Science.gov

Sample records for aegilops tauschii genome

  1. Dissecting miRNAs in Wheat D Genome Progenitor, Aegilops tauschii.

    PubMed

    Akpinar, Bala A; Budak, Hikmet

    2016-01-01

    As the post-transcriptional regulators of gene expression, microRNAs or miRNAs comprise an integral part of understanding how genomes function. Although miRNAs have been a major focus of recent efforts, miRNA research is still in its infancy in most plant species. Aegilops tauschii, the D genome progenitor of bread wheat, is a wild diploid grass exhibiting remarkable population diversity. Due to the direct ancestry and the diverse gene pool, A. tauschii is a promising source for bread wheat improvement. In this study, a total of 87 Aegilops miRNA families, including 51 previously unknown, were computationally identified both at the subgenomic level, using flow-sorted A. tauschii 5D chromosome, and at the whole genome level. Predictions at the genomic and subgenomic levels suggested A. tauschii 5D chromosome as rich in pre-miRNAs that are highly associated with Class II DNA transposons. In order to gain insights into miRNA evolution, putative 5D chromosome miRNAs were compared to its modern ortholog, Triticum aestivum 5D chromosome, revealing that 48 of the 58 A. tauschii 5D miRNAs were conserved in orthologous T. aestivum 5D chromosome. The expression profiles of selected miRNAs (miR167, miR5205, miR5175, miR5523) provided the first experimental evidence for miR5175, miR5205 and miR5523, and revealed differential expressional changes in response to drought in different genetic backgrounds for miR167 and miR5175. Interestingly, while miR5523 coding regions were present and expressed as pre-miR5523 in both T. aestivum and A. tauschii, the expression of mature miR5523 was observed only in A. tauschii under normal conditions, pointing out to an interference at the downstream processing of pre-miR5523 in T. aestivum. Overall, this study expands our knowledge on the miRNA catalog of A. tauschii, locating a subset specifically to the 5D chromosome, with ample functional and comparative insight which should contribute to and complement efforts to develop drought tolerant

  2. Dissecting miRNAs in Wheat D Genome Progenitor, Aegilops tauschii.

    PubMed

    Akpinar, Bala A; Budak, Hikmet

    2016-01-01

    As the post-transcriptional regulators of gene expression, microRNAs or miRNAs comprise an integral part of understanding how genomes function. Although miRNAs have been a major focus of recent efforts, miRNA research is still in its infancy in most plant species. Aegilops tauschii, the D genome progenitor of bread wheat, is a wild diploid grass exhibiting remarkable population diversity. Due to the direct ancestry and the diverse gene pool, A. tauschii is a promising source for bread wheat improvement. In this study, a total of 87 Aegilops miRNA families, including 51 previously unknown, were computationally identified both at the subgenomic level, using flow-sorted A. tauschii 5D chromosome, and at the whole genome level. Predictions at the genomic and subgenomic levels suggested A. tauschii 5D chromosome as rich in pre-miRNAs that are highly associated with Class II DNA transposons. In order to gain insights into miRNA evolution, putative 5D chromosome miRNAs were compared to its modern ortholog, Triticum aestivum 5D chromosome, revealing that 48 of the 58 A. tauschii 5D miRNAs were conserved in orthologous T. aestivum 5D chromosome. The expression profiles of selected miRNAs (miR167, miR5205, miR5175, miR5523) provided the first experimental evidence for miR5175, miR5205 and miR5523, and revealed differential expressional changes in response to drought in different genetic backgrounds for miR167 and miR5175. Interestingly, while miR5523 coding regions were present and expressed as pre-miR5523 in both T. aestivum and A. tauschii, the expression of mature miR5523 was observed only in A. tauschii under normal conditions, pointing out to an interference at the downstream processing of pre-miR5523 in T. aestivum. Overall, this study expands our knowledge on the miRNA catalog of A. tauschii, locating a subset specifically to the 5D chromosome, with ample functional and comparative insight which should contribute to and complement efforts to develop drought tolerant

  3. Dissecting miRNAs in Wheat D Genome Progenitor, Aegilops tauschii

    PubMed Central

    Akpinar, Bala A.; Budak, Hikmet

    2016-01-01

    As the post-transcriptional regulators of gene expression, microRNAs or miRNAs comprise an integral part of understanding how genomes function. Although miRNAs have been a major focus of recent efforts, miRNA research is still in its infancy in most plant species. Aegilops tauschii, the D genome progenitor of bread wheat, is a wild diploid grass exhibiting remarkable population diversity. Due to the direct ancestry and the diverse gene pool, A. tauschii is a promising source for bread wheat improvement. In this study, a total of 87 Aegilops miRNA families, including 51 previously unknown, were computationally identified both at the subgenomic level, using flow-sorted A. tauschii 5D chromosome, and at the whole genome level. Predictions at the genomic and subgenomic levels suggested A. tauschii 5D chromosome as rich in pre-miRNAs that are highly associated with Class II DNA transposons. In order to gain insights into miRNA evolution, putative 5D chromosome miRNAs were compared to its modern ortholog, Triticum aestivum 5D chromosome, revealing that 48 of the 58 A. tauschii 5D miRNAs were conserved in orthologous T. aestivum 5D chromosome. The expression profiles of selected miRNAs (miR167, miR5205, miR5175, miR5523) provided the first experimental evidence for miR5175, miR5205 and miR5523, and revealed differential expressional changes in response to drought in different genetic backgrounds for miR167 and miR5175. Interestingly, while miR5523 coding regions were present and expressed as pre-miR5523 in both T. aestivum and A. tauschii, the expression of mature miR5523 was observed only in A. tauschii under normal conditions, pointing out to an interference at the downstream processing of pre-miR5523 in T. aestivum. Overall, this study expands our knowledge on the miRNA catalog of A. tauschii, locating a subset specifically to the 5D chromosome, with ample functional and comparative insight which should contribute to and complement efforts to develop drought tolerant

  4. A 4-gigabase physical map unlocks the structure and evolution of the complex genome of Aegilops tauschii, the wheat D-genome progenitor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The current limitations in genome sequencing technology require the construction of physical maps for high-quality draft sequences of large plant genomes, such as that of Aegilops tauschii, the wheat D-genome progenitor. To construct a physical map of the Ae. tauschii genome, we fingerprinted 461,70...

  5. Genome-wide association study of drought-related resistance traits in Aegilops tauschii

    PubMed Central

    Qin, Peng; Lin, Yu; Hu, Yaodong; Liu, Kun; Mao, Shuangshuang; Li, Zhanyi; Wang, Jirui; Liu, Yaxi; Wei, Yuming; Zheng, Youliang

    2016-01-01

    Abstract The D-genome progenitor of wheat (Triticum aestivum), Aegilops tauschii, possesses numerous genes for resistance to abiotic stresses, including drought. Therefore, information on the genetic architecture of A. tauschii can aid the development of drought-resistant wheat varieties. Here, we evaluated 13 traits in 373 A. tauschii accessions grown under normal and polyethylene glycol-simulated drought stress conditions and performed a genome-wide association study using 7,185 single nucleotide polymorphism (SNP) markers. We identified 208 and 28 SNPs associated with all traits using the general linear model and mixed linear model, respectively, while both models detected 25 significant SNPs with genome-wide distribution. Public database searches revealed several candidate/flanking genes related to drought resistance that were grouped into three categories according to the type of encoded protein (enzyme, storage protein, and drought-induced protein). This study provided essential information for SNPs and genes related to drought resistance in A. tauschii and wheat, and represents a foundation for breeding drought-resistant wheat cultivars using marker-assisted selection. PMID:27560650

  6. Genome-wide association study of drought-related resistance traits in Aegilops tauschii.

    PubMed

    Qin, Peng; Lin, Yu; Hu, Yaodong; Liu, Kun; Mao, Shuangshuang; Li, Zhanyi; Wang, Jirui; Liu, Yaxi; Wei, Yuming; Zheng, Youliang

    2016-01-01

    The D-genome progenitor of wheat (Triticum aestivum), Aegilops tauschii, possesses numerous genes for resistance to abiotic stresses, including drought. Therefore, information on the genetic architecture of A. tauschii can aid the development of drought-resistant wheat varieties. Here, we evaluated 13 traits in 373 A. tauschii accessions grown under normal and polyethylene glycol-simulated drought stress conditions and performed a genome-wide association study using 7,185 single nucleotide polymorphism (SNP) markers. We identified 208 and 28 SNPs associated with all traits using the general linear model and mixed linear model, respectively, while both models detected 25 significant SNPs with genome-wide distribution. Public database searches revealed several candidate/flanking genes related to drought resistance that were grouped into three categories according to the type of encoded protein (enzyme, storage protein, and drought-induced protein). This study provided essential information for SNPs and genes related to drought resistance in A. tauschii and wheat, and represents a foundation for breeding drought-resistant wheat cultivars using marker-assisted selection. PMID:27560650

  7. Stem rust resistance in Aegilops tauschii germplasm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aegilops tauschii Cosson, the D genome donor of hexaploid wheat, Triticum aestivum L., has been used extensively for the transfer of agronomically important traits to wheat, including stem rust resistance genes Sr33, Sr45, and Sr46. In order to identify potentially new stem rust resistance genes in ...

  8. Genome-wide identification of novel genetic markers from RNA sequencing assembly of diverse Aegilops tauschii accessions.

    PubMed

    Nishijima, Ryo; Yoshida, Kentaro; Motoi, Yuka; Sato, Kazuhiro; Takumi, Shigeo

    2016-08-01

    The wild species in the Triticeae tribe are tremendous resources for crop breeding due to their abundant natural variation. However, their huge and highly repetitive genomes have hindered the establishment of physical maps and the completeness of their genome sequences. To develop molecular markers for the efficient utilization of their valuable traits while avoiding their genome complexity, we assembled RNA sequences of ten representative accessions of Aegilops tauschii, the progenitor of the wheat D genome, and estimated single nucleotide polymorphisms (SNPs) and insertions/deletions (indels). The deduced unigenes were anchored to the chromosomes of Ae. tauschii and barley. The SNPs and indels in the anchored unigenes, covering entire chromosomes, were sufficient for linkage map construction, even in combinations between the genetically closest accessions. Interestingly, the resolution of SNP and indel distribution on barley chromosomes was slightly higher than on Ae. tauschii chromosomes. Since barley chromosomes are regarded as virtual chromosomes of Triticeae species, our strategy allows capture of genetic markers arranged on the chromosomes in order based on the conserved synteny. The resolution of these genetic markers will be comparable to that of the Ae. tauschii whose draft genome sequence is available. Our procedure should be applicable to marker development for Triticeae species, which have no draft sequences available.

  9. A 4-gigabase physical map unlocks the structure and evolution of the complex genome of Aegilops tauschii, the wheat D-genome progenitor

    PubMed Central

    Luo, Ming-Cheng; Gu, Yong Q.; You, Frank M.; Deal, Karin R.; Ma, Yaqin; Hu, Yuqin; Huo, Naxin; Wang, Yi; Wang, Jirui; Chen, Shiyong; Jorgensen, Chad M.; Zhang, Yong; McGuire, Patrick E.; Pasternak, Shiran; Stein, Joshua C.; Ware, Doreen; Kramer, Melissa; McCombie, W. Richard; Kianian, Shahryar F.; Martis, Mihaela M.; Mayer, Klaus F. X.; Sehgal, Sunish K.; Li, Wanlong; Gill, Bikram S.; Bevan, Michael W.; Šimková, Hana; Doležel, Jaroslav; Weining, Song; Lazo, Gerard R.; Anderson, Olin D.; Dvorak, Jan

    2013-01-01

    The current limitations in genome sequencing technology require the construction of physical maps for high-quality draft sequences of large plant genomes, such as that of Aegilops tauschii, the wheat D-genome progenitor. To construct a physical map of the Ae. tauschii genome, we fingerprinted 461,706 bacterial artificial chromosome clones, assembled contigs, designed a 10K Ae. tauschii Infinium SNP array, constructed a 7,185-marker genetic map, and anchored on the map contigs totaling 4.03 Gb. Using whole genome shotgun reads, we extended the SNP marker sequences and found 17,093 genes and gene fragments. We showed that collinearity of the Ae. tauschii genes with Brachypodium distachyon, rice, and sorghum decreased with phylogenetic distance and that structural genome evolution rates have been high across all investigated lineages in subfamily Pooideae, including that of Brachypodieae. We obtained additional information about the evolution of the seven Triticeae chromosomes from 12 ancestral chromosomes and uncovered a pattern of centromere inactivation accompanying nested chromosome insertions in grasses. We showed that the density of noncollinear genes along the Ae. tauschii chromosomes positively correlates with recombination rates, suggested a cause, and showed that new genes, exemplified by disease resistance genes, are preferentially located in high-recombination chromosome regions. PMID:23610408

  10. Fine mapping of Hch1, the causal D-genome gene for hybrid chlorosis in interspecific crosses between tetraploid wheat and Aegilops tauschii.

    PubMed

    Hirao, Kana; Nishijima, Ryo; Sakaguchi, Kohei; Takumi, Shigeo

    2015-01-01

    Hybrid chlorosis, one of the reproductive barriers between tetraploid wheat and its D-genome progenitor, Aegilops tauschii, inhibits normal growth of synthetic wheat hexaploids. Hybrid chlorosis appears to be due to an epistatic interaction of two loci from the AB and D wheat genomes. Our previous study assigned the causal D-genome gene for hybrid chlorosis, Hch1, to the short arm of chromosome 7D. Here, we constructed a fine map of 7DS near Hch1 using 280 F2 individuals from a cross of two wheat synthetic lines, one showing normal growth and the other showing hybrid chlorosis. The hybrid chlorosis phenotype was controlled by a single dominant allele of the Hch1 locus in the synthetic hexaploids. Hch1 was closely linked to four new markers within 0.2 cM, and may be localized near or within the two Ae. tauschii scaffolds containing the linked markers on 7DS. Comparative analysis of the Hch1 chromosomal region for Ae. tauschii, barley and Brachypodium showed that a local inversion occurred in the region proximal to Hch1 during the divergence between barley and Ae. tauschii, and that the Hch1 region on wheat 7DS is syntenic to Brachypodium chromosome 1. These observations provide useful information for further studies toward map-based cloning of Hch1. PMID:26687862

  11. Simultaneous transfer, introgression, and genomic localization of genes for resistance to stem rust race TTKSK (Ug99) from Aegilops tauschii to wheat.

    PubMed

    Olson, Eric L; Rouse, Matthew N; Pumphrey, Michael O; Bowden, Robert L; Gill, Bikram S; Poland, Jesse A

    2013-05-01

    Wheat production is currently threatened by widely virulent races of the wheat stem rust fungus, Puccinia graminis f. sp. tritici, that are part of the TTKSK (also known as 'Ug99') race group. The diploid D genome donor species Aegilops tauschii (2n = 2x = 14, DD) is a readily accessible source of resistance to TTKSK and its derivatives that can be transferred to hexaploid wheat, Triticum aestivum (2n = 6x = 42, AABBDD). To expedite transfer of TTKSK resistance from Ae. tauschii, a direct hybridization approach was undertaken that integrates gene transfer, mapping, and introgression into one process. Direct crossing of Ae. tauschii accessions with an elite wheat breeding line combines the steps of gene transfer and introgression while development of mapping populations during gene transfer enables the identification of closely linked markers. Direct crosses were made using TTKSK-resistant Ae. tauschii accessions TA1662 and PI 603225 as males and a stem rust-susceptible T. aestivum breeding line, KS05HW14, as a female. Embryo rescue enabled recovery of F1 (ABDD) plants that were backcrossed as females to the hexaploid recurrent parent. Stem rust-resistant BC1F1 plants from each Ae. tauschii donor source were used as males to generate BC2F1 mapping populations. Bulked segregant analysis of BC2F1 genotypes was performed using 70 SSR loci distributed across the D genome. Using this approach, stem rust resistance genes from both accessions were located on chromosome arm 1DS and mapped using SSR and EST-STS markers. An allelism test indicated the stem rust resistance gene transferred from PI 603225 is Sr33. Race specificity suggests the stem rust resistance gene transferred from TA1662 is unique and this gene has been temporarily designated SrTA1662. Stem rust resistance genes derived from TA1662 and PI 603225 have been made available with selectable molecular markers in genetic backgrounds suitable for stem rust resistance breeding.

  12. Introgression of stem rust resistance genes SrTA10187 and SrTA10171 from Aegilops tauschii to wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The diploid progenitor of the wheat D genome, Aegilops tauschii, has provided a wealth of genes for resistance to many diseases and insect pests of wheat. Ae. tauschii is a readily accessible pool of genes for wheat breeding as genes can be transferred to elite wheat cultivars though direct hybridi...

  13. Applicability of Aegilops tauschii drought tolerance traits to breeding of hexaploid wheat.

    PubMed

    Sohail, Quahir; Inoue, Tomoe; Tanaka, Hiroyuki; Eltayeb, Amin Elsadig; Matsuoka, Yoshihiro; Tsujimoto, Hisashi

    2011-12-01

    Few genes are available to develop drought-tolerant bread wheat (Triticum aestivum L.) cultivars. One way to enhance bread wheat's genetic diversity would be to take advantage of the diversity of wild species by creating synthetic hexaploid wheat (SW) with the genomic constitution of bread wheat. In this study, we compared the expression of traits encoded at different ploidy levels and evaluated the applicability of Aegilops tauschii drought-related traits using 33 Ae. tauschii accessions along with their corresponding SW lines under well-watered and drought conditions. We found wide variation in Ae. tauschii, and even wider variation in the SW lines. Some SW lines were more drought-tolerant than the standard cultivar Cham 6. Aegilops tauschii from some regions gave better performing SW lines. The traits of Ae. tauschii were not significantly correlated with their corresponding SW lines, indicating that the traits expressed in wild diploid relatives of wheat may not predict the traits that will be expressed in SW lines derived from them. We suggest that, regardless of the adaptability and performance of the Ae. tauschii under drought, production of SW could probably result in genotypes with enhanced trait expression due to gene interactions, and that the traits of the synthetic should be evaluated in hexaploid level.

  14. Evaluation of Aegilops tauschii and Aegilops speltoides for acquired thermotolerance: Implications in wheat breeding programmes.

    PubMed

    Hairat, Suboot; Khurana, Paramjit

    2015-10-01

    Severe and frequent heat waves are predicted in the near future having dramatic and far-reaching ecological and social impact. The aim of this study was to examine acquired thermotolerance of two Aegilops species: Aegilops tauschii and Aegilops speltoides and study their potential adaptive mechanisms. The effect of two episodes of high heat stress (45 °C/12 h) with a day of recovery period was investigated on their physiology. As compared to A. speltoides, A. tauschii suffered less inhibition of photosystem II efficiency and net photosynthetic rate (Pn). Although A. tauschii showed nearly complete recovery of PSII, the adverse effect was more pronounced in A. speltoides. Measurement of the minimum fluorescence (Fo) versus temperature curves revealed a higher inflection temperature of Fo for A. tauschii than A. speltoides, reflecting greater thermo stability of the photosynthetic apparatus. Absorbed light energy distribution revealed that A. speltoides showed increased steady state fluorescence and a lower absorbed light allocated to photosynthetic chemistry (ɸPSII) relative to A. tauschii. However, A. tauschii showed higher ability to scavenge free radicals as compared to A. speltoides. This was further validated by higher expression of ascorbate peroxidase gene. These results suggest that A. tauschii showed faster recovery and a better thermostability of its photosynthetic apparatus under severe stress conditions along with a better regulation of energy channeling of PSII complexes to minimize oxidative damage and thus retains greater capability of carbon assimilation. These factors aid in imparting a greater heat tolerance to A. tauschii as compared to A. speltoides and thus make it a better candidate for alien species introgression in wheat breeding programs for thermotolerance in wheat.

  15. Characterization and expression analysis of WOX2 homeodomain transcription factor in Aegilops tauschii.

    PubMed

    Zhao, Shan; Jiang, Qian-Tao; Ma, Jian; Wang, Ji-Rui; Liu, Ya-Xi; Chen, Guo-Yue; Qi, Peng-Fei; Pu, Zhi-En; Lu, Zhen-Xiang; Zheng, You-Liang; Wei, Yu-Ming

    2015-03-01

    The WUSCHEL (WUS)-related homeobox (WOX) gene family coordinates transcription during the early phases of embryogenesis. In this study, a putative WOX2 homolog was isolated and characterized from Aegilops tauschii, the donor of D genome of Triticum aestivum. The sequence consisted of 2045 bp, and contained an open reading frame (ORF), encoded 322 amino acids. The predicted protein sequence contained a highly conserved homeodomain and the WUS-box domain, which is present in some members of the WOX protein family. The full-length ORF was subcloned into prokaryotic expression vector pET-30a, and an approximately 34-kDa protein was expressed in Escherichia coli BL21 (DE3) cells with IPTG induction. The molecular mass of the expressed protein was identical to that predicted by the cDNA sequence. Phylogenetic analysis suggested that Ae. tauschii WOX2 is closely related to the rice and maize orthologs. Quantitative PCR analysis showed that WOX2 from Ae. tauschii was primarily expressed in the seeds; transcription increased during seed development and declined after the embryos matured, suggesting that WOX2 is associated with embryo development in Ae. tauschii.

  16. Wheat - Aegilops introgressions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aegilops is the most closely related genus to Triticum in the tribe Triticeae. Aegilops speltoides Tausch (B genome donor) and Ae. tauschii Coss. (D genome donor) contributed two of the three genomes present in common wheat (Triticum aestivum L., 2n = 6x = 42, AABBDD genomes). The Aegilops genus c...

  17. Sequencing chromosome 5D of Aegilops tauschii and comparison with its allopolyploid descendant bread wheat (Triticum aestivum).

    PubMed

    Akpinar, Bala A; Lucas, Stuart J; Vrána, Jan; Doležel, Jaroslav; Budak, Hikmet

    2015-08-01

    Flow cytometric sorting of individual chromosomes and chromosome-based sequencing reduces the complexity of large, repetitive Triticeae genomes. We flow-sorted chromosome 5D of Aegilops tauschii, the D genome donor of bread wheat and sequenced it by Roche 454 GS FLX platform to approximately 2.2x coverage. Repetitive sequences represent 81.09% of the survey sequences of this chromosome, and Class I retroelements are the prominent type, with a particular abundance of LTR/Gypsy superfamily. Nonrepetitive sequences were assembled to cover 17.76% of the total chromosome regions. Up to 6188 nonrepetitive gene loci were predicted to be encoded by the 5D chromosome. The numbers and chromosomal distribution patterns of tRNA genes suggest abundance in tRNA(L) (ys) and tRNA(M) (et) species, while the nonrepetitive assembly reveals tRNA(A) (la) species as the most abundant type. A comparative analysis of the genomic sequences of bread wheat and Aegilops chromosome 5D indicates conservation of gene content. Orthologous unique genes, matching Aegilops 5D sequences, numbered 3730 in barley, 5063 in Brachypodium, 4872 in sorghum and 4209 in rice. In this study, we provide a chromosome-specific view into the structure and organization of the 5D chromosome of Ae. tauschii, the D genome ancestor of bread wheat. This study contributes to our understanding of the chromosome-level evolution of the wheat genome and presents a valuable resource in wheat genomics due to the recent hybridization of Ae. tauschii genome with its tetraploid ancestor.

  18. Harnessing NGS and Big Data Optimally: Comparison of miRNA Prediction from Assembled versus Non-assembled Sequencing Data--The Case of the Grass Aegilops tauschii Complex Genome.

    PubMed

    Budak, Hikmet; Kantar, Melda

    2015-07-01

    MicroRNAs (miRNAs) are small, endogenous, non-coding RNA molecules that regulate gene expression at the post-transcriptional level. As high-throughput next generation sequencing (NGS) and Big Data rapidly accumulate for various species, efforts for in silico identification of miRNAs intensify. Surprisingly, the effect of the input genomics sequence on the robustness of miRNA prediction was not evaluated in detail to date. In the present study, we performed a homology-based miRNA and isomiRNA prediction of the 5D chromosome of bread wheat progenitor, Aegilops tauschii, using two distinct sequence data sets as input: (1) raw sequence reads obtained from 454-GS FLX Titanium sequencing platform and (2) an assembly constructed from these reads. We also compared this method with a number of available plant sequence datasets. We report here the identification of 62 and 22 miRNAs from raw reads and the assembly, respectively, of which 16 were predicted with high confidence from both datasets. While raw reads promoted sensitivity with the high number of miRNAs predicted, 55% (12 out of 22) of the assembly-based predictions were supported by previous observations, bringing specificity forward compared to the read-based predictions, of which only 37% were supported. Importantly, raw reads could identify several repeat-related miRNAs that could not be detected with the assembly. However, raw reads could not capture 6 miRNAs, for which the stem-loops could only be covered by the relatively longer sequences from the assembly. In summary, the comparison of miRNA datasets obtained by these two strategies revealed that utilization of raw reads, as well as assemblies for in silico prediction, have distinct advantages and disadvantages. Consideration of these important nuances can benefit future miRNA identification efforts in the current age of NGS and Big Data driven life sciences innovation. PMID:26061358

  19. Radiation hybrid maps of D-genome of Aegilops tauschii and their application in sequence assembly of large and complex plant genomes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The large and complex genome of bread wheat (Triticum aestivum L., ~17 Gb) requires high-resolution genome maps saturated with ordered markers to assist in anchoring and orienting BAC contigs/ sequence scaffolds for whole genome sequence assembly. Radiation hybrid (RH) mapping has proven to be an e...

  20. Rapid genome mapping in nano channel array for highly complete and accurate de novo sequence assembly of the complex Aegilops tauschii genome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Next-generation sequencing (NGS) technologies have enabled high-throughput and low-cost generation of sequence data; however, de novo genome assembly remains a great challenge, particularly for large genomes. NGS short reads are often insufficient to create large contigs that span repeat sequences...

  1. Effective transfer of chromosomes carrying leaf rust resistance genes from Aegilops tauschii Coss. into hexaploid triticale (X Triticosecale Witt.) using Ae. tauschii × Secale cereale amphiploid forms.

    PubMed

    Kwiatek, Michał; Majka, Maciej; Wiśniewska, Halina; Apolinarska, Barbara; Belter, Jolanta

    2015-05-01

    This paper shows the results of effective uses of a molecular cytogenetics toolbox and molecular marker to transfer leaf rust resistance genes from Aegilops tauschii × Secale cereale (DDRR, 2n = 4x = 28) amphiploid forms to triticale cv. Bogo (AABBRR, 2n = 6x = 42). The molecular markers of resistance genes and in situ hybridization analysis of mitotic metaphase of root meristems confirmed the stable inheritance of chromosome 3D segments carrying Lr32 from the BC2F2 to the BC2F5 generation of (Ae. tauschii × S. cereale) × triticale hybrids. The chromosome pairing analysis during metaphase I of meiosis of BC2F4 and BC2F5 hybrids showed increasing regular bivalent formation of 3D chromosome pairs and decreasing number of univalents in subsequent generations. The results indicate that using amphiploid forms as a bridge between wild and cultivated forms can be a successful technology to transfer the D-genome chromatin carrying leaf rust resistance genes into triticale.

  2. Effective transfer of chromosomes carrying leaf rust resistance genes from Aegilops tauschii Coss. into hexaploid triticale (X Triticosecale Witt.) using Ae. tauschii × Secale cereale amphiploid forms.

    PubMed

    Kwiatek, Michał; Majka, Maciej; Wiśniewska, Halina; Apolinarska, Barbara; Belter, Jolanta

    2015-05-01

    This paper shows the results of effective uses of a molecular cytogenetics toolbox and molecular marker to transfer leaf rust resistance genes from Aegilops tauschii × Secale cereale (DDRR, 2n = 4x = 28) amphiploid forms to triticale cv. Bogo (AABBRR, 2n = 6x = 42). The molecular markers of resistance genes and in situ hybridization analysis of mitotic metaphase of root meristems confirmed the stable inheritance of chromosome 3D segments carrying Lr32 from the BC2F2 to the BC2F5 generation of (Ae. tauschii × S. cereale) × triticale hybrids. The chromosome pairing analysis during metaphase I of meiosis of BC2F4 and BC2F5 hybrids showed increasing regular bivalent formation of 3D chromosome pairs and decreasing number of univalents in subsequent generations. The results indicate that using amphiploid forms as a bridge between wild and cultivated forms can be a successful technology to transfer the D-genome chromatin carrying leaf rust resistance genes into triticale. PMID:25502891

  3. Molecular cloning, characterization and expression of WAG-2 alternative splicing transcripts in developing spikes of Aegilops tauschii.

    PubMed

    Wei, Shuhong

    2016-09-01

    WAG-2 is a C-class MADS-box gene, which is orthologous to AGAMOUS (AG) in Arabidopsis. The AG group C-class MADS-box genes are involved in stamen and pistil identity. In this study, two WAG-2 transcripts, namely, WAG-2f and WAG- 2g, were isolated and characterized from Aegilops tauschii. The open reading frames of WAG-2f and WAG-2g were 825 and 822 bp, respectively, encoding 275 and 274 amino acid residues. BLAST searches of partial WAG-2 genomic sequence against the draft sequence of Ae. tauschii genome database revealed the complex structure of WAG-2 gene, which consisted of seven exons and six introns. The WAG-2f and WAG-2g cDNAs were two alternative splicing transcripts. The alternative splicing events were produced by an alternative 5' splice site. The expression level of WAG-2f transcript, which was extremely weak in young spikes of floret primordium formation stage, increased as the spikes developed. The highest expression was observed in the spikes at the anther separation stage. Low expression levels of WAG-2f were also detected at the tetrad stage. The WAG- 2g transcript was expressed at all four stages of spike development but at a relatively low level. The expression pattern of the two transcripts was distinctly different during floral development, thereby suggesting a functional divergence. PMID:27659328

  4. MlNCD1: A novel Aegilops tauschii derived powdery mildew resistance gene identified in common wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Powdery mildew is a major fungal disease in wheat, especially in cool maritime climates. A novel Aegilops tauschii derived wheat powdery mildew resistance gene present in the germplasm line NC96BGTD1 was genetically characterized as a monogenic trait in field trials using F2 and F4-derived lines fr...

  5. [Phylogenetic relationships and intraspecific variation of D-genome Aegilops L. as revealed by RAPD analysis].

    PubMed

    Goriunova, S V; Kochieva, E Z; Chikida, N N; Pukhal'skiĭ, V A

    2004-05-01

    RAPD analysis was carried out to study the genetic variation and phylogenetic relationships of polyploid Aegilops species, which contain the D genome as a component of the alloploid genome, and diploid Aegilops tauschii, which is a putative donor of the D genome for common wheat. In total, 74 accessions of six D-genome Aegilops species were examined. The highest intraspecific variation (0.03-0.21) was observed for Ae. tauschii. Intraspecific distances between accessions ranged 0.007-0.067 in Ae. cylindrica, 0.017-0.047 in Ae. vavilovii, and 0.00-0.053 in Ae. juvenalis. Likewise, Ae. ventricosa and Ae. crassa showed low intraspecific polymorphism. The among-accession difference in alloploid Ae. ventricosa (genome DvNv) was similar to that of one parental species, Ae. uniaristata (N), and substantially lower than in the other parent, Ae. tauschii (D). The among-accession difference in Ae. cylindrica (CcDc) was considerably lower than in either parent, Ae. tauschii (D) or Ae. caudata (C). With the exception of Ae. cylindrica, all D-genome species--Ae. tauschii (D), Ae. ventricosa (DvNv), Ae. crassa (XcrDcrl and XcrDcrlDcr2), Ae. juvenalis (XjDjUj), and Ae. vavilovii (XvaDvaSva)--formed a single polymorphic cluster, which was distinct from clusters of other species. The only exception, Ae. cylindrica, did not group with the other D-genome species, but clustered with Ae. caudata (C), a donor of the C genome. The cluster of these two species was clearly distinct from the cluster of the other D-genome species and close to a cluster of Ae. umbellulata (genome U) and Ae. ovata (genome UgMg). Thus, RAPD analysis for the first time was used to estimate and to compare the interpopulation polymorphism and to establish the phylogenetic relationships of all diploid and alloploid D-genome Aegilops species.

  6. Rapid evolutionary dynamics in a 2.8-Mb chromosomal region containing multiple prolamin and resistance gene families in Aegilops tauschii.

    PubMed

    Dong, Lingli; Huo, Naxin; Wang, Yi; Deal, Karin; Wang, Daowen; Hu, Tiezhu; Dvorak, Jan; Anderson, Olin D; Luo, Ming-Cheng; Gu, Yong Q

    2016-09-01

    Prolamin and resistance gene families are important in wheat food use and in defense against pathogen attacks, respectively. To better understand the evolution of these multi-gene families, the DNA sequence of a 2.8-Mb genomic region, representing an 8.8 cM genetic interval and harboring multiple prolamin and resistance-like gene families, was analyzed in the diploid grass Aegilops tauschii, the D-genome donor of bread wheat. Comparison with orthologous regions from rice, Brachypodium, and sorghum showed that the Ae. tauschii region has undergone dramatic changes; it has acquired more than 80 non-syntenic genes and only 13 ancestral genes are shared among these grass species. These non-syntenic genes, including prolamin and resistance-like genes, originated from various genomic regions and likely moved to their present locations via sequence evolution processes involving gene duplication and translocation. Local duplication of non-syntenic genes contributed significantly to the expansion of gene families. Our analysis indicates that the insertion of prolamin-related genes occurred prior to the separation of the Brachypodieae and Triticeae lineages. Unlike in Brachypodium, inserted prolamin genes have rapidly evolved and expanded to encode different classes of major seed storage proteins in Triticeae species. Phylogenetic analyses also showed that the multiple insertions of resistance-like genes and subsequent differential expansion of each R gene family. The high frequency of non-syntenic genes and rapid local gene evolution correlate with the high recombination rate in the 2.8-Mb region with nine-fold higher than the genome-wide average. Our results demonstrate complex evolutionary dynamics in this agronomically important region of Triticeae species.

  7. Molecular survey of Tamyb10-1 genes and their association with grain colour and germinability in Chinese wheat and Aegilops tauschii.

    PubMed

    Dong, Zhong Dong; Chen, Jie; Li, Ting; Chen, Feng; Cui, Dang Qun

    2015-09-01

    To investigate allelic variation of Myb10-1 genes in Chinese wheat and to examine its association with germination level in wheat, a total of 582 Chinese bread wheat cultivars and 110 Aegilops tauschii accessions were used to identify allelic variations of three Myb10-1 genes. Identification results indicated that there is a novel Tamyb10-B1 allele, designated Tamyb10-B1c, in the five Chinese landraces. The Tamyb10-B1c possibly has a large deletion including Tamyb10-B1 gene. There are three novel Tamyb10-D1 alleles (Aetmyb10-D1c, Aetmyb10-D1d and Aetmyb10-D1e) that were discovered in Aegilops tauschii. Of them, Aetmyb10-D1c allele possessed a 104-bp deletion and this resulted in a frame shift in the open reading frame of the Aetmyb10-D1 gene. AETMYB10-D1d and AETMYB10-D1e proteins possessed three and two different amino acids when compared with TAMYB10-D1b protein, respectively. Association of Tamyb10-1 allelic variation with grain germination level indicated that all five allelic combinations with red grains showed a significantly higher GP (germination percentage) and GI (germination index) values than those of white-grained Tamyb10-A1a/Tamyb10-B1a/Tamyb10-D1a genotype after storing it for one year. Moreover, the Tamyb10-A1b/Tamyb10-B1c/Tamyb10-D1b genotype possesses the significantly highest GP and GI among the six different Tamyb10-1 combinations. This study could provide useful information for wheat breeding programme in terms of grain colour and germination level.

  8. Molecular survey of Tamyb10-1 genes and their association with grain colour and germinability in Chinese wheat and Aegilops tauschii.

    PubMed

    Dong, Zhong Dong; Chen, Jie; Li, Ting; Chen, Feng; Cui, Dang Qun

    2015-09-01

    To investigate allelic variation of Myb10-1 genes in Chinese wheat and to examine its association with germination level in wheat, a total of 582 Chinese bread wheat cultivars and 110 Aegilops tauschii accessions were used to identify allelic variations of three Myb10-1 genes. Identification results indicated that there is a novel Tamyb10-B1 allele, designated Tamyb10-B1c, in the five Chinese landraces. The Tamyb10-B1c possibly has a large deletion including Tamyb10-B1 gene. There are three novel Tamyb10-D1 alleles (Aetmyb10-D1c, Aetmyb10-D1d and Aetmyb10-D1e) that were discovered in Aegilops tauschii. Of them, Aetmyb10-D1c allele possessed a 104-bp deletion and this resulted in a frame shift in the open reading frame of the Aetmyb10-D1 gene. AETMYB10-D1d and AETMYB10-D1e proteins possessed three and two different amino acids when compared with TAMYB10-D1b protein, respectively. Association of Tamyb10-1 allelic variation with grain germination level indicated that all five allelic combinations with red grains showed a significantly higher GP (germination percentage) and GI (germination index) values than those of white-grained Tamyb10-A1a/Tamyb10-B1a/Tamyb10-D1a genotype after storing it for one year. Moreover, the Tamyb10-A1b/Tamyb10-B1c/Tamyb10-D1b genotype possesses the significantly highest GP and GI among the six different Tamyb10-1 combinations. This study could provide useful information for wheat breeding programme in terms of grain colour and germination level. PMID:26440084

  9. [Development and study of spring bread wheat variety Pamyati Maystrenko with introgression of genetic material from synthetic hexaploid Triticum timopheevii zhuk. x Aegilops tauschii Coss].

    PubMed

    Laikova, L I; Belan, I A; Badaeva, E D; Posseeva, L P; Shepelev, S S; Shumny, V K; Pershina, L A

    2013-01-01

    Synthetic hexaploids are bridges for transferring new genes that determine resistance to stress factors from wild-type species to bread wheat. In the present work, the method of developing the spring bread wheat variety Pamyati Maystrenko and the results of its study are described. This variety was obtained using one of the immune lines produced earlier via the hybridization of the spring bread wheat variety Saratovskaya 29 with the synthetic hexaploid T. timopheevii Zhuk. x Ae. tauschii Coss. The C-staining of chromosomes in the Pamyati Maystrenko variety revealed substitutions of 2B and 6B chromosomes by the homeologous chromosomes of the G genome of T. timopheevii and the substitution of chromosome 1D by an orthologous chromosome ofAe. tauschii. It was found that this variety is characterized by resistance to leaf and stem rust, powdery mildew, and loose smut as well as by high grain and bread-making qualities. The role of the alien genetic material introgressed into the bread-wheat genome in the expression of adaptive and economically valuable traits in the Pamyati Maystrenko variety is discussed.

  10. Identification of CBF14 and NAC2 Genes in Aegilops tauschii Associated with Resistance to Freezing Stress.

    PubMed

    Masoomi-Aladizgeh, Farhad; Aalami, Ali; Esfahani, Masoud; Aghaei, Mohamad Jaafar; Mozaffari, Khadijeh

    2015-06-01

    Low temperature as one of the most important environmental factors limits the productivity of plants across the world. Aegilops, as a wild species of Poaceae, contains low temperature-responsive genes. In this study, we analyzed morphological (wilting, chlorosis, and recovery) and physiological (ion leakage) characteristics to identification of a cold-tolerant genotype. In this experiment, we introduced two transcription factors (TFs) in Aegilops species for the first time. Bioinformatics analysis demonstrated that our nucleotide sequences have high similarity with CBF14 (C-repeat-binding factor) and NAC2 (NAM, ATAF, and CUC) in Triticum aestivum. Based on the physiological and morphological data, one genotype (Aladizgeh) was identified as the most resistant genotype which was selected for further gene expression analysis. The real-time PCR results indicated that the CBF14 gene was not expressed 3 h following cold treatment, but the highest expression was observed after 6, 12, and 24 h of cold treatment; however, a sudden decrease was observed in its expression after 30 h. The NAC2 gene also was not expressed 3 h after cold stress, but the highest expression was at 24 h and similar to the CBF14 gene; its expression suddenly decreased after 30 h. Our results indicated that this genotype can tolerate -4 °C for 3 h, but the CBF14 and NAC2 genes were activated when treated for longer durations. Expression of TFs studied in this experiment had decreased after 30 h, in which cell death seems to be the important reason.

  11. Accelerated Senescence and Enhanced Disease Resistance in Hybrid Chlorosis Lines Derived from Interspecific Crosses between Tetraploid Wheat and Aegilops tauschii

    PubMed Central

    Tosa, Yukio; Yoshida, Kentaro; Park, Pyoyun; Takumi, Shigeo

    2015-01-01

    Hybrid chlorosis, a type of hybrid incompatibility, has frequently been reported in inter- and intraspecific crosses of allopolyploid wheat. In a previous study, we reported some types of growth abnormalities such as hybrid necrosis and observed hybrid chlorosis with mild or severe abnormalities in wheat triploids obtained in crosses between tetraploid wheat cultivar Langdon and four Ae. tauschii accessions and in their derived synthetic hexaploids. However, the molecular mechanisms underlying hybrid chlorosis are not well understood. Here, we compared cytology and gene expression in leaves to characterize the abnormal growth in wheat synthetics showing mild and severe chlorosis. In addition, we compared disease resistance to wheat blast fungus. In total 55 and 105 genes related to carbohydrate metabolism and 53 and 89 genes for defense responses were markedly up-regulated in the mild and severe chlorosis lines, respectively. Abnormal chloroplasts formed in the mesophyll cells before the leaves yellowed in the hybrid chlorosis lines. The plants with mild chlorosis showed increased resistance to wheat blast and powdery mildew fungi, although significant differences only in two, third internode length and maturation time, out of the examined agricultural traits were found between the wild type and plants showing mild chlorosis. These observations suggest that senescence might be accelerated in hybrid chlorosis lines of wheat synthetics. Moreover, in wheat synthetics showing mild chlorosis, the negative effects on biomass can be minimized, and they may show substantial fitness under pathogen-polluted conditions. PMID:25806790

  12. Aegilops-Secale amphiploids: chromosome categorisation, pollen viability and identification of fungal disease resistance genes.

    PubMed

    Kwiatek, M; Błaszczyk, L; Wiśniewska, H; Apolinarska, B

    2012-02-01

    The aim of this study was to assess the potential breeding value of goatgrass-rye amphiploids, which we are using as a "bridge" in a transfer of Aegilops chromatin (containing, e.g. leaf rust resistance genes) into triticale. We analysed the chromosomal constitution (by genomic in situ hybridisation, GISH), fertility (by pollen viability tests) and the presence of leaf rust and eyespot resistance genes (by molecular and endopeptidase assays) in a collection of 6× and 4× amphiploids originating from crosses between five Aegilops species and Secale cereale. In the five hexaploid amphiploids Aegilops kotschyi × Secale cereale (genome UUSSRR), Ae. variabilis × S. cereale (UUSSRR), Ae. biuncialis × S. cereale (UUMMRR; two lines) and Ae. ovata × S. cereale (UUMMRR), 28 Aegilops chromosomes were recognised, while in the Ae. tauschii × S. cereale amphiploid (4×; DDRR), only 14 such chromosomes were identified. In the materials, the number of rye chromosomes varied from 14 to 16. In one line of Ae. ovata × S. cereale, the U-R translocation was found. Pollen viability varied from 24.4 to 75.4%. The leaf rust resistance genes Lr22, Lr39 and Lr41 were identified in Ae. tauschii and the 4× amphiploid Ae. tauschii × S. cereale. For the first time, the leaf rust resistance gene Lr37 was found in Ae. kotschyi, Ae. ovata, Ae. biuncialis and amphiploids derived from those parental species. No eyespot resistance gene Pch1 was found in the amphiploids.

  13. Genetic diversity of Greek Aegilops species using different types of nuclear genome markers.

    PubMed

    Thomas, Konstantinos G; Bebeli, Penelope J

    2010-09-01

    Random Amplified Polymorphic DNA (RAPD) and Inter-Simple Sequence Repeat (ISSR) analyses were used to evaluate genetic variability and relationships of Greek Aegilops species. Thirty-eight accessions of seven Greek Aegilops species [Ae. triuncialis (genome UC), Ae. neglecta (UM), Ae. biuncialis (UM), Ae. caudata (C), Ae. comosa (M), Ae. geniculata (MU) and Ae. umbellulata (U)] as well as Triticum accessions were studied. Nineteen RAPD and ten ISSR primers yielded 344 and 170 polymorphic bands, respectively, that were used for the construction of dendrograms. Regardless of the similarity coefficient and marker type used, UPGMA placed 38 Aegilops accessions into one branch while the other branch consisted of wheat species. Within the Aegilops cluster, subgroups were identified that included species that shared the same genome or belonged to the same botanical section. Within the Triticum cluster, two robust subgroups were formed, one including diploid wheat and another including polyploid wheat. In conclusion, results showed that there is genetic diversity in the Greek Aegilops species studied, and clustering based on genetic similarities was in agreement with botanical classifications.

  14. Variations and classification of toxic epitopes related to celiac disease among α-gliadin genes from four Aegilops genomes.

    PubMed

    Li, Jie; Wang, Shunli; Li, Shanshan; Ge, Pei; Li, Xiaohui; Ma, Wujun; Zeller, F J; Hsam, Sai L K; Yan, Yueming

    2012-07-01

    The α-gliadins are associated with human celiac disease. A total of 23 noninterrupted full open reading frame α-gliadin genes and 19 pseudogenes were cloned and sequenced from C, M, N, and U genomes of four diploid Aegilops species. Sequence comparison of α-gliadin genes from Aegilops and Triticum species demonstrated an existence of extensive allelic variations in Gli-2 loci of the four Aegilops genomes. Specific structural features were found including the compositions and variations of two polyglutamine domains (QI and QII) and four T cell stimulatory toxic epitopes. The mean numbers of glutamine residues in the QI domain in C and N genomes and the QII domain in C, N, and U genomes were much higher than those in Triticum genomes, and the QI domain in C and N genomes and the QII domain in C, M, N, and U genomes displayed greater length variations. Interestingly, the types and numbers of four T cell stimulatory toxic epitopes in α-gliadins from the four Aegilops genomes were significantly less than those from Triticum A, B, D, and their progenitor genomes. Relationships between the structural variations of the two polyglutamine domains and the distributions of four T cell stimulatory toxic epitopes were found, resulting in the α-gliadin genes from the Aegilops and Triticum genomes to be classified into three groups.

  15. [RAPD analysis of the intraspecific and interspecific variation and phylogenetic relationships of Aegilops L. species with the U genome].

    PubMed

    Goriunova, S V; Chikida, N N; Kochieva, E Z

    2010-07-01

    RAPD analysis was used to study the genetic variation and phylogenetic relationships of polyploid Aegilops species with the U genome. In total, 115 DNA samples of eight polyploid species containing the U genome and the diploid species Ae. umbellulata (U) were examined. Substantial interspecific polymorphism was observed for the majority of the polyploid species with the U genome (interspecific differences, 0.01-0,2; proportion of polymorphic loci, 56.6-88.2%). Aegilops triuncialis was identified as the only alloploid species with low interspecific polymorphism (interspecific differences, 0-0.01, P = 50%) in the U-genome group. The U-genome Aegilops species proved to be separated from other species of the genus. The phylogenetic relationships were established for the U-genome species. The greatest separation within the U-genome group was observed for the US-genome species Ae. kotschyi and Ae. variabilis. The tetraploid species Ae. triaristata and Ae. columnaris, which had the UX genome, and the hexaploid species Ae. recta (UXN) were found to be related to each other and separate from the UM-genome species. A similarity was observed between the U M-genome species Ae. ovata and Ae. biuncialis, which had the UM genome, and the ancestral diploid U-genome species Ae. umbellulata. The UC-genome species Ae. triuncialis was rather separate and slightly similar to the UX-genome species.

  16. Syntenic relationships between the U and M genomes of Aegilops, wheat and the model species Brachypodium and rice as revealed by COS markers.

    PubMed

    Molnár, István; Šimková, Hana; Leverington-Waite, Michelle; Goram, Richard; Cseh, András; Vrána, Jan; Farkas, András; Doležel, Jaroslav; Molnár-Láng, Márta; Griffiths, Simon

    2013-01-01

    Diploid Aegilops umbellulata and Ae. comosa and their natural allotetraploid hybrids Ae. biuncialis and Ae. geniculata are important wild gene sources for wheat. With the aim of assisting in alien gene transfer, this study provides gene-based conserved orthologous set (COS) markers for the U and M genome chromosomes. Out of the 140 markers tested on a series of wheat-Aegilops chromosome introgression lines and flow-sorted subgenomic chromosome fractions, 100 were assigned to Aegilops chromosomes and six and seven duplications were identified in the U and M genomes, respectively. The marker-specific EST sequences were BLAST-ed to Brachypodium and rice genomic sequences to investigate macrosyntenic relationships between the U and M genomes of Aegilops, wheat and the model species. Five syntenic regions of Brachypodium identified genome rearrangements differentiating the U genome from the M genome and from the D genome of wheat. All of them seem to have evolved at the diploid level and to have been modified differentially in the polyploid species Ae. biuncialis and Ae. geniculata. A certain level of wheat-Aegilops homology was detected for group 1, 2, 3 and 5 chromosomes, while a clearly rearranged structure was showed for the group 4, 6 and 7 Aegilops chromosomes relative to wheat. The conserved orthologous set markers assigned to Aegilops chromosomes promise to accelerate gene introgression by facilitating the identification of alien chromatin. The syntenic relationships between the Aegilops species, wheat and model species will facilitate the targeted development of new markers specific for U and M genomic regions and will contribute to the understanding of molecular processes related to allopolyploidization.

  17. Syntenic Relationships between the U and M Genomes of Aegilops, Wheat and the Model Species Brachypodium and Rice as Revealed by COS Markers

    PubMed Central

    Molnár, István; Šimková, Hana; Leverington-Waite, Michelle; Goram, Richard; Cseh, András; Vrána, Jan; Farkas, András; Doležel, Jaroslav; Molnár-Láng, Márta; Griffiths, Simon

    2013-01-01

    Diploid Aegilops umbellulata and Ae. comosa and their natural allotetraploid hybrids Ae. biuncialis and Ae. geniculata are important wild gene sources for wheat. With the aim of assisting in alien gene transfer, this study provides gene-based conserved orthologous set (COS) markers for the U and M genome chromosomes. Out of the 140 markers tested on a series of wheat-Aegilops chromosome introgression lines and flow-sorted subgenomic chromosome fractions, 100 were assigned to Aegilops chromosomes and six and seven duplications were identified in the U and M genomes, respectively. The marker-specific EST sequences were BLAST-ed to Brachypodium and rice genomic sequences to investigate macrosyntenic relationships between the U and M genomes of Aegilops, wheat and the model species. Five syntenic regions of Brachypodium identified genome rearrangements differentiating the U genome from the M genome and from the D genome of wheat. All of them seem to have evolved at the diploid level and to have been modified differentially in the polyploid species Ae. biuncialis and Ae. geniculata. A certain level of wheat–Aegilops homology was detected for group 1, 2, 3 and 5 chromosomes, while a clearly rearranged structure was showed for the group 4, 6 and 7 Aegilops chromosomes relative to wheat. The conserved orthologous set markers assigned to Aegilops chromosomes promise to accelerate gene introgression by facilitating the identification of alien chromatin. The syntenic relationships between the Aegilops species, wheat and model species will facilitate the targeted development of new markers specific for U and M genomic regions and will contribute to the understanding of molecular processes related to allopolyploidization. PMID:23940651

  18. B chromosomes of Aegilops speltoides are enriched in organelle genome-derived sequences.

    PubMed

    Ruban, Alevtina; Fuchs, Jörg; Marques, André; Schubert, Veit; Soloviev, Alexander; Raskina, Olga; Badaeva, Ekaterina; Houben, Andreas

    2014-01-01

    B chromosomes (Bs) are dispensable components of the genome exhibiting non-Mendelian inheritance. Chromosome counts and flow cytometric analysis of the grass species Aegilops speltoides revealed a tissue-type specific distribution of the roughly 570 Mbp large B chromosomes. To address the question whether organelle-to-nucleus DNA transfer is a mechanism that drives the evolution of Bs, in situ hybridization was performed with labelled organellar DNA. The observed B-specific accumulation of chloroplast- and mitochondria-derived sequences suggests a reduced selection against the insertion of organellar DNA in supernumerary chromosomes. The distribution of B-localised organellar-derived sequences and other sequences differs between genotypes of different geographical origins. PMID:24587288

  19. Tandem repeats on an eco-geographical scale: outcomes from the genome of Aegilops speltoides.

    PubMed

    Raskina, Olga; Brodsky, Leonid; Belyayev, Alexander

    2011-07-01

    The chromosomal pattern of tandem repeat fractions of repetitive DNA is one of the most important characteristics of a species. In the present research, we aimed to detect and evaluate the level of intraspecific variability in the chromosomal distribution of species-specific Spelt 1 and Aegilops-Triticum-specific Spelt 52 tandem repeats in Aegilops speltoides and in closely related diploid and polyploid species. There is a distinct eco-geographical gradient in Spelt 1 and Spelt 52 blocks abundance in Ae. speltoides. In marginal populations, the number of Spelt 1 chromosomal blocks could be 12-14 times lower than in the center of the species distribution. Also, in related diploid species, the abundance of Spelt 52 correlates with evolutionary proximity to Ae. speltoides. Finally, the B- and G-genomes of allopolyploid wheats have Spelt 1 chromosomal distribution patterns similar to those of the types of Ae. speltoides with poor and rich contents of Spelt 1, respectively. The observed changes in numbers of blocks of Spelt 1 and Spelt 52 tandem repeats along the eco-geographical gradient may due to their depletion in the marginal populations as a result of increased recombination frequency under stressful conditions. Alternatively, it may be accumulation of tandem repeats in conducive climatic/edaphic environments in the center of the species' geographical distribution. Anyway, we observe a bidirectional shift of repetitive DNA genomic patterns on the population level leading to the formation of population-specific chromosomal patterns of tandem repeats. The appearance of a new chromosomal pattern is considered an important factor in promoting the emergence of interbreeding barriers.

  20. Genetic compensation abilities of Aegilops speltoides chromosomes for homoeologous B-genome chromosomes of polyploid wheat in disomic S(B) chromosome substitution lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The S genome of Aegilops speltoides is closely related to the B and G genomes of polyploid wheats. However, little work has been reported on the genetic relationships between the S-genome and B-genome chromosomes of polyploid wheat. Here we report the isolation of a set of disomic substitutions (DS)...

  1. Optical Nano-mapping and Analysis of Plant Genomes.

    PubMed

    Luo, Ming-Cheng; Deal, Karin R; Murray, Armond; Zhu, Tingting; Hastie, Alex R; Stedman, Will; Sadowski, Henry; Saghbini, Michael

    2016-01-01

    Application of optical mapping based on BioNano Genomics Irys(®) technology ( http://www.bionanogenomics.com/ ) is growing rapidly since its debut in November 2012. The technology can be used to facilitate genome sequence assembly and analysis of genome structural variations. We describe here the detailed protocol that we used to generate a whole genome BioNano map for Aegilops tauschii, the D genome progenitor of hexaploid wheat (Triticum aestivum). We are using the whole genome BioNano map to validate sequence assembly based on the next-generation sequencing, order sequence scaffolds, and ultimately build pseudomolecules for the genome. PMID:27511170

  2. [Genealogical Analysis of the Use of Aegilops (Aegilops L.) Genetic Material in Wheat (Triticum Aestivum L.)].

    PubMed

    Martynov, S P; Dobrotvorskaya, T V; Mitrofanova, O P

    2015-09-01

    A genealogical analysis of accessions in the global gene pool of the wheat database GRIS4.0 showed that the use of the genetic material of Aegilops in wheat breeding began about half a century ago. During this time, more than 1350 varieties and 9000 lines, the pedigree of which contains Aegilops species, were created in different regions of the world. The spatial and temporal dynamics of the distribution of wheat varieties containing the genetic material of Aegilops was investigated. Analysis of the data showed that most commercial varieties with a pedigree including Ae. tauschii and/or Ae. umbellulata were created and grown in North America. More than 70% of the varieties were produced with Ae. ventricosa, which is common in western and central Europe. A gradual increase in the proportion of varieties with Aegilops genetic material was recorded from 1962 to 2011. The percentage of varieties created with the involvement of Ae. umbellulata increased from 1-5% in the 1960s to 25-29% in the 2000s. Those created with Ae. tauschii increased from 0% to 14-18%, and those created with Ae. ventricosa increased from 1% to 34-37%. The increases in the number of these varieties indicates that the resistance genes from Aegilops species retain their effectiveness. Genealogical analysis of the varieties in which resistance genes from Aegilops were postulated revealed that varieties or lines that were sources of identified genes were often absent in the pedigree. This may be due to an incorrect pedigree record or errors in the identification of resistance genes by phytopathological testing and/or the use of molecular markers, or confusion in nurseries. Preliminary analysis of pedigrees provides an opportunity to reveal discrepancies between the pedigree and postulated genes.

  3. Allocation of the S-genome chromosomes of Aegilops variabilis Eig. carrying powdery mildew resistance in triticale (× Triticosecale Wittmack).

    PubMed

    Kwiatek, M; Belter, J; Majka, M; Wiśniewska, H

    2016-03-01

    It has been hypothesized that the powdery mildew adult plant resistance (APR) controlled by the Pm13 gene in Aegilops longissima Schweinf. & Muschl. (S(l)S(l)) has been evolutionary transferred to Aegilops variabilis Eig. (UUSS). The molecular marker analysis and the visual evaluation of powdery mildew symptoms in Ae. variabilis and the Ae. variabilis × Secale cereale amphiploid forms (2n = 6x = 42, UUSSRR) showed the presence of product that corresponded to Pm13 marker and the lower infection level compared to susceptible model, respectively. This study also describes the transfer of Ae. variabilis Eig. (2n = 4x = 28, U(v)U(v)S(v)S(v)) chromosomes, carrying powdery mildew resistance, into triticale (× Triticosecale Wittm., 2n = 6x = 42, AABBRR) using Ae. variabilis × S. cereale amphiploid forms. The individual chromosomes of Ae. variabilis, triticale 'Lamberto' and hybrids were characterized by genomic and fluorescence in situ hybridization (GISH/FISH). The chromosome configurations of obtained hybrid forms were studied at first metaphase of meiosis of pollen mother cells (PMCs) using GISH. The statistical analysis showed that the way of S-genome chromosome pairing and transmission to subsequent hybrid generations was diploid-like and had no influence on chromosome pairing of triticale chromosomes. The cytogenetic study of hybrid forms were supported by the marker-assisted selection using Pm13 marker and visual evaluation of natural infection by Blumeria graminis, that allowed to select the addition or substitution lines of hybrids carrying chromosome 3S(v) which were tolerant to the powdery mildew infection.

  4. Allocation of the S-genome chromosomes of Aegilops variabilis Eig. carrying powdery mildew resistance in triticale (× Triticosecale Wittmack).

    PubMed

    Kwiatek, M; Belter, J; Majka, M; Wiśniewska, H

    2016-03-01

    It has been hypothesized that the powdery mildew adult plant resistance (APR) controlled by the Pm13 gene in Aegilops longissima Schweinf. & Muschl. (S(l)S(l)) has been evolutionary transferred to Aegilops variabilis Eig. (UUSS). The molecular marker analysis and the visual evaluation of powdery mildew symptoms in Ae. variabilis and the Ae. variabilis × Secale cereale amphiploid forms (2n = 6x = 42, UUSSRR) showed the presence of product that corresponded to Pm13 marker and the lower infection level compared to susceptible model, respectively. This study also describes the transfer of Ae. variabilis Eig. (2n = 4x = 28, U(v)U(v)S(v)S(v)) chromosomes, carrying powdery mildew resistance, into triticale (× Triticosecale Wittm., 2n = 6x = 42, AABBRR) using Ae. variabilis × S. cereale amphiploid forms. The individual chromosomes of Ae. variabilis, triticale 'Lamberto' and hybrids were characterized by genomic and fluorescence in situ hybridization (GISH/FISH). The chromosome configurations of obtained hybrid forms were studied at first metaphase of meiosis of pollen mother cells (PMCs) using GISH. The statistical analysis showed that the way of S-genome chromosome pairing and transmission to subsequent hybrid generations was diploid-like and had no influence on chromosome pairing of triticale chromosomes. The cytogenetic study of hybrid forms were supported by the marker-assisted selection using Pm13 marker and visual evaluation of natural infection by Blumeria graminis, that allowed to select the addition or substitution lines of hybrids carrying chromosome 3S(v) which were tolerant to the powdery mildew infection. PMID:25868512

  5. Molecular Mechanisms of HMW Glutenin Subunits from 1Sl Genome of Aegilops longissima Positively Affecting Wheat Breadmaking Quality

    PubMed Central

    Li, Ning; Li, Xiaohui; Ma, Wujun; Weißgerber, H.; Zeller, Friedrich; Hsam, Sai; Yan, Yueming

    2013-01-01

    A wheat cultivar “Chinese Spring” chromosome substitution line CS-1Sl(1B), in which the 1B chromosome was substituted by 1Sl from Aegilops longissima, was developed and found to possess superior dough and breadmaking quality. The molecular mechanism of its super quality conformation is studied in the aspects of high molecular glutenin genes, protein accumulation patterns, glutenin polymeric proteins, protein bodies, starch granules, and protein disulfide isomerase (PDI) and PDI-like protein expressions. Results showed that the introduced HMW-GS 1Sl×2.3* and 1Sly16* in the substitution line possesses long repetitive domain, making both be larger than any known x- and y-type subunits from B genome. The introduced subunit genes were also found to have a higher level of mRNA expressions during grain development, resulting in more HMW-GS accumulation in the mature grains. A higher abundance of PDI and PDI-like proteins was observed which possess a known function of assisting disulfide bond formation. Larger HMW-GS deposited in protein bodies were also found in the substitution line. The CS substitution line is expected to be highly valuable in wheat quality improvement since the novel HMW-GS are located on chromosome 1Sl, making it possible to combine with the known superior D×5+Dy10 subunits encoded by Glu-D1 for developing high quality bread wheat. PMID:23593125

  6. Diversity of Long Terminal Repeat Retrotransposon Genome Distribution in Natural Populations of the Wild Diploid Wheat Aegilops speltoides

    PubMed Central

    Hosid, Elena; Brodsky, Leonid; Kalendar, Ruslan; Raskina, Olga; Belyayev, Alexander

    2012-01-01

    The environment can have a decisive influence on the structure of the genome, changing it in a certain direction. Therefore, the genomic distribution of environmentally sensitive transposable elements may vary measurably across a species area. In the present research, we aimed to detect and evaluate the level of LTR retrotransposon intraspecific variability in Aegilops speltoides (2n = 2x = 14), a wild cross-pollinated relative of cultivated wheat. The interretrotransposon amplified polymorphism (IRAP) protocol was applied to detect and evaluate the level of retrotransposon intraspecific variability in Ae. speltoides and closely related species. IRAP analysis revealed significant diversity in TE distribution. Various genotypes from the 13 explored populations significantly differ with respect to the patterns of the four explored LTR retrotransposons (WIS2, Wilma, Daniela, and Fatima). This diversity points to a constant ongoing process of LTR retrotransposon fraction restructuring in populations of Ae. speltoides throughout the species’ range and within single populations in time. Maximum changes were recorded in genotypes from small stressed populations. Principal component analysis showed that the dynamics of the Fatima element significantly differ from those of WIS2, Wilma, and Daniela. In terms of relationships between Sitopsis species, IRAP analysis revealed a grouping with Ae. sharonensis and Ae. longissima forming a separate unit, Ae. speltoides appearing as a dispersed group, and Ae. bicornis being in an intermediate position. IRAP display data revealed dynamic changes in LTR retrotransposon fractions in the genome of Ae. speltoides. The process is permanent and population specific, ultimately leading to the separation of small stressed populations from the main group. PMID:22042572

  7. Flow sorting of C-genome chromosomes from wild relatives of wheat Aegilops markgrafii, Ae. triuncialis and Ae. cylindrica, and their molecular organization

    PubMed Central

    Molnár, István; Vrána, Jan; Farkas, András; Kubaláková, Marie; Cseh, András; Molnár-Láng, Márta; Doležel, Jaroslav

    2015-01-01

    Background and Aims Aegilops markgrafii (CC) and its natural hybrids Ae. triuncialis (UtUtCtCt) and Ae. cylindrica (DcDcCcCc) represent a rich reservoir of useful genes for improvement of bread wheat (Triticum aestivum), but the limited information available on their genome structure and the shortage of molecular (cyto-) genetic tools hamper the utilization of the extant genetic diversity. This study provides the complete karyotypes in the three species obtained after fluorescent in situ hybridization (FISH) with repetitive DNA probes, and evaluates the potential of flow cytometric chromosome sorting. Methods The flow karyotypes obtained after the analysis of 4',6-diamidino-2-phenylindole (DAPI)-stained chromosomes were characterized and the chromosome content of the peaks on the flow karyotypes was determined by FISH. Twenty-nine conserved orthologous set (COS) markers covering all seven wheat homoeologous chromosome groups were used for PCR with DNA amplified from flow-sorted chromosomes and genomic DNA. Key Results FISH with repetitive DNA probes revealed that chromosomes 4C, 5C, 7Ct, T6UtS.6UtL-5CtL, 1Cc and 5Dc could be sorted with purities ranging from 66 to 91 %, while the remaining chromosomes could be sorted in groups of 2–5. This identified a partial wheat–C-genome homology for group 4 and 5 chromosomes. In addition, 1C chromosomes were homologous with group 1 of wheat; a small segment from group 2 indicated 1C–2C rearrangement. An extensively rearranged structure of chromosome 7C relative to wheat was also detected. Conclusions The possibility of purifying Aegilops chromosomes provides an attractive opportunity to investigate the structure and evolution of the Aegilops C genome and to develop molecular tools to facilitate the identification of alien chromatin and support alien introgression breeding in bread wheat. PMID:26043745

  8. Dynamic evolution of resistance gene analogs in the orthologous genomic regions of powdery mildew resistance gene MlIW170 in Triticum dicoccoides and Aegilops tauschii

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat is one of the most important staple grain crops in the world. Powdery mildew disease caused by Blumeria graminis f.sp. tritici can result in significant losses in both grain yield and quality in wheat. In this study, the wheat powdery mildew resistance gene MlIW170 locus located on the short ...

  9. New insights into the origin of the B genome of hexaploid wheat: Evolutionary relationships at the SPA genomic region with the S genome of the diploid relative Aegilops speltoides

    PubMed Central

    Salse, Jérome; Chagué, Véronique; Bolot, Stéphanie; Magdelenat, Ghislaine; Huneau, Cécile; Pont, Caroline; Belcram, Harry; Couloux, Arnaud; Gardais, Soazic; Evrard, Aurélie; Segurens, Béatrice; Charles, Mathieu; Ravel, Catherine; Samain, Sylvie; Charmet, Gilles; Boudet, Nathalie; Chalhoub, Boulos

    2008-01-01

    Background Several studies suggested that the diploid ancestor of the B genome of tetraploid and hexaploid wheat species belongs to the Sitopsis section, having Aegilops speltoides (SS, 2n = 14) as the closest identified relative. However molecular relationships based on genomic sequence comparison, including both coding and non-coding DNA, have never been investigated. In an attempt to clarify these relationships, we compared, in this study, sequences of the Storage Protein Activator (SPA) locus region of the S genome of Ae. speltoides (2n = 14) to that of the A, B and D genomes co-resident in the hexaploid wheat species (Triticum aestivum, AABBDD, 2n = 42). Results Four BAC clones, spanning the SPA locus of respectively the A, B, D and S genomes, were isolated and sequenced. Orthologous genomic regions were identified as delimited by shared non-transposable elements and non-coding sequences surrounding the SPA gene and correspond to 35 268, 22 739, 43 397 and 53 919 bp for the A, B, D and S genomes, respectively. Sequence length discrepancies within and outside the SPA orthologous regions are the result of non-shared transposable elements (TE) insertions, all of which inserted after the progenitors of the four genomes divergence. Conclusion On the basis of conserved sequence length as well as identity of the shared non-TE regions and the SPA coding sequence, Ae speltoides appears to be more evolutionary related to the B genome of T. aestivum than the A and D genomes. However, the differential insertions of TEs, none of which are conserved between the two genomes led to the conclusion that the S genome of Ae. speltoides has diverged very early from the progenitor of the B genome which remains to be identified. PMID:19032732

  10. Genome-wide characterization of microsatellites in Triticeae species: abundance, distribution and evolution

    PubMed Central

    Deng, Pingchuan; Wang, Meng; Feng, Kewei; Cui, Licao; Tong, Wei; Song, Weining; Nie, Xiaojun

    2016-01-01

    Microsatellites are an important constituent of plant genome and distributed across entire genome. In this study, genome-wide analysis of microsatellites in 8 Triticeae species and 9 model plants revealed that microsatellite characteristics were similar among the Triticeae species. Furthermore, genome-wide microsatellite markers were designed in wheat and then used to analyze the evolutionary relationship of wheat and other Triticeae species. Results displayed that Aegilops tauschii was found to be the closest species to Triticum aestivum, followed by Triticum urartu, Triticum turgidum and Aegilops speltoides, while Triticum monococcum, Aegilops sharonensis and Hordeum vulgare showed a relatively lower PCR amplification effectivity. Additionally, a significantly higher PCR amplification effectivity was found in chromosomes at the same subgenome than its homoeologous when these markers were subjected to search against different chromosomes in wheat. After a rigorous screening process, a total of 20,666 markers showed high amplification and polymorphic potential in wheat and its relatives, which were integrated with the public available wheat markers and then anchored to the genome of wheat (CS). This study not only provided the useful resource for SSR markers development in Triticeae species, but also shed light on the evolution of polyploid wheat from the perspective of microsatellites. PMID:27561724

  11. Genome-wide characterization of microsatellites in Triticeae species: abundance, distribution and evolution.

    PubMed

    Deng, Pingchuan; Wang, Meng; Feng, Kewei; Cui, Licao; Tong, Wei; Song, Weining; Nie, Xiaojun

    2016-01-01

    Microsatellites are an important constituent of plant genome and distributed across entire genome. In this study, genome-wide analysis of microsatellites in 8 Triticeae species and 9 model plants revealed that microsatellite characteristics were similar among the Triticeae species. Furthermore, genome-wide microsatellite markers were designed in wheat and then used to analyze the evolutionary relationship of wheat and other Triticeae species. Results displayed that Aegilops tauschii was found to be the closest species to Triticum aestivum, followed by Triticum urartu, Triticum turgidum and Aegilops speltoides, while Triticum monococcum, Aegilops sharonensis and Hordeum vulgare showed a relatively lower PCR amplification effectivity. Additionally, a significantly higher PCR amplification effectivity was found in chromosomes at the same subgenome than its homoeologous when these markers were subjected to search against different chromosomes in wheat. After a rigorous screening process, a total of 20,666 markers showed high amplification and polymorphic potential in wheat and its relatives, which were integrated with the public available wheat markers and then anchored to the genome of wheat (CS). This study not only provided the useful resource for SSR markers development in Triticeae species, but also shed light on the evolution of polyploid wheat from the perspective of microsatellites. PMID:27561724

  12. Fate of Aegilops speltoides-derived, repetitive DNA sequences in diploid Aegilops species, wheat-Aegilops amphiploids and derived chromosome addition lines.

    PubMed

    Kumar, S; Friebe, B; Gill, B S

    2010-07-01

    The present study reports the cloning and characterization of an Aegilops speltoides-derived subtelomeric repeat, designated as pSp1B16. Clone pSp1B16 has 98% sequence homology with the previously isolated Ae. speltoides repeat Spelt1. The distribution of pSp1B16 and another Ae. speltoides repeat, pGc1R1, was analyzed in diploid Aegilops species, tetra- and hexaploid wheats, wheat-Aegilops amphiploids and derived chromosome addition lines by fluorescence in situ hybridization (FISH). Clones pSp1B16 and pGc1R1 revealed FISH sites in Ae. speltoides, Ae. sharonensis and Triticum timopheevii, whereas additional pGc1R1 FISH sites were observed in Ae. longissima and Ae. caudata. The pSp1B16 and pGc1R1 FISH patterns of the Aegilops chromosomes in the wheat-Aegilops amphiploids and chromosome addition lines are similar to those present in the Aegilops parent accession. We did not observe any evidence of pSp1B16 and pGc1R1 sequence elimination, which is in contrast to previous studies using similar hybrids and repeats. The presented data suggest that the genomic changes in synthetic amphiploids observed in previous studies might be caused by homoeologous recombination, which was suppressed in the amphiploid analyzed in this study.

  13. Phylogenetic relationships among diploid Aegilops species inferred from 5S rDNA units.

    PubMed

    Baum, B R; Edwards, T; Johnson, D A

    2009-10-01

    Relationships among the currently recognized 11 diploid species within the genus Aegilops have been investigated. Sequence similarity analysis, based upon 363 sequenced 5S rDNA clones from 44 accessions plus 15 sequences retrieved from GenBank, depicted two unit classes labeled the long AE1 and short AE1. Several different analytical methods were applied to infer relationships within haplomes, between haplomes and among the species, including maximum parsimony and maximum likelihood analyses of consensus sequences, "total evidence" phylogeny analysis and "matrix representation with parsimony" analysis. None were able to depict suites of markers or unit classes that could discern among the seven haplomes as is observed among established haplomes in other genera within the tribe Triticeae; however, most species could be separated when displayed on gene trees. These results suggest that the haplomes currently recognized are so refined that they may be relegated as sub-haplomes or haplome variants. Amblyopyrum shares the same 5S rDNA unit classes with the diploid Aegilops species suggesting that it belongs within the latter. Comparisons of the Aegilops sequences with those of Triticum showed that the long AE1 unit class of Ae. tauschii shared the clade with the equivalent long D1 unit class, i.e., the putative D haplome donor, but the short AE1 unit class did not. The long AE1 unit class but not the short, of Ae. speltoides and Ae. searsii both share the clade with the previously identified long {S1 and long G1 unit classes meaning that both Aegilops species can be equally considered putative B haplome donors to tetraploid Triticum species. The semiconserved nature of the nontranscribed spacer in Aegilops and in Triticeae in general is discussed in view that it may have originated by processes of incomplete gene conversion or biased gene conversion or birth-and-death evolution.

  14. Cytogenetic analysis of Aegilops chromosomes, potentially usable in triticale (X Triticosecale Witt.) breeding.

    PubMed

    Kwiatek, M; Wiśniewska, H; Apolinarska, B

    2013-05-01

    Chromosome identification using fluorescence in situ hybridization (FISH) is widely used in cytogenetic research. It is a diagnostic tool helpful in chromosome identification. It can also be used to characterize alien introgressions, when exercised in a combination with genomic in situ hybridization (GISH). This work aims to find chromosome identification of Aegilops species and Aegilops × Secale amphiploids, which can be used in cereal breeding as a source of favourable agronomic traits. Four diploid and two tetraploid Aegilops species and three Aegilops × Secale hybrids were analysed using FISH with pSc119.2, pAs1, 5S rDNA and 25S rDNA clones to differentiate the U-, M-, S(sh)- and D-subgenome chromosomes of Aegilops genus. Additionally, GISH for chromosome categorization was carried out. Differences in the hybridization patterns allowed to identify all U-, M-, S(sh)- and D-subgenome chromosomes. Some differences in localization of the rDNA, pSc119.2 and pAs1 sequences between analogue subgenomes in diploid and tetraploid species and Aegilops × Secale hybrids were detected. The hybridization pattern of the M and S genome was more variable than that of the U and D genome. An importance of the cytogenetic markers in plant breeding and their possible role in chromosome structure, function and evolution is discussed.

  15. Cytogenetic analysis of Aegilops chromosomes, potentially usable in triticale (X Triticosecale Witt.) breeding.

    PubMed

    Kwiatek, M; Wiśniewska, H; Apolinarska, B

    2013-05-01

    Chromosome identification using fluorescence in situ hybridization (FISH) is widely used in cytogenetic research. It is a diagnostic tool helpful in chromosome identification. It can also be used to characterize alien introgressions, when exercised in a combination with genomic in situ hybridization (GISH). This work aims to find chromosome identification of Aegilops species and Aegilops × Secale amphiploids, which can be used in cereal breeding as a source of favourable agronomic traits. Four diploid and two tetraploid Aegilops species and three Aegilops × Secale hybrids were analysed using FISH with pSc119.2, pAs1, 5S rDNA and 25S rDNA clones to differentiate the U-, M-, S(sh)- and D-subgenome chromosomes of Aegilops genus. Additionally, GISH for chromosome categorization was carried out. Differences in the hybridization patterns allowed to identify all U-, M-, S(sh)- and D-subgenome chromosomes. Some differences in localization of the rDNA, pSc119.2 and pAs1 sequences between analogue subgenomes in diploid and tetraploid species and Aegilops × Secale hybrids were detected. The hybridization pattern of the M and S genome was more variable than that of the U and D genome. An importance of the cytogenetic markers in plant breeding and their possible role in chromosome structure, function and evolution is discussed. PMID:23378244

  16. PGSB PlantsDB: updates to the database framework for comparative plant genome research

    PubMed Central

    Spannagl, Manuel; Nussbaumer, Thomas; Bader, Kai C.; Martis, Mihaela M.; Seidel, Michael; Kugler, Karl G.; Gundlach, Heidrun; Mayer, Klaus F.X.

    2016-01-01

    PGSB (Plant Genome and Systems Biology: formerly MIPS) PlantsDB (http://pgsb.helmholtz-muenchen.de/plant/index.jsp) is a database framework for the comparative analysis and visualization of plant genome data. The resource has been updated with new data sets and types as well as specialized tools and interfaces to address user demands for intuitive access to complex plant genome data. In its latest incarnation, we have re-worked both the layout and navigation structure and implemented new keyword search options and a new BLAST sequence search functionality. Actively involved in corresponding sequencing consortia, PlantsDB has dedicated special efforts to the integration and visualization of complex triticeae genome data, especially for barley, wheat and rye. We enhanced CrowsNest, a tool to visualize syntenic relationships between genomes, with data from the wheat sub-genome progenitor Aegilops tauschii and added functionality to the PGSB RNASeqExpressionBrowser. GenomeZipper results were integrated for the genomes of barley, rye, wheat and perennial ryegrass and interactive access is granted through PlantsDB interfaces. Data exchange and cross-linking between PlantsDB and other plant genome databases is stimulated by the transPLANT project (http://transplantdb.eu/). PMID:26527721

  17. Adult plant resistance to Puccinia triticina in a geographically diverse collection of Aegilops tauschii

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Despite extensive genetics and breeding research, effective control of leaf rust caused by Puccinia triticina Eriks., an important foliar disease of wheat, has not been achieved. This is mainly due to the widespread use of race-specific seedling resistance genes, which are rapidly overcome by new vi...

  18. Sequencing of 15 622 gene-bearing BACs clarifies the gene-dense regions of the barley genome.

    PubMed

    Muñoz-Amatriaín, María; Lonardi, Stefano; Luo, MingCheng; Madishetty, Kavitha; Svensson, Jan T; Moscou, Matthew J; Wanamaker, Steve; Jiang, Tao; Kleinhofs, Andris; Muehlbauer, Gary J; Wise, Roger P; Stein, Nils; Ma, Yaqin; Rodriguez, Edmundo; Kudrna, Dave; Bhat, Prasanna R; Chao, Shiaoman; Condamine, Pascal; Heinen, Shane; Resnik, Josh; Wing, Rod; Witt, Heather N; Alpert, Matthew; Beccuti, Marco; Bozdag, Serdar; Cordero, Francesca; Mirebrahim, Hamid; Ounit, Rachid; Wu, Yonghui; You, Frank; Zheng, Jie; Simková, Hana; Dolezel, Jaroslav; Grimwood, Jane; Schmutz, Jeremy; Duma, Denisa; Altschmied, Lothar; Blake, Tom; Bregitzer, Phil; Cooper, Laurel; Dilbirligi, Muharrem; Falk, Anders; Feiz, Leila; Graner, Andreas; Gustafson, Perry; Hayes, Patrick M; Lemaux, Peggy; Mammadov, Jafar; Close, Timothy J

    2015-10-01

    Barley (Hordeum vulgare L.) possesses a large and highly repetitive genome of 5.1 Gb that has hindered the development of a complete sequence. In 2012, the International Barley Sequencing Consortium released a resource integrating whole-genome shotgun sequences with a physical and genetic framework. However, because only 6278 bacterial artificial chromosome (BACs) in the physical map were sequenced, fine structure was limited. To gain access to the gene-containing portion of the barley genome at high resolution, we identified and sequenced 15 622 BACs representing the minimal tiling path of 72 052 physical-mapped gene-bearing BACs. This generated ~1.7 Gb of genomic sequence containing an estimated 2/3 of all Morex barley genes. Exploration of these sequenced BACs revealed that although distal ends of chromosomes contain most of the gene-enriched BACs and are characterized by high recombination rates, there are also gene-dense regions with suppressed recombination. We made use of published map-anchored sequence data from Aegilops tauschii to develop a synteny viewer between barley and the ancestor of the wheat D-genome. Except for some notable inversions, there is a high level of collinearity between the two species. The software HarvEST:Barley provides facile access to BAC sequences and their annotations, along with the barley-Ae. tauschii synteny viewer. These BAC sequences constitute a resource to improve the efficiency of marker development, map-based cloning, and comparative genomics in barley and related crops. Additional knowledge about regions of the barley genome that are gene-dense but low recombination is particularly relevant. PMID:26252423

  19. Sequencing of 15 622 gene-bearing BACs clarifies the gene-dense regions of the barley genome.

    PubMed

    Muñoz-Amatriaín, María; Lonardi, Stefano; Luo, MingCheng; Madishetty, Kavitha; Svensson, Jan T; Moscou, Matthew J; Wanamaker, Steve; Jiang, Tao; Kleinhofs, Andris; Muehlbauer, Gary J; Wise, Roger P; Stein, Nils; Ma, Yaqin; Rodriguez, Edmundo; Kudrna, Dave; Bhat, Prasanna R; Chao, Shiaoman; Condamine, Pascal; Heinen, Shane; Resnik, Josh; Wing, Rod; Witt, Heather N; Alpert, Matthew; Beccuti, Marco; Bozdag, Serdar; Cordero, Francesca; Mirebrahim, Hamid; Ounit, Rachid; Wu, Yonghui; You, Frank; Zheng, Jie; Simková, Hana; Dolezel, Jaroslav; Grimwood, Jane; Schmutz, Jeremy; Duma, Denisa; Altschmied, Lothar; Blake, Tom; Bregitzer, Phil; Cooper, Laurel; Dilbirligi, Muharrem; Falk, Anders; Feiz, Leila; Graner, Andreas; Gustafson, Perry; Hayes, Patrick M; Lemaux, Peggy; Mammadov, Jafar; Close, Timothy J

    2015-10-01

    Barley (Hordeum vulgare L.) possesses a large and highly repetitive genome of 5.1 Gb that has hindered the development of a complete sequence. In 2012, the International Barley Sequencing Consortium released a resource integrating whole-genome shotgun sequences with a physical and genetic framework. However, because only 6278 bacterial artificial chromosome (BACs) in the physical map were sequenced, fine structure was limited. To gain access to the gene-containing portion of the barley genome at high resolution, we identified and sequenced 15 622 BACs representing the minimal tiling path of 72 052 physical-mapped gene-bearing BACs. This generated ~1.7 Gb of genomic sequence containing an estimated 2/3 of all Morex barley genes. Exploration of these sequenced BACs revealed that although distal ends of chromosomes contain most of the gene-enriched BACs and are characterized by high recombination rates, there are also gene-dense regions with suppressed recombination. We made use of published map-anchored sequence data from Aegilops tauschii to develop a synteny viewer between barley and the ancestor of the wheat D-genome. Except for some notable inversions, there is a high level of collinearity between the two species. The software HarvEST:Barley provides facile access to BAC sequences and their annotations, along with the barley-Ae. tauschii synteny viewer. These BAC sequences constitute a resource to improve the efficiency of marker development, map-based cloning, and comparative genomics in barley and related crops. Additional knowledge about regions of the barley genome that are gene-dense but low recombination is particularly relevant.

  20. Analysis of ATP6 sequence diversity in the Triticum-Aegilops species group reveals the crucial role of rearrangement in mitochondrial genome evolution.

    PubMed

    Soltani, Ali; Ghavami, Farhad; Mergoum, Mohamed; Hegstad, Justin; Noyszewski, Andrzej; Meinhardt, Steven; Kianian, Shahryar F

    2014-05-01

    Mutation and chromosomal rearrangements are the two main forces of increasing genetic diversity for natural selection to act upon, and ultimately drive the evolutionary process. Although genome evolution is a function of both forces, simultaneously, the ratio of each can be varied among different genomes and genomic regions. It is believed that in plant mitochondrial genome, rearrangements play a more important role than point mutations, but relatively few studies have directly addressed this phenomenon. To address this issue, we isolated and sequenced the ATP6-1 and ATP6-2 genes from 46 different euplasmic and alloplasmic wheat lines. Four different ATP6-1 orthologs were detected, two of them reported for the first time. Expression analysis revealed that all four orthologs are transcriptionally active. Results also indicated that both point mutation and genomic rearrangement are involved in the evolution of ATP6. However, rearrangement is the predominant force that triggers drastic variation. Data also indicated that speciation of domesticated wheat cultivars were simultaneous with the duplication of this gene. These results directly support the notion that rearrangement plays a significant role in driving plant mitochondrial genome evolution.

  1. Allelic variations of α-gliadin genes from species of Aegilops section Sitopsis and insights into evolution of α-gliadin multigene family among Triticum and Aegilops.

    PubMed

    Huang, Zhuo; Long, Hai; Wei, Yu-Ming; Yan, Ze-Hong; Zheng, You-Liang

    2016-04-01

    The α-gliadins account for 15-30 % of the total storage protein in wheat endosperm and play important roles in the dough extensibility and nutritional quality. On the other side, they act as a main source of toxic peptides triggering celiac disease. In this study, 37 α-gliadins were isolated from three species of Aegilops section Sitopsis. Sequence similarity and phylogenetic analyses revealed novel allelic variation at Gli-2 loci of species of Sitopsis and regular organization of motifs in their repetitive domain. Based on the comprehensive analyses of a large number of known sequences of bread wheat and its diploid genome progenitors, the distributions of four T cell epitopes and length variations of two polyglutamine domains are analyzed. Additionally, according to the organization of repeat motifs, we classified the α-gliadins of Triticum and Aegilops into eight types. Their most recent common ancestor and putative divergence patterns were further considered. This study provides new insights into the allelic variations of α-gliadins in Aegilops section Sitopsis, as well as evolution of α-gliadin multigene family among Triticum and Aegilops species.

  2. Analysis of ATP6 sequence diversity in the Triticum-Aegilops group of species reveals the crucial role of rearrangement in mitochondrial genome evolution

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mutation and chromosomal rearrangements are the two main forces of increasing genetic diversity for natural selection to act upon, and ultimately drive the evolutionary process. Although genome evolution is a function of both forces, simultaneously, the ratio of each can be varied among different ge...

  3. Identification of a major QTL controlling the content of B-type starch granules in Aegilops

    PubMed Central

    Howard, Thomas; Rejab, Nur Ardiyana; Griffiths, Simon; Leigh, Fiona; Leverington-Waite, Michelle; Simmonds, James; Uauy, Cristobal; Trafford, Kay

    2011-01-01

    Starch within the endosperm of most species of the Triticeae has a unique bimodal granule morphology comprising large lenticular A-type granules and smaller near-spherical B-type granules. However, a few wild wheat species (Aegilops) are known to lack B-granules. Ae. peregrina and a synthetic tetraploid Aegilops with the same genome composition (SU) were found to differ in B-granule number. The synthetic tetraploid had normal A- and B-type starch granules whilst Ae. peregrina had only A-granules because the B-granules failed to initiate. A population segregating for B-granule number was generated by crossing these two accessions and was used to study the genetic basis of B-granule initiation. A combination of Bulked Segregant Analysis and QTL mapping identified a major QTL located on the short arm of chromosome 4S that accounted for 44.4% of the phenotypic variation. The lack of B-granules in polyploid Aegilops with diverse genomes suggests that the B-granule locus has been lost several times independently during the evolution of the Triticeae. It is proposed that the B-granule locus is susceptible to silencing during polyploidization and a model is presented to explain the observed data based on the assumption that the initiation of B-granules is controlled by a single major locus per haploid genome. PMID:21227932

  4. Genetic map of Triticum turgidum based on a hexaploid wheat population without genetic recombination for D genome

    PubMed Central

    2012-01-01

    Background A synthetic doubled-haploid hexaploid wheat population, SynDH1, derived from the spontaneous chromosome doubling of triploid F1 hybrid plants obtained from the cross of hybrids Triticum turgidum ssp. durum line Langdon (LDN) and ssp. turgidum line AS313, with Aegilops tauschii ssp. tauschii accession AS60, was previously constructed. SynDH1 is a tetraploidization-hexaploid doubled haploid (DH) population because it contains recombinant A and B chromosomes from two different T. turgidum genotypes, while all the D chromosomes from Ae. tauschii are homogenous across the whole population. This paper reports the construction of a genetic map using this population. Results Of the 606 markers used to assemble the genetic map, 588 (97%) were assigned to linkage groups. These included 513 Diversity Arrays Technology (DArT) markers, 72 simple sequence repeat (SSR), one insertion site-based polymorphism (ISBP), and two high-molecular-weight glutenin subunit (HMW-GS) markers. These markers were assigned to the 14 chromosomes, covering 2048.79 cM, with a mean distance of 3.48 cM between adjacent markers. This map showed good coverage of the A and B genome chromosomes, apart from 3A, 5A, 6A, and 4B. Compared with previously reported maps, most shared markers showed highly consistent orders. This map was successfully used to identify five quantitative trait loci (QTL), including two for spikelet number on chromosomes 7A and 5B, two for spike length on 7A and 3B, and one for 1000-grain weight on 4B. However, differences in crossability QTL between the two T. turgidum parents may explain the segregation distortion regions on chromosomes 1A, 3B, and 6B. Conclusions A genetic map of T. turgidum including 588 markers was constructed using a synthetic doubled haploid (SynDH) hexaploid wheat population. Five QTLs for three agronomic traits were identified from this population. However, more markers are needed to increase the density and resolution of this map in the

  5. Regions of the bread wheat D genome associated with variation in key photosynthesis traits and shoot biomass under both well watered and water deficient conditions.

    PubMed

    Osipova, Svetlana; Permyakov, Alexey; Permyakova, Marina; Pshenichnikova, Tatyana; Verkhoturov, Vasiliy; Rudikovsky, Alexandr; Rudikovskaya, Elena; Shishparenok, Alexandr; Doroshkov, Alexey; Börner, Andreas

    2016-05-01

    A quantitative trait locus (QTL) approach was taken to reveal the genetic basis in wheat of traits associated with photosynthesis during a period of exposure to water deficit stress. The performance, with respect to shoot biomass, gas exchange and chlorophyll fluorescence, leaf pigment content and the activity of various ascorbate-glutathione cycle enzymes and catalase, of a set of 80 wheat lines, each containing a single chromosomal segment introgressed from the bread wheat D genome progenitor Aegilops tauschii, was monitored in plants exposed to various water regimes. Four of the seven D genome chromosomes (1D, 2D, 5D, and 7D) carried clusters of both major (LOD >3.0) and minor (LOD between 2.0 and 3.0) QTL. A major QTL underlying the activity of glutathione reductase was located on chromosome 2D, and another, controlling the activity of ascorbate peroxidase, on chromosome 7D. A region of chromosome 2D defined by the microsatellite locus Xgwm539 and a second on chromosome 7D flanked by the marker loci Xgwm1242 and Xgwm44 harbored a number of QTL associated with the water deficit stress response.

  6. AFLP-based analysis to study genetic variability and relationships in the Spanish species of the genus Aegilops.

    PubMed

    Monte, J V; De Nova, P J; Soler, C

    2001-01-01

    Amplified fragment length polymorphism (AFLP) DNA markers were used to characterize the genetic diversity and relationships in wild species of the genus Aegilops. Fifty populations, which included the species Aegilops biuncialis (UUMM), Ae. neglecta (UUMMNN), Ae. ovata (UUMM), Ae. ventricosa (DDNN) and Ae. triuncialis (UUCC) were selected. These populations are distributed in the Iberian peninsula and Balearic islands. Five AFLP selective primer combinations generated a total of 527 amplification products of which 517 (98.10%) detected polymorphisms. Aegilops neglecta showed the least variation in contrast with Ae. biuncialis that presented the highest degree of polymorphism. Genetic relationships within the populations were evaluated by generating a similarity matrix based on the Jaccard index. In the resulting phenogram Ae. ventricosa appears segregated from the other species, probably owing to the influence of the D genome. The species sharing the U genome are located in the main cluster. The branching pattern of the U genome group reflects the proximity of the species sharing the M genome. Ae. biuncialis and Ae. ovata are clearly separated suggesting that the super index system should be used to differentiate the M genomes of both species. The variation among populations within species in relation to their geographical origin and results previously obtained by the authors using biochemical and molecular markers are discussed.

  7. Transmission of the Aegilops ovata chromosomes carrying gametocidal factors in hexaploid triticale (×Triticosecale Wittm.) hybrids.

    PubMed

    Kwiatek, M; Majka, M; Ślusarkiewicz-Jarzina, A; Ponitka, A; Pudelska, H; Belter, J; Wiśniewska, H

    2016-08-01

    The main aim of this work was to induce the chromosome rearrangements between Aegilops ovata (UUMM) and hexaploid triticale (AABBRR) by expression of the gametocidal factor located on the chromosome 4M. The Aegilops ovata × Secale cereale (UUMMRR) amphiploids and triticale 'Moreno' were used to produce hybrids by reciprocal crosses. Chromosome dynamics was observed in subsequent generations of hybrids during mitotic metaphase of root meristems and first metaphase of meiosis of pollen mother cells. Chromosomes were identified by genomic in situ hybridisation (GISH) and fluorescence in situ hybridisation (FISH) using pTa71, pTa791, pSc119.2 and pAs1 DNA probes. It has been shown that the origin of the genetic background had an influence on Aegilops chromosome transmission. Moreover, it has been reported that the preferential transmission of chromosome 4M appeared during both androgenesis and gynogenesis. It is also hypothesised that the expression of the triticale Gc gene suppressor had an influence on the semi-fertility of hybrids but did not inhibit the chromosome rearrangements. This paper also describes the double haploid production, which enabled to obtain plants with two identical copies of triticale chromosomes with translocations of Aegilops chromatin segments.

  8. Transmission of the Aegilops ovata chromosomes carrying gametocidal factors in hexaploid triticale (×Triticosecale Wittm.) hybrids.

    PubMed

    Kwiatek, M; Majka, M; Ślusarkiewicz-Jarzina, A; Ponitka, A; Pudelska, H; Belter, J; Wiśniewska, H

    2016-08-01

    The main aim of this work was to induce the chromosome rearrangements between Aegilops ovata (UUMM) and hexaploid triticale (AABBRR) by expression of the gametocidal factor located on the chromosome 4M. The Aegilops ovata × Secale cereale (UUMMRR) amphiploids and triticale 'Moreno' were used to produce hybrids by reciprocal crosses. Chromosome dynamics was observed in subsequent generations of hybrids during mitotic metaphase of root meristems and first metaphase of meiosis of pollen mother cells. Chromosomes were identified by genomic in situ hybridisation (GISH) and fluorescence in situ hybridisation (FISH) using pTa71, pTa791, pSc119.2 and pAs1 DNA probes. It has been shown that the origin of the genetic background had an influence on Aegilops chromosome transmission. Moreover, it has been reported that the preferential transmission of chromosome 4M appeared during both androgenesis and gynogenesis. It is also hypothesised that the expression of the triticale Gc gene suppressor had an influence on the semi-fertility of hybrids but did not inhibit the chromosome rearrangements. This paper also describes the double haploid production, which enabled to obtain plants with two identical copies of triticale chromosomes with translocations of Aegilops chromatin segments. PMID:26825077

  9. Identification of quantitative trait loci for abscisic acid responsiveness in the D-genome of hexaploid wheat.

    PubMed

    Iehisa, Julio C M; Matsuura, Takakazu; Mori, Izumi C; Yokota, Hirokazu; Kobayashi, Fuminori; Takumi, Shigeo

    2014-06-15

    In crop species such as wheat, abiotic stresses and preharvest sprouting reduce grain yield and quality. The plant hormone abscisic acid (ABA) plays important roles in abiotic stress tolerance and seed dormancy. In previous studies, we evaluated ABA responsiveness of 67 Aegilops tauschii accessions and their synthetic hexaploid wheat lines, finding wide variation that was due to the D-genome. In this study, quantitative trait locus (QTL) analysis was performed using an F2 population derived from crosses of highly ABA-responsive and less-responsive synthetic wheat lines. A significant QTL was detected on chromosome 6D, in a similar location to that reported for ABA responsiveness using recombinant inbred lines derived from common wheat cultivars Mironovskaya 808 and Chinese Spring. A comparative map and physiological and expression analyses of the 6D QTL suggested that this locus involved in line differences among wheat synthetics is different from that involved in cultivar differences in common wheat. The common wheat 6D QTL was found to affect seed dormancy and the regulation of cold-responsive/late embryogenesis abundant genes during dehydration. However, in synthetic wheat, we failed to detect any association of ABA responsiveness with abiotic stress tolerance or seed dormancy, at least under our experimental conditions. Development of near-isogenic lines will be important for functional analyses of the synthetic wheat 6D QTL. PMID:24877675

  10. Sequencing of chloroplast genomes from wheat, barley, rye and their relatives provides a detailed insight into the evolution of the Triticeae tribe.

    PubMed

    Middleton, Christopher P; Senerchia, Natacha; Stein, Nils; Akhunov, Eduard D; Keller, Beat; Wicker, Thomas; Kilian, Benjamin

    2014-01-01

    Using Roche/454 technology, we sequenced the chloroplast genomes of 12 Triticeae species, including bread wheat, barley and rye, as well as the diploid progenitors and relatives of bread wheat Triticum urartu, Aegilops speltoides and Ae. tauschii. Two wild tetraploid taxa, Ae. cylindrica and Ae. geniculata, were also included. Additionally, we incorporated wild Einkorn wheat Triticum boeoticum and its domesticated form T. monococcum and two Hordeum spontaneum (wild barley) genotypes. Chloroplast genomes were used for overall sequence comparison, phylogenetic analysis and dating of divergence times. We estimate that barley diverged from rye and wheat approximately 8-9 million years ago (MYA). The genome donors of hexaploid wheat diverged between 2.1-2.9 MYA, while rye diverged from Triticum aestivum approximately 3-4 MYA, more recently than previously estimated. Interestingly, the A genome taxa T. boeoticum and T. urartu were estimated to have diverged approximately 570,000 years ago. As these two have a reproductive barrier, the divergence time estimate also provides an upper limit for the time required for the formation of a species boundary between the two. Furthermore, we conclusively show that the chloroplast genome of hexaploid wheat was contributed by the B genome donor and that this unknown species diverged from Ae. speltoides about 980,000 years ago. Additionally, sequence alignments identified a translocation of a chloroplast segment to the nuclear genome which is specific to the rye/wheat lineage. We propose the presented phylogeny and divergence time estimates as a reference framework for future studies on Triticeae. PMID:24614886

  11. Molecular Cytogenetic Mapping of Satellite DNA Sequences in Aegilops geniculata and Wheat.

    PubMed

    Koo, Dal-Hoe; Tiwari, Vijay K; Hřibová, Eva; Doležel, Jaroslav; Friebe, Bernd; Gill, Bikram S

    2016-01-01

    Fluorescence in situ hybridization (FISH) provides an efficient system for cytogenetic analysis of wild relatives of wheat for individual chromosome identification, elucidation of homoeologous relationships, and for monitoring alien gene transfers into wheat. This study is aimed at developing cytogenetic markers for chromosome identification of wheat and Aegilops geniculata (2n = 4x = 28, UgUgMgMg) using satellite DNAs obtained from flow-sorted chromosome 5Mg. FISH was performed to localize the satellite DNAs on chromosomes of wheat and selected Aegilops species. The FISH signals for satellite DNAs on chromosome 5Mg were generally associated with constitutive heterochromatin regions corresponding to C-band-positive chromatin including telomeric, pericentromeric, centromeric, and interstitial regions of all the 14 chromosome pairs of Ae. geniculata. Most satellite DNAs also generated FISH signals on wheat chromosomes and provided diagnostic chromosome arm-specific cytogenetic markers that significantly improved chromosome identification in wheat. The newly identified satellite DNA CL36 produced localized Mg genome chromosome-specific FISH signals in Ae. geniculata and in the M genome of the putative diploid donor species Ae. comosa subsp. subventricosa but not in Ae. comosa subsp. comosa, suggesting that the Mg genome of Ae. geniculata was probably derived from subsp. subventricosa.

  12. Molecular Cytogenetic Mapping of Satellite DNA Sequences in Aegilops geniculata and Wheat.

    PubMed

    Koo, Dal-Hoe; Tiwari, Vijay K; Hřibová, Eva; Doležel, Jaroslav; Friebe, Bernd; Gill, Bikram S

    2016-01-01

    Fluorescence in situ hybridization (FISH) provides an efficient system for cytogenetic analysis of wild relatives of wheat for individual chromosome identification, elucidation of homoeologous relationships, and for monitoring alien gene transfers into wheat. This study is aimed at developing cytogenetic markers for chromosome identification of wheat and Aegilops geniculata (2n = 4x = 28, UgUgMgMg) using satellite DNAs obtained from flow-sorted chromosome 5Mg. FISH was performed to localize the satellite DNAs on chromosomes of wheat and selected Aegilops species. The FISH signals for satellite DNAs on chromosome 5Mg were generally associated with constitutive heterochromatin regions corresponding to C-band-positive chromatin including telomeric, pericentromeric, centromeric, and interstitial regions of all the 14 chromosome pairs of Ae. geniculata. Most satellite DNAs also generated FISH signals on wheat chromosomes and provided diagnostic chromosome arm-specific cytogenetic markers that significantly improved chromosome identification in wheat. The newly identified satellite DNA CL36 produced localized Mg genome chromosome-specific FISH signals in Ae. geniculata and in the M genome of the putative diploid donor species Ae. comosa subsp. subventricosa but not in Ae. comosa subsp. comosa, suggesting that the Mg genome of Ae. geniculata was probably derived from subsp. subventricosa. PMID:27403741

  13. Investigation of diversity in Aegilops biuncialis and Aegilops umbellulata by A-PAGE.

    PubMed

    Ahmadpoor, Fatemeh; Asghari-Zakaria, Rasool; Firoozi, Behnam; Shahbazi, Hossein

    2014-01-01

    Aegilops species, wild relatives of wheat, are one of the important genetic resources in wheat breeding. In this study 13 populations of Aegilops biuncialis along with 2 populations of progenitor species Aegilops umbellulata were analysed in six replications using of acid polyacrylamide gel electrophoresis. The results showed that TN-01-293 population had a high gluten and grind quality because of high percentage of γ-45.31 and γ-43.5 (high gluten quality index) in the observed band. Also, Ahar population from A. biuncialis was introduced to light gluten because of low percentage of γ-45.31 and γ-43.5 bands of quality. All studied populations can be used in breeding programmes for improving quality of bread wheat because of lack of γ-42 and γ-40 bands (low quality indices) and including high frequency of band in ω region. Through using PopGen 1.32 software, diversity is estimated . The maximum value of genetic diversity among populations resulted 49%.

  14. Study of the repeatability of histone genes in the ploidy series of wheat and Aegilops

    SciTech Connect

    Vakhitov, V.A.; Kulikov, A.M.

    1986-10-01

    The hDNA content and number of histone genes in the genomes of different wheat and Aegilops species have been determined by molecular hybridization of DNA with /sup 125/I-histone DNA of Drosophila (L-repeat) on nitrocellulose filters. It has been demonstrated that the proportion of hDNA in the total DNA of diploid and polyploid wheat species is (1.3-7.7) x 10/sup -3/% (57-850 genes), and in the ploidy series of Aegilops species (2.0-8.0) x 10/sup -3/% (89-780 genes). The repeatability of the histone genes generally increases at each ploidy level in the species with higher DNA content. At the same time, it has been demonstrated that the DNA content is not the only factor determining repeatability of the histone genes, as some diploid and allopolyploid species have similar number of these genes. It has been concluded that genetic mechanisms are involved in the regulation of the number of histone genes.

  15. Genome wide identification of C1-2i zinc finger proteins and their response to abiotic stress in hexaploid wheat.

    PubMed

    Cheuk, Arnaud; Houde, Mario

    2016-04-01

    The C1-2i wheat Q-type C2H2 zinc finger protein (ZFP) transcription factor subclass has been reported to play important roles in plant stress responses. This subclass of ZFPs has not been studied in hexaploid wheat (Triticum aestivum) and we aimed to identify all members of this subclass and evaluate their responses to different abiotic stresses causing oxidative stress. Exploiting the recently published wheat draft genome sequence, we identified 53 members (including homoeologs from A, B and D genomes) of the C1-2i wheat Q-type C2H2 ZFPs (TaZFPs) representing 21 genes. Evolution analysis revealed that 9 TaZFPs members are directly inherited from the parents Triticum urartu and Aegilops tauschii, while 15 diverged through neoploidization events. This TaZFP subclass is responsive to the oxidative stress generator H2O2 and to high light, drought stress and flooding. Most TaZFPs are responsive to H2O2 (37/53), high light (44/53), flooding (31/53) or drought (37/53); 32 TaZFPs were up-regulated by at least 3 stresses and 16 were responsive to all stresses tested. A large number of these TaZFPs were physically mapped on different wheat draft genome sequences with known markers useful for QTL mapping. Our results show that the C1-2i subclass of TaZFPs is associated with responses to different abiotic stresses and that most TaZFPs (30/53 or 57 %) are located on group 5 chromosomes known to be involved in environment adaptation. Detailed characterization of these novel wheat TaZFPs and their association to QTL or eQTL may help to design wheat cultivars with improved tolerance to abiotic stress.

  16. Synthetic hexaploids derived from under-exploited tetraploids as a new resource for disease resistance in wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Synthetic hexaploid wheat (SHW) (2n = 6x = 42, genome AABBDD), which is developed from the hybridization between tetraploid wheat (Triticum turgidum L., 2n = 4x = 28, genome AABB) and Aegilops tauschii Coss. (2n = 2x = 14, genome DD), is a useful bridging germplasm for the introgression of desirable...

  17. Screening The Aegilops-Triticum Group For Boron Tolerance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Boron deficient and toxic soils pose a critical problem in wheat production on a world scale. Therefore, 79 accessions from 12 diverse wild wheat (Aegilops speltoides, Ae. longissima, Ae. sharonensis, Ae. bicornis, Ae. searsii, Ae. kotschyi, Ae. peregrina ssp. cylindrostachys, Ae. peregrina ssp. eu...

  18. AB-QTL analysis in winter wheat: I. Synthetic hexaploid wheat (T. turgidum ssp. dicoccoides x T. tauschii) as a source of favourable alleles for milling and baking quality traits.

    PubMed

    Kunert, Antje; Naz, Ali Ahmad; Dedeck, Oliver; Pillen, Klaus; Léon, Jens

    2007-09-01

    The advanced backcross QTL (AB-QTL) strategy was utilised to locate quantitative trait loci (QTLs) for baking quality traits in two BC(2)F(3) populations of winter wheat. The backcrosses are derived from two German winter wheat cultivars, Batis and Zentos, and two synthetic, hexaploid wheat accessions, Syn022 and Syn086. The synthetics originate from hybridisations of wild emmer (T. turgidum spp. dicoccoides) and T. tauschii, rather than from durum wheat and T. tauschii and thus allowed for the first time to test for exotic QTL effects on wheat genomes A and B in addition to genome D. The investigated quality traits comprised hectolitre weight, grain hardness, flour yield Type 550, falling number, grain protein content, sedimentation volume and baking volume. One hundred and forty-nine SSR markers were applied to genotype a total of 400 BC(2)F(3) lines. For QTL detection, a mixed-model ANOVA was conducted, including the effects DNA marker, BC(2)F(3) line, environment and marker x environment interaction. Overall 38 QTLs significant for a marker main effect were detected. The exotic allele improved trait performance at 14 QTLs (36.8%), while the elite genotype contributed the favourable effect at 24 QTLs (63.2%). The favourable exotic alleles were mainly associated with grain protein content, though the greatest improvement of trait performance due to the exotic alleles was achieved for the traits falling number and sedimentation volume. At the QTL on chromosome 4B the exotic allele increased the falling number by 19.6% and at the QTL on chromosome 6D the exotic allele led to an increase of the sedimentation volume by 21.7%. The results indicate that synthetic wheat derived from wild emmer x T. tauschii carries favourable QTL alleles for baking quality traits, which might be useful for breeding improved wheat varieties by marker-assisted selection.

  19. Chromosomal location of Pm35, a novel Aegilops tauschii derived powdery mildew resistance gene introgressed into common wheat (Triticum aestivum L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A single gene controlling powdery mildew resistance was identified in the North Carolina germplasm line NC96BGTD3 (NCD3) using genetic analysis of F2 derived lines from a NCD3 X Saluda cross. Microsatellite markers linked to this Pm gene were identified and their most likely order was Xcfd7, 10.3cM,...

  20. Identification and mapping of Sr46 from Aegilops tauschii accession CIae 25 conferring resistance to race TTKSK (Ug99) of wheat stem rust pathogen

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The race TTKSK (Ug99) of Puccinia graminis f. sp. tritici, the casual pathogen for wheat stem rust, is currently a major threat to global wheat production. To confine this threat, researchers across the world have been devoted to identifying TTKSK-resistant genes. Here, we report the identificatio...

  1. Rapid evolutionary dynamics in a 2.8-Mb chromosomal region containing multiple prolamin and resistance gene families in Aegilops tauschii

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The prolamin (seed storage proteins high in glutamine and proline) and resistance gene families are important in domesticated bread wheat (Triticum aestivum) food uses and in defense against pathogen attacks, respectively. To better understand the evolution of these multi-gene families, the DNA se...

  2. Evolution of New Disease Specificity at a Single Resistance Locus in a Crop-Weed Complex: Reconstitution of the Lr21 Gene in Wheat.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Leaf-rust resistance gene Lr21, present in modern varieties of hexaploid wheat, originated in goatgrass Aegilops tauschii Coss., the D genome donor of wheat. The goatgrass donor was collected in Iran where it grows as a weed in wheat fields as part of the native agricultural ecosystem. In order to ...

  3. Map-based analysis of the tenacious glume gene Tg-B1 of wild emmer and its role in wheat domestication

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The domestication of wheat was instrumental in spawning the civilization of humankind, and it occurred through genetic mutations that gave rise to types with non-fragile rachises, soft glumes, and free-threshing seed. The Tg-D1 gene on chromosome 2D of Aegilops tauschii, the D-genome progenitor of ...

  4. Genetic diversity among synthetic hexaploid wheat accessions with resistance to several fungal diseases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Synthetic hexaploid wheat (SHW) is known to be an excellent vehicle for transferring large genetic variations especially the many useful traits present in the D genome of Aegilops tauschii Coss (2n=2x=14, DD) for improvement of cultivated wheat (Triticum aestivum L., 2n=6x=42, AABBDD). The objectiv...

  5. Introgression of a leaf rust resistance gene from Aegilops caudata to bread wheat.

    PubMed

    Riar, Amandeep Kaur; Kaur, Satinder; Dhaliwal, H S; Singh, Kuldeep; Chhuneja, Parveen

    2012-08-01

    Rusts are the most important biotic constraints limiting wheat productivity worldwide. Deployment of cultivars with broad spectrum rust resistance is the only environmentally viable option to combat these diseases. Identification and introgression of novel sources of resistance is a continuous process to combat the ever evolving pathogens. The germplasm of nonprogenitor Aegilops species with substantial amount of variability has been exploited to a limited extent. In the present investigation introgression, inheritance and molecular mapping of a leaf rust resistance gene of Ae. caudata (CC) acc. pau3556 in cultivated wheat were undertaken. An F(2) population derived from the cross of Triticum aestivum cv. WL711 - Ae. caudata introgression line T291-2 with wheat cultivar PBW343 segregated for a single dominant leaf rust resistance gene at the seedling and adult plant stages. Progeny testing in F(3) confirmed the introgression of a single gene for leaf rust resistance. Bulked segregant analysis using polymorphic D-genome-specific SSR markers and the cosegregation of the 5DS anchored markers (Xcfd18, Xcfd78, Xfd81 and Xcfd189) with the rust resistance in the F(2) population mapped the leaf rust resistance gene (LrAC) on the short arm of wheat chromosome 5D. Genetic complementation and the linked molecular markers revealed that LrAC is a novel homoeoallele of an orthologue Lr57 already introgressed from the 5M chromosome of Ae. geniculata on 5DS of wheat.

  6. Gene flow between wheat and wild relatives: empirical evidence from Aegilops geniculata, Ae. neglecta and Ae. triuncialis.

    PubMed

    Arrigo, Nils; Guadagnuolo, Roberto; Lappe, Sylvain; Pasche, Sophie; Parisod, Christian; Felber, François

    2011-09-01

    Gene flow between domesticated species and their wild relatives is receiving growing attention. This study addressed introgression between wheat and natural populations of its wild relatives (Aegilops species). The sampling included 472 individuals, collected from 32 Mediterranean populations of three widespread Aegilops species (Aegilops geniculata, Ae. neglecta and Ae. triuncialis) and compared wheat field borders to areas isolated from agriculture. Individuals were characterized with amplified fragment length polymorphism fingerprinting, analysed through two computational approaches (i.e. Bayesian estimations of admixture and fuzzy clustering), and sequences marking wheat-specific insertions of transposable elements. With this combined approach, we detected substantial gene flow between wheat and Aegilops species. Specifically, Ae. neglecta and Ae. triuncialis showed significantly more admixed individuals close to wheat fields than in locations isolated from agriculture. In contrast, little evidence of gene flow was found in Ae. geniculata. Our results indicated that reproductive barriers have been regularly bypassed during the long history of sympatry between wheat and Aegilops.

  7. Gene flow between wheat and wild relatives: empirical evidence from Aegilops geniculata, Ae. neglecta and Ae. triuncialis

    PubMed Central

    Arrigo, Nils; Guadagnuolo, Roberto; Lappe, Sylvain; Pasche, Sophie; Parisod, Christian; Felber, François

    2011-01-01

    Gene flow between domesticated species and their wild relatives is receiving growing attention. This study addressed introgression between wheat and natural populations of its wild relatives (Aegilops species). The sampling included 472 individuals, collected from 32 Mediterranean populations of three widespread Aegilops species (Aegilops geniculata, Ae. neglecta and Ae. triuncialis) and compared wheat field borders to areas isolated from agriculture. Individuals were characterized with amplified fragment length polymorphism fingerprinting, analysed through two computational approaches (i.e. Bayesian estimations of admixture and fuzzy clustering), and sequences marking wheat-specific insertions of transposable elements. With this combined approach, we detected substantial gene flow between wheat and Aegilops species. Specifically, Ae. neglecta and Ae. triuncialis showed significantly more admixed individuals close to wheat fields than in locations isolated from agriculture. In contrast, little evidence of gene flow was found in Ae. geniculata. Our results indicated that reproductive barriers have been regularly bypassed during the long history of sympatry between wheat and Aegilops. PMID:25568015

  8. Accelerated evolution of the mitochondrial genome in an alloplasmic line of durum wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat is not only an important crop but also an excellent plant species for nuclear mitochondrial interaction studies. To investigate the level of sequence changes introduced into the mitochondrial genome under the alloplasmic conditions, three mitochondrial genomes of Triticum-Aegilops species w...

  9. Allelic diversity and molecular characterization of puroindoline genes in five diploid species of the Aegilops genus.

    PubMed

    Cuesta, Susana; Guzmán, Carlos; Alvarez, Juan B

    2013-11-01

    Grain hardness is an important quality trait in wheat. This trait is related to the variation in, and the presence of, puroindolines (PINA and PINB). This variation can be increased by the allelic polymorphism present in the Aegilops species that are related to wheat. This study evaluated allelic Pina and Pinb gene variability in five diploid species of the Aegilops genus, along with the molecular characterization of the main allelic variants found in each species. This polymorphism resulted in 16 alleles for the Pina gene and 24 alleles for the Pinb gene, of which 10 and 17, respectively, were novel. Diverse mutations were detected in the deduced mature proteins of these alleles, which could influence the hardness characteristics of these proteins. This study shows that the diploid species of the Aegilops genus could be a good source of genetic variability for both Pina and Pinb genes, which could be used in breeding programmes to extend the range of different textures in wheat.

  10. Generation of amphidiploids from hybrids of wheat and related species from the genera Aegilops, Secale, Thinopyrum, and Triticum as a source of genetic variation for wheat improvement.

    PubMed

    Nemeth, Csilla; Yang, Cai-yun; Kasprzak, Paul; Hubbart, Stella; Scholefield, Duncan; Mehra, Surbhi; Skipper, Emma; King, Ian; King, Julie

    2015-02-01

    We aim to improve diversity of domesticated wheat by transferring genetic variation for important target traits from related wild and cultivated grass species. The present study describes the development of F1 hybrids between wheat and related species from the genera Aegilops, Secale, Thinopyrum, and Triticum and production of new amphidiploids. Amphidiploid lines were produced from 20 different distant relatives. Both colchicine and caffeine were successfully used to double the chromosome numbers. The genomic constitution of the newly formed amphidiploids derived from seven distant relatives was determined using genomic in situ hybridization (GISH). Altogether, 42 different plants were analysed, 19 using multicolour GISH separating the chromosomes from the A, B, and D genomes of wheat, as well as the distant relative, and 23 using single colour GISH. Restructuring of the allopolyploid genome, both chromosome losses and aneuploidy, was detected in all the genomes contained by the amphidiploids. From the observed chromosome numbers there is an indication that in amphidiploids the B genome of wheat suffers chromosome losses less frequently than the other wheat genomes. Phenotyping to realize the full potential of the wheat-related grass germplasm is underway, linking the analyzed genotypes to agronomically important target traits.

  11. RESISTANCE OF SHARON GOATGRASS (AEGILOPS SHARONENSIS) TO FUNGAL DISEASES OF WHEAT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sharon goatgrass (Aegilops sharonensis) is a wild relative of wheat that is native to Israel and Lebanon. The importance of Ae. sharonensis as a source of new resistance genes for wheat warrants additional research on the characterization of accessions for economically important genes. Thus, the obj...

  12. Study of improving the quality of bread and wheat-aegilops hybrids with the biotechnological ways

    NASA Astrophysics Data System (ADS)

    Ganbarzada, Aygun; Hasanova, Sudaba

    2016-08-01

    The great need of the people to bread demands to increase high qualitative grain plants. At present time for solving these problem different methods of biochemistry, genetics and molecular biology are widely used in the process of selection. To investigate biochemical peculiarities of wheat-aegilops hybrids and to define the correlative relation between these characteristics. To investigate the technological peculiarities of wheat- aegilops hybrids and to define the relation between their main biochemical and technological characteristics. The conclusion of this investigation showed the followings- the wheat-aegilops hybrids according to their morphological and biochemical characteristics have approached to wheats. The electrophoretic spectres of the wheat- aegilops hybrids which have stable for their morphological characteristics are homogeny and heterogenic. Hereditarily some group protein components have passed to their tribes from their parents. But spontaneous hybridisation results in taking part the components of other unknown wheats in these electrophoretic spectres. There is a relation between the electrophoretic spectres and the indications of the grain quality.

  13. Introgression of a New Stem Rust Resistance Gene from Aegilops markgrafii into Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In a prior study, we reported that an Alcedo/Aegilops markgrafii disomic addition line, AIII(D) (2n=44), was resistant to three races of the Ug99 lineage and five North American races of stem rust pathogen in wheat and the resistance originated from the alien chromosome. In this study, our objectiv...

  14. Genome-wide association for grain morphology in synthetic hexaploid wheats using digital imaging analysis

    PubMed Central

    2014-01-01

    Background Grain size and shape greatly influence grain weight which ultimately enhances grain yield in wheat. Digital imaging (DI) based phenomic characterization can capture the three dimensional variation in grain size and shape than has hitherto been possible. In this study, we report the results from using digital imaging of grain size and shape to understand the relationship among different components of this trait, their contribution to enhance grain weight, and to identify genomic regions (QTLs) controlling grain morphology using genome wide association mapping with high density diversity array technology (DArT) and allele-specific markers. Results Significant positive correlations were observed between grain weight and grain size measurements such as grain length (r = 0.43), width, thickness (r = 0.64) and factor from density (FFD) (r = 0.69). A total of 231 synthetic hexaploid wheats (SHWs) were grouped into five different sub-clusters by Bayesian structure analysis using unlinked DArT markers. Linkage disequilibrium (LD) decay was observed among DArT loci > 10 cM distance and approximately 28% marker pairs were in significant LD. In total, 197 loci over 60 chromosomal regions and 79 loci over 31 chromosomal regions were associated with grain morphology by genome wide analysis using general linear model (GLM) and mixed linear model (MLM) approaches, respectively. They were mainly distributed on homoeologous group 2, 3, 6 and 7 chromosomes. Twenty eight marker-trait associations (MTAs) on the D genome chromosomes 2D, 3D and 6D may carry novel alleles with potential to enhance grain weight due to the use of untapped wild accessions of Aegilops tauschii. Statistical simulations showed that favorable alleles for thousand kernel weight (TKW), grain length, width and thickness have additive genetic effects. Allelic variations for known genes controlling grain size and weight, viz. TaCwi-2A, TaSus-2B, TaCKX6-3D and TaGw2-6A, were also associated

  15. Characterisation and Analysis of the Aegilops sharonensis Transcriptome, a Wild Relative of Wheat in the Sitopsis Section

    PubMed Central

    Bouyioukos, Costas; Moscou, Matthew J.; Champouret, Nicolas; Hernández-Pinzón, Inmaculada; Ward, Eric R.; Wulff, Brande B. H.

    2013-01-01

    Aegilopssharonensis Eig (Sharon goatgrass) is a wild diploid relative of wheat within the Sitopsis section of Aegilops. This species represents an untapped reservoir of genetic diversity for traits of agronomic importance, especially as a source of novel disease resistance. To gain a foothold in this genetic resource, we sequenced the cDNA from leaf tissue of two geographically distinct Ae. sharonensis accessions (1644 and 2232) using the 454 Life Sciences platform. We compared the results of two different assembly programs using different parameter sets to generate 13 distinct assemblies in an attempt to maximize representation of the gene space in de novo transcriptome assembly. The most sensitive assembly (71,029 contigs; N50 674 nts) retrieved 18,684 unique best reciprocal BLAST hits (BRBH) against six previously characterised grass proteomes while the most specific assembly (30,609 contigs; N50 815 nts) retrieved 15,687 BRBH. We combined these two assemblies into a set of 62,243 non-redundant sequences and identified 139 belonging to plant disease resistance genes of the nucleotide binding leucine-rich repeat class. Based on the non-redundant sequences, we predicted 37,743 single nucleotide polymorphisms (SNP), equivalent to one per 1,142 bp. We estimated the level of heterozygosity as 1.6% in accession 1644 and 30.1% in 2232. The Ae. sharonensis leaf transcriptome provides a rich source of sequence and SNPs for this wild wheat relative. These sequences can be used with existing monocot genome sequences and EST sequence collections (e.g. barley, Brachypodium, wheat, rice, maize and Sorghum) to assist with genetic and physical mapping and candidate gene identification in Ae. sharonensis. These resources provide an initial framework to further build on and characterise the genetic and genomic structure of Ae. sharonensis. PMID:23951332

  16. Exploring the tertiary gene pool of bread wheat: sequence assembly and analysis of chromosome 5M(g) of Aegilops geniculata.

    PubMed

    Tiwari, Vijay K; Wang, Shichen; Danilova, Tatiana; Koo, Dal Hoe; Vrána, Jan; Kubaláková, Marie; Hribova, Eva; Rawat, Nidhi; Kalia, Bhanu; Singh, Narinder; Friebe, Bernd; Doležel, Jaroslav; Akhunov, Eduard; Poland, Jesse; Sabir, Jamal S M; Gill, Bikram S

    2015-11-01

    Next-generation sequencing (NGS) provides a powerful tool for the discovery of important genes and alleles in crop plants and their wild relatives. Despite great advances in NGS technologies, whole-genome shotgun sequencing is cost-prohibitive for species with complex genomes. An attractive option is to reduce genome complexity to a single chromosome prior to sequencing. This work describes a strategy for studying the genomes of distant wild relatives of wheat by isolating single chromosomes from addition or substitution lines, followed by chromosome sorting using flow cytometry and sequencing of chromosomal DNA by NGS technology. We flow-sorted chromosome 5M(g) from a wheat/Aegilops geniculata disomic substitution line [DS5M(g) (5D)] and sequenced it using an Illumina HiSeq 2000 system at approximately 50 × coverage. Paired-end sequences were assembled and used for structural and functional annotation. A total of 4236 genes were annotated on 5M(g) , in close agreement with the predicted number of genes on wheat chromosome 5D (4286). Single-gene FISH indicated no major chromosomal rearrangements between chromosomes 5M(g) and 5D. Comparing chromosome 5M(g) with model grass genomes identified synteny blocks in Brachypodium distachyon, rice (Oryza sativa), sorghum (Sorghum bicolor) and barley (Hordeum vulgare). Chromosome 5M(g) -specific SNPs and cytogenetic probe-based resources were developed and validated. Deletion bin-mapped and ordered 5M(g) SNP markers will be useful to track 5M-specific introgressions and translocations. This study provides a detailed sequence-based analysis of the composition of a chromosome from a distant wild relative of bread wheat, and opens up opportunities to develop genomic resources for wild germplasm to facilitate crop improvement.

  17. Molecular marker-assisted alien gene introgression of Sr39 for wheat stem rust resistance derived from Aegilops speltoides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In wheat (Triticum aestivum L.), stem rust resistance gene Sr39, derived from Aegilops speltoides, is highly effective against multiple stem rust races including Ug99. However, the gene has not been used in wheat breeding because it is located on a large 2S chromosomal segment in the current transl...

  18. Introgression of leaf rust and stripe rust resistance from Sharon goatgrass (Aegilops sharonensis Eig) into bread wheat (Triticum aestivum L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Leaf rust and stripe rust are devastating wheat diseases, causing significant yield losses in many regions of the world. The use of resistant varieties is the most efficient way to protect wheat crops from these diseases. Sharon goatgrass (Aegilops sharonensis or AES), which is a diploid wild relati...

  19. Nonhomologous Chromosome Pairing in Aegilops-Secale Hybrids.

    PubMed

    Su, Yarui; Zhang, Dale; Li, Yuge; Li, Suoping

    2015-01-01

    Intergeneric hybrids and amphidiploid hybrids from crosses of Aegilopstauschii and Secale cereale were produced using young embryo rescue. The hybrids showed complete sets of both parental chromosomes. The dihaploid plants showed an average meiotic pairing configuration of 10.84 I + 1.57 II + 0.01 III. Genomic in situ staining revealed 3 types of bivalent associations, i.e. D-D, R-R and D-R at frequencies of 8.6, 8.2 and 83.3%, respectively. Trivalents consisted of D-R-D or R-D-R associations. These results suggested that both intra- and intergenomic chromosome homology were contributed to chromosome pairing. Derived amphidiploids with 2n = 28 paired at metaphase I of meiosis as 4.51 I + 11.70 II + 0.03 III. Chromosome pairing of amphidiploids appeared more or less regular, i.e. bivalent-like with some trivalent configurations. PMID:26950342

  20. A comparison of the levels of hydroxamic acids in Aegilops speltoides and a hexaploid wheat and effects on Rhopalosiphum padi behaviour and fecundity.

    PubMed

    Elek, Henriett; Smart, Lesley; Ahmad, S; Anda, Angéla; Werner, C P; Pickett, J A

    2014-03-01

    Hydroxamic acids (HAs) are plant secondary metabolites produced by certain cereals, which have been found to be toxic to pest aphids in artificial diet assays. Previous studies have shown that tetraploid and hexaploid wheat varieties, the leaf tissues of which contained higher levels of these compounds than used in artificial diets, did not reduce aphid settling or fecundity. This current study reports findings on a high HA producing B genome accession of the diploid ancestor of wheat, Aegilops speltoides. We found that this accession does have a negative impact on aphid host selection and substantially reduces nymph production. Whole leaf tissue assays showed very high levels of HAs, well in excess of the toxic level determined in the artificial diet assays. Extraction of the apoplast fluid (AF) from this accession showed that the HA level is much lower than that of the whole tissue, but is still close to the artificial diet toxic level. Furthermore the HA level in the AF increases in response to aphid feeding. These observations could explain why hexaploid wheat remains susceptible to aphids, despite having whole leaf tissue HA levels in excess of the toxic levels determined in artificial diets.

  1. Chromosome Specific Substitution Lines of Aegilops geniculata Alter Parameters of Bread Making Quality of Wheat

    PubMed Central

    Tsujimoto, Hisashi; Gupta, Raj Kumar; Kumar, Aman; Kaur, Navneet; Kumar, Rohit; Chunduri, Venkatesh; Sharma, Nand Kishor; Chawla, Meenakshi; Sharma, Saloni; Mundey, Jaspreet Kaur

    2016-01-01

    Wheat cultivars with wide introgression have strongly impacted global wheat production. Aegilops geniculata (MgUg) is an important wild relative with several useful traits that can be exploited for wheat improvement. Screening of Ae. geniculata addition lines indicated a negative effect of 1Ug and the positive effect of 1Mg chromosome on wheat dough strength. Negative effect of 1Ug is probably associated with variation in number and position of the tripeptide repeat motif in the high molecular weight glutenin (HMW-G) gene. To utilize the positive potential of 1Mg chromosome, three disomic substitution lines (DSLs) 1Mg(1A), 1Mg(1B) and 1Mg(1D) were created. These lines were characterized for morphological, cytogenetic properties and biochemical signatures using FISH, 1D-, 2D-PAGE and RP-HPLC. Contribution of wheat 1A, 1B and 1D chromosomes towards dough mixing and baking parameters, chapatti quality, Fe/Zn content and glume color were identified. Observed order of variation in the dough mixing and baking parameters {1Mg(1D) ≤wheat ≤1Mg(1B) ≤1Mg(1A)} indicated that chromosome specific introgression is desirable for best utilization of wild species’ potential. PMID:27755540

  2. Diversity of fungal endophytes in recent and ancient wheat ancestors Triticum dicoccoides and Aegilops sharonensis.

    PubMed

    Ofek-Lalzar, Maya; Gur, Yonatan; Ben-Moshe, Sapir; Sharon, Or; Kosman, Evsey; Mochli, Elad; Sharon, Amir

    2016-10-01

    Endophytes have profound impacts on plants, including beneficial effects on agriculturally important traits. We hypothesized that endophytes in wild plants include beneficial endophytes that are absent or underrepresented in domesticated crops. In this work, we studied the structure of endophyte communities in wheat-related grasses, Triticum dicoccoides and Aegilops sharonensis, and compared it to an endophyte community from wheat (T. aeastivum). Endophytes were isolated by cultivation and by cultivation-independent methods. In total, 514 intergenic spacer region sequences from single cultures were analyzed. Categorization at 97% sequence similarity resulted in 67 operational taxonomic units (OTUs) that were evenly distributed between the different plant species. A narrow core community of Alternaria spp. was found in all samples, but each plant species also contained a significant portion of unique endophytes. The cultivation-independent analysis identified a larger number of OTUs than the cultivation method, half of which were singletons or doubletons. For OTUs with a relative abundance >0.5%, similar numbers were obtained by both methods. Collectively, our data show that wild grass relatives of wheat contain a wealth of taxonomically diverse fungal endophytes that are not found in modern wheat, some of which belong to taxa with known beneficial effects. PMID:27402714

  3. Wheat-Aegilops biuncialis amphiploids have efficient photosynthesis and biomass production during osmotic stress.

    PubMed

    Dulai, Sándor; Molnár, István; Szopkó, Dóra; Darkó, Éva; Vojtkó, András; Sass-Gyarmati, Andrea; Molnár-Láng, Márta

    2014-04-15

    Osmotic stress responses of water content, photosynthetic parameters and biomass production were investigated in wheat-Aegilops biuncialis amphiploids and in wheat genotypes to clarify whether they can use to improve the drought tolerance of bread wheat. A decrease in the osmotic pressure of the medium resulted in considerable water loss, stomatal closure and a decreased CO2 assimilation rate for the wheat genotypes, while the changes in these parameters were moderate for the amphiploids. Maximal assimilation rate was maintained at high level even under severe osmotic stress in the amphiploids, while it decreased substantially in the wheat genotypes. Nevertheless, the effective quantum yield of PS II was higher and the quantum yield of non-photochemical quenching of PS II and PS I was lower for the amphiploids than for the wheat cultivars. Parallel with this, higher cyclic electron flow was detected in wheat than in the amphiploids. The elevated photosynthetic activity of amphiploids under osmotic stress conditions was manifested in higher biomass production by roots and shoots as compared to wheat genotypes. These results indicate that the drought-tolerant traits of Ae. biuncialis can be manifested in the wheat genetic background and these amphiploids are suitable genetic materials for improving drought tolerance of wheat.

  4. Cytological identification of an Aegilops variabilis chromosome carrying stripe rust resistance in wheat

    PubMed Central

    Zhao, Laibin; Ning, Shunzong; Yu, Jianjun; Hao, Ming; Zhang, Lianquan; Yuan, Zhongwei; Zheng, Youliang; Liu, Dengcai

    2016-01-01

    Aegilops variabilis (UUSvSv), an important sources for wheat improvement, originated from chromosome doubling of a natural hybrid between Ae. umbellulata (UU) with Ae. longissima (SlSl). The Ae. variabilis karyotype was poorly characterized by fluorescent in situ hybridization (FISH). The FISH probe combination of pSc119.2, pTa71 and pTa-713 identified each of the 14 pairs of Ae. variabilis chromosomes. Our FISH ideogram was further used to detect an Ae. variabilis chromosome carrying stripe rust resistance in the background of wheat lines developed from crosses of the stripe rust susceptible bread wheat cultivar Yiyuan 2 with a resistant Ae. variabilis accession. Among the 15 resistant BC1F7 lines, three were 2Sv + 4Sv addition lines (2n = 46) and 12 were 2Sv(2B) or 2Sv(2D) substitution lines that were confirmed with SSR markers. SSR marker gwm148 can be used to trace 2Sv in common wheat background. Chromosome 2Sv probably carries gametocidal(Gc) gene(s) since cytological instability and chromosome structural variations, including non-homologous translocations, were observed in some lines with this chromosome. Due to the effects of photoperiod genes, substitution lines 2Sv(2D) and 2Sv(2B) exhibited late heading with 2Sv(2D) lines being later than 2Sv(2B) lines. 2Sv(2D) substitution lines were also taller and exhibited higher spikelet numbers and longer spikes.

  5. Diversity of fungal endophytes in recent and ancient wheat ancestors Triticum dicoccoides and Aegilops sharonensis.

    PubMed

    Ofek-Lalzar, Maya; Gur, Yonatan; Ben-Moshe, Sapir; Sharon, Or; Kosman, Evsey; Mochli, Elad; Sharon, Amir

    2016-10-01

    Endophytes have profound impacts on plants, including beneficial effects on agriculturally important traits. We hypothesized that endophytes in wild plants include beneficial endophytes that are absent or underrepresented in domesticated crops. In this work, we studied the structure of endophyte communities in wheat-related grasses, Triticum dicoccoides and Aegilops sharonensis, and compared it to an endophyte community from wheat (T. aeastivum). Endophytes were isolated by cultivation and by cultivation-independent methods. In total, 514 intergenic spacer region sequences from single cultures were analyzed. Categorization at 97% sequence similarity resulted in 67 operational taxonomic units (OTUs) that were evenly distributed between the different plant species. A narrow core community of Alternaria spp. was found in all samples, but each plant species also contained a significant portion of unique endophytes. The cultivation-independent analysis identified a larger number of OTUs than the cultivation method, half of which were singletons or doubletons. For OTUs with a relative abundance >0.5%, similar numbers were obtained by both methods. Collectively, our data show that wild grass relatives of wheat contain a wealth of taxonomically diverse fungal endophytes that are not found in modern wheat, some of which belong to taxa with known beneficial effects.

  6. Cytogenetic and molecular markers for detecting Aegilops uniaristata chromosomes in a wheat background.

    PubMed

    Gong, Wenping; Li, Guangrong; Zhou, Jianping; Li, Genying; Liu, Cheng; Huang, Chengyan; Zhao, Zhendong; Yang, Zujun

    2014-09-01

    Aegilops uniaristata has many agronomically useful traits that can be used for wheat breeding. So far, a Triticum turgidum - Ae. uniaristata amphiploid and one set of Chinese Spring (CS) - Ae. uniaristata addition lines have been produced. To guide Ae. uniaristata chromatin transformation from these lines into cultivated wheat through chromosome engineering, reliable cytogenetic and molecular markers specific for Ae. uniaristata chromosomes need to be developed. Standard C-banding shows that C-bands mainly exist in the centromeric regions of Ae. uniaristata but rarely at the distal ends. Fluorescence in situ hybridization (FISH) using (GAA)8 as a probe showed that the hybridization signal of chromosomes 1N-7N are different, thus (GAA)8 can be used to identify all Ae. uniaristata chromosomes in wheat background simultaneously. Moreover, a total of 42 molecular markers specific for Ae. uniaristata chromosomes were developed by screening expressed sequence tag - sequence tagged site (EST-STS), expressed sequence tag - simple sequence repeat (EST-SSR), and PCR-based landmark unique gene (PLUG) primers. The markers were subsequently localized using the CS - Ae. uniaristata addition lines and different wheat cultivars as controls. The cytogenetic and molecular markers developed herein will be helpful for screening and identifying wheat - Ae. uniaristata progeny.

  7. The 2NS Translocation from Aegilops ventricosa Confers Resistance to the Triticum Pathotype of Magnaporthe oryzae

    PubMed Central

    Cruz, C.D.; Peterson, G.L.; Bockus, W.W.; Kankanala, P.; Dubcovsky, J.; Jordan, K.W.; Akhunov, E.; Chumley, F.; Baldelomar, F.D.; Valent, B.

    2016-01-01

    Wheat blast is a serious disease caused by the fungus Magnaporthe oryzae (Triticum pathotype) (MoT). The objective of this study was to determine the effect of the 2NS translocation from Aegilops ventricosa (Zhuk.) Chennav on wheat head and leaf blast resistance. Disease phenotyping experiments were conducted in growth chamber, greenhouse, and field environments. Among 418 cultivars of wheat (Triticum aestivum L.), those with 2NS had 50.4 to 72.3% less head blast than those without 2NS when inoculated with an older MoT isolate under growth chamber conditions. When inoculated with recently collected isolates, cultivars with 2NS had 64.0 to 80.5% less head blast. Under greenhouse conditions when lines were inoculated with an older MoT isolate, those with 2NS had a significant head blast reduction. With newer isolates, not all lines with 2NS showed a significant reduction in head blast, suggesting that the genetic background and/or environment may influence the expression of any resistance conferred by 2NS. However, when near-isogenic lines (NILs) with and without 2NS were planted in the field, there was strong evidence that 2NS conferred resistance to head blast. Results from foliar inoculations suggest that the resistance to head infection that is imparted by the 2NS translocation does not confer resistance to foliar disease. In conclusion, the 2NS translocation was associated with significant reductions in head blast in both spring and winter wheat. PMID:27814405

  8. Genetic Basis for Spontaneous Hybrid Genome Doubling during Allopolyploid Speciation of Common Wheat Shown by Natural Variation Analyses of the Paternal Species

    PubMed Central

    Matsuoka, Yoshihiro; Nasuda, Shuhei; Ashida, Yasuyo; Nitta, Miyuki; Tsujimoto, Hisashi; Takumi, Shigeo; Kawahara, Taihachi

    2013-01-01

    The complex process of allopolyploid speciation includes various mechanisms ranging from species crosses and hybrid genome doubling to genome alterations and the establishment of new allopolyploids as persisting natural entities. Currently, little is known about the genetic mechanisms that underlie hybrid genome doubling, despite the fact that natural allopolyploid formation is highly dependent on this phenomenon. We examined the genetic basis for the spontaneous genome doubling of triploid F1 hybrids between the direct ancestors of allohexaploid common wheat (Triticum aestivum L., AABBDD genome), namely Triticumturgidum L. (AABB genome) and Aegilopstauschii Coss. (DD genome). An Ae. tauschii intraspecific lineage that is closely related to the D genome of common wheat was identified by population-based analysis. Two representative accessions, one that produces a high-genome-doubling-frequency hybrid when crossed with a T. turgidum cultivar and the other that produces a low-genome-doubling-frequency hybrid with the same cultivar, were chosen from that lineage for further analyses. A series of investigations including fertility analysis, immunostaining, and quantitative trait locus (QTL) analysis showed that (1) production of functional unreduced gametes through nonreductional meiosis is an early step key to successful hybrid genome doubling, (2) first division restitution is one of the cytological mechanisms that cause meiotic nonreduction during the production of functional male unreduced gametes, and (3) six QTLs in the Ae. tauschii genome, most of which likely regulate nonreductional meiosis and its subsequent gamete production processes, are involved in hybrid genome doubling. Interlineage comparisons of Ae. tauschii’s ability to cause hybrid genome doubling suggested an evolutionary model for the natural variation pattern of the trait in which non-deleterious mutations in six QTLs may have important roles. The findings of this study demonstrated that the

  9. Development of a diagnostic co-dominant marker for stem rust resistance gene Sr47 introgressed from Aegilops speltoides into durum wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stem rust (caused by Puccinia graminis f. sp. tritici, abbreviated as Pgt) resistance gene Sr47, originally transferred from Aegilops speltoides to durum wheat (Triticum turgidum subsp. durum) line DAS15, confers a high level of resistance to Pgt race TTKSK (known as Ug99). Recently, the durum Rust...

  10. Development of wheat-Aegilops speltoides recombinants and simple PCR-based markers for stem rust resistance genes on the 2S#1 chromosome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wild relatives of wheat are important but underutilized resources for new rust resistance genes because linked negative traits often hinder deployment of these genes in commercial wheats. Here we report reduced alien chromatin recombinants derived from E.R. Sears wheat-Aegilops speltoides translocat...

  11. Development of wheat-Aegilops speltoides recombinants and simple PCR-based markers for stem rust resistance genes on the 2S#1 chromosome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wild relatives of wheat are important but underutilized resources for new rust resistance genes because linked negative traits often hinder deployment of these genes in commercial wheats. Here we report reduced alien chromatin recombinants derived from E.R. Sears' wheat-Aegilops speltoides transloca...

  12. Genome-Wide Analysis of Stowaway-Like MITEs in Wheat Reveals High Sequence Conservation, Gene Association, and Genomic Diversification1[C][W

    PubMed Central

    Yaakov, Beery; Ben-David, Smadar; Kashkush, Khalil

    2013-01-01

    The diversity and evolution of wheat (Triticum-Aegilops group) genomes is determined, in part, by the activity of transposable elements that constitute a large fraction of the genome (up to 90%). In this study, we retrieved sequences from publicly available wheat databases, including a 454-pyrosequencing database, and analyzed 18,217 insertions of 18 Stowaway-like miniature inverted-repeat transposable element (MITE) families previously characterized in wheat that together account for approximately 1.3 Mb of sequence. All 18 families showed high conservation in length, sequence, and target site preference. Furthermore, approximately 55% of the elements were inserted in transcribed regions, into or near known wheat genes. Notably, we observed significant correlation between the mean length of the MITEs and their copy number. In addition, the genomic composition of nine MITE families was studied by real-time quantitative polymerase chain reaction analysis in 40 accessions of Triticum spp. and Aegilops spp., including diploids, tetraploids, and hexaploids. The quantitative polymerase chain reaction data showed massive and significant intraspecific and interspecific variation as well as genome-specific proliferation and nonadditive quantities in the polyploids. We also observed significant differences in the methylation status of the insertion sites among MITE families. Our data thus suggest a possible role for MITEs in generating genome diversification and in the establishment of nascent polyploid species in wheat. PMID:23104862

  13. Genome size and genome evolution in diploid Triticeae species.

    PubMed

    Eilam, T; Anikster, Y; Millet, E; Manisterski, J; Sagi-Assif, O; Feldman, M

    2007-11-01

    One of the intriguing issues concerning the dynamics of plant genomes is the occurrence of intraspecific variation in nuclear DNA amount. The aim of this work was to assess the ranges of intraspecific, interspecific, and intergeneric variation in nuclear DNA content of diploid species of the tribe Triticeae (Poaceae) and to examine the relation between life form or habitat and genome size. Altogether, 438 plants representing 272 lines that belong to 22 species were analyzed. Nuclear DNA content was estimated by flow cytometry. Very small intraspecific variation in DNA amount was found between lines of Triticeae diploid species collected from different habitats or between different morphs. In contrast to the constancy in nuclear DNA amount at the intraspecific level, there are significant differences in genome size between the various diploid species. Within the genus Aegilops, the 1C DNA amount ranged from 4.84 pg in A. caudata to 7.52 pg in A. sharonensis; among genera, the 1C DNA amount ranged from 4.18 pg in Heteranthelium piliferum to 9.45 pg in Secale montanum. No evidence was found for a smaller genome size in annual, self-pollinating species relative to perennial, cross-pollinating ones. Diploids that grow in the southern part of the group's distribution have larger genomes than those growing in other parts of the distribution. The contrast between the low variation at the intraspecific level and the high variation at the interspecific one suggests that changes in genome size originated in close temporal proximity to the speciation event, i.e., before, during, or immediately after it. The possible effects of sudden changes in genome size on speciation processes are discussed.

  14. [Analysis of storage proteins (prolamines, puroindolines and waxy) in common wheat lines Triticum aestivum L. x (Triticum timopheevii Zhuk. x Triticum tauschii) with complex resistance to fungal infections].

    PubMed

    Obukhova, L V; Laĭkova, L I; Shumnyĭ, V K

    2010-06-01

    Storage proteins (prolamines, puroindolines, and Waxy) were studied in common wheat introgression lines obtained with the use of the Saratovskaya 29 (S29) cultivar line and synthetic hexaploid wheat (Triticum timopheevii Zhuk. x T. tauschii) (Sintetik, Sin.) and displaying complex resistance to fungal infections. Comparative analysis of storage proteins in the introgression lines of common wheat Triticum aestivum L. and in the parental forms revealed the only line (BC5) having a substitution at the Gli-B2 locus from Sintetik. Hybrid lines subjected to nine back crosses with the recurrent parental form S29 and selections for resistance to pathogens can be considered as nearly isogenic for the selected trait and retaining the allelic composition of (1) prolamines responsible for the bread-making qualitiy, (2) puroindolines associated with grain texture, and (3) Waxy proteins responsible for nutritive qualities. These lines are valuable as donors of immunity in breeding programs without the loss of the quality of flour and grain as compared to the S29 line and are also important in searching for genes determining resistance to leaf and stem rust and to powdery mildew. The amphiploid has a number of characters (silent Glu-A 1 locus and Ha genotype) that can negatively affect the quality of flour and grain and thus should be taken into account when choosing this donor.

  15. The origin of spelt and free-threshing hexaploid wheat.

    PubMed

    Dvorak, Jan; Deal, Karin R; Luo, Ming-Cheng; You, Frank M; von Borstel, Keith; Dehghani, Hamid

    2012-01-01

    It is widely believed that hexaploid wheat originated via hybridization of hulled tetraploid emmer with Aegilops tauschii (genomes DD) and that the nascent hexaploid was spelt, from which free-threshing wheat evolved by mutations. To reassess the role of spelt in the evolution of Triticum aestivum, 4 disomic substitution lines of Ae. tauschii chromosome 2D in Chinese Spring wheat were developed and one of them was used to map the Tg locus, which controls glume tenacity in Ae. tauschii, relative to simple sequence repeat (SSR) and expressed sequence tag loci on wheat chromosome 2D. The segregation of SSR markers was used to assess the presence of Tg alleles in 11 accessions of spelt, both from Europe and from Asia. Ten of them had an inactive tg allele in the D genome and most had an active Tg allele in the B genome. This is consistent with spelt being derived from free-threshing hexaploid wheat by hybridization of free-threshing wheat with hulled emmer. It is proposed that the tetraploid parent of hexaploid wheat was not hulled emmer but a free-threshing form of tetraploid wheat.

  16. Introgression of leaf rust and stripe rust resistance from Sharon goatgrass (Aegilops sharonensis Eig) into bread wheat (Triticum aestivum L.).

    PubMed

    Millet, E; Manisterski, J; Ben-Yehuda, P; Distelfeld, A; Deek, J; Wan, A; Chen, X; Steffenson, B J

    2014-06-01

    Leaf rust and stripe rust are devastating wheat diseases, causing significant yield losses in many regions of the world. The use of resistant varieties is the most efficient way to protect wheat crops from these diseases. Sharon goatgrass (Aegilops sharonensis or AES), which is a diploid wild relative of wheat, exhibits a high frequency of leaf and stripe rust resistance. We used the resistant AES accession TH548 and induced homoeologous recombination by the ph1b allele to obtain resistant wheat recombinant lines carrying AES chromosome segments in the genetic background of the spring wheat cultivar Galil. The gametocidal effect from AES was overcome by using an "anti-gametocidal" wheat mutant. These recombinant lines were found resistant to highly virulent races of the leaf and stripe rust pathogens in Israel and the United States. Molecular DArT analysis of the different recombinant lines revealed different lengths of AES segments on wheat chromosome 6B, which indicates the location of both resistance genes.

  17. Characterization of a new wheat-Aegilops biuncialis addition line conferring quality-associated HMW glutenin subunits.

    PubMed

    Zhou, J P; Yao, C H; Yang, E N; Yin, M Q; Liu, C; Ren, Z L

    2014-01-28

    In this study, a new disomic addition line, 12-5-2, with 44 chromosomes that was derived from BC3F2 descendants of the hybridization between Triticum aestivum cv. CN19 and Aegilops biuncialis was created and reported. 12-5-2 was immune to both powdery mildew and stripe rust and has stable fertility. Fluorescence in situ hybridization and C-banding revealed that 12-5-2 was a 1U(b) disomic addition line (ADL1U(b)). The seed storage protein electrophoresis showed that 12-5-2 presented all high molecular weight glutenin subunits (7 + 8 and 2 + 12) of CN19 and 2 new subunits that were designated Ux and Uy. Additionally, the flour quality parameters showed that the protein content, Zeleny sedimentation value, wet gluten content, and grain hardness of 12-5-2 were significantly higher than those of its parent CN19. Moreover, 5 pairs of the chromosome 1U(b)-specific polymerase chain reaction-based landmark unique gene markers, TNAC1021, TNAC1041, TNAC1071, TNAC1-01, and TNAC1-04, were also obtained. The new ADL1U(b) 12-5-2 could be a valuable source for wheat improvement, especially for wheat end-product quality and resistance to disease.

  18. Chemical interactions between plants in Mediterranean vegetation: the influence of selected plant extracts on Aegilops geniculata metabolome.

    PubMed

    Scognamiglio, Monica; Fiumano, Vittorio; D'Abrosca, Brigida; Esposito, Assunta; Choi, Young Hae; Verpoorte, Robert; Fiorentino, Antonio

    2014-10-01

    Allelopathy is the chemical mediated communication among plants. While on one hand there is growing interest in the field, on the other hand it is still debated as doubts exist at different levels. A number of compounds have been reported for their ability to influence plant growth, but the existence of this phenomenon in the field has rarely been demonstrated. Furthermore, only few studies have reported the uptake and the effects at molecular level of the allelochemicals. Allelopathy has been reported on some plants of Mediterranean vegetation and could contribute to structuring this ecosystem. Sixteen plants of Mediterranean vegetation have been selected and studied by an NMR-based metabolomics approach. The extracts of these donor plants have been characterized in terms of chemical composition and the effects on a selected receiving plant, Aegilops geniculata, have been studied both at the morphological and at the metabolic level. Most of the plant extracts employed in this study were found to have an activity, which could be correlated with the presence of flavonoids and hydroxycinnamate derivatives. These plant extracts affected the receiving plant in different ways, with different rates of growth inhibition at morphological level. The results of metabolomic analysis of treated plants suggested the induction of oxidative stress in all the receiving plants treated with active donor plant extracts, although differences were observed among the responses. Finally, the uptake and transport into receiving plant leaves of different metabolites present in the extracts added to the culture medium were observed. PMID:25073950

  19. Introgression of leaf rust and stripe rust resistance from Sharon goatgrass (Aegilops sharonensis Eig) into bread wheat (Triticum aestivum L.).

    PubMed

    Millet, E; Manisterski, J; Ben-Yehuda, P; Distelfeld, A; Deek, J; Wan, A; Chen, X; Steffenson, B J

    2014-06-01

    Leaf rust and stripe rust are devastating wheat diseases, causing significant yield losses in many regions of the world. The use of resistant varieties is the most efficient way to protect wheat crops from these diseases. Sharon goatgrass (Aegilops sharonensis or AES), which is a diploid wild relative of wheat, exhibits a high frequency of leaf and stripe rust resistance. We used the resistant AES accession TH548 and induced homoeologous recombination by the ph1b allele to obtain resistant wheat recombinant lines carrying AES chromosome segments in the genetic background of the spring wheat cultivar Galil. The gametocidal effect from AES was overcome by using an "anti-gametocidal" wheat mutant. These recombinant lines were found resistant to highly virulent races of the leaf and stripe rust pathogens in Israel and the United States. Molecular DArT analysis of the different recombinant lines revealed different lengths of AES segments on wheat chromosome 6B, which indicates the location of both resistance genes. PMID:25209724

  20. Characterization of a new wheat-Aegilops biuncialis addition line conferring quality-associated HMW glutenin subunits.

    PubMed

    Zhou, J P; Yao, C H; Yang, E N; Yin, M Q; Liu, C; Ren, Z L

    2014-01-01

    In this study, a new disomic addition line, 12-5-2, with 44 chromosomes that was derived from BC3F2 descendants of the hybridization between Triticum aestivum cv. CN19 and Aegilops biuncialis was created and reported. 12-5-2 was immune to both powdery mildew and stripe rust and has stable fertility. Fluorescence in situ hybridization and C-banding revealed that 12-5-2 was a 1U(b) disomic addition line (ADL1U(b)). The seed storage protein electrophoresis showed that 12-5-2 presented all high molecular weight glutenin subunits (7 + 8 and 2 + 12) of CN19 and 2 new subunits that were designated Ux and Uy. Additionally, the flour quality parameters showed that the protein content, Zeleny sedimentation value, wet gluten content, and grain hardness of 12-5-2 were significantly higher than those of its parent CN19. Moreover, 5 pairs of the chromosome 1U(b)-specific polymerase chain reaction-based landmark unique gene markers, TNAC1021, TNAC1041, TNAC1071, TNAC1-01, and TNAC1-04, were also obtained. The new ADL1U(b) 12-5-2 could be a valuable source for wheat improvement, especially for wheat end-product quality and resistance to disease. PMID:24615031

  1. Development and molecular characterization of wheat--Aegilops kotschyi addition and substitution lines with high grain protein, iron, and zinc.

    PubMed

    Rawat, Nidhi; Neelam, Kumari; Tiwari, Vijay K; Randhawa, Gursharn S; Friebe, Bernd; Gill, Bikram S; Dhaliwal, Harcharan S

    2011-11-01

    Over two billion people, depending largely on staple foods, suffer from deficiencies in protein and some micronutrients such as iron and zinc. Among various approaches to overcome protein and micronutrient deficiencies, biofortification through a combination of conventional and molecular breeding methods is the most feasible, cheapest, and sustainable approach. An interspecific cross was made between the wheat cultivar 'Chinese Spring' and Aegilops kotschyi Boiss. accession 396, which has a threefold higher grain iron and zinc concentrations and about 33% higher protein concentration than wheat cultivars. Recurrent backcrossing and selection for the micronutrient content was performed at each generation. Thirteen derivatives with high grain iron and zinc concentrations and contents, ash and ash micronutrients, and protein were analyzed for alien introgression. Morphological markers, high molecular weight glutenin subunit profiles, anchored wheat microsatellite markers, and GISH showed that addition and substitution of homoeologous groups 1, 2, and 7 chromosomes of Ae. kotschyi possess gene(s) for high grain micronutrients. The addition of 1U/1S had high molecular weight glutenin subunits with higher molecular weight than those of wheat, and the addition of 2S in most of the derivatives also enhanced grain protein content by over 20%. Low grain protein content in a derivative with a 2S-wheat translocation, waxy leaves, and absence of the gdm148 marker strongly suggests that the gene for higher grain protein content on chromosome 2S is orthologous to the grain protein QTL on the short arm of group 2 chromosomes.

  2. Chemical interactions between plants in Mediterranean vegetation: the influence of selected plant extracts on Aegilops geniculata metabolome.

    PubMed

    Scognamiglio, Monica; Fiumano, Vittorio; D'Abrosca, Brigida; Esposito, Assunta; Choi, Young Hae; Verpoorte, Robert; Fiorentino, Antonio

    2014-10-01

    Allelopathy is the chemical mediated communication among plants. While on one hand there is growing interest in the field, on the other hand it is still debated as doubts exist at different levels. A number of compounds have been reported for their ability to influence plant growth, but the existence of this phenomenon in the field has rarely been demonstrated. Furthermore, only few studies have reported the uptake and the effects at molecular level of the allelochemicals. Allelopathy has been reported on some plants of Mediterranean vegetation and could contribute to structuring this ecosystem. Sixteen plants of Mediterranean vegetation have been selected and studied by an NMR-based metabolomics approach. The extracts of these donor plants have been characterized in terms of chemical composition and the effects on a selected receiving plant, Aegilops geniculata, have been studied both at the morphological and at the metabolic level. Most of the plant extracts employed in this study were found to have an activity, which could be correlated with the presence of flavonoids and hydroxycinnamate derivatives. These plant extracts affected the receiving plant in different ways, with different rates of growth inhibition at morphological level. The results of metabolomic analysis of treated plants suggested the induction of oxidative stress in all the receiving plants treated with active donor plant extracts, although differences were observed among the responses. Finally, the uptake and transport into receiving plant leaves of different metabolites present in the extracts added to the culture medium were observed.

  3. Potential Implications of Climate Change on Aegilops Species Distribution: Sympatry of These Crop Wild Relatives with the Major European Crop Triticum aestivum and Conservation Issues.

    PubMed

    Ostrowski, Marie-France; Prosperi, Jean-Marie; David, Jacques

    2016-01-01

    Gene flow from crop to wild relatives is a common phenomenon which can lead to reduced adaptation of the wild relatives to natural ecosystems and/or increased adaptation to agrosystems (weediness). With global warming, wild relative distributions will likely change, thus modifying the width and/or location of co-occurrence zones where crop-wild hybridization events could occur (sympatry). This study investigates current and 2050 projected changes in sympatry levels between cultivated wheat and six of the most common Aegilops species in Europe. Projections were generated using MaxEnt on presence-only data, bioclimatic variables, and considering two migration hypotheses and two 2050 climate scenarios (RCP4.5 and RCP8.5). Overall, a general decline in suitable climatic conditions for Aegilops species outside the European zone and a parallel increase in Europe were predicted. If no migration could occur, the decline was predicted to be more acute outside than within the European zone. The potential sympatry level in Europe by 2050 was predicted to increase at a higher rate than species richness, and most expansions were predicted to occur in three countries, which are currently among the top four wheat producers in Europe: Russia, France and Ukraine. The results are also discussed with regard to conservation issues of these crop wild relatives. PMID:27100790

  4. Potential Implications of Climate Change on Aegilops Species Distribution: Sympatry of These Crop Wild Relatives with the Major European Crop Triticum aestivum and Conservation Issues.

    PubMed

    Ostrowski, Marie-France; Prosperi, Jean-Marie; David, Jacques

    2016-01-01

    Gene flow from crop to wild relatives is a common phenomenon which can lead to reduced adaptation of the wild relatives to natural ecosystems and/or increased adaptation to agrosystems (weediness). With global warming, wild relative distributions will likely change, thus modifying the width and/or location of co-occurrence zones where crop-wild hybridization events could occur (sympatry). This study investigates current and 2050 projected changes in sympatry levels between cultivated wheat and six of the most common Aegilops species in Europe. Projections were generated using MaxEnt on presence-only data, bioclimatic variables, and considering two migration hypotheses and two 2050 climate scenarios (RCP4.5 and RCP8.5). Overall, a general decline in suitable climatic conditions for Aegilops species outside the European zone and a parallel increase in Europe were predicted. If no migration could occur, the decline was predicted to be more acute outside than within the European zone. The potential sympatry level in Europe by 2050 was predicted to increase at a higher rate than species richness, and most expansions were predicted to occur in three countries, which are currently among the top four wheat producers in Europe: Russia, France and Ukraine. The results are also discussed with regard to conservation issues of these crop wild relatives.

  5. Potential Implications of Climate Change on Aegilops Species Distribution: Sympatry of These Crop Wild Relatives with the Major European Crop Triticum aestivum and Conservation Issues

    PubMed Central

    Prosperi, Jean-Marie; David, Jacques

    2016-01-01

    Gene flow from crop to wild relatives is a common phenomenon which can lead to reduced adaptation of the wild relatives to natural ecosystems and/or increased adaptation to agrosystems (weediness). With global warming, wild relative distributions will likely change, thus modifying the width and/or location of co-occurrence zones where crop-wild hybridization events could occur (sympatry). This study investigates current and 2050 projected changes in sympatry levels between cultivated wheat and six of the most common Aegilops species in Europe. Projections were generated using MaxEnt on presence-only data, bioclimatic variables, and considering two migration hypotheses and two 2050 climate scenarios (RCP4.5 and RCP8.5). Overall, a general decline in suitable climatic conditions for Aegilops species outside the European zone and a parallel increase in Europe were predicted. If no migration could occur, the decline was predicted to be more acute outside than within the European zone. The potential sympatry level in Europe by 2050 was predicted to increase at a higher rate than species richness, and most expansions were predicted to occur in three countries, which are currently among the top four wheat producers in Europe: Russia, France and Ukraine. The results are also discussed with regard to conservation issues of these crop wild relatives. PMID:27100790

  6. Phylogenetic relationships and Y genome origin in Elymus L. sensu lato (Triticeae; Poaceae) based on single-copy nuclear Acc1 and Pgk1 gene sequences.

    PubMed

    Fan, Xing; Sha, Li-Na; Dong, Zhen-Zhen; Zhang, Hai-Qin; Kang, Hou-Yang; Wang, Yi; Wang, Xiao-Li; Zhang, Li; Ding, Chun-Bang; Yang, Rui-Wu; Zheng, You-Liang; Zhou, Yong-Hong

    2013-12-01

    To estimate the origin and genomic relationships of the polyploid species within Elymus L. sensu lato, two unlinked single-copy nuclear gene (Acc1 and Pgk1) sequences of eighteen tetraploids (StH and StY genomes) and fourteen hexaploids (StStH, StYP, StYH, and StYW genomes) were analyzed with those of 35 diploid taxa representing 18 basic genomes in Triticeae. Sequence and phylogenetic analysis suggested that: (1) the St, H, W, and P genomes were donated by Pseudoroegneria, Hordeum, Australopyrum, and Agropyron, respectively, while the Y genome is closely related to the Xp genome in Peridictyon sanctum; (2) different hexaploid Elymus s.l. species may derived their StY genome from different StY genome tetraploid species via independent origins; (3) due to incomplete lineage sorting and/or hybridization events, the genealogical conflict between the two gene trees suggest introgression involving some Elymus s.l. species, Pseudoroegneria, Agropyron and Aegilops/Triticum; (4) it is reasonable to recognize the StH genome species as Elymus sensu stricto, the StY genome species as Roegneria, the StYW genome species as Anthosachne, the StYH genome species as Campeiostachys, and the StYP genome species as Kengyilia. The occurrence of multiple origin and introgression could account for the rich diversity and ecological adaptation of Elymus s.l. species. PMID:23816902

  7. A Bioinformatics Approach for Detecting Repetitive Nested Motifs using Pattern Matching

    PubMed Central

    Romero, José R.; Carballido, Jessica A.; Garbus, Ingrid; Echenique, Viviana C.; Ponzoni, Ignacio

    2016-01-01

    The identification of nested motifs in genomic sequences is a complex computational problem. The detection of these patterns is important to allow the discovery of transposable element (TE) insertions, incomplete reverse transcripts, deletions, and/or mutations. In this study, a de novo strategy for detecting patterns that represent nested motifs was designed based on exhaustive searches for pairs of motifs and combinatorial pattern analysis. These patterns can be grouped into three categories, motifs within other motifs, motifs flanked by other motifs, and motifs of large size. The methodology used in this study, applied to genomic sequences from the plant species Aegilops tauschii and Oryza sativa, revealed that it is possible to identify putative nested TEs by detecting these three types of patterns. The results were validated through BLAST alignments, which revealed the efficacy and usefulness of the new method, which is called Mamushka. PMID:27812277

  8. Plant bioassay to assess the effects of allelochemicals on the metabolome of the target species Aegilops geniculata by an NMR-based approach.

    PubMed

    D'Abrosca, Brigida; Scognamiglio, Monica; Fiumano, Vittorio; Esposito, Assunta; Choi, Young Hae; Verpoorte, Robert; Fiorentino, Antonio

    2013-09-01

    A metabolomic-based approach for the study of allelopathic interactions in the Mediterranean area is proposed using Aegilops geniculata Roth (Poaceae), a Mediterranean herbaceous plant, as test species. Its metabolome has been elucidated by 1D and 2D NMR experiments. Hydroponic plant cultures of A. geniculata were treated with specific compounds of known allelopathic potential: catechol, coumarin, p-coumaric acid, p-hydroxybenzoic acid, ferulic acid and juglone. The metabolic variations due to the presence of allelochemicals have been analyzed and measured. All of the compounds showed the strongest effects at the highest concentration, with coumarin and juglone as the most active compounds, causing an increase of several metabolites. The metabolome changes in test plants confirmed the allelochemicals' reported modes of action. The results demonstrated that the proposed method is a promising tool. It can be applied to plant extracts, making it possible to evidence the metabolites responsible for the activity, as well as their mechanisms of action.

  9. Discovery and molecular mapping of a new gene conferring resistance to stem rust, Sr53, derived from Aegilops geniculata and characterization of spontaneous translocation stocks with reduced alien chromatin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study reports the discovery and molecular mapping of a resistance gene effective against stem rust races RKQQC and TTKSK (Ug99) derived from Aegilops geniculata (2n=4x=28, UgUgMgMg). Two populations from the crosses TA5599 (T5DL-5MgL.5MgS)/TA3809 (ph1b mutant in Chinese Spring background) and T...

  10. Variation in susceptibility to Wheat dwarf virus among wild and domesticated wheat.

    PubMed

    Nygren, Jim; Shad, Nadeem; Kvarnheden, Anders; Westerbergh, Anna

    2015-01-01

    We investigated the variation in plant response in host-pathogen interactions between wild (Aegilops spp., Triticum spp.) and domesticated wheat (Triticum spp.) and Wheat dwarf virus (WDV). The distribution of WDV and its wild host species overlaps in Western Asia in the Fertile Crescent, suggesting a coevolutionary relationship. Bread wheat originates from a natural hybridization between wild emmer wheat (carrying the A and B genomes) and the wild D genome donor Aegilops tauschii, followed by polyploidization and domestication. We studied whether the strong selection during these evolutionary processes, leading to genetic bottlenecks, may have resulted in a loss of resistance in domesticated wheat. In addition, we investigated whether putative fluctuations in intensity of selection imposed on the host-pathogen interactions have resulted in a variation in susceptibility to WDV. To test our hypotheses we evaluated eighteen wild and domesticated wheat taxa, directly or indirectly involved in wheat evolution, for traits associated with WDV disease such as leaf chlorosis, different growth traits and WDV content. The plants were exposed to viruliferous leafhoppers (Psammotettix alienus) in a greenhouse trial and evaluated at two time points. We found three different plant response patterns: i) continuous reduction in growth over time, ii) weak response at an early stage of plant development but a much stronger response at a later stage, and iii) remission of symptoms over time. Variation in susceptibility may be explained by differences in the intensity of natural selection, shaping the coevolutionary interaction between WDV and the wild relatives. However, genetic bottlenecks during wheat evolution have not had a strong impact on WDV resistance. Further, this study indicates that the variation in susceptibility may be associated with the genome type and that the ancestor Ae. tauschii may be useful as genetic resource for the improvement of WDV resistance in wheat.

  11. New insights into the wheat chromosome 4D structure and virtual gene order, revealed by survey pyrosequencing

    PubMed Central

    Helguera, Marcelo; Rivarola, Máximo; Clavijo, Bernardo; Martis, Mihaela M.; Vanzetti, Leonardo S.; González, Sergio; Garbus, Ingrid; Leroy, Phillippe; Šimková, Hana; Valárik, Miroslav; Caccamo, Mario; Doležel, Jaroslav; Mayer, Klaus F.X.; Feuillet, Catherine; Tranquilli, Gabriela; Paniego, Norma; Echenique, Viviana

    2015-01-01

    Survey sequencing of the bread wheat (Triticum aestivum L.) genome (AABBDD) has been approached through different strategies delivering important information. However, the current wheat sequence knowledge is not complete. The aim of our study is to provide different and complementary set of data for chromosome 4D. A survey sequence was obtained by pyrosequencing of flow-sorted 4DS (7.2×) and 4DL (4.1×) arms. Single ends (SE) and long mate pairs (LMP) reads were assembled into contigs (223 Mb) and scaffolds (65 Mb) that were aligned to Aegilops tauschii draft genome (DD), anchoring 34 Mb to chromosome 4. Scaffolds annotation rendered 822 gene models. A virtual gene order comprising 1973 wheat orthologous gene loci and 381 wheat gene models was built. This order was largely consistent with the scaffold order determined based on a published high density map from the Ae. tauschii chromosome 4, using bin-mapped 4D ESTs as a common reference. The virtual order showed a higher collinearity with homeologous 4B compared to 4A. Additionally, a virtual map was constructed and ∼5700 genes (∼2200 on 4DS and ∼3500 on 4DL) predicted. The sequence and virtual order obtained here using the 454 platform were compared with the Illumina one used by the IWGSC, giving complementary information. PMID:25711827

  12. New insights into the wheat chromosome 4D structure and virtual gene order, revealed by survey pyrosequencing.

    PubMed

    Helguera, Marcelo; Rivarola, Máximo; Clavijo, Bernardo; Martis, Mihaela M; Vanzetti, Leonardo S; González, Sergio; Garbus, Ingrid; Leroy, Phillippe; Šimková, Hana; Valárik, Miroslav; Caccamo, Mario; Doležel, Jaroslav; Mayer, Klaus F X; Feuillet, Catherine; Tranquilli, Gabriela; Paniego, Norma; Echenique, Viviana

    2015-04-01

    Survey sequencing of the bread wheat (Triticum aestivum L.) genome (AABBDD) has been approached through different strategies delivering important information. However, the current wheat sequence knowledge is not complete. The aim of our study is to provide different and complementary set of data for chromosome 4D. A survey sequence was obtained by pyrosequencing of flow-sorted 4DS (7.2×) and 4DL (4.1×) arms. Single ends (SE) and long mate pairs (LMP) reads were assembled into contigs (223Mb) and scaffolds (65Mb) that were aligned to Aegilops tauschii draft genome (DD), anchoring 34Mb to chromosome 4. Scaffolds annotation rendered 822 gene models. A virtual gene order comprising 1973 wheat orthologous gene loci and 381 wheat gene models was built. This order was largely consistent with the scaffold order determined based on a published high density map from the Ae. tauschii chromosome 4, using bin-mapped 4D ESTs as a common reference. The virtual order showed a higher collinearity with homeologous 4B compared to 4A. Additionally, a virtual map was constructed and ∼5700 genes (∼2200 on 4DS and ∼3500 on 4DL) predicted. The sequence and virtual order obtained here using the 454 platform were compared with the Illumina one used by the IWGSC, giving complementary information.

  13. Dynamics and Differential Proliferation of Transposable Elements During the Evolution of the B and A Genomes of Wheat

    PubMed Central

    Charles, Mathieu; Belcram, Harry; Just, Jérémy; Huneau, Cécile; Viollet, Agnès; Couloux, Arnaud; Segurens, Béatrice; Carter, Meredith; Huteau, Virginie; Coriton, Olivier; Appels, Rudi; Samain, Sylvie; Chalhoub, Boulos

    2008-01-01

    Transposable elements (TEs) constitute >80% of the wheat genome but their dynamics and contribution to size variation and evolution of wheat genomes (Triticum and Aegilops species) remain unexplored. In this study, 10 genomic regions have been sequenced from wheat chromosome 3B and used to constitute, along with all publicly available genomic sequences of wheat, 1.98 Mb of sequence (from 13 BAC clones) of the wheat B genome and 3.63 Mb of sequence (from 19 BAC clones) of the wheat A genome. Analysis of TE sequence proportions (as percentages), ratios of complete to truncated copies, and estimation of insertion dates of class I retrotransposons showed that specific types of TEs have undergone waves of differential proliferation in the B and A genomes of wheat. While both genomes show similar rates and relatively ancient proliferation periods for the Athila retrotransposons, the Copia retrotransposons proliferated more recently in the A genome whereas Gypsy retrotransposon proliferation is more recent in the B genome. It was possible to estimate for the first time the proliferation periods of the abundant CACTA class II DNA transposons, relative to that of the three main retrotransposon superfamilies. Proliferation of these TEs started prior to and overlapped with that of the Athila retrotransposons in both genomes. However, they also proliferated during the same periods as Gypsy and Copia retrotransposons in the A genome, but not in the B genome. As estimated from their insertion dates and confirmed by PCR-based tracing analysis, the majority of differential proliferation of TEs in B and A genomes of wheat (87 and 83%, respectively), leading to rapid sequence divergence, occurred prior to the allotetraploidization event that brought them together in Triticum turgidum and Triticum aestivum, <0.5 million years ago. More importantly, the allotetraploidization event appears to have neither enhanced nor repressed retrotranspositions. We discuss the apparent proliferation

  14. Dynamics and differential proliferation of transposable elements during the evolution of the B and A genomes of wheat.

    PubMed

    Charles, Mathieu; Belcram, Harry; Just, Jérémy; Huneau, Cécile; Viollet, Agnès; Couloux, Arnaud; Segurens, Béatrice; Carter, Meredith; Huteau, Virginie; Coriton, Olivier; Appels, Rudi; Samain, Sylvie; Chalhoub, Boulos

    2008-10-01

    Transposable elements (TEs) constitute >80% of the wheat genome but their dynamics and contribution to size variation and evolution of wheat genomes (Triticum and Aegilops species) remain unexplored. In this study, 10 genomic regions have been sequenced from wheat chromosome 3B and used to constitute, along with all publicly available genomic sequences of wheat, 1.98 Mb of sequence (from 13 BAC clones) of the wheat B genome and 3.63 Mb of sequence (from 19 BAC clones) of the wheat A genome. Analysis of TE sequence proportions (as percentages), ratios of complete to truncated copies, and estimation of insertion dates of class I retrotransposons showed that specific types of TEs have undergone waves of differential proliferation in the B and A genomes of wheat. While both genomes show similar rates and relatively ancient proliferation periods for the Athila retrotransposons, the Copia retrotransposons proliferated more recently in the A genome whereas Gypsy retrotransposon proliferation is more recent in the B genome. It was possible to estimate for the first time the proliferation periods of the abundant CACTA class II DNA transposons, relative to that of the three main retrotransposon superfamilies. Proliferation of these TEs started prior to and overlapped with that of the Athila retrotransposons in both genomes. However, they also proliferated during the same periods as Gypsy and Copia retrotransposons in the A genome, but not in the B genome. As estimated from their insertion dates and confirmed by PCR-based tracing analysis, the majority of differential proliferation of TEs in B and A genomes of wheat (87 and 83%, respectively), leading to rapid sequence divergence, occurred prior to the allotetraploidization event that brought them together in Triticum turgidum and Triticum aestivum, <0.5 million years ago. More importantly, the allotetraploidization event appears to have neither enhanced nor repressed retrotranspositions. We discuss the apparent proliferation

  15. On the genome constitution and evolution of intermediate wheatgrass (Thinopyrum intermedium: Poaceae, Triticeae)

    PubMed Central

    2011-01-01

    Background The wheat tribe Triticeae (Poaceae) is a diverse group of grasses representing a textbook example of reticulate evolution. Apart from globally important grain crops, there are also wild grasses which are of great practical value. Allohexaploid intermediate wheatgrass, Thinopyrum intermedium (2n = 6x = 42), possesses many desirable agronomic traits that make it an invaluable source of genetic material useful in wheat improvement. Although the identification of its genomic components has been the object of considerable investigation, the complete genomic constitution and its potential variability are still being unravelled. To identify the genomic constitution of this allohexaploid, four accessions of intermediate wheatgrass from its native area were analysed by sequencing of chloroplast trnL-F and partial nuclear GBSSI, and genomic in situ hybridization. Results The results confirmed the allopolyploid origin of Thinopyrum intermedium and revealed new aspects in its genomic composition. Genomic heterogeneity suggests a more complex origin of the species than would be expected if it originated through allohexaploidy alone. While Pseudoroegneria is the most probable maternal parent of the accessions analysed, nuclear GBSSI sequences suggested the contribution of distinct lineages corresponding to the following present-day genera: Pseudoroegneria, Dasypyrum, Taeniatherum, Aegilops and Thinopyrum. Two subgenomes of the hexaploid have most probably been contributed by Pseudoroegneria and Dasypyrum, but the identity of the third subgenome remains unresolved satisfactorily. Possibly it is of hybridogenous origin, with contributions from Thinopyrum and Aegilops. Surprising diversity of GBSSI copies corresponding to a Dasypyrum-like progenitor indicates either multiple contributions from different sources close to Dasypyrum and maintenance of divergent copies or the presence of divergent paralogs, or a combination of both. Taeniatherum-like GBSSI copies are most

  16. [Chromosomal localization of the speltoidy gene, introgressed into bread wheat from Aegilops speltoides Tausch., and its interaction with the Q gene of Triticum spelta L].

    PubMed

    Simonov, A V; Pshenichnikova, T A

    2012-11-01

    The differences between bread wheat (Triticum aestivum L.) and spelt (Triticum spelta L.) in the shape of the spike and threshing character are determined by the allelic status of one major Q gene, mapped to the long arm of chromosome 5A. This gene is a member of the APETALA2 family of transcription factors and plays an important role in domestication of wheat. In the present study, using monosomic analysis, we determined the chromosomal localization of the Q(S)gene, introgressed into bread wheat from Aegilops speltoides Tausch. and homoallelic to the Q gene. It was demonstrated that the Q(S) gene was located in chromosome 5A of the bread wheat line from the Arsenal collection. This gene conferred spike speltoidy in the line itself, as well as in its hybrids with bread wheat cultivars. The Q(S) gene dominated over the bread wheat Q gene and was equally effective in the homo-, hemi-, and heterozygous states. In hybrids between the introgression line and a number of spring spelt accessions, interaction between the Q and Q(S) genes was observed, manifested as the formation of superspeltoid spike.

  17. Development of wheat lines carrying stem rust resistance gene Sr39 with reduced Aegilops speltoides chromatin and simple PCR markers for marker-assisted selection.

    PubMed

    Mago, Rohit; Zhang, P; Bariana, H S; Verlin, D C; Bansal, U K; Ellis, J G; Dundas, I S

    2009-11-01

    The use of major resistance genes is a cost-effective strategy for preventing stem rust epidemics in wheat crops. The stem rust resistance gene Sr39 provides resistance to all currently known pathotypes of Puccinia graminis f. sp. tritici (Pgt) including Ug99 (TTKSK) and was introgressed together with leaf rust resistance gene Lr35 conferring adult plant resistance to P. triticina (Pt), into wheat from Aegilops speltoides. It has not been used extensively in wheat breeding because of the presumed but as yet undocumented negative agronomic effects associated with Ae. speltoides chromatin. This investigation reports the production of a set of recombinants with shortened Ae. speltoides segments through induction of homoeologous recombination between the wheat and the Ae. speltoides chromosome. Simple PCR-based DNA markers were developed for resistant and susceptible genotypes (Sr39#22r and Sr39#50s) and validated across a set of recombinant lines and wheat cultivars. These markers will facilitate the pyramiding of ameliorated sources of Sr39 with other stem rust resistance genes that are effective against the Pgt pathotype TTKSK and its variants. PMID:19756473

  18. Evolution of new disease specificity at a simple resistance locus in a crop-weed complex: reconstitution of the Lr21 gene in wheat.

    PubMed

    Huang, Li; Brooks, Steven; Li, Wanlong; Fellers, John; Nelson, James C; Gill, Bikram

    2009-06-01

    The wheat leaf-rust resistance gene Lr21 was first identified in an Iranian accession of goatgrass, Aegilops tauschii Coss., the D-genome donor of hexaploid bread wheat, and was introgressed into modern wheat cultivars by breeding. To elucidate the origin of the gene, we analyzed sequences of Lr21 and lr21 alleles from 24 wheat cultivars and 25 accessions of Ae. tauschii collected along the Caspian Sea in Iran and Azerbaijan. Three basic nonfunctional lr21 haplotypes, H1, H2, and H3, were identified. Lr21 was found to be a chimera of H1 and H2, which were found only in wheat. We attempted to reconstitute a functional Lr21 allele by crossing the cultivars Fielder (H1) and Wichita (H2). Rust inoculation of 5876 F(2) progeny revealed a single resistant plant that proved to carry the H1H2 haplotype, a result attributed to intragenic recombination. These findings reflect how plants balance the penalty and the necessity of a resistance gene and suggest that plants can reuse "dead" alleles to generate new disease-resistance specificity, leading to a "death-recycle" model of plant-resistance gene evolution at simple loci. We suggest that selection pressure in crop-weed complexes contributes to this process.

  19. mRNA and Small RNA Transcriptomes Reveal Insights into Dynamic Homoeolog Regulation of Allopolyploid Heterosis in Nascent Hexaploid Wheat[W][OPEN

    PubMed Central

    Li, Aili; Liu, Dengcai; Wu, Jun; Zhao, Xubo; Hao, Ming; Geng, Shuaifeng; Yan, Jun; Jiang, Xiaoxue; Zhang, Lianquan; Wu, Junyan; Yin, Lingjie; Zhang, Rongzhi; Wu, Liang; Zheng, Youliang; Mao, Long

    2014-01-01

    Nascent allohexaploid wheat may represent the initial genetic state of common wheat (Triticum aestivum), which arose as a hybrid between Triticum turgidum (AABB) and Aegilops tauschii (DD) and by chromosome doubling and outcompeted its parents in growth vigor and adaptability. To better understand the molecular basis for this success, we performed mRNA and small RNA transcriptome analyses in nascent allohexaploid wheat and its following generations, their progenitors, and the natural allohexaploid cultivar Chinese Spring, with the assistance of recently published A and D genome sequences. We found that nonadditively expressed protein-coding genes were rare but relevant to growth vigor. Moreover, a high proportion of protein-coding genes exhibited parental expression level dominance, with genes for which the total homoeolog expression level in the progeny was similar to that in T. turgidum potentially participating in development and those with similar expression to that in Ae. tauschii involved in adaptation. In addition, a high proportion of microRNAs showed nonadditive expression upon polyploidization, potentially leading to differential expression of important target genes. Furthermore, increased small interfering RNA density was observed for transposable element–associated D homoeologs in the allohexaploid progeny, which may account for biased repression of D homoeologs. Together, our data provide insights into small RNA–mediated dynamic homoeolog regulation mechanisms that may contribute to heterosis in nascent hexaploid wheat. PMID:24838975

  20. Molecular evolution of Wcor15 gene enhanced our understanding of the origin of A, B and D genomes in Triticum aestivum.

    PubMed

    Liu, Fangfang; Si, Hongqi; Wang, Chengcheng; Sun, Genlou; Zhou, Erting; Chen, Can; Ma, Chuanxi

    2016-08-16

    The allohexaploid bread wheat originally derived from three closely related species with A, B and D genome. Although numerous studies were performed to elucidate its origin and phylogeny, no consensus conclusion has reached. In this study, we cloned and sequenced the genes Wcor15-2A, Wcor15-2B and Wcor15-2D in 23 diploid, 10 tetraploid and 106 hexaploid wheat varieties and analyzed their molecular evolution to reveal the origin of the A, B and D genome in Triticum aestivum. Comparative analyses of sequences in diploid, tetraploid and hexaploid wheats suggest that T. urartu, Ae. speltoides and Ae. tauschii subsp. strangulata are most likely the donors of the Wcor15-2A, Wcor15-2B and Wcor15-2D locus in common wheat, respectively. The Wcor15 genes from subgenomes A and D were very conservative without insertion and deletion of bases during evolution of diploid, tetraploid and hexaploid. Non-coding region of Wcor15-2B gene from B genome might mutate during the first polyploidization from Ae. speltoides to tetraploid wheat, however, no change has occurred for this gene during the second allopolyploidization from tetraploid to hexaploid. Comparison of the Wcor15 gene shed light on understanding of the origin of the A, B and D genome of common wheat.

  1. Molecular evolution of Wcor15 gene enhanced our understanding of the origin of A, B and D genomes in Triticum aestivum

    PubMed Central

    Liu, Fangfang; Si, Hongqi; Wang, Chengcheng; Sun, Genlou; Zhou, Erting; Chen, Can; Ma, Chuanxi

    2016-01-01

    The allohexaploid bread wheat originally derived from three closely related species with A, B and D genome. Although numerous studies were performed to elucidate its origin and phylogeny, no consensus conclusion has reached. In this study, we cloned and sequenced the genes Wcor15-2A, Wcor15-2B and Wcor15-2D in 23 diploid, 10 tetraploid and 106 hexaploid wheat varieties and analyzed their molecular evolution to reveal the origin of the A, B and D genome in Triticum aestivum. Comparative analyses of sequences in diploid, tetraploid and hexaploid wheats suggest that T. urartu, Ae. speltoides and Ae. tauschii subsp. strangulata are most likely the donors of the Wcor15-2A, Wcor15-2B and Wcor15-2D locus in common wheat, respectively. The Wcor15 genes from subgenomes A and D were very conservative without insertion and deletion of bases during evolution of diploid, tetraploid and hexaploid. Non-coding region of Wcor15-2B gene from B genome might mutate during the first polyploidization from Ae. speltoides to tetraploid wheat, however, no change has occurred for this gene during the second allopolyploidization from tetraploid to hexaploid. Comparison of the Wcor15 gene shed light on understanding of the origin of the A, B and D genome of common wheat. PMID:27526862

  2. Molecular evolution of Wcor15 gene enhanced our understanding of the origin of A, B and D genomes in Triticum aestivum.

    PubMed

    Liu, Fangfang; Si, Hongqi; Wang, Chengcheng; Sun, Genlou; Zhou, Erting; Chen, Can; Ma, Chuanxi

    2016-01-01

    The allohexaploid bread wheat originally derived from three closely related species with A, B and D genome. Although numerous studies were performed to elucidate its origin and phylogeny, no consensus conclusion has reached. In this study, we cloned and sequenced the genes Wcor15-2A, Wcor15-2B and Wcor15-2D in 23 diploid, 10 tetraploid and 106 hexaploid wheat varieties and analyzed their molecular evolution to reveal the origin of the A, B and D genome in Triticum aestivum. Comparative analyses of sequences in diploid, tetraploid and hexaploid wheats suggest that T. urartu, Ae. speltoides and Ae. tauschii subsp. strangulata are most likely the donors of the Wcor15-2A, Wcor15-2B and Wcor15-2D locus in common wheat, respectively. The Wcor15 genes from subgenomes A and D were very conservative without insertion and deletion of bases during evolution of diploid, tetraploid and hexaploid. Non-coding region of Wcor15-2B gene from B genome might mutate during the first polyploidization from Ae. speltoides to tetraploid wheat, however, no change has occurred for this gene during the second allopolyploidization from tetraploid to hexaploid. Comparison of the Wcor15 gene shed light on understanding of the origin of the A, B and D genome of common wheat. PMID:27526862

  3. Molecular evolution and nucleotide diversity of nuclear plastid phosphoglycerate kinase (PGK) gene in Triticeae (Poaceae).

    PubMed

    Adderley, Shawn; Sun, Genlou

    2014-01-01

    Levels of nucleotide divergence provide key evidence in the evolution of polyploids. The nucleotide diversity of 226 sequences of pgk1 gene in Triticeae species was characterized. Phylogenetic analyses based on the pgk1 gene were carried out to determine the diploid origin of polyploids within the tribe in relation to their A(u), B, D, St, Ns, P, and H haplomes. Sequences from the Ns genome represented the highest nucleotide diversity values for both polyploid and diploid species with π=0.03343 and θ=0.03536 for polyploid Ns genome sequences and π=0.03886 and θ=0.03886 for diploid Psathyrostachys sequences, while Triticum urartu represented the lowest diversity among diploid species at π=0.0011 and θ=0.0011. Nucleotide variation of diploid Aegilops speltoides (π=0.2441, presumed the B genome donor of Triticum species) is five times higher than that (π=0.00483) of B genome in polyploid species. Significant negative Tajima's D values for the St, A(u), and D genomes along with high rates of polymorphisms and low sequence diversity were observed. Origins of the A(u), B, and D genomes were linked to T. urartu, A. speltoides, and A. tauschii, respectively. Putative St genome donor was Pseudoroegneria, while Ns and P donors were Psathyrostachys and Agropyron. H genome diploid donor is Hordeum. PMID:24120623

  4. Contrasting patterns of evolution of 45S and 5S rDNA families uncover new aspects in the genome constitution of the agronomically important grass Thinopyrum intermedium (Triticeae).

    PubMed

    Mahelka, Václav; Kopecky, David; Baum, Bernard R

    2013-09-01

    We employed sequencing of clones and in situ hybridization (genomic and fluorescent in situ hybridization [GISH and rDNA-FISH]) to characterize both the sequence variation and genomic organization of 45S (herein ITS1-5.8S-ITS2 region) and 5S (5S gene + nontranscribed spacer) ribosomal DNA (rDNA) families in the allohexaploid grass Thinopyrum intermedium. Both rDNA families are organized within several rDNA loci within all three subgenomes of the allohexaploid species. Both families have undergone different patterns of evolution. The 45S rDNA family has evolved in a concerted manner: internal transcribed spacer (ITS) sequences residing within the arrays of two subgenomes out of three got homogenized toward one major ribotype, whereas the third subgenome contained a minor proportion of distinct unhomogenized copies. Homogenization mechanisms such as unequal crossover and/or gene conversion were coupled with the loss of certain 45S rDNA loci. Unlike in the 45S family, the data suggest that neither interlocus homogenization among homeologous chromosomes nor locus loss occurred in 5S rDNA. Consistently with other Triticeae, the 5S rDNA family in intermediate wheatgrass comprised two distinct array types-the long- and short-spacer unit classes. Within the long and short units, we distinguished five and three different types, respectively, likely representing homeologous unit classes donated by putative parental species. Although the major ITS ribotype corresponds in our phylogenetic analysis to the E-genome species, the minor ribotype corresponds to Dasypyrum. 5S sequences suggested the contributions from Pseudoroegneria, Dasypyrum, and Aegilops. The contribution from Aegilops to the intermediate wheatgrass' genome is a new finding with implications in wheat improvement. We discuss rDNA evolution and potential origin of intermediate wheatgrass.

  5. Contrasting patterns of evolution of 45S and 5S rDNA families uncover new aspects in the genome constitution of the agronomically important grass Thinopyrum intermedium (Triticeae).

    PubMed

    Mahelka, Václav; Kopecky, David; Baum, Bernard R

    2013-09-01

    We employed sequencing of clones and in situ hybridization (genomic and fluorescent in situ hybridization [GISH and rDNA-FISH]) to characterize both the sequence variation and genomic organization of 45S (herein ITS1-5.8S-ITS2 region) and 5S (5S gene + nontranscribed spacer) ribosomal DNA (rDNA) families in the allohexaploid grass Thinopyrum intermedium. Both rDNA families are organized within several rDNA loci within all three subgenomes of the allohexaploid species. Both families have undergone different patterns of evolution. The 45S rDNA family has evolved in a concerted manner: internal transcribed spacer (ITS) sequences residing within the arrays of two subgenomes out of three got homogenized toward one major ribotype, whereas the third subgenome contained a minor proportion of distinct unhomogenized copies. Homogenization mechanisms such as unequal crossover and/or gene conversion were coupled with the loss of certain 45S rDNA loci. Unlike in the 45S family, the data suggest that neither interlocus homogenization among homeologous chromosomes nor locus loss occurred in 5S rDNA. Consistently with other Triticeae, the 5S rDNA family in intermediate wheatgrass comprised two distinct array types-the long- and short-spacer unit classes. Within the long and short units, we distinguished five and three different types, respectively, likely representing homeologous unit classes donated by putative parental species. Although the major ITS ribotype corresponds in our phylogenetic analysis to the E-genome species, the minor ribotype corresponds to Dasypyrum. 5S sequences suggested the contributions from Pseudoroegneria, Dasypyrum, and Aegilops. The contribution from Aegilops to the intermediate wheatgrass' genome is a new finding with implications in wheat improvement. We discuss rDNA evolution and potential origin of intermediate wheatgrass. PMID:23741054

  6. RNA-Seq Based Identification of Candidate Parasitism Genes of Cereal Cyst Nematode (Heterodera avenae) during Incompatible Infection to Aegilops variabilis

    PubMed Central

    Zheng, Minghui; Long, Hai; Zhao, Yun; Li, Lin; Xu, Delin; Zhang, Haili; Liu, Feng; Deng, Guangbing; Pan, Zhifen; Yu, Maoqun

    2015-01-01

    One of the reasons for the progressive yield decline observed in cereals production is the rapid build-up of populations of the cereal cyst nematode (CCN, Heterodera avenae). These nematodes secrete so-call effectors into their host plant to suppress the plant defense responses, alter plant signaling pathways and then induce the formation of syncytium after infection. However, little is known about its molecular mechanism and parasitism during incompatible infection. To gain insight into its repertoire of parasitism genes, we investigated the transcriptome of the early parasitic second-stage (30 hours, 3 days and 9 days post infection) juveniles of the CCN as well as the CCN infected tissue of the host Aegilops variabilis by Illumina sequencing. Among all assembled unigenes, 681 putative genes of parasitic nematode were found, in which 56 putative effectors were identified, including novel pioneer genes and genes corresponding to previously reported effectors. All the 681 CCN unigenes were mapped to 229 GO terms and 200 KEGG pathways, including growth, development and several stimulus-related signaling pathways. Sixteen clusters were involved in the CCN unigene expression atlas at the early stages during infection process, and three of which were significantly gene-enriched. Besides, the protein-protein interaction network analysis revealed 35 node unigenes which may play an important role in the plant-CCN interaction. Moreover, in a comparison of differentially expressed genes between the pre-parasitic juveniles and the early parasitic juveniles, we found that hydrolase activity was up-regulated in pre J2s whereas binding activity was upregulated in infective J2s. RT-qPCR analysis on some selected genes showed detectable expression, indicating possible secretion of the proteins and putative role in infection. This study provided better insights into the incompatible interaction between H. avenae and the host plant Ae. varabilis. Moreover, RNAi targets with

  7. RNA-Seq Based Identification of Candidate Parasitism Genes of Cereal Cyst Nematode (Heterodera avenae) during Incompatible Infection to Aegilops variabilis.

    PubMed

    Zheng, Minghui; Long, Hai; Zhao, Yun; Li, Lin; Xu, Delin; Zhang, Haili; Liu, Feng; Deng, Guangbing; Pan, Zhifen; Yu, Maoqun

    2015-01-01

    One of the reasons for the progressive yield decline observed in cereals production is the rapid build-up of populations of the cereal cyst nematode (CCN, Heterodera avenae). These nematodes secrete so-call effectors into their host plant to suppress the plant defense responses, alter plant signaling pathways and then induce the formation of syncytium after infection. However, little is known about its molecular mechanism and parasitism during incompatible infection. To gain insight into its repertoire of parasitism genes, we investigated the transcriptome of the early parasitic second-stage (30 hours, 3 days and 9 days post infection) juveniles of the CCN as well as the CCN infected tissue of the host Aegilops variabilis by Illumina sequencing. Among all assembled unigenes, 681 putative genes of parasitic nematode were found, in which 56 putative effectors were identified, including novel pioneer genes and genes corresponding to previously reported effectors. All the 681 CCN unigenes were mapped to 229 GO terms and 200 KEGG pathways, including growth, development and several stimulus-related signaling pathways. Sixteen clusters were involved in the CCN unigene expression atlas at the early stages during infection process, and three of which were significantly gene-enriched. Besides, the protein-protein interaction network analysis revealed 35 node unigenes which may play an important role in the plant-CCN interaction. Moreover, in a comparison of differentially expressed genes between the pre-parasitic juveniles and the early parasitic juveniles, we found that hydrolase activity was up-regulated in pre J2s whereas binding activity was upregulated in infective J2s. RT-qPCR analysis on some selected genes showed detectable expression, indicating possible secretion of the proteins and putative role in infection. This study provided better insights into the incompatible interaction between H. avenae and the host plant Ae. varabilis. Moreover, RNAi targets with

  8. Aquaculture Genomics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genomics chapter covers the basics of genome mapping and sequencing and the current status of several relevant species. The chapter briefly describes the development and use of (cDNA, BAC, etc.) libraries for mapping and obtaining specific sequence information. Other topics include comparative ...

  9. OrthoVenn: a web server for genome wide comparison and annotation of orthologous clusters across multiple species

    PubMed Central

    Wang, Yi; Coleman-Derr, Devin; Chen, Guoping; Gu, Yong Q.

    2015-01-01

    Genome wide analysis of orthologous clusters is an important component of comparative genomics studies. Identifying the overlap among orthologous clusters can enable us to elucidate the function and evolution of proteins across multiple species. Here, we report a web platform named OrthoVenn that is useful for genome wide comparisons and visualization of orthologous clusters. OrthoVenn provides coverage of vertebrates, metazoa, protists, fungi, plants and bacteria for the comparison of orthologous clusters and also supports uploading of customized protein sequences from user-defined species. An interactive Venn diagram, summary counts, and functional summaries of the disjunction and intersection of clusters shared between species are displayed as part of the OrthoVenn result. OrthoVenn also includes in-depth views of the clusters using various sequence analysis tools. Furthermore, OrthoVenn identifies orthologous clusters of single copy genes and allows for a customized search of clusters of specific genes through key words or BLAST. OrthoVenn is an efficient and user-friendly web server freely accessible at http://probes.pw.usda.gov/OrthoVenn or http://aegilops.wheat.ucdavis.edu/OrthoVenn. PMID:25964301

  10. OrthoVenn: a web server for genome wide comparison and annotation of orthologous clusters across multiple species.

    PubMed

    Wang, Yi; Coleman-Derr, Devin; Chen, Guoping; Gu, Yong Q

    2015-07-01

    Genome wide analysis of orthologous clusters is an important component of comparative genomics studies. Identifying the overlap among orthologous clusters can enable us to elucidate the function and evolution of proteins across multiple species. Here, we report a web platform named OrthoVenn that is useful for genome wide comparisons and visualization of orthologous clusters. OrthoVenn provides coverage of vertebrates, metazoa, protists, fungi, plants and bacteria for the comparison of orthologous clusters and also supports uploading of customized protein sequences from user-defined species. An interactive Venn diagram, summary counts, and functional summaries of the disjunction and intersection of clusters shared between species are displayed as part of the OrthoVenn result. OrthoVenn also includes in-depth views of the clusters using various sequence analysis tools. Furthermore, OrthoVenn identifies orthologous clusters of single copy genes and allows for a customized search of clusters of specific genes through key words or BLAST. OrthoVenn is an efficient and user-friendly web server freely accessible at http://probes.pw.usda.gov/OrthoVenn or http://aegilops.wheat.ucdavis.edu/OrthoVenn.

  11. Antarctic Genomics

    PubMed Central

    Clarke, Andrew; Cockell, Charles S.; Convey, Peter; Detrich III, H. William; Fraser, Keiron P. P.; Johnston, Ian A.; Methe, Barbara A.; Murray, Alison E.; Peck, Lloyd S.; Römisch, Karin; Rogers, Alex D.

    2004-01-01

    With the development of genomic science and its battery of technologies, polar biology stands on the threshold of a revolution, one that will enable the investigation of important questions of unprecedented scope and with extraordinary depth and precision. The exotic organisms of polar ecosystems are ideal candidates for genomic analysis. Through such analyses, it will be possible to learn not only the novel features that enable polar organisms to survive, and indeed thrive, in their extreme environments, but also fundamental biological principles that are common to most, if not all, organisms. This article aims to review recent developments in Antarctic genomics and to demonstrate the global context of such studies. PMID:18629155

  12. Genomic Testing

    MedlinePlus

    ... Working Group Independent Web site Informing the effective integration of genomics into health practice—Lynch syndrome ACCE Model for Evaluating Genetic Tests Recommendations by the EGAPP Working Group Top of ... ...

  13. Imaging genomics

    PubMed Central

    Thompson, Paul M.; Martin, Nicholas G.; Wright, Margaret J.

    2010-01-01

    Purpose of review Imaging genomics is an emerging field that is rapidly identifying genes that influence the brain, cognition, and risk for disease. Worldwide, thousands of individuals are being scanned with high-throughput genotyping (genome-wide scans), and new imaging techniques [high angular resolution diffusion imaging and resting state functional magnetic resonance imaging (MRI)] that provide fine-grained measures of the brain’s structural and functional connectivity. Along with clinical diagnosis and cognitive testing, brain imaging offers highly reproducible measures that can be subjected to genetic analysis. Recent findings Recent studies of twin, pedigree, and population-based datasets have discovered several candidate genes that consistently show small to moderate effects on brain measures. Many studies measure single phenotypes from the images, such as hippocampal volume, but voxel-wise genomic methods can plot the profile of genetic association at each 3D point in the brain. This exploits the full arsenal of imaging statistics to discover and replicate gene effects. Summary Imaging genomics efforts worldwide are now working together to discover and replicate many promising leads. By studying brain phenotypes closer to causative gene action, larger gene effects are detectable with realistic sample sizes obtainable from meta-analysis of smaller studies. Imaging genomics has broad applications to dementia, mental illness, and public health. PMID:20581684

  14. Genome databases

    SciTech Connect

    Courteau, J.

    1991-10-11

    Since the Genome Project began several years ago, a plethora of databases have been developed or are in the works. They range from the massive Genome Data Base at Johns Hopkins University, the central repository of all gene mapping information, to small databases focusing on single chromosomes or organisms. Some are publicly available, others are essentially private electronic lab notebooks. Still others limit access to a consortium of researchers working on, say, a single human chromosome. An increasing number incorporate sophisticated search and analytical software, while others operate as little more than data lists. In consultation with numerous experts in the field, a list has been compiled of some key genome-related databases. The list was not limited to map and sequence databases but also included the tools investigators use to interpret and elucidate genetic data, such as protein sequence and protein structure databases. Because a major goal of the Genome Project is to map and sequence the genomes of several experimental animals, including E. coli, yeast, fruit fly, nematode, and mouse, the available databases for those organisms are listed as well. The author also includes several databases that are still under development - including some ambitious efforts that go beyond data compilation to create what are being called electronic research communities, enabling many users, rather than just one or a few curators, to add or edit the data and tag it as raw or confirmed.

  15. Listeria Genomics

    NASA Astrophysics Data System (ADS)

    Cabanes, Didier; Sousa, Sandra; Cossart, Pascale

    The opportunistic intracellular foodborne pathogen Listeria monocytogenes has become a paradigm for the study of host-pathogen interactions and bacterial adaptation to mammalian hosts. Analysis of L. monocytogenes infection has provided considerable insight into how bacteria invade cells, move intracellularly, and disseminate in tissues, as well as tools to address fundamental processes in cell biology. Moreover, the vast amount of knowledge that has been gathered through in-depth comparative genomic analyses and in vivo studies makes L. monocytogenes one of the most well-studied bacterial pathogens. This chapter provides an overview of progress in the exploration of genomic, transcriptomic, and proteomic data in Listeria spp. to understand genome evolution and diversity, as well as physiological aspects of metabolism used by bacteria when growing in diverse environments, in particular in infected hosts.

  16. Genome Informatics

    PubMed Central

    Winslow, Raimond L.; Boguski, Mark S.

    2005-01-01

    This article reviews recent advances in genomics and informatics relevant to cardiovascular research. In particular, we review the status of (1) whole genome sequencing efforts in human, mouse, rat, zebrafish, and dog; (2) the development of data mining and analysis tools; (3) the launching of the National Heart, Lung, and Blood Institute Programs for Genomics Applications and Proteomics Initiative; (4) efforts to characterize the cardiac transcriptome and proteome; and (5) the current status of computational modeling of the cardiac myocyte. In each instance, we provide links to relevant sources of information on the World Wide Web and critical appraisals of the promises and the challenges of an expanding and diverse information landscape. PMID:12750305

  17. Comparative genomics - a perspective.

    PubMed

    Sivashankari, Selvarajan; Shanmughavel, Piramanayagam

    2007-03-27

    The rapidly emerging field of comparative genomics has yielded dramatic results. Comparative genome analysis has become feasible with the availability of a number of completely sequenced genomes. Comparison of complete genomes between organisms allow for global views on genome evolution and the availability of many completely sequenced genomes increases the predictive power in deciphering the hidden information in genome design, function and evolution. Thus, comparison of human genes with genes from other genomes in a genomic landscape could help assign novel functions for un-annotated genes. Here, we discuss the recently used techniques for comparative genomics and their derived inferences in genome biology.

  18. Comparative genomics - A perspective

    PubMed Central

    Sivashankari, Selvarajan; Shanmughavel, Piramanayagam

    2007-01-01

    The rapidly emerging field of comparative genomics has yielded dramatic results. Comparative genome analysis has become feasible with the availability of a number of completely sequenced genomes. Comparison of complete genomes between organisms allow for global views on genome evolution and the availability of many completely sequenced genomes increases the predictive power in deciphering the hidden information in genome design, function and evolution. Thus, comparison of human genes with genes from other genomes in a genomic landscape could help assign novel functions for un-annotated genes. Here, we discuss the recently used techniques for comparative genomics and their derived inferences in genome biology. PMID:17597925

  19. Genome cartography: charting the apicomplexan genome.

    PubMed

    Kissinger, Jessica C; DeBarry, Jeremy

    2011-08-01

    Genes reside in particular genomic contexts that can be mapped at many levels. Historically, 'genetic maps' were used primarily to locate genes. Recent technological advances in the determination of genome sequences have made the analysis and comparison of whole genomes possible and increasingly tractable. What do we see if we shift our focus from gene content (the 'inventory' of genes contained within a genome) to the composition and organization of a genome? This review examines what has been learned about the evolution of the apicomplexan genome as well as the significance and impact of genomic location on our understanding of the eukaryotic genome and parasite biology.

  20. Citrus Genomics

    PubMed Central

    Talon, Manuel; Gmitter Jr., Fred G.

    2008-01-01

    Citrus is one of the most widespread fruit crops globally, with great economic and health value. It is among the most difficult plants to improve through traditional breeding approaches. Currently, there is risk of devastation by diseases threatening to limit production and future availability to the human population. As technologies rapidly advance in genomic science, they are quickly adapted to address the biological challenges of the citrus plant system and the world's industries. The historical developments of linkage mapping, markers and breeding, EST projects, physical mapping, an international citrus genome sequencing project, and critical functional analysis are described. Despite the challenges of working with citrus, there has been substantial progress. Citrus researchers engaged in international collaborations provide optimism about future productivity and contributions to the benefit of citrus industries worldwide and to the human population who can rely on future widespread availability of this health-promoting and aesthetically pleasing fruit crop. PMID:18509486

  1. Ancient genomics

    PubMed Central

    Der Sarkissian, Clio; Allentoft, Morten E.; Ávila-Arcos, María C.; Barnett, Ross; Campos, Paula F.; Cappellini, Enrico; Ermini, Luca; Fernández, Ruth; da Fonseca, Rute; Ginolhac, Aurélien; Hansen, Anders J.; Jónsson, Hákon; Korneliussen, Thorfinn; Margaryan, Ashot; Martin, Michael D.; Moreno-Mayar, J. Víctor; Raghavan, Maanasa; Rasmussen, Morten; Velasco, Marcela Sandoval; Schroeder, Hannes; Schubert, Mikkel; Seguin-Orlando, Andaine; Wales, Nathan; Gilbert, M. Thomas P.; Willerslev, Eske; Orlando, Ludovic

    2015-01-01

    The past decade has witnessed a revolution in ancient DNA (aDNA) research. Although the field's focus was previously limited to mitochondrial DNA and a few nuclear markers, whole genome sequences from the deep past can now be retrieved. This breakthrough is tightly connected to the massive sequence throughput of next generation sequencing platforms and the ability to target short and degraded DNA molecules. Many ancient specimens previously unsuitable for DNA analyses because of extensive degradation can now successfully be used as source materials. Additionally, the analytical power obtained by increasing the number of sequence reads to billions effectively means that contamination issues that have haunted aDNA research for decades, particularly in human studies, can now be efficiently and confidently quantified. At present, whole genomes have been sequenced from ancient anatomically modern humans, archaic hominins, ancient pathogens and megafaunal species. Those have revealed important functional and phenotypic information, as well as unexpected adaptation, migration and admixture patterns. As such, the field of aDNA has entered the new era of genomics and has provided valuable information when testing specific hypotheses related to the past. PMID:25487338

  2. Evolution of physiological responses to salt stress in hexaploid wheat.

    PubMed

    Yang, Chunwu; Zhao, Long; Zhang, Huakun; Yang, Zongze; Wang, Huan; Wen, Shanshan; Zhang, Chunyu; Rustgi, Sachin; von Wettstein, Diter; Liu, Bao

    2014-08-12

    Hexaploid bread wheat (Triticum aestivum L., genome BBAADD) is generally more salt tolerant than its tetraploid wheat progenitor (Triticum turgidum L.). However, little is known about the physiological basis of this trait or about the relative contributions of allohexaploidization and subsequent evolutionary genetic changes on the trait development. Here, we compared the salt tolerance of a synthetic allohexaploid wheat (neo-6x) with its tetraploid (T. turgidum; BBAA) and diploid (Aegilops tauschii; DD) parents, as well as a natural hexaploid bread wheat (nat-6x). We studied 92 morphophysiological traits and analyzed homeologous gene expression of a major salt-tolerance gene High-Affinity K(+) Transporter 1;5 (HKT1;5). We observed that under salt stress, neo-6x exhibited higher fitness than both of its parental genotypes due to inheritance of favorable traits like higher germination rate from the 4x parent and the stronger root Na(+) retention capacity from the 2x parent. Moreover, expression of the D-subgenome HKT1;5 homeolog, which is responsible for Na(+) removal from the xylem vessels, showed an immediate transcriptional reprogramming following allohexaploidization, i.e., from constitutive high basal expression in Ae. tauschii (2x) to salt-induced expression in neo-6x. This phenomenon was also witnessed in the nat-6x. An integrated analysis of 92 traits showed that, under salt-stress conditions, neo-6x resembled more closely the 2x than the 4x parent, suggesting that the salt stress induces enhanced expressivity of the D-subgenome homeologs in the synthetic hexaploid wheat. Collectively, the results suggest that condition-dependent functionalization of the subgenomes might have contributed to the wide-ranging adaptability of natural hexaploid wheat. PMID:25074914

  3. Evolution of physiological responses to salt stress in hexaploid wheat

    PubMed Central

    Yang, Chunwu; Zhao, Long; Zhang, Huakun; Yang, Zongze; Wang, Huan; Wen, Shanshan; Zhang, Chunyu; Rustgi, Sachin; von Wettstein, Diter; Liu, Bao

    2014-01-01

    Hexaploid bread wheat (Triticum aestivum L., genome BBAADD) is generally more salt tolerant than its tetraploid wheat progenitor (Triticum turgidum L.). However, little is known about the physiological basis of this trait or about the relative contributions of allohexaploidization and subsequent evolutionary genetic changes on the trait development. Here, we compared the salt tolerance of a synthetic allohexaploid wheat (neo-6x) with its tetraploid (T. turgidum; BBAA) and diploid (Aegilops tauschii; DD) parents, as well as a natural hexaploid bread wheat (nat-6x). We studied 92 morphophysiological traits and analyzed homeologous gene expression of a major salt-tolerance gene High-Affinity K+ Transporter 1;5 (HKT1;5). We observed that under salt stress, neo-6x exhibited higher fitness than both of its parental genotypes due to inheritance of favorable traits like higher germination rate from the 4x parent and the stronger root Na+ retention capacity from the 2x parent. Moreover, expression of the D-subgenome HKT1;5 homeolog, which is responsible for Na+ removal from the xylem vessels, showed an immediate transcriptional reprogramming following allohexaploidization, i.e., from constitutive high basal expression in Ae. tauschii (2x) to salt-induced expression in neo-6x. This phenomenon was also witnessed in the nat-6x. An integrated analysis of 92 traits showed that, under salt-stress conditions, neo-6x resembled more closely the 2x than the 4x parent, suggesting that the salt stress induces enhanced expressivity of the D-subgenome homeologs in the synthetic hexaploid wheat. Collectively, the results suggest that condition-dependent functionalization of the subgenomes might have contributed to the wide-ranging adaptability of natural hexaploid wheat. PMID:25074914

  4. Evolution of physiological responses to salt stress in hexaploid wheat.

    PubMed

    Yang, Chunwu; Zhao, Long; Zhang, Huakun; Yang, Zongze; Wang, Huan; Wen, Shanshan; Zhang, Chunyu; Rustgi, Sachin; von Wettstein, Diter; Liu, Bao

    2014-08-12

    Hexaploid bread wheat (Triticum aestivum L., genome BBAADD) is generally more salt tolerant than its tetraploid wheat progenitor (Triticum turgidum L.). However, little is known about the physiological basis of this trait or about the relative contributions of allohexaploidization and subsequent evolutionary genetic changes on the trait development. Here, we compared the salt tolerance of a synthetic allohexaploid wheat (neo-6x) with its tetraploid (T. turgidum; BBAA) and diploid (Aegilops tauschii; DD) parents, as well as a natural hexaploid bread wheat (nat-6x). We studied 92 morphophysiological traits and analyzed homeologous gene expression of a major salt-tolerance gene High-Affinity K(+) Transporter 1;5 (HKT1;5). We observed that under salt stress, neo-6x exhibited higher fitness than both of its parental genotypes due to inheritance of favorable traits like higher germination rate from the 4x parent and the stronger root Na(+) retention capacity from the 2x parent. Moreover, expression of the D-subgenome HKT1;5 homeolog, which is responsible for Na(+) removal from the xylem vessels, showed an immediate transcriptional reprogramming following allohexaploidization, i.e., from constitutive high basal expression in Ae. tauschii (2x) to salt-induced expression in neo-6x. This phenomenon was also witnessed in the nat-6x. An integrated analysis of 92 traits showed that, under salt-stress conditions, neo-6x resembled more closely the 2x than the 4x parent, suggesting that the salt stress induces enhanced expressivity of the D-subgenome homeologs in the synthetic hexaploid wheat. Collectively, the results suggest that condition-dependent functionalization of the subgenomes might have contributed to the wide-ranging adaptability of natural hexaploid wheat.

  5. Extensive pericentric rearrangements in the bread wheat (Triticum aestivum L.) genotype "Chinese Spring" revealed from chromosome shotgun sequence data.

    PubMed

    Ma, Jian; Stiller, Jiri; Wei, Yuming; Zheng, You-Liang; Devos, Katrien M; Doležel, Jaroslav; Liu, Chunji

    2014-10-27

    The bread wheat (Triticum aestivum L.) genotype "Chinese Spring" ("CS") is the reference base in wheat genetics and genomics. Pericentric rearrangements in this genotype were systematically assessed by analyzing homoeoloci for a set of nonredundant genes from Brachypodium distachyon, Triticum urartu, and Aegilops tauschii in the CS chromosome shotgun sequence obtained from individual chromosome arms flow-sorted from CS aneuploid lines. Based on patterns of their homoeologous arm locations, 551 genes indicated the presence of pericentric inversions in at least 10 of the 21 chromosomes. Available data from deletion bin-mapped expressed sequence tags and genetic mapping in wheat indicated that all inversions had breakpoints in the low-recombinant gene-poor pericentromeric regions. The large number of putative intrachromosomal rearrangements suggests the presence of extensive structural differences among the three subgenomes, at least some of which likely occurred during the production of the aneuploid lines of this hexaploid wheat genotype. These differences could have significant implications in wheat genome research where comparative approaches are used such as in ordering and orientating sequence contigs and in gene cloning.

  6. Polyphenol oxidase (PPO) in wheat and wild relatives: molecular evidence for a multigene family.

    PubMed

    Massa, Alicia N; Beecher, Brian; Morris, Craig F

    2007-05-01

    Wheat polyphenol oxidase (PPO) is the major cause of browning reactions that discolor Asian noodles and other wheat products. It has been hypothesized that genes encoding wheat PPOs may have evolved by gene duplication into a multigene family. Here we characterized PPO genomic sequences from diploid (Triticum monococcum, T. urartu, Aegilops tauschii, and Ae. speltoides), tetraploid (T. turgidum, subspecies dicoccoides and durum) and hexaploid (T. aestivum cultivars Klasic and ID377s) wheat species to gain a better understanding of the structure and organization of PPO genes. DNA fragments were amplified from a highly polymorphic and phylogenetic informative region of the gene. As a result, we obtained highly discriminative sequences. Three distinct PPOs, obtained from the A genome of T. monococcum, provided evidence for gene duplication events (paralogous loci). Furthermore, the number of sequences obtained for bread and durum wheat was higher than the expected number of orthologous loci. Sequence comparison revealed nucleotide and structural diversity, and detected five sequence intron types, all with a common insertion position. This was hypothesized to be homologous to that of intron 2 of previously reported wheat PPOs. A MITE of the Stowaway family accounted for the major difference between the five intervening sequences, and was unique to T. aestivum cv. Klasic. Nucleotide and structural diversity, together with well-resolved phylogenetic trees, provided molecular evidence to support the hypothesis of a PPO multigene family structure and organization. PMID:17468807

  7. High Transferability of Homoeolog-Specific Markers between Bread Wheat and Newly Synthesized Hexaploid Wheat Lines

    PubMed Central

    Zeng, Deying; Luo, Jiangtao; Li, Zenglin; Chen, Gang; Zhang, Lianquan; Ning, Shunzong; Yuan, Zhongwei; Zheng, Youliang; Hao, Ming; Liu, Dengcai

    2016-01-01

    Bread wheat (Triticum aestivum, 2n = 6x = 42, AABBDD) has a complex allohexaploid genome, which makes it difficult to differentiate between the homoeologous sequences and assign them to the chromosome A, B, or D subgenomes. The chromosome-based draft genome sequence of the ‘Chinese Spring’ common wheat cultivar enables the large-scale development of polymerase chain reaction (PCR)-based markers specific for homoeologs. Based on high-confidence ‘Chinese Spring’ genes with known functions, we developed 183 putative homoeolog-specific markers for chromosomes 4B and 7B. These markers were used in PCR assays for the 4B and 7B nullisomes and their euploid synthetic hexaploid wheat (SHW) line that was newly generated from a hybridization between Triticum turgidum (AABB) and the wild diploid species Aegilops tauschii (DD). Up to 64% of the markers for chromosomes 4B or 7B in the SHW background were confirmed to be homoeolog-specific. Thus, these markers were highly transferable between the ‘Chinese Spring’ bread wheat and SHW lines. Homoeolog-specific markers designed using genes with known functions may be useful for genetic investigations involving homoeologous chromosome tracking and homoeolog expression and interaction analyses. PMID:27611704

  8. High Transferability of Homoeolog-Specific Markers between Bread Wheat and Newly Synthesized Hexaploid Wheat Lines.

    PubMed

    Zeng, Deying; Luo, Jiangtao; Li, Zenglin; Chen, Gang; Zhang, Lianquan; Ning, Shunzong; Yuan, Zhongwei; Zheng, Youliang; Hao, Ming; Liu, Dengcai

    2016-01-01

    Bread wheat (Triticum aestivum, 2n = 6x = 42, AABBDD) has a complex allohexaploid genome, which makes it difficult to differentiate between the homoeologous sequences and assign them to the chromosome A, B, or D subgenomes. The chromosome-based draft genome sequence of the 'Chinese Spring' common wheat cultivar enables the large-scale development of polymerase chain reaction (PCR)-based markers specific for homoeologs. Based on high-confidence 'Chinese Spring' genes with known functions, we developed 183 putative homoeolog-specific markers for chromosomes 4B and 7B. These markers were used in PCR assays for the 4B and 7B nullisomes and their euploid synthetic hexaploid wheat (SHW) line that was newly generated from a hybridization between Triticum turgidum (AABB) and the wild diploid species Aegilops tauschii (DD). Up to 64% of the markers for chromosomes 4B or 7B in the SHW background were confirmed to be homoeolog-specific. Thus, these markers were highly transferable between the 'Chinese Spring' bread wheat and SHW lines. Homoeolog-specific markers designed using genes with known functions may be useful for genetic investigations involving homoeologous chromosome tracking and homoeolog expression and interaction analyses. PMID:27611704

  9. Lateral genomics.

    PubMed

    Doolittle, W F

    1999-12-01

    More than 20 complete prokaryotic genome sequences are now publicly available, each by itself an unparalleled resource for understanding organismal biology. Collectively, these data are even more powerful: they could force a dramatic reworking of the framework in which we understand biological evolution. It is possible that a single universal phylogenetic tree is not the best way to depict relationships between all living and extinct species. Instead a web- or net-like pattern, reflecting the importance of horizontal or lateral gene transfer between lineages of organisms, might provide a more appropriate visual metaphor. Here, I ask whether this way of thinking is really justified, and explore its implications.

  10. Generation of Wheat Transcription Factor FOX Rice Lines and Systematic Screening for Salt and Osmotic Stress Tolerance

    PubMed Central

    Zhang, Qian; Liu, Yayun; Zhu, Butuo; Cao, Jian; Li, Zhanpeng; Han, Longzhi; Jia, Jizeng; Zhao, Guangyao; Sun, Xuehui

    2015-01-01

    Transcription factors (TFs) play important roles in plant growth, development, and responses to environmental stress. In this study, we collected 1,455 full-length (FL) cDNAs of TFs, representing 45 families, from wheat and its relatives Triticum urartu, Aegilops speltoides, Aegilops tauschii, Triticum carthlicum, and Triticum aestivum. More than 15,000 T0 TF FOX (Full-length cDNA Over-eXpressing) rice lines were generated; of these, 10,496 lines set seeds. About 14.88% of the T0 plants showed obvious phenotypic changes. T1 lines (5,232 lines) were screened for salt and osmotic stress tolerance using 150 mM NaCl and 20% (v/v) PEG-4000, respectively. Among them, five lines (591, 746, 1647, 1812, and J4065) showed enhanced salt stress tolerance, five lines (591, 746, 898, 1078, and 1647) showed enhanced osmotic stress tolerance, and three lines (591, 746, and 1647) showed both salt and osmotic stress tolerance. Further analysis of the T-DNA flanking sequences showed that line 746 over-expressed TaEREB1, line 898 over-expressed TabZIPD, and lines 1812 and J4065 over-expressed TaOBF1a and TaOBF1b, respectively. The enhanced salt and osmotic stress tolerance of lines 898 and 1812 was confirmed by retransformation of the respective genes. Our results demonstrate that a heterologous FOX system may be used as an alternative genetic resource for the systematic functional analysis of the wheat genome. PMID:26176782

  11. Genomes on ice.

    PubMed

    Parkhill, Julian

    2016-03-01

    This month's Genome Watch discusses the analysis of a Helicobacter pylori genome from the preserved Copper-Age mummy known as the Iceman and how ancient genomes shed light on the history of bacterial pathogens. PMID:26853114

  12. Genomes on ice.

    PubMed

    Parkhill, Julian

    2016-03-01

    This month's Genome Watch discusses the analysis of a Helicobacter pylori genome from the preserved Copper-Age mummy known as the Iceman and how ancient genomes shed light on the history of bacterial pathogens.

  13. Whole Genome Sequencing

    MedlinePlus

    ... you want to learn. Search form Search Whole Genome Sequencing You are here Home Testing & Services Testing ... the full story, click here . What is whole genome sequencing? Whole genome sequencing is the mapping out ...

  14. Characterization of x-type high-molecular-weight glutenin promoters (x-HGP) from different genomes in Triticeae.

    PubMed

    Jiang, Qian-Tao; Zhao, Quan-Zhi; Wang, Xiu-Ying; Wang, Chang-Shui; Zhao, Shan; Cao, Xue; Lan, Xiu-Jin; Lu, Zhen-Xiang; Zheng, You-Liang; Wei, Yu-Ming

    2013-12-01

    The sequences of x-type high-molecular-weight glutenin promoter (x-HGP) from 21 diploid Triticeae species were cloned and sequenced. The lengths of x-HGP varied from 897 to 955 bp, and there are 329 variable sites including 105 singleton sites and 224 polymorphic sites. Genetic distances of pairwise X-HGP sequences ranged from 0.30 to 16.40% within 21 species and four outgroup species of Hordeum. All five recognized regulatory elements emerged and showed higher conservation in the x-HGP of 21 Triticeae species. Most variations were distributed in the regions among or between regulatory elements. A 22 bp and 50 bp insertions which were the copy of adjacent region with minor change, were found in the x-HGP of Ae. speltoides and Ps. Huashanica, and could be regarded as genome specific indels. The phylogeny of media-joining network and neighbour-joining tree both supported the topology were composed of three sperate clusters. Especially, the cluster I comprising the x-HGP sequences of Aegilops, Triticum, Henrardia, Agropyron and Taeniatherum was highly supporting by both network and NJ tree. As conferring to higher level and temporal and spatial expression, x-HGP can used as the source of promoter for constructing transgenic plants which allow endosperm-specific expression of exogenous gene on higher level. In addition, the x-HGP has enough conservation and variation; so it should be valuable in phylogenetic analyses of Triticeae family members.

  15. Characterization of x-type high-molecular-weight glutenin promoters (x-HGP) from different genomes in Triticeae.

    PubMed

    Jiang, Qian-Tao; Zhao, Quan-Zhi; Wang, Xiu-Ying; Wang, Chang-Shui; Zhao, Shan; Cao, Xue; Lan, Xiu-Jin; Lu, Zhen-Xiang; Zheng, You-Liang; Wei, Yu-Ming

    2013-12-01

    The sequences of x-type high-molecular-weight glutenin promoter (x-HGP) from 21 diploid Triticeae species were cloned and sequenced. The lengths of x-HGP varied from 897 to 955 bp, and there are 329 variable sites including 105 singleton sites and 224 polymorphic sites. Genetic distances of pairwise X-HGP sequences ranged from 0.30 to 16.40% within 21 species and four outgroup species of Hordeum. All five recognized regulatory elements emerged and showed higher conservation in the x-HGP of 21 Triticeae species. Most variations were distributed in the regions among or between regulatory elements. A 22 bp and 50 bp insertions which were the copy of adjacent region with minor change, were found in the x-HGP of Ae. speltoides and Ps. Huashanica, and could be regarded as genome specific indels. The phylogeny of media-joining network and neighbour-joining tree both supported the topology were composed of three sperate clusters. Especially, the cluster I comprising the x-HGP sequences of Aegilops, Triticum, Henrardia, Agropyron and Taeniatherum was highly supporting by both network and NJ tree. As conferring to higher level and temporal and spatial expression, x-HGP can used as the source of promoter for constructing transgenic plants which allow endosperm-specific expression of exogenous gene on higher level. In addition, the x-HGP has enough conservation and variation; so it should be valuable in phylogenetic analyses of Triticeae family members. PMID:23687628

  16. Ensembl genomes 2016: more genomes, more complexity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ensembl Genomes (http://www.ensemblgenomes.org) is an integrating resource for genome-scale data from non-vertebrate species, complementing the resources for vertebrate genomics developed in the context of the Ensembl project (http://www.ensembl.org). Together, the two resources provide a consistent...

  17. Ensembl Genomes 2016: more genomes, more complexity

    PubMed Central

    Kersey, Paul Julian; Allen, James E.; Armean, Irina; Boddu, Sanjay; Bolt, Bruce J.; Carvalho-Silva, Denise; Christensen, Mikkel; Davis, Paul; Falin, Lee J.; Grabmueller, Christoph; Humphrey, Jay; Kerhornou, Arnaud; Khobova, Julia; Aranganathan, Naveen K.; Langridge, Nicholas; Lowy, Ernesto; McDowall, Mark D.; Maheswari, Uma; Nuhn, Michael; Ong, Chuang Kee; Overduin, Bert; Paulini, Michael; Pedro, Helder; Perry, Emily; Spudich, Giulietta; Tapanari, Electra; Walts, Brandon; Williams, Gareth; Tello–Ruiz, Marcela; Stein, Joshua; Wei, Sharon; Ware, Doreen; Bolser, Daniel M.; Howe, Kevin L.; Kulesha, Eugene; Lawson, Daniel; Maslen, Gareth; Staines, Daniel M.

    2016-01-01

    Ensembl Genomes (http://www.ensemblgenomes.org) is an integrating resource for genome-scale data from non-vertebrate species, complementing the resources for vertebrate genomics developed in the context of the Ensembl project (http://www.ensembl.org). Together, the two resources provide a consistent set of programmatic and interactive interfaces to a rich range of data including reference sequence, gene models, transcriptional data, genetic variation and comparative analysis. This paper provides an update to the previous publications about the resource, with a focus on recent developments. These include the development of new analyses and views to represent polyploid genomes (of which bread wheat is the primary exemplar); and the continued up-scaling of the resource, which now includes over 23 000 bacterial genomes, 400 fungal genomes and 100 protist genomes, in addition to 55 genomes from invertebrate metazoa and 39 genomes from plants. This dramatic increase in the number of included genomes is one part of a broader effort to automate the integration of archival data (genome sequence, but also associated RNA sequence data and variant calls) within the context of reference genomes and make it available through the Ensembl user interfaces. PMID:26578574

  18. Funding Opportunity: Genomic Data Centers

    Cancer.gov

    Funding Opportunity CCG, Funding Opportunity Center for Cancer Genomics, CCG, Center for Cancer Genomics, CCG RFA, Center for cancer genomics rfa, genomic data analysis network, genomic data analysis network centers,

  19. Genome Mapping in Plant Comparative Genomics.

    PubMed

    Chaney, Lindsay; Sharp, Aaron R; Evans, Carrie R; Udall, Joshua A

    2016-09-01

    Genome mapping produces fingerprints of DNA sequences to construct a physical map of the whole genome. It provides contiguous, long-range information that complements and, in some cases, replaces sequencing data. Recent advances in genome-mapping technology will better allow researchers to detect large (>1kbp) structural variations between plant genomes. Some molecular and informatics complications need to be overcome for this novel technology to achieve its full utility. This technology will be useful for understanding phenotype responses due to DNA rearrangements and will yield insights into genome evolution, particularly in polyploids. In this review, we outline recent advances in genome-mapping technology, including the processes required for data collection and analysis, and applications in plant comparative genomics.

  20. Enabling functional genomics with genome engineering.

    PubMed

    Hilton, Isaac B; Gersbach, Charles A

    2015-10-01

    Advances in genome engineering technologies have made the precise control over genome sequence and regulation possible across a variety of disciplines. These tools can expand our understanding of fundamental biological processes and create new opportunities for therapeutic designs. The rapid evolution of these methods has also catalyzed a new era of genomics that includes multiple approaches to functionally characterize and manipulate the regulation of genomic information. Here, we review the recent advances of the most widely adopted genome engineering platforms and their application to functional genomics. This includes engineered zinc finger proteins, TALEs/TALENs, and the CRISPR/Cas9 system as nucleases for genome editing, transcription factors for epigenome editing, and other emerging applications. We also present current and potential future applications of these tools, as well as their current limitations and areas for future advances.

  1. Enabling functional genomics with genome engineering.

    PubMed

    Hilton, Isaac B; Gersbach, Charles A

    2015-10-01

    Advances in genome engineering technologies have made the precise control over genome sequence and regulation possible across a variety of disciplines. These tools can expand our understanding of fundamental biological processes and create new opportunities for therapeutic designs. The rapid evolution of these methods has also catalyzed a new era of genomics that includes multiple approaches to functionally characterize and manipulate the regulation of genomic information. Here, we review the recent advances of the most widely adopted genome engineering platforms and their application to functional genomics. This includes engineered zinc finger proteins, TALEs/TALENs, and the CRISPR/Cas9 system as nucleases for genome editing, transcription factors for epigenome editing, and other emerging applications. We also present current and potential future applications of these tools, as well as their current limitations and areas for future advances. PMID:26430154

  2. Navigating yeast genome maintenance with functional genomics.

    PubMed

    Measday, Vivien; Stirling, Peter C

    2016-03-01

    Maintenance of genome integrity is a fundamental requirement of all organisms. To address this, organisms have evolved extremely faithful modes of replication, DNA repair and chromosome segregation to combat the deleterious effects of an unstable genome. Nonetheless, a small amount of genome instability is the driver of evolutionary change and adaptation, and thus a low level of instability is permitted in populations. While defects in genome maintenance almost invariably reduce fitness in the short term, they can create an environment where beneficial mutations are more likely to occur. The importance of this fact is clearest in the development of human cancer, where genome instability is a well-established enabling characteristic of carcinogenesis. This raises the crucial question: what are the cellular pathways that promote genome maintenance and what are their mechanisms? Work in model organisms, in particular the yeast Saccharomyces cerevisiae, has provided the global foundations of genome maintenance mechanisms in eukaryotes. The development of pioneering genomic tools inS. cerevisiae, such as the systematic creation of mutants in all nonessential and essential genes, has enabled whole-genome approaches to identifying genes with roles in genome maintenance. Here, we review the extensive whole-genome approaches taken in yeast, with an emphasis on functional genomic screens, to understand the genetic basis of genome instability, highlighting a range of genetic and cytological screening modalities. By revealing the biological pathways and processes regulating genome integrity, these analyses contribute to the systems-level map of the yeast cell and inform studies of human disease, especially cancer.

  3. Navigating yeast genome maintenance with functional genomics.

    PubMed

    Measday, Vivien; Stirling, Peter C

    2016-03-01

    Maintenance of genome integrity is a fundamental requirement of all organisms. To address this, organisms have evolved extremely faithful modes of replication, DNA repair and chromosome segregation to combat the deleterious effects of an unstable genome. Nonetheless, a small amount of genome instability is the driver of evolutionary change and adaptation, and thus a low level of instability is permitted in populations. While defects in genome maintenance almost invariably reduce fitness in the short term, they can create an environment where beneficial mutations are more likely to occur. The importance of this fact is clearest in the development of human cancer, where genome instability is a well-established enabling characteristic of carcinogenesis. This raises the crucial question: what are the cellular pathways that promote genome maintenance and what are their mechanisms? Work in model organisms, in particular the yeast Saccharomyces cerevisiae, has provided the global foundations of genome maintenance mechanisms in eukaryotes. The development of pioneering genomic tools inS. cerevisiae, such as the systematic creation of mutants in all nonessential and essential genes, has enabled whole-genome approaches to identifying genes with roles in genome maintenance. Here, we review the extensive whole-genome approaches taken in yeast, with an emphasis on functional genomic screens, to understand the genetic basis of genome instability, highlighting a range of genetic and cytological screening modalities. By revealing the biological pathways and processes regulating genome integrity, these analyses contribute to the systems-level map of the yeast cell and inform studies of human disease, especially cancer. PMID:26323482

  4. Exploring Other Genomes: Bacteria.

    ERIC Educational Resources Information Center

    Flannery, Maura C.

    2001-01-01

    Points out the importance of genomes other than the human genome project and provides information on the identified bacterial genomes Pseudomonas aeuroginosa, Leprosy, Cholera, Meningitis, Tuberculosis, Bubonic Plague, and plant pathogens. Considers the computer's use in genome studies. (Contains 14 references.) (YDS)

  5. A novel family of γ-gliadin genes are highly regulated by nitrogen supply in developing wheat grain

    PubMed Central

    Shewry, Peter R.

    2013-01-01

    Six wheat cultivars were grown at Rothamsted (UK) with three levels of nitrogen fertilizer (100, 200 and 350kg N/ha) in 2009 and 2010. Gene expression in developing caryopses at 21 days post-anthesis (DPA) was profiled using the Affymetrix Wheat GeneChip®. Four of 105 transcripts which were significantly upregulated by nitrogen level were annotated as γ-3 hordein and the identification of corresponding expressed sequence tags showed that they differed in sequence from previously described (typical) γ-gliadins and represented a novel form of γ-gliadin. Real-time reverse transcriptase PCR at 14, 21, 28 and 35 DPA revealed that this transcript was most abundant and most responsive to nitrogen at 21 DPA. Four novel γ-gliadin genes were isolated by PCR amplification from wheat cv. Hereward and the related species Aegilops tauschii and Triticum monococcum while three were assembled from the genomic sequence database of wheat cv. Chinese Spring (www.cerealsdb.uk.net). Comparison of the deduced amino acid sequences of the seven genes showed that they shared only 44.4–46.0% identity with the sequence of a typical γ-gliadin (accession number EF15018), but 61.8–68.3% identity with the sequence of γ-3 hordein from the wild barley species Hordeum chilense (AY338065). The novel γ-gliadin genes were localized to the group 1 chromosomes (1A, 1B, 1D). PMID:23162123

  6. The stripe rust resistance gene Yr10 encodes an evolutionary-conserved and unique CC-NBS-LRR sequence in wheat.

    PubMed

    Liu, Wei; Frick, Michele; Huel, Réné; Nykiforuk, Cory L; Wang, Xiaomin; Gaudet, Denis A; Eudes, François; Conner, Robert L; Kuzyk, Alan; Chen, Qin; Kang, Zhensheng; Laroche, André

    2014-12-01

    The first seedling or all-stage resistance (R) R gene against stripe rust isolated from Moro wheat (Triticum aestivum L.) using a map-based cloning approach was identified as Yr10. Clone 4B of this gene encodes a highly evolutionary-conserved and unique CC-NBS-LRR sequence. Clone 4E, a homolog of Yr10, but lacking transcription start site (TSS) and putative TATA-box and CAAT-box, is likely a non-expressed pseudogene. Clones 4B and 4E are 84% identical and divergent in the intron and the LRR domain. Gene silencing and transgenesis were used in conjunction with inoculation with differentially avirulent and virulent stripe rust strains to demonstrate Yr10 functionality. The Yr10 CC-NBS-LRR sequence is unique among known CC-NBS-LRR R genes in wheat but highly conserved homologs (E = 0.0) were identified in Aegilops tauschii and other monocots including Hordeum vulgare and Brachypodium distachyon. Related sequences were also identified in genomic databases of maize, rice, and in sorghum. This is the first report of a CC-NBS-LRR resistance gene in plants with limited homologies in its native host, but with numerous homologous R genes in related monocots that are either host or non-hosts for stripe rust. These results represent a unique example of gene evolution and dispersion across species.

  7. Genome Maps, a new generation genome browser.

    PubMed

    Medina, Ignacio; Salavert, Francisco; Sanchez, Rubén; de Maria, Alejandro; Alonso, Roberto; Escobar, Pablo; Bleda, Marta; Dopazo, Joaquín

    2013-07-01

    Genome browsers have gained importance as more genomes and related genomic information become available. However, the increase of information brought about by new generation sequencing technologies is, at the same time, causing a subtle but continuous decrease in the efficiency of conventional genome browsers. Here, we present Genome Maps, a genome browser that implements an innovative model of data transfer and management. The program uses highly efficient technologies from the new HTML5 standard, such as scalable vector graphics, that optimize workloads at both server and client sides and ensure future scalability. Thus, data management and representation are entirely carried out by the browser, without the need of any Java Applet, Flash or other plug-in technology installation. Relevant biological data on genes, transcripts, exons, regulatory features, single-nucleotide polymorphisms, karyotype and so forth, are imported from web services and are available as tracks. In addition, several DAS servers are already included in Genome Maps. As a novelty, this web-based genome browser allows the local upload of huge genomic data files (e.g. VCF or BAM) that can be dynamically visualized in real time at the client side, thus facilitating the management of medical data affected by privacy restrictions. Finally, Genome Maps can easily be integrated in any web application by including only a few lines of code. Genome Maps is an open source collaborative initiative available in the GitHub repository (https://github.com/compbio-bigdata-viz/genome-maps). Genome Maps is available at: http://www.genomemaps.org.

  8. Genome Maps, a new generation genome browser

    PubMed Central

    Medina, Ignacio; Salavert, Francisco; Sanchez, Rubén; de Maria, Alejandro; Alonso, Roberto; Escobar, Pablo; Bleda, Marta; Dopazo, Joaquín

    2013-01-01

    Genome browsers have gained importance as more genomes and related genomic information become available. However, the increase of information brought about by new generation sequencing technologies is, at the same time, causing a subtle but continuous decrease in the efficiency of conventional genome browsers. Here, we present Genome Maps, a genome browser that implements an innovative model of data transfer and management. The program uses highly efficient technologies from the new HTML5 standard, such as scalable vector graphics, that optimize workloads at both server and client sides and ensure future scalability. Thus, data management and representation are entirely carried out by the browser, without the need of any Java Applet, Flash or other plug-in technology installation. Relevant biological data on genes, transcripts, exons, regulatory features, single-nucleotide polymorphisms, karyotype and so forth, are imported from web services and are available as tracks. In addition, several DAS servers are already included in Genome Maps. As a novelty, this web-based genome browser allows the local upload of huge genomic data files (e.g. VCF or BAM) that can be dynamically visualized in real time at the client side, thus facilitating the management of medical data affected by privacy restrictions. Finally, Genome Maps can easily be integrated in any web application by including only a few lines of code. Genome Maps is an open source collaborative initiative available in the GitHub repository (https://github.com/compbio-bigdata-viz/genome-maps). Genome Maps is available at: http://www.genomemaps.org. PMID:23748955

  9. Genome Maps, a new generation genome browser.

    PubMed

    Medina, Ignacio; Salavert, Francisco; Sanchez, Rubén; de Maria, Alejandro; Alonso, Roberto; Escobar, Pablo; Bleda, Marta; Dopazo, Joaquín

    2013-07-01

    Genome browsers have gained importance as more genomes and related genomic information become available. However, the increase of information brought about by new generation sequencing technologies is, at the same time, causing a subtle but continuous decrease in the efficiency of conventional genome browsers. Here, we present Genome Maps, a genome browser that implements an innovative model of data transfer and management. The program uses highly efficient technologies from the new HTML5 standard, such as scalable vector graphics, that optimize workloads at both server and client sides and ensure future scalability. Thus, data management and representation are entirely carried out by the browser, without the need of any Java Applet, Flash or other plug-in technology installation. Relevant biological data on genes, transcripts, exons, regulatory features, single-nucleotide polymorphisms, karyotype and so forth, are imported from web services and are available as tracks. In addition, several DAS servers are already included in Genome Maps. As a novelty, this web-based genome browser allows the local upload of huge genomic data files (e.g. VCF or BAM) that can be dynamically visualized in real time at the client side, thus facilitating the management of medical data affected by privacy restrictions. Finally, Genome Maps can easily be integrated in any web application by including only a few lines of code. Genome Maps is an open source collaborative initiative available in the GitHub repository (https://github.com/compbio-bigdata-viz/genome-maps). Genome Maps is available at: http://www.genomemaps.org. PMID:23748955

  10. JGI Fungal Genomics Program

    SciTech Connect

    Grigoriev, Igor V.

    2011-03-14

    Genomes of energy and environment fungi are in focus of the Fungal Genomic Program at the US Department of Energy Joint Genome Institute (JGI). Its key project, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts), and explores fungal diversity by means of genome sequencing and analysis. Over 50 fungal genomes have been sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supported by functional genomics leads to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such 'parts' suggested by comparative genomics and functional analysis in these areas are presented here

  11. Genomic Encyclopedia of Fungi

    SciTech Connect

    Grigoriev, Igor

    2012-08-10

    Genomes of fungi relevant to energy and environment are in focus of the Fungal Genomic Program at the US Department of Energy Joint Genome Institute (JGI). Its key project, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts), and explores fungal diversity by means of genome sequencing and analysis. Over 150 fungal genomes have been sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supported by functional genomics leads to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such parts suggested by comparative genomics and functional analysis in these areas are presented here.

  12. Genomics and Health Impact Update

    MedlinePlus

    ... Genomics in Practice Newborn Screening Pharmacogenomics Reproductive Health Tools and Databases About the Genomics & Health Impact Update The Office of Public Health Genomics provides updated and credible ...

  13. Plant genomics: an overview.

    PubMed

    Campos-de Quiroz, Hugo

    2002-01-01

    Recent technological advancements have substantially expanded our ability to analyze and understand plant genomes and to reduce the gap existing between genotype and phenotype. The fast evolving field of genomics allows scientists to analyze thousand of genes in parallel, to understand the genetic architecture of plant genomes and also to isolate the genes responsible for mutations. Furthermore, whole genomes can now be sequenced. This review addresses these issues and also discusses ways to extract biological meaning from DNA data. Although genomic issuesare addressed from a plant perspective, this review provides insights into the genomic analyses of other organisms. PMID:12462991

  14. Genomic Data Commons | Office of Cancer Genomics

    Cancer.gov

    The NCI’s Center for Cancer Genomics launches the Genomic Data Commons (GDC), a unified data sharing platform for the cancer research community. The mission of the GDC is to enable data sharing across the entire cancer research community, to ultimately support precision medicine in oncology.

  15. Harvesting rice's dispensable genome.

    PubMed

    Wing, Rod A

    2015-01-01

    A rapid and cost-effective approach has been developed to harvest and map the dispensable genome, that is, population-level natural sequence variation within a species that is not present in static genome assemblies. PMID:26429765

  16. Genomic Data Commons launches

    Cancer.gov

    The Genomic Data Commons (GDC), a unified data system that promotes sharing of genomic and clinical data between researchers, launched today with a visit from Vice President Joe Biden to the operations center at the University of Chicago.

  17. GENOMICS AND ENVIRONMENTAL RESEARCH

    EPA Science Inventory

    The impact of recently developed and emerging genomics technologies on environmental sciences has significant implications for human and ecological risk assessment issues. The linkage of data generated from genomics, transcriptomics, proteomics, metabalomics, and ecology can be ...

  18. Exploiting the genome

    SciTech Connect

    Block, S.; Cornwall, J.; Dyson, F.; Koonin, S.; Lewis, N.; Schwitters, R.

    1998-09-11

    In 1997, JASON conducted a DOE-sponsored study of the human genome project with special emphasis on the areas of technology, quality assurance and quality control, and informatics. The present study has two aims: first, to update the 1997 Report in light of recent developments in genome sequencing technology, and second, to consider possible roles for the DOE in the ''post-genomic" era, following acquisition of the complete human genome sequence.

  19. The Genomic Medicine Game.

    PubMed

    Tran, Elvis; de Andrés-Galiana, Enrique J; Benitez, Sonia; Martin-Sanchez, Fernando; Lopez-Campos, Guillermo H

    2016-01-01

    With advancements in genomics technology, health care has been improving and new paradigms of medicine such as genomic medicine have evolved. The education of clinicians, researchers and students to face the challenges posed by these new approaches, however, has been often lagging behind. From this the Genomic Medicine Game, an educational tool, was created for the purpose of conceptualizing the key components of Genomic Medicine. A number of phenotype-genotype associations were found through a literature review, which was used to be a base for the concepts the Genomic Medicine Game would focus on. Built in Java, the game was successfully tested with promising results. PMID:27577486

  20. Bacterial Genome Instability

    PubMed Central

    Darmon, Elise

    2014-01-01

    SUMMARY Bacterial genomes are remarkably stable from one generation to the next but are plastic on an evolutionary time scale, substantially shaped by horizontal gene transfer, genome rearrangement, and the activities of mobile DNA elements. This implies the existence of a delicate balance between the maintenance of genome stability and the tolerance of genome instability. In this review, we describe the specialized genetic elements and the endogenous processes that contribute to genome instability. We then discuss the consequences of genome instability at the physiological level, where cells have harnessed instability to mediate phase and antigenic variation, and at the evolutionary level, where horizontal gene transfer has played an important role. Indeed, this ability to share DNA sequences has played a major part in the evolution of life on Earth. The evolutionary plasticity of bacterial genomes, coupled with the vast numbers of bacteria on the planet, substantially limits our ability to control disease. PMID:24600039

  1. Enabling responsible public genomics.

    PubMed

    Conley, John M; Doerr, Adam K; Vorhaus, Daniel B

    2010-01-01

    As scientific understandings of genetics advance, researchers require increasingly rich datasets that combine genomic data from large numbers of individuals with medical and other personal information. Linking individuals' genetic data and personal information precludes anonymity and produces medically significant information--a result not contemplated by the established legal and ethical conventions governing human genomic research. To pursue the next generation of human genomic research and commerce in a responsible fashion, scientists, lawyers, and regulators must address substantial new issues, including researchers' duties with respect to clinically significant data, the challenges to privacy presented by genomic data, the boundary between genomic research and commerce, and the practice of medicine. This Article presents a new model for understanding and addressing these new challenges--a "public genomics" premised on the idea that ethically, legally, and socially responsible genomics research requires openness, not privacy, as its organizing principle. Responsible public genomics combines the data contributed by informed and fully consenting information altruists and the research potential of rich datasets in a genomic commons that is freely and globally available. This Article examines the risks and benefits of this public genomics model in the context of an ambitious genetic research project currently under way--the Personal Genome Project. This Article also (i) demonstrates that large-scale genomic projects are desirable, (ii) evaluates the risks and challenges presented by public genomics research, and (iii) determines that the current legal and regulatory regimes restrict beneficial and responsible scientific inquiry while failing to adequately protect participants. The Article concludes by proposing a modified normative and legal framework that embraces and enables a future of responsible public genomics.

  2. The gene space in wheat: the complete γ-gliadin gene family from the wheat cultivar Chinese Spring.

    PubMed

    Anderson, Olin D; Huo, Naxin; Gu, Yong Q

    2013-06-01

    The complete set of unique γ-gliadin genes is described for the wheat cultivar Chinese Spring using a combination of expressed sequence tag (EST) and Roche 454 DNA sequences. Assemblies of Chinese Spring ESTs yielded 11 different γ-gliadin gene sequences. Two of the sequences encode identical polypeptides and are assumed to be the result of a recent gene duplication. One gene has a 3' coding mutation that changes the reading frame in the final eight codons. A second assembly of Chinese Spring γ-gliadin sequences was generated using Roche 454 total genomic DNA sequences. The 454 assembly confirmed the same 11 active genes as the EST assembly plus two pseudogenes not represented by ESTs. These 13 γ-gliadin sequences represent the complete unique set of γ-gliadin genes for cv Chinese Spring, although not ruled out are additional genes that are exact duplications of these 13 genes. A comparison with the ESTs of two other hexaploid cultivars (Butte 86 and Recital) finds that the most active genes are present in all three cultivars, with exceptions likely due to too few ESTs for detection in Butte 86 and Recital. A comparison of the numbers of ESTs per gene indicates differential levels of expression within the γ-gliadin gene family. Genome assignments were made for 6 of the 13 Chinese Spring γ-gliadin genes, i.e., one assignment from a match to two γ-gliadin genes found within a tetraploid wheat A genome BAC and four genes that match four distinct γ-gliadin sequences assembled from Roche 454 sequences from Aegilops tauschii, the hexaploid wheat D-genome ancestor.

  3. Whole-exome/genome sequencing and genomics.

    PubMed

    Grody, Wayne W; Thompson, Barry H; Hudgins, Louanne

    2013-12-01

    As medical genetics has progressed from a descriptive entity to one focused on the functional relationship between genes and clinical disorders, emphasis has been placed on genomics. Genomics, a subelement of genetics, is the study of the genome, the sum total of all the genes of an organism. The human genome, which is contained in the 23 pairs of nuclear chromosomes and in the mitochondrial DNA of each cell, comprises >6 billion nucleotides of genetic code. There are some 23,000 protein-coding genes, a surprisingly small fraction of the total genetic material, with the remainder composed of noncoding DNA, regulatory sequences, and introns. The Human Genome Project, launched in 1990, produced a draft of the genome in 2001 and then a finished sequence in 2003, on the 50th anniversary of the initial publication of Watson and Crick's paper on the double-helical structure of DNA. Since then, this mass of genetic information has been translated at an ever-increasing pace into useable knowledge applicable to clinical medicine. The recent advent of massively parallel DNA sequencing (also known as shotgun, high-throughput, and next-generation sequencing) has brought whole-genome analysis into the clinic for the first time, and most of the current applications are directed at children with congenital conditions that are undiagnosable by using standard genetic tests for single-gene disorders. Thus, pediatricians must become familiar with this technology, what it can and cannot offer, and its technical and ethical challenges. Here, we address the concepts of human genomic analysis and its clinical applicability for primary care providers.

  4. HeteroGenome: database of genome periodicity

    PubMed Central

    Chaley, Maria; Kutyrkin, Vladimir; Tulbasheva, Gayane; Teplukhina, Elena; Nazipova, Nafisa

    2014-01-01

    We present the first release of the HeteroGenome database collecting latent periodicity regions in genomes. Tandem repeats and highly divergent tandem repeats along with the regions of a new type of periodicity, known as profile periodicity, have been collected for the genomes of Saccharomyces cerevisiae, Arabidopsis thaliana, Caenorhabditis elegans and Drosophila melanogaster. We obtained data with the aid of a spectral-statistical approach to search for reliable latent periodicity regions (with periods up to 2000 bp) in DNA sequences. The original two-level mode of data presentation (a broad view of the region of latent periodicity and a second level indicating conservative fragments of its structure) was further developed to enable us to obtain the estimate, without redundancy, that latent periodicity regions make up ∼10% of the analyzed genomes. Analysis of the quantitative and qualitative content of located periodicity regions on all chromosomes of the analyzed organisms revealed dominant characteristic types of periodicity in the genomes. The pattern of density distribution of latent periodicity regions on chromosome unambiguously characterizes each chromosome in genome. Database URL: http://www.jcbi.ru/lp_baze/ PMID:24857969

  5. The tiniest tiny genomes.

    PubMed

    Moran, Nancy A; Bennett, Gordon M

    2014-01-01

    Starting in 2006, surprisingly tiny genomes have been discovered from numerous bacterial symbionts of insect hosts. Despite their size, each retains some genes that enable provisioning of limiting nutrients or other capabilities required by hosts. Genome sequence analyses show that genome reduction is an ongoing process, resulting in a continuum of sizes, with the smallest genome currently known at 112 kilobases. Genome reduction is typical in host-restricted symbionts and pathogens, but the tiniest genomes are restricted to symbionts required by hosts and restricted to specialized host cells, resulting from long coevolution with hosts. Genes are lost in all functional categories, but core genes for central informational processes, including genes encoding ribosomal proteins, are mostly retained, whereas genes underlying production of cell envelope components are especially depleted. Thus, these entities retain cell-like properties but are heavily dependent on coadaptation of hosts, which continuously evolve to support the symbionts upon which they depend.

  6. State of cat genomics.

    PubMed

    O'Brien, Stephen J; Johnson, Warren; Driscoll, Carlos; Pontius, Joan; Pecon-Slattery, Jill; Menotti-Raymond, Marilyn

    2008-06-01

    Our knowledge of cat family biology was recently expanded to include a genomics perspective with the completion of a draft whole genome sequence of an Abyssinian cat. The utility of the new genome information has been demonstrated by applications ranging from disease gene discovery and comparative genomics to species conservation. Patterns of genomic organization among cats and inbred domestic cat breeds have illuminated our view of domestication, revealing linkage disequilibrium tracks consequent of breed formation, defining chromosome exchanges that punctuated major lineages of mammals and suggesting ancestral continental migration events that led to 37 modern species of Felidae. We review these recent advances here. As the genome resources develop, the cat is poised to make a major contribution to many areas in genetics and biology.

  7. Genome Aliquoting Revisited

    NASA Astrophysics Data System (ADS)

    Warren, Robert; Sankoff, David

    We prove that the genome aliquoting problem, the problem of finding a recent polyploid ancestor of a genome, with breakpoint distance can be solved in polynomial time. We propose an aliquoting algorithm that is a 2-approximation for the genome aliquoting problem with double cut and join distance, improving upon the previous best solution to this problem, Feijão and Meidanis' 4-approximation algorithm.

  8. Querying genomic databases

    SciTech Connect

    Baehr, A.; Hagstrom, R.; Joerg, D.; Overbeek, R.

    1991-09-01

    A natural-language interface has been developed that retrieves genomic information by using a simple subset of English. The interface spares the biologist from the task of learning database-specific query languages and computer programming. Currently, the interface deals with the E. coli genome. It can, however, be readily extended and shows promise as a means of easy access to other sequenced genomic databases as well.

  9. Genome packaging in viruses.

    PubMed

    Sun, Siyang; Rao, Venigalla B; Rossmann, Michael G

    2010-02-01

    Genome packaging is a fundamental process in a viral life cycle. Many viruses assemble preformed capsids into which the genomic material is subsequently packaged. These viruses use a packaging motor protein that is driven by the hydrolysis of ATP to condense the nucleic acids into a confined space. How these motor proteins package viral genomes had been poorly understood until recently, when a few X-ray crystal structures and cryo-electron microscopy (cryo-EM) structures became available. Here we discuss various aspects of genome packaging and compare the mechanisms proposed for packaging motors on the basis of structural information. PMID:20060706

  10. Filarial and Wolbachia genomics.

    PubMed

    Scott, A L; Ghedin, E; Nutman, T B; McReynolds, L A; Poole, C B; Slatko, B E; Foster, J M

    2012-01-01

    Filarial nematode parasites, the causative agents for a spectrum of acute and chronic diseases including lymphatic filariasis and river blindness, threaten the well-being and livelihood of hundreds of millions of people in the developing regions of the world. The 2007 publication on a draft assembly of the 95-Mb genome of the human filarial parasite Brugia malayi- representing the first helminth parasite genome to be sequenced - has been followed in rapid succession by projects that have resulted in the genome sequencing of six additional filarial species, seven nonfilarial nematode parasites of animals and nearly 30 plant parasitic and free-living species. Parallel to the genomic sequencing, transcriptomic and proteomic projects have facilitated genome annotation, expanded our understanding of stage-associated gene expression and provided a first look at the role of epigenetic regulation of filarial genomes through microRNAs. The expansion in filarial genomics will also provide a significant enrichment in our knowledge of the diversity and variability in the genomes of the endosymbiotic bacterium Wolbachia leading to a better understanding of the genetic principles that govern filarial-Wolbachia mutualism. The goal here is to provide an overview of the trends and advances in filarial and Wolbachia genomics. PMID:22098559

  11. Disentangling associated genomes.

    PubMed

    Sloan, Daniel B; Bennett, Gordon M; Engel, Philipp; Williams, David; Ochman, Howard

    2013-01-01

    The recovery and assembly of genome sequences from samples containing communities of organisms pose several challenges. Because it is rarely possible to disassociate the resident organisms prior to sequencing, a major obstacle is the assignment of sequences to a single genome that can be fully assembled. This chapter delineates many of the decisions, methodologies, and approaches that can lead to the generation of complete or nearly complete microbial genome sequences from heterogeneous samples-that is, the procedures that allow us to turn metagenomes into genomes.

  12. Between two fern genomes.

    PubMed

    Sessa, Emily B; Banks, Jo Ann; Barker, Michael S; Der, Joshua P; Duffy, Aaron M; Graham, Sean W; Hasebe, Mitsuyasu; Langdale, Jane; Li, Fay-Wei; Marchant, D Blaine; Pryer, Kathleen M; Rothfels, Carl J; Roux, Stanley J; Salmi, Mari L; Sigel, Erin M; Soltis, Douglas E; Soltis, Pamela S; Stevenson, Dennis W; Wolf, Paul G

    2014-01-01

    Ferns are the only major lineage of vascular plants not represented by a sequenced nuclear genome. This lack of genome sequence information significantly impedes our ability to understand and reconstruct genome evolution not only in ferns, but across all land plants. Azolla and Ceratopteris are ideal and complementary candidates to be the first ferns to have their nuclear genomes sequenced. They differ dramatically in genome size, life history, and habit, and thus represent the immense diversity of extant ferns. Together, this pair of genomes will facilitate myriad large-scale comparative analyses across ferns and all land plants. Here we review the unique biological characteristics of ferns and describe a number of outstanding questions in plant biology that will benefit from the addition of ferns to the set of taxa with sequenced nuclear genomes. We explain why the fern clade is pivotal for understanding genome evolution across land plants, and we provide a rationale for how knowledge of fern genomes will enable progress in research beyond the ferns themselves.

  13. Fungal Genomics Program

    SciTech Connect

    Grigoriev, Igor

    2012-03-12

    The JGI Fungal Genomics Program aims to scale up sequencing and analysis of fungal genomes to explore the diversity of fungi important for energy and the environment, and to promote functional studies on a system level. Combining new sequencing technologies and comparative genomics tools, JGI is now leading the world in fungal genome sequencing and analysis. Over 120 sequenced fungal genomes with analytical tools are available via MycoCosm (www.jgi.doe.gov/fungi), a web-portal for fungal biologists. Our model of interacting with user communities, unique among other sequencing centers, helps organize these communities, improves genome annotation and analysis work, and facilitates new larger-scale genomic projects. This resulted in 20 high-profile papers published in 2011 alone and contributing to the Genomics Encyclopedia of Fungi, which targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts). Our next grand challenges include larger scale exploration of fungal diversity (1000 fungal genomes), developing molecular tools for DOE-relevant model organisms, and analysis of complex systems and metagenomes.

  14. [Landscape and ecological genomics].

    PubMed

    2013-10-01

    Landscape genomics is the modern version of landscape genetics, a discipline that arose approximately 10 years ago as a combination of population genetics, landscape ecology, and spatial statistics. It studies the effects of environmental variables on gene flow and other microevolutionary processes that determine genetic connectivity and variations in populations. In contrast to population genetics, it operates at the level of individual specimens rather than at the level of population samples. Another important difference between landscape genetics and genomics and population genetics is that, in the former, the analysis of gene flow and local adaptations takes quantitative account of landforms and features of the matrix, i.e., hostile spaces that separate species habitats. Landscape genomics is a part of population ecogenomics, which, along with community genomics, is a major part of ecological genomics. One of the principal purposes of landscape genomics is the identification and differentiation of various genome-wide and locus-specific effects. The approaches and computation tools developed for combined analysis of genomic and landscape variables make it possible to detect adaptation-related genome fragments, which facilitates the planning of conservation efforts and the prediction of species' fate in response to expected changes in the environment. PMID:25508669

  15. [Landscape and ecological genomics].

    PubMed

    Tetushkin, E Ia

    2013-10-01

    Landscape genomics is the modern version of landscape genetics, a discipline that arose approximately 10 years ago as a combination of population genetics, landscape ecology, and spatial statistics. It studies the effects of environmental variables on gene flow and other microevolutionary processes that determine genetic connectivity and variations in populations. In contrast to population genetics, it operates at the level of individual specimens rather than at the level of population samples. Another important difference between landscape genetics and genomics and population genetics is that, in the former, the analysis of gene flow and local adaptations takes quantitative account of landforms and features of the matrix, i.e., hostile spaces that separate species habitats. Landscape genomics is a part of population ecogenomics, which, along with community genomics, is a major part of ecological genomics. One of the principal purposes of landscape genomics is the identification and differentiation of various genome-wide and locus-specific effects. The approaches and computation tools developed for combined analysis of genomic and landscape variables make it possible to detect adaptation-related genome fragments, which facilitates the planning of conservation efforts and the prediction of species' fate in response to expected changes in the environment. PMID:25474890

  16. Between Two Fern Genomes

    PubMed Central

    2014-01-01

    Ferns are the only major lineage of vascular plants not represented by a sequenced nuclear genome. This lack of genome sequence information significantly impedes our ability to understand and reconstruct genome evolution not only in ferns, but across all land plants. Azolla and Ceratopteris are ideal and complementary candidates to be the first ferns to have their nuclear genomes sequenced. They differ dramatically in genome size, life history, and habit, and thus represent the immense diversity of extant ferns. Together, this pair of genomes will facilitate myriad large-scale comparative analyses across ferns and all land plants. Here we review the unique biological characteristics of ferns and describe a number of outstanding questions in plant biology that will benefit from the addition of ferns to the set of taxa with sequenced nuclear genomes. We explain why the fern clade is pivotal for understanding genome evolution across land plants, and we provide a rationale for how knowledge of fern genomes will enable progress in research beyond the ferns themselves. PMID:25324969

  17. COMPARATIVE TRANSCRIPTOME ANALYSIS OF SALT-TOLERANT WHEAT GERMPLASM LINES USING GENOME ARRAYS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salt-tolerant wheat lines W4909 and W4910 were derived from a cross between AJDAj5 (a disomic addition line carrying a pair of Eb chromosomes from Thinopyrum junceum) and Ph1 (a line having the Ph1 allele from Aegilops speltoides, which promotes homoeologous recombination). Both lines have greater ...

  18. Home - The Cancer Genome Atlas - Cancer Genome - TCGA

    Cancer.gov

    The Cancer Genome Atlas (TCGA) is a comprehensive and coordinated effort to accelerate our understanding of the molecular basis of cancer through the application of genome analysis technologies, including large-scale genome sequencing.

  19. Breeding Value of Primary Synthetic Wheat Genotypes for Grain Yield

    PubMed Central

    Jafarzadeh, Jafar; Bonnett, David; Jannink, Jean-Luc; Akdemir, Deniz; Dreisigacker, Susanne; Sorrells, Mark E.

    2016-01-01

    To introduce new genetic diversity into the bread wheat gene pool from its progenitor, Aegilops tauschii (Coss.) Schmalh, 33 primary synthetic hexaploid wheat genotypes (SYN) were crossed to 20 spring bread wheat (BW) cultivars at the International Wheat and Maize Improvement Center. Modified single seed descent was used to develop 97 populations with 50 individuals per population using first back-cross, biparental, and three-way crosses. Individuals from each cross were selected for short stature, early heading, flowering and maturity, minimal lodging, and free threshing. Yield trials were conducted under irrigated, drought, and heat-stress conditions from 2011 to 2014 in Ciudad Obregon, Mexico. Genomic estimated breeding values (GEBVs) of parents and synthetic derived lines (SDLs) were estimated using a genomic best linear unbiased prediction (GBLUP) model with markers in each trial. In each environment, there were SDLs that had higher GEBVs than their recurrent BW parent for yield. The GEBVs of BW parents for yield ranged from -0.32 in heat to 1.40 in irrigated trials. The range of the SYN parent GEBVs for yield was from -2.69 in the irrigated to 0.26 in the heat trials and were mostly negative across environments. The contribution of the SYN parents to improved grain yield of the SDLs was highest under heat stress, with an average GEBV for the top 10% of the SDLs of 0.55 while the weighted average GEBV of their corresponding recurrent BW parents was 0.26. Using the pedigree-based model, the accuracy of genomic prediction for yield was 0.42, 0.43, and 0.49 in the drought, heat and irrigated trials, respectively, while for the marker-based model these values were 0.43, 0.44, and 0.55. The SYN parents introduced novel diversity into the wheat gene pool. Higher GEBVs of progenies were due to introgression and retention of some positive alleles from SYN parents. PMID:27656893

  20. Genetics and Genomics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Good progress is being made on genetics and genomics of sugar beet, however it is in process and the tools are now being generated and some results are being analyzed. The GABI BeetSeq project released a first draft of the sugar beet genome of KWS2320, a dihaploid (see http://bvseq.molgen.mpg.de/Gen...

  1. The UCSC Genome Browser

    PubMed Central

    Karolchik, Donna; Hinrichs, Angie S.; Kent, W. James

    2009-01-01

    The University of California Santa Cruz (UCSC) Genome Browser (genome.ucsc.edu) is a popular Web-based tool for quickly displaying a requested portion of a genome at any scale, accompanied by a series of aligned annotation “tracks”. The annotations—generated by the UCSC Genome Bioinformatics Group and external collaborators—display gene predictions, mRNA and expressed sequence tag alignments, simple nucleotide polymorphisms, expression and regulatory data, phenotype and variation data, and pairwise and multiple-species comparative genomics data. All information relevant to a region is presented in one window, facilitating biological analysis and interpretation. The database tables underlying the Genome Browser tracks can be viewed, downloaded, and manipulated using another Web-based application, the UCSC Table Browser. Users can upload data as custom annotation tracks in both browsers for research or educational use. This unit describes how to use the Genome Browser and Table Browser for genome analysis, download the underlying database tables, and create and display custom annotation tracks. PMID:19957273

  2. National Human Genome Research Institute

    MedlinePlus

    ... Director Organization Reports & Publications Español The National Human Genome Research Institute conducts genetic and genomic research, funds ... study, led by researchers at the National Human Genome Research Institute and the Eunice Kennedy Shriver National ...

  3. Genomic Instability and Cancer

    PubMed Central

    Yao, Yixin; Dai, Wei

    2014-01-01

    Genomic instability is a characteristic of most cancer cells. It is an increased tendency of genome alteration during cell division. Cancer frequently results from damage to multiple genes controlling cell division and tumor suppressors. It is known that genomic integrity is closely monitored by several surveillance mechanisms, DNA damage checkpoint, DNA repair machinery and mitotic checkpoint. A defect in the regulation of any of these mechanisms often results in genomic instability, which predisposes the cell to malignant transformation. Posttranslational modifications of the histone tails are closely associated with regulation of the cell cycle as well as chromatin structure. Nevertheless, DNA methylation status is also related to genomic integrity. We attempt to summarize recent developments in this field and discuss the debate of driving force of tumor initiation and progression. PMID:25541596

  4. Microbial Genomes Multiply

    NASA Technical Reports Server (NTRS)

    Doolittle, Russell F.

    2002-01-01

    The publication of the first complete sequence of a bacterial genome in 1995 was a signal event, underscored by the fact that the article has been cited more than 2,100 times during the intervening seven years. It was a marvelous technical achievement, made possible by automatic DNA-sequencing machines. The feat is the more impressive in that complete genome sequencing has now been adopted in many different laboratories around the world. Four years ago in these columns I examined the situation after a dozen microbial genomes had been completed. Now, with upwards of 60 microbial genome sequences determined and twice that many in progress, it seems reasonable to assess just what is being learned. Are new concepts emerging about how cells work? Have there been practical benefits in the fields of medicine and agriculture? Is it feasible to determine the genomic sequence of every bacterial species on Earth? The answers to these questions maybe Yes, Perhaps, and No, respectively.

  5. The UCSC Genome Browser

    PubMed Central

    Karolchik, Donna; Hinrichs, Angie S.; Kent, W. James

    2011-01-01

    The University of California Santa Cruz (UCSC) Genome Browser is a popular Web-based tool for quickly displaying a requested portion of a genome at any scale, accompanied by a series of aligned annotation “tracks.” The annotations generated by the UCSC Genome Bioinformatics Group and external collaborators include gene predictions, mRNA and expressed sequence tag alignments, simple nucleotide polymorphisms, expression and regulatory data, phenotype and variation data, and pairwise and multiple-species comparative genomics data. All information relevant to a region is presented in one window, facilitating biological analysis and interpretation. The database tables underlying the Genome Browser tracks can be viewed, downloaded, and manipulated using another Web-based application, the UCSC Table Browser. Users can upload personal datasets in a wide variety of formats as custom annotation tracks in both browsers for research or educational purposes. PMID:21975940

  6. Phytozome Comparative Plant Genomics Portal

    SciTech Connect

    Goodstein, David; Batra, Sajeev; Carlson, Joseph; Hayes, Richard; Phillips, Jeremy; Shu, Shengqiang; Schmutz, Jeremy; Rokhsar, Daniel

    2014-09-09

    The Dept. of Energy Joint Genome Institute is a genomics user facility supporting DOE mission science in the areas of Bioenergy, Carbon Cycling, and Biogeochemistry. The Plant Program at the JGI applies genomic, analytical, computational and informatics platforms and methods to: 1. Understand and accelerate the improvement (domestication) of bioenergy crops 2. Characterize and moderate plant response to climate change 3. Use comparative genomics to identify constrained elements and infer gene function 4. Build high quality genomic resource platforms of JGI Plant Flagship genomes for functional and experimental work 5. Expand functional genomic resources for Plant Flagship genomes

  7. Evolution of genome architecture.

    PubMed

    Koonin, Eugene V

    2009-02-01

    Charles Darwin believed that all traits of organisms have been honed to near perfection by natural selection. The empirical basis underlying Darwin's conclusions consisted of numerous observations made by him and other naturalists on the exquisite adaptations of animals and plants to their natural habitats and on the impressive results of artificial selection. Darwin fully appreciated the importance of heredity but was unaware of the nature and, in fact, the very existence of genomes. A century and a half after the publication of the "Origin", we have the opportunity to draw conclusions from the comparisons of hundreds of genome sequences from all walks of life. These comparisons suggest that the dominant mode of genome evolution is quite different from that of the phenotypic evolution. The genomes of vertebrates, those purported paragons of biological perfection, turned out to be veritable junkyards of selfish genetic elements where only a small fraction of the genetic material is dedicated to encoding biologically relevant information. In sharp contrast, genomes of microbes and viruses are incomparably more compact, with most of the genetic material assigned to distinct biological functions. However, even in these genomes, the specific genome organization (gene order) is poorly conserved. The results of comparative genomics lead to the conclusion that the genome architecture is not a straightforward result of continuous adaptation but rather is determined by the balance between the selection pressure, that is itself dependent on the effective population size and mutation rate, the level of recombination, and the activity of selfish elements. Although genes and, in many cases, multigene regions of genomes possess elaborate architectures that ensure regulation of expression, these arrangements are evolutionarily volatile and typically change substantially even on short evolutionary scales when gene sequences diverge minimally. Thus, the observed genome

  8. The UCSC Genome Browser.

    PubMed

    Karolchik, Donna; Hinrichs, Angie S; Kent, W James

    2012-12-01

    The University of California Santa Cruz (UCSC) Genome Browser is a popular Web-based tool for quickly displaying a requested portion of a genome at any scale, accompanied by a series of aligned annotation "tracks." The annotations generated by the UCSC Genome Bioinformatics Group and external collaborators include gene predictions, mRNA and expressed sequence tag alignments, simple nucleotide polymorphisms, expression and regulatory data, phenotype and variation data, and pairwise and multiple-species comparative genomics data. All information relevant to a region is presented in one window, facilitating biological analysis and interpretation. The database tables underlying the Genome Browser tracks can be viewed, downloaded, and manipulated using another Web-based application, the UCSC Table Browser. Users can upload personal datasets in a wide variety of formats as custom annotation tracks in both browsers for research or educational purposes. This unit describes how to use the Genome Browser and Table Browser for genome analysis, download the underlying database tables, and create and display custom annotation tracks.

  9. NCBI viral genomes resource.

    PubMed

    Brister, J Rodney; Ako-Adjei, Danso; Bao, Yiming; Blinkova, Olga

    2015-01-01

    Recent technological innovations have ignited an explosion in virus genome sequencing that promises to fundamentally alter our understanding of viral biology and profoundly impact public health policy. Yet, any potential benefits from the billowing cloud of next generation sequence data hinge upon well implemented reference resources that facilitate the identification of sequences, aid in the assembly of sequence reads and provide reference annotation sources. The NCBI Viral Genomes Resource is a reference resource designed to bring order to this sequence shockwave and improve usability of viral sequence data. The resource can be accessed at http://www.ncbi.nlm.nih.gov/genome/viruses/ and catalogs all publicly available virus genome sequences and curates reference genome sequences. As the number of genome sequences has grown, so too have the difficulties in annotating and maintaining reference sequences. The rapid expansion of the viral sequence universe has forced a recalibration of the data model to better provide extant sequence representation and enhanced reference sequence products to serve the needs of the various viral communities. This, in turn, has placed increased emphasis on leveraging the knowledge of individual scientific communities to identify important viral sequences and develop well annotated reference virus genome sets.

  10. The Banana Genome Hub

    PubMed Central

    Droc, Gaëtan; Larivière, Delphine; Guignon, Valentin; Yahiaoui, Nabila; This, Dominique; Garsmeur, Olivier; Dereeper, Alexis; Hamelin, Chantal; Argout, Xavier; Dufayard, Jean-François; Lengelle, Juliette; Baurens, Franc-Christophe; Cenci, Alberto; Pitollat, Bertrand; D’Hont, Angélique; Ruiz, Manuel; Rouard, Mathieu; Bocs, Stéphanie

    2013-01-01

    Banana is one of the world’s favorite fruits and one of the most important crops for developing countries. The banana reference genome sequence (Musa acuminata) was recently released. Given the taxonomic position of Musa, the completed genomic sequence has particular comparative value to provide fresh insights about the evolution of the monocotyledons. The study of the banana genome has been enhanced by a number of tools and resources that allows harnessing its sequence. First, we set up essential tools such as a Community Annotation System, phylogenomics resources and metabolic pathways. Then, to support post-genomic efforts, we improved banana existing systems (e.g. web front end, query builder), we integrated available Musa data into generic systems (e.g. markers and genetic maps, synteny blocks), we have made interoperable with the banana hub, other existing systems containing Musa data (e.g. transcriptomics, rice reference genome, workflow manager) and finally, we generated new results from sequence analyses (e.g. SNP and polymorphism analysis). Several uses cases illustrate how the Banana Genome Hub can be used to study gene families. Overall, with this collaborative effort, we discuss the importance of the interoperability toward data integration between existing information systems. Database URL: http://banana-genome.cirad.fr/ PMID:23707967

  11. The banana genome hub.

    PubMed

    Droc, Gaëtan; Larivière, Delphine; Guignon, Valentin; Yahiaoui, Nabila; This, Dominique; Garsmeur, Olivier; Dereeper, Alexis; Hamelin, Chantal; Argout, Xavier; Dufayard, Jean-François; Lengelle, Juliette; Baurens, Franc-Christophe; Cenci, Alberto; Pitollat, Bertrand; D'Hont, Angélique; Ruiz, Manuel; Rouard, Mathieu; Bocs, Stéphanie

    2013-01-01

    Banana is one of the world's favorite fruits and one of the most important crops for developing countries. The banana reference genome sequence (Musa acuminata) was recently released. Given the taxonomic position of Musa, the completed genomic sequence has particular comparative value to provide fresh insights about the evolution of the monocotyledons. The study of the banana genome has been enhanced by a number of tools and resources that allows harnessing its sequence. First, we set up essential tools such as a Community Annotation System, phylogenomics resources and metabolic pathways. Then, to support post-genomic efforts, we improved banana existing systems (e.g. web front end, query builder), we integrated available Musa data into generic systems (e.g. markers and genetic maps, synteny blocks), we have made interoperable with the banana hub, other existing systems containing Musa data (e.g. transcriptomics, rice reference genome, workflow manager) and finally, we generated new results from sequence analyses (e.g. SNP and polymorphism analysis). Several uses cases illustrate how the Banana Genome Hub can be used to study gene families. Overall, with this collaborative effort, we discuss the importance of the interoperability toward data integration between existing information systems. Database URL: http://banana-genome.cirad.fr/

  12. Ensembl comparative genomics resources

    PubMed Central

    Muffato, Matthieu; Beal, Kathryn; Fitzgerald, Stephen; Gordon, Leo; Pignatelli, Miguel; Vilella, Albert J.; Searle, Stephen M. J.; Amode, Ridwan; Brent, Simon; Spooner, William; Kulesha, Eugene; Yates, Andrew; Flicek, Paul

    2016-01-01

    Evolution provides the unifying framework with which to understand biology. The coherent investigation of genic and genomic data often requires comparative genomics analyses based on whole-genome alignments, sets of homologous genes and other relevant datasets in order to evaluate and answer evolutionary-related questions. However, the complexity and computational requirements of producing such data are substantial: this has led to only a small number of reference resources that are used for most comparative analyses. The Ensembl comparative genomics resources are one such reference set that facilitates comprehensive and reproducible analysis of chordate genome data. Ensembl computes pairwise and multiple whole-genome alignments from which large-scale synteny, per-base conservation scores and constrained elements are obtained. Gene alignments are used to define Ensembl Protein Families, GeneTrees and homologies for both protein-coding and non-coding RNA genes. These resources are updated frequently and have a consistent informatics infrastructure and data presentation across all supported species. Specialized web-based visualizations are also available including synteny displays, collapsible gene tree plots, a gene family locator and different alignment views. The Ensembl comparative genomics infrastructure is extensively reused for the analysis of non-vertebrate species by other projects including Ensembl Genomes and Gramene and much of the information here is relevant to these projects. The consistency of the annotation across species and the focus on vertebrates makes Ensembl an ideal system to perform and support vertebrate comparative genomic analyses. We use robust software and pipelines to produce reference comparative data and make it freely available. Database URL: http://www.ensembl.org. PMID:26896847

  13. Ensembl comparative genomics resources.

    PubMed

    Herrero, Javier; Muffato, Matthieu; Beal, Kathryn; Fitzgerald, Stephen; Gordon, Leo; Pignatelli, Miguel; Vilella, Albert J; Searle, Stephen M J; Amode, Ridwan; Brent, Simon; Spooner, William; Kulesha, Eugene; Yates, Andrew; Flicek, Paul

    2016-01-01

    Evolution provides the unifying framework with which to understand biology. The coherent investigation of genic and genomic data often requires comparative genomics analyses based on whole-genome alignments, sets of homologous genes and other relevant datasets in order to evaluate and answer evolutionary-related questions. However, the complexity and computational requirements of producing such data are substantial: this has led to only a small number of reference resources that are used for most comparative analyses. The Ensembl comparative genomics resources are one such reference set that facilitates comprehensive and reproducible analysis of chordate genome data. Ensembl computes pairwise and multiple whole-genome alignments from which large-scale synteny, per-base conservation scores and constrained elements are obtained. Gene alignments are used to define Ensembl Protein Families, GeneTrees and homologies for both protein-coding and non-coding RNA genes. These resources are updated frequently and have a consistent informatics infrastructure and data presentation across all supported species. Specialized web-based visualizations are also available including synteny displays, collapsible gene tree plots, a gene family locator and different alignment views. The Ensembl comparative genomics infrastructure is extensively reused for the analysis of non-vertebrate species by other projects including Ensembl Genomes and Gramene and much of the information here is relevant to these projects. The consistency of the annotation across species and the focus on vertebrates makes Ensembl an ideal system to perform and support vertebrate comparative genomic analyses. We use robust software and pipelines to produce reference comparative data and make it freely available. Database URL: http://www.ensembl.org.

  14. Center for Cancer Genomics | Office of Cancer Genomics

    Cancer.gov

    The Center for Cancer Genomics (CCG) was established to unify the National Cancer Institute's activities in cancer genomics, with the goal of advancing genomics research and translating findings into the clinic to improve the precise diagnosis and treatment of cancers. In addition to promoting genomic sequencing approach

  15. Genomics and plant breeding.

    PubMed

    Aljanabi, S

    2001-01-01

    Much of our most basic understanding of genetics has its roots in plant genetics and crop breeding. The study of plants has led to important insights into highly conserved biological process and a wealth of knowledge about development. Agriculture is now well positioned to take its share benefit from genomics. The primary sequences of most plant genes will be determined over the next few years. Informatics and functional genomics will help identify those genes that can be best utilized to crop production and quality through genetic engineering and plant breeding. Recent developments in plant genomics are reviewed.

  16. What Is a Genome?

    PubMed

    Goldman, Aaron David; Landweber, Laura F

    2016-07-01

    The genome is often described as the information repository of an organism. Whether millions or billions of letters of DNA, its transmission across generations confers the principal medium for inheritance of organismal traits. Several emerging areas of research demonstrate that this definition is an oversimplification. Here, we explore ways in which a deeper understanding of genomic diversity and cell physiology is challenging the concepts of physical permanence attached to the genome as well as its role as the sole information source for an organism. PMID:27442251

  17. Sampling in landscape genomics.

    PubMed

    Manel, Stéphanie; Albert, Cécile H; Yoccoz, Nigel G

    2012-01-01

    Landscape genomics, based on the sampling of individuals genotyped for a large number of markers, may lead to the identification of regions of the genome correlated to selection pressures caused by the environment. In this chapter, we discuss sampling strategies to be used in a landscape genomics approach. We suggest that designs based on model-based stratification using the climatic and/or biological spaces are in general more efficient than designs based on the geographic space. More work is needed to identify designs that allow disentangling environmental selection pressures versus other processes such as range expansions or hierarchical population structure.

  18. Human Genome Program

    SciTech Connect

    Not Available

    1993-01-01

    The DOE Human Genome program has grown tremendously, as shown by the marked increase in the number of genome-funded projects since the last workshop held in 1991. The abstracts in this book describe the genome research of DOE-funded grantees and contractors and invited guests, and all projects are represented at the workshop by posters. The 3-day meeting includes plenary sessions on ethical, legal, and social issues pertaining to the availability of genetic data; sequencing techniques, informatics support; and chromosome and cDNA mapping and sequencing.

  19. Human Genome Project

    SciTech Connect

    Block, S.; Cornwall, J.; Dally, W.; Dyson, F.; Fortson, N.; Joyce, G.; Kimble, H. J.; Lewis, N.; Max, C.; Prince, T.; Schwitters, R.; Weinberger, P.; Woodin, W. H.

    1998-01-04

    The study reviews Department of Energy supported aspects of the United States Human Genome Project, the joint National Institutes of Health/Department of Energy program to characterize all human genetic material, to discover the set of human genes, and to render them accessible for further biological study. The study concentrates on issues of technology, quality assurance/control, and informatics relevant to current effort on the genome project and needs beyond it. Recommendations are presented on areas of the genome program that are of particular interest to and supported by the Department of Energy.

  20. What Is a Genome?

    PubMed Central

    Goldman, Aaron David; Landweber, Laura F.

    2016-01-01

    The genome is often described as the information repository of an organism. Whether millions or billions of letters of DNA, its transmission across generations confers the principal medium for inheritance of organismal traits. Several emerging areas of research demonstrate that this definition is an oversimplification. Here, we explore ways in which a deeper understanding of genomic diversity and cell physiology is challenging the concepts of physical permanence attached to the genome as well as its role as the sole information source for an organism. PMID:27442251

  1. Comparative primate genomics: emerging patterns of genome content and dynamics.

    PubMed

    Rogers, Jeffrey; Gibbs, Richard A

    2014-05-01

    Advances in genome sequencing technologies have created new opportunities for comparative primate genomics. Genome assemblies have been published for various primate species, and analyses of several others are underway. Whole-genome assemblies for the great apes provide remarkable new information about the evolutionary origins of the human genome and the processes involved. Genomic data for macaques and other non-human primates offer valuable insights into genetic similarities and differences among species that are used as models for disease-related research. This Review summarizes current knowledge regarding primate genome content and dynamics, and proposes a series of goals for the near future.

  2. Comparative primate genomics: emerging patterns of genome content and dynamics.

    PubMed

    Rogers, Jeffrey; Gibbs, Richard A

    2014-05-01

    Advances in genome sequencing technologies have created new opportunities for comparative primate genomics. Genome assemblies have been published for various primate species, and analyses of several others are underway. Whole-genome assemblies for the great apes provide remarkable new information about the evolutionary origins of the human genome and the processes involved. Genomic data for macaques and other non-human primates offer valuable insights into genetic similarities and differences among species that are used as models for disease-related research. This Review summarizes current knowledge regarding primate genome content and dynamics, and proposes a series of goals for the near future. PMID:24709753

  3. Comparative primate genomics: emerging patterns of genome content and dynamics

    PubMed Central

    Rogers, Jeffrey; Gibbs, Richard A.

    2014-01-01

    Preface Advances in genome sequencing technologies have created new opportunities for comparative primate genomics. Genome assemblies have been published for several primates, with analyses of several others underway. Whole genome assemblies for the great apes provide remarkable new information about the evolutionary origins of the human genome and the processes involved. Genomic data for macaques and other nonhuman primates provide valuable insight into genetic similarities and differences among species used as models for disease-related research. This review summarizes current knowledge regarding primate genome content and dynamics and offers a series of goals for the near future. PMID:24709753

  4. Hymenoptera Genome Database: integrating genome annotations in HymenopteraMine

    PubMed Central

    Elsik, Christine G.; Tayal, Aditi; Diesh, Colin M.; Unni, Deepak R.; Emery, Marianne L.; Nguyen, Hung N.; Hagen, Darren E.

    2016-01-01

    We report an update of the Hymenoptera Genome Database (HGD) (http://HymenopteraGenome.org), a model organism database for insect species of the order Hymenoptera (ants, bees and wasps). HGD maintains genomic data for 9 bee species, 10 ant species and 1 wasp, including the versions of genome and annotation data sets published by the genome sequencing consortiums and those provided by NCBI. A new data-mining warehouse, HymenopteraMine, based on the InterMine data warehousing system, integrates the genome data with data from external sources and facilitates cross-species analyses based on orthology. New genome browsers and annotation tools based on JBrowse/WebApollo provide easy genome navigation, and viewing of high throughput sequence data sets and can be used for collaborative genome annotation. All of the genomes and annotation data sets are combined into a single BLAST server that allows users to select and combine sequence data sets to search. PMID:26578564

  5. Hymenoptera Genome Database: integrating genome annotations in HymenopteraMine.

    PubMed

    Elsik, Christine G; Tayal, Aditi; Diesh, Colin M; Unni, Deepak R; Emery, Marianne L; Nguyen, Hung N; Hagen, Darren E

    2016-01-01

    We report an update of the Hymenoptera Genome Database (HGD) (http://HymenopteraGenome.org), a model organism database for insect species of the order Hymenoptera (ants, bees and wasps). HGD maintains genomic data for 9 bee species, 10 ant species and 1 wasp, including the versions of genome and annotation data sets published by the genome sequencing consortiums and those provided by NCBI. A new data-mining warehouse, HymenopteraMine, based on the InterMine data warehousing system, integrates the genome data with data from external sources and facilitates cross-species analyses based on orthology. New genome browsers and annotation tools based on JBrowse/WebApollo provide easy genome navigation, and viewing of high throughput sequence data sets and can be used for collaborative genome annotation. All of the genomes and annotation data sets are combined into a single BLAST server that allows users to select and combine sequence data sets to search. PMID:26578564

  6. Hymenoptera Genome Database: integrating genome annotations in HymenopteraMine.

    PubMed

    Elsik, Christine G; Tayal, Aditi; Diesh, Colin M; Unni, Deepak R; Emery, Marianne L; Nguyen, Hung N; Hagen, Darren E

    2016-01-01

    We report an update of the Hymenoptera Genome Database (HGD) (http://HymenopteraGenome.org), a model organism database for insect species of the order Hymenoptera (ants, bees and wasps). HGD maintains genomic data for 9 bee species, 10 ant species and 1 wasp, including the versions of genome and annotation data sets published by the genome sequencing consortiums and those provided by NCBI. A new data-mining warehouse, HymenopteraMine, based on the InterMine data warehousing system, integrates the genome data with data from external sources and facilitates cross-species analyses based on orthology. New genome browsers and annotation tools based on JBrowse/WebApollo provide easy genome navigation, and viewing of high throughput sequence data sets and can be used for collaborative genome annotation. All of the genomes and annotation data sets are combined into a single BLAST server that allows users to select and combine sequence data sets to search.

  7. The rise of genomics.

    PubMed

    Weissenbach, Jean

    2016-01-01

    A brief history of the development of genomics is provided. Complete sequencing of genomes of uni- and multicellular organisms is based on important progress in sequencing and bioinformatics. Evolution of these methods is ongoing and has triggered an explosion in data production and analysis. Initial analyses focused on the inventory of genes encoding proteins. Completeness and quality of gene prediction remains crucial. Genome analyses profoundly modified our views on evolution, biodiversity and contributed to the detection of new functions, yet to be fully elucidated, such as those fulfilled by non-coding RNAs. Genomics has become the basis for the study of biology and provides the molecular support for a bunch of large-scale studies, the omics.

  8. Vita Genomics, Inc.

    PubMed

    Shih-Hsin Wu, Lawrence; Su, Chun-Lin; Chen, Ellson

    2007-06-01

    Vita Genomics, Inc., centered in Taiwan and China, aims to be a premier genomics-based biotechnological and biopharmaceutical company in the Asia-Pacific region. The company focuses on conducting pharmacogenomics research, in vitro diagnosis product development and specialty contract research services in both genomics and pharmacogenomics fields. We are now initiating a drug rescue program designed to resurrect drugs that have failed in the previous clinical trials owing to low efficacies. This program applies pharmacogenomics approaches using biomarkers to screen subsets of patients who may respond better or avoid adverse responses to the test drugs. Vita Genomics, Inc. has envisioned itself as an important player in the healthcare industry offering advanced molecular diagnostic products and services, revolutionizing thedrug-development process and providing pharmacogenomic solutions.

  9. Platyzoan mitochondrial genomes.

    PubMed

    Wey-Fabrizius, Alexandra R; Podsiadlowski, Lars; Herlyn, Holger; Hankeln, Thomas

    2013-11-01

    Platyzoa is a putative lophotrochozoan (spiralian) subtaxon within the protostome clade of Metazoa, comprising a range of biologically diverse, mostly small worm-shaped animals. The monophyly of Platyzoa, the relationships between the putative subgroups Platyhelminthes, Gastrotricha and Gnathifera (the latter comprising at least Gnathostomulida, "Rotifera" and Acanthocephala) as well as some aspects of the internal phylogenies of these subgroups are highly debated. Here we review how complete mitochondrial (mt) genome data contribute to these debates. We highlight special features of the mt genomes and discuss problems in mtDNA phylogenies of the clade. Mitochondrial genome data seem to be insufficient to resolve the position of the platyzoan clade within the Spiralia but can help to address internal phylogenetic questions. The present review includes a tabular survey of all published platyzoan mt genomes. PMID:23274056

  10. Surveying genome replication

    PubMed Central

    Kearsey, Stephen

    2002-01-01

    Two recent studies have added microarrays to the toolkit used to analyze the origins of replication in yeast chromosomes, providing a fuller picture of how genomic DNA replication is organized. PMID:12093380

  11. Epidemiology & Genomics Research Program

    Cancer.gov

    The Epidemiology and Genomics Research Program, in the National Cancer Institute's Division of Cancer Control and Population Sciences, funds research in human populations to understand the determinants of cancer occurrence and outcomes.

  12. Mouse genome database 2016.

    PubMed

    Bult, Carol J; Eppig, Janan T; Blake, Judith A; Kadin, James A; Richardson, Joel E

    2016-01-01

    The Mouse Genome Database (MGD; http://www.informatics.jax.org) is the primary community model organism database for the laboratory mouse and serves as the source for key biological reference data related to mouse genes, gene functions, phenotypes and disease models with a strong emphasis on the relationship of these data to human biology and disease. As the cost of genome-scale sequencing continues to decrease and new technologies for genome editing become widely adopted, the laboratory mouse is more important than ever as a model system for understanding the biological significance of human genetic variation and for advancing the basic research needed to support the emergence of genome-guided precision medicine. Recent enhancements to MGD include new graphical summaries of biological annotations for mouse genes, support for mobile access to the database, tools to support the annotation and analysis of sets of genes, and expanded support for comparative biology through the expansion of homology data.

  13. Mouse genome database 2016

    PubMed Central

    Bult, Carol J.; Eppig, Janan T.; Blake, Judith A.; Kadin, James A.; Richardson, Joel E.

    2016-01-01

    The Mouse Genome Database (MGD; http://www.informatics.jax.org) is the primary community model organism database for the laboratory mouse and serves as the source for key biological reference data related to mouse genes, gene functions, phenotypes and disease models with a strong emphasis on the relationship of these data to human biology and disease. As the cost of genome-scale sequencing continues to decrease and new technologies for genome editing become widely adopted, the laboratory mouse is more important than ever as a model system for understanding the biological significance of human genetic variation and for advancing the basic research needed to support the emergence of genome-guided precision medicine. Recent enhancements to MGD include new graphical summaries of biological annotations for mouse genes, support for mobile access to the database, tools to support the annotation and analysis of sets of genes, and expanded support for comparative biology through the expansion of homology data. PMID:26578600

  14. Mouse genome database 2016.

    PubMed

    Bult, Carol J; Eppig, Janan T; Blake, Judith A; Kadin, James A; Richardson, Joel E

    2016-01-01

    The Mouse Genome Database (MGD; http://www.informatics.jax.org) is the primary community model organism database for the laboratory mouse and serves as the source for key biological reference data related to mouse genes, gene functions, phenotypes and disease models with a strong emphasis on the relationship of these data to human biology and disease. As the cost of genome-scale sequencing continues to decrease and new technologies for genome editing become widely adopted, the laboratory mouse is more important than ever as a model system for understanding the biological significance of human genetic variation and for advancing the basic research needed to support the emergence of genome-guided precision medicine. Recent enhancements to MGD include new graphical summaries of biological annotations for mouse genes, support for mobile access to the database, tools to support the annotation and analysis of sets of genes, and expanded support for comparative biology through the expansion of homology data. PMID:26578600

  15. Lophotrochozoan mitochondrial genomes

    SciTech Connect

    Valles, Yvonne; Boore, Jeffrey L.

    2005-10-01

    Progress in both molecular techniques and phylogeneticmethods has challenged many of the interpretations of traditionaltaxonomy. One example is in the recognition of the animal superphylumLophotrochozoa (annelids, mollusks, echiurans, platyhelminthes,brachiopods, and other phyla), although the relationships within thisgroup and the inclusion of some phyla remain uncertain. While much ofthis progress in phylogenetic reconstruction has been based on comparingsingle gene sequences, we are beginning to see the potential of comparinglarge-scale features of genomes, such as the relative order of genes.Even though tremendous progress is being made on the sequencedetermination of whole nuclear genomes, the dataset of choice forgenome-level characters for many animals across a broad taxonomic rangeremains mitochondrial genomes. We review here what is known aboutmitochondrial genomes of the lophotrochozoans and discuss the promisethat this dataset will enable insight into theirrelationships.

  16. The genomics of adaptation.

    PubMed

    Radwan, Jacek; Babik, Wiesław

    2012-12-22

    The amount and nature of genetic variation available to natural selection affect the rate, course and outcome of evolution. Consequently, the study of the genetic basis of adaptive evolutionary change has occupied biologists for decades, but progress has been hampered by the lack of resolution and the absence of a genome-level perspective. Technological advances in recent years should now allow us to answer many long-standing questions about the nature of adaptation. The data gathered so far are beginning to challenge some widespread views of the way in which natural selection operates at the genomic level. Papers in this Special Feature of Proceedings of the Royal Society B illustrate various aspects of the broad field of adaptation genomics. This introductory article sets up a context and, on the basis of a few selected examples, discusses how genomic data can advance our understanding of the process of adaptation.

  17. Platyzoan mitochondrial genomes.

    PubMed

    Wey-Fabrizius, Alexandra R; Podsiadlowski, Lars; Herlyn, Holger; Hankeln, Thomas

    2013-11-01

    Platyzoa is a putative lophotrochozoan (spiralian) subtaxon within the protostome clade of Metazoa, comprising a range of biologically diverse, mostly small worm-shaped animals. The monophyly of Platyzoa, the relationships between the putative subgroups Platyhelminthes, Gastrotricha and Gnathifera (the latter comprising at least Gnathostomulida, "Rotifera" and Acanthocephala) as well as some aspects of the internal phylogenies of these subgroups are highly debated. Here we review how complete mitochondrial (mt) genome data contribute to these debates. We highlight special features of the mt genomes and discuss problems in mtDNA phylogenies of the clade. Mitochondrial genome data seem to be insufficient to resolve the position of the platyzoan clade within the Spiralia but can help to address internal phylogenetic questions. The present review includes a tabular survey of all published platyzoan mt genomes.

  18. Androgen receptor genomic regulation

    PubMed Central

    Jin, Hong-Jian; Kim, Jung

    2013-01-01

    The transcriptional activity of the androgen receptor (AR) is not only critical for the normal development and function of the prostate but also pivotal to the onset and progression of prostate cancer (PCa). The studies of AR transcriptional regulation were previously limited to a handful of AR-target genes. Owing to the development of various high-throughput genomic technologies, significant advances have been made in recent years. Here we discuss the discoveries of genome-wide androgen-regulated genes in PCa cell lines, animal models and tissues using expression microarray and sequencing, the mapping of genomic landscapes of AR using Combining Chromatin Immunoprecipitation (ChIP)-on-chip and ChIP-seq assays, the interplay of transcriptional cofactors in defining AR binding profiles, and the genomic regulation and AR reprogramming in advanced PCa. PMID:25237629

  19. Genomic definition of species

    SciTech Connect

    Crkvenjakov, R.; Drmanac, R.

    1991-07-01

    The subject of this paper is the definition of species based on the assumption that genome is the fundamental level for the origin and maintenance of biological diversity. For this view to be logically consistent it is necessary to assume the existence and operation of the new law which we call genome law. For this reason the genome law is included in the explanation of species phenomenon presented here even if its precise formulation and elaboration are left for the future. The intellectual underpinnings of this definition can be traced to Goldschmidt. We wish to explore some philosophical aspects of the definition of species in terms of the genome. The point of proposing the definition on these grounds is that any real advance in evolutionary theory has to be correct in both its philosophy and its science.

  20. An Introduction to Genome Annotation.

    PubMed

    Campbell, Michael S; Yandell, Mark

    2015-12-17

    Genome projects have evolved from large international undertakings to tractable endeavors for a single lab. Accurate genome annotation is critical for successful genomic, genetic, and molecular biology experiments. These annotations can be generated using a number of approaches and available software tools. This unit describes methods for genome annotation and a number of software tools commonly used in gene annotation.

  1. Biobanks for Genomics and Genomics for Biobanks

    PubMed Central

    Ducournau, Pascal; Gourraud, Pierre-Antoine; Pontille, David

    2003-01-01

    Biobanks include biological samples and attached databases. Human biobanks occur in research, technological development and medical activities. Population genomics is highly dependent on the availability of large biobanks. Ethical issues must be considered: protecting the rights of those people whose samples or data are in biobanks (information, autonomy, confidentiality, protection of private life), assuring the non-commercial use of human body elements and the optimal use of samples and data. They balance other issues, such as protecting the rights of researchers and companies, allowing long-term use of biobanks while detailed information on future uses is not available. At the level of populations, the traditional form of informed consent is challenged. Other dimensions relate to the rights of a group as such, in addition to individual rights. Conditions of return of results and/or benefit to a population need to be defined. With ‘large-scale biobanking’ a marked trend in genomics, new societal dimensions appear, regarding communication, debate, regulation, societal control and valorization of such large biobanks. Exploring how genomics can help health sector biobanks to become more rationally constituted and exploited is an interesting perspective. For example, evaluating how genomic approaches can help in optimizing haematopoietic stem cell donor registries using new markers and high-throughput techniques to increase immunogenetic variability in such registries is a challenge currently being addressed. Ethical issues in such contexts are important, as not only individual decisions or projects are concerned, but also national policies in the international arena and organization of democratic debate about science, medicine and society. PMID:18629026

  2. Molluscan Evolutionary Genomics

    SciTech Connect

    Simison, W. Brian; Boore, Jeffrey L.

    2005-12-01

    In the last 20 years there have been dramatic advances in techniques of high-throughput DNA sequencing, most recently accelerated by the Human Genome Project, a program that has determined the three billion base pair code on which we are based. Now this tremendous capability is being directed at other genome targets that are being sampled across the broad range of life. This opens up opportunities as never before for evolutionary and organismal biologists to address questions of both processes and patterns of organismal change. We stand at the dawn of a new 'modern synthesis' period, paralleling that of the early 20th century when the fledgling field of genetics first identified the underlying basis for Darwin's theory. We must now unite the efforts of systematists, paleontologists, mathematicians, computer programmers, molecular biologists, developmental biologists, and others in the pursuit of discovering what genomics can teach us about the diversity of life. Genome-level sampling for mollusks to date has mostly been limited to mitochondrial genomes and it is likely that these will continue to provide the best targets for broad phylogenetic sampling in the near future. However, we are just beginning to see an inroad into complete nuclear genome sequencing, with several mollusks and other eutrochozoans having been selected for work about to begin. Here, we provide an overview of the state of molluscan mitochondrial genomics, highlight a few of the discoveries from this research, outline the promise of broadening this dataset, describe upcoming projects to sequence whole mollusk nuclear genomes, and challenge the community to prepare for making the best use of these data.

  3. Molecular cytogenetic characterisation of Salix viminalis L. using repetitive DNA sequences.

    PubMed

    Németh, Anna Viktória; Dudits, Dénes; Molnár-Láng, Márta; Linc, Gabriella

    2013-08-01

    Salix viminalis L. (2n = 38) is a diploid dicot species belonging to the Salix genus of the Salicaceae family. This short-rotation woody crop is one of the most important renewable bioenergy resources worldwide. In breeding for high biomass productivity, limited knowledge is available on the molecular cytogenetics of willow, which could be combined with genetic linkage mapping. The present paper describes the adaptation of a fluorescence in situ hybridisation (FISH) protocol as a new approach to analyse the genomic constitution of Salix viminalis using the heterologous DNA clones pSc119.2, pTa71, pTa794, pAs1, Afa-family, pAl1, HT100.3, ZCF1 and the GAA microsatellite marker. Three of the nine probes showed unambiguous signals on the metaphase chromosomes. FISH analysis with the pTa71 probe detected one major 18S-5.8S-26S rDNA locus on the short arm of one chromosome pair; however, the pTa794 rDNA site was not visible. One chromosome pair showed a distinct signal around the centromeric region after FISH with the telomere-specific DNA clone HT100.3. Two chromosome pairs were found to have pAs1 FISH signals, which represent a D-genome-specific insert from Aegilops tauschii. Based on the FISH study, a set of chromosomes with characteristic patterns is presented, which could be used to establish the karyotype of willow species.

  4. Line differences in Cor/Lea and fructan biosynthesis-related gene transcript accumulation are related to distinct freezing tolerance levels in synthetic wheat hexaploids.

    PubMed

    Yokota, Hirokazu; Iehisa, Julio C M; Shimosaka, Etsuo; Takumi, Shigeo

    2015-03-15

    In common wheat, cultivar differences in freezing tolerance are considered to be mainly due to allelic differences at two major loci controlling freezing tolerance. One of the two loci, Fr-2, is coincident with a cluster of genes encoding C-repeat binding factors (CBFs), which induce downstream Cor/Lea genes during cold acclimation. Here, we conducted microarray analysis to study comprehensive changes in gene expression profile under long-term low-temperature (LT) treatment and to identify other LT-responsive genes related to cold acclimation in leaves of seedlings and crown tissues of a synthetic hexaploid wheat line. The microarray analysis revealed marked up-regulation of a number of Cor/Lea genes and fructan biosynthesis-related genes under the long-term LT treatment. For validation of the microarray data, we selected four synthetic wheat lines that contain the A and B genomes from the tetraploid wheat cultivar Langdon and the diverse D genomes originating from different Aegilops tauschii accessions with distinct levels of freezing tolerance after cold acclimation. Quantitative RT-PCR showed increased transcript levels of the Cor/Lea, CBF, and fructan biosynthesis-related genes in more freezing-tolerant lines than in sensitive lines. After a 14-day LT treatment, a significant difference in fructan accumulation was observed among the four lines. Therefore, the fructan biosynthetic pathway is associated with cold acclimation in development of wheat freezing tolerance and is another pathway related to diversity in freezing tolerance, in addition to the CBF-mediated Cor/Lea expression pathway.

  5. Human Genome Annotation

    NASA Astrophysics Data System (ADS)

    Gerstein, Mark

    A central problem for 21st century science is annotating the human genome and making this annotation useful for the interpretation of personal genomes. My talk will focus on annotating the 99% of the genome that does not code for canonical genes, concentrating on intergenic features such as structural variants (SVs), pseudogenes (protein fossils), binding sites, and novel transcribed RNAs (ncRNAs). In particular, I will describe how we identify regulatory sites and variable blocks (SVs) based on processing next-generation sequencing experiments. I will further explain how we cluster together groups of sites to create larger annotations. Next, I will discuss a comprehensive pseudogene identification pipeline, which has enabled us to identify >10K pseudogenes in the genome and analyze their distribution with respect to age, protein family, and chromosomal location. Throughout, I will try to introduce some of the computational algorithms and approaches that are required for genome annotation. Much of this work has been carried out in the framework of the ENCODE, modENCODE, and 1000 genomes projects.

  6. An archaeal genomic signature

    NASA Technical Reports Server (NTRS)

    Graham, D. E.; Overbeek, R.; Olsen, G. J.; Woese, C. R.

    2000-01-01

    Comparisons of complete genome sequences allow the most objective and comprehensive descriptions possible of a lineage's evolution. This communication uses the completed genomes from four major euryarchaeal taxa to define a genomic signature for the Euryarchaeota and, by extension, the Archaea as a whole. The signature is defined in terms of the set of protein-encoding genes found in at least two diverse members of the euryarchaeal taxa that function uniquely within the Archaea; most signature proteins have no recognizable bacterial or eukaryal homologs. By this definition, 351 clusters of signature proteins have been identified. Functions of most proteins in this signature set are currently unknown. At least 70% of the clusters that contain proteins from all the euryarchaeal genomes also have crenarchaeal homologs. This conservative set, which appears refractory to horizontal gene transfer to the Bacteria or the Eukarya, would seem to reflect the significant innovations that were unique and fundamental to the archaeal "design fabric." Genomic protein signature analysis methods may be extended to characterize the evolution of any phylogenetically defined lineage. The complete set of protein clusters for the archaeal genomic signature is presented as supplementary material (see the PNAS web site, www.pnas.org).

  7. How the genome folds

    NASA Astrophysics Data System (ADS)

    Lieberman Aiden, Erez

    2012-02-01

    I describe Hi-C, a novel technology for probing the three-dimensional architecture of whole genomes by coupling proximity-based ligation with massively parallel sequencing. Working with collaborators at the Broad Institute and UMass Medical School, we used Hi-C to construct spatial proximity maps of the human genome at a resolution of 1Mb. These maps confirm the presence of chromosome territories and the spatial proximity of small, gene-rich chromosomes. We identified an additional level of genome organization that is characterized by the spatial segregation of open and closed chromatin to form two genome-wide compartments. At the megabase scale, the chromatin conformation is consistent with a fractal globule, a knot-free conformation that enables maximally dense packing while preserving the ability to easily fold and unfold any genomic locus. The fractal globule is distinct from the more commonly used globular equilibrium model. Our results demonstrate the power of Hi-C to map the dynamic conformations of whole genomes.

  8. Human Social Genomics

    PubMed Central

    Cole, Steven W.

    2014-01-01

    A growing literature in human social genomics has begun to analyze how everyday life circumstances influence human gene expression. Social-environmental conditions such as urbanity, low socioeconomic status, social isolation, social threat, and low or unstable social status have been found to associate with differential expression of hundreds of gene transcripts in leukocytes and diseased tissues such as metastatic cancers. In leukocytes, diverse types of social adversity evoke a common conserved transcriptional response to adversity (CTRA) characterized by increased expression of proinflammatory genes and decreased expression of genes involved in innate antiviral responses and antibody synthesis. Mechanistic analyses have mapped the neural “social signal transduction” pathways that stimulate CTRA gene expression in response to social threat and may contribute to social gradients in health. Research has also begun to analyze the functional genomics of optimal health and thriving. Two emerging opportunities now stand to revolutionize our understanding of the everyday life of the human genome: network genomics analyses examining how systems-level capabilities emerge from groups of individual socially sensitive genomes and near-real-time transcriptional biofeedback to empirically optimize individual well-being in the context of the unique genetic, geographic, historical, developmental, and social contexts that jointly shape the transcriptional realization of our innate human genomic potential for thriving. PMID:25166010

  9. Ebolavirus comparative genomics

    DOE PAGES

    Jun, Se-Ran; Leuze, Michael R.; Nookaew, Intawat; Uberbacher, Edward C.; Land, Miriam; Zhang, Qian; Wanchai, Visanu; Chai, Juanjuan; Nielsen, Morten; Trolle, Thomas; et al

    2015-07-14

    The 2014 Ebola outbreak in West Africa is the largest documented for this virus. We examine the dynamics of this genome, comparing more than one hundred currently available ebolavirus genomes to each other and to other viral genomes. Based on oligomer frequency analysis, the family Filoviridae forms a distinct group from all other sequenced viral genomes. All filovirus genomes sequenced to date encode proteins with similar functions and gene order, although there is considerable divergence in sequences between the three genera Ebolavirus, Cuevavirus, and Marburgvirus within the family Filoviridae. Whereas all ebolavirus genomes are quite similar (multiple sequences of themore » same strain are often identical), variation is most common in the intergenic regions and within specific areas of the genes encoding the glycoprotein (GP), nucleoprotein (NP), and polymerase (L). We predict regions that could contain epitope-binding sites, which might be good vaccine targets. In conclusion, this information, combined with glycosylation sites and experimentally determined epitopes, can identify the most promising regions for the development of therapeutic strategies.« less

  10. An archaeal genomic signature.

    PubMed

    Graham, D E; Overbeek, R; Olsen, G J; Woese, C R

    2000-03-28

    Comparisons of complete genome sequences allow the most objective and comprehensive descriptions possible of a lineage's evolution. This communication uses the completed genomes from four major euryarchaeal taxa to define a genomic signature for the Euryarchaeota and, by extension, the Archaea as a whole. The signature is defined in terms of the set of protein-encoding genes found in at least two diverse members of the euryarchaeal taxa that function uniquely within the Archaea; most signature proteins have no recognizable bacterial or eukaryal homologs. By this definition, 351 clusters of signature proteins have been identified. Functions of most proteins in this signature set are currently unknown. At least 70% of the clusters that contain proteins from all the euryarchaeal genomes also have crenarchaeal homologs. This conservative set, which appears refractory to horizontal gene transfer to the Bacteria or the Eukarya, would seem to reflect the significant innovations that were unique and fundamental to the archaeal "design fabric." Genomic protein signature analysis methods may be extended to characterize the evolution of any phylogenetically defined lineage. The complete set of protein clusters for the archaeal genomic signature is presented as supplementary material (see the PNAS web site, www.pnas.org).

  11. A Review on Genomics APIs

    PubMed Central

    Swaminathan, Rajeswari; Huang, Yungui; Moosavinasab, Soheil; Buckley, Ronald; Bartlett, Christopher W.; Lin, Simon M.

    2015-01-01

    The constant improvement and falling prices of whole human genome Next Generation Sequencing (NGS) has resulted in rapid adoption of genomic information at both clinics and research institutions. Considered together, the complexity of genomics data, due to its large volume and diversity along with the need for genomic data sharing, has resulted in the creation of Application Programming Interface (API) for secure, modular, interoperable access to genomic data from different applications, platforms, and even organizations. The Genomics APIs are a set of special protocols that assist software developers in dealing with multiple genomic data sources for building seamless, interoperable applications leading to the advancement of both genomic and clinical research. These APIs help define a standard for retrieval of genomic data from multiple sources as well as to better package genomic information for integration with Electronic Health Records. This review covers three currently available Genomics APIs: a) Google Genomics, b) SMART Genomics, and c) 23andMe. The functionalities, reference implementations (if available) and authentication protocols of each API are reviewed. A comparative analysis of the different features across the three APIs is provided in the Discussion section. Though Genomics APIs are still under active development and have yet to reach widespread adoption, they hold the promise to make building of complicated genomics applications easier with downstream constructive effects on healthcare. PMID:26702340

  12. A Review on Genomics APIs.

    PubMed

    Swaminathan, Rajeswari; Huang, Yungui; Moosavinasab, Soheil; Buckley, Ronald; Bartlett, Christopher W; Lin, Simon M

    2016-01-01

    The constant improvement and falling prices of whole human genome Next Generation Sequencing (NGS) has resulted in rapid adoption of genomic information at both clinics and research institutions. Considered together, the complexity of genomics data, due to its large volume and diversity along with the need for genomic data sharing, has resulted in the creation of Application Programming Interface (API) for secure, modular, interoperable access to genomic data from different applications, platforms, and even organizations. The Genomics APIs are a set of special protocols that assist software developers in dealing with multiple genomic data sources for building seamless, interoperable applications leading to the advancement of both genomic and clinical research. These APIs help define a standard for retrieval of genomic data from multiple sources as well as to better package genomic information for integration with Electronic Health Records. This review covers three currently available Genomics APIs: a) Google Genomics, b) SMART Genomics, and c) 23andMe. The functionalities, reference implementations (if available) and authentication protocols of each API are reviewed. A comparative analysis of the different features across the three APIs is provided in the Discussion section. Though Genomics APIs are still under active development and have yet to reach widespread adoption, they hold the promise to make building of complicated genomics applications easier with downstream constructive effects on healthcare. PMID:26702340

  13. WheatGenome.info: A Resource for Wheat Genomics Resource.

    PubMed

    Lai, Kaitao

    2016-01-01

    An integrated database with a variety of Web-based systems named WheatGenome.info hosting wheat genome and genomic data has been developed to support wheat research and crop improvement. The resource includes multiple Web-based applications, which are implemented as a variety of Web-based systems. These include a GBrowse2-based wheat genome viewer with BLAST search portal, TAGdb for searching wheat second generation genome sequence data, wheat autoSNPdb, links to wheat genetic maps using CMap and CMap3D, and a wheat genome Wiki to allow interaction between diverse wheat genome sequencing activities. This portal provides links to a variety of wheat genome resources hosted at other research organizations. This integrated database aims to accelerate wheat genome research and is freely accessible via the web interface at http://www.wheatgenome.info/ .

  14. WheatGenome.info: A Resource for Wheat Genomics Resource.

    PubMed

    Lai, Kaitao

    2016-01-01

    An integrated database with a variety of Web-based systems named WheatGenome.info hosting wheat genome and genomic data has been developed to support wheat research and crop improvement. The resource includes multiple Web-based applications, which are implemented as a variety of Web-based systems. These include a GBrowse2-based wheat genome viewer with BLAST search portal, TAGdb for searching wheat second generation genome sequence data, wheat autoSNPdb, links to wheat genetic maps using CMap and CMap3D, and a wheat genome Wiki to allow interaction between diverse wheat genome sequencing activities. This portal provides links to a variety of wheat genome resources hosted at other research organizations. This integrated database aims to accelerate wheat genome research and is freely accessible via the web interface at http://www.wheatgenome.info/ . PMID:26519407

  15. GenomeVista

    2002-11-04

    Aligning large vertebrate genomes that are structurally complex poses a variety of problems not encountered on smaller scales. Such genomes are rich in repetitive elements and contain multiple segmental duplications, which increases the difficulty of identifying true orthologous SNA segments in alignments. The sizes of the sequences make many alignment algorithms designed for comparing single proteins extremely inefficient when processing large genomic intervals. We integrated both local and global alignment tools and developed a suitemore » of programs for automatically aligning large vertebrate genomes and identifying conserved non-coding regions in the alignments. Our method uses the BLAT local alignment program to find anchors on the base genome to identify regions of possible homology for a query sequence. These regions are postprocessed to find the best candidates which are then globally aligned using the AVID global alignment program. In the last step conserved non-coding segments are identified using VISTA. Our methods are fast and the resulting alignments exhibit a high degree of sensitivity, covering more than 90% of known coding exons in the human genome. The GenomeVISTA software is a suite of Perl programs that is built on a MySQL database platform. The scheduler gets control data from the database, builds a queve of jobs, and dispatches them to a PC cluster for execution. The main program, running on each node of the cluster, processes individual sequences. A Perl library acts as an interface between the database and the above programs. The use of a separate library allows the programs to function independently of the database schema. The library also improves on the standard Perl MySQL database interfere package by providing auto-reconnect functionality and improved error handling.« less

  16. Using comparative genomics to reorder the human genome sequence into a virtual sheep genome

    PubMed Central

    Dalrymple, Brian P; Kirkness, Ewen F; Nefedov, Mikhail; McWilliam, Sean; Ratnakumar, Abhirami; Barris, Wes; Zhao, Shaying; Shetty, Jyoti; Maddox, Jillian F; O'Grady, Margaret; Nicholas, Frank; Crawford, Allan M; Smith, Tim; de Jong, Pieter J; McEwan, John; Oddy, V Hutton; Cockett, Noelle E

    2007-01-01

    Background Is it possible to construct an accurate and detailed subgene-level map of a genome using bacterial artificial chromosome (BAC) end sequences, a sparse marker map, and the sequences of other genomes? Results A sheep BAC library, CHORI-243, was constructed and the BAC end sequences were determined and mapped with high sensitivity and low specificity onto the frameworks of the human, dog, and cow genomes. To maximize genome coverage, the coordinates of all BAC end sequence hits to the cow and dog genomes were also converted to the equivalent human genome coordinates. The 84,624 sheep BACs (about 5.4-fold genome coverage) with paired ends in the correct orientation (tail-to-tail) and spacing, combined with information from sheep BAC comparative genome contigs (CGCs) built separately on the dog and cow genomes, were used to construct 1,172 sheep BAC-CGCs, covering 91.2% of the human genome. Clustered non-tail-to-tail and outsize BACs located close to the ends of many BAC-CGCs linked BAC-CGCs covering about 70% of the genome to at least one other BAC-CGC on the same chromosome. Using the BAC-CGCs, the intrachromosomal and interchromosomal BAC-CGC linkage information, human/cow and vertebrate synteny, and the sheep marker map, a virtual sheep genome was constructed. To identify BACs potentially located in gaps between BAC-CGCs, an additional set of 55,668 sheep BACs were positioned on the sheep genome with lower confidence. A coordinate conversion process allowed us to transfer human genes and other genome features to the virtual sheep genome to display on a sheep genome browser. Conclusion We demonstrate that limited sequencing of BACs combined with positioning on a well assembled genome and integrating locations from other less well assembled genomes can yield extensive, detailed subgene-level maps of mammalian genomes, for which genomic resources are currently limited. PMID:17663790

  17. Translational genomics for plant breeding with the genome sequence explosion.

    PubMed

    Kang, Yang Jae; Lee, Taeyoung; Lee, Jayern; Shim, Sangrea; Jeong, Haneul; Satyawan, Dani; Kim, Moon Young; Lee, Suk-Ha

    2016-04-01

    The use of next-generation sequencers and advanced genotyping technologies has propelled the field of plant genomics in model crops and plants and enhanced the discovery of hidden bridges between genotypes and phenotypes. The newly generated reference sequences of unstudied minor plants can be annotated by the knowledge of model plants via translational genomics approaches. Here, we reviewed the strategies of translational genomics and suggested perspectives on the current databases of genomic resources and the database structures of translated information on the new genome. As a draft picture of phenotypic annotation, translational genomics on newly sequenced plants will provide valuable assistance for breeders and researchers who are interested in genetic studies.

  18. Genomes to Proteomes

    SciTech Connect

    Panisko, Ellen A.; Grigoriev, Igor; Daly, Don S.; Webb-Robertson, Bobbie-Jo; Baker, Scott E.

    2009-03-01

    Biologists are awash with genomic sequence data. In large part, this is due to the rapid acceleration in the generation of DNA sequence that occurred as public and private research institutes raced to sequence the human genome. In parallel with the large human genome effort, mostly smaller genomes of other important model organisms were sequenced. Projects following on these initial efforts have made use of technological advances and the DNA sequencing infrastructure that was built for the human and other organism genome projects. As a result, the genome sequences of many organisms are available in high quality draft form. While in many ways this is good news, there are limitations to the biological insights that can be gleaned from DNA sequences alone; genome sequences offer only a bird's eye view of the biological processes endemic to an organism or community. Fortunately, the genome sequences now being produced at such a high rate can serve as the foundation for other global experimental platforms such as proteomics. Proteomic methods offer a snapshot of the proteins present at a point in time for a given biological sample. Current global proteomics methods combine enzymatic digestion, separations, mass spectrometry and database searching for peptide identification. One key aspect of proteomics is the prediction of peptide sequences from mass spectrometry data. Global proteomic analysis uses computational matching of experimental mass spectra with predicted spectra based on databases of gene models that are often generated computationally. Thus, the quality of gene models predicted from a genome sequence is crucial in the generation of high quality peptide identifications. Once peptides are identified they can be assigned to their parent protein. Proteins identified as expressed in a given experiment are most useful when compared to other expressed proteins in a larger biological context or biochemical pathway. In this chapter we will discuss the automatic

  19. Genomics, health, and society.

    PubMed

    Chan, Chee Khoon

    2002-01-01

    On June 27, 2001, the World Health Organization conducted hearings in Geneva for a Special Report on Genomics & Health. Initially intended as a document to address the ethical, legal, and social implications of the gathering genomics resolution (ELSI), the terms of reference of the report were significantly modified to give primary emphasis to a scientific and technological assessment of the implications of genomics for human health. The Citizens' Health Initiative, one of two NGOs invited to make submissions at these consultations, suggested that no less important than the scientific and technical assessment was a perspective which gave due attention to the social context and political economy of scientific/technological development and its deployment. The article below touches upon neglected health priorities of poor countries, intellectual property rights and patents, risk management, insurance and discrimination, and predictive (prenatal) testing, reproductive choice, and eugenics. PMID:17208760

  20. Genomics of preterm birth.

    PubMed

    Swaggart, Kayleigh A; Pavlicev, Mihaela; Muglia, Louis J

    2015-02-02

    The molecular mechanisms controlling human birth timing at term, or resulting in preterm birth, have been the focus of considerable investigation, but limited insights have been gained over the past 50 years. In part, these processes have remained elusive because of divergence in reproductive strategies and physiology shown by model organisms, making extrapolation to humans uncertain. Here, we summarize the evolution of progesterone signaling and variation in pregnancy maintenance and termination. We use this comparative physiology to support the hypothesis that selective pressure on genomic loci involved in the timing of parturition have shaped human birth timing, and that these loci can be identified with comparative genomic strategies. Previous limitations imposed by divergence of mechanisms provide an important new opportunity to elucidate fundamental pathways of parturition control through increasing availability of sequenced genomes and associated reproductive physiology characteristics across diverse organisms.

  1. Genomics, health, and society.

    PubMed

    Chan, Chee Khoon

    2002-01-01

    On June 27, 2001, the World Health Organization conducted hearings in Geneva for a Special Report on Genomics & Health. Initially intended as a document to address the ethical, legal, and social implications of the gathering genomics resolution (ELSI), the terms of reference of the report were significantly modified to give primary emphasis to a scientific and technological assessment of the implications of genomics for human health. The Citizens' Health Initiative, one of two NGOs invited to make submissions at these consultations, suggested that no less important than the scientific and technical assessment was a perspective which gave due attention to the social context and political economy of scientific/technological development and its deployment. The article below touches upon neglected health priorities of poor countries, intellectual property rights and patents, risk management, insurance and discrimination, and predictive (prenatal) testing, reproductive choice, and eugenics.

  2. Pancreatic cancer genomics.

    PubMed

    Chang, David K; Grimmond, Sean M; Biankin, Andrew V

    2014-02-01

    Pancreatic cancer is one of the most lethal malignancies. The overall median survival even with treatment is only 6-9 months, with almost 90% succumbing to the disease within a year of diagnosis. It is characterised by an intense desmoplastic stroma that may contribute to therapeutic resistance, and poses significant challenges for genomic sequencing studies. It is recalcitrant to almost all therapies and consequently remains the fourth leading cause of cancer death in Western societies. Genomic studies are unveiling a vast heterogeneity of mutated genes, and this diversity may explain why conventional clinical trial designs have mostly failed to demonstrate efficacy in unselected patients. Those that are available offer only marginal benefits overall, but are associated with clinically significant responses in as yet undefined subgroups. This chapter describes our current understanding of the genomics of pancreatic cancer and the potential impact of these findings on our approaches to treatment.

  3. Domestication and plant genomes.

    PubMed

    Tang, Haibao; Sezen, Uzay; Paterson, Andrew H

    2010-04-01

    The techniques of plant improvement have been evolving with the advancement of technology, progressing from crop domestication by Neolithic humans to scientific plant breeding, and now including DNA-based genotyping and genetic engineering. Archeological findings have shown that early human ancestors often unintentionally selected for and finally fixed a few major domestication traits over time. Recent advancement of molecular and genomic tools has enabled scientists to pinpoint changes to specific chromosomal regions and genetic loci that are responsible for dramatic morphological and other transitions that distinguish crops from their wild progenitors. Extensive studies in a multitude of additional crop species, facilitated by rapid progress in sequencing and resequencing(s) of crop genomes, will further our understanding of the genomic impact from both the unusual population history of cultivated plants and millennia of human selection.

  4. SINGLE CELL GENOME SEQUENCING

    PubMed Central

    Yilmaz, Suzan; Singh, Anup K.

    2011-01-01

    Whole genome amplification and next-generation sequencing of single cells has become a powerful approach for studying uncultivated microorganisms that represent 90–99 % of all environmental microbes. Single cell sequencing enables not only the identification of microbes but also linking of functions to species, a feat not achievable by metagenomic techniques. Moreover, it allows the analysis of low abundance species that may be missed in community-based analyses. It has also proved very useful in complementing metagenomics in the assembly and binning of single genomes. With the advent of drastically cheaper and higher throughput sequencing technologies, it is expected that single cell sequencing will become a standard tool in studying the genome and transcriptome of microbial communities. PMID:22154471

  5. Berkeley Quantitative Genome Browser

    2008-02-29

    The Berkeley Quantitative Genome Browser provides graphical browsing functionality for genomic data organized, at a minimum, by sequence and position. While supporting the annotation browsing features typical of many other genomic browsers, additional emphasis is placed on viewing and utilizing quantitative data. Data may be read from GFF, SGR, FASTA or any column delimited format. Once the data has been read into the browser's buffer, it may be searched. filtered or subjected to mathematical transformation.more » The browser also supplies some graphical design manipulation functionality geared towards preparing figures for presentations or publication. A plug-in mechanism enables development outside the core functionality that adds more advanced or esoteric analysis capabilities. BBrowse's development and distribution is open-source and has been built to run on Linux, OSX and MS Windows operating systems.« less

  6. Berkeley Quantitative Genome Browser

    SciTech Connect

    Hechmer, Aaron

    2008-02-29

    The Berkeley Quantitative Genome Browser provides graphical browsing functionality for genomic data organized, at a minimum, by sequence and position. While supporting the annotation browsing features typical of many other genomic browsers, additional emphasis is placed on viewing and utilizing quantitative data. Data may be read from GFF, SGR, FASTA or any column delimited format. Once the data has been read into the browser's buffer, it may be searched. filtered or subjected to mathematical transformation. The browser also supplies some graphical design manipulation functionality geared towards preparing figures for presentations or publication. A plug-in mechanism enables development outside the core functionality that adds more advanced or esoteric analysis capabilities. BBrowse's development and distribution is open-source and has been built to run on Linux, OSX and MS Windows operating systems.

  7. Genomics of Salmonella Species

    NASA Astrophysics Data System (ADS)

    Canals, Rocio; McClelland, Michael; Santiviago, Carlos A.; Andrews-Polymenis, Helene

    Progress in the study of Salmonella survival, colonization, and virulence has increased rapidly with the advent of complete genome sequencing and higher capacity assays for transcriptomic and proteomic analysis. Although many of these techniques have yet to be used to directly assay Salmonella growth on foods, these assays are currently in use to determine Salmonella factors necessary for growth in animal models including livestock animals and in in vitro conditions that mimic many different environments. As sequencing of the Salmonella genome and microarray analysis have revolutionized genomics and transcriptomics of salmonellae over the last decade, so are new high-throughput sequencing technologies currently accelerating the pace of our studies and allowing us to approach complex problems that were not previously experimentally tractable.

  8. Genomics of Volvocine Algae

    PubMed Central

    Umen, James G.; Olson, Bradley J.S.C.

    2015-01-01

    Volvocine algae are a group of chlorophytes that together comprise a unique model for evolutionary and developmental biology. The species Chlamydomonas reinhardtii and Volvox carteri represent extremes in morphological diversity within the Volvocine clade. Chlamydomonas is unicellular and reflects the ancestral state of the group, while Volvox is multicellular and has evolved numerous innovations including germ-soma differentiation, sexual dimorphism, and complex morphogenetic patterning. The Chlamydomonas genome sequence has shed light on several areas of eukaryotic cell biology, metabolism and evolution, while the Volvox genome sequence has enabled a comparison with Chlamydomonas that reveals some of the underlying changes that enabled its transition to multicellularity, but also underscores the subtlety of this transition. Many of the tools and resources are in place to further develop Volvocine algae as a model for evolutionary genomics. PMID:25883411

  9. Genes, genome and Gestalt.

    PubMed

    Grisolia, Cesar Koppe

    2005-01-01

    According to Gestalt thinking, biological systems cannot be viewed as the sum of their elements, but as processes of the whole. To understand organisms we must start from the whole, observing how the various parts are related. In genetics, we must observe the genome over and above the sum of its genes. Either loss or addition of one gene in a genome can change the function of the organism. Genomes are organized in networks of genes, which need to be well integrated. In the case of genetically modified organisms (GMOs), for example, soybeans, rats, Anopheles mosquitoes, and pigs, the insertion of an exogenous gene into a receptive organism generally causes disturbance in the networks, resulting in the breakdown of gene interactions. In these cases, genetic modification increased the genetic load of the GMO and consequently decreased its adaptability (fitness). Therefore, it is hard to claim that the production of such organisms with an increased genetic load does not have ethical implications.

  10. Ebolavirus comparative genomics

    PubMed Central

    Jun, Se-Ran; Leuze, Michael R.; Nookaew, Intawat; Uberbacher, Edward C.; Land, Miriam; Zhang, Qian; Wanchai, Visanu; Chai, Juanjuan; Nielsen, Morten; Trolle, Thomas; Lund, Ole; Buzard, Gregory S.; Pedersen, Thomas D.; Wassenaar, Trudy M.; Ussery, David W.

    2015-01-01

    The 2014 Ebola outbreak in West Africa is the largest documented for this virus. To examine the dynamics of this genome, we compare more than 100 currently available ebolavirus genomes to each other and to other viral genomes. Based on oligomer frequency analysis, the family Filoviridae forms a distinct group from all other sequenced viral genomes. All filovirus genomes sequenced to date encode proteins with similar functions and gene order, although there is considerable divergence in sequences between the three genera Ebolavirus, Cuevavirus and Marburgvirus within the family Filoviridae. Whereas all ebolavirus genomes are quite similar (multiple sequences of the same strain are often identical), variation is most common in the intergenic regions and within specific areas of the genes encoding the glycoprotein (GP), nucleoprotein (NP) and polymerase (L). We predict regions that could contain epitope-binding sites, which might be good vaccine targets. This information, combined with glycosylation sites and experimentally determined epitopes, can identify the most promising regions for the development of therapeutic strategies. This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). PMID:26175035

  11. Brief Guide to Genomics: DNA, Genes and Genomes

    MedlinePlus

    ... guía de genómica A Brief Guide to Genomics DNA, Genes and Genomes Deoxyribonucleic acid (DNA) is the ... and lead to a disease such as cancer. DNA Sequencing Sequencing simply means determining the exact order ...

  12. The genomics of mycobacteria.

    PubMed

    Viale, M N; Zumárraga, M J; Araújo, F R; Zarraga, A M; Cataldi, A A; Romano, M I; Bigi, F

    2016-04-01

    The species Mycobacterium bovis and Mycobacterium avium subspecies paratuberculosis are the causal agents, respectively, of tuberculosis and paratuberculosis in animals. Both mycobacteria, especially M. bovis, are also important to public health because they can infect humans. In recent years, this and the impact of tuberculosis and paratuberculosis on animal production have led to significant advances in knowledge about both pathogens and their host interactions. This article describes the contribution of genomics and functional genomics to studies of the evolution, virulence, epidemiology and diagnosis of both these pathogenic mycobacteria. PMID:27217180

  13. Methanococcus jannaschii genome: revisited

    NASA Technical Reports Server (NTRS)

    Kyrpides, N. C.; Olsen, G. J.; Klenk, H. P.; White, O.; Woese, C. R.

    1996-01-01

    Analysis of genomic sequences is necessarily an ongoing process. Initial gene assignments tend (wisely) to be on the conservative side (Venter, 1996). The analysis of the genome then grows in an iterative fashion as additional data and more sophisticated algorithms are brought to bear on the data. The present report is an emendation of the original gene list of Methanococcus jannaschii (Bult et al., 1996). By using a somewhat more updated database and more relaxed (and operator-intensive) pattern matching methods, we were able to add significantly to, and in a few cases amend, the gene identification table originally published by Bult et al. (1996).

  14. The genomics of mycobacteria.

    PubMed

    Viale, M N; Zumárraga, M J; Araújo, F R; Zarraga, A M; Cataldi, A A; Romano, M I; Bigi, F

    2016-04-01

    The species Mycobacterium bovis and Mycobacterium avium subspecies paratuberculosis are the causal agents, respectively, of tuberculosis and paratuberculosis in animals. Both mycobacteria, especially M. bovis, are also important to public health because they can infect humans. In recent years, this and the impact of tuberculosis and paratuberculosis on animal production have led to significant advances in knowledge about both pathogens and their host interactions. This article describes the contribution of genomics and functional genomics to studies of the evolution, virulence, epidemiology and diagnosis of both these pathogenic mycobacteria.

  15. The cancer genome

    PubMed Central

    Stratton, Michael R.; Campbell, Peter J.; Futreal, P. Andrew

    2010-01-01

    All cancers arise as a result of changes that have occurred in the DNA sequence of the genomes of cancer cells. Over the past quarter of a century much has been learnt about these mutations and the abnormal genes that operate in human cancers. We are now, however, moving into an era in which it will be possible to obtain the complete DNA sequence of large numbers of cancer genomes. These studies will provide us with a detailed and comprehensive perspective on how individual cancers have developed. PMID:19360079

  16. Genomic standards consortium projects.

    PubMed

    Field, Dawn; Sterk, Peter; Kottmann, Renzo; De Smet, J Wim; Amaral-Zettler, Linda; Cochrane, Guy; Cole, James R; Davies, Neil; Dawyndt, Peter; Garrity, George M; Gilbert, Jack A; Glöckner, Frank Oliver; Hirschman, Lynette; Klenk, Hans-Peter; Knight, Rob; Kyrpides, Nikos; Meyer, Folker; Karsch-Mizrachi, Ilene; Morrison, Norman; Robbins, Robert; San Gil, Inigo; Sansone, Susanna; Schriml, Lynn; Tatusova, Tatiana; Ussery, Dave; Yilmaz, Pelin; White, Owen; Wooley, John; Caporaso, Gregory

    2014-06-15

    The Genomic Standards Consortium (GSC) is an open-membership community that was founded in 2005 to work towards the development, implementation and harmonization of standards in the field of genomics. Starting with the defined task of establishing a minimal set of descriptions the GSC has evolved into an active standards-setting body that currently has 18 ongoing projects, with additional projects regularly proposed from within and outside the GSC. Here we describe our recently enacted policy for proposing new activities that are intended to be taken on by the GSC, along with the template for proposing such new activities.

  17. Transposable elements in a marginal plant population: temporal fluctuations provide new insights into genome evolution of wild diploid wheat

    PubMed Central

    2010-01-01

    Background How new forms arise in nature has engaged evolutionary biologists since Darwin's seminal treatise on the origin of species. Transposable elements (TEs) may be among the most important internal sources for intraspecific variability. Thus, we aimed to explore the temporal dynamics of several TEs in individual genotypes from a small, marginal population of Aegilops speltoides. A diploid cross-pollinated grass species, it is a wild relative of the various wheat species known for their large genome sizes contributed by an extraordinary number of TEs, particularly long terminal repeat (LTR) retrotransposons. The population is characterized by high heteromorphy and possesses a wide spectrum of chromosomal abnormalities including supernumerary chromosomes, heterozygosity for translocations, and variability in the chromosomal position or number of 45S and 5S ribosomal DNA (rDNA) sites. We propose that variability on the morphological and chromosomal levels may be linked to variability at the molecular level and particularly in TE proliferation. Results Significant temporal fluctuation in the copy number of TEs was detected when processes that take place in small, marginal populations were simulated. It is known that under critical external conditions, outcrossing plants very often transit to self-pollination. Thus, three morphologically different genotypes with chromosomal aberrations were taken from a wild population of Ae. speltoides, and the dynamics of the TE complex traced through three rounds of selfing. It was discovered that: (i) various families of TEs vary tremendously in copy number between individuals from the same population and the selfed progenies; (ii) the fluctuations in copy number are TE-family specific; (iii) there is a great difference in TE copy number expansion or contraction between gametophytes and sporophytes; and (iv) a small percentage of TEs that increase in copy number can actually insert at novel locations and could serve as a bona

  18. Genomic Advances to Improve Biomass for Biofuels (Genomics and Bioenergy)

    SciTech Connect

    Rokhsar, Daniel

    2008-02-11

    Lawrence Berkeley National Lab bioscientist Daniel Rokhsar discusses genomic advances to improve biomass for biofuels. He presented his talk Feb. 11, 2008 in Berkeley, California as part of Berkeley Lab's community lecture series. Rokhsar works with the U.S. Department of Energy's Joint Genome Institute and Berkeley Lab's Genomics Division.

  19. The Brachypodium genome sequence: a resource for oat genomics research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oat (Avena sativa) is an important cereal crop used as both an animal feed and for human consumption. Genetic and genomic research on oat is hindered because it is hexaploid and possesses a large (13 Gb) genome. Diploid Avena relatives have been employed for genetic and genomic studies, but only mod...

  20. Tick Genomics: The Ixodes genome project and beyond

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ticks and mites (subphylum Chelicerata; subclass Acari) are important pests of animals and plants worldwide. The Ixodes scapularis (black-legged tick) genome sequencing project marks the beginning of the genomics era for the field of acarology. This project is the first to sequence the genome of a...

  1. Sixty years of genome biology

    PubMed Central

    2013-01-01

    Sixty years after Watson and Crick published the double helix model of DNA's structure, thirteen members of Genome Biology's Editorial Board select key advances in the field of genome biology subsequent to that discovery. PMID:23651518

  2. Genomic Data Commons launches - TCGA

    Cancer.gov

    The Genomic Data Commons (GDC), a unified data system that promotes sharing of genomic and clinical data between researchers, launched today with a visit from Vice President Joe Biden to the operations center at the University of Chicago.

  3. Recent Advances in Cotton Genomics

    PubMed Central

    Zhang, Hong-Bin; Li, Yaning; Wang, Baohua; Chee, Peng W.

    2008-01-01

    Genome research promises to promote continued and enhanced plant genetic improvement. As a world's leading crop and a model system for studies of many biological processes, genomics research of cottons has advanced rapidly in the past few years. This article presents a comprehensive review on the recent advances of cotton genomics research. The reviewed areas include DNA markers, genetic maps, mapped genes and QTLs, ESTs, microarrays, gene expression profiling, BAC and BIBAC libraries, physical mapping, genome sequencing, and applications of genomic tools in cotton breeding. Analysis of the current status of each of the genome research areas suggests that the areas of physical mapping, QTL fine mapping, genome sequencing, nonfiber and nonovule EST development, gene expression profiling, and association studies between gene expression and fiber trait performance should be emphasized currently and in near future to accelerate utilization of the genomics research achievements for enhancing cotton genetic improvement. PMID:18288253

  4. The tomato genome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The tomato genome sequence was undertaken at a time when state-of-the-art sequencing methodologies were undergoing a transition to co-called next generation methodologies. The result was an international consortium undertaking a strategy merging both old and new approaches. Because biologists were...

  5. The Nostoc punctiforme Genome

    SciTech Connect

    John C. Meeks

    2001-12-31

    Nostoc punctiforme is a filamentous cyanobacterium with extensive phenotypic characteristics and a relatively large genome, approaching 10 Mb. The phenotypic characteristics include a photoautotrophic, diazotrophic mode of growth, but N. punctiforme is also facultatively heterotrophic; its vegetative cells have multiple development alternatives, including terminal differentiation into nitrogen-fixing heterocysts and transient differentiation into spore-like akinetes or motile filaments called hormogonia; and N. punctiforme has broad symbiotic competence with fungi and terrestrial plants, including bryophytes, gymnosperms and an angiosperm. The shotgun-sequencing phase of the N. punctiforme strain ATCC 29133 genome has been completed by the Joint Genome Institute. Annotation of an 8.9 Mb database yielded 7432 open reading frames, 45% of which encode proteins with known or probable known function and 29% of which are unique to N. punctiforme. Comparative analysis of the sequence indicates a genome that is highly plastic and in a state of flux, with numerous insertion sequences and multilocus repeats, as well as genes encoding transposases and DNA modification enzymes. The sequence also reveals the presence of genes encoding putative proteins that collectively define almost all characteristics of cyanobacteria as a group. N. punctiforme has an extensive potential to sense and respond to environmental signals as reflected by the presence of more than 400 genes encoding sensor protein kinases, response regulators and other transcriptional factors. The signal transduction systems and any of the large number of unique genes may play essential roles in the cell differentiation and symbiotic interaction properties of N. punctiforme.

  6. Genetics, genomics and fertility

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In order to enhance the sustainability of dairy businesses, new management tools are needed to increase the fertility of dairy cattle. Genomic selection has been successfully used by AI studs to screen potential sires and significantly decrease the generation interval of bulls. Buoyed by the success...

  7. Genomics in Cardiovascular Disease

    PubMed Central

    Roberts, Robert; Marian, A.J.; Dandona, Sonny; Stewart, Alexandre F.R.

    2013-01-01

    A paradigm shift towards biology occurred in the 1990’s subsequently catalyzed by the sequencing of the human genome in 2000. The cost of DNA sequencing has gone from millions to thousands of dollars with sequencing of one’s entire genome costing only $1,000. Rapid DNA sequencing is being embraced for single gene disorders, particularly for sporadic cases and those from small families. Transmission of lethal genes such as associated with Huntington’s disease can, through in-vitro fertilization, avoid passing it on to one’s offspring. DNA sequencing will meet the challenge of elucidating the genetic predisposition for common polygenic diseases, especially in determining the function of the novel common genetic risk variants and identifying the rare variants, which may also partially ascertain the source of the missing heritability. The challenge for DNA sequencing remains great, despite human genome sequences being 99.5% identical, the 3 million single nucleotide polymorphisms (SNPs) responsible for most of the unique features add up to 60 new mutations per person which, for 7 billion people, is 420 billion mutations. It is claimed that DNA sequencing has increased 10,000 fold while information storage and retrieval only 16 fold. The physician and health user will be challenged by the convergence of two major trends, whole genome sequencing and the storage/retrieval and integration of the data. PMID:23524054

  8. The Human Genome Program

    SciTech Connect

    Bell, G.I.

    1989-01-01

    Early in 1986, Charles DeLisi, then head of the Office of Health and Environmental Research at the Department of Energy (DOE) requested the Los Alamos National Laboratory (LANL) to organize a workshop charged with inquiring whether the state of technology and potential payoffs in biological knowledge and medical practice were such as to justify an organized program to map and sequence the human genome. The DOE's interest arose from its mission to assess the effects of radiation and other products of energy generation on human health in general and genetic material in particular. The workshop concluded that the technology was ripe, the benefits would be great, and a national program should be promptly initiated. Later committees, reporting to DOE, to the NIH, to the Office of Technology Assessment of the US Congress, and to the National Academy of Science have reviewed these issues more deliberately and come to the same conclusion. As a consequence, there has been established in the United States, a Human Genome Program, with funding largely from the NIH and the DOE, as indicated in Table 1. Moreover, the Program has attracted international interest, and Great Britain, France, Italy, and the Soviet Union, among other countries, have been reported to be starting human genome initiatives. Coordination of these programs, clearly in the interests of each, remains to be worked out, although an international Human Genome Organization (HUGO) is considering such coordination. 5 refs., 1 fig., 2 tabs.

  9. RIKEN mouse genome encyclopedia.

    PubMed

    Hayashizaki, Yoshihide

    2003-01-01

    We have been working to establish the comprehensive mouse full-length cDNA collection and sequence database to cover as many genes as we can, named Riken mouse genome encyclopedia. Recently we are constructing higher-level annotation (Functional ANnoTation Of Mouse cDNA; FANTOM) not only with homology search based annotation but also with expression data profile, mapping information and protein-protein database. More than 1,000,000 clones prepared from 163 tissues were end-sequenced to classify into 159,789 clusters and 60,770 representative clones were fully sequenced. As a conclusion, the 60,770 sequences contained 33,409 unique. The next generation of life science is clearly based on all of the genome information and resources. Based on our cDNA clones we developed the additional system to explore gene function. We developed cDNA microarray system to print all of these cDNA clones, protein-protein interaction screening system, protein-DNA interaction screening system and so on. The integrated database of all the information is very useful not only for analysis of gene transcriptional network and for the connection of gene to phenotype to facilitate positional candidate approach. In this talk, the prospect of the application of these genome resourced should be discussed. More information is available at the web page: http://genome.gsc.riken.go.jp/.

  10. CGAT: computational genomics analysis toolkit.

    PubMed

    Sims, David; Ilott, Nicholas E; Sansom, Stephen N; Sudbery, Ian M; Johnson, Jethro S; Fawcett, Katherine A; Berlanga-Taylor, Antonio J; Luna-Valero, Sebastian; Ponting, Chris P; Heger, Andreas

    2014-05-01

    Computational genomics seeks to draw biological inferences from genomic datasets, often by integrating and contextualizing next-generation sequencing data. CGAT provides an extensive suite of tools designed to assist in the analysis of genome scale data from a range of standard file formats. The toolkit enables filtering, comparison, conversion, summarization and annotation of genomic intervals, gene sets and sequences. The tools can both be run from the Unix command line and installed into visual workflow builders, such as Galaxy.

  11. TUTORIAL ON NETWORK GENOMICS.

    SciTech Connect

    Forst, C.

    2001-01-01

    With the ever-increasing genomic information pouring into the databases researchers start to look for pattern in genomes. Key questions are the identification of function. In the past function was mainly understood to be assigned to a single gene isolated from other cellular components or mechanisms. Sequence comparison fo single genes and their products (proteins) as well as of intergenic space are a consequence of a well established one-gene one-function interpretation. prediction of function solely by sequence similarity searches are powerful techniques that initiated the advent of bioinformatics and computational biology. Seminal work on sequence alignment by Temple Smith and Michael Waterman [33] and sequence searches with the BLAST algorithm by Altschul et al. [2] provide essential methods for sequence based determination of function. Similar outstanding contributions to determination of function have been archived in the area of structure prediction, molecular modeling and molecular dynamics. Techniques covering ab initio and homology modeling up to biophysical interpretation of long-run molecular dynamics simulations are mentioned ehre. With the ever-increasing number of information of different genetic/genomic origin, new aspect are looked for that deviate from the single gene at a time method. Especially with the identification of surprisingly few human genes the emerging perception in the scientific community that the concept of function has to be extended to include other sequence based as well as non-sequenced based information. A schema of determination of function by different concepts is shown in Figure 1. The tutorial is comprised of the following sections: The first two sections discuss the differences between genomic and non-genomic based context information, section three will cover combined methods. Finally, section four lsits web-resources and databases. All presented approaches extensively employ comparative methods.

  12. Plant functional genomics.

    PubMed

    Holtorf, Hauke; Guitton, Marie-Christine; Reski, Ralf

    2002-06-01

    Functional genome analysis of plants has entered the high-throughput stage. The complete genome information from key species such as Arabidopsis thaliana and rice is now available and will further boost the application of a range of new technologies to functional plant gene analysis. To broadly assign functions to unknown genes, different fast and multiparallel approaches are currently used and developed. These new technologies are based on known methods but are adapted and improved to accommodate for comprehensive, large-scale gene analysis, i.e. such techniques are novel in the sense that their design allows researchers to analyse many genes at the same time and at an unprecedented pace. Such methods allow analysis of the different constituents of the cell that help to deduce gene function, namely the transcripts, proteins and metabolites. Similarly the phenotypic variations of entire mutant collections can now be analysed in a much faster and more efficient way than before. The different methodologies have developed to form their own fields within the functional genomics technological platform and are termed transcriptomics, proteomics, metabolomics and phenomics. Gene function, however, cannot solely be inferred by using only one such approach. Rather, it is only by bringing together all the information collected by different functional genomic tools that one will be able to unequivocally assign functions to unknown plant genes. This review focuses on current technical developments and their impact on the field of plant functional genomics. The lower plant Physcomitrella is introduced as a new model system for gene function analysis, owing to its high rate of homologous recombination.

  13. Mitochondrial genomes as living 'fossils'.

    PubMed

    Small, Ian

    2013-04-15

    The huge variation between mitochondrial genomes makes untangling their evolutionary histories difficult. Richardson et al. report on the remarkably unaltered 'fossil' genome of the tulip tree, giving us many clues as to how the mitochondrial genomes of flowering plants have evolved over the last 150 million years, and raising questions about how such extraordinary sequence conservation can be maintained.

  14. Personal genomes: no bad news?

    PubMed

    Chadwick, Ruth

    2011-02-01

    Issues in genetics and genomics have been centre stage in Bioethics for much of its history, and have given rise to both negative and positive imagined futures. Ten years after the completion of the Human Genome Project, it is a good time to assess developments. The promise of whole genome sequencing of individuals requires reflection on personalization, genetic determinism, and privacy.

  15. Genomic selection in plant breeding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genomic selection (GS) is a method to predict the genetic value of selection candidates based on the genomic estimated breeding value (GEBV) predicted from high-density markers positioned throughout the genome. Unlike marker-assisted selection, the GEBV is based on all markers including both minor ...

  16. Analysis of genomic DNA with the UCSC genome browser.

    PubMed

    Pevsner, Jonathan

    2009-01-01

    Genomic DNA is being sequenced and annotated at a rapid rate, with terabases of DNA currently deposited in GenBank and other repositories. Genome browsers provide an essential collection of resources to visualize and analyze chromosomal DNA. The University of California, Santa Cruz (UCSC) Genome Browser provides annotations from the level of single nucleotides to whole chromosomes for four dozen metazoan and other species. The Genome Browser may be used to address a wide range of problems in bioinformatics (e.g., sequence analysis), comparative genomics, and evolution.

  17. The perennial ryegrass GenomeZipper: targeted use of genome resources for comparative grass genomics.

    PubMed

    Pfeifer, Matthias; Martis, Mihaela; Asp, Torben; Mayer, Klaus F X; Lübberstedt, Thomas; Byrne, Stephen; Frei, Ursula; Studer, Bruno

    2013-02-01

    Whole-genome sequences established for model and major crop species constitute a key resource for advanced genomic research. For outbreeding forage and turf grass species like ryegrasses (Lolium spp.), such resources have yet to be developed. Here, we present a model of the perennial ryegrass (Lolium perenne) genome on the basis of conserved synteny to barley (Hordeum vulgare) and the model grass genome Brachypodium (Brachypodium distachyon) as well as rice (Oryza sativa) and sorghum (Sorghum bicolor). A transcriptome-based genetic linkage map of perennial ryegrass served as a scaffold to establish the chromosomal arrangement of syntenic genes from model grass species. This scaffold revealed a high degree of synteny and macrocollinearity and was then utilized to anchor a collection of perennial ryegrass genes in silico to their predicted genome positions. This resulted in the unambiguous assignment of 3,315 out of 8,876 previously unmapped genes to the respective chromosomes. In total, the GenomeZipper incorporates 4,035 conserved grass gene loci, which were used for the first genome-wide sequence divergence analysis between perennial ryegrass, barley, Brachypodium, rice, and sorghum. The perennial ryegrass GenomeZipper is an ordered, information-rich genome scaffold, facilitating map-based cloning and genome assembly in perennial ryegrass and closely related Poaceae species. It also represents a milestone in describing synteny between perennial ryegrass and fully sequenced model grass genomes, thereby increasing our understanding of genome organization and evolution in the most important temperate forage and turf grass species.

  18. Nongenetic functions of the genome.

    PubMed

    Bustin, Michael; Misteli, Tom

    2016-05-01

    The primary function of the genome is to store, propagate, and express the genetic information that gives rise to a cell's architectural and functional machinery. However, the genome is also a major structural component of the cell. Besides its genetic roles, the genome affects cellular functions by nongenetic means through its physical and structural properties, particularly by exerting mechanical forces and by serving as a scaffold for binding of cellular components. Major cellular processes affected by nongenetic functions of the genome include establishment of nuclear structure, signal transduction, mechanoresponses, cell migration, and vision in nocturnal animals. We discuss the concept, mechanisms, and implications of nongenetic functions of the genome.

  19. Informational laws of genome structures

    NASA Astrophysics Data System (ADS)

    Bonnici, Vincenzo; Manca, Vincenzo

    2016-06-01

    In recent years, the analysis of genomes by means of strings of length k occurring in the genomes, called k-mers, has provided important insights into the basic mechanisms and design principles of genome structures. In the present study, we focus on the proper choice of the value of k for applying information theoretic concepts that express intrinsic aspects of genomes. The value k = lg2(n), where n is the genome length, is determined to be the best choice in the definition of some genomic informational indexes that are studied and computed for seventy genomes. These indexes, which are based on information entropies and on suitable comparisons with random genomes, suggest five informational laws, to which all of the considered genomes obey. Moreover, an informational genome complexity measure is proposed, which is a generalized logistic map that balances entropic and anti-entropic components of genomes and is related to their evolutionary dynamics. Finally, applications to computational synthetic biology are briefly outlined.

  20. Informational laws of genome structures

    PubMed Central

    Bonnici, Vincenzo; Manca, Vincenzo

    2016-01-01

    In recent years, the analysis of genomes by means of strings of length k occurring in the genomes, called k-mers, has provided important insights into the basic mechanisms and design principles of genome structures. In the present study, we focus on the proper choice of the value of k for applying information theoretic concepts that express intrinsic aspects of genomes. The value k = lg2(n), where n is the genome length, is determined to be the best choice in the definition of some genomic informational indexes that are studied and computed for seventy genomes. These indexes, which are based on information entropies and on suitable comparisons with random genomes, suggest five informational laws, to which all of the considered genomes obey. Moreover, an informational genome complexity measure is proposed, which is a generalized logistic map that balances entropic and anti-entropic components of genomes and is related to their evolutionary dynamics. Finally, applications to computational synthetic biology are briefly outlined. PMID:27354155

  1. Evolution of small prokaryotic genomes

    PubMed Central

    Martínez-Cano, David J.; Reyes-Prieto, Mariana; Martínez-Romero, Esperanza; Partida-Martínez, Laila P.; Latorre, Amparo; Moya, Andrés; Delaye, Luis

    2015-01-01

    As revealed by genome sequencing, the biology of prokaryotes with reduced genomes is strikingly diverse. These include free-living prokaryotes with ∼800 genes as well as endosymbiotic bacteria with as few as ∼140 genes. Comparative genomics is revealing the evolutionary mechanisms that led to these small genomes. In the case of free-living prokaryotes, natural selection directly favored genome reduction, while in the case of endosymbiotic prokaryotes neutral processes played a more prominent role. However, new experimental data suggest that selective processes may be at operation as well for endosymbiotic prokaryotes at least during the first stages of genome reduction. Endosymbiotic prokaryotes have evolved diverse strategies for living with reduced gene sets inside a host-defined medium. These include utilization of host-encoded functions (some of them coded by genes acquired by gene transfer from the endosymbiont and/or other bacteria); metabolic complementation between co-symbionts; and forming consortiums with other bacteria within the host. Recent genome sequencing projects of intracellular mutualistic bacteria showed that previously believed universal evolutionary trends like reduced G+C content and conservation of genome synteny are not always present in highly reduced genomes. Finally, the simplified molecular machinery of some of these organisms with small genomes may be used to aid in the design of artificial minimal cells. Here we review recent genomic discoveries of the biology of prokaryotes endowed with small gene sets and discuss the evolutionary mechanisms that have been proposed to explain their peculiar nature. PMID:25610432

  2. Informational laws of genome structures.

    PubMed

    Bonnici, Vincenzo; Manca, Vincenzo

    2016-01-01

    In recent years, the analysis of genomes by means of strings of length k occurring in the genomes, called k-mers, has provided important insights into the basic mechanisms and design principles of genome structures. In the present study, we focus on the proper choice of the value of k for applying information theoretic concepts that express intrinsic aspects of genomes. The value k = lg2(n), where n is the genome length, is determined to be the best choice in the definition of some genomic informational indexes that are studied and computed for seventy genomes. These indexes, which are based on information entropies and on suitable comparisons with random genomes, suggest five informational laws, to which all of the considered genomes obey. Moreover, an informational genome complexity measure is proposed, which is a generalized logistic map that balances entropic and anti-entropic components of genomes and is related to their evolutionary dynamics. Finally, applications to computational synthetic biology are briefly outlined. PMID:27354155

  3. Comparative genomics of Brassicaceae crops.

    PubMed

    Sharma, Ashutosh; Li, Xiaonan; Lim, Yong Pyo

    2014-05-01

    The family Brassicaceae is one of the major groups of the plant kingdom and comprises diverse species of great economic, agronomic and scientific importance, including the model plant Arabidopsis. The sequencing of the Arabidopsis genome has revolutionized our knowledge in the field of plant biology and provides a foundation in genomics and comparative biology. Genomic resources have been utilized in Brassica for diversity analyses, construction of genetic maps and identification of agronomic traits. In Brassicaceae, comparative sequence analysis across the species has been utilized to understand genome structure, evolution and the detection of conserved genomic segments. In this review, we focus on the progress made in genetic resource development, genome sequencing and comparative mapping in Brassica and related species. The utilization of genomic resources and next-generation sequencing approaches in improvement of Brassica crops is also discussed. PMID:24987286

  4. Pharmacogenetics and personal genomes

    PubMed Central

    Wagner, Michael J

    2010-01-01

    While pharmacogenetics - the correlation of genotype and response to medicines - currently has a small but measurable impact on the prescribing practice of clinicians, the advent of the `personal genome' is likely to change this significantly. Advances in high-throughput technologies aimed at characterizing human genetic variation, including chip-based genotyping and next-generation sequencing, are poised to provide a flood of information that will affect both pharmacogenetic discovery and pharmacogenetic application in clinical practice. In order for this flood of information to not overwhelm both researchers and clinicians alike, a variety of new and expanded information management tools will be needed, including electronic medical records, bioinformatic algorithms for analyzing sequence data, information management systems for storing, retrieving and interpreting whole-genome sequence data, and pharmacogenetic decision tools for prescribers. PMID:20190862

  5. Viruses within animal genomes.

    PubMed

    De Brognier, A; Willems, L

    2016-04-01

    Viruses and their hosts can co-evolve to reach a fragile equilibrium that allows the survival of both. An excess of pathogenicity in the absence of a reservoir would be detrimental to virus survival. A significant proportion of all animal genomes has been shaped by the insertion of viruses that subsequently became 'fossilised'. Most endogenous viruses have lost the capacity to replicate via an infectious cycle and now replicate passively. The insertion of endogenous viruses has contributed to the evolution of animal genomes, for example in the reproductive biology of mammals. However, spontaneous viral integration still occasionally occurs in a number of virus-host systems. This constitutes a potential risk to host survival but also provides an opportunity for diversification and evolution.

  6. [Genomics in medicine].

    PubMed

    Ruiz Esparza-Garrido, Ruth; Velázquez-Flores, Miguel Angel; Arenas-Aranda, Diego Julio; Salamanca-Gómez, Fabio

    2014-01-01

    The development of new fields of study in genetics, as the -omic sciences (transcriptomics, proteomics, metabolomics), has allowed the study of the regulation and expression of genomes. Therefore, nowadays it is possible to study global alterations--in the whole genome--and their effect at the protein and metabolic levels. Importantly, this new way of studying genetics has opened new areas of knowledge, and new cellular mechanisms that regulate the functioning of biological systems have been elucidated. In the clinical field, in the last years new molecular tools have been implemented. These tools are favorable to a better classification, diagnosis and prognosis of several human diseases. Additionally, in some cases best treatments, which improve the quality of life of patients, have been established. Due to the previous assertion, it is important to review and divulge changes in the study of genetics as a result of the development of the -omic sciences, which is the aim of this review.

  7. [Genomics medicine and oncology].

    PubMed

    Michielin, Olivier; Coukos, George

    2014-05-01

    Progress in genomics with, in particular, high throughput next generation sequencing is revolutionizing oncology. The impact of these techniques is seen on the one hand the identification of germline mutations that predispose to a given type of cancer, allowing for a personalized care of patients or healthy carriers and, on the other hand, the characterization of all acquired somatic mutation of the tumor cell, opening the door to personalized treatment targeting the driver oncogenes. In both cases, next generation sequencing techniques allow a global approach whereby the integrality of the genome mutations is analyzed and correlated with the clinical data. The benefits on the quality of care delivered to our patients are extremely impressive. PMID:24800772

  8. Lessons from Structural Genomics*

    PubMed Central

    Terwilliger, Thomas C.; Stuart, David; Yokoyama, Shigeyuki

    2010-01-01

    A decade of structural genomics, the large-scale determination of protein structures, has generated a wealth of data and many important lessons for structural biology and for future large-scale projects. These lessons include a confirmation that it is possible to construct large-scale facilities that can determine the structures of a hundred or more proteins per year, that these structures can be of high quality, and that these structures can have an important impact. Technology development has played a critical role in structural genomics, the difficulties at each step of determining a structure of a particular protein can be quantified, and validation of technologies is nearly as important as the technologies themselves. Finally, rapid deposition of data in public databases has increased the impact and usefulness of the data and international cooperation has advanced the field and improved data sharing. PMID:19416074

  9. Profiling the cancer genome.

    PubMed

    Cowin, Prue A; Anglesio, Michael; Etemadmoghadam, Dariush; Bowtell, David D L

    2010-01-01

    Cancer profiling studies have had a profound impact on our understanding of the biology of cancers in a number of ways, including providing insights into the biological heterogeneity of specific cancer types, identification of novel oncogenes and tumor suppressors, and defining pathways that interact to drive the growth of individual cancers. Several large-scale genomic studies are underway that aim to catalog all biologically significant mutational events in each cancer type, and these findings will allow researchers to understand how mutational networks function within individual tumors. The identification of molecular predictive and prognostic tools to facilitate treatment decisions is an important step for individualized patient therapy and, ultimately, in improving patient outcomes. Whereas there are still significant challenges to implementing genomic testing and targeted therapy into routine clinical practice, rapid technological advancements provide hope for overcoming these obstacles.

  10. eGenomics: Cataloguing Our Complete Genome Collection III

    PubMed Central

    Field, Dawn; Garrity, George; Gray, Tanya; Selengut, Jeremy; Sterk, Peter; Thomson, Nick; Tatusova, Tatiana; Cochrane, Guy; Glöckner, Frank Oliver; Kottmann, Renzo; Lister, Allyson L.; Tateno, Yoshio; Vaughan, Robert

    2007-01-01

    This meeting report summarizes the proceedings of the “eGenomics: Cataloguing our Complete Genome Collection III” workshop held September 11–13, 2006, at the National Institute for Environmental eScience (NIEeS), Cambridge, United Kingdom. This 3rd workshop of the Genomic Standards Consortium was divided into two parts. The first half of the three-day workshop was dedicated to reviewing the genomic diversity of our current and future genome and metagenome collection, and exploring linkages to a series of existing projects through formal presentations. The second half was dedicated to strategic discussions. Outcomes of the workshop include a revised “Minimum Information about a Genome Sequence” (MIGS) specification (v1.1), consensus on a variety of features to be added to the Genome Catalogue (GCat), agreement by several researchers to adopt MIGS for imminent genome publications, and an agreement by the EBI and NCBI to input their genome collections into GCat for the purpose of quantifying the amount of optional data already available (e.g., for geographic location coordinates) and working towards a single, global list of all public genomes and metagenomes.

  11. Genomic landscape of liposarcoma.

    PubMed

    Kanojia, Deepika; Nagata, Yasunobu; Garg, Manoj; Lee, Dhong Hyun; Sato, Aiko; Yoshida, Kenichi; Sato, Yusuke; Sanada, Masashi; Mayakonda, Anand; Bartenhagen, Christoph; Klein, Hans-Ulrich; Doan, Ngan B; Said, Jonathan W; Mohith, S; Gunasekar, Swetha; Shiraishi, Yuichi; Chiba, Kenichi; Tanaka, Hiroko; Miyano, Satoru; Myklebost, Ola; Yang, Henry; Dugas, Martin; Meza-Zepeda, Leonardo A; Silberman, Allan W; Forscher, Charles; Tyner, Jeffrey W; Ogawa, Seishi; Koeffler, H Phillip

    2015-12-15

    Liposarcoma (LPS) is the most common type of soft tissue sarcoma accounting for 20% of all adult sarcomas. Due to absence of clinically effective treatment options in inoperable situations and resistance to chemotherapeutics, a critical need exists to identify novel therapeutic targets. We analyzed LPS genomic landscape using SNP arrays, whole exome sequencing and targeted exome sequencing to uncover the genomic information for development of specific anti-cancer targets. SNP array analysis indicated known amplified genes (MDM2, CDK4, HMGA2) and important novel genes (UAP1, MIR557, LAMA4, CPM, IGF2, ERBB3, IGF1R). Carboxypeptidase M (CPM), recurrently amplified gene in well-differentiated/de-differentiated LPS was noted as a putative oncogene involved in the EGFR pathway. Notable deletions were found at chromosome 1p (RUNX3, ARID1A), chromosome 11q (ATM, CHEK1) and chromosome 13q14.2 (MIR15A, MIR16-1). Significantly and recurrently mutated genes (false discovery rate < 0.05) included PLEC (27%), MXRA5 (21%), FAT3 (24%), NF1 (20%), MDC1 (10%), TP53 (7%) and CHEK2 (6%). Further, in vitro and in vivo functional studies provided evidence for the tumor suppressor role for Neurofibromin 1 (NF1) gene in different subtypes of LPS. Pathway analysis of recurrent mutations demonstrated signaling through MAPK, JAK-STAT, Wnt, ErbB, axon guidance, apoptosis, DNA damage repair and cell cycle pathways were involved in liposarcomagenesis. Interestingly, we also found mutational and copy number heterogeneity within a primary LPS tumor signifying the importance of multi-region sequencing for cancer-genome guided therapy. In summary, these findings provide insight into the genomic complexity of LPS and highlight potential druggable pathways for targeted therapeutic approach.

  12. Genomic landscape of liposarcoma

    PubMed Central

    Kanojia, Deepika; Nagata, Yasunobu; Garg, Manoj; Lee, Dhong Hyun; Sato, Aiko; Yoshida, Kenichi; Sato, Yusuke; Sanada, Masashi; Mayakonda, Anand; Bartenhagen, Christoph; Klein, Hans-Ulrich; Doan, Ngan B.; Said, Jonathan W.; Mohith, S.; Gunasekar, Swetha; Shiraishi, Yuichi; Chiba, Kenichi; Tanaka, Hiroko; Miyano, Satoru; Myklebost, Ola; Yang, Henry; Dugas, Martin; Meza-Zepeda, Leonardo A.; Silberman, Allan W.; Forscher, Charles; Tyner, Jeffrey W.; Ogawa, Seishi; Koeffler, H. Phillip

    2015-01-01

    Liposarcoma (LPS) is the most common type of soft tissue sarcoma accounting for 20% of all adult sarcomas. Due to absence of clinically effective treatment options in inoperable situations and resistance to chemotherapeutics, a critical need exists to identify novel therapeutic targets. We analyzed LPS genomic landscape using SNP arrays, whole exome sequencing and targeted exome sequencing to uncover the genomic information for development of specific anti-cancer targets. SNP array analysis indicated known amplified genes (MDM2, CDK4, HMGA2) and important novel genes (UAP1, MIR557, LAMA4, CPM, IGF2, ERBB3, IGF1R). Carboxypeptidase M (CPM), recurrently amplified gene in well-differentiated/de-differentiated LPS was noted as a putative oncogene involved in the EGFR pathway. Notable deletions were found at chromosome 1p (RUNX3, ARID1A), chromosome 11q (ATM, CHEK1) and chromosome 13q14.2 (MIR15A, MIR16-1). Significantly and recurrently mutated genes (false discovery rate < 0.05) included PLEC (27%), MXRA5 (21%), FAT3 (24%), NF1 (20%), MDC1 (10%), TP53 (7%) and CHEK2 (6%). Further, in vitro and in vivo functional studies provided evidence for the tumor suppressor role for Neurofibromin 1 (NF1) gene in different subtypes of LPS. Pathway analysis of recurrent mutations demonstrated signaling through MAPK, JAK-STAT, Wnt, ErbB, axon guidance, apoptosis, DNA damage repair and cell cycle pathways were involved in liposarcomagenesis. Interestingly, we also found mutational and copy number heterogeneity within a primary LPS tumor signifying the importance of multi-region sequencing for cancer-genome guided therapy. In summary, these findings provide insight into the genomic complexity of LPS and highlight potential druggable pathways for targeted therapeutic approach. PMID:26643872

  13. Genome sequencing conference II

    SciTech Connect

    Not Available

    1990-01-01

    Genome Sequencing Conference 2 was held September 30 to October 30, 1990. 26 speaker abstracts and 33 poster presentations were included in the program report. New and improved methods for DNA sequencing and genetic mapping were presented. Many of the papers were concerned with accuracy and speed of acquisition of data with computers and automation playing an increasing role. Individual papers have been processed separately for inclusion on the database.

  14. Clinical Genomic Database

    PubMed Central

    Solomon, Benjamin D.; Nguyen, Anh-Dao; Bear, Kelly A.; Wolfsberg, Tyra G.

    2013-01-01

    Technological advances have greatly increased the availability of human genomic sequencing. However, the capacity to analyze genomic data in a clinically meaningful way lags behind the ability to generate such data. To help address this obstacle, we reviewed all conditions with genetic causes and constructed the Clinical Genomic Database (CGD) (http://research.nhgri.nih.gov/CGD/), a searchable, freely Web-accessible database of conditions based on the clinical utility of genetic diagnosis and the availability of specific medical interventions. The CGD currently includes a total of 2,616 genes organized clinically by affected organ systems and interventions (including preventive measures, disease surveillance, and medical or surgical interventions) that could be reasonably warranted by the identification of pathogenic mutations. To aid independent analysis and optimize new data incorporation, the CGD also includes all genetic conditions for which genetic knowledge may affect the selection of supportive care, informed medical decision-making, prognostic considerations, reproductive decisions, and allow avoidance of unnecessary testing, but for which specific interventions are not otherwise currently available. For each entry, the CGD includes the gene symbol, conditions, allelic conditions, clinical categorization (for both manifestations and interventions), mode of inheritance, affected age group, description of interventions/rationale, links to other complementary databases, including databases of variants and presumed pathogenic mutations, and links to PubMed references (>20,000). The CGD will be regularly maintained and updated to keep pace with scientific discovery. Further content-based expert opinions are actively solicited. Eventually, the CGD may assist the rapid curation of individual genomes as part of active medical care. PMID:23696674

  15. Mapping the human genome

    SciTech Connect

    Annas, G.C.; Elias, S.

    1992-01-01

    This article is a review of the book Mapping the Human Genome: Using Law and Ethics as Guides, edited by George C. Annas and Sherman Elias. The book is a collection of essays on the subject of using ethics and laws as guides to justify human gene mapping. It addresses specific issues such problems related to eugenics, patents, insurance as well as broad issues such as the societal definitions of normality.

  16. Genomic landscape of liposarcoma.

    PubMed

    Kanojia, Deepika; Nagata, Yasunobu; Garg, Manoj; Lee, Dhong Hyun; Sato, Aiko; Yoshida, Kenichi; Sato, Yusuke; Sanada, Masashi; Mayakonda, Anand; Bartenhagen, Christoph; Klein, Hans-Ulrich; Doan, Ngan B; Said, Jonathan W; Mohith, S; Gunasekar, Swetha; Shiraishi, Yuichi; Chiba, Kenichi; Tanaka, Hiroko; Miyano, Satoru; Myklebost, Ola; Yang, Henry; Dugas, Martin; Meza-Zepeda, Leonardo A; Silberman, Allan W; Forscher, Charles; Tyner, Jeffrey W; Ogawa, Seishi; Koeffler, H Phillip

    2015-12-15

    Liposarcoma (LPS) is the most common type of soft tissue sarcoma accounting for 20% of all adult sarcomas. Due to absence of clinically effective treatment options in inoperable situations and resistance to chemotherapeutics, a critical need exists to identify novel therapeutic targets. We analyzed LPS genomic landscape using SNP arrays, whole exome sequencing and targeted exome sequencing to uncover the genomic information for development of specific anti-cancer targets. SNP array analysis indicated known amplified genes (MDM2, CDK4, HMGA2) and important novel genes (UAP1, MIR557, LAMA4, CPM, IGF2, ERBB3, IGF1R). Carboxypeptidase M (CPM), recurrently amplified gene in well-differentiated/de-differentiated LPS was noted as a putative oncogene involved in the EGFR pathway. Notable deletions were found at chromosome 1p (RUNX3, ARID1A), chromosome 11q (ATM, CHEK1) and chromosome 13q14.2 (MIR15A, MIR16-1). Significantly and recurrently mutated genes (false discovery rate < 0.05) included PLEC (27%), MXRA5 (21%), FAT3 (24%), NF1 (20%), MDC1 (10%), TP53 (7%) and CHEK2 (6%). Further, in vitro and in vivo functional studies provided evidence for the tumor suppressor role for Neurofibromin 1 (NF1) gene in different subtypes of LPS. Pathway analysis of recurrent mutations demonstrated signaling through MAPK, JAK-STAT, Wnt, ErbB, axon guidance, apoptosis, DNA damage repair and cell cycle pathways were involved in liposarcomagenesis. Interestingly, we also found mutational and copy number heterogeneity within a primary LPS tumor signifying the importance of multi-region sequencing for cancer-genome guided therapy. In summary, these findings provide insight into the genomic complexity of LPS and highlight potential druggable pathways for targeted therapeutic approach. PMID:26643872

  17. Marsupial and monotreme genomes.

    PubMed

    Koina, E; Fong, J; Graves, J A Marshall

    2006-01-01

    Marsupials and monotremes are 'alternative mammals', independent experiments of mammalian evolution that diverged from placental mammals 180 and 210 million years ago (MYA), respectively. Marsupials (e.g. kangaroo, opossum) and monotremes (e.g. platypus) differ from placental mammals in many characteristics, particularly reproduction. With their early divergence from placentals, they fill the phylogenetic gap between the mammal-reptile divergence 310 MYA and the placental radiation 100 MYA. Their genomes are similar in size to those of placentals, but their chromosomes are quite distinctive. Marsupials have a few very large and very conserved chromosomes, while monotremes show a reptile-like size dichotomy and have a unique chain of ten sex chromosomes. Studies of gene arrangement in marsupials and monotremes have delivered many surprises that necessitate re-evaluation of the function and control of several genes in all mammals including humans, and provide new insights into the evolution of the mammalian genome, particularly the sex chromosomes. With the imminent sequencing of the genomes of two marsupials (the short-tailed grey Brazilian opossum and an Australian model kangaroo) and the platypus, much more detailed comparisons become possible. Even the first few analyses of marsupial and platypus sequences confirm the value of sequence comparisons for finding new genes and regulatory regions and exploring their function, as well as deducing how they evolved. PMID:18753774

  18. Mapping the human genome

    SciTech Connect

    Cantor, Charles R.

    1989-06-01

    The following pages aim to lay a foundation for understanding the excitement surrounding the ''human genome project,'' as well as to convey a flavor of the ongoing efforts and plans at the Human Genome Center at the Lawrence Berkeley Laboratory. Our own work, of course, is only part of a broad international effort that will dramatically enhance our understanding of human molecular genetics before the end of this century. In this country, the bulk of the effort will be carried out under the auspices of the Department of Energy and the National Institutes of Health, but significant contributions have already been made both by nonprofit private foundations and by private corporation. The respective roles of the DOE and the NIH are being coordinated by an inter-agency committee, the aims of which are to emphasize the strengths of each agency, to facilitate cooperation, and to avoid unnecessary duplication of effort. The NIH, for example, will continue its crucial work in medical genetics and in mapping the genomes of nonhuman species. The DOE, on the other hand, has unique experience in managing large projects, and its national laboratories are repositories of expertise in physics, engineering, and computer science, as well as the life sciences. The tools and techniques the project will ultimately rely on are thus likely to be developed in multidisciplinary efforts at laboratories like LBL. Accordingly, we at LBL take great pride in this enterprise -- an enterprise that will eventually transform our understanding of ourselves.

  19. Aedes aegypti genomics.

    PubMed

    Severson, David W; Knudson, Dennis L; Soares, Marcelo B; Loftus, Brendan J

    2004-07-01

    The mosquito, Aedes aegypti, is the primary, worldwide arthropod vector for the yellow fever and dengue viruses. As it is also one of the most tractable mosquito species for laboratory studies, it has been and remains one of the most intensively studied arthropod species. This has resulted in the development of detailed genetic and physical maps for Ae. aegypti and considerable insight into its genome organization. The research community is well-advanced in developing important molecular tools that will facilitate a whole genome sequencing effort. This includes generation of BAC clone end sequences, physical mapping of selected BAC clones and generation of EST sequences. Whole genome sequence information for Ae. aegypti will provide important insight into mosquito chromosome evolution and allow for the identification of genes and gene function. These functions may be common to all mosquitoes or perhaps unique to individual species, possibly specific to host-seeking and blood-feeding behaviors, as well as the innate immune response to pathogens encountered during blood-feeding. This information will be invaluable to the global effort to develop novel strategies for preventing arthropod-borne disease transmission.

  20. Whole-genome sequencing for comparative genomics and de novo genome assembly.

    PubMed

    Benjak, Andrej; Sala, Claudia; Hartkoorn, Ruben C

    2015-01-01

    Next-generation sequencing technologies for whole-genome sequencing of mycobacteria are rapidly becoming an attractive alternative to more traditional sequencing methods. In particular this technology is proving useful for genome-wide identification of mutations in mycobacteria (comparative genomics) as well as for de novo assembly of whole genomes. Next-generation sequencing however generates a vast quantity of data that can only be transformed into a usable and comprehensible form using bioinformatics. Here we describe the methodology one would use to prepare libraries for whole-genome sequencing, and the basic bioinformatics to identify mutations in a genome following Illumina HiSeq or MiSeq sequencing, as well as de novo genome assembly following sequencing using Pacific Biosciences (PacBio).

  1. Genome of horsepox virus.

    PubMed

    Tulman, E R; Delhon, G; Afonso, C L; Lu, Z; Zsak, L; Sandybaev, N T; Kerembekova, U Z; Zaitsev, V L; Kutish, G F; Rock, D L

    2006-09-01

    Here we present the genomic sequence of horsepox virus (HSPV) isolate MNR-76, an orthopoxvirus (OPV) isolated in 1976 from diseased Mongolian horses. The 212-kbp genome contained 7.5-kbp inverted terminal repeats and lacked extensive terminal tandem repetition. HSPV contained 236 open reading frames (ORFs) with similarity to those in other OPVs, with those in the central 100-kbp region most conserved relative to other OPVs. Phylogenetic analysis of the conserved region indicated that HSPV is closely related to sequenced isolates of vaccinia virus (VACV) and rabbitpox virus, clearly grouping together these VACV-like viruses. Fifty-four HSPV ORFs likely represented fragments of 25 orthologous OPV genes, including in the central region the only known fragmented form of an OPV ribonucleotide reductase large subunit gene. In terminal genomic regions, HSPV lacked full-length homologues of genes variably fragmented in other VACV-like viruses but was unique in fragmentation of the homologue of VACV strain Copenhagen B6R, a gene intact in other known VACV-like viruses. Notably, HSPV contained in terminal genomic regions 17 kbp of OPV-like sequence absent in known VACV-like viruses, including fragments of genes intact in other OPVs and approximately 1.4 kb of sequence present only in cowpox virus (CPXV). HSPV also contained seven full-length genes fragmented or missing in other VACV-like viruses, including intact homologues of the CPXV strain GRI-90 D2L/I4R CrmB and D13L CD30-like tumor necrosis factor receptors, D3L/I3R and C1L ankyrin repeat proteins, B19R kelch-like protein, D7L BTB/POZ domain protein, and B22R variola virus B22R-like protein. These results indicated that HSPV contains unique genomic features likely contributing to a unique virulence/host range phenotype. They also indicated that while closely related to known VACV-like viruses, HSPV contains additional, potentially ancestral sequences absent in other VACV-like viruses.

  2. Genome-wide association and genomic selection in animal breeding.

    PubMed

    Hayes, Ben; Goddard, Mike

    2010-11-01

    Results from genome-wide association studies in livestock, and humans, has lead to the conclusion that the effect of individual quantitative trait loci (QTL) on complex traits, such as yield, are likely to be small; therefore, a large number of QTL are necessary to explain genetic variation in these traits. Given this genetic architecture, gains from marker-assisted selection (MAS) programs using only a small number of DNA markers to trace a limited number of QTL is likely to be small. This has lead to the development of alternative technology for using the available dense single nucleotide polymorphism (SNP) information, called genomic selection. Genomic selection uses a genome-wide panel of dense markers so that all QTL are likely to be in linkage disequilibrium with at least one SNP. The genomic breeding values are predicted to be the sum of the effect of these SNPs across the entire genome. In dairy cattle breeding, the accuracy of genomic estimated breeding values (GEBV) that can be achieved and the fact that these are available early in life have lead to rapid adoption of the technology. Here, we discuss the design of experiments necessary to achieve accurate prediction of GEBV in future generations in terms of the number of markers necessary and the size of the reference population where marker effects are estimated. We also present a simple method for implementing genomic selection using a genomic relationship matrix. Future challenges discussed include using whole genome sequence data to improve the accuracy of genomic selection and management of inbreeding through genomic relationships.

  3. The fungal genome initiative and lessons learned from genome sequencing.

    PubMed

    Cuomo, Christina A; Birren, Bruce W

    2010-01-01

    The sequence of Saccharomyces cerevisiae enabled systematic genome-wide experimental approaches, demonstrating the power of having the complete genome of an organism. The rapid impact of these methods on research in yeast mobilized an effort to expand genomic resources for other fungi. The "fungal genome initiative" represents an organized genome sequencing effort to promote comparative and evolutionary studies across the fungal kingdom. Through such an approach, scientists can not only better understand specific organisms but also illuminate the shared and unique aspects of fungal biology that underlie the importance of fungi in biomedical research, health, food production, and industry. To date, assembled genomes for over 100 fungi are available in public databases, and many more sequencing projects are underway. Here, we discuss both examples of findings from comparative analysis of fungal sequences, with a specific emphasis on yeast genomes, and on the analytical approaches taken to mine fungal genomes. New sequencing methods are accelerating comparative studies of fungi by reducing the cost and difficulty of sequencing. This has driven more common use of sequencing applications, such as to study genome-wide variation in populations or to deeply profile RNA transcripts. These and further technological innovations will continue to be piloted in yeasts and other fungi, and will expand the applications of sequencing to study fungal biology. PMID:20946837

  4. The Saccharomyces Genome Database: Exploring Genome Features and Their Annotations.

    PubMed

    Cherry, J Michael

    2015-12-01

    Genomic-scale assays result in data that provide information over the entire genome. Such base pair resolution data cannot be summarized easily except via a graphical viewer. A genome browser is a tool that displays genomic data and experimental results as horizontal tracks. Genome browsers allow searches for a chromosomal coordinate or a feature, such as a gene name, but they do not allow searches by function or upstream binding site. Entry into a genome browser requires that you identify the gene name or chromosomal coordinates for a region of interest. A track provides a representation for genomic results and is displayed as a row of data shown as line segments to indicate regions of the chromosome with a feature. Another type of track presents a graph or wiggle plot that indicates the processed signal intensity computed for a particular experiment or set of experiments. Wiggle plots are typical for genomic assays such as the various next-generation sequencing methods (e.g., chromatin immunoprecipitation [ChIP]-seq or RNA-seq), where it represents a peak of DNA binding, histone modification, or the mapping of an RNA sequence. Here we explore the browser that has been built into the Saccharomyces Genome Database (SGD).

  5. Genomic Data Commons and Genomic Cloud Pilots - Google Hangout

    Cancer.gov

    Join us for a live, moderated discussion about two NCI efforts to expand access to cancer genomics data: the Genomic Data Commons and Genomic Cloud Pilots. NCI subject matters experts will include Louis M. Staudt, M.D., Ph.D., Director Center for Cancer Genomics, Warren Kibbe, Ph.D., Director, NCI Center for Biomedical Informatics and Information Technology, and moderated by Anthony Kerlavage, Ph.D., Chief, Cancer Informatics Branch, Center for Biomedical Informatics and Information Technology. We welcome your questions before and during the Hangout on Twitter using the hashtag #AskNCI.

  6. The Anolis Lizard Genome: An Amniote Genome without Isochores?

    PubMed Central

    Costantini, Maria; Greif, Gonzalo; Alvarez-Valin, Fernando; Bernardi, Giorgio

    2016-01-01

    Two articles published 5 years ago concluded that the genome of the lizard Anolis carolinensis is an amniote genome without isochores. This claim was apparently contradicting previous results on the general presence of an isochore organization in all vertebrate genomes tested (including Anolis). In this investigation, we demonstrate that the Anolis genome is indeed heterogeneous in base composition, since its macrochromosomes comprise isochores mainly from the L2 and H1 families (a moderately GC-poor and a moderately GC-rich family, respectively), and since the majority of the sequenced microchromosomes consists of H1 isochores. These families are associated with different features of genome structure, including gene density and compositional correlations (e.g., GC3 vs flanking sequence GC and intron GC), as in the case of mammalian and avian genomes. Moreover, the assembled Anolis chromosomes have an enormous number of gaps, which could be due to sequencing problems in GC-rich regions of the genome. In conclusion, the Anolis genome is no exception to the general rule of an isochore organization in the genomes of vertebrates (and other eukaryotes). PMID:26992416

  7. The genome of Eucalyptus grandis.

    PubMed

    Myburg, Alexander A; Grattapaglia, Dario; Tuskan, Gerald A; Hellsten, Uffe; Hayes, Richard D; Grimwood, Jane; Jenkins, Jerry; Lindquist, Erika; Tice, Hope; Bauer, Diane; Goodstein, David M; Dubchak, Inna; Poliakov, Alexandre; Mizrachi, Eshchar; Kullan, Anand R K; Hussey, Steven G; Pinard, Desre; van der Merwe, Karen; Singh, Pooja; van Jaarsveld, Ida; Silva-Junior, Orzenil B; Togawa, Roberto C; Pappas, Marilia R; Faria, Danielle A; Sansaloni, Carolina P; Petroli, Cesar D; Yang, Xiaohan; Ranjan, Priya; Tschaplinski, Timothy J; Ye, Chu-Yu; Li, Ting; Sterck, Lieven; Vanneste, Kevin; Murat, Florent; Soler, Marçal; Clemente, Hélène San; Saidi, Naijib; Cassan-Wang, Hua; Dunand, Christophe; Hefer, Charles A; Bornberg-Bauer, Erich; Kersting, Anna R; Vining, Kelly; Amarasinghe, Vindhya; Ranik, Martin; Naithani, Sushma; Elser, Justin; Boyd, Alexander E; Liston, Aaron; Spatafora, Joseph W; Dharmwardhana, Palitha; Raja, Rajani; Sullivan, Christopher; Romanel, Elisson; Alves-Ferreira, Marcio; Külheim, Carsten; Foley, William; Carocha, Victor; Paiva, Jorge; Kudrna, David; Brommonschenkel, Sergio H; Pasquali, Giancarlo; Byrne, Margaret; Rigault, Philippe; Tibbits, Josquin; Spokevicius, Antanas; Jones, Rebecca C; Steane, Dorothy A; Vaillancourt, René E; Potts, Brad M; Joubert, Fourie; Barry, Kerrie; Pappas, Georgios J; Strauss, Steven H; Jaiswal, Pankaj; Grima-Pettenati, Jacqueline; Salse, Jérôme; Van de Peer, Yves; Rokhsar, Daniel S; Schmutz, Jeremy

    2014-06-19

    Eucalypts are the world's most widely planted hardwood trees. Their outstanding diversity, adaptability and growth have made them a global renewable resource of fibre and energy. We sequenced and assembled >94% of the 640-megabase genome of Eucalyptus grandis. Of 36,376 predicted protein-coding genes, 34% occur in tandem duplications, the largest proportion thus far in plant genomes. Eucalyptus also shows the highest diversity of genes for specialized metabolites such as terpenes that act as chemical defence and provide unique pharmaceutical oils. Genome sequencing of the E. grandis sister species E. globulus and a set of inbred E. grandis tree genomes reveals dynamic genome evolution and hotspots of inbreeding depression. The E. grandis genome is the first reference for the eudicot order Myrtales and is placed here sister to the eurosids. This resource expands our understanding of the unique biology of large woody perennials and provides a powerful tool to accelerate comparative biology, breeding and biotechnology.

  8. Domestication genomics: evidence from animals.

    PubMed

    Wang, Guo-Dong; Xie, Hai-Bing; Peng, Min-Sheng; Irwin, David; Zhang, Ya-Ping

    2014-02-01

    Animal domestication has far-reaching significance for human society. The sequenced genomes of domesticated animals provide critical resources for understanding the genetic basis of domestication. Various genomic analyses have shed a new light on the mechanism of artificial selection and have allowed the mapping of genes involved in important domestication traits. Here, we summarize the published genomes of domesticated animals that have been generated over the past decade, as well as their origins, from a phylogenomic point of view. This review provides a general description of the genomic features encountered under a two-stage domestication process. We also introduce recent findings for domestication traits based on results from genome-wide association studies and selective-sweep scans for artificially selected genomic regions. Particular attention is paid to issues relating to the costs of domestication and the convergent evolution of genes between domesticated animals and humans.

  9. Big Data: Astronomical or Genomical?

    PubMed

    Stephens, Zachary D; Lee, Skylar Y; Faghri, Faraz; Campbell, Roy H; Zhai, Chengxiang; Efron, Miles J; Iyer, Ravishankar; Schatz, Michael C; Sinha, Saurabh; Robinson, Gene E

    2015-07-01

    Genomics is a Big Data science and is going to get much bigger, very soon, but it is not known whether the needs of genomics will exceed other Big Data domains. Projecting to the year 2025, we compared genomics with three other major generators of Big Data: astronomy, YouTube, and Twitter. Our estimates show that genomics is a "four-headed beast"--it is either on par with or the most demanding of the domains analyzed here in terms of data acquisition, storage, distribution, and analysis. We discuss aspects of new technologies that will need to be developed to rise up and meet the computational challenges that genomics poses for the near future. Now is the time for concerted, community-wide planning for the "genomical" challenges of the next decade.

  10. Big Data: Astronomical or Genomical?

    PubMed

    Stephens, Zachary D; Lee, Skylar Y; Faghri, Faraz; Campbell, Roy H; Zhai, Chengxiang; Efron, Miles J; Iyer, Ravishankar; Schatz, Michael C; Sinha, Saurabh; Robinson, Gene E

    2015-07-01

    Genomics is a Big Data science and is going to get much bigger, very soon, but it is not known whether the needs of genomics will exceed other Big Data domains. Projecting to the year 2025, we compared genomics with three other major generators of Big Data: astronomy, YouTube, and Twitter. Our estimates show that genomics is a "four-headed beast"--it is either on par with or the most demanding of the domains analyzed here in terms of data acquisition, storage, distribution, and analysis. We discuss aspects of new technologies that will need to be developed to rise up and meet the computational challenges that genomics poses for the near future. Now is the time for concerted, community-wide planning for the "genomical" challenges of the next decade. PMID:26151137

  11. Mosquito genomics: progress and challenges.

    PubMed

    Severson, David W; Behura, Susanta K

    2012-01-01

    The whole-genome sequencing of mosquitoes has facilitated our understanding of fundamental biological processes at their basic molecular levels and holds potential for application to mosquito control and prevention of mosquito-borne disease transmission. Draft genome sequences are available for Anopheles gambiae, Aedes aegypti, and Culex quinquefasciatus. Collectively, these represent the major vectors of African malaria, dengue fever and yellow fever viruses, and lymphatic filariasis, respectively. Rapid advances in genome technologies have revealed detailed information on genome architecture as well as phenotype-specific transcriptomics and proteomics. These resources allow for detailed comparative analyses within and across populations as well as species. Next-generation sequencing technologies will likely promote a proliferation of genome sequences for additional mosquito species as well as for individual insects. Here we review the current status of genome research in mosquitoes and identify potential areas for further investigations.

  12. The Giardia genome project database.

    PubMed

    McArthur, A G; Morrison, H G; Nixon, J E; Passamaneck, N Q; Kim, U; Hinkle, G; Crocker, M K; Holder, M E; Farr, R; Reich, C I; Olsen, G E; Aley, S B; Adam, R D; Gillin, F D; Sogin, M L

    2000-08-15

    The Giardia genome project database provides an online resource for Giardia lamblia (WB strain, clone C6) genome sequence information. The database includes edited single-pass reads, the results of BLASTX searches, and details of progress towards sequencing the entire 12 million-bp Giardia genome. Pre-sorted BLASTX results can be retrieved based on keyword searches and BLAST searches of the high throughput Giardia data can be initiated from the web site or through NCBI. Descriptions of the genomic DNA libraries, project protocols and summary statistics are also available. Although the Giardia genome project is ongoing, new sequences are made available on a bi-monthly basis to ensure that researchers have access to information that may assist them in the search for genes and their biological function. The current URL of the Giardia genome project database is www.mbl.edu/Giardia.

  13. Programs | Office of Cancer Genomics

    Cancer.gov

    OCG facilitates cancer genomics research through a series of highly-focused programs. These programs generate and disseminate genomic data for use by the cancer research community. OCG programs also promote advances in technology-based infrastructure and create valuable experimental reagents and tools. OCG programs encourage collaboration by interconnecting with other genomics and cancer projects in order to accelerate translation of findings into the clinic. Below are OCG’s current, completed, and initiated programs:

  14. Genomics Nursing Faculty Champion Initiative

    PubMed Central

    Jenkins, Jean; Calzone, Kathleen A.

    2016-01-01

    Nurse faculty are challenged to keep up with the emerging and fast-paced field of genomics and the mandate to prepare the nursing workforce to be able to translate genomic research advances into routine clinical care. Using Faculty Champions and other options, the initiative stimulated curriculum development and promoted genomics curriculum integration. The authors summarize this yearlong initiative for undergraduate and graduate nursing faculty. PMID:24300251

  15. Fungal Genome Sequencing and Bioenergy

    SciTech Connect

    Baker, Scott E.; Thykaer, Jette; Adney, William S.; Brettin, T.; Brockman, Fred J.; D'haeseleer, Patrik; Martinez, Antonio D.; Miller, R. M.; Rokhsar, Daniel S.; Schadt, Christopher W.; Torok, Tamas; Tuskan, Gerald; Bennett, Joan W.; Berka, Randy; Briggs, Steve; Heitman, Joseph; Taylor, John; Turgeon, Barbara G.; Werner-Washburne, Maggie; Himmel, Michael E.

    2008-09-30

    To date, the number of ongoing filamentous fungal genome sequencing projects is almost tenfold fewer than those of bacterial and archaeal genome projects. The fungi chosen for sequencing represent narrow kingdom diversity; most are pathogens or models. We advocate an ambitious, forward-looking phylogenetic-based genome sequencing program, designed to capture metabolic diversity within the fungal kingdom, thereby enhancing research into alternative bioenergy sources, bioremediation, and fungal-environment interactions.

  16. Fungal Genome Sequencing and Bioenergy

    SciTech Connect

    Baker, Scott; Thykaer, Jette; Adney, William S; Brettin, Tom; Brockman, Fred; Dhaeseleer, Patrick; Martinez, A diego; Miller, R michael; Rokhsar, Daniel; Schadt, Christopher Warren; Torok, Tamas; Tuskan, Gerald A; Bennett, Joan; Berka, Randy; Briggs, Steven; Heitman, Joseph; Taylor, John; Turgeon, Gillian; Werner-Washburne, Maggie; Himmel, Michael E

    2008-01-01

    To date, the number of ongoing filamentous fungal genome sequencing projects is almost tenfold fewer than those of bacterial and archaeal genome projects. The fungi chosen for sequencing represent narrow kingdom diversity; most are pathogens or models. We advocate an ambitious, forward-looking phylogenetic-based genome sequencing program, designed to capture metabolic diversity within the fungal kingdom, thereby enhancing research into alternative bioenergy sources, bioremediation, and fungal-environment interactions. Published by Elsevier Ltd on behalf of The British Mycological Society.

  17. Fungal Genome Sequencing and Bioenergy

    SciTech Connect

    Schadt, Christopher Warren; Baker, Scott; Thykaer, Jette; Adney, William S; Brettin, Tom; Brockman, Fred; Dhaeseleer, Patrick; Martinez, A diego; Miller, R michael; Rokhsar, Daniel; Torok, Tamas; Tuskan, Gerald A; Bennett, Joan; Berka, Randy; Briggs, Steven; Heitman, Joseph; Rizvi, L; Taylor, John; Turgeon, Gillian; Werner-Washburne, Maggie; Himmel, Michael

    2008-01-01

    To date, the number of ongoing filamentous fungal genome sequencing projects is almost tenfold fewer than those of bacterial and archaeal genome projects. The fungi chosen for sequencing represent narrow kingdom diversity; most are pathogens or models. We advocate an ambitious, forward-looking phylogenetic-based genome sequencing program, designed to capture metabolic diversity within the fungal kingdom, thereby enhancing research into alternative bioenergy sources, bioremediation, and fungal-environment interactions.

  18. Genomics of Bacillus Species

    NASA Astrophysics Data System (ADS)

    Økstad, Ole Andreas; Kolstø, Anne-Brit

    Members of the genus Bacillus are rod-shaped spore-forming bacteria belonging to the Firmicutes, the low G+C gram-positive bacteria. The Bacillus genus was first described and classified by Ferdinand Cohn in Cohn (1872), and Bacillus subtilis was defined as the type species (Soule, 1932). Several Bacilli may be linked to opportunistic infections. However, pathogenicity among Bacillus spp. is mainly a feature of bacteria belonging to the Bacillus cereus group, including B. cereus, Bacillus anthracis, and Bacillus thuringiensis. Here we review the genomics of B. cereus group bacteria in relation to their roles as etiological agents of two food poisoning syndromes (emetic and diarrhoeal).

  19. Bacterial genome reengineering.

    PubMed

    Zhou, Jindan; Rudd, Kenneth E

    2011-01-01

    The web application PrimerPair at ecogene.org generates large sets of paired DNA sequences surrounding- all protein and RNA genes of Escherichia coli K-12. Many DNA fragments, which these primers amplify, can be used to implement a genome reengineering strategy using complementary in vitro cloning and in vivo recombineering. The integration of a primer design tool with a model organism database increases the level of quality control. Computer-assisted design of gene primer pairs relies upon having highly accurate genomic DNA sequence information that exactly matches the DNA of the cells being used in the laboratory to ensure predictable DNA hybridizations. It is equally crucial to have confidence that the predicted start codons define the locations of genes accurately. Annotations in the EcoGene database are queried by PrimerPair to eliminate pseudogenes, IS elements, and other problematic genes before the design process starts. These projects progressively familiarize users with the EcoGene content, scope, and application interfaces that are useful for genome reengineering projects. The first protocol leads to the design of a pair of primer sequences that were used to clone and express a single gene. The N-terminal protein sequence was experimentally verified and the protein was detected in the periplasm. This is followed by instructions to design PCR primer pairs for cloning gene fragments encoding 50 periplasmic proteins without their signal peptides. The design process begins with the user simply designating one pair of forward and reverse primer endpoint positions relative to all start and stop codon positions. The gene name, genomic coordinates, and primer DNA sequences are reported to the user. When making chromosomal deletions, the integrity of the provisional primer design is checked to see whether it will generate any unwanted double deletions with adjacent genes. The bad designs are recalculated and replacement primers are provided alongside the

  20. The human genome project

    SciTech Connect

    Bell, G.I.

    1991-06-01

    The Human Genome Project will obtain high-resolution genetic and physical maps of each human chromosome and, somewhat later, of the complete nucleotide sequence of the deoxyribonucleic acid (DNA) in a human cell. The talk will begin with an extended introduction to explain the Project to nonbiologists and to show that map construction and sequence determination require extensive computation in order to determine the correct order of the mapped entities and to provide estimates of uncertainty. Computational analysis of the sequence data will become an increasingly important part of the project, and some computational challenges are described. 5 refs.

  1. Theory of prokaryotic genome evolution

    PubMed Central

    Sela, Itamar; Wolf, Yuri I.; Koonin, Eugene V.

    2016-01-01

    Bacteria and archaea typically possess small genomes that are tightly packed with protein-coding genes. The compactness of prokaryotic genomes is commonly perceived as evidence of adaptive genome streamlining caused by strong purifying selection in large microbial populations. In such populations, even the small cost incurred by nonfunctional DNA because of extra energy and time expenditure is thought to be sufficient for this extra genetic material to be eliminated by selection. However, contrary to the predictions of this model, there exists a consistent, positive correlation between the strength of selection at the protein sequence level, measured as the ratio of nonsynonymous to synonymous substitution rates, and microbial genome size. Here, by fitting the genome size distributions in multiple groups of prokaryotes to predictions of mathematical models of population evolution, we show that only models in which acquisition of additional genes is, on average, slightly beneficial yield a good fit to genomic data. These results suggest that the number of genes in prokaryotic genomes reflects the equilibrium between the benefit of additional genes that diminishes as the genome grows and deletion bias (i.e., the rate of deletion of genetic material being slightly greater than the rate of acquisition). Thus, new genes acquired by microbial genomes, on average, appear to be adaptive. The tight spacing of protein-coding genes likely results from a combination of the deletion bias and purifying selection that efficiently eliminates nonfunctional, noncoding sequences. PMID:27702904

  2. Preemptive public policy for genomics.

    PubMed

    Carlson, Rick J

    2008-02-01

    To many, genomics is merely exploitable technology for the leviathan of biotechnology. This is both shallow and short sighted. Genomics is applied knowledge based on profound and evolving science about how living things develop, how healthy or sick we are, and what our future will be like. In health care, genomics technologies are disruptive yet potentially cost-effective because they enable primary prevention, the antidote to runaway costs and declining productivity. The challenges to integration are great, however, and many bioethical and social-policy implications are alarming. Because it is poorly understood today, we must debate genomics vigorously if we are to act wisely. Public policy must lead.

  3. Genomic medicine and neurological disease

    PubMed Central

    Boone, Philip M.; Wiszniewski, Wojciech; Lupski, James R.

    2011-01-01

    Genomic medicine” refers to the diagnosis, optimized management, and treatment of disease—as well as screening, counseling, and disease gene identification—in the context of information provided by an individual patient’s personal genome. Genomic medicine, to some extent synonymous with “personalized medicine,” has been made possible by recent advances in genome technologies. Genomic medicine represents a new approach to health care and disease management that attempts to optimize the care of a patient based upon information gleaned from his or her personal genome sequence. In this review, we describe recent progress in genomic medicine as it relates to neurological disease. Many neurological disorders either segregate as Mendelian phenotypes or occur sporadically in association with a new mutation in a single gene. Heritability also contributes to other neurological conditions that appear to exhibit more complex genetics. In addition to discussing current knowledge in this field, we offer suggestions for maximizing the utility of genomic information in clinical practice as the field of genomic medicine unfolds. PMID:21594611

  4. Insights into structural variations and genome rearrangements in prokaryotic genomes.

    PubMed

    Periwal, Vinita; Scaria, Vinod

    2015-01-01

    Structural variations (SVs) are genomic rearrangements that affect fairly large fragments of DNA. Most of the SVs such as inversions, deletions and translocations have been largely studied in context of genetic diseases in eukaryotes. However, recent studies demonstrate that genome rearrangements can also have profound impact on prokaryotic genomes, leading to altered cell phenotype. In contrast to single-nucleotide variations, SVs provide a much deeper insight into organization of bacterial genomes at a much better resolution. SVs can confer change in gene copy number, creation of new genes, altered gene expression and many other functional consequences. High-throughput technologies have now made it possible to explore SVs at a much refined resolution in bacterial genomes. Through this review, we aim to highlight the importance of the less explored field of SVs in prokaryotic genomes and their impact. We also discuss its potential applicability in the emerging fields of synthetic biology and genome engineering where targeted SVs could serve to create sophisticated and accurate genome editing.

  5. Parsing of genomic graffiti

    SciTech Connect

    Tibbetts, C.; Golden, J. III; Torgersen, D.

    1996-12-31

    A focal point of modern biology is investigation of wide varieties of phenomena at the level of molecular genetics. The nucleotide sequences of deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) define the ultimate resolution of this reductionist approach to understand the determinants of heritable traits. The structure and function of genes, their composite genomic organization, and their regulated expression have been studied in systems representing every class of organism. Many human diseases or pathogenic syndromes can be directly attributed to inherited defects in either the regulated expression, or the quality of the products of specific genes. Genetic determinants of susceptibility to infectious agents or environmental hazards are amply documented. Mapping and sequencing of the DNA molecules encoding human genes have provided powerful technology for pharmaceutical bioengineering and forensic investigations. From an alternative perspective, we may anticipate that voluminous archives of singular DNA sequences alone will not suffice to define and understand the functional determinants of genome organization, allelic diversity and evolutionary plasticity of living organisms. New insights will accumulate pertaining to human evolutionary origins and relationships of human biology to models based on other mammals. Investigators of population genetics and epidemiology now exploit the technology of molecular genetics to more powerfully probe variation within the human gene pool at the level of DNA sequences. 40 refs., 7 figs., 2 tabs.

  6. Genomics of human longevity.

    PubMed

    Slagboom, P E; Beekman, M; Passtoors, W M; Deelen, J; Vaarhorst, A A M; Boer, J M; van den Akker, E B; van Heemst, D; de Craen, A J M; Maier, A B; Rozing, M; Mooijaart, S P; Heijmans, B T; Westendorp, R G J

    2011-01-12

    In animal models, single-gene mutations in genes involved in insulin/IGF and target of rapamycin signalling pathways extend lifespan to a considerable extent. The genetic, genomic and epigenetic influences on human longevity are expected to be much more complex. Strikingly however, beneficial metabolic and cellular features of long-lived families resemble those in animals for whom the lifespan is extended by applying genetic manipulation and, especially, dietary restriction. Candidate gene studies in humans support the notion that human orthologues from longevity genes identified in lower species do contribute to longevity but that the influence of the genetic variants involved is small. Here we discuss how an integration of novel study designs, labour-intensive biobanking, deep phenotyping and genomic research may provide insights into the mechanisms that drive human longevity and healthy ageing, beyond the associations usually provided by molecular and genetic epidemiology. Although prospective studies of humans from the cradle to the grave have never been performed, it is feasible to extract life histories from different cohorts jointly covering the molecular changes that occur with age from early development all the way up to the age at death. By the integration of research in different study cohorts, and with research in animal models, biological research into human longevity is thus making considerable progress.

  7. A Taste of Algal Genomes from the Joint Genome Institute

    SciTech Connect

    Kuo, Alan; Grigoriev, Igor

    2012-06-17

    Algae play profound roles in aquatic food chains and the carbon cycle, can impose health and economic costs through toxic blooms, provide models for the study of symbiosis, photosynthesis, and eukaryotic evolution, and are candidate sources for bio-fuels; all of these research areas are part of the mission of DOE's Joint Genome Institute (JGI). To date JGI has sequenced, assembled, annotated, and released to the public the genomes of 18 species and strains of algae, sampling almost all of the major clades of photosynthetic eukaryotes. With more algal genomes currently undergoing analysis, JGI continues its commitment to driving forward basic and applied algal science. Among these ongoing projects are the pan-genome of the dominant coccolithophore Emiliania huxleyi, the interrelationships between the 4 genomes in the nucleomorph-containing Bigelowiella natans and Guillardia theta, and the search for symbiosis genes of lichens.

  8. Human Genome Program Image Gallery (from genomics.energy.gov)

    DOE Data Explorer

    This collection contains approximately 240 images from the genome programs of DOE's Office of Science. The images are divided into galleries related to biofuels research, systems biology, and basic genomics. Each image has a title, a basic citation, and a credit or source. Most of the images are original graphics created by the Genome Management Information System (GMIS). GMIS images are recognizable by their credit line. Permission to use these graphics is not needed, but please credit the U.S. Department of Energy Genome Programs and provide the website http://genomics.energy.gov. Other images were provided by third parties and not created by the U.S. Department of Energy. Users must contact the person listed in the credit line before using those images. The high-resolution images can be downloaded.

  9. Genomicus: five genome browsers for comparative genomics in eukaryota.

    PubMed

    Louis, Alexandra; Muffato, Matthieu; Roest Crollius, Hugues

    2013-01-01

    Genomicus (http://www.dyogen.ens.fr/genomicus/) is a database and an online tool that allows easy comparative genomic visualization in >150 eukaryote genomes. It provides a way to explore spatial information related to gene organization within and between genomes and temporal relationships related to gene and genome evolution. For the specific vertebrate phylum, it also provides access to ancestral gene order reconstructions and conserved non-coding elements information. We extended the Genomicus database originally dedicated to vertebrate to four new clades, including plants, non-vertebrate metazoa, protists and fungi. This visualization tool allows evolutionary phylogenomics analysis and exploration. Here, we describe the graphical modules of Genomicus and show how it is capable of revealing differential gene loss and gain, segmental or genome duplications and study the evolution of a locus through homology relationships.

  10. u-Genome: a database on genome design in unicellular genomes.

    PubMed

    Sakharkar, Kishore Ramaji; Chaturvedi, Iti; Chow, Vincent T K; Kwoh, Chee Keong; Kangueane, Pandjassarame; Sakharkar, Meena Kishore

    2005-01-01

    Unicellular eukaryotes were among the first ones to be selected for complete genome sequencing because of the small size of their genomes and their interactions with humans and a broad range of animals and plants. Currently, ten completely sequenced unicellular genome sequences have been publicly released and as the number of available unicellular genomes increases, comparative genomics analysis within this group of organisms becomes more and more instructive. However, such an analysis is difficult to carry out without a suitable platform gathering not only the original annotations but also relevant information available in public databases or obtained by applying common bioinformatics methods. With the aim of solving these difficulties, we have developed a web-accessible database named u-Genome, the unicellular genome design database. The database is unique in featuring three datasets namely (1) orthologous proteins (2) paralogous proteins and (3) statistical distributions on exons, introns, intergenic DNA and correlations between them. A tool, Uniview, designed to visualize the gene structures for individual genes in the genome is also integrated. This database is of importance in understanding unicellular genome design and architecture and evolution related studies. The database is available through a web interface at http://sege.ntu.edu.sg/wester/ugenome.

  11. Synthetic hexaploid wheat and its utilization for wheat genetic improvement in China.

    PubMed

    Yang, Wuyun; Liu, Dengcai; Li, Jun; Zhang, Lianquan; Wei, Huiting; Hu, Xiaorong; Zheng, Youliang; He, Zhouhu; Zou, Yuchun

    2009-09-01

    Synthetic hexaploid wheat (Triticum turgidumxAegilops tauschii) was created to explore for novel genes from T. turgidum and Ae. tauschii that can be used for common wheat improvement. In the present paper, research advances on the utilization of synthetic hexaploid wheat for wheat genetic improvement in China are reviewed. Over 200 synthetic hexaploid wheat (SHW) accessions from the International Maize and Wheat Improvement Centre (CIMMYT) were introduced into China since 1995. Four cultivars derived from these, Chuanmai 38, Chuanmai 42, Chuanmai 43 and Chuanmai 47, have been released in China. Of these, Chuanmai 42, with large kernels and resistance to stripe rust, had the highest average yield (>6 t/ha) among all cultivars over two years in Sichuan provincial yield trials, outyielding the commercial check cultivar Chuanmai 107 by 22.7%. Meanwhile, by either artificial chromosome doubling via colchicine treatment or spontaneous chromosome doubling via a union of unreduced gametes (2n) from T. turgidum-Ae. tauschii hybrids, new SHW lines were produced in China. Mitotic-like meiosis might be the cytological mechanism of spontaneous chromosome doubling. SHW lines with genes for spontaneous chromosome doubling may be useful for producing new SHW-alien amphidiploids and double haploid in wheat genetic improvement. PMID:19782955

  12. OryzaGenome: Genome Diversity Database of Wild Oryza Species.

    PubMed

    Ohyanagi, Hajime; Ebata, Toshinobu; Huang, Xuehui; Gong, Hao; Fujita, Masahiro; Mochizuki, Takako; Toyoda, Atsushi; Fujiyama, Asao; Kaminuma, Eli; Nakamura, Yasukazu; Feng, Qi; Wang, Zi-Xuan; Han, Bin; Kurata, Nori

    2016-01-01

    The species in the genus Oryza, encompassing nine genome types and 23 species, are a rich genetic resource and may have applications in deeper genomic analyses aiming to understand the evolution of plant genomes. With the advancement of next-generation sequencing (NGS) technology, a flood of Oryza species reference genomes and genomic variation information has become available in recent years. This genomic information, combined with the comprehensive phenotypic information that we are accumulating in our Oryzabase, can serve as an excellent genotype-phenotype association resource for analyzing rice functional and structural evolution, and the associated diversity of the Oryza genus. Here we integrate our previous and future phenotypic/habitat information and newly determined genotype information into a united repository, named OryzaGenome, providing the variant information with hyperlinks to Oryzabase. The current version of OryzaGenome includes genotype information of 446 O. rufipogon accessions derived by imputation and of 17 accessions derived by imputation-free deep sequencing. Two variant viewers are implemented: SNP Viewer as a conventional genome browser interface and Variant Table as a text-based browser for precise inspection of each variant one by one. Portable VCF (variant call format) file or tab-delimited file download is also available. Following these SNP (single nucleotide polymorphism) data, reference pseudomolecules/scaffolds/contigs and genome-wide variation information for almost all of the closely and distantly related wild Oryza species from the NIG Wild Rice Collection will be available in future releases. All of the resources can be accessed through http://viewer.shigen.info/oryzagenome/. PMID:26578696

  13. Meeting our friend, the genome.

    PubMed

    Kirby, M

    1998-01-01

    (1) Encounter with the genome. (2) Difficulties in the path. (3) Legal and ethical implications. (4) Patenting genes. (5) The genome and evolution. (6) An adjunct to medicine or a new world? (7) Forbidden territory or the next step for humanity? (8) Informed decisions.

  14. Fueling Future with Algal Genomics

    SciTech Connect

    Grigoriev, Igor

    2012-07-05

    Algae constitute a major component of fundamental eukaryotic diversity, play profound roles in the carbon cycle, and are prominent candidates for biofuel production. The US Department of Energy Joint Genome Institute (JGI) is leading the world in algal genome sequencing (http://jgi.doe.gov/Algae) and contributes of the algal genome projects worldwide (GOLD database, 2012). The sequenced algal genomes offer catalogs of genes, networks, and pathways. The sequenced first of its kind genomes of a haptophyte E.huxleyii, chlorarachniophyte B.natans, and cryptophyte G.theta fill the gaps in the eukaryotic tree of life and carry unique genes and pathways as well as molecular fossils of secondary endosymbiosis. Natural adaptation to conditions critical for industrial production is encoded in algal genomes, for example, growth of A.anophagefferens at very high cell densities during the harmful algae blooms or a global distribution across diverse environments of E.huxleyii, able to live on sparse nutrients due to its expanded pan-genome. Communications and signaling pathways can be derived from simple symbiotic systems like lichens or complex marine algae metagenomes. Collectively these datasets derived from algal genomics contribute to building a comprehensive parts list essential for algal biofuel development.

  15. From genes to genome biology

    SciTech Connect

    Pennisi, E.

    1996-06-21

    This article describes a change in the approach to mapping genomes, from looking at one gene at a time, to other approaches. Strategies include everything from lab techniques to computer programs designed to analyze whole batches of genes at once. Also included is a update on the work on the human genome.

  16. Genomic medicine: too great expectations?

    PubMed

    O'Rourke, P P

    2013-08-01

    As advances in genomic medicine have captured the interest and enthusiasm of the public, an unintended consequence has been the creation of unrealistic expectations. Because these expectations may have a negative impact on individuals as well as genomics in general, it is important that they be understood and confronted.

  17. Genome rearrangements: mother knows best!

    PubMed

    Chalker, Douglas L

    2005-10-25

    In Paramecium, developmentally programmed genome rearrangements can be altered by the presence of homologous sequences within the maternal somatic nucleus. Newly identified RNA-binding proteins appear to mediate the transfer of homologous sequence information from the maternal to the developing somatic nucleus, facilitating epigenetic regulation of this large-scale genome reorganization. PMID:16243019

  18. Cloud computing for comparative genomics

    PubMed Central

    2010-01-01

    Background Large comparative genomics studies and tools are becoming increasingly more compute-expensive as the number of available genome sequences continues to rise. The capacity and cost of local computing infrastructures are likely to become prohibitive with the increase, especially as the breadth of questions continues to rise. Alternative computing architectures, in particular cloud computing environments, may help alleviate this increasing pressure and enable fast, large-scale, and cost-effective comparative genomics strategies going forward. To test this, we redesigned a typical comparative genomics algorithm, the reciprocal smallest distance algorithm (RSD), to run within Amazon's Elastic Computing Cloud (EC2). We then employed the RSD-cloud for ortholog calculations across a wide selection of fully sequenced genomes. Results We ran more than 300,000 RSD-cloud processes within the EC2. These jobs were farmed simultaneously to 100 high capacity compute nodes using the Amazon Web Service Elastic Map Reduce and included a wide mix of large and small genomes. The total computation time took just under 70 hours and cost a total of $6,302 USD. Conclusions The effort to transform existing comparative genomics algorithms from local compute infrastructures is not trivial. However, the speed and flexibility of cloud computing environments provides a substantial boost with manageable cost. The procedure designed to transform the RSD algorithm into a cloud-ready application is readily adaptable to similar comparative genomics problems. PMID:20482786

  19. Speciation: Genomic Archipelagos in a Crater Lake.

    PubMed

    Ronco, Fabrizia; Salzburger, Walter

    2016-03-01

    The opening stages of speciation remain poorly understood, especially from a genomic perspective. The genomes of newly discovered crater-lake cichlid fish shed light on the early phases of diversification and suggest that selection acts on multiple genomic regions.

  20. All about the Human Genome Project (HGP)

    MedlinePlus

    ... full human sequence All About The Human Genome Project (HGP) The Human Genome Project (HGP) was one of the great feats of ... Organisms A Quarter Century after the Human Genome Project's Launch: Lessons Beyond the Base Pairs October 1, ...

  1. Overview of the yeast genome.

    PubMed

    Mewes, H W; Albermann, K; Bähr, M; Frishman, D; Gleissner, A; Hani, J; Heumann, K; Kleine, K; Maierl, A; Oliver, S G; Pfeiffer, F; Zollner, A

    1997-05-29

    The collaboration of more than 600 scientists from over 100 laboratories to sequence the Saccharomyces cerevisiae genome was the largest decentralised experiment in modern molecular biology and resulted in a unique data resource representing the first complete set of genes from a eukaryotic organism. 12 million bases were sequenced in a truly international effort involving European, US, Canadian and Japanese laboratories. While the yeast genome represents only a small fraction of the information in today's public sequence databases, the complete, ordered and non-redundant sequence provides an invaluable resource for the detailed analysis of cellular gene function and genome architecture. In terms of throughput, completeness and information content, yeast has always been the lead eukaryotic organism in genomics; it is still the largest genome to be completely sequenced.

  2. Tuberculosis: from genome to vaccine.

    PubMed

    de Jonge, Marien I; Brosch, Roland; Brodin, Priscille; Demangel, Caroline; Cole, Stewart T

    2005-08-01

    The availability of mycobacterial genome sequences has paved the way to identifying potential tuberculosis vaccine candidates in order to replace the currently used bacillus Calmette-Guérin (BCG) vaccines that show variable protective efficacy in adults. Genomics provides the basis for bioinformatic, transcriptomic and proteomic analysis, increases screening efficiency and enables valuable information concerning the biology and virulence of the mycobacterial species to be extracted by comparative genomics. Although in silico results must be confirmed in vitro and in vivo, bioinformatic analysis of the genomes is highlighting candidates for testing. For designing subunit vaccines, attenuated or improved recombinant whole-cell live vaccines, information from the genomes of the human host and pathogenic mycobacterial species is of great help.

  3. Advances in targeted genome editing.

    PubMed

    Perez-Pinera, Pablo; Ousterout, David G; Gersbach, Charles A

    2012-08-01

    New technologies have recently emerged that enable targeted editing of genomes in diverse systems. This includes precise manipulation of gene sequences in their natural chromosomal context and addition of transgenes to specific genomic loci. This progress has been facilitated by advances in engineering targeted nucleases with programmable, site-specific DNA-binding domains, including zinc finger proteins and transcription activator-like effectors (TALEs). Recent improvements have enhanced nuclease performance, accelerated nuclease assembly, and lowered the cost of genome editing. These advances are driving new approaches to many areas of biotechnology, including biopharmaceutical production, agriculture, creation of transgenic organisms and cell lines, and studies of genome structure, regulation, and function. Genome editing is also being investigated in preclinical and clinical gene therapies for many diseases.

  4. Big Data: Astronomical or Genomical?

    PubMed Central

    Stephens, Zachary D.; Lee, Skylar Y.; Faghri, Faraz; Campbell, Roy H.; Zhai, Chengxiang; Efron, Miles J.; Iyer, Ravishankar; Schatz, Michael C.; Sinha, Saurabh; Robinson, Gene E.

    2015-01-01

    Genomics is a Big Data science and is going to get much bigger, very soon, but it is not known whether the needs of genomics will exceed other Big Data domains. Projecting to the year 2025, we compared genomics with three other major generators of Big Data: astronomy, YouTube, and Twitter. Our estimates show that genomics is a “four-headed beast”—it is either on par with or the most demanding of the domains analyzed here in terms of data acquisition, storage, distribution, and analysis. We discuss aspects of new technologies that will need to be developed to rise up and meet the computational challenges that genomics poses for the near future. Now is the time for concerted, community-wide planning for the “genomical” challenges of the next decade. PMID:26151137

  5. Genomic Approaches to Zebrafish Cancer.

    PubMed

    White, Richard M

    2016-01-01

    The zebrafish has emerged as an important model for studying cancer biology. Identification of DNA, RNA and chromatin abnormalities can give profound insight into the mechanisms of tumorigenesis and the there are many techniques for analyzing the genomes of these tumors. Here, I present an overview of the available technologies for analyzing tumor genomes in the zebrafish, including array based methods as well as next-generation sequencing technologies. I also discuss the ways in which zebrafish tumor genomes can be compared to human genomes using cross-species oncogenomics, which act to filter genomic noise and ultimately uncover central drivers of malignancy. Finally, I discuss downstream analytic tools, including network analysis, that can help to organize the alterations into coherent biological frameworks that can then be investigated further. PMID:27165352

  6. [The mitochondrial genome of protists].

    PubMed

    Odintsova, M S; Iurina, N P

    2002-06-01

    The data on the structure and functions of the mitochondrial genomes of protists (Protozoa and unicellular red and green algae) are reviewed. It is emphasized that mitochondrial gene structure and composition, as well as organization of mitochondrial genomes in protists are more diverse than in multicellular eukaryotes. The gene content of mitochondrial genomes of protists are closer to those of plants than animals or fungi. In the protist mitochondrial DNA, both the universal (as in higher plants) and modified (as in animals and fungi) genetic codes are used. In the overwhelming majority of cases, protist mitochondrial genomes code for the major and minor rRNA components, some tRNAs, and about 30 proteins of the respiratory chain and ribosomes. Based on comparison of the mitochondrial genomes of various protists, the origin and evolution of mitochondria are briefly discussed.

  7. Epistasis correlates to genomic complexity

    PubMed Central

    Sanjuán, Rafael; Elena, Santiago F.

    2006-01-01

    Whether systematic genetic interactions (epistasis) occur at the genomic scale remains a challenging topic in evolutionary biology. Epistasis should make a significant contribution to variation in complex traits and influence the evolution of genetic systems as sex, diploidy, dominance, or the contamination of genomes with deleterious mutations. We have collected data from widely different organisms and quantified epistasis in a common, per-generation scale. Simpler genomes, such as those of RNA viruses, display antagonistic epistasis (mutations have smaller effects together than expected); bacterial microorganisms do not apparently deviate from independent effects, whereas in multicellular eukaryotes, a transition toward synergistic epistasis occurs (mutations have larger effects together than expected). We propose that antagonistic epistasis might be a property of compact genomes with few nonpleiotropic biological functions, whereas in complex genomes, synergism might emerge from mutational robustness. PMID:16983079

  8. Privacy in the Genomic Era

    PubMed Central

    NAVEED, MUHAMMAD; AYDAY, ERMAN; CLAYTON, ELLEN W.; FELLAY, JACQUES; GUNTER, CARL A.; HUBAUX, JEAN-PIERRE; MALIN, BRADLEY A.; WANG, XIAOFENG

    2015-01-01

    Genome sequencing technology has advanced at a rapid pace and it is now possible to generate highly-detailed genotypes inexpensively. The collection and analysis of such data has the potential to support various applications, including personalized medical services. While the benefits of the genomics revolution are trumpeted by the biomedical community, the increased availability of such data has major implications for personal privacy; notably because the genome has certain essential features, which include (but are not limited to) (i) an association with traits and certain diseases, (ii) identification capability (e.g., forensics), and (iii) revelation of family relationships. Moreover, direct-to-consumer DNA testing increases the likelihood that genome data will be made available in less regulated environments, such as the Internet and for-profit companies. The problem of genome data privacy thus resides at the crossroads of computer science, medicine, and public policy. While the computer scientists have addressed data privacy for various data types, there has been less attention dedicated to genomic data. Thus, the goal of this paper is to provide a systematization of knowledge for the computer science community. In doing so, we address some of the (sometimes erroneous) beliefs of this field and we report on a survey we conducted about genome data privacy with biomedical specialists. Then, after characterizing the genome privacy problem, we review the state-of-the-art regarding privacy attacks on genomic data and strategies for mitigating such attacks, as well as contextualizing these attacks from the perspective of medicine and public policy. This paper concludes with an enumeration of the challenges for genome data privacy and presents a framework to systematize the analysis of threats and the design of countermeasures as the field moves forward. PMID:26640318

  9. [Genomics and personalized medicine].

    PubMed

    Mooser, Vincent

    2014-05-01

    Personalized medicine has a substantial potential to transform the way diseases will be predicted, prevented and treated. The field will greatly benefit from novel DNA sequencing technologies, in particular commoditization of individual whole genome sequencing. This evolution cannot be stopped, and the medical and scientific community, as well as the society at large, have the responsibility to anticipate the expected benefits from this revolution, but also the potential risks associated with it. Massive investments will be needed for the potential of personalized medicine to be realized, and for the field to come to maturity. In particular, a paradigm change in the way clinical research is done is needed. Switzerland and its Western part pro-actively anticipate these changes.

  10. Genomics in Neurological Disorders

    PubMed Central

    Han, Guangchun; Sun, Jiya; Wang, Jiajia; Bai, Zhouxian; Song, Fuhai; Lei, Hongxing

    2014-01-01

    Neurological disorders comprise a variety of complex diseases in the central nervous system, which can be roughly classified as neurodegenerative diseases and psychiatric disorders. The basic and translational research of neurological disorders has been hindered by the difficulty in accessing the pathological center (i.e., the brain) in live patients. The rapid advancement of sequencing and array technologies has made it possible to investigate the disease mechanism and biomarkers from a systems perspective. In this review, recent progresses in the discovery of novel risk genes, treatment targets and peripheral biomarkers employing genomic technologies will be discussed. Our major focus will be on two of the most heavily investigated neurological disorders, namely Alzheimer’s disease and autism spectrum disorder. PMID:25108264

  11. Stress, genomes, and evolution

    PubMed Central

    Wilson, John H.

    2010-01-01

    Evolutionary change, whether in populations of organisms or malignant tumor cells, is contingent on the availability of inherited variation for natural selection to act upon. It is becoming clear that the Hsp90 chaperone, which normally functions to buffer client proteins against the effects of genetic variation, plays a central role in this process. Severe environmental stress can overwhelm the chaperone's buffering capacity, causing previously cryptic genetic variation to be expressed. Recent studies now indicate that in addition to exposing existing variation, Hsp90 can induce novel epigenetic and genetic changes. We discuss key findings that suggest a rich set of pathways by which Hsp90 can mediate the influences of the environment on the genome. PMID:20521130

  12. A Genome-Wide Landscape of Retrocopies in Primate Genomes.

    PubMed

    Navarro, Fábio C P; Galante, Pedro A F

    2015-08-01

    Gene duplication is a key factor contributing to phenotype diversity across and within species. Although the availability of complete genomes has led to the extensive study of genomic duplications, the dynamics and variability of gene duplications mediated by retrotransposition are not well understood. Here, we predict mRNA retrotransposition and use comparative genomics to investigate their origin and variability across primates. Analyzing seven anthropoid primate genomes, we found a similar number of mRNA retrotranspositions (∼7,500 retrocopies) in Catarrhini (Old Word Monkeys, including humans), but a surprising large number of retrocopies (∼10,000) in Platyrrhini (New World Monkeys), which may be a by-product of higher long interspersed nuclear element 1 activity in these genomes. By inferring retrocopy orthology, we dated most of the primate retrocopy origins, and estimated a decrease in the fixation rate in recent primate history, implying a smaller number of species-specific retrocopies. Moreover, using RNA-Seq data, we identified approximately 3,600 expressed retrocopies. As expected, most of these retrocopies are located near or within known genes, present tissue-specific and even species-specific expression patterns, and no expression correlation to their parental genes. Taken together, our results provide further evidence that mRNA retrotransposition is an active mechanism in primate evolution and suggest that retrocopies may not only introduce great genetic variability between lineages but also create a large reservoir of potentially functional new genomic loci in primate genomes. PMID:26224704

  13. Linking the genomes of nonmodel teleosts through comparative genomics.

    PubMed

    Sarropoulou, E; Nousdili, D; Magoulas, A; Kotoulas, G

    2008-01-01

    Recently the genomes of two more teleost species have been released: the medaka (Oryzias latipes), and the three-spined stickleback (Gasterosteus aculateus). The rapid developments in genomics of fish species paved the way to new and valuable research in comparative genetics and genomics. With the accumulation of information in model species, the genetic and genomic characterization of nonmodel, but economically important species, is now feasible. Furthermore, comparison of low coverage gene maps of aquacultured fish species against fully sequenced fish species will enhance the efficiency of candidate genes identification projected for quantitative trait loci (QTL) scans for traits of commercial interest. This study shows the syntenic relationship between the genomes of six different teleost species, including three fully sequenced model species: Tetraodon nigroviridis, Oryzias latipes, Gasterosteus aculateus, and three marine species of commercial and evolutionary interest: Sparus aurata, Dicentrarchus labrax, Oreochromis spp. All three commercial fish species belong to the order Perciformes, which is the richest in number of species (approximately 10,000) but poor in terms of available genomic information and tools. Syntenic relationships were established by using 800 EST and microsatellites sequences successfully mapped on the RH map of seabream. Comparison to the stickleback genome produced most positive BLAT hits (58%) followed by medaka (32%) and Tetraodon (30%). Thus, stickleback was used as the major stepping stone to compare seabass and tilapia to seabream. In addition to the significance for the aquaculture industry, this approach can encompass important ecological and evolutionary implications. PMID:18297360

  14. Integrated genome browser: visual analytics platform for genomics

    PubMed Central

    Norris, David C.; Loraine, Ann E.

    2016-01-01

    Motivation: Genome browsers that support fast navigation through vast datasets and provide interactive visual analytics functions can help scientists achieve deeper insight into biological systems. Toward this end, we developed Integrated Genome Browser (IGB), a highly configurable, interactive and fast open source desktop genome browser. Results: Here we describe multiple updates to IGB, including all-new capabilities to display and interact with data from high-throughput sequencing experiments. To demonstrate, we describe example visualizations and analyses of datasets from RNA-Seq, ChIP-Seq and bisulfite sequencing experiments. Understanding results from genome-scale experiments requires viewing the data in the context of reference genome annotations and other related datasets. To facilitate this, we enhanced IGB’s ability to consume data from diverse sources, including Galaxy, Distributed Annotation and IGB-specific Quickload servers. To support future visualization needs as new genome-scale assays enter wide use, we transformed the IGB codebase into a modular, extensible platform for developers to create and deploy all-new visualizations of genomic data. Availability and implementation: IGB is open source and is freely available from http://bioviz.org/igb. Contact: aloraine@uncc.edu PMID:27153568

  15. Microbial Genomics Data from the DOE Joint Genome Institute (JGI)

    DOE Data Explorer

    The JGI makes high-quality genome sequencing data freely available to the greater scientific community through its web portal. Having played a significant role in the federally funded Human Genome Project -- generating the complete sequences of Chromosomes 5, 16, and 19--the JGI has now moved on to contributing in other critical areas of genomics research. While NIH-funded genome sequencing activities continue to emphasize human biomedical targets and applications, the JGI has since shifted its focus to the non-human components of the biosphere, particularly those relevant to the science mission of the Department of Energy. With efficiencies of scale established at the PGF, and capacity now exceeding three billion bases generated on a monthly basis, the JGI has tackled scores of additional genomes. These include more than 60 microbial genomes and many important multicellular organisms and communities of microbes. In partnership with other federal institutions and universities, the JGI is in the process of sequencing a frog (Xenopus tropicalis), a green alga (Chlamydomonas reinhardtii), a diatom (Thalassiosira pseudonana) , the cottonwood tree (Populus trichocarpa), and a host of agriculturally important plants and plant pathogens. Microorganisms, for example those that thrive under extreme conditions such as high acidity, radiation, and metal contamination, are of particular interest to the DOE and JGI. Investigations by JGI and its partners are shedding light on the cellular machinery of microbes and how they can be harnessed to clean up contaminated soil or water, capture carbon from the atmosphere, and produce potentially important sources of energy such as hydrogen and methane. [Excerpt from the JGI page "Who We Are" at http://www.jgi.doe.gov/whoweare/whoweare.html] From the JGI webportal users can view a photo grid of organisims, check assemblies for status, access the Integrated Microbial Genomes (IMG) system to do comparative analysis of publicly available

  16. Comparative genome mapping in Brassica.

    PubMed

    Lagercrantz, U; Lydiate, D J

    1996-12-01

    A Brassica nigra genetic linkage map was developed from a highly polymorphic cross analyzed with a set of low copy number Brassica RFLP probes. The Brassica genome is extensively duplicated with eight distinct sets of chromosomal segments, each present in three copies, covering virtually the whole genome. Thus, B. nigra could be descended from a hexaploid ancestor. A comparative analysis of B. nigra, B. oleracea and B. rapa genomes, based on maps developed using a common set of RFLP probes, was also performed. The three genomes have distinct chromosomal structures differentiated by a large number of rearrangements, but collinear regions involving virtually the whole of each the three genomes were identified. The genic contents of B. nigra, B. oleracea and B. rapa were basically equivalent and differences in chromosome number (8, 9 and 10, respectively) are probably the result of chromosome fusions and/ or fissions. The strong conservation of overall genic content across the three Brassica genomes mirrors the conservation of genic content observed over a much longer evolutionary span in cereals. However, the rate of chromosomal rearrangement in crucifers is much higher than that observed in cereal genomes.

  17. Jumbled genomes: missing Apicomplexan synteny.

    PubMed

    DeBarry, Jeremy D; Kissinger, Jessica C

    2011-10-01

    Whole-genome comparisons provide insight into genome evolution by informing on gene repertoires, gene gains/losses, and genome organization. Most of our knowledge about eukaryotic genome evolution is derived from studies of multicellular model organisms. The eukaryotic phylum Apicomplexa contains obligate intracellular protist parasites responsible for a wide range of human and veterinary diseases (e.g., malaria, toxoplasmosis, and theileriosis). We have developed an in silico protein-encoding gene based pipeline to investigate synteny across 12 apicomplexan species from six genera. Genome rearrangement between lineages is extensive. Syntenic regions (conserved gene content and order) are rare between lineages and appear to be totally absent across the phylum, with no group of three genes found on the same chromosome and in the same order within 25 kb up- and downstream of any orthologous genes. Conserved synteny between major lineages is limited to small regions in Plasmodium and Theileria/Babesia species, and within these conserved regions, there are a number of proteins putatively targeted to organelles. The observed overall lack of synteny is surprising considering the divergence times and the apparent absence of transposable elements (TEs) within any of the species examined. TEs are ubiquitous in all other groups of eukaryotes studied to date and have been shown to be involved in genomic rearrangements. It appears that there are different criteria governing genome evolution within the Apicomplexa relative to other well-studied unicellular and multicellular eukaryotes. PMID:21504890

  18. Microbial Lifestyle and Genome Signatures

    PubMed Central

    Dutta, Chitra; Paul, Sandip

    2012-01-01

    Microbes are known for their unique ability to adapt to varying lifestyle and environment, even to the extreme or adverse ones. The genomic architecture of a microbe may bear the signatures not only of its phylogenetic position, but also of the kind of lifestyle to which it is adapted. The present review aims to provide an account of the specific genome signatures observed in microbes acclimatized to distinct lifestyles or ecological niches. Niche-specific signatures identified at different levels of microbial genome organization like base composition, GC-skew, purine-pyrimidine ratio, dinucleotide abundance, codon bias, oligonucleotide composition etc. have been discussed. Among the specific cases highlighted in the review are the phenomena of genome shrinkage in obligatory host-restricted microbes, genome expansion in strictly intra-amoebal pathogens, strand-specific codon usage in intracellular species, acquisition of genome islands in pathogenic or symbiotic organisms, discriminatory genomic traits of marine microbes with distinct trophic strategies, and conspicuous sequence features of certain extremophiles like those adapted to high temperature or high salinity. PMID:23024607

  19. Components of Adenovirus Genome Packaging

    PubMed Central

    Ahi, Yadvinder S.; Mittal, Suresh K.

    2016-01-01

    Adenoviruses (AdVs) are icosahedral viruses with double-stranded DNA (dsDNA) genomes. Genome packaging in AdV is thought to be similar to that seen in dsDNA containing icosahedral bacteriophages and herpesviruses. Specific recognition of the AdV genome is mediated by a packaging domain located close to the left end of the viral genome and is mediated by the viral packaging machinery. Our understanding of the role of various components of the viral packaging machinery in AdV genome packaging has greatly advanced in recent years. Characterization of empty capsids assembled in the absence of one or more components involved in packaging, identification of the unique vertex, and demonstration of the role of IVa2, the putative packaging ATPase, in genome packaging have provided compelling evidence that AdVs follow a sequential assembly pathway. This review provides a detailed discussion on the functions of the various viral and cellular factors involved in AdV genome packaging. We conclude by briefly discussing the roles of the empty capsids, assembly intermediates, scaffolding proteins, portal vertex and DNA encapsidating enzymes in AdV assembly and packaging. PMID:27721809

  20. [Genome editing of industrial microorganism].

    PubMed

    Zhu, Linjiang; Li, Qi

    2015-03-01

    Genome editing is defined as highly-effective and precise modification of cellular genome in a large scale. In recent years, such genome-editing methods have been rapidly developed in the field of industrial strain improvement. The quickly-updating methods thoroughly change the old mode of inefficient genetic modification, which is "one modification, one selection marker, and one target site". Highly-effective modification mode in genome editing have been developed including simultaneous modification of multiplex genes, highly-effective insertion, replacement, and deletion of target genes in the genome scale, cut-paste of a large DNA fragment. These new tools for microbial genome editing will certainly be applied widely, and increase the efficiency of industrial strain improvement, and promote the revolution of traditional fermentation industry and rapid development of novel industrial biotechnology like production of biofuel and biomaterial. The technological principle of these genome-editing methods and their applications were summarized in this review, which can benefit engineering and construction of industrial microorganism.

  1. The genome of Eucalyptus grandis

    SciTech Connect

    Myburg, Alexander A.; Grattapaglia, Dario; Tuskan, Gerald A.; Hellsten, Uffe; Hayes, Richard D.; Grimwood, Jane; Jenkins, Jerry; Lindquist, Erika; Tice, Hope; Bauer, Diane; Goodstein, David M.; Dubchak, Inna; Poliakov, Alexandre; Mizrachi, Eshchar; Kullan, Anand R. K.; Hussey, Steven G.; Pinard, Desre; van der Merwe, Karen; Singh, Pooja; van Jaarsveld, Ida; Silva-Junior, Orzenil B.; Togawa, Roberto C.; Pappas, Marilia R.; Faria, Danielle A.; Sansaloni, Carolina P.; Petroli, Cesar D.; Yang, Xiaohan; Ranjan, Priya; Tschaplinski, Timothy J.; Ye, Chu-Yu; Li, Ting; Sterck, Lieven; Vanneste, Kevin; Murat, Florent; Soler, Marçal; Clemente, Hélène San; Saidi, Naijib; Cassan-Wang, Hua; Dunand, Christophe; Hefer, Charles A.; Bornberg-Bauer, Erich; Kersting, Anna R.; Vining, Kelly; Amarasinghe, Vindhya; Ranik, Martin; Naithani, Sushma; Elser, Justin; Boyd, Alexander E.; Liston, Aaron; Spatafora, Joseph W.; Dharmwardhana, Palitha; Raja, Rajani; Sullivan, Christopher; Romanel, Elisson; Alves-Ferreira, Marcio; Külheim, Carsten; Foley, William; Carocha, Victor; Paiva, Jorge; Kudrna, David; Brommonschenkel, Sergio H.; Pasquali, Giancarlo; Byrne, Margaret; Rigault, Philippe; Tibbits, Josquin; Spokevicius, Antanas; Jones, Rebecca C.; Steane, Dorothy A.; Vaillancourt, René E.; Potts, Brad M.; Joubert, Fourie; Barry, Kerrie; Pappas, Georgios J.; Strauss, Steven H.; Jaiswal, Pankaj; Grima-Pettenati, Jacqueline; Salse, Jérôme; Van de Peer, Yves; Rokhsar, Daniel S.; Schmutz, Jeremy

    2014-06-11

    Eucalypts are the world s most widely planted hardwood trees. Their broad adaptability, rich species diversity, fast growth and superior multipurpose wood, have made them a global renewable resource of fiber and energy that mitigates human pressures on natural forests. We sequenced and assembled >94% of the 640 Mbp genome of Eucalyptus grandis into its 11 chromosomes. A set of 36,376 protein coding genes were predicted revealing that 34% occur in tandem duplications, the largest proportion found thus far in any plant genome. Eucalypts also show the highest diversity of genes for plant specialized metabolism that act as chemical defence against biotic agents and provide unique pharmaceutical oils. Resequencing of a set of inbred tree genomes revealed regions of strongly conserved heterozygosity, likely hotspots of inbreeding depression. The resequenced genome of the sister species E. globulus underscored the high inter-specific genome colinearity despite substantial genome size variation in the genus. The genome of E. grandis is the first reference for the early diverging Rosid order Myrtales and is placed here basal to the Eurosids. This resource expands knowledge on the unique biology of large woody perennials and provides a powerful tool to accelerate comparative biology, breeding and biotechnology.

  2. Genome Modeling System: A Knowledge Management Platform for Genomics

    PubMed Central

    Griffith, Malachi; Griffith, Obi L.; Smith, Scott M.; Ramu, Avinash; Callaway, Matthew B.; Brummett, Anthony M.; Kiwala, Michael J.; Coffman, Adam C.; Regier, Allison A.; Oberkfell, Ben J.; Sanderson, Gabriel E.; Mooney, Thomas P.; Nutter, Nathaniel G.; Belter, Edward A.; Du, Feiyu; Long, Robert L.; Abbott, Travis E.; Ferguson, Ian T.; Morton, David L.; Burnett, Mark M.; Weible, James V.; Peck, Joshua B.; Dukes, Adam; McMichael, Joshua F.; Lolofie, Justin T.; Derickson, Brian R.; Hundal, Jasreet; Skidmore, Zachary L.; Ainscough, Benjamin J.; Dees, Nathan D.; Schierding, William S.; Kandoth, Cyriac; Kim, Kyung H.; Lu, Charles; Harris, Christopher C.; Maher, Nicole; Maher, Christopher A.; Magrini, Vincent J.; Abbott, Benjamin S.; Chen, Ken; Clark, Eric; Das, Indraniel; Fan, Xian; Hawkins, Amy E.; Hepler, Todd G.; Wylie, Todd N.; Leonard, Shawn M.; Schroeder, William E.; Shi, Xiaoqi; Carmichael, Lynn K.; Weil, Matthew R.; Wohlstadter, Richard W.; Stiehr, Gary; McLellan, Michael D.; Pohl, Craig S.; Miller, Christopher A.; Koboldt, Daniel C.; Walker, Jason R.; Eldred, James M.; Larson, David E.; Dooling, David J.; Ding, Li; Mardis, Elaine R.; Wilson, Richard K.

    2015-01-01

    In this work, we present the Genome Modeling System (GMS), an analysis information management system capable of executing automated genome analysis pipelines at a massive scale. The GMS framework provides detailed tracking of samples and data coupled with reliable and repeatable analysis pipelines. The GMS also serves as a platform for bioinformatics development, allowing a large team to collaborate on data analysis, or an individual researcher to leverage the work of others effectively within its data management system. Rather than separating ad-hoc analysis from rigorous, reproducible pipelines, the GMS promotes systematic integration between the two. As a demonstration of the GMS, we performed an integrated analysis of whole genome, exome and transcriptome sequencing data from a breast cancer cell line (HCC1395) and matched lymphoblastoid line (HCC1395BL). These data are available for users to test the software, complete tutorials and develop novel GMS pipeline configurations. The GMS is available at https://github.com/genome/gms. PMID:26158448

  3. [Human genome project: a federator program of genomic medicine].

    PubMed

    Sfar, S; Chouchane, L

    2008-05-01

    The Human Genome Project improves our understanding of the molecular genetics basis of the inherited and complex diseases such as diabetes, schizophrenia, and cancer. Information from the human genome sequence is essential for several antenatal and neonatal screening programmes. The new genomic tools emerging from this project have revolutionized biology and medicine and have transformed our understanding of health and the provision of healthcare. Its implications pervade all areas of medicine, from disease prediction and prevention to the diagnosis and treatment of all forms of disease. Increasingly, it will be possible to drive predisposition testing into clinical practice, to develop new treatments or to adapt available treatments more specifically to an individual's genetic make-up. This genomic information should transform the traditional medications that are effective for every members of the population to personalized medicine and personalized therapy. The pharmacogenomics could give rise to a new generation of highly effective drugs that treat causes, not just symptoms.

  4. Genome Modeling System: A Knowledge Management Platform for Genomics.

    PubMed

    Griffith, Malachi; Griffith, Obi L; Smith, Scott M; Ramu, Avinash; Callaway, Matthew B; Brummett, Anthony M; Kiwala, Michael J; Coffman, Adam C; Regier, Allison A; Oberkfell, Ben J; Sanderson, Gabriel E; Mooney, Thomas P; Nutter, Nathaniel G; Belter, Edward A; Du, Feiyu; Long, Robert L; Abbott, Travis E; Ferguson, Ian T; Morton, David L; Burnett, Mark M; Weible, James V; Peck, Joshua B; Dukes, Adam; McMichael, Joshua F; Lolofie, Justin T; Derickson, Brian R; Hundal, Jasreet; Skidmore, Zachary L; Ainscough, Benjamin J; Dees, Nathan D; Schierding, William S; Kandoth, Cyriac; Kim, Kyung H; Lu, Charles; Harris, Christopher C; Maher, Nicole; Maher, Christopher A; Magrini, Vincent J; Abbott, Benjamin S; Chen, Ken; Clark, Eric; Das, Indraniel; Fan, Xian; Hawkins, Amy E; Hepler, Todd G; Wylie, Todd N; Leonard, Shawn M; Schroeder, William E; Shi, Xiaoqi; Carmichael, Lynn K; Weil, Matthew R; Wohlstadter, Richard W; Stiehr, Gary; McLellan, Michael D; Pohl, Craig S; Miller, Christopher A; Koboldt, Daniel C; Walker, Jason R; Eldred, James M; Larson, David E; Dooling, David J; Ding, Li; Mardis, Elaine R; Wilson, Richard K

    2015-07-01

    In this work, we present the Genome Modeling System (GMS), an analysis information management system capable of executing automated genome analysis pipelines at a massive scale. The GMS framework provides detailed tracking of samples and data coupled with reliable and repeatable analysis pipelines. The GMS also serves as a platform for bioinformatics development, allowing a large team to collaborate on data analysis, or an individual researcher to leverage the work of others effectively within its data management system. Rather than separating ad-hoc analysis from rigorous, reproducible pipelines, the GMS promotes systematic integration between the two. As a demonstration of the GMS, we performed an integrated analysis of whole genome, exome and transcriptome sequencing data from a breast cancer cell line (HCC1395) and matched lymphoblastoid line (HCC1395BL). These data are available for users to test the software, complete tutorials and develop novel GMS pipeline configurations. The GMS is available at https://github.com/genome/gms. PMID:26158448

  5. Genome Modeling System: A Knowledge Management Platform for Genomics.

    PubMed

    Griffith, Malachi; Griffith, Obi L; Smith, Scott M; Ramu, Avinash; Callaway, Matthew B; Brummett, Anthony M; Kiwala, Michael J; Coffman, Adam C; Regier, Allison A; Oberkfell, Ben J; Sanderson, Gabriel E; Mooney, Thomas P; Nutter, Nathaniel G; Belter, Edward A; Du, Feiyu; Long, Robert L; Abbott, Travis E; Ferguson, Ian T; Morton, David L; Burnett, Mark M; Weible, James V; Peck, Joshua B; Dukes, Adam; McMichael, Joshua F; Lolofie, Justin T; Derickson, Brian R; Hundal, Jasreet; Skidmore, Zachary L; Ainscough, Benjamin J; Dees, Nathan D; Schierding, William S; Kandoth, Cyriac; Kim, Kyung H; Lu, Charles; Harris, Christopher C; Maher, Nicole; Maher, Christopher A; Magrini, Vincent J; Abbott, Benjamin S; Chen, Ken; Clark, Eric; Das, Indraniel; Fan, Xian; Hawkins, Amy E; Hepler, Todd G; Wylie, Todd N; Leonard, Shawn M; Schroeder, William E; Shi, Xiaoqi; Carmichael, Lynn K; Weil, Matthew R; Wohlstadter, Richard W; Stiehr, Gary; McLellan, Michael D; Pohl, Craig S; Miller, Christopher A; Koboldt, Daniel C; Walker, Jason R; Eldred, James M; Larson, David E; Dooling, David J; Ding, Li; Mardis, Elaine R; Wilson, Richard K

    2015-07-01

    In this work, we present the Genome Modeling System (GMS), an analysis information management system capable of executing automated genome analysis pipelines at a massive scale. The GMS framework provides detailed tracking of samples and data coupled with reliable and repeatable analysis pipelines. The GMS also serves as a platform for bioinformatics development, allowing a large team to collaborate on data analysis, or an individual researcher to leverage the work of others effectively within its data management system. Rather than separating ad-hoc analysis from rigorous, reproducible pipelines, the GMS promotes systematic integration between the two. As a demonstration of the GMS, we performed an integrated analysis of whole genome, exome and transcriptome sequencing data from a breast cancer cell line (HCC1395) and matched lymphoblastoid line (HCC1395BL). These data are available for users to test the software, complete tutorials and develop novel GMS pipeline configurations. The GMS is available at https://github.com/genome/gms.

  6. The bonobo genome compared with the chimpanzee and human genomes.

    PubMed

    Prüfer, Kay; Munch, Kasper; Hellmann, Ines; Akagi, Keiko; Miller, Jason R; Walenz, Brian; Koren, Sergey; Sutton, Granger; Kodira, Chinnappa; Winer, Roger; Knight, James R; Mullikin, James C; Meader, Stephen J; Ponting, Chris P; Lunter, Gerton; Higashino, Saneyuki; Hobolth, Asger; Dutheil, Julien; Karakoç, Emre; Alkan, Can; Sajjadian, Saba; Catacchio, Claudia Rita; Ventura, Mario; Marques-Bonet, Tomas; Eichler, Evan E; André, Claudine; Atencia, Rebeca; Mugisha, Lawrence; Junhold, Jörg; Patterson, Nick; Siebauer, Michael; Good, Jeffrey M; Fischer, Anne; Ptak, Susan E; Lachmann, Michael; Symer, David E; Mailund, Thomas; Schierup, Mikkel H; Andrés, Aida M; Kelso, Janet; Pääbo, Svante

    2012-06-28

    Two African apes are the closest living relatives of humans: the chimpanzee (Pan troglodytes) and the bonobo (Pan paniscus). Although they are similar in many respects, bonobos and chimpanzees differ strikingly in key social and sexual behaviours, and for some of these traits they show more similarity with humans than with each other. Here we report the sequencing and assembly of the bonobo genome to study its evolutionary relationship with the chimpanzee and human genomes. We find that more than three per cent of the human genome is more closely related to either the bonobo or the chimpanzee genome than these are to each other. These regions allow various aspects of the ancestry of the two ape species to be reconstructed. In addition, many of the regions that overlap genes may eventually help us understand the genetic basis of phenotypes that humans share with one of the two apes to the exclusion of the other.

  7. Orthology for comparative genomics in the mouse genome database.

    PubMed

    Dolan, Mary E; Baldarelli, Richard M; Bello, Susan M; Ni, Li; McAndrews, Monica S; Bult, Carol J; Kadin, James A; Richardson, Joel E; Ringwald, Martin; Eppig, Janan T; Blake, Judith A

    2015-08-01

    The mouse genome database (MGD) is the model organism database component of the mouse genome informatics system at The Jackson Laboratory. MGD is the international data resource for the laboratory mouse and facilitates the use of mice in the study of human health and disease. Since its beginnings, MGD has included comparative genomics data with a particular focus on human-mouse orthology, an essential component of the use of mouse as a model organism. Over the past 25 years, novel algorithms and addition of orthologs from other model organisms have enriched comparative genomics in MGD data, extending the use of orthology data to support the laboratory mouse as a model of human biology. Here, we describe current comparative data in MGD and review the history and refinement of orthology representation in this resource.

  8. Applied genomics: Tools ranging from genomic prediction to bioconservation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This invited presentation will provide an overview of the development of genomic tools in cattle and goats, and how these approaches and methodologies can be adapted for bioconservation of endangered ruminant species....

  9. Comparative genomics reveals insights into avian genome evolution and adaptation.

    PubMed

    Zhang, Guojie; Li, Cai; Li, Qiye; Li, Bo; Larkin, Denis M; Lee, Chul; Storz, Jay F; Antunes, Agostinho; Greenwold, Matthew J; Meredith, Robert W; Ödeen, Anders; Cui, Jie; Zhou, Qi; Xu, Luohao; Pan, Hailin; Wang, Zongji; Jin, Lijun; Zhang, Pei; Hu, Haofu; Yang, Wei; Hu, Jiang; Xiao, Jin; Yang, Zhikai; Liu, Yang; Xie, Qiaolin; Yu, Hao; Lian, Jinmin; Wen, Ping; Zhang, Fang; Li, Hui; Zeng, Yongli; Xiong, Zijun; Liu, Shiping; Zhou, Long; Huang, Zhiyong; An, Na; Wang, Jie; Zheng, Qiumei; Xiong, Yingqi; Wang, Guangbiao; Wang, Bo; Wang, Jingjing; Fan, Yu; da Fonseca, Rute R; Alfaro-Núñez, Alonzo; Schubert, Mikkel; Orlando, Ludovic; Mourier, Tobias; Howard, Jason T; Ganapathy, Ganeshkumar; Pfenning, Andreas; Whitney, Osceola; Rivas, Miriam V; Hara, Erina; Smith, Julia; Farré, Marta; Narayan, Jitendra; Slavov, Gancho; Romanov, Michael N; Borges, Rui; Machado, João Paulo; Khan, Imran; Springer, Mark S; Gatesy, John; Hoffmann, Federico G; Opazo, Juan C; Håstad, Olle; Sawyer, Roger H; Kim, Heebal; Kim, Kyu-Won; Kim, Hyeon Jeong; Cho, Seoae; Li, Ning; Huang, Yinhua; Bruford, Michael W; Zhan, Xiangjiang; Dixon, Andrew; Bertelsen, Mads F; Derryberry, Elizabeth; Warren, Wesley; Wilson, Richard K; Li, Shengbin; Ray, David A; Green, Richard E; O'Brien, Stephen J; Griffin, Darren; Johnson, Warren E; Haussler, David; Ryder, Oliver A; Willerslev, Eske; Graves, Gary R; Alström, Per; Fjeldså, Jon; Mindell, David P; Edwards, Scott V; Braun, Edward L; Rahbek, Carsten; Burt, David W; Houde, Peter; Zhang, Yong; Yang, Huanming; Wang, Jian; Jarvis, Erich D; Gilbert, M Thomas P; Wang, Jun

    2014-12-12

    Birds are the most species-rich class of tetrapod vertebrates and have wide relevance across many research fields. We explored bird macroevolution using full genomes from 48 avian species representing all major extant clades. The avian genome is principally characterized by its constrained size, which predominantly arose because of lineage-specific erosion of repetitive elements, large segmental deletions, and gene loss. Avian genomes furthermore show a remarkably high degree of evolutionary stasis at the levels of nucleotide sequence, gene synteny, and chromosomal structure. Despite this pattern of conservation, we detected many non-neutral evolutionary changes in protein-coding genes and noncoding regions. These analyses reveal that pan-avian genomic diversity covaries with adaptations to different lifestyles and convergent evolution of traits. PMID:25504712

  10. Orthology for comparative genomics in the mouse genome database.

    PubMed

    Dolan, Mary E; Baldarelli, Richard M; Bello, Susan M; Ni, Li; McAndrews, Monica S; Bult, Carol J; Kadin, James A; Richardson, Joel E; Ringwald, Martin; Eppig, Janan T; Blake, Judith A

    2015-08-01

    The mouse genome database (MGD) is the model organism database component of the mouse genome informatics system at The Jackson Laboratory. MGD is the international data resource for the laboratory mouse and facilitates the use of mice in the study of human health and disease. Since its beginnings, MGD has included comparative genomics data with a particular focus on human-mouse orthology, an essential component of the use of mouse as a model organism. Over the past 25 years, novel algorithms and addition of orthologs from other model organisms have enriched comparative genomics in MGD data, extending the use of orthology data to support the laboratory mouse as a model of human biology. Here, we describe current comparative data in MGD and review the history and refinement of orthology representation in this resource. PMID:26223881

  11. Behavior, Brain, and Genome in Genomic Disorders: Finding the Correspondences

    PubMed Central

    Grigorenko, Elena L.; Urban, Alexander E.; Mencl, Einar

    2014-01-01

    Objective Within the last decade or so, there has been an acceleration of research attempting to connect specific genetic lesions to patterns of brain structure and activation. This article comments on observations that have been made based on these recent data and discusses their importance for the field of investigations into developmental disorders. Method In making these observations, we focus on one specific genomic lesion, the well-studied, yet still incompletely understood, 22q11.2 deletion syndrome (22q11.2DS). Results We demonstrate the degree of variability in the phenotype that occurs at both the brain and behavioral levels of genomic disorders, and describe how this variability is, upon close inspection, represented at the genomic level. Conclusion We emphasize the importance of combining genetic/genomic analyses and neuroimaging for research and for future clinical diagnostic purposes, and for the purposes of developing individualized, patient-tailored treatment and remediation approaches. PMID:20814258

  12. Comparative genomics reveals insights into avian genome evolution and adaptation.

    PubMed

    Zhang, Guojie; Li, Cai; Li, Qiye; Li, Bo; Larkin, Denis M; Lee, Chul; Storz, Jay F; Antunes, Agostinho; Greenwold, Matthew J; Meredith, Robert W; Ödeen, Anders; Cui, Jie; Zhou, Qi; Xu, Luohao; Pan, Hailin; Wang, Zongji; Jin, Lijun; Zhang, Pei; Hu, Haofu; Yang, Wei; Hu, Jiang; Xiao, Jin; Yang, Zhikai; Liu, Yang; Xie, Qiaolin; Yu, Hao; Lian, Jinmin; Wen, Ping; Zhang, Fang; Li, Hui; Zeng, Yongli; Xiong, Zijun; Liu, Shiping; Zhou, Long; Huang, Zhiyong; An, Na; Wang, Jie; Zheng, Qiumei; Xiong, Yingqi; Wang, Guangbiao; Wang, Bo; Wang, Jingjing; Fan, Yu; da Fonseca, Rute R; Alfaro-Núñez, Alonzo; Schubert, Mikkel; Orlando, Ludovic; Mourier, Tobias; Howard, Jason T; Ganapathy, Ganeshkumar; Pfenning, Andreas; Whitney, Osceola; Rivas, Miriam V; Hara, Erina; Smith, Julia; Farré, Marta; Narayan, Jitendra; Slavov, Gancho; Romanov, Michael N; Borges, Rui; Machado, João Paulo; Khan, Imran; Springer, Mark S; Gatesy, John; Hoffmann, Federico G; Opazo, Juan C; Håstad, Olle; Sawyer, Roger H; Kim, Heebal; Kim, Kyu-Won; Kim, Hyeon Jeong; Cho, Seoae; Li, Ning; Huang, Yinhua; Bruford, Michael W; Zhan, Xiangjiang; Dixon, Andrew; Bertelsen, Mads F; Derryberry, Elizabeth; Warren, Wesley; Wilson, Richard K; Li, Shengbin; Ray, David A; Green, Richard E; O'Brien, Stephen J; Griffin, Darren; Johnson, Warren E; Haussler, David; Ryder, Oliver A; Willerslev, Eske; Graves, Gary R; Alström, Per; Fjeldså, Jon; Mindell, David P; Edwards, Scott V; Braun, Edward L; Rahbek, Carsten; Burt, David W; Houde, Peter; Zhang, Yong; Yang, Huanming; Wang, Jian; Jarvis, Erich D; Gilbert, M Thomas P; Wang, Jun

    2014-12-12

    Birds are the most species-rich class of tetrapod vertebrates and have wide relevance across many research fields. We explored bird macroevolution using full genomes from 48 avian species representing all major extant clades. The avian genome is principally characterized by its constrained size, which predominantly arose because of lineage-specific erosion of repetitive elements, large segmental deletions, and gene loss. Avian genomes furthermore show a remarkably high degree of evolutionary stasis at the levels of nucleotide sequence, gene synteny, and chromosomal structure. Despite this pattern of conservation, we detected many non-neutral evolutionary changes in protein-coding genes and noncoding regions. These analyses reveal that pan-avian genomic diversity covaries with adaptations to different lifestyles and convergent evolution of traits.

  13. Comparative genomics reveals insights into avian genome evolution and adaptation

    PubMed Central

    Zhang, Guojie; Li, Cai; Li, Qiye; Li, Bo; Larkin, Denis M.; Lee, Chul; Storz, Jay F.; Antunes, Agostinho; Greenwold, Matthew J.; Meredith, Robert W.; Ödeen, Anders; Cui, Jie; Zhou, Qi; Xu, Luohao; Pan, Hailin; Wang, Zongji; Jin, Lijun; Zhang, Pei; Hu, Haofu; Yang, Wei; Hu, Jiang; Xiao, Jin; Yang, Zhikai; Liu, Yang; Xie, Qiaolin; Yu, Hao; Lian, Jinmin; Wen, Ping; Zhang, Fang; Li, Hui; Zeng, Yongli; Xiong, Zijun; Liu, Shiping; Zhou, Long; Huang, Zhiyong; An, Na; Wang, Jie; Zheng, Qiumei; Xiong, Yingqi; Wang, Guangbiao; Wang, Bo; Wang, Jingjing; Fan, Yu; da Fonseca, Rute R.; Alfaro-Núñez, Alonzo; Schubert, Mikkel; Orlando, Ludovic; Mourier, Tobias; Howard, Jason T.; Ganapathy, Ganeshkumar; Pfenning, Andreas; Whitney, Osceola; Rivas, Miriam V.; Hara, Erina; Smith, Julia; Farré, Marta; Narayan, Jitendra; Slavov, Gancho; Romanov, Michael N; Borges, Rui; Machado, João Paulo; Khan, Imran; Springer, Mark S.; Gatesy, John; Hoffmann, Federico G.; Opazo, Juan C.; Håstad, Olle; Sawyer, Roger H.; Kim, Heebal; Kim, Kyu-Won; Kim, Hyeon Jeong; Cho, Seoae; Li, Ning; Huang, Yinhua; Bruford, Michael W.; Zhan, Xiangjiang; Dixon, Andrew; Bertelsen, Mads F.; Derryberry, Elizabeth; Warren, Wesley; Wilson, Richard K; Li, Shengbin; Ray, David A.; Green, Richard E.; O’Brien, Stephen J.; Griffin, Darren; Johnson, Warren E.; Haussler, David; Ryder, Oliver A.; Willerslev, Eske; Graves, Gary R.; Alström, Per; Fjeldså, Jon; Mindell, David P.; Edwards, Scott V.; Braun, Edward L.; Rahbek, Carsten; Burt, David W.; Houde, Peter; Zhang, Yong; Yang, Huanming; Wang, Jian; Jarvis, Erich D.; Gilbert, M. Thomas P.; Wang, Jun

    2015-01-01

    Birds are the most species-rich class of tetrapod vertebrates and have wide relevance across many research fields. We explored bird macroevolution using full genomes from 48 avian species representing all major extant clades. The avian genome is principally characterized by its constrained size, which predominantly arose because of lineage-specific erosion of repetitive elements, large segmental deletions, and gene loss. Avian genomes furthermore show a remarkably high degree of evolutionary stasis at the levels of nucleotide sequence, gene synteny, and chromosomal structure. Despite this pattern of conservation, we detected many non-neutral evolutionary changes in protein-coding genes and noncoding regions. These analyses reveal that pan-avian genomic diversity covaries with adaptations to different lifestyles and convergent evolution of traits. PMID:25504712

  14. Capturing prokaryotic dark matter genomes.

    PubMed

    Gasc, Cyrielle; Ribière, Céline; Parisot, Nicolas; Beugnot, Réjane; Defois, Clémence; Petit-Biderre, Corinne; Boucher, Delphine; Peyretaillade, Eric; Peyret, Pierre

    2015-12-01

    Prokaryotes are the most diverse and abundant cellular life forms on Earth. Most of them, identified by indirect molecular approaches, belong to microbial dark matter. The advent of metagenomic and single-cell genomic approaches has highlighted the metabolic capabilities of numerous members of this dark matter through genome reconstruction. Thus, linking functions back to the species has revolutionized our understanding of how ecosystem function is sustained by the microbial world. This review will present discoveries acquired through the illumination of prokaryotic dark matter genomes by these innovative approaches.

  15. Chemical genomics in plant biology.

    PubMed

    Sadhukhan, Ayan; Sahoo, Lingaraj; Panda, Sanjib Kumar

    2012-06-01

    Chemical genomics is a newly emerged and rapidly progressing field in biology, where small chemical molecules bind specifically and reversibly to protein(s) to modulate their function(s), leading to the delineation and subsequent unravelling of biological processes. This approach overcomes problems like lethality and redundancy of classical genetics. Armed with the powerful techniques of combinatorial synthesis, high-throughput screening and target discovery chemical genomics expands its scope to diverse areas in biology. The well-established genetic system of Arabidopsis model allows chemical genomics to enter into the realm of plant biology exploring signaling pathways of growth regulators, endomembrane signaling cascades, plant defense mechanisms and many more events.

  16. Human genome. 1993 Program report

    SciTech Connect

    Not Available

    1994-03-01

    The purpose of this report is to update the Human Genome 1991-92 Program Report and provide new information on the DOE genome program to researchers, program managers, other government agencies, and the interested public. This FY 1993 supplement includes abstracts of 60 new or renewed projects and listings of 112 continuing and 28 completed projects. These two reports, taken together, present the most complete published view of the DOE Human Genome Program through FY 1993. Research is progressing rapidly toward 15-year goals of mapping and sequencing the DNA of each of the 24 different human chromosomes.

  17. Capturing prokaryotic dark matter genomes.

    PubMed

    Gasc, Cyrielle; Ribière, Céline; Parisot, Nicolas; Beugnot, Réjane; Defois, Clémence; Petit-Biderre, Corinne; Boucher, Delphine; Peyretaillade, Eric; Peyret, Pierre

    2015-12-01

    Prokaryotes are the most diverse and abundant cellular life forms on Earth. Most of them, identified by indirect molecular approaches, belong to microbial dark matter. The advent of metagenomic and single-cell genomic approaches has highlighted the metabolic capabilities of numerous members of this dark matter through genome reconstruction. Thus, linking functions back to the species has revolutionized our understanding of how ecosystem function is sustained by the microbial world. This review will present discoveries acquired through the illumination of prokaryotic dark matter genomes by these innovative approaches. PMID:26100932

  18. Where are we in genomics?

    PubMed

    Hocquette, J F

    2005-06-01

    Genomic studies provide scientists with methods to quickly analyse genes and their products en masse. The first high-throughput techniques to be developed were sequencing methods. A great number of genomes from different organisms have thus been sequenced. Genomics is now shifting to the study of gene expression and function. In the past 5-10 years genomics, proteomics and high-throughput microarray technologies have fundamentally changed our ability to study the molecular basis of cells and tissues in health and diseases, giving a new comprehensive view. For example, in cancer research we have seen new diagnostic opportunities for tumour classification, and prognostication. A new exciting development is metabolomics and lab-on-a-chip techniques (which combine miniaturization and automation) for metabolic studies. However, to interpret the large amount of data, extensive computational development is required. In the coming years, we will see the study of biological networks dominating the scene in Physiology. The great accumulation of genomics information will be used in computer programs to simulate biologic processes. Originally developed for genome analysis, bioinformatics now encompasses a wide range of fields in biology from gene studies to integrated biology (i.e. combination of different data sets from genes to metabolites). This is systems biology which aims to study biological organisms as a whole. In medicine, scientific results and applied biotechnologies arising from genomics will be used for effective prediction of diseases and risk associated with drugs. Preventive medicine and medical therapy will be personalized. Widespread applications of genomics for personalized medicine will require associations of gene expression pattern with diagnoses, treatment and clinical data. This will help in the discovery and development of drugs. In agriculture and animal science, the outcomes of genomics will include improvement in food safety, in crop yield, in

  19. Genome dynamics during experimental evolution.

    PubMed

    Barrick, Jeffrey E; Lenski, Richard E

    2013-12-01

    Evolutionary changes in organismal traits may occur either gradually or suddenly. However, until recently, there has been little direct information about how phenotypic changes are related to the rate and the nature of the underlying genotypic changes. Technological advances that facilitate whole-genome and whole-population sequencing, coupled with experiments that 'watch' evolution in action, have brought new precision to and insights into studies of mutation rates and genome evolution. In this Review, we discuss the evolutionary forces and ecological processes that govern genome dynamics in various laboratory systems in the context of relevant population genetic theory, and we relate these findings to evolution in natural populations.

  20. Genome dynamics during experimental evolution

    PubMed Central

    Barrick, Jeffrey E.; Lenski, Richard E.

    2014-01-01

    Evolutionary changes in organismal traits may occur gradually or suddenly. Until recently, however, there has been little direct information about how phenotypic changes are related to the rate and nature of underlying changes in genotype. Technological advances enabling whole-genome and whole-population sequencing coupled with experiments that watch evolution in action have brought new precision and insights to studies of mutation rates and genome evolution. Here, we discuss the evolutionary forces and ecological processes that govern genome dynamics in various laboratory systems in the context of relevant population genetic theory, and we relate these findings to evolution in natural populations. PMID:24166031

  1. Radiation Induced Genomic Instability

    SciTech Connect

    Morgan, William F.

    2011-03-01

    Radiation induced genomic instability can be observed in the progeny of irradiated cells multiple generations after irradiation of parental cells. The phenotype is well established both in vivo (Morgan 2003) and in vitro (Morgan 2003), and may be critical in radiation carcinogenesis (Little 2000, Huang et al. 2003). Instability can be induced by both the deposition of energy in irradiated cells as well as by signals transmitted by irradiated (targeted) cells to non-irradiated (non-targeted) cells (Kadhim et al. 1992, Lorimore et al. 1998). Thus both targeted and non-targeted cells can pass on the legacy of radiation to their progeny. However the radiation induced events and cellular processes that respond to both targeted and non-targeted radiation effects that lead to the unstable phenotype remain elusive. The cell system we have used to study radiation induced genomic instability utilizes human hamster GM10115 cells. These cells have a single copy of human chromosome 4 in a background of hamster chromosomes. Instability is evaluated in the clonal progeny of irradiated cells and a clone is considered unstable if it contains three or more metaphase sub-populations involving unique rearrangements of the human chromosome (Marder and Morgan 1993). Many of these unstable clones have been maintained in culture for many years and have been extensively characterized. As initially described by Clutton et al., (Clutton et al. 1996) many of our unstable clones exhibit persistently elevated levels of reactive oxygen species (Limoli et al. 2003), which appear to be due dysfunctional mitochondria (Kim et al. 2006, Kim et al. 2006). Interestingly, but perhaps not surprisingly, our unstable clones do not demonstrate a “mutator phenotype” (Limoli et al. 1997), but they do continue to rearrange their genomes for many years. The limiting factor with this system is the target – the human chromosome. While some clones demonstrate amplification of this chromosome and thus lend

  2. Identification of genomic sites for CRISPR/Cas9-based genome editing in the Vitis vinifera genome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    CRISPR/Cas9 has been recently demonstrated as an effective and popular genome editing tool for modifying genomes of human, animals, microorganisms, and plants. Success of such genome editing is highly dependent on the availability of suitable target sites in the genomes to be edited. Many specific t...

  3. Challenges in Whole-Genome Annotation of Pyrosequenced Eukaryotic Genomes

    SciTech Connect

    Kuo, Alan; Grigoriev, Igor

    2009-04-17

    Pyrosequencing technologies such as 454/Roche and Solexa/Illumina vastly lower the cost of nucleotide sequencing compared to the traditional Sanger method, and thus promise to greatly expand the number of sequenced eukaryotic genomes. However, the new technologies also bring new challenges such as shorter reads and new kinds and higher rates of sequencing errors, which complicate genome assembly and gene prediction. At JGI we are deploying 454 technology for the sequencing and assembly of ever-larger eukaryotic genomes. Here we describe our first whole-genome annotation of a purely 454-sequenced fungal genome that is larger than a yeast (>30 Mbp). The pezizomycotine (filamentous ascomycote) Aspergillus carbonarius belongs to the Aspergillus section Nigri species complex, members of which are significant as platforms for bioenergy and bioindustrial technology, as members of soil microbial communities and players in the global carbon cycle, and as agricultural toxigens. Application of a modified version of the standard JGI Annotation Pipeline has so far predicted ~;;10k genes. ~;;12percent of these preliminary annotations suffer a potential frameshift error, which is somewhat higher than the ~;;9percent rate in the Sanger-sequenced and conventionally assembled and annotated genome of fellow Aspergillus section Nigri member A. niger. Also,>90percent of A. niger genes have potential homologs in the A. carbonarius preliminary annotation. Weconclude, and with further annotation and comparative analysis expect to confirm, that 454 sequencing strategies provide a promising substrate for annotation of modestly sized eukaryotic genomes. We will also present results of annotation of a number of other pyrosequenced fungal genomes of bioenergy interest.

  4. The Materials Genome Project

    NASA Astrophysics Data System (ADS)

    Aourag, H.

    2008-09-01

    In the past, the search for new and improved materials was characterized mostly by the use of empirical, trial- and-error methods. This picture of materials science has been changing as the knowledge and understanding of fundamental processes governing a material's properties and performance (namely, composition, structure, history, and environment) have increased. In a number of cases, it is now possible to predict a material's properties before it has even been manufactured thus greatly reducing the time spent on testing and development. The objective of modern materials science is to tailor a material (starting with its chemical composition, constituent phases, and microstructure) in order to obtain a desired set of properties suitable for a given application. In the short term, the traditional "empirical" methods for developing new materials will be complemented to a greater degree by theoretical predictions. In some areas, computer simulation is already used by industry to weed out costly or improbable synthesis routes. Can novel materials with optimized properties be designed by computers? Advances in modelling methods at the atomic level coupled with rapid increases in computer capabilities over the last decade have led scientists to answer this question with a resounding "yes'. The ability to design new materials from quantum mechanical principles with computers is currently one of the fastest growing and most exciting areas of theoretical research in the world. The methods allow scientists to evaluate and prescreen new materials "in silico" (in vitro), rather than through time consuming experimentation. The Materials Genome Project is to pursue the theory of large scale modeling as well as powerful methods to construct new materials, with optimized properties. Indeed, it is the intimate synergy between our ability to predict accurately from quantum theory how atoms can be assembled to form new materials and our capacity to synthesize novel materials atom

  5. Invisible genomes: the genomics revolution and patenting practice.

    PubMed

    Bostanci, Adam; Calvert, Jane

    2008-03-01

    In the mid-1990s, the company Human Genome Sciences submitted three potentially revolutionary patent applications to the US Patent and Trademark Office, each of which claimed the entire genome sequence of a microorganism. The patent examiners, however, objected to these applications, and after negotiation they were eventually re-written to resemble more traditional gene patents. In this paper, which is based on a study of the patent examination files, we examine the reasons why these patent applications were unsuccessful in their original form. We show that with respect to utility and novelty, the patent attorney's case built on an understanding of the genome as a computer-related invention. The patent examiners did not object to the patenting of complete genome sequences as computer-related inventions on moral grounds or in terms of the distinction between a discovery and an invention. Instead, their objections were based on classification, rules and procedure. Rather than patent examiners having a notion of a genome that should not be patented, the notion of a 'genome', and the ways in which it may be different from a 'gene', played no role in these debates. We discuss the consequences of our findings for patenting in the biosciences. PMID:18331958

  6. Whole-genome haplotyping approaches and genomic medicine.

    PubMed

    Glusman, Gustavo; Cox, Hannah C; Roach, Jared C

    2014-01-01

    Genomic information reported as haplotypes rather than genotypes will be increasingly important for personalized medicine. Current technologies generate diploid sequence data that is rarely resolved into its constituent haplotypes. Furthermore, paradigms for thinking about genomic information are based on interpreting genotypes rather than haplotypes. Nevertheless, haplotypes have historically been useful in contexts ranging from population genetics to disease-gene mapping efforts. The main approaches for phasing genomic sequence data are molecular haplotyping, genetic haplotyping, and population-based inference. Long-read sequencing technologies are enabling longer molecular haplotypes, and decreases in the cost of whole-genome sequencing are enabling the sequencing of whole-chromosome genetic haplotypes. Hybrid approaches combining high-throughput short-read assembly with strategic approaches that enable physical or virtual binning of reads into haplotypes are enabling multi-gene haplotypes to be generated from single individuals. These techniques can be further combined with genetic and population approaches. Here, we review advances in whole-genome haplotyping approaches and discuss the importance of haplotypes for genomic medicine. Clinical applications include diagnosis by recognition of compound heterozygosity and by phasing regulatory variation to coding variation. Haplotypes, which are more specific than less complex variants such as single nucleotide variants, also have applications in prognostics and diagnostics, in the analysis of tumors, and in typing tissue for transplantation. Future advances will include technological innovations, the application of standard metrics for evaluating haplotype quality, and the development of databases that link haplotypes to disease. PMID:25473435

  7. The Global Cancer Genomics Consortium: interfacing genomics and cancer medicine.

    PubMed

    2012-08-01

    The Global Cancer Genomics Consortium (GCGC) is an international collaborative platform that amalgamates cancer biologists, cutting-edge genomics, and high-throughput expertise with medical oncologists and surgical oncologists; they address the most important translational questions that are central to cancer research and treatment. The annual GCGC symposium was held at the Advanced Centre for Treatment Research and Education in Cancer, Mumbai, India, from November 9 to 11, 2011. The symposium showcased international next-generation sequencing efforts that explore cancer-specific transcriptomic changes, single-nucleotide polymorphism, and copy number variations in various types of cancers, as well as the structural genomics approach to develop new therapeutic targets and chemical probes. From the spectrum of studies presented at the symposium, it is evident that the translation of emerging cancer genomics knowledge into clinical applications can only be achieved through the integration of multidisciplinary expertise. In summary, the GCGC symposium provided practical knowledge on structural and cancer genomics approaches, as well as an exclusive platform for focused cancer genomics endeavors. PMID:22628426

  8. Computational Genomics: From Genome Sequence To Global Gene Regulation

    NASA Astrophysics Data System (ADS)

    Li, Hao

    2000-03-01

    As various genome projects are shifting to the post-sequencing phase, it becomes a big challenge to analyze the sequence data and extract biological information using computational tools. In the past, computational genomics has mainly focused on finding new genes and mapping out their biological functions. With the rapid accumulation of experimental data on genome-wide gene activities, it is now possible to understand how genes are regulated on a genomic scale. A major mechanism for gene regulation is to control the level of transcription, which is achieved by regulatory proteins that bind to short DNA sequences - the regulatory elements. We have developed a new approach to identifying regulatory elements in genomes. The approach formalizes how one would proceed to decipher a ``text'' consisting of a long string of letters written in an unknown language that did not delineate words. The algorithm is based on a statistical mechanics model in which the sequence is segmented probabilistically into ``words'' and a ``dictionary'' of ``words'' is built concurrently. For the control regions in the yeast genome, we built a ``dictionary'' of about one thousand words which includes many known as well as putative regulatory elements. I will discuss how we can use this dictionary to search for genes that are likely to be regulated in a similar fashion and to analyze gene expression data generated from DNA micro-array experiments.

  9. The Global Cancer Genomics Consortium: interfacing genomics and cancer medicine.

    PubMed

    2012-08-01

    The Global Cancer Genomics Consortium (GCGC) is an international collaborative platform that amalgamates cancer biologists, cutting-edge genomics, and high-throughput expertise with medical oncologists and surgical oncologists; they address the most important translational questions that are central to cancer research and treatment. The annual GCGC symposium was held at the Advanced Centre for Treatment Research and Education in Cancer, Mumbai, India, from November 9 to 11, 2011. The symposium showcased international next-generation sequencing efforts that explore cancer-specific transcriptomic changes, single-nucleotide polymorphism, and copy number variations in various types of cancers, as well as the structural genomics approach to develop new therapeutic targets and chemical probes. From the spectrum of studies presented at the symposium, it is evident that the translation of emerging cancer genomics knowledge into clinical applications can only be achieved through the integration of multidisciplinary expertise. In summary, the GCGC symposium provided practical knowledge on structural and cancer genomics approaches, as well as an exclusive platform for focused cancer genomics endeavors.

  10. The soft genome

    PubMed Central

    Anava, Sarit; Posner, Rachel; Rechavi, Oded

    2014-01-01

    Caenorhabditis elegans (C. elegans) nematodes transmit small RNAs across generations, a process that enables transgenerational regulation of genes. In contrast to changes to the DNA sequence, transgenerational transmission of small RNA-mediated responses is reversible, and thus enables “soft” or “flexible” inheritance of acquired characteristics. Until very recently only introduction of foreign genetic material (viruses, transposons, transgenes) was shown to directly lead to inheritance of small RNAs. New discoveries however, demonstrate that starvation also triggers inheritance of endogenous small RNAs in C.elegans. Multiple generations of worms inherit starvation-responsive endogenous small RNAs, and starvation also results in heritable extension of the progeny's lifespan. In this Commentary paper we explore the intriguing possibility that large parts of the genome and many additional traits are similarly subjected to heritable small RNA-mediated regulation, and focus on the potential influence of transgenerational RNAi on the worm's physiology. While the universal relevance of this mechanism remains to be discovered, we will examine how the discoveries made in worms already challenge long held dogmas in genetics and evolution. PMID:26430554

  11. Genomics: implications for toxicology.

    PubMed

    Olden, K; Guthrie, J

    2001-01-25

    The primary goal of the Environmental Genome Project (EGP) is the identification of human polymorphisms indicative of susceptibility to specific environmental agents. Despite evidence for a substantial genetic contribution to disease variation in the population, progress towards identifying specific genes has been slow. To date, most of the advances in our understanding of human diseases has come from genetic analyses of monogenic diseases that affect a relatively small portion of the population. The principal strategy of the EGP involves resequencing DNA samples from populations representative of the US racial and ethnic groups to develop a database of variations. Polymorphisms in specific genes may also be detected by gene-expression profiling. The identification of polymorphisms by resequencing is straightforward, and can be accomplished with minimal difficulty. Gene-expression profiling is still problematic; however, determining the functional significance of the allelic variations will be a monumental challenge involving sophisticated proteomics and population-based and animal model studies. These studies will change radically the practice of public health and clinical medicine, and the approach to the development of pharmaceuticals.

  12. Genome Statute and Legislation Database

    MedlinePlus

    ... of page Last Reviewed: February 29, 2016 Get Email Updates Advancing human health through genomics research Privacy Copyright Contact Accessibility Plug-ins Site Map Staff Directory FOIA Share Top

  13. Do Echinoderm Genomes Measure Up?

    PubMed Central

    Cameron, R. Andrew; Kudtarkar, Parul; Gordon, Susan M.; Worley, Kim C.; Gibbs, Richard A.

    2015-01-01

    Echinoderm genome sequences are a corpus of useful information about a clade of animals that serve as research models in fields ranging from marine ecology to cell and developmental biology. Genomic information from echinoids has contributed to insights into the gene interactions that drive the developmental process at the molecular level. Such insights often rely heavily on genomic information and the kinds of questions that can be asked thus depend on the quality of the sequence information. Here we describe the history of echinoderm genomic sequence assembly and present details about the quality of the data obtained. All of the sequence information discussed here is posted on the echinoderm information web system, Echinobase.org. PMID:25701080

  14. Genomic Resources for Cancer Epidemiology

    Cancer.gov

    This page provides links to research resources, complied by the Epidemiology and Genomics Research Program, that may be of interest to genetic epidemiologists conducting cancer research, but is not exhaustive.

  15. Genomic Datasets for Cancer Research

    Cancer.gov

    A variety of datasets from genome-wide association studies of cancer and other genotype-phenotype studies, including sequencing and molecular diagnostic assays, are available to approved investigators through the Extramural National Cancer Institute Data Access Committee.

  16. Collaborators | Office of Cancer Genomics

    Cancer.gov

    The TARGET initiative is jointly managed within the National Cancer Institute (NCI) by the Office of Cancer Genomics (OCG)Opens in a New Tab and the Cancer Therapy Evaluation Program (CTEP)Opens in a New Tab.

  17. Genomic understanding of glioblastoma expanded

    Cancer.gov

    Glioblastoma multiforme (GBM) was the first cancer type to be systematically studied by TCGA in 2008. In a new, complementary report, TCGA experts examined more than 590 GBM samples--the largest to date utilizing genomic characterization techniques and ne

  18. Modeling Epistasis in Genomic Selection.

    PubMed

    Jiang, Yong; Reif, Jochen C

    2015-10-01

    Modeling epistasis in genomic selection is impeded by a high computational load. The extended genomic best linear unbiased prediction (EG-BLUP) with an epistatic relationship matrix and the reproducing kernel Hilbert space regression (RKHS) are two attractive approaches that reduce the computational load. In this study, we proved the equivalence of EG-BLUP and genomic selection approaches, explicitly modeling epistatic effects. Moreover, we have shown why the RKHS model based on a Gaussian kernel captures epistatic effects among markers. Using experimental data sets in wheat and maize, we compared different genomic selection approaches and concluded that prediction accuracy can be improved by modeling epistasis for selfing species but may not for outcrossing species. PMID:26219298

  19. Evolutionary genomics: transdomain gene transfers.

    PubMed

    Bordenstein, Seth R

    2007-11-01

    Biologists have until now conceded that bacterial gene transfer to multicellular animals is relatively uncommon in Nature. A new study showing promiscuous insertions of bacterial endosymbiont genes into invertebrate genomes ushers in a shift in this paradigm.

  20. Orchestrating the Human Genome Project.

    PubMed

    Cantor, C R

    1990-04-01

    The Human Genome Project is under way. The Department of Energy and the National Institutes of Health are cooperating effectively to develop organizational structures and scientific priorities that should keep the project on schedule and within its budget.

  1. Legal issues in genomic medicine.

    PubMed

    Reilly, P R

    2001-03-01

    Society has entered uncharted territory regarding how, when and where genetic information can be used. This article discusses the major issues raised by increased access to genomic information, which will ultimately be resolved by legislation or the courts.

  2. The European Renal Genome Project

    PubMed Central

    Antignac, C; Brändli, AW; Christensen, EI; Cox, RD; Davidson, D; Davies, JA; Devuyst, O; Eichele, G; Hastie, ND; Verroust, PJ; Schedl, A; Meij, IC

    2005-01-01

    Rapid progress in genome research creates a wealth of information on the functional annotation of mammalian genome sequences. However, as we accumulate large amounts of scientific information we are facing problems of how to integrate and relate the data produced by various genomic approaches. Here, we propose the novel concept of an organ atlas where diverse data from expression maps to histological findings to mutant phenotypes can be queried, compared and visualized in the context of a three-dimensional reconstruction of the organ. We will seek proof of concept for the organ atlas by elucidating genetic pathways involved in development and pathophysiology of the kidney. Such a kidney atlas may provide a paradigm for a new systems-biology approach in functional genome research aimed at understanding the genetic bases of organ development, physiology and disease. PMID:19521566

  3. Do echinoderm genomes measure up?

    PubMed

    Cameron, R Andrew; Kudtarkar, Parul; Gordon, Susan M; Worley, Kim C; Gibbs, Richard A

    2015-08-01

    Echinoderm genome sequences are a corpus of useful information about a clade of animals that serve as research models in fields ranging from marine ecology to cell and developmental biology. Genomic information from echinoids has contributed to insights into the gene interactions that drive the developmental process at the molecular level. Such insights often rely heavily on genomic information and the kinds of questions that can be asked thus depend on the quality of the sequence information. Here we describe the history of echinoderm genomic sequence assembly and present details about the quality of the data obtained. All of the sequence information discussed here is posted on the echinoderm information web system, Echinobase.org.

  4. The emergence of physiological genomics.

    PubMed

    Cowley, A W

    1999-01-01

    'Physiological genomics' represents a research paradigm shift emerging to define the functions of tens of thousands of newly discovered genes which are expected to emerge from the sequencing of the human genome and other model organisms. Genomic tools, which will allow a higher efficiency of identification of gene function, are being developed at remarkable speed. This article discusses some of the genomic and bioinformatic tools currently available or under development to provide the infrastructure for mapping and identification of gene function in simple organisms (bacteria, zebrafish, fly, worm) and complex mammalian organisms (mouse and rat). The problems facing the scientific community in the implementation of this functional approach are discussed as it is now evident that new technological and organizational infrastructures are emerging to link genes to overall function of whole organisms.

  5. 2004 Structural, Function and Evolutionary Genomics

    SciTech Connect

    Douglas L. Brutlag Nancy Ryan Gray

    2005-03-23

    This Gordon conference will cover the areas of structural, functional and evolutionary genomics. It will take a systematic approach to genomics, examining the evolution of proteins, protein functional sites, protein-protein interactions, regulatory networks, and metabolic networks. Emphasis will be placed on what we can learn from comparative genomics and entire genomes and proteomes.

  6. Genome Sequence of Burkholderia pseudomallei NCTC 13392

    PubMed Central

    Sahl, Jason W.; Stone, Joshua K.; Gelhaus, H. Carl; Warren, Richard L.; Cruttwell, Caroline J.; Funnell, Simon G.; Keim, Paul

    2013-01-01

    Here, we describe the draft genome sequence of Burkholderia pseudomallei NCTC 13392. This isolate has been distributed as K96243, but distinct genomic differences have been identified. The genomic sequence of this isolate will provide the genomic context for previously conducted functional studies. PMID:23704173

  7. Genomic Aspects of Research Involving Polyploid Plants

    SciTech Connect

    Yang, Xiaohan; Ye, Chuyu; Tschaplinski, Timothy J; Wullschleger, Stan D; Tuskan, Gerald A

    2011-01-01

    Almost all extant plant species have spontaneously doubled their genomes at least once in their evolutionary histories, resulting in polyploidy which provided a rich genomic resource for evolutionary processes. Moreover, superior polyploid clones have been created during the process of crop domestication. Polyploid plants generated by evolutionary processes and/or crop domestication have been the intentional or serendipitous focus of research dealing with the dynamics and consequences of genome evolution. One of the new trends in genomics research is to create synthetic polyploid plants which provide materials for studying the initial genomic changes/responses immediately after polyploid formation. Polyploid plants are also used in functional genomics research to study gene expression in a complex genomic background. In this review, we summarize the recent progress in genomics research involving ancient, young, and synthetic polyploid plants, with a focus on genome size evolution, genomics diversity, genomic rearrangement, genetic and epigenetic changes in duplicated genes, gene discovery, and comparative genomics. Implications on plant sciences including evolution, functional genomics, and plant breeding are presented. It is anticipated that polyploids will be a regular subject of genomics research in the foreseeable future as the rapid advances in DNA sequencing technology create unprecedented opportunities for discovering and monitoring genomic and transcriptomic changes in polyploid plants. The fast accumulation of knowledge on polyploid formation, maintenance, and divergence at whole-genome and subgenome levels will not only help plant biologists understand how plants have evolved and diversified, but also assist plant breeders in designing new strategies for crop improvement.

  8. Eukaryotic Genomics Data from the DOE Joint Genome Institute (JGI)

    DOE Data Explorer

    The JGI makes high-quality genome sequencing data freely available to the greater scientific community through its web portal. Having played a significant role in the federally funded Human Genome Project -- generating the complete sequences of Chromosomes 5, 16, and 19--the JGI has now moved on to contributing in other critical areas of genomics research. While NIH-funded genome sequencing activities continue to emphasize human biomedical targets and applications, the JGI has since shifted its focus to the non-human components of the biosphere, particularly those relevant to the science mission of the Department of Energy. With efficiencies of scale established at the PGF, and capacity now exceeding three billion bases generated on a monthly basis, the JGI has tackled scores of additional genomes. These include more than 60 microbial genomes and many important multicellular organisms and communities of microbes. In partnership with other federal institutions and universities, the JGI is in the process of sequencing a frog (Xenopus tropicalis), a green alga (Chlamydomonas reinhardtii), a diatom (Thalassiosira pseudonana) , the cottonwood tree (Populus trichocarpa), and a host of agriculturally important plants and plant pathogens. Microorganisms, for example those that thrive under extreme conditions such as high acidity, radiation, and metal contamination, are of particular interest to the DOE and JGI. Investigations by JGI and its partners are shedding light on the cellular machinery of microbes and how they can be harnessed to clean up contaminated soil or water, capture carbon from the atmosphere, and produce potentially important sources of energy such as hydrogen and methane. [Excerpt from the JGI page "Who We Are" at http://www.jgi.doe.gov/whoweare/whoweare.html] From the JGI webportal users can choose Eukaryotic genomes from a photo list, access the JGI FTP directories to download data files, use the Tree of Life navigation tool, or choose a genome and go

  9. Contact | Office of Cancer Genomics

    Cancer.gov

    For more information about the Office of Cancer Genomics, please contact: Office of Cancer Genomics National Cancer Institute 31 Center Drive, 10A07 Bethesda, Maryland 20892-2580 Phone: (301) 451-8027 Fax: (301) 480-4368 Email: ocg@mail.nih.gov *Please note that this site will not function properly in Internet Explorer unless you completely turn off the Compatibility View*

  10. Genome shortcut leads to problems

    SciTech Connect

    Anderson, C.

    1993-03-19

    Mega YACs (yeast artificial chromosomes), which can carry DNA sequences up to 1.4 million bases long, were anticipated as a major for mapping the human genome. They have been found to have as much as 80% chimerism, however, and contain many deletions and rearrangements. This makes them useless for high-resolution mapping, but they are effective for connecting points over long distances. Mega YACs are still useful for mapping 95% of the human genome.

  11. Genomic medicine implementation: learning by example.

    PubMed

    Williams, Marc S

    2014-03-01

    Genomic Medicine is beginning to emerge into clinical practice. The National Human Genome Research Institute's Genomic Medicine Working Group consists of organizations that have begun to implement some aspect of genomic medicine (e.g., family history, systematic implementation of Mendelian disease program, pharmacogenomics, whole exome/genome sequencing). This article concisely reviews the working group and provides a broader context for the articles in the special issue including an assessment of anticipated provider needs and ethical, legal, and social issues relevant to the implementation of genomic medicine. The challenges of implementation of innovation in clinical practice and the potential value of genomic medicine are discussed.

  12. Mutational dynamics of aroid chloroplast genomes.

    PubMed

    Ahmed, Ibrar; Biggs, Patrick J; Matthews, Peter J; Collins, Lesley J; Hendy, Michael D; Lockhart, Peter J

    2012-01-01

    A characteristic feature of eukaryote and prokaryote genomes is the co-occurrence of nucleotide substitution and insertion/deletion (indel) mutations. Although similar observations have also been made for chloroplast DNA, genome-wide associations have not been reported. We determined the chloroplast genome sequences for two morphotypes of taro (Colocasia esculenta; family Araceae) and compared these with four publicly available aroid chloroplast genomes. Here, we report the extent of genome-wide association between direct and inverted repeats, indels, and substitutions in these aroid chloroplast genomes. We suggest that alternative but not mutually exclusive hypotheses explain the mutational dynamics of chloroplast genome evolution. PMID:23204304

  13. Implementing genomic medicine in pathology.

    PubMed

    Williams, Eli S; Hegde, Madhuri

    2013-07-01

    The finished sequence of the Human Genome Project, published 50 years after Watson and Crick's seminal paper on the structure of DNA, pushed human genetics into the public eye and ushered in the genomic era. A significant, if overlooked, aspect of the race to complete the genome was the technology that propelled scientists to the finish line. DNA sequencing technologies have become more standardized, automated, and capable of higher throughput. This technology has continued to grow at an astounding rate in the decade since the Human Genome Project was completed. Today, massively parallel sequencing, or next-generation sequencing (NGS), allows the detection of genetic variants across the entire genome. This ability has led to the identification of new causes of disease and is changing the way we categorize, treat, and manage disease. NGS approaches such as whole-exome sequencing and whole-genome sequencing are rapidly becoming an affordable genetic testing strategy for the clinical laboratory. One test can now provide vast amounts of health information pertaining not only to the disease of interest, but information that may also predict adult-onset disease, reveal carrier status for a rare disease and predict drug responsiveness. The issue of what to do with these incidental findings, along with questions pertaining to NGS testing strategies, data interpretation and storage, and applying genetic testing results into patient care, remains without a clear answer. This review will explore these issues and others relevant to the implementation of NGS in the clinical laboratory. PMID:23752086

  14. Genomic expression during human myelopoiesis

    PubMed Central

    Ferrari, Francesco; Bortoluzzi, Stefania; Coppe, Alessandro; Basso, Dario; Bicciato, Silvio; Zini, Roberta; Gemelli, Claudia; Danieli, Gian Antonio; Ferrari, Sergio

    2007-01-01

    Background Human myelopoiesis is an exciting biological model for cellular differentiation since it represents a plastic process where multipotent stem cells gradually limit their differentiation potential, generating different precursor cells which finally evolve into distinct terminally differentiated cells. This study aimed at investigating the genomic expression during myeloid differentiation through a computational approach that integrates gene expression profiles with functional information and genome organization. Results Gene expression data from 24 experiments for 8 different cell types of the human myelopoietic lineage were used to generate an integrated myelopoiesis dataset of 9,425 genes, each reliably associated to a unique genomic position and chromosomal coordinate. Lists of genes constitutively expressed or silent during myelopoiesis and of genes differentially expressed in commitment phase of myelopoiesis were first identified using a classical data analysis procedure. Then, the genomic distribution of myelopoiesis genes was investigated integrating transcriptional and functional characteristics of genes. This approach allowed identifying specific chromosomal regions significantly highly or weakly expressed, and clusters of differentially expressed genes and of transcripts related to specific functional modules. Conclusion The analysis of genomic expression during human myelopoiesis using an integrative computational approach allowed discovering important relationships between genomic position, biological function and expression patterns and highlighting chromatin domains, including genes with coordinated expression and lineage-specific functions. PMID:17683550

  15. Comparative genomic analyses in Asparagus.

    PubMed

    Kuhl, Joseph C; Havey, Michael J; Martin, William J; Cheung, Foo; Yuan, Qiaoping; Landherr, Lena; Hu, Yi; Leebens-Mack, James; Town, Christopher D; Sink, Kenneth C

    2005-12-01

    Garden asparagus (Asparagus officinalis L.) belongs to the monocot family Asparagaceae in the order Asparagales. Onion (Allium cepa L.) and Asparagus officinalis are 2 of the most economically important plants of the core Asparagales, a well supported monophyletic group within the Asparagales. Coding regions in onion have lower GC contents than the grasses. We compared the GC content of 3374 unique expressed sequence tags (ESTs) from A. officinalis with Lycoris longituba and onion (both members of the core Asparagales), Acorus americanus (sister to all other monocots), the grasses, and Arabidopsis. Although ESTs in A. officinalis and Acorus had a higher average GC content than Arabidopsis, Lycoris, and onion, all were clearly lower than the grasses. The Asparagaceae have the smallest nuclear genomes among all plants in the core Asparagales, which typically have huge genomes. Within the Asparagaceae, European Asparagus species have approximately twice the nuclear DNA of that of southern African Asparagus species. We cloned and sequenced 20 genomic amplicons from European A. officinalis and the southern African species Asparagus plumosus and observed no clear evidence for a recent genome doubling in A. officinalis relative to A. plumosus. These results indicate that members of the genus Asparagus with smaller genomes may be useful genomic models for plants in the core Asparagales. PMID:16391674

  16. Evolutionary genomics of environmental pollution.

    PubMed

    Whitehead, Andrew

    2014-01-01

    Chemical toxins have been a persistent source of evolutionary challenges throughout the history of life, and deep within the genomic storehouse of evolutionary history lay ancient adaptations to diverse chemical poisons. However, the rate of change of contemporary environments mediated by human-introduced pollutants is rapidly screening this storehouse and severely testing the adaptive potential of many species. In this chapter, we briefly review the deep history of evolutionary adaptation to environmental toxins, and then proceed to describe the attributes of stressors and populations that may facilitate contemporary adaptation to pollutants introduced by humans. We highlight that phenotypes derived to enable persistence in polluted habitats may be multi-dimensional, requiring global genome-scale tools and approaches to uncover their mechanistic basis, and include examples of recent progress in the field. The modern tools of genomics offer promise for discovering how pollutants interact with genomes on physiological timescales, and also for discovering what genomic attributes of populations may enable resistance to pollutants over evolutionary timescales. Through integration of these sophisticated genomics tools and approaches with an understanding of the deep historical forces that shaped current populations, a more mature understanding of the mechanistic basis of contemporary ecological-evolutionary dynamics should emerge.

  17. Widespread Recurrent Evolution of Genomic Features

    PubMed Central

    Maeso, Ignacio; Roy, Scott William; Irimia, Manuel

    2012-01-01

    The recent explosion of genome sequences from all major phylogenetic groups has unveiled an unexpected wealth of cases of recurrent evolution of strikingly similar genomic features in different lineages. Here, we review the diverse known types of recurrent evolution in eukaryotic genomes, with a special focus on metazoans, ranging from reductive genome evolution to origins of splice-leader trans-splicing, from tandem exon duplications to gene family expansions. We first propose a general classification scheme for evolutionary recurrence at the genomic level, based on the type of driving force—mutation or selection—and the environmental and genomic circumstances underlying these forces. We then discuss various cases of recurrent genomic evolution under this scheme. Finally, we provide a broader context for repeated genomic evolution, including the unique relationship of genomic recurrence with the genotype–phenotype map, and the ways in which the study of recurrent genomic evolution can be used to understand fundamental evolutionary processes. PMID:22417916

  18. Comparative genomic hybridization with single cells after whole genome amplification

    SciTech Connect

    Haddad, B.R.; Baldini, A.; Hughes, M.R.

    1994-09-01

    Conventional karyotype analysis is the ideal way to diagnose chromosomal imbalances. However it requires cell culture and chromosome preparation. There are instances where a very small number of cells are available for cytogenetic evaluation and chromosomes cannot be obtained. Comparative genomic hybridization (CGH) is a novel molecular cytogenetic technique that provides information about genetic imbalances affecting the genome. The power of this technique lies in its ability to detect genetic imbalances using total genomic DNA. We have previously demonstrated the feasibility of whole genome amplification from single cells for subsequent analysis of multiple genetic loci by PCR. In this present work, we combine whole genome amplification with CGH to detect chromosomal imbalances from small numbers of cells. Both cytogenetically normal and abnormal cells were individually picked by micromanipulation and subjected to whole genome amplification using random oligonucleotide primers. Amplified test and control DNA were differentially labeled by incorporation of digoxigenin or biotin, mixed together and hybridized to normal male metaphase spreads. Hybridization was detected with two fluorochromes, rhodamine-anti-digoxigenin and FITC -Avidin. Ratio of intensities of the two fluorochromes along the target chromosomes was analyzed using locally developed computer imaging software. Using the combination of whole genome amplification and CGH, we were able to detect different chromosomal aneuploidies from 30, 20, and 10 cells. It can also be applied to the analysis of fetal cells sorted from maternal circulation, or to tumor cells obtained from needle biopsies or from different body fluids and effusions. Finally, its successful application to single cells will have a great impact on preimplantation diagnosis.

  19. Genomics and museum specimens.

    PubMed

    Nachman, Michael W

    2013-12-01

    Nearly 25 years ago, Allan Wilson and colleagues isolated DNA sequences from museum specimens of kangaroo rats (Dipodomys panamintinus) and compared these sequences with those from freshly collected animals (Thomas et al. 1990). The museum specimens had been collected up to 78 years earlier, so the two samples provided a direct temporal comparison of patterns of genetic variation. This was not the first time DNA sequences had been isolated from preserved material, but it was the first time it had been carried out with a population sample. Population geneticists often try to make inferences about the influence of historical processes such as selection, drift, mutation and migration on patterns of genetic variation in the present. The work of Wilson and colleagues was important in part because it suggested a way in which population geneticists could actually study genetic change in natural populations through time, much the same way that experimentalists can do with artificial populations in the laboratory. Indeed, the work of Thomas et al. (1990) spawned dozens of studies in which museum specimens were used to compare historical and present-day genetic diversity (reviewed in Wandeler et al. 2007). All of these studies, however, were limited by the same fundamental problem: old DNA is degraded into short fragments. As a consequence, these studies mostly involved PCR amplification of short templates, usually short stretches of mitochondrial DNA or microsatellites. In this issue, Bi et al. (2013) report a breakthrough that should open the door to studies of genomic variation in museum specimens. They used target enrichment (exon capture) and next-generation (Illumina) sequencing to compare patterns of genetic variation in historic and present-day population samples of alpine chipmunks (Tamias alpinus) (Fig. 1). The historic samples came from specimens collected in 1915, so the temporal span of this comparison is nearly 100 years.

  20. Brazil: public health genomics.

    PubMed

    Castilla, E E; Luquetti, D V

    2009-01-01

    Brazil represents half of South America and one third of Latin America, having more than 186 million inhabitants. After China and India it is the third largest developing country in the world. The wealth is unequally distributed among the states and among the people. Brazil has a large and complex health care system. A Universal Public Health System (SUS: Sistema SPACEnico de Saúde) covers the medical expenses for 80% of the population. The genetic structure of the population is very complex, including a large proportion of tri- hybrid persons, genetic isolates, and a panmictic large majority. Genetic services are offered at 64 genetic centers, half of them public and free. Nationwide networks are operating for inborn errors of metabolism, oncogenetics, and craniofacial anomalies. The Brazilian Society of Medical Genetics (SBGM) has granted 120 board certifications since 1986, and 7 recognized residences in medical genetics are operating in the country. Three main public health actions promoted by the federal government have been undertaken in the last decade, ultimately aimed at the prevention of birth defects. Since 1999, birth defects are reported for all 3 million annual live births, several vaccination strategies aim at the eradication of rubella, and wheat and maize flours are fortified with folic acid. Currently, the government distributes over 2 million US dollars to finance 14 research projects aimed at providing the basis for the adequate prevention and care of genetics disorders through the SUS. Continuity of this proactive attitude of the government in the area of genomics in public health is desired. PMID:19023184

  1. The Norway spruce genome sequence and conifer genome evolution.

    PubMed

    Nystedt, Björn; Street, Nathaniel R; Wetterbom, Anna; Zuccolo, Andrea; Lin, Yao-Cheng; Scofield, Douglas G; Vezzi, Francesco; Delhomme, Nicolas; Giacomello, Stefania; Alexeyenko, Andrey; Vicedomini, Riccardo; Sahlin, Kristoffer; Sherwood, Ellen; Elfstrand, Malin; Gramzow, Lydia; Holmberg, Kristina; Hällman, Jimmie; Keech, Olivier; Klasson, Lisa; Koriabine, Maxim; Kucukoglu, Melis; Käller, Max; Luthman, Johannes; Lysholm, Fredrik; Niittylä, Totte; Olson, Ake; Rilakovic, Nemanja; Ritland, Carol; Rosselló, Josep A; Sena, Juliana; Svensson, Thomas; Talavera-López, Carlos; Theißen, Günter; Tuominen, Hannele; Vanneste, Kevin; Wu, Zhi-Qiang; Zhang, Bo; Zerbe, Philipp; Arvestad, Lars; Bhalerao, Rishikesh; Bohlmann, Joerg; Bousquet, Jean; Garcia Gil, Rosario; Hvidsten, Torgeir R; de Jong, Pieter; MacKay, John; Morgante, Michele; Ritland, Kermit; Sundberg, Björn; Thompson, Stacey Lee; Van de Peer, Yves; Andersson, Björn; Nilsson, Ove; Ingvarsson, Pär K; Lundeberg, Joakim; Jansson, Stefan

    2013-05-30

    Conifers have dominated forests for more than 200 million years and are of huge ecological and economic importance. Here we present the draft assembly of the 20-gigabase genome of Norway spruce (Picea abies), the first available for any gymnosperm. The number of well-supported genes (28,354) is similar to the >100 times smaller genome of Arabidopsis thaliana, and there is no evidence of a recent whole-genome duplication in the gymnosperm lineage. Instead, the large genome size seems to result from the slow and steady accumulation of a diverse set of long-terminal repeat transposable elements, possibly owing to the lack of an efficient elimination mechanism. Comparative sequencing of Pinus sylvestris, Abies sibirica, Juniperus communis, Taxus baccata and Gnetum gnemon reveals that the transposable element diversity is shared among extant conifers. Expression of 24-nucleotide small RNAs, previously implicated in transposable element silencing, is tissue-specific and much lower than in other plants. We further identify numerous long (>10,000 base pairs) introns, gene-like fragments, uncharacterized long non-coding RNAs and short RNAs. This opens up new genomic avenues for conifer forestry and breeding.

  2. Genomic repeats, genome plasticity and the dynamics of Mycoplasma evolution

    PubMed Central

    Rocha, Eduardo P. C.; Blanchard, Alain

    2002-01-01

    Mycoplasmas evolved by a drastic reduction in genome size, but their genomes contain numerous repeated sequences with important roles in their evolution. We have established a bioinformatic strategy to detect the major recombination hot-spots in the genomes of Mycoplasma pneumoniae, Mycoplasma genitalium, Ureaplasma urealyticum and Mycoplasma pulmonis. This allowed the identification of large numbers of potentially variable regions, as well as a comparison of the relative recombination potentials of different genomic regions. Different trends are perceptible among mycoplasmas, probably due to different functional and structural constraints. The largest potential for illegitimate recombination in M.pulmonis is found at the vsa locus and its comparison in two different strains reveals numerous changes since divergence. On the other hand, the main M.pneumoniae and M.genitalium adhesins rely on large distant repeats and, hence, homologous recombination for variation. However, the relation between the existence of repeats and antigenic variation is not necessarily straightforward, since repeats of P1 adhesin were found to be anti-correlated with epitopes recognized by patient antibodies. These different strategies have important consequences for the structures of genomes, since large distant repeats correlate well with the major chromosomal rearrangements. Probably to avoid such events, mycoplasmas strongly avoid inverse repeats, in comparison to co-oriented repeats. PMID:11972343

  3. The mouse genome informatics and the mouse genome database

    SciTech Connect

    Maltais, L.J.; Blackburn, R.E.; Bradt, D.W.

    1994-09-01

    The Mouse Genome Database (MGD) is a centralized, comprehensive database of the mouse genome that includes genetic mapping data, comparative mapping data, gene descriptions, mutant phenotype descriptions, strains and allelic polymorphism data, inbred strain characteristics, physical mapping data, and molecular probes and clones data. Data in MGD are obtained from the published literature and by electronic transfer from laboratories working on large backcross panels of mice. MGD provides tools that enable the user to search the database, retrieve data, generate reports, analyze data, annotate records, and build genetic maps. The Encyclopedia of the Mouse Genome provides a graphic user interface to mouse genome data. It consists of software tools including: LinkMap, a graphic display of genetic linkage maps with the ability to magnify regions of high locus density: CytoMap, a graphic display of cytogenetic maps showing banded chromosomes with cytogenetic locations of genes and chromosomal aberrations; CATS, a catalog searching tool for text retrieval of mouse locus descriptions. These software tools provide access to the following data sets: Chromosome Committee Reports, MIT Genome Center data, GBASE reports, Mouse Locus Catalog (MLC), and Mouse Cytogenetic Mapping Data. The MGD is available to the scientific community through the World Wide Web (WWW) and Gopher. In addition GBASE can be accessed via the Internet.

  4. Genomic disorders: A window into human gene and genome evolution

    PubMed Central

    Carvalho, Claudia M. B.; Zhang, Feng; Lupski, James R.

    2010-01-01

    Gene duplications alter the genetic constitution of organisms and can be a driving force of molecular evolution in humans and the great apes. In this context, the study of genomic disorders has uncovered the essential role played by the genomic architecture, especially low copy repeats (LCRs) or segmental duplications (SDs). In fact, regardless of the mechanism, LCRs can mediate or stimulate rearrangements, inciting genomic instability and generating dynamic and unstable regions prone to rapid molecular evolution. In humans, copy-number variation (CNV) has been implicated in common traits such as neuropathy, hypertension, color blindness, infertility, and behavioral traits including autism and schizophrenia, as well as disease susceptibility to HIV, lupus nephritis, and psoriasis among many other clinical phenotypes. The same mechanisms implicated in the origin of genomic disorders may also play a role in the emergence of segmental duplications and the evolution of new genes by means of genomic and gene duplication and triplication, exon shuffling, exon accretion, and fusion/fission events. PMID:20080665

  5. GOLD: The Genomes Online Database

    DOE Data Explorer

    Kyrpides, Nikos; Liolios, Dinos; Chen, Amy; Tavernarakis, Nektarios; Hugenholtz, Philip; Markowitz, Victor; Bernal, Alex

    Since its inception in 1997, GOLD has continuously monitored genome sequencing projects worldwide and has provided the community with a unique centralized resource that integrates diverse information related to Archaea, Bacteria, Eukaryotic and more recently Metagenomic sequencing projects. As of September 2007, GOLD recorded 639 completed genome projects. These projects have their complete sequence deposited into the public archival sequence databases such as GenBank EMBL,and DDBJ. From the total of 639 complete and published genome projects as of 9/2007, 527 were bacterial, 47 were archaeal and 65 were eukaryotic. In addition to the complete projects, there were 2158 ongoing sequencing projects. 1328 of those were bacterial, 59 archaeal and 771 eukaryotic projects. Two types of metadata are provided by GOLD: (i) project metadata and (ii) organism/environment metadata. GOLD CARD pages for every project are available from the link of every GOLD_STAMP ID. The information in every one of these pages is organized into three tables: (a) Organism information, (b) Genome project information and (c) External links. [The Genomes On Line Database (GOLD) in 2007: Status of genomic and metagenomic projects and their associated metadata, Konstantinos Liolios, Konstantinos Mavromatis, Nektarios Tavernarakis and Nikos C. Kyrpides, Nucleic Acids Research Advance Access published online on November 2, 2007, Nucleic Acids Research, doi:10.1093/nar/gkm884]

    The basic tables in the GOLD database that can be browsed or searched include the following information:

    • Gold Stamp ID
    • Organism name
    • Domain
    • Links to information sources
    • Size and link to a map, when available
    • Chromosome number, Plas number, and GC content
    • A link for downloading the actual genome data
    • Institution that did the sequencing
    • Funding source
    • Database where information resides
    • Publication status and information

    • GIPSy: Genomic island prediction software.

      PubMed

      Soares, Siomar C; Geyik, Hakan; Ramos, Rommel T J; de Sá, Pablo H C G; Barbosa, Eudes G V; Baumbach, Jan; Figueiredo, Henrique C P; Miyoshi, Anderson; Tauch, Andreas; Silva, Artur; Azevedo, Vasco

      2016-08-20

      Bacteria are highly diverse organisms that are able to adapt to a broad range of environments and hosts due to their high genomic plasticity. Horizontal gene transfer plays a pivotal role in this genome plasticity and in evolution by leaps through the incorporation of large blocks of genome sequences, ordinarily known as genomic islands (GEIs). GEIs may harbor genes encoding virulence, metabolism, antibiotic resistance and symbiosis-related functions, namely pathogenicity islands (PAIs), metabolic islands (MIs), resistance islands (RIs) and symbiotic islands (SIs). Although many software for the prediction of GEIs exist, they only focus on PAI prediction and present other limitations, such as complicated installation and inconvenient user interfaces. Here, we present GIPSy, the genomic island prediction software, a standalone and user-friendly software for the prediction of GEIs, built on our previously developed pathogenicity island prediction software (PIPS). We also present four application cases in which we crosslink data from literature to PAIs, MIs, RIs and SIs predicted by GIPSy. Briefly, GIPSy correctly predicted the following previously described GEIs: 13 PAIs larger than 30kb in Escherichia coli CFT073; 1 MI for Burkholderia pseudomallei K96243, which seems to be a miscellaneous island; 1 RI of Acinetobacter baumannii AYE, named AbaR1; and, 1 SI of Mesorhizobium loti MAFF303099 presenting a mosaic structure. GIPSy is the first life-style-specific genomic island prediction software to perform analyses of PAIs, MIs, RIs and SIs, opening a door for a better understanding of bacterial genome plasticity and the adaptation to new traits. PMID:26376473

    • GIPSy: Genomic island prediction software.

      PubMed

      Soares, Siomar C; Geyik, Hakan; Ramos, Rommel T J; de Sá, Pablo H C G; Barbosa, Eudes G V; Baumbach, Jan; Figueiredo, Henrique C P; Miyoshi, Anderson; Tauch, Andreas; Silva, Artur; Azevedo, Vasco

      2016-08-20

      Bacteria are highly diverse organisms that are able to adapt to a broad range of environments and hosts due to their high genomic plasticity. Horizontal gene transfer plays a pivotal role in this genome plasticity and in evolution by leaps through the incorporation of large blocks of genome sequences, ordinarily known as genomic islands (GEIs). GEIs may harbor genes encoding virulence, metabolism, antibiotic resistance and symbiosis-related functions, namely pathogenicity islands (PAIs), metabolic islands (MIs), resistance islands (RIs) and symbiotic islands (SIs). Although many software for the prediction of GEIs exist, they only focus on PAI prediction and present other limitations, such as complicated installation and inconvenient user interfaces. Here, we present GIPSy, the genomic island prediction software, a standalone and user-friendly software for the prediction of GEIs, built on our previously developed pathogenicity island prediction software (PIPS). We also present four application cases in which we crosslink data from literature to PAIs, MIs, RIs and SIs predicted by GIPSy. Briefly, GIPSy correctly predicted the following previously described GEIs: 13 PAIs larger than 30kb in Escherichia coli CFT073; 1 MI for Burkholderia pseudomallei K96243, which seems to be a miscellaneous island; 1 RI of Acinetobacter baumannii AYE, named AbaR1; and, 1 SI of Mesorhizobium loti MAFF303099 presenting a mosaic structure. GIPSy is the first life-style-specific genomic island prediction software to perform analyses of PAIs, MIs, RIs and SIs, opening a door for a better understanding of bacterial genome plasticity and the adaptation to new traits.

    • Unraveling the 3D genome: genomics tools for multiscale exploration.

      PubMed

      Risca, Viviana I; Greenleaf, William J

      2015-07-01

      A decade of rapid method development has begun to yield exciting insights into the 3D architecture of the metazoan genome and the roles it may play in regulating transcription. Here we review core methods and new tools in the modern genomicist's toolbox at three length scales, ranging from single base pairs to megabase-scale chromosomal domains, and discuss the emerging picture of the 3D genome that these tools have revealed. Blind spots remain, especially at intermediate length scales spanning a few nucleosomes, but thanks in part to new technologies that permit targeted alteration of chromatin states and time-resolved studies, the next decade holds great promise for hypothesis-driven research into the mechanisms that drive genome architecture and transcriptional regulation.

    • Saccharomyces Genome Database: the genomics resource of budding yeast

      PubMed Central

      Cherry, J. Michael; Hong, Eurie L.; Amundsen, Craig; Balakrishnan, Rama; Binkley, Gail; Chan, Esther T.; Christie, Karen R.; Costanzo, Maria C.; Dwight, Selina S.; Engel, Stacia R.; Fisk, Dianna G.; Hirschman, Jodi E.; Hitz, Benjamin C.; Karra, Kalpana; Krieger, Cynthia J.; Miyasato, Stuart R.; Nash, Rob S.; Park, Julie; Skrzypek, Marek S.; Simison, Matt; Weng, Shuai; Wong, Edith D.

      2012-01-01

      The Saccharomyces Genome Database (SGD, http://www.yeastgenome.org) is the community resource for the budding yeast Saccharomyces cerevisiae. The SGD project provides the highest-quality manually curated information from peer-reviewed literature. The experimental results reported in the literature are extracted and integrated within a well-developed database. These data are combined with quality high-throughput results and provided through Locus Summary pages, a powerful query engine and rich genome browser. The acquisition, integration and retrieval of these data allow SGD to facilitate experimental design and analysis by providing an encyclopedia of the yeast genome, its chromosomal features, their functions and interactions. Public access to these data is provided to researchers and educators via web pages designed for optimal ease of use. PMID:22110037

    • Saccharomyces Genome Database: the genomics resource of budding yeast.

      PubMed

      Cherry, J Michael; Hong, Eurie L; Amundsen, Craig; Balakrishnan, Rama; Binkley, Gail; Chan, Esther T; Christie, Karen R; Costanzo, Maria C; Dwight, Selina S; Engel, Stacia R; Fisk, Dianna G; Hirschman, Jodi E; Hitz, Benjamin C; Karra, Kalpana; Krieger, Cynthia J; Miyasato, Stuart R; Nash, Rob S; Park, Julie; Skrzypek, Marek S; Simison, Matt; Weng, Shuai; Wong, Edith D

      2012-01-01

      The Saccharomyces Genome Database (SGD, http://www.yeastgenome.org) is the community resource for the budding yeast Saccharomyces cerevisiae. The SGD project provides the highest-quality manually curated information from peer-reviewed literature. The experimental results reported in the literature are extracted and integrated within a well-developed database. These data are combined with quality high-throughput results and provided through Locus Summary pages, a powerful query engine and rich genome browser. The acquisition, integration and retrieval of these data allow SGD to facilitate experimental design and analysis by providing an encyclopedia of the yeast genome, its chromosomal features, their functions and interactions. Public access to these data is provided to researchers and educators via web pages designed for optimal ease of use. PMID:22110037

    • Human Genome Education Program

      SciTech Connect

      Richard Myers; Lane Conn

      2000-05-01

      The funds from the DOE Human Genome Program, for the project period 2/1/96 through 1/31/98, have provided major support for the curriculum development and field testing efforts for two high school level instructional units: Unit 1, ''Exploring Genetic Conditions: Genes, Culture and Choices''; and Unit 2, ''DNA Snapshots: Peaking at Your DNA''. In the original proposal, they requested DOE support for the partial salary and benefits of a Field Test Coordinator position to: (1) complete the field testing and revision of two high school curriculum units, and (2) initiate the education of teachers using these units. During the project period of this two-year DOE grant, a part-time Field-Test Coordinator was hired (Ms. Geraldine Horsma) and significant progress has been made in both of the original proposal objectives. Field testing for Unit 1 has occurred in over 12 schools (local and non-local sites with diverse student populations). Field testing for Unit 2 has occurred in over 15 schools (local and non-local sites) and will continue in 12-15 schools during the 96-97 school year. For both curricula, field-test sites and site teachers were selected for their interest in genetics education and in hands-on science education. Many of the site teachers had no previous experience with HGEP or the unit under development. Both of these first-year biology curriculum units, which contain genetics, biotechnology, societal, ethical and cultural issues related to HGP, are being implemented in many local and non-local schools (SF Bay Area, Southern California, Nebraska, Hawaii, and Texas) and in programs for teachers. These units will reach over 10,000 students in the SF Bay Area and continues to receive support from local corporate and private philanthropic organizations. Although HGEP unit development is nearing completion for both units, data is still being gathered and analyzed on unit effectiveness and student learning. The final field testing result from this analysis will

    • The UCSC Genome Browser database: 2015 update.

      PubMed

      Rosenbloom, Kate R; Armstrong, Joel; Barber, Galt P; Casper, Jonathan; Clawson, Hiram; Diekhans, Mark; Dreszer, Timothy R; Fujita, Pauline A; Guruvadoo, Luvina; Haeussler, Maximilian; Harte, Rachel A; Heitner, Steve; Hickey, Glenn; Hinrichs, Angie S; Hubley, Robert; Karolchik, Donna; Learned, Katrina; Lee, Brian T; Li, Chin H; Miga, Karen H; Nguyen, Ngan; Paten, Benedict; Raney, Brian J; Smit, Arian F A; Speir, Matthew L; Zweig, Ann S; Haussler, David; Kuhn, Robert M; Kent, W James

      2015-01-01

      Launched in 2001 to showcase the draft human genome assembly, the UCSC Genome Browser database (http://genome.ucsc.edu) and associated tools continue to grow, providing a comprehensive resource of genome assemblies and annotations to scientists and students worldwide. Highlights of the past year include the release of a browser for the first new human genome reference assembly in 4 years in December 2013 (GRCh38, UCSC hg38), a watershed comparative genomics annotation (100-species multiple alignment and conservation) and a novel distribution mechanism for the browser (GBiB: Genome Browser in a Box). We created browsers for new species (Chinese hamster, elephant shark, minke whale), 'mined the web' for DNA sequences and expanded the browser display with stacked color graphs and region highlighting. As our user community increasingly adopts the UCSC track hub and assembly hub representations for sharing large-scale genomic annotation data sets and genome sequencing projects, our menu of public data hubs has tripled.

    • Advances in Genome Biology & Technology

      SciTech Connect

      Thomas J. Albert, Jon R. Armstrong, Raymond K. Auerback, W. Brad Barbazuk, et al.

      2007-12-01

      This year's meeting focused on the latest advances in new DNA sequencing technologies and the applications of genomics to disease areas in biology and biomedicine. Daytime plenary sessions highlighted cutting-edge research in areas such as complex genetic diseases, comparative genomics, medical sequencing, massively parallel DNA sequencing, and synthetic biology. Technical approaches being developed and utilized in contemporary genomics research were presented during evening concurrent sessions. Also, as in previous years, poster sessions bridged the morning and afternoon plenary sessions. In addition, for the third year in a row, the Advances in Genome Biology and Technology (AGBT) meeting was preceded by a pre-meeting workshop that aimed to provide an introductory overview for trainees and other meeting attendees. This year, speakers at the workshop focused on next-generation sequencing technologies, including their experiences, findings, and helpful advise for others contemplating using these platforms in their research. Speakers from genome centers and core sequencing facilities were featured and the workshop ended with a roundtable discussion, during which speakers fielded questions from the audience.

    • Comparative genomics for biodiversity conservation.

      PubMed

      Grueber, Catherine E

      2015-01-01

      Genomic approaches are gathering momentum in biology and emerging opportunities lie in the creative use of comparative molecular methods for revealing the processes that influence diversity of wildlife. However, few comparative genomic studies are performed with explicit and specific objectives to aid conservation of wild populations. Here I provide a brief overview of comparative genomic approaches that offer specific benefits to biodiversity conservation. Because conservation examples are few, I draw on research from other areas to demonstrate how comparing genomic data across taxa may be used to inform the characterisation of conservation units and studies of hybridisation, as well as studies that provide conservation outcomes from a better understanding of the drivers of divergence. A comparative approach can also provide valuable insight into the threatening processes that impact rare species, such as emerging diseases and their management in conservation. In addition to these opportunities, I note areas where additional research is warranted. Overall, comparing and contrasting the genomic composition of threatened and other species provide several useful tools for helping to preserve the molecular biodiversity of the global ecosystem.

    • Expanding genomics of mycorrhizal symbiosis

      DOE PAGES

      Kuo, Alan; Kohler, Annegret; Martin, Francis M.; Grigoriev, Igor V.

      2014-11-04

      The mycorrhizal symbiosis between soil fungi and plant roots is a ubiquitous mutualism that plays key roles in plant nutrition, soil health, and carbon cycling. The symbiosis evolved repeatedly and independently as multiple morphotypes [e.g., arbuscular mycorrhizae (AM), ectomycorrhizal (ECM)] in multiple fungal clades (e.g., phyla Glomeromycota, Ascomycota, Basidiomycota). The accessibility and cultivability of many mycorrhizal partners make them ideal models for symbiosis studies. Alongside molecular, physiological, and ecological investigations, sequencing led to the first three mycorrhizal fungal genomes, representing two morphotypes and three phyla. The genome of the ECM basidiomycete Laccaria bicolor showed that the mycorrhizal lifestyle can evolvemore » through loss of plant cell wall-degrading enzymes (PCWDEs) and expansion of lineage-specific gene families such as short secreted protein (SSP) effectors. The genome of the ECM ascomycete Tuber melanosporum showed that the ECM type can evolve without expansion of families as in Laccaria, and thus a different set of symbiosis genes. The genome of the AM glomeromycete Rhizophagus irregularis showed that despite enormous phylogenetic distance and morphological difference from the other two fungi, symbiosis can involve similar solutions as symbiosis-induced SSPs and loss of PCWDEs. The three genomes provide a solid base for addressing fundamental questions about the nature and role of a vital mutualism.« less

    • Expanding genomics of mycorrhizal symbiosis

      SciTech Connect

      Kuo, Alan; Kohler, Annegret; Martin, Francis M.; Grigoriev, Igor V.

      2014-11-04

      The mycorrhizal symbiosis between soil fungi and plant roots is a ubiquitous mutualism that plays key roles in plant nutrition, soil health, and carbon cycling. The symbiosis evolved repeatedly and independently as multiple morphotypes [e.g., arbuscular mycorrhizae (AM), ectomycorrhizal (ECM)] in multiple fungal clades (e.g., phyla Glomeromycota, Ascomycota, Basidiomycota). The accessibility and cultivability of many mycorrhizal partners make them ideal models for symbiosis studies. Alongside molecular, physiological, and ecological investigations, sequencing led to the first three mycorrhizal fungal genomes, representing two morphotypes and three phyla. The genome of the ECM basidiomycete Laccaria bicolor showed that the mycorrhizal lifestyle can evolve through loss of plant cell wall-degrading enzymes (PCWDEs) and expansion of lineage-specific gene families such as short secreted protein (SSP) effectors. The genome of the ECM ascomycete Tuber melanosporum showed that the ECM type can evolve without expansion of families as in Laccaria, and thus a different set of symbiosis genes. The genome of the AM glomeromycete Rhizophagus irregularis showed that despite enormous phylogenetic distance and morphological difference from the other two fungi, symbiosis can involve similar solutions as symbiosis-induced SSPs and loss of PCWDEs. The three genomes provide a solid base for addressing fundamental questions about the nature and role of a vital mutualism.

    • NCBI prokaryotic genome annotation pipeline.

      PubMed

      Tatusova, Tatiana; DiCuccio, Michael; Badretdin, Azat; Chetvernin, Vyacheslav; Nawrocki, Eric P; Zaslavsky, Leonid; Lomsadze, Alexandre; Pruitt, Kim D; Borodovsky, Mark; Ostell, James

      2016-08-19

      Recent technological advances have opened unprecedented opportunities for large-scale sequencing and analysis of populations of pathogenic species in disease outbreaks, as well as for large-scale diversity studies aimed at expanding our knowledge across the whole domain of prokaryotes. To meet the challenge of timely interpretation of structure, function and meaning of this vast genetic information, a comprehensive approach to automatic genome annotation is critically needed. In collaboration with Georgia Tech, NCBI has developed a new approach to genome annotation that combines alignment based methods with methods of predicting protein-coding and RNA genes and other functional elements directly from sequence. A new gene finding tool, GeneMarkS+, uses the combined evidence of protein and RNA placement by homology as an initial map of annotation to generate and modify ab initio gene predictions across the whole genome. Thus, the new NCBI's Prokaryotic Genome Annotation Pipeline (PGAP) relies more on sequence similarity when confident comparative data are available, while it relies more on statistical predictions in the absence of external evidence. The pipeline provides a framework for generation and analysis of annotation on the full breadth of prokaryotic taxonomy. For additional information on PGAP see https://www.ncbi.nlm.nih.gov/genome/annotation_prok/ and the NCBI Handbook, https://www.ncbi.nlm.nih.gov/books/NBK174280/. PMID:27342282

    • Manipulating duckweed through genome duplication.

      PubMed

      Vunsh, R; Heinig, U; Malitsky, S; Aharoni, A; Avidov, A; Lerner, A; Edelman, M

      2015-01-01

      Significant inter- and intraspecific genetic variation exists in duckweed, thus the potential for genome plasticity and manipulation is high. Polyploidy is recognised as a major mechanism of adaptation and speciation in plants. We produced several genome-duplicated lines of Landoltia punctata (Spirodela oligorrhiza) from both whole plants and regenerating explants using a colchicine-based cocktail. These lines stably maintained an enlarged frond and root morphology. DNA ploidy levels determined by florescence-activated cell sorting indicated genome duplication. Line A4 was analysed after 75 biomass doublings. Frond area, fresh and dry weights, rhizoid number and length were significantly increased versus wild type, while the growth rate was unchanged. This resulted in accumulation of biomass 17-20% faster in the A4 plants. We sought to determine if specific differences in gene products are found in the genome duplicated lines. Non-targeted ultra performance LC-quadrupole time of flight mass spectrometry was employed to compare some of the lines and the wild type to seek identification of up-regulated metabolites. We putatively identified differential metabolites in Line A65 as caffeoyl hexoses. The combination of directed genome duplication and metabolic profiling might offer a path for producing stable gene expression, leading to altered production of secondary metabolites. PMID:25040392

    • Evolutionary engineering by genome shuffling.

      PubMed

      Biot-Pelletier, Damien; Martin, Vincent J J

      2014-05-01

      An upsurge in the bioeconomy drives the need for engineering microorganisms with increasingly complex phenotypes. Gains in productivity of industrial microbes depend on the development of improved strains. Classical strain improvement programmes for the generation, screening and isolation of such mutant strains have existed for several decades. An alternative to traditional strain improvement methods, genome shuffling, allows the directed evolution of whole organisms via recursive recombination at the genome level. This review deals chiefly with the technical aspects of genome shuffling. It first presents the diversity of organisms and phenotypes typically evolved using this technology and then reviews available sources of genetic diversity and recombination methodologies. Analysis of the literature reveals that genome shuffling has so far been restricted to microorganisms, both prokaryotes and eukaryotes, with an overepresentation of antibiotics- and biofuel-producing microbes. Mutagenesis is the main source of genetic diversity, with few studies adopting alternative strategies. Recombination is usually done by protoplast fusion or sexual recombination, again with few exceptions. For both diversity and recombination, prospective methods that have not yet been used are also presented. Finally, the potential of genome shuffling for gaining insight into the genetic basis of complex phenotypes is also discussed. PMID:24595425

    • Comparative genomics for biodiversity conservation

      PubMed Central

      Grueber, Catherine E.

      2015-01-01

      Genomic approaches are gathering momentum in biology and emerging opportunities lie in the creative use of comparative molecular methods for revealing the processes that influence diversity of wildlife. However, few comparative genomic studies are performed with explicit and specific objectives to aid conservation of wild populations. Here I provide a brief overview of comparative genomic approaches that offer specific benefits to biodiversity conservation. Because conservation examples are few, I draw on research from other areas to demonstrate how comparing genomic data across taxa may be used to inform the characterisation of conservation units and studies of hybridisation, as well as studies that provide conservation outcomes from a better understanding of the drivers of divergence. A comparative approach can also provide valuable insight into the threatening processes that impact rare species, such as emerging diseases and their management in conservation. In addition to these opportunities, I note areas where additional research is warranted. Overall, comparing and contrasting the genomic composition of threatened and other species provide several useful tools for helping to preserve the molecular biodiversity of the global ecosystem. PMID:26106461

  1. NCBI prokaryotic genome annotation pipeline.

    PubMed

    Tatusova, Tatiana; DiCuccio, Michael; Badretdin, Azat; Chetvernin, Vyacheslav; Nawrocki, Eric P; Zaslavsky, Leonid; Lomsadze, Alexandre; Pruitt, Kim D; Borodovsky, Mark; Ostell, James

    2016-08-19

    Recent technological advances have opened unprecedented opportunities for large-scale sequencing and analysis of populations of pathogenic species in disease outbreaks, as well as for large-scale diversity studies aimed at expanding our knowledge across the whole domain of prokaryotes. To meet the challenge of timely interpretation of structure, function and meaning of this vast genetic information, a comprehensive approach to automatic genome annotation is critically needed. In collaboration with Georgia Tech, NCBI has developed a new approach to genome annotation that combines alignment based methods with methods of predicting protein-coding and RNA genes and other functional elements directly from sequence. A new gene finding tool, GeneMarkS+, uses the combined evidence of protein and RNA placement by homology as an initial map of annotation to generate and modify ab initio gene predictions across the whole genome. Thus, the new NCBI's Prokaryotic Genome Annotation Pipeline (PGAP) relies more on sequence similarity when confident comparative data are available, while it relies more on statistical predictions in the absence of external evidence. The pipeline provides a framework for generation and analysis of annotation on the full breadth of prokaryotic taxonomy. For additional information on PGAP see https://www.ncbi.nlm.nih.gov/genome/annotation_prok/ and the NCBI Handbook, https://www.ncbi.nlm.nih.gov/books/NBK174280/.

  2. Expanding genomics of mycorrhizal symbiosis

    PubMed Central

    Kuo, Alan; Kohler, Annegret; Martin, Francis M.; Grigoriev, Igor V.

    2014-01-01

    The mycorrhizal symbiosis between soil fungi and plant roots is a ubiquitous mutualism that plays key roles in plant nutrition, soil health, and carbon cycling. The symbiosis evolved repeatedly and independently as multiple morphotypes [e.g., arbuscular mycorrhizae (AM), ectomycorrhizal (ECM)] in multiple fungal clades (e.g., phyla Glomeromycota, Ascomycota, Basidiomycota). The accessibility and cultivability of many mycorrhizal partners make them ideal models for symbiosis studies. Alongside molecular, physiological, and ecological investigations, sequencing led to the first three mycorrhizal fungal genomes, representing two morphotypes and three phyla. The genome of the ECM basidiomycete Laccaria bicolor showed that the mycorrhizal lifestyle can evolve through loss of plant cell wall-degrading enzymes (PCWDEs) and expansion of lineage-specific gene families such as short secreted protein (SSP) effectors. The genome of the ECM ascomycete Tuber melanosporum showed that the ECM type can evolve without expansion of families as in Laccaria, and thus a different set of symbiosis genes. The genome of the AM glomeromycete Rhizophagus irregularis showed that despite enormous phylogenetic distance and morphological difference from the other two fungi, symbiosis can involve similar solutions as symbiosis-induced SSPs and loss of PCWDEs. The three genomes provide a solid base for addressing fundamental questions about the nature and role of a vital mutualism. PMID:25408690

  3. Bacterial pathogen genomics and vaccines.

    PubMed

    Moxon, Richard; Rappuoli, Rino

    2002-01-01

    Infectious diseases remain a major cause of deaths and disabilities in the world, the majority of which are caused by bacteria. Although immunisation is the most cost effective and efficient means to control microbial diseases, vaccines are not yet available to prevent many major bacterial infections. Examples include dysentery (shigellosis), gonorrhoea, trachoma, gastric ulcers and cancer (Helicobacter pylori). Improved vaccines are needed to combat some diseases for which current vaccines are inadequate. Tuberculosis, for example, remains rampant throughout most countries in the world and represents a global emergency heightened by the pandemic of HIV. The availability of complete genome sequences has dramatically changed the opportunities for developing novel and improved vaccines and facilitated the efficiency and rapidity of their development. Complete genomic databases provide an inclusive catalogue of all potential candidate vaccines for any bacterial pathogen. In conjunction with adjunct technologies, including bioinformatics, random mutagenesis, microarrays, and proteomics, a systematic and comprehensive approach to identifying vaccine discovery can be undertaken. Genomics must be used in conjunction with population biology to ensure that the vaccine can target all pathogenic strains of a species. A proof in principle of the utility of genomics is provided by the recent exploitation of the complete genome sequence of Neisseria meningitidis group B.

  4. The genome of Prunus mume

    PubMed Central

    Zhang, Qixiang; Chen, Wenbin; Sun, Lidan; Zhao, Fangying; Huang, Bangqing; Yang, Weiru; Tao, Ye; Wang, Jia; Yuan, Zhiqiong; Fan, Guangyi; Xing, Zhen; Han, Changlei; Pan, Huitang; Zhong, Xiao; Shi, Wenfang; Liang, Xinming; Du, Dongliang; Sun, Fengming; Xu, Zongda; Hao, Ruijie; Lv, Tian; Lv, Yingmin; Zheng, Zequn; Sun, Ming; Luo, Le; Cai, Ming; Gao, Yike; Wang, Junyi; Yin, Ye; Xu, Xun; Cheng, Tangren; Wang, Jun

    2012-01-01

    Prunus mume (mei), which was domesticated in China more than 3,000 years ago as ornamental plant and fruit, is one of the first genomes among Prunus subfamilies of Rosaceae been sequenced. Here, we assemble a 280M genome by combining 101-fold next-generation sequencing and optical mapping data. We further anchor 83.9% of scaffolds to eight chromosomes with genetic map constructed by restriction-site-associated DNA sequencing. Combining P. mume genome with available data, we succeed in reconstructing nine ancestral chromosomes of Rosaceae family, as well as depicting chromosome fusion, fission and duplication history in three major subfamilies. We sequence the transcriptome of various tissues and perform genome-wide analysis to reveal the characteristics of P. mume, including its regulation of early blooming in endodormancy, immune response against bacterial infection and biosynthesis of flower scent. The P. mume genome sequence adds to our understanding of Rosaceae evolution and provides important data for improvement of fruit trees. PMID:23271652

  5. Transcriptional Regulation: a Genomic Overview

    PubMed Central

    Riechmann, José Luis

    2002-01-01

    The availability of the Arabidopsis thaliana genome sequence allows a comprehensive analysis of transcriptional regulation in plants using novel genomic approaches and methodologies. Such a genomic view of transcription first necessitates the compilation of lists of elements. Transcription factors are the most numerous of the different types of proteins involved in transcription in eukaryotes, and the Arabidopsis genome codes for more than 1,500 of them, or approximately 6% of its total number of genes. A genome-wide comparison of transcription factors across the three eukaryotic kingdoms reveals the evolutionary generation of diversity in the components of the regulatory machinery of transcription. However, as illustrated by Arabidopsis, transcription in plants follows similar basic principles and logic to those in animals and fungi. A global view and understanding of transcription at a cellular and organismal level requires the characterization of the Arabidopsis transcriptome and promoterome, as well as of the interactome, the localizome, and the phenome of the proteins involved in transcription. PMID:22303220

  6. Genomic profiling of breast cancers

    PubMed Central

    Curtis, Christina

    2015-01-01

    Purpose of review To describe recent advances in the application of advanced genomic technologies towards the identification of biomarkers of prognosis and treatment response in breast cancer. Recent findings Advances in high-throughput genomic profiling such as massively parallel sequencing have enabled researchers to catalogue the spectrum of somatic alterations in breast cancers. These tools also hold promise for precision medicine through accurate patient prognostication, stratification, and the dynamic monitoring of treatment response. For example, recent efforts have defined robust molecular subgroups of breast cancer and novel subtype-specific oncogenes. In addition, previously unappreciated activating mutations in human epidermal growth factor receptor 2 have been reported, suggesting new therapeutic opportunities. Genomic profiling of cell-free tumor DNA and circulating tumor cells has been used to monitor disease burden and the emergence of resistance, and such ‘liquid biopsy’ approaches may facilitate the early, noninvasive detection of aggressive disease. Finally, single-cell genomics is coming of age and will contribute to an understanding of breast cancer evolutionary dynamics. Summary Here, we highlight recent studies that employ high-throughput genomic technologies in an effort to elucidate breast cancer biology, discover new therapeutic targets, improve prognostication and stratification, and discuss the implications for precision cancer medicine. PMID:25502431

  7. Pseudomonas genomes: diverse and adaptable.

    PubMed

    Silby, Mark W; Winstanley, Craig; Godfrey, Scott A C; Levy, Stuart B; Jackson, Robert W

    2011-07-01

    Members of the genus Pseudomonas inhabit a wide variety of environments, which is reflected in their versatile metabolic capacity and broad potential for adaptation to fluctuating environmental conditions. Here, we examine and compare the genomes of a range of Pseudomonas spp. encompassing plant, insect and human pathogens, and environmental saprophytes. In addition to a large number of allelic differences of common genes that confer regulatory and metabolic flexibility, genome analysis suggests that many other factors contribute to the diversity and adaptability of Pseudomonas spp. Horizontal gene transfer has impacted the capability of pathogenic Pseudomonas spp. in terms of disease severity (Pseudomonas aeruginosa) and specificity (Pseudomonas syringae). Genome rearrangements likely contribute to adaptation, and a considerable complement of unique genes undoubtedly contributes to strain- and species-specific activities by as yet unknown mechanisms. Because of the lack of conserved phenotypic differences, the classification of the genus has long been contentious. DNA hybridization and genome-based analyses show close relationships among members of P. aeruginosa, but that isolates within the Pseudomonas fluorescens and P. syringae species are less closely related and may constitute different species. Collectively, genome sequences of Pseudomonas spp. have provided insights into pathogenesis and the genetic basis for diversity and adaptation.

  8. Manipulating duckweed through genome duplication.

    PubMed

    Vunsh, R; Heinig, U; Malitsky, S; Aharoni, A; Avidov, A; Lerner, A; Edelman, M

    2015-01-01

    Significant inter- and intraspecific genetic variation exists in duckweed, thus the potential for genome plasticity and manipulation is high. Polyploidy is recognised as a major mechanism of adaptation and speciation in plants. We produced several genome-duplicated lines of Landoltia punctata (Spirodela oligorrhiza) from both whole plants and regenerating explants using a colchicine-based cocktail. These lines stably maintained an enlarged frond and root morphology. DNA ploidy levels determined by florescence-activated cell sorting indicated genome duplication. Line A4 was analysed after 75 biomass doublings. Frond area, fresh and dry weights, rhizoid number and length were significantly increased versus wild type, while the growth rate was unchanged. This resulted in accumulation of biomass 17-20% faster in the A4 plants. We sought to determine if specific differences in gene products are found in the genome duplicated lines. Non-targeted ultra performance LC-quadrupole time of flight mass spectrometry was employed to compare some of the lines and the wild type to seek identification of up-regulated metabolites. We putatively identified differential metabolites in Line A65 as caffeoyl hexoses. The combination of directed genome duplication and metabolic profiling might offer a path for producing stable gene expression, leading to altered production of secondary metabolites.

  9. Genomic signatures in microbes -- properties and applications.

    PubMed

    Bohlin, Jon

    2011-03-22

    The ratio of genomic oligonucleotide frequencies relative to the mean genomic AT/GC content has been shown to be similar for closely related species and, therefore, said to reflect a "genomic signature". The genomic signature has been found to be more similar within genomes than between closely related genomes. Furthermore, genomic signatures of closely related organisms are, in turn, more similar than more distantly related organisms. Since the genomic signature is remarkably stable within a genome, it can be extracted from only a fraction of the genomic DNA sequence. Genomic signatures, therefore, have many applications. The most notable examples include recognition of pathogenicity islands in microbial genomes and identification of hosts from arbitrary DNA sequences, the latter being of great importance in metagenomics. What shapes the genomic signature in microbial DNA has been readily discussed, but difficult to pinpoint exactly. Most attempts so far have mainly focused on correlations from in silico data. This mini-review seeks to summarize possible influences shaping the genomic signature and to survey a set of applications.

  10. Genomes on the Edge: Programmed Genome Instability in Ciliates

    PubMed Central

    Bracht, John R.; Fang, Wenwen; Goldman, Aaron David; Dolzhenko, Egor; Stein, Elizabeth M.; Landweber, Laura F.

    2013-01-01

    Ciliates are an ancient and diverse group of microbial eukaryotes that have emerged as powerful models for RNA-mediated epigenetic inheritance. They possess extensive sets of both tiny and long noncoding RNAs that, together with a suite of proteins that includes transposases, orchestrate a broad cascade of genome rearrangements during somatic nuclear development. This Review emphasizes three important themes: the remarkable role of RNA in shaping genome structure, recent discoveries that unify many deeply diverged ciliate genetic systems, and a surprising evolutionary “sign change” in the role of small RNAs between major species groups. PMID:23374338

  11. [Comparison of mitochondrial genomes of bivalves].

    PubMed

    SONG, Wen-Tao; GAO, Xiang-Gang; LI, Yun-Feng; LIU, Wei-Dong; LIU, Ying; HE, Chong-Bo

    2009-11-01

    The structure and organization of mitochondrial genomes of 14 marine bivalves and two freshwater bivalves were analyzed using comparative genomics and bioinformatics methods. The results showed that the organization and gene order of the mitochondrial genomes of these bivalve species studied were different from each other. The size, organization, gene numbers, and gene order of mitochondrial genomes in bivalves at different taxa were different. Phylogenetic analysis using the whole mitochondrial genomes and all the coding genes showed different results-- phylogenetic analysis conducted using the whole mitochondrial genomes was consistent with the existing classification and phylogenetic analysis conducted using all coding genes not consistent with the existing classification.

  12. A physical map of the human genome

    SciTech Connect

    McPherson, J.D.; Marra, M.; Hillier, L.; Waterston, R.H.; Chinwalla, A.; Wallis, J.; Sekhon, M.; Wylie, K.; Mardis, E.R.; Wilson, R.K.; Fulton, R.; Kucaba, T.A.; Wagner-McPherson, C.; Barbazuk, W.B.; Gregory, S.G.; Humphray, S.J.; French, L.; Evans, R.S.; Bethel, G.; Whittaker, A.; Holden, J.L.; McCann, O.T.; Dunham, A.; Soderlund, C.; Scott, C.E.; Bentley, D.R.; Schuler, G.; Chen, H.-C.; Jang, W.; Green, E.D.; Idol, J.R.; Maduro, V.V. Braden; Montgomery, K.T.; Lee, E.; Miller, A.; Emerling, S.; Kucherlapati; Gibbs, R.; Scherer, S.; Gorrell, J.H.; Sodergren, E.; Clerc-Blankenburg, K.; Tabor, P.; Naylor, S.; Garcia, D.; de Jong, P.J.; Catanese, J.J.; Nowak, N.; Osoegawa, K.; Qin, S.; Rowen, L.; Madan, A.; Dors, M.; Hood, L.; Trask, B.; Friedman, C.; Massa, H.; Cheung, V.G.; Kirsch, I.R.; Reid, T.; Yonescu, R.; Weissenbach, J.; Bruls, T.; Heilig, R.; Branscomb, E.; Olsen, A.; Doggett, N.; Cheng, J.F.; Hawkins, T.; Myers, R.M.; Shang, J.; Ramirez, L.; Schmutz, J.; Velasquez, O.; Dixon, K.; Stone, N.E.; Cox, D.R.; Haussler, D.; Kent, W.J.; Furey, T.; Rogic, S.; Kennedy, S.; Jones, S.; Rosenthal, A.; Wen, G.; Schilhabel, M.; Gloeckner, G.; Nyakatura, G.; Siebert, R.; Schlegelberger, B.; Korenberg, J.; Chen, X.N.; Fujiyama, A.; Hattori, M.; Toyoda, A.; Yada, T.; Park, H.S.; Sakaki, Y.; Shimizu, N.; Asakawa, S.; Kawasaki, K.; Sasaki, T.; Shintani, A.; Shimizu, A.; Shibuya, K.; Kudoh, J.; Minoshima, S.; Ramser, J.; Seranski, P.; Hoff, C.; Poustka, A.; Reinhardt, R.; Lehrach, H.

    2001-01-01

    The human genome is by far the largest genome to be sequenced, and its size and complexity present many challenges for sequence assembly. The International Human Genome Sequencing Consortium constructed a map of the whole genome to enable the selection of clones for sequencing and for the accurate assembly of the genome sequence. Here we report the construction of the whole-genome bacterial artificial chromosome (BAC) map and its integration with previous landmark maps and information from mapping efforts focused on specific chromosomal regions. We also describe the integration of sequence data with the map.

  13. Genomics and the origin of species.

    PubMed

    Seehausen, Ole; Butlin, Roger K; Keller, Irene; Wagner, Catherine E; Boughman, Janette W; Hohenlohe, Paul A; Peichel, Catherine L; Saetre, Glenn-Peter; Bank, Claudia; Brännström, Ake; Brelsford, Alan; Clarkson, Chris S; Eroukhmanoff, Fabrice; Feder, Jeffrey L; Fischer, Martin C; Foote, Andrew D; Franchini, Paolo; Jiggins, Chris D; Jones, Felicity C; Lindholm, Anna K; Lucek, Kay; Maan, Martine E; Marques, David A; Martin, Simon H; Matthews, Blake; Meier, Joana I; Möst, Markus; Nachman, Michael W; Nonaka, Etsuko; Rennison, Diana J; Schwarzer, Julia; Watson, Eric T; Westram, Anja M; Widmer, Alex

    2014-03-01

    Speciation is a fundamental evolutionary process, the knowledge of which is crucial for understanding the origins of biodiversity. Genomic approaches are an increasingly important aspect of this research field. We review current understanding of genome-wide effects of accumulating reproductive isolation and of genomic properties that influence the process of speciation. Building on this work, we identify emergent trends and gaps in our understanding, propose new approaches to more fully integrate genomics into speciation research, translate speciation theory into hypotheses that are testable using genomic tools and provide an integrative definition of the field of speciation genomics.

  14. Environmental Influences on Genomic Imprinting.

    PubMed

    Kappil, Maya; Lambertini, Luca; Chen, Jia

    2015-06-01

    Genomic imprinting refers to the epigenetic mechanism that results in the mono-allelic expression of a subset of genes in a parent-of-origin manner. These haploid genes are highly active in the placenta and are functionally implicated in the appropriate development of the fetus. Furthermore, the epigenetic marks regulating imprinted expression patterns are established early in development. These characteristics make genomic imprinting a potentially useful biomarker for environmental insults, especially during the in utero or early development stages, and for health outcomes later in life. Herein, we critically review the current literature regarding environmental influences on imprinted genes and summarize findings that suggest that imprinted loci are sensitive to known teratogenic agents, such as alcohol and tobacco, as well as less established factors with the potential to manipulate the in utero environment, including assisted reproductive technology. Finally, we discuss the potential of genomic imprinting to serve as an environmental sensor during early development.

  15. Chapter 14: Cancer Genome Analysis

    PubMed Central

    Vazquez, Miguel; de la Torre, Victor; Valencia, Alfonso

    2012-01-01

    Although there is great promise in the benefits to be obtained by analyzing cancer genomes, numerous challenges hinder different stages of the process, from the problem of sample preparation and the validation of the experimental techniques, to the interpretation of the results. This chapter specifically focuses on the technical issues associated with the bioinformatics analysis of cancer genome data. The main issues addressed are the use of database and software resources, the use of analysis workflows and the presentation of clinically relevant action items. We attempt to aid new developers in the field by describing the different stages of analysis and discussing current approaches, as well as by providing practical advice on how to access and use resources, and how to implement recommendations. Real cases from cancer genome projects are used as examples. PMID:23300415

  16. Genome: twisting stories with DNA.

    PubMed

    Noguera-Solano, Ricardo; Ruiz-Gutierrez, Rosaura; Rodriguez-Caso, Juan Manuel

    2013-12-01

    In 1920, the German botanist Hans Winkler coined the concept of the 'genome'. This paper explores the history of a concept that has developed in parallel with advances in biology and supports novel and powerful heuristic biological research in the 21st century. From a structural interpretation (the genome as the haploid number of chromosomes), it has changed to keep pace with technological progress and new interpretations of the material of heredity. In the first place, the 'genome' was extended to include all the material in the nucleus, then the sum of all genes, and (with the discovery of the structure of DNA) the sum of the nucleotide base sequences. In the early 21st century, it has become a much more complex and central concept that has spawned the growing field of studies referred to as the 'omics'.

  17. The genome of Theobroma cacao.

    PubMed

    Argout, Xavier; Salse, Jerome; Aury, Jean-Marc; Guiltinan, Mark J; Droc, Gaetan; Gouzy, Jerome; Allegre, Mathilde; Chaparro, Cristian; Legavre, Thierry; Maximova, Siela N; Abrouk, Michael; Murat, Florent; Fouet, Olivier; Poulain, Julie; Ruiz, Manuel; Roguet, Yolande; Rodier-Goud, Maguy; Barbosa-Neto, Jose Fernandes; Sabot, Francois; Kudrna, Dave; Ammiraju, Jetty Siva S; Schuster, Stephan C; Carlson, John E; Sallet, Erika; Schiex, Thomas; Dievart, Anne; Kramer, Melissa; Gelley, Laura; Shi, Zi; Bérard, Aurélie; Viot, Christopher; Boccara, Michel; Risterucci, Ange Marie; Guignon, Valentin; Sabau, Xavier; Axtell, Michael J; Ma, Zhaorong; Zhang, Yufan; Brown, Spencer; Bourge, Mickael; Golser, Wolfgang; Song, Xiang; Clement, Didier; Rivallan, Ronan; Tahi, Mathias; Akaza, Joseph Moroh; Pitollat, Bertrand; Gramacho, Karina; D'Hont, Angélique; Brunel, Dominique; Infante, Diogenes; Kebe, Ismael; Costet, Pierre; Wing, Rod; McCombie, W Richard; Guiderdoni, Emmanuel; Quetier, Francis; Panaud, Olivier; Wincker, Patrick; Bocs, Stephanie; Lanaud, Claire

    2011-02-01

    We sequenced and assembled the draft genome of Theobroma cacao, an economically important tropical-fruit tree crop that is the source of chocolate. This assembly corresponds to 76% of the estimated genome size and contains almost all previously described genes, with 82% of these genes anchored on the 10 T. cacao chromosomes. Analysis of this sequence information highlighted specific expansion of some gene families during evolution, for example, flavonoid-related genes. It also provides a major source of candidate genes for T. cacao improvement. Based on the inferred paleohistory of the T. cacao genome, we propose an evolutionary scenario whereby the ten T. cacao chromosomes were shaped from an ancestor through eleven chromosome fusions.

  18. How good is our genome?

    PubMed

    Weill, Jean-Claude; Radman, Miroslav

    2004-01-29

    Our genome has evolved to perpetuate itself through the maintenance of the species via an uninterrupted chain of reproductive somas. Accordingly, evolution is not concerned with diseases occurring after the soma's reproductive stage. Following Richard Dawkins, we would like to reassert that we indeed live as disposable somas, slaves of our germline genome, but could soon start rebelling against such slavery. Cancer and its relation to the TP53 gene may offer a paradigmatic example. The observation that the latency period in cancer can be prolonged in mice by increasing the number of TP53 genes in their genome, suggests that sooner or later we will have to address the question of heritable disease avoidance via the manipulation of the human germline. PMID:15065661

  19. Tripartite genome of all species.

    PubMed

    Long, MengPing; Hu, TaoBo

    2016-01-01

    Neutral theory has dominated the molecular evolution field for more than half a century, but it has been severely challenged by the recently emerged Maximum Genetic Diversity (MGD) theory. However, based on our recent work of tripartite human genome architecture, we found that MGD theory may have overlooked the regulatory but variable genomic regions that increase with species complexity. Here we propose a new molecular evolution theory named Increasing Functional Variation (IFV) hypothesis. According to the IFV hypothesis, the genome of all species is divided into three regions that are 'functional and invariable', 'functional and variable' and 'non-functional and variable'. While the 'non-functional and variable' region decreases as species become more complex, the other two regions increase. PMID:27366319

  20. Tripartite genome of all species

    PubMed Central

    2016-01-01

    Neutral theory has dominated the molecular evolution field for more than half a century, but it has been severely challenged by the recently emerged Maximum Genetic Diversity (MGD) theory. However, based on our recent work of tripartite human genome architecture, we found that MGD theory may have overlooked the regulatory but variable genomic regions that increase with species complexity. Here we propose a new molecular evolution theory named Increasing Functional Variation (IFV) hypothesis. According to the IFV hypothesis, the genome of all species is divided into three regions that are ‘functional and invariable’, ‘functional and variable’ and ‘non-functional and variable’. While the ‘non-functional and variable’ region decreases as species become more complex, the other two regions increase. PMID:27366319