundation for further studies to identify the mechanisms of C-to-U alterations. PMID:28042823

  17. Identification and Analysis of RNA Editing Sites in the Chloroplast Transcripts of Aegilops tauschii L.

    PubMed

    Wang, Mengxing; Liu, Hui; Ge, Lingqiao; Xing, Guangwei; Wang, Meng; Weining, Song; Nie, Xiaojun

    2016-12-30

    RNA editing is an important way to convert cytidine (C) to uridine (U) at specific sites within RNA molecules at a post-transcriptional level in the chloroplasts of higher plants. Although it has been systematically studied in many plants, little is known about RNA editing in the wheat D genome donor Aegilops tauschii L. Here, we investigated the chloroplast RNA editing of Ae. tauschii and compared it with other wheat relatives to trace the evolution of wheat. Through bioinformatics prediction, a total of 34 C-to-U editing sites were identified, 17 of which were validated using RT-PCR product sequencing. Furthermore, 60 sites were found by the RNA-Seq read mapping approach, 24 of which agreed with the prediction and six were validated experimentally. The editing sites were biased toward tCn or nCa trinucleotides and 5'-pyrimidines, which were consistent with the flanking bases of editing sites of other seed plants. Furthermore, the editing events could result in the alteration of the secondary structures and topologies of the corresponding proteins, suggesting that RNA editing might impact the function of target genes. Finally, comparative analysis found some evolutionarily conserved editing sites in wheat and two species-specific sites were also obtained. This study is the first to report on RNA editing in Aegilops tauschii L, which not only sheds light on the evolution of wheat from the point of view of RNA editing, but also lays a foundation for further studies to identify the mechanisms of C-to-U alterations.

  18. Chromosome isolation by flow sorting in Aegilops umbellulata and Ae. comosa and their allotetraploid hybrids Ae. biuncialis and Ae. geniculata.

    PubMed

    Molnár, István; Kubaláková, Marie; Šimková, Hana; Cseh, András; Molnár-Láng, Márta; Doležel, Jaroslav

    2011-01-01

    This study evaluates the potential of flow cytometry for chromosome sorting in two wild diploid wheats Aegilops umbellulata and Ae. comosa and their natural allotetraploid hybrids Ae. biuncialis and Ae. geniculata. Flow karyotypes obtained after the analysis of DAPI-stained chromosomes were characterized and content of chromosome peaks was determined. Peaks of chromosome 1U could be discriminated in flow karyotypes of Ae. umbellulata and Ae. biuncialis and the chromosome could be sorted with purities exceeding 95%. The remaining chromosomes formed composite peaks and could be sorted in groups of two to four. Twenty four wheat SSR markers were tested for their position on chromosomes of Ae. umbellulata and Ae. comosa using PCR on DNA amplified from flow-sorted chromosomes and genomic DNA of wheat-Ae. geniculata addition lines, respectively. Six SSR markers were located on particular Aegilops chromosomes using sorted chromosomes, thus confirming the usefulness of this approach for physical mapping. The SSR markers are suitable for marker assisted selection of wheat-Aegilops introgression lines. The results obtained in this work provide new opportunities for dissecting genomes of wild relatives of wheat with the aim to assist in alien gene transfer and discovery of novel genes for wheat improvement.

  19. Chromosome Isolation by Flow Sorting in Aegilops umbellulata and Ae. comosa and Their Allotetraploid Hybrids Ae. biuncialis and Ae. geniculata

    PubMed Central

    Molnár, István; Kubaláková, Marie; Šimková, Hana; Cseh, András; Molnár-Láng, Márta; Doležel, Jaroslav

    2011-01-01

    This study evaluates the potential of flow cytometry for chromosome sorting in two wild diploid wheats Aegilops umbellulata and Ae. comosa and their natural allotetraploid hybrids Ae. biuncialis and Ae. geniculata. Flow karyotypes obtained after the analysis of DAPI-stained chromosomes were characterized and content of chromosome peaks was determined. Peaks of chromosome 1U could be discriminated in flow karyotypes of Ae. umbellulata and Ae. biuncialis and the chromosome could be sorted with purities exceeding 95%. The remaining chromosomes formed composite peaks and could be sorted in groups of two to four. Twenty four wheat SSR markers were tested for their position on chromosomes of Ae. umbellulata and Ae. comosa using PCR on DNA amplified from flow-sorted chromosomes and genomic DNA of wheat-Ae. geniculata addition lines, respectively. Six SSR markers were located on particular Aegilops chromosomes using sorted chromosomes, thus confirming the usefulness of this approach for physical mapping. The SSR markers are suitable for marker assisted selection of wheat-Aegilops introgression lines. The results obtained in this work provide new opportunities for dissecting genomes of wild relatives of wheat with the aim to assist in alien gene transfer and discovery of novel genes for wheat improvement. PMID:22132127

  20. Dissecting miRNAs in Wheat D Genome Progenitor, Aegilops tauschii

    PubMed Central

    Akpinar, Bala A.; Budak, Hikmet

    2016-01-01

    As the post-transcriptional regulators of gene expression, microRNAs or miRNAs comprise an integral part of understanding how genomes function. Although miRNAs have been a major focus of recent efforts, miRNA research is still in its infancy in most plant species. Aegilops tauschii, the D genome progenitor of bread wheat, is a wild diploid grass exhibiting remarkable population diversity. Due to the direct ancestry and the diverse gene pool, A. tauschii is a promising source for bread wheat improvement. In this study, a total of 87 Aegilops miRNA families, including 51 previously unknown, were computationally identified both at the subgenomic level, using flow-sorted A. tauschii 5D chromosome, and at the whole genome level. Predictions at the genomic and subgenomic levels suggested A. tauschii 5D chromosome as rich in pre-miRNAs that are highly associated with Class II DNA transposons. In order to gain insights into miRNA evolution, putative 5D chromosome miRNAs were compared to its modern ortholog, Triticum aestivum 5D chromosome, revealing that 48 of the 58 A. tauschii 5D miRNAs were conserved in orthologous T. aestivum 5D chromosome. The expression profiles of selected miRNAs (miR167, miR5205, miR5175, miR5523) provided the first experimental evidence for miR5175, miR5205 and miR5523, and revealed differential expressional changes in response to drought in different genetic backgrounds for miR167 and miR5175. Interestingly, while miR5523 coding regions were present and expressed as pre-miR5523 in both T. aestivum and A. tauschii, the expression of mature miR5523 was observed only in A. tauschii under normal conditions, pointing out to an interference at the downstream processing of pre-miR5523 in T. aestivum. Overall, this study expands our knowledge on the miRNA catalog of A. tauschii, locating a subset specifically to the 5D chromosome, with ample functional and comparative insight which should contribute to and complement efforts to develop drought tolerant

  1. [The detection of nonallelic to known genes of resistance to Tilletia caries (DC) Tul. in wheat strains from interspecific hybridization (Triticum aestivum x Aegilops cylindrica)].

    PubMed

    Babaiants, L T; Dubinina, L A; Iushchenko, G M

    2000-01-01

    It was established by hybridological analysis that winter bread wheat lines 1/74-91, 3/36-91, 5/55-91 possess single dominant gene of resistance to bunt (Tilletia caries (DC) Tul.), but lines 8/2-91, 5/43-91, 4/11-91 and 8/16-91 have two independent dominant genes for this character. These genes originated from Aegilops cylindrica are not identical to Bt1-Bt17 genes and are unknown to date. The lines were obtained from crosses between winter bread wheat variety Odeskaya polukarlikovaya and Aegilops cylindrica.

  2. Cytological identification of an Aegilops variabilis chromosome carrying stripe rust resistance in wheat

    PubMed Central

    Zhao, Laibin; Ning, Shunzong; Yu, Jianjun; Hao, Ming; Zhang, Lianquan; Yuan, Zhongwei; Zheng, Youliang; Liu, Dengcai

    2016-01-01

    Aegilops variabilis (UUSvSv), an important sources for wheat improvement, originated from chromosome doubling of a natural hybrid between Ae. umbellulata (UU) with Ae. longissima (SlSl). The Ae. variabilis karyotype was poorly characterized by fluorescent in situ hybridization (FISH). The FISH probe combination of pSc119.2, pTa71 and pTa-713 identified each of the 14 pairs of Ae. variabilis chromosomes. Our FISH ideogram was further used to detect an Ae. variabilis chromosome carrying stripe rust resistance in the background of wheat lines developed from crosses of the stripe rust susceptible bread wheat cultivar Yiyuan 2 with a resistant Ae. variabilis accession. Among the 15 resistant BC1F7 lines, three were 2Sv + 4Sv addition lines (2n = 46) and 12 were 2Sv(2B) or 2Sv(2D) substitution lines that were confirmed with SSR markers. SSR marker gwm148 can be used to trace 2Sv in common wheat background. Chromosome 2Sv probably carries gametocidal(Gc) gene(s) since cytological instability and chromosome structural variations, including non-homologous translocations, were observed in some lines with this chromosome. Due to the effects of photoperiod genes, substitution lines 2Sv(2D) and 2Sv(2B) exhibited late heading with 2Sv(2D) lines being later than 2Sv(2B) lines. 2Sv(2D) substitution lines were also taller and exhibited higher spikelet numbers and longer spikes. PMID:27795677

  3. Genetic effect of the Aegilops caudata plasmon on the manifestation of the Ae. cylindrica genome.

    PubMed

    Tsunewaki, Koichiro; Mori, Naoki; Takumi, Shigeo

    2014-01-01

    In the course of reconstructing Aegilops caudata from its own genome (CC) and its plasmon, which had passed half a century in common wheat (genome AABBDD), we produced alloplasmic Ae. cylindrica (genome CCDD) with the plasmon of Ae. caudata. This line, designated (caudata)-CCDD, was found to express male sterility in its second substitution backcross generation (SB2) of (caudata)-AABBCCDD pollinated three times with the Ae. cylindrica pollen. We repeatedly backcrossed these SB2 plants with the Ae. cylindrica pollen until the SB5 generation, and SB5F2 progeny were produced by self-pollination of the SB5 plants. Thirteen morphological and physiological characters, including pollen and seed fertilities, of the (caudata)-CCDD SB5F2 were compared with those of the euplasmic Ae. cylindrica. The results indicated that the male sterility expressed by (caudata)-CCDD was due to genetic incompatibility between the Ae. cylindrica genome and Ae. caudata plasmon that did not affect any other characters of Ae. cylindrica. Also, we report that the genome integrity functions in keeping the univalent transmission rate high.

  4. Molecular analysis, cytogenetics and fertility of introgression lines from transgenic wheat to Aegilops cylindrica host.

    PubMed

    Schoenenberger, Nicola; Guadagnuolo, Roberto; Savova-Bianchi, Dessislava; Küpfer, Philippe; Felber, François

    2006-12-01

    Natural hybridization and backcrossing between Aegilops cylindrica and Triticum aestivum can lead to introgression of wheat DNA into the wild species. Hybrids between Ae. cylindrica and wheat lines bearing herbicide resistance (bar), reporter (gus), fungal disease resistance (kp4), and increased insect tolerance (gna) transgenes were produced by pollination of emasculated Ae. cylindrica plants. F1 hybrids were backcrossed to Ae. cylindrica under open-pollination conditions, and first backcrosses were selfed using pollen bags. Female fertility of F1 ranged from 0.03 to 0.6%. Eighteen percent of the sown BC1s germinated and flowered. Chromosome numbers ranged from 30 to 84 and several of the plants bore wheat-specific sequence-characterized amplified regions (SCARs) and the bar gene. Self fertility in two BC1 plants was 0.16 and 5.21%, and the others were completely self-sterile. Among 19 BC1S1 individuals one plant was transgenic, had 43 chromosomes, contained the bar gene, and survived glufosinate treatments. The other BC1S1 plants had between 28 and 31 chromosomes, and several of them carried SCARs specific to wheat A and D genomes. Fertility of these plants was higher under open-pollination conditions than by selfing and did not necessarily correlate with even or euploid chromosome number. Some individuals having supernumerary wheat chromosomes recovered full fertility.

  5. The 2NS Translocation from Aegilops ventricosa Confers Resistance to the Triticum Pathotype of Magnaporthe oryzae

    PubMed Central

    Cruz, C.D.; Peterson, G.L.; Bockus, W.W.; Kankanala, P.; Dubcovsky, J.; Jordan, K.W.; Akhunov, E.; Chumley, F.; Baldelomar, F.D.; Valent, B.

    2016-01-01

    Wheat blast is a serious disease caused by the fungus Magnaporthe oryzae (Triticum pathotype) (MoT). The objective of this study was to determine the effect of the 2NS translocation from Aegilops ventricosa (Zhuk.) Chennav on wheat head and leaf blast resistance. Disease phenotyping experiments were conducted in growth chamber, greenhouse, and field environments. Among 418 cultivars of wheat (Triticum aestivum L.), those with 2NS had 50.4 to 72.3% less head blast than those without 2NS when inoculated with an older MoT isolate under growth chamber conditions. When inoculated with recently collected isolates, cultivars with 2NS had 64.0 to 80.5% less head blast. Under greenhouse conditions when lines were inoculated with an older MoT isolate, those with 2NS had a significant head blast reduction. With newer isolates, not all lines with 2NS showed a significant reduction in head blast, suggesting that the genetic background and/or environment may influence the expression of any resistance conferred by 2NS. However, when near-isogenic lines (NILs) with and without 2NS were planted in the field, there was strong evidence that 2NS conferred resistance to head blast. Results from foliar inoculations suggest that the resistance to head infection that is imparted by the 2NS translocation does not confer resistance to foliar disease. In conclusion, the 2NS translocation was associated with significant reductions in head blast in both spring and winter wheat. PMID:27814405

  6. Genome-wide association study of drought-related resistance traits in Aegilops tauschii

    PubMed Central

    Qin, Peng; Lin, Yu; Hu, Yaodong; Liu, Kun; Mao, Shuangshuang; Li, Zhanyi; Wang, Jirui; Liu, Yaxi; Wei, Yuming; Zheng, Youliang

    2016-01-01

    Abstract The D-genome progenitor of wheat (Triticum aestivum), Aegilops tauschii, possesses numerous genes for resistance to abiotic stresses, including drought. Therefore, information on the genetic architecture of A. tauschii can aid the development of drought-resistant wheat varieties. Here, we evaluated 13 traits in 373 A. tauschii accessions grown under normal and polyethylene glycol-simulated drought stress conditions and performed a genome-wide association study using 7,185 single nucleotide polymorphism (SNP) markers. We identified 208 and 28 SNPs associated with all traits using the general linear model and mixed linear model, respectively, while both models detected 25 significant SNPs with genome-wide distribution. Public database searches revealed several candidate/flanking genes related to drought resistance that were grouped into three categories according to the type of encoded protein (enzyme, storage protein, and drought-induced protein). This study provided essential information for SNPs and genes related to drought resistance in A. tauschii and wheat, and represents a foundation for breeding drought-resistant wheat cultivars using marker-assisted selection. PMID:27560650

  7. Chromosome Specific Substitution Lines of Aegilops geniculata Alter Parameters of Bread Making Quality of Wheat

    PubMed Central

    Tsujimoto, Hisashi; Gupta, Raj Kumar; Kumar, Aman; Kaur, Navneet; Kumar, Rohit; Chunduri, Venkatesh; Sharma, Nand Kishor; Chawla, Meenakshi; Sharma, Saloni; Mundey, Jaspreet Kaur

    2016-01-01

    Wheat cultivars with wide introgression have strongly impacted global wheat production. Aegilops geniculata (MgUg) is an important wild relative with several useful traits that can be exploited for wheat improvement. Screening of Ae. geniculata addition lines indicated a negative effect of 1Ug and the positive effect of 1Mg chromosome on wheat dough strength. Negative effect of 1Ug is probably associated with variation in number and position of the tripeptide repeat motif in the high molecular weight glutenin (HMW-G) gene. To utilize the positive potential of 1Mg chromosome, three disomic substitution lines (DSLs) 1Mg(1A), 1Mg(1B) and 1Mg(1D) were created. These lines were characterized for morphological, cytogenetic properties and biochemical signatures using FISH, 1D-, 2D-PAGE and RP-HPLC. Contribution of wheat 1A, 1B and 1D chromosomes towards dough mixing and baking parameters, chapatti quality, Fe/Zn content and glume color were identified. Observed order of variation in the dough mixing and baking parameters {1Mg(1D) ≤wheat ≤1Mg(1B) ≤1Mg(1A)} indicated that chromosome specific introgression is desirable for best utilization of wild species’ potential. PMID:27755540

  8. Genetic differentiation and post-glacial establishment of the geographical distribution in Aegilops caudata L.

    PubMed

    Ohta, S

    2000-08-01

    Aegilops caudata L. is a diploid wild relative of wheat distributed over the north-eastern Mediterranean from Greece to northern Iraq. To elucidate the geographical differentiation pattern, 35 accessions derived from the entire distribution area were crossed with four Tester strains. Pollen fertility in the F1 hybrids varied from 0 to 96.3% among cross combinations, closely correlating with the geographical regions where the parental accessions were collected. Based on the intraspecific hybrid sterility, the present distribution area of Ae. caudata was divided into two geographical regions effectively isolated by the mountainous region lying between West Anatolia and Central Anatolia. The western region is composed of Greece and West Anatolia, while the eastern region consists of Central Anatolia, South Anatolia, East Anatolia and northern Iraq. The present results and the facts from recent palaeopalynological works suggest that during the maximum glacial period from 18,000 BP to 16,000 BP, Ae. caudata occurred in the two isolated regions, i.e., the region surrounding the Aegean Sea and the western Levant or some sheltered habitats in the East Taurus/Zagros mountains arc, and that it migrated into Central and East Anatolia from the latter regions as the climate became warmer. Furthermore, it is also suggested that the Levant populations now occur in the eastern region of the distribution, while those occurring in the Aegean Sea region during the last glacial period now occupy the western region of the distribution.

  9. Sequencing chromosome 5D of Aegilops tauschii and comparison with its allopolyploid descendant bread wheat (Triticum aestivum).

    PubMed

    Akpinar, Bala A; Lucas, Stuart J; Vrána, Jan; Doležel, Jaroslav; Budak, Hikmet

    2015-08-01

    Flow cytometric sorting of individual chromosomes and chromosome-based sequencing reduces the complexity of large, repetitive Triticeae genomes. We flow-sorted chromosome 5D of Aegilops tauschii, the D genome donor of bread wheat and sequenced it by Roche 454 GS FLX platform to approximately 2.2x coverage. Repetitive sequences represent 81.09% of the survey sequences of this chromosome, and Class I retroelements are the prominent type, with a particular abundance of LTR/Gypsy superfamily. Nonrepetitive sequences were assembled to cover 17.76% of the total chromosome regions. Up to 6188 nonrepetitive gene loci were predicted to be encoded by the 5D chromosome. The numbers and chromosomal distribution patterns of tRNA genes suggest abundance in tRNA(L) (ys) and tRNA(M) (et) species, while the nonrepetitive assembly reveals tRNA(A) (la) species as the most abundant type. A comparative analysis of the genomic sequences of bread wheat and Aegilops chromosome 5D indicates conservation of gene content. Orthologous unique genes, matching Aegilops 5D sequences, numbered 3730 in barley, 5063 in Brachypodium, 4872 in sorghum and 4209 in rice. In this study, we provide a chromosome-specific view into the structure and organization of the 5D chromosome of Ae. tauschii, the D genome ancestor of bread wheat. This study contributes to our understanding of the chromosome-level evolution of the wheat genome and presents a valuable resource in wheat genomics due to the recent hybridization of Ae. tauschii genome with its tetraploid ancestor.

  10. Molecular characterization and dynamic expression patterns of two types of γ-gliadin genes from Aegilops and Triticum species.

    PubMed

    Wang, Shunli; Shen, Xixi; Ge, Pei; Li, Jie; Subburaj, Saminathan; Li, Xiaohui; Zeller, F J; Hsam, S L K; Yan, Yueming

    2012-11-01

    Gliadins were the major components of wheat storage proteins and determine the extensibility properties of gluten dough. In this work, 19 new full-length γ-gliadin genes were isolated from various Aegilops and Triticum species. Sequence characterization showed that a specific octapeptide and celiac disease (CD)-toxic epitope Gliγ-3 (VQGQGIIQPQQPAQL) were present in the rich glutamine domain and C-terminal non-repetitive domain, respectively. Based on the sequence features of both peptides, a new classification system for γ-gliadin gene family was established, in which γ-gliadins were classified into two types (types I and II) with each consisting of two groups. An uneven distribution of different types and groups of γ-gliadin genes was exhibited among 11 Aegilops and Triticum genomes. Phylogenetic analysis revealed that types I and II genes diverged at about 14 MYA while the divergence of 4 γ-gliadin group genes occurred at around 10 MYA almost simultaneously. The γ-gliadin genes from S(l) and B genomes displayed a different transcriptional expression pattern during grain development, and rapid increasing of gliadin mRNA and proteins occurred at 15-20 DPA. In addition, genome-specific variations of CD-toxic epitopes among Aegilops and Triticum genomes were found. The A genome and its related progenitor genomes A(u) and A(m) had fewer CD epitopes than other genomes, suggesting that these genomes might be valuable gene resources to remove CD toxic peptides for wheat quality improvement.

  11. [Genetics determination of wheat resistance to Puccinia graminis F. sp. tritici deriving from Aegilops cylindrica, Triticum erebuni and amphidiploid 4].

    PubMed

    Babaiants, O V; Babaiants, L T; Horash, A F; Vasil'ev, A A; Trackovetskaia, V A; Paliasn'iĭĭ, V A

    2012-01-01

    The lines of winter soft wheat developed in the Plant Breeding and Genetics Institute contain new effective introgressive Sr-genes. Line 85/06 possess SrAc1 gene, lines 47/06, 54/06, 82/06, 85/06, 87/06, 238/06, and 367/06 possess SrAc1 and SrAc2 derived from Aegilops cylindrica, line 352/06 - SrTe1 and SrTe2 from Triticum erebuni, line 12/86-04 - SrAd1 and SrAd2 from Amphidiploid 4 (Triticum dicoccoides x Triticum tauschii).

  12. [Effect of an introgression from Aegilops cylindrica host on manifestation of productivity traits in winter common wheat F2 plants].

    PubMed

    Kozub, N A; Sozinov, I A; sozinov, A A

    2004-12-01

    The effect of introgression of a chromosome 1D segment from Aegilops cylindrica to winter common wheat on productivity traits in F2 plants was studied using storage protein loci as genetic markers. An allele of the gliadin-coding Gli-D1 locus served as a marker of the introgression. Using of two- and three-locus interaction models, it was shown that the introgression tagged with Gli-D1 affected the manifestation of productivity traits (productive tillering, grain weight per plant and grain number per plant) through interaction with other marker storage protein loci: Glu-B1, Glu-D1, and Gli-B2.

  13. Physical mapping of a large plant genome using global high-information-content-fingerprinting: the distal region of the wheat ancestor Aegilops tauschii chromosome 3DS.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Physical maps employing libraries of bacterial artificial chromosome (BAC) clones are essential for comparative genomics and sequencing of large and repetitive genomes such as those of the hexaploid bread wheat. The diploid ancestor of wheat genome, Aegilops tauschii, is used as a resource for wheat...

  14. A 4-gigabase physical map unlocks the structure and evolution of the complex genome of Aegilops tauschii, the wheat D-genome progenitor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The current limitations in genome sequencing technology require the construction of physical maps for high-quality draft sequences of large plant genomes, such as that of Aegilops tauschii, the wheat D-genome progenitor. To construct a physical map of the Ae. tauschii genome, we fingerprinted 461,70...

  15. Characterization of high molecular weight glutenin subunits in Thinopyrum intermedium, Th. bessarabicum, Lophopyrum elongatum, Aegilops markgrafii, and their addition lines in wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High molecular weight (HMW) glutenin subunits (GSs) play an important role in determining dough viscoelastic properties and end-use quality in cultivated wheat, and they are also excellent protein markers for genotype identification. The HMW-GSs in wheat species (Triticum ssp.) and Aegilops tauschii...

  16. Simultaneous transfer, introgression and genomic localization of genes for resistance to stem rust race TTKSK Ug99 from Aegilops tauschii to wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat production is currently threatened by widely virulent races of the wheat stem rust fungus, Puccinia graminis f. sp. tritici, that are part of the TTKSK (also known as ‘Ug99’) race group. The diploid D genome donor species Aegilops tauschii (2n=2x=14, DD) is a readily accessible source of resis...

  17. Genotypic variation in tetraploid wheat affecting homoeologous pairing in hybrids with Aegilops peregrina.

    PubMed

    Ozkan, H; Feldman, M

    2001-12-01

    The Ph1 gene has long been considered the main factor responsible for the diploid-like meiotic behavior of polyploid wheat. This dominant gene, located on the long arm of chromosome 5B (5BL), suppresses pairing of homoeologous chromosomes in polyploid wheat and in their hybrids with related species. Here we report on the discovery of genotypic variation among tetraploid wheats in the control of homoeologous pairing. Compared with the level of homoeologous pairing in hybrids between Aegilops peregrina and the bread wheat cultivar Chinese Spring (CS), significantly higher levels of homoeologous pairing were obtained in hybrids between Ae. peregrina and CS substitution lines in which chromosome 5B of CS was replaced by either 5B of Triticum turgidum ssp. dicoccoides line 09 (TTD09) or 5G of Triticum timopheevii ssp. timopheevii line 01 (TIMO1). Similarly, a higher level of homoeologous pairing was found in the hybrid between Ae. peregrina and a substitution line of CS in which chromosome arm 5BL of line TTD140 substituted for 5BL of CS. It appears that the observed effect on the level of pairing is exerted by chromosome arm 5BL of T turgidum ssp. dicoccoides, most probably by an allele of Ph1. Searching for variation in the control of homoeologous pairing among lines of wild tetraploid wheat, either T turgidum ssp. dicoccoides or T timopheevii ssp. armeniacum, showed that hybrids between Ae. peregrina and lines of these two wild wheats exhibited three different levels of homoeologous pairing: low, low intermediate, and high intermediate. The low-intermediate and high-intermediate genotypes may possess weak alleles of Ph1. The three different T turgidum ssp. dicoccoides pairing genotypes were collected from different geographical regions in Israel, indicating that this trait may have an adaptive value. The availability of allelic variation at the Ph1 locus may facilitate the mapping, tagging, and eventually the isolation of this important gene.

  18. Network analysis provides insights into evolution of 5S rDNA arrays in Triticum and Aegilops.

    PubMed Central

    Allaby, R G; Brown, T A

    2001-01-01

    We have used network analysis to study gene sequences of the Triticum and Aegilops 5S rDNA arrays, as well as the spacers of the 5S-DNA-A1 and 5S-DNA-2 loci. Network analysis describes relationships between 5S rDNA sequences in a more realistic fashion than conventional tree building because it makes fewer assumptions about the direction of evolution, the extent of sexual isolation, and the pattern of ancestry and descent. The networks show that the 5S rDNA sequences of Triticum and Aegilops species are related in a reticulate manner around principal nodal sequences. The spacer networks have multiple principal nodes of considerable antiquity but the gene network has just one principal node, corresponding to the correct gene sequence. The networks enable orthologous groups of spacer sequences to be identified. When orthologs are compared it is seen that the patterns of intra- and interspecific diversity are similar for both genes and spacers. We propose that 5S rDNA arrays combine sequence conservation with a large store of mutant variations, the number of correct gene copies within an array being the result of neutral processes that act on gene and spacer regions together. PMID:11238418

  19. Genetic mechanisms of allopolyploid speciation through hybrid genome doubling: novel insights from wheat (Triticum and Aegilops) studies.

    PubMed

    Matsuoka, Yoshihiro; Takumi, Shigeo; Nasuda, Shuhei

    2014-01-01

    Polyploidy, which arises through complex genetic and ecological processes, is an important mode of plant speciation. This review provides an overview of recent advances in understanding why plant polyploid species are so ubiquitous and diverse. We consider how the modern framework for understanding genetic mechanisms of speciation could be used to study allopolyploid speciation that occurs through hybrid genome doubling, that is, whole genome doubling of interspecific F1 hybrids by the union of male and female unreduced gametes. We outline genetic and ecological mechanisms that may have positive or negative impacts on the process of allopolyploid speciation through hybrid genome doubling. We also discuss the current status of studies on the underlying genetic mechanisms focusing on the wheat (Triticum and Aegilops) hybrid-specific reproductive phenomena that are well known but deserve renewed attention from an evolutionary viewpoint.

  20. [Molecular marker mapping of the gene resistant to common bunt transferred from Aegilops cylindrica into bread wheat].

    PubMed

    Galaev, A V; Babaiants, L T; Sivolap, Iu M

    2006-01-01

    Introgression lines 5/55-91 and 378/2000 of bread wheat contain the gene of resistance to Tilletia caries (DC.) Tul. transferred from Aegilops cylindrica Host. Using bulked segregant analysis with ISSR and SSR PCR the lincage of microsatellite locus Xgwm 259 with the gene of common bunt resistance has been identified in F2 population of 378/2000 x Lutestens 23397. DNA mapping made it possible to localize this highly effective gene in the intercalary region of the long arm of wheat chromosome 1B at the distance of 7.6-8.5 cM of the microsatellite Xgwm 259 locus which thus can be used in wheat breeding for selection of genotype resistance to common bunt.

  1. Allocation of the S-genome chromosomes of Aegilops variabilis Eig. carrying powdery mildew resistance in triticale (× Triticosecale Wittmack).

    PubMed

    Kwiatek, M; Belter, J; Majka, M; Wiśniewska, H

    2016-03-01

    It has been hypothesized that the powdery mildew adult plant resistance (APR) controlled by the Pm13 gene in Aegilops longissima Schweinf. & Muschl. (S(l)S(l)) has been evolutionary transferred to Aegilops variabilis Eig. (UUSS). The molecular marker analysis and the visual evaluation of powdery mildew symptoms in Ae. variabilis and the Ae. variabilis × Secale cereale amphiploid forms (2n = 6x = 42, UUSSRR) showed the presence of product that corresponded to Pm13 marker and the lower infection level compared to susceptible model, respectively. This study also describes the transfer of Ae. variabilis Eig. (2n = 4x = 28, U(v)U(v)S(v)S(v)) chromosomes, carrying powdery mildew resistance, into triticale (× Triticosecale Wittm., 2n = 6x = 42, AABBRR) using Ae. variabilis × S. cereale amphiploid forms. The individual chromosomes of Ae. variabilis, triticale 'Lamberto' and hybrids were characterized by genomic and fluorescence in situ hybridization (GISH/FISH). The chromosome configurations of obtained hybrid forms were studied at first metaphase of meiosis of pollen mother cells (PMCs) using GISH. The statistical analysis showed that the way of S-genome chromosome pairing and transmission to subsequent hybrid generations was diploid-like and had no influence on chromosome pairing of triticale chromosomes. The cytogenetic study of hybrid forms were supported by the marker-assisted selection using Pm13 marker and visual evaluation of natural infection by Blumeria graminis, that allowed to select the addition or substitution lines of hybrids carrying chromosome 3S(v) which were tolerant to the powdery mildew infection.

  2. Complete chloroplast genomes of Aegilops tauschii Coss. and Ae. cylindrica Host sheds light on plasmon D evolution.

    PubMed

    Gogniashvili, Mari; Jinjikhadze, Tamar; Maisaia, Inesa; Akhalkatsi, Maia; Kotorashvili, Adam; Kotaria, Nato; Beridze, Tengiz; Dudnikov, Alexander Ju

    2016-11-01

    Hexaploid wheat (Triticum aestivum L., genomes AABBDD) originated in South Caucasus by allopolyploidization of the cultivated Emmer wheat T. dicoccum (genomes AABB) with the Caucasian Ae. tauschii ssp strangulata (genomes DD). Genetic variation of Ae. tauschii is an important natural resource, that is why it is of particular importance to investigate how this variation was formed during Ae. tauschii evolutionary history and how it is presented through the species area. The D genome is also found in tetraploid Ae. cylindrica Host (2n = 28, CCDD). The plasmon diversity that exists in Triticum and Aegilops species is of great significance for understanding the evolution of these genera. In the present investigation the complete nucleotide sequence of plasmon D (chloroplast DNA) of nine accessions of Ae. tauschii and two accessions of Ae. cylindrica are presented. Twenty-eight SNPs are characteristic for both TauL1 and TauL2 accessions of Ae. tauschii using TauL3 as a reference. Four SNPs are additionally observed for TauL2 lineage. The longest (27 bp) indel is located in the intergenic spacer Rps15-ndhF of SSC. This indel can be used for simple determination of TauL3 lineage among Ae. tauschii accessions. In the case of Ae. cylindrica additionally 7 SNPs were observed. The phylogeny tree shows that chloroplast DNA of TauL1 and TauL2 diverged from the TauL3 lineage. TauL1 lineage is relatively older then TauL2. The position of Ae. cylindrica accessions on Ae. tauschii phylogeny tree constructed on chloroplast DNA variation data is intermediate between TauL1 and TauL2. The complete nucleotide sequence of chloroplast DNA of Ae. tauschii and Ae. cylindrica allows to refine the origin and evolution of D plasmon of genus Aegilops.

  3. Introgression of leaf rust and stripe rust resistance from Sharon goatgrass (Aegilops sharonensis Eig) into bread wheat (Triticum aestivum L.).

    PubMed

    Millet, E; Manisterski, J; Ben-Yehuda, P; Distelfeld, A; Deek, J; Wan, A; Chen, X; Steffenson, B J

    2014-06-01

    Leaf rust and stripe rust are devastating wheat diseases, causing significant yield losses in many regions of the world. The use of resistant varieties is the most efficient way to protect wheat crops from these diseases. Sharon goatgrass (Aegilops sharonensis or AES), which is a diploid wild relative of wheat, exhibits a high frequency of leaf and stripe rust resistance. We used the resistant AES accession TH548 and induced homoeologous recombination by the ph1b allele to obtain resistant wheat recombinant lines carrying AES chromosome segments in the genetic background of the spring wheat cultivar Galil. The gametocidal effect from AES was overcome by using an "anti-gametocidal" wheat mutant. These recombinant lines were found resistant to highly virulent races of the leaf and stripe rust pathogens in Israel and the United States. Molecular DArT analysis of the different recombinant lines revealed different lengths of AES segments on wheat chromosome 6B, which indicates the location of both resistance genes.

  4. Chemical interactions between plants in Mediterranean vegetation: the influence of selected plant extracts on Aegilops geniculata metabolome.

    PubMed

    Scognamiglio, Monica; Fiumano, Vittorio; D'Abrosca, Brigida; Esposito, Assunta; Choi, Young Hae; Verpoorte, Robert; Fiorentino, Antonio

    2014-10-01

    Allelopathy is the chemical mediated communication among plants. While on one hand there is growing interest in the field, on the other hand it is still debated as doubts exist at different levels. A number of compounds have been reported for their ability to influence plant growth, but the existence of this phenomenon in the field has rarely been demonstrated. Furthermore, only few studies have reported the uptake and the effects at molecular level of the allelochemicals. Allelopathy has been reported on some plants of Mediterranean vegetation and could contribute to structuring this ecosystem. Sixteen plants of Mediterranean vegetation have been selected and studied by an NMR-based metabolomics approach. The extracts of these donor plants have been characterized in terms of chemical composition and the effects on a selected receiving plant, Aegilops geniculata, have been studied both at the morphological and at the metabolic level. Most of the plant extracts employed in this study were found to have an activity, which could be correlated with the presence of flavonoids and hydroxycinnamate derivatives. These plant extracts affected the receiving plant in different ways, with different rates of growth inhibition at morphological level. The results of metabolomic analysis of treated plants suggested the induction of oxidative stress in all the receiving plants treated with active donor plant extracts, although differences were observed among the responses. Finally, the uptake and transport into receiving plant leaves of different metabolites present in the extracts added to the culture medium were observed.

  5. Salt tolerance during germination and seedling growth of wild wheat Aegilops tauschii and its impact on the species range expansion

    PubMed Central

    Saisho, Daisuke; Takumi, Shigeo; Matsuoka, Yoshihiro

    2016-01-01

    Adaptation to edaphic stress may have a key role in plant species range expansion. Aegilops tauschii Coss., the common wheat’s D-genome progenitor native to the Transcaucasus-Middle East region, is a good model to study the relationships between soil salinity and plant distributions: one of its intraspecific sublineages, TauL1b, drove the long-distance eastward expansion of this species range reaching semi-arid-central Asia. Salt tolerance during germination and seedling growth was evaluated in 206 Ae. tauschii accessions by treating seeds with NaCl solutions differing in concentrations. Differences in natural variation patterns were analyzed between sublineages and associated with natural edaphic condition variables, and then compared with reproductive trait variation patterns. The natural variations observed in NaCl-induced-stress tolerance had clear geographic and genetic structure. Seedling growth significantly increased in the TauL1b accessions that were collected from salt-affected soil habitats, whereas germinability did not. Principal component analysis suggested that the NaCl-induced-stress tolerances and reproductive traits might have had a similar degree of influence on Ae. tauschii’s eastward range expansion. Adaptation to salt-affected soils through increased seedling growth was an important factor for the species’ successful colonization of the semi-arid central Asian habitats. TauL1b accessions might provide useful genetic resources for salt-tolerant wheat breeds. PMID:27929044

  6. The sugary-type isoamylase gene from rice and Aegilops tauschii: characterization and comparison with maize and arabidopsis.

    PubMed

    Rahman, S; Nakamura, Y; Li, Z; Clarke, B; Fujita, N; Mukai, Y; Yamamoto, M; Regina, A; Tan, Z; Kawasaki, S; Morell, M

    2003-06-01

    Genes for an isoamylase-like debranching enzyme have been isolated from rice and Aegilops tauschii, the donor of the D genome to wheat. The structures of the genes are very similar to each other and to the maize SU1 isoamylase gene and consist of 18 exons spread over approximately 7.5 kb. Southern analysis and fluorescent in situ hybridization showed the Ae. tauschii gene to be located in the proximal region of the short arm of chromosome 7D, thus showing synteny with the localization of the rice isoamylase gene on rice chromosome 8. Analysis of the expression pattern of wheat sugary isoamylase genes indicates that they are strongly expressed in the developing endosperm 6 days after flowering. Three distinct Sugary-type cDNA sequences were isolated from the wheat endosperm that are likely to correspond to the products of the three genomes. The deduced amino acid sequence of rice and wheat Sugary-type isoamylase is compared with other sequences available in the database and the results demonstrate that there are three types of isoamylase sequences in plants: those containing 18 exons (the Sugary-type isoamylase gene), those containing 21 exons, and those containing only 1 exon. It is possible that different combinations of isoamylase genes are expressed in different tissues.

  7. Molecular Mechanisms of HMW Glutenin Subunits from 1Sl Genome of Aegilops longissima Positively Affecting Wheat Breadmaking Quality

    PubMed Central

    Li, Ning; Li, Xiaohui; Ma, Wujun; Weißgerber, H.; Zeller, Friedrich; Hsam, Sai; Yan, Yueming

    2013-01-01

    A wheat cultivar “Chinese Spring” chromosome substitution line CS-1Sl(1B), in which the 1B chromosome was substituted by 1Sl from Aegilops longissima, was developed and found to possess superior dough and breadmaking quality. The molecular mechanism of its super quality conformation is studied in the aspects of high molecular glutenin genes, protein accumulation patterns, glutenin polymeric proteins, protein bodies, starch granules, and protein disulfide isomerase (PDI) and PDI-like protein expressions. Results showed that the introduced HMW-GS 1Sl×2.3* and 1Sly16* in the substitution line possesses long repetitive domain, making both be larger than any known x- and y-type subunits from B genome. The introduced subunit genes were also found to have a higher level of mRNA expressions during grain development, resulting in more HMW-GS accumulation in the mature grains. A higher abundance of PDI and PDI-like proteins was observed which possess a known function of assisting disulfide bond formation. Larger HMW-GS deposited in protein bodies were also found in the substitution line. The CS substitution line is expected to be highly valuable in wheat quality improvement since the novel HMW-GS are located on chromosome 1Sl, making it possible to combine with the known superior D×5+Dy10 subunits encoded by Glu-D1 for developing high quality bread wheat. PMID:23593125

  8. Flow sorting of C-genome chromosomes from wild relatives of wheat Aegilops markgrafii, Ae. triuncialis and Ae. cylindrica, and their molecular organization

    PubMed Central

    Molnár, István; Vrána, Jan; Farkas, András; Kubaláková, Marie; Cseh, András; Molnár-Láng, Márta; Doležel, Jaroslav

    2015-01-01

    Background and Aims Aegilops markgrafii (CC) and its natural hybrids Ae. triuncialis (UtUtCtCt) and Ae. cylindrica (DcDcCcCc) represent a rich reservoir of useful genes for improvement of bread wheat (Triticum aestivum), but the limited information available on their genome structure and the shortage of molecular (cyto-) genetic tools hamper the utilization of the extant genetic diversity. This study provides the complete karyotypes in the three species obtained after fluorescent in situ hybridization (FISH) with repetitive DNA probes, and evaluates the potential of flow cytometric chromosome sorting. Methods The flow karyotypes obtained after the analysis of 4',6-diamidino-2-phenylindole (DAPI)-stained chromosomes were characterized and the chromosome content of the peaks on the flow karyotypes was determined by FISH. Twenty-nine conserved orthologous set (COS) markers covering all seven wheat homoeologous chromosome groups were used for PCR with DNA amplified from flow-sorted chromosomes and genomic DNA. Key Results FISH with repetitive DNA probes revealed that chromosomes 4C, 5C, 7Ct, T6UtS.6UtL-5CtL, 1Cc and 5Dc could be sorted with purities ranging from 66 to 91 %, while the remaining chromosomes could be sorted in groups of 2–5. This identified a partial wheat–C-genome homology for group 4 and 5 chromosomes. In addition, 1C chromosomes were homologous with group 1 of wheat; a small segment from group 2 indicated 1C–2C rearrangement. An extensively rearranged structure of chromosome 7C relative to wheat was also detected. Conclusions The possibility of purifying Aegilops chromosomes provides an attractive opportunity to investigate the structure and evolution of the Aegilops C genome and to develop molecular tools to facilitate the identification of alien chromatin and support alien introgression breeding in bread wheat. PMID:26043745

  9. The chloroplast view of the evolution of polyploid wheat.

    PubMed

    Gornicki, Piotr; Zhu, Huilan; Wang, Junwei; Challa, Ghana S; Zhang, Zhengzhi; Gill, Bikram S; Li, Wanlong

    2014-11-01

    Polyploid wheats comprise four species: Triticum turgidum (AABB genomes) and T. aestivum (AABBDD) in the Emmer lineage, and T. timopheevii (AAGG) and T. zhukovskyi (AAGGA(m) A(m) ) in the Timopheevi lineage. Genetic relationships between chloroplast genomes were studied to trace the evolutionary history of the species. Twenty-five chloroplast genomes were sequenced, and 1127 plant accessions were genotyped, representing 13 Triticum and Aegilops species. The A. speltoides (SS genome) diverged before the divergence of T. urartu (AA), A. tauschii (DD) and the Aegilops species of the Sitopsis section. Aegilops speltoides forms a monophyletic clade with the polyploid Emmer and Timopheevi wheats, which originated within the last 0.7 and 0.4 Myr, respectively. The geographic distribution of chloroplast haplotypes of the wild tetraploid wheats and A. speltoides illustrates the possible geographic origin of the Emmer lineage in the southern Levant and the Timopheevi lineage in northern Iraq. Aegilops speltoides is the closest relative of the diploid donor of the chloroplast (cytoplasm), as well as the B and G genomes to Timopheevi and Emmer lineages. Chloroplast haplotypes were often shared by species or subspecies within major lineages and between the lineages, indicating the contribution of introgression to the evolution and domestication of polyploid wheats.

  10. Molecular and cytogenetic characterization of wheat introgression lines carrying the stem rust resistance gene Sr39.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stem rust, caused by Puccinia graminis Pers.:Pers. f.sp. tritici Eriks. and Henn., poses a serious threat to global wheat production because of the emergence of Pgt-TTKSK (Ug99). The TTKSK resistant gene Sr39 was derived from Aegilops speltoides through chromosome translocation. In this study, we ch...

  11. Physical mapping of DNA markers linked to stem rust resistance gene Sr47 in durum wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In durum wheat (Triticum turgidum subsp. durum), the gene Sr47 derived from Aegilops speltoides conditions resistance to race TTKSK (Ug99) of stem rust pathogen (Puccinia graminis f. sp. tritici). Sr47 is carried on small interstitial translocation chromosomes (Ti2BL-2SL-2BL·2BS) in which the Ae. s...

  12. Inheritance and molecular mapping of new green bug resistance genes in wheat germ plasms derived from Aegilops tauschii.

    PubMed

    Zhu, L C; Smith, C M; Fritz, A; Boyko, E; Voothuluru, P; Gill, B S

    2005-09-01

    Molecular mapping of genes for crop resistance to the green bug, Schizaphis graminum Rondani, will facilitate selection of green bug resistance in breeding through marker-assisted selection and provide information for map-based gene cloning. In the present study, microsatellite marker and deletion line analyses were used to map green bug resistance genes in five newly identified wheat germ plasms derived from Aegilops tauschii. Our results indicate that the Gb genes in these germ plasms are inherited as single dominant traits. Microsatellite markers X wmc 157 and X gdm 150 flank G bx 1 at 2.7 and 3.3 cM, respectively. Xwmc 671 is proximately linked to G ba, G bb, G bc and G bd at 34.3, 5.4, 13.7, 7.9 cM, respectively. X barc 53 is linked distally to G ba and G bb at 20.7 and 20.2 cM, respectively. X gdm 150 is distal to G bc at 17.9 cM, and X wmc 157 is distal to G bd at 1.9 cM. G bx 1, G ba, G bb, G bc, G bd and the previously characterized G bz are located in the distal 18% region of wheat chromosome 7 DL. G bd appears to be a new green bug resistance gene different from G bx 1 or G bz. G bx 1, G bz G ba, G bb, G bc and G bd are either allelic or linked to Gb 3.

  13. Molecular cloning and characterization of four novel LMW glutenin subunit genes from Aegilops longissima, Triticum dicoccoides and T. zhukovskyi.

    PubMed

    Jiang, Chengxi; Pei, Yuhe; Zhang, Yanzhen; Li, Xiaohui; Yao, Danian; Yan, Yueming; Ma, Wujun; Hsam, S L K; Zeller, F J

    2008-04-01

    This paper reports cloning and characterisation of four novel low-molecular-weight glutenin subunit (LMW-GS) genes (designated as TzLMW-m2, TzLMW-m1, TdLMW-m1 and AlLMW-m2) from the genomic DNA of Triticum dicoccoides, T. zhukovskyi and Aegilops longissima. The coding regions of TzLMW-m2, TzLMW-m1, TdLMW-m1 and AlLMW-m2 were 1056 bp, 903 bp, 1056 bp and 1050 bp in length, encoding 350, 300, 350 and 348 amino acid residues, respectively. The deduced amino acid sequences showed that the four novel genes were classified as LMW-m types and the comparison results indicated that the four genes had a more similar structure and a higher level of homology with the LMW-m genes than the LMW-s and -i types genes. However, the first cysteine residue's positions of TzLMW-m2, TdLMW-m1 and AlLMW-m2 were different from the others. Moreover, AlLMW-m2, TdLMW-m1 and TzLMW-m2 all possessed a longer repetitive domain, which was considered to be associated with good quality of wheat. The secondary structure prediction revealed that the content of beta-strand in AlLMW-m2 and TdLMW-m1 exceeded the positive control, suggesting that AlLMW-m2 and TdLMW-m1 should be considered as candidate genes that may have positive effect on dough quality. In order to investigate the evolutionary relationship of the novel genes with the other LMW-GSs, a phylogenetic tree was constructed. The results lead to a speculation that AlLMW-m2, TdLMW-m1 and TzLMW-m2 may be the middle types during the evolution of LMW-m and LMW-s.

  14. Development of a genetic linkage map for Sharon goatgrass (Aegilops sharonensis) and mapping of a leaf rust resistance gene.

    PubMed

    Olivera, P D; Kilian, A; Wenzl, P; Steffenson, B J

    2013-07-01

    Aegilops sharonensis (Sharon goatgrass), a diploid wheat relative, is known to be a rich source of disease resistance genes for wheat improvement. To facilitate the transfer of these genes into wheat, information on their chromosomal location is important. A genetic linkage map of Ae. sharonensis was constructed based on 179 F2 plants derived from a cross between accessions resistant (1644) and susceptible (1193) to wheat leaf rust. The linkage map was based on 389 markers (377 Diversity Arrays Technology (DArT) and 12 simple sequence repeat (SSR) loci) and was comprised of 10 linkage groups, ranging from 2.3 to 124.6 cM. The total genetic length of the map was 818.0 cM, with an average interval distance between markers of 3.63 cM. Based on the chromosomal location of 115 markers previously mapped in wheat, the four linkage groups of A, B, C, and E were assigned to Ae. sharonensis (S(sh)) and homoeologous wheat chromosomes 6, 1, 3, and 2. The single dominant gene (designated LrAeSh1644) conferring resistance to leaf rust race THBJ in accession 1644 was positioned on linkage group A (chromosome 6S(sh)) and was flanked by DArT markers wpt-9881 (at 1.9 cM distal from the gene) and wpt-6925 (4.5 cM proximal). This study clearly demonstrates the utility of DArT for genotyping uncharacterized species and tagging resistance genes where pertinent genomic information is lacking.

  15. Genetic structure of Aegilops cylindrica Host in its native range and in the United States of America.

    PubMed

    Gandhi, Harish T; Vales, M Isabel; Mallory-Smith, Carol; Riera-Lizarazu, Oscar

    2009-10-01

    Chloroplast and nuclear microsatellite markers were used to study genetic diversity and genetic structure of Aegilops cylindrica Host collected in its native range and in adventive sites in the USA. Our analysis suggests that Ae. cylindrica, an allotetraploid, arose from multiple hybridizations between Ae. markgrafii (Greuter) Hammer. and Ae. tauschii Coss. presumably along the Fertile Crescent, where the geographic distributions of its diploid progenitors overlap. However, the center of genetic diversity of this species now encompasses a larger area including northern Iraq, eastern Turkey, and Transcaucasia. Although the majority of accessions of Ae. cylindrica (87%) had D-type plastomes derived from Ae. tauschii, accessions with C-type plastomes (13%), derived from Ae. markgrafii, were also observed. This corroborates a previous study suggesting the dimaternal origin of Ae. cylindrica. Model-based and genetic distance-based clustering using both chloroplast and nuclear markers indicated that Ae. tauschii ssp. tauschii contributed one of its D-type plastomes and its D genome to Ae. cylindrica. Analysis of genetic structure using nuclear markers suggested that Ae. cylindrica accessions could be grouped into three subpopulations (arbitrarily named N-K1, N-K2, and N-K3). Members of the N-K1 subpopulation were the most numerous in its native range and members of the N-K2 subpopulation were the most common in the USA. Our analysis also indicated that Ae. cylindrica accessions in the USA were derived from a few founder genotypes. The frequency of Ae. cylindrica accessions with the C-type plastome in the USA (approximately 24%) was substantially higher than in its native range of distribution (approximately 3%) and all C-type Ae. cylindrica in the USA except one belonged to subpopulation N-K2. The high frequency of the C-type plastome in the USA may reflect a favorable nucleo-cytoplasmic combination.

  16. Introgression of an imidazolinone-resistance gene from winter wheat (Triticum aestivum L.) into jointed goatgrass (Aegilops cylindrica Host).

    PubMed

    Perez-Jones, Alejandro; Mallory-Smith, Carol A; Hansen, Jennifer L; Zemetra, Robert S

    2006-12-01

    Imidazolinone-resistant winter wheat (Triticum aestivum L.) is being commercialized in the USA. This technology allows wheat growers to selectively control jointed goatgrass (Aegilops cylindrica Host), a weed that is especially problematic because of its close genetic relationship with wheat. However, the potential movement of the imidazolinone-resistance gene from winter wheat to jointed goatgrass is a concern. Winter wheat and jointed goatgrass have the D genome in common and can hybridize and backcross under natural field conditions. Since the imidazolinone-resistance gene (Imi1) is located on the D genome, it is possible for resistance to be transferred to jointed goatgrass via hybridization and backcrossing. To study the potential for gene movement, BC(2)S(2) plants were produced artificially using imidazolinone-resistant winter wheat (cv. FS-4) as the female parent and a native jointed goatgrass collection as the male recurrent parent. FS-4, the jointed goatgrass collection, and 18 randomly selected BC(2)S(2) populations were treated with imazamox. The percentage of survival was 100% for the FS-4, 0% for the jointed goatgrass collection and 6 BC(2)S(2) populations, 40% or less for 2 BC(2)S(2) populations, and 50% or greater for the remaining 10 BC(2)S(2) populations. Chromosome counts in BC(2)S(3) plants showed a restoration of the chromosome number of jointed goatgrass, with four out of four plants examined having 28 chromosomes. Sequencing of AHASL1D in BC(2)S(3) plants derived from BC(2)S(2)-6 revealed the sexual transmission of Imi1 from FS-4 to jointed goatgrass. Imi1 conferred resistance to the imidazolinone herbicide imazamox, as shown by the in vitro assay for acetohydroxyacid synthase (AHAS) activity.

  17. Molecular characterization and phylogenetic analysis of a novel glutenin gene (Dy10.1t) from Aegilops tauschii.

    PubMed

    Zhang, Yanzhen; Li, Qiaoyun; Yan, Yueming; Zheng, Jigang; An, Xueli; Xiao, Yinghua; Wang, Aili; Pei, Yuhe; Wang, Haibo; Hsam, Sai L K; Zeller, Friedrich J

    2006-07-01

    A novel y-type high molecular mass glutenin subunit (HMM-GS) possessing a mobility that is slightly slower than that of the subunit Dy10 obtained by SDS-PAGE, named Dy10.1t, in the wild wheat Aegilops tauschii was identified by 1- and 2-dimensional gel electrophoresis, capillary electrophoresis, and matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS). The gene encoding the HMM subunit Dy10.1t was amplified with allele-specific PCR primers, and the amplified products were cloned and sequenced. The coding domain of the Dy10.1t subunit gene consisted of 1980 bp encoding a protein of 658 residues with an M rs of 68 611 Da, which was similar to the M rs determined by MALDI-TOF-MS. The deduced amino acid sequence indicated that Dy10.1t subunit displayed a greater similarity to the Dy12 subunit, differing by only 8 amino acid substitutions. Six coding region single-nucleotide polymorphisms were discovered in the Dy10.1t gene by multiple alignments (1 per 330 bp), 1 in the N-terminal domain and the others in the central repeats. Five of them resulted in residue substitutions, whereas 3 created enzyme site changes. The homology and neighbour-joining trees constructed from code domain sequences of 20 x- and y-type glutenin genes from different Triticum species separated into 2 halves, which corresponded to the x-type and y-type HMM glutenin alleles. Phylogenetic analysis revealed that the Glu-1 gene duplication event probably occurred at about 16.83 million years ago, whereas the divergence times of A, B, and D genomes within x-type and y-type halves were before 7.047 and 10.54 million years ago, respectively.

  18. Gametocidal Factor Transferred from Aegilops geniculata Roth Can Be Adapted for Large-Scale Chromosome Manipulations in Cereals

    PubMed Central

    Kwiatek, Michał T.; Wiśniewska, Halina; Ślusarkiewicz-Jarzina, Aurelia; Majka, Joanna; Majka, Maciej; Belter, Jolanta; Pudelska, Hanna

    2017-01-01

    Segregation distorters are curious, evolutionarily selfish genetic elements, which distort Mendelian segregation in their favor at the expense of others. Those agents include gametocidal factors (Gc), which ensure their preferential transmission by triggering damages in cells lacking them via chromosome break induction. Hence, we hypothesized that the gametocidal system can be adapted for chromosome manipulations between Triticum and Secale chromosomes in hexaploid triticale (×Triticosecale Wittmack). In this work we studied the little-known gametocidal action of a Gc factor located on Aegilops geniculata Roth chromosome 4Mg. Our results indicate that the initiation of the gametocidal action takes place at anaphase II of meiosis of pollen mother cells. Hence, we induced androgenesis at postmeiotic pollen divisions (via anther cultures) in monosomic 4Mg addition plants of hexaploid triticale (AABBRR) followed by production of doubled haploids, to maintain the chromosome aberrations caused by the gametocidal action. This approach enabled us to obtain a large number of plants with two copies of particular chromosome translocations, which were identified by the use of cytomolecular methods. We obtained 41 doubled haploid triticale lines and 17 of them carried chromosome aberrations that included plants with the following chromosome sets: 40T+Dt2RS+Dt2RL (5 lines), 40T+N2R (1), 38T+D4RS.4BL (3), 38T+D5BS-5BL.5RL (5), and 38T+D7RS.3AL (3). The results show that the application of the Gc mechanism in combination with production of doubled haploid lines provides a sufficiently large population of homozygous doubled haploid individuals with two identical copies of translocation chromosomes. In our opinion, this approach will be a valuable tool for the production of novel plant material, which could be used for gene tracking studies, genetic mapping, and finally to enhance the diversity of cereals.

  19. Variation and geographical distribution of the genotypes controlling the diagnostic spike morphology of two varieties of Aegilops caudata l.

    PubMed

    Ohta, S

    2001-10-01

    Aegilops caudata L. is an annual wild relative of wheat distributed over the northeastern Mediterranean basin. It consists of two taxonomic varieties, var. typica with awnless lateral spikelets and var.polyathera with awned lateral spikelets. To clarify the variation and the geographical distribution of the genotypes controlling the diagnostic spike morphology of the two taxonomic varieties, three crossing experiments were carried out. First, two varieties collected from nine sympatric populations in the Aegean islands were crossed reciprocally. All of the F1 hybrids were var. typica and the segregation ratio in the F2 generation was 3 typica: 1 polyathera. Secondly, 13 typica accessions collected from the entire distribution area of the variety were crossed with a common polyathera accession. The F1 hybrids involving eight typica accessions from Greece and West Anatolia were var. typica, while those involving five typica accessions from East Anatolia, Syria and Iraq were var. polyathera. Thirdly, the typica F1 hybrids between the Aegean and the Syrian typica accessions were backcrossed to the latter. Four of the seven BC1F1 plants obtained were var. typica, but the other three were var. polyathera. Based on these results, the following two conclusions were made. First, the awnless lateral spikelets characteristic of var. typica are due to two different genotypes: one is a dominant allele suppressing awn development on lateral spikelets and the other is a recessive allele(s) for awnless lateral spikelets with no dominant suppressor allele. Secondly, the former genotype occurs only in the western region of the distribution area of the species, while the latter occurs in the eastern region. The present results and the recent palaeopalynological evidence also suggested that var. polyathera, with more awns than var. typica, rapidly colonized Central Anatolia from the Levant or East Taurus/Zagros mountains arc after the last glacial period.

  20. Assessment of genomic and species relationships in Triticum and Aegilops by PAGE and by differential staining of seed albumins and globulins.

    PubMed

    Caldwell, K A; Kasarda, D D

    1978-11-01

    Endosperm protein components from common bread wheats (Triticum aestivum L.) and related species were extracted with aluminum lactate, pH 3.2, and examined by electrophoresis in the same buffer. Electrophoretic patterns of the albumins and globulins were compared to evaluate the possibility that a particular species might have contributed its genome to tetraploid or hexaploid wheat. Together with protein component mobilities, differential band staining with Coomassie Brilliant Blue R250 was employed to test the identity or non-identity of bands. Eight species and 63 accessions, representative of Triticum and Aegilops were tested. Considerable intraspecific variation was observed for patterns of diploid but not for tetraploid or hexaploid species. Patterns of some accessions of Triticum urartu agreed closely with major parts of the patterns of Triticum dicoccoides and T. aestivum. A fast-moving, green band was found in all accessions of T. urartu and of Triticum boeoticum, however, that was not found in those of T. dicoccoides or T. aestivum. This band was present in all accessions of Triticum araraticum and Triticum zhukovskyi. Patterns of Aegilops longissima, which has been suggested as the donor of the B genome, differed substantially from those of T. dicoccoides and T. aestivum. Finally, two marker proteins of intermediate mobility were also observed and may be used to discriminate between accessions of T. araraticum/T. zhukovskyi and those of T. dicoccoides/T. aestivum.

  1. Potential Implications of Climate Change on Aegilops Species Distribution: Sympatry of These Crop Wild Relatives with the Major European Crop Triticum aestivum and Conservation Issues.

    PubMed

    Ostrowski, Marie-France; Prosperi, Jean-Marie; David, Jacques

    2016-01-01

    Gene flow from crop to wild relatives is a common phenomenon which can lead to reduced adaptation of the wild relatives to natural ecosystems and/or increased adaptation to agrosystems (weediness). With global warming, wild relative distributions will likely change, thus modifying the width and/or location of co-occurrence zones where crop-wild hybridization events could occur (sympatry). This study investigates current and 2050 projected changes in sympatry levels between cultivated wheat and six of the most common Aegilops species in Europe. Projections were generated using MaxEnt on presence-only data, bioclimatic variables, and considering two migration hypotheses and two 2050 climate scenarios (RCP4.5 and RCP8.5). Overall, a general decline in suitable climatic conditions for Aegilops species outside the European zone and a parallel increase in Europe were predicted. If no migration could occur, the decline was predicted to be more acute outside than within the European zone. The potential sympatry level in Europe by 2050 was predicted to increase at a higher rate than species richness, and most expansions were predicted to occur in three countries, which are currently among the top four wheat producers in Europe: Russia, France and Ukraine. The results are also discussed with regard to conservation issues of these crop wild relatives.

  2. Introgression of wheat DNA markers from A, B and D genomes in early generation progeny of Aegilops cylindrica Host x Triticum aestivum L. hybrids.

    PubMed

    Schoenenberger, N; Felber, F; Savova-Bianchi, D; Guadagnuolo, R

    2005-11-01

    Introgression from allohexaploid wheat (Triticum aestivum L., AABBDD) to allotetraploid jointed goatgrass (Aegilops cylindrica Host, CCDD) can take place in areas where the two species grow in sympatry and hybridize. Wheat and Ae. cylindrica share the D genome, issued from the common diploid ancestor Aegilops tauschii Coss. It has been proposed that the A and B genome of bread wheat are secure places to insert transgenes to avoid their introgression into Ae. cylindrica because during meiosis in pentaploid hybrids, A and B genome chromosomes form univalents and tend to be eliminated whereas recombination takes place only in D genome chromosomes. Wheat random amplified polymorphic DNA (RAPD) fragments, detected in intergeneric hybrids and introgressed to the first backcross generation with Ae. cylindrica as the recurrent parent and having a euploid Ae. cylindrica chromosome number or one supernumerary chromosome, were assigned to wheat chromosomes using Chinese Spring nulli-tetrasomic wheat lines. Introgressed fragments were not limited to the D genome of wheat, but specific fragments of A and B genomes were also present in the BC1. Their presence indicates that DNA from any of the wheat genomes can introgress into Ae. cylindrica. Successfully located RAPD fragments were then converted into highly specific and easy-to-use sequence characterised amplified regions (SCARs) through sequencing and primer design. Subsequently these markers were used to characterise introgression of wheat DNA into a BC1S1 family. Implications for risk assessment of genetically modified wheat are discussed.

  3. [Detection of the introgression of genome elements of the Aegilops cylindrica host. into the Triticum aestivum L. genome by ISSR and SSR analysis].

    PubMed

    Galaev, A V; Babaiants, L T; Sivolap, Iu M

    2004-12-01

    To reveal sites of the donor genome in wheat crossed with Aegilops cylindrica, which acquired conferred resistance to fungal diseases, a comparative analysis of introgressive and parental forms was conducted. Two systems of PCR analysis, ISSR and SSR-PCR, were employed. Upon use of 7 ISSR primers in genotypes of 30 individual plants BC1 F9 belonging to lines 5/55-91 and 5/20-91, 19 ISSR loci were revealed and assigned to introgressive fragments of Aegilops cylindrica genome in Triticum aestivum. The 40 pairs of SSR primers allowed the detection of seven introgressive alleles; three of these alleles were located on common wheat chromosomes in the B genome, while four alleles, in the D genome. Based on data of microsatellite analysis, it was assumed that the telomeric region of the long arm of common wheat chromosome 6A also changed. ISSR and SSR methods were shown to be effective for detecting variability caused by introgression of foreign genetic material into the genome of common wheat.

  4. Potential Implications of Climate Change on Aegilops Species Distribution: Sympatry of These Crop Wild Relatives with the Major European Crop Triticum aestivum and Conservation Issues

    PubMed Central

    Prosperi, Jean-Marie; David, Jacques

    2016-01-01

    Gene flow from crop to wild relatives is a common phenomenon which can lead to reduced adaptation of the wild relatives to natural ecosystems and/or increased adaptation to agrosystems (weediness). With global warming, wild relative distributions will likely change, thus modifying the width and/or location of co-occurrence zones where crop-wild hybridization events could occur (sympatry). This study investigates current and 2050 projected changes in sympatry levels between cultivated wheat and six of the most common Aegilops species in Europe. Projections were generated using MaxEnt on presence-only data, bioclimatic variables, and considering two migration hypotheses and two 2050 climate scenarios (RCP4.5 and RCP8.5). Overall, a general decline in suitable climatic conditions for Aegilops species outside the European zone and a parallel increase in Europe were predicted. If no migration could occur, the decline was predicted to be more acute outside than within the European zone. The potential sympatry level in Europe by 2050 was predicted to increase at a higher rate than species richness, and most expansions were predicted to occur in three countries, which are currently among the top four wheat producers in Europe: Russia, France and Ukraine. The results are also discussed with regard to conservation issues of these crop wild relatives. PMID:27100790

  5. Comparative germination responses to water potential across different populations of Aegilops geniculata and cultivar varieties of Triticum durum and Triticum aestivum.

    PubMed

    Orsenigo, S; Guzzon, F; Abeli, T; Rossi, G; Vagge, I; Balestrazzi, A; Mondoni, A; Müller, J V

    2017-03-01

    Crop Wild Relatives are often used to improve crop quality and yields because they contain genetically important traits that can contribute to stress resistance and adaptation. Seed germination of different populations of Aegilops geniculata Roth collected along a latitudinal gradient was studied under different drought stress in order to find populations suitable for improving drought tolerance in wheat. Different accessions of Aegilops neglecta Req. ex Bertol., Triticum aestivum L. and T. durum Desf. were used as comparison. Under full hydration, germination was high in all populations, but increasing drought stress led to reduced and delayed germination. Significant differences in final germination and mean time to germinate were detected among populations. Wheat, durum wheat and the southern population of Ae. geniculata were not significantly affected by drought stress, germinating similarly under all treatments. However, seed germination of the northern populations of Ae. geniculata was significantly reduced under high water stress treatment. Differences between populations of the same species could not be explained by annual rainfall across populations' distributions, but by rainfall during seed development and maturation. Differences in the germination responses to drought found here highlight the importance of source populations as criteria for genotype selection for pre-breeders.

  6. Gene Space Dynamics During the Evolution of Aegilops tauschii, Brachypodium distachyon, Oryza sativa, and Sorghum bicolor Genomes

    PubMed Central

    Massa, A. N.; Wanjugi, H.; Deal, K. R.; O'Brien, K.; You, F. M.; Maiti, R.; Chan, A. P.; Gu, Y. Q.; Luo, M. C.; Anderson, O. D.; Rabinowicz, P. D.; Dvorak, J.; Devos, K. M.

    2011-01-01

    Nine different regions totaling 9.7 Mb of the 4.02 Gb Aegilops tauschii genome were sequenced using the Sanger sequencing technology and compared with orthologous Brachypodium distachyon, Oryza sativa (rice), and Sorghum bicolor (sorghum) genomic sequences. The ancestral gene content in these regions was inferred and used to estimate gene deletion and gene duplication rates along each branch of the phylogenetic tree relating the four species. The total gene number in the extant Ae. tauschii genome was estimated to be 36,371. The gene deletion and gene duplication rates and total gene numbers in the four genomes were used to estimate the total gene number in each node of the phylogenetic tree. The common ancestor of the Brachypodieae and Triticeae lineages was estimated to have had 28,558 genes, and the common ancestor of the Panicoideae, Ehrhartoideae, and Pooideae subfamilies was estimated to have had 27,152 or 28,350 genes, depending on the ancestral gene scenario. Relative to the Brachypodieae and Triticeae common ancestor, the gene number was reduced in B. distachyon by 3,026 genes and increased in Ae. tauschii by 7,813 genes. The sum of gene deletion and gene duplication rates, which reflects the rate of gene synteny loss, was correlated with the rate of structural chromosome rearrangements and was highest in the Ae. tauschii lineage and lowest in the rice lineage. The high rate of gene space evolution in the Ae. tauschii lineage accounts for the fact that, contrary to the expectations, the level of synteny between the phylogenetically more related Ae. tauschii and B. distachyon genomes is similar to the level of synteny between the Ae. tauschii genome and the genomes of the less related rice and sorghum. The ratio of gene duplication to gene deletion rates in these four grass species closely parallels both the total number of genes in a species and the overall genome size. Because the overall genome size is to a large extent a function of the repeated

  7. Gene space dynamics during the evolution of Aegilops tauschii, Brachypodium distachyon, Oryza sativa, and Sorghum bicolor genomes.

    PubMed

    Massa, A N; Wanjugi, H; Deal, K R; O'Brien, K; You, F M; Maiti, R; Chan, A P; Gu, Y Q; Luo, M C; Anderson, O D; Rabinowicz, P D; Dvorak, J; Devos, K M

    2011-09-01

    Nine different regions totaling 9.7 Mb of the 4.02 Gb Aegilops tauschii genome were sequenced using the Sanger sequencing technology and compared with orthologous Brachypodium distachyon, Oryza sativa (rice), and Sorghum bicolor (sorghum) genomic sequences. The ancestral gene content in these regions was inferred and used to estimate gene deletion and gene duplication rates along each branch of the phylogenetic tree relating the four species. The total gene number in the extant Ae. tauschii genome was estimated to be 36,371. The gene deletion and gene duplication rates and total gene numbers in the four genomes were used to estimate the total gene number in each node of the phylogenetic tree. The common ancestor of the Brachypodieae and Triticeae lineages was estimated to have had 28,558 genes, and the common ancestor of the Panicoideae, Ehrhartoideae, and Pooideae subfamilies was estimated to have had 27,152 or 28,350 genes, depending on the ancestral gene scenario. Relative to the Brachypodieae and Triticeae common ancestor, the gene number was reduced in B. distachyon by 3,026 genes and increased in Ae. tauschii by 7,813 genes. The sum of gene deletion and gene duplication rates, which reflects the rate of gene synteny loss, was correlated with the rate of structural chromosome rearrangements and was highest in the Ae. tauschii lineage and lowest in the rice lineage. The high rate of gene space evolution in the Ae. tauschii lineage accounts for the fact that, contrary to the expectations, the level of synteny between the phylogenetically more related Ae. tauschii and B. distachyon genomes is similar to the level of synteny between the Ae. tauschii genome and the genomes of the less related rice and sorghum. The ratio of gene duplication to gene deletion rates in these four grass species closely parallels both the total number of genes in a species and the overall genome size. Because the overall genome size is to a large extent a function of the repeated

  8. Genetic variation of jointed goatgrass (Aegilops cylindrica Host.) from Iran using RAPD-PCR and SDS-PAGE of seed proteins.

    PubMed

    Farkhari, M; Naghavi, M R; Pyghambari, S A; Sabokdast

    2007-09-01

    Genetic variation of 28 populations of jointed goatgrass (Aegilops cylindrica Host.), collected from different parts of Iran, were evaluated using both RAPD-PCR and SDS-PAGE of seed proteins. The diversity within and between populations for the three-band High Molecular Weight (HMW) subunits of glutenin pattern were extremely low. Out of 15 screened primers of RAPD, 14 primers generated 133 reproducible fragments which among them 92 fragments were polymorphic (69%). Genetic similarity calculated from the RAPD data ranged from 0.64 to 0.98. A dendrogram was prepared on the basis of a similarity matrix using the UPGMA algorithm and separated the 28 populations into two groups. Confusion can happen between populations with the same origin as well as between populations of very diverse geographical origins. Our results show that compare to seed storage protein, RAPD is suitable for genetic diversity assessment in Ae. cylindrica populations.

  9. A comparative analysis of chromosome pairing at metaphase I in interspecific hybrids between durum wheat (Triticum turgidum L.) and the most widespread Aegilops species.

    PubMed

    Cifuentes, M; Garcia-Agüero, V; Benavente, E

    2010-07-01

    Homoeologous metaphase I (MI) associations in hybrids between durum wheat and its wild allotetraploid relatives Aegilops neglecta, Ae. triuncialis and Ae. ventricosa have been characterized by a genomic in situ hybridization procedure that allows simultaneous discrimination of A, B and wild species genomes. Earlier results in equivalent hybrids with the wild species Ae. cylindrica and Ae. geniculata have also been considered to comparatively assay the MI pairing pattern of the durum wheat x Aegilops interspecific combinations more likely to occur in nature. The general picture can be drawn as follows. A and B wheat genomes pair with each other less than the 2 wild constituent genomes do in any of the hybrid combinations examined. Interspecific wheat-wild associations account for 60-70% of total MI pairing in all hybrids, except in that derived from Ae. triuncialis, but the A genome is always the wheat partner most frequently involved in MI pairing with the wild homoeologues. Hybrids with Ae. cylindrica, Ae. geniculata and Ae. ventricosa showed similar reduced levels of MI association and virtually identical MI pairing patterns. However, certain recurrent differences were found when the pattern of homoeologous pairing of hybrids from either Ae. triuncialis or Ae. neglecta was contrasted to that observed in the other durum wheat hybrid combinations. In the former case, a remarkable preferential pairing between the wild species constituent genomes U(t) and C(t) seems to be the reason, whereas a general promotion of homoeologous pairing, qualitatively similar to that observed under the effect of the ph1c mutation, appears to occur in the hybrid with Ae. neglecta. It is further discussed whether the results reported here can be extrapolated to the corresponding bread wheat hybrid combinations.

  10. Molecular Variation in Chloroplast DNA Regions in Ancestral Species of Wheat

    PubMed Central

    Miyashita, N. T.; Mori, N.; Tsunewaki, K.

    1994-01-01

    Restriction map variation in two 5-6-kb chloroplast DNA regions of five diploid Aegilops species in the section Sitopsis and two wild tetraploid wheats, Triticum dicoccoides and Triticum araraticum, was investigated with a battery of four-cutter restriction enzymes. A single accession each of Triticum durum, Triticum timopheevi and Triticum aestivum was included as a reference. More than 250 restriction sites were scored, of which only seven sites were found polymorphic in Aegilops speltoides. No restriction site polymorphisms were detected in all of the other diploid and tetraploid species. In addition, six insertion/deletion polymorphisms were detected, but they were mostly unique or species-specific. Estimated nucleotide diversity was 0.0006 for A. speltoides, and 0.0000 for all the other investigated species. In A. speltoides, none of Tajima's D values was significant, indicating no clear deviation from the neutrality of molecular polymorphisms. Significant non-random association was detected for three combinations out of 10 possible pairs between polymorphic restriction sites in A. speltoides. Phylogenetic relationship among all the plastotypes (plastid genotype) suggested the diphyletic origin of T. dicoccoides and T. araraticum. A plastotype of one A. speltoides accession was identical to the major type of T. araraticum (T. timopheevi inclusively). Three of the plastotypes found in the Sitopsis species are very similar, but not identical, to that of T. dicoccoides, T. durum and T. aestivum. PMID:7916310

  11. Physical mapping resources for large plant genomes: radiation hybrids for wheat D-genome progenitor Aegilops tauschii

    PubMed Central

    2012-01-01

    Background Development of a high quality reference sequence is a daunting task in crops like wheat with large (~17Gb), highly repetitive (>80%) and polyploid genome. To achieve complete sequence assembly of such genomes, development of a high quality physical map is a necessary first step. However, due to the lack of recombination in certain regions of the chromosomes, genetic mapping, which uses recombination frequency to map marker loci, alone is not sufficient to develop high quality marker scaffolds for a sequence ready physical map. Radiation hybrid (RH) mapping, which uses radiation induced chromosomal breaks, has proven to be a successful approach for developing marker scaffolds for sequence assembly in animal systems. Here, the development and characterization of a RH panel for the mapping of D-genome of wheat progenitor Aegilops tauschii is reported. Results Radiation dosages of 350 and 450 Gy were optimized for seed irradiation of a synthetic hexaploid (AABBDD) wheat with the D-genome of Ae. tauschii accession AL8/78. The surviving plants after irradiation were crossed to durum wheat (AABB), to produce pentaploid RH1s (AABBD), which allows the simultaneous mapping of the whole D-genome. A panel of 1,510 RH1 plants was obtained, of which 592 plants were generated from the mature RH1 seeds, and 918 plants were rescued through embryo culture due to poor germination (<3%) of mature RH1 seeds. This panel showed a homogenous marker loss (2.1%) after screening with SSR markers uniformly covering all the D-genome chromosomes. Different marker systems mostly detected different lines with deletions. Using markers covering known distances, the mapping resolution of this RH panel was estimated to be <140kb. Analysis of only 16 RH lines carrying deletions on chromosome 2D resulted in a physical map with cM/cR ratio of 1:5.2 and 15 distinct bins. Additionally, with this small set of lines, almost all the tested ESTs could be mapped. A set of 399 most informative RH

  12. Generation of amphidiploids from hybrids of wheat and related species from the genera Aegilops, Secale, Thinopyrum, and Triticum as a source of genetic variation for wheat improvement.

    PubMed

    Nemeth, Csilla; Yang, Cai-yun; Kasprzak, Paul; Hubbart, Stella; Scholefield, Duncan; Mehra, Surbhi; Skipper, Emma; King, Ian; King, Julie

    2015-02-01

    We aim to improve diversity of domesticated wheat by transferring genetic variation for important target traits from related wild and cultivated grass species. The present study describes the development of F1 hybrids between wheat and related species from the genera Aegilops, Secale, Thinopyrum, and Triticum and production of new amphidiploids. Amphidiploid lines were produced from 20 different distant relatives. Both colchicine and caffeine were successfully used to double the chromosome numbers. The genomic constitution of the newly formed amphidiploids derived from seven distant relatives was determined using genomic in situ hybridization (GISH). Altogether, 42 different plants were analysed, 19 using multicolour GISH separating the chromosomes from the A, B, and D genomes of wheat, as well as the distant relative, and 23 using single colour GISH. Restructuring of the allopolyploid genome, both chromosome losses and aneuploidy, was detected in all the genomes contained by the amphidiploids. From the observed chromosome numbers there is an indication that in amphidiploids the B genome of wheat suffers chromosome losses less frequently than the other wheat genomes. Phenotyping to realize the full potential of the wheat-related grass germplasm is underway, linking the analyzed genotypes to agronomically important target traits.

  13. Complete characterization of wheat-alien metaphase I pairing in interspecific hybrids between durum wheat (Triticum turgidum L.) and jointed goatgrass (Aegilops cylindrica Host).

    PubMed

    Cifuentes, Marta; Benavente, Elena

    2009-05-01

    The pattern of homoeologous metaphase I (MI) pairing has been fully characterized in durum wheat x Aegilops cylindrica hybrids (2n = 4x = 28, ABC(c)D(c)) by an in situ hybridization procedure that has permitted individual discrimination of every wheat and wild constituent genome. One of the three hybrid genotypes examined carried the ph1c mutation. In all cases, MI associations between chromosomes of both species represented around two-third of total. Main results from the analysis are as follows (a) the A genome chromosomes are involved in wheat-wild MI pairing more frequently than the B genome partners, irrespective of the alien genome considered; (b) both durum wheat genomes pair preferentially with the D(c) genome of jointed goatgrass. These findings are discussed in relation to the potential of genetic transference between wheat crops and this weedy relative. It can also be highlighted that inactivation of Ph1 provoked a relatively higher promotion of MI associations involving B genome.

  14. Visualization of A- and B-genome chromosomes in wheat (Triticum aestivum L.) x jointed goatgrass (Aegilops cylindrica Host) backcross progenies.

    PubMed

    Wang, Z N; Hang, A; Hansen, J; Burton, C; Mallory-Smith, C A; Zemetra, R S

    2000-12-01

    Wheat (Triticum aestivum) and jointed goatgrass (Aegilops cylindrica) can cross with each other, and their self-fertile backcross progenies frequently have extra chromosomes and chromosome segments, presumably retained from wheat, raising the possibility that a herbicide resistance gene might transfer from wheat to jointed goatgrass. Genomic in situ hybridization (GISH) was used to clarify the origin of these extra chromosomes. By using T. durum DNA (AABB genome) as a probe and jointed goatgrass DNA (CCDD genome) as blocking DNA, one, two, and three A- or B-genome chromosomes were identified in three BC2S2 individuals where 2n = 29, 30, and 31 chromosomes, respectively. A translocation between wheat and jointed goatgrass chromosomes was also detected in an individual with 30 chromosomes. In pollen mother cells with meiotic configuration of 14 II + 2 I, the two univalents were identified as being retained from the A or B genome of wheat. By using Ae. markgrafii DNA (CC genome) as a probe and wheat DNA (AABBDD genome) as blocking DNA. 14 C-genome chromosomes were visualized in all BC2S2 individuals. The GISH procedure provides a powerful tool to detect the A or B-genome chromatin in a jointed goatgrass background, making it possible to assess the risk of transfer of herbicide resistance genes located on the A or B genome of wheat to jointed goatgrass.

  15. Inducing rye 1R chromosome structural changes in common wheat cv. Chinese spring by the gametocidal chromosome 2C of Aegilops cylindrica.

    PubMed

    Shi, Fang; Liu, Kun-Fan; Endo, Takashi R; Wang, Dao-Wen

    2005-05-01

    To generate 1 R deletion and translocation lines, we introduced a 2C chromosome,which was derived from Aegilops cylindrica and was known to have a gametocidal function when added monosomically into common wheat cv. Chinese Spring (CS) and its derivative, into a wheat-rye 1R chromosome disomic addition line (CS-1R"). When the individuals with chromosome constitution 21" + 1R" + 2C' (2n = 45) were selfed, the 1R chromosome structural changes were found to be induced with high frequency (24.1%) among the progenies. By using C-banding and GISH analysis, we analyzed 1R structural changes in 46 F3 individuals, which came from 23 F2 plants. The rearranged 1R chromosomes could be characterized in about 85% of the F3 individuals. This included telosome 1RL (39.1%), iso-chromosome 1 RL (2.2%), whole arm translocation involving 1RL (32.6%), telosome 1RS (4.3%), iso-chromosome 1RS (4.3%), and 1R deletion mutant with break point in the long arm (2.2%). The mutant 1R lines obtained in this study will potentially be useful in mapping the chromosome locations of agronomically important genes located in 1R. This study also demonstrated that molecular markers might be used to identify wheat chromosome arm involved in translocation with 1R.

  16. Production of aneuhaploid and euhaploid sporocytes by meiotic restitution in fertile hybrids between durum wheat Langdon chromosome substitution lines and Aegilops tauschii.

    PubMed

    Zhang, Lianquan; Chen, Qijiao; Yuan, Zhongwei; Xiang, Zhiguo; Zheng, Youliang; Liu, Dengcai

    2008-10-01

    Fertile F(1) hybrids were obtained between durum wheat (Triticum durum Desf.) Langdon (LDN) and its 10 disomic substitution (LDN DS) lines with Aegilops tauschii accession AS60 without embryo rescue. Selfed seedset rates for hybrids of LDN with AS60 were 36.87% and 49.45% in 2005 and 2006, respectively. Similar or higher selfed seedset rates were observed in the hybrids of 1D (1A), 1D (1B), 3D (3A), 4D (4B), 7D (7A), and 2D (2B) with AS60, while lower in hybrids of 3D (3B) + 3BL, 5D (5A) + 5AL, 5D (5B) + 5B and 6D (6B) + 6BS with AS60 compared with the hybrids of LDN with AS60. Observation of male gametogenesis showed that meiotic restitution, both first-division restitution (FDR) and single-division meiosis (SDM) resulted in the formation of functional unreduced gametes, which in turn produced seeds. Both euhaploid and aneuhaploid gametes were produced in F(1) hybrids. This suggested a strategy to simultaneously transfer and locate major genes from the ancestral species T. turgidum or Ae. tauschii. Moreover, there was no significant difference in the aneuhaploid rates between the F(1) hybrids of LDN and LDN DS lines with AS60, suggesting that meiotic pairing between the two D chromosomes in the hybrids of LDN DS lines with AS60 did not promote the formation of aneuhaploid gametes.

  17. Dysfunction of mitotic cell division at shoot apices triggered severe growth abortion in interspecific hybrids between tetraploid wheat and Aegilops tauschii.

    PubMed

    Hatano, Hitoshi; Mizuno, Nobuyuki; Matsuda, Ryusuke; Shitsukawa, Naoki; Park, Pyoyun; Takumi, Shigeo

    2012-06-01

    Common wheat is an allohexaploid species, derived through endoreduplication of an interspecific triploid hybrid produced from a cross between cultivated tetraploid wheat and the wild diploid relative Aegilops tauschii. Hybrid incompatibilities, including hybrid necrosis, have been observed in triploid wheat hybrids. A limited number of A. tauschii accessions show hybrid lethality in triploid hybrids crossed with tetraploid wheat as a result of developmental arrest at the early seedling stage, which is termed severe growth abortion (SGA). Despite the potential severity of this condition, the genetic mechanisms underlying SGA are not well understood. Here, we conducted comparative analyses of gene expression profiles in crown tissues to characterize developmental arrest in triploid hybrids displaying SGA. A number of defense-related genes were highly up-regulated, whereas many transcription factor genes, such as the KNOTTED1-type homeobox gene, which function in shoot apical meristem (SAM) and leaf primordia, were down-regulated in the crown tissues of SGA plants. Transcript accumulation levels of cell cycle-related genes were also markedly reduced in SGA plants, and no histone H4-expressing cells were observed in the SAM of SGA hybrid plants. Our findings demonstrate that SGA shows unique features among other types of abnormal growth phenotypes, such as type II and III necrosis.

  18. Quantitative trait locus analysis for spikelet shape-related traits in wild wheat progenitor Aegilops tauschii: Implications for intraspecific diversification and subspecies differentiation

    PubMed Central

    Hatano, Hitoshi; Takumi, Shigeo

    2017-01-01

    Wild diploid wheat Aegilops tauschii, the D-genome progenitor of common wheat, carries large genetic variation in spikelet and grain morphology. Two differentiated subspecies of Ae. tauschii, subspecies tauschii and strangulata, have been traditionally defined based on differences in spikelet morphology. Here, we first assessed six spikelet shape-related traits among 199 Ae. tauschii accessions, and found that the accessions belonging to TauL1major lineage produced significantly longer spikes, higher spikelet density, and shorter, narrower spikelets than another major lineage, TauL2, in which the strangulata accessions are included. Next, we performed quantitative trait locus (QTL) analysis of the spikelet and grain shape using three mapping populations derived from interlineage crosses between TauL1 and TauL2 to identify the genetic loci for the morphological variations of the spikelet and grain shape in Ae. tauschii. Three major QTL regions for the examined traits were detected on chromosomes 3D, 4D and 7D. The 3D and 4D QTL regions for several spikelet shape-related traits were conserved in the three mapping populations, which indicated that the 3D and 4D QTLs contribute to divergence of the two major lineages. The 7D QTLs were found only in a mapping population from a cross of the two subspecies, suggesting that these 7D QTLs may be closely related to subspecies differentiation in Ae. tauschii. Thus, QTL analysis for spikelet and grain morphology may provide useful information to elucidate the evolutionary processes of intraspecific differentiation. PMID:28264068

  19. Lr41, Lr39, and a leaf rust resistance gene from Aegilops cylindrica may be allelic and are located on wheat chromosome 2DS.

    PubMed

    Singh, Sukhwinder; Franks, C D; Huang, L; Brown-Guedira, G L; Marshall, D S; Gill, B S; Fritz, A

    2004-02-01

    The leaf rust resistance gene Lr41 in wheat germplasm KS90WGRC10 and a resistance gene in wheat breeding line WX93D246-R-1 were transferred to Triticum aestivum from Aegilops tauschii and Ae. cylindrica, respectively. The leaf rust resistance gene in WX93D246-R-1 was located on wheat chromosome 2D by monosomic analysis. Molecular marker analysis of F(2) plants from non-critical crosses determined that this gene is 11.2 cM distal to marker Xgwm210 on the short arm of 2D. No susceptible plants were detected in a population of 300 F(2) plants from a cross between WX93D246-R-1 and TA 4186 ( Lr39), suggesting that the gene in WX93D246-R-1 is the same as, or closely linked to, Lr39. In addition, no susceptible plants were detected in a population of 180 F(2) plants from the cross between KS90WGRC10 and WX93D246-R-1. The resistance gene in KS90WGRC10, Lr41, was previously reported to be located on wheat chromosome 1D. In this study, no genetic association was found between Lr41 and 51 markers located on chromosome 1D. A population of 110 F(3 )lines from a cross between KS90WGRC10 and TAM 107 was evaluated with polymorphic SSR markers from chromosome 2D and marker Xgdm35 was found to be 1.9 cM proximal to Lr41. When evaluated with diverse isolates of Puccinia triticina, similar reactions were observed on WX93D246-R-1, KS90WGRC10, and TA 4186. The results of mapping, allelism, and race specificity test indicate that these germplasms likely have the same gene for resistance to leaf rust.

  20. Molecular characterization of the celiac disease epitope domains in α-gliadin genes in Aegilops tauschii and hexaploid wheats (Triticum aestivum L.).

    PubMed

    Xie, Zhenze; Wang, Congyan; Wang, Ke; Wang, Shunli; Li, Xiaohui; Zhang, Zhao; Ma, Wujun; Yan, Yueming

    2010-11-01

    Nineteen novel full-ORF α-gliadin genes and 32 pseudogenes containing at least one stop codon were cloned and sequenced from three Aegilops tauschii accessions (T15, T43 and T26) and two bread wheat cultivars (Gaocheng 8901 and Zhongyou 9507). Analysis of three typical α-gliadin genes (Gli-At4, Gli-G1 and Gli-Z4) revealed some InDels and a considerable number of SNPs among them. Most of the pseudogenes were resulted from C to T change, leading to the generation of TAG or TAA in-frame stop codon. The putative proteins of both Gli-At3 and Gli-Z7 genes contained an extra cysteine residue in the unique domain II. Analysis of toxic epitodes among 19 deduced α-gliadins demonstrated that 14 of these contained 1-5 T cell stimulatory toxic epitopes while the other 5 did not contain any toxic epitopes. The glutamine residues in two specific ployglutamine domains ranged from 7 to 27, indicating a high variation in length. According to the numbers of 4 T cell stimulatory toxic epitopes and glutamine residues in the two ployglutamine domains among the 19 α-gliadin genes, 2 were assigned to chromosome 6A, 5 to chromosome 6B and 12 to chromosome 6D. These results were consistent with those from wheat cv. Chinese Spring nulli-tetrasomic and phylogenetic analysis. Secondary structure prediction showed that all α-gliadins had high content of β-strands and most of the α-helixes and β-strands were present in two unique domains. Phylogenetic analysis demonstrated that α-gliadin genes had a high homology with γ-gliadin, B-hordein, and LMW-GS genes and they diverged at approximate 39 MYA. Finally, the five α-gliadin genes were successfully expressed in E. coli, and their expression amount reached to the maximum after 4 h induced by IPTG, indicating that the α-gliadin genes can express in a high level under the control of T(7) promoter.

  1. RNA-Seq Based Identification of Candidate Parasitism Genes of Cereal Cyst Nematode (Heterodera avenae) during Incompatible Infection to Aegilops variabilis

    PubMed Central

    Zheng, Minghui; Long, Hai; Zhao, Yun; Li, Lin; Xu, Delin; Zhang, Haili; Liu, Feng; Deng, Guangbing; Pan, Zhifen; Yu, Maoqun

    2015-01-01

    One of the reasons for the progressive yield decline observed in cereals production is the rapid build-up of populations of the cereal cyst nematode (CCN, Heterodera avenae). These nematodes secrete so-call effectors into their host plant to suppress the plant defense responses, alter plant signaling pathways and then induce the formation of syncytium after infection. However, little is known about its molecular mechanism and parasitism during incompatible infection. To gain insight into its repertoire of parasitism genes, we investigated the transcriptome of the early parasitic second-stage (30 hours, 3 days and 9 days post infection) juveniles of the CCN as well as the CCN infected tissue of the host Aegilops variabilis by Illumina sequencing. Among all assembled unigenes, 681 putative genes of parasitic nematode were found, in which 56 putative effectors were identified, including novel pioneer genes and genes corresponding to previously reported effectors. All the 681 CCN unigenes were mapped to 229 GO terms and 200 KEGG pathways, including growth, development and several stimulus-related signaling pathways. Sixteen clusters were involved in the CCN unigene expression atlas at the early stages during infection process, and three of which were significantly gene-enriched. Besides, the protein-protein interaction network analysis revealed 35 node unigenes which may play an important role in the plant-CCN interaction. Moreover, in a comparison of differentially expressed genes between the pre-parasitic juveniles and the early parasitic juveniles, we found that hydrolase activity was up-regulated in pre J2s whereas binding activity was upregulated in infective J2s. RT-qPCR analysis on some selected genes showed detectable expression, indicating possible secretion of the proteins and putative role in infection. This study provided better insights into the incompatible interaction between H. avenae and the host plant Ae. varabilis. Moreover, RNAi targets with

  2. Fine mapping and genetic association analysis of Net2, the causative D-genome locus of low temperature-induced hybrid necrosis in interspecific crosses between tetraploid wheat and Aegilops tauschii.

    PubMed

    Sakaguchi, Kouhei; Nishijima, Ryo; Iehisa, Julio Cesar Masaru; Takumi, Shigeo

    2016-10-01

    Hybrid necrosis has been observed in many interspecific hybrids from crosses between tetraploid wheat and the wheat D-genome donor Aegilops tauschii. Type II necrosis is a kind of hybrid incompatibility that is specifically characterized by low-temperature induction and growth suppression. Two complementary genes, Net1 on the AB genome and Net2 on the D genome, putatively control type II necrosis in ABD triploids and synthetic hexaploid wheat. Toward map-based cloning of Net2, a fine map around the Net2 region on 2DS was constructed in this study. Using the draft genome sequence of Ae. tauschii and the physical map of the barley genome, the Net2 locus was mapped within a 0.6 cM interval between two closely linked markers. Although local chromosomal rearrangements were observed in the Net2-corresponding region between the barley/Brachypodium and Ae. tauschii genomes, the two closely linked markers were significantly associated with type II necrosis in Ae. tauschii. These results suggest that these markers will aid efficient selection of Net2 non-carrier individuals from the Ae. tauschii population and intraspecific progeny, and could help with introgression of agriculturally important genes from Ae. tauschii to common wheat.

  3. An immunochemical approach to species relationship in Triticum and some related species.

    PubMed

    Bozzini, A; Cantagalli, P; Piazzi, S E; Sordi, S

    1970-01-01

    An immunological reaction, precipitation in gel, was produced using a rabbit antiserum directed to a specific protein constantly present in bread wheats (T. aestivum, genome AABBDD), but absent in durum wheat (T. durum Desf., genome AABB). This protein was isolated in the soluble-protein fraction of bread wheat caryopses by combined biochemical and immunological techniques.The availability of such a specific anti-bread wheat serum made possible the analysis of a series of varieties and species of wheat and of some closely related (Secale, Aegilops) and less closely related (Hordeum, Haynaldia) taxa to determine whether the protein was present or absent. Hordeum vulgare, Haynaldia villosa, Triticum monoccocum and Triticum turgidum gave a negative result, while positive results were obtained in T. aestivum, T. timopheevi, T. zhukovskyi, Secale cereale, Aegilops speltoides, Ae. mutica, Ae. comosa, Ae. caudata, Ae. umbellulata, Ae. squarrosa, and also in the artificial amphiploids (Ae. speltoides x T. monococcum) and (Ae. caudata x T. monococcum).It is concluded that these results agree closely with the classification of Triticum proposed by MacKey in 1966. The investigated protein not only permits the differentiation of T. aestivum from T. turgidum, but also T. turgidum from T. timopheevi at tetraploid level and T. monococcum from all the diploid species of Aegilops.

  4. Novel x-type high-molecular-weight glutenin genes from Aegilops tauschii and their implications on the wheat origin and evolution mechanism of Glu-D1-1 proteins.

    PubMed

    Zhang, Yanzhen; Li, Xiaohui; Wang, Aili; An, Xueli; Zhang, Qian; Pei, Yuhe; Gao, Liyan; Ma, Wujun; Appels, Rudi; Yan, Yueming

    2008-01-01

    Two new x-type high-molecular-weight glutenin subunits with similar size to 1Dx5, designated 1Dx5*t and 1Dx5.1*t in Aegilops tauschii, were identified by SDS-PAGE, RP-HPLC, and MALDI-TOF-MS. The coding sequences were isolated by AS-PCR and the complete ORFs were obtained. Allele 1Dx5*t consists of 2481 bp encoding a mature protein of 827 residues with deduced Mr of 85,782 Da whereas 1Dx5.1*t comprises 2526 bp encoding 842 residues with Mr of 87,663 Da. The deduced Mr's of both genes were consistent with those determined by MALDI-TOF-MS. Molecular structure analysis showed that the repeat motifs of 1Dx5*t were correspondingly closer to the consensus compared to 1Dx5.1*t and 1Dx5 subunits. A total of 11 SNPs (3 in 1Dx5*t and 8 in 1Dx5.1*t) and two indels in 1Dx5*t were identified, among which 8 SNPs were due to C-T or A-G transitions (an average of 73%). Expression of the cloned ORFs and N-terminal sequencing confirmed the authenticities of the two genes. Interestingly, several hybrid clones of 1Dx5*t expressed a slightly smaller protein relative to the authentic subunit present in seed proteins; this was confirmed to result from a deletion of 180 bp through illegitimate recombination as well as an in-frame stop codon. Network analysis demonstrated that 1Dx5*t, 1Dx2t, 1Dx1.6t, and 1Dx2.2* represent a root within a network and correspond to the common ancestors of the other Glu-D-1-1 alleles in an associated star-like phylogeny, suggesting that there were at least four independent origins of hexaploid wheat. In addition to unequal homologous recombination, duplication and deletion of large fragments occurring in Glu-D-1-1 alleles were attributed to illegitimate recombination.

  5. Characterization and expression analysis of WOX5 genes from wheat and its relatives.

    PubMed

    Zhao, Shan; Jiang, Qian-Tao; Ma, Jian; Zhang, Xiao-Wei; Zhao, Quan-Zhi; Wang, Xiu-Ying; Wang, Chang-Shui; Cao, Xue; Lu, Zhen-Xiang; Zheng, You-Liang; Wei, Yu-Ming

    2014-03-01

    The WUSCHEL (WUS)-related homeobox (WOX) gene family plays an important role in coordinating gene transcription in the early phases of embryogenesis. In this study, we isolated and characterized WOX5 from common wheat and its relatives Triticum monococcum, Triticum urartu, Aegilops speltoides, Aegilops searsii, Aegilops sharonensis, Aegilops longissima, Aegilops bicornis, Aegilops tauschii, and Triticum turgidum. The size of the characterized WOX5 alleles ranged from 1029 to 1038 bp and encompassed the complete open reading frame (ORF) as well as 5' upstream and 3' downstream sequences. Domain prediction analysis showed that the putative primary structures of wheat WOX5 protein include the highly conserved homeodomain besides the WUS-box domain and the EAR-like domain, which is/are present in some members of the WOX protein family. The full-length ORF was subcloned into a prokaryotic expression vector pET30a, and an approximate 26-kDa protein was successfully expressed in Escherichia coli BL21 (DE3) cells with IPTG induction. The WOX5 genes from wheat-related species exhibit a similar structure to and high sequence similarity with WOX5 genes from common wheat. The degree of divergence and phylogenetic tree analysis among WOX5 alleles suggested the existence of three homoeologous copies in the A, B, or D genome of common wheat. Quantitative PCR results showed that TaWOX5 was primarily expressed in the root and calli induced by auxin and cytokinin, indicating that TaWOX5 may play a role related to root formation or development and is associated with hormone regulation in somatic embryogenesis.

  6. Genome-wide characterization of microsatellites in Triticeae species: abundance, distribution and evolution

    PubMed Central

    Deng, Pingchuan; Wang, Meng; Feng, Kewei; Cui, Licao; Tong, Wei; Song, Weining; Nie, Xiaojun

    2016-01-01

    Microsatellites are an important constituent of plant genome and distributed across entire genome. In this study, genome-wide analysis of microsatellites in 8 Triticeae species and 9 model plants revealed that microsatellite characteristics were similar among the Triticeae species. Furthermore, genome-wide microsatellite markers were designed in wheat and then used to analyze the evolutionary relationship of wheat and other Triticeae species. Results displayed that Aegilops tauschii was found to be the closest species to Triticum aestivum, followed by Triticum urartu, Triticum turgidum and Aegilops speltoides, while Triticum monococcum, Aegilops sharonensis and Hordeum vulgare showed a relatively lower PCR amplification effectivity. Additionally, a significantly higher PCR amplification effectivity was found in chromosomes at the same subgenome than its homoeologous when these markers were subjected to search against different chromosomes in wheat. After a rigorous screening process, a total of 20,666 markers showed high amplification and polymorphic potential in wheat and its relatives, which were integrated with the public available wheat markers and then anchored to the genome of wheat (CS). This study not only provided the useful resource for SSR markers development in Triticeae species, but also shed light on the evolution of polyploid wheat from the perspective of microsatellites. PMID:27561724

  7. [Molecular cytogenetic identification of Aegilops ventricosa x Aegilops cylindrica amphiploid SDAU18].

    PubMed

    Wang, Yu Hai; Bao, Yin Guang; Hao, Yuan Feng; Yuan, Yuan Yuan; Zhao, Chun Hua; Wang, Qing Zhuan; Wang, Hong Gang

    2009-02-01

    SDAU18, an amphiploid of Ae.ventricosa with Ae.cylindrica, was identified by cytological analysis, seed storage protein electrophoresis, genomic in situ hybridization (GISH) and inoculation assessment. The results are as follows: The chromosome number of root tip cells (RTCs) of SDAU18 plants varied from 52 to 56. 28 bivalents were observed in most PMCs MI of SDAU18 with 56 chromosomes, meanwhile, a few univalents, multivalents also existed in some PMCs MI, and the average chromosome configuration was 2n = 56 = 3.21 I +19.78 II, (Ring)+6.50 II (Rod)+0.01 III +0.04 IV (Ring)R+0.01 IV (Rod). There were both Ae. ventricosa-specific bands and Ae. cylindrica-specific bands in the seed storage protein electrophoretogram of SDAU18, furthermore, SDAU18 had one novel HMW-GS not found in the parents and two novel ones not found in common wheats. By labeling the total genomic DNA of Ae. ventricosa and Ae. cylindrica as probes respectively, and using that of another parent as block, GISH of RTCs spread of SDAU18 was carried out. The green hybridization signal was observed in 14 chromosomes respectively, within 56 ones in RTCs of SDAU18. SDAU18 was immune to powdery mildew and stripe rusts. SDAU18 was an amphiploid of Ae. ventricosa with Ae. cylindrica, and had very important significance in wheat breeding and genetic improvement.

  8. Identifying variation in resistance to the take-all fungus, Gaeumannomyces graminis var. tritici, between different ancestral and modern wheat species

    PubMed Central

    2014-01-01

    Background Ancestral wheat relatives are important sources of genetic diversity for the introduction of novel traits for the improvement of modern bread wheat. In this study the aim was to assess the susceptibility of 34 accessions of the diploid wheat Triticum monococcum (A genome) to Gaeumannomyces graminis var. tritici (Ggt), the causal agent of take-all disease. The second aim was to explore the susceptibility of tetraploid wheat (T. durum) and the B genome progenitor species Aegilops speltoides to Ggt. Results Field trials, conducted over 5 years, identified seven T. monococcum accessions with a good level of resistance to take-all when exposed to natural inoculum under UK field conditions. All other accessions were highly susceptible or did not exhibit a consistent phenotype across years. DArT marker genotyping revealed that whole genome diversity was not closely related to resistance to take-all within T. monococcum, suggesting that multiple genetic sources of resistance may exist within the species. In contrast the tetraploid wheat cultivars and Ae. speltoides were all highly susceptible to the disease, including those with known elevated levels of benzoxazinoids. Conclusions The diploid wheat species T. monococcum may provide a genetic source of resistance to take-all disease that could be utilised to improve the performance of T. aestivum in high disease risk situations. This represents an extremely valuable resource to achieve economic and sustainable genetic control of this root disease. PMID:25084989

  9. Disentangling homeologous contigs in allo-tetraploid assembly: application to durum wheat

    PubMed Central

    2013-01-01

    Background Using Next Generation Sequencing, SNP discovery is relatively easy on diploid species and still hampered in polyploid species by the confusion due to homeology. We develop HomeoSplitter; a fast and effective solution to split original contigs obtained by RNAseq into two homeologous sequences. It uses the differential expression of the two homeologous genes in the RNA. We verify that the new sequences are closer to the diploid progenitors of the allopolyploid species than the original contig. By remapping original reads on these new sequences, we also verify that the number of valuable detected SNPs has significantly increased. Thirty accessions of the tetraploid durum wheat (Triticum turgidum, A and B genomes) were sequenced in pooled cDNA libraries. Reads were assembled in a de novo durum assembly. Transcriptomes of the diploid species, Aegilops speltoides (close B genome) and Triticum urartu (A genome) were used as reference to benchmark the method. Results HomeoSplitter is a fast and effective solution to disentangle homeologous sequences based on a maximum likelihood optimization. On a benchmark set of 2,505 clusters containing homologous sequences of urartu, speltoides and durum, HomeoSplitter was efficient to build sequences closer to the diploid references and increased the number of valuable SNPs from 188 out of 1,360 SNPs detected when mapping the reads on the de novo durum assembly to 762 out of 1,620 SNPs when mapping on HomeoSplitter contigs. Conclusions The HomeoSplitter program is freely available at http://bioweb.supagro.inra.fr/homeoSplitter/. This work provides a practical solution to the complex problem of disentangling homeologous transcripts in allo-tetraploids, which further allows an improved SNP detection. PMID:24564644

  10. Generation of Wheat Transcription Factor FOX Rice Lines and Systematic Screening for Salt and Osmotic Stress Tolerance.

    PubMed

    Wu, Jinxia; Zhang, Zhiguo; Zhang, Qian; Liu, Yayun; Zhu, Butuo; Cao, Jian; Li, Zhanpeng; Han, Longzhi; Jia, Jizeng; Zhao, Guangyao; Sun, Xuehui

    2015-01-01

    Transcription factors (TFs) play important roles in plant growth, development, and responses to environmental stress. In this study, we collected 1,455 full-length (FL) cDNAs of TFs, representing 45 families, from wheat and its relatives Triticum urartu, Aegilops speltoides, Aegilops tauschii, Triticum carthlicum, and Triticum aestivum. More than 15,000 T0 TF FOX (Full-length cDNA Over-eXpressing) rice lines were generated; of these, 10,496 lines set seeds. About 14.88% of the T0 plants showed obvious phenotypic changes. T1 lines (5,232 lines) were screened for salt and osmotic stress tolerance using 150 mM NaCl and 20% (v/v) PEG-4000, respectively. Among them, five lines (591, 746, 1647, 1812, and J4065) showed enhanced salt stress tolerance, five lines (591, 746, 898, 1078, and 1647) showed enhanced osmotic stress tolerance, and three lines (591, 746, and 1647) showed both salt and osmotic stress tolerance. Further analysis of the T-DNA flanking sequences showed that line 746 over-expressed TaEREB1, line 898 over-expressed TabZIPD, and lines 1812 and J4065 over-expressed TaOBF1a and TaOBF1b, respectively. The enhanced salt and osmotic stress tolerance of lines 898 and 1812 was confirmed by retransformation of the respective genes. Our results demonstrate that a heterologous FOX system may be used as an alternative genetic resource for the systematic functional analysis of the wheat genome.

  11. Draft genome of the wheat A-genome progenitor Triticum urartu.

    PubMed

    Ling, Hong-Qing; Zhao, Shancen; Liu, Dongcheng; Wang, Junyi; Sun, Hua; Zhang, Chi; Fan, Huajie; Li, Dong; Dong, Lingli; Tao, Yong; Gao, Chuan; Wu, Huilan; Li, Yiwen; Cui, Yan; Guo, Xiaosen; Zheng, Shusong; Wang, Biao; Yu, Kang; Liang, Qinsi; Yang, Wenlong; Lou, Xueyuan; Chen, Jie; Feng, Mingji; Jian, Jianbo; Zhang, Xiaofei; Luo, Guangbin; Jiang, Ying; Liu, Junjie; Wang, Zhaobao; Sha, Yuhui; Zhang, Bairu; Wu, Huajun; Tang, Dingzhong; Shen, Qianhua; Xue, Pengya; Zou, Shenhao; Wang, Xiujie; Liu, Xin; Wang, Famin; Yang, Yanping; An, Xueli; Dong, Zhenying; Zhang, Kunpu; Zhang, Xiangqi; Luo, Ming-Cheng; Dvorak, Jan; Tong, Yiping; Wang, Jian; Yang, Huanming; Li, Zhensheng; Wang, Daowen; Zhang, Aimin; Wang, Jun

    2013-04-04

    Bread wheat (Triticum aestivum, AABBDD) is one of the most widely cultivated and consumed food crops in the world. However, the complex polyploid nature of its genome makes genetic and functional analyses extremely challenging. The A genome, as a basic genome of bread wheat and other polyploid wheats, for example, T. turgidum (AABB), T. timopheevii (AAGG) and T. zhukovskyi (AAGGA(m)A(m)), is central to wheat evolution, domestication and genetic improvement. The progenitor species of the A genome is the diploid wild einkorn wheat T. urartu, which resembles cultivated wheat more extensively than do Aegilops speltoides (the ancestor of the B genome) and Ae. tauschii (the donor of the D genome), especially in the morphology and development of spike and seed. Here we present the generation, assembly and analysis of a whole-genome shotgun draft sequence of the T. urartu genome. We identified protein-coding gene models, performed genome structure analyses and assessed its utility for analysing agronomically important genes and for developing molecular markers. Our T. urartu genome assembly provides a diploid reference for analysis of polyploid wheat genomes and is a valuable resource for the genetic improvement of wheat.

  12. Characterization of x-type high-molecular-weight glutenin promoters (x-HGP) from different genomes in Triticeae.

    PubMed

    Jiang, Qian-Tao; Zhao, Quan-Zhi; Wang, Xiu-Ying; Wang, Chang-Shui; Zhao, Shan; Cao, Xue; Lan, Xiu-Jin; Lu, Zhen-Xiang; Zheng, You-Liang; Wei, Yu-Ming

    2013-12-01

    The sequences of x-type high-molecular-weight glutenin promoter (x-HGP) from 21 diploid Triticeae species were cloned and sequenced. The lengths of x-HGP varied from 897 to 955 bp, and there are 329 variable sites including 105 singleton sites and 224 polymorphic sites. Genetic distances of pairwise X-HGP sequences ranged from 0.30 to 16.40% within 21 species and four outgroup species of Hordeum. All five recognized regulatory elements emerged and showed higher conservation in the x-HGP of 21 Triticeae species. Most variations were distributed in the regions among or between regulatory elements. A 22 bp and 50 bp insertions which were the copy of adjacent region with minor change, were found in the x-HGP of Ae. speltoides and Ps. Huashanica, and could be regarded as genome specific indels. The phylogeny of media-joining network and neighbour-joining tree both supported the topology were composed of three sperate clusters. Especially, the cluster I comprising the x-HGP sequences of Aegilops, Triticum, Henrardia, Agropyron and Taeniatherum was highly supporting by both network and NJ tree. As conferring to higher level and temporal and spatial expression, x-HGP can used as the source of promoter for constructing transgenic plants which allow endosperm-specific expression of exogenous gene on higher level. In addition, the x-HGP has enough conservation and variation; so it should be valuable in phylogenetic analyses of Triticeae family members.

  13. NAD-dependent aromatic alcohol dehydrogenase in wheats (Triticum L.) and goatgrasses (Aegilops L.): evolutionary genetics.

    PubMed

    Jaaska, V

    1984-04-01

    Evolutionary electrophoretic variation of a NAD-specific aromatic alcohol dehydrogenase, AADH-E, in wheat and goatgrass species is described and discussed in comparison with a NAD-specific alcohol dehydrogenase (ADH-A) and a NADP-dependent AADH-B studied previously. Cultivated tetraploid emmer wheats (T. turgidum s. l.) and hexaploid bread wheats (T. aestivum s. l.) are all fixed for a heterozygous triplet, E(0.58)/E(0.64). The slowest isoenzyme, E(0.58), is controlled by a homoeoallelic gene on the chromosome arm 6AL of T. aestivum cv. 'Chinese Spring' and is inherent in all diploid wheats, T. monococcum s. Str., T. boeoticum s. l. and T. urartu. The fastest isoenzyme, E(0.64), is presumably controlled by the B- and D-genome homoeoalleles of the bread wheat and is the commonest alloenzyme of diploid goat-grasses, including Ae. speltaides and Ae. tauschii. The tetraploid T. timopheevii s. str. has a particular heterozygous triplet E(0.56)/E(0.71), whereas the hexaploid T. zhukovskyi exhibited polymorphism with electromorphs characteristic of T. timopheevii and T. monococcum. Wild tetraploid wheats, T. dicoccoides and T. araraticum, showed partially homologous intraspecific variation of AADH-E with heterozygous triplets E(0.58)/E(0.64) (the commonest), E(0.58)/E(0.71), E(0.45)/E(0.58), E(0.48)/E(0.58) and E(0.56)/E(0.58) recorded. Polyploid goatgrasses of the D-genome group, excepting Ae. cylindrica, are fixed for the common triplet E(0.58)/E(0.64). Ae. cylindrica and polyploid goatgrasses of the C(u)-genome group, excepting Ae. kotschyi, are homozygous for E(0.64). Ae. kotschyi is exceptional, showing fixed heterozygosity for both AADH-E and ADH-A with unique triplets E(0.56)/E(0.64) and A(0.49)/A(0.56).

  14. Genetic lineages of the invasive Aegilops triuncialis differ in competitive response to neighboring grassland species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Competitive dynamics between native and exotic species can influence both the success of exotics in the novel environment as well as diversity and abundance of native species. Invasive species are often characterized by multiple introductions in the novel range, which can lead to differentiation in ...

  15. Jointed goatgrass (Aegilops cylindrica) by imidazolinone-resistant wheat hybridization under field conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gene flow between jointed goatgrass and winter wheat is a concern because transfer of herbicide resistance genes from imidazolinone-resistant (IR) winter wheat cultivars to jointed goatgrass could restrict weed management options for this serious weed of winter wheat cropping systems. The objective...

  16. Mapping QTL for resistance to eyespot of wheat in Aegilops longissima

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Eyespot is an economically important disease of wheat caused by the soilborne fungi Oculimacula yal- lundae and O. acuformis. These pathogens infect and colonize the stem base, which results in lodging of diseased plants and reduced grain yield. Disease resistant cultivars are the most desirable co...

  17. Patterns of introduction and adaptation during the invasion of Aegilops truncialis (Poaceae) into Californian serpentine soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    - Multiple introductions appear to be playing a prominent role to explain the success of biological invasions. One often cited mechanism is the prevention of a genetic bottleneck by the parallel introduction of several distinct genotypes, which in turn provides the heritable variation that can allow...

  18. Adult plant resistance to Puccinia triticina in a geographically diverse collection of Aegilops tauschii

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Despite extensive genetics and breeding research, effective control of leaf rust caused by Puccinia triticina Eriks., an important foliar disease of wheat, has not been achieved. This is mainly due to the widespread use of race-specific seedling resistance genes, which are rapidly overcome by new vi...

  19. Within- and trans-generational plasticity affects the opportunity for selection in barbed goatgrass (Aegilops Triuncialis)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although genetic change can enhance the success of many biological invaders, phenotypic plasticity may also facilitate establishment and spread of introduced species in new environments. To determine if processes influencing the opportunity for selection differ between resource- rich and resource- p...

  20. RFLP mapping of a Hordeum bulbosum gene highly expressed in pistils and its relationship to homoeologous loci in other Gramineae species.

    PubMed

    Gudu, S.; Laurie, A.; Kasha, J.; Xia, J.; Snape, W.

    2002-08-01

    A cDNA sequence (Hbc8-2) isolated from pistils of the self-incompatible species Hordeum bulbosum was analysed for expression pattern and genetic map location. Hbc8-2 was expressed just prior to anthesis in mature pistils, and expression was maintained at a high level throughout anthesis. The same expression pattern was found in self-incompatible rye ( Secale cereale), but no expression was detected in the self-compatible cereals wheat ( Triticum aestivum) or barley ( Hordeum vulgare) at comparable stages of development. However, three wheat expressed sequence tags from a pre-anthesis library had high homology to Hbc8-2. Southern blot analyses using Hbc8-2 as a probe detected hybridising bands in the genomes of various Gramineae species including rye, barley, bread wheat, wild wheat relatives ( Aegilops tauschii and Ae. speltoides), oats ( Avena fatua and A. strigosa), rice ( Oryza sativa) and maize ( Zea mays). This suggests that Hbc8-2-like sequences are present in many species but that high levels of expression may be associated with self-incompatibility. Hbc8-2 was mapped on the long arms of chromosome 2H(b) of H. bulbosum, 2R of rye, and 2B and 2D of wheat and was assigned to chromosome 2H of barley using wheat/barley addition lines. On a H. bulbosum genetic map, Xhbc8-2 was located between Xbcd266 and Xpsr87, while in rye and wheat it was located in a 13.2-cM interval between Xpsr331 and Xpsr932, consistent with previous comparative mapping studies of these species. Mapping in rye suggested that Hbc8-2 is probably proximal to the Z self-incompatibility locus which was previously shown to be tightly linked to Xbcd266.

  1. [Detection of the introgression of genome elements of Aegilops cylindrica Host. into Triticum aestivum L. genome with ISSR-analysis].

    PubMed

    Galaev, A V; Babaiants, L T; Sivolap, Iu M

    2003-01-01

    Comparative analysis of introgressive and parental forms of wheat was carried out to reveal the sites of donor genome with new loci of resistance to fungal diseases. By ISSR-method 124 ISSR-loci were detected in the genomes of 18 individual plants of introgressive line 5/20-91; 17 of them have been related to introgressive fragments of Ae. cylindrica genome in T. aestivum. It was shown that ISSR-method is effective for detection of the variability caused by introgression of alien genetic material to T. aestivum genome.

  2. Accelerated Senescence and Enhanced Disease Resistance in Hybrid Chlorosis Lines Derived from Interspecific Crosses between Tetraploid Wheat and Aegilops tauschii

    PubMed Central

    Tosa, Yukio; Yoshida, Kentaro; Park, Pyoyun; Takumi, Shigeo

    2015-01-01

    Hybrid chlorosis, a type of hybrid incompatibility, has frequently been reported in inter- and intraspecific crosses of allopolyploid wheat. In a previous study, we reported some types of growth abnormalities such as hybrid necrosis and observed hybrid chlorosis with mild or severe abnormalities in wheat triploids obtained in crosses between tetraploid wheat cultivar Langdon and four Ae. tauschii accessions and in their derived synthetic hexaploids. However, the molecular mechanisms underlying hybrid chlorosis are not well understood. Here, we compared cytology and gene expression in leaves to characterize the abnormal growth in wheat synthetics showing mild and severe chlorosis. In addition, we compared disease resistance to wheat blast fungus. In total 55 and 105 genes related to carbohydrate metabolism and 53 and 89 genes for defense responses were markedly up-regulated in the mild and severe chlorosis lines, respectively. Abnormal chloroplasts formed in the mesophyll cells before the leaves yellowed in the hybrid chlorosis lines. The plants with mild chlorosis showed increased resistance to wheat blast and powdery mildew fungi, although significant differences only in two, third internode length and maturation time, out of the examined agricultural traits were found between the wild type and plants showing mild chlorosis. These observations suggest that senescence might be accelerated in hybrid chlorosis lines of wheat synthetics. Moreover, in wheat synthetics showing mild chlorosis, the negative effects on biomass can be minimized, and they may show substantial fitness under pathogen-polluted conditions. PMID:25806790

  3. Genetic mapping of MlUM15: an Aegilops neglecta-derived powdery mildew resistance gene in common wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Powdery mildew, caused by Blumeria graminis DC f. sp. tritici, is a major fungal disease of wheat (Triticum aestivum L.) in cool and humid climates. Race-specific host plant resistance is a reliable, economical, and environmentally benign form of disease prevention. The identification of molecular m...

  4. Cloning of a Conserved Receptor-Like Protein Kinase Gene and Its Use as a Functional Marker for Homoeologous Group-2 Chromosomes of the Triticeae Species

    PubMed Central

    Qin, Bi; Chen, Tingting; Cao, Aizhong; Wang, Haiyan; Xing, Liping; Ling, Hongqing; Wang, Daowen; Yu, Chunmei; Xiao, Jin; Ji, Jianhui; Chen, Xueluan; Chen, Peidu; Liu, Dajun; Wang, Xiue

    2012-01-01

    Receptor-like kinases (RLKs) play broad biological roles in plants. We report on a conserved receptor-like protein kinase (RPK) gene from wheat and other Triticeae species. The TaRPK1 was isolated from the Triticum aestivum cv. Prins - Triticum timopheevii introgression line IGVI-465 carrying the powdery mildew resistance gene Pm6. The TaRPK1 was mapped to homoeologous chromosomes 2A (TaRPK1-2A), 2D (TaRPK1-2D) and the Pm6-carrier chromosome 2G (TaRPK1-2G) of IGVI-465. Under the tested conditions, only the TaRPK1-2G allele was actively transcribed, producing two distinct transcripts via alternative splicing. The predicted 424-amino acid protein of TaRPK1-2G contained a signal peptide, a transmembrane domain and an intracellular serine/threonine kinase domain, but lacked a typical extracellular domain. The expression of TaRPK1-2G gene was up-regulated upon the infection by Blumeria graminis f.sp. tritici (Bgt) and treatment with methyl jasmonate (MeJA), but down-regulated in response to treatments of SA and ABA. Over-expression of TaRPK1-2G in the powdery mildew susceptible wheat variety Prins by a transient expression assay showed that it slightly reduced the haustorium index of the infected Bgt. These data indicated that TaRPK1-2G participated in the defense response to Bgt infection and in the JA signaling pathway. Phylogenetic analysis indicated that TaRPK1-2G was highly conserved among plant species, and the amino acid sequence similarity of TaRPK1-2G among grass species was more than 86%. Based on its conservation, the RPK gene-based STS primers were designed, and used to amplify the RPK orthologs from the homoeologous group-2 chromosomes of all the tested Triticeae species, such as chromosome 2G of T. timopheevii, 2R of Secale cereale, 2H of Hordeum vulgare, 2S of Aegilops speltoides, 2Sl of Ae. longissima, 2Mg of Ae. geniculata, 2Sp and 2Up of Ae. peregrina. The developed STS markers serve as conserved functional markers for the identification of

  5. Physical mapping resources for large plant genomes: radiation hybrids for wheat D-genome progenitor aegilops tauschii accession AL8/78

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: A high quality reference sequence can provide a complete catalog of genes of a species, the regulatory elements that control their structure and function provide the basis for understanding the role of genes in evolution and development. However, development of a high quality referenc...

  6. Rapid evolutionary dynamics in a 2.8-Mb chromosomal region containing multiple prolamin and resistance gene families in Aegilops tauschii

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The prolamin (seed storage proteins high in glutamine and proline) and resistance gene families are important in domesticated bread wheat (Triticum aestivum) food uses and in defense against pathogen attacks, respectively. To better understand the evolution of these multi-gene families, the DNA se...

  7. Analysis of ATP6 sequence diversity in the Triticum-Aegilops group of species reveals the crucial role of rearrangement in mitochondrial genome evolution

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mutation and chromosomal rearrangements are the two main forces of increasing genetic diversity for natural selection to act upon, and ultimately drive the evolutionary process. Although genome evolution is a function of both forces, simultaneously, the ratio of each can be varied among different ge...

  8. Radiation hybrid maps of D-genome of Aegilops tauschii and their application in sequence assembly of large and complex plant genomes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The large and complex genome of bread wheat (Triticum aestivum L., ~17 Gb) requires high-resolution genome maps saturated with ordered markers to assist in anchoring and orienting BAC contigs/ sequence scaffolds for whole genome sequence assembly. Radiation hybrid (RH) mapping has proven to be an e...

  9. Dynamic evolution of resistance gene analogs in the orthologous genomic regions of powdery mildew resistance gene MlIW170 in Triticum dicoccoides and Aegilops tauschii

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat is one of the most important staple grain crops in the world. Powdery mildew disease caused by Blumeria graminis f.sp. tritici can result in significant losses in both grain yield and quality in wheat. In this study, the wheat powdery mildew resistance gene MlIW170 locus located on the short ...

  10. Cytological characterization of a thermo-sensitive cytoplasmic male-sterile wheat line having K-type cytoplasm of Aegilops kotschyi

    PubMed Central

    Meng, Liying; Liu, Zihan; Zhang, Lingli; Hu, Gan; Song, Xiyue

    2016-01-01

    Male sterility is an important tool for obtaining crop heterosis. A thermo-sensitive cytoplasmic male-sterile (TCMS) line was developed recently using a new method based on tiller regeneration. In the present study, we explored the critical growth stages required to maintain thermo-sensitive male sterility in TCMS lines and found that fertility is associated with abnormal tapetal and microspore development. We investigated the fertility and cytology of temperature-treated plant anthers at various developmental stages. TCMS line KTM3315A exhibited thermo-sensitive male sterility in Zadoks growth stages 41–49 and 58–59. Morphologically, the line exhibited thermo-sensitive male sterility at 3–9 days before heading and at 3–6 days before flowering, and it was partially restored in three locations during spring and summer. TCMS line KTM3315A plants exhibited premature tapetal programmed cell death (PCD) from the early uninucleate stage of microspore development until the tapetal cells degraded completely. Microspore development was then blocked and the pollen abortion type was stainable abortion. Thus, male fertility in the line KTM3315A is sensitive to temperature and premature tapetal PCD is the main cause of pollen abortion, where it determines the starting period and affects male fertility conversion in K-type TCMS lines at certain temperatures. PMID:28163591

  11. Cytological characterization of a thermo-sensitive cytoplasmic male-sterile wheat line having K-type cytoplasm of Aegilops kotschyi.

    PubMed

    Meng, Liying; Liu, Zihan; Zhang, Lingli; Hu, Gan; Song, Xiyue

    2016-12-01

    Male sterility is an important tool for obtaining crop heterosis. A thermo-sensitive cytoplasmic male-sterile (TCMS) line was developed recently using a new method based on tiller regeneration. In the present study, we explored the critical growth stages required to maintain thermo-sensitive male sterility in TCMS lines and found that fertility is associated with abnormal tapetal and microspore development. We investigated the fertility and cytology of temperature-treated plant anthers at various developmental stages. TCMS line KTM3315A exhibited thermo-sensitive male sterility in Zadoks growth stages 41-49 and 58-59. Morphologically, the line exhibited thermo-sensitive male sterility at 3-9 days before heading and at 3-6 days before flowering, and it was partially restored in three locations during spring and summer. TCMS line KTM3315A plants exhibited premature tapetal programmed cell death (PCD) from the early uninucleate stage of microspore development until the tapetal cells degraded completely. Microspore development was then blocked and the pollen abortion type was stainable abortion. Thus, male fertility in the line KTM3315A is sensitive to temperature and premature tapetal PCD is the main cause of pollen abortion, where it determines the starting period and affects male fertility conversion in K-type TCMS lines at certain temperatures.

  12. Genotype-by-sequencing facilitates genetic mapping of a stem rust resistance locus in Aegilops umbellulata, a wild relative of cultivated wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Wild relatives of wheat play a significant role in wheat improvement as a source of genetic diversity. Stem rust disease of wheat causes significant yield losses at the global level and stem rust pathogen race TTKSK (Ug99) is virulent to most previously deployed resistance genes. Therefo...

  13. A 4-gigbase physical map unlocks the structure and evolution of the complex genome of Aegilop tauschii, the wheat D-genome progenitor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genomes of wheat and its relatives in the tribe Triticeae are large, containing nearly 90% repetitive DNA, and some are polyploid. These genomes can currently be completely sequenced only by the ordered-clone genome sequencing approach, which reduces the complexity of sequence assembly from th...

  14. Annotation-based genome-wide SNP discovery in the large and complex Aegilops tauschii genome using next-generation sequencing without a reference genome sequence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An annotation-based, genome-wide SNP discovery pipeline is reported using NGS data for large and complex genomes without a reference genome sequence. Roche 454 shotgun reads with low genome coverage of one genotype are annotated in order to distinguish single-copy sequences and repeat junctions fr...

  15. [Molecular-genetic analysis of wheat (T. aestivum L.) genome with introgression of Ae. cylindrica Host genetic elements].

    PubMed

    Galaev, A V; Sivolap, Iu M

    2005-01-01

    Wheat-aegilops hybrid plants Triticum aestivum L. (2n = 42) x Aegilops cylindrica Host (2n = 28) were investigated with using microsatellite markers. In two BC1F9 lines some genome modifications connected with losing DNA fragments of initial variety or appearing of Aegilops genome elements were detected. In some investigated hybrids new amplicons lacking in parental plants were found. Substitution of wheat chromosomes for aegilops chromosomes was not revealed. Analysis of microsatellite loci in BC2F5 plants showed stable introgression of aegilops genetic elements into wheat; elimination of some transferred aegilops DNA fragments in the course of backcrossing; decreasing size of introgressive elements after backcrossing. Introgressive lines were classified according to genome changes.

  16. Chromosome engineering of wheat stem rust resistance gene Sr47 in a tetraploid wheat background

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Durum wheat (Triticum turgidum L. ssp. durum) line DAS15 carries Sr47, a gene conferring resistance to races of stem rust (Puccinia graminis f. sp. tritici), including race TTKSK (Ug99). The Ae. speltoides segment harboring Sr47 accounts for most of the T2BL-2SL•2SS chromosome. Our objective was t...

  17. Molecular diversity of α-gliadin expressed genes in genetically contrasted spelt (Triticum aestivum ssp. spelta) accessions and comparison with bread wheat (T. aestivum ssp. aestivum) and related diploid Triticum and Aegilops species.

    PubMed

    Dubois, Benjamin; Bertin, Pierre; Mingeot, Dominique

    2016-01-01

    The gluten proteins of cereals such as bread wheat (Triticum aestivum ssp. aestivum) and spelt (T. aestivum ssp. spelta) are responsible for celiac disease (CD). The α-gliadins constitute the most immunogenic class of gluten proteins as they include four main T-cell stimulatory epitopes that affect CD patients. Spelt has been less studied than bread wheat and could constitute a source of valuable diversity. The objective of this work was to study the genetic diversity of spelt α-gliadin transcripts and to compare it with those of bread wheat. Genotyping data from 85 spelt accessions obtained with 19 simple sequence repeat (SSR) markers were used to select 11 contrasted accessions, from which 446 full open reading frame α-gliadin genes were cloned and sequenced, which revealed a high allelic diversity. High variations among the accessions were highlighted, in terms of the proportion of α-gliadin sequences from each of the three genomes (A, B and D), and their composition in the four T-cell stimulatory epitopes. An accession from Tajikistan stood out, having a particularly high proportion of α-gliadins from the B genome and a low immunogenic content. Even if no clear separation between spelt and bread wheat sequences was shown, spelt α-gliadins displayed specific features concerning e.g. the frequencies of some amino acid substitutions. Given this observation and the variations in toxicity revealed in the spelt accessions in this study, the high genetic diversity held in spelt germplasm collections could be a valuable resource in the development of safer varieties for CD patients.

  18. Essential oil composition of Achillea clusiana from Bulgaria.

    PubMed

    Trendafilova, Antoaneta; Todorova, Milka; Vitkova, Antonina

    2010-01-01

    The essential oil compositon of Achillea clusiana Tausch from Bulgaria has been studied by GC and GC/MS. Fifty-four components were registered, representing 92.5% of the oil. The oil was characterized by the presence of oxygenated mono- and sesquiterpenoids. The main components were beta-thujone (17.2%), 1,8-cineole (11.2%), camphor (11.1%) and alpha-thujone (7.8%). Farnesol (3.1%), nerolidol (2.7%) and oxygenated nerolidol derivatives (cabreuva oxides A-D, isohumbertiols A-D, bejarol and 7-hydroxy-6,7-dihydro-5,6E-dehydronerolidol) were the main sesquiterpenoids in the oil.

  19. Synthetic hexaploids derived from under-exploited tetraploids as a new resource for disease resistance in wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Synthetic hexaploid wheat (SHW) (2n = 6x = 42, genome AABBDD), which is developed from the hybridization between tetraploid wheat (Triticum turgidum L., 2n = 4x = 28, genome AABB) and Aegilops tauschii Coss. (2n = 2x = 14, genome DD), is a useful bridging germplasm for the introgression of desirable...

  20. Accelerated evolution of the mitochondrial genome in an alloplasmic line of durum wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat is not only an important crop but also an excellent plant species for nuclear mitochondrial interaction studies. To investigate the level of sequence changes introduced into the mitochondrial genome under the alloplasmic conditions, three mitochondrial genomes of Triticum-Aegilops species w...

  1. Protein Electrophoretic Profiles and the Origin of the B Genome of Wheat

    PubMed Central

    Johnson, B. Lennart

    1972-01-01

    Protein electrophoretic profiles cast doubt upon the prevalent theory that the B genome of the polyploid wheats was derived from a species of Aegilops. They suggest, instead, that the wild tetraploid wheats comprise a complex, whose components were derived from various combinations of diploid Triticum types, which evidently include the B-genome type. Images PMID:4504349

  2. Genome Comparisons Reveal a Dominant Mechanism of Chromosome Number Reduction in Grasses and Accelerated Genome Evolution in Triticeae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Single nucleotide polymorphism was employed in the construction of a high-resolution, expressed sequence tag (EST) map of Aegilops tauschii, the diploid source of the wheat D genome. Comparison of the map with the rice and sorghum genome sequences revealed 50 inversions and translocations; 2, 8, and...

  3. Slender wheatgrass is susceptible to smut caused by Ustilago phrygica from Turkey

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Slender wheatgrass (Elymus trachycaulus subsp. trachycaulus), is a native North American grass that is used as a livestock forage. Ustilago phrygica, a systemic ovary-smut fungus, is native to Turkey and West Asia, and is pathogenic on Aegilops spp. and Taeniatherum caput-medusae subsp. asperum (med...

  4. Phenotypic and ionome profiling of Triticum aestivum x Aegiolps tauschii introgression lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Eighty-four single homozygous introgressions of the Aegilops tauschii D-genome in the ‘Chinese Spring’ genetic background were used to study phenotypic and ionome profiles during two years of field experiments. An augmented design was used with a repeated check of a local bread wheat cultivar was im...

  5. Evolution of New Disease Specificity at a Single Resistance Locus in a Crop-Weed Complex: Reconstitution of the Lr21 Gene in Wheat.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Leaf-rust resistance gene Lr21, present in modern varieties of hexaploid wheat, originated in goatgrass Aegilops tauschii Coss., the D genome donor of wheat. The goatgrass donor was collected in Iran where it grows as a weed in wheat fields as part of the native agricultural ecosystem. In order to ...

  6. Map-based analysis of the tenacious glume gene Tg-B1 of wild emmer and its role in wheat domestication

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The domestication of wheat was instrumental in spawning the civilization of humankind, and it occurred through genetic mutations that gave rise to types with non-fragile rachises, soft glumes, and free-threshing seed. The Tg-D1 gene on chromosome 2D of Aegilops tauschii, the D-genome progenitor of ...

  7. Weed-suppressive bacteria to reduce annual grass weeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cheatgrass (Bromus tectorum L.), medusahead (Taeniatherum caput-medusae [L.] Nevski) and jointed goatgrass (Aegilops cylindrica L.) are exotic, annual grasses that negatively affect cereal production in cropland; reduce protein-rich forage for cattle; choke out native plants in the shrub-steppe habi...

  8. Genetic diversity among synthetic hexaploid wheat accessions with resistance to several fungal diseases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Synthetic hexaploid wheat (SHW) is known to be an excellent vehicle for transferring large genetic variations especially the many useful traits present in the D genome of Aegilops tauschii Coss (2n=2x=14, DD) for improvement of cultivated wheat (Triticum aestivum L., 2n=6x=42, AABBDD). The objectiv...

  9. Molecular evolution of Wcor15 gene enhanced our understanding of the origin of A, B and D genomes in Triticum aestivum

    PubMed Central

    Liu, Fangfang; Si, Hongqi; Wang, Chengcheng; Sun, Genlou; Zhou, Erting; Chen, Can; Ma, Chuanxi

    2016-01-01

    The allohexaploid bread wheat originally derived from three closely related species with A, B and D genome. Although numerous studies were performed to elucidate its origin and phylogeny, no consensus conclusion has reached. In this study, we cloned and sequenced the genes Wcor15-2A, Wcor15-2B and Wcor15-2D in 23 diploid, 10 tetraploid and 106 hexaploid wheat varieties and analyzed their molecular evolution to reveal the origin of the A, B and D genome in Triticum aestivum. Comparative analyses of sequences in diploid, tetraploid and hexaploid wheats suggest that T. urartu, Ae. speltoides and Ae. tauschii subsp. strangulata are most likely the donors of the Wcor15-2A, Wcor15-2B and Wcor15-2D locus in common wheat, respectively. The Wcor15 genes from subgenomes A and D were very conservative without insertion and deletion of bases during evolution of diploid, tetraploid and hexaploid. Non-coding region of Wcor15-2B gene from B genome might mutate during the first polyploidization from Ae. speltoides to tetraploid wheat, however, no change has occurred for this gene during the second allopolyploidization from tetraploid to hexaploid. Comparison of the Wcor15 gene shed light on understanding of the origin of the A, B and D genome of common wheat. PMID:27526862

  10. Phylogeny of cultivated and wild wheat species using ATR-FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Demir, Pinar; Onde, Sertac; Severcan, Feride

    2015-01-01

    Within the last decade, an increasing amount of genetic data has been used to clarify the problems inherent in wheat taxonomy. The techniques for obtaining and analyzing these data are not only cumbersome, but also expensive and technically demanding. In the present study, we introduce infrared spectroscopy as a method for a sensitive, rapid and low cost phylogenetic analysis tool for wheat seed samples. For this purpose, 12 Triticum and Aegilops species were studied by Attenuated Total Reflection-Fourier Transform Infrared (ATR-FTIR) spectroscopy. Hierarchical cluster analysis and principal component analysis clearly revealed that the lignin band (1525-1505 cm-1) discriminated the species at the genus level. However, the species were clustered according to their genome commonalities when the whole spectra were used (4000-650 cm-1). The successful differentiation of Triticum and its closely related genus Aegilops clearly demonstrated the power of ATR-FTIR spectroscopy as a suitable tool for phylogenetic research.

  11. Genetic Fingerprinting of Wheat and Its Progenitors by Mitochondrial Gene orf256

    PubMed Central

    El-Shehawi, Ahmed M.; Fahmi, Abdelmeguid I.; Sayed, Samy M.; Elseehy, Mona M.

    2012-01-01

    orf256 is a wheat mitochondrial gene associated with cytoplasmic male sterility (CMS) that has different organization in various species. This study exploited the orf256 gene as a mitochondrial DNA marker to study the genetic fingerprint of Triticum and Aegilops species. PCR followed by sequencing of common parts of the orf256 gene were employed to determine the fingerprint and molecular evolution of Triticum and Aegilops species. Although many primer pairs were used, two pairs of orf256 specific primers (5:-94/C: 482, 5:253/C: 482), amplified DNA fragments of 576 bp and 230 bp respectively in all species were tested. A common 500 bp of nine species of Triticum and Aegilops were aligned and showed consistent results with that obtained from other similar chloroplast or nuclear genes. Base alignment showed that there were various numbers of base substitutions in all species compared to S. cereal (Sc) (the outgroup species). Phylogenetic relationship revealed similar locations and proximity on phylogenetic trees established using plastid and nuclear genes. The results of this study open a good route to use unknown function genes of mitochondria in studying the molecular relationships and evolution of wheat and complex plant genomes. PMID:24970134

  12. Discretization of the Induced-Charge Boundary Integral Equation

    PubMed Central

    Bardhan, Jaydeep P.; Eisenberg, Robert S.; Gillespie, Dirk

    2013-01-01

    Boundary-element methods (BEM) for solving integral equations numerically have been used in many fields to compute the induced charges at dielectric boundaries. In this paper, we consider a more accurate implementation of BEM in the context of ions in aqueous solution near proteins, but our results are applicable more generally. The ions that modulate protein function are often within a few Angstroms of the protein, which leads to the significant accumulation of polarization charge at the protein/solvent interface. Computing the induced charge accurately and quickly poses a numerical challenge in solving a popular integral equation using BEM. In particular, the accuracy of simulations can depend strongly on seemingly minor details of how the entries of the BEM matrix are calculated. We demonstrate that when the dielectric interface is discretized into flat tiles, the qualocation method of Tausch, Wang, and White (IEEE. Trans. Comput.-Aided Des. 20:1398, 2001) to compute the BEM matrix elements is always more accurate than the traditional centroid collocation method. Qualocation is no more expensive to implement than collocation and can save significant computional time by reducing the number of boundary elements needed to discretize the dielectric interfaces. PMID:19658728

  13. The α-gliadin genes from Brachypodium distachyon L. provide evidence for a significant gap in the current genome assembly.

    PubMed

    Chen, G X; Lv, D W; Li, W D; Subburaj, S; Yu, Z T; Wang, Y J; Li, X H; Wang, K; Ye, X G; Ma, Wujun; Yan, Y M

    2014-03-01

    Brachypodium distachyon, is a new model plant for most cereal crops while gliadin is a class of wheat storage proteins related with wheat quality attributes. In the published B. distachyon genome sequence databases, no gliadin gene is found. In the current study, a number of gliadin genes in B. distachyon were isolated, which is contradictory to the results of genome sequencing projects. In our study, the B. distachyon seeds were found to have no gliadin protein expression by gel electrophoresis, reversed-phase high-performance liquid chromatography and Western blotting analysis. However, Southern blotting revealed a presence of more than ten copies of α-gliadin coding genes in B. distachyon. By means of AS-PCR amplification, four novel full-ORF α-gliadin genes, and 26 pseudogenes with at least one stop codon as well as their promoter regions were cloned and sequenced from different Brachypodium accessions. Sequence analysis revealed a few of single-nucleotide polymorphisms among these genes. Most pseudogenes were resulted from a C to T change, leading to the generation of TAG or TAA in-frame stop codon. To compare both the full-ORFs and the pseudogenes among Triticum and Triticum-related species, their structural characteristics were analyzed. Based on the four T cell stimulatory toxic epitopes and two ployglutamine domains, Aegilops, Triticum, and Brachypodium species were found to be more closely related. The phylogenetic analysis further revealed that B. distachyon was more closely related to Aegilops tauschii, Aegilops umbellulata, and the A or D genome of Triticum aestivum. The α-gliadin genes were able to express successfully in E. coli using the functional T7 promoter. The relative and absolute quantification of the transcripts of α-gliadin genes in wheat was much higher than that in B. distachyon. The abundant pseudogenes may affect the transcriptional and/or posttranscriptional level of the α-gliadin in B. distachyon.

  14. Experimental Evaluation of Seed Limitation in Alpine Snowbed Plants

    PubMed Central

    2011-01-01

    Background The distribution and abundance of plants is controlled by the availability of seeds and of sites suitable for establishment. The relative importance of these two constraints is still contentious and possibly varies among species and ecosystems. In alpine landscapes, the role of seed limitation has traditionally been neglected, and the role of abiotic gradients emphasized. Methodology/Principal Findings We evaluated the importance of seed limitation for the incidence of four alpine snowbed species (Achillea atrata L., Achillea clusiana Tausch, Arabis caerulea L., Gnaphalium hoppeanum W. D. J. Koch) in local plant communities by comparing seedling emergence, seedling, juvenile and adult survival, juvenile and adult growth, flowering frequency as well as population growth rates λ of experimental plants transplanted into snowbed patches which were either occupied or unoccupied by the focal species. In addition, we accounted for possible effects of competition or facilitation on these rates by including a measure of neighbourhood biomass into the analysis. We found that only A. caerulea had significantly lower seedling and adult survival as well as a lower population growth rate in unoccupied sites whereas the vital rates of the other three species did not differ among occupied and unoccupied sites. By contrast, all species were sensitive to competitive effects of the surrounding vegetation in terms of at least one of the studied rates. Conclusions/Significance We conclude that seed and site limitation jointly determine the species composition of these snowbed plant communities and that constraining site factors include both abiotic conditions and biotic interactions. The traditional focus on abiotic gradients for explaining alpine plant distribution hence appears lopsided. The influence of seed limitation on the current distribution of these plants casts doubt on their ability to readily track shifting habitats under climate change unless seed production is

  15. Development and reproductive potential of diamondback moth (Lepidoptera: Plutellidae) on selected wild crucifer species.

    PubMed

    Niu, Yan-Qin; Sun, Yuan-Xing; Liu, Tong-Xian

    2014-02-01

    The diamondback moth, Plutella xylostella (L.), is an oligophagous insect that primarily feeds on members of the family Cruciferae. The development, survival, and reproductive potential of P. xylostella were studied on eight wild cruciferous species: Rorippa indica (L.) Hiern, Cardamine hirsuta L., Descurainia sophia (L.) Webb ex Prantl, Capsella bursa-pastoris (L.) Medic, Cardamine leucantha (Tausch) O. E. Schulz, Orychophragmus violaceus (L.) O. E. Schulz, Thlaspi arvense L., and Cardamine macrophylla Willd. Developmental durations of immatures from egg to adult emergence differed significantly among the plant species, with the longest period recorded on C. macrophylla (20.8 d) and the shortest on R. indica (15.8 d). The female pupae of P. xylostella reared on C. leucantha and T. arvense were lighter (4.2 and 4.3 mg/pupa) than those reared on other hosts (5.2-6.5 mg/pupa), and the male pupae from T. arvense were the lightest (3.1 mg/pupa) among all colonies. Survival from egg to adult emergence ranged from 95.7% on R. indica to 48.8% on T. arvense. The longevity (10.1 d) of P. xylostella female and the oviposition period (7.7 d) were the longest when larvae fed R. indica than those that fed on other wild hosts. Female adults of P. xylostella from O. violaceus, C. macrophylla, and Ca. bursa-pastoris had higher fecundity (305-351 eggs/female) than from other wild host plants, whereas that from R. indica had the lowest fecundity (134 eggs/female). C. hirsuta was the best wild host plant for P. xylostella because of the highest intrinsic rates of increase (rm = 0.2402), whereas T. arvense was the least favorable hosts with the lowest intrinsic rates of increase (rm = 0.1577). The results from this study will be useful for interpretation of the performance and population dynamics of P. xylostella on wild hosts and cultivated cruciferous vegetables.

  16. Dispositional Contempt: A First Look at the Contemptuous Person.

    PubMed

    Schriber, Roberta A; Chung, Joanne M; Sorensen, Katherine S; Robins, Richard W

    2016-06-09

    Contempt is a powerful emotion. Marriages fail (Gottman, 1994), coworkers are shamed (Melwani & Barsade, 2011), terrorism is tended toward (Tausch et al., 2011). Despite its importance, contempt has not been investigated at the level of personality. The present research examines how our contemptuous reactions can be conceptualized and measured as a stable individual-difference variable with a range of theoretically predicted correlates. First, we introduce a measure of dispositional contempt, the tendency to look down on, distance, and derogate others who violate our standards. We then unpack the dynamics of dispositional contempt. Across 6 studies using self-report and emotion elicitation in student and MTurk samples (Ns = 165 to 1,368), we examined its (a) nomological network, (b) personality and behavioral correlates, and (c) implications for relationship functioning. Dispositional contempt was distinguished from tendencies toward related emotions and was most associated with dispositional envy, anger, and hubristic pride. Somewhat paradoxically, dispositional contempt was related to being cold and "superior," with associations found with narcissism, other-oriented perfectionism, and various antisocial tendencies (e.g., Disagreeableness, Machiavellianism, racism), but it was also related to being self-deprecating and emotionally fragile, with associations found with low self-esteem, insecure attachment, and feeling that others impose perfectionistic standards on oneself. Dispositional contempt predicted contemptuous reactions to eliciting film clips, particularly when targets showed low competence/power. Finally, perceiving one's romantic partner as dispositionally contemptuous was associated with lower commitment and satisfaction. Taken together, results give a first look at the contemptuous person and provide a new organizing framework for understanding contempt. (PsycINFO Database Record

  17. Recurrent deletions of puroindoline genes at the grain hardness locus in four independent lineages of polyploid wheat.

    PubMed

    Li, Wanlong; Huang, Li; Gill, Bikram S

    2008-01-01

    Polyploidy is known to induce numerous genetic and epigenetic changes but little is known about their physiological bases. In wheat, grain texture is mainly determined by the Hardness (Ha) locus consisting of genes Puroindoline a (Pina) and b (Pinb). These genes are conserved in diploid progenitors but were deleted from the A and B genomes of tetraploid Triticum turgidum (AB). We now report the recurrent deletions of Pina-Pinb in other lineages of polyploid wheat. We analyzed the Ha haplotype structure in 90 diploid and 300 polyploid accessions of Triticum and Aegilops spp. Pin genes were conserved in all diploid species and deletion haplotypes were detected in all polyploid Triticum and most of the polyploid Aegilops spp. Two Pina-Pinb deletion haplotypes were found in hexaploid wheat (Triticum aestivum; ABD). Pina and Pinb were eliminated from the G genome, but maintained in the A genome of tetraploid Triticum timopheevii (AG). Subsequently, Pina and Pinb were deleted from the A genome but retained in the A(m) genome of hexaploid Triticum zhukovskyi (A(m)AG). Comparison of deletion breakpoints demonstrated that the Pina-Pinb deletion occurred independently and recurrently in the four polyploid wheat species. The implications of Pina-Pinb deletions for polyploid-driven evolution of gene and genome and its possible physiological significance are discussed.

  18. Recurrent Deletions of Puroindoline Genes at the Grain Hardness Locus in Four Independent Lineages of Polyploid Wheat1[W][OA

    PubMed Central

    Li, Wanlong; Huang, Li; Gill, Bikram S.

    2008-01-01

    Polyploidy is known to induce numerous genetic and epigenetic changes but little is known about their physiological bases. In wheat, grain texture is mainly determined by the Hardness (Ha) locus consisting of genes Puroindoline a (Pina) and b (Pinb). These genes are conserved in diploid progenitors but were deleted from the A and B genomes of tetraploid Triticum turgidum (AB). We now report the recurrent deletions of Pina-Pinb in other lineages of polyploid wheat. We analyzed the Ha haplotype structure in 90 diploid and 300 polyploid accessions of Triticum and Aegilops spp. Pin genes were conserved in all diploid species and deletion haplotypes were detected in all polyploid Triticum and most of the polyploid Aegilops spp. Two Pina-Pinb deletion haplotypes were found in hexaploid wheat (Triticum aestivum; ABD). Pina and Pinb were eliminated from the G genome, but maintained in the A genome of tetraploid Triticum timopheevii (AG). Subsequently, Pina and Pinb were deleted from the A genome but retained in the Am genome of hexaploid Triticum zhukovskyi (AmAG). Comparison of deletion breakpoints demonstrated that the Pina-Pinb deletion occurred independently and recurrently in the four polyploid wheat species. The implications of Pina-Pinb deletions for polyploid-driven evolution of gene and genome and its possible physiological significance are discussed. PMID:18024553

  19. Genome-Wide Analysis of Stowaway-Like MITEs in Wheat Reveals High Sequence Conservation, Gene Association, and Genomic Diversification1[C][W

    PubMed Central

    Yaakov, Beery; Ben-David, Smadar; Kashkush, Khalil

    2013-01-01

    The diversity and evolution of wheat (Triticum-Aegilops group) genomes is determined, in part, by the activity of transposable elements that constitute a large fraction of the genome (up to 90%). In this study, we retrieved sequences from publicly available wheat databases, including a 454-pyrosequencing database, and analyzed 18,217 insertions of 18 Stowaway-like miniature inverted-repeat transposable element (MITE) families previously characterized in wheat that together account for approximately 1.3 Mb of sequence. All 18 families showed high conservation in length, sequence, and target site preference. Furthermore, approximately 55% of the elements were inserted in transcribed regions, into or near known wheat genes. Notably, we observed significant correlation between the mean length of the MITEs and their copy number. In addition, the genomic composition of nine MITE families was studied by real-time quantitative polymerase chain reaction analysis in 40 accessions of Triticum spp. and Aegilops spp., including diploids, tetraploids, and hexaploids. The quantitative polymerase chain reaction data showed massive and significant intraspecific and interspecific variation as well as genome-specific proliferation and nonadditive quantities in the polyploids. We also observed significant differences in the methylation status of the insertion sites among MITE families. Our data thus suggest a possible role for MITEs in generating genome diversification and in the establishment of nascent polyploid species in wheat. PMID:23104862

  20. TaGW2, a Good Reflection of Wheat Polyploidization and Evolution

    PubMed Central

    Qin, Lin; Zhao, Junjie; Li, Tian; Hou, Jian; Zhang, Xueyong; Hao, Chenyang

    2017-01-01

    Hexaploid wheat consists of three subgenomes, namely, A, B, and D. These well-characterized ancestral genomes also exist at the diploid and tetraploid levels, thereby rendering wheat as a good model species for studying polyploidization. Here, we performed intra- and inter-species comparative analyses of wheat and its relatives to dissect polymorphism and differentiation of the TaGW2 genes. Our results showed that genetic diversity of TaGW2 decreased with progression from the diploids to tetraploids and hexaploids. The strongest selection occurred in the promoter regions of TaGW2-6A and TaGW2-6B. Phylogenetic trees clearly indicated that Triticum urartu and Ae. speltoides were the donors of the A and B genomes in tetraploid and hexaploid wheats. Haplotypes detected among hexaploid genotypes traced back to the tetraploid level. Fst and π values revealed that the strongest selection on TaGW2 occurred at the tetraploid level rather than in hexaploid wheat. This infers that grain size enlargement, especially increased kernel width, mainly occurred in tetraploid genotypes. In addition, relative expression levels of TaGW2s significantly declined from the diploid level to tetraploids and hexaploids, further indicating that these genes negatively regulate kernel size. Our results also revealed that the polyploidization events possibly caused much stronger differentiation than domestication and breeding. PMID:28326096

  1. A Bioinformatics Approach for Detecting Repetitive Nested Motifs using Pattern Matching

    PubMed Central

    Romero, José R.; Carballido, Jessica A.; Garbus, Ingrid; Echenique, Viviana C.; Ponzoni, Ignacio

    2016-01-01

    The identification of nested motifs in genomic sequences is a complex computational problem. The detection of these patterns is important to allow the discovery of transposable element (TE) insertions, incomplete reverse transcripts, deletions, and/or mutations. In this study, a de novo strategy for detecting patterns that represent nested motifs was designed based on exhaustive searches for pairs of motifs and combinatorial pattern analysis. These patterns can be grouped into three categories, motifs within other motifs, motifs flanked by other motifs, and motifs of large size. The methodology used in this study, applied to genomic sequences from the plant species Aegilops tauschii and Oryza sativa, revealed that it is possible to identify putative nested TEs by detecting these three types of patterns. The results were validated through BLAST alignments, which revealed the efficacy and usefulness of the new method, which is called Mamushka. PMID:27812277

  2. Gametocidal chromosomes enhancing chromosome aberration in common wheat induced by 5-azacytidine.

    PubMed

    Su, W-Y; Cong, W-W; Shu, Y-J; Wang, D; Xu, G-H; Guo, C-H

    2013-07-08

    The gametocidal (Gc) chromosome from Aegilops spp induces chromosome mutation, which is introduced into common wheat as a tool of chromosome manipulation for genetic improvement. The Gc chromosome functions similar to a restriction-modification system in bacteria, in which DNA methylation is an important regulator. We treated root tips of wheat carrying Gc chromosomes with the hypomethylation agent 5-azacytidine; chromosome breakage and micronuclei were observed in these root tips. The frequency of aberrations differed in wheat containing different Gc chromosomes, suggesting different functions inducing chromosome breakage. Gc chromosome 3C caused the greatest degree of chromosome aberration, while Gc chromosome 3C(SAT) and 2C caused only slight chromosome aberration. Gc chromosome 3C induced different degrees of chromosome aberration in wheat varieties Triticum aestivum var. Chinese Spring and Norin 26, demonstrating an inhibition function in common wheat.

  3. A Bioinformatics Approach for Detecting Repetitive Nested Motifs using Pattern Matching.

    PubMed

    Romero, José R; Carballido, Jessica A; Garbus, Ingrid; Echenique, Viviana C; Ponzoni, Ignacio

    2016-01-01

    The identification of nested motifs in genomic sequences is a complex computational problem. The detection of these patterns is important to allow the discovery of transposable element (TE) insertions, incomplete reverse transcripts, deletions, and/or mutations. In this study, a de novo strategy for detecting patterns that represent nested motifs was designed based on exhaustive searches for pairs of motifs and combinatorial pattern analysis. These patterns can be grouped into three categories, motifs within other motifs, motifs flanked by other motifs, and motifs of large size. The methodology used in this study, applied to genomic sequences from the plant species Aegilops tauschii and Oryza sativa, revealed that it is possible to identify putative nested TEs by detecting these three types of patterns. The results were validated through BLAST alignments, which revealed the efficacy and usefulness of the new method, which is called Mamushka.

  4. Variation in Susceptibility to Wheat dwarf virus among Wild and Domesticated Wheat

    PubMed Central

    Nygren, Jim; Shad, Nadeem; Kvarnheden, Anders; Westerbergh, Anna

    2015-01-01

    We investigated the variation in plant response in host-pathogen interactions between wild (Aegilops spp., Triticum spp.) and domesticated wheat (Triticum spp.) and Wheat dwarf virus (WDV). The distribution of WDV and its wild host species overlaps in Western Asia in the Fertile Crescent, suggesting a coevolutionary relationship. Bread wheat originates from a natural hybridization between wild emmer wheat (carrying the A and B genomes) and the wild D genome donor Aegilops tauschii, followed by polyploidization and domestication. We studied whether the strong selection during these evolutionary processes, leading to genetic bottlenecks, may have resulted in a loss of resistance in domesticated wheat. In addition, we investigated whether putative fluctuations in intensity of selection imposed on the host-pathogen interactions have resulted in a variation in susceptibility to WDV. To test our hypotheses we evaluated eighteen wild and domesticated wheat taxa, directly or indirectly involved in wheat evolution, for traits associated with WDV disease such as leaf chlorosis, different growth traits and WDV content. The plants were exposed to viruliferous leafhoppers (Psammotettix alienus) in a greenhouse trial and evaluated at two time points. We found three different plant response patterns: i) continuous reduction in growth over time, ii) weak response at an early stage of plant development but a much stronger response at a later stage, and iii) remission of symptoms over time. Variation in susceptibility may be explained by differences in the intensity of natural selection, shaping the coevolutionary interaction between WDV and the wild relatives. However, genetic bottlenecks during wheat evolution have not had a strong impact on WDV resistance. Further, this study indicates that the variation in susceptibility may be associated with the genome type and that the ancestor Ae. tauschii may be useful as genetic resource for the improvement of WDV resistance in wheat. PMID

  5. Wheat (Triticum aestivum) Is Susceptible to the Parasitic Angiosperm Striga hermonthica, a Major Cereal Pathogen in Africa.

    PubMed

    Vasey, R A; Scholes, J D; Press, M C

    2005-11-01

    ABSTRACT Striga hermonthica is a parasitic weed endemic to sub-Saharan Africa. It most commonly parasitizes sorghum, maize, pearl millet, and upland rice, lowering yields and affecting the welfare of over 100 million people, principally subsistence farmers. Cereal crops with complete resistance to this pathogen have not been reported. In southern and eastern Africa, where Striga spp. are endemic, 5.6 million ha of wheat are cultivated annually. Despite this, there are only isolated field reports of wheat infected with Striga spp. It is not clear whether this is due to resistance in this cereal or to environmental factors. In this article, we examined the ability of root exudates from five cultivars of wheat (Chablis, Cadenza, Hereward, Riband, and Brigadier) to trigger germination of S. hermonthica seed. A study of the development of S. hermonthica on two cultivars of wheat (Hereward and Chablis) and on a range of ancestral relatives of wheat (Triticum and Aegilops spp.) then was conducted. Last, the effect of Striga spp. on host growth and yield was examined using wheat cv. Chablis and compared with that of a highly susceptible sorghum cultivar (CSH-1). Wheat was able to support the germination, attachment, and subsequent development of Striga spp. All wheat cultivars and ancestral species of modern wheat (Triticum and Aegilops spp.) were susceptible to S. hermonthica. In addition, in wheat, infection severely lowered plant height (-24%) and biomass accumulation (-33%); a small parasite biomass elicited a large host response. In conclusion, wheat is highly susceptible to S. hermonthica and, in light of global climate change, this may have implications for wheat-producing areas of Africa.

  6. Molecular characterization and evolutionary origins of farinin genes in Brachypodium distachyon L.

    PubMed

    Subburaj, Saminathan; Luo, Nana; Lu, Xiaobing; Li, Xiaohui; Cao, Hui; Hu, Yingkao; Li, Jiarui; Yan, Yueming

    2016-08-01

    Farinins are one of the oldest members of the gluten family in wheat and Aegilops species, and they influence dough properties. Here, we performed the first detailed molecular genetic study on farinin genes in Brachypodium distachyon L., the model species for Triticum aestivum. A total of 51 b-type farinin genes were cloned and characterized, including 27 functional and 24 non-functional pseudogenes from 14 different B. distachyon accessions. All genes were highly similar to those previously reported from wheat and Aegilops species. The identification of deduced amino acid sequences showed that b-type farinins across Triticeae genomes could be classified as b1-, b2-, b3-, and b4-type farinins; however, B. distachyon had only b3- and b4-type farinins. Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) revealed that farinin genes are transcribed into mRNA in B. distachyon at much lower levels than in Triticeae, despite the presence of cis-acting elements in promoter regions. Phylogenetic analysis suggested that Brachypodium farinins may have closer relationships with common wheat and further confirmed four different types of b-type farinins in Triticeae and Brachypodium genomes, corresponding to b1, b2, b3 (group 1), and b4 (group 2). A putative evolutionary origin model of farinin genes in Brachypodium, Triticum, and the related species suggests that all b-type farinins diverged from their common ancestor ~3.2 million years ago (MYA). The b3 and b4 types could be considered older in the farinin family. The results explain the loss of b1- and b2-type farinin alleles in Brachypodium.

  7. On the genome constitution and evolution of intermediate wheatgrass (Thinopyrum intermedium: Poaceae, Triticeae)

    PubMed Central

    2011-01-01

    Background The wheat tribe Triticeae (Poaceae) is a diverse group of grasses representing a textbook example of reticulate evolution. Apart from globally important grain crops, there are also wild grasses which are of great practical value. Allohexaploid intermediate wheatgrass, Thinopyrum intermedium (2n = 6x = 42), possesses many desirable agronomic traits that make it an invaluable source of genetic material useful in wheat improvement. Although the identification of its genomic components has been the object of considerable investigation, the complete genomic constitution and its potential variability are still being unravelled. To identify the genomic constitution of this allohexaploid, four accessions of intermediate wheatgrass from its native area were analysed by sequencing of chloroplast trnL-F and partial nuclear GBSSI, and genomic in situ hybridization. Results The results confirmed the allopolyploid origin of Thinopyrum intermedium and revealed new aspects in its genomic composition. Genomic heterogeneity suggests a more complex origin of the species than would be expected if it originated through allohexaploidy alone. While Pseudoroegneria is the most probable maternal parent of the accessions analysed, nuclear GBSSI sequences suggested the contribution of distinct lineages corresponding to the following present-day genera: Pseudoroegneria, Dasypyrum, Taeniatherum, Aegilops and Thinopyrum. Two subgenomes of the hexaploid have most probably been contributed by Pseudoroegneria and Dasypyrum, but the identity of the third subgenome remains unresolved satisfactorily. Possibly it is of hybridogenous origin, with contributions from Thinopyrum and Aegilops. Surprising diversity of GBSSI copies corresponding to a Dasypyrum-like progenitor indicates either multiple contributions from different sources close to Dasypyrum and maintenance of divergent copies or the presence of divergent paralogs, or a combination of both. Taeniatherum-like GBSSI copies are most

  8. Functional relationships of phytoene synthase 1 alleles on chromosome 7A controlling flour colour variation in selected Australian wheat genotypes.

    PubMed

    Crawford, A C; Stefanova, K; Lambe, W; McLean, R; Wilson, R; Barclay, I; Francki, M G

    2011-06-01

    Flour colour measured as a Commission Internationale de l'Eclairage (CIE) b* value is an important wheat quality attribute for a range of end-products, with genes and enzymes of the xanthophyll biosynthesis pathway providing potential sources of trait variation. In particular, the phytoene synthase 1 (Psy1) gene has been associated with quantitative trait loci (QTL) for flour b* colour variation. Several Psy1 alleles on chromosome 7A (Psy-A1) have been described, along with proposed mechanisms for influencing flour b* colour. This study sought to identify evolutionary relationships among known Psy-A1 alleles, to establish which Psy-A1 alleles are present in selected Australian wheat genotypes and establish their role in controlling variation for flour b* colour via QTL analysis. Phylogenetic analyses showed seven of eight known Psy-A1 alleles clustered with sequences from T. urartu, indicating the majority of alleles in Australian germplasm share a common evolutionary lineage. In this regard, Psy-A1a, Psy-A1c, Psy-A1e and Psy-A1p were common in Australian genotypes with flour b* colour ranging from white to yellow. In contrast Psy-A1s was found to be related to A. speltoides, indicating a possible A-B genome translocation during wheat polyploidisation. A new allele Psy-A1t (similar to Psy-A1s) was discovered in genotypes with yellow flour, with QTL analyses indicating Psy-A1t strongly influences flour b* colour in Australian germplasm. QTL LOD value maxima did not coincide with Psy-A1 gene locus in two of three populations and, therefore, Psy-A1a and Psy-A1p may not be involved in flour colour. Instead two other QTL were identified, one proximal and one distal to Psy-A1 in Australian wheat lines. Comparison of Psy-A1t and Psy-A1p predicted protein sequences suggests differences in putative sites for post-translational modification may influence enzyme activity and subsequent xanthophyll accumulation in the wheat endosperm. Psy-A1a and Psy-A1p were not involved in

  9. PIECE 2.0: an update for the plant gene structure comparison and evolution database

    PubMed Central

    Wang, Yi; Xu, Ling; Thilmony, Roger; You, Frank M.; Gu, Yong Q.; Coleman-Derr, Devin

    2017-01-01

    PIECE (Plant Intron Exon Comparison and Evolution) is a web-accessible database that houses intron and exon information of plant genes. PIECE serves as a resource for biologists interested in comparing intron–exon organization and provides valuable insights into the evolution of gene structure in plant genomes. Recently, we updated PIECE to a new version, PIECE 2.0 (http://probes.pw.usda.gov/piece or http://aegilops.wheat.ucdavis.edu/piece). PIECE 2.0 contains annotated genes from 49 sequenced plant species as compared to 25 species in the previous version. In the current version, we also added several new features: (i) a new viewer was developed to show phylogenetic trees displayed along with the structure of individual genes; (ii) genes in the phylogenetic tree can now be also grouped according to KOG (The annotation of Eukaryotic Orthologous Groups) and KO (KEGG Orthology) in addition to Pfam domains; (iii) information on intronless genes are now included in the database; (iv) a statistical summary of global gene structure information for each species and its comparison with other species was added; and (v) an improved GSDraw tool was implemented in the web server to enhance the analysis and display of gene structure. The updated PIECE 2.0 database will be a valuable resource for the plant research community for the study of gene structure and evolution. PMID:27742820

  10. Wheat Genotypes With Combined Resistance to Wheat Curl Mite, Wheat Streak Mosaic Virus, Wheat Mosaic Virus, and Triticum Mosaic Virus.

    PubMed

    Chuang, Wen-Po; Rojas, Lina Maria Aguirre; Khalaf, Luaay Kahtan; Zhang, Guorong; Fritz, Allan K; Whitfield, Anna E; Smith, C Michael

    2017-01-13

    The wheat curl mite, Aceria tosichella Keifer, (WCM) is a global pest of bread wheat that reduces yields significantly. In addition, WCM carries Wheat streak mosaic virus (WSMV, family Potyviridae, genus Tritimovirus), the most significant wheat virus in North America; High Plains wheat mosaic virus (HPWMoV, genus Emaravirus, formerly High plains virus); and Triticum mosaic virus (TriMV, family Potyviridae, genus Poacevirus). Viruses carried by WCM have reduced wheat yields throughout the U.S. Great Plains for >50 yr, with average yield losses of 2-3% and occasional yield losses of 7-10%. Acaricides are ineffective against WCM, and delayed planting of winter wheat is not feasible. Five wheat breeding lines containing Cmc4, a WCM resistance gene from Aegilops tauschii, and Wsm2, a WSMV resistance gene from wheat germplasm CO960293-2 were selected from the breeding process and assessed for phenotypic reaction to WCM feeding, population increase, and the degree of WSMV, HPWMoV, and TriMV infection. Experiments determined that all five lines are resistant to WCM biotype 1 feeding and population increase, and that two breeding lines contain resistance to WSMV, HPWMoV, and TriMV infection as well. These WCM-, WSMV-, HPWMoV-, and TriMV-resistant genotypes can be used improve management of wheat yield losses from WCM-virus complexes.

  11. Soil microbial diversity and soil functioning affect competition among grasses in experimental microcosms.

    PubMed

    Bonkowski, Michael; Roy, Jacques

    2005-03-01

    A gradient of microbial diversity in soil was established by inoculating pasteurized soil with microbial populations of different complexity, which were obtained by a combination of soil fumigation and filtering techniques. Four different soil diversity treatments were planted with six different grass species either in monoculture or in polyculture to test how changes of general microbial functions, such as catabolic diversity and nutrient recycling efficiency would affect the performance of the plant communities. Relatively harsh soil treatments were necessary to elicit visible effects on major soil processes such as decomposition and nitrogen cycling due to the high redundancy and resilience of soil microbial communities. The strongest effects of soil diversity manipulations on plant growth occurred in polycultures where interspecific competition between plants was high. In polycultures, soil diversity reduction led to a gradual, linear decline in biomass production of one subordinate grass species (Bromus hordeaceus), which was compensated by increased growth of two intermediate competitors (Aegilops geniculata, B. madritensis). This negative covariance in growth of competing grass species smoothed the effects of soil diversity manipulations at the plant community level. As a result, total shoot biomass production remained constant. Apparently the effects of soil diversity manipulations were buffered because functional redundancy at both, the microbial and the plant community level complemented each other. The results further suggests that small trade-offs in plant fitness due to general functional shifts at the microbial level can be significant for the outcome of competition in plant communities and thus diversity at much larger scales.

  12. Genome Evolution Due to Allopolyploidization in Wheat

    PubMed Central

    Feldman, Moshe; Levy, Avraham A.

    2012-01-01

    The wheat group has evolved through allopolyploidization, namely, through hybridization among species from the plant genera Aegilops and Triticum followed by genome doubling. This speciation process has been associated with ecogeographical expansion and with domestication. In the past few decades, we have searched for explanations for this impressive success. Our studies attempted to probe the bases for the wide genetic variation characterizing these species, which accounts for their great adaptability and colonizing ability. Central to our work was the investigation of how allopolyploidization alters genome structure and expression. We found in wheat that allopolyploidy accelerated genome evolution in two ways: (1) it triggered rapid genome alterations through the instantaneous generation of a variety of cardinal genetic and epigenetic changes (which we termed “revolutionary” changes), and (2) it facilitated sporadic genomic changes throughout the species’ evolution (i.e., evolutionary changes), which are not attainable at the diploid level. Our major findings in natural and synthetic allopolyploid wheat indicate that these alterations have led to the cytological and genetic diploidization of the allopolyploids. These genetic and epigenetic changes reflect the dynamic structural and functional plasticity of the allopolyploid wheat genome. The significance of this plasticity for the successful establishment of wheat allopolyploids, in nature and under domestication, is discussed. PMID:23135324

  13. PCR-based analysis of the intergenic spacers of the Nor loci on the A genomes of Triticum diploids and polyploids.

    PubMed

    Sallares, R; Brown, T A

    1999-02-01

    We present DNA sequence data showing population variation in the intergenic spacer (IGS) regions of the ribosomal DNAs (rDNAs) on the A genomes of 27 diploid and polyploid wheats. PCRs (polymerase chain reactions) specific for the A(m) genome gave products with five populations of Triticum monococcum but did not give products with AABB or AABBDD wheats. PCRs specific to the A(u) genome of T. urartu gave products with all the AABB and AABBDD polyploids that were tested, but not with T. monococcum. AAGG tetraploids gave products only with the A(u)-specific primers, but the AAAAGG hexaploid T. zhukovskyi gave products with both the A(u) and A(m) primers. Phylogenetic analysis showed a substantial degree of IGS divergence for both the A(m) and A(u) genomes in diploids and polyploids compared with other genomes of Triticum and Aegilops. The rate of evolution of the IGS is much greater than previously reported for the internal transcribed region of the rDNAs but the view that the IGS only gives random noise is rejected, the IGS sequences presented here reflecting the general evolutionary trends affecting the wheat genome as a whole.

  14. Chromatin Ring Formation at Plant Centromeres

    PubMed Central

    Schubert, Veit; Ruban, Alevtina; Houben, Andreas

    2016-01-01

    We observed the formation of chromatin ring structures at centromeres of somatic rye and Arabidopsis chromosomes. To test whether this behavior is present also in other plant species and tissues we analyzed Arabidopsis, rye, wheat, Aegilops and barley centromeres during cell divisions and in interphase nuclei by immunostaining and FISH. Furthermore, structured illumination microscopy (super-resolution) was applied to investigate the ultrastructure of centromere chromatin beyond the classical refraction limit of light. It became obvious, that a ring formation at centromeres may appear during mitosis, meiosis and in interphase nuclei in all species analyzed. However, varying centromere structures, as ring formations or globular organized chromatin fibers, were identified in different tissues of one and the same species. In addition, we found that a chromatin ring formation may also be caused by subtelomeric repeats in barley. Thus, we conclude that the formation of chromatin rings may appear in different plant species and tissues, but that it is not specific for centromere function. Based on our findings we established a model describing the ultrastructure of plant centromeres and discuss it in comparison to previous models proposed for animals and plants. PMID:26913037

  15. Mapping of wheat mitochondrial mRNA termini and comparison with breakpoints in DNA homology among plants.

    PubMed

    Choi, Boyoung; Acero, Maria M; Bonen, Linda

    2012-11-01

    Mitochondrial DNA rearrangements occur very frequently in flowering plants and when close to genes there must be concomitant acquisition of new regulatory cis-elements. To explore whether there might be limits to such DNA shuffling, we have mapped the termini of mitochondrial mRNAs in wheat, a monocot, and compared them to the known positions for counterpart genes in the eudicot Arabidopsis. Nine genes share homologous 3' UTRs over their full-length and for six of them, the termini map very close to the site of wheat/Arabidopsis DNA rearrangements. Only one such case was seen for comparisons of 5' UTRs, and the 5' ends of mRNAs are typically more heterogeneous than 3' termini. Approximately half of the thirty-one wheat mitochondrial transcriptional units are preceded by CRTA promoter-like motifs, and of the potential stem-loop or tRNA-like structures identified as candidate RNA processing/stability signals near the 5' or 3' ends, several are shared with Arabidopsis. Comparison of the mitochondrial gene flanking sequences from normal fertile wheat (Triticum aestivum) with those of Aegilops kotschyi which is the source of mitochondria present in K-type cytoplasmic male sterile wheat, revealed six cases where mRNAs are precluded from sharing full-length homologous UTRs because of genomic reorganization events, and the presence of short repeats located at the sites of discontinuity points to a reciprocal recombination-mediated mode of rearrangement.

  16. Evolutionary dynamics of retrotransposons assessed by high-throughput sequencing in wild relatives of wheat.

    PubMed

    Senerchia, Natacha; Wicker, Thomas; Felber, François; Parisod, Christian

    2013-01-01

    Transposable elements (TEs) represent a major fraction of plant genomes and drive their evolution. An improved understanding of genome evolution requires the dynamics of a large number of TE families to be considered. We put forward an approach bypassing the required step of a complete reference genome to assess the evolutionary trajectories of high copy number TE families from genome snapshot with high-throughput sequencing. Low coverage sequencing of the complex genomes of Aegilops cylindrica and Ae. geniculata using 454 identified more than 70% of the sequences as known TEs, mainly long terminal repeat (LTR) retrotransposons. Comparing the abundance of reads as well as patterns of sequence diversity and divergence within and among genomes assessed the dynamics of 44 major LTR retrotransposon families of the 165 identified. In particular, molecular population genetics on individual TE copies distinguished recently active from quiescent families and highlighted different evolutionary trajectories of retrotransposons among related species. This work presents a suite of tools suitable for current sequencing data, allowing to address the genome-wide evolutionary dynamics of TEs at the family level and advancing our understanding of the evolution of nonmodel genomes.

  17. Genome reorganization in F1 hybrids uncovers the role of retrotransposons in reproductive isolation

    PubMed Central

    Senerchia, Natacha; Felber, François; Parisod, Christian

    2015-01-01

    Interspecific hybridization leads to new interactions among divergent genomes, revealing the nature of genetic incompatibilities having accumulated during and after the origin of species. Conflicts associated with misregulation of transposable elements (TEs) in hybrids expectedly result in their activation and genome-wide changes that may be key to species boundaries. Repetitive genomes of wild wheats have diverged under differential dynamics of specific long terminal repeat retrotransposons (LTR-RTs), offering unparalleled opportunities to address the underpinnings of plant genome reorganization by selfish sequences. Using reciprocal F1 hybrids between three Aegilops species, restructuring and epigenetic repatterning was assessed at random and LTR-RT sequences with amplified fragment length polymorphism and sequence-specific amplified polymorphisms as well as their methylation-sensitive counterparts, respectively. Asymmetrical reorganization of LTR-RT families predicted to cause conflicting interactions matched differential survival of F1 hybrids. Consistent with the genome shock model, increasing divergence of merged LTR-RTs yielded higher levels of changes in corresponding genome fractions and lead to repeated reorganization of LTR-RT sequences in F1 hybrids. Such non-random reorganization of hybrid genomes is coherent with the necessary repression of incompatible TE loci in support of hybrid viability and indicates that TE-driven genomic conflicts may represent an overlooked factor supporting reproductive isolation. PMID:25716787

  18. Cytogenetic and molecular identification of three Triticum aestivum-Leymus racemosus translocation addition lines.

    PubMed

    Wang, Le; Yuan, Jianhua; Bie, Tongde; Zhou, Bo; Chen, Peidu

    2009-06-01

    Chromosome 2C from Aegilops cylindrica has the ability to induce chromosome breakage in common wheat (Tritivum aestivum). In the BC(1)F(3) generation of the T. aestivum cv. Chinese Spring and a hybrid between T. aestivum-Leymus racemosus Lr.7 addition line and T. aestivum-Ae. cylindrica 2C addition line, three disomic translocation addition lines (2n = 44) were selected by mitotic chromosome C-banding and genomic in situ hybridization. We further characterized these T. aestivum-L. racemosus translocation addition lines, NAU636, NAU637 and NAU638, by chromosome C-banding, in situ hybridization using the A- and D-genome-specific bacterial artificial chromosome (BAC) clones 676D4 and 9M13; plasmids pAs1 and pSc119.2, and 45S rDNA; as well as genomic DNA of L. racemosus as probes, in combination with double ditelosomic test cross and SSR marker analysis. The translocation chromosomes were designated as T3AS-Lr7S, T6BS-Lr7S, and T5DS-Lr7L. The translocation line T3AS-Lr7S was highly resistant to Fusarium head blight and will be useful germplasm for resistance breeding.

  19. Regulation of the wheat MAP kinase phosphatase 1 by 14-3-3 proteins.

    PubMed

    Ghorbel, Mouna; Cotelle, Valérie; Ebel, Chantal; Zaidi, Ikram; Ormancey, Mélanie; Galaud, Jean-Philippe; Hanin, Moez

    2017-04-01

    Plant MAP kinase phosphatases (MKPs) are major regulators of MAPK signaling pathways and play crucial roles in controlling growth, development and stress responses. The presence of several functional domains in plant MKPs such as a dual specificity phosphatase catalytic domain, gelsolin, calmodulin-binding and serine-rich domains, suggests that MKPs can interact with distinct cellular partners, others than MAPKs. In this report, we identified a canonical mode I 14-3-3-binding motif (574KLPSLP579) located at the carboxy-terminal region of the wheat MKP, TMKP1. We found that this motif is well-conserved among other MKPs from monocots including Hordeum vulgare, Brachypodium distachyon and Aegilops taushii. Using co-immunoprecipitation assays, we provide evidence for interaction between TMKP1 and 14-3-3 proteins in wheat. Moreover, the phosphatase activity of TMKP1 is increased in a phospho-dependent manner by either Arabidopsis or yeast 14-3-3 isoforms. TMKP1 activation by 14-3-3 proteins is enhanced by Mn(2+), whereas in the presence of Ca(2+) ions, TMKP1 activation was limited to Arabidopsis 14-3-3φ (phi), an isoform harboring an EF-hand motif. Such findings strongly suggest that 14-3-3 proteins, in conjunction with specific divalent cations, may stimulate TMKP1 activity and point-out that 14-3-3 proteins bind and regulate the activity of a MKP in eukaryotes.

  20. Mechanism of haploidy-dependent unreductional meiotic cell division in polyploid wheat.

    PubMed

    Cai, Xiwen; Xu, Steven S; Zhu, Xianwen

    2010-06-01

    Unreductional meiotic cell division (UMCD) generates unreduced gametes and leads to polyploidy. The tetraploid wheat "Langdon" (LDN) undergoes normal meiosis, but its polyhaploid undergoes UMCD. Here, we found that sister kinetochores oriented syntelically at meiosis I in LDN, but amphitelically in LDN polyhaploid and the interspecific hybrid of LDN with Aegilops tauschii. We also observed that sister centromere cohesion persisted until anaphase II in LDN, LDN polyhaploid, and the interspecific hybrid. Meiocytes with all chromosomes oriented amphitelically underwent UMCD in LDN polyhaploid, and the interspecific hybrid, suggesting the tension created by the amphitelic orientation of sister kinetochores and persistence of centromeric cohesion between sister chromatids at meiosis I contribute to the onset of UMCD. Most likely, some ploidy-regulated genes were responsible for kinetochore orientation at meiosis I in LDN and LDN-derived polyhaploids. In addition, we found sister kinetochores of synapsed chromosomes oriented syntelically, whereas asynapsed chromosomes oriented either amphitelically or syntelically. Thus, synapsis probably is another factor for the coordination of kinetochore orientation in LDN.

  1. High Transferability of Homoeolog-Specific Markers between Bread Wheat and Newly Synthesized Hexaploid Wheat Lines

    PubMed Central

    Zeng, Deying; Luo, Jiangtao; Li, Zenglin; Chen, Gang; Zhang, Lianquan; Ning, Shunzong; Yuan, Zhongwei; Zheng, Youliang; Hao, Ming; Liu, Dengcai

    2016-01-01

    Bread wheat (Triticum aestivum, 2n = 6x = 42, AABBDD) has a complex allohexaploid genome, which makes it difficult to differentiate between the homoeologous sequences and assign them to the chromosome A, B, or D subgenomes. The chromosome-based draft genome sequence of the ‘Chinese Spring’ common wheat cultivar enables the large-scale development of polymerase chain reaction (PCR)-based markers specific for homoeologs. Based on high-confidence ‘Chinese Spring’ genes with known functions, we developed 183 putative homoeolog-specific markers for chromosomes 4B and 7B. These markers were used in PCR assays for the 4B and 7B nullisomes and their euploid synthetic hexaploid wheat (SHW) line that was newly generated from a hybridization between Triticum turgidum (AABB) and the wild diploid species Aegilops tauschii (DD). Up to 64% of the markers for chromosomes 4B or 7B in the SHW background were confirmed to be homoeolog-specific. Thus, these markers were highly transferable between the ‘Chinese Spring’ bread wheat and SHW lines. Homoeolog-specific markers designed using genes with known functions may be useful for genetic investigations involving homoeologous chromosome tracking and homoeolog expression and interaction analyses. PMID:27611704

  2. Identification of individual barley chromosomes based on repetitive sequences: conservative distribution of Afa-family repetitive sequences on the chromosomes of barley and wheat.

    PubMed

    Tsujimoto, H; Mukai, Y; Akagawa, K; Nagaki, K; Fujigaki, J; Yamamoto, M; Sasakuma, T

    1997-10-01

    The Afa-family repetitive sequences were isolated from barley (Hordeum vulgare, 2n = 14) and cloned as pHvA14. This sequence distinguished each barely chromosome by in situ hybridization. Double color fluorescence in situ hybridization using pHvA14 and 5S rDNA or HvRT-family sequence (subtelomeric sequence of barley) allocated individual barley chromosomes showing a specific pattern of pHvA14 to chromosome 1H to 7H. As the case of the D genome chromosomes of Aegilops squarrosa and common wheat (Triticum aestivum) hybridized by its Afa-family sequences, the signals of pHvA14 in barley chromosomes tended to appear in the distal regions that do not carry many chromosome band markers. In the telomeric regions these signals always placed in more proximal portions than those of HvRT-family. Based on the distribution patterns of Afa-family sequences in the chromosomes of barley and D genome chromosomes of wheat, we discuss a possible mechanism of amplification of the repetitive sequences during the evolution of Triticeae. In addition, we show here that HvRT-family also could be used to distinguish individual barley chromosomes from the patterns of in situ hybridization.

  3. Drought stress response in wheat: physiological and molecular analysis of resistant and sensitive genotypes.

    PubMed

    Rampino, Patrizia; Pataleo, Stefano; Gerardi, Carmela; Mita, Giovanni; Perrotta, Carla

    2006-12-01

    Water deficit is a severe environmental stress and the major constraint on plant productivity with an evident effect on plant growth. The aim of this work was to study Triticum and Aegilops seedlings differing in their response to drought stress at the physiological and molecular levels. The identification of resistant and sensitive genotypes was firstly based on the relative water content (RWC) measurement. Further characterization of genotypes contrasting in their response to water stress was performed at the physiological level by determination of RWC, water loss rate (WLR) and free proline content after different hours of dehydration. Modification in the expression level of five dehydrin (DHN) genes was also analysed by reverse transcription-polymerase chain reaction (RT-PCR). Five cDNAs coding for different DHNs were identified and characterized. These genes are not expressed in the well-watered plants, but only in the stressed plants. Four of these cDNAs are related to novel DHN sequences. The results obtained clearly indicate a relation between the expression of these genes and tissue water content. In particular, in the resistant genotypes the expression of DHN genes is initiated even though tissue hydration levels are still high, indicating also in wheat the involvement of these proteins in water retention.

  4. The origin of spelt and free-threshing hexaploid wheat.

    PubMed

    Dvorak, Jan; Deal, Karin R; Luo, Ming-Cheng; You, Frank M; von Borstel, Keith; Dehghani, Hamid

    2012-01-01

    It is widely believed that hexaploid wheat originated via hybridization of hulled tetraploid emmer with Aegilops tauschii (genomes DD) and that the nascent hexaploid was spelt, from which free-threshing wheat evolved by mutations. To reassess the role of spelt in the evolution of Triticum aestivum, 4 disomic substitution lines of Ae. tauschii chromosome 2D in Chinese Spring wheat were developed and one of them was used to map the Tg locus, which controls glume tenacity in Ae. tauschii, relative to simple sequence repeat (SSR) and expressed sequence tag loci on wheat chromosome 2D. The segregation of SSR markers was used to assess the presence of Tg alleles in 11 accessions of spelt, both from Europe and from Asia. Ten of them had an inactive tg allele in the D genome and most had an active Tg allele in the B genome. This is consistent with spelt being derived from free-threshing hexaploid wheat by hybridization of free-threshing wheat with hulled emmer. It is proposed that the tetraploid parent of hexaploid wheat was not hulled emmer but a free-threshing form of tetraploid wheat.

  5. New insights into the wheat chromosome 4D structure and virtual gene order, revealed by survey pyrosequencing

    PubMed Central

    Helguera, Marcelo; Rivarola, Máximo; Clavijo, Bernardo; Martis, Mihaela M.; Vanzetti, Leonardo S.; González, Sergio; Garbus, Ingrid; Leroy, Phillippe; Šimková, Hana; Valárik, Miroslav; Caccamo, Mario; Doležel, Jaroslav; Mayer, Klaus F.X.; Feuillet, Catherine; Tranquilli, Gabriela; Paniego, Norma; Echenique, Viviana

    2015-01-01

    Survey sequencing of the bread wheat (Triticum aestivum L.) genome (AABBDD) has been approached through different strategies delivering important information. However, the current wheat sequence knowledge is not complete. The aim of our study is to provide different and complementary set of data for chromosome 4D. A survey sequence was obtained by pyrosequencing of flow-sorted 4DS (7.2×) and 4DL (4.1×) arms. Single ends (SE) and long mate pairs (LMP) reads were assembled into contigs (223 Mb) and scaffolds (65 Mb) that were aligned to Aegilops tauschii draft genome (DD), anchoring 34 Mb to chromosome 4. Scaffolds annotation rendered 822 gene models. A virtual gene order comprising 1973 wheat orthologous gene loci and 381 wheat gene models was built. This order was largely consistent with the scaffold order determined based on a published high density map from the Ae. tauschii chromosome 4, using bin-mapped 4D ESTs as a common reference. The virtual order showed a higher collinearity with homeologous 4B compared to 4A. Additionally, a virtual map was constructed and ∼5700 genes (∼2200 on 4DS and ∼3500 on 4DL) predicted. The sequence and virtual order obtained here using the 454 platform were compared with the Illumina one used by the IWGSC, giving complementary information. PMID:25711827

  6. Quantitative expression analysis of TaSOS1 and TaSOS4 genes in cultivated and wild wheat plants under salt stress.

    PubMed

    Ramezani, Amin; Niazi, Ali; Abolimoghadam, Ali Asghar; Zamani Babgohari, Mahboobeh; Deihimi, Tahereh; Ebrahimi, Mahmod; Akhtardanesh, Hosein; Ebrahimie, Esmail

    2013-02-01

    Salt stress is a mixture of ionic, osmotic, and oxidative stresses. The expression of TaSOS1 (a transmembrane Na(+)/H(+) antiporter) and TaSOS4 [a cytoplasmic pyridoxal (PL) kinase] genes were measured in four different salinity levels and different time courses of salinity exposure using qRT-PCR technique. Mahuti (salt tolerant) and Alamut (salt sensitive) cultivars were used as cultivated wheat, and T. boeticum and Aegilops crassa as wild wheat plants. Salt-induced expression of TaSOS1 in these wild wheat plants indicates the presence of active TaSOS1 gene on the genomes A and D. The TaSOS1 and TaSOS4 transcript levels were found to be downregulated after salt treatment in all cultivars except in A. crassa, which was in contrast with its expression pattern in roots that was being upregulated from a very low-basal expression, after salt treatments. Duncan's Multiple Range Test showed a significant difference between expression in the 200-mM NaCl concentration with the 50 and 100 mM for the TaSOS1 gene, and no significant difference for TaSOS4. Lack of significant correlation between the TaSOS1 and TaSOS4 gene expressions confirms the theory that PLP has no significant effect on the expression of the TaSOS1 gene in wheat leaves.

  7. Discovery, evaluation and distribution of haplotypes of the wheat Ppd-D1 gene.

    PubMed

    Guo, Zhiai; Song, Yanxia; Zhou, Ronghua; Ren, Zhenglong; Jia, Jizeng

    2010-02-01

    Ppd-D1 is one of the most potent genes affecting the photoperiod response of wheat (Triticum aestivum). Only two alleles, insensitive Ppd-D1a and sensitive Ppd-D1b, were known previously, and these did not adequately explain the broad adaptation of wheat to photoperiod variation. In this study, five diagnostic molecular markers were employed to identify Ppd-D1 haplotypes in 492 wheat varieties from diverse geographic locations and 55 accessions of Aegilops tauschii, the D genome donor species of wheat. Six Ppd-D1 haplotypes, designated I-VI, were identified. Types II, V and VI were considered to be more ancient and types I, III and IV were considered to be derived from type II. The transcript abundances of the Ppd-D1 haplotypes showed continuous variation, being highest for haplotype I, lowest for haplotype III, and correlating negatively with varietal differences in heading time. These haplotypes also significantly affected other agronomic traits. The distribution frequency of Ppd-D1 haplotypes showed partial correlations with both latitudes and altitudes of wheat cultivation regions. The evolution, expression and distribution of Ppd-D1 haplotypes were consistent evidentially with each other. What was regarded as a pair of alleles in the past can now be considered a series of alleles leading to continuous variation.

  8. Photoperiod-sensitive cytoplasmic male sterility in wheat: nuclear-mitochondrial incompatibility results in differential processing of the mitochondrial orf25 gene.

    PubMed

    Ogihara, Y; Kurihara, Y; Futami, K; Tsuji, K; Murai, K

    1999-12-01

    An alloplasmic wheat line with the cytoplasm of Aegilops crassa expresses photoperiod-sensitive cytoplasmic male sterility (PCMS). Southern- and Northern-hybridization analyses showed that this line contains alterations in both the gene structure and transcription patterns of the mitochondrial gene orf25. In this study, the nucleotide sequence around the orf25 gene of Ae. crassa (CR-orf25) and common wheat (AE-orf25) was determined, and we found that the upstream region of CR-orf25 had been replaced by that of rps7 of common wheat (AE-rps7) through recombination. A novel open reading frame (orf48) is present upstream of CR-orf25. In these three genes, transcription was initiated from the consensus promoter motif of plant mitochondrial genes located in the upstream regions. Processing enzymes in Ae. crassa and common wheat cleave the respective precursor mRNAs, namely CR-orf25 and AE-rps7, at sites similar to that of the premature mitochondrial 26S rRNA. In contrast, the precursor mRNA is not effectively processed at the target sequence of CR-orf25 in the alloplasmic wheat line. Because major transcripts of the euplasmic CR-orf25 and AE-rps7 genes would result in a truncated orf48 product, one possibility is that the orf48 protein might disturb mitochondrial function at a specific stage and hence affect the expression of the PCMS trait.

  9. Evolution of New Disease Specificity at a Simple Resistance Locus in a Crop–Weed Complex: Reconstitution of the Lr21 Gene in Wheat

    PubMed Central

    Huang, Li; Brooks, Steven; Li, Wanlong; Fellers, John; Nelson, James C.; Gill, Bikram

    2009-01-01

    The wheat leaf-rust resistance gene Lr21 was first identified in an Iranian accession of goatgrass, Aegilops tauschii Coss., the D-genome donor of hexaploid bread wheat, and was introgressed into modern wheat cultivars by breeding. To elucidate the origin of the gene, we analyzed sequences of Lr21 and lr21 alleles from 24 wheat cultivars and 25 accessions of Ae. tauschii collected along the Caspian Sea in Iran and Azerbaijan. Three basic nonfunctional lr21 haplotypes, H1, H2, and H3, were identified. Lr21 was found to be a chimera of H1 and H2, which were found only in wheat. We attempted to reconstitute a functional Lr21 allele by crossing the cultivars Fielder (H1) and Wichita (H2). Rust inoculation of 5876 F2 progeny revealed a single resistant plant that proved to carry the H1H2 haplotype, a result attributed to intragenic recombination. These findings reflect how plants balance the penalty and the necessity of a resistance gene and suggest that plants can reuse “dead” alleles to generate new disease-resistance specificity, leading to a “death–recycle” model of plant-resistance gene evolution at simple loci. We suggest that selection pressure in crop–weed complexes contributes to this process. PMID:19364806

  10. Low temperature-induced necrosis shows phenotypic plasticity in wheat triploid hybrids.

    PubMed

    Takumi, Shigeo; Mizuno, Nobuyuki

    2011-10-01

    Hybrid necrosis sometimes appears in triploid hybrids between tetraploid wheat and Aegilops tauschii Coss. Two types of hybrid necrosis (type II and type III) were observed when cultivar Langdon was used as female parent for hybrid production. Type II necrosis symptoms occurred only under low temperature conditions, whereas bushy and dwarf phenotypes were observed under normal temperature conditions. The developmental plasticity might be related to a temperature-responsive alteration of meristematic activity at the crown tissue of triploid hybrids. Epistatic interaction between the AB and D genomes induced not only upregulation of a number of defense-related genes, but also extensive changes in plant architecture in the type II necrosis hybrids. Such phenotypic plasticity was also observed in other cross combinations between cultivated tetraploid wheat and type II necrosis-induced Ae. tauschii accessions. Wild tetraploid wheat, Triticum turgidum subspecies dicoccoides, did not induce type II necrosis in the triploid hybrids, indicating the possibility of identifying the chromosomal location of a causal gene for type II necrosis in the AB genome.

  11. Development and discrimination of 12 double ditelosomics in tetraploid wheat cultivar DR147.

    PubMed

    Li, Hao; Wang, Changyou; Fu, Shulan; Guo, Xiang; Yang, Baoju; Chen, Chunhuan; Zhang, Hong; Wang, Yajuan; Liu, Xinlun; Han, Fangpu; Ji, Wanquan

    2014-02-01

    As an important group in Triticum, tetraploid wheat plays a significant role in the research of wheat evolution. Several complete aneuploid sets of common wheat have provided valuable tools for genetic and breeding studies, while similar aneuploids of tetraploid wheat are still not well developed. Here, 12 double ditelosomics developed in Triticum turgidum L. var. durum cultivar DR147 (excluding dDT2B and dDT3A) were reported. Hybrids between DR147 and the original double-ditelosomic dDT2B of Langdon lost vigor and died prematurely after the three-leaf stage; therefore, the dDT2B line was not obtained. The cytogenetic behaviors and phenotypic characteristics of each line were detailedly described. To distinguish the entire chromosome complement of tetraploid wheat, the DR147 karyotype was established by fluorescence in situ hybridization (FISH), using the Aegilops tauschii clone pAsl and the barley clone pHvG38 as probes. FISH using a cereal-specific centromere repeat (6C6) probe suggested that all the lines possessed four telosomes, except for 4AS of double-ditelosomic dDT4A, which carried a small segment of the long arm. On the basis of the idiogram of DR147, these lines were successfully discriminated by FISH using the probes pAsl and pHvG38 and were then accurately designated.

  12. Comparison of gene expression profiles and responses to zinc chloride among inter- and intraspecific hybrids with growth abnormalities in wheat and its relatives.

    PubMed

    Takamatsu, Kiyofumi; Iehisa, Julio C M; Nishijima, Ryo; Takumi, Shigeo

    2015-07-01

    Hybrid necrosis is a well-known reproductive isolation mechanism in plant species, and an autoimmune response is generally considered to trigger hybrid necrosis through epistatic interaction between disease resistance-related genes in hybrids. In common wheat, the complementary Ne1 and Ne2 genes control hybrid necrosis, defined as type I necrosis. Two other types of hybrid necrosis (type II and type III) have been observed in interspecific hybrids between tetraploid wheat and Aegilops tauschii. Another type of hybrid necrosis, defined here as type IV necrosis, has been reported in F1 hybrids between Triticum urartu and some accessions of Triticum monococcum ssp. aegilopoides. In types I, III and IV, cell death occurs gradually starting in older tissues, whereas type II necrosis symptoms occur only under low temperature. To compare comprehensive gene expression patterns of hybrids showing growth abnormalities, transcriptome analysis of type I and type IV necrosis was performed using a wheat 38k oligo-DNA microarray. Defense-related genes including many WRKY transcription factor genes were dramatically up-regulated in plants showing type I and type IV necrosis, similarly to other known hybrid abnormalities, suggesting an association with an autoimmune response. Reactive oxygen species generation and necrotic cell death were effectively inhibited by ZnCl2 treatment in types I, III and IV necrosis, suggesting a significant association of Ca(2+) influx in upstream signaling of necrotic cell death in wheat hybrid necrosis.

  13. Spatial Pattern and Scale Influence Invader Demographic Response to Simulated Precipitation Change in an Annual Grassland Community.

    PubMed

    Skaer Thomason, Meghan J; Rice, Kevin J

    2017-01-01

    It is important to predict which invasive species will benefit from future changes in climate, and thereby identify those invaders that need particular attention and prioritization of management efforts. Because establishment, persistence, and spread determine invasion success, this prediction requires detailed demographic information. Explicit study of the impact of pattern on demographic response is particularly important for species that are naturally patchy, such as the invasive grass, Aegilops triuncialis. In the northern California Coast Range, where climate change may increase or decrease mean annual rainfall, we conducted a field experiment to understand the interaction of climate change and local-scale patterning on the demography of A. triuncialis. We manipulated precipitation (reduced, ambient, or augmented), seed density, and seeding pattern. Demographic and environmental data were collected for three years following initial seeding. Pattern and scale figure prominently in the demographic response of A. triuncialis to precipitation manipulation. Pattern interacts with precipitation and seeding density in its influence on per-plant seed output. Although per-plot seed production was highest when seeds were not aggregated, per-plant seed output was higher in aggregated patches. Results suggest aggregation of invasive A. triuncialis reduces the detrimental impact of interspecific competition in its invaded community, and that interspecific competition per se has a stronger impact than intraspecific competition.

  14. PlantRGDB: A Database of Plant Retrocopied Genes.

    PubMed

    Wang, Yi

    2017-01-22

    RNA-based gene duplication, known as retrocopy, plays important roles in gene origination and genome evolution. The genomes of many plants have been sequenced, offering an opportunity to annotate and mine the retrocopies in plant genomes. However, comprehensive and unified annotation of retrocopies in these plants is still lacking. In this study I constructed the PlantRGDB (Plant Retrocopied Gene DataBase), the first database of plant retrocopies, to provide a putatively complete centralized list of retrocopies in plant genomes. The database is freely accessible at http://probes.pw.usda.gov/plantrgdb or http://aegilops.wheat.ucdavis.edu/plantrgdb It currently integrates 49 plant species and 38,997 retrocopies along with characterization information. PlantRGDB provides a user-friendly web interface for searching, browsing and downloading the retrocopies in the database. PlantRGDB also offers graphical viewer-integrated sequence information for displaying the structure of each retrocopy. The attributes of the retrocopies of each species are reported using a browse function. In addition, useful tools, such as an advanced search and BLAST, are available to search the database more conveniently. In conclusion, the database will provide a web platform for obtaining valuable insight into the generation of retrocopies and will supplement research on gene duplication and genome evolution in plants.

  15. Types and rates of sequence evolution at the high-molecular-weight glutenin locus in hexaploid wheat and its ancestral genomes.

    PubMed

    Gu, Yong Qiang; Salse, Jérôme; Coleman-Derr, Devin; Dupin, Adeline; Crossman, Curt; Lazo, Gerard R; Huo, Naxin; Belcram, Harry; Ravel, Catherine; Charmet, Gilles; Charles, Mathieu; Anderson, Olin D; Chalhoub, Boulos

    2006-11-01

    The Glu-1 locus, encoding the high-molecular-weight glutenin protein subunits, controls bread-making quality in hexaploid wheat (Triticum aestivum) and represents a recently evolved region unique to Triticeae genomes. To understand the molecular evolution of this locus region, three orthologous Glu-1 regions from the three subgenomes of a single hexaploid wheat species were sequenced, totaling 729 kb of sequence. Comparing each Glu-1 region with its corresponding homologous region from the D genome of diploid wheat, Aegilops tauschii, and the A and B genomes of tetraploid wheat, Triticum turgidum, revealed that, in addition to the conservation of microsynteny in the genic regions, sequences in the intergenic regions, composed of blocks of nested retroelements, are also generally conserved, although a few nonshared retroelements that differentiate the homologous Glu-1 regions were detected in each pair of the A and D genomes. Analysis of the indel frequency and the rate of nucleotide substitution, which represent the most frequent types of sequence changes in the Glu-1 regions, demonstrated that the two A genomes are significantly more divergent than the two B genomes, further supporting the hypothesis that hexaploid wheat may have more than one tetraploid ancestor.

  16. Complementation of sugary-1 Phenotype in Rice Endosperm with the Wheat Isoamylase1 Gene Supports a Direct Role for Isoamylase1 in Amylopectin Biosynthesis

    PubMed Central

    Kubo, Akiko; Rahman, Sadequr; Utsumi, Yoshinori; Li, Zhongyi; Mukai, Yasuhiko; Yamamoto, Maki; Ugaki, Masashi; Harada, Kyuya; Satoh, Hikaru; Konik-Rose, Christine; Morell, Matthew; Nakamura, Yasunori

    2005-01-01

    To examine the role of isoamylase1 (ISA1) in amylopectin biosynthesis in plants, a genomic DNA fragment from Aegilops tauschii was introduced into the ISA1-deficient rice (Oryza sativa) sugary-1 mutant line EM914, in which endosperm starch is completely replaced by phytoglycogen. A. tauschii is the D genome donor of wheat (Triticum aestivum), and the introduced fragment effectively included the gene for ISA1 for wheat (TaISA1) that was encoded on the D genome. In TaISA1-expressing rice endosperm, phytoglycogen synthesis was substantially replaced by starch synthesis, leaving only residual levels of phytoglycogen. The levels of residual phytoglycogen present were inversely proportional to the expression level of the TaISA1 protein, although the level of pullulanase that had been reduced in EM914 was restored to the same level as that in the wild type. Small but significant differences were found in the amylopectin chain-length distribution, gelatinization temperatures, and A-type x-ray diffraction patterns of the starches from lines expressing TaISA1 when compared with wild-type rice starch, although in the first two parameters, the effect was proportional to the expression level of TaISA. The impact of expression levels of ISA1 on starch structure and properties provides support for the view that ISA1 is directly involved in the synthesis of amylopectin. PMID:15618430

  17. A review of the occurrence of Grain softness protein-1 genes in wheat (Triticum aestivum L.).

    PubMed

    Morris, Craig F; Geng, Hongwei; Beecher, Brian S; Ma, Dongyun

    2013-12-01

    Grain softness protein-1 (Gsp-1) is a small, 495-bp intronless gene found throughout the Triticeae tribe at the distal end of group 5 chromosomes. With the Puroindolines, it constitutes a key component of the Hardness locus. Gsp-1 likely plays little role in grain hardness, but has direct interest due to its utility in phylogeny and its role in arabinogalactan peptides. Further role(s) remain to be identified. In the polyploid wheats, Triticum aestivum and T. turgidum, the gene is present in a homoeologous series. Since its discovery, there have been conflicting reports and data as to the number of Gsp-1 genes and the level of sequence polymorphism. Little is known about allelic variation within a species. In the simplest model, a single Gsp-1 gene is present in each wheat and Aegilops tauschii genome. The present review critically re-examines the published and some unpublished data (sequence available in the NCBI nucleotide and MIPS Wheat Genome Databases). A number of testable hypotheses are identified, and include the level of polymorphism that may represent (and define) different Gsp-1 alleles, the existence of a fourth Gsp-1 gene, and the apparent, at times, high level of naturally-occurring or artifactual gene chimeras. In summary, the present data provide firm evidence for at most, three Gsp-1 genes in wheat, although there are numerous data that suggest a more complex model.

  18. Effects of alien and intraspecies cytoplasms on manifestation of nuclear genes for wheat resistance to brown rust: II. Specificity of cytoplasm influence on different Lr genes

    SciTech Connect

    Voluevich, E.A.; Buloichik, A.A.; Palilova, A.N.

    1995-04-01

    Specificity of expression of the major nuclear genes Lr to two brown rust clones in hybrids with the same maternal cytoplasm was analyzed. It was evaluated by a resistant: susceptible ratio in the F{sub 2}. Reciprocal hybrids were obtained from the cross between the progeny of homozygous susceptible plants of the cultivar Penjamo 62 and its alloplasmatic lines carrying cytoplasms of Triticum dicoccoides var. fulvovillosum, Aegilops squarrosa var. typical, Agropyron trichophorum, and isogenic lines of the cultivar Thatcher (Th) with the Lr1, Lr9, Lr15, and Lr19 genes. It was shown that the effect of the Lr1 gene in the cytoplasm of cultivar Thatcher and in eu-, and alloplasmatic forms of Penjamo 62 was less expressed than that of other Lr genes. Cytoplasm of the alloplasmatic line (dicoccoides)-Penjamo 62 was the only exception: in the F{sub 2}, hybrids with Th (Lr1) had a higher yield of resistant forms than those with Th (Lr15). In the hybrid combinations studied, expression and/or transmission of the Lr19 gene was more significant than that of other genes. This gene had no advantages over Lr15 and Lr19 only in cytoplasm of the alloplasmatic line (squarrosa)-Penjamo 62. In certain hybrid cytoplasms, the display of the Lr1, Lr15, and Lr19 genes, in contrast to Lr9, varied with the virulence of the pathogen clones. 15 refs., 5 tabs.

  19. The role of adaptive trans-generational plasticity in biological invasions of plants.

    PubMed

    Dyer, Andrew R; Brown, Cynthia S; Espeland, Erin K; McKay, John K; Meimberg, Harald; Rice, Kevin J

    2010-03-01

    High-impact biological invasions often involve establishment and spread in disturbed, high-resource patches followed by establishment and spread in biotically or abiotically stressful areas. Evolutionary change may be required for the second phase of invasion (establishment and spread in stressful areas) to occur. When species have low genetic diversity and short selection history, within-generation phenotypic plasticity is often cited as the mechanism through which spread across multiple habitat types can occur. We show that trans-generational plasticity (TGP) can result in pre-adapted progeny that exhibit traits associated with increased fitness both in high-resource patches and in stressful conditions. In the invasive sedge, Cyperus esculentus, maternal plants growing in nutrient-poor patches can place disproportional number of propagules into nutrient-rich patches. Using the invasive annual grass, Aegilops triuncialis, we show that maternal response to soil conditions can confer greater stress tolerance in seedlings in the form of greater photosynthetic efficiency. We also show TGP for a phenological shift in a low resource environment that results in greater stress tolerance in progeny. These lines of evidence suggest that the maternal environment can have profound effects on offspring success and that TGP may play a significant role in some plant invasions.

  20. Unlocking Triticeae genomics to sustainably feed the future

    PubMed Central

    Mochida, Keiichi; Shinozaki, Kazuo

    2013-01-01

    The tribe Triticeae includes the major crops wheat and barley. Within the last few years, the whole genomes of four Triticeae species—barley, wheat, Tausch’s goatgrass (Aegilops tauschii) and wild einkorn wheat (Triticum urartu)—have been sequenced. The availability of these genomic resources for Triticeae plants and innovative analytical applications using next-generation sequencing technologies are helping to revitalize our approaches in genetic work and to accelerate improvement of the Triticeae crops. Comparative genomics and integration of genomic resources from Triticeae plants and the model grass Brachypodium distachyon are aiding the discovery of new genes and functional analyses of genes in Triticeae crops. Innovative approaches and tools such as analysis of next-generation populations, evolutionary genomics and systems approaches with mathematical modeling are new strategies that will help us discover alleles for adaptive traits to future agronomic environments. In this review, we provide an update on genomic tools for use with Triticeae plants and Brachypodium and describe emerging approaches toward crop improvements in Triticeae. PMID:24204022

  1. PGSB PlantsDB: updates to the database framework for comparative plant genome research

    PubMed Central

    Spannagl, Manuel; Nussbaumer, Thomas; Bader, Kai C.; Martis, Mihaela M.; Seidel, Michael; Kugler, Karl G.; Gundlach, Heidrun; Mayer, Klaus F.X.

    2016-01-01

    PGSB (Plant Genome and Systems Biology: formerly MIPS) PlantsDB (http://pgsb.helmholtz-muenchen.de/plant/index.jsp) is a database framework for the comparative analysis and visualization of plant genome data. The resource has been updated with new data sets and types as well as specialized tools and interfaces to address user demands for intuitive access to complex plant genome data. In its latest incarnation, we have re-worked both the layout and navigation structure and implemented new keyword search options and a new BLAST sequence search functionality. Actively involved in corresponding sequencing consortia, PlantsDB has dedicated special efforts to the integration and visualization of complex triticeae genome data, especially for barley, wheat and rye. We enhanced CrowsNest, a tool to visualize syntenic relationships between genomes, with data from the wheat sub-genome progenitor Aegilops tauschii and added functionality to the PGSB RNASeqExpressionBrowser. GenomeZipper results were integrated for the genomes of barley, rye, wheat and perennial ryegrass and interactive access is granted through PlantsDB interfaces. Data exchange and cross-linking between PlantsDB and other plant genome databases is stimulated by the transPLANT project (http://transplantdb.eu/). PMID:26527721

  2. Cloning and characterization of four B-hordein genes from Tibetan hull-less barley (Hordeum vulgare subsp. vulgare).

    PubMed

    Han, Zhao-Xue; Qian, Gang; Pan, Zhi-Fen; Deng, Guang-Bing; Wu, Fang; Tang, Ya-Wei; Qiang, Xiao-Lin; Yu, Mao-Qun

    2006-10-01

    Four B-hordein genes, designated BH1-BH4, were cloned using PCR amplification from two hull-less barley cultivars, ZQ7239 and ZQ148, collected from Tibet. The results of sequencing indicated that BH1-BH4 contained complete open reading frames (ORFs). Comparison of their predicted polypeptide sequences with the published sequences suggested that they all share the same basic protein structure. Phylogenetic analysis indicated that the deduced amino-acid sequences of BH1-BH4 genes were more closely related to B-hordeins from cultivated barley (Hordeum vulgare L.) than to any other prolamins from wild barley and Aegilops tauschii. Comparison of the coding regions of BH1-BH4 genes showed that BH1 had a lower sequence identity to other previously published B-hordeins than the other three B-hordeins obtained in this study. BH1 was then cloned in a bacterial expression vector based on bacteriophage T7 RNA polymerase. The resulting plasmid produced a 28.15 kDa protein in Escherichia coli. The potential value of B-hordein genes in grain quality improvement of hull-less barley has been discussed.

  3. Production of a monoclonal antibody specific for high molecular weight glutenin subunits (HMW-GS) in wheat and its antigenic determinant.

    PubMed

    Wang, Hanqian; Zhang, Xueyong; Wang, Hongmei; Pang, Binshuang

    2005-02-01

    Wheat high molecular weight glutenin subunits (HMW-GS) 1Bx14 and 1By15 isolated by preparative SDS-PAGE are used as antigen to immunize BALB/c mice. Subcutaneous inoculation of the antigen is performed. The intra-peritoneal injection is completed 3 days before fusion with myeloma cell (SP2/0) via PEG-1500. The fusion cells are selected by indirect enzyme-linked immuno-sorbent assay (ELISA). Positive hybrid cells are further verified three times by limit dilution of the culture cells. A hybridoma cell line is successfully obtained. The monoclonal antibody belongs to IgG1 subclass. In immunoblotting, the antibody binds to all HMW-GS of T. aestivum cultivars, but does not bind to other storage proteins in seeds of wheat. This result is consisting with the high homology in amino acid sequences among the HMW glutenin subunits in wheat. The antibody also binds to HMW-GS storage proteins in Aegilops squarrosa and T. durum (durum wheat). Furthermore, it also binds to HMW storage proteins in Secale cereale (rye), Hordeum vulgare (barley). However, it never binds seed storage proteins in other cereals such as maize, oat, rice, foxtail millet, sorghum etc. The antigen determinant recognized by the antibody has been located within hexapeptide [PGQGQQ] or / and nonapeptide [GYYPTSPQQ] in the central repetitive region of HMW-GS.

  4. Homeotic Genes and the ABCDE Model for Floral Organ Formation in Wheat

    PubMed Central

    Murai, Koji

    2013-01-01

    Floral organ formation has been the subject of intensive study for over 20 years, particularly in the model dicot species Arabidopsis thaliana. These studies have led to the establishment of a general model for the development of floral organs in higher plants, the so-called ABCDE model, in which floral whorl-specific combinations of class A, B, C, D, or E genes specify floral organ identity. In Arabidopsis, class A, B, C, D, E genes encode MADS-box transcription factors except for the class A gene APETALA2. Mutation of these genes induces floral organ homeosis. In this review, I focus on the roles of these homeotic genes in bread wheat (Triticum aestivum), particularly with respect to the ABCDE model. Pistillody, the homeotic transformation of stamens into pistil-like structures, occurs in cytoplasmic substitution (alloplasmic) wheat lines that have the cytoplasm of the related wild species Aegilops crassa. This phenomenon is a valuable tool for analysis of the wheat ABCDE model. Using an alloplasmic line, the wheat ortholog of DROOPING LEAF (TaDL), a member of the YABBY gene family, has been shown to regulate pistil specification. Here, I describe the current understanding of the ABCDE model for floral organ formation in wheat. PMID:27137382

  5. Novel nuclear-cytoplasmic interaction in wheat (Triticum aestivum) induces vigorous plants.

    PubMed

    Soltani, Ali; Kumar, Ajay; Mergoum, Mohamed; Pirseyedi, Seyed Mostafa; Hegstad, Justin B; Mazaheri, Mona; Kianian, Shahryar F

    2016-03-01

    Interspecific hybridization can be considered an accelerator of evolution, otherwise a slow process, solely dependent on mutation and recombination. Upon interspecific hybridization, several novel interactions between nuclear and cytoplasmic genomes emerge which provide additional sources of diversity. The magnitude and essence of intergenomic interactions between nuclear and cytoplasmic genomes remain unknown due to the direction of many crosses. This study was conducted to address the role of nuclear-cytoplasmic interactions as a source of variation upon hybridization. Wheat (Triticum aestivum) alloplasmic lines carrying the cytoplasm of Aegilops mutica along with an integrated approach utilizing comparative quantitative trait locus (QTL) and epigenome analysis were used to dissect this interaction. The results indicate that cytoplasmic genomes can modify the magnitude of QTL controlling certain physiological traits such as dry matter weight. Furthermore, methylation profiling analysis detected eight polymorphic regions affected by the cytoplasm type. In general, these results indicate that novel nuclear-cytoplasmic interactions can potentially trigger an epigenetic modification cascade in nuclear genes which eventually change the genetic network controlling physiological traits. These modified genetic networks can serve as new sources of variation to accelerate the evolutionary process. Furthermore, this variation can synthetically be produced by breeders in their programs to develop epigenomic-segregating lines.

  6. Spatial Pattern and Scale Influence Invader Demographic Response to Simulated Precipitation Change in an Annual Grassland Community

    PubMed Central

    2017-01-01

    It is important to predict which invasive species will benefit from future changes in climate, and thereby identify those invaders that need particular attention and prioritization of management efforts. Because establishment, persistence, and spread determine invasion success, this prediction requires detailed demographic information. Explicit study of the impact of pattern on demographic response is particularly important for species that are naturally patchy, such as the invasive grass, Aegilops triuncialis. In the northern California Coast Range, where climate change may increase or decrease mean annual rainfall, we conducted a field experiment to understand the interaction of climate change and local-scale patterning on the demography of A. triuncialis. We manipulated precipitation (reduced, ambient, or augmented), seed density, and seeding pattern. Demographic and environmental data were collected for three years following initial seeding. Pattern and scale figure prominently in the demographic response of A. triuncialis to precipitation manipulation. Pattern interacts with precipitation and seeding density in its influence on per-plant seed output. Although per-plot seed production was highest when seeds were not aggregated, per-plant seed output was higher in aggregated patches. Results suggest aggregation of invasive A. triuncialis reduces the detrimental impact of interspecific competition in its invaded community, and that interspecific competition per se has a stronger impact than intraspecific competition. PMID:28046090

  7. Similarities and differences in the nuclear genome organization within Pooideae species revealed by comparative genomic in situ hybridization (GISH).

    PubMed

    Majka, Joanna; Majka, Maciej; Kwiatek, Michał; Wiśniewska, Halina

    2016-10-14

    In this paper, we highlight the affinity between the genomes of key representatives of the Pooideae subfamily, revealed at the chromosomal level by genomic in situ hybridization (GISH). The analyses were conducted using labeled probes from each species to hybridize with chromosomes of every species used in this study based on a "round robin" rule. As a result, the whole chromosomes or chromosome regions were distinguished or variable types of signals were visualized to prove the different levels of the relationships between genomes used in this study. We observed the unexpected lack of signals in secondary constrictions of rye (RR) chromosomes probed by triticale (AABBRR) genomic DNA. We have also identified unlabeled chromosome regions, which point to species-specific sequences connected with disparate pathways of chromosome differentiation. Our results revealed a conservative character of coding sequence of 35S rDNA among selected species of the genera Aegilops, Brachypodium, Festuca, Hordeum, Lolium, Secale, and Triticum. In summary, we showed strong relationships in genomic DNA sequences between species which have been previously reported to be phylogenetically distant.

  8. Breeding Value of Primary Synthetic Wheat Genotypes for Grain Yield

    PubMed Central

    Jafarzadeh, Jafar; Bonnett, David; Jannink, Jean-Luc; Akdemir, Deniz; Dreisigacker, Susanne; Sorrells, Mark E.

    2016-01-01

    To introduce new genetic diversity into the bread wheat gene pool from its progenitor, Aegilops tauschii (Coss.) Schmalh, 33 primary synthetic hexaploid wheat genotypes (SYN) were crossed to 20 spring bread wheat (BW) cultivars at the International Wheat and Maize Improvement Center. Modified single seed descent was used to develop 97 populations with 50 individuals per population using first back-cross, biparental, and three-way crosses. Individuals from each cross were selected for short stature, early heading, flowering and maturity, minimal lodging, and free threshing. Yield trials were conducted under irrigated, drought, and heat-stress conditions from 2011 to 2014 in Ciudad Obregon, Mexico. Genomic estimated breeding values (GEBVs) of parents and synthetic derived lines (SDLs) were estimated using a genomic best linear unbiased prediction (GBLUP) model with markers in each trial. In each environment, there were SDLs that had higher GEBVs than their recurrent BW parent for yield. The GEBVs of BW parents for yield ranged from -0.32 in heat to 1.40 in irrigated trials. The range of the SYN parent GEBVs for yield was from -2.69 in the irrigated to 0.26 in the heat trials and were mostly negative across environments. The contribution of the SYN parents to improved grain yield of the SDLs was highest under heat stress, with an average GEBV for the top 10% of the SDLs of 0.55 while the weighted average GEBV of their corresponding recurrent BW parents was 0.26. Using the pedigree-based model, the accuracy of genomic prediction for yield was 0.42, 0.43, and 0.49 in the drought, heat and irrigated trials, respectively, while for the marker-based model these values were 0.43, 0.44, and 0.55. The SYN parents introduced novel diversity into the wheat gene pool. Higher GEBVs of progenies were due to introgression and retention of some positive alleles from SYN parents. PMID:27656893

  9. Insular Organization of Gene Space in Grass Genomes

    PubMed Central

    Massa, Alicia N.; Wanjugi, Humphrey; Deal, Karin R.; You, Frank M.; Xu, Xiangyang; Gu, Yong Q.; Luo, Ming-Cheng; Anderson, Olin D.; Chan, Agnes P.; Rabinowicz, Pablo

    2013-01-01

    Wheat and maize genes were hypothesized to be clustered into islands but the hypothesis was not statistically tested. The hypothesis is statistically tested here in four grass species differing in genome size, Brachypodium distachyon, Oryza sativa, Sorghum bicolor, and Aegilops tauschii. Density functions obtained under a model where gene locations follow a homogeneous Poisson process and thus are not clustered are compared with a model-free situation quantified through a non-parametric density estimate. A simple homogeneous Poisson model for gene locations is not rejected for the small O. sativa and B. distachyon genomes, indicating that genes are distributed largely uniformly in those species, but is rejected for the larger S. bicolor and Ae. tauschii genomes, providing evidence for clustering of genes into islands. It is proposed to call the gene islands “gene insulae” to distinguish them from other types of gene clustering that have been proposed. An average S. bicolor and Ae. tauschii insula is estimated to contain 3.7 and 3.9 genes with an average intergenic distance within an insula of 2.1 and 16.5 kb, respectively. Inter-insular distances are greater than 8 and 81 kb and average 15.1 and 205 kb, in S. bicolor and Ae. tauschii, respectively. A greater gene density observed in the distal regions of the Ae. tauschii chromosomes is shown to be primarily caused by shortening of inter-insular distances. The comparison of the four grass genomes suggests that gene locations are largely a function of a homogeneous Poisson process in small genomes. Nonrandom insertions of LTR retroelements during genome expansion creates gene insulae, which become less dense and further apart with the increase in genome size. High concordance in relative lengths of orthologous intergenic distances among the investigated genomes including the maize genome suggests functional constraints on gene distribution in the grass genomes. PMID:23326580

  10. Insular organization of gene space in grass genomes.

    PubMed

    Gottlieb, Andrea; Müller, Hans-Georg; Massa, Alicia N; Wanjugi, Humphrey; Deal, Karin R; You, Frank M; Xu, Xiangyang; Gu, Yong Q; Luo, Ming-Cheng; Anderson, Olin D; Chan, Agnes P; Rabinowicz, Pablo; Devos, Katrien M; Dvorak, Jan

    2013-01-01

    Wheat and maize genes were hypothesized to be clustered into islands but the hypothesis was not statistically tested. The hypothesis is statistically tested here in four grass species differing in genome size, Brachypodium distachyon, Oryza sativa, Sorghum bicolor, and Aegilops tauschii. Density functions obtained under a model where gene locations follow a homogeneous Poisson process and thus are not clustered are compared with a model-free situation quantified through a non-parametric density estimate. A simple homogeneous Poisson model for gene locations is not rejected for the small O. sativa and B. distachyon genomes, indicating that genes are distributed largely uniformly in those species, but is rejected for the larger S. bicolor and Ae. tauschii genomes, providing evidence for clustering of genes into islands. It is proposed to call the gene islands "gene insulae" to distinguish them from other types of gene clustering that have been proposed. An average S. bicolor and Ae. tauschii insula is estimated to contain 3.7 and 3.9 genes with an average intergenic distance within an insula of 2.1 and 16.5 kb, respectively. Inter-insular distances are greater than 8 and 81 kb and average 15.1 and 205 kb, in S. bicolor and Ae. tauschii, respectively. A greater gene density observed in the distal regions of the Ae. tauschii chromosomes is shown to be primarily caused by shortening of inter-insular distances. The comparison of the four grass genomes suggests that gene locations are largely a function of a homogeneous Poisson process in small genomes. Nonrandom insertions of LTR retroelements during genome expansion creates gene insulae, which become less dense and further apart with the increase in genome size. High concordance in relative lengths of orthologous intergenic distances among the investigated genomes including the maize genome suggests functional constraints on gene distribution in the grass genomes.

  11. Linking global-change induced shifts in soil nitrogen cycling with the abundance of key microorganisms

    NASA Astrophysics Data System (ADS)

    Carey, C.; Eviner, V.; Beman, M.; Hart, S. C.

    2013-12-01

    Since western colonization, the ecology of California has seen marked transformations. In particular, invasion of terrestrial ecosystems by exotic plants has altered plant community composition, disturbances, soil hydrologic regimes, and nutrient cycling. In addition, as a result of fertilization and combustion of fossil fuels, California experiences some of the highest nitrogen (N) deposition rates in the country. Land use has also changed with the introduction of domestic livestock grazing about 250 years ago. Currently, approximately 32% of land in California experiences grazing pressure. These ecological changes likely affect the ecosystems of California simultaneously. However, with multifactor global change experiments in their infancy, little is known about potential interactive effects on ecosystem structure and function. Our study measured the response of soil N dynamics to a unique combination of treatments: invasion by exotic plants (Aegilops triuncialis and Taeniatherum caput-medusae), elevated N additions, and simulated cattle grazing (aboveground vegetation removal). In addition, we quantified the abundance of key functional genes involved in nitrification (amoA) and denitrification (nirS/nirK) in order to gain a mechanistic insight into changes in ecosystem functioning. We found that, while responses of soil N pools and processes to global change factors tend to be dominated by main effects, interactions among factors can substantially alter the overall response of the ecosystem. For instance, N additions increased potential nitrification and pools of total inorganic N (TIN; NH4+ and NO3-); when N additions and grazing were combined, however, nitrification potentials and TIN decreased to those of ambient N (control) levels. Additionally, neither N additions nor simulated grazing independently affected soil microbial biomass of invaded plots; yet, when combined, the microbial biomass increased significantly. Our results help to provide a better

  12. How the nucleus and mitochondria communicate in energy production during stress: nuclear MtATP6, an early-stress responsive gene, regulates the mitochondrial F₁F₀-ATP synthase complex.

    PubMed

    Moghadam, Ali Asghar; Ebrahimie, Eemaeil; Taghavi, Seyed Mohsen; Niazi, Ali; Babgohari, Mahbobeh Zamani; Deihimi, Tahereh; Djavaheri, Mohammad; Ramezani, Amin

    2013-07-01

    A small number of stress-responsive genes, such as those of the mitochondrial F1F0-ATP synthase complex, are encoded by both the nucleus and mitochondria. The regulatory mechanism of these joint products is mysterious. The expression of 6-kDa subunit (MtATP6), a relatively uncharacterized nucleus-encoded subunit of F0 part, was measured during salinity stress in salt-tolerant and salt-sensitive cultivated wheat genotypes, as well as in the wild wheat genotypes, Triticum and Aegilops using qRT-PCR. The MtATP6 expression was suddenly induced 3 h after NaCl treatment in all genotypes, indicating an early inducible stress-responsive behavior. Promoter analysis showed that the MtATP6 promoter includes cis-acting elements such as ABRE, MYC, MYB, GTLs, and W-boxes, suggesting a role for this gene in abscisic acid-mediated signaling, energy metabolism, and stress response. It seems that 6-kDa subunit, as an early response gene and nuclear regulatory factor, translocates to mitochondria and completes the F1F0-ATP synthase complex to enhance ATP production and maintain ion homeostasis under stress conditions. These communications between nucleus and mitochondria are required for inducing mitochondrial responses to stress pathways. Dual targeting of 6-kDa subunit may comprise as a mean of inter-organelle communication and save energy for the cell. Interestingly, MtATP6 showed higher and longer expression in the salt-tolerant wheat and the wild genotypes compared to the salt-sensitive genotype. Apparently, salt-sensitive genotypes have lower ATP production efficiency and weaker energy management than wild genotypes; a stress tolerance mechanism that has not been transferred to cultivated genotypes.

  13. Cytoplasmic effects on DNA methylation between male sterile lines and the maintainer in wheat (Triticum aestivum L.).

    PubMed

    Ba, Qingsong; Zhang, Gaisheng; Niu, Na; Ma, Shoucai; Wang, Junwei

    2014-10-01

    Male sterile cytoplasm plays an important role in hybrid wheat, and three-line system including male sterile (A line), its maintainer (B line) and restoring (R line) has played a major role in wheat hybrid production. It is well known that DNA methylation plays an important role in gene expression regulation during biological development in wheat. However, no reports are available on DNA methylation affected by different male sterile cytoplasms in hybrid wheat. We employed a methylation-sensitive amplified polymorphism technique to characterize nuclear DNA methylation in three male sterile cytoplasms. A and B lines share the same nucleus, but have different cytoplasms which is male sterile for the A and fertile for the B. The results revealed a relationship of DNA methylation at these sites specifically with male sterile cytoplasms, as well as male sterility, since the only difference between the A lines and B line was the cytoplasm. The DNA methylation was markedly affected by male sterile cytoplasms. K-type cytoplasm affected the methylation to a much greater degree than T-type and S-type cytoplasms, as indicated by the ratio of methylated sites, ratio of fully methylated sites, and polymorphism between A lines and B line for these cytoplasms. The genetic distance between the cytoplasm and nucleus for the K-type is much greater than for the T- and S-types because the former is between Aegilops genus and Triticum genus and the latter is within Triticum genus between Triticum spelta and Triticum timopheevii species. Thus, this difference in genetic distance may be responsible for the variation in methylation that we observed.

  14. Map-based analysis of the tenacious glume gene Tg-B1 of wild emmer and its role in wheat domestication.

    PubMed

    Faris, Justin D; Zhang, Zengcui; Chao, Shiaoman

    2014-06-01

    The domestication of wheat was instrumental in spawning the civilization of humankind, and it occurred through genetic mutations that gave rise to types with non-fragile rachises, soft glumes, and free-threshing seed. Wild emmer (Triticum turgidum ssp. dicoccoides), the tetraploid AB-genome progenitor of domesticated wheat has genes that confer tenacious glumes (Tg) that underwent genetic mutations to give rise to free-threshing wheat. Here, we evaluated disomic substitution lines involving chromosomes 2A and 2B of wild emmer accessions substituted for homologous chromosomes in tetraploid and hexaploid backgrounds. The results suggested that both chromosomes 2A and 2B of wild emmer possess genes that inhibit threshability. A population of recombinant inbred lines derived from the tetraploid durum wheat variety Langdon crossed with a Langdon - T. turgidum ssp. dicoccoides accession PI 481521 chromosome 2B disomic substitution line was used to develop a genetic linkage map of 2B, evaluate the genetics of threshability, and map the gene derived from PI 481521 that inhibited threshability. A 2BS linkage map comprised of 58 markers was developed, and markers delineated the gene to a 2.3 cM interval. Comparative analysis with maps containing the tenacious glume gene Tg-D1 on chromosome arm 2 DS from Aegilops tauschii, the D genome progenitor of hexaploid wheat, revealed that the gene inhibiting threshability in wild emmer was homoeologous to Tg-D1 and therefore designated Tg-B1. Comparative analysis with rice and Brachypodium distachyon indicated a high level of divergence and poorly conserved colinearity, particularly near the Tg-B1 locus. These results provide a foundation for further studies involving Tg-B1, which, together with Tg-D1, had profound influences on wheat domestication.

  15. Production and identification of wheat - Agropyron cristatum (1.4P) alien translocation lines.

    PubMed

    Liu, Wei-Hua; Luan, Yang; Wang, Jing-Chang; Wang, Xiao-Guang; Su, Jun-Ji; Zhang, Jin-Peng; Yang, Xin-Ming; Gao, Ai-Nong; Li, Li-Hui

    2010-06-01

    The P genome of Agropyron Gaertn., a wild relative of wheat, contains an abundance of desirable genes that can be utilized as genetic resources to improve wheat. In this study, wheat - Aegilops cylindrica Host gametocidal chromosome 2C addition lines were crossed with wheat - Agropyron cristatum (L.) Gaertn. disomic addition line accession II-21 with alien recombinant chromosome (1.4)P. We successfully induced wheat - A. cristatum alien chromosomal translocations for the first time. The frequency of translocation in the progeny was 3.75%, which was detected by molecular markers and genomic in situ hybridization (GISH). The translocation chromosomes were identified by dual-color GISH /fluorescence in situ hybridization (FISH). The P genomic DNA was used as probe to detect the (1.4)P chromosome fragment, and pHvG39, pAs1, or pSc119.2 repeated sequences were used as probes to identify wheat translocated chromosomes. The results showed that six types of translocations were identified in the three wheat - A. cristatum alien translocation lines, including the whole arm or terminal portion of a (1.4)P chromosome. The (1.4)P chromosome fragments were translocated to wheat chromosomes 1B, 2B, 5B, and 3D. The breakpoints were located at the centromeres of 1B and 2B, the pericentric locations of 5BS, and the terminals of 5BL and 3DS. In addition, we obtained 12 addition-deletion lines that contained alien A. cristatum chromosome (1.4)P in wheat background. All of these wheat - A. cristatum alien translocation lines and addition-deletion lines would be valuable for identifying A. cristatum chromosome (1.4)P-related genes and providing genetic resources and new germplasm accessions for the genetic improvement of wheat. The specific molecular markers of A. cristatum (1.4)P chromosome have been developed and used to track the (1.4)P chromatin.

  16. Sequencing of 15 622 gene-bearing BACs clarifies the gene-dense regions of the barley genome.

    PubMed

    Muñoz-Amatriaín, María; Lonardi, Stefano; Luo, MingCheng; Madishetty, Kavitha; Svensson, Jan T; Moscou, Matthew J; Wanamaker, Steve; Jiang, Tao; Kleinhofs, Andris; Muehlbauer, Gary J; Wise, Roger P; Stein, Nils; Ma, Yaqin; Rodriguez, Edmundo; Kudrna, Dave; Bhat, Prasanna R; Chao, Shiaoman; Condamine, Pascal; Heinen, Shane; Resnik, Josh; Wing, Rod; Witt, Heather N; Alpert, Matthew; Beccuti, Marco; Bozdag, Serdar; Cordero, Francesca; Mirebrahim, Hamid; Ounit, Rachid; Wu, Yonghui; You, Frank; Zheng, Jie; Simková, Hana; Dolezel, Jaroslav; Grimwood, Jane; Schmutz, Jeremy; Duma, Denisa; Altschmied, Lothar; Blake, Tom; Bregitzer, Phil; Cooper, Laurel; Dilbirligi, Muharrem; Falk, Anders; Feiz, Leila; Graner, Andreas; Gustafson, Perry; Hayes, Patrick M; Lemaux, Peggy; Mammadov, Jafar; Close, Timothy J

    2015-10-01

    Barley (Hordeum vulgare L.) possesses a large and highly repetitive genome of 5.1 Gb that has hindered the development of a complete sequence. In 2012, the International Barley Sequencing Consortium released a resource integrating whole-genome shotgun sequences with a physical and genetic framework. However, because only 6278 bacterial artificial chromosome (BACs) in the physical map were sequenced, fine structure was limited. To gain access to the gene-containing portion of the barley genome at high resolution, we identified and sequenced 15 622 BACs representing the minimal tiling path of 72 052 physical-mapped gene-bearing BACs. This generated ~1.7 Gb of genomic sequence containing an estimated 2/3 of all Morex barley genes. Exploration of these sequenced BACs revealed that although distal ends of chromosomes contain most of the gene-enriched BACs and are characterized by high recombination rates, there are also gene-dense regions with suppressed recombination. We made use of published map-anchored sequence data from Aegilops tauschii to develop a synteny viewer between barley and the ancestor of the wheat D-genome. Except for some notable inversions, there is a high level of collinearity between the two species. The software HarvEST:Barley provides facile access to BAC sequences and their annotations, along with the barley-Ae. tauschii synteny viewer. These BAC sequences constitute a resource to improve the efficiency of marker development, map-based cloning, and comparative genomics in barley and related crops. Additional knowledge about regions of the barley genome that are gene-dense but low recombination is particularly relevant.

  17. Diversification of the celiac disease α-gliadin complex in wheat: a 33-mer peptide with six overlapping epitopes, evolved following polyploidization.

    PubMed

    Ozuna, Carmen V; Iehisa, Julio C M; Giménez, María J; Alvarez, Juan B; Sousa, Carolina; Barro, Francisco

    2015-06-01

    The gluten proteins from wheat, barley and rye are responsible both for celiac disease (CD) and for non-celiac gluten sensitivity, two pathologies affecting up to 6-8% of the human population worldwide. The wheat α-gliadin proteins contain three major CD immunogenic peptides: p31-43, which induces the innate immune response; the 33-mer, formed by six overlapping copies of three highly stimulatory epitopes; and an additional DQ2.5-glia-α3 epitope which partially overlaps with the 33-mer. Next-generation sequencing (NGS) and Sanger sequencing of α-gliadin genes from diploid and polyploid wheat provided six types of α-gliadins (named 1-6) with strong differences in their frequencies in diploid and polyploid wheat, and in the presence and abundance of these CD immunogenic peptides. Immunogenic variants of the p31-43 peptide were found in most of the α-gliadins. Variants of the DQ2.5-glia-α3 epitope were associated with specific types of α-gliadins. Remarkably, only type 1 α-gliadins contained 33-mer epitopes. Moreover, the full immunodominant 33-mer fragment was only present in hexaploid wheat at low abundance, probably as the result of allohexaploidization events from subtype 1.2 α-gliadins found only in Aegilops tauschii, the D-genome donor of hexaploid wheat. Type 3 α-gliadins seem to be the ancestral type as they are found in most of the α-gliadin-expressing Triticeae species. These findings are important for reducing the incidence of CD by the breeding/selection of wheat varieties with low stimulatory capacity of T cells. Moreover, advanced genome-editing techniques (TALENs, CRISPR) will be easier to implement on the small group of α-gliadins containing only immunogenic peptides.

  18. Exceptionally High Levels of Genetic Diversity in Wheat Curl Mite (Acari: Eriophyidae) Populations from Turkey.

    PubMed

    Szydło, W; Hein, G; Denizhan, E; Skoracka, A

    2015-08-01

    Recent research on the wheat curl mite species complex has revealed extensive genetic diversity that has distinguished several genetic lineages infesting bread wheat (Triticum aestivum L.) and other cereals worldwide. Turkey is the historical region of wheat and barley (Hordeum vulgare L.) domestication and diversification. The close relationship between these grasses and the wheat curl mite provoked the question of the genetic diversity of the wheat curl mite in this region. The scope of the study was to investigate genetic differentiation within the wheat curl mite species complex on grasses in Turkey. Twenty-one wheat curl mite populations from 16 grass species from nine genera (Agropyron sp., Aegilops sp., Bromus sp., Elymus sp., Eremopyrum sp., Hordeum sp., Poa sp., Secale sp., and Triticum sp.) were sampled in eastern and southeastern Turkey for genetic analyses. Two molecular markers were amplified: the cytochrome oxidase subunit I coding region of mtDNA (COI) and the D2 region of 28S rDNA. Phylogenetic analyses revealed high genetic variation of the wheat curl mite in Turkey, primarily on Bromus and Hordeum spp., and exceptionally high diversity of populations associated with bread wheat. Three wheat-infesting wheat curl mite lineages known to occur on other continents of the world, including North and South America, Australia and Europe, were found in Turkey, and at least two new genetic lineages were discovered. These regions of Turkey exhibit rich wheat curl mite diversity on native grass species. The possible implications for further studies on the wheat curl mite are discussed.

  19. Genome-wide analysis of short interspersed nuclear elements SINES revealed high sequence conservation, gene association and retrotranspositional activity in wheat

    PubMed Central

    Ben-David, Smadar; Yaakov, Beery; Kashkush, Khalil

    2013-01-01

    Short interspersed nuclear elements (SINEs) are non-autonomous non-LTR retroelements that are present in most eukaryotic species. While SINEs have been intensively investigated in humans and other animal systems, they are poorly studied in plants, especially in wheat (Triticum aestivum). We used quantitative PCR of various wheat species to determine the copy number of a wheat SINE family, termed Au SINE, combined with computer-assisted analyses of the publicly available 454 pyrosequencing database of T. aestivum. In addition, we utilized site-specific PCR on 57 Au SINE insertions, transposon methylation display and transposon display on newly formed wheat polyploids to assess retrotranspositional activity, epigenetic status and genetic rearrangements in Au SINE, respectively. We retrieved 3706 different insertions of Au SINE from the 454 pyrosequencing database of T. aestivum, and found that most of the elements are inserted in A/T-rich regions, while approximately 38% of the insertions are associated with transcribed regions, including known wheat genes. We observed typical retrotransposition of Au SINE in the second generation of a newly formed wheat allohexaploid, and massive hypermethylation in CCGG sites surrounding Au SINE in the third generation. Finally, we observed huge differences in the copy numbers in diploid Triticum and Aegilops species, and a significant increase in the copy numbers in natural wheat polyploids, but no significant increase in the copy number of Au SINE in the first four generations for two of three newly formed allopolyploid species used in this study. Our data indicate that SINEs may play a prominent role in the genomic evolution of wheat through stress-induced activation. PMID:23855320

  20. High mature grain phytase activity in the Triticeae has evolved by duplication followed by neofunctionalization of the purple acid phosphatase phytase (PAPhy) gene

    PubMed Central

    Brinch-Pedersen, Henrik

    2013-01-01

    The phytase activity in food and feedstuffs is an important nutritional parameter. Members of the Triticeae tribe accumulate purple acid phosphatase phytases (PAPhy) during grain filling. This accumulation elevates mature grain phytase activities (MGPA) up to levels between ~650 FTU/kg for barley and 6000 FTU/kg for rye. This is notably more than other cereals. For instance, rice, maize, and oat have MGPAs below 100 FTU/kg. The cloning and characterization of the PAPhy gene complement from wheat, barley, rye, einkorn, and Aegilops tauschii is reported here. The Triticeae PAPhy genes generally consist of a set of paralogues, PAPhy_a and PAPhy_b, and have been mapped to Triticeae chromosomes 5 and 3, respectively. The promoters share a conserved core but the PAPhy_a promoter have acquired a novel cis-acting regulatory element for expression during grain filling while the PAPhy_b promoter has maintained the archaic function and drives expression during germination. Brachypodium is the only sequenced Poaceae sharing the PAPhy duplication. As for the Triticeae, the duplication is reflected in a high MGPA of ~4200 FTU/kg in Brachypodium. The sequence conservation of the paralogous loci on Brachypodium chromosomes 1 and 2 does not extend beyond the PAPhy gene. The results indicate that a single-gene segmental duplication may have enabled the evolution of high MGPA by creating functional redundancy of the parent PAPhy gene. This implies that similar MGPA levels may be out of reach in breeding programs for some Poaceae, e.g. maize and rice, whereas Triticeae breeders should focus on PAPhy_a. PMID:23918958

  1. Characterization and Expression Analysis of Phytoene Synthase from Bread Wheat (Triticum aestivum L.)

    PubMed Central

    Flowerika; Alok, Anshu; Kumar, Jitesh; Thakur, Neha; Pandey, Ashutosh; Pandey, Ajay Kumar; Upadhyay, Santosh Kumar; Tiwari, Siddharth

    2016-01-01

    Phytoene synthase (PSY) regulates the first committed step of the carotenoid biosynthetic pathway in plants. The present work reports identification and characterization of the three PSY genes (TaPSY1, TaPSY2 and TaPSY3) in wheat (Triticum aestivum L.). The TaPSY1, TaPSY2, and TaPSY3 genes consisted of three homoeologs on the long arm of group 7 chromosome (7L), short arm of group 5 chromosome (5S), and long arm of group 5 chromosome (5L), respectively in each subgenomes (A, B, and D) with a similarity range from 89% to 97%. The protein sequence analysis demonstrated that TaPSY1 and TaPSY3 retain most of conserved motifs for enzyme activity. Phylogenetic analysis of all TaPSY revealed an evolutionary relationship among PSY proteins of various monocot species. TaPSY derived from A and D subgenomes shared proximity to the PSY of Triticum urartu and Aegilops tauschii, respectively. The differential expression of TaPSY1, TaPSY2, and TaPSY3 in the various tissues, seed development stages, and stress treatments suggested their role in plant development, and stress condition. TaPSY3 showed higher expression in all tissues, followed by TaPSY1. The presence of multiple stress responsive cis-regulatory elements in promoter region of TaPSY3 correlated with the higher expression during drought and heat stresses has suggested their role in these conditions. The expression pattern of TaPSY3 was correlated with the accumulation of β-carotene in the seed developmental stages. Bacterial complementation assay has validated the functional activity of each TaPSY protein. Hence, TaPSY can be explored in developing genetically improved wheat crop. PMID:27695116

  2. Nonhost resistance to rust pathogens – a continuation of continua

    PubMed Central

    Bettgenhaeuser, Jan; Gilbert, Brian; Ayliffe, Michael; Moscou, Matthew J.

    2014-01-01

    The rust fungi (order: Pucciniales) are a group of widely distributed fungal plant pathogens, which can infect representatives of all vascular plant groups. Rust diseases significantly impact several crop species and considerable research focuses on understanding the basis of host specificity and nonhost resistance. Like many pathogens, rust fungi vary considerably in the number of hosts they can infect, such as wheat leaf rust (Puccinia triticina), which can only infect species in the genera Triticum and Aegilops, whereas Asian soybean rust (Phakopsora pachyrhizi) is known to infect over 95 species from over 42 genera. A greater understanding of the genetic basis determining host range has the potential to identify sources of durable resistance for agronomically important crops. Delimiting the boundary between host and nonhost has been complicated by the quantitative nature of phenotypes in the transition between these two states. Plant–pathogen interactions in this intermediate state are characterized either by (1) the majority of accessions of a species being resistant to the rust or (2) the rust only being able to partially complete key components of its life cycle. This leads to a continuum of disease phenotypes in the interaction with different plant species, observed as a range from compatibility (host) to complete immunity within a species (nonhost). In this review we will highlight how the quantitative nature of disease resistance in these intermediate interactions is caused by a continuum of defense barriers, which a pathogen needs to overcome for successfully establishing itself in the host. To illustrate continua as this underlying principle, we will discuss the advances that have been made in studying nonhost resistance towards rust pathogens, particularly cereal rust pathogens. PMID:25566270

  3. Structural organization of the barley D-hordein locus in comparison with its orthologous regions of wheat genomes.

    PubMed

    Gu, Yong Qiang; Anderson, Olin D; Londeorë, Cynthia F; Kong, Xiuying; Chibbar, Ravindra N; Lazo, Gerard R

    2003-12-01

    D hordein, a prolamin storage protein of barley endosperms, is highly homologous to the high molecular weight (HWM) glutenin subunits, which are the major determinants of bread-making quality in wheat flour. In hexaploid wheat (AABBDD), each genome contains two paralogous copies of HMW-glutenin genes that encode the x- and y-type HMW-glutenin subunits. Previously, we reported the sequence analysis of a 102-kb genomic region that contains the HMW-glutenin locus of the D genome from Aegilops tauschii, the donor of the D genome of hexaploid wheat. Here, we present the sequence analysis of a 120-kb D-hordein region of the barley genome, a more distantly related member of the Triticeae grass tribe. Comparative sequence analysis revealed that gene content and order are generally conserved. Genes included in both of these orthologous regions are arranged in the following order: a Xa21-like receptor kinase, an endosperm globulin, an HMW prolamin, and a serine (threonine) protein kinase. However, in the wheat D genome, a region containing both the globulin and HMW-glutenin gene was duplicated, indicating that this duplication event occurred after the separation of the wheat and barley genomes. The intergenic regions are divergent with regard to the sequence and structural organization. It was found that different types of retroelements are responsible for the intergenic structure divergence in the wheat and barley genomes. In the barley region, we identified 16 long terminal repeat (LTR) retrotransposons in three distinct nested clusters. These retroelements account for 63% of the contig sequence. In addition, barley D hordein was compared with wheat HMW glutenins in terms of cysteine residue conservation and repeat domain organization.

  4. SNP Discovery for mapping alien introgressions in wheat

    PubMed Central

    2014-01-01

    Background Monitoring alien introgressions in crop plants is difficult due to the lack of genetic and molecular mapping information on the wild crop relatives. The tertiary gene pool of wheat is a very important source of genetic variability for wheat improvement against biotic and abiotic stresses. By exploring the 5Mg short arm (5MgS) of Aegilops geniculata, we can apply chromosome genomics for the discovery of SNP markers and their use for monitoring alien introgressions in wheat (Triticum aestivum L). Results The short arm of chromosome 5Mg of Ae. geniculata Roth (syn. Ae. ovata L.; 2n = 4x = 28, UgUgMgMg) was flow-sorted from a wheat line in which it is maintained as a telocentric chromosome. DNA of the sorted arm was amplified and sequenced using an Illumina Hiseq 2000 with ~45x coverage. The sequence data was used for SNP discovery against wheat homoeologous group-5 assemblies. A total of 2,178 unique, 5MgS-specific SNPs were discovered. Randomly selected samples of 59 5MgS-specific SNPs were tested (44 by KASPar assay and 15 by Sanger sequencing) and 84% were validated. Of the selected SNPs, 97% mapped to a chromosome 5Mg addition to wheat (the source of t5MgS), and 94% to 5Mg introgressed from a different accession of Ae. geniculata substituting for chromosome 5D of wheat. The validated SNPs also identified chromosome segments of 5MgS origin in a set of T5D-5Mg translocation lines; eight SNPs (25%) mapped to TA5601 [T5DL · 5DS-5MgS(0.75)] and three (8%) to TA5602 [T5DL · 5DS-5MgS (0.95)]. SNPs (gsnp_5ms83 and gsnp_5ms94), tagging chromosome T5DL · 5DS-5MgS(0.95) with the smallest introgression carrying resistance to leaf rust (Lr57) and stripe rust (Yr40), were validated in two released germplasm lines with Lr57 and Yr40 genes. Conclusion This approach should be widely applicable for the identification of species/genome-specific SNPs. The development of a large number of SNP markers will facilitate the precise introgression and

  5. Multigenic phylogeny and analysis of tree incongruences in Triticeae (Poaceae)

    PubMed Central

    2011-01-01

    Background Introgressive events (e.g., hybridization, gene flow, horizontal gene transfer) and incomplete lineage sorting of ancestral polymorphisms are a challenge for phylogenetic analyses since different genes may exhibit conflicting genealogical histories. Grasses of the Triticeae tribe provide a particularly striking example of incongruence among gene trees. Previous phylogenies, mostly inferred with one gene, are in conflict for several taxon positions. Therefore, obtaining a resolved picture of relationships among genera and species of this tribe has been a challenging task. Here, we obtain the most comprehensive molecular dataset to date in Triticeae, including one chloroplastic and 26 nuclear genes. We aim to test whether it is possible to infer phylogenetic relationships in the face of (potentially) large-scale introgressive events and/or incomplete lineage sorting; to identify parts of the evolutionary history that have not evolved in a tree-like manner; and to decipher the biological causes of gene-tree conflicts in this tribe. Results We obtain resolved phylogenetic hypotheses using the supermatrix and Bayesian Concordance Factors (BCF) approaches despite numerous incongruences among gene trees. These phylogenies suggest the existence of 4-5 major clades within Triticeae, with Psathyrostachys and Hordeum being the deepest genera. In addition, we construct a multigenic network that highlights parts of the Triticeae history that have not evolved in a tree-like manner. Dasypyrum, Heteranthelium and genera of clade V, grouping Secale, Taeniatherum, Triticum and Aegilops, have evolved in a reticulated manner. Their relationships are thus better represented by the multigenic network than by the supermatrix or BCF trees. Noteworthy, we demonstrate that gene-tree incongruences increase with genetic distance and are greater in telomeric than centromeric genes. Together, our results suggest that recombination is the main factor decoupling gene trees from

  6. Structural analysis of chloroplast DNA in Prunus (Rosaceae): evolution, genetic diversity and unequal mutations.

    PubMed

    Katayama, H; Uematsu, C

    2005-11-01

    In order to understand the evolutionary aspects of the chloroplast DNA (cpDNA) structures in Rosaceous plants, a physical map of peach (Prunus persica cv. Hakuhou) cpDNA was constructed. Fourteen lambda phage clones which covered the entire sequence of the peach cpDNA were digested by restriction enzymes (SalI, XhoI, BamHI, SacI, and PstI) used singly or in combination. The molecular size of peach cpDNA was estimated to be about 152 kb. The gene order and contents were revealed to be equivalent to those of standard type of angiosperms by the localization of 31 genes on the physical map. Eighteen accessions from 14 Prunus species (P. persica, P. mira, P. davidiana, P. cerasis, P. cerasifera, P. domestica, P. insititia, P. spinosa, P. salicina, P. maritima, P. armeniaca, P. mume, P. tomentosa, P. zippeliana, and P. salicifolia) and one interspecific hybrid were used for the structural analysis of cpDNAs. Seventeen mutations (16 recognition site changes and one length mutation) were found in the cpDNA of these 18 accessions by RFLP analysis allowing a classification into 11 genome types. Although the base substitution rate in the recognition site (100p = 0.72) of cpDNA in Prunus was similar to that of other plants, i.e., Triticum-Aegilops, Brassica, and Pisum, it differed from Pyrus (100p = 0.15) in Rosaceae. Seven mutations including one length mutation were densely located within a region of about 9.1 kb which includes psbA and atpA in the left border of a large single-copy region of Prunus cpDNAs. The length mutation was detected only in P. persica and consisted of a 277 bp deletion which occurred in a spacer region between the trnS and trnG genes within the 9.1 kb region. Additional fragment length mutations (insertion/deletion), which were not detected by RFLP analysis, were revealed by PCR and sequence analyses in P. zippeliana and P. salicifolia. All of these length mutations occurred within the 9.1 kb region between psbA and atpA. This region could be an intra

  7. Characterization of Quantitative Trait Loci Controlling Genetic Variation for Preharvest Sprouting in Synthetic Backcross-Derived Wheat Lines

    PubMed Central

    Imtiaz, Muhammad; Ogbonnaya, Francis C.; Oman, Jason; van Ginkel, Maarten

    2008-01-01

    Aegilops tauschii, the wild relative of wheat, has stronger seed dormancy, a major component of preharvest sprouting resistance (PHSR), than bread wheat. A diploid Ae. tauschii accession (AUS18836) and a tetraploid (Triticum turgidum L. ssp. durum var. Altar84) wheat were used to construct a synthetic wheat (Syn37). The genetic architecture of PHS was investigated in 271 BC1F7 synthetic backcross lines (SBLs) derived from Syn37/2*Janz (resistant/susceptible). The SBLs were evaluated in three environments over 2 years and PHS was assessed by way of three measures: the germination index (GI), which measures grain dormancy, the whole spike assay (SI), which takes into account all spike morphology, and counted visually sprouted seeds out of 200 (VI). Grain color was measured using both Chroma Meter- and NaOH-based approaches. QTL for PHSR and grain color were mapped and their additive and epistatic effects as well as their interactions with environment were estimated by a mixed linear-model approach. Single-locus analysis following composite interval mapping revealed four QTL for GI, two QTL for SI, and four QTL for VI on chromosomes 3DL and 4AL. The locus QPhs.dpiv-3D.1 on chromosome 3DL was tightly linked to the red grain color (RGC) at a distance of 5 cM. The other locus on chromosome 3D, “QPhs.dpiv-3D.2” was independent of RGC locus. Two-locus analysis detected nine QTL with main effects and 18 additive × additive interactions for GI, SI, and VI. Two of the nine main effects QTL and two epistatic QTL showed significant interactions with environments. Both additive and epistatic effects contributed to phenotypic variance in PHSR and the identified markers are potential candidates for marker-assisted selection of favorable alleles at multiple loci. SBLs derived from Ae. tauschii proved to be a promising tool to dissect, introgress, and pyramid different PHSR genes into adapted wheat genetic backgrounds. The enhanced expression of PHS resistance in SBLs enabled