Science.gov

Sample records for aegypti mosquitoes infected

  1. Dynamics of the "popcorn" Wolbachia infection in outbred Aedes aegypti informs prospects for mosquito vector control.

    PubMed

    Yeap, H L; Mee, P; Walker, T; Weeks, A R; O'Neill, S L; Johnson, P; Ritchie, S A; Richardson, K M; Doig, C; Endersby, N M; Hoffmann, A A

    2011-02-01

    Forty percent of the world's population is at risk of contracting dengue virus, which produces dengue fever with a potentially fatal hemorrhagic form. The wMelPop Wolbachia infection of Drosophila melanogaster reduces life span and interferes with viral transmission when introduced into the mosquito Aedes aegypti, the primary vector of dengue virus. Wolbachia has been proposed as an agent for preventing transmission of dengue virus. Population invasion by Wolbachia depends on levels of cytoplasmic incompatibility, fitness effects, and maternal transmission. Here we characterized these traits in an outbred genetic background of a potential target population of Ae. aegypti using two crossing schemes. Cytoplasmic incompatibility was strong in this background, and the maternal transmission rate of Wolbachia was high. The infection substantially reduced longevity of infected adult females, regardless of whether adults came from larvae cultured under high or low levels of nutrition or density. The infection reduced the viability of diapausing and nondiapausing eggs. Viability was particularly low when eggs were laid by older females and when diapausing eggs had been stored for a few weeks. The infection affected mosquito larval development time and adult body size under different larval nutrition levels and densities. The results were used to assess the potential for wMelPop-CLA to invade natural populations of Ae. aegypti and to develop recommendations for the maintenance of fitness in infected mosquitoes that need to compete against field insects. PMID:21135075

  2. Investigations of Koutango Virus Infectivity and Dissemination Dynamics in Aedes aegypti Mosquitoes

    PubMed Central

    de Araújo Lobo, Jaime M; Christofferson, Rebecca C; Mores, Christopher N

    2014-01-01

    Aedes aegypti has already been implicated in the emergence of dengue and chikungunya viruses in the southern US. Vector competence is the ability of a mosquito species to support transmission of an arbovirus, which is bounded by its ability to support replication and dissemination of the virus through the mosquito body to the salivary glands to be expectorated in the saliva at the time of feeding on a vertebrate host. Here, we investigate the vector competence of A. aegypti for the arbovirus koutango by orally challenging mosquitoes with two titers of virus. We calculated the effective vector competence, a cumulative measure of transmission capability weighted by mosquito survival, and determined that A. aegypti was competent at the higher dose only. We conclude that further investigation is needed to determine the infectiousness of vertebrate hosts to fully assess the emergence potential of this virus in areas rich in A. aegypti. PMID:25574140

  3. Bicluster pattern of codon context usages between flavivirus and vector mosquito Aedes aegypti: relevance to infection and transcriptional response of mosquito genes.

    PubMed

    Behura, Susanta K; Severson, David W

    2014-10-01

    The mosquito Aedes aegypti is the primary vector of dengue virus (DENV) infection in most of the subtropical and tropical countries. Besides DENV, yellow fever virus (YFV) is also transmitted by A. aegypti. Susceptibility of A. aegypti to West Nile virus (WNV) has also been confirmed. Although studies have indicated correlation of codon bias between flaviviridae and their animal/insect hosts, it is not clear if codon sequences have any relation to susceptibility of A. aegypti to DENV, YFV and WNV. In the current study, usages of codon context sequences (codon pairs for neighboring amino acids) of the vector (A. aegypti) genome as well as the flaviviral genomes are investigated. We used bioinformatics methods to quantify codon context bias in a genome-wide manner of A. aegypti as well as DENV, WNV and YFV sequences. Mutual information statistics was applied to perform bicluster analysis of codon context bias between vector and flaviviral sequences. Functional relevance of the bicluster pattern was inferred from published microarray data. Our study shows that codon context bias of DENV, WNV and YFV sequences varies in a bicluster manner with that of specific sets of genes of A. aegypti. Many of these mosquito genes are known to be differentially expressed in response to flaviviral infection suggesting that codon context sequences of A. aegypti and the flaviviruses may play a role in the susceptible interaction between flaviviruses and this mosquito. The bias in usages of codon context sequences likely has a functional association with susceptibility of A. aegypti to flaviviral infection. The results from this study will allow us to conduct hypothesis-driven tests to examine the role of codon context bias in evolution of vector-virus interactions at the molecular level.

  4. Mosquito Infestation and Dengue Virus Infection in Aedes aegypti Females in Schools in Mérida, México

    PubMed Central

    García-Rejón, Julián E.; Loroño-Pino, María Alba; Farfán-Ale, José Arturo; Flores-Flores, Luis F.; López-Uribe, Mildred P.; del Rosario Najera-Vazquez, Maria; Nuñez-Ayala, Guadalupe; Beaty, Barry J.; Eisen, Lars

    2011-01-01

    We determined abundance of Aedes aegypti mosquitoes and presence of dengue virus (DENV) in females collected from schools in Mérida, México, during 2008 and 2009. Backpack aspiration from 24 schools produced 468 females of Ae. aegypti and 1,676 females of another human biter, Culex quinquefasciatus. Ae. aegypti females were collected most commonly from classrooms followed by offices and bathrooms. Of these females, 24.7% were freshly fed. Examination of 118 pools of Ae. aegypti females (total of 415 females) for presence of DENV RNA produced 19 positive pools (16.1%). DENV-infected pools were detected from 11 (45.8%) of 24 schools and came from different room types, including classrooms, offices, and bathrooms. The overall rate of DENV infection per 100 Ae. aegypti females was 4.8. We conclude that schools in Mérida present a risk environment for students, teachers, and other personnel to be exposed to mosquitoes and bites of DENV-infected Ae. aegypti females. PMID:21363990

  5. Limited Specificity in the Injury and Infection Priming against Bacteria in Aedes aegypti Mosquitoes

    PubMed Central

    Vargas, Valeria; Moreno-García, Miguel; Duarte-Elguea, Erika; Lanz-Mendoza, Humberto

    2016-01-01

    Injury and infection priming has been observed in several insect groups, reported as host immune protection against contact with a pathogen caused by a previous infection with the same. However, the specific response against a pathogen has not been demonstrated in all insect species. Investigating the specific priming response in insects is important because their immune strategies probably reflect particular selective pressures exerted by different pathogens. Here, we determined whether previous infection of Aedes aegypti would enhance survival and/or lead to greater and specific AMP expression after a second exposure to the same or a distinct bacterium. Mosquitoes previously immunized with a low dose of Escherichia coli, but not Staphylococcus aureus, showed increased survival. Although the host protection herein demonstrated was not specific, each bacterium elicited differential AMP expression. These results can be explained by the susceptible-primed-infected (SPI) epidemiological model, which poses that in the evolution of memory-like responses (priming), a pivotal role is played by pathogen virulence, associated host damage, and the host capacity of pathogen recognition. PMID:27446016

  6. Limited Specificity in the Injury and Infection Priming against Bacteria in Aedes aegypti Mosquitoes.

    PubMed

    Vargas, Valeria; Moreno-García, Miguel; Duarte-Elguea, Erika; Lanz-Mendoza, Humberto

    2016-01-01

    Injury and infection priming has been observed in several insect groups, reported as host immune protection against contact with a pathogen caused by a previous infection with the same. However, the specific response against a pathogen has not been demonstrated in all insect species. Investigating the specific priming response in insects is important because their immune strategies probably reflect particular selective pressures exerted by different pathogens. Here, we determined whether previous infection of Aedes aegypti would enhance survival and/or lead to greater and specific AMP expression after a second exposure to the same or a distinct bacterium. Mosquitoes previously immunized with a low dose of Escherichia coli, but not Staphylococcus aureus, showed increased survival. Although the host protection herein demonstrated was not specific, each bacterium elicited differential AMP expression. These results can be explained by the susceptible-primed-infected (SPI) epidemiological model, which poses that in the evolution of memory-like responses (priming), a pivotal role is played by pathogen virulence, associated host damage, and the host capacity of pathogen recognition. PMID:27446016

  7. Apoptosis-related genes control autophagy and influence DENV-2 infection in the mosquito vector, Aedes aegypti.

    PubMed

    Eng, Matthew W; van Zuylen, Madeleine N; Severson, David W

    2016-09-01

    The mosquito Aedes aegypti is the primary urban vector for dengue virus (DENV) worldwide. Insight into interactions occurring between host and pathogen is important in understanding what factors contribute to vector competence. However, many of the molecular mechanisms for vector competence remain unknown. Our previous global transcriptional analysis suggested that differential expression of apoptotic proteins is involved in determining refractoriness vs susceptibility to DENV-2 infection in Ae. aegypti females following a DENV-infected blood meal. To determine whether DENV-refractory Ae. aegypti showed more robust apoptosis upon infection, we compared numbers of apoptotic cells from midguts of refractory and susceptible strains and observed increased numbers of apoptotic cells in only the refractory strain upon DENV-2 infection. Thereafter, we manipulated apoptosis through dsRNA interference of the initiator caspase, Aedronc. Unexpectedly, dsAedronc-treated females showed both decreased frequency of disseminated infection and decreased virus titer in infected individuals. Insect caspases have also previously been identified as regulators of the cellular recycling process known as autophagy. We observed activation of autophagy in midgut and fat body tissues following a blood meal, as well as programmed activation of several apoptosis-related genes, including the effector caspase, Casps7. To determine whether autophagy was affected by caspase knockdown, we silenced Aedronc and Casps7, and observed reduced activation of autophagy upon silencing. Our results provide evidence that apoptosis-related genes are also involved in regulating autophagy, and that Aedronc may play an important role in DENV-2 infection success in Ae. aegypti, possibly through its regulation of autophagy. PMID:27418459

  8. Infection with a Virulent Strain of Wolbachia Disrupts Genome Wide-Patterns of Cytosine Methylation in the Mosquito Aedes aegypti

    PubMed Central

    Ye, Yixin H.; Woolfit, Megan; Huttley, Gavin A.; Rancès, Edwige; Caragata, Eric P.; Popovici, Jean; O'Neill, Scott L.; McGraw, Elizabeth A.

    2013-01-01

    Background Cytosine methylation is one of several reversible epigenetic modifications of DNA that allow a greater flexibility in the relationship between genotype and phenotype. Methylation in the simplest models dampens gene expression by modifying regions of DNA critical for transcription factor binding. The capacity to methylate DNA is variable in the insects due to diverse histories of gene loss and duplication of DNA methylases. Mosquitoes like Drosophila melanogaster possess only a single methylase, DNMT2. Description Here we characterise the methylome of the mosquito Aedes aegypti and examine its relationship to transcription and test the effects of infection with a virulent strain of the endosymbiont Wolbachia on the stability of methylation patterns. Conclusion We see that methylation in the A. aegypti genome is associated with reduced transcription and is most common in the promoters of genes relating to regulation of transcription and metabolism. Similar gene classes are also methylated in aphids and honeybees, suggesting either conservation or convergence of methylation patterns. In addition to this evidence of evolutionary stability, we also show that infection with the virulent wMelPop Wolbachia strain induces additional methylation and demethylation events in the genome. While most of these changes seem random with respect to gene function and have no detected effect on transcription, there does appear to be enrichment of genes associated with membrane function. Given that Wolbachia lives within a membrane-bound vacuole of host origin and retains a large number of genes for transporting host amino acids, inorganic ions and ATP despite a severely reduced genome, these changes might represent an evolved strategy for manipulating the host environments for its own gain. Testing for a direct link between these methylation changes and expression, however, will require study across a broader range of developmental stages and tissues with methods that detect

  9. Neuropeptidomics of the mosquito Aedes aegypti

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Neuropeptidomic data were collected on the mosquito Ae. aegypti which is considered the most tractable mosquito species for physiological and endocrine studies. The data were solely obtained by direct mass spectrometric profiling, including tandem fragmentation, of selected tissues from single speci...

  10. Reduced survival and reproductive success generates selection pressure for the dengue mosquito Aedes aegypti to evolve resistance against infection by the microsporidian parasite Vavraia culicis

    PubMed Central

    Sy, Victoria E; Agnew, Philip; Sidobre, Christine; Michalakis, Yannis

    2014-01-01

    The success and sustainability of control measures aimed at reducing the transmission of mosquito-borne diseases will depend on how they influence the fitness of mosquitoes in targeted populations. We investigated the effects of the microsporidian parasite Vavraia culicis on the survival, blood-feeding behaviour and reproductive success of female Aedes aegypti mosquitoes, the main vector of dengue. Infection reduced survival to adulthood and increased adult female mosquito age-dependent mortality relative to uninfected individuals; this additional mortality was closely correlated with the number of parasite spores they harboured when they died. In the first gonotrophic cycle, infected females were less likely to blood-feed, took smaller meals when they did so, and developed fewer eggs than uninfected females. Even though the conditions of this laboratory study favoured minimal developmental times, the costs of infection were already being experienced by the time females reached an age at which they could first reproduce. These results suggest there will be selection pressure for mosquitoes to evolve resistance against this pathogen if it is used as an agent in a control program to reduce the transmission of mosquito-borne human diseases. PMID:24822081

  11. Public Health Response to Aedes aegypti and Ae. albopictus Mosquitoes Invading California, USA.

    PubMed

    Porse, Charsey Cole; Kramer, Vicki; Yoshimizu, Melissa Hardstone; Metzger, Marco; Hu, Renjie; Padgett, Kerry; Vugia, Duc J

    2015-10-01

    Aedes aegypti and Ae. albopictus mosquitoes, primary vectors of dengue and chikungunya viruses, were recently detected in California, USA. The threat of potential local transmission of these viruses increases as more infected travelers arrive from affected areas. Public health response has included enhanced human and mosquito surveillance, education, and intensive mosquito control.

  12. Chikungunya Virus Infection of Aedes Mosquitoes.

    PubMed

    Wong, Hui Vern; Chan, Yoke Fun; Sam, I-Ching; Sulaiman, Wan Yusof Wan; Vythilingam, Indra

    2016-01-01

    In vivo infection of mosquitoes is an important method to study and characterize arthropod-borne viruses. Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that is transmitted primarily by Aedes mosquitoes. In this chapter, we describe a protocol for infection of CHIKV in two species of Aedes mosquitoes, Aedes aegypti and Aedes albopictus, together with the isolation of CHIKV in different parts of the infected mosquito such as midgut, legs, wings, salivary gland, head, and saliva. This allows the study of viral infection, replication and dissemination within the mosquito vector. PMID:27233266

  13. Host and viral features of human dengue cases shape the population of infected and infectious Aedes aegypti mosquitoes

    PubMed Central

    Nguyen, Nguyet Minh; Thi Hue Kien, Duong; Tuan, Trung Vu; Quyen, Nguyen Than Ha; Tran, Chau N. B.; Vo Thi, Long; Thi, Dui Le; Nguyen, Hoa Lan; Farrar, Jeremy J.; Holmes, Edward C.; Rabaa, Maia A.; Bryant, Juliet E.; Nguyen, Truong Thanh; Nguyen, Huong Thi Cam; Nguyen, Lan Thi Hong; Pham, Mai Phuong; Nguyen, Hung The; Luong, Tai Thi Hue; Wills, Bridget; Nguyen, Chau Van Vinh; Wolbers, Marcel; Simmons, Cameron P.

    2013-01-01

    Dengue is the most prevalent arboviral disease of humans. The host and virus variables associated with dengue virus (DENV) transmission from symptomatic dengue cases (n = 208) to Aedes aegypti mosquitoes during 407 independent exposure events was defined. The 50% mosquito infectious dose for each of DENV-1–4 ranged from 6.29 to 7.52 log10 RNA copies/mL of plasma. Increasing day of illness, declining viremia, and rising antibody titers were independently associated with reduced risk of DENV transmission. High early DENV plasma viremia levels in patients were a marker of the duration of human infectiousness, and blood meals containing high concentrations of DENV were positively associated with the prevalence of infectious mosquitoes 14 d after blood feeding. Ambulatory dengue cases had lower viremia levels compared with hospitalized dengue cases but nonetheless at levels predicted to be infectious to mosquitoes. These data define serotype-specific viremia levels that vaccines or drugs must inhibit to prevent DENV transmission. PMID:23674683

  14. Reduced Incidence of Chikungunya Virus Infection in Communities with Ongoing Aedes Aegypti Mosquito Trap Intervention Studies - Salinas and Guayama, Puerto Rico, November 2015-February 2016.

    PubMed

    Lorenzi, Olga D; Major, Chelsea; Acevedo, Veronica; Perez-Padilla, Janice; Rivera, Aidsa; Biggerstaff, Brad J; Munoz-Jordan, Jorge; Waterman, Stephen; Barrera, Roberto; Sharp, Tyler M

    2016-05-13

    Aedes species mosquitoes transmit chikungunya virus, as well as dengue and Zika viruses, and bite most often during the day.* Infectious mosquito bites frequently occur in and around homes (1,2). Caribbean countries first reported local transmission of chikungunya virus in December 2013, and soon after, chikungunya virus spread throughout the Americas (3). Puerto Rico reported its first laboratory-positive chikungunya case in May 2014 (4), and subsequently identified approximately 29,000 suspected cases throughout the island by the end of 2015.(†) Because conventional vector control approaches often fail to result in effective and sustainable prevention of infection with viruses transmitted by Aedes mosquitoes (5), and to improve surveillance of mosquito population densities, CDC developed an Autocidal Gravid Ovitrap (AGO) (6) to attract and capture the female Aedes aegypti mosquitoes responsible for transmission of infectious agents to humans (Figure). The AGO trap is a simple, low-cost device that requires no use of pesticides and no servicing for an extended period of time (6).

  15. Reduced Incidence of Chikungunya Virus Infection in Communities with Ongoing Aedes Aegypti Mosquito Trap Intervention Studies - Salinas and Guayama, Puerto Rico, November 2015-February 2016.

    PubMed

    Lorenzi, Olga D; Major, Chelsea; Acevedo, Veronica; Perez-Padilla, Janice; Rivera, Aidsa; Biggerstaff, Brad J; Munoz-Jordan, Jorge; Waterman, Stephen; Barrera, Roberto; Sharp, Tyler M

    2016-01-01

    Aedes species mosquitoes transmit chikungunya virus, as well as dengue and Zika viruses, and bite most often during the day.* Infectious mosquito bites frequently occur in and around homes (1,2). Caribbean countries first reported local transmission of chikungunya virus in December 2013, and soon after, chikungunya virus spread throughout the Americas (3). Puerto Rico reported its first laboratory-positive chikungunya case in May 2014 (4), and subsequently identified approximately 29,000 suspected cases throughout the island by the end of 2015.(†) Because conventional vector control approaches often fail to result in effective and sustainable prevention of infection with viruses transmitted by Aedes mosquitoes (5), and to improve surveillance of mosquito population densities, CDC developed an Autocidal Gravid Ovitrap (AGO) (6) to attract and capture the female Aedes aegypti mosquitoes responsible for transmission of infectious agents to humans (Figure). The AGO trap is a simple, low-cost device that requires no use of pesticides and no servicing for an extended period of time (6). PMID:27171600

  16. Adult survivorship of the dengue mosquito Aedes aegypti varies seasonally in central Vietnam.

    PubMed

    Hugo, Leon E; Jeffery, Jason A L; Trewin, Brendan J; Wockner, Leesa F; Nguyen, Thi Yen; Nguyen, Hoang Le; Nghia, Le Trung; Hine, Emma; Ryan, Peter A; Kay, Brian H

    2014-02-01

    The survival characteristics of the mosquito Aedes aegypti affect transmission rates of dengue because transmission requires infected mosquitoes to survive long enough for the virus to infect the salivary glands. Mosquito survival is assumed to be high in tropical, dengue endemic, countries like Vietnam. However, the survival rates of wild populations of mosquitoes are seldom measured due the difficulty of predicting mosquito age. Hon Mieu Island in central Vietnam is the site of a pilot release of Ae. aegypti infected with a strain of Wolbachia pipientis bacteria (wMelPop) that induces virus interference and mosquito life-shortening. We used the most accurate mosquito age grading approach, transcriptional profiling, to establish the survival patterns of the mosquito population from the population age structure. Furthermore, estimations were validated on mosquitoes released into a large semi-field environment consisting of an enclosed house, garden and yard to incorporate natural environmental variability. Mosquito survival was highest during the dry/cool (January-April) and dry/hot (May-August) seasons, when 92 and 64% of Hon Mieu mosquitoes had survived to an age that they were able to transmit dengue (12 d), respectively. This was reduced to 29% during the wet/cool season from September to December. The presence of Ae. aegypti older than 12 d during each season is likely to facilitate the observed continuity of dengue transmission in the region. We provide season specific Ae. aegypti survival models for improved dengue epidemiology and evaluation of mosquito control strategies that aim to reduce mosquito survival to break the dengue transmission cycle.

  17. Adult Survivorship of the Dengue Mosquito Aedes aegypti Varies Seasonally in Central Vietnam

    PubMed Central

    Hugo, Leon E.; Jeffery, Jason A. L.; Trewin, Brendan J.; Wockner, Leesa F.; Thi Yen, Nguyen; Le, Nguyen Hoang; Nghia, Le Trung; Hine, Emma; Ryan, Peter A.; Kay, Brian H.

    2014-01-01

    The survival characteristics of the mosquito Aedes aegypti affect transmission rates of dengue because transmission requires infected mosquitoes to survive long enough for the virus to infect the salivary glands. Mosquito survival is assumed to be high in tropical, dengue endemic, countries like Vietnam. However, the survival rates of wild populations of mosquitoes are seldom measured due the difficulty of predicting mosquito age. Hon Mieu Island in central Vietnam is the site of a pilot release of Ae. aegypti infected with a strain of Wolbachia pipientis bacteria (wMelPop) that induces virus interference and mosquito life-shortening. We used the most accurate mosquito age grading approach, transcriptional profiling, to establish the survival patterns of the mosquito population from the population age structure. Furthermore, estimations were validated on mosquitoes released into a large semi-field environment consisting of an enclosed house, garden and yard to incorporate natural environmental variability. Mosquito survival was highest during the dry/cool (January-April) and dry/hot (May-August) seasons, when 92 and 64% of Hon Mieu mosquitoes had survived to an age that they were able to transmit dengue (12 d), respectively. This was reduced to 29% during the wet/cool season from September to December. The presence of Ae. aegypti older than 12 d during each season is likely to facilitate the observed continuity of dengue transmission in the region. We provide season specific Ae. aegypti survival models for improved dengue epidemiology and evaluation of mosquito control strategies that aim to reduce mosquito survival to break the dengue transmission cycle. PMID:24551251

  18. Microinjection of A. aegypti embryos to obtain transgenic mosquitoes.

    PubMed

    Jasinskiene, Nijole; Juhn, Jennifer; James, Anthony A

    2007-01-01

    In this video, Nijole Jasinskiene demonstrates the methodology employed to generate transgenic Aedes aegypti mosquitoes, which are vectors for dengue fever. The techniques for correctly preparing microinjection needles, desiccating embryos, and performing microinjection are demonstrated.

  19. Dengue virus 3 genotype I in Aedes aegypti mosquitoes and eggs, Brazil, 2005-2006.

    PubMed

    Vilela, Ana P P; Figueiredo, Leandra B; dos Santos, João R; Eiras, Alvaro E; Bonjardim, Cláudio A; Ferreira, Paulo C P; Kroon, Erna G

    2010-06-01

    Dengue virus type 3 genotype I was detected in Brazil during epidemics in 2002-2004. To confirm this finding, we identified this virus genotype in naturally infected field-caught Aedes aegypti mosquitoes and eggs. Results showed usefulness of virus investigations in vectors as a component of active epidemiologic surveillance. PMID:20507754

  20. Chikungunya Virus in Febrile Humans and Aedes aegypti Mosquitoes, Yucatan, Mexico

    PubMed Central

    Cigarroa-Toledo, Nohemi; Blitvich, Bradley J.; Cetina-Trejo, Rosa C.; Talavera-Aguilar, Lourdes G.; Baak-Baak, Carlos M.; Torres-Chablé, Oswaldo M.; Hamid, Md-Nafiz; Friedberg, Iddo; González-Martinez, Pedro; Alonzo-Salomon, Gabriela; Rosado-Paredes, Elsy P.; Rivero-Cárdenas, Nubia; Reyes-Solis, Guadalupe C.; Farfan-Ale, Jose A.; Garcia-Rejon, Julian E.

    2016-01-01

    Chikungunya virus (CHIKV) was isolated from 12 febrile humans in Yucatan, Mexico, in 2015. One patient was co-infected with dengue virus type 1. Two additional CHIKV isolates were obtained from Aedes aegypti mosquitoes collected in the homes of patients. Phylogenetic analysis showed that the CHIKV isolates belong to the Asian lineage. PMID:27347760

  1. Chikungunya Virus in Febrile Humans and Aedes aegypti Mosquitoes, Yucatan, Mexico.

    PubMed

    Cigarroa-Toledo, Nohemi; Blitvich, Bradley J; Cetina-Trejo, Rosa C; Talavera-Aguilar, Lourdes G; Baak-Baak, Carlos M; Torres-Chablé, Oswaldo M; Hamid, Md-Nafiz; Friedberg, Iddo; González-Martinez, Pedro; Alonzo-Salomon, Gabriela; Rosado-Paredes, Elsy P; Rivero-Cárdenas, Nubia; Reyes-Solis, Guadalupe C; Farfan-Ale, Jose A; Garcia-Rejon, Julian E; Machain-Williams, Carlos

    2016-10-01

    Chikungunya virus (CHIKV) was isolated from 12 febrile humans in Yucatan, Mexico, in 2015. One patient was co-infected with dengue virus type 1. Two additional CHIKV isolates were obtained from Aedes aegypti mosquitoes collected in the homes of patients. Phylogenetic analysis showed that the CHIKV isolates belong to the Asian lineage. PMID:27347760

  2. Wolbachia Blocks Currently Circulating Zika Virus Isolates in Brazilian Aedes aegypti Mosquitoes.

    PubMed

    Dutra, Heverton Leandro Carneiro; Rocha, Marcele Neves; Dias, Fernando Braga Stehling; Mansur, Simone Brutman; Caragata, Eric Pearce; Moreira, Luciano Andrade

    2016-06-01

    The recent association of Zika virus with cases of microcephaly has sparked a global health crisis and highlighted the need for mechanisms to combat the Zika vector, Aedes aegypti mosquitoes. Wolbachia pipientis, a bacterial endosymbiont of insect, has recently garnered attention as a mechanism for arbovirus control. Here we report that Aedes aegypti harboring Wolbachia are highly resistant to infection with two currently circulating Zika virus isolates from the recent Brazilian epidemic. Wolbachia-harboring mosquitoes displayed lower viral prevalence and intensity and decreased disseminated infection and, critically, did not carry infectious virus in the saliva, suggesting that viral transmission was blocked. Our data indicate that the use of Wolbachia-harboring mosquitoes could represent an effective mechanism to reduce Zika virus transmission and should be included as part of Zika control strategies. PMID:27156023

  3. Wolbachia Blocks Currently Circulating Zika Virus Isolates in Brazilian Aedes aegypti Mosquitoes.

    PubMed

    Dutra, Heverton Leandro Carneiro; Rocha, Marcele Neves; Dias, Fernando Braga Stehling; Mansur, Simone Brutman; Caragata, Eric Pearce; Moreira, Luciano Andrade

    2016-06-01

    The recent association of Zika virus with cases of microcephaly has sparked a global health crisis and highlighted the need for mechanisms to combat the Zika vector, Aedes aegypti mosquitoes. Wolbachia pipientis, a bacterial endosymbiont of insect, has recently garnered attention as a mechanism for arbovirus control. Here we report that Aedes aegypti harboring Wolbachia are highly resistant to infection with two currently circulating Zika virus isolates from the recent Brazilian epidemic. Wolbachia-harboring mosquitoes displayed lower viral prevalence and intensity and decreased disseminated infection and, critically, did not carry infectious virus in the saliva, suggesting that viral transmission was blocked. Our data indicate that the use of Wolbachia-harboring mosquitoes could represent an effective mechanism to reduce Zika virus transmission and should be included as part of Zika control strategies.

  4. Oviposition and olfaction responses of Aedes aegypti mosquitoes to insecticides.

    PubMed

    Canyon, D V; Muller, R

    2013-12-01

    Insecticide applications are not particularly effective on Aedes aegypti mosquitoes which has been attributed to their 'closet' behaviour, or ability to rest in places that remain unexposed to insecticides. Some researchers have suggested that insecticides repel mosquitoes, which would result in less exposure and increased dispersal. If repellence due to insecticides is a fact, acquiring a vector-borne disease, such as dengue, could legitimately be attributed to local vector control efforts and this would lead to restitution claims. This study thus investigated the effect of insecticide presence on mosquito behaviour indirectly via oviposition and directly via olfactory response. In all experiments, oviposition in each insecticide compared to its water and ethanol controls was not significantly different. This indicates that Ae. aegypti mosquitoes are not affected by insecticide presence and that increased dispersal is unlikely to be caused by vector control spraying.

  5. [Detection of Aedes (Stegomyia) Aegypti L. mosquitoes in Sochi city].

    PubMed

    Riabova, T E; Iunicheva, Iu V; Markovich, N Ia; Ganushkina, L A; Orabeĭ, V G; Sergiev, V P

    2005-01-01

    Few Aedes aegypti females were found when collecting the mosquitoes attacking human beings in the Central District of Sochi in August to September 2001-2004. Ae. aegypti, a vector of dangerous causative agents of diseases, such as yellow and Aden fevers, appeared on the Black Sea coast of the Caucasus is recorded after its long absence. By taking into account the potential epidemic value of Ae. aegypti, it is necessary to make a monitoring in the cities, towns, and settlements to establish the spread, number, and the breading sites of mosquitoes in the given area and to prevent their mass reproduction. The effectiveness of Ae. albopictus as a vector of Aden fever has been established in different regions of the world. Entomological surveys for Ae. albopictus should be made in the areas of Russia where Ae. aegypti mosquitoes were distributed early in the past century, particularly in the southern port towns and settlements of Russia. Ae. albopictus is potentially able to spread to the north further than is Ae. aegypti.

  6. Population structure of the mosquito Aedes aegypti (Stegomyia aegypti) in Pakistan.

    PubMed

    Rasheed, S B; Boots, M; Frantz, A C; Butlin, R K

    2013-12-01

    Eleven microsatellite markers were used to determine the genetic population structure and spread of Aedes aegypti (Stegomyia aegypti) (Diptera: Culicidae) in Pakistan using mosquitoes collected from 13 different cities. There is a single genetic cluster of Ae. aegypti in Pakistan with a pattern of isolation by distance within the population. The low level of isolation by distance suggests the long-range passive dispersal of this mosquito, which may be facilitated by the tyre trade in Pakistan. A decrease in genetic diversity from south to north suggests a recent spread of this mosquito from Karachi. A strong negative correlation between genetic distance and the quality of road connections shows that populations in cities connected by better road networks are less differentiated, which suggests the human-aided passive dispersal of Ae. aegypti in Pakistan. Dispersal on a large spatial scale may facilitate the strategy of introducing transgenic Ae. aegypti or intracellular bacteria such as Wolbachia to control the spread of dengue disease in Pakistan, but it also emphasizes the need for simple measures to control container breeding sites.

  7. Formulas of components of citronella oil against mosquitoes (Aedes aegypti).

    PubMed

    Hsu, Wey-Shin; Yen, Jui-Hung; Wang, Yei-Shung

    2013-01-01

    The mosquito Aedes aegypti is an epidemic vector of several diseases such as dengue fever and yellow fever. Several pesticides are used to control the mosquito population. Because of their frequent use, some mosquitoes have developed resistance. In this study, we used the Y-tube olfactometer to test essential oils of Cymbopogon species and screened specific formulas of components as repellents against Ae. aegypti. At 400 μL, the extracted oil of citronella grass (Cymbopogon nardus) and myrcene produced a low-active response by inhibiting mosquito host-seeking activity. Citronella grass, lemon grass (Cymbopogon citratus), citral and myrcene also produced a low-treatment response to repellents, for more potential to affect host-seeking behavior. Furthermore, the mixture of citral, myrcene, and citronellal oil (C:M:Ci = 6:4:1) greatly affected and inhibited host-seeking behavior (76% active response; 26% treatment response with 40 μL; 42.5%, 18% with 400 μL; and 19%, 23% with 1000 μL). As compared with the result for N,N-diethyl-3-methylbenzamide (DEET; 44%, 22% with 400 μL), adjusting the composition formulas of citronella oil had a synergistic effect, for more effective repellent against Ae. aegypti. PMID:23998314

  8. Detection of all four dengue serotypes in Aedes aegypti female mosquitoes collected in a rural area in Colombia

    PubMed Central

    Pérez-Castro, Rosalía; Castellanos, Jaime E; Olano, Víctor A; Matiz, María Inés; Jaramillo, Juan F; Vargas, Sandra L; Sarmiento, Diana M; Stenström, Thor Axel; Overgaard, Hans J

    2016-01-01

    The Aedes aegypti vector for dengue virus (DENV) has been reported in urban and periurban areas. The information about DENV circulation in mosquitoes in Colombian rural areas is limited, so we aimed to evaluate the presence of DENV in Ae. aegypti females caught in rural locations of two Colombian municipalities, Anapoima and La Mesa. Mosquitoes from 497 rural households in 44 different rural settlements were collected. Pools of about 20 Ae. aegypti females were processed for DENV serotype detection. DENV in mosquitoes was detected in 74% of the analysed settlements with a pool positivity rate of 62%. The estimated individual mosquito infection rate was 4.12% and the minimum infection rate was 33.3/1,000 mosquitoes. All four serotypes were detected; the most frequent being DENV-2 (50%) and DENV-1 (35%). Two-three serotypes were detected simultaneously in separate pools. This is the first report on the co-occurrence of natural DENV infection of mosquitoes in Colombian rural areas. The findings are important for understanding dengue transmission and planning control strategies. A potential latent virus reservoir in rural areas could spill over to urban areas during population movements. Detecting DENV in wild-caught adult mosquitoes should be included in the development of dengue epidemic forecasting models. PMID:27074252

  9. Detection of all four dengue serotypes in Aedes aegypti female mosquitoes collected in a rural area in Colombia.

    PubMed

    Pérez-Castro, Rosalía; Castellanos, Jaime E; Olano, Víctor A; Matiz, María Inés; Jaramillo, Juan F; Vargas, Sandra L; Sarmiento, Diana M; Stenström, Thor Axel; Overgaard, Hans J

    2016-04-01

    The Aedes aegypti vector for dengue virus (DENV) has been reported in urban and periurban areas. The information about DENV circulation in mosquitoes in Colombian rural areas is limited, so we aimed to evaluate the presence of DENV in Ae. aegypti females caught in rural locations of two Colombian municipalities, Anapoima and La Mesa. Mosquitoes from 497 rural households in 44 different rural settlements were collected. Pools of about 20 Ae. aegypti females were processed for DENV serotype detection. DENV in mosquitoes was detected in 74% of the analysed settlements with a pool positivity rate of 62%. The estimated individual mosquito infection rate was 4.12% and the minimum infection rate was 33.3/1,000 mosquitoes. All four serotypes were detected; the most frequent being DENV-2 (50%) and DENV-1 (35%). Two-three serotypes were detected simultaneously in separate pools. This is the first report on the co-occurrence of natural DENV infection of mosquitoes in Colombian rural areas. The findings are important for understanding dengue transmission and planning control strategies. A potential latent virus reservoir in rural areas could spill over to urban areas during population movements. Detecting DENV in wild-caught adult mosquitoes should be included in the development of dengue epidemic forecasting models.

  10. Productivity and population density estimates of the dengue vector mosquito Aedes aegypti (Stegomyia aegypti) in Australia.

    PubMed

    Williams, C R; Johnson, P H; Ball, T S; Ritchie, S A

    2013-09-01

    New mosquito control strategies centred on the modifying of populations require knowledge of existing population densities at release sites and an understanding of breeding site ecology. Using a quantitative pupal survey method, we investigated production of the dengue vector Aedes aegypti (L.) (Stegomyia aegypti) (Diptera: Culicidae) in Cairns, Queensland, Australia, and found that garden accoutrements represented the most common container type. Deliberately placed 'sentinel' containers were set at seven houses and sampled for pupae over 10 weeks during the wet season. Pupal production was approximately constant; tyres and buckets represented the most productive container types. Sentinel tyres produced the largest female mosquitoes, but were relatively rare in the field survey. We then used field-collected data to make estimates of per premises population density using three different approaches. Estimates of female Ae. aegypti abundance per premises made using the container-inhabiting mosquito simulation (CIMSiM) model [95% confidence interval (CI) 18.5-29.1 females] concorded reasonably well with estimates obtained using a standing crop calculation based on pupal collections (95% CI 8.8-22.5) and using BG-Sentinel traps and a sampling rate correction factor (95% CI 6.2-35.2). By first describing local Ae. aegypti productivity, we were able to compare three separate population density estimates which provided similar results. We anticipate that this will provide researchers and health officials with several tools with which to make estimates of population densities.

  11. Experience- and age-mediated oviposition behaviour in the yellow fever mosquito Stegomyia aegypti (=Aedes aegypti).

    PubMed

    Ruktanonchai, N W; Lounibos, L P; Smith, D L; Allan, S A

    2015-09-01

    In repeated behaviours such as those of feeding and reproduction, past experiences can inform future behaviour. By altering their behaviour in response to environmental stimuli, insects in highly variable landscapes can tailor their behaviour to their particular environment. In particular, female mosquitoes may benefit from plasticity in their choice of egg-laying site as these sites are often temporally variable and clustered. The opportunity to adapt egg-laying behaviour to past experience also exists for mosquito populations as females typically lay eggs multiple times throughout their lives. Whether experience and age affect egg-laying (or oviposition) behaviour in the mosquito Stegomyia aegypti (=Aedes aegypti) (Diptera: Culicidae) was assessed using a wind tunnel. Initially, gravid mosquitoes were provided with a cup containing either repellent or well water. After ovipositing in these cups, the mosquitoes were blood-fed and introduced into a wind tunnel. In this wind tunnel, an oviposition cup containing repellent was placed in the immediate vicinity of the gravid mosquitoes. A cup containing well water was placed at the opposite end of the tunnel so that if the females flew across the chamber, they encountered the well water cup, in which they readily laid eggs. Mosquitoes previously exposed to repellent cups became significantly more likely to later lay eggs in repellent cups, suggesting that previous experience with suboptimal oviposition sites informs mosquitoes of the characteristics of nearby oviposition sites. These results provide further evidence that mosquitoes modify behaviour in response to environmental information and are demonstrated in a vector species in which behavioural plasticity may be ecologically and epidemiologically meaningful.

  12. Filarial infection influences mosquito behaviour and fecundity

    PubMed Central

    Gleave, Katherine; Cook, Darren; Taylor, Mark J.; Reimer, Lisa J.

    2016-01-01

    Understanding vector-parasite interactions is increasingly important as we move towards the endpoint goals set by the Global Programme for the Elimination of Lymphatic Filariasis (GPELF), as interaction dynamics may change with reduced transmission pressure. Elimination models used to predict programmatic endpoints include parameters for vector-specific transmission dynamics, despite the fact that our knowledge of the host-seeking behaviour of filariasis infected mosquitoes is lacking. We observed a dynamic, stage-specific and density dependent change in Aedes aegypti behaviour towards host cues when exposed to Brugia malayi filarial parasites. Infected mosquitoes exhibited reduced activation and flight towards a host during the period of larval development (L1/L2), transitioning to a 5 fold increase in activation and flight towards a host when infective stage larvae (L3) were present (p < 0.001). In uninfected control mosquitoes, we observed a reduction in convergence towards a host during the same period. Furthermore, this behaviour was density dependent with non-activated mosquitoes harbouring a greater burden of L1 and L2 larvae while activated mosquitoes harboured a greater number of L3 (p < 0.001). Reductions in fecundity were also density-dependent, and extended to mosquitoes that were exposed to microfilariae but did not support larval development. PMID:27796352

  13. Mosquito Infection Responses to Developing Filarial Worms

    PubMed Central

    Erickson, Sara M.; Xi, Zhiyong; Mayhew, George F.; Ramirez, Jose L.; Aliota, Matthew T.; Christensen, Bruce M.; Dimopoulos, George

    2009-01-01

    Human lymphatic filariasis is a mosquito-vectored disease caused by the nematode parasites Wuchereria bancrofti, Brugia malayi and Brugia timori. These are relatively large roundworms that can cause considerable damage in compatible mosquito vectors. In order to assess how mosquitoes respond to infection in compatible mosquito-filarial worm associations, microarray analysis was used to evaluate transcriptome changes in Aedes aegypti at various times during B. malayi development. Changes in transcript abundance in response to the different stages of B. malayi infection were diverse. At the early stages of midgut and thoracic muscle cell penetration, a greater number of genes were repressed compared to those that were induced (20 vs. 8). The non-feeding, intracellular first-stage larvae elicited few differences, with 4 transcripts showing an increased and 9 a decreased abundance relative to controls. Several cecropin transcripts increased in abundance after parasites molted to second-stage larvae. However, the greatest number of transcripts changed in abundance after larvae molted to third-stage larvae and migrated to the head and proboscis (120 induced, 38 repressed), including a large number of putative, immunity-related genes (∼13% of genes with predicted functions). To test whether the innate immune system of mosquitoes was capable of modulating permissiveness to the parasite, we activated the Toll and Imd pathway controlled rel family transcription factors Rel1 and Rel2 (by RNA interference knockdown of the pathway's negative regulators Cactus and Caspar) during the early stages of infection with B. malayi. The activation of either of these immune signaling pathways, or knockdown of the Toll pathway, did not affect B. malayi in Ae. aegypti. The possibility of LF parasites evading mosquito immune responses during successful development is discussed. PMID:19823571

  14. Mosquito infection responses to developing filarial worms.

    PubMed

    Erickson, Sara M; Xi, Zhiyong; Mayhew, George F; Ramirez, Jose L; Aliota, Matthew T; Christensen, Bruce M; Dimopoulos, George

    2009-01-01

    Human lymphatic filariasis is a mosquito-vectored disease caused by the nematode parasites Wuchereria bancrofti, Brugia malayi and Brugia timori. These are relatively large roundworms that can cause considerable damage in compatible mosquito vectors. In order to assess how mosquitoes respond to infection in compatible mosquito-filarial worm associations, microarray analysis was used to evaluate transcriptome changes in Aedes aegypti at various times during B. malayi development. Changes in transcript abundance in response to the different stages of B. malayi infection were diverse. At the early stages of midgut and thoracic muscle cell penetration, a greater number of genes were repressed compared to those that were induced (20 vs. 8). The non-feeding, intracellular first-stage larvae elicited few differences, with 4 transcripts showing an increased and 9 a decreased abundance relative to controls. Several cecropin transcripts increased in abundance after parasites molted to second-stage larvae. However, the greatest number of transcripts changed in abundance after larvae molted to third-stage larvae and migrated to the head and proboscis (120 induced, 38 repressed), including a large number of putative, immunity-related genes (approximately 13% of genes with predicted functions). To test whether the innate immune system of mosquitoes was capable of modulating permissiveness to the parasite, we activated the Toll and Imd pathway controlled rel family transcription factors Rel1 and Rel2 (by RNA interference knockdown of the pathway's negative regulators Cactus and Caspar) during the early stages of infection with B. malayi. The activation of either of these immune signaling pathways, or knockdown of the Toll pathway, did not affect B. malayi in Ae. aegypti. The possibility of LF parasites evading mosquito immune responses during successful development is discussed. PMID:19823571

  15. Assessment of Local Mosquito Species Incriminates Aedes aegypti as the Potential Vector of Zika Virus in Australia

    PubMed Central

    Hall-Mendelin, Sonja; Pyke, Alyssa T.; Moore, Peter R.; Mackay, Ian M.; McMahon, Jamie L.; Ritchie, Scott A.; Taylor, Carmel T.; Moore, Frederick A.J.; van den Hurk, Andrew F.

    2016-01-01

    Background Within the last 10 years Zika virus (ZIKV) has caused unprecedented epidemics of human disease in the nations and territories of the western Pacific and South America, and continues to escalate in both endemic and non-endemic regions. We evaluated the vector competence of Australian mosquitoes for ZIKV to assess their potential role in virus transmission. Methodology/Principal Findings Mosquitoes were exposed to infectious blood meals containing the prototype African ZIKV strain. After 14 days incubation at 28°C and high relative humidity, infection, dissemination and transmission rates were assessed. Infection in Culex annulirostris and Cx. sitiens could not be detected. 8% of Cx. quinquefasciatus were infected, but the virus did not disseminate in this species. Despite having infection rates > 50%, Aedes notoscriptus and Ae. vigilax did not transmit ZIKV. In contrast, Ae. aegypti had infection and transmission rates of 57% and 27%, respectively. In susceptibility trials, the virus dose required to infect 50% (ID50) of Ae. aegypti was106.4 tissue culture infectious dose50 (TCID50)/mL. Additionally, a threshold viral load within the mosquito of at least 105.1 TCID50 equivalents/mL had to be reached before virus transmission occurred. Conclusions/Significance We confirmed Ae. aegypti to be the most likely mosquito vector of ZIKV in Australia, although the restricted distribution of this species will limit the receptive zone to northern Queensland where this species occurs. Importantly, the role in ZIKV transmission of Culex and other Aedes spp. tested will be negligible. Despite being the implicated vector, the relatively high ID50 and need for a high titer disseminated infection in Ae. aegypti suggest that high mosquito population densities will be required to facilitate epidemic ZIKV transmission among the currently immunologically naïve human population in Australia. PMID:27643685

  16. The effect of temperature and humidity on dengue virus propagation in Aedes aegypti mosquitos.

    PubMed

    Thu, H M; Aye, K M; Thein, S

    1998-06-01

    The effect of temperature and relative humidity on dengue virus propagation in the mosquito as one of the possible contributing factors to dengue hemorrhagic fever (DHF) outbreaks was studied. Ae. aegypti mosquitos were reared under standard conditions and inoculated intrathoracically with dengue virus. Virus propagation in the mosquitos was determined at the temperature and relative humidity of all 3 seasons of Yangon and for the simulated temperature and relative humidity of Singapore. The virus propagation was detected by direct fluorescent antibody technique (DFAT) with mosquito head squash and the virus titer was determined by plaque forming unit test (PFUT) in baby hamster kidney-21 cells. The results show that the infected mosquitos kept under the conditions of the rainy season and under the simulated conditions of Singapore had a significantly higher virus titer (p=<0.05) when compared with the other 2 seasons of Yangon. So it is thought that the temperature and relative humidity of the rainy season of Yangon and that of Singapore favors dengue virus propagation in the mosquito and is one of the contributing factors to the occurence of DHF outbreaks.

  17. Outbreak of chikungunya fever in Thailand and virus detection in field population of vector mosquitoes, Aedes aegypti (L.) and Aedes albopictus Skuse (Diptera: Culicidae).

    PubMed

    Thavara, Usavadee; Tawatsin, Apiwat; Pengsakul, Theerakamol; Bhakdeenuan, Payu; Chanama, Sumalee; Anantapreecha, Surapee; Molito, Chusak; Chompoosri, Jakkrawarn; Thammapalo, Suwich; Sawanpanyalert, Pathom; Siriyasatien, Padet

    2009-09-01

    We investigated chikungunya fever outbreak in the southern part of Thailand. Human plasma specimens obtained from suspected patients and adult wild-caught mosquitoes were detected for chikungunya virus employing reverse transcriptase-polymerase chain reaction technique. Chikungunya virus was detected in about half of the blood specimens whereas a range of 5.5 to 100% relative infection rate was found in both sexes of the vector mosquitoes, Aedes aegypti (L.) and Ae. albopictus Skuse. The infection rate in Ae. albopictus was higher than in Ae. aegypti, with relative infection rate in male of both species being higher than in female. The appearance of chikungunya virus in adult male mosquitoes of both species reveals a role of transovarial transmission of the virus in field population of the mosquito vectors. These findings have provided further understanding of the relationship among mosquito vectors, chikungunya virus and epidemiology of chikungunya fever in Thailand.

  18. Genome engineering with CRISPR-Cas9 in the mosquito Aedes aegypti.

    PubMed

    Kistler, Kathryn E; Vosshall, Leslie B; Matthews, Benjamin J

    2015-04-01

    The mosquito Aedes aegypti is a potent vector of the chikungunya, yellow fever, and dengue viruses, responsible for hundreds of millions of infections and over 50,000 human deaths per year. Mutagenesis in Ae. aegypti has been established with TALENs, ZFNs, and homing endonucleases, which require the engineering of DNA-binding protein domains to provide genomic target sequence specificity. Here, we describe the use of the CRISPR-Cas9 system to generate site-specific mutations in Ae. aegypti. This system relies on RNA-DNA base-pairing to generate targeting specificity, resulting in efficient and flexible genome-editing reagents. We investigate the efficiency of injection mix compositions, demonstrate the ability of CRISPR-Cas9 to generate different types of mutations via disparate repair mechanisms, and report stable germline mutations in several genomic loci. This work offers a detailed exploration into the use of CRISPR-Cas9 in Ae. aegypti that should be applicable to non-model organisms previously out of reach of genetic modification. PMID:25818303

  19. Inhibition of luciferase expression in transgenic Aedes aegypti mosquitoes by Sindbis virus expression of antisense luciferase RNA

    PubMed Central

    Johnson, Barbara W.; Olson, Ken E.; Allen-Miura, Tanya; Rayms-Keller, Alfredo; Carlson, Jonathan O.; Coates, Craig J.; Jasinskiene, Nijole; James, Anthony A.; Beaty, Barry J.; Higgs, Stephen

    1999-01-01

    A rapid and reproducible method of inhibiting the expression of specific genes in mosquitoes should further our understanding of gene function and may lead to the identification of mosquito genes that determine vector competence or are involved in pathogen transmission. We hypothesized that the virus expression system based on the mosquito-borne Alphavirus, Sindbis (Togaviridae), may efficiently transcribe effector RNAs that inhibit expression of a targeted mosquito gene. To test this hypothesis, germ-line-transformed Aedes aegypti that express luciferase (LUC) from the mosquito Apyrase promoter were intrathoracically inoculated with a double subgenomic Sindbis (dsSIN) virus TE/3′2J/anti-luc (Anti-luc) that transcribes RNA complementary to the 5′ end of the LUC mRNA. LUC activity was monitored in mosquitoes infected with either Anti-luc or control dsSIN viruses expressing unrelated antisense RNAs. Mosquitoes infected with Anti-luc virus exhibited 90% reduction in LUC compared with uninfected and control dsSIN-infected mosquitoes at 5 and 9 days postinoculation. We demonstrate that a gene expressed from the mosquito genome can be inhibited by using an antisense strategy. The dsSIN antisense RNA expression system is an important tool for studying gene function in vivo. PMID:10557332

  20. Inhibition of luciferase expression in transgenic Aedes aegypti mosquitoes by Sindbis virus expression of antisense luciferase RNA.

    PubMed

    Johnson, B W; Olson, K E; Allen-Miura, T; Rayms-Keller, A; Carlson, J O; Coates, C J; Jasinskiene, N; James, A A; Beaty, B J; Higgs, S

    1999-11-01

    A rapid and reproducible method of inhibiting the expression of specific genes in mosquitoes should further our understanding of gene function and may lead to the identification of mosquito genes that determine vector competence or are involved in pathogen transmission. We hypothesized that the virus expression system based on the mosquito-borne Alphavirus, Sindbis (Togaviridae), may efficiently transcribe effector RNAs that inhibit expression of a targeted mosquito gene. To test this hypothesis, germ-line-transformed Aedes aegypti that express luciferase (LUC) from the mosquito Apyrase promoter were intrathoracically inoculated with a double subgenomic Sindbis (dsSIN) virus TE/3'2J/anti-luc (Anti-luc) that transcribes RNA complementary to the 5' end of the LUC mRNA. LUC activity was monitored in mosquitoes infected with either Anti-luc or control dsSIN viruses expressing unrelated antisense RNAs. Mosquitoes infected with Anti-luc virus exhibited 90% reduction in LUC compared with uninfected and control dsSIN-infected mosquitoes at 5 and 9 days postinoculation. We demonstrate that a gene expressed from the mosquito genome can be inhibited by using an antisense strategy. The dsSIN antisense RNA expression system is an important tool for studying gene function in vivo. PMID:10557332

  1. Establishment of a Wolbachia Superinfection in Aedes aegypti Mosquitoes as a Potential Approach for Future Resistance Management

    PubMed Central

    De Bruyne, Jyotika Taneja; Kien, Duong Hue T.; Hoang, Nhat Le Thanh; Chau, Nguyen Van Vinh; Iturbe-Ormaetxe, Iñaki; Simmons, Cameron P.; O’Neill, Scott L.

    2016-01-01

    Wolbachia pipientis is an endosymbiotic bacterium estimated to chronically infect between 40–75% of all arthropod species. Aedes aegypti, the principle mosquito vector of dengue virus (DENV), is not a natural host of Wolbachia. The transinfection of Wolbachia strains such as wAlbB, wMel and wMelPop-CLA into Ae. aegypti has been shown to significantly reduce the vector competence of this mosquito for a range of human pathogens in the laboratory. This has led to wMel-transinfected Ae. aegypti currently being released in five countries to evaluate its effectiveness to control dengue disease in human populations. Here we describe the generation of a superinfected Ae. aegypti mosquito line simultaneously infected with two avirulent Wolbachia strains, wMel and wAlbB. The line carries a high overall Wolbachia density and tissue localisation of the individual strains is very similar to each respective single infected parental line. The superinfected line induces unidirectional cytoplasmic incompatibility (CI) when crossed to each single infected parental line, suggesting that the superinfection would have the capacity to replace either of the single constituent infections already present in a mosquito population. No significant differences in fitness parameters were observed between the superinfected line and the parental lines under the experimental conditions tested. Finally, the superinfected line blocks DENV replication more efficiently than the single wMel strain when challenged with blood meals from viremic dengue patients. These results suggest that the deployment of superinfections could be used to replace single infections and may represent an effective strategy to help manage potential resistance by DENV to field deployments of single infected strains. PMID:26891349

  2. Proteomic identification of dengue virus binding proteins in Aedes aegypti mosquitoes and Aedes albopictus cells.

    PubMed

    Muñoz, Maria de Lourdes; Limón-Camacho, Gustavo; Tovar, Rosalinda; Diaz-Badillo, Alvaro; Mendoza-Hernández, Guillermo; Black, William C

    2013-01-01

    The main vector of dengue in America is the mosquito Aedes aegypti, which is infected by dengue virus (DENV) through receptors of midgut epithelial cells. The envelope protein (E) of dengue virus binds to receptors present on the host cells through its domain III that has been primarily recognized to bind cell receptors. In order to identify potential receptors, proteins from mosquito midgut tissue and C6/36 cells were purified by affinity using columns with the recombinant E protein domain III (rE-DIII) or DENV particles bound covalently to Sepharose 4B to compare and evaluate their performance to bind proteins including putative receptors from female mosquitoes of Ae. aegypti. To determine their identity mass spectrometric analysis of purified proteins separated by polyacrylamide gel electrophoresis was performed. Our results indicate that both viral particles and rE-DIII bound proteins with the same apparent molecular weights of 57 and 67 kDa. In addition, viral particles bound high molecular weight proteins. Purified proteins identified were enolase, beta-adrenergic receptor kinase (beta-ARK), translation elongation factor EF-1 alpha/Tu, and cadherin. PMID:24324976

  3. Dengue Virus Infection of Aedes aegypti Requires a Putative Cysteine Rich Venom Protein

    PubMed Central

    Londono-Renteria, Berlin; Troupin, Andrea; Conway, Michael J; Vesely, Diana; Ledizet, Michael; Roundy, Christopher M.; Cloherty, Erin; Jameson, Samuel; Vanlandingham, Dana; Higgs, Stephen; Fikrig, Erol; Colpitts, Tonya M.

    2015-01-01

    Dengue virus (DENV) is a mosquito-borne flavivirus that causes serious human disease and mortality worldwide. There is no specific antiviral therapy or vaccine for DENV infection. Alterations in gene expression during DENV infection of the mosquito and the impact of these changes on virus infection are important events to investigate in hopes of creating new treatments and vaccines. We previously identified 203 genes that were ≥5-fold differentially upregulated during flavivirus infection of the mosquito. Here, we examined the impact of silencing 100 of the most highly upregulated gene targets on DENV infection in its mosquito vector. We identified 20 genes that reduced DENV infection by at least 60% when silenced. We focused on one gene, a putative cysteine rich venom protein (SeqID AAEL000379; CRVP379), whose silencing significantly reduced DENV infection in Aedes aegypti cells. Here, we examine the requirement for CRVP379 during DENV infection of the mosquito and investigate the mechanisms surrounding this phenomenon. We also show that blocking CRVP379 protein with either RNAi or specific antisera inhibits DENV infection in Aedes aegypti. This work identifies a novel mosquito gene target for controlling DENV infection in mosquitoes that may also be used to develop broad preventative and therapeutic measures for multiple flaviviruses. PMID:26491875

  4. Sialic acid expression in the mosquito Aedes aegypti and its possible role in dengue virus-vector interactions.

    PubMed

    Cime-Castillo, Jorge; Delannoy, Philippe; Mendoza-Hernández, Guillermo; Monroy-Martínez, Verónica; Harduin-Lepers, Anne; Lanz-Mendoza, Humberto; Hernández-Hernández, Fidel de la Cruz; Zenteno, Edgar; Cabello-Gutiérrez, Carlos; Ruiz-Ordaz, Blanca H

    2015-01-01

    Dengue fever (DF) is the most prevalent arthropod-borne viral disease which affects humans. DF is caused by the four dengue virus (DENV) serotypes, which are transmitted to the host by the mosquito Aedes aegypti that has key roles in DENV infection, replication, and viral transmission (vector competence). Mosquito saliva also plays an important role during DENV transmission. In this study, we detected the presence of sialic acid (Sia) in Aedes aegypti tissues, which may have an important role during DENV-vector competence. We also identified genome sequences encoding enzymes involved in Sia pathways. The cDNA for Aedes aegypti CMP-Sia synthase (CSAS) was amplified, cloned, and functionally evaluated via the complementation of LEC29.Lec32 CSAS-deficient CHO cells. AedesCSAS-transfected LEC29.Lec32 cells were able to express Sia moieties on the cell surface. Sequences related to α-2,6-sialyltransferase were detected in the Aedes aegypti genome. Likewise, we identified Sia-α-2,6-DENV interactions in different mosquito tissues. In addition, we evaluated the possible role of sialylated molecules in a salivary gland extract during DENV internalization in mammalian cells. The knowledge of early DENV-host interactions could facilitate a better understanding of viral tropism and pathogenesis to allow the development of new strategies for controlling DENV transmission.

  5. Sialic Acid Expression in the Mosquito Aedes aegypti and Its Possible Role in Dengue Virus-Vector Interactions

    PubMed Central

    Cime-Castillo, Jorge; Delannoy, Philippe; Mendoza-Hernández, Guillermo; Monroy-Martínez, Verónica; Lanz-Mendoza, Humberto; Hernández-Hernández, Fidel de la Cruz; Cabello-Gutiérrez, Carlos; Ruiz-Ordaz, Blanca H.

    2015-01-01

    Dengue fever (DF) is the most prevalent arthropod-borne viral disease which affects humans. DF is caused by the four dengue virus (DENV) serotypes, which are transmitted to the host by the mosquito Aedes aegypti that has key roles in DENV infection, replication, and viral transmission (vector competence). Mosquito saliva also plays an important role during DENV transmission. In this study, we detected the presence of sialic acid (Sia) in Aedes aegypti tissues, which may have an important role during DENV-vector competence. We also identified genome sequences encoding enzymes involved in Sia pathways. The cDNA for Aedes aegypti CMP-Sia synthase (CSAS) was amplified, cloned, and functionally evaluated via the complementation of LEC29.Lec32 CSAS-deficient CHO cells. AedesCSAS-transfected LEC29.Lec32 cells were able to express Sia moieties on the cell surface. Sequences related to α-2,6-sialyltransferase were detected in the Aedes aegypti genome. Likewise, we identified Sia-α-2,6-DENV interactions in different mosquito tissues. In addition, we evaluated the possible role of sialylated molecules in a salivary gland extract during DENV internalization in mammalian cells. The knowledge of early DENV-host interactions could facilitate a better understanding of viral tropism and pathogenesis to allow the development of new strategies for controlling DENV transmission. PMID:25874215

  6. Origin of the Dengue Fever Mosquito, Aedes aegypti, in California

    PubMed Central

    Gloria-Soria, Andrea; Brown, Julia E.; Kramer, Vicki; Hardstone Yoshimizu, Melissa; Powell, Jeffrey R.

    2014-01-01

    Dengue fever is among the most widespread vector-borne infectious diseases. The primary vector of dengue is the Aedes aegypti mosquito. Ae. aegypti is prevalent in the tropics and sub-tropics and is closely associated with human habitats outside its native range of Africa. While long established in the southeastern United States of America where dengue is re-emerging, breeding populations have never been reported from California until the summer of 2013. Using 12 highly variable microsatellite loci and a database of reference populations, we have determined that the likely source of the California introduction is the southeastern United States, ruling out introductions from abroad, from the geographically closer Arizona or northern Mexico populations, or an accidental release from a research laboratory. The power to identify the origin of new introductions of invasive vectors of human disease relies heavily on the availability of a panel of reference populations. Our work demonstrates the importance of generating extensive reference databases of genetically fingerprinted human-disease vector populations to aid public health efforts to prevent the introduction and spread of vector-borne diseases. PMID:25077804

  7. Origin of the dengue fever mosquito, Aedes aegypti, in California.

    PubMed

    Gloria-Soria, Andrea; Brown, Julia E; Kramer, Vicki; Hardstone Yoshimizu, Melissa; Powell, Jeffrey R

    2014-01-01

    Dengue fever is among the most widespread vector-borne infectious diseases. The primary vector of dengue is the Aedes aegypti mosquito. Ae. aegypti is prevalent in the tropics and sub-tropics and is closely associated with human habitats outside its native range of Africa. While long established in the southeastern United States of America where dengue is re-emerging, breeding populations have never been reported from California until the summer of 2013. Using 12 highly variable microsatellite loci and a database of reference populations, we have determined that the likely source of the California introduction is the southeastern United States, ruling out introductions from abroad, from the geographically closer Arizona or northern Mexico populations, or an accidental release from a research laboratory. The power to identify the origin of new introductions of invasive vectors of human disease relies heavily on the availability of a panel of reference populations. Our work demonstrates the importance of generating extensive reference databases of genetically fingerprinted human-disease vector populations to aid public health efforts to prevent the introduction and spread of vector-borne diseases.

  8. Body Size and Wing Shape Measurements as Quality Indicators of Aedes aegypti Mosquitoes Destined for Field Release

    PubMed Central

    Yeap, Heng Lin; Endersby, Nancy M.; Johnson, Petrina H.; Ritchie, Scott A.; Hoffmann, Ary A.

    2013-01-01

    There is increasing interest in rearing modified mosquitoes for mass release to control vector-borne diseases, particularly Wolbachia-infected Aedes aegypti for suppression of dengue. Successful introductions require release of high quality mosquitoes into natural populations. Potential indicators of quality are body size and shape. We tested to determine if size, wing/thorax ratio, and wing shape are associated with field fitness of Wolbachia-infected Ae. aegypti. Compared with field-collected mosquitoes, released mosquitoes were larger in size, with lower size variance and different wing shape but similar in wing-thorax ratio and its associated variance. These differences were largely attributed to nutrition and to a minor extent to wMel Wolbachia infection. Survival potential of released female mosquitoes was similar to those from the field. Females at oviposition sites tended to be larger than those randomly collected from BG-Sentinel traps. Rearing conditions should thus aim for large size without affecting wing/thorax ratios. PMID:23716403

  9. Intriguing olfactory proteins from the yellow fever mosquito, Aedes aegypti

    NASA Astrophysics Data System (ADS)

    Ishida, Yuko; Chen, Angela M.; Tsuruda, Jennifer M.; Cornel, Anthon J.; Debboun, Mustapha; Leal, Walter S.

    2004-09-01

    Four antennae-specific proteins (AaegOBP1, AaegOBP2, AaegOBP3, and AaegASP1) were isolated from the yellow fever mosquito, Aedes aegypti and their full-length cDNAs were cloned. RT-PCR indicated that they are expressed in female and, to a lesser extent, in male antennae, but not in control tissues (legs). AaegOBP1 and AaegOBP3 showed significant similarity to previously identified mosquito odorant-binding proteins (OBPs) in cysteine spacing pattern and sequence. Two of the isolated proteins have a total of eight cysteine residues. The similarity of the spacing pattern of the cysteine residues and amino acid sequence to those of previously identified olfactory proteins suggests that one of the cysteine-rich proteins (AaegOBP2) is an OBP. The other (AaegASP1) did not belong to any group of known OBPs. Structural analyses indicate that six of the cysteine residues in AaegOBP2 are linked in a similar pattern to the previously known cysteine pairing in OBPs, i.e., Cys-24 Cys-55, Cys-51 Cys-104, Cys-95 Cys-113. The additional disulfide bridge, Cys-38 Cys-125, knits the extended C-terminal segment of the protein to a predicted α2-helix. As indicated by circular dichroism (CD) spectra, the extra rigidity seems to prevent the predicted formation of a C-terminal α-helix at low pH.

  10. Dengue virus-infected Aedes aegypti in the home environment.

    PubMed

    Garcia-Rejon, Julian; Loroño-Pino, Maria Alba; Farfan-Ale, Jose Arturo; Flores-Flores, Luis; Del Pilar Rosado-Paredes, Elsy; Rivero-Cardenas, Nubia; Najera-Vazquez, Rosario; Gomez-Carro, Salvador; Lira-Zumbardo, Victor; Gonzalez-Martinez, Pedro; Lozano-Fuentes, Saul; Elizondo-Quiroga, Darwin; Beaty, Barry J; Eisen, Lars

    2008-12-01

    We determined abundance of Aedes aegypti mosquitoes and presence of dengue virus (DENV) in females collected from premises of laboratory-confirmed dengue patients over a 12-month period (March 2007 to February 2008) in Merida, Mexico. Backpack aspiration from 880 premises produced 1,836 females and 1,292 males indoors (predominantly from bedrooms) and 102 females and 108 males from patios/backyards. The mean weekly indoor catch rate per home peaked at 7.8 females in late August. Outdoor abundances of larvae or pupae were not predictive of female abundance inside the home. DENV-infected Ae. aegypti females were recovered from 34 premises. Collection of DENV-infected females from homes of dengue patients up to 27 days after the onset of symptoms (median, 14 days) shows the usefulness of indoor insecticide application in homes of suspected dengue patients to prevent their homes from becoming sources for dispersal of DENV by persons visiting and being bitten by infected mosquitoes. PMID:19052309

  11. Experimental investigation of the susceptibility of Italian Culex pipiens mosquitoes to Zika virus infection

    PubMed Central

    Boccolini, Daniela; Toma, Luciano; Di Luca, Marco; Severini, Francesco; Romi, R; Remoli, Maria Elena; Sabbatucci, Michela; Venturi, Giulietta; Rezza, Giovanni; Fortuna, Claudia

    2016-01-01

    We investigated the susceptibility of an Italian population of Culex pipiens mosquitoes to Zika virus (ZIKV) infection, tested in parallel with Aedes aegypti, as a positive control. We analysed mosquitoes at 0, 3, 7, 10, 14, 20 and 24 days after an infectious blood meal. Viral RNA was detected in the body of Cx. pipiens up to three days post-infection, but not at later time points. Our results indicate that Cx. pipiens is not susceptible to ZIKV infection. PMID:27605056

  12. Experimental investigation of the susceptibility of Italian Culex pipiens mosquitoes to Zika virus infection.

    PubMed

    Boccolini, Daniela; Toma, Luciano; Di Luca, Marco; Severini, Francesco; Romi, R; Remoli, Maria Elena; Sabbatucci, Michela; Venturi, Giulietta; Rezza, Giovanni; Fortuna, Claudia

    2016-09-01

    We investigated the susceptibility of an Italian population of Culex pipiens mosquitoes to Zika virus (ZIKV) infection, tested in parallel with Aedes aegypti, as a positive control. We analysed mosquitoes at 0, 3, 7, 10, 14, 20 and 24 days after an infectious blood meal. Viral RNA was detected in the body of Cx. pipiens up to three days post-infection, but not at later time points. Our results indicate that Cx. pipiens is not susceptible to ZIKV infection.

  13. Experimental investigation of the susceptibility of Italian Culex pipiens mosquitoes to Zika virus infection.

    PubMed

    Boccolini, Daniela; Toma, Luciano; Di Luca, Marco; Severini, Francesco; Romi, R; Remoli, Maria Elena; Sabbatucci, Michela; Venturi, Giulietta; Rezza, Giovanni; Fortuna, Claudia

    2016-09-01

    We investigated the susceptibility of an Italian population of Culex pipiens mosquitoes to Zika virus (ZIKV) infection, tested in parallel with Aedes aegypti, as a positive control. We analysed mosquitoes at 0, 3, 7, 10, 14, 20 and 24 days after an infectious blood meal. Viral RNA was detected in the body of Cx. pipiens up to three days post-infection, but not at later time points. Our results indicate that Cx. pipiens is not susceptible to ZIKV infection. PMID:27605056

  14. Multiple factors contribute to anautogenous reproduction by the mosquito Aedes aegypti.

    PubMed

    Gulia-Nuss, Monika; Elliot, Anne; Brown, Mark R; Strand, Michael R

    2015-11-01

    Aedes aegypti is an anautogenous mosquito that must blood feed on a vertebrate host to produce and lay a clutch of eggs. The rockpool mosquito, Georgecraigius atropalpus, is related to A. aegypti but is a facultatively autogenous species that produces its first clutch of eggs shortly after emerging without blood feeding. Consumption of a blood meal by A. aegypti triggers the release of ovary ecdysteroidogenic hormone (OEH) and insulin-like peptide 3 (ILP3) from the brain, which stimulate egg formation. OEH and ILP3 also stimulate egg formation in G. atropalpus but are released at eclosion independently of blood feeding. These results collectively suggest that blood meal dependent release of OEH and ILP3 is one factor that prevents A. aegypti from reproducing autogenously. Here, we examined two other factors that potentially inhibit autogeny in A. aegypti: teneral nutrient reserves and the ability of OEH and ILP3 to stimulate egg formation in the absence of blood feeding. Measures of nutrient reserves showed that newly emerged A. aegypti females had similar wet weights but significantly lower protein and glycogen reserves than G. atropalpus females when larvae were reared under identical conditions. OEH stimulated non-blood fed A. aegypti females to produce ecdysteroid hormone and package yolk into oocytes more strongly than ILP3. OEH also reduced host seeking and blood feeding behavior, yet females produced few mature eggs. Overall, our results indicate that multiple factors prevent A. aegypti from reproducing autogenously.

  15. Behavioral Response of Aedes aegypti Mosquito towards Essential Oils Using Olfactometer

    PubMed Central

    Uniyal, Ashish; Tikar, Sachin N; Mendki, Murlidhar J; Singh, Ram; Shukla, Shakti V; Agrawal, Om P; Veer, Vijay; Sukumaran, Devanathan

    2016-01-01

    Background: Aedes aegypti mosquito is responsible for transmitting human diseases like dengue and chikungunya. Personal or space protection with insect repellents is a practical approach to reducing human mosquito contact, thereby minimizing disease transmission. Essential oils are natural volatile substances from plants used as protective measure against blood-sucking mosquitoes. Methods: Twenty-three essential oils were evaluated for their repellent effect against Ae. aegypti female mosquito in laboratory conditions using Y-tube olfactometer. Results: The essential oils exhibited varying degree of repellency. Litsea oil showed 50.31%, 60.2 %, and 77.26% effective mean repellency at 1 ppm, 10 ppm and 100 ppm respectively, while DEET exhibited 59.63%, 68.63%, 85.48% and DEPA showed 57.97%, 65.43%, and 80.62% repellency at respective above concentrations. Statistical analysis revealed that among the tested essential oils, litsea oil had effective repellency in comparison with DEET and DEPA against Ae. aegypti mosquito at all concentration. Essential oils, DEET and DEPA showed significant repellence against Ae. aegypti (P< 0.05) at all 3 concentration tested. Conclusion: Litsea oil exhibited effective percentage repellency similar to DEET and DEPA. The essential oils are natural plant products that may be useful for developing safer and newer herbal based effective mosquito repellents. PMID:27308295

  16. Laboratory evaluation of the response of Aedes aegypti and Aedes albopictus uninfected and infected with dengue virus to deet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Laboratory studies were conducted to compare the response of Aedes aegypti (L.) and Aedes albopictus (Skuse) adults, uninfected and infected with four serotypes of dengue virus, to a repellent containing 5% deet. The results showed that mosquitoes infected with the four serotypes of dengue respond i...

  17. Antiviral Hammerhead Ribozymes Are Effective for Developing Transgenic Suppression of Chikungunya Virus in Aedes aegypti Mosquitoes.

    PubMed

    Mishra, Priya; Furey, Colleen; Balaraman, Velmurugan; Fraser, Malcolm J

    2016-06-10

    The chikungunya virus (CHIKV) is an emerging pathogen with widespread distribution in regions of Africa, India, and Asia that threatens to spread into temperate climates with the introduction of its major vector, Aedes albopictus. CHIKV causes a disease frequently misdiagnosed as dengue fever, with potentially life-threatening symptoms that can result in a longer-term debilitating arthritis. The increasing risk of spread from endemic regions via human travel and commerce and the current absence of a vaccine put a significant proportion of the world population at risk for this disease. In this study we designed and tested hammerhead ribozymes (hRzs) targeting CHIKV structural protein genes of the RNA genome as potential antivirals both at the cellular and in vivo level. We employed the CHIKV strain 181/25, which exhibits similar infectivity rates in both Vero cell cultures and mosquitoes. Virus suppression assay performed on transformed Vero cell clones of all seven hRzs demonstrated that all are effective at inhibiting CHIKV in Vero cells, with hRz #9 and #14 being the most effective. piggyBac transformation vectors were constructed using the Ae. aegypti t-RNA(val) Pol III promoted hRz #9 and #14 effector genes to establish a total of nine unique transgenic Higgs White Eye (HWE) Ae. aegypti lines. Following confirmation of transgene expression by real-time polymerase chain reaction (RT-PCR), comparative TCID50-IFA analysis, in situ Immuno-fluorescent Assays (IFA) and analysis of salivary CHIKV titers demonstrated effective suppression of virus replication at 7 dpi in heterozygous females of each of these transgenic lines compared with control HWE mosquitoes. This report provides a proof that appropriately engineered hRzs are powerful antiviral effector genes suitable for population replacement strategies.

  18. Antiviral Hammerhead Ribozymes Are Effective for Developing Transgenic Suppression of Chikungunya Virus in Aedes aegypti Mosquitoes

    PubMed Central

    Mishra, Priya; Furey, Colleen; Balaraman, Velmurugan; Fraser, Malcolm J.

    2016-01-01

    The chikungunya virus (CHIKV) is an emerging pathogen with widespread distribution in regions of Africa, India, and Asia that threatens to spread into temperate climates with the introduction of its major vector, Aedes albopictus. CHIKV causes a disease frequently misdiagnosed as dengue fever, with potentially life-threatening symptoms that can result in a longer-term debilitating arthritis. The increasing risk of spread from endemic regions via human travel and commerce and the current absence of a vaccine put a significant proportion of the world population at risk for this disease. In this study we designed and tested hammerhead ribozymes (hRzs) targeting CHIKV structural protein genes of the RNA genome as potential antivirals both at the cellular and in vivo level. We employed the CHIKV strain 181/25, which exhibits similar infectivity rates in both Vero cell cultures and mosquitoes. Virus suppression assay performed on transformed Vero cell clones of all seven hRzs demonstrated that all are effective at inhibiting CHIKV in Vero cells, with hRz #9 and #14 being the most effective. piggyBac transformation vectors were constructed using the Ae. aegypti t-RNAval Pol III promoted hRz #9 and #14 effector genes to establish a total of nine unique transgenic Higgs White Eye (HWE) Ae. aegypti lines. Following confirmation of transgene expression by real-time polymerase chain reaction (RT-PCR), comparative TCID50-IFA analysis, in situ Immuno-fluorescent Assays (IFA) and analysis of salivary CHIKV titers demonstrated effective suppression of virus replication at 7 dpi in heterozygous females of each of these transgenic lines compared with control HWE mosquitoes. This report provides a proof that appropriately engineered hRzs are powerful antiviral effector genes suitable for population replacement strategies PMID:27294950

  19. Antiviral Hammerhead Ribozymes Are Effective for Developing Transgenic Suppression of Chikungunya Virus in Aedes aegypti Mosquitoes.

    PubMed

    Mishra, Priya; Furey, Colleen; Balaraman, Velmurugan; Fraser, Malcolm J

    2016-01-01

    The chikungunya virus (CHIKV) is an emerging pathogen with widespread distribution in regions of Africa, India, and Asia that threatens to spread into temperate climates with the introduction of its major vector, Aedes albopictus. CHIKV causes a disease frequently misdiagnosed as dengue fever, with potentially life-threatening symptoms that can result in a longer-term debilitating arthritis. The increasing risk of spread from endemic regions via human travel and commerce and the current absence of a vaccine put a significant proportion of the world population at risk for this disease. In this study we designed and tested hammerhead ribozymes (hRzs) targeting CHIKV structural protein genes of the RNA genome as potential antivirals both at the cellular and in vivo level. We employed the CHIKV strain 181/25, which exhibits similar infectivity rates in both Vero cell cultures and mosquitoes. Virus suppression assay performed on transformed Vero cell clones of all seven hRzs demonstrated that all are effective at inhibiting CHIKV in Vero cells, with hRz #9 and #14 being the most effective. piggyBac transformation vectors were constructed using the Ae. aegypti t-RNA(val) Pol III promoted hRz #9 and #14 effector genes to establish a total of nine unique transgenic Higgs White Eye (HWE) Ae. aegypti lines. Following confirmation of transgene expression by real-time polymerase chain reaction (RT-PCR), comparative TCID50-IFA analysis, in situ Immuno-fluorescent Assays (IFA) and analysis of salivary CHIKV titers demonstrated effective suppression of virus replication at 7 dpi in heterozygous females of each of these transgenic lines compared with control HWE mosquitoes. This report provides a proof that appropriately engineered hRzs are powerful antiviral effector genes suitable for population replacement strategies. PMID:27294950

  20. The Aquaporin Gene Family of the Yellow Fever Mosquito, Aedes aegypti

    PubMed Central

    Drake, Lisa L.; Boudko, Dmitri Y.; Marinotti, Osvaldo; Carpenter, Victoria K.; Dawe, Angus L.; Hansen, Immo A.

    2010-01-01

    Background The mosquito, Aedes aegypti, is the principal vector of the Dengue and yellow fever viruses. During feeding, an adult female can take up more than its own body weight in vertebrate blood. After a blood meal females excrete large amounts of urine through their excretion system, the Malpighian tubules (MT). Diuresis starts within seconds after the mosquito starts feeding. Aquaporins (AQPs) are a family of membrane transporters that regulate the flow of water, glycerol and other small molecules across cellular membranes in both prokaryotic and eukaryotic cells. Our aim was to identify aquaporins that function as water channels, mediating transcellular water transport in MTs of adult female Ae. aegypti. Methodology/Principal Findings Using a bioinformatics approach we screened genome databases and identified six putative AQPs in the genome of Ae. aegypti. Phylogenetic analysis showed that five of the six Ae. aegypti AQPs have high similarity to classical water-transporting AQPs of vertebrates. Using microarray, reverse transcription and real time PCR analysis we found that all six AQPs are expressed in distinct patterns in mosquito tissues/body parts. AaAQP1, 4, and 5 are strongly expressed in the adult female MT. RNAi-mediated knockdown of the MT-expressed mosquito AQPs resulted in significantly reduced diuresis. Conclusions/Significance Our results support the notion that AQP1, 4, and 5 function as water transporters in the MTs of adult female Ae. aegypti mosquitoes. Our results demonstrate the importance of these AQPs for mosquito diuresis after blood ingestion and highlight their potential as targets for the development of novel vector control strategies. PMID:21249121

  1. Mosquito Defense Strategies against Viral Infection.

    PubMed

    Cheng, Gong; Liu, Yang; Wang, Penghua; Xiao, Xiaoping

    2016-03-01

    Mosquito-borne viral diseases are a major concern of global health and result in significant economic losses in many countries. As natural vectors, mosquitoes are very permissive to and allow systemic and persistent arbovirus infection. Intriguingly, persistent viral propagation in mosquito tissues neither results in dramatic pathological sequelae nor impairs the vectorial behavior or lifespan, indicating that mosquitoes have evolved mechanisms to tolerate persistent infection and developed efficient antiviral strategies to restrict viral replication to nonpathogenic levels. Here we provide an overview of recent progress in understanding mosquito antiviral immunity and advances in the strategies by which mosquitoes control viral infection in specific tissues.

  2. Impacts of Wolbachia infection on predator prey relationships: evaluating survival and horizontal transfer between wMelPop infected Aedes aegypti and its predators.

    PubMed

    Hurst, Timothy P; Pittman, Geoff; O'Neill, Scott L; Ryan, Peter A; Nguyen, Hoang Le; Kay, Brian H

    2012-05-01

    The wMelPop strain of Wolbachia is currently being investigated for its potential use as a biological control agent to reduce the ability of Aedes aegypti (L.) mosquitoes to transmit dengue viruses. The survival of a potential wMelPop infected Ae. aegypti strain for field release is important as a higher susceptibility to predation in the wMelPop strain could result in difficulties in achieving fixation. We investigated immature and adult survival as a function of susceptibility to predation by six naturally occurring predator species; cyclopoid copepods, fish, predatory Toxorhynchites mosquito larvae and a salticid jumping spider. The trials indicated that wMelPop infected and uninfected Ae. aegypti larvae and adults were equally susceptible to predation to all six tested predators. In addition to evaluating any potential fitness costs to the infected host, we were unable to demonstrate horizontal transfer of wMelPop via consumption of infected Ae. aegypti larvae to the above predators. That susceptibility to predation was consistent across mosquito life stage, predator species and experimental venue is strong evidence that despite the neurotrophic and extensive nature of wMelPop infection, behavioral changes are not occurring, or at least not a determining factor in survival when exposed to a predator. Based on our results and the ecology of Wolbachia and mosquito predators, horizontal transfer of wMelPop from Ae. aegypti into naturally occurring predators is not cause for concern. PMID:22679870

  3. Mosquito activity of a series of chalcones and 2-pyrazoline derivatives against Aedes aegypti

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aedes aegypti (L.) (Diptera: Culicidae) transmit pathogens to humans, leading to diseases such as yellow fever and dengue fever. Repellents and insecticides are two common interventions to reduce mosquito biting and thereby disease risk. However, overreliance on a chemical or class of chemicals c...

  4. Winter Refuge for Aedes aegypti and Ae. albopictus Mosquitoes in Hanoi during Winter

    PubMed Central

    Tsunoda, Takashi; Cuong, Tran Chi; Dong, Tran Duc; Yen, Nguyen Thi; Le, Nguyen Hoang; Phong, Tran Vu; Minakawa, Noboru

    2014-01-01

    Dengue occurs throughout the year in Hanoi, Vietnam, despite winter low temperatures <10°C. During July 2010 to March 2012, we surveyed monthly for Aedes larvae and pupae in 120 houses in 8 Hanoi districts. Aedes albopictus preferred discarded containers in summer and pupal density drastically decreased in winter. Aedes aegypti preferred concrete tanks and this preference increased in winter. Even in winter, the lowest water temperature found in concrete tanks was >14°C, exceeding the developmental zero point of Ae. aegypti. Although jars, drums and concrete tanks were the dominant containers previously (1994–97) in Hanoi, currently the percentage of residences with concrete tanks was still high while jars and drums were quite low. Our study showed that concrete tanks with broken lids allowing mosquitoes access were important winter refuge for Ae. aegypti. We also indicate a concern about concrete tanks serving as foci for Ae. aegypti to expand their distribution in cooler regions. PMID:24752230

  5. Mosquito larvicidal activity of aromatic medicinal plant oils against Aedes aegypti and Culex pipiens pallens.

    PubMed

    Lee, Hoi-Seon

    2006-06-01

    Larvicidal activity of essential oils derived from 11 aromatic medicinal plants against early 4th-stage larvae of Aedes aegypti and Culex pipiens pallens was tested in the laboratory. At 100 ppm, the essential oils of all plants caused 100% mortality against Ae. aegypti and Cx. pipiens pallens. At 25 ppm, the essential oils of Citrus bergamia, Cuminum myrrha, and Pimenta racemosa caused 100% mortality against larvae of Ae. aegypti and Cx. pipiens pallens. The oil of C. begamia caused 32.5% and 24.5% mortality against Ae. aegypti and Cx. pipiens pallens at 12.5 ppm, but 24.2% and 0% mortality against Ae. aegypti and Cx. pipiens pallens at 6.25 ppm, respectively. The oil of P. racemosa caused 52.3% and 38.5% mortality against Ae. aegypti and Cx. pipiens pallens at 12.5 ppm, but 32.2% and 0% mortality against Ae. aegypti and Cx. pipiens pallens at 6.25 ppm, respectively. The larvicidal activity of oils of C. bergamia, C. myrrha, and P. racemosa was significantly reduced when used at 6.25 ppm. These plants warrant further studies as possible agents for mosquito control.

  6. Host Inflammatory Response to Mosquito Bites Enhances the Severity of Arbovirus Infection.

    PubMed

    Pingen, Marieke; Bryden, Steven R; Pondeville, Emilie; Schnettler, Esther; Kohl, Alain; Merits, Andres; Fazakerley, John K; Graham, Gerard J; McKimmie, Clive S

    2016-06-21

    Aedes aegypti mosquitoes are responsible for transmitting many medically important viruses such as those that cause Zika and dengue. The inoculation of viruses into mosquito bite sites is an important and common stage of all mosquito-borne virus infections. We show, using Semliki Forest virus and Bunyamwera virus, that these viruses use this inflammatory niche to aid their replication and dissemination in vivo. Mosquito bites were characterized by an edema that retained virus at the inoculation site and an inflammatory influx of neutrophils that coordinated a localized innate immune program that inadvertently facilitated virus infection by encouraging the entry and infection of virus-permissive myeloid cells. Neutrophil depletion and therapeutic blockade of inflammasome activity suppressed inflammation and abrogated the ability of the bite to promote infection. This study identifies facets of mosquito bite inflammation that are important determinants of the subsequent systemic course and clinical outcome of virus infection. PMID:27332734

  7. Host Inflammatory Response to Mosquito Bites Enhances the Severity of Arbovirus Infection.

    PubMed

    Pingen, Marieke; Bryden, Steven R; Pondeville, Emilie; Schnettler, Esther; Kohl, Alain; Merits, Andres; Fazakerley, John K; Graham, Gerard J; McKimmie, Clive S

    2016-06-21

    Aedes aegypti mosquitoes are responsible for transmitting many medically important viruses such as those that cause Zika and dengue. The inoculation of viruses into mosquito bite sites is an important and common stage of all mosquito-borne virus infections. We show, using Semliki Forest virus and Bunyamwera virus, that these viruses use this inflammatory niche to aid their replication and dissemination in vivo. Mosquito bites were characterized by an edema that retained virus at the inoculation site and an inflammatory influx of neutrophils that coordinated a localized innate immune program that inadvertently facilitated virus infection by encouraging the entry and infection of virus-permissive myeloid cells. Neutrophil depletion and therapeutic blockade of inflammasome activity suppressed inflammation and abrogated the ability of the bite to promote infection. This study identifies facets of mosquito bite inflammation that are important determinants of the subsequent systemic course and clinical outcome of virus infection.

  8. SEX DETERMINATION. A male-determining factor in the mosquito Aedes aegypti.

    PubMed

    Hall, Andrew Brantley; Basu, Sanjay; Jiang, Xiaofang; Qi, Yumin; Timoshevskiy, Vladimir A; Biedler, James K; Sharakhova, Maria V; Elahi, Rubayet; Anderson, Michelle A E; Chen, Xiao-Guang; Sharakhov, Igor V; Adelman, Zach N; Tu, Zhijian

    2015-06-12

    Sex determination in the mosquito Aedes aegypti is governed by a dominant male-determining factor (M factor) located within a Y chromosome-like region called the M locus. Here, we show that an M-locus gene, Nix, functions as an M factor in A. aegypti. Nix exhibits persistent M linkage and early embryonic expression, two characteristics required of an M factor. Nix knockout with clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 resulted in largely feminized genetic males and the production of female isoforms of two key regulators of sexual differentiation: doublesex and fruitless. Ectopic expression of Nix resulted in genetic females with nearly complete male genitalia. Thus, Nix is both required and sufficient to initiate male development. This study provides a foundation for mosquito control strategies that convert female mosquitoes into harmless males. PMID:25999371

  9. Site-Specific Cassette Exchange Systems in the Aedes aegypti Mosquito and the Plutella xylostella Moth

    PubMed Central

    Haghighat-Khah, Roya Elaine; Scaife, Sarah; Martins, Sara; St John, Oliver; Matzen, Kelly Jean; Morrison, Neil; Alphey, Luke

    2015-01-01

    Genetically engineered insects are being evaluated as potential tools to decrease the economic and public health burden of mosquitoes and agricultural pest insects. Here we describe a new tool for the reliable and targeted genome manipulation of pest insects for research and field release using recombinase mediated cassette exchange (RMCE) mechanisms. We successfully demonstrated the established ΦC31-RMCE method in the yellow fever mosquito, Aedes aegypti, which is the first report of RMCE in mosquitoes. A new variant of this RMCE system, called iRMCE, combines the ΦC31-att integration system and Cre or FLP-mediated excision to remove extraneous sequences introduced as part of the site-specific integration process. Complete iRMCE was achieved in two important insect pests, Aedes aegypti and the diamondback moth, Plutella xylostella, demonstrating the transferability of the system across a wide phylogenetic range of insect pests. PMID:25830287

  10. A Neuron-Specific Antiviral Mechanism Prevents Lethal Flaviviral Infection of Mosquitoes

    PubMed Central

    Xiao, Xiaoping; Zhang, Rudian; Pang, Xiaojing; Liang, Guodong; Wang, Penghua; Cheng, Gong

    2015-01-01

    Mosquitoes are natural vectors for many etiologic agents of human viral diseases. Mosquito-borne flaviviruses can persistently infect the mosquito central nervous system without causing dramatic pathology or influencing the mosquito behavior and lifespan. The mechanism by which the mosquito nervous system resists flaviviral infection is still largely unknown. Here we report that an Aedes aegypti homologue of the neural factor Hikaru genki (AaHig) efficiently restricts flavivirus infection of the central nervous system. AaHig was predominantly expressed in the mosquito nervous system and localized to the plasma membrane of neural cells. Functional blockade of AaHig enhanced Dengue virus (DENV) and Japanese encephalitis virus (JEV), but not Sindbis virus (SINV), replication in mosquito heads and consequently caused neural apoptosis and a dramatic reduction in the mosquito lifespan. Consistently, delivery of recombinant AaHig to mosquitoes reduced viral infection. Furthermore, the membrane-localized AaHig directly interfaced with a highly conserved motif in the surface envelope proteins of DENV and JEV, and consequently interrupted endocytic viral entry into mosquito cells. Loss of either plasma membrane targeting or virion-binding ability rendered AaHig nonfunctional. Interestingly, Culex pipien pallens Hig also demonstrated a prominent anti-flavivirus activity, suggesting a functionally conserved function for Hig. Our results demonstrate that an evolutionarily conserved antiviral mechanism prevents lethal flaviviral infection of the central nervous system in mosquitoes, and thus may facilitate flaviviral transmission in nature. PMID:25915054

  11. Effective disposal of nitrogen waste in blood-fed Aedes aegypti mosquitoes requires alanine aminotransferase.

    PubMed

    Mazzalupo, Stacy; Isoe, Jun; Belloni, Virginia; Scaraffia, Patricia Y

    2016-01-01

    To better understand the mechanisms responsible for the success of female mosquitoes in their disposal of excess nitrogen, we investigated the role of alanine aminotransferase (ALAT) in blood-fed Aedes aegypti. Transcript and protein levels from the 2 ALAT genes were analyzed in sucrose- and blood-fed A. aegypti tissues. ALAT1 and ALAT2 exhibit distinct expression patterns in tissues during the first gonotrophic cycle. Injection of female mosquitoes with either double-stranded RNA (dsRNA)-ALAT1 or dsRNA ALAT2 significantly decreased mRNA and protein levels of ALAT1 or ALAT2 in fat body, thorax, and Malpighian tubules compared with dsRNA firefly luciferase-injected control mosquitoes. The silencing of either A. aegypti ALAT1 or ALAT2 caused unexpected phenotypes such as a delay in blood digestion, a massive accumulation of uric acid in the midgut posterior region, and a significant decrease of nitrogen waste excretion during the first 48 h after blood feeding. Concurrently, the expression of genes encoding xanthine dehydrogenase and ammonia transporter (Rhesus 50 glycoprotein) were significantly increased in tissues of both ALAT1- and ALAT2-deficient females. Moreover, perturbation of ALAT1 and ALAT2 in the female mosquitoes delayed oviposition and reduced egg production. These novel findings underscore the efficient mechanisms that blood-fed mosquitoes use to avoid ammonia toxicity and free radical damage.-Mazzalupo, S., Isoe, J., Belloni, V., Scaraffia, P. Y. Effective disposal of nitrogen waste in blood-fed Aedes aegypti mosquitoes requires alanine aminotransferase.

  12. Transgene-mediated suppression of dengue viruses in the salivary glands of the yellow fever mosquito, Aedes aegypti.

    PubMed

    Mathur, G; Sanchez-Vargas, I; Alvarez, D; Olson, K E; Marinotti, O; James, A A

    2010-12-01

    Controlled sex-, stage- and tissue-specific expression of antipathogen effector molecules is important for genetic engineering strategies to control mosquito-borne diseases. Adult female salivary glands are involved in pathogen transmission to human hosts and are target sites for expression of antipathogen effector molecules. The Aedes aegypti 30K a and 30K b genes are expressed exclusively in adult female salivary glands and are transcribed divergently from start sites separated by 263 nucleotides. The intergenic, 5'- and 3'-end untranslated regions of both genes are sufficient to express simultaneously two different transgene products in the distal-lateral lobes of the female salivary glands. An antidengue effector gene, membranes no protein (Mnp), driven by the 30K b promoter, expresses an inverted-repeat RNA with sequences derived from the premembrane protein-encoding region of the dengue virus serotype 2 genome and reduces significantly the prevalence and mean intensities of viral infection in mosquito salivary glands and saliva.

  13. Imidacloprid impairs the post-embryonic development of the midgut in the yellow fever mosquito Stegomyia aegypti (=Aedes aegypti).

    PubMed

    Fernandes, K M; Gonzaga, W G; Pascini, T V; Miranda, F R; Tomé, H V V; Serrão, J E; Martins, G F

    2015-09-01

    The mosquito Stegomyia aegypti (=Aedes aegypti) (Diptera: Culicidae) is a vector for the dengue and yellow fever viruses. As blood digestion occurs in the midgut, this organ constitutes the route of entry of many pathogens. The effects of the insecticide imidacloprid on the survival of St. aegypti were investigated and the sub-lethal effects of the insecticide on midgut development were determined. Third instar larvae were exposed to different concentrations of imidacloprid (0.15, 1.5, 3.0, 6.0 and 15.0 p.p.m.) and survival was monitored every 24 h for 10 days. Midguts from imidacloprid-treated insects at different stages of development were dissected and processed for analyses by transmission electron microscopy, immunofluorescence microscopy and terminal deoxynucleotidyl transferase dUTP nick-end labelling (TUNEL) assays. Imidacloprid concentrations of 3.0 and 15.0 p.p.m. were found to affect midgut development similarly. Digestive cells of the fourth instar larvae (L4) midgut exposed to imidacloprid had more multilamellar bodies, abundantly found in the cell apex, and more electron-lucent vacuoles in the basal region compared with those from untreated insects. Moreover, imidacloprid interfered with the differentiation of regenerative cells, dramatically reducing the number of digestive and endocrine cells and leading to malformation of the midgut epithelium in adults. The data demonstrate that imidacloprid can reduce the survival of mosquitoes and thus indicate its potentially high efficacy in the control of St. aegypti populations.

  14. The Dengue Virus Mosquito Vector Aedes aegypti at High Elevation in México

    PubMed Central

    Lozano-Fuentes, Saul; Hayden, Mary H.; Welsh-Rodriguez, Carlos; Ochoa-Martinez, Carolina; Tapia-Santos, Berenice; Kobylinski, Kevin C.; Uejio, Christopher K.; Zielinski-Gutierrez, Emily; Monache, Luca Delle; Monaghan, Andrew J.; Steinhoff, Daniel F.; Eisen, Lars

    2012-01-01

    México has cities (e.g., México City and Puebla City) located at elevations > 2,000 m and above the elevation ceiling below which local climates allow the dengue virus mosquito vector Aedes aegypti to proliferate. Climate warming could raise this ceiling and place high-elevation cities at risk for dengue virus transmission. To assess the elevation ceiling for Ae. aegypti and determine the potential for using weather/climate parameters to predict mosquito abundance, we surveyed 12 communities along an elevation/climate gradient from Veracruz City (sea level) to Puebla City (∼2,100 m). Ae. aegypti was commonly encountered up to 1,700 m and present but rare from 1,700 to 2,130 m. This finding extends the known elevation range in México by > 300 m. Mosquito abundance was correlated with weather parameters, including temperature indices. Potential larval development sites were abundant in Puebla City and other high-elevation communities, suggesting that Ae. aegypti could proliferate should the climate become warmer. PMID:22987656

  15. Costs of Three Wolbachia Infections on the Survival of Aedes aegypti Larvae under Starvation Conditions

    PubMed Central

    Ross, Perran A.; Endersby, Nancy M.; Hoffmann, Ary A.

    2016-01-01

    The mosquito Aedes aegypti, the principal vector of dengue virus, has recently been infected experimentally with Wolbachia: intracellular bacteria that possess potential as dengue biological control agents. Wolbachia depend on their hosts for nutrients they are unable to synthesize themselves. Consequently, competition between Wolbachia and their host for resources could reduce host fitness under the competitive conditions commonly experienced by larvae of Ae. aegypti in the field, hampering the invasion of Wolbachia into natural mosquito populations. We assess the survival and development of Ae. aegypti larvae under starvation conditions when infected with each of three experimentally-generated Wolbachia strains: wMel, wMelPop and wAlbB, and compare their fitness to wild-type uninfected larvae. We find that all three Wolbachia infections reduce the survival of larvae relative to those that are uninfected, and the severity of the effect is concordant with previously characterized fitness costs to other life stages. We also investigate the ability of larvae to recover from extended food deprivation and find no effect of Wolbachia on this trait. Aedes aegypti larvae of all infection types were able to resume their development after one month of no food, pupate rapidly, emerge at a large size, and exhibit complete cytoplasmic incompatibility and maternal transmission. A lowered ability of Wolbachia-infected larvae to survive under starvation conditions will increase the threshold infection frequency required for Wolbachia to establish in highly competitive natural Ae. aegypti populations and will also reduce the speed of invasion. This study also provides insights into survival strategies of larvae when developing in stressful environments. PMID:26745630

  16. Methods for TALEN evaluation, use, and mutation detection in the mosquito Aedes aegypti

    PubMed Central

    Basu, Sanjay; Aryan, Azadeh; Haac, Mary Etna; Myles, Kevin M.; Adelman, Zach N.

    2016-01-01

    The generation and study of transgenic Aedes aegypti mosquitoes provides an essential tool for elucidating the complex molecular biology of this important vector. Within the field, genetic manipulation has now surpassed the proof of principle stage and is now utilised in both applied and theoretical vector control strategies. The application of new instruments, technologies and techniques allows ever more controlled experiments to be conducted. In this text we describe microinjection of Ae. aegypti embryos in the context of evaluating and performing genomic editing with transcription activator-like effector nucleases (TALENs). PMID:26443221

  17. Potential for Extrinsic Incubation Temperature to Alter Interplay Between Transmission Potential and Mortality of Dengue-Infected Aedes aegypti

    PubMed Central

    Christofferson, Rebecca C.; Mores, Christopher N.

    2016-01-01

    The extrinsic incubation period is a critical component in the assessment of arboviral transmission potential. It defines the time it takes for a mosquito to become infectious following exposure to an arbovirus. Since this is a temporal process, the lifespan of a mosquito is intimately tied to the extrinsic incubation period and thus transmission potential of these viruses. Temperature is a known effector of both vector competence (the ability of a vector to transmit a pathogen) and mosquito mortality, but the interaction among temperature, vector competence, and mosquito mortality is not well characterized. Herein, we investigate this interaction for dengue virus, serotype 2, and its primary vector Aedes aegypti where we found that at 30 °C, infection and/or dissemination shortened the average lifespan of the mosquito and that when considering only mosquitoes with a disseminated infection, those incubated at 26 °C lived significantly longer. PMID:27478382

  18. Potential for Extrinsic Incubation Temperature to Alter Interplay Between Transmission Potential and Mortality of Dengue-Infected Aedes aegypti.

    PubMed

    Christofferson, Rebecca C; Mores, Christopher N

    2016-01-01

    The extrinsic incubation period is a critical component in the assessment of arboviral transmission potential. It defines the time it takes for a mosquito to become infectious following exposure to an arbovirus. Since this is a temporal process, the lifespan of a mosquito is intimately tied to the extrinsic incubation period and thus transmission potential of these viruses. Temperature is a known effector of both vector competence (the ability of a vector to transmit a pathogen) and mosquito mortality, but the interaction among temperature, vector competence, and mosquito mortality is not well characterized. Herein, we investigate this interaction for dengue virus, serotype 2, and its primary vector Aedes aegypti where we found that at 30 °C, infection and/or dissemination shortened the average lifespan of the mosquito and that when considering only mosquitoes with a disseminated infection, those incubated at 26 °C lived significantly longer. PMID:27478382

  19. Temporal abundance of Aedes aegypti in Manaus, Brazil, measured by two trap types for adult mosquitoes

    PubMed Central

    Degener, Carolin Marlen; de Ázara, Tatiana Mingote Ferreira; Roque, Rosemary Aparecida; Codeço, Cláudia Torres; Nobre, Aline Araújo; Ohly, Jörg Johannes; Geier, Martin; Eiras, Álvaro Eduardo

    2014-01-01

    A longitudinal study was conducted in Manaus, Brazil, to monitor changes of adult Aedes aegypti (L.) abundance. The objectives were to compare mosquito collections of two trap types, to characterise temporal changes of the mosquito population, to investigate the influence of meteorological variables on mosquito collections and to analyse the association between mosquito collections and dengue incidence. Mosquito monitoring was performed fortnightly using MosquiTRAPs (MQT) and BG-Sentinel (BGS) traps between December 2008-June 2010. The two traps revealed opposing temporal infestation patterns, with highest mosquito collections of MQTs during the dry season and highest collections of BGS during the rainy seasons. Several meteorological variables were significant predictors of mosquito collections in the BGS. The best predictor was the relative humidity, lagged two weeks (in a positive relationship). For MQT, only the number of rainy days in the previous week was significant (in a negative relationship). The correlation between monthly dengue incidence and mosquito abundance in BGS and MQT was moderately positive and negative, respectively. Catches of BGS traps reflected better the dynamic of dengue incidence. The findings help to understand the effects of meteorological variables on mosquito infestation indices of two different traps for adult dengue vectors in Manaus. PMID:25494470

  20. Functional characterization of aquaporins and aquaglyceroporins of the yellow fever mosquito, Aedes aegypti

    PubMed Central

    Drake, Lisa L.; Rodriguez, Stacy D.; Hansen, Immo A.

    2015-01-01

    After taking vertebrate blood, female mosquitoes quickly shed excess water and ions while retaining and concentrating the mostly proteinaceous nutrients. Aquaporins (AQPs) are an evolutionary conserved family of membrane transporter proteins that regulate the flow of water and in some cases glycerol and other small molecules across cellular membranes. In a previous study, we found six putative AQP genes in the genome of the yellow fever mosquito, Ae. aegypti, and demonstrated the involvement of three of them in the blood meal-induced diuresis. Here we characterized AQP expression in different tissues before and after a blood meal, explored the substrate specificity of AQPs expressed in the Malpighian tubules and performed RNAi-mediated knockdown and tested for changes in mosquito desiccation resistance. We found that AQPs are generally down-regulated 24 hrs after a blood meal. Ae. aegypti AQP 1 strictly transports water, AQP 2 and 5 demonstrate limited solute transport, but primarily function as water transporters. AQP 4 is an aquaglyceroporin with multiple substrates. Knockdown of AQPs expressed in the MTs increased survival of Ae. aegypti under dry conditions. We conclude that Malpighian tubules of adult female yellow fever mosquitoes utilize three distinct AQPs and one aquaglyceroporin in their osmoregulatory functions. PMID:25589229

  1. Mathematical model of temephos resistance in Aedes aegypti mosquito population

    NASA Astrophysics Data System (ADS)

    Aldila, D.; Nuraini, N.; Soewono, E.; Supriatna, A. K.

    2014-03-01

    Aedes aegypti is the main vector of dengue disease in many tropical and sub-tropical countries. Dengue became major public concern in these countries due to the unavailability of vaccine or drugs for dengue disease in the market. Hence, the only way to control the spread of DF and DHF is by controlling the vectors carrying the disease, for instance with fumigation, temephos or genetic manipulation. Many previous studies conclude that Aedes aegypti may develop resistance to many kind of insecticide, including temephos. Mathematical model for transmission of temephos resistance in Aedes aegypti population is discussed in this paper. Nontrivial equilibrium point of the system and the corresponding existence are shown analytically. The model analysis have shown epidemiological trends condition that permits the coexistence of nontrivial equilibrium is given analytically. Numerical results are given to show parameter sensitivity and some cases of worsening effect values for illustrating possible conditions in the field.

  2. First detection of natural infection of Aedes aegypti with Zika virus in Brazil and throughout South America

    PubMed Central

    Ferreira-de-Brito, Anielly; Ribeiro, Ieda P; de Miranda, Rafaella Moraes; Fernandes, Rosilainy Surubi; Campos, Stéphanie Silva; da Silva, Keli Antunes Barbosa; de Castro, Marcia Gonçalves; Bonaldo, Myrna C; Brasil, Patrícia; Lourenço-de-Oliveira, Ricardo

    2016-01-01

    Zika virus (ZIKV) has caused a major epidemic in Brazil and several other American countries. ZIKV is an arbovirus whose natural vectors during epidemics have been poorly determined. In this study, 1,683 mosquitoes collected in the vicinity of ZIKV suspected cases in Rio de Janeiro, Brazil, from June 2015 to May 2016 were screened for natural infection by using molecular methods. Three pools of Aedes aegypti were found with the ZIKV genome, one of which had only one male. This finding supports the occurrence of vertical and/or venereal transmission of ZIKV in Ae. aegypti in nature. None of the examined Ae. albopictus and Culex quinquefasciatus was positive. This is the first report of natural infection by ZIKV in mosquitoes in Brazil and other South American countries. So far, Ae. aegypti is the only confirmed vector of ZIKV during the ongoing Pan-American epidemics. PMID:27706382

  3. Rapid selection against arbovirus-induced apoptosis during infection of a mosquito vector

    PubMed Central

    O’Neill, Katelyn; Olson, Bradley J. S. C.; Huang, Ning; Unis, Dave; Clem, Rollie J.

    2015-01-01

    Millions of people are infected each year by arboviruses (arthropod-borne viruses) such as chikungunya, dengue, and West Nile viruses, yet for reasons that are largely unknown, only a relatively small number of mosquito species are able to transmit arboviruses. Understanding the complex factors that determine vector competence could facilitate strategies for controlling arbovirus infections. Apoptosis is a potential antiviral defense response that has been shown to be important in other virus–host systems. However, apoptosis is rarely seen in arbovirus-infected mosquito cells, raising questions about its importance as an antiviral defense in mosquitoes. We tested the effect of stimulating apoptosis during arbovirus infection by infecting Aedes aegypti mosquitoes with a Sindbis virus (SINV) clone called MRE/Rpr, in which the MRE-16 strain of SINV was engineered to express the proapoptotic gene reaper from Drosophila. MRE/Rpr exhibited an impaired infection phenotype that included delayed midgut infection, delayed virus replication, and reduced virus accumulation in saliva. Nucleotide sequencing of the reaper insert in virus populations isolated from individual mosquitoes revealed evidence of rapid and strong selection against maintenance of Reaper expression in MRE/Rpr-infected mosquitoes. The impaired phenotype of MRE/Rpr, coupled with the observed negative selection against Reaper expression, indicates that apoptosis is a powerful defense against arbovirus infection in mosquitoes and suggests that arboviruses have evolved mechanisms to avoid stimulating apoptosis in mosquitoes that serve as vectors. PMID:25713358

  4. Rapid selection against arbovirus-induced apoptosis during infection of a mosquito vector.

    PubMed

    O'Neill, Katelyn; Olson, Bradley J S C; Huang, Ning; Unis, Dave; Clem, Rollie J

    2015-03-10

    Millions of people are infected each year by arboviruses (arthropod-borne viruses) such as chikungunya, dengue, and West Nile viruses, yet for reasons that are largely unknown, only a relatively small number of mosquito species are able to transmit arboviruses. Understanding the complex factors that determine vector competence could facilitate strategies for controlling arbovirus infections. Apoptosis is a potential antiviral defense response that has been shown to be important in other virus-host systems. However, apoptosis is rarely seen in arbovirus-infected mosquito cells, raising questions about its importance as an antiviral defense in mosquitoes. We tested the effect of stimulating apoptosis during arbovirus infection by infecting Aedes aegypti mosquitoes with a Sindbis virus (SINV) clone called MRE/Rpr, in which the MRE-16 strain of SINV was engineered to express the proapoptotic gene reaper from Drosophila. MRE/Rpr exhibited an impaired infection phenotype that included delayed midgut infection, delayed virus replication, and reduced virus accumulation in saliva. Nucleotide sequencing of the reaper insert in virus populations isolated from individual mosquitoes revealed evidence of rapid and strong selection against maintenance of Reaper expression in MRE/Rpr-infected mosquitoes. The impaired phenotype of MRE/Rpr, coupled with the observed negative selection against Reaper expression, indicates that apoptosis is a powerful defense against arbovirus infection in mosquitoes and suggests that arboviruses have evolved mechanisms to avoid stimulating apoptosis in mosquitoes that serve as vectors.

  5. Modeling the impact on virus transmission of Wolbachia-mediated blocking of dengue virus infection of Aedes aegypti

    PubMed Central

    Ferguson, Neil M.; Kien, Duong Thi Hue; Clapham, Hannah; Aguas, Ricardo; Trung, Vu Tuan; Chau, Tran Nguyen Bich; Popovici, Jean; Ryan, Peter A.; O’Neill, Scott L.; McGraw, Elizabeth A.; Long, Vo Thi; Dui, Le Thi; Nguyen, Hoa L; Van Vinh Chau, Nguyen; Wills, Bridget; Simmons, Cameron P.

    2015-01-01

    Dengue is the most common arboviral infection of humans and a public health burden in over 100 countries. Aedes aegypti mosquitoes stably infected with strains of the intracellular bacterium Wolbachia are resistant to dengue virus (DENV) infection and are being tested in field trials. To mimic field conditions, we experimentally assessed the vector competence of A. aegypti carrying the Wolbachia strains wMel and wMelPop after challenge with viremic blood from dengue patients. We found that wMelPop conferred strong resistance to DENV infection of mosquito abdomen tissue and largely prevented disseminated infection. wMel conferred less resistance to infection of mosquito abdomen tissue, but importantly did reduce the prevalence of mosquitoes with infectious saliva. A mathematical model of DENV transmission incorporating the dynamics of viral infection within humans and mosquitoes was fitted to the data collected. Model predictions suggested that wMel would reduce the basic reproduction number, R0, of DENV transmission by 66–75%. Our results suggest that establishment of wMelPop-infected A. aegypti at high frequency in a dengue endemic setting would result in complete abatement of DENV transmission. Establishment of wMel-infected A. aegypti is also predicted to have a substantial effect on transmission that would be sufficient to eliminate dengue in low or moderate transmission settings, but may be insufficient to achieve complete control in settings where R0 is high. These findings develop a framework for selecting Wolbachia strains for field releases and for calculating their likely impact. PMID:25787763

  6. RNAi-mediated gene knockdown and in vivo diuresis assay in adult female Aedes aegypti mosquitoes.

    PubMed

    Drake, Lisa L; Price, David P; Aguirre, Sarah E; Hansen, Immo A

    2012-07-14

    This video protocol demonstrates an effective technique to knockdown a particular gene in an insect and conduct a novel bioassay to measure excretion rate. This method can be used to obtain a better understanding of the process of diuresis in insects and is especially useful in the study of diuresis in blood-feeding arthropods that are able to take up huge amounts of liquid in a single blood meal. This RNAi-mediated gene knockdown combined with an in vivo diuresis assay was developed by the Hansen lab to study the effects of RNAi-mediated knockdown of aquaporin genes on Aedes aegypti mosquito diuresis. The protocol is setup in two parts: the first demonstration illustrates how to construct a simple mosquito injection device and how to prepare and inject dsRNA into the thorax of mosquitoes for RNAi-mediated gene knockdown. The second demonstration illustrates how to determine excretion rates in mosquitoes using an in vivo bioassay.

  7. Infection pattern and transmission potential of chikungunya virus in two New World laboratory-adapted Aedes aegypti strains

    PubMed Central

    Dong, Shengzhang; Kantor, Asher M.; Lin, Jingyi; Passarelli, A. Lorena; Clem, Rollie J.; Franz, Alexander W. E.

    2016-01-01

    Chikungunya virus (CHIKV) is an emerging mosquito-borne virus belonging to the Togaviridae, which is transmitted to humans by Aedes aegypti and Ae. albopictus. We describe the infection pattern of CHIKV in two New World Ae. aegypti strains, HWE and ORL. Both mosquito strains were susceptible to the virus but showed different infection patterns in midguts and salivary glands. Even though acquisition of a bloodmeal showed moderate levels of apoptosis in midgut tissue, there was no obvious additional CHIKV-induced apoptosis detectable during midgut infection. Analysis of expression of apoptosis-related genes suggested that CHIKV infection dampens rather than promotes apoptosis in the mosquito midgut. In both mosquito strains, the virus was present in saliva within two days post-oral infection. HWE and ORL mosquitoes exhibited no salivary gland infection barrier; however, only 60% (HWE) to 65% (ORL) of the females had released the virus in their saliva at one week post-oral acquisition, suggesting a salivary gland escape barrier. CHIKV induced an apoptotic response in salivary glands of HWE and ORL mosquitoes, demonstrating that the virus caused pathology in its natural vector. PMID:27102548

  8. Discovery of an alternate metabolic pathway for urea synthesis in adult Aedes aegypti mosquitoes.

    PubMed

    Scaraffia, Patricia Y; Tan, Guanhong; Isoe, Jun; Wysocki, Vicki H; Wells, Michael A; Miesfeld, Roger L

    2008-01-15

    We demonstrate the presence of an alternate metabolic pathway for urea synthesis in Aedes aegypti mosquitoes that converts uric acid to urea via an amphibian-like uricolytic pathway. For these studies, female mosquitoes were fed a sucrose solution containing (15)NH4Cl, [5-(15)N]-glutamine, [(15)N]-proline, allantoin, or allantoic acid. At 24 h after feeding, the feces were collected and analyzed in a mass spectrometer. Specific enzyme inhibitors confirmed that mosquitoes incorporate (15)N from (15)NH4Cl into [5-(15)N]-glutamine and use the (15)N of the amide group of glutamine to produce labeled uric acid. More importantly, we found that [(15)N2]-uric acid can be metabolized to [(15)N]-urea and be excreted as nitrogenous waste through an uricolytic pathway. Ae. aegypti express all three genes in this pathway, namely, urate oxidase, allantoinase, and allantoicase. The functional relevance of these genes in mosquitoes was shown by feeding allantoin or allantoic acid, which significantly increased unlabeled urea levels in the feces. Moreover, knockdown of urate oxidase expression by RNA interference demonstrated that this pathway is active in females fed blood or (15)NH4Cl based on a significant increase in uric acid levels in whole-body extracts and a reduction in [(15)N]-urea excretion, respectively. These unexpected findings could lead to the development of metabolism-based strategies for mosquito control.

  9. Environmental and Genetic Factors Determine Whether the Mosquito Aedes aegypti Lays Eggs without a Blood Meal

    PubMed Central

    Ariani, Cristina V.; Smith, Sophia C. L.; Osei-Poku, Jewelna; Short, Katherine; Juneja, Punita; Jiggins, Francis M.

    2015-01-01

    Some mosquito strains or species are able to lay eggs without taking a blood meal, a trait named autogeny. This may allow populations to persist through times or places where vertebrate hosts are scarce. Autogenous egg production is highly dependent on the environment in some species, but the ideal conditions for its expression in Aedes aegypti mosquitoes are unknown. We found that 3.2% of females in a population of Ae. aegypti from Kenya were autogenous. Autogeny was strongly influenced by temperature, with many more eggs laid at 28°C compared with 22°C. Good nutrition in larval stages and feeding on higher concentrations of sugar solution during the adult stage both result in more autogenous eggs being produced. The trait also has a genetic basis, as not all Ae. aegypti genotypes can lay autogenously. We conclude that Ae. aegypti requires a favorable environment and a suitable genotype to be able to lay eggs without a blood meal. PMID:25646251

  10. Biogeography of the two major arbovirus mosquito vectors, Aedes aegypti and Aedes albopictus (Diptera, Culicidae), in Madagascar

    PubMed Central

    2012-01-01

    Background In the past ten years, the Indian Ocean region has been the theatre of severe epidemics of chikungunya and dengue. These outbreaks coincided with a high increase in populations of Aedes albopictus that outcompete its sister taxon Aedes aegypti in most islands sampled. The objective of this work was to update the entomological survey of the two Aedes species in the island of Madagascar which has to face these arboviroses. Methods The sampling of Aedes mosquitoes was conducted during two years, from October 2007 to October 2009, in fifteen localities from eight regions of contrasting climates. Captured adults were identified immediately whereas immature stages were bred until adult stage for determination. Phylogenetic analysis was performed using two mtDNA genes, COI and ND5 and trees were constructed by the maximum likelihood (ML) method with the gene time reversible (GTR) model. Experimental infections with the chikungunya virus strain 06.21 at a titer of 107.5 pfu/mL were performed to evaluate the vector competence of field-collected mosquitoes. Disseminated infection rates were measured fourteen days after infection by immunofluorescence assay performed on head squashes. Results The species Aedes aegypti was detected in only six sites in native forests and natural reserves. In contrast, the species Aedes albopictus was found in 13 out of the 15 sites sampled. Breeding sites were mostly found in man-made environments such as discarded containers, used tires, abandoned buckets, coconuts, and bamboo cuts. Linear regression models showed that the abundance of Ae. albopictus was significantly influenced by the sampling region (F = 62.00, p < 2.2 × 10-16) and period (F = 36.22, p = 2.548 × 10-13), that are associated with ecological and climate variations. Phylogenetic analysis of the invasive Ae. albopictus distinguished haplotypes from South Asia and South America from those of Madagascar, but the markers used were not discriminant enough to discern

  11. Rapid intraspecific evolution of miRNA and siRNA genes in the mosquito Aedes aegypti.

    PubMed

    Bernhardt, Scott A; Simmons, Mark P; Olson, Ken E; Beaty, Barry J; Blair, Carol D; Black, William C

    2012-01-01

    RNA silencing, or RNA interference (RNAi) in metazoans mediates development, reduces viral infection and limits transposon mobility. RNA silencing involves 21-30 nucleotide RNAs classified into microRNA (miRNA), exogenous and endogenous small interfering RNAs (siRNA), and Piwi-interacting RNA (piRNA). Knock-out, silencing and mutagenesis of genes in the exogenous siRNA (exo-siRNA) regulatory network demonstrate the importance of this RNAi pathway in antiviral immunity in Drosophila and mosquitoes. In Drosophila, genes encoding components for processing exo-siRNAs are among the fastest evolving 3% of all genes, suggesting that infection with pathogenic RNA viruses may drive diversifying selection in their host. In contrast, paralogous miRNA pathway genes do not evolve more rapidly than the genome average. Silencing of exo-siRNA pathway genes in mosquitoes orally infected with arboviruses leads to increased viral replication, but little is known about the comparative patterns of molecular evolution among the exo-siRNA and miRNA pathways genes in mosquitoes. We generated nearly complete sequences of all exons of major miRNA and siRNA pathway genes dicer-1 and dicer-2, argonaute-1 and argonaute-2, and r3d1 and r2d2 in 104 Aedes aegypti mosquitoes collected from six distinct geographic populations and analyzed their genetic diversity. The ratio of replacement to silent amino acid substitutions was 1.4 fold higher in dicer-2 than in dicer-1, 27.4 fold higher in argonaute-2 than in argonaute-1 and similar in r2d2 and r3d1. Positive selection was supported in 32% of non-synonymous sites in dicer-1, in 47% of sites in dicer-2, in 30% of sites in argonaute-1, in all sites in argonaute-2, in 22% of sites in r3d1 and in 55% of sites in r2d2. Unlike Drosophila, in Ae. aegypti, both exo-siRNA and miRNA pathway genes appear to be undergoing rapid, positive, diversifying selection. Furthermore, refractoriness of mosquitoes to infection with dengue virus was significantly

  12. Heritable CRISPR/Cas9-mediated genome editing in the yellow fever mosquito, Aedes aegypti.

    PubMed

    Dong, Shengzhang; Lin, Jingyi; Held, Nicole L; Clem, Rollie J; Passarelli, A Lorena; Franz, Alexander W E

    2015-01-01

    In vivo targeted gene disruption is a powerful tool to study gene function. Thus far, two tools for genome editing in Aedes aegypti have been applied, zinc-finger nucleases (ZFN) and transcription activator-like effector nucleases (TALEN). As a promising alternative to ZFN and TALEN, which are difficult to produce and validate using standard molecular biological techniques, the clustered regularly interspaced short palindromic repeats/CRISPR-associated sequence 9 (CRISPR/Cas9) system has recently been discovered as a "do-it-yourself" genome editing tool. Here, we describe the use of CRISPR/Cas9 in the mosquito vector, Aedes aegypti. In a transgenic mosquito line expressing both Dsred and enhanced cyan fluorescent protein (ECFP) from the eye tissue-specific 3xP3 promoter in separated but tightly linked expression cassettes, we targeted the ECFP nucleotide sequence for disruption. When supplying the Cas9 enzyme and two sgRNAs targeting different regions of the ECFP gene as in vitro transcribed mRNAs for germline transformation, we recovered four different G1 pools (5.5% knockout efficiency) where individuals still expressed DsRed but no longer ECFP. PCR amplification, cloning, and sequencing of PCR amplicons revealed indels in the ECFP target gene ranging from 2-27 nucleotides. These results show for the first time that CRISPR/Cas9 mediated gene editing is achievable in Ae. aegypti, paving the way for further functional genomics related studies in this mosquito species. PMID:25815482

  13. Flushing effect of rain on container-inhabiting mosquitoes Aedes aegypti and Culex pipiens (Diptera: Culicidae).

    PubMed

    Koenraadt, C J M; Harrington, L C

    2008-01-01

    We investigated the role of heavy rain on container-inhabiting mosquito (Diptera: Culicidae) populations, and how different species may have adapted to such conditions. Rains were created with a rain simulator calibrated to natural rain intensities in the habitats of two important vector species: Aedes aegypti (L.) from northern Thailand and Culex pipiens L. from New York state, USA. Immature stages of Ae. aegypti were able to resist the flushing effect of rain better than Cx. pipiens. This difference was most dramatic during the pupal stage. Fourth instars of Ae. aegypti were not affected by flushing when exposed for longer rain intervals (30 versus 60 min) or at a colder water temperature (24 versus 16 degrees C). In contrast, significantly more Cx. pipiens larvae flushed out with longer rain exposure. Warmer water temperatures also increased the proportion of Cx. pipiens flushed out, but mostly at the longest exposure time. Container position (tilted at a 7 degrees angle or level) did not affect proportions of fourth instars flushed out for both species. More accurate models of vector-borne diseases can be developed by incorporating the described effects of rain on container-breeding mosquito populations. Such models may provide more realistic assessments of disease risk and ensure optimal use of limited financial resources of mosquito control agencies.

  14. Stable transformation of the yellow fever mosquito, Aedes aegypti, with the Hermes element from the housefly.

    PubMed

    Jasinskiene, N; Coates, C J; Benedict, M Q; Cornel, A J; Rafferty, C S; James, A A; Collins, F H

    1998-03-31

    The mosquito Aedes aegypti is the world's most important vector of yellow fever and dengue viruses. Work is currently in progress to control the transmission of these viruses by genetically altering the capacity of wild Ae. aegypti populations to support virus replication. The germ-line transformation system reported here constitutes a major advance toward the implementation of this control strategy. A modified Hermes transposon carrying a 4.7-kb fragment of genomic DNA that includes a wild-type allele of the Drosophila melanogaster cinnabar (cn) gene was used to transform a white-eyed recipient strain of Ae. aegypti. Microinjection of preblastoderm mosquito embryos with this construct resulted in 50% of the emergent G0 adults showing some color in their eyes. Three transformed families were recovered, each resulting from an independent insertion event of the cn+-carrying transposon. The cn+ gene functioned as a semidominant transgene and segregated in Mendelian ratios. Hermes shows great promise as a vector for efficient, heritable, and stable transformation of this important mosquito vector species.

  15. The influence of diet on the use of near-infrared spectroscopy to determine the age of female Aedes aegypti mosquitoes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Interventions targeting adult mosquitoes are used to combat transmission of vector-borne diseases, including dengue. Without available vaccines, targeting the primary vector, Aedes aegypti, is essential to prevent transmission. Older mosquitoes (>/='7 days) are of greatest epidemiological significan...

  16. An in vitro bioassay for the quantitative evaluation of mosquito repellents against Stegomyia aegypti (=Aedes aegypti) mosquitoes using a novel cocktail meal.

    PubMed

    Huang, T-H; Tien, N-Y; Luo, Y-P

    2015-09-01

    To assess the efficacy of new insect repellents, an efficient and safe in vitro bioassay system using a multiple-membrane blood-feeding device and a cocktail meal was developed. The multiple-membrane blood-feeding device facilitates the identification of new insect repellents by the high-throughput screening of candidate chemicals. A cocktail meal was developed as a replacement for blood for feeding females of Stegomyia aegypti (=Aedes aegypti) (L.) (Diptera: Culicidae). The cocktail meal consisted of a mixture of salt, albumin and dextrose, to which adenosine triphosphate was added to induce engorging. Feeding rates of St. aegypti on the cocktail meal and pig blood, respectively, did not differ significantly, but were significantly higher than the feeding rate on citrate phosphate dextrose-adenine 1 (CPDA-1) solutions, which had been used to replace bloodmeals in previous repellent assays. Dose-dependent biting inhibition rates were analysed using probit analysis. The RD(50) (the dose producing 50% repellence of mosquito feeding) values of DEET, citronella, carvacrol, geraniol, eugenol and thymol were 1.62, 14.40, 22.51, 23.29, 23.83 and 68.05 µg/cm(2), respectively. PMID:25828787

  17. Distinct sets of PIWI proteins produce arbovirus and transposon-derived piRNAs in Aedes aegypti mosquito cells.

    PubMed

    Miesen, Pascal; Girardi, Erika; van Rij, Ronald P

    2015-07-27

    The PIWI-interacting RNA (piRNA) pathway is essential for transposon silencing in many model organisms. Its remarkable efficiency relies on a sophisticated amplification mechanism known as the ping-pong loop. In Alphavirus-infected Aedes mosquitoes, piRNAs with sequence features that suggest ping-pong-dependent biogenesis are produced from viral RNA. The PIWI family in Aedes mosquitoes is expanded when compared to other model organisms, raising the possibility that individual PIWI proteins have functionally diversified in these insects. Here, we show that Piwi5 and Ago3, but none of the other PIWI family members, are essential for piRNA biogenesis from Sindbis virus RNA in infected Aedes aegypti cells. In contrast, the production of piRNAs from transposons relies on a more versatile set of PIWI proteins, some of which do not contribute to viral piRNA biogenesis. These results indicate that functional specialization allows distinct mosquito PIWI proteins to process RNA from different endogenous and exogenous sources. PMID:26068474

  18. Distinct sets of PIWI proteins produce arbovirus and transposon-derived piRNAs in Aedes aegypti mosquito cells.

    PubMed

    Miesen, Pascal; Girardi, Erika; van Rij, Ronald P

    2015-07-27

    The PIWI-interacting RNA (piRNA) pathway is essential for transposon silencing in many model organisms. Its remarkable efficiency relies on a sophisticated amplification mechanism known as the ping-pong loop. In Alphavirus-infected Aedes mosquitoes, piRNAs with sequence features that suggest ping-pong-dependent biogenesis are produced from viral RNA. The PIWI family in Aedes mosquitoes is expanded when compared to other model organisms, raising the possibility that individual PIWI proteins have functionally diversified in these insects. Here, we show that Piwi5 and Ago3, but none of the other PIWI family members, are essential for piRNA biogenesis from Sindbis virus RNA in infected Aedes aegypti cells. In contrast, the production of piRNAs from transposons relies on a more versatile set of PIWI proteins, some of which do not contribute to viral piRNA biogenesis. These results indicate that functional specialization allows distinct mosquito PIWI proteins to process RNA from different endogenous and exogenous sources.

  19. Mosquito larvicidal activity of seaweeds extracts against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus

    PubMed Central

    Ali, Mohamed Yacoob Syed; Ravikumar, Sundaram; Beula, Johanson Margaret

    2013-01-01

    Objective To identify the larvicidal activity of the seaweed extracts against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus Methods Seaweed extracts of Ulva lactuca, Caulerpa racemosa (C. racemosa), Sargassum microystum, Caulerpa scalpelliformis, Gracilaria corticata, Turbinaria decurrens, Turbinaria conoides and Caulerpa toxifolia were dissolved in DMSO to prepare a graded series of concentration. The test for the larvicidal effect of seaweeds against mosquitos larvae was conducted in accordance with the WHO standard method. Batches of 25 early 4th instar larvae of three mosquitoes were transferred to 250 mL enamel bowl containing 199 mL of distilled water and 1 mL of plant extracts (10-100 µg). Each experiment was conducted with triplicate with concurrent a control group. Results Among the seaweeds extract, C. racemosa showed toxicity against 4th instar larvae of Aedes aegypti, Culex quinquefasciatus, Anopheles stephensi with equivalent LC50 value (0.055 6±0.010 3) µg/mL, (0.067 5±0.136 0) µg/mL and (0.066 1±0.007 6) µg/mL, respectively. Conclusions The present study concluded that, the mosquito larvicidal property of C. racemosa might be the prospective alternative source to control the mosquitoes.

  20. Aedes aegypti Mosquitoes Exhibit Decreased Repellency by DEET following Previous Exposure

    PubMed Central

    Stanczyk, Nina M.; Brookfield, John F. Y.; Field, Linda M.; Logan, James G.

    2013-01-01

    DEET (N,N-Diethyl-m-toluamide) is one of the most widely used mosquito repellents. Although DEET has been shown to be extremely effective, recent studies have revealed that certain individual insects are unaffected by its presence. A genetic basis for this has been shown in Aedes aegypti mosquitoes and the fruit fly Drosophila melanogaster, but, for the triatomine bug, Rhodnius prolixus, a decrease in response to DEET occurred shortly after previous exposure, indicating that non-genetic factors may also be involved in DEET “insensitivity”. In this study, we examined host-seeking behaviour and electrophysiological responses of A. aegypti after pre-exposure to DEET. We found that three hours after pre-exposure the mosquitoes showed behavioural insensitivity, and electroantennography revealed this correlated with the olfactory receptor neurons responding less to DEET. The change in behaviour as a result of pre-exposure to DEET has implications for the use of repellents and the ability of mosquitoes to overcome them. PMID:23437043

  1. Bioefficacy of Mentha piperita essential oil against dengue fever mosquito Aedes aegypti L

    PubMed Central

    Kumar, Sarita; Wahab, Naim; Warikoo, Radhika

    2011-01-01

    Objective To assess the larvicidal and repellent potential of the essential oil extracted from the leaves of peppermint plant, Mentha piperita (M. piperita) against the larval and adult stages of Aedes aegypti (Ae. Aegypti). Methods The larvicidal potential of peppermint oil was evaluated against early fourth instar larvae of Ae. aegypti using WHO protocol. The mortality counts were made after 24 and 48 h, and LC50 and LC90 values were calculated. The efficacy of peppermint oil as mosquito repellent was assessed using the human-bait technique. The measured area of one arm of a human volunteer was applied with the oil and the other arm was applied with ethanol. The mosquito bites on both the arms were recorded for 3 min after every 15 min. The experiment continued for 3 h and the percent protection was calculated. Results The essential oil extracted from M. piperita possessed excellent larvicidal efficiency against dengue vector. The bioassays showed an LC50 and LC90 value of 111.9 and 295.18 ppm, respectively after 24 h of exposure. The toxicity of the oil increased 11.8% when the larvae were exposed to the oil for 48 h. The remarkable repellent properties of M. piperita essential oil were established against adults Ae. aegypti. The application of oil resulted in 100% protection till 150 min. After next 30 min, only 1-2 bites were recorded as compared with 8-9 bites on the control arm. Conclusions The peppermint essential oil is proved to be efficient larvicide and repellent against dengue vector. Further studies are needed to identify the possible role of oil as adulticide, oviposition deterrent and ovicidal agent. The isolation of active ingredient from the oil could help in formulating strategies for mosquito control. PMID:23569733

  2. Aedes aegypti D7 Saliva Protein Inhibits Dengue Virus Infection

    PubMed Central

    Conway, Michael J.; Londono-Renteria, Berlin; Troupin, Andrea; Watson, Alan M.; Klimstra, William B.; Fikrig, Erol; Colpitts, Tonya M.

    2016-01-01

    Aedes aegypti is the primary vector of several medically relevant arboviruses including dengue virus (DENV) types 1–4. Ae. aegypti transmits DENV by inoculating virus-infected saliva into host skin during probing and feeding. Ae. aegypti saliva contains over one hundred unique proteins and these proteins have diverse functions, including facilitating blood feeding. Previously, we showed that Ae. aegypti salivary gland extracts (SGEs) enhanced dissemination of DENV to draining lymph nodes. In contrast, HPLC-fractionation revealed that some SGE components inhibited infection. Here, we show that D7 proteins are enriched in HPLC fractions that are inhibitory to DENV infection, and that recombinant D7 protein can inhibit DENV infection in vitro and in vivo. Further, binding assays indicate that D7 protein can directly interact with DENV virions and recombinant DENV envelope protein. These data reveal a novel role for D7 proteins, which inhibits arbovirus transmission to vertebrates through a direct interaction with virions. PMID:27632170

  3. Aedes aegypti D7 Saliva Protein Inhibits Dengue Virus Infection.

    PubMed

    Conway, Michael J; Londono-Renteria, Berlin; Troupin, Andrea; Watson, Alan M; Klimstra, William B; Fikrig, Erol; Colpitts, Tonya M

    2016-09-01

    Aedes aegypti is the primary vector of several medically relevant arboviruses including dengue virus (DENV) types 1-4. Ae. aegypti transmits DENV by inoculating virus-infected saliva into host skin during probing and feeding. Ae. aegypti saliva contains over one hundred unique proteins and these proteins have diverse functions, including facilitating blood feeding. Previously, we showed that Ae. aegypti salivary gland extracts (SGEs) enhanced dissemination of DENV to draining lymph nodes. In contrast, HPLC-fractionation revealed that some SGE components inhibited infection. Here, we show that D7 proteins are enriched in HPLC fractions that are inhibitory to DENV infection, and that recombinant D7 protein can inhibit DENV infection in vitro and in vivo. Further, binding assays indicate that D7 protein can directly interact with DENV virions and recombinant DENV envelope protein. These data reveal a novel role for D7 proteins, which inhibits arbovirus transmission to vertebrates through a direct interaction with virions. PMID:27632170

  4. From Lab to Field: The Influence of Urban Landscapes on the Invasive Potential of Wolbachia in Brazilian Aedes aegypti Mosquitoes

    PubMed Central

    Caragata, Eric Pearce; Silva, Jéssica Barreto Lopes; Villela, Daniel Antunes Maciel; Maciel-de-Freitas, Rafael; Moreira, Luciano Andrade

    2015-01-01

    Background The symbiotic bacterium Wolbachia is currently being trialled as a biocontrol agent in several countries to reduce dengue transmission. Wolbachia can invade and spread to infect all individuals within wild mosquito populations, but requires a high rate of maternal transmission, strong cytoplasmic incompatibility and low fitness costs in the host in order to do so. Additionally, extensive differences in climate, field-release protocols, urbanization level and human density amongst the sites where this bacterium has been deployed have limited comparison and analysis of Wolbachia’s invasive potential. Methodology/Principal Findings We examined key phenotypic effects of the wMel Wolbachia strain in laboratory Aedes aegypti mosquitoes with a Brazilian genetic background to characterize its invasive potential. We show that the wMel strain causes strong cytoplasmic incompatibility, a high rate of maternal transmission and has no evident detrimental effect on host fecundity or fertility. Next, to understand the effects of different urban landscapes on the likelihood of mosquito survival, we performed mark-release-recapture experiments using Wolbachia-uninfected Brazilian mosquitoes in two areas of Rio de Janeiro where Wolbachia will be deployed in the future. We characterized the mosquito populations in relation to the socio-demographic conditions at these sites, and at three other future release areas. We then constructed mathematical models using both the laboratory and field data, and used these to describe the influence of urban environmental conditions on the likelihood that the Wolbachia infection frequency could reach 100% following mosquito release. We predict successful invasion at all five field sites, however the conditions by which this occurs vary greatly between sites, and are strongly influenced by the size of the local mosquito population. Conclusions/Significance Through analysis of laboratory, field and mathematical data, we show that the w

  5. Olfactory learning and memory in the disease vector mosquito Aedes aegypti

    PubMed Central

    Vinauger, Clément; Lutz, Eleanor K.; Riffell, Jeffrey A.

    2014-01-01

    Olfactory learning in blood-feeding insects, such as mosquitoes, could play an important role in host preference and disease transmission. However, standardised protocols allowing testing of their learning abilities are currently lacking, and how different olfactory stimuli are learned by these insects remains unknown. Using a Pavlovian conditioning paradigm, we trained individuals and groups of Aedes aegypti mosquitoes to associate an odorant conditioned stimulus (CS) with a blood-reinforced thermal stimulus (unconditioned stimulus; US). Results showed, first, that mosquitoes could learn the association between L-lactic acid and the US, and retained the association for at least 24 h. Second, the success of olfactory conditioning was dependent upon the CS – some odorants that elicited indifferent responses in naïve mosquitoes, such as L-lactic acid and 1-octen-3-ol, were readily learned, whereas others went from aversive to attractive after training (Z-3-hexen-1-ol) or were untrainable (β-myrcene and benzyl alcohol). Third, we examined whether mosquitoes' ability to learn could interfere with the action of the insect repellent DEET. Results demonstrated that pre-exposure and the presence of DEET in the CS reduced the aversive effects of DEET. Last, the nature of the formed memories was explored. Experiments using cold-shock treatments within the first 6 h post-training (for testing anaesthesia-resistant memory) and a protein synthesis inhibitor (cycloheximide; to disrupt the formation of long-term memory) both affected mosquitoes' performances. Together, these results show that learning is a crucial component in odour responses in A. aegypti, and provide the first evidence for the functional role of different memory traces in these responses. PMID:24737761

  6. Transstadial Effects of Bti on Traits of Aedes aegypti and Infection with Dengue Virus

    PubMed Central

    Alto, Barry W.; Lord, Cynthia C.

    2016-01-01

    Most mosquito control efforts are primarily focused on reducing the adult population size mediated by reductions in the larval population, which should lower risk of disease transmission. Although the aim of larviciding is to reduce larval abundance and thus recruitment of adults, nonlethal effects on adults are possible, including transstadial effects on phenotypes of adults such as survival and pathogen infection and transmission. In addition, the mortality induced by control efforts may act in conjunction with other sources of mosquito mortality in nature. The consequences of these effects and interactions may alter the potential of the population to transmit pathogens. We tested experimentally the combined effects of a larvicide (Bacillus thuringiensis ssp. israelensis, Bti) and competition during the larval stages on subsequent Aedes aegypti (Linnaeus) traits, population performance, and susceptibility to dengue-1 virus infection. Ae. aegypti that survived exposure to Bti experienced accelerated development, were larger, and produced more eggs with increasing amounts of Bti, consistent with competitive release among surviving mosquitoes. Changing larval density had no significant interactive effect with Bti treatment on development and growth to adulthood. Larval density, but not Bti or treatment interaction, had a strong effect on survival of adult Ae. aegypti females. There were sharper declines in cumulative daily survival of adults from crowded than uncrowded larval conditions, suggesting that high competition conditions of larvae may be an impediment to transmission of dengue viruses. Rates of infection and dengue-1 virus disseminated infections were found to be 87±13% and 88±12%, respectively. There were no significant treatment effects on infection measurements. Our findings suggest that larvicide campaigns using Bti may reduce the number of emerged adults, but survivors will have a fitness advantage (growth, development, enhanced production of eggs

  7. Targeting gene expression to the female larval fat body of transgenic Aedes aegypti mosquitoes.

    PubMed

    Totten, D C; Vuong, M; Litvinova, O V; Jinwal, U K; Gulia-Nuss, M; Harrell, R A; Beneš, H

    2013-02-01

    As the fat body is a critical tissue for mosquito development, metamorphosis, immune and reproductive system function, the characterization of regulatory modules targeting gene expression to the female mosquito fat body at distinct life stages is much needed for multiple, varied strategies for controlling vector-borne diseases such as dengue and malaria. The hexameric storage protein, Hexamerin-1.2, of the mosquito Aedes atropalpus is female-specific and uniquely expressed in the fat body of fourth instar larvae and young adults. We have identified in the Hex-1.2 gene, a short regulatory module that directs female-, tissue-, and stage-specific lacZ reporter gene expression using a heterologous promoter in transgenic lines of the dengue vector Aedes aegypti. Male transgenic larvae and pupae of one line expressed no Escherichia coli β-galactosidase or transgene product; in two other lines reporter gene activity was highly female-biased. All transgenic lines expressed the reporter only in the fat body; however, lacZ mRNA levels were no different in males and females at any stage examined, suggesting that the gene regulatory module drives female-specific expression by post-transcriptional regulation in the heterologous mosquito. This regulatory element from the Hex-1.2 gene thus provides a new molecular tool for transgenic mosquito control as well as functional genetic analysis in aedine mosquitoes.

  8. Sindbis virus induces the production of a novel class of endogenous siRNAs in Aedes aegypti mosquitoes.

    PubMed

    Adelman, Z N; Anderson, M A E; Liu, M; Zhang, L; Myles, K M

    2012-06-01

    Small RNA regulatory pathways are used to control the activity of transposons, regulate gene expression and resist infecting viruses. We examined the biogenesis of mRNA-derived endogenous short-interfering RNAs (endo-siRNAs) in the disease vector mosquito Aedes aegypti. Under standard conditions, mRNA-derived endo-siRNAs were produced from the bidirectional transcription of tail-tail overlapping gene pairs. Upon infection with the alphavirus, Sindbis virus (SINV), another class of mRNA-derived endo-siRNAs was observed. Genes producing SINV-induced endo-siRNAs were not enriched for overlapping partners or nearby genes, but were enriched for transcripts with long 3' untranslated regions. Endo-siRNAs from this class derived uniformly from the entire length of the target transcript, and were found to regulate the transcript levels of the genes from which they were derived. Strand-specific quantitative PCR experiments demonstrated that antisense strands of targeted mRNA genes were produced to exonic, but not intronic regions. Finally, small RNAs mapped to both sense and antisense strands of exon-exon junctions, suggesting double-stranded RNA precursors to SINV-induced endo-siRNAs may be synthesized from mature mRNA templates. These results suggest additional complexity in small RNA pathways and gene regulation in the presence of an infecting virus in disease vector mosquitoes.

  9. Genetic selection of a flavivirus-refractory strain of the yellow fever mosquito Aedes aegypti.

    PubMed

    Miller, B R; Mitchell, C J

    1991-10-01

    Two inbred (isofemale) Aedes aegypti mosquito lines were derived that manifested a resistant or susceptible phenotype following ingestion of yellow fever virus; lack of virus movement from the midgut defined the resistant phenotype. Other flaviviruses, including dengue 1-4, Uganda S, and Zika, viruses behaved in a similar fashion in the two mosquito lines. Crosses between the two lines produced progeny that were of intermediate susceptibility, indicating codominance; F2 backcrosses to the parents yielded results consistent with a major controlling genetic locus and provide evidence of a second locus capable of modulating the phenotype of the major gene. The rapid selection necessary to fix the susceptible and refractory phenotypes support the hypothesis of a single major controlling locus. Viral movement across the midgut is likely to be governed by a single major gene and modifying minor genes or a group of closely linked genes. These inbred mosquito lines will be useful in discovering the molecular basis for flavivirus resistance in Ae. aegypti.

  10. Characterization of a vasodilator from the salivary glands of the yellow fever mosquito Aedes aegypti.

    PubMed

    Ribeiro, J M

    1992-04-01

    Salivary gland homogenates and oil-induced saliva of the mosquito Aedes aegypti dilate the rabbit aortic ring and contract the guinea pig ileum. The vasodilatory activity is endothelium-dependent, heat-stable, sensitive to both trypsin and chymotrypsin treatments, and both smooth muscle activities cross-desensitize to the tachykinin peptide substance P. Both bioactivities co-elute when salivary gland homogenates are fractionated by reversed-phase HPLC. Molecular sieving chromatography indicates a relative molecular mass of 1400. A monoclonal antibody specific to the carboxy terminal region of tachykinins reacts with material in the posterior part of the central lobe of paraformaldehyde-fixed salivary glands. The presence of a vasodilatory peptide of the tachykinin family in the salivary glands of A. aegypti is proposed and its role in blood feeding is discussed. PMID:1375258

  11. Development of a mosquito attractant blend of small molecules against host-seeking Aedes aegypti.

    PubMed

    Saratha, R; Mathew, Nisha

    2016-04-01

    A mosquito's dependence on olfaction in the hunt for human host could be efficiently exploited to protect humans from mosquito bites. The present study is undertaken to make the most attractant compound blend for Aedes aegypti mosquitoes to lure them to traps. Eleven molecules (M1-M11) at different dilutions were screened for attractancy against non-blood-fed adult female mosquitoes in an olfactometer. The results showed that the attractancy was dependent on both the chemical nature of the molecule and the strength of the odor. Out of 11 molecules screened, 9 showed significant attractancy (P < 0.05) when tested individually. The attractancy was in the order of M11 > M7 > M6 > M10 > M9 > M3 > M2 > M1 > M4 with attractancy indices (AIs) 86.11, 55.93, 55.17, 54, 52.94, 52, 50, 43.64, and 32, respectively, at the optimum dilutions. Seven blends (I-VII) were made and were screened for attractancy against Ae. aegypti. All the blends showed significant attractancy (P < 0.05). The attractancy was in the order of blend VII > III > IV > I > VI > V > II with AIs 96.63, 89.19, 65, 57.89, 56.1, 47.13, and 44.44, respectively. Among the seven blends, blend VII with constituent molecules M6, M9, M10, and M11 is the most promising with an AI value of 96.63. This blend will be useful in luring the host-seeking mosquitoes to traps. The field efficacy of these attractant blends may be explored in the future. PMID:26693718

  12. On the Seasonal Occurrence and Abundance of the Zika Virus Vector Mosquito Aedes Aegypti in the Contiguous United States

    PubMed Central

    Monaghan, Andrew J.; Morin, Cory W.; Steinhoff, Daniel F.; Wilhelmi, Olga; Hayden, Mary; Quattrochi, Dale A.; Reiskind, Michael; Lloyd, Alun L.; Smith, Kirk; Schmidt, Chris A.; Scalf, Paige E.; Ernst, Kacey

    2016-01-01

    Introduction: An ongoing Zika virus pandemic in Latin America and the Caribbean has raised concerns that travel-related introduction of Zika virus could initiate local transmission in the United States (U.S.) by its primary vector, the mosquito Aedes aegypti. Methods: We employed meteorologically driven models for 2006-2015 to simulate the potential seasonal abundance of adult Aedes aegypti for fifty cities within or near the margins of its known U.S. range. Mosquito abundance results were analyzed alongside travel and socioeconomic factors that are proxies of viral introduction and vulnerability to human-vector contact.     Results: Meteorological conditions are largely unsuitable for Aedes aegypti over the U.S. during winter months (December-March), except in southern Florida and south Texas where comparatively warm conditions can sustain low-to-moderate potential mosquito abundance. Meteorological conditions are suitable for Aedes aegypti across all fifty cities during peak summer months (July-September), though the mosquito has not been documented in all cities. Simulations indicate the highest mosquito abundance occurs in the Southeast and south Texas where locally acquired cases of Aedes-transmitted viruses have been reported previously. Cities in southern Florida and south Texas are at the nexus of high seasonal suitability for Aedes aegypti and strong potential for travel-related virus introduction. Higher poverty rates in cities along the U.S.-Mexico border may correlate with factors that increase human exposure to Aedes aegypti.     Discussion: Our results can inform baseline risk for local Zika virus transmission in the U.S. and the optimal timing of vector control activities, and underscore the need for enhanced surveillance for Aedes mosquitoes and Aedes-transmitted viruses. PMID:27066299

  13. Aedes aegypti (Diptera: Culicidae) in Mauritania: First Report on the Presence of the Arbovirus Mosquito Vector in Nouakchott.

    PubMed

    Mint Lekweiry, Khadijetou; Ould Ahmedou Salem, Mohamed Salem; Ould Brahim, Khyarhoum; Ould Lemrabott, Mohamed Aly; Brengues, Cécile; Faye, Ousmane; Simard, Frédéric; Ould Mohamed Salem Boukhary, Ali

    2015-07-01

    Aedes aegypti L. (Diptera: Culicidae) is a major vector of yellow fever, dengue, and chikungunya viruses throughout tropical and subtropical areas of the world. Although the southernmost part of Mauritania along the Senegal river has long been recognized at risk of yellow fever transmission, Aedes spp. mosquitoes had never been reported northwards in Mauritania. Here, we report the first observation of Aedes aegypti aegypti (L.) and Aedes (Ochlerotatus) caspius (Pallas, 1771) in the capital city, Nouakchott. We describe the development sites in which larvae of the two species were found, drawing attention to the risk for emergence of arbovirus transmission in the city. PMID:26335483

  14. Aedes aegypti (Diptera: Culicidae) in Mauritania: First Report on the Presence of the Arbovirus Mosquito Vector in Nouakchott.

    PubMed

    Mint Lekweiry, Khadijetou; Ould Ahmedou Salem, Mohamed Salem; Ould Brahim, Khyarhoum; Ould Lemrabott, Mohamed Aly; Brengues, Cécile; Faye, Ousmane; Simard, Frédéric; Ould Mohamed Salem Boukhary, Ali

    2015-07-01

    Aedes aegypti L. (Diptera: Culicidae) is a major vector of yellow fever, dengue, and chikungunya viruses throughout tropical and subtropical areas of the world. Although the southernmost part of Mauritania along the Senegal river has long been recognized at risk of yellow fever transmission, Aedes spp. mosquitoes had never been reported northwards in Mauritania. Here, we report the first observation of Aedes aegypti aegypti (L.) and Aedes (Ochlerotatus) caspius (Pallas, 1771) in the capital city, Nouakchott. We describe the development sites in which larvae of the two species were found, drawing attention to the risk for emergence of arbovirus transmission in the city.

  15. Odonate Nymphs: Generalist Predators and Their Potential in the Management of Dengue Mosquito, Aedes aegypti (Diptera: Culicidae)

    PubMed Central

    Akram, Waseem; Ali-Khan, Hafiz Azhar

    2016-01-01

    Background: Dengue is amongst the most serious mosquito-borne infectious disease with hot spots in tropical and subtropical parts of the world. Unfortunately, no licensed vaccine for the disease is currently available in medicine markets. The only option available is the management of dengue vector mosquito, Aedes aegypti (Diptera: Culicidae). Method: Predatory potential of five odonate nymphs namely Anax parthenope, Bradinopyga geminate, Ischnura forcipata, Rhinocypha quadrimaculata, and Orthetrum sabina were evaluated against the 4th instar larvae of the dengue vector mosquito, Aedes aegypti, under laboratory conditions. The consumption of the mosquito larvae was evaluated at three water volume levels viz., 1 liter, 2 liter and 3 liter. Results: The number of Ae. aegypti larvae consumed varied significantly among the five species, and at different levels of water volume (P< 0.01). However, the interaction between odonate nymphs and the water volumes was statistically non-significant (P> 0.05). Ischnura forcipata consumed the highest number of Ae. aegypti larvae (n=56) followed by A. parthenope (n=47) and B. geminate (n=46). The number of larvae consumed was decreased with increasing search area or water volume, and the highest predation was observed at 1-liter water volume. Conclusion: The odonate nymphs could be a good source of biological agents for the management of the mosquitoes at larval stages. PMID:27308283

  16. Proteomic biomarkers for ageing the mosquito Aedes aegypti to determine risk of pathogen transmission.

    PubMed

    Hugo, Leon E; Monkman, James; Dave, Keyur A; Wockner, Leesa F; Birrell, Geoff W; Norris, Emma L; Kienzle, Vivian J; Sikulu, Maggy T; Ryan, Peter A; Gorman, Jeffery J; Kay, Brian H

    2013-01-01

    Biomarkers of the age of mosquitoes are required to determine the risk of transmission of various pathogens as each pathogen undergoes a period of extrinsic incubation in the mosquito host. Using the 2-D Difference Gel Electrophoresis (2-D DIGE) procedure, we investigated the abundance of up to 898 proteins from the Yellow Fever and dengue virus vector, Aedes aegypti, during ageing. By applying a mixed-effects model of protein expression, we identified five common patterns of abundance change during ageing and demonstrated an age-related decrease in variance for four of these. This supported a search for specific proteins with abundance changes that remain tightly associated with ageing for use as ageing biomarkers. Using MALDI-TOF/TOF mass spectrometry we identified ten candidate proteins that satisfied strict biomarker discovery criteria (identified in two out of three multivariate analysis procedures and in two cohorts of mosquitoes). We validated the abundances of the four most suitable candidates (Actin depolymerising factor; ADF, Eukaryotic initiation factor 5A; eIF5A, insect cuticle protein Q17LN8, and Anterior fat body protein; AFP) using semi-quantitative Western analysis of individual mosquitoes of six ages. The redox-response protein Manganese superoxide dismutase (SOD2) and electron shuttling protein Electron transfer oxidoreductase (ETO) were subject to post-translational modifications affecting their charge states with potential effects on function. For the four candidates we show remarkably consistent decreases in abundance during ageing, validating initial selections. In particular, the abundance of AFP is an ideal biomarker candidate for whether a female mosquito has lived long enough to be capable of dengue virus transmission. We have demonstrated proteins to be a suitable class of ageing biomarkers in mosquitoes and have identified candidates for epidemiological studies of dengue and the evaluation of new disease reduction projects targeting

  17. Proteomic Biomarkers for Ageing the Mosquito Aedes aegypti to Determine Risk of Pathogen Transmission

    PubMed Central

    Hugo, Leon E.; Monkman, James; Dave, Keyur A.; Wockner, Leesa F.; Birrell, Geoff W.; Norris, Emma L.; Kienzle, Vivian J.; Sikulu, Maggy T.; Ryan, Peter A.; Gorman, Jeffery J.; Kay, Brian H.

    2013-01-01

    Biomarkers of the age of mosquitoes are required to determine the risk of transmission of various pathogens as each pathogen undergoes a period of extrinsic incubation in the mosquito host. Using the 2-D Difference Gel Electrophoresis (2-D DIGE) procedure, we investigated the abundance of up to 898 proteins from the Yellow Fever and dengue virus vector, Aedes aegypti, during ageing. By applying a mixed-effects model of protein expression, we identified five common patterns of abundance change during ageing and demonstrated an age-related decrease in variance for four of these. This supported a search for specific proteins with abundance changes that remain tightly associated with ageing for use as ageing biomarkers. Using MALDI-TOF/TOF mass spectrometry we identified ten candidate proteins that satisfied strict biomarker discovery criteria (identified in two out of three multivariate analysis procedures and in two cohorts of mosquitoes). We validated the abundances of the four most suitable candidates (Actin depolymerising factor; ADF, Eukaryotic initiation factor 5A; eIF5A, insect cuticle protein Q17LN8, and Anterior fat body protein; AFP) using semi-quantitative Western analysis of individual mosquitoes of six ages. The redox-response protein Manganese superoxide dismutase (SOD2) and electron shuttling protein Electron transfer oxidoreductase (ETO) were subject to post-translational modifications affecting their charge states with potential effects on function. For the four candidates we show remarkably consistent decreases in abundance during ageing, validating initial selections. In particular, the abundance of AFP is an ideal biomarker candidate for whether a female mosquito has lived long enough to be capable of dengue virus transmission. We have demonstrated proteins to be a suitable class of ageing biomarkers in mosquitoes and have identified candidates for epidemiological studies of dengue and the evaluation of new disease reduction projects targeting

  18. A salivary gland-specific, maltase-like gene of the vector mosquito, Aedes aegypti.

    PubMed

    James, A A; Blackmer, K; Racioppi, J V

    1989-01-30

    Genomic and cDNA clones of a gene expressed specifically in the salivary glands of adult Aedes aegypti have been isolated and sequenced. This gene encodes an abundant mRNA that is transcribed throughout the male salivary gland but only in the cells of the proximal lateral lobes of the female gland. The deduced protein has many basic amino acids, several possible sites for N-glycosylation, and displays striking similarities with the products of a yeast maltase gene and three previously unidentified genes from Drosophila melanogaster. We propose the name 'Maltase-like I' (MalI) to designate this gene. The presumed function of this gene product is to assist the mosquito in its sugar-feeding capabilities. The mosquito and fruitfly genes have similar structural features 5' to the protein coding regions, indicating that these genes may share common control mechanisms.

  19. A piperidine amide extracted from Piper longum L. fruit shows activity against Aedes aegypti mosquito larvae.

    PubMed

    Yang, Young-Cheol; Lee, Sang-Guei; Lee, Hee-Kwon; Kim, Moo-Key; Lee, Sang-Hyun; Lee, Hoi-Seon

    2002-06-19

    Mosquito larvicidal activity of Piper longum fruit-derived materials against the fourth-instar larvae of Aedes aegypti was examined. A crude methanol extract of P. longum fruits was found to be active against the larvae, and the hexane fraction of the methanol extract showed a strong larvicidal activity of 100% mortality. The biologically active component of P. longum fruits was characterized as pipernonaline by spectroscopic analyses. The LC(50) value of pipernonaline was 0.25 mg/L. The toxicity of pipernonaline is comparable to that of pirimiphos-methyl as a mosquito larvicide. In tests with available components derived from P. longum, no activity was observed with piperettine, piperine, or piperlongumine.

  20. Diel sugar feeding and reproductive behaviours of Aedes aegypti mosquitoes in Trinidad: with implications for mass release of sterile mosquitoes.

    PubMed

    Chadee, Dave D; Sutherland, Joan M; Gilles, Jeremie R L

    2014-04-01

    Studies on the diel sugar feeding periodicity of male and female Aedes aegypti were conducted under laboratory conditions and monitored in single cages using the polyphagometer device and examined every 2h. Males mosquitoes displayed two peaks in sugar feeding, a small morning peak at 06.00-08.00 h (16% of sugar feeding) and a significant evening peak at 16.00-18.00 h (40% of sugar feeding). A similar pattern was observed among females: a small early morning peak (18% of sugar feeding) and a significant peak in the evening 16.00-18.00 h (42% of sugar feeding). Studies on the effects of sugar feeding on the excitation of males showed 100% erect antennal fibrillae after 36 h. In contrast, only 15% of the water-fed males responded. Laboratory studies on the effects of sugar feeding on the insemination rates of A. aegypti females showed similar inseminations rates among sugar and water fed males but after 4 days all water fed males died while the sugar fed males continued to survive and inseminate females. The synchronization of the male and female diel sugar feeding periodicity is discussed in the context of sterile insect techniques or genetic control methods.

  1. Coordinated changes in JH biosynthesis and JH hemolymph titers in Aedes aegypti mosquitoes

    PubMed Central

    Hernández-Martínez, Salvador; Rivera-Perez, Crisalejandra; Nouzova, Marcela; Noriega, Fernando G.

    2014-01-01

    Juvenile hormone III (JH) is synthesized by the corpora allata (CA) and plays a key role in mosquito development and reproduction. A decrease in JH titer during the last instar larvae allows pupation and metamorphosis to proceed. As the anti-metamorphic role of JH comes to an end, the CA of the late pupa once again synthesizes JH, which plays an essential role in orchestrating reproductive maturation. In spite of the importance of Aedes aegypti as a vector, a detailed study of the changes of JH hemolymph titers during the gonotrophic cycle has never been performed. In the present studies, using a High Performance Liquid Chromatography coupled to a Fluorescent Detector (HPLC-FD) method, we measured changes in JH levels in the hemolymph of female mosquitoes during the pupal and adult stages. Our results revealed tightly concomitant changes in JH biosynthesis and JH hemolymph titers during the gonotrophic cycle of female mosquito. Feeding high sugar diets resulted in an increase of JH titers, and mating also modified JH titers in hemolymph. In addition these studies confirmed that JH titer in mosquitoes is fundamentally determined by the rate of biosynthesis in the CA. PMID:25445664

  2. nanos gene control DNA mediates developmentally regulated transposition in the yellow fever mosquito Aedes aegypti.

    PubMed

    Adelman, Zach N; Jasinskiene, Nijole; Onal, Sedef; Juhn, Jennifer; Ashikyan, Aurora; Salampessy, Michael; MacCauley, Todd; James, Anthony A

    2007-06-12

    Transposable elements (TEs) are proposed as a basis for developing drive systems to spread pathogen resistance genes through vector mosquito populations. The use of transcriptional and translational control DNA elements from genes expressed specifically in the insect germ line to mediate transposition offers possibilities for mitigating some of the concerns about transgene behavior in the target vector species and eliminating effects on nontarget organisms. Here, we describe the successful use of the promoter and untranslated regions from the nanos (nos) orthologous gene of the yellow fever mosquito, Aedes aegypti, to control sex- and tissue-specific expression of exogenously derived mariner MosI transposase-encoding DNA. Transgenic mosquitoes expressed transposase mRNA in abundance near or equal to the endogenous nos transcript and exclusively in the female germ cells. In addition, MosI mRNA was deposited in developing oocytes and localized and maintained at the posterior pole during early embryonic development. Importantly, four of five transgenic lines examined were capable of mobilizing a second MosI transgene into the mosquito genome, indicating that functional transposase was being produced. Thus, the nos control sequences show promise as part of a TE-based gene drive system.

  3. The effect of bacterial challenge on ferritin regulation in the yellow fever mosquito, Aedes aegypti

    PubMed Central

    Geiser, Dawn L.; Zhou, Guoli; Mayo, Jonathan J.; Winzerling, Joy J.

    2012-01-01

    Secreted ferritin is the major iron storage and transport protein in insects. Here we characterize the message and protein expression profiles of yellow fever mosquito (Aedes aegypti) ferritin heavy chain homologue (HCH) and light chain homologue (LCH) subunits in response to iron and bacterial challenge. In vivo experiments demonstrated tissue specific regulation of HCH and LCH expression over time post-blood meal (PBM). Transcriptional regulation of HCH and LCH was treatment specific, with differences in regulation for naïve versus mosquitoes challenged with heat-killed bacteria (HKB). Translational regulation by iron regulatory protein (IRP) binding activity for the iron responsive element (IRE) was tissue specific and time-dependent PBM. However, mosquitoes challenged with HKB showed little change in IRP/IRE binding activity compared to naïve animals. The changes in ferritin regulation and expression in vivo were confirmed with in vitro studies. We challenged mosquitoes with HKB followed by a blood meal to determine the effects on ferritin expression, and demonstrate a synergistic, time-dependent, regulation of expression for HCH and LCH. PMID:23956079

  4. Intraspecific variation in desiccation survival time of Aedes aegypti (L.) mosquito eggs of Australian origin.

    PubMed

    Faull, Katherine J; Williams, Craig R

    2015-12-01

    Aedes aegypti (L.) mosquitoes preferentially oviposit in natural and artificial receptacles where their eggs are able to withstand drying as water levels fluctuate. Desiccation-resistant eggs also increase the potential for establishment in non-native habitats while providing logistical impediments to control programs. Viability and mean survival times of eggs stored under three dryness conditions for up to 367 days were investigated among three field-derived colonies of Australian Ae. aegypti to understand variation in desiccation survival. Further investigations compared egg survival between an established colony and its wild counterpart. Our results confirmed that Ae. aegypti eggs can withstand desiccation for extended periods of time with approximately 2-15% egg viability recorded after one year and viability remaining above 88% under all conditions through 56 days. Intraspecific variations in egg survival times were recorded, suggesting local adaptation while each of the colonies demonstrated a consistent preference for higher humidity. Egg volume varied between the populations, suggesting a relationship between egg volume and survival time, with the marginally larger eggs (Charters Towers and Innisfail) having greater desiccation resistance over the range of conditions. The strong survivorship of Charters Towers eggs in dry, warm conditions demonstrates the adaptive significance of a desiccation-resistant egg. PMID:26611964

  5. Intraspecific DNA variation in nuclear genes of the mosquito Aedes aegypti.

    PubMed

    Morlais, I; Severson, D W

    2003-12-01

    Single nucleotide polymorphisms (SNPs) are an abundant source of genetic variation among individual organisms. To assess the usefulness of SNPs for genome analysis in the yellow fever mosquito, Aedes aegypti, we sequenced 25 nuclear genes in each of three strains and analysed nucleotide diversity. The average frequency of nucleotide variation was 12 SNPs per kilobase, indicating that nucleotide variation in Ae. aegypti is similar to that in other organisms, including Drosophila and the malaria vector Anopheles gambiae. Transition polymorphisms outnumbered transversion polymorphisms, at a ratio of about 2:1. We examined codon usage and confirmed that mutational bias favours G and C ending codons. Codon bias was most pronounced in highly expressed genes. Nucleotide diversity estimates indicated that substitution rates are positively correlated in coding and non-coding regions. Nucleotide diversity varied from one gene to another. The unequal distribution of SNPs among Ae. aegypti nuclear genes suggests that single base variations are non-neutral and are subject to selective constraints. Our analysis showed that ubiquitously expressed genes have lower polymorphism rates and are likely under strong purifying selection, whereas tissue specific genes and genes with a putative role in parasite defence exhibit higher levels of polymorphism that may be associated with diversifying selection. PMID:14986924

  6. Spatial genetic structure of Aedes aegypti mosquitoes in mainland Southeast Asia.

    PubMed

    Hlaing, Thaung; Tun-Lin, Willoughby; Somboon, Pradya; Socheat, Duong; Setha, To; Min, Sein; Thaung, Sein; Anyaele, Okorie; De Silva, Babaranda; Chang, Moh Seng; Prakash, Anil; Linton, Yvonne; Walton, Catherine

    2010-07-01

    Aedes aegypti mosquitoes originated in Africa and are thought to have spread recently to Southeast Asia, where they are the major vector of dengue. Thirteen microsatellite loci were used to determine the genetic population structure of A. aegypti at a hierarchy of spatial scales encompassing 36 sites in Myanmar, Cambodia and Thailand, and two sites in Sri Lanka and Nigeria. Low, but significant, genetic structuring was found at all spatial scales (from 5 to >2000 km) and significant F IS values indicated genetic structuring even within 500 m. Spatially dependent genetic-clustering methods revealed that although spatial distance plays a role in shaping larger-scale population structure, it is not the only factor. Genetic heterogeneity in major port cities and genetic similarity of distant locations connected by major roads, suggest that human transportation routes have resulted in passive long-distance migration of A. aegypti. The restricted dispersal on a small spatial scale will make localized control efforts and sterile insect technology effective for dengue control. Conversely, preventing the establishment of insecticide resistance genes or spreading refractory genes in a genetic modification strategy would be challenging. These effects on vector control will depend on the relative strength of the opposing effects of passive dispersal. PMID:25567928

  7. Intraspecific variation in desiccation survival time of Aedes aegypti (L.) mosquito eggs of Australian origin.

    PubMed

    Faull, Katherine J; Williams, Craig R

    2015-12-01

    Aedes aegypti (L.) mosquitoes preferentially oviposit in natural and artificial receptacles where their eggs are able to withstand drying as water levels fluctuate. Desiccation-resistant eggs also increase the potential for establishment in non-native habitats while providing logistical impediments to control programs. Viability and mean survival times of eggs stored under three dryness conditions for up to 367 days were investigated among three field-derived colonies of Australian Ae. aegypti to understand variation in desiccation survival. Further investigations compared egg survival between an established colony and its wild counterpart. Our results confirmed that Ae. aegypti eggs can withstand desiccation for extended periods of time with approximately 2-15% egg viability recorded after one year and viability remaining above 88% under all conditions through 56 days. Intraspecific variations in egg survival times were recorded, suggesting local adaptation while each of the colonies demonstrated a consistent preference for higher humidity. Egg volume varied between the populations, suggesting a relationship between egg volume and survival time, with the marginally larger eggs (Charters Towers and Innisfail) having greater desiccation resistance over the range of conditions. The strong survivorship of Charters Towers eggs in dry, warm conditions demonstrates the adaptive significance of a desiccation-resistant egg.

  8. Invasion of Wolbachia at the residential block level is associated with local abundance of Stegomyia aegypti, yellow fever mosquito, populations and property attributes.

    PubMed

    Hoffmann, A A; Goundar, A A; Long, S A; Johnson, P H; Ritchie, S A

    2014-08-01

    Wolbachia can suppress dengue and control mosquito populations and this depends on the successful invasion of Wolbachia-infected mosquitoes into local populations. Ovitrap data collected during the recent invasion of wMel-infected Stegomyia aegypti (Diptera: Culicidae) (Linnaeus) into Gordonvale near Cairns, Australia, were used to identify variables that help predict the success of localized invasion. Based on the variance in Wolbachia frequencies across Gordonvale as well as at another release site at Yorkeys Knob in comparison to simulations, it was estimated that on average 2-4 females contributed eggs to an ovitrap. By collating ovitrap data from two collection periods at the start of the release from residential blocks, it was found that uninfected mosquitoes had a patchy distribution across the release site. Residential blocks with relatively high uninfected mosquito numbers were less easily invaded by Wolbachia than blocks with low numbers. The numbers of uninfected mosquitoes in ovitraps were negatively correlated with the proportion of brick houses in a residential block, whereas local Wolbachia frequencies were correlated positively with this variable as well as negatively with the amount of shading in a yard and availability of breeding sites. These findings point to proxy measures for predicting the ease of localized invasion of Wolbachia. PMID:25171611

  9. Excretion of dengue virus RNA by Aedes aegypti allows non-destructive monitoring of viral dissemination in individual mosquitoes

    PubMed Central

    Fontaine, Albin; Jiolle, Davy; Moltini-Conclois, Isabelle; Lequime, Sebastian; Lambrechts, Louis

    2016-01-01

    Successful transmission of a vector-borne pathogen relies on a complex life cycle in the arthropod vector that requires initial infection of the digestive tract followed by systemic viral dissemination. The time interval between acquisition and subsequent transmission of the pathogen, called the extrinsic incubation period, is one of the most influential parameters of vector-borne pathogen transmission. However, the dynamic nature of this process is often ignored because vector competence assays are sacrificial and rely on end-point measurements. Here, we report that individual Aedes aegypti mosquitoes release large amounts of dengue virus (DENV) RNA in their excreta that can be non-sacrificially detected over time following oral virus exposure. Further, we demonstrate that detection of DENV RNA in excreta from individual mosquitoes is correlated to systemic viral dissemination with high specificity (0.9–1) albeit moderate sensitivity (0.64–0.89). Finally, we illustrate the potential of our finding to detect biological differences in the dynamics of DENV dissemination in a proof-of-concept experiment. Individual measurements of the time required for systemic viral dissemination, a prerequisite for transmission, will be valuable to monitor the dynamics of DENV vector competence, to carry out quantitative genetics studies, and to evaluate the risk of DENV transmission in field settings. PMID:27117953

  10. Pre-treatment of Stegomyia aegypti mosquitoes with a sublethal dose of imidacloprid impairs behavioural avoidance induced by lemon oil and DEET.

    PubMed

    Thany, S H; Tong, F; Bloomquist, J R

    2015-03-01

    The present study was conducted to determine whether imidacloprid can impair the avoidance behaviour of the mosquito Stegomyia aegypti. Laboratory investigations using a T-maze apparatus showed that St. aegypti mosquitoes present long term avoidance behaviour when they are exposed to repetitive trials with lemon oil and DEET. The present study tested the effect of a sublethal dose of imidacloprid on the avoidance behaviour of St. aegypti mosquitoes over a 48 h period. Data suggest that 0.5 ng of imidacloprid/mosquito reduces the avoidance behaviour of mosquitoes exposed to lemon oil, on the first day of exposure, after the second trial; whereas imidacloprid affected DEET repellency only the first day of exposure, after the second trial. Imidacloprid was toxic against St. aegypti mosquitoes, and at sublethal doses was able to impair the repellency induced by lemon oil and DEET. The present data were consistent with the finding that St. aegypti mosquitoes exhibit long term avoidance behaviour, and treatment of mosquitoes with a sublethal dose of imidacloprid under DEET application can affect the repellency of DEET against St. aegypti. PMID:25155403

  11. Laboratory and semi-field evaluation of Mosquito Dunks against Aedes aegypti and Aedes albopictus larvae (Diptera: Culicidae).

    PubMed

    Fansiri, Thanyalak; Thavara, Usavadee; Tawatsin, Apiwat; Krasaesub, Somporn; Sithiprasasna, Ratana

    2006-01-01

    Laboratory bioassays and semi-field studies were conducted on the efficacy and longevity of Mosquito Dunks (7,000 ITU/mg Bti) in order to determine the concentration-response relationship and the effectiveness on the potency of the Bti product against Aedes mosquito species based on the WHO protocol standard methods and to determine the longevity of release for this product against Ae. aegypti mosquito larvae in water storage containers. This bio-potency study with the late 3rd instar larvae of Ae. aegypti and Ae. albopictus was carried out according to WHO standard protocols. The six concentrations of the Bti product used in each test were replicated 4 times with 25 mosquito larvae. Probit analysis was then used to determine the LC50 and LC95 which was equated with dosages of 1.02 and 1.86 ppm for Ae. aegypti; and 0.39 and 0.84 ppm for Ae. albopictus, which reveals a potency of 382.95 and 303.74 ITU/mg, respectively. The semi-field evaluation of this product in 200-liter earthen jars against 3rd instar larvae of Ae. aegypti showed satisfactory control of greater than 80% at 11 weeks post-treatment.

  12. Complete Genome Sequence of Chikungunya Virus Isolated from an Aedes aegypti Mosquito during an Outbreak in Yemen, 2011.

    PubMed

    Fahmy, Nermeen T; Klena, John D; Mohamed, Amr S; Zayed, Alia; Villinski, Jeffrey T

    2015-01-01

    Chikungunya virus is recognized as a serious public health problem. The complete genome was sequenced for a chikungunya virus isolated from the mosquito Aedes aegypti during a 2011 outbreak in Al Hodayda, Yemen, which resulted in significant human fatalities. Phylogenetic analysis demonstrated that this Yemeni isolate is most closely related to Indian Ocean strains of the east/central/south African genotype. PMID:26184944

  13. Complete Genome Sequence of Chikungunya Virus Isolated from an Aedes aegypti Mosquito during an Outbreak in Yemen, 2011

    PubMed Central

    Klena, John D.; Mohamed, Amr S.; Zayed, Alia; Villinski, Jeffrey T.

    2015-01-01

    Chikungunya virus is recognized as a serious public health problem. The complete genome was sequenced for a chikungunya virus isolated from the mosquito Aedes aegypti during a 2011 outbreak in Al Hodayda, Yemen, which resulted in significant human fatalities. Phylogenetic analysis demonstrated that this Yemeni isolate is most closely related to Indian Ocean strains of the east/central/south African genotype. PMID:26184944

  14. Physiological recordings and RNA sequencing of the gustatory appendages of the yellow-fever mosquito Aedes aegypti

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Electrophysiological recording of action potentials from sensory neurons of mosquitoes provides investigators a glimpse into the chemical perception of these disease vectors. We have recently identified a bitter sensing neuron in the labellum of female Aedes aegypti that responds to DEET and other ...

  15. Gustatory receptor neuron responds to DEET and other insect repellents in the yellow fever mosquito, aedes aegypti

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Three gustatory receptor neurons were characterized for contact chemoreceptive sensilla on the labella of female yellow fever mosquitoes, Aedes aegypti. The neuron with the smallest amplitude spike responded to the feeding deterrent, quinine, as well as DEET and other insect repellents. Two other ...

  16. A leucokinin mimic elicits aversive behavior in mosquito Aedes aegypti (L.) and inhibits the sugar taste neuron

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insect kinins (leucokinins) are multifunctional peptides acting as neurohormones and neurotransmitters. In females of the mosquito vector Aedes aegypti (L.), aedeskinins are known to stimulate fluid secretion from the renal organs (Malpighian tubules) and hindgut contractions by activating a G prot...

  17. Swarming mechanisms in the yellow fever mosquito: aggregation pheromones are involved in the mating behavior of Aedes aegypti.

    PubMed

    Fawaz, Emadeldin Y; Allan, Sandra A; Bernier, Ulrich R; Obenauer, Peter J; Diclaro, Joseph W

    2014-12-01

    Mosquitoes of various species mate in swarms comprised of tens of thousands of flying males. In this study, we examined Aedes aegypti swarming behavior and identified associated chemical cues. Novel evidence is provided that Ae. aegypti females aggregate by means of olfactory cues, such as aggregation pheromones. Isolation of Ae. aegypti aggregation pheromones was achieved by aeration of confined mosquitoes and collection of associated volatiles by glass filters. The collected volatiles were identified through gas chromatography mass spectrometry (GCMS). Three aggregation pheromones were collected and identified as 2,6,6-trimethylcyclohex-2-ene-1,4-dione (ketoisophorone) (CAS# 1125-21-9, t(R) = 18.75), 2,2,6-trimethylcyclohexane-1,4-dione (the saturated analog of ketoisophorone) (CAS# 20547-99-3, t(R) = 20.05), and 1-(4-ethylphenyl) ethanone (CAS# 937-30-4, t(R) = 24.22). Our biological studies revealed that the identified compounds stimulated mosquito behavior under laboratory conditions. The mechanism of mosquito swarm formation is discussed in light of our behavioral study findings. A preliminary field trial demonstrated the potential application of the isolated aggregation pheromones in controlling Ae. aegypti.

  18. A Native Wolbachia Endosymbiont Does Not Limit Dengue Virus Infection in the Mosquito Aedes notoscriptus (Diptera: Culicidae).

    PubMed

    Skelton, Ellie; Rancès, Edwige; Frentiu, Francesca D; Kusmintarsih, Endang Srimurni; Iturbe-Ormaetxe, Iñaki; Caragata, Eric P; Woolfit, Megan; O'Neill, Scott L

    2016-03-01

    The endosymbiotic bacterium Wolbachia pipientis infects many species of insects and has been transinfected into the mosquito Aedes aegypti (L.), the primary vector of dengue virus (DENV). Recently, it has been shown that Wolbachia blocks the replication and transmission of RNA viruses, such as DENV, in a number of mosquito species including Ae. aegypti and Aedes albopictus (Skuse), which is naturally infected with Wolbachia and considered a secondary vector for DENV. The mosquito species Aedes notoscriptus (Skuse) is highly prevalent in Australia, including in areas where DENV outbreaks have been recorded. The mosquito has been implicated in the transmission of Ross River and Barmah Forest viruses, but not DENV. We investigated whether Wolbachia naturally infects this mosquito species and whether it has an impact on the ability of Ae. notoscriptus to transmit DENV. We show, for the first time, that Ae. notoscriptus is naturally infected with a strain of Wolbachia that belongs to supergroup B and is localized only in the ovaries. However, Wolbachia infection in Ae. notoscriptus did not induce resistance to DENV and had no effect on overall DENV infection rate or titer. The presence of a native Wolbachia in Ae. notoscriptus cannot explain why this mosquito is an ineffective vector of DENV.

  19. microRNA miR-275 is indispensable for blood digestion and egg development in the mosquito Aedes aegypti.

    PubMed

    Bryant, Bart; Macdonald, Warren; Raikhel, Alexander S

    2010-12-28

    The mosquito Aedes aegypti is the major vector of arboviral diseases, particularly of Dengue fever, of which there are more than 100 million cases annually. Mosquitoes, such as A. aegypti, serve as vectors for disease pathogens because they require vertebrate blood for their egg production. Pathogen transmission is tightly linked to repeated cycles of obligatory blood feeding and egg maturation. Thus, the understanding of mechanisms governing egg production is necessary to develop approaches that limit the spread of mosquito-borne diseases. Previous studies have identified critical roles of hormonal- and nutrition-based target of rapamycin (TOR) pathways in controlling blood-meal-mediated egg maturation in mosquitoes. In this work, we uncovered another essential regulator of blood-meal-activated processes, the microRNA miR-275. The depletion of this microRNA in A. aegypti females after injection of its specific antagomir resulted in severe defects in blood digestion, fluid excretion, and egg development, clearly demonstrating that miR-275 is indispensable for these physiological processes. miR-275 exhibits an expression profile that suggests its regulation by a steroid hormone, 20-hydroxyecdysone (20E). In vitro organ culture experiments demonstrated that miR-275 is induced by this hormone in the presence of amino acids, indicative of a dual regulation by 20E and TOR. This report has uncovered the critical importance of microRNAs in controlling blood-meal-activated physiological events required for completion of egg development in mosquito disease vectors.

  20. Hot temperatures can force delayed mosquito outbreaks via sequential changes in Aedes aegypti demographic parameters in autocorrelated environments.

    PubMed

    Chaves, Luis Fernando; Scott, Thomas W; Morrison, Amy C; Takada, Takenori

    2014-01-01

    Aedes aegypti L. (Diptera: Culicidae) is a common pantropical urban mosquito, vector of dengue, Yellow Fever and chikungunya viruses. Studies have shown Ae. aegypti abundance to be associated with environmental fluctuations, revealing patterns such as the occurrence of delayed mosquito outbreaks, i.e., sudden extraordinary increases in mosquito abundance following transient extreme high temperatures. Here, we use a two-stage (larvae and adults) matrix model to propose a mechanism for environmental signal canalization into demographic parameters of Ae. aegypti that could explain delayed high temperature induced mosquito outbreaks. We performed model simulations using parameters estimated from a weekly time series from Thailand, assuming either independent or autocorrelated environments. For autocorrelated environments, we found that long delays in the association between the onset of "hot" environments and mosquito outbreaks (10 weeks, as observed in Thailand) can be generated when "hot" environments sequentially trigger a larval survival decrease and over-compensatory fecundity increase, which lasts for the whole "hot" period, in conjunction with a larval survival increase followed by a fecundity decrease when the environment returns to "normal". This result was not observed for independent environments. Finally, we discuss our results implications for prospective entomological research and vector management under changing environments.

  1. Studies on repellent activity of seed oils alone and in combination on mosquito, Aedes aegypti.

    PubMed

    Mukesh, Y; Savitri, P; Kaushik, R; Singh, N P

    2014-09-01

    The study was undertaken to investigate the relative repellency of Pongamia pinnata and Azadirachta indica seed oils on vector mosquito, Aedes aegypti under laboratory conditions. The repellents were formulated into 3 groups: seed oils, their mixture and combination of seed oils with three carrier oils viz. olive, mustard and coconut oil. Different formulations of each oil were tested at the concentrations of 1% and 5% on human baits. Efficiency was assessed, based on the total protection time; biting rate and percent protection provided by each formulation. Results showed that 5% formulation of the Pongamia pinnata and Azadirachta indica seed oils, mixed in 1:1 ratio exhibited highest percentage repellency of 85%, protection time of 300 min and bite rate of 6%. 5% concentration of A. indica and P. pinnata seed oil in mustard oil base offered 86.36% and 85% protection respectively with total protection time of 230 and 240 min respectively. The study confirms that Azadirachta indica and Pongamia pinnata have mosquito-repellent potential. When mixed in different ratios or with some carrier oil their efficacy increases 2-fold in some cases. These formulations are very promising for topical use (> 5 hrs complete protection) and are comparable to the protection provided by advanced Odomos mosquito repellent cream available commercially and thus are recommended for field trial. PMID:25204067

  2. Chemical and biological insecticides select distinct gene expression patterns in Aedes aegypti mosquito

    PubMed Central

    Després, Laurence; Stalinski, Renaud; Faucon, Frédéric; Navratil, Vincent; Viari, Alain; Paris, Margot; Tetreau, Guillaume; Poupardin, Rodolphe; Riaz, Muhammad Asam; Bonin, Aurélie; Reynaud, Stéphane; David, Jean-Philippe

    2014-01-01

    Worldwide evolution of mosquito resistance to chemical insecticides represents a major challenge for public health, and the future of vector control largely relies on the development of biological insecticides that can be used in combination with chemicals (integrated management), with the expectation that populations already resistant to chemicals will not become readily resistant to biological insecticides. However, little is known about the metabolic pathways affected by selection with chemical or biological insecticides. Here we show that Aedes aegypti, a laboratory mosquito strain selected with a biological insecticide (Bacillus thuringiensis israelensis, Bti) evolved increased transcription of many genes coding for endopeptidases while most genes coding for detoxification enzymes were under-expressed. By contrast, in strains selected with chemicals, genes encoding detoxification enzymes were mostly over-expressed. In all the resistant strains, genes involved in immune response were under-transcribed, suggesting that basal immunity might be a general adjustment variable to compensate metabolic costs caused by insecticide selection. Bioassays generally showed no evidence for an increased susceptibility of selected strains towards the other insecticide type, and all chemical-resistant strains were as susceptible to Bti as the unselected parent strain, which is a good premise for sustainable integrated management of mosquito populations resistant to chemicals. PMID:25540155

  3. Chemical and biological insecticides select distinct gene expression patterns in Aedes aegypti mosquito.

    PubMed

    Després, Laurence; Stalinski, Renaud; Faucon, Frédéric; Navratil, Vincent; Viari, Alain; Paris, Margot; Tetreau, Guillaume; Poupardin, Rodolphe; Riaz, Muhammad Asam; Bonin, Aurélie; Reynaud, Stéphane; David, Jean-Philippe

    2014-12-01

    Worldwide evolution of mosquito resistance to chemical insecticides represents a major challenge for public health, and the future of vector control largely relies on the development of biological insecticides that can be used in combination with chemicals (integrated management), with the expectation that populations already resistant to chemicals will not become readily resistant to biological insecticides. However, little is known about the metabolic pathways affected by selection with chemical or biological insecticides. Here we show that Aedes aegypti, a laboratory mosquito strain selected with a biological insecticide (Bacillus thuringiensis israelensis, Bti) evolved increased transcription of many genes coding for endopeptidases while most genes coding for detoxification enzymes were under-expressed. By contrast, in strains selected with chemicals, genes encoding detoxification enzymes were mostly over-expressed. In all the resistant strains, genes involved in immune response were under-transcribed, suggesting that basal immunity might be a general adjustment variable to compensate metabolic costs caused by insecticide selection. Bioassays generally showed no evidence for an increased susceptibility of selected strains towards the other insecticide type, and all chemical-resistant strains were as susceptible to Bti as the unselected parent strain, which is a good premise for sustainable integrated management of mosquito populations resistant to chemicals.

  4. oskar gene expression in the vector mosquitoes, Anopheles gambiae and Aedes aegypti.

    PubMed

    Juhn, J; James, A A

    2006-06-01

    A disease control strategy based on the introduction into mosquito populations of a gene conferring a pathogen-refractory phenotype is currently under investigation. This population replacement approach requires a drive system that will quickly spread and fix antipathogen effector genes in target populations. Modified transposable elements containing the control sequences of developmentally regulated genes may provide the basis for a gene drive system that regulates gene mobilization in a sex- and stage-restrictive manner. Screening of a Drosophila melanogaster database for genes whose products localize exclusively in the future germ cells during early embryonic development resulted in the identification of several candidate genes. The regulatory sequences of these genes could be used to drive transposition. Mosquito orthologous genes of oskar were identified based on sequence homology and characterized further. The tissue- and sex-specific expression profiles and hybridizations in situ show that oskar orthologous transcripts in Anopheles gambiae and Aedes aegypti accumulate in developing oocytes of adult females and localize to the posterior poles of early embryos. These characteristics potentiate the use of the regulatory sequences of mosquito oskar genes for the control of modified transposable elements.

  5. Identification of Aedes aegypti Long Intergenic Non-coding RNAs and Their Association with Wolbachia and Dengue Virus Infection

    PubMed Central

    Etebari, Kayvan; Asad, Sultan; Zhang, Guangmei; Asgari, Sassan

    2016-01-01

    Long intergenic non-coding RNAs (lincRNAs) are appearing as an important class of regulatory RNAs with a variety of biological functions. The aim of this study was to identify the lincRNA profile in the dengue vector Aedes aegypti and evaluate their potential role in host-pathogen interaction. The majority of previous RNA-Seq transcriptome studies in Ae. aegypti have focused on the expression pattern of annotated protein coding genes under different biological conditions. Here, we used 35 publically available RNA-Seq datasets with relatively high depth to screen the Ae. aegypti genome for lincRNA discovery. This led to the identification of 3,482 putative lincRNAs. These lincRNA genes displayed a slightly lower GC content and shorter transcript lengths compared to protein-encoding genes. Ae. aegypti lincRNAs also demonstrate low evolutionary sequence conservation even among closely related species such as Culex quinquefasciatus and Anopheles gambiae. We examined their expression in dengue virus serotype 2 (DENV-2) and Wolbachia infected and non-infected adult mosquitoes and Aa20 cells. The results revealed that DENV-2 infection increased the abundance of a number of host lincRNAs, from which some suppress viral replication in mosquito cells. RNAi-mediated silencing of lincRNA_1317 led to enhancement in viral replication, which possibly indicates its potential involvement in the host anti-viral defense. A number of lincRNAs were also differentially expressed in Wolbachia-infected mosquitoes. The results will facilitate future studies to unravel the function of lncRNAs in insects and may prove to be beneficial in developing new ways to control vectors or inhibit replication of viruses in them. PMID:27760142

  6. Mosquito-Producing Containers, Spatial Distribution, and Relationship between Aedes aegypti Population Indices on the Southern Boundary of its Distribution in South America (Salto, Uruguay)

    PubMed Central

    Basso, César; Caffera, Ruben M.; García da Rosa, Elsa; Lairihoy, Rosario; González, Cristina; Norbis, Walter; Roche, Ingrid

    2012-01-01

    A study was conducted in the city of Salto, Uruguay, to identify mosquito-producing containers, the spatial distribution of mosquitoes and the relationship between the different population indices of Aedes aegypti. On each of 312 premises visited, water-filled containers and immature Ae. aegypti mosquitoes were identified. The containers were counted and classified into six categories. Pupae per person and Stegomyia indices were calculated. Pupae per person were represented spatially. The number of each type of container and number of mosquitoes in each were analyzed and compared, and their spatial distribution was analyzed. No significant differences in the number of the different types of containers with mosquitoes or in the number of mosquitoes in each were found. The distribution of the containers with mosquito was random and the distribution of mosquitoes by type of container was aggregated or highly aggregated. PMID:23128295

  7. Larval Temperature-Food Effects on Adult Mosquito Infection and Vertical Transmission of Dengue-1 Virus.

    PubMed

    Buckner, Eva A; Alto, Barry W; Lounibos, L Philip

    2016-01-01

    Temperature-food interactions in the larval environment can affect life history and population growth of container mosquitoes Aedes aegypti (L.) and Aedes albopictus Skuse, the primary vectors of chikungunya and dengue viruses. We used Ae. aegypti, Ae. albopictus, and dengue-1 virus (DENV-1) from Florida to investigate whether larval rearing temperature can alter the effects of larval food levels on Ae. aegypti and Ae. albopictus life history and DENV-1 infection and vertical transmission. Although we found no effect of larval treatments on survivorship to adulthood, DENV-1 titer, or DENV-1 vertical transmission, rates of vertical transmission up to 16-24% were observed in Ae. albopictus and Ae. aegypti, which may contribute to maintenance of this virus in nature. Larval treatments had no effect on number of progeny and DENV-1 infection in Ae. aegypti, but the interaction between temperature and food affected number of progeny and DENV-1 infection of the female Ae. albopictus parent. The cooler temperature (24°C) yielded the most progeny and this effect was accentuated by high food relative to the other conditions. Low and high food led to the highest (∼90%) and lowest (∼65%) parental infection at the cooler temperature, respectively, whereas intermediate infection rates (∼75-80%) were observed for all food conditions at the elevated temperature. These results suggest that temperature and food availability have minimal influence on rate of vertical transmission and a stronger influence on adults of Ae. albopictus than of Ae. aegypti, which could have consequences for dengue virus epidemiology. PMID:26489999

  8. Towards a Casa Segura: A Consumer Product Study of the Effect of Insecticide-Treated Curtains on Aedes aegypti and Dengue Virus Infections in the Home

    PubMed Central

    Loroño-Pino, María Alba; García-Rejón, Julián E.; Machain-Williams, Carlos; Gomez-Carro, Salvador; Nuñez-Ayala, Guadalupe; del Rosario Nájera-Vázquez, Maria; Losoya, Arturo; Aguilar, Lyla; Saavedra-Rodriguez, Karla; Lozano-Fuentes, Saul; Beaty, Meaghan K.; Black, William C.; Keefe, Thomas J.; Eisen, Lars; Beaty, Barry J.

    2013-01-01

    The home, or domicile, is the principal environment for transmission of dengue virus (DENV) between humans and mosquito vectors. Community-wide distribution of insecticide-treated curtains (ITCs), mimicking vector control program-driven interventions, has shown promise to reduce DENV infections. We conducted a Casa Segura consumer product intervention study in Mérida, Mexico to determine the potential to reduce intradomicillary DENV transmission through ITC use in individual homes. Dengue virus infections in mosquitoes and in humans were reduced in homes with ITCs in one of two study subareas. Overall, ITCs reduced intradomicillary DENV transmission; ITC homes were significantly less likely to experience multiple DENV infections in humans than NTC homes. Dengue virus–infected Aedes aegypti females were reduced within the ITC homes where curtain use was highest. Some homes yielded up to nine infected Ae. aegypti females. This study provides insights regarding best practices for Casa Segura interventions to protect homes from intradomicillary DENV transmission. PMID:23732254

  9. Towards a Casa Segura: a consumer product study of the effect of insecticide-treated curtains on Aedes aegypti and dengue virus infections in the home.

    PubMed

    Loroño-Pino, María Alba; García-Rejón, Julián E; Machain-Williams, Carlos; Gomez-Carro, Salvador; Nuñez-Ayala, Guadalupe; Nájera-Vázquez, Maria del Rosario; Losoya, Arturo; Aguilar, Lyla; Saavedra-Rodriguez, Karla; Lozano-Fuentes, Saul; Beaty, Meaghan K; Black, William C; Keefe, Thomas J; Eisen, Lars; Beaty, Barry J

    2013-08-01

    The home, or domicile, is the principal environment for transmission of dengue virus (DENV) between humans and mosquito vectors. Community-wide distribution of insecticide-treated curtains (ITCs), mimicking vector control program-driven interventions, has shown promise to reduce DENV infections. We conducted a Casa Segura consumer product intervention study in Mérida, Mexico to determine the potential to reduce intradomicillary DENV transmission through ITC use in individual homes. Dengue virus infections in mosquitoes and in humans were reduced in homes with ITCs in one of two study subareas. Overall, ITCs reduced intradomicillary DENV transmission; ITC homes were significantly less likely to experience multiple DENV infections in humans than NTC homes. Dengue virus-infected Aedes aegypti females were reduced within the ITC homes where curtain use was highest. Some homes yielded up to nine infected Ae. aegypti females. This study provides insights regarding best practices for Casa Segura interventions to protect homes from intradomicillary DENV transmission.

  10. Towards a Casa Segura: a consumer product study of the effect of insecticide-treated curtains on Aedes aegypti and dengue virus infections in the home.

    PubMed

    Loroño-Pino, María Alba; García-Rejón, Julián E; Machain-Williams, Carlos; Gomez-Carro, Salvador; Nuñez-Ayala, Guadalupe; Nájera-Vázquez, Maria del Rosario; Losoya, Arturo; Aguilar, Lyla; Saavedra-Rodriguez, Karla; Lozano-Fuentes, Saul; Beaty, Meaghan K; Black, William C; Keefe, Thomas J; Eisen, Lars; Beaty, Barry J

    2013-08-01

    The home, or domicile, is the principal environment for transmission of dengue virus (DENV) between humans and mosquito vectors. Community-wide distribution of insecticide-treated curtains (ITCs), mimicking vector control program-driven interventions, has shown promise to reduce DENV infections. We conducted a Casa Segura consumer product intervention study in Mérida, Mexico to determine the potential to reduce intradomicillary DENV transmission through ITC use in individual homes. Dengue virus infections in mosquitoes and in humans were reduced in homes with ITCs in one of two study subareas. Overall, ITCs reduced intradomicillary DENV transmission; ITC homes were significantly less likely to experience multiple DENV infections in humans than NTC homes. Dengue virus-infected Aedes aegypti females were reduced within the ITC homes where curtain use was highest. Some homes yielded up to nine infected Ae. aegypti females. This study provides insights regarding best practices for Casa Segura interventions to protect homes from intradomicillary DENV transmission. PMID:23732254

  11. Sialokinin I and II: vasodilatory tachykinins from the yellow fever mosquito Aedes aegypti.

    PubMed Central

    Champagne, D E; Ribeiro, J M

    1994-01-01

    The saliva of the mosquito Aedes aegypti has previously been reported to contain a 1400-Da peptide with pharmacological properties typical of a tachykinin. In the present study this vasodilator has been purified to homogeneity and found to consist of two peptides: sialokinin I, with the sequence Asn-Thr-Gly-Asp-Lys-Phe-Tyr-Gly-Leu-Met-NH2, and sialokinin II, identical to sialokinin I except for an Asp in position 1. These peptides are present in amounts of 0.62 and 0.16 pmol (711 and 178 ng), respectively, per salivary gland pair. When assayed on the guinea pig ileum, both peptides are as active as the mammalian tachykinin substance P, with K0.5 values of 5.07, 6.58, and 4.94 nM for sialokinin I, sialokinin II, and substance P, respectively. PMID:8278354

  12. Molecular genetic analysis of midgut serine proteases in Aedes aegypti mosquitoes.

    PubMed

    Isoe, Jun; Rascón, Alberto A; Kunz, Susan; Miesfeld, Roger L

    2009-12-01

    Digestion of blood meal proteins by midgut proteases provides anautogenous mosquitoes with the nutrients required to complete the gonotrophic cycle. Inhibition of protein digestion in the midgut of blood feeding mosquitoes could therefore provide a strategy for population control. Based on recent reports indicating that the mechanism and regulation of protein digestion in blood fed female Aedes aegypti mosquitoes is more complex than previously thought, we used a robust RNAi knockdown method to investigate the role of four highly expressed midgut serine proteases in blood meal metabolism. We show by Western blotting that the early phase trypsin protein (AaET) is maximally expressed at 3 h post-blood meal (PBM), and that AaET is not required for the protein expression of three late phase serine proteases, AaLT (late trypsin), AaSPVI (5G1), and AaSPVII. Using the trypsin substrate analog BApNA to analyze in vitro enzyme activity in midgut extracts from single mosquitoes, we found that knockdown of AaSPVI expression caused a 77.6% decrease in late phase trypsin-like activity, whereas, knockdown of AaLT and AaSPVII expression had no significant effect on BApNA activity. In contrast, injection of AaLT, AaSPVI, and AaSPVII dsRNA inhibited degradation of endogenous serum albumin protein using an in vivo protease assay, as well as, significantly decreased egg production in both the first and second gonotrophic cycles (P < 0.001). These results demonstrate that AaLT, AaSPVI, and AaSPVII all contribute to blood protein digestion and oocyte maturation, even though AaSPVI is the only abundant midgut late phase serine protease that appears to function as a classic trypsin enzyme. PMID:19883761

  13. A preliminary study on in vitro transmission of Dirofilaria immitis infective stage larvae by Aedes aegypti (L.) (Diptera: Culicidae).

    PubMed

    Tiawsirisup, Sonthaya; Khlaikhayai, Thodsatham; Nithiuthai, Suwannee

    2005-01-01

    This study was performed to study an in vitro transmission of infective stage larvae from the mosquito proboscis. There were five experiments with 949 mosquitoes. Liverpool strain of Aedes aegypti (L.) were used in this study. They were allowed to feed on D. immitis infected dogs with different microfilarial levels which were 1,650, 1,950, 9,000, 9,250, and 11,550 microfilariae per one ml of blood. Mosquitoes were forced to feed on solution (5% sucrose in 5% dog serum) in capillary tubes for 20 minutes at 7-34 days post-blood feeding. Solutions in capillary tubes then were examined and mosquitoes were dissected and examined for D. immitis larvae under a light microscope. Second stage larvae could be found in the abdomen and malpighian tubules of mosquitoes and third stage larvae can be found in the abdomen, malpighian tubules, thorax, and proboscis of mosquitoes with different levels of infection. No larvae were detected in the solution in capillary tubes of all experiments. PMID:16438186

  14. Synergistic repellent and irritant effect of combined essential oils on Aedes aegypti (L.) mosquitoes.

    PubMed

    Noosidum, Atirach; Chareonviriyaphap, Theeraphap; Chandrapatya, Angsumarn

    2014-12-01

    This study was designed to compare the behavioral responses of Aedes aegypti to a single essential oil and to a mixture of two or three essential oils using an excito-repellency test chamber. Mixtures were prepared from essential oils extracted from Litsea cubeba (LC), Litsea salicifolia (LS), and Melaleuca leucadendron (ML). In general, the mixture of essential oils produced a much stronger escape response by Ae. aegypti, regardless of the test conditions. No significant difference in escape responses was seen when the mixture of oils was compared with a standard commercial product containing DEET. Greater contact irritancy was seen from mixed oils of LC and LS than with other mixed oils. Mixtures of LC and LS at 0.075% showed the highest synergistic action (65.5% escaped) compared to that with unmixed oil alone at the same concentration (LC/20% and LS=32.2%). In addition, mixtures of LC and LS at 0.075% demonstrated the highest non-contact repellency (62.7%) and showed a greater effect than the use of LC (20%) or LS (20.3%) alone. We conclude that mixtures of two essential oils show potential as active ingredients for mosquito repellents.

  15. Synergistic repellent and irritant effect of combined essential oils on Aedes aegypti (L.) mosquitoes.

    PubMed

    Noosidum, Atirach; Chareonviriyaphap, Theeraphap; Chandrapatya, Angsumarn

    2014-12-01

    This study was designed to compare the behavioral responses of Aedes aegypti to a single essential oil and to a mixture of two or three essential oils using an excito-repellency test chamber. Mixtures were prepared from essential oils extracted from Litsea cubeba (LC), Litsea salicifolia (LS), and Melaleuca leucadendron (ML). In general, the mixture of essential oils produced a much stronger escape response by Ae. aegypti, regardless of the test conditions. No significant difference in escape responses was seen when the mixture of oils was compared with a standard commercial product containing DEET. Greater contact irritancy was seen from mixed oils of LC and LS than with other mixed oils. Mixtures of LC and LS at 0.075% showed the highest synergistic action (65.5% escaped) compared to that with unmixed oil alone at the same concentration (LC/20% and LS=32.2%). In addition, mixtures of LC and LS at 0.075% demonstrated the highest non-contact repellency (62.7%) and showed a greater effect than the use of LC (20%) or LS (20.3%) alone. We conclude that mixtures of two essential oils show potential as active ingredients for mosquito repellents. PMID:25424258

  16. Ovary ecdysteroidogenic hormone requires a receptor tyrosine kinase to activate egg formation in the mosquito Aedes aegypti

    PubMed Central

    Vogel, Kevin J.; Brown, Mark R.; Strand, Michael R.

    2015-01-01

    Mosquitoes are major disease vectors because most species must feed on blood from a vertebrate host to produce eggs. Blood feeding by the vector mosquito Aedes aegypti triggers the release of two neurohormones, ovary ecdysteroidogenic hormone (OEH) and insulin-like peptides (ILPs), which activate multiple processes required for egg formation. ILPs function by binding to the insulin receptor, which activates downstream components in the canonical insulin signaling pathway. OEH in contrast belongs to a neuropeptide family called neuroparsins, whose receptor is unknown. Here we demonstrate that a previously orphanized receptor tyrosine kinase (RTK) from A. aegypti encoded by the gene AAEL001915 is an OEH receptor. Phylogenetic studies indicated that the protein encoded by this gene, designated AAEL001915, belongs to a clade of RTKs related to the insulin receptor, which are distinguished by an extracellular Venus flytrap module. Knockdown of AAEL001915 by RNAi disabled OEH-mediated egg formation in A. aegypti. AAEL001915 was primarily detected in the mosquito ovary in association with follicular epithelial cells. Both monomeric and dimeric AAEL001915 were detected in mosquito ovaries and transfected Drosophila S2 cells. Functional assays further indicated that OEH bound to dimeric AAEL001915, which resulted in downstream phosphorylation of Ak strain transforming factor (Akt). We hypothesize that orthologs of AAEL001915 in other insects are neuroparsin receptors. PMID:25848040

  17. Insecticidal and repellent activity of Clausena dentata (Rutaceae) plant extracts against Aedes aegypti and Culex quinquefasciatus mosquitoes (Diptera: Culicidae).

    PubMed

    Ramkumar, Govindaraju; Karthi, Sengodan; Muthusamy, Ranganathan; Natarajan, Devarajan; Shivakumar, Muthugounder Subramanian

    2015-03-01

    Mosquito control is facing a threat due to the emergence of resistance to synthetic insecticides. Insecticides of botanical origin may serve as suitable alternative biocontrol agents. The present study is to evaluate adulticidal activity of Clausena dentata plant extract against Aedes aegypti and Culex quinquefasciatus mosquitoes. The adult mortality was observed after 24 h of exposure. The highest mortality was found in acetone extracts against Ae. aegypti and Cx. quinquefasciatus with the LC50 and LC90 4.1783 mg/ml (3.8201-7.1026), 9.3884 mg/ml (7. 8258-13.1820) and 4.2451 mg/ml (3.8547-8.0254), 12.3214 mg/ml (10.9287-16.2220), respectively. Smoke toxicity was observed at 10-min interval for 40 min, and the mortality data were recorded. Result shows that Ae. aegypti and Cx. quinquefasciatus are 85 ± 2 and 89 ± 1.5, respectively. A mortality of 100 % was recorded in the commercial mosquito control. These results suggest that the leaf extracts of C. dentata have a potential to be used as an ideal eco-friendly approach for the control of mosquitoes.

  18. A Multipurpose, High-Throughput Single-Nucleotide Polymorphism Chip for the Dengue and Yellow Fever Mosquito, Aedes aegypti.

    PubMed

    Evans, Benjamin R; Gloria-Soria, Andrea; Hou, Lin; McBride, Carolyn; Bonizzoni, Mariangela; Zhao, Hongyu; Powell, Jeffrey R

    2015-05-01

    The dengue and yellow fever mosquito, Aedes aegypti, contributes significantly to global disease burden. Genetic study of Aedes aegypti is essential to understanding its evolutionary history, competence as a disease vector, and the effects and efficacy of vector control methods. The prevalence of repeats and transposable elements in the Aedes aegypti genome complicates marker development and makes genome-wide genetic study challenging. To overcome these challenges, we developed a high-throughput genotyping chip, Axiom_aegypti1. This chip screens for 50,000 single-nucleotide polymorphisms present in Aedes aegypti populations from around the world. The array currently used genotypes 96 samples simultaneously. To ensure that these markers satisfy assumptions commonly made in many genetic analyses, we tested for Mendelian inheritance and linkage disequilibrium in laboratory crosses and a wild population, respectively. We have validated more than 25,000 of these markers to date, and expect this number to increase with more sampling. We also present evidence of the chip's efficacy in distinguishing populations throughout the world. The markers on this chip are ideal for applications ranging from population genetics to genome-wide association studies. This tool makes rapid, cost-effective, and comparable genotype data attainable to diverse sets of Aedes aegypti researchers, from those interested in potential range shifts due to climate change to those characterizing the genetic underpinnings of its competence to transmit disease. PMID:25721127

  19. A Multipurpose, High-Throughput Single-Nucleotide Polymorphism Chip for the Dengue and Yellow Fever Mosquito, Aedes aegypti.

    PubMed

    Evans, Benjamin R; Gloria-Soria, Andrea; Hou, Lin; McBride, Carolyn; Bonizzoni, Mariangela; Zhao, Hongyu; Powell, Jeffrey R

    2015-02-26

    The dengue and yellow fever mosquito, Aedes aegypti, contributes significantly to global disease burden. Genetic study of Aedes aegypti is essential to understanding its evolutionary history, competence as a disease vector, and the effects and efficacy of vector control methods. The prevalence of repeats and transposable elements in the Aedes aegypti genome complicates marker development and makes genome-wide genetic study challenging. To overcome these challenges, we developed a high-throughput genotyping chip, Axiom_aegypti1. This chip screens for 50,000 single-nucleotide polymorphisms present in Aedes aegypti populations from around the world. The array currently used genotypes 96 samples simultaneously. To ensure that these markers satisfy assumptions commonly made in many genetic analyses, we tested for Mendelian inheritance and linkage disequilibrium in laboratory crosses and a wild population, respectively. We have validated more than 25,000 of these markers to date, and expect this number to increase with more sampling. We also present evidence of the chip's efficacy in distinguishing populations throughout the world. The markers on this chip are ideal for applications ranging from population genetics to genome-wide association studies. This tool makes rapid, cost-effective, and comparable genotype data attainable to diverse sets of Aedes aegypti researchers, from those interested in potential range shifts due to climate change to those characterizing the genetic underpinnings of its competence to transmit disease.

  20. Septic tanks as larval habitats for the mosquitoes Aedes aegypti and Culex quinquefasciatus in Playa-Playita, Puerto Rico.

    PubMed

    Burke, R; Barrera, R; Lewis, M; Kluchinsky, T; Claborn, D

    2010-06-01

    Adult Aedes aegypti (Linnaeus) (Diptera: Culicidae) were previously recovered from emergence traps on septic tanks in southeastern Puerto Rico. In this study we quantified immature mosquito abundance and its relationship with structural variables of the septic tanks and chemical properties of the water containing raw sewage. A miniaturized floating funnel trap was used to sample 89 septic tanks for larvae in the Puerto Rican community of Playa-Playita. Aedes aegypti larvae were recovered from 18% of the sampled tanks (10.3 larvae per septic tank per day). Larval presence was positively associated with cracking of the septic tank walls and uncovered access ports. Larval abundance was positively associated with cracking of the septic tank walls and larger tank surface areas, and inversely associated with the total dissolved solids (TDS). Culex quinquefasciatus (Say) larvae were also recovered from 74% of the septic tanks (129.6 larvae per septic tank per day). Larval presence was negatively associated with TDS in the water and larval abundance was positively associated with cracking of the septic tank walls. A screened, plastic emergence trap was used to sample 93 septic tanks within the community for Ae. aegypti and Cx. quinquefasciatus adults. Aedes aegypti adults were recovered from 49% of the sampled tanks (8.7 adults per septic tank per day) and Cx. quinquefasciatus adults were recovered from 97% of the sampled tanks (155.5 adults per septic tank per day). Aedes aegypti adult presence was positively associated with cracking, uncapped openings and septic water pH. The Ae. aegypti adult counts were positively associated with cracking and inversely associated with TDS and conductivity. This study marks the first published record of the recovery of Ae. aegypti larvae from holding tanks containing raw sewage in the Caribbean region. Our study indicates that Ae. aegypti larvae are present in sewage water and that septic tanks have at least the potential to maintain

  1. Mosquito (Aedes aegypti) flight tones: Frequency, harmonicity, spherical spreading, and phase relationships

    PubMed Central

    Arthur, Benjamin J.; Emr, Kevin S.; Wyttenbach, Robert A.; Hoy, Ronald R.

    2014-01-01

    Mosquito flight produces a tone as a side effect of wing movement; this tone is also a communication signal that is frequency-modulated during courtship. Recordings of tones produced by tethered flying male and female Aedes aegypti were undertaken using pairs of pressure-gradient microphones above and below, ahead and behind, and to the left and right over a range of distances. Fundamental frequencies were close to those previously reported, although amplitudes were lower. The male fundamental frequency was higher than that of the female and males modulated it over a wider range. Analysis of harmonics shows that the first six partials were nearly always within 1 Hz of integer multiples of the fundamental, even when the fundamental was being modulated. Along the front-back axis, amplitude attenuated as a function of distance raised to the power 2.3. Front and back recordings were out of phase, as were above and below, while left and right were in phase. Recordings from ahead and behind showed quadratic phase coupling, while others did not. Finally, two methods are presented for separating simultaneous flight tones in a single recording and enhancing their frequency resolution. Implications for mosquito behavior are discussed. PMID:25234901

  2. Mariner transposition and transformation of the yellow fever mosquito, Aedes aegypti.

    PubMed

    Coates, C J; Jasinskiene, N; Miyashiro, L; James, A A

    1998-03-31

    The mariner transposable element is capable of interplasmid transposition in the embryonic soma of the yellow fever mosquito, Aedes aegypti. To determine if this demonstrated mobility could be utilized to genetically transform the mosquito, a modified mariner element marked with a wild-type allele of the Drosophila melanogaster cinnabar gene was microinjected into embryos of a kynurenine hydroxylase-deficient, white-eyed recipient strain. Three of 69 fertile male founders resulting from the microinjected embryos produced families with colored-eyed progeny individuals, a transformation rate of 4%. The transgene-mediated complementation of eye color was observed to segregate in a Mendelian manner, although one insertion segregates with the recessive allele (female-determining) of the sex-determining locus, and a separate insertion is homozygous lethal. Molecular analysis of selected transformed families demonstrated that a single complete copy of the construct had integrated independently in each case and that it had done so in a transposase-mediated manner. The availability of a mariner transformation system greatly enhances our ability to study and manipulate this important vector species. PMID:9520438

  3. Genetic Drift during Systemic Arbovirus Infection of Mosquito Vectors Leads to Decreased Relative Fitness during Host Switching.

    PubMed

    Grubaugh, Nathan D; Weger-Lucarelli, James; Murrieta, Reyes A; Fauver, Joseph R; Garcia-Luna, Selene M; Prasad, Abhishek N; Black, William C; Ebel, Gregory D

    2016-04-13

    The emergence of mosquito-borne RNA viruses, such as West Nile virus (WNV), is facilitated by genetically complex virus populations within hosts. Here, we determine whether WNV enzootic (Culex tarsalis, Cx. quinquefasciatus, and Cx. pipiens) and bridge vectors (Aedes aegypti) have differential impacts on viral mutational diversity and fitness. During systemic mosquito infection, WNV faced stochastic reductions in genetic diversity that rapidly was recovered during intra-tissue population expansions. Interestingly, this intrahost selection and diversification was mosquito species dependent with Cx. tarsalis and Cx. quinquefasciatus exhibiting greater WNV divergence. However, recovered viral populations contained a preponderance of potentially deleterious mutations (i.e., high mutational load) and had lower relative fitness in avian cells compared to input virus. These findings demonstrate that the adaptive potential associated with mosquito transmission varies depending on the mosquito species and carries a significant fitness cost in vertebrates.

  4. Genetic Drift during Systemic Arbovirus Infection of Mosquito Vectors Leads to Decreased Relative Fitness during Host Switching.

    PubMed

    Grubaugh, Nathan D; Weger-Lucarelli, James; Murrieta, Reyes A; Fauver, Joseph R; Garcia-Luna, Selene M; Prasad, Abhishek N; Black, William C; Ebel, Gregory D

    2016-04-13

    The emergence of mosquito-borne RNA viruses, such as West Nile virus (WNV), is facilitated by genetically complex virus populations within hosts. Here, we determine whether WNV enzootic (Culex tarsalis, Cx. quinquefasciatus, and Cx. pipiens) and bridge vectors (Aedes aegypti) have differential impacts on viral mutational diversity and fitness. During systemic mosquito infection, WNV faced stochastic reductions in genetic diversity that rapidly was recovered during intra-tissue population expansions. Interestingly, this intrahost selection and diversification was mosquito species dependent with Cx. tarsalis and Cx. quinquefasciatus exhibiting greater WNV divergence. However, recovered viral populations contained a preponderance of potentially deleterious mutations (i.e., high mutational load) and had lower relative fitness in avian cells compared to input virus. These findings demonstrate that the adaptive potential associated with mosquito transmission varies depending on the mosquito species and carries a significant fitness cost in vertebrates. PMID:27049584

  5. siRNA-Mediated Silencing of doublesex during Female Development of the Dengue Vector Mosquito Aedes aegypti

    PubMed Central

    Mysore, Keshava; Sun, Longhua; Tomchaney, Michael; Sullivan, Gwyneth; Adams, Haley; Piscoya, Andres S.; Severson, David W.; Syed, Zainulabeuddin; Duman-Scheel, Molly

    2015-01-01

    The development of sex-specific traits, including the female-specific ability to bite humans and vector disease, is critical for vector mosquito reproduction and pathogen transmission. Doublesex (Dsx), a terminal transcription factor in the sex determination pathway, is known to regulate sex-specific gene expression during development of the dengue fever vector mosquito Aedes aegypti. Here, the effects of developmental siRNA-mediated dsx silencing were assessed in adult females. Targeting of dsx during A. aegypti development resulted in decreased female wing size, a correlate for body size, which is typically larger in females. siRNA-mediated targeting of dsx also resulted in decreased length of the adult female proboscis. Although dsx silencing did not impact female membrane blood feeding or mating behavior in the laboratory, decreased fecundity and fertility correlated with decreased ovary length, ovariole length, and ovariole number in dsx knockdown females. Dsx silencing also resulted in disruption of olfactory system development, as evidenced by reduced length of the female antenna and maxillary palp and the sensilla present on these structures, as well as disrupted odorant receptor expression. Female lifespan, a critical component of the ability of A. aegypti to transmit pathogens, was also significantly reduced in adult females following developmental targeting of dsx. The results of this investigation demonstrate that silencing of dsx during A. aegypti development disrupts multiple sex-specific morphological, physiological, and behavioral traits of adult females, a number of which are directly or indirectly linked to mosquito reproduction and pathogen transmission. Moreover, the olfactory phenotypes observed connect Dsx to development of the olfactory system, suggesting that A. aegypti will be an excellent system in which to further assess the developmental genetics of sex-specific chemosensation. PMID:26544686

  6. siRNA-Mediated Silencing of doublesex during Female Development of the Dengue Vector Mosquito Aedes aegypti.

    PubMed

    Mysore, Keshava; Sun, Longhua; Tomchaney, Michael; Sullivan, Gwyneth; Adams, Haley; Piscoya, Andres S; Severson, David W; Syed, Zainulabeuddin; Duman-Scheel, Molly

    2015-11-01

    The development of sex-specific traits, including the female-specific ability to bite humans and vector disease, is critical for vector mosquito reproduction and pathogen transmission. Doublesex (Dsx), a terminal transcription factor in the sex determination pathway, is known to regulate sex-specific gene expression during development of the dengue fever vector mosquito Aedes aegypti. Here, the effects of developmental siRNA-mediated dsx silencing were assessed in adult females. Targeting of dsx during A. aegypti development resulted in decreased female wing size, a correlate for body size, which is typically larger in females. siRNA-mediated targeting of dsx also resulted in decreased length of the adult female proboscis. Although dsx silencing did not impact female membrane blood feeding or mating behavior in the laboratory, decreased fecundity and fertility correlated with decreased ovary length, ovariole length, and ovariole number in dsx knockdown females. Dsx silencing also resulted in disruption of olfactory system development, as evidenced by reduced length of the female antenna and maxillary palp and the sensilla present on these structures, as well as disrupted odorant receptor expression. Female lifespan, a critical component of the ability of A. aegypti to transmit pathogens, was also significantly reduced in adult females following developmental targeting of dsx. The results of this investigation demonstrate that silencing of dsx during A. aegypti development disrupts multiple sex-specific morphological, physiological, and behavioral traits of adult females, a number of which are directly or indirectly linked to mosquito reproduction and pathogen transmission. Moreover, the olfactory phenotypes observed connect Dsx to development of the olfactory system, suggesting that A. aegypti will be an excellent system in which to further assess the developmental genetics of sex-specific chemosensation. PMID:26544686

  7. siRNA-Mediated Silencing of doublesex during Female Development of the Dengue Vector Mosquito Aedes aegypti.

    PubMed

    Mysore, Keshava; Sun, Longhua; Tomchaney, Michael; Sullivan, Gwyneth; Adams, Haley; Piscoya, Andres S; Severson, David W; Syed, Zainulabeuddin; Duman-Scheel, Molly

    2015-11-01

    The development of sex-specific traits, including the female-specific ability to bite humans and vector disease, is critical for vector mosquito reproduction and pathogen transmission. Doublesex (Dsx), a terminal transcription factor in the sex determination pathway, is known to regulate sex-specific gene expression during development of the dengue fever vector mosquito Aedes aegypti. Here, the effects of developmental siRNA-mediated dsx silencing were assessed in adult females. Targeting of dsx during A. aegypti development resulted in decreased female wing size, a correlate for body size, which is typically larger in females. siRNA-mediated targeting of dsx also resulted in decreased length of the adult female proboscis. Although dsx silencing did not impact female membrane blood feeding or mating behavior in the laboratory, decreased fecundity and fertility correlated with decreased ovary length, ovariole length, and ovariole number in dsx knockdown females. Dsx silencing also resulted in disruption of olfactory system development, as evidenced by reduced length of the female antenna and maxillary palp and the sensilla present on these structures, as well as disrupted odorant receptor expression. Female lifespan, a critical component of the ability of A. aegypti to transmit pathogens, was also significantly reduced in adult females following developmental targeting of dsx. The results of this investigation demonstrate that silencing of dsx during A. aegypti development disrupts multiple sex-specific morphological, physiological, and behavioral traits of adult females, a number of which are directly or indirectly linked to mosquito reproduction and pathogen transmission. Moreover, the olfactory phenotypes observed connect Dsx to development of the olfactory system, suggesting that A. aegypti will be an excellent system in which to further assess the developmental genetics of sex-specific chemosensation.

  8. Investigating the Potential Range Expansion of the Vector Mosquito Aedes Aegypti in Mexico with NASA Earth Science Remote Sensing Results

    NASA Technical Reports Server (NTRS)

    Crosson, W. L.; Estes, M. G.; Estes, S. M.; Hayden, M.; Monaghan, A. J.; Eisen, L.; Lozano-Fuentes, S.; Ochoa, C.; Tapia, B.; Welsh-Rodriquez, C. M.; Quattrochi, D.; MorenoMadrinan, M. J.

    2012-01-01

    In tropical and sub ]tropical regions, the mosquito Aedes aegypti is the major vector for the virus causing dengue, a serious public health issue in these areas. Through ongoing NSF- and NASA-funded studies, field surveys of Aedes aegypti and an integrated modeling approach are being used to improve our understanding of the potential range of the mosquito to expand toward heavily populated high elevation areas such as Mexico City under various climate change and socio ]economic scenarios. This work serves three primary objectives: (1) Employ NASA remotely-sensed data to supplement the environmental monitoring and modeling component of the project. These data-- for example, surface temperature, precipitation, vegetation indices, soil moisture and elevation-- are critical for understanding the habitat necessary for mosquito survival and abundance; (2) Implement training sessions to instruct scientists and students from Mexico and the U.S. on how to use remote sensing and implement the NASA SERVIR Regional Visualization and Monitoring System; (3) Employ the SERVIR framework to optimize the dissemination of key project results in order to increase their societal relevance and benefits in developing climate adaptation strategies. Field surveys of larval, pupal and adult Aedes aegypti, as well as detailed physical and social household characteristics, were conducted in the summers of 2011and 2012 at geographic scales from the household to the community along a transect from sea level to 2400 m ASL. These data are being used in models to estimate Aedes aegypti habitat suitability. In 2011, Aedes aegypti were identified at an elevation of over 2150 m in Puebla, the highest elevation at which this species has been observed.

  9. Investigating the Potential Range Expansion of the Vector Mosquito Aedes aegypti in Mexico with NASA Earth Science Remote Sensing Results

    NASA Astrophysics Data System (ADS)

    Crosson, W. L.; Eisen, L.; Estes, M. G.; Estes, S. M.; Hayden, M.; Lozano-Fuentes, S.; Monaghan, A. J.; Moreno Madriñán, M. J.; Ochoa, C.; Quattrochi, D.; Tapia, B.; Welsh-Rodriguez, C. M.

    2012-12-01

    In tropical and sub-tropical regions, the mosquito Aedes aegypti is the major vector for the virus causing dengue, a serious public health issue in these areas. Through ongoing NSF- and NASA-funded studies, field surveys of Aedes aegypti and an integrated modeling approach are being used to improve our understanding of the potential range of the mosquito to expand toward heavily populated high elevation areas such as Mexico City under various climate change and socio-economic scenarios. This work serves three primary objectives: (1) Employ NASA remotely-sensed data to supplement the environmental monitoring and modeling component of the project. These data -- for example, surface temperature, precipitation, vegetation indices, soil moisture and elevation -- are critical for understanding the habitat necessary for mosquito survival and abundance; (2) Implement training sessions to instruct scientists and students from Mexico and the U.S. on how to use remote sensing and implement the NASA SERVIR Regional Visualization and Monitoring System; (3) Employ the SERVIR framework to optimize the dissemination of key project results in order to increase their societal relevance and benefits in developing climate adaptation strategies. Field surveys of larval, pupal and adult Aedes aegypti, as well as detailed physical and social household characteristics, were conducted in the summers of 2011and 2012 at geographic scales from the household to the community along a transect from sea level to 2400 m ASL. These data are being used in models to estimate Aedes aegypti habitat suitability. In 2011, Aedes aegypti were identified at an elevation of over 2150 m in Puebla, the highest elevation at which this species has been observed.

  10. Identification of a polymorphic mucin-like gene expressed in the midgut of the mosquito, Aedes aegypti, using an integrated bulked segregant and differential display analysis.

    PubMed Central

    Morlais, I; Severson, D W

    2001-01-01

    The identification of putative differentially expressed genes within genome regions containing QTL determining susceptibility of the mosquito, Aedes aegypti, to the malarial parasite, Plasmodium gallinaceum, was investigated using an integrated, targeted approach based on bulked segregant and differential display analysis. A mosquito F2 population was obtained from pairwise matings between the parasite-susceptible RED strain and the resistant MOYO-R substrain. DNA from female carcasses was used to genotype individuals at RFLP markers of known chromosomal position around the major QTL (pgs 1). Midguts, dissected 48 hr after an infected blood meal, were used to prepare two RNA bulks, each representing one of the parental genotypes at the QTL interval. The RNA bulks were compared by differential display PCR. A mucin-like protein gene (AeIMUC1) was isolated and characterized. The gene maps within the pgs 1 QTL interval and is expressed in the adult female midgut. AeIMUC1 RNA abundance decreased with time after blood meal ingestion. No differential expression was observed between the two mosquito strains but three different alleles with inter- and intrastrain allelic polymorphisms including indels and SNPs were characterized. The AeIMUC1 gene chromosome location and allelic polymorphisms raise the possibility that the protein might be involved in parasite-mosquito interactions. PMID:11454761

  11. Gustatory receptor neuron responds to DEET and other insect repellents in the yellow-fever mosquito, Aedes aegypti

    NASA Astrophysics Data System (ADS)

    Sanford, Jillian L.; Shields, Vonnie D. C.; Dickens, Joseph C.

    2013-03-01

    Three gustatory receptor neurons were characterized for contact chemoreceptive sensilla on the labella of female yellow-fever mosquitoes, Aedes aegypti. The neuron with the smallest amplitude spike responded to the feeding deterrent, quinine, as well as N, N-diethyl-3-methylbenzamide and other insect repellents. Two other neurons with differing spikes responded to salt (NaCl) and sucrose. This is the first report of a gustatory receptor neuron specific for insect repellents in mosquitoes and may provide a tool for screening chemicals to discover novel or improved feeding deterrents and repellents for use in the management of arthropod disease vectors.

  12. Bacterial Exposure at the Larval Stage Induced Sexual Immune Dimorphism and Priming in Adult Aedes aegypti Mosquitoes

    PubMed Central

    Moreno-García, Miguel; Vargas, Valeria; Ramírez-Bello, Inci; Hernández-Martínez, Guadalupe; Lanz-Mendoza, Humberto

    2015-01-01

    Gender differences in the immune response of insects are driven by natural selection for females and sexual selection for males. These natural forces entail a multitude of extrinsic and intrinsic factors involved in a genotype-environment interaction that results in sex-biased expression of the genes shared by males and females. However, little is known about how an infection at a particular ontogenetic stage may influence later stages, or how it may impact sexual immune dimorphism. Using Aedes aegypti mosquitoes, the aim of the present study was to analyze the effect of a bacterial exposure at the larval stage on adult immunity in males and females. The parameters measured were phenoloxidase activity, nitric oxide production, antimicrobial activity, and the antimicrobial peptide transcript response. As a measure of the immune response success, the persistence of injected bacteria was also evaluated. The results show that males, as well as females, were able to enhance survival in the adult stage as a result of being exposed at the larval stage, which indicates a priming effect. Moreover, there was a differential gender immune response, evidenced by higher PO activity in males as well as higher NO production and greater antimicrobial activity in females. The greater bacterial persistence in females suggests a gender-specific strategy for protection after a previous experience with an elicitor. Hence, this study provides a primary characterization of the complex and gender-specific immune response of male and female adults against a bacterial challenge in mosquitoes primed at an early ontogenetic stage. PMID:26181517

  13. The developmental transcriptome of the mosquito Aedes aegypti, an invasive species and major arbovirus vector.

    PubMed

    Akbari, Omar S; Antoshechkin, Igor; Amrhein, Henry; Williams, Brian; Diloreto, Race; Sandler, Jeremy; Hay, Bruce A

    2013-09-04

    Mosquitoes are vectors of a number of important human and animal diseases. The development of novel vector control strategies requires a thorough understanding of mosquito biology. To facilitate this, we used RNA-seq to identify novel genes and provide the first high-resolution view of the transcriptome throughout development and in response to blood feeding in a mosquito vector of human disease, Aedes aegypti, the primary vector for Dengue and yellow fever. We characterized mRNA expression at 34 distinct time points throughout Aedes development, including adult somatic and germline tissues, by using polyA+ RNA-seq. We identify a total of 14,238 novel new transcribed regions corresponding to 12,597 new loci, as well as many novel transcript isoforms of previously annotated genes. Altogether these results increase the annotated fraction of the transcribed genome into long polyA+ RNAs by more than twofold. We also identified a number of patterns of shared gene expression, as well as genes and/or exons expressed sex-specifically or sex-differentially. Expression profiles of small RNAs in ovaries, early embryos, testes, and adult male and female somatic tissues also were determined, resulting in the identification of 38 new Aedes-specific miRNAs, and ~291,000 small RNA new transcribed regions, many of which are likely to be endogenous small-interfering RNAs and Piwi-interacting RNAs. Genes of potential interest for transgene-based vector control strategies also are highlighted. Our data have been incorporated into a user-friendly genome browser located at www.Aedes.caltech.edu, with relevant links to Vectorbase (www.vectorbase.org).

  14. Fluid absorption in the isolated midgut of adult female yellow fever mosquitoes (Aedes aegypti).

    PubMed

    Onken, Horst; Moffett, David F

    2015-07-01

    The transepithelial voltage (Vte) and the volume of isolated posterior midguts of adult female yellow fever mosquitoes (Aedes aegypti) were monitored. In all experiments, the initial Vte after filling the midgut was lumen negative, but subsequently became lumen positive at a rate of approximately 1 mV min(-1). Simultaneously, the midgut volume decreased, indicating spontaneous fluid absorption. When the midguts were filled and bathed with mosquito saline, the average rate of fluid absorption was 36.5±3.0 nl min(-1) (N=4, ±s.e.m.). In the presence of theophylline (10 mmol l(-1)), Vte reached significantly higher lumen-positive values, but the rate of fluid absorption was not affected (N=6). In the presence of NaCN (5 mmol l(-1)), Vte remained close to 0 mV (N=4) and fluid absorption was reduced (14.4±1.3 nl min(-1), N=3, ±s.e.m.). When midguts were filled with buffered NaCl (154 mmol l(-1) plus 1 mmol l(-1) HEPES) and bathed in mosquito saline with theophylline, fluid absorption was augmented (50.0±5.8 nl min(-1), N=12, ±s.e.m.). Concanamycin A (10 µmol l(-1)), ouabain (1 mmol l(-1)), and acetazolamide (1 mmol l(-1)) affected Vte in different ways, but all reduced fluid absorption by 60-70% of the value before addition of the drugs.

  15. Leucokinin mimetic elicits aversive behavior in mosquito Aedes aegypti (L.) and inhibits the sugar taste neuron.

    PubMed

    Kwon, Hyeogsun; Ali Agha, Moutaz; Smith, Ryan C; Nachman, Ronald J; Marion-Poll, Frédéric; Pietrantonio, Patricia V

    2016-06-21

    Insect kinins (leucokinins) are multifunctional peptides acting as neurohormones and neurotransmitters. In females of the mosquito vector Aedes aegypti (L.), aedeskinins are known to stimulate fluid secretion from the renal organs (Malpighian tubules) and hindgut contractions by activating a G protein-coupled kinin receptor designated "Aedae-KR." We used protease-resistant kinin analogs 1728, 1729, and 1460 to evaluate their effects on sucrose perception and feeding behavior. In no-choice feeding bioassays (capillary feeder and plate assays), the analog 1728, which contains α-amino isobutyric acid, inhibited females from feeding on sucrose. It further induced quick fly-away or walk-away behavior following contact with the tarsi and the mouthparts. Electrophysiological recordings from single long labellar sensilla of the proboscis demonstrated that mixing the analog 1728 at 1 mM with sucrose almost completely inhibited the detection of sucrose. Aedae-KR was immunolocalized in contact chemosensory neurons in prothoracic tarsi and in sensory neurons and accessory cells of long labellar sensilla in the distal labellum. Silencing Aedae-KR by RNAi significantly reduced gene expression and eliminated the feeding-aversion behavior resulting from contact with the analog 1728, thus directly implicating the Aedae-KR in the aversion response. To our knowledge, this is the first report that kinin analogs modulate sucrose perception in any insect. The aversion to feeding elicited by analog 1728 suggests that synthetic molecules targeting the mosquito Aedae-KR in the labellum and tarsi should be investigated for the potential to discover novel feeding deterrents of mosquito vectors. PMID:27274056

  16. Structure of an Odorant-Vinding Protein form the Mosquito Aedes aegypti Suggests a Binding Pocket Covered by a pH-Sensitive

    SciTech Connect

    N Leite; R Krogh; W Xu; Y Ishida; J Iulek; W Leal; G Oliva

    2011-12-31

    The yellow fever mosquito, Aedes aegypti, is the primary vector for the viruses that cause yellow fever, mostly in tropical regions of Africa and in parts of South America, and human dengue, which infects 100 million people yearly in the tropics and subtropics. A better understanding of the structural biology of olfactory proteins may pave the way for the development of environmentally-friendly mosquito attractants and repellents, which may ultimately contribute to reduction of mosquito biting and disease transmission. Previously, we isolated and cloned a major, female-enriched odorant-binding protein (OBP) from the yellow fever mosquito, AaegOBP1, which was later inadvertently renamed AaegOBP39. We prepared recombinant samples of AaegOBP1 by using an expression system that allows proper formation of disulfide bridges and generates functional OBPs, which are indistinguishable from native OBPs. We crystallized AaegOBP1 and determined its three-dimensional structure at 1.85 {angstrom} resolution by molecular replacement based on the structure of the malaria mosquito OBP, AgamOBP1, the only mosquito OBP structure known to date. The structure of AaegOBP1 (= AaegOBP39) shares the common fold of insect OBPs with six {alpha}-helices knitted by three disulfide bonds. A long molecule of polyethylene glycol (PEG) was built into the electron-density maps identified in a long tunnel formed by a crystallographic dimer of AaegOBP1. Circular dichroism analysis indicated that delipidated AaegOBP1 undergoes a pH-dependent conformational change, which may lead to release of odorant at low pH (as in the environment in the vicinity of odorant receptors). A C-terminal loop covers the binding cavity and this 'lid' may be opened by disruption of an array of acid-labile hydrogen bonds thus explaining reduced or no binding affinity at low pH.

  17. Larvicidal and pupicidal activities of essential oils from Zingiberaceae plants against Aedes aegypti (Linn.) and Culex quinquefasciatus say mosquitoes.

    PubMed

    Phukerd, Ubol; Soonwera, Mayura

    2013-09-01

    We conducted this study to investigate the efficacy of herbal essential oils from 12 species of Zingiberaceae plants to determine their larvicidal and pupicidal activity against fourth instar larvae and pupae of Aedes aegypti and Culex quinquefasciatus mosquitoes. Probit analysis was used to analyze the data. Larval mortality was recorded at 1, 5, 10, 15, 30 and 60 minutes and 24 hours. Pupal mortality was recorded at 15 and 30 minutes and 1, 3, 6, 12, 24 and 48 hours. All the essential oils tested showed larvicidal activity. Zingiber cassumunar and Amomum biflorum oils proved to have the greatest activity against Ae. aegypti larvae with LT50 of 1.4 minutes and 100% mortality at 5 and 10 minutes, respectively. Boesenbergia rotunda, Curcuma zedoaria and Hedychium coronarium essential oils had activity against Cx. quinquefasciatus larvae with LT50 of 1.7 minutes and 100% mortality at 10 minutes, 5 minutes and 15 minutes, respectively. All the herbal essential oils tested resulted in 100% mortality against Ae. aegypti and Cx. quinquefasciatus larvae at 60 minutes and 30 minutes, respectively. Ae. aegypti and Cx. quinquefasciatus pupae were susceptible to Z. ottensii oil (LT50 of 0.2 hour) and Z. zerumbet oil (LT50 of 0.6 hour) and had pupicidal activity with 100% mortality at 6 and 3 hours, respectively. All the essential oils test had pupicidal activity against Ae. aegypti and Cx. quinquefasciatus by inducing 100% mortality at 48 hours. PMID:24437311

  18. Genetic structure and phylogeography of Aedes aegypti, the dengue and yellow-fever mosquito vector in Bolivia.

    PubMed

    Paupy, Christophe; Le Goff, Gilbert; Brengues, Cécile; Guerra, Mabel; Revollo, Jimmy; Barja Simon, Zaïra; Hervé, Jean-Pierre; Fontenille, Didier

    2012-08-01

    Between the 16th and 18th centuries, Aedes aegypti (Diptera: Culicidae), a mosquito native to Africa, invaded the Americas, where it was successively responsible for the emergence of yellow fever (YF) and dengue (DEN). The species was eradicated from numerous American countries in the mid-20th century, but re-invaded them in the 1970s and 1980s. Little is known about the precise identities of Ae. aegypti populations which successively thrived in South America, or their relation with the epidemiological changes in patterns of YF and DEN. We examined these questions in Bolivia, where Ae. aegypti, eradicated in 1943, re-appeared in the 1980s. We assessed the genetic variability and population genetics of Ae. aegypti samples in order to deduce their genetic structure and likely geographic origin. Using a 21-population set covering Bolivia, we analyzed the polymorphism at nine microsatellite loci and in two mitochondrial DNA regions (COI and ND4). Microsatellite markers revealed a significant genetic structure among geographic populations (F(ST)=0.0627, P<0.0001) in relation with the recent re-expansion of Ae. aegypti in Bolivia. Analysis of mtDNA sequences revealed the existence of two genetic lineages, one dominant lineage recovered throughout Bolivia, and the second restricted to rural localities in South Bolivia. Phylogenic analysis indicated that this minority lineage was related to West African Ae. aegypti specimens. In conclusion, our results suggested a temporal succession of Ae. aegypti populations in Bolivia, that potentially impacted the epidemiology of dengue and yellow fever.

  19. Evaluation of a peridomestic mosquito trap for integration into an Aedes aegypti (Diptera: Culicidae) push-pull control strategy.

    PubMed

    Salazar, Ferdinand V; Achee, Nicole L; Grieco, John P; Prabaripai, Atchariya; Eisen, Lars; Shah, Pankhil; Chareonviriyaphap, Theeraphap

    2012-06-01

    We determined the feasibility of using the BG-Sentinel™ mosquito trap (BGS) as the pull component in a push-pull strategy to reduce indoor biting by Aedes aegypti. This included evaluating varying numbers of traps (1-4) and mosquito release numbers (10, 25, 50, 100, 150, 200, and 250) on recapture rates under screen house conditions. Based on these variations in trap and mosquito numbers, release intervals were rotated through a completely randomized design with environmental factors (temperature, relative humidity, and light intensity) and monitored throughout each experiment. Data from four sampling time points (05:30, 09:30, 13:30, and 17:30) indicate a recapture range among treatments of 66-98%. Furthermore, 2-3 traps were as effective in recapturing mosquitoes as 4 traps for all mosquito release numbers. Time trends indicate Day 1 (the day the mosquitoes were released) as the "impact period" for recapture with peak numbers of marked mosquitoes collected at 09:30 or 4 h post-release. Information from this study will be used to guide the configuration of the BGS trap component of a push-pull vector control strategy currently in the proof-of-concept stage of development in Thailand and Peru.

  20. Mosquito Larvicidal Potential of Gossypium hirsutum (Bt cotton) Leaves Extracts against Aedes aegypti and Anopheles stephensi larvae

    PubMed Central

    Patil, Chandrashekhar D; Borase, Hemant P; Salunkhe, Rahul B; Suryawanshi, Rahul K; Narkhade, Chandrakant P; Salunke, Bipinchandra K; Patil, Satish V

    2014-01-01

    Background: We aimed to extract the ingredients from leaves of Gossypium hirsutum (Bt cotton) using different solvents and evaluate for potential use to control different larval stages of mosquito species, Aedes aegypti and Anopheles stephensi. Methods: Qualitative and quantitative estimation of ingredients from Go. hirsutum (Bt) plant extract was carried out and their inhibitory action against mosquito larvae was determined using mosquito larvicidal assay. Results: LC50 values of water, ethanol, ethyl acetate and hexane extracts for Ae. aegypti were 211.73±21.49, 241.64±19.92, 358.07±32.43, 401.03±36.19 and 232.56±26.00, 298.54±21.78, 366.50±30.59, 387.19±31.82 for 4th instar of An. stephensi, respectively. The water extract displayed lowest LC50 value followed by ethanol, ethyl acetate and hexane. Owing to the comparatively better activity of water extract, its efficacy was further evaluated for mosquito larvicidal activity, which exhibited LC50 values of 133.95±12.79, 167.65±11.34 against 2nd and 3rd instars of Ae. aegypti and 145.48±11.76, 188.10±12.92 against 2nd and 3rd instars of An. stephensi, respectively. Crude protein from the water extract was precipitated using acetone and tested against 2nd, 3rd and 4th instars of Ae. aegypti and An. stephensi. It revealed further decrease in LC50 values as 105.72±25.84, 138.23±23.18, 126.19±25.65, 134.04±04 and 137.88±17.59, 154.25±16.98 for 2nd, 3rd and 4th instars of Ae. aegypti and An. stephensi, respectively. Conclusion: Leaves extracts of Go. hirsutum (Bt) is potential mosquito larvicide and can be used as a potent alternative to chemical insecticides in integrated pest management. PMID:25629069

  1. A Deep Insight into the Sialome of Male and Female Aedes aegypti Mosquitoes

    PubMed Central

    Ribeiro, José M. C.; Martin-Martin, Ines; Arcà, Bruno; Calvo, Eric

    2016-01-01

    Only adult female mosquitoes feed on blood, while both genders take sugar meals. Accordingly, several compounds associated with blood feeding (i.e. vasodilators, anti-clotting, anti-platelets) are found only in female glands, while enzymes associated with sugar feeding or antimicrobials (such as lysozyme) are found in the glands of both sexes. We performed de novo assembly of reads from adult Aedes aegypti female and male salivary gland libraries (285 and 90 million reads, respectively). By mapping back the reads to the assembled contigs, plus mapping the reads from a publicly available Ae. aegypti library from adult whole bodies, we identified 360 transcripts (including splice variants and alleles) overexpressed tenfold or more in the glands when compared to whole bodies. Moreover, among these, 207 were overexpressed fivefold or more in female vs. male salivary glands, 85 were near equally expressed and 68 were overexpressed in male glands. We call in particular the attention to C-type lectins, angiopoietins, female-specific Antigen 5, the 9.7 kDa, 12–14 kDa, 23.5 kDa, 62/34 kDa, 4.2 kDa, proline-rich peptide, SG8, 8.7 kDa family and SGS fragments: these polypeptides are all of unknown function, but due to their overexpression in female salivary glands and putative secretory nature they are expected to affect host physiology. We have also found many transposons (some of which novel) and several endogenous viral transcripts (probably acquired by horizontal transfer) which are overexpressed in the salivary glands and may play some role in tissue-specific gene regulation or represent a mechanism of virus interference. This work contributes to a near definitive catalog of male and female salivary gland transcripts from Ae. aegypti, which will help to direct further studies aiming at the functional characterization of the many transcripts with unknown function and the understanding of their role in vector-host interaction and pathogen transmission. PMID:26999592

  2. Near-Infrared Spectroscopy, a Rapid Method for Predicting the Age of Male and Female Wild-Type and Wolbachia Infected Aedes aegypti

    PubMed Central

    Milali, Masabho P.; Henry, Michael; Wirtz, Robert A.; Hugo, Leon E.; Dowell, Floyd E.; Devine, Gregor J.

    2016-01-01

    Estimating the age distribution of mosquito populations is crucial for assessing their capacity to transmit disease and for evaluating the efficacy of available vector control programs. This study reports on the capacity of the near-infrared spectroscopy (NIRS) technique to rapidly predict the ages of the principal dengue and Zika vector, Aedes aegypti. The age of wild-type males and females, and males and females infected with wMel and wMelPop strains of Wolbachia pipientis were characterized using this method. Calibrations were developed using spectra collected from their heads and thoraces using partial least squares (PLS) regression. A highly significant correlation was found between the true and predicted ages of mosquitoes. The coefficients of determination for wild-type females and males across all age groups were R2 = 0.84 and 0.78, respectively. The coefficients of determination for the age of wMel and wMelPop infected females were 0.71 and 0.80, respectively (P< 0.001 in both instances). The age of wild-type female Ae. aegypti could be identified as < or ≥ 8 days old with an accuracy of 91% (N = 501), whereas female Ae. aegypti infected with wMel and wMelPop were differentiated into the two age groups with an accuracy of 83% (N = 284) and 78% (N = 229), respectively. Our results also indicate NIRS can distinguish between young and old male wild-type, wMel and wMelPop infected Ae. aegypti with accuracies of 87% (N = 253), 83% (N = 277) and 78% (N = 234), respectively. We have demonstrated the potential of NIRS as a predictor of the age of female and male wild-type and Wolbachia infected Ae. aegypti mosquitoes under laboratory conditions. After field validation, the tool has the potential to offer a cheap and rapid alternative for surveillance of dengue and Zika vector control programs. PMID:27768689

  3. Differential Protein Modulation in Midguts of Aedes aegypti Infected with Chikungunya and Dengue 2 Viruses

    PubMed Central

    Tchankouo-Nguetcheu, Stéphane; Khun, Huot; Pincet, Laurence; Roux, Pascal; Bahut, Muriel; Huerre, Michel; Guette, Catherine; Choumet, Valérie

    2010-01-01

    Background Arthropod borne virus infections cause several emerging and resurgent infectious diseases. Among the diseases caused by arboviruses, dengue and chikungunya are responsible for a high rate of severe human diseases worldwide. The midgut of mosquitoes is the first barrier for pathogen transmission and is a target organ where arboviruses must replicate prior to infecting other organs. A proteomic approach was undertaken to characterize the key virus/vector interactions and host protein modifications that happen in the midgut for viral transmission to eventually take place. Methodology and Principal Findings Using a proteomics differential approach with two-Dimensional Differential in-Gel Electrophoresis (2D-DIGE), we defined the protein modulations in the midgut of Aedes aegypti that were triggered seven days after an oral infection (7 DPI) with dengue 2 (DENV-2) and chikungunya (CHIKV) viruses. Gel profile comparisons showed that the level of 18 proteins was modulated by DENV-2 only and 12 proteins were modulated by CHIKV only. Twenty proteins were regulated by both viruses in either similar or different ways. Both viruses caused an increase of proteins involved in the generation of reactive oxygen species, energy production, and carbohydrate and lipid metabolism. Midgut infection by DENV-2 and CHIKV triggered an antioxidant response. CHIKV infection produced an increase of proteins involved in detoxification. Conclusion/Significance Our study constitutes the first analysis of the protein response of Aedes aegypti's midgut infected with viruses belonging to different families. It shows that the differentially regulated proteins in response to viral infection include structural, redox, regulatory proteins, and enzymes for several metabolic pathways. Some of these proteins like antioxidant are probably involved in cell protection. On the other hand, we propose that the modulation of other proteins like transferrin, hsp60 and alpha glucosidase, may favour

  4. Restriction fragment length polymorphism mapping of quantitative trait loci for malaria parasite susceptibility in the mosquito Aedes aegypti

    SciTech Connect

    Severson, D.W.; Thathy, V.; Mori, A.

    1995-04-01

    Susceptibility of the mosquito Aedes aegypti to the malarial parasite Plasmodium gallinaceum was investigated as a quantitative trait using restriction fragment length polymorphisms (RFLP). Two F{sub 2} populations of mosquitoes were independently prepared from pairwise matings between a highly susceptible and a refractory strain of A. aegypti. RFLP were tested for association with oocyst development on the mosquito midgut. Two putative quantitative trait loci (QTL) were identified that significantly affect susceptibility. One QTL, pgs [2,LF98], is located on chromosome 2 and accounted for 65 and 49% of the observed phenotypic variance in the two populations, respectively. A second QTL, pgs[3,MalI], is located on chromosome 3 and accounted for 14 and 10% of the observed phenotypic variance in the two populations, respectively. Both QTL exhibit a partial dominance effect on susceptibility, wherein the dominance effect is derived from the refractory parent. No indication of epistasis between these QTL was detected. Evidence suggests that either a tightly linked cluster of independent genes or a single locus affecting susceptibility to various mosquito-borne parasites and pathogens has evolved near the LF98 locus; in addition to P. gallinaceum susceptibility, this general genome region has previously been implicated in susceptibility to the filaria nematode Brugia malayi and the yellow fever virus. 35 refs., 2 figs., 3 tabs.

  5. Mosquito larvicidal activity of Aloe vera (Family: Liliaceae) leaf extract and Bacillus sphaericus, against Chikungunya vector, Aedes aegypti

    PubMed Central

    Subramaniam, Jayapal; Kovendan, Kalimuthu; Mahesh Kumar, Palanisamy; Murugan, Kadarkarai; Walton, William

    2012-01-01

    The bio-efficacy of Aloe vera leaf extract and bacterial insecticide, Bacillus sphaericus larvicidal activity was assessed against the first to fourth instars larvae of Aedes aegypti, under the laboratory conditions. The plant material was shade dried at room temperature and powdered coarsely. A. vera and B. sphaericus show varied degrees of larvicidal activity against various instars larvae of A. aegypti. The LC50 of A. vera against the first to fourth instars larvae were 162.74, 201.43, 253.30 and 300.05 ppm and the LC90 442.98, 518.86, 563.18 and 612.96 ppm, respectively. B. sphaericus against the first to fourth instars larvae the LC50 values were 68.21, 79.13, 93.48, and 107.05 ppm and the LC90 values 149.15, 164.67, 183.84, and 201.09 ppm, respectively. However, the combined treatment of A. vera + B. sphaericus (1:2) material shows highest larvicidal activity of the LC50 values 54.80, 63.11, 74.66 and 95.10 ppm; The LC90 values of 145.29, 160.14, 179.74 and 209.98 ppm, against A. aegypti in all the tested concentrations than the individuals and clearly established that there is a substantial amount of synergist act. The present investigation clearly exhibits that both A. vera and B. sphaericus materials could serve as a potential larvicidal agent. Since, A. aegypti is a container breeder vector mosquito this user and eco-friendly and low-cost vector control strategy could be a viable solution to the existing dengue disease burden. Therefore, this study provides first report on the mosquito larvicidal activity the combined effect of A. vera leaf extract and B. sphaericus against as target species of A. aegypti. PMID:23961212

  6. Isolation and identification of mosquito (Aedes aegypti ) biting deterrent fatty acids from male inflorescences of breadfruit (Artocarpus altilis (Parkinson) Fosberg).

    PubMed

    Jones, A Maxwell P; Klun, Jerome A; Cantrell, Charles L; Ragone, Diane; Chauhan, Kamlesh R; Brown, Paula N; Murch, Susan J

    2012-04-18

    Dried male inflorescences of breadfruit ( Artocarpus altilis , Moraceae) are burned in communities throughout Oceania to repel flying insects, including mosquitoes. This study was conducted to identify chemicals responsible for mosquito deterrence. Various crude extracts were evaluated, and the most active, the hydrodistillate, was used for bioassay-guided fractionation. The hydrodistillate and all fractions displayed significant deterrent activity. Exploratory GC-MS analysis revealed more than 100 distinctive peaks, and more than 30 compounds were putatively identified, including a mixture of terpenes, aldehydes, fatty acids, and aromatics. A systematic bioassay-directed study using adult Aedes aegypti females identified capric, undecanoic, and lauric acid as primary deterrent constituents. A synthetic mixture of fatty acids present in the most active fraction and individual fatty acids were all significantly more active than N,N-diethyl-m-toluamide (DEET). These results provide support for this traditional practice and indicate the potential of male breadfruit flowers and fatty acids as mosquito repellents.

  7. Modelling Aedes aegypti mosquito control via transgenic and sterile insect techniques: endemics and emerging outbreaks.

    PubMed

    Seirin Lee, S; Baker, R E; Gaffney, E A; White, S M

    2013-08-21

    The invasion of pest insects often changes or destroys a native ecosystem, and can result in food shortages and disease endemics. Issues such as the environmental effects of chemical control methods, the economic burden of maintaining control strategies and the risk of pest resistance still remain, and mosquito-borne diseases such as malaria and dengue fever prevail in many countries, infecting over 100 million worldwide in 2010. One environmentally friendly method for mosquito control is the Sterile Insect Technique (SIT). This species-specific method of insect control relies on the mass rearing, sterilization and release of large numbers of sterile insects. An alternative transgenic method is the Release of Insects carrying a Dominant Lethal (RIDL). Our objective is to consider contrasting control strategies for two invasive scenarios via SIT and RIDL: an endemic case and an emerging outbreak. We investigate how the release rate and size of release region influence both the potential for control success and the resources needed to achieve it, under a range of conditions and control strategies, and we discuss advantageous strategies with respect to reducing the release resources and strategy costs (in terms of control mosquito numbers) required to achieve complete eradication of wild-type mosquitoes.

  8. Stochastic eco-epidemiological model of dengue disease transmission by Aedes aegypti mosquito.

    PubMed

    Otero, M; Solari, H G

    2010-01-01

    We present a stochastic dynamical model for the transmission of dengue that takes into account seasonal and spatial dynamics of the vector Aedes aegypti. It describes disease dynamics triggered by the arrival of infected people in a city. We show that the probability of an epidemic outbreak depends on seasonal variation in temperature and on the availability of breeding sites. We also show that the arrival date of an infected human in a susceptible population dramatically affects the distribution of the final size of epidemics and that early outbreaks have a low probability. However, early outbreaks are likely to produce large epidemics because they have a longer time to evolve before the winter extinction of vectors. Our model could be used to estimate the risk and final size of epidemic outbreaks in regions with seasonal climatic variations.

  9. Investigation of environmental influences on a transcriptional assay for the prediction of age of Aedes aegypti (Diptera: Culicidae) mosquitoes.

    PubMed

    Hugo, Leon E; Kay, Brian H; O'Neill, Scott L; Ryan, Peter A

    2010-11-01

    We examined the effects of environmental regulation of gene transcription on the accuracy of a transcriptional profiling method for determining insect age. In combined temperature/nutrition treatments, Aedes aegypti (L.) mosquitoes were maintained in the laboratory at three different temperatures (20, 26, and 32 degrees C), and larvae were fed on low, medium, and high diet regimens. Adult mosquitoes of distinct size classes were produced. Transcription of three age-responsive genes (Ae-15848, Ae-8505, and Ae-4274) was measured from 1-, 10-, and 19-d-old specimens using a quantitative reverse-transcription polymerase chain reaction method incorporating dual-labeled TaqMan probes. Temperature had a significant effect on transcript abundance for two of the model genes (Ae-15848 and Ae-8505), and transcription of model genes was unaffected by the main effect of larval diet level; however, significant temperature by diet level interactions were observed. Total RNA yield from individual mosquitoes varied according to adult age and temperature, and when combined with wing length, provided a useful predictor variable in age prediction models. More accurate age predictions were achieved from models generated at the same temperature as test mosquitoes; however, whereas significant differences in mean predicted ages were observed between 1- and 10-d-old mosquitoes, differences between 10 and 19 d were nonsignificant. This study highlights the effect of environmental regulation on gene transcription age grading and the need to identify additional gene biomarkers of age to improve the classification of older mosquitoes.

  10. Detection of arboviruses and other micro-organisms in experimentally infected mosquitoes using massively parallel sequencing.

    PubMed

    Hall-Mendelin, Sonja; Allcock, Richard; Kresoje, Nina; van den Hurk, Andrew F; Warrilow, David

    2013-01-01

    Human disease incidence attributed to arbovirus infection is increasing throughout the world, with effective control interventions limited by issues of sustainability, insecticide resistance and the lack of effective vaccines. Several promising control strategies are currently under development, such as the release of mosquitoes trans-infected with virus-blocking Wolbachia bacteria. Implementation of any control program is dependent on effective virus surveillance and a thorough understanding of virus-vector interactions. Massively parallel sequencing has enormous potential for providing comprehensive genomic information that can be used to assess many aspects of arbovirus ecology, as well as to evaluate novel control strategies. To demonstrate proof-of-principle, we analyzed Aedes aegypti or Aedes albopictus experimentally infected with dengue, yellow fever or chikungunya viruses. Random amplification was used to prepare sufficient template for sequencing on the Personal Genome Machine. Viral sequences were present in all infected mosquitoes. In addition, in most cases, we were also able to identify the mosquito species and mosquito micro-organisms, including the bacterial endosymbiont Wolbachia. Importantly, naturally occurring Wolbachia strains could be differentiated from strains that had been trans-infected into the mosquito. The method allowed us to assemble near full-length viral genomes and detect other micro-organisms without prior sequence knowledge, in a single reaction. This is a step toward the application of massively parallel sequencing as an arbovirus surveillance tool. It has the potential to provide insight into virus transmission dynamics, and has applicability to the post-release monitoring of Wolbachia in mosquito populations.

  11. Blood-Feeding Induces Reversible Functional Changes in Flight Muscle Mitochondria of Aedes aegypti Mosquito

    PubMed Central

    Gonçalves, Renata L. S.; Machado, Ana Carolina L.; Paiva-Silva, Gabriela O.; Sorgine, Marcos H. F.; Momoli, Marisa M.; Oliveira, Jose Henrique M.; Vannier-Santos, Marcos A.; Galina, Antonio; Oliveira, Pedro L.; Oliveira, Marcus F.

    2009-01-01

    Background Hematophagy poses a challenge to blood-feeding organisms since products of blood digestion can exert cellular deleterious effects. Mitochondria perform multiple roles in cell biology acting as the site of aerobic energy-transducing pathways, and also an important source of reactive oxygen species (ROS), modulating redox metabolism. Therefore, regulation of mitochondrial function should be relevant for hematophagous arthropods. Here, we investigated the effects of blood-feeding on flight muscle (FM) mitochondria from the mosquito Aedes aegypti, a vector of dengue and yellow fever. Methodology/Principal Findings Blood-feeding caused a reversible reduction in mitochondrial oxygen consumption, an event that was parallel to blood digestion. These changes were most intense at 24 h after blood meal (ABM), the peak of blood digestion, when oxygen consumption was inhibited by 68%. Cytochromes c and a+a3 levels and cytochrome c oxidase activity of the electron transport chain were all reduced at 24 h ABM. Ultrastructural and molecular analyses of FM revealed that mitochondria fuse upon blood meal, a condition related to reduced ROS generation. Consistently, BF induced a reversible decrease in mitochondrial H2O2 formation during blood digestion, reaching their lowest values at 24 h ABM where a reduction of 51% was observed. Conclusion Blood-feeding triggers functional and structural changes in hematophagous insect mitochondria, which may represent an important adaptation to blood feeding. PMID:19924237

  12. [Comparison of 2 populations of Aedes aegypti mosquitoes from Santiago de Cuba with different rest conduct].

    PubMed

    Bisset, Juan A; Rodríguez, Magdalena; De Armas, Yaxsier

    2005-01-01

    Two populations of Aedes aegypti that were collected in Santiago de Cuba during the epidemics of 1971 were separated for having different rest habits, some of them rested naturally on the walls up to 1 m high (Santiago de Cuba strain) and the others were found resting in the roofs of the houses (Santiago de Cuba Techo strain). These strains did not show significant differences as regards their morphological characteristics. The mosquitoes corresponding to Santiago de Cuba Techo strain presented the same patches that those of Santiago de Cuba. The resistance to organophosphate insecticides is very similar in both populations; however, the Santiago de Cuba Techo strain shows a higher resistance to pyrethroid deltamethrin than the Santiago de Cuba strain. From the biochemical point of view and by using the DEF synergist, it was proved that esterases are associated with the high resistance to clorpirifos in both strains. It was not so with the MFO, which was demonstrated by means of the piperomyl butoxide sinergist. Nevertheless, the GST enzyme seems to be responsible for the high resistance to deltamethrin detected in the Santiago de Cuba Techo strain due to the elevated frequency value of that gene in this strain. The random amplified polymorphic DNA technique was used to observe the genetic variability between the 2 populations. The results revealed that there was genetic polymorphism between the populations under study, which could have an impact on the ecology and epidemiology of the vector.

  13. Extract of Bowdichia virgilioides and maackiain as larvicidal agent against Aedes aegypti mosquito.

    PubMed

    Bezerra-Silva, Patrícia C; Santos, Jefferson C; Santos, Geanne K N; Dutra, Kamilla A; Santana, Andrea L B D; Maranhão, Claudia A; Nascimento, Márcia S; Navarro, Daniela M A F; Bieber, Lothar W

    2015-06-01

    The larvicidal activities of extracts of three hardwood species (Hymenaea stigonorcapa, Anadenanthera colubrina and Bowdichia virgilioides) against 4th instar larvae of Aedes aegypti were evaluated using WHO guidelines. Extracts of H. stignocarpa and A. colubrina showed weak activity. The highest larvicidal effect was obtained with the cyclohexane extract of the heartwood of B. virgilioides, which caused 100% mortality at concentrations at 50 and 100 µg/mL. Fraction toluene/EtOAc (8:2) from this extract showed larvicidal activity (LC₅₀ = 34.90 ± 1.27 µg/mL). A mixture of two compounds identified as medicarpin and maackiain exhibited a very good larvicidal activity (sub-fraction 2, LC₅₀ = 17.5 ± 1.87 µg/mL) and maackiain showed to be a strong larvicidal compound (LC₅₀ = 21.95 ± 1.34 µg/mL). This result can be of value in the search for new natural larvicidal compounds from other hardwood plant extracts and presents the first report of B. virgilioides being used to control a mosquito vector.

  14. Historical environmental change in Africa drives divergence and admixture of Aedes aegypti mosquitoes: a precursor to successful worldwide colonization?

    PubMed

    Bennett, Kelly Louise; Shija, Fortunate; Linton, Yvonne-Marie; Misinzo, Gerald; Kaddumukasa, Martha; Djouaka, Rousseau; Anyaele, Okorie; Harris, Angela; Irish, Seth; Hlaing, Thaung; Prakash, Anil; Lutwama, Julius; Walton, Catherine

    2016-09-01

    Increasing globalization has promoted the spread of exotic species, including disease vectors. Understanding the evolutionary processes involved in such colonizations is both of intrinsic biological interest and important to predict and mitigate future disease risks. The Aedes aegypti mosquito is a major vector of dengue, chikungunya and Zika, the worldwide spread of which has been facilitated by Ae. aegypti's adaption to human-modified environments. Understanding the evolutionary processes involved in this invasion requires characterization of the genetic make-up of the source population(s). The application of approximate Bayesian computation (ABC) to sequence data from four nuclear and one mitochondrial marker revealed that African populations of Ae. aegypti best fit a demographic model of lineage diversification, historical admixture and recent population structuring. As ancestral Ae. aegypti were dependent on forests, this population history is consistent with the effects of forest fragmentation and expansion driven by Pleistocene climatic change. Alternatively, or additionally, historical human movement across the continent may have facilitated their recent spread and mixing. ABC analysis and haplotype networks support earlier inferences of a single out-of-Africa colonization event, while a cline of decreasing genetic diversity indicates that Ae. aegypti moved first from Africa to the Americas and then to Asia. ABC analysis was unable to verify this colonization route, possibly because the genetic signal of admixture obscures the true colonization pathway. By increasing genetic diversity and forming novel allelic combinations, divergence and historical admixture within Africa could have provided the adaptive potential needed for the successful worldwide spread of Ae. aegypti. PMID:27439067

  15. Experimental assessment of bedbugs (Cimex lectularius and Cimex hemipterus) and mosquitoes (Aedes aegypti formosus) as vectors of human immunodeficiency virus.

    PubMed

    Jupp, P G; Lyons, S F

    1987-09-01

    In vitro experiments were conducted to assess whether bedbugs (Cimex lectularius and Cimex hemipterus) and mosquitoes (Aedes aegypti formosus) could act as vectors of HIV. These insects engorged through a membrane on a blood-virus mixture. Female bedbugs were larger than males and took larger blood-meals when fed to repletion. It was determined that the full blood-meal of a female bedbug contained 0.09 x 10(5) tissue culture infectious doses (TCID) of virus and a male 0.07 x 10(5) TCID, while partial meals taken when feeding was interrupted contained 0.013 x 10(5) TCID and 0.015 x 10(5) TCID for female and male bugs, respectively. Reverse transcriptase activity was assayed after culture of insect extracts in H9 cells: this showed survival of virus in C. lectularius for up to 4 h, in C. hemipterus for up to 1, possibly 2 h, but no survival in Ae. aegypti formosus. Four attempts to transmit the virus by interrupted feeding by C. lectularius from a blood-virus mixture to uninfected blood failed. It is concluded that Ae. aegypti formosus and probably other mosquitoes are not mechanical vectors of HIV and that such transmission is also unlikely to occur in bedbugs under natural conditions.

  16. Potential of crude seed extract of celery, Apium graveolens L., against the mosquito Aedes aegypti (L.) (Diptera: Culicidae).

    PubMed

    Choochote, Wej; Tuetun, Benjawan; Kanjanapothi, Duangta; Rattanachanpichai, Eumporn; Chaithong, Udom; Chaiwong, Prasong; Jitpakdi, Atchariya; Tippawangkosol, Pongsri; Riyong, Doungrat; Pitasawat, Benjawan

    2004-12-01

    Crude seed extract of celery, Apium graveolens, was investigated for anti-mosquito potential, including larvicidal, adulticidal, and repellent activities against Aedes aegypti, the vector of dengue haemorrhagic fever. The ethanol-extracted A. graveolens possessed larvicidal activity against fourth instar larvae of Ae. aegypti with LD50 and LD95 values of 81.0 and 176.8 mg/L, respectively. The abnormal movement observed in treated larvae indicated that the toxic effect of A. graveolens extract was probably on the nervous system. In testing for adulticidal activity, this plant extract exhibited a slightly adulticidal potency with LD50 and LD95 values of 6.6 and 66.4 mg/cm2, respectively. It showed repellency against Ae. aegypti adult females with ED50 and ED95 values of 2.03 and 28.12 mg/cm2, respectively. It also provided biting protection time of 3 h when applied at a concentration of 25 g%. Topical application of the ethanol-extracted A. graveolens did not induce dermal irritation. No adverse effects on the skin or other parts of the body of human volunteers were observed during 3 mo of the study period or in the following 3 mo, after which time observations ceased. A. graveolens, therefore, can be considered as a probable source of some biologically active compounds used in the development of mosquito control agents, particularly repellent products.

  17. Ovicidal and Oviposition Deterrent Activities of Medicinal Plant Extracts Against Aedes aegypti L. and Culex quinquefasciatus Say Mosquitoes (Diptera: Culicidae)

    PubMed Central

    Reegan, Appadurai Daniel; Gandhi, Munusamy Rajiv; Paulraj, Micheal Gabriel; Ignacimuthu, Savarimuthu

    2014-01-01

    Objectives To evaluate the ovicidal and oviposition deterrent activities of five medicinal plant extracts namely Aegle marmelos (Linn.), Limonia acidissima (Linn.), Sphaeranthus indicus (Linn.), Sphaeranthus amaranthoides (burm.f), and Chromolaena odorata (Linn.) against Culex quinquefasciatus and Aedes aegypti mosquitoes. Three solvents, namely hexane, ethyl acetate, and methanol, were used for the preparation of extracts from each plant. Methods Four different concentrations—62.5 parts per million (ppm), 125 ppm, 250 ppm, and 500 ppm—were prepared using acetone and tested for ovicidal and oviposition deterrent activities. One-way analysis of variance (ANOVA) was used to determine the significance of the treatments and means were separated by Tukey's test of comparison. Results Among the different extracts of the five plants screened, the hexane extract of L. acidissima recorded the highest ovicidal activity of 79.2% and 60% at 500 ppm concentration against the eggs of Cx. quinquefasciatus and Ae. aegypti, respectively. Similarly, the same hexane extract of L. acidissima showed 100% oviposition deterrent activity at all the tested concentrations against Cx. quinquefasciatus and Ae. aegypti adult females. Conclusion It is concluded that the hexane extract of L. acidissima could be used in an integrated mosquito management program. PMID:25737834

  18. Potential of crude seed extract of celery, Apium graveolens L., against the mosquito Aedes aegypti (L.) (Diptera: Culicidae).

    PubMed

    Choochote, Wej; Tuetun, Benjawan; Kanjanapothi, Duangta; Rattanachanpichai, Eumporn; Chaithong, Udom; Chaiwong, Prasong; Jitpakdi, Atchariya; Tippawangkosol, Pongsri; Riyong, Doungrat; Pitasawat, Benjawan

    2004-12-01

    Crude seed extract of celery, Apium graveolens, was investigated for anti-mosquito potential, including larvicidal, adulticidal, and repellent activities against Aedes aegypti, the vector of dengue haemorrhagic fever. The ethanol-extracted A. graveolens possessed larvicidal activity against fourth instar larvae of Ae. aegypti with LD50 and LD95 values of 81.0 and 176.8 mg/L, respectively. The abnormal movement observed in treated larvae indicated that the toxic effect of A. graveolens extract was probably on the nervous system. In testing for adulticidal activity, this plant extract exhibited a slightly adulticidal potency with LD50 and LD95 values of 6.6 and 66.4 mg/cm2, respectively. It showed repellency against Ae. aegypti adult females with ED50 and ED95 values of 2.03 and 28.12 mg/cm2, respectively. It also provided biting protection time of 3 h when applied at a concentration of 25 g%. Topical application of the ethanol-extracted A. graveolens did not induce dermal irritation. No adverse effects on the skin or other parts of the body of human volunteers were observed during 3 mo of the study period or in the following 3 mo, after which time observations ceased. A. graveolens, therefore, can be considered as a probable source of some biologically active compounds used in the development of mosquito control agents, particularly repellent products. PMID:15707293

  19. Survival and swimming behavior of insecticide-exposed larvae and pupae of the yellow fever mosquito Aedes aegypti

    PubMed Central

    2014-01-01

    Background The yellow fever mosquito Aedes aegypti is essentially a container-inhabiting species that is closely associated with urban areas. This species is a vector of human pathogens, including dengue and yellow fever viruses, and its control is of paramount importance for disease prevention. Insecticide use against mosquito juvenile stages (i.e. larvae and pupae) is growing in importance, particularly due to the ever-growing problems of resistance to adult-targeted insecticides and human safety concerns regarding such use in human dwellings. However, insecticide effects on insects in general and mosquitoes in particular primarily focus on their lethal effects. Thus, sublethal effects of such compounds in mosquito juveniles may have important effects on their environmental prevalence. In this study, we assessed the survival and swimming behavior of A. aegypti 4th instar larvae (L4) and pupae exposed to increasing concentrations of insecticides. We also assessed cell death in the neuromuscular system of juveniles. Methods Third instar larvae of A. aegypti were exposed to different concentrations of azadirachtin, deltamethrin, imidacloprid and spinosad. Insect survival was assessed for 10 days. The distance swam, the resting time and the time spent in slow swimming were assessed in 4th instar larvae (L4) and pupae. Muscular and nervous cells of L4 and pupae exposed to insecticides were marked with the TUNEL reaction. The results from the survival bioassays were subjected to survival analysis while the swimming behavioral data were subjected to analyses of covariance, complemented with a regression analysis. Results All insecticides exhibited concentration-dependent effects on survival of larvae and pupae of the yellow fever mosquito. The pyrethroid deltamethrin was the most toxic insecticide followed by spinosad, imidacloprid, and azadirachtin, which exhibited low potency against the juveniles. All insecticides except azadirachtin reduced L4 swimming speed and

  20. A novel multiple membrane blood-feeding system for investigating and maintaining Aedes aegypti and Aedes albopictus mosquitoes.

    PubMed

    Luo, Yi-Pey

    2014-12-01

    A novel multiple membrane blood-feeding system for mosquitoes has been developed for the study and routine maintenance of Aedes aegypti L. and Aedes albopictus Skuse that require a meal of vertebrate blood to produce eggs. This blood-feeding system uses cattle collagen sausage-casing membrane to facilitate feeding. The efficiency of this blood-feeding system was compared to a live mice blood source. We observed that Ae. aegypti that fed on pig whole blood had 89.7% (w/o ATP) and 90.7% (w/ ATP) blood-feeding rates, which were not significantly different from the mice-fed ones (98.0%). Ae. albopictus fed on pig whole blood (w/ ATP) had a success rate of 84.4%, which was significantly different from the mice-fed mosquitoes (51.1%). The feeding rates did not differ between sausage-casing membrane and Parafilm-M(®). The survival rate, fecundity, pupation, and pupal emergence rates of Aedes females fed on pig whole blood were not significantly different from the mice-fed ones. The artificial blood feeder can be applied to replace live animals as blood sources. Considering that this simple, inexpensive, convenient, and efficient feeding device can be built with common laboratory materials for research on Aedes mosquitoes.

  1. The Impact of Wolbachia on Virus Infection in Mosquitoes

    PubMed Central

    Johnson, Karyn N.

    2015-01-01

    Mosquito-borne viruses such as dengue, West Nile and chikungunya viruses cause significant morbidity and mortality in human populations. Since current methods are not sufficient to control disease occurrence, novel methods to control transmission of arboviruses would be beneficial. Recent studies have shown that virus infection and transmission in insects can be impeded by co-infection with the bacterium Wolbachia pipientis. Wolbachia is a maternally inherited endosymbiont that is commonly found in insects, including a number of mosquito vector species. In Drosophila, Wolbachia mediates antiviral protection against a broad range of RNA viruses. This discovery pointed to a potential strategy to interfere with mosquito transmission of arboviruses by artificially infecting mosquitoes with Wolbachia. This review outlines research on the prevalence of Wolbachia in mosquito vector species and the impact of antiviral effects in both naturally and artificially Wolbachia-infected mosquitoes. PMID:26556361

  2. Tissue Barriers to Arbovirus Infection in Mosquitoes.

    PubMed

    Franz, Alexander W E; Kantor, Asher M; Passarelli, A Lorena; Clem, Rollie J

    2015-07-08

    Arthropod-borne viruses (arboviruses) circulate in nature between arthropod vectors and vertebrate hosts. Arboviruses often cause devastating diseases in vertebrate hosts, but they typically do not cause significant pathology in their arthropod vectors. Following oral acquisition of a viremic bloodmeal from a vertebrate host, the arbovirus disease cycle requires replication in the cellular environment of the arthropod vector. Once the vector has become systemically and persistently infected, the vector is able to transmit the virus to an uninfected vertebrate host. In order to systemically infect the vector, the virus must cope with innate immune responses and overcome several tissue barriers associated with the midgut and the salivary glands. In this review we describe, in detail, the typical arbovirus infection route in competent mosquito vectors. Based on what is known from the literature, we explain the nature of the tissue barriers that arboviruses are confronted with in a mosquito vector and how arboviruses might surmount these barriers. We also point out controversial findings to highlight particular areas that are not well understood and require further research efforts.

  3. Repellent and mosquitocidal effects of leaf extracts of Clausena anisata against the Aedes aegypti mosquito (Diptera: Culicidae).

    PubMed

    Mukandiwa, Lillian; Eloff, Jacobus Nicolaas; Naidoo, Vinny

    2016-06-01

    Mosquitoes are rapidly developing resistance to insecticides that millions of people relied on to protect themselves from the diseases they carry, thereby creating a need to develop new insecticides. Clausena anisata is used traditionally as an insect repellent by various communities in Africa and Asia. For this study, the repellency and adulticidal activities of leaf extracts and compounds isolated from this plant species were evaluated against the yellow fever mosquito, Aedes aegypti. In the topical application assays, using total bites as an indicator, repellency was dose dependent, with the acetone crude extract (15 %) having 93 % repellence and the hexane fraction (7.5 %) 67 % repellence after 3 h. Fractionation resulted in a loss of total repellence. As mosquito-net treating agents, the acetone and hexane extracts of C. anisata, both at 15 %, had average repellences of 46.89 ± 2.95 and 50.13 ± 2.02 %, respectively, 3 h after exposure. The C. anisata acetone extract and its hexane fraction caused mosquito knockdown and eventually death when nebulised into the testing chamber, with an EC50 of 78.9 mg/ml (7.89 %) and 71.6 mg/ml (7.16 %) in the first 15 min after spraying. C. anisata leaf extracts have potential to be included in protection products against mosquitoes due to the repellent and cidal compounds contained therein.

  4. Repellent and mosquitocidal effects of leaf extracts of Clausena anisata against the Aedes aegypti mosquito (Diptera: Culicidae).

    PubMed

    Mukandiwa, Lillian; Eloff, Jacobus Nicolaas; Naidoo, Vinny

    2016-06-01

    Mosquitoes are rapidly developing resistance to insecticides that millions of people relied on to protect themselves from the diseases they carry, thereby creating a need to develop new insecticides. Clausena anisata is used traditionally as an insect repellent by various communities in Africa and Asia. For this study, the repellency and adulticidal activities of leaf extracts and compounds isolated from this plant species were evaluated against the yellow fever mosquito, Aedes aegypti. In the topical application assays, using total bites as an indicator, repellency was dose dependent, with the acetone crude extract (15 %) having 93 % repellence and the hexane fraction (7.5 %) 67 % repellence after 3 h. Fractionation resulted in a loss of total repellence. As mosquito-net treating agents, the acetone and hexane extracts of C. anisata, both at 15 %, had average repellences of 46.89 ± 2.95 and 50.13 ± 2.02 %, respectively, 3 h after exposure. The C. anisata acetone extract and its hexane fraction caused mosquito knockdown and eventually death when nebulised into the testing chamber, with an EC50 of 78.9 mg/ml (7.89 %) and 71.6 mg/ml (7.16 %) in the first 15 min after spraying. C. anisata leaf extracts have potential to be included in protection products against mosquitoes due to the repellent and cidal compounds contained therein. PMID:26924698

  5. Microscopic Plasmodium falciparum Gametocytemia and Infectivity to Mosquitoes in Cambodia.

    PubMed

    Lin, Jessica T; Ubalee, Ratawan; Lon, Chanthap; Balasubramanian, Sujata; Kuntawunginn, Worachet; Rahman, Rifat; Saingam, Piyaporn; Heng, Thay Kheang; Vy, Dav; San, Savoeun; Nuom, Sarath; Burkly, Hana; Chanarat, Nitima; Ponsa, Chanudom; Levitz, Lauren; Parobek, Christian; Chuor, Char Meng; Somethy, Sok; Spring, Michele; Lanteri, Charlotte; Gosi, Panita; Meshnick, Steven R; Saunders, David L

    2016-05-01

    Although gametocytes are essential for malaria transmission, in Africa many falciparum-infected persons without smear-detectable gametocytes still infect mosquitoes. To see whether the same is true in Southeast Asia, we determined the infectiousness of 119 falciparum-infected Cambodian adults to Anopheles dirus mosquitoes by membrane feeding. Just 5.9% of subjects infected mosquitoes. The 8.4% of patients with smear-detectable gametocytes were >20 times more likely to infect mosquitoes than those without and were the source of 96% of all mosquito infections. In low-transmission settings, targeting transmission-blocking interventions to those with microscopic gametocytemia may have an outsized effect on malaria control and elimination.

  6. Altered behavioral responses of Sindbis virus-infected Aedes aegypti (Diptera: Culicidae) to DEET and non-DEET based insect repellents.

    PubMed

    Qualls, Whitney A; Day, Jonathan F; Xue, Rui-de; Bowers, Doria F

    2012-06-01

    Changes in the time to first bite (TFB) and the bloodfeeding behavior of adult female Aedes aegypti (L.) mosquitoes following dissemination of Sindbis virus (SINV) were observed after exposure to repellents with the active ingredients (AI) DEET, picaridin, 2-undecanone (2-U), and oil of lemon eucalyptus. Dissemination of SINV significantly decreased (P<0.0001) the TFB of DEET (15%) and picaridin (15%) by 46% and 37%, respectively. Significant (P<0.0001) changes in activation, probing, and engorgement times were observed in SINV infected mosquitoes after exposure to the four repellents compared to uninfected mosquitoes. Taken together, a decrease in TFB and time to complete the four bloodfeeding stages will lessen the prey-status, and enhance both the chances of mosquito survival and arbovirus transmission. PMID:22289669

  7. Prodigiosin produced by Serratia marcescens NMCC46 as a mosquito larvicidal agent against Aedes aegypti and Anopheles stephensi.

    PubMed

    Patil, Chandrashekhar D; Patil, Satish V; Salunke, Bipinchandra K; Salunkhe, Rahul B

    2011-10-01

    Microbial control agents offer alternatives to chemical pest control as they can be more selective than chemical insecticides. The present study evaluates the mosquito larvicidal potential of microbial pigment prodigiosin produced by Serratia marcescens NMCC46 against Aedes aegypti and Anopheles stephensi. The pigment of S. marcescens NMCC46 was extracted after 24 h from mannitol containing nutrient broth media. The effects of crude extracted pigment on the growth, survival, development, and other life cycle aspects were studied. The LC(50) and LC(90) values of second, third, and fourth instars of A. aegypti (LC(50) = 41.65, 139.51, 103.95; LC(90) = 117.81, 213.68, 367.82) and A. stephensi (LC(50) = 51.12, 105.52, 133.07; LC(90) = 134.81, 204.45, 285.35) were determined. At higher concentration (500 ppm), mortality starts within first 6 h of exposure. More than 50% mortality occurs within the first 24 h. The overall observed effects against A. aegypti and A. stephensi larvae after 48 h were increasing percent survival larvae, survival pupation, adult emergence with decreasing crude pigment extract concentration. These ensure that the resultant mosquito population reduction is substantial even where the larvicidal potential is minimal. The UV (λ (max) = 536 nm), TLC (Rf = 0.9), HPLC, and FTIR analysis of crude pigment shows the presence of prodigiosin as active compound. Thus, the active compound produced by this species would be more useful against vectors responsible for diseases of public health importance. This is the first report on mosquito larvicidal activity of prodigiosin produced by Serratia species.

  8. Examination of the genetic basis for sexual dimorphism in the Aedes aegypti (dengue vector mosquito) pupal brain

    PubMed Central

    2014-01-01

    Background Most animal species exhibit sexually dimorphic behaviors, many of which are linked to reproduction. A number of these behaviors, including blood feeding in female mosquitoes, contribute to the global spread of vector-borne illnesses. However, knowledge concerning the genetic basis of sexually dimorphic traits is limited in any organism, including mosquitoes, especially with respect to differences in the developing nervous system. Methods Custom microarrays were used to examine global differences in female vs. male gene expression in the developing pupal head of the dengue vector mosquito, Aedes aegypti. The spatial expression patterns of a subset of differentially expressed transcripts were examined in the developing female vs. male pupal brain through in situ hybridization experiments. Small interfering RNA (siRNA)-mediated knockdown studies were used to assess the putative role of Doublesex, a terminal component of the sex determination pathway, in the regulation of sex-specific gene expression observed in the developing pupal brain. Results Transcripts (2,527), many of which were linked to proteolysis, the proteasome, metabolism, catabolic, and biosynthetic processes, ion transport, cell growth, and proliferation, were found to be differentially expressed in A. aegypti female vs. male pupal heads. Analysis of the spatial expression patterns for a subset of dimorphically expressed genes in the pupal brain validated the data set and also facilitated the identification of brain regions with dimorphic gene expression. In many cases, dimorphic gene expression localized to the optic lobe. Sex-specific differences in gene expression were also detected in the antennal lobe and mushroom body. siRNA-mediated gene targeting experiments demonstrated that Doublesex, a transcription factor with consensus binding sites located adjacent to many dimorphically expressed transcripts that function in neural development, is required for regulation of sex-specific gene

  9. Pharmacological and Genetic Evidence for Gap Junctions as Potential New Insecticide Targets in the Yellow Fever Mosquito, Aedes aegypti.

    PubMed

    Calkins, Travis L; Piermarini, Peter M

    2015-01-01

    The yellow fever mosquito Aedes aegypti is an important vector of viral diseases that impact global health. Insecticides are typically used to manage mosquito populations, but the evolution of insecticide resistance is limiting their effectiveness. Thus, identifying new molecular and physiological targets in mosquitoes is needed to facilitate insecticide discovery and development. Here we test the hypothesis that gap junctions are valid molecular and physiological targets for new insecticides. Gap junctions are intercellular channels that mediate direct communication between neighboring cells and consist of evolutionarily distinct proteins in vertebrate (connexins) and invertebrate (innexins) animals. We show that the injection of pharmacological inhibitors of gap junctions (i.e., carbenoxolone, meclofenamic acid, or mefloquine) into the hemolymph of adult female mosquitoes elicits dose-dependent toxic effects, with mefloquine showing the greatest potency. In contrast, when applied topically to the cuticle, carbenoxolone was the only inhibitor to exhibit full efficacy. In vivo urine excretion assays demonstrate that both carbenoxolone and mefloquine inhibit the diuretic output of adult female mosquitoes, suggesting inhibition of excretory functions as part of their mechanism of action. When added to the rearing water of 1st instar larvae, carbenoxolone and meclofenamic acid both elicit dose-dependent toxic effects, with meclofenamic acid showing the greatest potency. Injecting a double-stranded RNA cocktail against innexins into the hemolymph of adult female mosquitoes knock down whole-animal innexin mRNA expression and decreases survival of the mosquitoes. Taken together these data indicate that gap junctions may provide novel molecular and physiological targets for the development of insecticides.

  10. Pharmacological and Genetic Evidence for Gap Junctions as Potential New Insecticide Targets in the Yellow Fever Mosquito, Aedes aegypti

    PubMed Central

    Calkins, Travis L.; Piermarini, Peter M.

    2015-01-01

    The yellow fever mosquito Aedes aegypti is an important vector of viral diseases that impact global health. Insecticides are typically used to manage mosquito populations, but the evolution of insecticide resistance is limiting their effectiveness. Thus, identifying new molecular and physiological targets in mosquitoes is needed to facilitate insecticide discovery and development. Here we test the hypothesis that gap junctions are valid molecular and physiological targets for new insecticides. Gap junctions are intercellular channels that mediate direct communication between neighboring cells and consist of evolutionarily distinct proteins in vertebrate (connexins) and invertebrate (innexins) animals. We show that the injection of pharmacological inhibitors of gap junctions (i.e., carbenoxolone, meclofenamic acid, or mefloquine) into the hemolymph of adult female mosquitoes elicits dose-dependent toxic effects, with mefloquine showing the greatest potency. In contrast, when applied topically to the cuticle, carbenoxolone was the only inhibitor to exhibit full efficacy. In vivo urine excretion assays demonstrate that both carbenoxolone and mefloquine inhibit the diuretic output of adult female mosquitoes, suggesting inhibition of excretory functions as part of their mechanism of action. When added to the rearing water of 1st instar larvae, carbenoxolone and meclofenamic acid both elicit dose-dependent toxic effects, with meclofenamic acid showing the greatest potency. Injecting a double-stranded RNA cocktail against innexins into the hemolymph of adult female mosquitoes knock down whole-animal innexin mRNA expression and decreases survival of the mosquitoes. Taken together these data indicate that gap junctions may provide novel molecular and physiological targets for the development of insecticides. PMID:26325403

  11. The wMel strain of Wolbachia Reduces Transmission of Zika virus by Aedes aegypti

    PubMed Central

    Aliota, Matthew T.; Peinado, Stephen A.; Velez, Ivan Dario; Osorio, Jorge E.

    2016-01-01

    Zika virus (ZIKV) is causing an explosive outbreak of febrile disease in the Americas. There are no effective antiviral therapies or licensed vaccines for this virus, and mosquito control strategies have not been adequate to contain the virus. A promising candidate for arbovirus control and prevention relies on the introduction of the intracellular bacterium Wolbachia into Aedes aegypti mosquitoes. This primarily has been proposed as a tool to control dengue virus (DENV) transmission; however, evidence suggests Wolbachia infections confer protection for Ae. aegypti against other arboviruses. At present, it is unknown whether or not ZIKV can infect, disseminate, and be transmitted by Wolbachia-infected Ae. aegypti. Using Ae. aegypti infected with the wMel strain of Wolbachia that are being released in Medellin, Colombia, we report that these mosquitoes have reduced vector competence for ZIKV. These results support the use of Wolbachia biocontrol as a multivalent strategy against Ae. aegypti-transmitted viruses. PMID:27364935

  12. The wMel strain of Wolbachia Reduces Transmission of Zika virus by Aedes aegypti.

    PubMed

    Aliota, Matthew T; Peinado, Stephen A; Velez, Ivan Dario; Osorio, Jorge E

    2016-01-01

    Zika virus (ZIKV) is causing an explosive outbreak of febrile disease in the Americas. There are no effective antiviral therapies or licensed vaccines for this virus, and mosquito control strategies have not been adequate to contain the virus. A promising candidate for arbovirus control and prevention relies on the introduction of the intracellular bacterium Wolbachia into Aedes aegypti mosquitoes. This primarily has been proposed as a tool to control dengue virus (DENV) transmission; however, evidence suggests Wolbachia infections confer protection for Ae. aegypti against other arboviruses. At present, it is unknown whether or not ZIKV can infect, disseminate, and be transmitted by Wolbachia-infected Ae. aegypti. Using Ae. aegypti infected with the wMel strain of Wolbachia that are being released in Medellin, Colombia, we report that these mosquitoes have reduced vector competence for ZIKV. These results support the use of Wolbachia biocontrol as a multivalent strategy against Ae. aegypti-transmitted viruses.

  13. The wMel strain of Wolbachia Reduces Transmission of Zika virus by Aedes aegypti.

    PubMed

    Aliota, Matthew T; Peinado, Stephen A; Velez, Ivan Dario; Osorio, Jorge E

    2016-01-01

    Zika virus (ZIKV) is causing an explosive outbreak of febrile disease in the Americas. There are no effective antiviral therapies or licensed vaccines for this virus, and mosquito control strategies have not been adequate to contain the virus. A promising candidate for arbovirus control and prevention relies on the introduction of the intracellular bacterium Wolbachia into Aedes aegypti mosquitoes. This primarily has been proposed as a tool to control dengue virus (DENV) transmission; however, evidence suggests Wolbachia infections confer protection for Ae. aegypti against other arboviruses. At present, it is unknown whether or not ZIKV can infect, disseminate, and be transmitted by Wolbachia-infected Ae. aegypti. Using Ae. aegypti infected with the wMel strain of Wolbachia that are being released in Medellin, Colombia, we report that these mosquitoes have reduced vector competence for ZIKV. These results support the use of Wolbachia biocontrol as a multivalent strategy against Ae. aegypti-transmitted viruses. PMID:27364935

  14. Serosal cuticle formation and distinct degrees of desiccation resistance in embryos of the mosquito vectors Aedes aegypti, Anopheles aquasalis and Culex quinquefasciatus.

    PubMed

    Vargas, Helena Carolina Martins; Farnesi, Luana Cristina; Martins, Ademir Jesus; Valle, Denise; Rezende, Gustavo Lazzaro

    2014-03-01

    Given their medical importance, mosquitoes have been studied as vectors of parasites since the late 1800's. However, there are still many gaps concerning some aspects of their biology, such as embryogenesis. The embryonic desiccation resistance (EDR), already described in Aedes and Anopheles gambiae mosquitoes, is a peculiar trait. Freshly laid eggs are susceptible to water loss, a condition that can impair their viability. EDR is acquired during embryogenesis through the formation of the serosal cuticle (SC), protecting eggs from desiccation. Nevertheless, conservation of both traits (SC presence and EDR acquisition) throughout mosquito evolution is unknown. Comparative physiological studies with mosquito embryos from different genera, exhibiting distinct evolutionary histories and habits is a feasible approach. In this sense, the process of EDR acquisition of Aedes aegypti, Anopheles aquasalis and Culex quinquefasciatus at 25°C was evaluated. Completion of embryogenesis occurs in Ae. aegypti, An. aquasalis and Cx. quinquefasciatus at, respectively 77.4, 51.3 and 34.3hours after egg laying, Cx. quinquefasciatus embryonic development taking less than half the time of Ae. aegypti. In all cases, EDR is acquired in correlation with SC formation. For both Ae. aegypti and An. aquasalis, EDR and SC appear at 21% of total embryonic development, corresponding to the morphological stage of complete germ band elongation/beginning of germ band retraction. Although phylogenetically closer to Ae. aegypti than to An. aquasalis, Cx. quinquefasciatus acquires both EDR and serosal cuticle later, with 35% of total development, when the embryo already progresses to the middle of germ band retraction. EDR confers distinct egg viability in these species. While Ae. aegypti eggs demonstrated high viability when left up to 72hours in a dry environment, those of An. aquasalis and Cx. quinquefasciatus supported these conditions for only 24 and 5hours, respectively. Our data suggest that

  15. The Influence of Diet on the Use of Near-Infrared Spectroscopy to Determine the Age of Female Aedes aegypti Mosquitoes.

    PubMed

    Liebman, Kelly; Swamidoss, Isabel; Vizcaino, Lucrecia; Lenhart, Audrey; Dowell, Floyd; Wirtz, Robert

    2015-05-01

    Interventions targeting adult mosquitoes are used to combat transmission of vector-borne diseases, including dengue. Without available vaccines, targeting the primary vector, Aedes aegypti, is essential to prevent transmission. Older mosquitoes (≥ 7 days) are of greatest epidemiological significance due to the 7-day extrinsic incubation period of the virus. Age-grading of female mosquitoes is necessary to identify post-intervention changes in mosquito population age structure. We developed models using near-infrared spectroscopy (NIRS) to age-grade adult female Ae. aegypti. To determine if diet affects the ability of NIRS models to predict age, two identical larval groups were fed either fish food or infant cereal. Adult females were separated and fed sugar water ± blood, resulting in four experimental groups. Females were killed 1, 4, 7, 10, 13, or 16 days postemergence. The head/thorax of each mosquito was scanned using a near-infrared spectrometer. Scans from each group were analyzed, and multiple models were developed using partial least squares regression. The best model included all experimental groups, and positively predicted the age group (< or ≥ 7 days) of 90.2% mosquitoes. These results suggest both larval and adult diets can affect the ability of NIRS models to accurately assign age categories to female Ae. aegypti.

  16. Identifying genomic changes associated with insecticide resistance in the dengue mosquito Aedes aegypti by deep targeted sequencing.

    PubMed

    Faucon, Frederic; Dusfour, Isabelle; Gaude, Thierry; Navratil, Vincent; Boyer, Frederic; Chandre, Fabrice; Sirisopa, Patcharawan; Thanispong, Kanutcharee; Juntarajumnong, Waraporn; Poupardin, Rodolphe; Chareonviriyaphap, Theeraphap; Girod, Romain; Corbel, Vincent; Reynaud, Stephane; David, Jean-Philippe

    2015-09-01

    The capacity of mosquitoes to resist insecticides threatens the control of diseases such as dengue and malaria. Until alternative control tools are implemented, characterizing resistance mechanisms is crucial for managing resistance in natural populations. Insecticide biodegradation by detoxification enzymes is a common resistance mechanism; however, the genomic changes underlying this mechanism have rarely been identified, precluding individual resistance genotyping. In particular, the role of copy number variations (CNVs) and polymorphisms of detoxification enzymes have never been investigated at the genome level, although they can represent robust markers of metabolic resistance. In this context, we combined target enrichment with high-throughput sequencing for conducting the first comprehensive screening of gene amplifications and polymorphisms associated with insecticide resistance in mosquitoes. More than 760 candidate genes were captured and deep sequenced in several populations of the dengue mosquito Ae. aegypti displaying distinct genetic backgrounds and contrasted resistance levels to the insecticide deltamethrin. CNV analysis identified 41 gene amplifications associated with resistance, most affecting cytochrome P450s overtranscribed in resistant populations. Polymorphism analysis detected more than 30,000 variants and strong selection footprints in specific genomic regions. Combining Bayesian and allele frequency filtering approaches identified 55 nonsynonymous variants strongly associated with resistance. Both CNVs and polymorphisms were conserved within regions but differed across continents, confirming that genomic changes underlying metabolic resistance to insecticides are not universal. By identifying novel DNA markers of insecticide resistance, this study opens the way for tracking down metabolic changes developed by mosquitoes to resist insecticides within and among populations.

  17. Identifying genomic changes associated with insecticide resistance in the dengue mosquito Aedes aegypti by deep targeted sequencing

    PubMed Central

    Faucon, Frederic; Dusfour, Isabelle; Gaude, Thierry; Navratil, Vincent; Boyer, Frederic; Chandre, Fabrice; Sirisopa, Patcharawan; Thanispong, Kanutcharee; Juntarajumnong, Waraporn; Poupardin, Rodolphe; Chareonviriyaphap, Theeraphap; Girod, Romain; Corbel, Vincent; Reynaud, Stephane; David, Jean-Philippe

    2015-01-01

    The capacity of mosquitoes to resist insecticides threatens the control of diseases such as dengue and malaria. Until alternative control tools are implemented, characterizing resistance mechanisms is crucial for managing resistance in natural populations. Insecticide biodegradation by detoxification enzymes is a common resistance mechanism; however, the genomic changes underlying this mechanism have rarely been identified, precluding individual resistance genotyping. In particular, the role of copy number variations (CNVs) and polymorphisms of detoxification enzymes have never been investigated at the genome level, although they can represent robust markers of metabolic resistance. In this context, we combined target enrichment with high-throughput sequencing for conducting the first comprehensive screening of gene amplifications and polymorphisms associated with insecticide resistance in mosquitoes. More than 760 candidate genes were captured and deep sequenced in several populations of the dengue mosquito Ae. aegypti displaying distinct genetic backgrounds and contrasted resistance levels to the insecticide deltamethrin. CNV analysis identified 41 gene amplifications associated with resistance, most affecting cytochrome P450s overtranscribed in resistant populations. Polymorphism analysis detected more than 30,000 variants and strong selection footprints in specific genomic regions. Combining Bayesian and allele frequency filtering approaches identified 55 nonsynonymous variants strongly associated with resistance. Both CNVs and polymorphisms were conserved within regions but differed across continents, confirming that genomic changes underlying metabolic resistance to insecticides are not universal. By identifying novel DNA markers of insecticide resistance, this study opens the way for tracking down metabolic changes developed by mosquitoes to resist insecticides within and among populations. PMID:26206155

  18. Identification of a major Quantitative Trait Locus determining resistance to the organophosphate temephos in the dengue vector mosquito Aedes aegypti.

    PubMed

    Paiva, Marcelo H S; Lovin, Diane D; Mori, Akio; Melo-Santos, Maria A V; Severson, David W; Ayres, Constância F J

    2016-01-01

    Organophosphate insecticides (OP) have extensively been used to control mosquitoes, such as the vector Aedes aegypti. Unfortunately, OP resistance has hampered control programs worldwide. We used Quantitative Trait Locus (QTL) mapping to evaluate temephos resistance in two F1 intercross populations derived from crosses between a resistant Ae. aegypti strain (RecR) and two susceptible strains (MoyoD and Red). A single major effect QTL was identified on chromosome 2 of both segregating populations, named rtt1 (resistance to temephos 1). Bioinformatics analyses identified a cluster of carboxylesterase genes (CCE) within the rtt1 interval. qRT-PCR demonstrated that different CCEs were up-regulated in F2 resistant individuals from both crosses. However, none exceeded the 2-fold expression. Primary mechanisms for temephos resistance may vary between Ae. aegypti populations, yet also appear to support previous findings suggesting that multiple linked esterase genes may contribute to temephos resistance in the RecR strain as well as other populations.

  19. Human impacts have shaped historical and recent evolution in Aedes aegypti, the dengue and yellow fever mosquito.

    PubMed

    Brown, Julia E; Evans, Benjamin R; Zheng, Wei; Obas, Vanessa; Barrera-Martinez, Laura; Egizi, Andrea; Zhao, Hongyu; Caccone, Adalgisa; Powell, Jeffrey R

    2014-02-01

    Although anthropogenic impacts are often considered harmful to species, human modifications to the landscape can actually create novel niches to which other species can adapt. These "domestication" processes are especially important in the context of arthropod disease vectors, where ecological overlap of vector and human populations may lead to epidemics. Here, we present results of a global genetic study of one such species, the dengue and yellow fever mosquito, Aedes aegypti, whose evolutionary history and current distribution have been profoundly shaped by humans. We used DNA sequences of four nuclear genes and 1504 single nucleotide polymorphism (SNP) markers developed with restriction-site associated DNA (RAD) sequencing to test the hypothesis that Ae. aegypti originated in Africa, where a domestic form arose and spread throughout the tropical and subtropical world with human trade and movement. Results confirmed African ancestry of the species, and supported a single subspeciation event leading to the pantropical domestic form. In addition, genetic data strongly supported the hypothesis that human trade routes first moved domestic Ae. aegypti out of Africa into the New World, followed by a later invasion from the New World into Southeast Asia and the Pacific. These patterns of domestication and invasion are relevant to many species worldwide, as anthropogenic forces increasingly impact evolutionary processes.

  20. Effects of extract of soapnut Sapindus emarginatus on esterases and phosphatases of the vector mosquito, Aedes aegypti (Diptera: Culicidae).

    PubMed

    Koodalingam, Arunagirinathan; Mullainadhan, Periasamy; Arumugam, Munusamy

    2011-04-01

    Our earlier investigations with kernels from the soapnut Sapindus emarginatus revealed it as a new source of botanical biocide with potent antimosquito activity, as evident from the proven unique ability of the aqueous kernel extract to kill all the developmental stages of three important vector mosquito species, Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus. This extract was also found to be safe for two non-target aquatic insects. As a sequel to these findings, we have further examined quantitative and qualitative changes in total proteins, esterases, and phosphatases in whole body homogenates of fourth instar larvae and pupae of A. aegypti exposed to this extract at an appropriate threshold time for its lethal effect to gain insights into the impact of the botanical biocide on biochemical characteristics of the target vector mosquito at two distinct developmental stages. The profiles of proteins, esterases (acetylcholinesterse, α- and β-carboxylesterases), and phosphatases (acid and alkaline) exhibited distinct patterns of variation during normal development of fourth instar larvae and pupae, indicating intrinsic difference in biochemical features between these two developmental stages of A. aegypti. Upon exposure of the larvae to the extract, significant reduction in the activities of acetylcholinesterse, β-carboxylesterase, and acid phosphatases were recorded, whereas the total proteins, α-carboxylesterase and alkaline phosphatase activities were unaffected. By contrast, only alkaline phosphatase activity was significantly affected in pupae exposed to the extract. Analysis of these enzymes in native PAGE revealed that they exist in isoforms in both the larvae and pupae. The alterations in the levels of enzymatic activities observed from the quantitative assays of various enzymes were reflected by the respective zymograms with perceptible differences in the intensity and the number of bands detected especially with β-carboxylesterase, acid

  1. microRNA-309 targets the Homeobox gene SIX4 and controls ovarian development in the mosquito Aedes aegypti.

    PubMed

    Zhang, Yang; Zhao, Bo; Roy, Sourav; Saha, Tusar T; Kokoza, Vladimir A; Li, Ming; Raikhel, Alexander S

    2016-08-16

    Obligatory blood-triggered reproductive strategy is an evolutionary adaptation of mosquitoes for rapid egg development. It contributes to the vectorial capacity of these insects. Therefore, understanding the molecular mechanisms underlying reproductive processes is of particular importance. Here, we report that microRNA-309 (miR-309) plays a critical role in mosquito reproduction. A spatiotemporal expression profile of miR-309 displayed its blood feeding-dependent onset and ovary-specific manifestation in female Aedes aegypti mosquitoes. Antagomir silencing of miR-309 impaired ovarian development and resulted in nonsynchronized follicle growth. Furthermore, the genetic disruption of miR-309 by CRISPR/Cas9 system led to the developmental failure of primary follicle formation. Examination of genomic responses to miR-309 depletion revealed that several pathways associated with ovarian development are down-regulated. Comparative analysis of genes obtained from the high-throughput RNA sequencing of ovarian tissue from the miR-309 antagomir-silenced mosquitoes with those from the in silico computation target prediction identified that the gene-encoding SIX homeobox 4 protein (SIX4) is a putative target of miR-309. Reporter assay and RNA immunoprecipitation confirmed that SIX4 is a direct target of miR-309. RNA interference of SIX4 was able to rescue phenotypic manifestations caused by miR-309 depletion. Thus, miR-309 plays a critical role in mosquito reproduction by targeting SIX4 in the ovary and serves as a regulatory switch permitting a stage-specific degradation of the ovarian SIX4 mRNA. In turn, this microRNA (miRNA)-targeted degradation is required for appropriate initiation of a blood feeding-triggered phase of ovarian development, highlighting involvement of this miRNA in mosquito reproduction. PMID:27489347

  2. microRNA-309 targets the Homeobox gene SIX4 and controls ovarian development in the mosquito Aedes aegypti.

    PubMed

    Zhang, Yang; Zhao, Bo; Roy, Sourav; Saha, Tusar T; Kokoza, Vladimir A; Li, Ming; Raikhel, Alexander S

    2016-08-16

    Obligatory blood-triggered reproductive strategy is an evolutionary adaptation of mosquitoes for rapid egg development. It contributes to the vectorial capacity of these insects. Therefore, understanding the molecular mechanisms underlying reproductive processes is of particular importance. Here, we report that microRNA-309 (miR-309) plays a critical role in mosquito reproduction. A spatiotemporal expression profile of miR-309 displayed its blood feeding-dependent onset and ovary-specific manifestation in female Aedes aegypti mosquitoes. Antagomir silencing of miR-309 impaired ovarian development and resulted in nonsynchronized follicle growth. Furthermore, the genetic disruption of miR-309 by CRISPR/Cas9 system led to the developmental failure of primary follicle formation. Examination of genomic responses to miR-309 depletion revealed that several pathways associated with ovarian development are down-regulated. Comparative analysis of genes obtained from the high-throughput RNA sequencing of ovarian tissue from the miR-309 antagomir-silenced mosquitoes with those from the in silico computation target prediction identified that the gene-encoding SIX homeobox 4 protein (SIX4) is a putative target of miR-309. Reporter assay and RNA immunoprecipitation confirmed that SIX4 is a direct target of miR-309. RNA interference of SIX4 was able to rescue phenotypic manifestations caused by miR-309 depletion. Thus, miR-309 plays a critical role in mosquito reproduction by targeting SIX4 in the ovary and serves as a regulatory switch permitting a stage-specific degradation of the ovarian SIX4 mRNA. In turn, this microRNA (miRNA)-targeted degradation is required for appropriate initiation of a blood feeding-triggered phase of ovarian development, highlighting involvement of this miRNA in mosquito reproduction.

  3. Mosquito-borne infections in Fiji

    PubMed Central

    Mataika, J. U.; Dando, B. C.; Spears, G. F. S.; Macnamara, F. N.

    1971-01-01

    A survey of microfilaraemia among the population of Vanua Levu, Taveuni and Koro islands in northern Fiji was conducted in 1968 and 1969 as a prelude to a campaign of mass treatment with diethylcarbamazine. The prevalences of microfilaraemia were found in the more moist conditions of Taveuni and Koro and on the windward southern side of Vanua Levu to be higher than on the drier northern side of Vanua Levu. On both sides of Vanua Levu prevalences were lower inland than near the coast. Under apparently similar environmental conditions those of Fijian ethnic origin exhibited a higher prevalence of microfilaraemia than that shown by Indians. This ethnic difference and a difference between the prevalences in male and female Fijians are considered to be due more to higher rates of recovery from microfilaraemia in Indians and Fijian women than to diminished exposure to mosquitoes. Mathematical models have been used as an aid to the interpretation of the data, and, where appropriate, comparison has been made with the prevalence of antibodies to dengue, an arbovirus having the same vectors. Household infections were analysed by computer techniques. Infections in large households were not proportionately higher than in small households, indicating that transmission was not intrafamilial. The clustering of infections within households, though present, was not marked. Among the occupants of outlying settlements the prevalence of microfilaraemia was relatively low indicating a lower risk of infection due to isolation. PMID:4397424

  4. Determination of juvenile hormone titers by means of LC-MS/MS/MS and a juvenile hormone-responsive Gal4/UAS system in Aedes aegypti mosquitoes.

    PubMed

    Zhao, Bo; Hou, Yuan; Wang, Jianjun; Kokoza, Vladimir A; Saha, Tusar T; Wang, Xue-Li; Lin, Ling; Zou, Zhen; Raikhel, Alexander S

    2016-10-01

    In anautogenous mosquitoes, juvenile hormone III (JH) plays an essential role in female post-eclosion (PE) development, preparing them for subsequent blood feeding and egg growth. We re-examined the JH titer during the reproductive cycle of female Aedes aegypti mosquitoes. Using liquid chromatography coupled with triple tandem mass spectrometry (LC-MS/MS/MS), we have shown that it reaches its peak at 48-54 h PE in the female hemolymph and at 72 h PE in whole body extracts. This method represents an effective assay for determination of JH titers. The 2.1-kb 5' promoter region of the Early Trypsin (ET) gene, which is specifically expressed in the female midgut under the control of JH during the PE phase, was utilized to genetically engineer the Ae. aegypti mosquito line with the ET-Gal4 activator. We then established the ET-GAL4>UAS-enhanced green fluorescent protein (EGFP) system in Ae. aegypti. In ET-Gal4>UAS-EGFP female mosquitoes, the intensity of the midgut-specific EGFP signal was observed to correspond to the ET gene transcript level and follow the JH titer during the PE phase. The EGFP signal and the EGFP transcript level were significantly diminished in midguts of transgenic female mosquitoes after RNA interference depletion of the JH receptor Methoprene-tolerant (Met), providing evidence of the control of ET gene expression by Met. Topical JH application caused premature enhancement of the EGFP signal and the EGFP transcript level in midguts of newly eclosed ET-Gal4>UAS-EGFP female mosquitoes, in which endogenous JH titer is still low. Hence, this novel ET-Gal4>UAS system permits JH-dependent gene overexpression in the midgut of Ae. aegypti female mosquitoes prior to a blood meal. PMID:27530057

  5. Evaluation of some aromatic plant extracts for mosquito larvicidal potential against Culex quinquefasciatus, Aedes aegypti, and Anopheles stephensi.

    PubMed

    Jayaraman, M; Senthilkumar, A; Venkatesalu, V

    2015-04-01

    In the present investigation, larvicidal potential of hexane, choloroform, ethyl acetate, acetone, and methanol extracts of seven aromatic plants, viz., Blumea mollis, Chloroxylon swietenia, Clausena anisata, Feronia limnonia, Lantana camera, Plectranthus amboinicus, and Tagetes erecta were screened against Culex quinquefasciatus, Aedes aegypti, and Anopheles stephensi. The larval mortality was observed after 12 and 24 h of exposure period. The results revealed that all the extracts showed varied levels of larvicidal activity against the mosquito species tested. However, the ethyl acetate extract of Chloroxylon swietenia showed the remarkable larvicidal activity against C. quinquefasciatus, Ae. aegypti, and An. stephensi. After 12 h of exposure period, the larvicidal activity was LC50 = 194.22 and LC90 = 458.83 ppm (C. quinquefasciatus), LC50 = 173.04 and LC90 = 442.73 ppm (Ae. aegypti), and LC50 = 167.28 and LC90 = 433.07 ppm (An. stephensi), and the larvicidal activity after 24-h exposure period was LC50 = 94.12 and LC90 = 249.83 ppm (C. quinquefasciatus), LC50 = 80.58 and LC90 = 200.96 ppm (Ae. aegypti), and LC50 = 76.24 and LC90 = 194.51 ppm (An. stephensi). The larvicidal potential of other plant extracts were in order of ethyl acetate extract of Clausena anisata > methanol extract of P. amboinicus > acetone extract of F. limonia > methanol extract of T. erecta > methanol extract of B. mollis > and methanol extract of L. camera. The results of the present study offer a possible way for further investigations to find out the active molecule responsible for the activity. PMID:25630696

  6. Evaluation of some aromatic plant extracts for mosquito larvicidal potential against Culex quinquefasciatus, Aedes aegypti, and Anopheles stephensi.

    PubMed

    Jayaraman, M; Senthilkumar, A; Venkatesalu, V

    2015-04-01

    In the present investigation, larvicidal potential of hexane, choloroform, ethyl acetate, acetone, and methanol extracts of seven aromatic plants, viz., Blumea mollis, Chloroxylon swietenia, Clausena anisata, Feronia limnonia, Lantana camera, Plectranthus amboinicus, and Tagetes erecta were screened against Culex quinquefasciatus, Aedes aegypti, and Anopheles stephensi. The larval mortality was observed after 12 and 24 h of exposure period. The results revealed that all the extracts showed varied levels of larvicidal activity against the mosquito species tested. However, the ethyl acetate extract of Chloroxylon swietenia showed the remarkable larvicidal activity against C. quinquefasciatus, Ae. aegypti, and An. stephensi. After 12 h of exposure period, the larvicidal activity was LC50 = 194.22 and LC90 = 458.83 ppm (C. quinquefasciatus), LC50 = 173.04 and LC90 = 442.73 ppm (Ae. aegypti), and LC50 = 167.28 and LC90 = 433.07 ppm (An. stephensi), and the larvicidal activity after 24-h exposure period was LC50 = 94.12 and LC90 = 249.83 ppm (C. quinquefasciatus), LC50 = 80.58 and LC90 = 200.96 ppm (Ae. aegypti), and LC50 = 76.24 and LC90 = 194.51 ppm (An. stephensi). The larvicidal potential of other plant extracts were in order of ethyl acetate extract of Clausena anisata > methanol extract of P. amboinicus > acetone extract of F. limonia > methanol extract of T. erecta > methanol extract of B. mollis > and methanol extract of L. camera. The results of the present study offer a possible way for further investigations to find out the active molecule responsible for the activity.

  7. Histochemical and ultrastructural studies of the mosquito Aedes aegypti fat body: effects of aging and diet type

    PubMed Central

    Martins, Gustavo Ferreira; Serrão, José Eduardo; Ramalho-Ortigão, José Marcelo; Pimenta, Paulo Filemon Paolucci

    2011-01-01

    Aedes aegypti is the principal vector of dengue world wide and a major vector of urban yellow fever. Despite its epidemiological importance, not much is known regarding cellular and structural changes in the fat body in this mosquito. Here, we applied light and transmission electron microscopies in order to investigate structural changes in the fat body of three groups of A. aegypti females: newly emerged, 18-day-old sugar-fed, and 18-day-old blood-fed. The fat body consists of a layer of cells attached to the abdomen integument, formed by trophocytes and oenocytes. Trophocytes are strongly positive for carbohydrates, while oenocytes are strongly positive for proteins and lipids. Ultrastructural analyses of trophocytes from newly emerged and 18-day-old blood-fed indicate that these cells are rich in glycogen and free ribosomes. Many lipid droplets and protein granules, which are broken down after the blood meal, are also detected. In 18-day-old sugar-fed, trophocytes display a disorganized cytoplasm filled with lipid droplets, and reduced numbers of free ribosomes, glycogen, rough endoplasmic reticulum (RER) and mitochondria. Following a blood meal, the RER and mitochondria display enlarged sizes, suggestive of increased activity. In regards to oenocytes, these cells display an electron-dense cytoplasm and plasma membrane infoldings facing the hemolymph. As the A. aegypti female ages, trophocyte and oenocyte cell nuclei become larger but decrease in diameter after blood feeding. Our findings suggest that the trophocytes and oenocytes remodeling is likely involved in functional changes of fat body that take place during aging and following a blood meal in A. aegypti females. PMID:21509905

  8. Epidemiological significanceof subterranean Aedes aegypti (Diptera: Culicidae) breeding sites to dengue virus infection in Charters Towers, 1993.

    PubMed

    Russell, B M; Mcbride, W J J; Mullner, H; Kay, B H

    2002-01-01

    The objective of this study wasto determine the epidemiological significance of subterranean mosquito breeding sites to the 1993 outbreak of dengue fever (type 2) in the northern Queensland town of Charters Towers, Australia. In recent studies on subterranean mosquito breeding, containers such as wells and service manholes have been shown to be important breeding sites to Australia's only dengue vector, Aedes aegypti (L.). This study demonstrates a direct epidemiological association between subterranean breeding sites and dengue virus infection. The mean distance between residents seropositive for dengue 2 and the nearest subterranean container (113 m) was significantly less than for a randomly selected control (191 m), (F = 81.9; df = 1, 478; P < 0.001). Residents positive for dengue 2 antibodies was 2.47 (95% confidence interval 1.88-3.24) times higher for those living within 160 m of a well or service manhole, compared with those residing further away. These findings emphasize the importance of incluuding subterranean water containers in Ae. aegypti surveillance and control programs.

  9. A critical role of the nuclear receptor HR3 in regulation of gonadotrophic cycles of the mosquito Aedes aegypti.

    PubMed

    Mane-Padros, Daniel; Cruz, Josefa; Cheng, Andrew; Raikhel, Alexander S

    2012-01-01

    The orphan nuclear receptor HR3 is essential for developmental switches during insect development and metamorphosis regulated by 20-hydroxyecdysone (20E). Reproduction of female mosquitoes of the major vector of Dengue fever, Aedes aegypti, is cyclic because of its dependence on blood feeding. 20E is an important hormone regulating vitellogenic events in this mosquito; however, any role for HR3 in 20E-driven reproductive events has not been known. Using RNA interference (RNAi) approach, we demonstrated that Aedes HR3 plays a critical role in a timely termination of expression of the vitellogenin (Vg) gene encoding the major yolk protein precursor. It is also important for downregulation of the Target-of-Rapamycin pathway and activation of programmed autophagy in the Aedes fat body at the end of vitellogenesis. HR3 is critical in activating betaFTZ-F1, EcRB and USPA, the expressions of which are highly elevated at the end of vitellogenesis. RNAi depletion of HR3 (iHR3) prior to the first gonadotrophic cycle affects a normal progression of the second gonadotrophic cycle. Most of ovaries 24 h post second blood meal from iHR3 females in the second cycle were small with follicles that were only slightly different in length from of those of resting stage. In addition, these iHR3 females laid a significantly reduced number of eggs per mosquito as compared to those of iMal and the wild type. Our results indicate an important role of HR3 in regulation of 20E-regulated developmental switches during reproductive cycles of A. aegypti females.

  10. Investigating the Potential Range Expansion of the Vector Mosquito Aedes Aegypti in Mexico with NASA Earth Science Remote Sensing Results

    NASA Technical Reports Server (NTRS)

    Estes, Sue M.

    2011-01-01

    Dengue (Breakbone) fever is caused by one of four viruses carried by mosquitoes in tropical and subtropical areas. Cases have increased dramatically in the past few decades; there are currently approximately 100 million infections annually around the globe. Our project will integrate environmental observations, including weather, land use, vegetation type, amount and greenness, soil moisture, and mosquito populations with investigations of the human dynamics of the system via household surveys.

  11. Analysis of ovary-specific genes in relation to egg maturation and female nutritional condition in the mosquitoes Georgecraigius atropalpus and Aedes aegypti (Diptera: Culicidae)

    PubMed Central

    Telang, Aparna; Rechel, Julie A.; Brandt, Jessica R.; Donnell, David M.

    2013-01-01

    Analysis of the reproductive physiology of anautogenous mosquitoes at the molecular level is complicated by the simultaneity of ovarian maturation and the digestion of a blood meal. In contrast to anautogenous mosquitoes, autogenous female mosquitoes can acquire greater nutrient stores as larvae and exhibit higher ovarian production of ecdysteroids at adult eclosion. These features essentially replace the role of a blood meal in provisioning the first batch of eggs and initiating egg development. To gain insight into the process of ovary maturation we first performed a transcript analysis of the obligatory autogenous mosquito Georgecraigius atropalpus (formerly Ochlerotatus atropalpus). We identified ESTs using suppressive subtractive hybridization (SSH) of transcripts from ovaries at critical times during oogenesis in the absence of blood digestion. Preliminary expression studies of genes such as apolipophorin III (APO) and oxysterol binding protein (OSBP) suggested these genes might be cued to female nutritional status. We then applied our findings to the medically important anautogenous mosquito Aedes aegypti. RNAi-based analyses of these genes in Ae. aegypti revealed a reduction in APO transcripts leads to reduced lipid levels in carcass and ovaries and that OSBP may play a role in overall lipid and sterol homeostasis. In addition to expanding our understanding of mosquito ovarian development, the continued use of a comparative approach between autogenous and anautogenous species may provide novel intervention points for the regulation of mosquito egg production. PMID:23238126

  12. Analysis of ovary-specific genes in relation to egg maturation and female nutritional condition in the mosquitoes Georgecraigius atropalpus and Aedes aegypti (Diptera: Culicidae).

    PubMed

    Telang, Aparna; Rechel, Julie A; Brandt, Jessica R; Donnell, David M

    2013-03-01

    Analysis of the reproductive physiology of anautogenous mosquitoes at the molecular level is complicated by the simultaneity of ovarian maturation and the digestion of a blood meal. In contrast to anautogenous mosquitoes, autogenous female mosquitoes can acquire greater nutrient stores as larvae and exhibit higher ovarian production of ecdysteroids at adult eclosion. These features essentially replace the role of a blood meal in provisioning the first batch of eggs and initiating egg development. To gain insight into the process of ovary maturation we first performed a transcript analysis of the obligatory autogenous mosquito Georgecraigius atropalpus (formerly Ochlerotatus atropalpus). We identified ESTs using suppressive subtractive hybridization (SSH) of transcripts from ovaries at critical times during oogenesis in the absence of blood digestion. Preliminary expression studies of genes such as apolipophorin III (APO) and oxysterol binding protein (OSBP) suggested these genes might be cued to female nutritional status. We then applied our findings to the medically important anautogenous mosquito Aedes aegypti. RNAi-based analyses of these genes in Ae. aegypti revealed a reduction in APO transcripts leads to reduced lipid levels in carcass and ovaries and that OSBP may play a role in overall lipid and sterol homeostasis. In addition to expanding our understanding of mosquito ovarian development, the continued use of a comparative approach between autogenous and anautogenous species may provide novel intervention points for the regulation of mosquito egg production.

  13. Description of the Transcriptomes of Immune Response-Activated Hemocytes from the Mosquito Vectors Aedes aegypti and Armigeres subalbatus

    PubMed Central

    Bartholomay, Lyric C.; Cho, Wen-Long; Rocheleau, Thomas A.; Boyle, Jon P.; Beck, Eric T.; Fuchs, Jeremy F.; Liss, Paul; Rusch, Michael; Butler, Katherine M.; Wu, Roy Chen-Chih; Lin, Shih-Pei; Kuo, Hang-Yen; Tsao, I-Yu; Huang, Chiung-Yin; Liu, Tze-Tze; Hsiao, Kwang-Jen; Tsai, Shih-Feng; Yang, Ueng-Cheng; Nappi, Anthony J.; Perna, Nicole T.; Chen, Chen-Cheng; Christensen, Bruce M.

    2004-01-01

    Mosquito-borne diseases, including dengue, malaria, and lymphatic filariasis, exact a devastating toll on global health and economics, killing or debilitating millions every year (54). Mosquito innate immune responses are at the forefront of concerted research efforts aimed at defining potential target genes that could be manipulated to engineer pathogen resistance in vector populations. We aimed to describe the pivotal role that circulating blood cells (called hemocytes) play in immunity by generating a total of 11,952 Aedes aegypti and 12,790 Armigeres subalbatus expressed sequence tag (EST) sequences from immune response-activated hemocyte libraries. These ESTs collapsed into 2,686 and 2,107 EST clusters, respectively. The clusters were used to adapt the web-based interface for annotating bacterial genomes called A Systematic Annotation Package for Community Analysis of Genomes (ASAP) for analysis of ESTs. Each cluster was categorically characterized and annotated in ASAP based on sequence similarity to five sequence databases. The sequence data and annotations can be viewed in ASAP at https://asap.ahabs.wisc.edu/annotation/php/ASAP1.htm. The data presented here represent the results of the first high-throughput in vivo analysis of the transcriptome of immunocytes from an invertebrate. Among the sequences are those for numerous immunity-related genes, many of which parallel those employed in vertebrate innate immunity, that have never been described for these mosquitoes. PMID:15213157

  14. Transmission potential of Rickettsia felis infection by Anopheles gambiae mosquitoes

    PubMed Central

    Dieme, Constentin; Bechah, Yassina; Socolovschi, Cristina; Audoly, Gilles; Berenger, Jean-Michel; Faye, Ousmane; Raoult, Didier; Parola, Philippe

    2015-01-01

    A growing number of recent reports have implicated Rickettsia felis as a human pathogen, paralleling the increasing detection of R. felis in arthropod hosts across the globe, primarily in fleas. Here Anopheles gambiae mosquitoes, the primary malarial vectors in sub-Saharan Africa, were fed with either blood meal infected with R. felis or infected cellular media administered in membrane feeding systems. In addition, a group of mosquitoes was fed on R. felis-infected BALB/c mice. The acquisition and persistence of R. felis in mosquitoes was demonstrated by quantitative PCR detection of the bacteria up to day 15 postinfection. R. felis was detected in mosquito feces up to day 14. Furthermore, R. felis was visualized by immunofluorescence in salivary glands, in and around the gut, and in the ovaries, although no vertical transmission was observed. R. felis was also found in the cotton used for sucrose feeding after the mosquitoes were fed infected blood. Natural bites from R. felis-infected An. gambiae were able to cause transient rickettsemias in mice, indicating that this mosquito species has the potential to be a vector of R. felis infection. This is particularly important given the recent report of high prevalence of R. felis infection in patients with “fever of unknown origin” in malaria-endemic areas. PMID:26056256

  15. Mosquito-borne viral infections and the traveller.

    PubMed

    Chiodini, Jane

    This article reviews the mosquito-borne infections yellow fever, Chikungunya virus, West Nile virus, dengue fever and eastern equine encephalitis. It provides advice on symptoms, diagnosis and preventive strategies to inform nursing practice during pre-travel consultations.

  16. Evaluation of Simultaneous Transmission of Chikungunya Virus and Dengue Virus Type 2 in Infected Aedes aegypti and Aedes albopictus (Diptera: Culicidae)

    PubMed Central

    Nuckols, J. T.; Huang, Y.-J. S.; Higgs, S.; Miller, A. L.; Pyles, R. B.; Spratt, H. m.; Horne, K. M.; Vanlandingham, D. L.

    2015-01-01

    The simultaneous transmission of chikungunya virus (CHIKV) and dengue viruses (DENV) has been a major public health concern because of their sympatric distribution and shared mosquito vectors. Groups of Aedes aegypti (L.) and Aedes albopictus (Skuse) were orally infected with 1.5 × 105 PFU/ml of CHIKV and 3.2 × 106 FFU/ml of DENV-2 simultaneously or separately in inverse orders and evaluated for dissemination and transmission by qRT-PCR. Simultaneous dissemination of both viruses was detected for all groups in Ae. aegypti and Ae. albopictus while cotransmission of CHIKV and DENV-2 only occurred at low rates after sequential but not simultaneous infection. PMID:26334820

  17. Evaluation of Simultaneous Transmission of Chikungunya Virus and Dengue Virus Type 2 in Infected Aedes aegypti and Aedes albopictus (Diptera: Culicidae).

    PubMed

    Nuckols, J T; Huang, Y-J S; Higgs, S; Miller, A L; Pyles, R B; Spratt, H M; Horne, K M; Vanlandingham, D L

    2015-05-01

    The simultaneous transmission of chikungunya virus (CHIKV) and dengue viruses (DENV) has been a major public health concern because of their sympatric distribution and shared mosquito vectors. Groups of Aedes aegypti (L.) and Aedes albopictus (Skuse) were orally infected with 1.5 × 10(5) PFU/ml of CHIKV and 3.2 × 10(6) FFU/ml of DENV-2 simultaneously or separately in inverse orders and evaluated for dissemination and transmission by qRT-PCR. Simultaneous dissemination of both viruses was detected for all groups in Ae. aegypti and Ae. albopictus while cotransmission of CHIKV and DENV-2 only occurred at low rates after sequential but not simultaneous infection.

  18. Identity and transfer of male reproductive gland proteins of the dengue vector mosquito, Aedes aegypti: potential tools for control of female feeding and reproduction.

    PubMed

    Sirot, Laura K; Poulson, Rebecca L; McKenna, M Caitlin; Girnary, Hussein; Wolfner, Mariana F; Harrington, Laura C

    2008-02-01

    Male reproductive gland proteins (mRGPs) impact the physiology and/or behavior of mated females in a broad range of organisms. We sought to identify mRGPs of the yellow fever mosquito, Aedes aegypti, the primary vector of dengue and yellow fever viruses. Earlier studies with Ae. aegypti demonstrated that "matrone" (a partially purified male reproductive accessory gland substance) or male accessory gland fluid injected into virgin female Ae. aegypti affect female sexual refractoriness, blood feeding and digestion, flight, ovarian development, and oviposition. Using bioinformatic comparisons to Drosophila melanogaster accessory gland proteins and mass spectrometry of proteins from Ae. aegypti male accessory glands and ejaculatory ducts (AG/ED) and female reproductive tracts, we identified 63 new putative Ae. aegypti mRGPs. Twenty-one of these proteins were found in the reproductive tract of mated females but not of virgin females suggesting that they are transferred from males to females during mating. Most of the putative mRGPs fall into the same protein classes as mRGPs in other organisms, although some appear to be evolving rapidly and lack identifiable homologs in Culex pipiens, Anopheles gambiae, and D. melanogaster. Our results identify candidate male-derived molecules that may have an important influence on behavior, survival, and reproduction of female mosquitoes.

  19. Natural odor ligands for olfactory receptor neurons of the female mosquito Aedes aegypti: use of gas chromatography-linked single sensillum recordings.

    PubMed

    Ghaninia, Majid; Larsson, Mattias; Hansson, Bill S; Ignell, Rickard

    2008-09-01

    Female Aedes aegypti are vectors of dengue and yellow fever. Odor volatiles are the predominant cues that drive the host-seeking behavior of Ae. aegypti. Odorant molecules are detected and discriminated by olfactory receptor neurons (ORNs) housed in sensory hairs, sensilla, located on the antennae and maxillary palps. In a previous study, we used odor volatiles that are behaviorally and/or electrophysiologically active for Ae. aegypti and other mosquito species to show that antennal ORNs of female Ae. aegypti are divided into functionally different classes. In the present study, we have, for the first time, conducted gas chromatography-coupled single sensillum recordings (GC-SSR) from antennal trichoid and intermediate sensilla of female Ae. aegypti in order to screen for additional putative host attractants and repellents. We used headspace collections from biologically relevant sources, such as different human body parts (including feet, trunk regions and armpit), as well as a plant species used as a mosquito repellent, Nepeta faassenii. We found that a number of ORN types strongly responded to one or more of the biological extracts. GC-SSR recordings revealed several active components, which were subsequently identified through GC-linked mass spectrometry (GC-MS). Electrophysiologically active volatiles from human skin included heptanal, octanal, nonanal and decanal.

  20. Discovery of mosquito saliva microRNAs during CHIKV infection.

    PubMed

    Maharaj, Payal D; Widen, Steven G; Huang, Jing; Wood, Thomas G; Thangamani, Saravanan

    2015-01-01

    Mosquito borne pathogens are transmitted to humans via saliva during blood feeding. Mosquito saliva is a complex concoction of many secretory factors that modulate the feeding foci to enhance pathogen infection and establishment. Multiple salivary proteins/factors have been identified/characterized that enhance pathogen infection. Here, we describe, for the first time, the identification of exogenous microRNAs from mosquito saliva. MicroRNAs are short, 18-24 nucleotide, non-coding RNAs that regulate gene expression, and are generally intracellular. However, circulating miRNAs have been described from serum and saliva of humans. Exogenous miRNAs have not been reported from hematophagous arthropod saliva. We sought to identify miRNAs in the mosquito saliva and their role in Chikungunya virus (CHIKV) infection. Next generation sequencing was utilized to identify 103 exogenous miRNAs in mosquito saliva of which 31 miRNAs were previously unidentified and were designated novel. Several miRNAs that we have identified are expressed only in the CHIKV infected mosquitoes. Five of the saliva miRNAs were tested for their potential to regulated CHIKV infection, and our results demonstrate their functional role in the transmission and establishment of infection during blood feeding on the host.

  1. Discovery of Mosquito Saliva MicroRNAs during CHIKV Infection

    PubMed Central

    Maharaj, Payal D.; Widen, Steven G.; Huang, Jing; Wood, Thomas G.; Thangamani, Saravanan

    2015-01-01

    Mosquito borne pathogens are transmitted to humans via saliva during blood feeding. Mosquito saliva is a complex concoction of many secretory factors that modulate the feeding foci to enhance pathogen infection and establishment. Multiple salivary proteins/factors have been identified/characterized that enhance pathogen infection. Here, we describe, for the first time, the identification of exogenous microRNAs from mosquito saliva. MicroRNAs are short, 18–24 nucleotide, non-coding RNAs that regulate gene expression, and are generally intracellular. However, circulating miRNAs have been described from serum and saliva of humans. Exogenous miRNAs have not been reported from hematophagous arthropod saliva. We sought to identify miRNAs in the mosquito saliva and their role in Chikungunya virus (CHIKV) infection. Next generation sequencing was utilized to identify 103 exogenous miRNAs in mosquito saliva of which 31 miRNAs were previously unidentified and were designated novel. Several miRNAs that we have identified are expressed only in the CHIKV infected mosquitoes. Five of the saliva miRNAs were tested for their potential to regulated CHIKV infection, and our results demonstrate their functional role in the transmission and establishment of infection during blood feeding on the host. PMID:25612225

  2. Heme Signaling Impacts Global Gene Expression, Immunity and Dengue Virus Infectivity in Aedes aegypti

    PubMed Central

    Bottino-Rojas, Vanessa; Talyuli, Octávio A. C.; Jupatanakul, Natapong; Sim, Shuzhen; Dimopoulos, George; Venancio, Thiago M.; Bahia, Ana C.; Sorgine, Marcos H.; Oliveira, Pedro L.; Paiva-Silva, Gabriela O.

    2015-01-01

    Blood-feeding mosquitoes are exposed to high levels of heme, the product of hemoglobin degradation. Heme is a pro-oxidant that influences a variety of cellular processes. We performed a global analysis of heme-regulated Aedes aegypti (yellow fever mosquito) transcriptional changes to better understand influence on mosquito physiology at the molecular level. We observed an iron- and reactive oxygen species (ROS)-independent signaling induced by heme that comprised genes related to redox metabolism. By modulating the abundance of these transcripts, heme possibly acts as a danger signaling molecule. Furthermore, heme triggered critical changes in the expression of energy metabolism and immune response genes, altering the susceptibility towards bacteria and dengue virus. These findings seem to have implications on the adaptation of mosquitoes to hematophagy and consequently on their ability to transmit diseases. Altogether, these results may also contribute to the understanding of heme cell biology in eukaryotic cells. PMID:26275150

  3. Heme Signaling Impacts Global Gene Expression, Immunity and Dengue Virus Infectivity in Aedes aegypti.

    PubMed

    Bottino-Rojas, Vanessa; Talyuli, Octávio A C; Jupatanakul, Natapong; Sim, Shuzhen; Dimopoulos, George; Venancio, Thiago M; Bahia, Ana C; Sorgine, Marcos H; Oliveira, Pedro L; Paiva-Silva, Gabriela O

    2015-01-01

    Blood-feeding mosquitoes are exposed to high levels of heme, the product of hemoglobin degradation. Heme is a pro-oxidant that influences a variety of cellular processes. We performed a global analysis of heme-regulated Aedes aegypti (yellow fever mosquito) transcriptional changes to better understand influence on mosquito physiology at the molecular level. We observed an iron- and reactive oxygen species (ROS)-independent signaling induced by heme that comprised genes related to redox metabolism. By modulating the abundance of these transcripts, heme possibly acts as a danger signaling molecule. Furthermore, heme triggered critical changes in the expression of energy metabolism and immune response genes, altering the susceptibility towards bacteria and dengue virus. These findings seem to have implications on the adaptation of mosquitoes to hematophagy and consequently on their ability to transmit diseases. Altogether, these results may also contribute to the understanding of heme cell biology in eukaryotic cells.

  4. Effect of confertifolin from Polygonum hydropiper L. against dengue vector mosquitoes Aedes aegypti L.

    PubMed

    Maheswaran, Rajan; Ignacimuthu, Savarimuthu

    2015-06-01

    The essential oil from the leaves of Polygonum hydropiper L. (Polygonaceae) was tested against Aedes aegypti L. The LC50 values were 190.72 and 234.37 ppm against second and fourth instar larvae of A. aegypti, respectively. Confertifolin (6,6,9a-trimethy l-4,5,5a,6,7,8,9,9a-octahydronaphtho [1,2-c] furan-3 (1H)-one) was isolated from the essential oil of P. hydropiper leaves using silica gel column chromatography. The LC50 values were 2.90 and 2.96 ppm for second and fourth instar larvae of A. aegypti, respectively. At 10 ppm, the concentration of confertifolin showed ovicidal activity of 100, 100, and 77.6 % on 0-6, 6-12, and 12-18 h old eggs; the repellent activity was 323.2 min; and oviposition deterrent activity was 97.52 % and adulticidal activity was 100 % against A. aegypti. The results were statistically significant at P < 0.05 level. The results suggested that confertifolin as an effective major constituent against A. aegypti and might be considered as a potent source for the production of superior natural mosquitocides. PMID:25523289

  5. Effect of confertifolin from Polygonum hydropiper L. against dengue vector mosquitoes Aedes aegypti L.

    PubMed

    Maheswaran, Rajan; Ignacimuthu, Savarimuthu

    2015-06-01

    The essential oil from the leaves of Polygonum hydropiper L. (Polygonaceae) was tested against Aedes aegypti L. The LC50 values were 190.72 and 234.37 ppm against second and fourth instar larvae of A. aegypti, respectively. Confertifolin (6,6,9a-trimethy l-4,5,5a,6,7,8,9,9a-octahydronaphtho [1,2-c] furan-3 (1H)-one) was isolated from the essential oil of P. hydropiper leaves using silica gel column chromatography. The LC50 values were 2.90 and 2.96 ppm for second and fourth instar larvae of A. aegypti, respectively. At 10 ppm, the concentration of confertifolin showed ovicidal activity of 100, 100, and 77.6 % on 0-6, 6-12, and 12-18 h old eggs; the repellent activity was 323.2 min; and oviposition deterrent activity was 97.52 % and adulticidal activity was 100 % against A. aegypti. The results were statistically significant at P < 0.05 level. The results suggested that confertifolin as an effective major constituent against A. aegypti and might be considered as a potent source for the production of superior natural mosquitocides.

  6. Dengue Virus Infection Perturbs Lipid Homeostasis in Infected Mosquito Cells

    SciTech Connect

    Perera, Rushika M.; Riley, Catherine; Isaac, Georgis; Hopf- Jannasch, Amber; Moore, Ronald J.; Weitz, Karl K.; Pasa-Tolic, Ljiljana; Metz, Thomas O.; Adamec, Jiri; Kuhn, Richard J.

    2012-03-22

    Dengue virus causes {approx}50-100 million infections per year and thus is considered one of the most aggressive arthropod-borne human pathogen worldwide. During its replication, dengue virus induces dramatic alterations in the intracellular membranes of infected cells. This phenomenon is observed both in human and vector-derived cells. Using high-resolution mass spectrometry of mosquito cells, we show that this membrane remodeling is directly linked to a unique lipid repertoire induced by dengue virus infection. Specifically, 15% of the metabolites detected were significantly different between DENV infected and uninfected cells while 85% of the metabolites detected were significantly different in isolated replication complex membranes. Furthermore, we demonstrate that intracellular lipid redistribution induced by the inhibition of fatty acid synthase, the rate-limiting enzyme in lipid biosynthesis, is sufficient for cell survival but is inhibitory to dengue virus replication. Lipids that have the capacity to destabilize and change the curvature of membranes as well as lipids that change the permeability of membranes are enriched in dengue virus infected cells. Several sphingolipids and other bioactive signaling molecules that are involved in controlling membrane fusion, fission, and trafficking as well as molecules that influence cytoskeletal reorganization are also up regulated during dengue infection. These observations shed light on the emerging role of lipids in shaping the membrane and protein environments during viral infections and suggest membrane-organizing principles that may influence virus-induced intracellular membrane architecture.

  7. Effect of Quorum Sensing by Staphylococcus epidermidis on the Attraction Response of Female Adult Yellow Fever Mosquitoes, Aedes aegypti aegypti (Linnaeus) (Diptera: Culicidae), to a Blood-Feeding Source.

    PubMed

    Zhang, Xinyang; Crippen, Tawni L; Coates, Craig J; Wood, Thomas K; Tomberlin, Jeffery K

    2015-01-01

    Aedes aegypti, the principal vector of yellow fever and dengue fever, is responsible for more than 30,000 deaths annually. Compounds such as carbon dioxide, amino acids, fatty acids and other volatile organic compounds (VOCs) have been widely studied for their role in attracting Ae. aegypti to hosts. Many VOCs from humans are produced by associated skin microbiota. Staphyloccocus epidermidis, although not the most abundant bacteria according to surveys of relative 16S ribosomal RNA abundance, commonly occurs on human skin. Bacteria demonstrate population level decision-making through quorum sensing. Many quorum sensing molecules, such as indole, volatilize and become part of the host odor plum. To date, no one has directly demonstrated the link between quorum sensing (i.e., decision-making) by bacteria associated with a host as a factor regulating arthropod vector attraction. This study examined this specific question with regards to S. epidermidis and Ae. aegypti. Pairwise tests were conducted to examine the response of female Ae. aegypti to combinations of tryptic soy broth (TSB) and S. epidermidis wildtype and agr- strains. The agr gene expresses an accessory gene regulator for quorum sensing; therefore, removing this gene inhibits quorum sensing of the bacteria. Differential attractiveness of mosquitoes to the wildtype and agr- strains was observed. Both wildtype and the agr- strain of S. epidermidis with TSB were marginally more attractive to Ae. aegypti than the TSB alone. Most interestingly, the blood-feeder treated with wildtype S. epidermidis/TSB attracted 74% of Ae. aegypti compared to the agr- strain of S. epidermidis/TSB (P ≤ 0.0001). This study is the first to suggest a role for interkingdom communication between host symbiotic bacteria and mosquitoes. This may have implications for mosquito decision-making with regards to host detection, location and acceptance. We speculate that mosquitoes "eavesdrop" on the chemical discussions occurring between

  8. Effect of Quorum Sensing by Staphylococcus epidermidis on the Attraction Response of Female Adult Yellow Fever Mosquitoes, Aedes aegypti aegypti (Linnaeus) (Diptera: Culicidae), to a Blood-Feeding Source

    PubMed Central

    Zhang, Xinyang; Crippen, Tawni L.; Coates, Craig J.; Wood, Thomas K.; Tomberlin, Jeffery K.

    2015-01-01

    Aedes aegypti, the principal vector of yellow fever and dengue fever, is responsible for more than 30,000 deaths annually. Compounds such as carbon dioxide, amino acids, fatty acids and other volatile organic compounds (VOCs) have been widely studied for their role in attracting Ae. aegypti to hosts. Many VOCs from humans are produced by associated skin microbiota. Staphyloccocus epidermidis, although not the most abundant bacteria according to surveys of relative 16S ribosomal RNA abundance, commonly occurs on human skin. Bacteria demonstrate population level decision-making through quorum sensing. Many quorum sensing molecules, such as indole, volatilize and become part of the host odor plum. To date, no one has directly demonstrated the link between quorum sensing (i.e., decision-making) by bacteria associated with a host as a factor regulating arthropod vector attraction. This study examined this specific question with regards to S. epidermidis and Ae. aegypti. Pairwise tests were conducted to examine the response of female Ae. aegypti to combinations of tryptic soy broth (TSB) and S. epidermidis wildtype and agr- strains. The agr gene expresses an accessory gene regulator for quorum sensing; therefore, removing this gene inhibits quorum sensing of the bacteria. Differential attractiveness of mosquitoes to the wildtype and agr- strains was observed. Both wildtype and the agr- strain of S. epidermidis with TSB were marginally more attractive to Ae. aegypti than the TSB alone. Most interestingly, the blood-feeder treated with wildtype S. epidermidis/TSB attracted 74% of Ae. aegypti compared to the agr- strain of S. epidermidis/TSB (P ≤ 0.0001). This study is the first to suggest a role for interkingdom communication between host symbiotic bacteria and mosquitoes. This may have implications for mosquito decision-making with regards to host detection, location and acceptance. We speculate that mosquitoes “eavesdrop” on the chemical discussions occurring

  9. Delivery of chitosan/dsRNA nanoparticles for silencing of wing development vestigial (vg) gene in Aedes aegypti mosquitoes.

    PubMed

    Ramesh Kumar, D; Saravana Kumar, P; Gandhi, M Rajiv; Al-Dhabi, Naif Abdullah; Paulraj, M Gabriel; Ignacimuthu, S

    2016-05-01

    RNA interference (RNAi) has been used as a gene silencing strategy by the introduction of long double stranded RNA (dsRNA) for the control of pest insects. The aim of the present study was to examine whether the expression of vg gene which is responsible for wing development, can be repressed by chitosan/dsRNA based nanoparticles in Aedes aegypti. The vestigial gene (vg) was amplified from adult mosquito and cloned in pLitmus28i vector. Genetically engineered recombinant plasmid was transformed into RNase III deficient strain for synthesis of bacterially expressed dsRNA. Nanoparticles were prepared via electrostatic interaction between cationic polymer chitosan and anionic nucleic acids (dsRNA). The formation of chitosan/dsRNAnanoparticles and their size were confirmed by Atomic force microscopy (AFM). Chitosan/dsRNA mediated knockdown of Enhanced Green Fluorescence Protein (EGFP) was demonstrated in Sf21 cells. Further, we tested whether such an approach could be used to target vg gene in Ae. aegypti. The results showed that chitosan/dsRNA caused significant mortality, delayed growth development and caused adult wing-malformation. A qRT-PCR analysis confirmed that the chitosan/dsRNA mediated transcriptional level was downregulated. Our findings suggest that vg gene intervention strategies through RNAi can emerge as viable option for pest control. PMID:26794313

  10. Larvicidal action of ethanolic extracts from fruit endocarps of Melia azedarach and Azadirachta indica against the dengue mosquito Aedes aegypti.

    PubMed

    Wandscheer, Carolina B; Duque, Jonny E; da Silva, Mario A N; Fukuyama, Yoshiyasu; Wohlke, Jonathan L; Adelmann, Juliana; Fontana, José D

    2004-12-15

    Ethanolic extracts from the kernels of ripe fruits from the Indian Lilac Melia azedarach and from the well-known Neem tree, Azadirachta indica were assayed against larvae of Aedes aegypti, the mosquito vector of dengue fever. The lethality bioassays were carried out according to the recommendations of the World Health Organization. Extracts were tested at doses ranging from 0.0033 to 0.05 g% in an aqueous medium for 24 and 48 h, at 25 or 30 degrees C, with or without feeding of the larvae. LC50, LC95 and LC99 were determined. Both seed extracts proved lethal for third to fourth instar larvae. Non-fed A. aegypti larvae were more susceptible to Azadirachta extracts at both temperatures. Under a more realistic environmental situation, namely with fed larvae at 25 degrees C, the death rates caused by the Melia extract were higher, although at 30 degrees C the extract of Azadirachta had an even higher lethality. Inter allia, the LC50 values for the crude extracts of these two members of the Meliaceae ranged from 0.017 to 0.034 g% while the LC99 values ranged from 0.133 to 0.189 g%. Since no downstream processing was undertaken to purify the active agents in the extracts, our findings seem very promising, suggesting that it may be possible to increase the larvicidal activity further by improving the extraction and the fractionation of the crude limonoids, for instance removing the co-extracted natural fats.

  11. Insecticidal potential of Ocimum canum plant extracts against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus larval and adult mosquitoes (Diptera: Culicidae).

    PubMed

    Murugan, Jimmantiyur Madhappan; Ramkumar, Govindaraju; Shivakumar, Muthugoundar Subramanian

    2016-01-01

    Mosquitoes have developed resistance to various synthetic insecticides, making their control increasingly difficult. Insecticides of botanical origin may serve as suitable natural control. This study evaluates the toxic potential of Ocimum canum (Sims) leaf extract and powder against Anopheles stephensi (Liston), Aedes aegypti (Lin) and Culex quinquefasciatus (Say) larval and adult mosquitoes. Larval mortality was observed after 24 h recovery period and adult smoke toxicity observed for 40 min duration at 10 min interval. Methanol extract of O. canum showed highest larval mortality against the larvae of C. quinquefasciatus LC50 = 28.3225, LC90 = 44.1150; Ae. aegypti LC50 = 43.327, LC90 = 61.249; and An. stephensi LC50 = 30.2001, LC90 = 48.2866 ppm. The smoke toxicities were 93% mortality in C. quinquefasciatus, 74% in Ae. aegypti and 79% in An. stephensi adults, respectively, whereas 100% mortality was recorded in the commercial mosquito control. Our results suggest that O. canum leaf extract and powder are natural insecticide, and ideal eco friendly approach for mosquito control.

  12. Comparison of Vector Competence of Aedes mediovittatus and Aedes aegypti for Dengue Virus: Implications for Dengue Control in the Caribbean

    PubMed Central

    Poole-Smith, B. Katherine; Hemme, Ryan R.; Delorey, Mark; Felix, Gilberto; Gonzalez, Andrea L.; Amador, Manuel; Hunsperger, Elizabeth A.; Barrera, Roberto

    2015-01-01

    Background Aedes mediovittatus mosquitoes are found throughout the Greater Antilles in the Caribbean and often share the same larval habitats with Ae. Aegypti, the primary vector for dengue virus (DENV). Implementation of vector control measures to control dengue that specifically target Ae. Aegypti may not control DENV transmission in Puerto Rico (PR). Even if Ae. Aegypti is eliminated or DENV refractory mosquitoes are released, DENV transmission may not cease when other competent mosquito species like Ae. Mediovittatus are present. To compare vector competence of Ae. Mediovittatus and Ae. Aegypti mosquitoes, we studied relative infection and transmission rates for all four DENV serotypes. Methods To compare the vector competence of Ae. Mediovittatus and Ae. Aegypti, mosquitoes were exposed to DENV 1–4 per os at viral titers of 5–6 logs plaque-forming unit (pfu) equivalents. At 14 days post infectious bloodmeal, viral RNA was extracted and tested by qRT-PCR to determine infection and transmission rates. Infection and transmission rates were analyzed with a generalized linear model assuming a binomial distribution. Results Ae. Aegypti had significantly higher DENV-4 infection and transmission rates than Ae. mediovittatus. Conclusions This study determined that Ae. Mediovittatus is a competent DENV vector. Therefore dengue prevention programs in PR and the Caribbean should consider both Ae. Mediovittatus and Ae. Aegypti mosquitoes in their vector control programs. PMID:25658951

  13. Mosquito larvicidal properties of silver nanoparticles synthesized using Heliotropium indicum (Boraginaceae) against Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus (Diptera: Culicidae).

    PubMed

    Veerakumar, Kaliyan; Govindarajan, Marimuthu; Rajeswary, Mohan; Muthukumaran, Udaiyan

    2014-06-01

    Mosquitoes transmit dreadful diseases to human beings wherein biological control of these vectors using plant-derived molecules would be an alternative to reduce mosquito population. In the present study activity of aqueous leaf extract and silver nanoparticles (AgNPs) synthesized using Helitropium indicum plant leaves against late third instar larvae of Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus. The range of varying concentrations of synthesized AgNPs (8, 16, 24, 32, and 40 μg/mL) and aqueous leaf extract (30, 60, 90, 120, and 150 μg/mL) were tested against the larvae of Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus. The synthesized AgNPs from H. indicum were highly toxic than crude leaf aqueous extract in three important vector mosquito species. The results were recorded from UV-Vis spectrum, Fourier transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy analysis, transmission electron microscopy, and histogram. The synthesized AgNPs showed larvicidal effects after 24 h of exposure. Considerable mortality was evident after the treatment of H. indicum for all three important vector mosquitoes. The LC50 and LC90 values of H. indicum aqueous leaf extract appeared to be effective against A. stephensi (LC50, 68.73 μg/mL; LC90, 121.07 μg/mL) followed by A. aegypti (LC50, 72.72 μg/mL; LC90, 126.86 μg/mL) and C. quinquefasciatus (LC50, 78.74 μg/mL; LC90, 134.39 μg/mL). Synthesized AgNPs against the vector mosquitoes of A. stephensi, A. aegypti, and C. quinquefasciatus had the following LC50 and LC90 values: A. stephensi had LC50 and LC90 values of 18.40 and 32.45 μg/mL, A. aegypti had LC50 and LC90 values of 20.10 and 35.97 μg/mL, and C. quinquefasciatus had LC50 and LC90 values of 21.84 and 38.10 μg/mL. No mortality was observed in the control. These results suggest that the leaf aqueous extracts of H. indicum and green synthesis of silver nanoparticles have the

  14. [Oral receptivity of Aedes aegypti formosus from Franceville (Gabon, central Africa) for type 2 dengue virus].

    PubMed

    Vazeille-Falcoz, M; Failloux, A B; Mousson, L; Elissa, N; Rodhain, F

    1999-12-01

    Dengue is widely distributed in the tropics but epidemic activity was rarely reported in Africa before the 1980's. In the past 15 years, increased epidemic dengue fever has been reported both in East and West Africa, raising concern about the ability of local populations of Aedes aegypti to transmit dengue viruses. Ae. aegypti is present in two forms in Africa: Ae. aegypti aegypti and Ae. aegypti formosus. This latter form, much darker, was not originally a local species but is now colonizing artificial breeding sites within cities. We have been able to demonstrate the oral susceptibility for dengue type 2 virus of Ae. aegypti formosus collected in Franceville, Gabon (Central Africa). However, these mosquitoes sampled exhibited lower infection rates than those of a control colony of Ae. aegypti aegypti originating from French Polynesia.

  15. Chromobacterium Csp_P Reduces Malaria and Dengue Infection in Vector Mosquitoes and Has Entomopathogenic and In Vitro Anti-pathogen Activities

    PubMed Central

    Bahia, Ana C.; Saraiva, Raul G.; Dong, Yuemei; Kang, Seokyoung; Tripathi, Abhai; Mlambo, Godfree; Dimopoulos, George

    2014-01-01

    Plasmodium and dengue virus, the causative agents of the two most devastating vector-borne diseases, malaria and dengue, are transmitted by the two most important mosquito vectors, Anopheles gambiae and Aedes aegypti, respectively. Insect-bacteria associations have been shown to influence vector competence for human pathogens through multi-faceted actions that include the elicitation of the insect immune system, pathogen sequestration by microbes, and bacteria-produced anti-pathogenic factors. These influences make the mosquito microbiota highly interesting from a disease control perspective. Here we present a bacterium of the genus Chromobacterium (Csp_P), which was isolated from the midgut of field-caught Aedes aegypti. Csp_P can effectively colonize the mosquito midgut when introduced through an artificial nectar meal, and it also inhibits the growth of other members of the midgut microbiota. Csp_P colonization of the midgut tissue activates mosquito immune responses, and Csp_P exposure dramatically reduces the survival of both the larval and adult stages. Ingestion of Csp_P by the mosquito significantly reduces its susceptibility to Plasmodium falciparum and dengue virus infection, thereby compromising the mosquito's vector competence. This bacterium also exerts in vitro anti-Plasmodium and anti-dengue activities, which appear to be mediated through Csp_P -produced stable bioactive factors with transmission-blocking and therapeutic potential. The anti-pathogen and entomopathogenic properties of Csp_P render it a potential candidate for the development of malaria and dengue control strategies. PMID:25340821

  16. Infection of Mosquito Cells (C6/36) by Dengue-2 Virus Interferes with Subsequent Infection by Yellow Fever Virus.

    PubMed

    Abrao, Emiliana Pereira; da Fonseca, Benedito Antônio Lopes

    2016-02-01

    Dengue is one of the most important diseases caused by arboviruses in the world. Yellow fever is another arthropod-borne disease of great importance to public health that is endemic to tropical regions of Africa and the Americas. Both yellow fever and dengue viruses are flaviviruses transmitted by Aedes aegypti mosquitoes, and then, it is reasonable to consider that in a given moment, mosquito cells could be coinfected by both viruses. Therefore, we decided to evaluate if sequential infections of dengue and yellow fever viruses (and vice-versa) in mosquito cells could affect the virus replication patterns. Using immunofluorescence and real-time PCR-based replication assays in Aedes albopictus C6/36 cells with single or sequential infections with both viruses, we demonstrated the occurrence of viral interference, also called superinfection exclusion, between these two viruses. Our results show that this interference pattern is particularly evident when cells were first infected with dengue virus and subsequently with yellow fever virus (YFV). Reduction in dengue virus replication, although to a lower extent, was also observed when C6/36 cells were initially infected with YFV followed by dengue virus infection. Although the importance that these findings have on nature is unknown, this study provides evidence, at the cellular level, of the occurrence of replication interference between dengue and yellow fever viruses and raises the question if superinfection exclusion could be a possible explanation, at least partially, for the reported lack of urban yellow fever occurrence in regions where a high level of dengue transmission occurs.

  17. Physiological recordings and RNA sequencing of the gustatory appendages of the yellow-fever mosquito Aedes aegypti.

    PubMed

    Sparks, Jackson T; Dickens, Joseph C

    2014-01-01

    Electrophysiological recording of action potentials from sensory neurons of mosquitoes provides investigators a glimpse into the chemical perception of these disease vectors. We have recently identified a bitter sensing neuron in the labellum of female Aedes aegypti that responds to DEET and other repellents, as well as bitter quinine, through direct electrophysiological investigation. These gustatory receptor neuron responses prompted our sequencing of total mRNA from both male and female labella and tarsi samples to elucidate the putative chemoreception genes expressed in these contact chemoreception tissues. Samples of tarsi were divided into pro-, meso- and metathoracic subtypes for both sexes. We then validated our dataset by conducting qRT-PCR on the same tissue samples and used statistical methods to compare results between the two methods. Studies addressing molecular function may now target specific genes to determine those involved in repellent perception by mosquitoes. These receptor pathways may be used to screen novel repellents towards disruption of host-seeking behavior to curb the spread of harmful viruses. PMID:25590536

  18. Larvicidal activity of neem and karanja oil cakes against mosquito vectors, Culex quinquefasciatus (say), Aedes aegypti (L.) and Anopheles stephensi (L.).

    PubMed

    Shanmugasundaram, R; Jeyalakshmi, T; Dutt, M Sunil; Murthy, P Balakrishna

    2008-01-01

    Larvicidal effect of neem (Azadirachta indica) and karanja (Pongamia glabra) oil cakes (individuals and combination) was studied against mosquito species. Both the oil cakes showed larvicidal activity against the mosquito species tested. The combination of neem and karanja oil cakes in equal proportion proved to have better effect than the individual treatments. The combination of the two oil cakes recorded an LC95 of 0.93, 0.54 and 0.77% against the mosquitoes, Culex quinquefasciatus, Aedes aegypti and Anopheles stephensi respectively The increase in efficacy of the combination treatment over individuals in all the mosquito larvae tested was found to range about 4 to 10 fold in terms of LC50 and 2 to 6 fold in terms of LC95.

  19. The heterodimeric glycoprotein hormone, GPA2/GPB5, regulates ion transport across the hindgut of the adult mosquito, Aedes aegypti.

    PubMed

    Paluzzi, Jean-Paul; Vanderveken, Mark; O'Donnell, Michael J

    2014-01-01

    A family of evolutionarily old hormones is the glycoprotein cysteine knot-forming heterodimers consisting of alpha- (GPA) and beta-subunits (GPB), which assemble by noncovalent bonds. In mammals, a common glycoprotein hormone alpha-subunit (GPA1) pairs with unique beta-subunits that establish receptor specificity, forming thyroid stimulating hormone (GPA1/TSHβ) and the gonadotropins luteinizing hormone (GPA1/LHβ), follicle stimulating hormone (GPA1/FSHβ), choriogonadotropin (GPA1/CGβ). A novel glycoprotein heterodimer was identified in vertebrates by genome analysis, called thyrostimulin, composed of two novel subunits, GPA2 and GPB5, and homologs occur in arthropods, nematodes and cnidarians, implying that this neurohormone system existed prior to the emergence of bilateral metazoans. In order to discern possible physiological roles of this hormonal signaling system in mosquitoes, we have isolated the glycoprotein hormone genes producing the alpha- and beta-subunits (AedaeGPA2 and AedaeGPB5) and assessed their temporal expression profiles in the yellow and dengue-fever vector, Aedes aegypti. We have also isolated a putative receptor for this novel mosquito hormone, AedaeLGR1, which contains features conserved with other glycoprotein leucine-rich repeating containing G protein-coupled receptors. AedaeLGR1 is expressed in tissues of the alimentary canal such as the midgut, Malpighian tubules and hindgut, suggesting that this novel mosquito glycoprotein hormone may regulate ionic and osmotic balance. Focusing on the hindgut in adult stage A. aegypti, where AedaeLGR1 was highly enriched, we utilized the Scanning Ion-selective Electrode Technique (SIET) to determine if AedaeGPA2/GPB5 modulated cation transport across this epithelial tissue. Our results suggest that AedaeGPA2/GPB5 does indeed participate in ionic and osmotic balance, since it appears to inhibit natriuresis and promote kaliuresis. Taken together, our findings imply this hormone may play an important

  20. Insecticidal potency of Aspergillus terreus against larvae and pupae of three mosquito species Anopheles stephensi, Culex quinquefasciatus, and Aedes aegypti.

    PubMed

    Ragavendran, Chinnasamy; Natarajan, Devarajan

    2015-11-01

    Microbial control agents offer alternatives to chemical pest control, as they can be more selective than chemical insecticides. The present study evaluates the mosquito larvicidal and pupicidal potential of fungus mycelia using ethyl acetate and methanol solvent extracts produced by Aspergillus terreus against Anopheles stephensi, Culex quinquefasciatus, and Aedes aegypti. The A. terreus mycelia were extracted after 15 days from Sabouraud dextrose broth medium. The ethyl acetate extracts showed lethal concentration that kills 50% of the exposed larvae (LC50) and lethal concentration that kills 90% of the exposed larvae (LC90) values of the first, second, third, and fourth instar larvae of An. stephensi (LC50 = 97.410, 102.551, 29.802, and 8.907; LC90 = 767.957, 552.546, 535.474, and 195.677 μg/ml), Cx. quinquefasciatus (LC50 = 89.584, 74.689, 68.265, and 67.40; LC90 = 449.091, 337.355, 518.793, and 237.347 μg/ml), and Ae. aegypti (LC50 = 83.541, 84.418, 80.407, and 95.926; LC90 = 515.464, 443.167, 387.910, and 473.998 μg/ml). Pupicidal activity of mycelium extracts was tested against An. stephensi (LC50 = 25.228, LC90 = 140.487), Cx. quinquefasciatus (LC50 = 54.525, LC90 = 145.366), and Ae. aegypti (LC50 = 10.536, LC90 = 63.762 μg/ml). At higher concentration (500 μg/ml), mortality starts within the first 6 h of exposure. One hundred percent mortality occurs at 24-h exposure. The overall result observed that effective activity against selected mosquito larvae and pupae after 24 h was a dose and time-dependent activity. These ensure that the resultant mosquito population reduction is substantial even where the larvicidal and pupicidal potential is minimal. The FTIR spectra of ethyl acetate extract reflect prominent peaks (3448.32, 3000.36, 2914.59, 2118.73, 1668.21, 1436.87, 1409.02, 954.33, 901.13, and 704.67 cm(-1)). The spectra showed a sharp absorption band at 1314.66 cm(-1) assigned to wagging vibration of

  1. Insecticidal potency of Aspergillus terreus against larvae and pupae of three mosquito species Anopheles stephensi, Culex quinquefasciatus, and Aedes aegypti.

    PubMed

    Ragavendran, Chinnasamy; Natarajan, Devarajan

    2015-11-01

    Microbial control agents offer alternatives to chemical pest control, as they can be more selective than chemical insecticides. The present study evaluates the mosquito larvicidal and pupicidal potential of fungus mycelia using ethyl acetate and methanol solvent extracts produced by Aspergillus terreus against Anopheles stephensi, Culex quinquefasciatus, and Aedes aegypti. The A. terreus mycelia were extracted after 15 days from Sabouraud dextrose broth medium. The ethyl acetate extracts showed lethal concentration that kills 50% of the exposed larvae (LC50) and lethal concentration that kills 90% of the exposed larvae (LC90) values of the first, second, third, and fourth instar larvae of An. stephensi (LC50 = 97.410, 102.551, 29.802, and 8.907; LC90 = 767.957, 552.546, 535.474, and 195.677 μg/ml), Cx. quinquefasciatus (LC50 = 89.584, 74.689, 68.265, and 67.40; LC90 = 449.091, 337.355, 518.793, and 237.347 μg/ml), and Ae. aegypti (LC50 = 83.541, 84.418, 80.407, and 95.926; LC90 = 515.464, 443.167, 387.910, and 473.998 μg/ml). Pupicidal activity of mycelium extracts was tested against An. stephensi (LC50 = 25.228, LC90 = 140.487), Cx. quinquefasciatus (LC50 = 54.525, LC90 = 145.366), and Ae. aegypti (LC50 = 10.536, LC90 = 63.762 μg/ml). At higher concentration (500 μg/ml), mortality starts within the first 6 h of exposure. One hundred percent mortality occurs at 24-h exposure. The overall result observed that effective activity against selected mosquito larvae and pupae after 24 h was a dose and time-dependent activity. These ensure that the resultant mosquito population reduction is substantial even where the larvicidal and pupicidal potential is minimal. The FTIR spectra of ethyl acetate extract reflect prominent peaks (3448.32, 3000.36, 2914.59, 2118.73, 1668.21, 1436.87, 1409.02, 954.33, 901.13, and 704.67 cm(-1)). The spectra showed a sharp absorption band at 1314.66 cm(-1) assigned to wagging vibration of

  2. Bromeliad-inhabiting mosquitoes in an urban botanical garden of dengue endemic Rio de Janeiro. Are bromeliads productive habitats for the invasive vectors Aedes aegypti and Aedes albopictus?

    PubMed Central

    Mocellin, Márcio Goulart; Simões, Taynãna César; do Nascimento, Teresa Fernandes Silva; Teixeira, Maria Lucia França; Lounibos, Leon Philip; de Oliveira, Ricardo Lourenço

    2012-01-01

    Immatures of both Aedes aegypti and Aedes albopictus have been found in water-holding bromeliad axils in Brazil. Removal of these plants or their treatment with insecticides in public and private gardens have been undertaken during dengue outbreaks in Brazil despite uncertainty as to their importance as productive habitats for dengue vectors. From March 2005-February 2006, we sampled 120 randomly selected bromeliads belonging to 10 species in a public garden less than 200 m from houses in a dengue-endemic neighborhood in Rio de Janeiro. A total of 2,816 mosquito larvae and pupae was collected, with an average of 5.87 immatures per plant per collection. Culex (Microculex) pleuristriatus and Culex spp of the Ocellatus Group were the most abundant culicid species, found in all species of bromeliads; next in relative abundance were species of the genus Wyeomyia. Only two individuals of Ae. aegypti (0.07%) and five of Ae. albopictus (0.18%) were collected from bromeliads. By contrast, immatures of Ae. aegypti were found in manmade containers in nearly 5% of nearby houses. These results demonstrate that bromeliads are not important producers of Ae. aegypti and Ae. albopictus and, hence, should not be a focus for dengue control. However, the results of this study of only one year in a single area may not represent outcomes in other urban localities where bromeliads, Ae. aegypti and dengue coincide in more disturbed habitats. PMID:20140379

  3. Parameters of Mosquito-Enhanced West Nile Virus Infection

    PubMed Central

    Moser, Lindsey A.; Lim, Pei-Yin; Styer, Linda M.; Kramer, Laura D.

    2015-01-01

    ABSTRACT The arthropod-borne West Nile virus (WNV) emerged in New York State in 1999 and quickly spread throughout the United States. Transmission is maintained in an enzootic cycle in which infected mosquitoes transmit the virus to susceptible hosts during probing and feeding. Arthropod-derived components within the viral inoculum are increasingly acknowledged to play a role in infection of vertebrate hosts. We previously showed that Culex tarsalis mosquito saliva and salivary gland extract (SGE) enhance the in vivo replication of WNV. Here, we characterized the effective dose, timing, and proximity of saliva and SGE administration necessary for enhancement of WNV viremia using a mouse model. Mosquito saliva and SGE enhanced viremia in a dose-dependent manner, and a single mosquito bite or as little as 0.01 μg of SGE was effective at enhancing viremia, suggesting a potent active salivary factor. Viremia was enhanced when SGE was injected in the same location as virus inoculation from 24 h before virus inoculation through 12 h after virus inoculation. These results were confirmed with mosquito saliva deposited by uninfected mosquitoes. When salivary treatment and virus inoculation were spatially separated, viremia was not enhanced. In summary, the effects of mosquito saliva and SGE were potent, long lasting, and localized, and these studies have implications for virus transmission in nature, where vertebrate hosts are fed upon by both infected and uninfected mosquitoes over time. Furthermore, our model provides a robust system to identify the salivary factor(s) responsible for enhancement of WNV replication. IMPORTANCE Mosquito-borne viruses are a significant class of agents causing emerging infectious diseases. WNV has caused over 18,000 cases of neuroinvasive disease in the United States since its emergence. We have shown that Culex tarsalis mosquito saliva and SGE enhance the replication of WNV. We now demonstrate that saliva and SGE have potent, long

  4. Mechanisms of Pyrethroid Resistance in the Dengue Mosquito Vector, Aedes aegypti: Target Site Insensitivity, Penetration, and Metabolism

    PubMed Central

    Kasai, Shinji; Komagata, Osamu; Itokawa, Kentaro; Shono, Toshio; Ng, Lee Ching; Kobayashi, Mutsuo; Tomita, Takashi

    2014-01-01

    Aedes aegypti is the major vector of yellow and dengue fevers. After 10 generations of adult selection, an A. aegypti strain (SP) developed 1650-fold resistance to permethrin, which is one of the most widely used pyrethroid insecticides for mosquito control. SP larvae also developed 8790-fold resistance following selection of the adults. Prior to the selections, the frequencies of V1016G and F1534C mutations in domains II and III, respectively, of voltage-sensitive sodium channel (Vssc, the target site of pyrethroid insecticide) were 0.44 and 0.56, respectively. In contrast, only G1016 alleles were present after two permethrin selections, indicating that G1016 can more contribute to the insensitivity of Vssc than C1534. In vivo metabolism studies showed that the SP strain excreted permethrin metabolites more rapidly than a susceptible SMK strain. Pretreatment with piperonyl butoxide caused strong inhibition of excretion of permethrin metabolites, suggesting that cytochrome P450 monooxygenases (P450s) play an important role in resistance development. In vitro metabolism studies also indicated an association of P450s with resistance. Microarray analysis showed that multiple P450 genes were over expressed during the larval and adult stages in the SP strain. Following quantitative real time PCR, we focused on two P450 isoforms, CYP9M6 and CYP6BB2. Transcription levels of these P450s were well correlated with the rate of permethrin excretion and they were certainly capable of detoxifying permethrin to 4′-HO-permethrin. Over expression of CYP9M6 was partially due to gene amplification. There was no significant difference in the rate of permethrin reduction from cuticle between SP and SMK strains. PMID:24945250

  5. Larvicidal action of ethanolic extracts from fruit endocarps of Melia azedarach and Azadirachta indica against the dengue mosquito Aedes aegypti.

    PubMed

    Wandscheer, Carolina B; Duque, Jonny E; da Silva, Mario A N; Fukuyama, Yoshiyasu; Wohlke, Jonathan L; Adelmann, Juliana; Fontana, José D

    2004-12-15

    Ethanolic extracts from the kernels of ripe fruits from the Indian Lilac Melia azedarach and from the well-known Neem tree, Azadirachta indica were assayed against larvae of Aedes aegypti, the mosquito vector of dengue fever. The lethality bioassays were carried out according to the recommendations of the World Health Organization. Extracts were tested at doses ranging from 0.0033 to 0.05 g% in an aqueous medium for 24 and 48 h, at 25 or 30 degrees C, with or without feeding of the larvae. LC50, LC95 and LC99 were determined. Both seed extracts proved lethal for third to fourth instar larvae. Non-fed A. aegypti larvae were more susceptible to Azadirachta extracts at both temperatures. Under a more realistic environmental situation, namely with fed larvae at 25 degrees C, the death rates caused by the Melia extract were higher, although at 30 degrees C the extract of Azadirachta had an even higher lethality. Inter allia, the LC50 values for the crude extracts of these two members of the Meliaceae ranged from 0.017 to 0.034 g% while the LC99 values ranged from 0.133 to 0.189 g%. Since no downstream processing was undertaken to purify the active agents in the extracts, our findings seem very promising, suggesting that it may be possible to increase the larvicidal activity further by improving the extraction and the fractionation of the crude limonoids, for instance removing the co-extracted natural fats. PMID:15530964

  6. Gustatory receptor expression in the labella and legs of aedes aegypti

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The yellow-fever mosquito, Aedes aegypti, is a dangerous disease vector, infecting a growing number of people every year with dengue, yellow fever and chikungunya viruses. Contact chemoreception in mosquitoes influences a number of behaviors including host-selection, oviposition and feeding. While...

  7. Analysis of CHIKV in Mosquitoes Infected via Artificial Blood Meal.

    PubMed

    Ledermann, Jeremy P; Powers, Ann M

    2016-01-01

    Having a mechanism to assess the transmission dynamics of a vector-borne virus is one critical component of understanding the life cycle of these viruses. Laboratory infection systems using artificial blood meals is one valuable approach for monitoring the progress of virus in its mosquito host and evaluating potential points for interruption of the cycle for control purposes. Here, we describe an artificial blood meal system with Chikungunya virus (CHIKV) and the processing of mosquito tissues and saliva to understand the movement and time course of virus infection in the invertebrate host. PMID:27233267

  8. A lethal ovitrap-based mass trapping scheme for dengue control in Australia: II. Impact on populations of the mosquito Aedes aegypti.

    PubMed

    Rapley, L P; Johnson, P H; Williams, C R; Silcock, R M; Larkman, M; Long, S A; Russell, R C; Ritchie, S A

    2009-12-01

    numbers of young females may have confounded the measurement of changes in populations of older females in these studies. This is an important issue, with implications for assessing delayed action control measures, such as LOs and parasites/pathogens that aim to change mosquito age structure. Finally, the high public acceptability of SLOs and BLOs, coupled with significant impacts on female Ae. aegypti populations in two of the three interventions reported here, suggest that mass trapping with SLOs and BLOs can be an effective component of a dengue control strategy. PMID:19941596

  9. Mosquito larvicidal potential of silver nanoparticles synthesized using Chomelia asiatica (Rubiaceae) against Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus (Diptera: Culicidae).

    PubMed

    Muthukumaran, Udaiyan; Govindarajan, Marimuthu; Rajeswary, Mohan

    2015-03-01

    Mosquitoes transmit serious human diseases, causing millions of deaths every year. Mosquito control is to enhance the health and quality of life of county residents and visitors through the reduction of mosquito populations. Mosquito control is a serious concern in developing countries like India due to the lack of general awareness, development of resistance, and socioeconomic reasons. Today, nanotechnology is a promising research domain which has a wide ranging application in vector control programs. These are nontoxic, easily available at affordable prices, biodegradable, and show broad-spectrum target-specific activities against different species of vector mosquitoes. In the present study, larvicidal activity of aqueous leaf extract and silver nanoparticles (AgNPs) synthesized using C. asiatica plant leaves against late third instar larvae of Anopheles stephensi, Aedes aegypti, and Cx. quinquefasciatus. The range of varying concentrations of synthesized AgNPs (8, 16, 24, 32, and 40 μg/mL) and aqueous leaf extract (40, 80, 120, 160, and 200 μg/mL) were tested against the larvae of An. stephensi, Ae. aegypti, and Cx. quinquefasciatus. The synthesized AgNPs from C. asiatica were highly toxic than crude leaf aqueous extract in three important vector mosquito species. The results were recorded from UV-Vis spectrum, Fourier transform infrared spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy analysis (EDX). Considerable mortality was evident after the treatment of C. asiatica for all three important vector mosquitoes. The LC50 and LC90 values of C. asiatica aqueous leaf extract appeared to be effective against An. stephensi (LC50, 90.17 μg/mL; LC90, 165.18 μg/mL) followed by Ae. aegypti (LC50, 96.59 μg/mL; LC90, 173.83 μg/mL) and Cx. quinquefasciatus (LC50, 103.08 μg/mL; LC90, 183.16 μg/mL). Synthesized AgNPs against the vector mosquitoes of An. stephensi, Ae. aegypti, and Cx. quinquefasciatus had the following LC50 and LC90

  10. Mosquito larvicidal potential of silver nanoparticles synthesized using Chomelia asiatica (Rubiaceae) against Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus (Diptera: Culicidae).

    PubMed

    Muthukumaran, Udaiyan; Govindarajan, Marimuthu; Rajeswary, Mohan

    2015-03-01

    Mosquitoes transmit serious human diseases, causing millions of deaths every year. Mosquito control is to enhance the health and quality of life of county residents and visitors through the reduction of mosquito populations. Mosquito control is a serious concern in developing countries like India due to the lack of general awareness, development of resistance, and socioeconomic reasons. Today, nanotechnology is a promising research domain which has a wide ranging application in vector control programs. These are nontoxic, easily available at affordable prices, biodegradable, and show broad-spectrum target-specific activities against different species of vector mosquitoes. In the present study, larvicidal activity of aqueous leaf extract and silver nanoparticles (AgNPs) synthesized using C. asiatica plant leaves against late third instar larvae of Anopheles stephensi, Aedes aegypti, and Cx. quinquefasciatus. The range of varying concentrations of synthesized AgNPs (8, 16, 24, 32, and 40 μg/mL) and aqueous leaf extract (40, 80, 120, 160, and 200 μg/mL) were tested against the larvae of An. stephensi, Ae. aegypti, and Cx. quinquefasciatus. The synthesized AgNPs from C. asiatica were highly toxic than crude leaf aqueous extract in three important vector mosquito species. The results were recorded from UV-Vis spectrum, Fourier transform infrared spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy analysis (EDX). Considerable mortality was evident after the treatment of C. asiatica for all three important vector mosquitoes. The LC50 and LC90 values of C. asiatica aqueous leaf extract appeared to be effective against An. stephensi (LC50, 90.17 μg/mL; LC90, 165.18 μg/mL) followed by Ae. aegypti (LC50, 96.59 μg/mL; LC90, 173.83 μg/mL) and Cx. quinquefasciatus (LC50, 103.08 μg/mL; LC90, 183.16 μg/mL). Synthesized AgNPs against the vector mosquitoes of An. stephensi, Ae. aegypti, and Cx. quinquefasciatus had the following LC50 and LC90

  11. Comparative analysis of response to selection with three insecticides in the dengue mosquito Aedes aegypti using mRNA sequencing

    PubMed Central

    2014-01-01

    Background Mosquito control programmes using chemical insecticides are increasingly threatened by the development of resistance. Such resistance can be the consequence of changes in proteins targeted by insecticides (target site mediated resistance), increased insecticide biodegradation (metabolic resistance), altered transport, sequestration or other mechanisms. As opposed to target site resistance, other mechanisms are far from being fully understood. Indeed, insecticide selection often affects a large number of genes and various biological processes can hypothetically confer resistance. In this context, the aim of the present study was to use RNA sequencing (RNA-seq) for comparing transcription level and polymorphism variations associated with adaptation to chemical insecticides in the mosquito Aedes aegypti. Biological materials consisted of a parental susceptible strain together with three child strains selected across multiple generations with three insecticides from different classes: the pyrethroid permethrin, the neonicotinoid imidacloprid and the carbamate propoxur. Results After ten generations, insecticide-selected strains showed elevated resistance levels to the insecticides used for selection. RNA-seq data allowed detecting over 13,000 transcripts, of which 413 were differentially transcribed in insecticide-selected strains as compared to the susceptible strain. Among them, a significant enrichment of transcripts encoding cuticle proteins, transporters and enzymes was observed. Polymorphism analysis revealed over 2500 SNPs showing > 50% allele frequency variations in insecticide-selected strains as compared to the susceptible strain, affecting over 1000 transcripts. Comparing gene transcription and polymorphism patterns revealed marked differences among strains. While imidacloprid selection was linked to the over transcription of many genes, permethrin selection was rather linked to polymorphism variations. Focusing on detoxification enzymes

  12. Activities of some Brazilian plants against larvae of the mosquito Aedes aegypti.

    PubMed

    de Mendonça, Fernando A C; da Silva, K F S; dos Santos, K K; Ribeiro Júnior, K A L; Sant'Ana, A E G

    2005-12-01

    The insecticidal activities of extracts and oils of seventeen medicinal plants of Brazil have been determined using an Aedes aegypti larvicidal bioassay. Oils from Anacardium occidentalis, Copaifera langsdorffii, Carapa guianensis, Cymbopogon winterianus and Ageratum conyzoides showed high activities with LC50 values of 14.5, 41, 57, 98 and 148 microg/l, respectively. The most active ethanolic extract tested was that from the stem of Annona glabra which presented an LC50 value of 27 microg/l. The potential application of cashew nut oil, an industrial by-product with low commercial value, in the control of the vector of dengue and yellow fever, may be proposed.

  13. First Report of Aedes aegypti Transmission of Chikungunya Virus in the Americas.

    PubMed

    Díaz-González, Esteban E; Kautz, Tiffany F; Dorantes-Delgado, Alicia; Malo-García, Iliana R; Laguna-Aguilar, Maricela; Langsjoen, Rose M; Chen, Rubing; Auguste, Dawn I; Sánchez-Casas, Rosa M; Danis-Lozano, Rogelio; Weaver, Scott C; Fernández-Salas, Ildefonso

    2015-12-01

    During a chikungunya fever outbreak in late 2014 in Chiapas, Mexico, entomovirological surveillance was performed to incriminate the vector(s). In neighborhoods, 75 households with suspected cases were sampled for mosquitoes, of which 80% (60) harbored Aedes aegypti and 2.7% (2) Aedes albopictus. A total of 1,170 Ae. aegypti and three Ae. albopictus was collected and 81 pools were generated. Although none of the Ae. albopictus pools were chikungunya virus (CHIKV)-positive, 18 Ae. aegypti pools (22.8%) contained CHIKV, yielding an infection rate of 32.3/1,000 mosquitoes. A lack of herd immunity in conjunction with high mosquito populations, poor vector control services in this region, and targeted collections in locations of human cases may explain the high infection rate in this vector. Consistent with predictions from experimental studies, Ae. aegypti appears to be the principal vector of CHIKV in southern Mexico, while the role of Ae. albopictus remains unknown.

  14. Ovicidal, larvicidal and adulticidal properties of Asparagus racemosus (Willd.) (Family: Asparagaceae) root extracts against filariasis (Culex quinquefasciatus), dengue (Aedes aegypti) and malaria (Anopheles stephensi) vector mosquitoes (Diptera: Culicidae).

    PubMed

    Govindarajan, Marimuthu; Sivakumar, Rajamohan

    2014-04-01

    Several diseases are associated to the mosquito-human interaction. Mosquitoes are the carriers of severe and well-known illnesses such as malaria, arboviral encephalitis, dengue fever, chikungunya fever, West Nile virus and yellow fever. These diseases produce significant morbidity and mortality in humans and livestock around the world. The present investigation was undertaken to study the ovicidal, larvicidal and adulticidal activities of crude hexane, ethyl acetate, benzene, chloroform and methanol extracts of root of Asparagus racemosus were assayed for their toxicity against three important vector mosquitoes, viz., Culex quinquefasciatus, Aedes aegypti and Anopheles stephensi (Diptera: Culicidae). The mean percent hatchability of the eggs was observed after 48 h post-treatment. The percent hatchability was inversely proportional to the concentration of extract and directly proportional to the eggs. All the five solvent extracts showed moderate ovicidal activity; however, the methanol extract showed the highest ovicidal activity. The methanol extract of Asparagus racemosus against Culex quinquefasciatus, Aedes aegypti and Anopheles stephensi exerted 100% mortality (zero hatchability) at 375, 300 and 225 ppm, respectively. Control eggs showed 99-100% hatchability. The larval mortality was observed after 24 h of exposure. All extracts showed moderate larvicidal effects; however, the highest larval mortality was found in methanol extract of root of Asparagus racemosus against the larvae of Culex quinquefasciatus, Aedes aegypti and Anopheles stephensi with the LC50 and LC90 values were 115.13, 97.71 and 90.97 ppm and 210.96, 179.92, and 168.82 ppm, respectively. The adult mortality was observed after 24 h recovery period. The plant crude extracts showed dose-dependent mortality. At higher concentrations, the adult showed restless movement for some times with abnormal wagging and then died. Among the extracts tested, the highest adulticidal activity was observed in

  15. Lantana montevidensis Essential Oil: Chemical Composition and Mosquito Repellent Activity against Aedes aegypti

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The essential oil (EO) of Lantana montevidensis (Spreng.) Briq. (L. sellowiana Link & Otto) was investigated for its chemical composition and mosquito repellent activity. The essential oil obtained by hydrodistillation of aerial plant parts was analyzed by GC-FID and GC-MS. The major constituents we...

  16. SCREENING FOR MOSQUITO LARVICIDAL ACTIVITY OF THAI MUSHROOM EXTRACTS WITH SPECIAL REFERENCE TO STECCHERINUM SP AGAINST AEDES AEGYPTI (L.) (DIPTERA: CULICIDAE).

    PubMed

    Thongwat, Damrongpan; Pimolsri, Urat; Somboon, Pradya

    2015-07-01

    For over 50 years, biological control of mosquito larvae has depended mainly on plant extracts, fish, bacteria, protozoa, filamentous fungi, viruses or nematodes. In this study, we screened 143 mushroom samples from 44 confirmed species in Thailand for their mosquito larvicidal activity. One g% (w/v) aqueous extracts of dried powdered mushroom samples were tested against 3rd stage Aedes aegypti larvae. Four mushroom species, namely, Thaeogyroporus porentosus, Xylaria nigripes, Chlorophyllum sp and Steccherinum sp, and two unidentified species showed larvicidal mortality ranging from 10%-70% and 18%-90% for 24- and 48-hour exposure time, respectively. Steccherinum sp aqueous crude extract, after 48-hour exposure, did not show any larvicidal activity at 1,000 ppm, whereas that from ethanol, after 24-hour exposure, had 50% and 90% lethal concentration of 203 ppm and 412 ppm, respectively, with higher levels of mortality after 48- hour exposure. This is the first report of mosquito larvicidal properties of Thai mushroom extracts.

  17. Determination and characterization of destruxin production in Metarhizium anisopliae Tk6 and formulations for Aedes aegypti mosquitoes control at the field level.

    PubMed

    Ravindran, Keppanan; Akutse, Komivi Senyo; Sivaramakrishnan, Sivaperumal; Wang, Liande

    2016-09-15

    Destruxins, cyclic hexadepsipeptide toxins, secreted by the entomopathogenic fungus, Metarhizium anisopliae through extracellular synthesis. The present study reports a new approach for the analysis of DTXs produced by the fungal strain Metarhizium anisoliae Tk6, using FRIR-HPLC-LC-MS and H(1) NMR. The results also showed that production of the major DTXs A, B, C, and E have to be determined in Czapek Dextrose (CD) liquid culture filtrate from 9 to 12 days post-inoculation. Purified DTX were further tested in bioassays to assess their effects of Aedes aegypti mosquitoes. The four major purified DTX compounds were found to cause a toxic effect on the larval developmental stages of mosquitoes with high mortality rates. However, DTX E outperformed the other three DTXs by causing the highest mortality three days after inoculation. This result gives an alternative approach of using DTXs in mosquitoes control and used as a new method for other pest management.

  18. Determination and characterization of destruxin production in Metarhizium anisopliae Tk6 and formulations for Aedes aegypti mosquitoes control at the field level.

    PubMed

    Ravindran, Keppanan; Akutse, Komivi Senyo; Sivaramakrishnan, Sivaperumal; Wang, Liande

    2016-09-15

    Destruxins, cyclic hexadepsipeptide toxins, secreted by the entomopathogenic fungus, Metarhizium anisopliae through extracellular synthesis. The present study reports a new approach for the analysis of DTXs produced by the fungal strain Metarhizium anisoliae Tk6, using FRIR-HPLC-LC-MS and H(1) NMR. The results also showed that production of the major DTXs A, B, C, and E have to be determined in Czapek Dextrose (CD) liquid culture filtrate from 9 to 12 days post-inoculation. Purified DTX were further tested in bioassays to assess their effects of Aedes aegypti mosquitoes. The four major purified DTX compounds were found to cause a toxic effect on the larval developmental stages of mosquitoes with high mortality rates. However, DTX E outperformed the other three DTXs by causing the highest mortality three days after inoculation. This result gives an alternative approach of using DTXs in mosquitoes control and used as a new method for other pest management. PMID:27452930

  19. Genetic Determinants of Sindbis Virus Mosquito Infection Are Associated with a Highly Conserved Alphavirus and Flavivirus Envelope Sequence▿

    PubMed Central

    Pierro, Dennis J.; Powers, Erik L.; Olson, Ken E.

    2008-01-01

    Wild-type Sindbis virus (SINV) strain MRE16 efficiently infects Aedes aegypti midgut epithelial cells (MEC), but laboratory-derived neurovirulent SINV strain TE/5′2J infects MEC poorly. SINV determinants for MEC infection have been localized to the E2 glycoprotein. The E2 amino acid sequences of MRE16 and TE/5′2J differ at 60 residue sites. To identify the genetic determinants of MEC infection of MRE16, the TE/5′2J virus genome was altered to contain either domain chimeras or more focused nucleotide substitutions of MRE16. The growth patterns of derived viruses in cell culture were determined, as were the midgut infection rates (MIR) in A. aegypti mosquitoes. The results showed that substitutions of MRE16 E2 aa 95 to 96 and 116 to 119 into the TE/5′2J virus increased MIR both independently and in combination with each other. In addition, a unique PPF/.GDS amino acid motif was located between these two sites that was found to be a highly conserved sequence among alphaviruses and flaviviruses but not other arboviruses. PMID:18160430

  20. Pharmacological validation of an inward-rectifier potassium (Kir) channel as an insecticide target in the yellow fever mosquito Aedes aegypti.

    PubMed

    Rouhier, Matthew F; Raphemot, Rene; Denton, Jerod S; Piermarini, Peter M

    2014-01-01

    Mosquitoes are important disease vectors that transmit a wide variety of pathogens to humans, including those that cause malaria and dengue fever. Insecticides have traditionally been deployed to control populations of disease-causing mosquitoes, but the emergence of insecticide resistance has severely limited the number of active compounds that are used against mosquitoes. Thus, to improve the control of resistant mosquitoes there is a need to identify new insecticide targets and active compounds for insecticide development. Recently we demonstrated that inward rectifier potassium (Kir) channels and small molecule inhibitors of Kir channels offer promising new molecular targets and active compounds, respectively, for insecticide development. Here we provide pharmacological validation of a specific mosquito Kir channel (AeKir1) in the yellow fever mosquito Aedes aegypti. We show that VU590, a small-molecule inhibitor of mammalian Kir1.1 and Kir7.1 channels, potently inhibits AeKir1 but not another mosquito Kir channel (AeKir2B) in vitro. Moreover, we show that a previously identified inhibitor of AeKir1 (VU573) elicits an unexpected agonistic effect on AeKir2B in vitro. Injection of VU590 into the hemolymph of adult female mosquitoes significantly inhibits their capacity to excrete urine and kills them within 24 h, suggesting a mechanism of action on the excretory system. Importantly, a structurally-related VU590 analog (VU608), which weakly blocks AeKir1 in vitro, has no significant effects on their excretory capacity and does not kill mosquitoes. These observations suggest that the toxic effects of VU590 are associated with its inhibition of AeKir1.

  1. Purified mariner (Mos1) transposase catalyzes the integration of marked elements into the germ-line of the yellow fever mosquito, Aedes aegypti.

    PubMed

    Coates, C J; Jasinskiene, N; Morgan, D; Tosi, L R; Beverley, S M; James, A A

    2000-11-01

    Derivatives of the mariner transposable element, Mos1, from Drosophila mauritiana, can integrate into the germ-line of the yellow fever mosquito, Aedes aegypti. Previously, the transposase required to mobilize Mos1 was provided in trans by a helper plasmid expressing the enzyme under the control of the D. psuedoobscura heat-shock protein 82 promoter. Here we tested whether purified recombinant Mos1 transposase could increase the recovery of Ae. aegypti transformants. Mos1 transposase was injected into white-eyed, kh(w)/kh(w), Ae. aegypti embryos with a Mos1 donor plasmid containing a copy of the wild-type allele of the D. melanogaster cinnabar gene. Transformed mosquitoes were recognized by partial restoration of eye color in the G(1) animals and confirmed by Southern analyses of genomic DNA. At Mos1 transposase concentrations approaching 100 nM, the rate of germ-line transformants arising from independent insertions in G(0) animals was elevated 2-fold compared to that seen in experiments with helper plasmids. Furthermore, the recovery of total G(1) transformants was increased 7.5-fold over the frequency seen with co-injected helper plasmid. Southern blot analyses and gene amplification experiments confirmed the integration of the transposons into the mosquito genome, although not all integrations were of the expected cut-and-paste type transposition. The increased frequency of germ-line integrations obtained with purified transposase will facilitate the generation of Mos1 transgenic mosquitoes and the application of transgenic approaches to the biology of this important vector of multiple pathogens. PMID:10989286

  2. Frizzled 2 is a key component in the regulation of TOR signaling-mediated egg production in the mosquito Aedes aegypti.

    PubMed

    Weng, Shih-Che; Shiao, Shin-Hong

    2015-06-01

    The Wnt signaling pathway was first discovered as a key event in embryonic development and cell polarity in Drosophila. Recently, several reports have shown that Wnt stimulates translation and cell growth by activating the mTOR pathway in mammals. Previous studies have demonstrated that the Target of Rapamycin (TOR) pathway plays an important role in mosquito vitellogenesis. However, the interactions between these two pathways are poorly understood in the mosquito. In this study, we hypothesized that factors from the TOR and Wnt signaling pathways interacted synergistically in mosquito vitellogenesis. Our results showed that silencing Aedes aegypti Frizzled 2 (AaFz2), a transmembrane receptor of the Wnt signaling pathway, decreased the fecundity of mosquitoes. We showed that AaFz2 was highly expressed at the transcriptional and translational levels in the female mosquito 6 h after a blood meal, indicating amino acid-stimulated expression of AaFz2. Notably, the phosphorylation of S6K, a downstream target of the TOR pathway, and the expression of vitellogenin were inhibited in the absence of AaFz2. A direct link was found in this study between Wnt and TOR signaling in the regulation of mosquito reproduction.

  3. Bioassay-guided investigation of two Monarda essential oils as repellents of yellow fever mosquito Aedes aegypti.

    PubMed

    Tabanca, Nurhayat; Bernier, Ulrich R; Ali, Abbas; Wang, Mei; Demirci, Betul; Blythe, Eugene K; Khan, Shabana I; Baser, K Husnu Can; Khan, Ikhlas A

    2013-09-11

    As part of an ongoing research program to identify active mosquito repellents, Monarda bradburiana Beck and Monarda fistulosa L. essential oils showed good repellent activity with minimum effective dosages (MED) of 0.055 ± 0.036 and 0.078 ± 0.027 mg/cm(2), respectively, compared to reference standard N,N-diethyl-3-methylbenzamide (DEET) (0.039 ± 0.014 mg/cm(2)). Systematic bioassay-guided fractionation of essential oils of both Monarda species was performed to identify the active repellent compounds, and isolated pure compounds were individually tested for repellency. Of the isolated compounds, carvacrol, thymol, eugenol, and carvacrol methyl ether were found to be the repellent compounds with MEDs in the range of 0.013-0.063 mg/cm(2). Active repellent compounds were also tested for larvicidal activity against 1-day-old Aedes aegypti larvae. Thymol was the best larvicide among the tested individual compounds (LD50 of 13.9 ppm). None of the individual compounds showed cytotoxicity against mammalian cells; however, the essential oils were toxic to all cell lines.

  4. Bioassay-guided investigation of two Monarda essential oils as repellents of yellow fever mosquito Aedes aegypti.

    PubMed

    Tabanca, Nurhayat; Bernier, Ulrich R; Ali, Abbas; Wang, Mei; Demirci, Betul; Blythe, Eugene K; Khan, Shabana I; Baser, K Husnu Can; Khan, Ikhlas A

    2013-09-11

    As part of an ongoing research program to identify active mosquito repellents, Monarda bradburiana Beck and Monarda fistulosa L. essential oils showed good repellent activity with minimum effective dosages (MED) of 0.055 ± 0.036 and 0.078 ± 0.027 mg/cm(2), respectively, compared to reference standard N,N-diethyl-3-methylbenzamide (DEET) (0.039 ± 0.014 mg/cm(2)). Systematic bioassay-guided fractionation of essential oils of both Monarda species was performed to identify the active repellent compounds, and isolated pure compounds were individually tested for repellency. Of the isolated compounds, carvacrol, thymol, eugenol, and carvacrol methyl ether were found to be the repellent compounds with MEDs in the range of 0.013-0.063 mg/cm(2). Active repellent compounds were also tested for larvicidal activity against 1-day-old Aedes aegypti larvae. Thymol was the best larvicide among the tested individual compounds (LD50 of 13.9 ppm). None of the individual compounds showed cytotoxicity against mammalian cells; however, the essential oils were toxic to all cell lines. PMID:23919579

  5. Fitness of wAlbB Wolbachia Infection in Aedes aegypti: Parameter Estimates in an Outcrossed Background and Potential for Population Invasion.

    PubMed

    Axford, Jason K; Ross, Perran A; Yeap, Heng Lin; Callahan, Ashley G; Hoffmann, Ary A

    2016-03-01

    Wolbachia endosymbionts are potentially useful tools for suppressing disease transmission by Aedes aegypti mosquitoes because Wolbachia can interfere with the transmission of dengue and other viruses as well as causing deleterious effects on their mosquito hosts. Most recent research has focused on the wMel infection, but other infections also influence viral transmission and may spread in natural populations. Here, we focus on the wAlbB infection in an Australian outbred background and show that this infection has many features that facilitate its invasion into natural populations including strong cytoplasmic incompatibility, a lack of effect on larval development, an equivalent mating success to uninfected males and perfect maternal transmission fidelity. On the other hand, the infection has deleterious effects when eggs are held in a dried state, falling between wMel and the more virulent wMelPop Wolbachia strains. The impact of this infection on lifespan also appears to be intermediate, consistent with the observation that this infection has a titer in adults between wMel and wMelPop. Population cage experiments indicate that the wAlbB infection establishes in cages when introduced at a frequency of 22%, suggesting that this strain could be successfully introduced into populations and subsequently persist and spread. PMID:26711515

  6. Fitness of wAlbB Wolbachia Infection in Aedes aegypti: Parameter Estimates in an Outcrossed Background and Potential for Population Invasion.

    PubMed

    Axford, Jason K; Ross, Perran A; Yeap, Heng Lin; Callahan, Ashley G; Hoffmann, Ary A

    2016-03-01

    Wolbachia endosymbionts are potentially useful tools for suppressing disease transmission by Aedes aegypti mosquitoes because Wolbachia can interfere with the transmission of dengue and other viruses as well as causing deleterious effects on their mosquito hosts. Most recent research has focused on the wMel infection, but other infections also influence viral transmission and may spread in natural populations. Here, we focus on the wAlbB infection in an Australian outbred background and show that this infection has many features that facilitate its invasion into natural populations including strong cytoplasmic incompatibility, a lack of effect on larval development, an equivalent mating success to uninfected males and perfect maternal transmission fidelity. On the other hand, the infection has deleterious effects when eggs are held in a dried state, falling between wMel and the more virulent wMelPop Wolbachia strains. The impact of this infection on lifespan also appears to be intermediate, consistent with the observation that this infection has a titer in adults between wMel and wMelPop. Population cage experiments indicate that the wAlbB infection establishes in cages when introduced at a frequency of 22%, suggesting that this strain could be successfully introduced into populations and subsequently persist and spread.

  7. Implications of saline concentrations for the performance and competitive interactions of the mosquitoes Aedes aegypti (Stegomyia aegypti) and Aedes albopictus (Stegomyia albopictus).

    PubMed

    Yee, D A; Himel, E; Reiskind, M H; Vamosi, S M

    2014-03-01

    Aedes albopictus (Stegomyia albopictus) (Diptera: Culicidae) has probably supplanted Aedes aegypti (Stegomyia aegypti) throughout most of its historical range in the U.S.A., although Ae. aegypti still exists in large coastal cities in southern Florida. We measured salt concentrations in field containers along an axis perpendicular to the coast and examined intraspecific outcomes in these species under different salt concentrations in a factorial study using varying intra- and interspecific densities in different conditions of salinity to order to determine if salt could mitigate the documented competitive superiority of Ae. albopictus. Salt in field containers declined away from the coast, with maximal values similar to our lower salt concentrations. Egg hatching and short-term survival of pupae and late instars were not affected by salt concentrations; survival of early instars of both species decreased at higher concentrations. In high salt conditions, Ae. aegypti achieved higher survival. In the longterm experiment, both species displayed longer development times. Salt did not affect interactions for either species; Ae. aegypti survived in the highest salt conditions, regardless of density. The tolerance of Ae. aegypti to high salt concentrations may allow it to use coastal containers, although because salt did not mediate interspecific interactions between Ae. aegypti and Ae. albopictus, the ultimate effects of salt on the coexistence of these species or exclusion of either species remain unknown. PMID:23607885

  8. Implications of saline concentrations for the performance and competitive interactions of the mosquitoes Aedes aegypti (Stegomyia aegypti) and Aedes albopictus (Stegomyia albopictus).

    PubMed

    Yee, D A; Himel, E; Reiskind, M H; Vamosi, S M

    2014-03-01

    Aedes albopictus (Stegomyia albopictus) (Diptera: Culicidae) has probably supplanted Aedes aegypti (Stegomyia aegypti) throughout most of its historical range in the U.S.A., although Ae. aegypti still exists in large coastal cities in southern Florida. We measured salt concentrations in field containers along an axis perpendicular to the coast and examined intraspecific outcomes in these species under different salt concentrations in a factorial study using varying intra- and interspecific densities in different conditions of salinity to order to determine if salt could mitigate the documented competitive superiority of Ae. albopictus. Salt in field containers declined away from the coast, with maximal values similar to our lower salt concentrations. Egg hatching and short-term survival of pupae and late instars were not affected by salt concentrations; survival of early instars of both species decreased at higher concentrations. In high salt conditions, Ae. aegypti achieved higher survival. In the longterm experiment, both species displayed longer development times. Salt did not affect interactions for either species; Ae. aegypti survived in the highest salt conditions, regardless of density. The tolerance of Ae. aegypti to high salt concentrations may allow it to use coastal containers, although because salt did not mediate interspecific interactions between Ae. aegypti and Ae. albopictus, the ultimate effects of salt on the coexistence of these species or exclusion of either species remain unknown.

  9. On the escape of infective filarial larvae from the mosquitoes.

    PubMed

    Zielke, E

    1977-12-01

    Experimentally infected females of Culex pipiens fatigans carrying infective larvae of Wuchereria bancrofti were fed, on the 16th day p.i., on four different solutions, which were offered "cold" (24 degrees C) or "warm" (34 degrees C) in Petri dishes as open fluids. Thus the sucking mosquitoes did not have to bend their labia. Only the "warm" human serum stimulated any considerable number of infective larvae (24.8%) to leave the mouthparts of the mosquitoes. 1289 infective C. fatigens females lost only an estimated 6.4% of their infective larvae of W. bancrofti, when they were maintained on sugar-water until their natural death. Most of the more heavily infected mosquitoes died relatively soon after the filarial larvae had reached maturity (15-20 days p.i.). The main stimulus provoking the filarial larvae to migrate into the labium is believed to be the movement of the muscles of the pharyngeal pump. Mature larvae protrude their anterior ends from the tip of the labellum. There they seem able to distinguish between suitable and unsuitable external conditions and accordingly they will either leave the proboscis completely or retract into the labium. PMID:601855

  10. Virus-derived DNA drives mosquito vector tolerance to arboviral infection

    PubMed Central

    Goic, Bertsy; Stapleford, Kenneth A.; Frangeul, Lionel; Doucet, Aurélien J.; Gausson, Valérie; Blanc, Hervé; Schemmel-Jofre, Nidia; Cristofari, Gael; Lambrechts, Louis; Vignuzzi, Marco; Saleh, Maria-Carla

    2016-01-01

    Mosquitoes develop long-lasting viral infections without substantial deleterious effects, despite high viral loads. This makes mosquitoes efficient vectors for emerging viral diseases with enormous burden on public health. How mosquitoes resist and/or tolerate these viruses is poorly understood. Here we show that two species of Aedes mosquitoes infected with two arboviruses from distinct families (dengue or chikungunya) generate a viral-derived DNA (vDNA) that is essential for mosquito survival and viral tolerance. Inhibition of vDNA formation leads to extreme susceptibility to viral infections, reduction of viral small RNAs due to an impaired immune response, and loss of viral tolerance. Our results highlight an essential role of vDNA in viral tolerance that allows mosquito survival and thus may be important for arbovirus dissemination and transmission. Elucidating the mechanisms of mosquito tolerance to arbovirus infection paves the way to conceptualize new antivectorial strategies to selectively eliminate arbovirus-infected mosquitoes. PMID:27580708

  11. Virus-derived DNA drives mosquito vector tolerance to arboviral infection.

    PubMed

    Goic, Bertsy; Stapleford, Kenneth A; Frangeul, Lionel; Doucet, Aurélien J; Gausson, Valérie; Blanc, Hervé; Schemmel-Jofre, Nidia; Cristofari, Gael; Lambrechts, Louis; Vignuzzi, Marco; Saleh, Maria-Carla

    2016-01-01

    Mosquitoes develop long-lasting viral infections without substantial deleterious effects, despite high viral loads. This makes mosquitoes efficient vectors for emerging viral diseases with enormous burden on public health. How mosquitoes resist and/or tolerate these viruses is poorly understood. Here we show that two species of Aedes mosquitoes infected with two arboviruses from distinct families (dengue or chikungunya) generate a viral-derived DNA (vDNA) that is essential for mosquito survival and viral tolerance. Inhibition of vDNA formation leads to extreme susceptibility to viral infections, reduction of viral small RNAs due to an impaired immune response, and loss of viral tolerance. Our results highlight an essential role of vDNA in viral tolerance that allows mosquito survival and thus may be important for arbovirus dissemination and transmission. Elucidating the mechanisms of mosquito tolerance to arbovirus infection paves the way to conceptualize new antivectorial strategies to selectively eliminate arbovirus-infected mosquitoes. PMID:27580708

  12. Bioactivity of seagrass against the dengue fever mosquito Aedes aegypti larvae

    PubMed Central

    Ali, M Syed; Ravikumar, S; Beula, J Margaret

    2012-01-01

    Objective To identify the larvicidal activity of the seagrass extracts. Methods Seagrass extracts, Syringodium isoetifolium (S. isoetifolium), Cymodocea serrulata and Halophila beccarii, were dissolved in DMSO to prepare a graded series of concentration. Batches of 25 early 4th instars larvae of Aedes aegypti (Ae. aegypti) were transferred to 250 mL enamel bowl containing 199 mL of distilled water and 1 mL of plant extracts (0.01 mg – 0.1 mg). After 24 h the mortality rate was identified with the formulae [(% of test mortality – % of control mortality)/(100 – % of control mortality)] × 100. Each experiment was conducted with three replicates and a concurrent control group. A control group consisted of 1 mL of DMSO and 199 mL of distilled water only. Results : The root extract of S. isoetifolium showed maximum larvicidal activity with minimum concentration of extract of LC50= 0.0 604 ± 0.0 040)µg/mL with lower confidence limit (LCL) – upper confidence limit (UCL) = (0.051–0.071) and LC90=0.0 972µg/mL followed by leaf extract of S. isoetifolium showed LC50= (0.062 ± 0.005)µg/mL. The regression equation of root and leaf extract of S. isoetifolium for 4th instar larvae were Y= 4.909 + 1.32x (R2= 0.909) and Y= 2.066 + 1.21x (R2 =0.897) respectively. The results of the preliminary phytochemical constituents shows the presence of saponin, steroids, terpenoid, phenols, protein and sugars. Conclusions From the present study the ethanolic extracts of seagrass of S. isoetifolium possesses lead compound for development of larvicidal activity. PMID:23569973

  13. Complement-related proteins control the flavivirus infection of Aedes aegypti by inducing antimicrobial peptides.

    PubMed

    Xiao, Xiaoping; Liu, Yang; Zhang, Xiaoyan; Wang, Jing; Li, Zuofeng; Pang, Xiaojing; Wang, Penghua; Cheng, Gong

    2014-04-01

    The complement system functions during the early phase of infection and directly mediates pathogen elimination. The recent identification of complement-like factors in arthropods indicates that this system shares common ancestry in vertebrates and invertebrates as an immune defense mechanism. Thioester (TE)-containing proteins (TEPs), which show high similarity to mammalian complement C3, are thought to play a key role in innate immunity in arthropods. Herein, we report that a viral recognition cascade composed of two complement-related proteins limits the flaviviral infection of Aedes aegypti. An A. aegypti macroglobulin complement-related factor (AaMCR), belonging to the insect TEP family, is a crucial effector in opposing the flaviviral infection of A. aegypti. However, AaMCR does not directly interact with DENV, and its antiviral effect requires an A. aegypti homologue of scavenger receptor-C (AaSR-C), which interacts with DENV and AaMCR simultaneously in vitro and in vivo. Furthermore, recognition of DENV by the AaSR-C/AaMCR axis regulates the expression of antimicrobial peptides (AMPs), which exerts potent anti-DENV activity. Our results both demonstrate the existence of a viral recognition pathway that controls the flaviviral infection by inducing AMPs and offer insights into a previously unappreciated antiviral function of the complement-like system in arthropods.

  14. Spectral and HRTEM analyses of Annona muricata leaf extract mediated silver nanoparticles and its Larvicidal efficacy against three mosquito vectors Anopheles stephensi, Culex quinquefasciatus, and Aedes aegypti.

    PubMed

    Santhosh, Shanthi Bhupathi; Ragavendran, Chinnasamy; Natarajan, Devarajan

    2015-12-01

    Mosquitoes transmit various diseases which mainly affect the human beings and every year cause millions of deaths globally. Currently available chemical and synthetic mosquitocidal agents pose severe side effects, pollute the environment vigorously, and become resistance. There is an urgent need to identify and develop the cost effective, compatible and eco-friendly product for mosquito control. The present study was aimed to find out the larvicidal potential of aqueous crude extract and green synthesized silver nanoparticles (AgNPs) from Annona muricata leaves were tested against fourth instar larvae of three important mosquitoes i.e. Anopheles stephensi, Culex quinquefasciatus, and Aedes aegypti using different concentrations of AgNPs (10, 20, 30, 40 and 50 ppm) and the aqueous leaf extract (100, 200, 300, 400, and 500 ppm) for 24 and 48 h. The maximum mortality was noticed in AgNPs than aqueous leaf extract of A. muricata against tested mosquitoes with least LC50 values of 37.70, 31.29, and 20.65 ppm (24h) and 546.7, 516.2, and 618.4 ppm (48 h), respectively. All tested concentrations of AgNps exhibited 100% mortality in A. aegypti larvae at 48 hour observation. In addition, the plant mediated AgNPs were characterized by UV-vis spectrum, Fourier transform infrared spectroscopy, particle size analyser, X-ray diffraction, high resonance transmission electron microscopy, and energy-dispersive X-ray spectroscopy analysis for confirmation of nanoparticle synthesis. Based on the findings of the study suggests that the use of A. muricata plant mediated AgNPs can act as an alternate insecticidal agents for controlling target mosquitoes.

  15. Spectral and HRTEM analyses of Annona muricata leaf extract mediated silver nanoparticles and its Larvicidal efficacy against three mosquito vectors Anopheles stephensi, Culex quinquefasciatus, and Aedes aegypti.

    PubMed

    Santhosh, Shanthi Bhupathi; Ragavendran, Chinnasamy; Natarajan, Devarajan

    2015-12-01

    Mosquitoes transmit various diseases which mainly affect the human beings and every year cause millions of deaths globally. Currently available chemical and synthetic mosquitocidal agents pose severe side effects, pollute the environment vigorously, and become resistance. There is an urgent need to identify and develop the cost effective, compatible and eco-friendly product for mosquito control. The present study was aimed to find out the larvicidal potential of aqueous crude extract and green synthesized silver nanoparticles (AgNPs) from Annona muricata leaves were tested against fourth instar larvae of three important mosquitoes i.e. Anopheles stephensi, Culex quinquefasciatus, and Aedes aegypti using different concentrations of AgNPs (10, 20, 30, 40 and 50 ppm) and the aqueous leaf extract (100, 200, 300, 400, and 500 ppm) for 24 and 48 h. The maximum mortality was noticed in AgNPs than aqueous leaf extract of A. muricata against tested mosquitoes with least LC50 values of 37.70, 31.29, and 20.65 ppm (24h) and 546.7, 516.2, and 618.4 ppm (48 h), respectively. All tested concentrations of AgNps exhibited 100% mortality in A. aegypti larvae at 48 hour observation. In addition, the plant mediated AgNPs were characterized by UV-vis spectrum, Fourier transform infrared spectroscopy, particle size analyser, X-ray diffraction, high resonance transmission electron microscopy, and energy-dispersive X-ray spectroscopy analysis for confirmation of nanoparticle synthesis. Based on the findings of the study suggests that the use of A. muricata plant mediated AgNPs can act as an alternate insecticidal agents for controlling target mosquitoes. PMID:26410042

  16. Analysis of molecular markers for metamorphic competency and their response to starvation or feeding in the mosquito, Aedes aegypti (Diptera: Culicidae).

    PubMed

    Telang, A; Peterson, B; Frame, L; Baker, E; Brown, M R

    2010-12-01

    The nutritional condition of fourth instar larvae of the yellow fever mosquito, Aedes aegypti, governs female longevity and egg production, both are key determinants of pathogen transmission. As well, nutrition provisions larval growth and development and attains its greatest pace in the last larval instar in preparation for metamorphosis to an adult. These developmental processes are regulated by a complex endocrine interplay of juvenile hormone, neuropeptides, and ecdysteroids that is nutrition sensitive. We previously determined that feeding for only 24h post-ecdysis was sufficient for fourth instar Ae. aegypti larvae to reach critical weight and accumulate sufficient nutritional stores to commit to metamorphosis. To understand the genetic basis of metamorphic commitment in Ae. aegypti, we profiled the expression of 16 genes known to be involved in the endocrine and nutritional regulation of insect metamorphosis in two ways. The first set is a developmental profile from the beginning of the fourth instar to early pupae, and the second set is for fourth instars starved or fed for up to 36 h. By comparing the two sets, we found that seven of the genes (AaegCYP302, AaegJHE43357, AaegBrCZ4, AaegCPF1-2, AaegCPR-7, AaegPpl, and AaegSlif) were expressed during metamorphic commitment in fourth instars and in fed but not starved larvae. Based on these results, the seven genes alone or in combination may serve as molecular indicators of nutritional and metamorphic status of fourth instar Ae. aegypti larvae and possibly other mosquito species in field and laboratory studies to gauge sub-lethal effects of novel and traditional cultural or chemical controls.

  17. Early skin immunological disturbance after Plasmodium-infected mosquito bites.

    PubMed

    da Silva, Henrique Borges; Caetano, Susana S; Monteiro, Isadora; Gómez-Conde, Iván; Hanson, Kirsten; Penha-Gonçalves, Carlos; Olivieri, David N; Mota, Maria M; Marinho, Cláudio R; D'Imperio Lima, Maria R; Tadokoro, Carlos E

    2012-01-01

    Although the role of regulatory T cells (Tregs) during malaria infection has been studied extensively, such studies have focused exclusively on the role of Treg during the blood stage of infection; little is known about the detailed mechanisms of Tregs and sporozoite deposition in the dermis by mosquito bites. In this paper we show that sporozoites introduced into the skin by mosquito bites increase the mobility of skin Tregs and dendritic cells (DCs). We also show differences in MHC class II and/or CD86 expression on skin-resident dendritic cell subtypes and macrophages. From the observed decrease of the number of APCs into draining lymph nodes, suppression of CD28 expression in conventional CD4 T cells, and a low homeostatic proliferation of skin-migrated CD4 T found in nude mice indicate that Tregs may play a fundamental role during the initial phase of malaria parasite inoculation into the mammalian host.

  18. The wMel Strain of Wolbachia Reduces Transmission of Chikungunya Virus in Aedes aegypti

    PubMed Central

    Aliota, Matthew T.; Walker, Emma C.; Uribe Yepes, Alexander; Dario Velez, Ivan; Christensen, Bruce M.; Osorio, Jorge E.

    2016-01-01

    Background New approaches to preventing chikungunya virus (CHIKV) are needed because current methods are limited to controlling mosquito populations, and they have not prevented the invasion of this virus into new locales, nor have they been sufficient to control the virus upon arrival. A promising candidate for arbovirus control and prevention relies on the introduction of the intracellular bacterium Wolbachia into Aedes aegypti mosquitoes. This primarily has been proposed as a tool to control dengue virus (DENV) transmission; however, evidence suggests Wolbachia infections confer protection for Ae. aegypti against CHIKV. Although this approach holds much promise for limiting virus transmission, at present our understanding of the ability of CHIKV to infect, disseminate, and be transmitted by wMel-infected Ae. aegypti currently being used at Wolbachia release sites is limited. Methodology/Principal Findings Using Ae. aegypti infected with the wMel strain of Wolbachia that are being released in Medellin, Colombia, we report that these mosquitoes have reduced vector competence for CHIKV, even with extremely high viral titers in the bloodmeal. In addition, we examined the dynamics of CHIKV infection over the course of four to seven days post feeding. Wolbachia-infected mosquitoes remained non-infective over the duration of seven days, i.e., no infectious virus was detected in the saliva when exposed to bloodmeals of moderate viremia, but CHIKV-exposed, wild type mosquitoes did have viral loads in the saliva consistent with what has been reported elsewhere. Finally, the presence of wMel infection had no impact on the lifespan of mosquitoes as compared to wild type mosquitoes following CHIKV infection. Conclusions/Significance These results could have an impact on vector control strategies in areas where Ae. aegypti are transmitting both DENV and CHIKV; i.e., they argue for further exploration, both in the laboratory and the field, on the feasibility of expanding this

  19. Characterization of N-linked oligosaccharides in chorion peroxidase of Aedes aegypti mosquito.

    PubMed

    Li, Junsuo S; Li, Jianyong

    2005-09-01

    A peroxidase is present in the chorion of Aedes aegypti eggs and catalyzes chorion protein cross-linking during chorion hardening, which is critical for egg survival in the environment. The unique chorion peroxidase (CPO) is a glycoprotein. This study deals with the N-glycosylation site, structures, and profile of CPO-associated oligosaccharides using mass spectrometric techniques and enzymatic digestion. CPO was isolated from chorion by solubilization and several chromatographic methods. Mono-saccharide composition was analyzed by HPLC with fluorescent detection. Our data revealed that carbohydrate (D-mannose, N-acetyl D-glucosamine, D-arabinose, N-acetyl D-galactosamine, and L-fucose) accounted for 2.24% of the CPO molecular weight. A single N-glycosylation site (Asn328-Cys- Thr) was identified by tryptic peptide mapping and de novo sequencing of native and PNGase A-deglycosylated CPO using matrix-assisted laser/desorption/ionization time-of-flight mass spectrometry (MALDI/TOF/MS) and liquid chromatography/tandem mass spectrometry (LC/MS/MS). The Asn328 was proven to be a major fully glycosylated site. Potential tryptic glycopeptides and profile were first assessed by MALDI/TOF/MS and then by precursor ion scanning during LC/MS/MS. The structures of N-linked oligosaccharides were elucidated from the MS/MS spectra of glycopeptides and exoglycosidase sequencing of PNGase A-released oligosaccharides. These CPO-associated oligosaccharides had dominant Man3GlcNAc2 and Man3 (Fuc) GlcNAc2 and high mannose-type structures (Man(4-8)GlcNAc2). The truncated structures, Man2GlcNAc2 and Man2 (Fuc) GlcNAc2, were also identified. Comparison of CPO activity and Stokes radius between native and deglycosylated CPO suggests that the N-linked oligosaccharides influence the enzyme activity by stabilizing its folded state.

  20. Larvicidal efficacy of different plant parts of railway creeper, Ipomoea cairica Extract Against Dengue Vector Mosquitoes, Aedes albopictus (Diptera: Culicidae) and Aedes aegypti (Diptera: Culicidae).

    PubMed

    AhbiRami, Rattanam; Zuharah, Wan Fatma; Thiagaletchumi, Maniam; Subramaniam, Sreeramanan; Sundarasekar, Jeevandran

    2014-01-01

    Natural insecticides from plant origin against mosquito vectors have been the main concern for research due to their high level of eco-safety. Control of mosquitoes in their larval stages are an ideal method since Aedes larvae are aquatic, thus it is easier to deal with them in this habitat. The present study was specifically conducted to explore the larvicidal efficacy of different plant parts of Ipomoea cairica (L.) or railway creeper crude extract obtained using two different solvents; methanol and acetone against late third-stage larvae of Aedes albopictus (Skuse) and Aedes aegypti (L.) (Diptera: Culicidae). Plant materials of I. cairica leaf, flower, and stem were segregated, airdried, powdered, and extracted using Soxhlet apparatus. Larvicidal bioassays were performed by using World Health Organization standard larval susceptibility test method for each species which were conducted separately for different concentration ranging from 10 to 450 ppm. Both acetone and methanol extracts showed 100% mortality at highest concentration tested (450 ppm) after 24 h of exposure. Results from factorial ANOVA indicated that there were significant differences in larvicidal effects between mosquito species, solvent used and plant parts (F=5.71, df=2, P<0.05). The acetone extract of I. cairica leaf showed the most effective larvicidal action in Ae. aegypti with LC50 of 101.94 ppm followed by Ae. albopictus with LC50 of 105.59 ppm compared with other fractions of I. cairica extract obtained from flower, stem, and when methanol are used as solvent. The larvae of Ae. aegypti appeared to be more susceptible to I. cairica extract with lower LC50 value compared with Ae. albopictus (F=8.83, df=1, P<0.05). Therefore, this study suggests that the acetone extract of I. cairica leaf can be considered as plant-derived insecticide for the control of Aedes mosquitoes. This study quantified the larvicidal property of I. cairica extract, providing information on lethal concentration that

  1. Larvicidal efficacy of different plant parts of railway creeper, Ipomoea cairica Extract Against Dengue Vector Mosquitoes, Aedes albopictus (Diptera: Culicidae) and Aedes aegypti (Diptera: Culicidae).

    PubMed

    AhbiRami, Rattanam; Zuharah, Wan Fatma; Thiagaletchumi, Maniam; Subramaniam, Sreeramanan; Sundarasekar, Jeevandran

    2014-01-01

    Natural insecticides from plant origin against mosquito vectors have been the main concern for research due to their high level of eco-safety. Control of mosquitoes in their larval stages are an ideal method since Aedes larvae are aquatic, thus it is easier to deal with them in this habitat. The present study was specifically conducted to explore the larvicidal efficacy of different plant parts of Ipomoea cairica (L.) or railway creeper crude extract obtained using two different solvents; methanol and acetone against late third-stage larvae of Aedes albopictus (Skuse) and Aedes aegypti (L.) (Diptera: Culicidae). Plant materials of I. cairica leaf, flower, and stem were segregated, airdried, powdered, and extracted using Soxhlet apparatus. Larvicidal bioassays were performed by using World Health Organization standard larval susceptibility test method for each species which were conducted separately for different concentration ranging from 10 to 450 ppm. Both acetone and methanol extracts showed 100% mortality at highest concentration tested (450 ppm) after 24 h of exposure. Results from factorial ANOVA indicated that there were significant differences in larvicidal effects between mosquito species, solvent used and plant parts (F=5.71, df=2, P<0.05). The acetone extract of I. cairica leaf showed the most effective larvicidal action in Ae. aegypti with LC50 of 101.94 ppm followed by Ae. albopictus with LC50 of 105.59 ppm compared with other fractions of I. cairica extract obtained from flower, stem, and when methanol are used as solvent. The larvae of Ae. aegypti appeared to be more susceptible to I. cairica extract with lower LC50 value compared with Ae. albopictus (F=8.83, df=1, P<0.05). Therefore, this study suggests that the acetone extract of I. cairica leaf can be considered as plant-derived insecticide for the control of Aedes mosquitoes. This study quantified the larvicidal property of I. cairica extract, providing information on lethal concentration that

  2. Distribution of Aedes mosquitoes in the Kilimanjaro Region of northern Tanzania.

    PubMed

    Hertz, Julian T; Lyaruu, Lucille J; Ooi, Eng Eong; Mosha, Franklin W; Crump, John A

    2016-05-01

    Little is known about the presence and distribution of Aedes mosquitoes in northern Tanzania despite the occurence of viruses transmitted by these mosquitoes such as Chikungunya virus (CHIKV) and Dengue virus (DENV) in the region. Adult and larval mosquitoes were collected from rural and urban settings across a wide range of altitudes in the Kilimanjaro Region using the Mosquito Magnet CO2 Trap for collection of adults and old tires for breeding of larvae. Polymerase chain reaction assays were performed on captured adult mosquitoes to detect the presence of CHIKV and DENV. A total of 2609 Aedes aegypti adult mosquitoes were collected; no other Aedes species larvae were found. Mosquito yields were significantly higher in urban settings than rural settings (26.5 vs. 1.9 mosquitoes per day, p = 0.037). A total of 6570 Ae. aegypti larvae were collected from old tires; no other Aedes species larvae were found. Of the 2609 adult mosquitoes collected, none tested positive for CHIKV or DENV. As far as we are aware, this paper reports for the first time the presence of Ae. aegypti in the Kilimanjaro Region of northern Tanzania. Although CHIKV and DENV were not isolated from any of the collected mosquitoes in this study, the apparent absence of other Aedes species in the area suggests that Ae. aegypti is the primary local vector of these infections.

  3. Distribution of Aedes mosquitoes in the Kilimanjaro Region of northern Tanzania.

    PubMed

    Hertz, Julian T; Lyaruu, Lucille J; Ooi, Eng Eong; Mosha, Franklin W; Crump, John A

    2016-05-01

    Little is known about the presence and distribution of Aedes mosquitoes in northern Tanzania despite the occurence of viruses transmitted by these mosquitoes such as Chikungunya virus (CHIKV) and Dengue virus (DENV) in the region. Adult and larval mosquitoes were collected from rural and urban settings across a wide range of altitudes in the Kilimanjaro Region using the Mosquito Magnet CO2 Trap for collection of adults and old tires for breeding of larvae. Polymerase chain reaction assays were performed on captured adult mosquitoes to detect the presence of CHIKV and DENV. A total of 2609 Aedes aegypti adult mosquitoes were collected; no other Aedes species larvae were found. Mosquito yields were significantly higher in urban settings than rural settings (26.5 vs. 1.9 mosquitoes per day, p = 0.037). A total of 6570 Ae. aegypti larvae were collected from old tires; no other Aedes species larvae were found. Of the 2609 adult mosquitoes collected, none tested positive for CHIKV or DENV. As far as we are aware, this paper reports for the first time the presence of Ae. aegypti in the Kilimanjaro Region of northern Tanzania. Although CHIKV and DENV were not isolated from any of the collected mosquitoes in this study, the apparent absence of other Aedes species in the area suggests that Ae. aegypti is the primary local vector of these infections. PMID:27376502

  4. Intensive Linkage Mapping in a Wasp (Bracon Hebetor) and a Mosquito (Aedes Aegypti) with Single-Strand Conformation Polymorphism Analysis of Random Amplified Polymorphic DNA Markers

    PubMed Central

    Antolin, M. F.; Bosio, C. F.; Cotton, J.; Sweeney, W.; Strand, M. R.; Black-IV, W. C.

    1996-01-01

    The use of random amplified polymorphic DNA from the polymerase chain reaction (RAPD-PCR) allows efficient construction of saturated linkage maps. However, when analyzed by agarose gel electrophoresis, most RAPD-PCR markers segregate as dominant alleles, reducing the amount of linkage information obtained. We describe the use of single strand conformation polymorphism (SSCP) analysis of RAPD markers to generate linkage maps in a haplodiploid parasitic wasp Bracon (Habrobracon) hebetor and a diploid mosquito, Aedes aegypti. RAPD-SSCP analysis revealed segregation of codominant alleles at markers that appeared to segregate as dominant (band presence/band absence) markers or appeared invariant on agarose gels. Our SSCP protocol uses silver staining to detect DNA fractionated on large thin polyacrylamide gels and reveals more polymorphic markers than agarose gel electrophoresis. In B. hebetor, 79 markers were mapped with 12 RAPD primers in six weeks; in A. aegypti, 94 markers were mapped with 10 RAPD primers in five weeks. Forty-five percent of markers segregated as codominant loci in B. hebetor, while 11% segregated as codominant loci in A. aegypti. SSCP analysis of RAPD-PCR markers offers a rapid and inexpensive means of constructing intensive linkage maps of many species. PMID:8844159

  5. Dicer-2- and Piwi-Mediated RNA Interference in Rift Valley Fever Virus-Infected Mosquito Cells

    PubMed Central

    Léger, P.; Lara, E.; Jagla, B.; Sismeiro, O.; Mansuroglu, Z.; Coppée, J. Y.; Bonnefoy, E.

    2013-01-01

    Rift Valley fever virus (RVFV) is a Phlebovirus (Bunyaviridae family) transmitted by mosquitoes. It infects humans and ruminants, causing dramatic epidemics and epizootics in Africa, Yemen, and Saudi Arabia. While recent studies demonstrated the importance of the nonstructural protein NSs as a major component of virulence in vertebrates, little is known about infection of mosquito vectors. Here we studied RVFV infection in three different mosquito cell lines, Aag2 cells from Aedes aegypti and U4.4 and C6/36 cells from Aedes albopictus. In contrast with mammalian cells, where NSs forms nuclear filaments, U4.4 and Aag2 cells downregulated NSs expression such that NSs filaments were never formed in nuclei of U4.4 cells and disappeared at an early time postinfection in the case of Aag2 cells. On the contrary, in C6/36 cells, NSs nuclear filaments were visible during the entire time course of infection. Analysis of virus-derived small interfering RNAs (viRNAs) by deep sequencing indicated that production of viRNAs was very low in C6/36 cells, which are known to be Dicer-2 deficient but expressed some viRNAs presenting a Piwi signature. In contrast, Aag2 and U4.4 cells produced large amounts of viRNAs predominantly matching the S segment and displaying Dicer-2 and Piwi signatures. Whereas 21-nucleotide (nt) Dicer-2 viRNAs were prominent during early infection, the population of 24- to 27-nt Piwi RNAs (piRNAs) increased progressively and became predominant later during the acute infection and during persistence. In Aag2 and U4.4 cells, the combined actions of the Dicer-2 and Piwi pathways triggered an efficient antiviral response permitting, among other actions, suppression of NSs filament formation and allowing establishment of persistence. In C6/36 cells, Piwi-mediated RNA interference (RNAi) appeared to be sufficient to mount an antiviral response against a secondary infection with a superinfecting virus. This study provides new insights into the role of Dicer and Piwi

  6. Synergistic action of octopamine receptor agonists on the activity of selected novel insecticides for control of dengue vector Aedes aegypti (Diptera: Culicidae) mosquito.

    PubMed

    Ahmed, Mohamed Ahmed Ibrahim; Vogel, Christoph Franz Adam

    2015-05-01

    Studying insecticide resistance in mosquitoes has attracted the attention of many scientists to elucidate the pathways of resistance development and to design novel strategies in order to prevent or minimize the spread and evolution of resistance. Here, we tested the synergistic action of piperonyl butoxide (PBO) and two octopamine receptor (OR) agonists, amitraz (AMZ) and chlordimeform (CDM) on selected novel insecticides to increase their lethal action on the fourth instar larvae of Aedes aegypti L. However, chlorfenapyr was the most toxic insecticide (LC50 = 193, 102, and 48 ng/ml, after 24, 48, and 72 h exposure, respectively) tested. Further, PBO synergized all insecticides and the most toxic combinatorial insecticide was nitenpyram even after 48 and 72 h exposure. In addition, OR agonists significantly synergized most of the selected insecticides especially after 48 and 72 h exposure. The results imply that the synergistic effects of amitraz are a promising approach in increasing the potency of certain insecticides in controlling the dengue vector Ae. aegypti mosquito.

  7. Toxicity of benzo(a)pyrene and pyrene in the mosquito Aedes aegypti, in the dark and in the presence of ultraviolet light

    SciTech Connect

    Kagan, J.; Kagan, E.D.

    1986-03-01

    The phototoxicity of benzo(a)pyrene constitutes a much greater risk to immature forms of the mosquito Aedes aegypti than its mutagenicity of carcinogenicity. First instar larvae, fourth instar larvae, and pupae of the mosquito Aedes aegypti were treated with benzo(a)pyrene at concentrations up to 6.7 ppm, either in the dark or in the presence of long wavelength ultraviolet light (for only 30 min). The irradiations had a profound effect on the fate of first instar larvae. Their LC/sub 50/ value for 24 h survival was about 0.002 ppm. When the adult emergence was determined, the LC/sub 50/ value was about 0.0015 ppm. The development of fourth instar larvae was also modified by the photochemical treatments, with an LC/sub 50/ value for adult emergence of 0.12 ppm. The LC/sub 50/ values for the highly carcinogenic BAP are very similar to those determined for pyrene, its non-carcinogenic parent molecule. This provides one additional proof that the carcinogenicity and the phototoxicity of polycyclic aromatic hydrocarbons are not necessarily related.

  8. Mosquito-borne infections in Fiji

    PubMed Central

    Mataika, J. U.; Dando, B. C.; Spears, G. F. S.; Macnamara, F. N.

    1971-01-01

    During a filariasis survey conducted in northern Fiji in 1968-9 examinations were made for microfilaraemia, enlarged lymph nodes and elephantiasis. Analysis of the microfilarial densities at different ages and the number of anatomical sites showing lymph gland enlargement or elephantiasis have been used to provide evidence on the clustering of infections and pathogenesis. Although there is no evidence of clustering of risk of infection, there is evidence favouring the clustering of adult filariae in individuals. Nevertheless the number of sites of lymph node enlargement do not correspond with this finding and statistical evidence suggests that lymph-node enlargement is not necessarily associated with the near presence in the body of adult filariae, whether dead or alive. Males of Indian ethnic origin showed a higher prevalence of elephantiasis than males of Fijian ethnic origin, but women of either ethnic race showed prevalences lower than those of men. The onset of elephantiasis at a site does not directly reflect the number of infections sustained in the local area, but it appears that filariasis first induces for a limited period a proneness to elephantiasis. During this period a random and discrete event may induce the onset of elephantiasis. The nature of the event is unknown, but it probably is not trauma. PMID:4397426

  9. Mosquito larvicidal properties of Orthisiphon thymiflorus (Roth) Sleesen. (Family: Labiatae) against mosquito vectors, Anopheles stephensi, Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective: To determine the larvicidal activity of hexane, chloroform, ethyl acetate, acetone, and methanol extracts of Orthosiphon thymiflorus leaves against Anopheles stephensi, Culex quinquefasciatus and Aedes aegypti. Methods: Larvicidal activity was determined in laboratory bioassays using var...

  10. Enhanced early West Nile virus infection in young chickens infected by mosquito bite: effect of viral dose.

    PubMed

    Styer, Linda M; Bernard, Kristen A; Kramer, Laura D

    2006-08-01

    Mosquito transmission of arboviruses potentially affects the course of viral infection in the vertebrate host. Studies were performed to determine if viral infection differed in chickens infected with West Nile virus (WNV) by mosquito bite or needle inoculation. Mosquito-infected chickens exhibited levels of viremia and viral shedding that were up to 1,000 times higher at 6, 12, and 24 hours post-feeding (PF) compared with those inoculated with 10(3) PFU by needle. Follow-up studies were conducted to determine if enhanced early infection was due to a higher viral dose inoculated by mosquitoes. Needle inoculation with successively higher doses of WNV led to higher early viremia and viral shedding; a dose >or= 10(4) PFU by needle was required to attain the high early viremia observed in mosquito-infected chickens. Mosquitoes inoculated WNV at this level as estimated by feeding on a hanging drop of blood (mean: 10(2.5), range: 10(0.7)-10(4.6) PFU). These results indicate that enhanced early infection in mosquito-infected chickens may be explained by higher viral dose delivered by mosquitoes. On the other hand, chickens infected by multiple mosquitoes (N = 3-11) had viremic titers that were 25-50 times higher at 6 and 12 hours PF than in chickens infected by a single mosquito, suggesting that viral dose is not the only factor involved in enhanced early infection. The likelihood that enhanced early infection in mosquito-infected chickens is due to a higher viral dose inoculated by mosquitoes and/or other factors (saliva, inoculation location, or viral source) is discussed.

  11. The genetic architecture of a complex trait: Resistance to multiple toxins produced by Bacillus thuringiensis israelensis in the dengue and yellow fever vector, the mosquito Aedes aegypti.

    PubMed

    Bonin, Aurélie; Paris, Margot; Frérot, Hélène; Bianco, Erica; Tetreau, Guillaume; Després, Laurence

    2015-10-01

    The bacterial insecticide Bacillus thuringiensis subsp. israelensis (Bti) is an increasingly popular alternative to chemical insecticides for controlling mosquito populations. Because Bti toxicity relies on the action of four main toxins, resistance to Bti is very likely a complex phenotype involving several genes simultaneously. Dissecting the underlying genetic basis thus requires associating a quantitative measure of resistance to genetic variation at many loci in a segregating population. Here, we undertake this task using the dengue and yellow fever vector, the mosquito Aedes aegypti, as a study model. We conducted QTL (Quantitative Trait Locus) and admixture mapping analyses on two controlled crosses and on an artificial admixed population, respectively, all obtained from resistant and susceptible lab strains. We detected 16 QTL regions, among which four QTLs were revealed by different analysis methods. These four robust QTLs explained altogether 29.2% and 62.2% of the total phenotypic variance in the two QTL crosses, respectively. They also all showed a dominant mode of action. In addition, we found six loci showing statistical association with Bti resistance in the admixed population. Five of the supercontigs highlighted in this study contained candidate genes as suggested by their function, or by prior evidence from expression and/or outlier analyses. These genomic regions are thus good starting points for fine mapping of resistance to Bti or functional analyses aiming at identifying the underlying genes and mutations. Moreover, for the purpose of this work, we built the first Ae. aegypti genetic map based on markers associated with genes expressed in larvae. This genetic map harbors 229 SNP markers mapped across the three chromosomes for a total length of 311.9cM. It brought to light several assembly discrepancies with the reference genome, suggesting a high level of genome plasticity in Ae. aegypti.

  12. Vector Competence of French Polynesian Aedes aegypti and Aedes polynesiensis for Zika Virus

    PubMed Central

    Richard, Vaea; Paoaafaite, Tuterarii; Cao-Lormeau, Van-Mai

    2016-01-01

    Background In 2013–2014, French Polynesia experienced for the first time a Zika outbreak. Two Aedes mosquitoes may have contributed to Zika virus (ZIKV) transmission in French Polynesia: the worldwide distributed Ae. aegypti and the Polynesian islands-endemic Ae. polynesiensis mosquito. Methodology/Principal Findings To evaluate their vector competence for ZIKV, mosquitoes were infected per os at viral titers of 7 logs tissue culture infectious dose 50%. At several days post-infection (dpi), saliva was collected from each mosquito and inoculated onto C6/36 mosquito cells to check for the presence of ZIKV infectious particles. Legs and body of each mosquito were also collected and submitted separately to RNA extraction and ZIKV RT-PCR. In Ae. aegypti the infection rate was high as early as 6 dpi and the dissemination efficiency get substantial from 9 dpi while the both rates remained quite low in Ae. polynesiensis. The transmission efficiency was poor in Ae. aegypti until 14 dpi and no infectious saliva was found in Ae. polynesiensis at the time points studied. Conclusions/Significance In our experimental conditions, the late ability of the French Polynesian Ae. aegypti to transmit ZIKV added by the poor competence of Ae. polynesiensis for this virus suggest the possible contribution of another vector for the propagation of ZIKV during the outbreak, in particular in remote islands where Ae. polynesiensis is predominating. PMID:27654962

  13. Physical features and chitin content of eggs from the mosquito vectors Aedes aegypti, Anopheles aquasalis and Culex quinquefasciatus: Connection with distinct levels of resistance to desiccation.

    PubMed

    Farnesi, Luana Cristina; Menna-Barreto, Rubem Figueiredo Sadok; Martins, Ademir Jesus; Valle, Denise; Rezende, Gustavo Lazzaro

    2015-12-01

    Mosquito eggs are laid in water but freshly laid eggs are susceptible to dehydration, if their surroundings dry out at the first hours of development. During embryogenesis of different mosquito vectors the serosal cuticle, an extracellular matrix, is produced; it wraps the whole embryo and becomes part of the eggshell. This cuticle is an essential component of the egg resistance to desiccation (ERD). However, ERD is variable among species, sustaining egg viability for different periods of time. While Aedes aegypti eggs can survive for months in a dry environment (high ERD), those of Anopheles aquasalis and Culex quinquefasciatus in the same condition last, respectively, for one day (medium ERD) or a few hours (low ERD). Resistance to desiccation is determined by the rate of water loss, dehydration tolerance and total amount of water of a given organism. The ERD variability observed among mosquitoes probably derives from diverse traits. We quantified several attributes of whole eggs, potentially correlated with the rate of water loss: length, width, area, volume, area/volume ratio and weight. In addition, some eggshell aspects were also evaluated, such as absolute and relative weight, weight/area relationship (herein called surface density) and chitin content. Presence of chitin specifically in the serosal cuticle as well as aspects of endochorion external surface were also investigated. Three features could be related to differences on ERD levels: chitin content, directly related to ERD, the increase in the egg volume during embryogenesis and the eggshell surface density, which were both inversely related to ERD. Although data suggest that the amount of chitin in the eggshell is relevant for egg impermeability, the participation of other yet unidentified eggshell attributes must be considered in order to account for the differences in the ERD levels observed among Ae. aegypti, An. aquasalis and Cx. quinquefasciatus. PMID:26514070

  14. Vector Competence of Aedes aegypti and Aedes polynesiensis Populations from French Polynesia for Chikungunya Virus

    PubMed Central

    Richard, Vaea; Paoaafaite, Tuterarii; Cao-Lormeau, Van-Mai

    2016-01-01

    Background From October 2014 to March 2015, French Polynesia experienced for the first time a chikungunya outbreak. Two Aedes mosquitoes may have contributed to chikungunya virus (CHIKV) transmission in French Polynesia: the worldwide distributed Ae. aegypti and the Polynesian islands-endemic Ae. polynesiensis mosquito. Methods To investigate the vector competence of French Polynesian populations of Ae. aegypti and Ae. polynesiensis for CHIKV, mosquitoes were exposed per os at viral titers of 7 logs tissue culture infectious dose 50%. At 2, 6, 9, 14 and 21 days post-infection (dpi), saliva was collected from each mosquito and inoculated onto C6/36 mosquito cells to check for the presence of CHIKV infectious particles. Legs and body (thorax and abdomen) of each mosquito were also collected at the different dpi and submitted separately to viral RNA extraction and CHIKV real-time RT-PCR. Results CHIKV infection rate, dissemination and transmission efficiencies ranged from 7–90%, 18–78% and 5–53% respectively for Ae. aegypti and from 39–41%, 3–17% and 0–14% respectively for Ae. polynesiensis, depending on the dpi. Infectious saliva was found as early as 2 dpi for Ae. aegypti and from 6 dpi for Ae. polynesiensis. Our laboratory results confirm that the French Polynesian population of Ae. aegypti is highly competent for CHIKV and they provide clear evidence for Ae. polynesiensis to act as an efficient CHIKV vector. Conclusion As supported by our findings, the presence of two CHIKV competent vectors in French Polynesia certainly contributed to enabling this virus to quickly disseminate from the urban/peri-urban areas colonized by Ae. aegypti to the most remote atolls where Ae. polynesiensis is predominating. Ae. polynesiensis was probably involved in the recent chikungunya outbreaks in Samoa and the Cook Islands. Moreover, this vector may contribute to the risk for CHIKV to emerge in other Polynesian islands like Fiji, and more particularly Wallis where there

  15. Swarming mechanisms in the yellow fever mosquito: aggregation pheromones involved in the mating behavior of Aedes aegypti

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mosquitoes of various species mate in swarms comprised of tens to thousands flying males. Yet little information is known about mosquito swarming mechanism. Discovering chemical cues involved in mosquito biology leads to better adaptation of disease control interventions. In this study, we aimed ...

  16. A novel in vitro bioassay to explore the repellent effects of compounds against mosquito Aedes Aegypti (Diptera: Culicidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mosquitoes are vectors for many pathogens that can cause human diseases which can result in high rates of human morbidity and mortality at significant levels of transmission. Repellents play an important role in reducing mosquito bites and hence the risk of spread of mosquito borne diseases. Current...

  17. The cell biology of malaria infection of mosquito: advances and opportunities

    PubMed Central

    Sinden, R E

    2015-01-01

    Recent reviews (Feachem et al.; Alonso et al.) have concluded that in order to have a sustainable impact on the global burden of malaria, it is essential that we knowingly reduce the global incidence of infected persons. To achieve this we must reduce the basic reproductive rate of the parasites to < 1 in diverse epidemiological settings. This can be achieved by impacting combinations of the following parameters: the number of mosquitoes relative to the number of persons, the mosquito/human biting rate, the proportion of mosquitoes carrying infectious sporozoites, the daily survival rate of the infectious mosquito and the ability of malaria-infected persons to infect mosquito vectors. This paper focuses on our understanding of parasite biology underpinning the last of these terms: infection of the mosquito. The article attempts to highlight central issues that require further study to assist in the discovery of useful transmission-blocking measures. PMID:25557077

  18. Differential Susceptibilities of Aedes aegypti and Aedes albopictus from the Americas to Zika Virus

    PubMed Central

    Vazeille, Marie; Yebakima, André; Girod, Romain; Goindin, Daniella; Dupont-Rouzeyrol, Myrielle; Lourenço-de-Oliveira, Ricardo; Failloux, Anna-Bella

    2016-01-01

    Background Since the major outbreak in 2007 in the Yap Island, Zika virus (ZIKV) causing dengue-like syndromes has affected multiple islands of the South Pacific region. In May 2015, the virus was detected in Brazil and then spread through South and Central America. In December 2015, ZIKV was detected in French Guiana and Martinique. The aim of the study was to evaluate the vector competence of the mosquito spp. Aedes aegypti and Aedes albopictus from the Caribbean (Martinique, Guadeloupe), North America (southern United States), South America (Brazil, French Guiana) for the currently circulating Asian genotype of ZIKV isolated from a patient in April 2014 in New Caledonia. Methodology/Principal Findings Mosquitoes were orally exposed to an Asian genotype of ZIKV (NC-2014-5132). Upon exposure, engorged mosquitoes were maintained at 28°±1°C, a 16h:8h light:dark cycle and 80% humidity. 25–30 mosquitoes were processed at 4, 7 and 14 days post-infection (dpi). Mosquito bodies (thorax and abdomen), heads and saliva were analyzed to measure infection, dissemination and transmission, respectively. High infection but lower disseminated infection and transmission rates were observed for both Ae. aegypti and Ae. albopictus. Ae. aegypti populations from Guadeloupe and French Guiana exhibited a higher dissemination of ZIKV than the other Ae. aegypti populations examined. Transmission of ZIKV was observed in both mosquito species at 14 dpi but at a low level. Conclusions/Significance This study suggests that although susceptible to infection, Ae. aegypti and Ae. albopictus were unexpectedly low competent vectors for ZIKV. This may suggest that other factors such as the large naïve population for ZIKV and the high densities of human-biting mosquitoes contribute to the rapid spread of ZIKV during the current outbreak. PMID:26938868

  19. Effect of Novaluron (Rimon 10 EC) on the mosquitoes Anopheles albimanus, Anopheles pseudopunctipennis, Aedes aegypti, Aedes albopictus and Culex quinquefasciatus from Chiapas, Mexico.

    PubMed

    Arredondo-Jiménez, J I; Valdez-Delgado, K M

    2006-12-01

    Dengue fever is a serious problem in Mexico and vector control has not been effective enough at preventing outbreaks. Malaria is largely under control, but it is important that new control measures continue to be developed. Novaluron, a novel host-specific insect growth regulator and chitin synthesis inhibitor, has proved to be effective against agricultural pests, but its efficacy against larval mosquito vectors under field conditions remains unknown. In accordance with the World Health Organization Pesticide Evaluation Scheme, phase I, II and III studies were conducted to evaluate the efficacy and residual effect of Novaluron (Rimon 10 EC, Makhteshim, Beer-Sheva, Israel) on the malaria vectors Anopheles albimanus Wiedemann (Diptera: Culicidae) and Anopheles pseudopunctipennis Theobald, the dengue vectors Aedes aegypti (L) and Aedes albopictus Skuse and the nuisance mosquito Culex quinquefasciatus Say. Laboratory susceptibility tests yielded diagnostic concentrations for all five target species. Field trials to identify the optimum field dosage of Novaluron against Anopheles mosquitoes were carried out under semi-natural conditions in artificial plots and in vessels with wild mosquitoes. Efficacy was measured by monitoring mortality of larvae and pupae and the percentage of inhibition of emergence from floating cages. Dosages of Novaluron for field tests were based on pupal LC(99) (lethal concentration 99%) of An. pseudopunctipennis (0.166 mg/L) in plots and average pupal LC(99) of Ae. aegypti and Ae. albopictus (0.55 mg/L). At all dosages tested, Novaluron significantly reduced larval populations of An. albimanus, Culex coronator Dyar & Knab, Ae. albopictus and Cx. quinquefasciatus by approximately 90%, inhibited adult emergence of An. albimanus and An. pseudopunctipennis by approximately 97% for almost 4 months in experimental plots, and inhibited adult emergence of Ae. aegypti and Ae. albopictus by approximately 97% for up to 14 weeks. Recommended dosages of

  20. Using infective mosquitoes to challenge monkeys with Plasmodium knowlesi in malaria vaccine studies

    PubMed Central

    2014-01-01

    Background When rhesus monkeys (Macaca mulatta) are used to test malaria vaccines, animals are often challenged by the intravenous injection of sporozoites. However, natural exposure to malaria comes via mosquito bite, and antibodies can neutralize sporozoites as they traverse the skin. Thus, intravenous injection may not fairly assess humoral immunity from anti-sporozoite malaria vaccines. To better assess malaria vaccines in rhesus, a method to challenge large numbers of monkeys by mosquito bite was developed. Methods Several species and strains of mosquitoes were tested for their ability to produce Plasmodium knowlesi sporozoites. Donor monkey parasitaemia effects on oocyst and sporozoite numbers and mosquito mortality were documented. Methylparaben added to mosquito feed was tested to improve mosquito survival. To determine the number of bites needed to infect a monkey, animals were exposed to various numbers of P. knowlesi-infected mosquitoes. Finally, P. knowlesi-infected mosquitoes were used to challenge 17 monkeys in a malaria vaccine trial, and the effect of number of infectious bites on monkey parasitaemia was documented. Results Anopheles dirus, Anopheles crascens, and Anopheles dirus X (a cross between the two species) produced large numbers of P. knowlesi sporozoites. Mosquito survival to day 14, when sporozoites fill the salivary glands, averaged only 32% when donor monkeys had a parasitaemia above 2%. However, when donor monkey parasitaemia was below 2%, mosquitoes survived twice as well and contained ample sporozoites in their salivary glands. Adding methylparaben to sugar solutions did not improve survival of infected mosquitoes. Plasmodium knowlesi was very infectious, with all monkeys developing blood stage infections if one or more infected mosquitoes successfully fed. There was also a dose-response, with monkeys that received higher numbers of infected mosquito bites developing malaria sooner. Conclusions Anopheles dirus, An. crascens and a

  1. Nanoparticles in the fight against mosquito-borne diseases: bioactivity of Bruguiera cylindrica-synthesized nanoparticles against dengue virus DEN-2 (in vitro) and its mosquito vector Aedes aegypti (Diptera: Culicidae).

    PubMed

    Murugan, Kadarkarai; Dinesh, Devakumar; Paulpandi, Manickam; Althbyani, Abdulaziz Dakhellah Meqbel; Subramaniam, Jayapal; Madhiyazhagan, Pari; Wang, Lan; Suresh, Udaiyan; Kumar, Palanisamy Mahesh; Mohan, Jagathish; Rajaganesh, Rajapandian; Wei, Hui; Kalimuthu, Kandasamy; Parajulee, Megha N; Mehlhorn, Heinz; Benelli, Giovanni

    2015-12-01

    Mosquitoes are blood-feeding insects serving as the most important vectors for spreading human pathogens and parasites. Dengue is a viral disease mainly vectored through the bite of Aedes mosquitoes. Its transmission has recently increased in urban and semi-urban areas of tropical and subtropical regions worldwide, becoming a major international public health concern. There is no specific treatment for dengue. Its prevention and control solely depend on effective vector control measures. Mangrove plants have been used in Indian traditional medicine for a wide array of purposes. In this research, we proposed a method for biosynthesis of antiviral and mosquitocidal silver nanoparticles (AgNP) using the aqueous extract of Bruguiera cylindrica leaves. AgNP were characterized using a variety of biophysical analyses, including UV-visible spectrophotometry, Fourier-transform infrared spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. Bruguiera cilyndrica aqueous extract and green-synthesized AgNP were tested against the primary dengue vector Aedes aegypti. AgNP were the most effective. LC50 values ranged from 8.93 ppm (larva I) to 30.69 ppm (pupa). In vitro experiments showed that 30 μg/ml of AgNP significantly inhibited the production of dengue viral envelope (E) protein in vero cells and downregulated the expression of dengue viral E gene. Concerning nontarget effects, we observed that the predation efficiency of Carassius auratus against A. aegypti was not affected by exposure at sublethal doses of AgNP. Predation in the control was 71.81 % (larva II) and 50.43 % (larva III), while in an AgNP-treated environment, predation was boosted to 90.25 and 76.81 %, respectively. Overall, this study highlights the concrete potential of green-synthesized AgNP in the fight against dengue virus. Furthermore, B. cylindrica-synthesized AgNP can be employed at low doses to reduce larval and pupal population of A. aegypti, without detrimental

  2. Inhibition of Malaria Infection in Transgenic Anopheline Mosquitoes Lacking Salivary Gland Cells

    PubMed Central

    Kasashima, Katsumi; Sezutsu, Hideki; Matsuoka, Hiroyuki

    2016-01-01

    Malaria is an important global public health challenge, and is transmitted by anopheline mosquitoes during blood feeding. Mosquito vector control is one of the most effective methods to control malaria, and population replacement with genetically engineered mosquitoes to block its transmission is expected to become a new vector control strategy. The salivary glands are an effective target tissue for the expression of molecules that kill or inactivate malaria parasites. Moreover, salivary gland cells express a large number of molecules that facilitate blood feeding and parasite transmission to hosts. In the present study, we adapted a functional deficiency system in specific tissues by inducing cell death using the mouse Bcl-2-associated X protein (Bax) to the Asian malaria vector mosquito, Anopheles stephensi. We applied this technique to salivary gland cells, and produced a transgenic strain containing extremely low amounts of saliva. Although probing times for feeding on mice were longer in transgenic mosquitoes than in wild-type mosquitoes, transgenic mosquitoes still successfully ingested blood. Transgenic mosquitoes also exhibited a significant reduction in oocyst formation in the midgut in a rodent malaria model. These results indicate that mosquito saliva plays an important role in malaria infection in the midgut of anopheline mosquitoes. The dysfunction in the salivary glands enabled the inhibition of malaria transmission from hosts to mosquito midguts. Therefore, salivary components have potential in the development of new drugs or genetically engineered mosquitoes for malaria control. PMID:27598328

  3. Inhibition of Malaria Infection in Transgenic Anopheline Mosquitoes Lacking Salivary Gland Cells.

    PubMed

    Yamamoto, Daisuke S; Sumitani, Megumi; Kasashima, Katsumi; Sezutsu, Hideki; Matsuoka, Hiroyuki

    2016-09-01

    Malaria is an important global public health challenge, and is transmitted by anopheline mosquitoes during blood feeding. Mosquito vector control is one of the most effective methods to control malaria, and population replacement with genetically engineered mosquitoes to block its transmission is expected to become a new vector control strategy. The salivary glands are an effective target tissue for the expression of molecules that kill or inactivate malaria parasites. Moreover, salivary gland cells express a large number of molecules that facilitate blood feeding and parasite transmission to hosts. In the present study, we adapted a functional deficiency system in specific tissues by inducing cell death using the mouse Bcl-2-associated X protein (Bax) to the Asian malaria vector mosquito, Anopheles stephensi. We applied this technique to salivary gland cells, and produced a transgenic strain containing extremely low amounts of saliva. Although probing times for feeding on mice were longer in transgenic mosquitoes than in wild-type mosquitoes, transgenic mosquitoes still successfully ingested blood. Transgenic mosquitoes also exhibited a significant reduction in oocyst formation in the midgut in a rodent malaria model. These results indicate that mosquito saliva plays an important role in malaria infection in the midgut of anopheline mosquitoes. The dysfunction in the salivary glands enabled the inhibition of malaria transmission from hosts to mosquito midguts. Therefore, salivary components have potential in the development of new drugs or genetically engineered mosquitoes for malaria control. PMID:27598328

  4. Wolbachia Enhances West Nile Virus (WNV) Infection in the Mosquito Culex tarsalis

    PubMed Central

    Dodson, Brittany L.; Hughes, Grant L.; Paul, Oluwatobi; Matacchiero, Amy C.; Kramer, Laura D.; Rasgon, Jason L.

    2014-01-01

    Novel strategies are required to control mosquitoes and the pathogens they transmit. One attractive approach involves maternally inherited endosymbiotic Wolbachia bacteria. After artificial infection with Wolbachia, many mosquitoes become refractory to infection and transmission of diverse pathogens. We evaluated the effects of Wolbachia (wAlbB strain) on infection, dissemination and transmission of West Nile virus (WNV) in the naturally uninfected mosquito Culex tarsalis, which is an important WNV vector in North America. After inoculation into adult female mosquitoes, Wolbachia reached high titers and disseminated widely to numerous tissues including the head, thoracic flight muscles, fat body and ovarian follicles. Contrary to other systems, Wolbachia did not inhibit WNV in this mosquito. Rather, WNV infection rate was significantly higher in Wolbachia-infected mosquitoes compared to controls. Quantitative PCR of selected innate immune genes indicated that REL1 (the activator of the antiviral Toll immune pathway) was down regulated in Wolbachia-infected relative to control mosquitoes. This is the first observation of Wolbachia-induced enhancement of a human pathogen in mosquitoes, suggesting that caution should be applied before releasing Wolbachia-infected insects as part of a vector-borne disease control program. PMID:25010200

  5. Role in diuresis of a calcitonin receptor (GPRCAL1) expressed in a distal-proximal gradient in renal organs of the mosquito Aedes aegypti (L.).

    PubMed

    Kwon, Hyeogsun; Lu, Hsiao-Ling; Longnecker, Michael T; Pietrantonio, Patricia V

    2012-01-01

    Evolution of anthropophilic hematophagy in insects resulted in the coordination of various physiological processes for survival. In female mosquitoes, a large blood meal provides proteins for egg production and as a trade-off, rapid elimination of the excess water and solutes (Na(+), Cl(-)) is critical for maintaining homeostasis and removing excess weight to resume flight and avoid predation. This post-prandial excretion is achieved by the concerted action of multiple hormones. Diuresis and natriuresis elicited by the calcitonin-like diuretic hormone 31 (DH(31)) are believed to be mediated by a yet uncharacterized calcitonin receptor (GPRCAL) in the mosquito Malpighian tubules (MTs), the renal organs. To contribute knowledge on endocrinology of mosquito diuresis we cloned GPRCAL1 from MT cDNA. This receptor is the ortholog of the DH(31) receptor from Drosophila melanogaster that is expressed in principal cells of the fruit fly MT. Immunofluorescence similarly showed AaegGPRCAL1 is present in MT principal cells in A. aegypti, however, exhibiting an overall gradient-like pattern along the tubule novel for a GPCR in insects. Variegated, cell-specific receptor expression revealed a subpopulation of otherwise phenotypically similar principal cells. To investigate the receptor contribution to fluid elimination, RNAi was followed by urine measurement assays. In vitro, MTs from females that underwent AaegGPRcal1 knock-down exhibited up to 57% decrease in the rate of fluid secretion in response to DH(31). Live females treated with AaegGPRcal1 dsRNA exhibited 30% reduction in fluid excreted after a blood meal. The RNAi-induced phenotype demonstrates the critical contribution of this single secretin-like family B GPCR to fluid excretion in invertebrates and highlights its relevance for the blood feeding adaptation. Our results with the mosquito AaegGPRCAL1 imply that the regulatory function of calcitonin-like receptors for ion and fluid transport in renal organs arose early

  6. Creams Formulated with Ocimum gratissimum L. and Lantana camara L. Crude Extracts and Fractions as Mosquito Repellents Against Aedes aegypti L. (Diptera: Culicidae)

    PubMed Central

    Keziah, Ezeike Amarachi; Nukenine, Elias Nchiwan; Danga, Simon Pierre Yinyang; Younoussa, Lame; Esimone, Charles Okechukwu

    2015-01-01

    Mosquitoes are the most deadly vectors of parasites that cause diseases such as malaria, yellow fever, and filariasis. In view of the recent increased interest in developing plant origin insecticides as an alternative to chemical insecticides, the objective of this study was to determine the repellent activity of creams formulated with methanol crude extract (MCE), hexane fraction (HF), and ethyl acetate fractions (EAFs) of Ocimum gratissimum and Lantana camara leaves in single and combined actions against female Aedes aegypti. Evaluation was carried out in the net cages (30 by 30 by 30 cm) containing 60 blood-starved female mosquitoes each and were assayed in the laboratory condition following World Health Organization 2009 protocol. All formulations (single and mixture) were applied at 2, 4, 6, and 8 mg/cm2 in the exposed area of human hands. Only acetone + white soft paraffin served as negative control and odomos (12% DEET) as positive control. All the formulations presented good protection against mosquito bites without any allergic reaction by the human volunteers. The repellent activity was dependent on the strength of the extracts and fractions. Among the tested formulations, the maximum protection time was observed in MCE (120 min) and EAF (150 min) of O. gratissimum; MCE:MCE (150 min) and HF:HF (120 min) mixtures of both plants. In addition, MCE:MCE and HF:HF mixtures from both plants showed possible synergistic effect. From the results, the combination of O. gratissimum and L. camara to formulate natural mosquito repellent using small amount of extracts can be encouraging to be an alternative to conventional DEET. PMID:25881633

  7. Creams formulated with Ocimum gratissimum L. and Lantana camara L. crude extracts and fractions as mosquito repellents against Aedes aegypti L. (Diptera: Culicidae).

    PubMed

    Keziah, Ezeike Amarachi; Nukenine, Elias Nchiwan; Danga, Simon Pierre Yinyang; Younoussa, Lame; Esimone, Charles Okechukwu

    2015-01-01

    Mosquitoes are the most deadly vectors of parasites that cause diseases such as malaria, yellow fever, and filariasis. In view of the recent increased interest in developing plant origin insecticides as an alternative to chemical insecticides, the objective of this study was to determine the repellent activity of creams formulated with methanol crude extract (MCE), hexane fraction (HF), and ethyl acetate fractions (EAFs) of Ocimum gratissimum and Lantana camara leaves in single and combined actions against female Aedes aegypti. Evaluation was carried out in the net cages (30 by 30 by 30 cm) containing 60 blood-starved female mosquitoes each and were assayed in the laboratory condition following World Health Organization 2009 protocol. All formulations (single and mixture) were applied at 2, 4, 6, and 8 mg/cm(2) in the exposed area of human hands. Only acetone + white soft paraffin served as negative control and odomos (12% DEET) as positive control. All the formulations presented good protection against mosquito bites without any allergic reaction by the human volunteers. The repellent activity was dependent on the strength of the extracts and fractions. Among the tested formulations, the maximum protection time was observed in MCE (120 min) and EAF (150 min) of O. gratissimum; MCE:MCE (150 min) and HF:HF (120 min) mixtures of both plants. In addition, MCE:MCE and HF:HF mixtures from both plants showed possible synergistic effect. From the results, the combination of O. gratissimum and L. camara to formulate natural mosquito repellent using small amount of extracts can be encouraging to be an alternative to conventional DEET.

  8. Molecular Analysis of Aedes aegypti Classical Protein Tyrosine Phosphatases Uncovers an Ortholog of Mammalian PTP-1B Implicated in the Control of Egg Production in Mosquitoes

    PubMed Central

    Moretti, Debora Monteiro; Ahuja, Lalima Gagan; Nunes, Rodrigo Dutra; Cudischevitch, Cecília Oliveira; Daumas-Filho, Carlos Renato Oliveira; Medeiros-Castro, Priscilla; Ventura-Martins, Guilherme; Jablonka, Willy; Gazos-Lopes, Felipe; Senna, Raquel; Sorgine, Marcos Henrique Ferreira; Hartfelder, Klaus; Capurro, Margareth; Atella, Georgia Correa; Mesquita, Rafael Dias; Silva-Neto, Mário Alberto Cardoso

    2014-01-01

    Background Protein Tyrosine Phosphatases (PTPs) are enzymes that catalyze phosphotyrosine dephosphorylation and modulate cell differentiation, growth and metabolism. In mammals, PTPs play a key role in the modulation of canonical pathways involved in metabolism and immunity. PTP1B is the prototype member of classical PTPs and a major target for treating human diseases, such as cancer, obesity and diabetes. These signaling enzymes are, hence, targets of a wide array of inhibitors. Anautogenous mosquitoes rely on blood meals to lay eggs and are vectors of the most prevalent human diseases. Identifying the mosquito ortholog of PTP1B and determining its involvement in egg production is, therefore, important in the search for a novel and crucial target for vector control. Methodology/Principal Findings We conducted an analysis to identify the ortholog of mammalian PTP1B in the Aedes aegypti genome. We identified eight genes coding for classical PTPs. In silico structural and functional analyses of proteins coded by such genes revealed that four of these code for catalytically active enzymes. Among the four genes coding for active PTPs, AAEL001919 exhibits the greatest degree of homology with the mammalian PTP1B. Next, we evaluated the role of this enzyme in egg formation. Blood feeding largely affects AAEL001919 expression, especially in the fat body and ovaries. These tissues are critically involved in the synthesis and storage of vitellogenin, the major yolk protein. Including the classical PTP inhibitor sodium orthovanadate or the PTP substrate DiFMUP in the blood meal decreased vitellogenin synthesis and egg production. Similarly, silencing AAEL001919 using RNA interference (RNAi) assays resulted in 30% suppression of egg production. Conclusions/Significance The data reported herein implicate, for the first time, a gene that codes for a classical PTP in mosquito egg formation. These findings raise the possibility that this class of enzymes may be used as novel

  9. Creams formulated with Ocimum gratissimum L. and Lantana camara L. crude extracts and fractions as mosquito repellents against Aedes aegypti L. (Diptera: Culicidae).

    PubMed

    Keziah, Ezeike Amarachi; Nukenine, Elias Nchiwan; Danga, Simon Pierre Yinyang; Younoussa, Lame; Esimone, Charles Okechukwu

    2015-01-01

    Mosquitoes are the most deadly vectors of parasites that cause diseases such as malaria, yellow fever, and filariasis. In view of the recent increased interest in developing plant origin insecticides as an alternative to chemical insecticides, the objective of this study was to determine the repellent activity of creams formulated with methanol crude extract (MCE), hexane fraction (HF), and ethyl acetate fractions (EAFs) of Ocimum gratissimum and Lantana camara leaves in single and combined actions against female Aedes aegypti. Evaluation was carried out in the net cages (30 by 30 by 30 cm) containing 60 blood-starved female mosquitoes each and were assayed in the laboratory condition following World Health Organization 2009 protocol. All formulations (single and mixture) were applied at 2, 4, 6, and 8 mg/cm(2) in the exposed area of human hands. Only acetone + white soft paraffin served as negative control and odomos (12% DEET) as positive control. All the formulations presented good protection against mosquito bites without any allergic reaction by the human volunteers. The repellent activity was dependent on the strength of the extracts and fractions. Among the tested formulations, the maximum protection time was observed in MCE (120 min) and EAF (150 min) of O. gratissimum; MCE:MCE (150 min) and HF:HF (120 min) mixtures of both plants. In addition, MCE:MCE and HF:HF mixtures from both plants showed possible synergistic effect. From the results, the combination of O. gratissimum and L. camara to formulate natural mosquito repellent using small amount of extracts can be encouraging to be an alternative to conventional DEET. PMID:25881633

  10. Comparative repellency of commercial formulations of deet, permethrin and citronellal against the mosquito Aedes aegypti, using a collagen membrane technique compared with human arm tests.

    PubMed

    Cockcroft, A; Cosgrove, J B; Wood, R J

    1998-07-01

    A collagen membrane technique, based on the membrane blood-feeding system of Cosgrove et al. (1994), was used to compare repellents against Aedes aegypti mosquitoes. Repellency was defined in terms of inhibition of probing (ED50 and ED90) after 5 min exposure. A direct comparison was made with repellency from probing after 5 min on five male volunteers. Four repellent products were compared with technical DEET as the standard. The liquid formulations tested were: Autan (20% deet; Bayer); Repel Plus (20% deet plus 0.05% permethrin; Boots); permethrin (Zeneca) and citronellal (Sigma). Membrane and arm tests gave similar results. Deet formulations required less active compound than citronellal for the same degree of repellency. Pure deet and Autan gave similar results, dose for dose. Permethrin was highly repellent at very low doses, but Repel Plus did not enhance the immediate repellency of deet. A technique using the same membrane system was developed to evaluate persistence of Autan, which declined to 75% after 1 h against Ae. aegypti, and to about 50% after 2-4 h.

  11. Evaluation of 15 Local Plant Species as Larvicidal Agents Against an Indian Strain of Dengue Fever Mosquito, Aedes aegypti L. (Diptera: Culicidae)

    PubMed Central

    Kumar, Sarita; Wahab, Naim; Mishra, Monika; Warikoo, Radhika

    2012-01-01

    The adverse effects of chemical insecticides-based intervention measures for the control of mosquito vectors have received wide public apprehension because of several problems like insecticide resistance, resurgence of pest species, environmental pollution, toxic hazards to humans, and non-target organisms. These problems have necessitated the need to explore and develop alternative strategies using eco-friendly, environmentally safe, bio-degradable plant products which are non-toxic to non-target organisms too. In view of this, 15 plant species were collected from local areas in New Delhi, India. Different parts of these plants were separated, dried, mechanically grinded, and sieved to get fine powder. The 200 g of each part was soaked in 1000 mL of different solvents separately and the crude extracts, thus formed, were concentrated using a vacuum evaporator at 45°C under low pressure. Each extract was screened to explore its potential as a mosquito larvicidal agent against early fourth instars of dengue vector, Aedes aegypti using WHO protocol. The preliminary screening showed that only 10 plants possessed larvicidal potential as they could result in 100% mortality at 1000 ppm. Further evaluation of the potential larvicidal extracts established the hexane leaf extract of Lantana camara to be most effective extract exhibiting a significant LC50 value of 30.71 ppm while the Phyllanthus emblica fruit extract was found to be least effective with an LC50 value of 298.93 ppm. The extracts made from different parts of other five plants; Achyranthes aspera, Zingiber officinalis, Ricinus communis, Trachyspermum ammi, and Cassia occidentalis also possessed significant larvicidal potential with LC50 values ranging from 55.0 to 74.67 ppm. Other three extracts showed moderate toxicity against A. aegypti larvae. Further investigations would be needed to isolate and identify the primary component responsible for the larvicidal efficiency of the effective plants

  12. Synthesis, depletion and cell-type expression of a protein from the male accessory glands of the dengue vector mosquito Aedes aegypti.

    PubMed

    Alfonso-Parra, Catalina; Avila, Frank W; Deewatthanawong, Prasit; Sirot, Laura K; Wolfner, Mariana F; Harrington, Laura C

    2014-11-01

    Aedes aegypti males transfer sperm and seminal fluid proteins (Sfps), primarily produced by male accessory glands (AGs), to females during mating. When collectively injected or transplanted into females, AG tissues and/or seminal fluid homogenates have profound effects on Aedes female physiology and behavior. To identify targets and design new strategies for vector control, it is important to understand the biology of the AGs. Thus, we examined characteristics of AG secretion and development in A. aegypti, using the AG-specific seminal fluid protein, AAEL010824, as a marker. We showed that AAEL010824 is first detectable by 12h post-eclosion, and increases in amount over the first 3 days of adult life. We then showed that the amount of AAEL0010824 in the AG decreases after mating, with each successive mating depleting it further; by 5 successive matings with no time for recovery, its levels are very low. AAEL010824 levels in a depleted male are replenished by 48 h post-mating. In addition to examining the level of AAEL010824 protein, we also characterized the expression of its gene. We did this by making a transgenic mosquito line that carries an Enhanced Green Fluorescence Protein (EGFP) fused to the AAEL0010824 promoter that we defined here. We showed that AAEL010824 is expressed in the anterior cells of the accessory glands, and that its RNA levels also respond to mating. In addition to further characterizing AAEL010824 expression, our results with the EGFP fusion provide a promoter for driving AG expression. By providing this information on the biology of an important male reproductive tissue and the production of one of its seminal proteins, our results lay the foundation for future work aimed at identifying novel targets for mosquito population control.

  13. Detection of Aedes aegypti, Aedes albopictus, and Aedes koreicus in the Area of Sochi, Russia.

    PubMed

    Ganushkina, Ludmila A; Patraman, Ivan V; Rezza, Giovanni; Migliorini, Luigi; Litvinov, Serguei K; Sergiev, Vladimir P

    2016-01-01

    Following the identification of Aedes (Ae.) aegypti in the Sochi area in Russia at the beginning of 2000, entomological surveys were conducted during the summers of 2007, 2011, and 2012, leading to the identification of Ae. albopictus and Ae. koreicus. These findings highlight Russia as being the only country in the World Health Organization European Region with a documented presence of both Ae. aegypti and Ae. albopictus mosquitoes. Both mosquito species are found on the coasts of the Black Sea. Control measures are needed to reduce the possible risks of importing exotic vector-borne infections, such as dengue and chikungunya.

  14. Suppression of a Field Population of Aedes aegypti in Brazil by Sustained Release of Transgenic Male Mosquitoes.

    PubMed

    Carvalho, Danilo O; McKemey, Andrew R; Garziera, Luiza; Lacroix, Renaud; Donnelly, Christl A; Alphey, Luke; Malavasi, Aldo; Capurro, Margareth L

    2015-01-01

    The increasing burden of dengue, and the relative failure of traditional vector control programs highlight the need to develop new control methods. SIT using self-limiting genetic technology is one such promising method. A self-limiting strain of Aedes aegypti, OX513A, has already reached the stage of field evaluation. Sustained releases of OX513A Ae. aegypti males led to 80% suppression of a target wild Ae. aegypti population in the Cayman Islands in 2010. Here we describe sustained series of field releases of OX513A Ae. aegypti males in a suburb of Juazeiro, Bahia, Brazil. This study spanned over a year and reduced the local Ae. aegypti population by 95% (95% CI: 92.2%-97.5%) based on adult trap data and 81% (95% CI: 74.9-85.2%) based on ovitrap indices compared to the adjacent no-release control area. The mating competitiveness of the released males (0.031; 95% CI: 0.025-0.036) was similar to that estimated in the Cayman trials (0.059; 95% CI: 0.011-0.210), indicating that environmental and target-strain differences had little impact on the mating success of the OX513A males. We conclude that sustained release of OX513A males may be an effective and widely useful method for suppression of the key dengue vector Ae. aegypti. The observed level of suppression would likely be sufficient to prevent dengue epidemics in the locality tested and other areas with similar or lower transmission. PMID:26135160

  15. Suppression of a Field Population of Aedes aegypti in Brazil by Sustained Release of Transgenic Male Mosquitoes

    PubMed Central

    Garziera, Luiza; Lacroix, Renaud; Donnelly, Christl A.; Alphey, Luke; Malavasi, Aldo; Capurro, Margareth L.

    2015-01-01

    The increasing burden of dengue, and the relative failure of traditional vector control programs highlight the need to develop new control methods. SIT using self-limiting genetic technology is one such promising method. A self-limiting strain of Aedes aegypti, OX513A, has already reached the stage of field evaluation. Sustained releases of OX513A Ae. aegypti males led to 80% suppression of a target wild Ae. aegypti population in the Cayman Islands in 2010. Here we describe sustained series of field releases of OX513A Ae. aegypti males in a suburb of Juazeiro, Bahia, Brazil. This study spanned over a year and reduced the local Ae. aegypti population by 95% (95% CI: 92.2%-97.5%) based on adult trap data and 81% (95% CI: 74.9-85.2%) based on ovitrap indices compared to the adjacent no-release control area. The mating competitiveness of the released males (0.031; 95% CI: 0.025-0.036) was similar to that estimated in the Cayman trials (0.059; 95% CI: 0.011 – 0.210), indicating that environmental and target-strain differences had little impact on the mating success of the OX513A males. We conclude that sustained release of OX513A males may be an effective and widely useful method for suppression of the key dengue vector Ae. aegypti. The observed level of suppression would likely be sufficient to prevent dengue epidemics in the locality tested and other areas with similar or lower transmission. PMID:26135160

  16. Suppression of a Field Population of Aedes aegypti in Brazil by Sustained Release of Transgenic Male Mosquitoes.

    PubMed

    Carvalho, Danilo O; McKemey, Andrew R; Garziera, Luiza; Lacroix, Renaud; Donnelly, Christl A; Alphey, Luke; Malavasi, Aldo; Capurro, Margareth L

    2015-01-01

    The increasing burden of dengue, and the relative failure of traditional vector control programs highlight the need to develop new control methods. SIT using self-limiting genetic technology is one such promising method. A self-limiting strain of Aedes aegypti, OX513A, has already reached the stage of field evaluation. Sustained releases of OX513A Ae. aegypti males led to 80% suppression of a target wild Ae. aegypti population in the Cayman Islands in 2010. Here we describe sustained series of field releases of OX513A Ae. aegypti males in a suburb of Juazeiro, Bahia, Brazil. This study spanned over a year and reduced the local Ae. aegypti population by 95% (95% CI: 92.2%-97.5%) based on adult trap data and 81% (95% CI: 74.9-85.2%) based on ovitrap indices compared to the adjacent no-release control area. The mating competitiveness of the released males (0.031; 95% CI: 0.025-0.036) was similar to that estimated in the Cayman trials (0.059; 95% CI: 0.011-0.210), indicating that environmental and target-strain differences had little impact on the mating success of the OX513A males. We conclude that sustained release of OX513A males may be an effective and widely useful method for suppression of the key dengue vector Ae. aegypti. The observed level of suppression would likely be sufficient to prevent dengue epidemics in the locality tested and other areas with similar or lower transmission.

  17. Behavioral responses of catnip (Nepeta cataria) by two species of mosquitoes, Aedes aegypti and Anopheles harrisoni, in Thailand.

    PubMed

    Polsomboon, Suppaluck; Grieco, John P; Achee, Nicole L; Chauhan, Kamlesh R; Tanasinchayakul, Somchai; Pothikasikorn, Jinrapa; Chareonviriyaphap, Theeraphap

    2008-12-01

    An investigation of the biological effect of catnip oil (Nepeta cataria L.) on the behavioral response of field collected Aedes aegypti and Anopheles harrisoni was conducted using an automated excitorepellency test system. Aedes aegypti showed significantly higher escape rates from the contact chamber at 5% catnip oil compared to other concentrations (P < 0.05). With Anopheles harrisoni, a high escape response was seen at 2.5% catnip oil from the contact chamber, while in the noncontact chamber a higher escape response was observed at a concentration of 5%. Results showed that this compound exhibits both irritant and repellent actions.

  18. Diminished reproductive fitness associated with the deltamethrin resistance in an Indian strain of dengue vector mosquito, Aedes aegypti L.

    PubMed

    Kumar, Sarita; Thomas, Anita; Samuel, Thomas; Sahgal, Arunima; Verma, Anita; Pillai, M K K

    2009-08-01

    The susceptible (SS) and resistant (DLR) strains of Aedes aegypti selected with deltamethrin and combination of deltamethrin and PBO (1:5) at the larval/adult stage were studied in the laboratory for their reproductive fitness in terms of fecundity, hatchability and longevity of gonotrophic cycles. The DLR strains exhibited 73-88% reduction in the duration of gonotrophic cycles as compared to their SS counterparts. There was a considerable decrease in egg production and hatchability rates in the selected strains of Ae. aegypti, as compared to that of the SS strain. Data indicate deltamethrin being an effective insecticide against Ae. aegypti and a possible correlation between the deltamethrin resistance and disadvantages during reproduction. The most drastic and significant effect was observed in DLR1b strains exhibiting 36.7% decrease in fecundity and 32.4% reduction in hatchability. Another important observation was diminished reproductive fitness in DLR2 strains. This suggests the usefulness of synergized deltamethrin selections in reducing the frequency of resistant individuals. A significant finding was to observe the reproductive disadvantage in adult-selected strains having negligible resistance to deltamethrin implicating the efficacy of deltamethrin as an adulticide rather than as a larvicide. Various probable reasons for the reduction in the reproductive potential and the possible resistance-management strategies of Ae. aegypti are discussed. PMID:19901902

  19. Efficacy of essential oil from Cananga odorata (Lamk.) Hook.f. & Thomson (Annonaceae) against three mosquito species Aedes aegypti (L.), Anopheles dirus (Peyton and Harrison), and Culex quinquefasciatus (Say).

    PubMed

    Soonwera, Mayura

    2015-12-01

    The essential oil of Cananga odorata flowers was evaluated for oviposition-deterrent, ovicidal, insecticidal, and repellent activities toward three mosquito species: Aedes aegypti, Anopheles dirus, and Culex quinquefasciatus. Oviposition deterrence of the oil was evaluated on gravid females using oviposition deterrence bioassay. The results showed that 10 % Ca. odorata exhibited high percent effective repellency against oviposition at 99.4 % to Ae. aegypti, 97.1 % to An. dirus, and 100 % to Cx. quinquefasciatus. Ca. odorata oil was tested for ovicidal activity. Regression equations revealed that the ovicidal rates were positively correlated with the concentrations of the essential oil. As the concentration of essential oil increased from 1, 5, and up to 10 % concentration, the ovicidal rate increased accordingly. Larvicidal activity of the oils was used on immature stages (third and fourth instar lavae and pupae). The maximum larval mortality was found with 10 % Ca. odorata against immature stages, and there were LC50 values ranged from 10.4 to 10.5 % (for Ae. aegypti), <1 % (for An. dirus), and <1 % (for Cx. quinquefasciatus). Adulticidal properties were evaluated with unfed females. Ten percent Ca. odorata oil had high knockdown rates against the three mosquito species at 96 % (for Ae. aegypti), 98.4 % (for An. dirus), and 100 % (for Cx. quinquefasciatus), with EC50 values of 6.2, 4.7, and 5.4 %, respectively. It gave moderate mortality rates after 24 and 48 h of exposure. Ca. odorata oil was assessed for repellency to females by using the modified K&D module. Ten percent Ca. odorata oil gave the strongest value against Ae. aegypti, An. dirus, and Cx. quinquefasciatus, with percentage repellency of 66, 92, and 90 %, respectively. This study demonstrates the potential for the essential oil of Ca. odorata essential oil to be used as a botanical insecticide against three mosquito species.

  20. Efficacy of essential oil from Cananga odorata (Lamk.) Hook.f. & Thomson (Annonaceae) against three mosquito species Aedes aegypti (L.), Anopheles dirus (Peyton and Harrison), and Culex quinquefasciatus (Say).

    PubMed

    Soonwera, Mayura

    2015-12-01

    The essential oil of Cananga odorata flowers was evaluated for oviposition-deterrent, ovicidal, insecticidal, and repellent activities toward three mosquito species: Aedes aegypti, Anopheles dirus, and Culex quinquefasciatus. Oviposition deterrence of the oil was evaluated on gravid females using oviposition deterrence bioassay. The results showed that 10 % Ca. odorata exhibited high percent effective repellency against oviposition at 99.4 % to Ae. aegypti, 97.1 % to An. dirus, and 100 % to Cx. quinquefasciatus. Ca. odorata oil was tested for ovicidal activity. Regression equations revealed that the ovicidal rates were positively correlated with the concentrations of the essential oil. As the concentration of essential oil increased from 1, 5, and up to 10 % concentration, the ovicidal rate increased accordingly. Larvicidal activity of the oils was used on immature stages (third and fourth instar lavae and pupae). The maximum larval mortality was found with 10 % Ca. odorata against immature stages, and there were LC50 values ranged from 10.4 to 10.5 % (for Ae. aegypti), <1 % (for An. dirus), and <1 % (for Cx. quinquefasciatus). Adulticidal properties were evaluated with unfed females. Ten percent Ca. odorata oil had high knockdown rates against the three mosquito species at 96 % (for Ae. aegypti), 98.4 % (for An. dirus), and 100 % (for Cx. quinquefasciatus), with EC50 values of 6.2, 4.7, and 5.4 %, respectively. It gave moderate mortality rates after 24 and 48 h of exposure. Ca. odorata oil was assessed for repellency to females by using the modified K&D module. Ten percent Ca. odorata oil gave the strongest value against Ae. aegypti, An. dirus, and Cx. quinquefasciatus, with percentage repellency of 66, 92, and 90 %, respectively. This study demonstrates the potential for the essential oil of Ca. odorata essential oil to be used as a botanical insecticide against three mosquito species. PMID:26337270

  1. Larvicidal Potential of the Halogenated Sesquiterpene (+)-Obtusol, Isolated from the Alga Laurencia dendroidea J. Agardh (Ceramiales: Rhodomelaceae), against the Dengue Vector Mosquito Aedes aegypti (Linnaeus) (Diptera: Culicidae)

    PubMed Central

    Salvador-Neto, Orlando; Gomes, Simone Azevedo; Soares, Angélica Ribeiro; Machado, Fernanda Lacerda da Silva; Samuels, Richard Ian; Nunes da Fonseca, Rodrigo; Souza-Menezes, Jackson; Moraes, Jorge Luiz da Cunha; Campos, Eldo; Mury, Flávia Borges; Silva, José Roberto

    2016-01-01

    Dengue is considered a serious public health problem in many tropical regions of the world including Brazil. At the moment, there is no viable alternative to reduce dengue infections other than controlling the insect vector, Aedes aegypti Linnaeus. In the continuing search for new sources of chemicals targeted at vector control, natural products are a promising alternative to synthetic pesticides. In our work, we investigated the toxicity of a bioactive compound extracted from the red alga Laurencia dendroidea J. Agardh. The initial results demonstrated that crude extracts, at a concentration of 5 ppm, caused pronounced mortality of second instar A. aegypti larvae. Two molecules, identified as (−)-elatol and (+)-obtusol were subsequently isolated from crude extract and further evaluated. Assays with (−)-elatol showed moderate larvicidal activity, whereas (+)-obtusol presented higher toxic activity than (−)-elatol, with a LC50 value of 3.5 ppm. Histological analysis of the larvae exposed to (+)-obtusol revealed damage to the intestinal epithelium. Moreover, (+)-obtusol-treated larvae incubated with 2 µM CM-H2DCFDA showed the presence of reactive oxygen species, leading us to suggest that epithelial damage might be related to redox imbalance. These results demonstrate the potential of (+)-obtusol as a larvicide for use against A. aegypti and the possible mode of action of this compound. PMID:26821032

  2. Larvicidal Potential of the Halogenated Sesquiterpene (+)-Obtusol, Isolated from the Alga Laurencia dendroidea J. Agardh (Ceramiales: Rhodomelaceae), against the Dengue Vector Mosquito Aedes aegypti (Linnaeus) (Diptera: Culicidae).

    PubMed

    Salvador-Neto, Orlando; Gomes, Simone Azevedo; Soares, Angélica Ribeiro; Machado, Fernanda Lacerda da Silva; Samuels, Richard Ian; Nunes da Fonseca, Rodrigo; Souza-Menezes, Jackson; Moraes, Jorge Luiz da Cunha; Campos, Eldo; Mury, Flávia Borges; Silva, José Roberto

    2016-02-01

    Dengue is considered a serious public health problem in many tropical regions of the world including Brazil. At the moment, there is no viable alternative to reduce dengue infections other than controlling the insect vector, Aedes aegypti Linnaeus. In the continuing search for new sources of chemicals targeted at vector control, natural products are a promising alternative to synthetic pesticides. In our work, we investigated the toxicity of a bioactive compound extracted from the red alga Laurencia dendroidea J. Agardh. The initial results demonstrated that crude extracts, at a concentration of 5 ppm, caused pronounced mortality of second instar A. aegypti larvae. Two molecules, identified as (-)-elatol and (+)-obtusol were subsequently isolated from crude extract and further evaluated. Assays with (-)-elatol showed moderate larvicidal activity, whereas (+)-obtusol presented higher toxic activity than (-)-elatol, with a LC50 value of 3.5 ppm. Histological analysis of the larvae exposed to (+)-obtusol revealed damage to the intestinal epithelium. Moreover, (+)-obtusol-treated larvae incubated with 2 µM CM-H₂DCFDA showed the presence of reactive oxygen species, leading us to suggest that epithelial damage might be related to redox imbalance. These results demonstrate the potential of (+)-obtusol as a larvicide for use against A. aegypti and the possible mode of action of this compound.

  3. A portable approach for the surveillance of dengue virus-infected mosquitoes.

    PubMed

    Muller, David A; Frentiu, Francesca D; Rojas, Alejandra; Moreira, Luciano A; O'Neill, Scott L; Young, Paul R

    2012-07-01

    Dengue virus is the most significant human viral pathogen spread by the bite of an infected mosquito. With no vaccine or antiviral therapy currently available, disease prevention relies largely on surveillance and mosquito control. Preventing the onset of dengue outbreaks and effective vector management would be considerably enhanced through surveillance of dengue virus prevalence in natural mosquito populations. However, current approaches to the identification of virus in field-caught mosquitoes require relatively slow and labor intensive techniques such as virus isolation or RT-PCR involving specialized facilities and personnel. A rapid and portable method for detecting dengue virus-infected mosquitoes is described. Using a hand held battery operated homogenizer and a dengue diagnostic rapid strip the viral protein NS1 was detected as a marker of dengue virus infection. This method could be performed in less than 30 min in the field, requiring no downstream processing, and is able to detect a single infected mosquito in a pool of at least 50 uninfected mosquitoes. The method described in this study allows rapid, real-time monitoring of dengue virus presence in mosquito populations and could be a useful addition to effective monitoring and vector control responses. PMID:22575689

  4. Oral Susceptibility of Singapore Aedes (Stegomyia) aegypti (Linnaeus) to Zika Virus

    PubMed Central

    Ng, Lee Ching; Tan, Cheong Huat

    2012-01-01

    Background Zika virus (ZIKV) is a little known flavivirus that caused a major outbreak in 2007, in the South-western Pacific Island of Yap. It causes dengue-like syndromes but with milder symptoms. In Africa, where it was first isolated, ZIKV is mainly transmitted by sylvatic Aedes mosquitoes. The virus has also been isolated from Ae. aegypti and it is considered to be the vector involved in the urban transmission of the virus. Transmission of the virus by an African strain of Ae. aegypti has also been demonstrated under laboratory conditions. The aim of the present study is to describe the oral susceptibility of a Singapore strain of Ae. aegypti to ZIKV, under conditions that simulate local climate. Methodology/Principal Findings To assess the receptivity of Singapore's Ae. aegypti to the virus, we orally exposed a local mosquito strain to a Ugandan strain of ZIKV. Upon exposure, fully engorged mosquitoes were maintained in an environmental chamber set at 29°C and 70–75% RH. Eight mosquitoes were then sampled daily from day 1 to day 7, and subsequently on days 10 and 14 post exposure (pe). The virus titer of the midgut and salivary glands of each mosquito were determined using a tissue culture infectious dose50 (TCID50) assay. High midgut infection and salivary gland dissemination rates were observed. By day 5 after the infectious blood meal, ZIKV was found in the salivary glands of more than half of the mosquitoes tested (62%); and by day 10, all mosquitoes were potentially infective. Conclusions/Significance This study showed that Singapore's urban Ae. aegypti are susceptible and are potentially capable of transmitting ZIKV. The virus could be established in Singapore should it be introduced. Nevertheless, Singapore's current dengue control strategy is applicable to control ZIKV. PMID:22953014

  5. De novo assembly and annotation of the Asian tiger mosquito (Aedes albopictus) repeatome with dnaPipeTE from raw genomic reads and comparative analysis with the yellow fever mosquito (Aedes aegypti).

    PubMed

    Goubert, Clément; Modolo, Laurent; Vieira, Cristina; ValienteMoro, Claire; Mavingui, Patrick; Boulesteix, Matthieu

    2015-04-01

    Repetitive DNA, including transposable elements (TEs), is found throughout eukaryotic genomes. Annotating and assembling the "repeatome" during genome-wide analysis often poses a challenge. To address this problem, we present dnaPipeTE-a new bioinformatics pipeline that uses a sample of raw genomic reads. It produces precise estimates of repeated DNA content and TE consensus sequences, as well as the relative ages of TE families. We shows that dnaPipeTE performs well using very low coverage sequencing in different genomes, losing accuracy only with old TE families. We applied this pipeline to the genome of the Asian tiger mosquito Aedes albopictus, an invasive species of human health interest, for which the genome size is estimated to be over 1 Gbp. Using dnaPipeTE, we showed that this species harbors a large (50% of the genome) and potentially active repeatome with an overall TE class and order composition similar to that of Aedes aegypti, the yellow fever mosquito. However, intraorder dynamics show clear distinctions between the two species, with differences at the TE family level. Our pipeline's ability to manage the repeatome annotation problem will make it helpful for new or ongoing assembly projects, and our results will benefit future genomic studies of A. albopictus. PMID:25767248

  6. Insecticide resistance and malaria transmission: infection rate and oocyst burden in Culex pipiens mosquitoes infected with Plasmodium relictum

    PubMed Central

    2010-01-01

    Background The control of most vectors of malaria is threatened by the spread of insecticide resistance. One factor that has been hitherto largely overlooked is the potential effects of insecticide resistance on the ability of mosquitoes to transmit malaria: are insecticide-resistant mosquitoes as good vectors of Plasmodium as susceptible ones? The drastic physiological changes that accompany the evolution of insecticide resistance may indeed alter the ability of vectors to transmit diseases, a possibility that, if confirmed, could have major epidemiological consequences. Methods Using a novel experimental system consisting of the avian malaria parasite (Plasmodium relictum) and its natural vector (the mosquito Culex pipiens), two of the most common mechanisms of insecticide resistance (esterase overproduction and acetylcholinesterase modification) were investigated for their effect on mosquito infection rate and parasite burden. For this purpose two types of experiments were carried out using (i) insecticide-resistant and susceptible laboratory isogenic lines of Cx. pipiens and (ii) wild Cx. pipiens collected from a population where insecticide resistant and susceptible mosquitoes coexist in sympatry. Results The isogenic line and wild-caught mosquito experiments were highly consistent in showing no effect of either esterase overproduction or of acetylcholinesterase modification on either the infection rate or on the oocyst burden of mosquitoes. The only determinant of these traits was blood meal size, which was similar across the different insecticide resistant categories in both experiments. Conclusions Insecticide resistance was found to have no effect on Plasmodium development within the mosquito. This is the first time this question has been addressed using a natural mosquito-Plasmodium combination, while taking care to standardize the genetic background against which the insecticide resistance genes operate. Infection rate and oocyst burden are but two of

  7. Phylogeography of Aedes aegypti (yellow fever mosquito) in South Florida: mtDNA evidence for human-aided dispersal.

    PubMed

    Damal, Kavitha; Murrell, Ebony G; Juliano, Steven A; Conn, Jan E; Loew, Sabine S

    2013-09-01

    The invasive dengue vector Aedes aegypti has persisted for > 200 years in South Florida in the United States. We tested the hypotheses that Florida's landscape creates dispersal barriers and corridors and that long-distance human-aided dispersal structures populations of Ae. aegypti. We evaluated the phylogeography of 362 individuals from Florida's East and West Coasts with a 760-bp (418- and 342-bp fragments of ND5 and ND4, respectively) mitochondrial sequence. Populations from these two coasts were not significantly differentiated, suggesting that limited urbanization in central Florida is not a strong barrier to gene flow. Evidence for long-distance dispersal between Ft. Lauderdale and the West and Ft. Myers and the East indicates the importance of human-aided dispersal. West Coast populations showed no genetic differentiation, indicating that West Coast rivers and bays did not significantly impede gene flow. Phylogeographic analysis of haplotypes showed two distinct matrilines with no geographic patterns, suggesting multiple introductions or balancing selection.

  8. Insecticidal activity of isobutylamides derived from Piper nigrum against adult of two mosquito species, Culex pipiens pallens and Aedes aegypti.

    PubMed

    Park, Il-Kwon

    2012-01-01

    The insecticidal activity of Piper nigrum fruit-derived piperidine alkaloid (piperine) and N-isobutylamide alkaloids (pellitorine, guineensine, pipercide and retrofractamide A) against female adults of Culex pipiens pallens and Aedes aegypti was examined. On the basis of 24-h LD(50) values, the compound most toxic to female C. pipiens pallens was pellitorine (0.4 µg/♀) followed by guineensine (1.9 µg/♀), retrofractamide A (2.4 µg/♀) and pipercide (3.2 µg/♀). LD(50) value of chlorpyrifos was 0.03 µg/♀. Against female A. aegypti, the insecticidal activity was more pronounced in pellitorine (0.17 µg/♀) than in retrofractamide A (1.5 µg/♀), guineensine (1.7 µg/♀), and pipercide (2.0 µg/♀). LD(50) value of chlorpyrifos was 0.0014 µg/♀.

  9. A natural Anopheles-associated Penicillium chrysogenum enhances mosquito susceptibility to Plasmodium infection

    PubMed Central

    Angleró-Rodríguez, Yesseinia I.; Blumberg, Benjamin J.; Dong, Yuemei; Sandiford, Simone L.; Pike, Andrew; Clayton, April M.; Dimopoulos, George

    2016-01-01

    Whereas studies have extensively examined the ability of bacteria to influence Plasmodium infection in the mosquito, the tripartite interactions between non-entomopathogenic fungi, mosquitoes, and Plasmodium parasites remain largely uncharacterized. Here we report the isolation of a common mosquito-associated ascomycete fungus, Penicillium chrysogenum, from the midgut of field-caught Anopheles mosquitoes. Although the presence of Pe. chrysogenum in the Anopheles gambiae midgut does not affect mosquito survival, it renders the mosquito significantly more susceptible to Plasmodium infection through a secreted heat-stable factor. We further provide evidence that the mechanism of the fungus-mediated modulation of mosquito susceptibility to Plasmodium involves an upregulation of the insect’s ornithine decarboxylase gene, which sequesters arginine for polyamine biosynthesis. Arginine plays an important role in the mosquito’s anti-Plasmodium defense as a substrate of nitric oxide production, and its availability therefore has a direct impact on the mosquito’s susceptibility to the parasite. While this type of immunomodulatory mechanism has already been demonstrated in other host-pathogen interaction systems, this is the first report of a mosquito-associated fungus that can suppress the mosquito’s innate immune system in a way that would favor Plasmodium infection and possibly malaria transmission. PMID:27678168

  10. Bromeliad-inhabiting mosquitoes in an urban botanical garden of dengue endemic Rio de Janeiro--are bromeliads productive habitats for the invasive vectors Aedes aegypti and Aedes albopictus?

    PubMed

    Mocellin, Márcio Goulart; Simões, Taynãna César; Nascimento, Teresa Fernandes Silva do; Teixeira, Maria Lucia França; Lounibos, Leon Philip; Oliveira, Ricardo Lourenço de

    2009-12-01

    Immatures of both Aedes aegypti and Aedes albopictus have been found in water-holding bromeliad axils in Brazil. Removal of these plants or their treatment with insecticides in public and private gardens have been undertaken during dengue outbreaks in Brazil despite uncertainty as to their importance as productive habitats for dengue vectors. From March 2005-February 2006, we sampled 120 randomly selected bromeliads belonging to 10 species in a public garden less than 200 m from houses in a dengue-endemic neighborhood in Rio de Janeiro. A total of 2,816 mosquito larvae and pupae was collected, with an average of 5.87 immatures per plant per collection. Culex (Microculex) pleuristriatus and Culex spp of the Ocellatus Group were the most abundant culicid species, found in all species of bromeliads; next in relative abundance were species of the genus Wyeomyia. Only two individuals of Ae. aegypti (0.07%) and five of Ae. albopictus(0.18%) were collected from bromeliads. By contrast, immatures of Ae. aegypti were found in manmade containers in nearly 5% of nearby houses. These results demonstrate that bromeliads are not important producers of Ae. aegypti and Ae. albopictus and, hence, should not be a focus for dengue control. However, the results of this study of only one year in a single area may not represent outcomes in other urban localities where bromeliads, Ae. aegypti and dengue coincide in more disturbed habitats.

  11. Performance of the plant-based repellent TT-4302 against mosquitoes in the laboratory and field and comparative efficacy to 16 mosquito repellents against Aedes aegypti (Diptera: Culicidae).

    PubMed

    Bissinger, B W; Schmidt, J P; Owens, J J; Mitchell, S M; Kennedy, M K

    2014-03-01

    Repellent efficacy of the plant-based repellent, TT-4302 (5% geraniol), was compared with 16 other products in laboratory arm-in-cage trials against Aedes aegypti (L). Eight repellents (Badger, BioUD, Burt's bees, California Baby, Cutter Natural, EcoSMART, Herbal Armor, and SkinSmart) exhibited a mean repellency below 90% to Ae. aegypti at 0.5 h after application. Three repellents (Buzz Away Extreme, Cutter Advanced, and OFF! Botanicals lotion) fell below 90% repellency 1.5 h after application. TT-4302 exhibited 94.7% repellency 5 h posttreatment, which was a longer duration than any of the other repellents tested. The positive control, 15% DEET (OFF! Active), was repellent for 3 h before activity dropped below 90%. Additional arm-in-cage trials comparing TT-4302 with 15% DEET were carried out against Anopheles quadrimaculatus Say. At 6 h after treatment, TT-4302 provided 95.2% repellency while DEET exhibited 72.2%. In North Carolina field trials, TT-4302 provided 100% repellency 5 h after application against Aedes albopictus Skuse while DEET provided 77.6% repellency. These results demonstrate that TT-4302 is an efficacious plant-based repellent that provides an extended duration of protection compared with many other commercially available products.

  12. Performance of the plant-based repellent TT-4302 against mosquitoes in the laboratory and field and comparative efficacy to 16 mosquito repellents against Aedes aegypti (Diptera: Culicidae).

    PubMed

    Bissinger, B W; Schmidt, J P; Owens, J J; Mitchell, S M; Kennedy, M K

    2014-03-01

    Repellent efficacy of the plant-based repellent, TT-4302 (5% geraniol), was compared with 16 other products in laboratory arm-in-cage trials against Aedes aegypti (L). Eight repellents (Badger, BioUD, Burt's bees, California Baby, Cutter Natural, EcoSMART, Herbal Armor, and SkinSmart) exhibited a mean repellency below 90% to Ae. aegypti at 0.5 h after application. Three repellents (Buzz Away Extreme, Cutter Advanced, and OFF! Botanicals lotion) fell below 90% repellency 1.5 h after application. TT-4302 exhibited 94.7% repellency 5 h posttreatment, which was a longer duration than any of the other repellents tested. The positive control, 15% DEET (OFF! Active), was repellent for 3 h before activity dropped below 90%. Additional arm-in-cage trials comparing TT-4302 with 15% DEET were carried out against Anopheles quadrimaculatus Say. At 6 h after treatment, TT-4302 provided 95.2% repellency while DEET exhibited 72.2%. In North Carolina field trials, TT-4302 provided 100% repellency 5 h after application against Aedes albopictus Skuse while DEET provided 77.6% repellency. These results demonstrate that TT-4302 is an efficacious plant-based repellent that provides an extended duration of protection compared with many other commercially available products. PMID:24724289

  13. Gravid females of the mosquito Aedes aegypti avoid oviposition on m-cresol in the presence of the deterrent isomer p-cresol

    PubMed Central

    2014-01-01

    Background p-cresol (4-methylphenol) and its isomer m-cresol (3-methylphenol) have been shown to activate the same sensilla in Aedes aegypti (Linnaeus) mosquitoes. Whereas p-cresol has been suggested to play a role in oviposition site choice, the behavioral significance of m-cresol is unknown. Methods Here, we assayed the oviposition behavior of Aedes aegypti towards p-cresol and m-cresol using cage assay. Specifically we tested different concentrations of p-cresol (10-12-103 ppm) and m-cresol (10-1-103 ppm), the 1:1 mixture of the two compounds at 102 ppm, and the two individual compounds at 102 ppm together in the same cage. Results We show that (1) p-cresol is a stimulant at a low concentration and deterrent over a broad range of higher concentrations (10-8-103 ppm), while m-cresol was behaviorally ineffective, except for a deterrent effect at the highest concentration (103 ppm) (2) in concentration choice tests (different concentrations tested against each other), both compounds were deterrent only at the highest concentration (3) a 1:1 mixture of both compounds exhibited a deterrent effect on oviposition (4) when presented in separate cups but together in the same cage, p-cresol and m-cresol (102 ppm) both received significantly less eggs than water alone. Conclusions Our results suggest that p-cresol is a strong oviposition deterrent with a stimulant effect at only a very low concentration, while m-cresol is not a deterrent per se. However, in the presence of p-cresol in the vicinity, m-cresol acts as a deterrent. This finding adds a new twist to the possible interactions of different odors in oviposition site choice: not only the source itself, but nearby odors also influence a mosquito’s choice. PMID:25008201

  14. The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti.

    PubMed

    Bian, Guowu; Xu, Yao; Lu, Peng; Xie, Yan; Xi, Zhiyong

    2010-04-01

    Genetic strategies that reduce or block pathogen transmission by mosquitoes have been proposed as a means of augmenting current control measures to reduce the growing burden of vector-borne diseases. The endosymbiotic bacterium Wolbachia has long been promoted as a potential vehicle for introducing disease-resistance genes into mosquitoes, thereby making them refractory to the human pathogens they transmit. Given the large overlap in tissue distribution and intracellular localization between Wolbachia and dengue virus in mosquitoes, we conducted experiments to characterize their interactions. Our results show that Wolbachia inhibits viral replication and dissemination in the main dengue vector, Aedes aegypti. Moreover, the virus transmission potential of Wolbachia-infected Ae. aegypti was significantly diminished when compared to wild-type mosquitoes that did not harbor Wolbachia. At 14 days post-infection, Wolbachia completely blocked dengue transmission in at least 37.5% of Ae. aegypti mosquitoes. We also observed that this Wolbachia-mediated viral interference was associated with an elevated basal immunity and increased longevity in the mosquitoes. These results underscore the potential usefulness of Wolbachia-based control strategies for population replacement. PMID:20368968

  15. [INFECTION OF BLOOD-SUCKING MOSQUITOES (DIPTERA: CULICIDAE) WITH DIROFILARIAE (SPIRURIDA, ONCHOCERCIDAE) IN THE TULA REGION].

    PubMed

    Bogacheva, A S; Ganushkina, L A; Lopatina, Yu V

    2016-01-01

    Blood-sucking mosquitoes (n = 2277) collected in Tula and its Region in 2013-2014 were examined using a PCR assay for dirofilariae. A total of 12 species from 4 genera (Culiseta, Aedes, Ochlerotatus [foreign character] Culex) out of 18 found mosquito species were infected with Dirofilaria immitis and D. repens. The proportion of the infected mosquitoes was 2.5% (D. immitis, 1.5%; D.repens, 1%). According to preliminary data, the most efficient Dirofilaria vectors, in the Tula Region may be Ae. vexans, Ae. geniculatus, Och. cantans, and Cx. pipiens. PMID:27405207

  16. [INFECTION OF BLOOD-SUCKING MOSQUITOES (DIPTERA: CULICIDAE) WITH DIROFILARIAE (SPIRURIDA, ONCHOCERCIDAE) IN THE TULA REGION].

    PubMed

    Bogacheva, A S; Ganushkina, L A; Lopatina, Yu V

    2016-01-01

    Blood-sucking mosquitoes (n = 2277) collected in Tula and its Region in 2013-2014 were examined using a PCR assay for dirofilariae. A total of 12 species from 4 genera (Culiseta, Aedes, Ochlerotatus [foreign character] Culex) out of 18 found mosquito species were infected with Dirofilaria immitis and D. repens. The proportion of the infected mosquitoes was 2.5% (D. immitis, 1.5%; D.repens, 1%). According to preliminary data, the most efficient Dirofilaria vectors, in the Tula Region may be Ae. vexans, Ae. geniculatus, Och. cantans, and Cx. pipiens.

  17. Field evaluations of disposable sticky lures for surveillance of Aedes aegypti (Stegomyia aegypti) and Culex quinquefasciatus in Jakarta.

    PubMed

    Kay, B H; Brown, M D; Siti, Z; Bangs, M J

    2013-09-01

    From December 1997 to April 1998, disposable sticky lures (1608 lure days) were trialled in homes in north Jakarta, Indonesia as surveillance tools for Aedes aegypti (Stegomyia aegypti) (Diptera: Culicidae) and Culex quinquefasciatus (Diptera: Culicidae), referenced to indoor resting adult collections (92 × 10 min). The lures collected 89.4% of the total of 1339 Ae. aegypti and 92.1% of the total of 1272 Cx. quinquefasciatus collected by all methods. Because there were no significant differences with respect to numbers collected in bedrooms, living rooms and kitchens, bedrooms were selected for subsequent trials for reasons of convenience. The main trials involved a replicated complete block design with L-lysine and sodium carbonate. Lures without attractant or with four different dilutions of L-lysine collected 3.4-8.5 times more Ae. aegypti and 4.2-8.1 times more Cx. quinquefasciatus than were collected by mouth aspirator. Lures with or without dilutions of sodium carbonate collected 2.7-5.0 times more Ae. aegypti and 1.8-4.2 times more Cx. quinquefasciatus than aspirator collections. The precision associated with catches of sticky lures was better than that for aspirator collections. Although olfactants generally improved the numbers of mosquitoes collected, the differences in catch between lures with and without attractants were usually non-significant. Any deficit in catch may be offset by increasing the surveillance period to ≥30 days to detect all four dengue serotypes from infected mosquitoes.

  18. A Novel in vitro Bioassay to Explore the Repellent Effects of Compounds Against Mosquito Aedes aegypti (Diptera: Culicidae).

    PubMed

    Rehman, Junaid U; Tabanca, Nurhayat; Khan, Ikhlas A

    2016-01-01

    Mosquitoes are vectors for many pathogens resulting in many deaths of humans. Repellents play an important role in reducing mosquito bites and the spread of mosquito-borne diseases. Currently, Klun & Debboun (K & D) and human-arm-based bioassay systems are used to identify repellent properties of compounds, extracts, and essential oils. Risks involved with human-arm-based systems are allergic reactions and limited replicates. We are reporting an in vitro bioassay method “NCNPR repellent bioassay (NCNPR-RB)” that can closely simulate the results of the cloth patch bioassay system used to determine repellency against mosquitoes. The NCNPRRB method uses heat to attract mosquito and edible collagen sheets as an alternate to human skin. Multiple plant compounds with documented repellency were tested. DEET (N,N-diethyl-3-methylbenzamide) was used as a positive control. Treatments were prepared in EtOH and applied in dosages ranging from 0.011–1.5mg/cm2 to a 20-cm2 collagen sheet. The number of mosquitoes commencing to bite per probe was recorded visually for 1 min. The minimum effective dosage (mg/cm2) of compounds: DEET (0.021), carvacrol (0.011), thymol (0.013), undecanoic acid (0.023), thymol methyl ether (0.269), and 2-nonanone (>0.375 mg/cm2) determined in NCNPRRB were similar to those reported in literature using a cloth patch bioassay system. The NCNPR-RB can be used to screen compounds with reasonable reproducibility of the data at a faster rate than the cloth patch bioassay, which involves the use of human subjects.

  19. A Novel in vitro Bioassay to Explore the Repellent Effects of Compounds Against Mosquito Aedes aegypti (Diptera: Culicidae).

    PubMed

    Rehman, Junaid U; Tabanca, Nurhayat; Khan, Ikhlas A

    2016-01-01

    Mosquitoes are vectors for many pathogens resulting in many deaths of humans. Repellents play an important role in reducing mosquito bites and the spread of mosquito-borne diseases. Currently, Klun & Debboun (K & D) and human-arm-based bioassay systems are used to identify repellent properties of compounds, extracts, and essential oils. Risks involved with human-arm-based systems are allergic reactions and limited replicates. We are reporting an in vitro bioassay method “NCNPR repellent bioassay (NCNPR-RB)” that can closely simulate the results of the cloth patch bioassay system used to determine repellency against mosquitoes. The NCNPRRB method uses heat to attract mosquito and edible collagen sheets as an alternate to human skin. Multiple plant compounds with documented repellency were tested. DEET (N,N-diethyl-3-methylbenzamide) was used as a positive control. Treatments were prepared in EtOH and applied in dosages ranging from 0.011–1.5mg/cm2 to a 20-cm2 collagen sheet. The number of mosquitoes commencing to bite per probe was recorded visually for 1 min. The minimum effective dosage (mg/cm2) of compounds: DEET (0.021), carvacrol (0.011), thymol (0.013), undecanoic acid (0.023), thymol methyl ether (0.269), and 2-nonanone (>0.375 mg/cm2) determined in NCNPRRB were similar to those reported in literature using a cloth patch bioassay system. The NCNPR-RB can be used to screen compounds with reasonable reproducibility of the data at a faster rate than the cloth patch bioassay, which involves the use of human subjects. PMID:26590191

  20. A preliminary survey for Wolbachia and bacteriophage WO infections in Indian mosquitoes (Diptera: Culicidae).

    PubMed

    Ravikumar, H; Ramachandraswamy, N; Sampathkumar, S; Prakash, B M; Huchesh, H C; Uday, J; Puttaraju, H P

    2010-12-01

    Maternally inherited Wolbachia endosymbiotic bacteria are known to induce various kinds of reproductive alterations in their arthropod hosts. It has been proposed that this bacterium can be used as a tool for gene drive system in mosquitoes and also for the reduction of population size and modulating population age structure in order to reduce disease transmission. In the present study, we carried out a survey to determine the prevalence of Wolbachia and its phage WO infection in Indian mosquitoes and classified Wolbachia infection into groups A and B based on extensive polymerase chain reaction assay using Wolbachia specific wsp and orf7 gene primers. Out of 20 fieldcaught mosquito species, eight species have shown to be infected. Singly infected with Wolbachia A was found in two species and B group found in four species, while double infection with AB group were found in two species. All the screened mosquito species with positive Wolbachia infection were also infected with phage WO. The knowledge of variation in Wolbachia and phage WO infection rates and inferred susceptibility to infection among different mosquito genera has fundamental implications for designing and successful application of Wolbachia based vector-borne disease control strategies. PMID:21399578

  1. A preliminary survey for Wolbachia and bacteriophage WO infections in Indian mosquitoes (Diptera: Culicidae).

    PubMed

    Ravikumar, H; Ramachandraswamy, N; Sampathkumar, S; Prakash, B M; Huchesh, H C; Uday, J; Puttaraju, H P

    2010-12-01

    Maternally inherited Wolbachia endosymbiotic bacteria are known to induce various kinds of reproductive alterations in their arthropod hosts. It has been proposed that this bacterium can be used as a tool for gene drive system in mosquitoes and also for the reduction of population size and modulating population age structure in order to reduce disease transmission. In the present study, we carried out a survey to determine the prevalence of Wolbachia and its phage WO infection in Indian mosquitoes and classified Wolbachia infection into groups A and B based on extensive polymerase chain reaction assay using Wolbachia specific wsp and orf7 gene primers. Out of 20 fieldcaught mosquito species, eight species have shown to be infected. Singly infected with Wolbachia A was found in two species and B group found in four species, while double infection with AB group were found in two species. All the screened mosquito species with positive Wolbachia infection were also infected with phage WO. The knowledge of variation in Wolbachia and phage WO infection rates and inferred susceptibility to infection among different mosquito genera has fundamental implications for designing and successful application of Wolbachia based vector-borne disease control strategies.

  2. Inter-epidemic abundance and distribution of potential mosquito vectors for Rift Valley fever virus in Ngorongoro district, Tanzania

    PubMed Central

    Mweya, Clement N.; Kimera, Sharadhuli I.; Mellau, Lesakit S. B.; Mboera, Leonard E. G.

    2015-01-01

    Background Rift Valley fever (RVF) is a mosquito-borne viral zoonosis that primarily affects ruminants but also has the capacity to infect humans. Objective To determine the abundance and distribution of mosquito vectors in relation to their potential role in the virus transmission and maintenance in disease epidemic areas of Ngorongoro district in northern Tanzania. Methods A cross-sectional entomological investigation was carried out before the suspected RVF outbreak in October 2012. Mosquitoes were sampled both outdoors and indoors using the Centre for Disease Control (CDC) light traps and Mosquito Magnets baited with attractants. Outdoor traps were placed in proximity with breeding sites and under canopy in banana plantations close to the sleeping places of animals. Results A total of 1,823 mosquitoes were collected, of which 87% (N=1,588) were Culex pipiens complex, 12% (N=226) Aedes aegypti, and 0.5% (N=9) Anopheles species. About two-thirds (67%; N=1,095) of C. pipiens complex and nearly 100% (N=225) of A. aegypti were trapped outdoors using Mosquito Magnets. All Anopheles species were trapped indoors using CDC light traps. There were variations in abundance of C. pipiens complex and A. aegypti among different ecological and vegetation habitats. Over three quarters (78%) of C. pipiens complex and most (85%) of the A. aegypti were trapped in banana and maize farms. Both C. pipiens complex and A. aegypti were more abundant in proximity with cattle and in semi-arid thorn bushes and lower Afro-montane. The highest number of mosquitoes was recorded in villages that were most affected during the RVF epidemic of 2007. Of the tested 150 pools of C. pipiens complex and 45 pools of A. aegypti, none was infected with RVF virus. Conclusions These results provide insights into unique habitat characterisation relating to mosquito abundances and distribution in RVF epidemic-prone areas of Ngorongoro district in northern Tanzania. PMID:25613346

  3. Mosquitoes, models, and dengue.

    PubMed

    Lifson, A R

    1996-05-01

    In the last 10 years dengue has spread markedly through Latin America and the Caribbean (Dominican Republic, Jamaica, Barbados, Mexico, Guatemala, El Salvador, Honduras, Nicaragua, Costa Rica, Panama, Ecuador, Colombia, Venezuela, and Brazil). The mosquito Aedes aegypti has taken advantage of increased urbanization and crowding to transmit the dengue virus. The mosquito infests tires, cans, and water jars near dwellings. The female mosquito practices multiple, interrupted feeding. Thus, mosquito infesting and feeding practices facilitate dengue transmission in crowded conditions. Factors contributing to the spread of dengue include numbers of infected and susceptible human hosts, strain of dengue virus, size of mosquito population, feeding habits, time from infection to ability to transmit virus for both vector and host, likelihood of virus transmission from human to mosquito to human, and temperature (which affects vector distribution, size, feeding habits, and extrinsic incubation period). Public health models may use simulation models to help them plan or evaluate the potential impact of different intervention strategies and/or of environmental changes (e.g., global warming). Other factors contributing to the dengue epidemic are international travel, urbanization, population growth, crowding, poverty, a weakened public health infrastructure, and limited support for sustained disease control programs. Molecular epidemiology by nucleic acid sequence analysis is another sophisticated technique used to study infectious diseases. It showed that dengue type 3 isolated from Panama and Nicaragua in 1994 was identical to that responsible for the major dengue hemorrhagic fever epidemics in Sri Lanka and India in the 1980s. Public health officials must remember three priorities relevant to dengue and other emerging infections: the need to strengthen surveillance efforts, dedicated and sustained involvement in prevention and control needs at the local level, and a strong

  4. Larvicidal and ovicidal properties of leaf and seed extracts of Delonix elata (L.) Gamble (family: Fabaceae) against malaria (Anopheles stephensi Liston) and dengue (Aedes aegypti Linn.) (Diptera: Culicidae) vector mosquitoes.

    PubMed

    Marimuthu, Govindarajan; Rajamohan, Sivakumar; Mohan, Rajeswari; Krishnamoorthy, Yogalakshmi

    2012-07-01

    Mosquito-borne diseases with an economic impact create loss in commercial and labor outputs, particularly in countries with tropical and subtropical climates. Mosquito control is facing a threat because of the emergence of resistance to synthetic insecticides. Extracts from plants may be alternative sources of mosquito control agents because they constitute a rich source of bioactive compounds that are biodegradable into nontoxic products and potentially suitable for use to control mosquitoes. Insecticides of botanical origin may serve as suitable alternative biocontrol techniques in the future. In view of the recently increased interest in developing plant origin insecticides as an alternative to chemical insecticide, this study was undertaken to assess the larvicidal and ovicidal potential of the crude hexane, benzene, chloroform, ethyl acetate, and methanol solvent extracts from the medicinal plant Delonix elata against the medically important mosquito vectors, Anopheles stephensi and Aedes aegypti (Diptera: Culicidae). The larval mortality was observed after 24 h of exposure. All extracts showed moderate larvicidal effects; however, the highest larval mortality was found in methanol extract of leaf of D. elata against the larvae of A. stephensi and A. aegypti with the LC(50) and LC(90) values being 93.59 and 111.83, and 163.69 and 202.77 ppm, respectively. Compared to leaf extracts, seeds have low potency against two mosquitoes with the LC(50) and LC(90) values being 115.28 and 139.04, and 225.07 and 273.03 ppm, respectively. The mean percent hatchability of the eggs was observed after 48 h post-treatment. The percent hatchability was inversely proportional to the concentration of extract and directly proportional to the eggs. All the five solvent extracts showed moderate ovicidal activity; however, the methanol extract showed the highest ovicidal activity. One hundred percent mortality was observed at 300 ppm for leaf methanol extract and 500 ppm for seed

  5. How Diverse Detrital Environments Influence Nutrient Stoichiometry between Males and Females of the Co-Occurring Container Mosquitoes Aedes albopictus, Ae. aegypti, and Culex quinquefasciatus.

    PubMed

    Yee, Donald A; Kaufman, Michael G; Ezeakacha, Nnaemeka F

    2015-01-01

    Allocation patterns of carbon and nitrogen in animals are influenced by food quality and quantity, as well as by inherent metabolic and physiological constraints within organisms. Whole body stoichiometry also may vary between the sexes who differ in development rates and reproductive allocation patterns. In aquatic containers, such as tree holes and tires, detrital inputs, which vary in amounts of carbon and nitrogen, form the basis of the mosquito-dominated food web. Differences in development times and mass between male and female mosquitoes may be the result of different reproductive constraints, which could also influence patterns of nutrient allocation. We examined development time, survival, and adult mass for males and females of three co-occurring species, Aedes albopictus, Ae. aegypti, and Culex quinquefasciatus, across environments with different ratios of animal and leaf detritus. We quantified the contribution of detritus to biomass using stable isotope analysis and measured tissue carbon and nitrogen concentrations among species and between the sexes. Development times were shorter and adults were heavier for Aedes in animal versus leaf-only environments, whereas Culex development times were invariant across detritus types. Aedes displayed similar survival across detritus types whereas C. quinquefasciatus showed decreased survival with increasing leaf detritus. All species had lower values of 15N and 13C in leaf-only detritus compared to animal, however, Aedes generally had lower tissue nitrogen compared to C. quinquefasciatus. There were no differences in the C:N ratio between male and female Aedes, however, Aedes were different than C. quinquefasciatus adults, with male C. quinquefasciatus significantly higher than females. Culex quinquefasciatus was homeostatic across detrital environments. These results allow us to hypothesize an underlying stoichiometric explanation for the variation in performance of different container species under similar

  6. Preliminary findings on Bagaza virus (Flavivirus: Flaviviridae) growth kinetics, transmission potential & transovarial transmission in three species of mosquitoes

    PubMed Central

    Sudeep, A.B.; Bondre, V.P.; Mavale, M.S.; Ghodke, Y.S.; George, R.P.; Aher, R.V.; Gokhale, M.D.

    2013-01-01

    Background & objectives: Bagaza virus (BAGV), a flavivirus synonymous with Israel turkey meningoencephalitis virus, has been found to circulate in India. BAGV has recently been held responsible for inducing febrile illness in humans and causing unusually high mortality to wild birds in Spain. A study was therefore, undertaken to determine its replication kinetics in certain mosquitoes and to determine vector competence and potential of the mosquitoes to transmit BAGV experimentally. Methods: Aedes aegypti, Culex tritaeniorhynchus and Cx quinquefasciatus mosquitoes were inoculated with BAGV; samples were harvested every day and titrated in BHK-21 cell line. Vector competence and experimental transmission were determined by examining the saliva of infected mosquitoes for virus and induction of sickness in suckling mice, respectively. Results: Cx. tritaeniorhynchus and Ae. aegypti mosquitoes yielded 5 log10 and 4.67 log10 TCID50/ml of virus on day 3 post-infection (PI), respectively while Cx. quinquefasciatus yielded a titre of 4 log10 TCID50/ml on day 4 PI. BAGV was detected in saliva of all the infected mosquitoes demonstrating their vector competence. Experimental transmission of BAGV to infant mice as well as transovarial transmission was demonstrated by Cx. tritaeniorhynchus but not by Ae. aegypti and Cx. quinquefasciatus mosquitoes. Interpretation & conclusions: Replication of BAGV to high titres and dissemination to saliva in three most prevalent mosquitoes in India is of immense public health importance. Though no major outbreak involving man has been reported yet, BAGV has a potential to cause outbreaks in future. PMID:24056604

  7. Temephos resistance and esterase activity in the mosquito Aedes aegypti in Havana, Cuba increased dramatically between 2006 and 2008.

    PubMed

    Bisset, J A; Rodríguez, M M; Ricardo, Y; Ranson, H; Pérez, O; Moya, M; Vázquez, A

    2011-09-01

    Aedes aegypti (L.) (Diptera: Culicidae) control programmes in Cuba rely on the application of the organophosphate temephos for larval control. Hence, the monitoring of resistance to this insecticide is an essential component of such programmes. Here, 15 field populations from different municipalities of Havana City were assayed for resistance to temephos. High levels of resistance were detected in all strains and resistance ratios were highly correlated with esterase activity (P = 0.00001). Populations from three municipalities were tested in both 2006 and 2008; resistance and esterase activities both significantly increased during this 2-year period. Synergist studies demonstrated that neither glutathione transferases nor monooxygenases were associated with the increase in resistance to temephos in this period. The duration of the efficacy of commercial formulations of temephos in controlling Ae. aegypti populations in Havana City was reduced by the high level of temephos resistance observed; hence these data are of clear operational significance for the dengue control programme in Cuba. New integrated strategies to avoid further increases in temephos resistance in Cuba are necessary.

  8. Dengue virus-mosquito interactions.

    PubMed

    Halstead, Scott B

    2008-01-01

    The mosquito Aedes aegypti is more widely dispersed now than at any time in the past, placing billions of humans at risk of infection with one or more of the four dengue viruses. This review presents and discusses information on mosquito-dengue infection dynamics and describes the prominent role that temperature and rainfall play in controlling dengue viral transmission including discussions of the effect of interannual climate variations and the predicted effect of global warming. Complementary human determinants of dengue epidemiology include viremia titer, variation in viremic period, enhanced viremias, and threshold viremia. Topics covered include epidemiological phenomena such as traveling waves, the generation of genetic diversity of dengue viruses following virgin soil introductions and in hyperendemic settings, and evidence for and against viral virulence as a determinant of the severity of dengue infections. Also described is the crucial role of monotypic and heterotypic herd immunity in shaping dengue epidemic behavior.

  9. Functional Interaction between Apolipophorins and Complement Regulate the Mosquito Immune Response to Systemic Infections.

    PubMed

    Kamareddine, Layla; Nakhleh, Johnny; Osta, Mike A

    2016-01-01

    The complement-like protein thioester-containing protein 1 (TEP1) is the hallmark effector molecule against Plasmodium ookinetes in the malaria vector Anopheles gambiae. We have previously shown that the knockdown of the noncatalytic clip domain serine protease CLIPA2 increased TEP1-mediated killing rendering mosquitoes more resistant to Plasmodium, bacterial and fungal infections. Here, CLIPA2 coimmunoprecipitation from the hemolymph of Beauveria bassiana-infected mosquitoes followed by mass spectrometry and functional genetic analysis led to the identification of the Apolipophorin-II/I gene, encoding the two lipid carrier proteins Apo-I and II, as a novel negative regulator of TEP1-mediated immune response during mosquito systemic infections. Apo-II/I exhibits a similar RNAi phenotype as CLIPA2 in mosquito bioassays characterized by increased resistance to B. bassiana and Escherichia coli infections. We provide evidence that this enhanced resistance to systemic infections is TEP1 dependent. Interestingly, silencing Apo-II/I but not CLIPA2 upregulated the expression of TEP1 following systemic infections with E. coli and B. bassiana in a c-Jun N-terminal kinase pathway-dependent manner. Our results suggest that mosquito Apo-II/I plays an important immune regulatory role during systemic infections and provide novel insight into the functional interplay between lipid metabolism and immune gene regulation. PMID:26950600

  10. Comparative Susceptibility of Aedes albopictus and Aedes aegypti to Dengue Virus Infection After Feeding on Blood of Viremic Humans: Implications for Public Health

    PubMed Central

    Whitehorn, James; Kien, Duong Thi Hue; Nguyen, Nguyet Minh; Nguyen, Hoa L.; Kyrylos, Peter P.; Carrington, Lauren B.; Tran, Chau Nguyen Bich; Quyen, Nguyen Thanh Ha; Thi, Long Vo; Le Thi, Dui; Truong, Nguyen Thanh; Luong, Tai Thi Hue; Nguyen, Chau Van Vinh; Wills, Bridget; Wolbers, Marcel; Simmons, Cameron P.

    2015-01-01

    Aedes albopictus is secondary to Aedes aegypti as a vector of dengue viruses (DENVs) in settings of endemicity, but it plays an important role in areas of dengue emergence. This study compared the susceptibility of these 2 species to DENV infection by performing 232 direct blood-feeding experiments on 118 viremic patients with dengue in Vietnam. Field-derived A. albopictus acquired DENV infections as readily as A. aegypti after blood feeding. Once infected, A. albopictus permitted higher concentrations of DENV RNA to accumulate in abdominal tissues, compared with A. aegypti. However, the odds of A. albopictus having infectious saliva were lower than the odds observed for A. aegypti (odds ratio, 0.70; 95% confidence interval, .52–.93). These results quantitate the susceptibility of A. albopictus to DENV infection and will assist parameterization of models for predicting disease risk in settings where A. albopictus is present. PMID:25784733

  11. Comparative Susceptibility of Aedes albopictus and Aedes aegypti to Dengue Virus Infection After Feeding on Blood of Viremic Humans: Implications for Public Health.

    PubMed

    Whitehorn, James; Kien, Duong Thi Hue; Nguyen, Nguyet Minh; Nguyen, Hoa L; Kyrylos, Peter P; Carrington, Lauren B; Tran, Chau Nguyen Bich; Quyen, Nguyen Thanh Ha; Thi, Long Vo; Le Thi, Dui; Truong, Nguyen Thanh; Luong, Tai Thi Hue; Nguyen, Chau Van Vinh; Wills, Bridget; Wolbers, Marcel; Simmons, Cameron P

    2015-10-15

    Aedes albopictus is secondary to Aedes aegypti as a vector of dengue viruses (DENVs) in settings of endemicity, but it plays an important role in areas of dengue emergence. This study compared the susceptibility of these 2 species to DENV infection by performing 232 direct blood-feeding experiments on 118 viremic patients with dengue in Vietnam. Field-derived A. albopictus acquired DENV infections as readily as A. aegypti after blood feeding. Once infected, A. albopictus permitted higher concentrations of DENV RNA to accumulate in abdominal tissues, compared with A. aegypti. However, the odds of A. albopictus having infectious saliva were lower than the odds observed for A. aegypti (odds ratio, 0.70; 95% confidence interval, .52-.93). These results quantitate the susceptibility of A. albopictus to DENV infection and will assist parameterization of models for predicting disease risk in settings where A. albopictus is present.

  12. Real-time PCR Tests in Dutch Exotic Mosquito Surveys; Implementation of Aedes aegypti and Aedes albopictus Identification Tests, and the Development of Tests for the Identification of Aedes atropalpus and Aedes japonicus japonicus (Diptera: Culicidae).

    PubMed

    van de Vossenberg, B T L H; Ibáñez-Justicia, A; Metz-Verschure, E; van Veen, E J; Bruil-Dieters, M L; Scholte, E J

    2015-05-01

    Since 2009, The Netherlands Food and Consumer Product Safety Authority carries out surveys focusing on, amongst others, the presence of invasive mosquito species (IMS). Special attention is given to exotic container-breeding Aedes species Aedes aegypti (L.), Aedes albopictus (Skuse), Aedes atropalpus (Coquillett), and Aedes japonicus japonicus (Theobald). This study describes the implementation of real-time PCR tests described by Hill et al. (2008) for the identification of Ae. aegypti and Ae. albopictus, and the development of two novel real-time PCR tests for the identification of Ae. atropalpus and Ae. j. japonicus. Initial test showed that optimization of elements of the Ae. aegypti and Ae. albopictus tests was needed. Method validation tests were performed to determine if the implemented and newly developed tests are fit for routine diagnostics. Performance criteria of analytical sensitivity, analytical specificity, selectivity, repeatability, and reproducibility were determined. In addition, experiments were performed to determine the influence of environmental conditions on the usability of DNA extracted from mosquito specimens trapped in BG-Sentinel traps. The real-time PCR tests were demonstrated to be sensitive, specific, repeatable, reproducible, and are less prone to false negative results compared to partial cytochrome c oxidase I gene sequencing owing to the DNA fragmentation caused by environmental influences. PMID:26334807

  13. Real-time PCR Tests in Dutch Exotic Mosquito Surveys; Implementation of Aedes aegypti and Aedes albopictus Identification Tests, and the Development of Tests for the Identification of Aedes atropalpus and Aedes japonicus japonicus (Diptera: Culicidae).

    PubMed

    van de Vossenberg, B T L H; Ibáñez-Justicia, A; Metz-Verschure, E; van Veen, E J; Bruil-Dieters, M L; Scholte, E J

    2015-05-01

    Since 2009, The Netherlands Food and Consumer Product Safety Authority carries out surveys focusing on, amongst others, the presence of invasive mosquito species (IMS). Special attention is given to exotic container-breeding Aedes species Aedes aegypti (L.), Aedes albopictus (Skuse), Aedes atropalpus (Coquillett), and Aedes japonicus japonicus (Theobald). This study describes the implementation of real-time PCR tests described by Hill et al. (2008) for the identification of Ae. aegypti and Ae. albopictus, and the development of two novel real-time PCR tests for the identification of Ae. atropalpus and Ae. j. japonicus. Initial test showed that optimization of elements of the Ae. aegypti and Ae. albopictus tests was needed. Method validation tests were performed to determine if the implemented and newly developed tests are fit for routine diagnostics. Performance criteria of analytical sensitivity, analytical specificity, selectivity, repeatability, and reproducibility were determined. In addition, experiments were performed to determine the influence of environmental conditions on the usability of DNA extracted from mosquito specimens trapped in BG-Sentinel traps. The real-time PCR tests were demonstrated to be sensitive, specific, repeatable, reproducible, and are less prone to false negative results compared to partial cytochrome c oxidase I gene sequencing owing to the DNA fragmentation caused by environmental influences.

  14. Modulation of La Crosse Virus Infection in Aedes albopictus Mosquitoes Following Larval Exposure to Coffee Extracts.

    PubMed

    Eastep, Nicole E; Albert, Rachel E; Anderson, Justin R

    2012-01-01

    The mosquito-borne La Crosse virus (LACV; Family Bunyaviridae) may cause encephalitis, primarily in children, and is distributed throughout much of the eastern United States. No antivirals or vaccines are available for LACV, or most other mosquito-borne viruses, and prevention generally relies on mosquito control. We sought to determine whether coffee extracts could interfere with LACV replication and vector mosquito development. Both regular and decaffeinated coffee demonstrated significant reductions in LACV replication in direct antiviral assays. This activity was not due to the presence of caffeine, which did not inhibit the virus life cycle. Aedes albopictus (Skuse; Diptera: Culicidae) mosquito larvae suffered near total mortality when reared in high concentrations of regular and decaffeinated coffee and in caffeine. Following larval exposure to sublethal coffee concentrations, adult A. albopictus mosquitoes had significantly reduced whole-body LACV titers 5 days post-infection, compared to larvae reared in distilled water. These results suggest that it may be possible to both control mosquito populations and alter the vector competence of mosquitoes for arthropod-borne viruses by introducing antiviral compounds into the larval habitat.

  15. Modulation of La Crosse Virus Infection in Aedes albopictus Mosquitoes Following Larval Exposure to Coffee Extracts

    PubMed Central

    Eastep, Nicole E.; Albert, Rachel E.; Anderson, Justin R.

    2012-01-01

    The mosquito-borne La Crosse virus (LACV; Family Bunyaviridae) may cause encephalitis, primarily in children, and is distributed throughout much of the eastern United States. No antivirals or vaccines are available for LACV, or most other mosquito-borne viruses, and prevention generally relies on mosquito control. We sought to determine whether coffee extracts could interfere with LACV replication and vector mosquito development. Both regular and decaffeinated coffee demonstrated significant reductions in LACV replication in direct antiviral assays. This activity was not due to the presence of caffeine, which did not inhibit the virus life cycle. Aedes albopictus (Skuse; Diptera: Culicidae) mosquito larvae suffered near total mortality when reared in high concentrations of regular and decaffeinated coffee and in caffeine. Following larval exposure to sublethal coffee concentrations, adult A. albopictus mosquitoes had significantly reduced whole-body LACV titers 5 days post-infection, compared to larvae reared in distilled water. These results suggest that it may be possible to both control mosquito populations and alter the vector competence of mosquitoes for arthropod-borne viruses by introducing antiviral compounds into the larval habitat. PMID:22470349

  16. Experimental Transmission of Mayaro Virus by Aedes aegypti

    PubMed Central

    Long, Kanya C.; Ziegler, Sarah A.; Thangamani, Saravanan; Hausser, Nicole L.; Kochel, Tadeusz J.; Higgs, Stephen; Tesh, Robert B.

    2011-01-01

    Outbreaks of Mayaro fever have been associated with a sylvatic cycle of Mayaro virus (MAYV) transmission in South America. To evaluate the potential for a common urban mosquito to transmit MAYV, laboratory vector competence studies were performed with Aedes aegypti from Iquitos, Peru. Oral infection in Ae. aegypti ranged from 0% (0/31) to 84% (31/37), with blood meal virus titers between 3.4 log10 and 7.3 log10 plaque-forming units (PFU)/mL. Transmission of MAYV by 70% (21/30) of infected mosquitoes was shown by saliva collection and exposure to suckling mice. Amount of viral RNA in febrile humans, determined by real-time polymerase chain reaction, ranged from 2.7 to 5.3 log10 PFU equivalents/mL. Oral susceptibility of Ae. aegypti to MAYV at titers encountered in viremic humans may limit opportunities to initiate an urban cycle; however, transmission of MAYV by Ae. aegypti shows the vector competence of this species and suggests potential for urban transmission. PMID:21976583

  17. Engineering RNA interference-based resistance to dengue virus type 2 in genetically modified Aedes aegypti.

    PubMed

    Franz, Alexander W E; Sanchez-Vargas, Irma; Adelman, Zach N; Blair, Carol D; Beaty, Barry J; James, Anthony A; Olson, Ken E

    2006-03-14

    Mosquitoes (Aedes aegypti) were genetically modified to exhibit impaired vector competence for dengue type 2 viruses (DENV-2). We exploited the natural antiviral RNA interference (RNAi) pathway in the mosquito midgut by constructing an effector gene that expresses an inverted-repeat (IR) RNA derived from the premembrane protein coding region of the DENV-2 RNA genome. The A. aegypti carboxypeptidase A promoter was used to express the IR RNA in midgut epithelial cells after ingestion of a bloodmeal. The promoter and effector gene were inserted into the genome of a white-eye Puerto Rico Rexville D (Higgs' white eye) strain by using the nonautonomous mariner MosI transformation system. A transgenic family, Carb77, expressed IR RNA in the midgut after a bloodmeal. Carb77 mosquitoes ingesting an artificial bloodmeal containing DENV-2 exhibited marked reduction of viral envelope antigen in midguts and salivary glands after infection. DENV-2 titration of individual mosquitoes showed that most Carb77 mosquitoes poorly supported virus replication. Transmission in vitro of virus from the Carb77 line was significantly diminished when compared to control mosquitoes. The presence of DENV-2-derived siRNAs in RNA extracts from midguts of Carb77 and the loss of the resistance phenotype when the RNAi pathway was interrupted proved that DENV-2 resistance was caused by a RNAi response. Engineering of transgenic A. aegypti that show a high level of resistance against DENV-2 provides a powerful tool for developing population replacement strategies to control transmission of dengue viruses.

  18. Co-infections of Plasmodium knowlesi, P. falciparum, and P. vivax among Humans and Anopheles dirus Mosquitoes, Southern Vietnam

    PubMed Central

    Culleton, Richard; Maeno, Yoshimasa; Quang, Nguyen Tuyen; Nakazawa, Shusuke

    2011-01-01

    A single Anopheles dirus mosquito carrying sporozoites of Plasmodium knowlesi, P. falciparum, and P. vivax was recently discovered in Khanh Phu, southern Vietnam. Further sampling of humans and mosquitoes in this area during 2009–2010 showed P. knowlesi infections in 32 (26%) persons with malaria (n = 125) and in 31 (43%) sporozoite-positive An. dirus mosquitoes (n = 73). Co-infections of P. knowlesi and P. vivax were predominant in mosquitoes and humans, while single P. knowlesi infections were found only in mosquitoes. P. knowlesi–co-infected patients were largely asymptomatic and were concentrated among ethnic minority families who commonly spend nights in the forest. P. knowlesi carriers were significantly younger than those infected with other malaria parasite species. These results imply that even if human malaria could be eliminated, forests that harbor An. dirus mosquitoes and macaque monkeys will remain a reservoir for the zoonotic transmission of P. knowlesi. PMID:21762577

  19. Infection with Wolbachia protects mosquitoes against Plasmodium-induced mortality in a natural system.

    PubMed

    Zélé, F; Nicot, A; Duron, O; Rivero, A

    2012-07-01

    In recent years, there has been a shift in the one host-one parasite paradigm with the realization that, in the field, most hosts are coinfected with multiple parasites. Coinfections are particularly relevant when the host is a vector of diseases, because multiple infections can have drastic consequences for parasite transmission at both the ecological and evolutionary timescales. Wolbachia pipientis is the most common parasitic microorganism in insects, and as such, it is of special interest for understanding the role of coinfections in the outcome of parasite infections. Here, we investigate whether Wolbachia can modulate the effect of Plasmodium on what is, arguably, the most important component of the vectorial capacity of mosquitoes: their longevity. For this purpose, and in contrast to recent studies that have focused on mosquito-Plasmodium and/or mosquito-Wolbachia combinations not found in nature, we work on a Wolbachia-mosquito-Plasmodium triad with a common evolutionary history. Our results show that Wolbachia protects mosquitoes from Plasmodium-induced mortality. The results are consistent across two different strains of Wolbachia and repeatable across two different experimental blocks. To our knowledge, this is the first time that such an effect has been shown for Plasmodium-infected mosquitoes and, in particular, in a natural Wolbachia-host combination. We discuss different mechanistic and evolutionary explanations for these results as well as their consequences for Plasmodium transmission. PMID:22533729

  20. Climate Change Influences Potential Distribution of Infected Aedes aegypti Co-Occurrence with Dengue Epidemics Risk Areas in Tanzania

    PubMed Central

    Mweya, Clement N.; Kimera, Sharadhuli I.; Stanley, Grades; Misinzo, Gerald; Mboera, Leonard E. G.

    2016-01-01

    Background Dengue is the second most important vector-borne disease of humans globally after malaria. Incidence of dengue infections has dramatically increased recently, potentially due to changing climate. Climate projections models predict increases in average annual temperature, precipitation and extreme events in the future. The objective of this study was to assess the effect of changing climate on distribution of dengue vectors in relation to epidemic risk areas in Tanzania. Methods/Findings We used ecological niche models that incorporated presence-only infected Aedes aegypti data co-occurrence with dengue virus to estimate potential distribution of epidemic risk areas. Model input data on infected Ae. aegypti was collected during the May to June 2014 epidemic in Dar es Salaam. Bioclimatic predictors for current and future projections were also used as model inputs. Model predictions indicated that habitat suitability for infected Ae. aegypti co-occurrence with dengue virus in current scenarios is highly localized in the coastal areas, including Dar es Salaam, Pwani, Morogoro, Tanga and Zanzibar. Models indicate that areas of Kigoma, Ruvuma, Lindi, and those around Lake Victoria are also at risk. Projecting to 2020, we show that risk emerges in Mara, Arusha, Kagera and Manyara regions, but disappears in parts of Morogoro, Ruvuma and near Lake Nyasa. In 2050 climate scenario, the predicted habitat suitability of infected Ae. aegypti co-occurrence with dengue shifted towards the central and north-eastern parts with intensification in areas around all major lakes. Generally, model findings indicated that the coastal regions would remain at high risk for dengue epidemic through 2050. Conclusion/Significance Models incorporating climate change scenarios to predict emerging risk areas for dengue epidemics in Tanzania show that the anticipated risk is immense and results help guiding public health policy decisions on surveillance and control of dengue epidemics. A

  1. Host-pathogen interactions and genome evolution in two generalist and specialist microsporidian pathogens of mosquitoes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The adaptation of two distantly related microsporidia to their mosquito hosts was investigated. Edhazardia aedis is a specialist pathogen that infects Aedes aegypti, the main vector of dengue and yellow fever arboviruses. Vavraia culicis is a generalist pathogen of several insects including Anophele...

  2. Demographics of natural oral infection of mosquitos by Venezuelan equine encephalitis virus.

    PubMed

    Gutiérrez, Serafín; Thébaud, Gaël; Smith, Darci R; Kenney, Joan L; Weaver, Scott C

    2015-04-01

    The within-host diversity of virus populations can be drastically limited during between-host transmission, with primary infection of hosts representing a major constraint to diversity maintenance. However, there is an extreme paucity of quantitative data on the demographic changes experienced by virus populations during primary infection. Here, the multiplicity of cellular infection (MOI) and population bottlenecks were quantified during primary mosquito infection by Venezuelan equine encephalitis virus, an arbovirus causing neurological disease in humans and equids.

  3. Mosquito-Borne Infections in the Aftermath of Hurricane Jeanne— Gonaïves, Haiti, 2004

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Following Hurricane Jeanne in September 2004, surveillance for mosquito-borne diseases in Gonaïves Haiti identified three patients with malaria, two with acute dengue infections, and two with acute West Nile virus infections among 116 febrile patients. These are the first reported human West Nile vi...

  4. On the analysis of parasite effect for Aedes aegypti and Aedes albopictus population

    NASA Astrophysics Data System (ADS)

    Kallista, Meta; Aldila, Dipo; Nuraini, Nuning; Soewono, Edy

    2014-03-01

    It has been reported in some countries that the population of Aedes aegypti has been significantly reduced by the invasion of Aedes albopictus. There has been a hypothesis explaining this phenomenon of which investigated the influence of parasites pathogenesis to the competition between these two mosquito species in the fields. Ascogregarina taiwanensis and Ascogregarina culicis are known as parasites that infect Aedes albopictus and Aedes aegypti, respectively. Several studies have concluded that Ascogregarina taiwanensis caused high fatality for Aedes aegypti larvae, but Ascogregarina culicis was not pathogenic to Aedes albopictus larvae. Therefore, Ascogregarina taiwanensis may contribute to reduce the number of populations Aedes aegypti in the fields. Inspired by these facts, a mathematical model depicting interaction between parasites and mosquitoes is constructed in this paper. In this model are included six dynamic mosquito compartments, i.e. egg, larvae, infected larvae, adult, infected adult and one dynamic compartment for parasite. Derivation of the existence criteria and the stability analysis of parasite-free equilibrium as well as the basic offspring for the model are presented. Numerical simulations for sensitivity analysis indicating the invasive species for variation parameters are shown.

  5. The combination of the entomopathogenic fungus Metarhizium anisopliae with the insecticide Imidacloprid increases virulence against the dengue vector Aedes aegypti (Diptera: Culicidae)

    PubMed Central

    2011-01-01

    Background Dengue fever transmitted by the mosquito Aedes aegypti, is one of the most rapidly spreading insect borne diseases, stimulating the search for alternatives to current control measures. The dengue vector A. aegypti has received less attention than anophelene species, although more than 2.5 billion people are at risk of infection worldwide. Entomopathogenic fungi are emerging as potential candidates for the control of mosquitoes. Here we continue our studies on the pathogenicity of the entomopathogenic fungus Metarhizium anisopliae against adult A. aegypti females. With the aim of further reducing mean survival times of A. aegypti exposed to fungus impregnated surfaces, a sub-lethal concentration of the neonicotinoid insecticide Imidacloprid (IMI) was added to fungal suspensions. Results A sub-lethal concentration of IMI that did not significantly alter the daily survival rates or mean survival percentages of mosquitoes was identified to be 0.1 ppm. This sub-lethal concentration was combined with M. anisopliae conidia (1 × 109 conidia mL-1). Both the combined treatment and the conidia alone were able to reduce the survival of A. aegypti compared with untreated or IMI treated mosquitoes. Importantly, mosquito survival following exposure to the combined treatment for 6 and 12 hrs was significantly reduced when compared with mosquitoes exposed to conidia alone. Conclusions This is the first time that a combination of an insecticide and an entomopathogenic fungus has been tested against A. aegypti. Firstly, the study showed the potential of IMI as an alternative to the currently employed pyrethroid adulticides. Secondly, as an alternative to applications of high concentrations of chemical insecticides, we suggest that adult A. aegypti could be controlled by surface application of entomopathogenic fungi and that the efficiency of these fungi could be increased by combining the fungi with ultra-low concentrations of insecticides, resulting in higher mortality

  6. Aedes aegypti Global Suitability Maps Using a Water Container Energy Balance Model for Dengue Risk Applications

    NASA Astrophysics Data System (ADS)

    Steinhoff, D.

    2015-12-01

    Dengue infections are estimated to total nearly 400 million per year worldwide, with both the geographic range and the magnitude of infections having increased in the past 50 years. The primary dengue vector mosquito Aedes aegypti is closely associated with humans. It lives exclusively in urban and semi-urban areas, preferentially bites humans, and spends its developmental stages in artificial water containers. Climate regulates the development of Ae. aegypti immature mosquitoes in artificial containers. Potential containers for Ae. aegypti immature development include, but are not limited to, small sundry items (e.g., bottles, cans, plastic containers), buckets, tires, barrels, tanks, and cisterns. Successful development of immature mosquitoes from eggs to larvae, pupae, and eventually adults is largely dependent on the availability of water and the thermal properties of the water in the containers. Recent work has shown that physics-based approaches toward modeling container water properties are promising for resolving the complexities of container water dynamics and the effects on immature mosquito development. An energy balance container model developed by the author, termed the Water Height And Temperature in Container Habitats Energy Model (WHATCH'EM), solves for water temperature and height for user-specified containers with readily available weather data. Here we use WHATCH'EM with NASA Earth Science products used as input to construct global suitability maps based on established water temperature ranges for immature Ae. aegypti mosquitoes. A proxy for dengue risk is provided from habitat suitability, but also population estimates, as Ae. aegypti is closely associated with human activity. NASA gridded Global Population of the World data is used to mask out rural areas with low dengue risk. Suitability maps are illustrated for a variety of containers (size, material, color) and shading scenarios.

  7. Avian Plasmodium infection in field-collected mosquitoes during 2012-2013 in Tarlac, Philippines.

    PubMed

    Chen, Tien-Huang; Aure, Wilfredo E; Cruz, Estrella Irlandez; Malbas, Fedelino F; Teng, Hwa-Jen; Lu, Liang-Chen; Kim, Kyeong Soon; Tsuda, Yoshio; Shu, Pei-Yun

    2015-12-01

    Global warming threatens to increase the spread and prevalence of mosquito-transmitted diseases. Certain pathogens may be carried by migratory birds and transmitted to local mosquito populations. Mosquitoes were collected in the northern Philippines during bird migration seasons to detect avian malaria parasites as well as for the identification of potential vector species and the estimation of infections among local mosquito populations. We used the nested PCR to detect the avian malaria species. Culex vishnui (47.6%) was the most abundant species collected and Cx. tritaeniorhynchus (13.8%) was the second most abundant. Avian Plasmodium parasites were found in eight mosquito species, for which the infection rates were between 0.5% and 6.2%. The six Plasmodium genetic lineages found in this study included P. juxtanucleare -GALLUS02, Tacy7 (Donana04), CXBIT01, Plasmodium species LIN2 New Zealand, and two unclassified lineages. The potential mosquito vectors for avian Plasmodium parasites in the Philippines were Cq. crassipes, Cx. fuscocephala, Cx. quinquefasciatus, Cx. sitiens, Cx. vishnui, and Ma. Uniformis; two major genetic lineages, P. juxtanucleare and Tacy7, were identified. PMID:26611975

  8. Avian Plasmodium infection in field-collected mosquitoes during 2012-2013 in Tarlac, Philippines.

    PubMed

    Chen, Tien-Huang; Aure, Wilfredo E; Cruz, Estrella Irlandez; Malbas, Fedelino F; Teng, Hwa-Jen; Lu, Liang-Chen; Kim, Kyeong Soon; Tsuda, Yoshio; Shu, Pei-Yun

    2015-12-01

    Global warming threatens to increase the spread and prevalence of mosquito-transmitted diseases. Certain pathogens may be carried by migratory birds and transmitted to local mosquito populations. Mosquitoes were collected in the northern Philippines during bird migration seasons to detect avian malaria parasites as well as for the identification of potential vector species and the estimation of infections among local mosquito populations. We used the nested PCR to detect the avian malaria species. Culex vishnui (47.6%) was the most abundant species collected and Cx. tritaeniorhynchus (13.8%) was the second most abundant. Avian Plasmodium parasites were found in eight mosquito species, for which the infection rates were between 0.5% and 6.2%. The six Plasmodium genetic lineages found in this study included P. juxtanucleare -GALLUS02, Tacy7 (Donana04), CXBIT01, Plasmodium species LIN2 New Zealand, and two unclassified lineages. The potential mosquito vectors for avian Plasmodium parasites in the Philippines were Cq. crassipes, Cx. fuscocephala, Cx. quinquefasciatus, Cx. sitiens, Cx. vishnui, and Ma. Uniformis; two major genetic lineages, P. juxtanucleare and Tacy7, were identified.

  9. Wolbachia infections in mosquitoes and their predators inhabiting rice field communities in Thailand and China.

    PubMed

    Wiwatanaratanabutr, Itsanun; Zhang, Chongxing

    2016-07-01

    Wolbachia are inherited, endocytoplasmic bacteria that infect a wide range of arthropods. Here is the first systematic report on the study of Wolbachia infection in mosquitoes and their predators from both Thailand and China. In Thailand, 632 mosquito specimens (20 spp.) and 424 insect predators (23 spp.) were collected from the rice agroecosystem, mostly from the Central region, followed by the Northeast, the North and the South and were inhabiting rice fields, wetlands and ditches. In China, 928 mosquitoes (15 spp.) and 149 insect predators (16 spp.) were collected from rice fields along the Weishan Lake in Shandong province. Specimens were classified in the orders Diptera, Coleoptera, Odonata and Hemiptera. Using wsp, ftsZ, 16S rRNA and groE gene amplifications, Wolbachia were detected in 12 mosquito spp. and 6 predator spp. from Thailand and 11 mosquito spp. and 5 predator spp. from China. The relative Wolbachia densities of these species were determined using quantitative real-time PCR. The mosquito, Aedes albopictus, and the predator, Agriocnemis femina, had the highest bacterial densities. These results imply that Wolbachia of supergroup B are distributed throughout these insects, probably via horizontal transmission in rice agroecosystems. PMID:27012719

  10. Low oral receptivity for dengue type 2 viruses of Aedes albopictus from Southeast Asia compared with that of Aedes aegypti.

    PubMed

    Vazeille, Marie; Rosen, Leon; Mousson, Laurence; Failloux, Anna-Bella

    2003-02-01

    Dengue hemorrhagic fever has been a major health problem in Asia since the 1950s. During this period, the former principal vector of dengue viruses in Asia, Aedes albopictus, was replaced by Aedes aegypti in most major cities of the area. Ae. aegypti is now considered the main vector of dengue viruses in Asia. Surprisingly, however, this mosquito has been described as having a relatively low oral receptivity for dengue viruses compared with Ae. albopictus. In the present study, we compared the relative oral receptivities of Ae. aegypti and Ae. albopictus collected in southeast Asia from both sympatric and allopatric breeding sites. In all instances, the oral receptivity of Ae. aegypti to the dengue type 2 virus used was significantly higher than that of Ae. albopictus. We also compared the relative oral receptivity of Ae. aegypti and Ae. albopictus for two other low-passage strains of dengue 2. In all instances, Ae. aegypti was significantly more receptive than Ae. albopictus. It should be noted, however, that the difference was found only for Ae. albopictus recently collected from the field (Ta Promh strain, Cambodia, 2001) and not for an Ae. albopictus strain that had been colonized for many years (Oahu strain, Hawaii, 1971). We also observed a significant increase in the infection rate of Ae. albopictus of the Ta Promh strain with increasing generations in the laboratory. These observations demonstrate the importance of considering the colonization history of mosquitoes when assessing their susceptibility to infection with dengue viruses and, perhaps, other arboviruses.

  11. Development of sporogonic cycle of Plasmodium vivax in experimentally infected Anopheles albimanus mosquitoes.

    PubMed

    Salas, M L; Romero, J F; Solarte, Y; Olano, V; Herrera, M A; Herrera, S

    1994-01-01

    The sporogonic cycle of Plasmodium vivax was established and maintained under laboratory conditions in two different strains of Anopheles albimanus mosquitoes using as a parasite source blood from human patients or from Aotus monkeys infected with the VCC-2 P.vivax colombian isolate. Both the Tecojate strain isolate from Guatemala and the Cartagena strain from the colombian Pacific coast were susceptible to infections with P.vivax. A higher percentage of Cartagena mosquitoes was infected per trial, however the Tecojate strain developed higher sporozoite loads. Intravenous inoculation of Aotus monkeys with sporozoites obtained from both anopheline strains resulted in successful blood infections. Animals infected with sporozoites from the Tecojate strain presented a patent period of 21-32 days whereas parasitemia appeared between days 19-53 in monkeys infected with sporozites from Cartagena strain. PMID:7565121

  12. Transport of H(+), Na(+) and K(+) across the posterior midgut of blood-fed mosquitoes (Aedes aegypti).

    PubMed

    Pacey, Evan K; O'Donnell, Michael J

    2014-02-01

    Following ingestion of a blood meal, the adult female mosquito undergoes a massive diuresis during which Na(+), Cl(-) and water are secreted at high rates by the Malpighian tubules. In the hours following completion of diuresis, digestion of the K(+)-rich blood cells provides a source of energy as well as amino acids for proteins in the developing eggs. Although the transport of inorganic ions by the Malpighian tubules of blood-fed mosquitoes has been extensively characterized, relatively little is known of the epithelial transport mechanisms responsible for movement of Na(+), H(+), and K(+) across the posterior midgut. In this paper we have used the Scanning Ion-selective Electrode Technique (SIET) to measure the basal (unstimulated) rates of transport of K(+), Na(+) and H(+) across the isolated posterior midgut at intervals after the blood meal. We have also measured luminal concentrations of Na(+) and K(+) and the transepithelial electrical potential at the same time points and have calculated the electrochemical potentials for Na(+), K(+) and H(+) across the midgut. SIET measurements reveal absorption (lumen to bath) of Na(+) and H(+) and secretion of K(+) for the first 2h after blood-feeding. By 24h after the meal, absorption of Na(+) and H(+) remains active while there is an electrochemical gradient favouring absorption of K(+). Inhibition by ouabain and Ba(2+) suggest a role for the Na(+)/K(+)-ATPase and K(+) channels in absorption of Na(+) and K(+), respectively. Inhibition of H(+) absorption by acetazolamide implicates carbonic anhydrase in transepithelial H(+) transport.

  13. Aedes aegypti genomics.

    PubMed

    Severson, David W; Knudson, Dennis L; Soares, Marcelo B; Loftus, Brendan J

    2004-07-01

    The mosquito, Aedes aegypti, is the primary, worldwide arthropod vector for the yellow fever and dengue viruses. As it is also one of the most tractable mosquito species for laboratory studies, it has been and remains one of the most intensively studied arthropod species. This has resulted in the development of detailed genetic and physical maps for Ae. aegypti and considerable insight into its genome organization. The research community is well-advanced in developing important molecular tools that will facilitate a whole genome sequencing effort. This includes generation of BAC clone end sequences, physical mapping of selected BAC clones and generation of EST sequences. Whole genome sequence information for Ae. aegypti will provide important insight into mosquito chromosome evolution and allow for the identification of genes and gene function. These functions may be common to all mosquitoes or perhaps unique to individual species, possibly specific to host-seeking and blood-feeding behaviors, as well as the innate immune response to pathogens encountered during blood-feeding. This information will be invaluable to the global effort to develop novel strategies for preventing arthropod-borne disease transmission.

  14. Flavivirus NS1 protein in infected host sera enhances viral acquisition by mosquitoes.

    PubMed

    Liu, Jianying; Liu, Yang; Nie, Kaixiao; Du, Senyan; Qiu, Jingjun; Pang, Xiaojing; Wang, Penghua; Cheng, Gong

    2016-01-01

    The arbovirus life cycle involves viral transfer between a vertebrate host and an arthropod vector, and acquisition of virus from an infected mammalian host by a vector is an essential step in this process. Here, we report that flavivirus nonstructural protein-1 (NS1), which is abundantly secreted into the serum of an infected host, plays a critical role in flavivirus acquisition by mosquitoes. The presence of dengue virus (DENV) and Japanese encephalitis virus NS1s in the blood of infected interferon-α and γ receptor-deficient mice (AG6) facilitated virus acquisition by their native mosquito vectors because the protein enabled the virus to overcome the immune barrier of the mosquito midgut. Active immunization of AG6 mice with a modified DENV NS1 reduced DENV acquisition by mosquitoes and protected mice against a lethal DENV challenge, suggesting that immunization with NS1 could reduce the number of virus-carrying mosquitoes as well as the incidence of flaviviral diseases. Our study demonstrates that flaviviruses utilize NS1 proteins produced during their vertebrate phases to enhance their acquisition by vectors, which might be a result of flavivirus evolution to adapt to multiple host environments. PMID:27562253

  15. Locating suitable habitats for West Nile Virus-infected mosquitoes through association of environmental characteristics with infected mosquito locations: a case study in Shelby County, Tennessee

    PubMed Central

    Ozdenerol, Esra; Bialkowska-Jelinska, Elzbieta; Taff, Gregory N

    2008-01-01

    Background Since its first detection in 2001, West Nile Virus (WNV) poses a significant health risk for residents of Shelby County in Tennessee. This situation forced public health officials to adopt efficient methods for monitoring disease spread and predicting future outbreaks. Analyses that use environmental variables to find suitable habitats for WNV-infected mosquitoes have the potential to support these efforts. Using the Mahalanobis Distance statistic, we identified areas of Shelby County that are ecologically most suitable for sustaining WNV, based on similarity of environmental characteristics to areas where WNV was found. The environmental characteristics in this study were based on Geographic Information Systems (GIS) data, such as elevation, slope, land use, vegetation density, temperature, and precipitation. Results Our analyses produced maps of likely habitats of WNV-infected mosquitoes for each week of August 2004, revealing the areas that are ecologically most suitable for sustaining WNV within the core of the Memphis urban area. By comparing neighbourhood social characteristics to the environmental factors that contribute to WNV infection, potential social drivers of WNV transmission were revealed in Shelby County. Results show that human population characteristics and housing conditions such as a high percentage of black population, low income, high rental occupation, old structures, and vacant housing are associated with the focal area of WNV identified for each week of the study period. Conclusion We demonstrated that use of the Mahalanobis Distance statistic as a similarity index to assess environmental characteristics is a potential raster-based approach to identify areas ecologically most suitable for sustaining the virus. This approach was also useful to monitor changes over time for likely locations of infected mosquito habitats. This technique is very helpful for authorities when making decisions related to an integrated mosquito

  16. Vector competence of Aedes albopictus and Aedes aegypti (Diptera: Culicidae) for DEN2-43 and New Guinea C virus strains of dengue 2 virus.

    PubMed

    Guo, Xiao-Xia; Zhu, Xiao-Juan; Li, Chun-Xiao; Dong, Yan-De; Zhang, Ying-Mei; Xing, Dan; Xue, Rui-De; Qin, Cheng-Feng; Zhao, Tong-Yan

    2013-12-01

    The vector competence of Aedes albopictus and Aedes aegypti with regard to DEN2-43 and New Guinea C (NGC) virus strains of Dengue 2 viruses was assessed and compared. The infection and dissemination rate and distribution of DEN2-43 antigens in orally infected Ae. albopictus was investigated using the reverse transcription polymerase chain reaction and an indirect immunofluorescence assay. To better understand the initial infection, dissemination and transmission of these viral strains in vector mosquitoes, Ae. albopoictus and Ae. aegypti were fed an artificial blood meal containing either the DEN2-43 or NGC strain. There was no significant difference in the infection and dissemination rates of DEN2-43 and NGC virus strains in Ae. albopictus, however, Ae. aegypti was more susceptible to infection by NGC than DEN2-43 vrius strain. Ae. albopictus mosquitoes infected with the NGC strain developed a higher percentage of midgut infections than those infected with the DEN2-43 strain (t=2.893, df=7, P=0.024). Approximately 26.7% of midgut samples were positive for the NGC antigen 5 days after infection, and 80% of mosquitoes had infected midgets after 15 days. The NGC antigen first became evident in mosquito salivary glands on Day 5, and 40% of mosquitoes had infected salivary by Day 9. In contrast, the DEN2-43 antigen first became evident in salivary glands on Day 7. The infection rate of NGC and DEN2-43 virus strains in salivary glands were similar. These results indicate that Ae. albopictus and Ae. aegypti are moderately competent vectors for the DEN2-43 virus, which could provide basic data for the epidemiology study of dengue fever in China.

  17. Existing Infection Facilitates Establishment and Density of Malaria Parasites in Their Mosquito Vector

    PubMed Central

    Pollitt, Laura C.; Bram, Joshua T.; Blanford, Simon; Jones, Matthew J.; Read, Andrew F.

    2015-01-01

    Very little is known about how vector-borne pathogens interact within their vector and how this impacts transmission. Here we show that mosquitoes can accumulate mixed strain malaria infections after feeding on multiple hosts. We found that parasites have a greater chance of establishing and reach higher densities if another strain is already present in a mosquito. Mixed infections contained more parasites but these larger populations did not have a detectable impact on vector survival. Together these results suggest that mosquitoes taking multiple infective bites may disproportionally contribute to malaria transmission. This will increase rates of mixed infections in vertebrate hosts, with implications for the evolution of parasite virulence and the spread of drug-resistant strains. Moreover, control measures that reduce parasite prevalence in vertebrate hosts will reduce the likelihood of mosquitoes taking multiple infective feeds, and thus disproportionally reduce transmission. More generally, our study shows that the types of strain interactions detected in vertebrate hosts cannot necessarily be extrapolated to vectors. PMID:26181518

  18. Hypersensitivity to mosquito bites as the primary clinical manifestation of an Epstein-Barr virus infection.

    PubMed

    Chiu, Tsu-Man; Lin, Yueh-Min; Wang, Shing-Chuang; Tsai, Yi-Giien

    2016-08-01

    Hypersensitivity to mosquito bites (HMB) is a rare disease characterized by intense local skin reactions with general symptoms, such as high fever and regional lymphadenopathy after mosquito bites. Epstein-Barr virus (EBV) chronic infection and NK cell lymphoproliferative disease have been reported first in diagnosed HMB patients. Here, we present the case of a 6-year-old girl with 2 months' history of bullae and necrotic skin lesions, accompanied by a high temperature, visual hallucinations, and liver dysfunction after mosquito bites. A histopathologic examination of the skin lesion showed vasculitis and EBV infection. We could not detect any findings of hematologic malignancies or NK cell proliferative disease in the patient. Clinicians should closely evaluate HMB patients for possible development of lymphoproliferative status or hematologic malignant disorders.

  19. Novel Genetic and Molecular Tools for the Investigation and Control of Dengue Virus Transmission by Mosquitoes.

    PubMed

    Franz, Alexander W E; Clem, Rollie J; Passarelli, A Lorena

    2014-03-01

    Aedes aegypti is the principal vector of dengue virus (DENV) throughout the tropical world. This anthropophilic mosquito species needs to be persistently infected with DENV before it can transmit the virus through its saliva to a new vertebrate host. In the mosquito, DENV is confronted with several innate immune pathways, among which RNA interference is considered the most important. The Ae. aegypti genome project opened the doors for advanced molecular studies on pathogen-vector interactions including genetic manipulation of the vector for basic research and vector control purposes. Thus, Ae. aegypti has become the primary model for studying vector competence for arboviruses at the molecular level. Here, we present recent findings regarding DENV-mosquito interactions, emphasizing how innate immune responses modulate DENV infections in Ae. aegypti. We also describe the latest advancements in genetic manipulation of Ae. aegypti and discuss how this technology can be used to investigate vector transmission of DENV at the molecular level and to control transmission of the virus in the field.

  20. Workbook on Identification of Aedes Aegypti Larvae.

    ERIC Educational Resources Information Center

    Pratt, Harry D.; And Others

    This self-instructional booklet is designed to enable yellow fever control workers to identify the larvae of "Aedes aegypti." The morphological features of mosquito larvae are illustrated in this partially programed text, and the distinguishing features of "A. aegypti" indicated. A glossary is included. (AL)

  1. Maximum equilibrium prevalence of mosquito-borne microparasite infections in humans.

    PubMed

    Amaku, Marcos; Burattini, Marcelo Nascimento; Coutinho, Francisco Antonio Bezerra; Lopez, Luis Fernandez; Massad, Eduardo

    2013-01-01

    To determine the maximum equilibrium prevalence of mosquito-borne microparasitic infections, this paper proposes a general model for vector-borne infections which is flexible enough to comprise the dynamics of a great number of the known diseases transmitted by arthropods. From equilibrium analysis, we determined the number of infected vectors as an explicit function of the model's parameters and the prevalence of infection in the hosts. From the analysis, it is also possible to derive the basic reproduction number and the equilibrium force of infection as a function of those parameters and variables. From the force of infection, we were able to conclude that, depending on the disease's structure and the model's parameters, there is a maximum value of equilibrium prevalence for each of the mosquito-borne microparasitic infections. The analysis is exemplified by the cases of malaria and dengue fever. With the values of the parameters chosen to illustrate those calculations, the maximum equilibrium prevalence found was 31% and 0.02% for malaria and dengue, respectively. The equilibrium analysis demonstrated that there is a maximum prevalence for the mosquito-borne microparasitic infections.

  2. Maximum Equilibrium Prevalence of Mosquito-Borne Microparasite Infections in Humans

    PubMed Central

    Burattini, Marcelo Nascimento; Coutinho, Francisco Antonio Bezerra; Lopez, Luis Fernandez; Massad, Eduardo

    2013-01-01

    To determine the maximum equilibrium prevalence of mosquito-borne microparasitic infections, this paper proposes a general model for vector-borne infections which is flexible enough to comprise the dynamics of a great number of the known diseases transmitted by arthropods. From equilibrium analysis, we determined the number of infected vectors as an explicit function of the model's parameters and the prevalence of infection in the hosts. From the analysis, it is also possible to derive the basic reproduction number and the equilibrium force of infection as a function of those parameters and variables. From the force of infection, we were able to conclude that, depending on the disease's structure and the model's parameters, there is a maximum value of equilibrium prevalence for each of the mosquito-borne microparasitic infections. The analysis is exemplified by the cases of malaria and dengue fever. With the values of the parameters chosen to illustrate those calculations, the maximum equilibrium prevalence found was 31% and 0.02% for malaria and dengue, respectively. The equilibrium analysis demonstrated that there is a maximum prevalence for the mosquito-borne microparasitic infections. PMID:24454539

  3. Behavioral responses of catnip (Nepeta cataria l.)by two species of mosquitoes, Aedes aegypti (l.) and Anopheles harrisoni harbach and manguin, in Thailand.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An investigation of the biological effect of catnip oil (Nepeta cataria L.) on the behavioral response of field collected Ae. aegypti and An. harrisoni were conducted using an automated excito-repellency test system. Aedes aegypti showed significant higher escape rates from the contact chamber at 5%...

  4. Larvicidal activity of ajowan ( Trachyspermum ammi ) and Peru balsam ( Myroxylon pereira ) oils and blends of their constituents against mosquito, Aedes aegypti , acute toxicity on water flea, Daphnia magna , and aqueous residue.

    PubMed

    Seo, Seon-Mi; Park, Hye-Mi; Park, Il-Kwon

    2012-06-13

    This study evaluated the larvicidal activity of 20 plant essential oils and components from ajowan ( Trachyspermum ammi ) and Peru balsam ( Myroxylon pereira ) oils against the mosquito, Aedes aegypti . Of the 20 plant essential oils, ajowan and Peru balsam oils at 0.1 mg/mL exhibited 100 and 97.5% larval mortality, respectively. At this same concentration, the individual constituents, (+)-camphene, benzoic acid, thymol, carvacrol, benzyl benzonate, and benzyl trans-cinnamate, caused 100% mortality. The toxicity of blends of constituents identified in two active oils indicated that thymol and benzyl benzoate were major contributors to the larvicidal activity of the artificial blend. This study also tested the acute toxicity of these two active oils and their major constituents against the water flea, Daphnia magna . Peru balsam oil and benzyl trans-cinnamate were the most toxic to D. magna. Two days after the treatment, residues of ajowan and Peru balsalm oils in water were 36.2 and 85.1%, respectively. Less than 50% of benzyl trans-cinnamate and thymol were detected in the water at 2 days after treatment. The results show that the essential oils of ajowan and Peru balsam and some of their constituents have potential as botanical insecticides against Ae. aegypti mosquito larvae. PMID:22620984

  5. Genome analysis and polar tube firing dynamics of mosquito-infecting microsporidia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microsporidia are highly divergent fungi that are obligate intracellular pathogens of a wide range of host organisms. Here we review recent findings from the genome sequences of mosquito-infecting microsporidian species Edhazardia aedis and Vavraia culicis, which show large differences in genome siz...

  6. Differential Infectivities among Different Japanese Encephalitis Virus Genotypes in Culex quinquefasciatus Mosquitoes

    PubMed Central

    Huang, Yan-Jang S.; Park, So Lee; Higgs, Stephen; Barrett, Alan D. T.; Hsu, Wei-Wen; Harbin, Julie N.; Cohnstaedt, Lee W.; Vanlandingham, Dana L.

    2016-01-01

    During the last 20 years, the epidemiology of Japanese encephalitis virus (JEV) has changed significantly in its endemic regions due to the gradual displacement of the previously dominant genotype III (GIII) with clade b of GI (GI-b). Whilst there is only limited genetic difference distinguishing the two GI clades (GI-a and GI-b), GI-b has shown a significantly wider and more rapid dispersal pattern in several regions in Asia than the GI-a clade, which remains restricted in its geographic distribution since its emergence. Although previously published molecular epidemiological evidence has shown distinct phylodynamic patterns, characterization of the two GI clades has only been limited to in vitro studies. In this study, Culex quinquefasciatus, a known competent JEV mosquito vector species, was orally challenged with three JEV strains each representing GI-a, GI-b, and GIII, respectively. Infection and dissemination were determined based on the detection of infectious viruses in homogenized mosquitoes. Detection of JEV RNA in mosquito saliva at 14 days post infection indicated that Cx. quinquefasciatus can be a competent vector species for both GI and GIII strains. Significantly higher infection rates in mosquitoes exposed to the GI-b and GIII strains than the GI-a strain suggest infectivity in arthropod vectors may lead to the selective advantage of previously and currently dominant genotypes. It could thus play a role in enzootic transmission cycles for the maintenance of JEV if this virus were ever to be introduced into North America. PMID:27706157

  7. Association of human immune response to Aedes aegypti salivary proteins with dengue disease severity.

    PubMed

    Machain-Williams, C; Mammen, M P; Zeidner, N S; Beaty, B J; Prenni, J E; Nisalak, A; Blair, C D

    2012-01-01

    Dengue viruses (DENV; family Flaviviridae, genus Flavivirus) are transmitted by Aedes aegypti mosquitoes and can cause dengue fever (DF), a relatively benign disease, or more severe dengue haemorrhagic fever (DHF). Arthropod saliva contains proteins delivered into the bite wound that can modulate the host haemostatic and immune responses to facilitate the intake of a blood meal. The potential effects on DENV infection of previous exposure to Ae. aegypti salivary proteins have not been investigated. We collected Ae. aegypti saliva, concentrated the proteins and fractionated them by nondenaturing polyacrylamide gel electrophoresis (PAGE). By the use of immunoblots, we analysed reactivity with the mosquito salivary proteins (MSP) of sera from 96 Thai children diagnosed with secondary DENV infections leading either to DF or DHF, or with no DENV infection, and found that different proportions of each patient group had serum antibodies reactive to specific Ae. aegypti salivary proteins. Our results suggest that prior exposure to MSP might play a role in the outcome of DENV infection in humans.

  8. Aedes aegypti (L.) and Aedes albopictus (Skuse) in Singapore City. 5. Observations in relation to dengue haemorrhagic fever.

    PubMed

    Chan, Y C; Ho, B C; Chan, K L

    1971-01-01

    Dengue haemorrhagic fever in Singapore was a disease of the urban human population, with concentrations of cases occurring in areas of high population density. Mosquito surveys revealed that these areas also had high population densities of Ae. aegypti and Ae. albopictus.The disease occurred throughout the year but the incidence of cases appeared to follow a seasonal pattern. Observations from 1966 to 1968 showed that the number of cases increased in April, reached a peak in November, and, thereafter, decreased until the next increase in April of the following year. The epidemic curve generally agreed with the fluctuations of both Ae. aegypti and Ae. albopictus populations, although the latter species appeared to show a better correspondence with the incidence of cases.Six dengue viruses were isolated from the two Aedes species during 1966. One dengue type 2 virus was isolated from a pool of Ae. aegypti and 1 dengue type 1 virus and 4 dengue type 2 viruses were recovered from 5 pools of Ae. albopictus. These viruses were isolated from mosquitos collected during the period of increase in the incidence of cases and in 4 different areas of the city. The dengue virus infection rates per 1 000 mosquitos estimated in the present study were 0.51 for Ae. aegypti and 0.59 for Ae. albopictus.The data obtained in the present study suggest that both Ae. aegypti and Ae. albopictus are involved in the transmission of dengue haemorrhagic fever in Singapore.

  9. Culex Species Mosquitoes and Zika Virus.

    PubMed

    Huang, Yan-Jang S; Ayers, Victoria B; Lyons, Amy C; Unlu, Isik; Alto, Barry W; Cohnstaedt, Lee W; Higgs, Stephen; Vanlandingham, Dana L

    2016-10-01

    Recent reports of Zika virus (ZIKV) isolates from Culex species mosquitoes have resulted in concern regarding a lack of knowledge on the number of competent vector species for ZIKV transmission in the new world. Although observations in the field have demonstrated that ZIKV isolation can be made from Culex species mosquitoes, the detection of ZIKV in these mosquitoes is not proof of their involvement in a ZIKV transmission cycle. Detection may be due to recent feeding on a viremic vertebrate, and is not indicative of replication in the mosquito. In this study, susceptibility of recently colonized Culex species mosquitoes was investigated. The results showed a high degree of refractoriness among members of Culex pipiens complex to ZIKV even when exposed to high-titer bloodmeals. Our finding suggests that the likelihood of Culex species mosquitoes serving as secondary vectors for ZIKV is very low, therefore vector control strategies for ZIKV should remain focused on Aedes species mosquitoes. Our demonstration that Culex quinquefasciatus from Vero Beach, FL, is refractory to infection with ZIKV is especially important and timely. Based on our data, we would conclude that the autochthonous cases of Zika in Florida are not due to transmission by C. quinquefasciatus, and so control efforts should focus on other species, logically Aedes aegypti and Aedes albopictus.

  10. Culex Species Mosquitoes and Zika Virus.

    PubMed

    Huang, Yan-Jang S; Ayers, Victoria B; Lyons, Amy C; Unlu, Isik; Alto, Barry W; Cohnstaedt, Lee W; Higgs, Stephen; Vanlandingham, Dana L

    2016-10-01

    Recent reports of Zika virus (ZIKV) isolates from Culex species mosquitoes have resulted in concern regarding a lack of knowledge on the number of competent vector species for ZIKV transmission in the new world. Although observations in the field have demonstrated that ZIKV isolation can be made from Culex species mosquitoes, the detection of ZIKV in these mosquitoes is not proof of their involvement in a ZIKV transmission cycle. Detection may be due to recent feeding on a viremic vertebrate, and is not indicative of replication in the mosquito. In this study, susceptibility of recently colonized Culex species mosquitoes was investigated. The results showed a high degree of refractoriness among members of Culex pipiens complex to ZIKV even when exposed to high-titer bloodmeals. Our finding suggests that the likelihood of Culex species mosquitoes serving as secondary vectors for ZIKV is very low, therefore vector control strategies for ZIKV should remain focused on Aedes species mosquitoes. Our demonstration that Culex quinquefasciatus from Vero Beach, FL, is refractory to infection with ZIKV is especially important and timely. Based on our data, we would conclude that the autochthonous cases of Zika in Florida are not due to transmission by C. quinquefasciatus, and so control efforts should focus on other species, logically Aedes aegypti and Aedes albopictus. PMID:27556838

  11. Mosquito Passage Dramatically Changes var Gene Expression in Controlled Human Plasmodium falciparum Infections

    PubMed Central

    Bachmann, Anna; Petter, Michaela; Krumkamp, Ralf; Esen, Meral; Held, Jana; Scholz, Judith A. M.; Li, Tao; Sim, B. Kim Lee; Hoffman, Stephen L.; Kremsner, Peter G.; Mordmüller, Benjamin; Duffy, Michael F.; Tannich, Egbert

    2016-01-01

    Virulence of the most deadly malaria parasite Plasmodium falciparum is linked to the variant surface antigen PfEMP1, which is encoded by about 60 var genes per parasite genome. Although the expression of particular variants has been associated with different clinical outcomes, little is known about var gene expression at the onset of infection. By analyzing controlled human malaria infections via quantitative real-time PCR, we show that parasite populations from 18 volunteers expressed virtually identical transcript patterns that were dominated by the subtelomeric var gene group B and, to a lesser extent, group A. Furthermore, major changes in composition and frequency of var gene transcripts were detected between the parental parasite culture that was used to infect mosquitoes and Plasmodia recovered from infected volunteers, suggesting that P. falciparum resets its var gene expression during mosquito passage and starts with the broad expression of a specific subset of var genes when entering the human blood phase. PMID:27070311

  12. Mosquito Passage Dramatically Changes var Gene Expression in Controlled Human Plasmodium falciparum Infections.

    PubMed

    Bachmann, Anna; Petter, Michaela; Krumkamp, Ralf; Esen, Meral; Held, Jana; Scholz, Judith A M; Li, Tao; Sim, B Kim Lee; Hoffman, Stephen L; Kremsner, Peter G; Mordmüller, Benjamin; Duffy, Michael F; Tannich, Egbert

    2016-04-01

    Virulence of the most deadly malaria parasite Plasmodium falciparum is linked to the variant surface antigen PfEMP1, which is encoded by about 60 var genes per parasite genome. Although the expression of particular variants has been associated with different clinical outcomes, little is known about var gene expression at the onset of infection. By analyzing controlled human malaria infections via quantitative real-time PCR, we show that parasite populations from 18 volunteers expressed virtually identical transcript patterns that were dominated by the subtelomeric var gene group B and, to a lesser extent, group A. Furthermore, major changes in composition and frequency of var gene transcripts were detected between the parental parasite culture that was used to infect mosquitoes and Plasmodia recovered from infected volunteers, suggesting that P. falciparum resets its var gene expression during mosquito passage and starts with the broad expression of a specific subset of var genes when entering the human blood phase.

  13. Microevolution of Aedes aegypti

    PubMed Central

    Louise, Caroline; Vidal, Paloma Oliveira; Suesdek, Lincoln

    2015-01-01

    Scientific research into the epidemiology of dengue frequently focuses on the microevolution and dispersion of the mosquito Aedes aegypti. One of the world’s largest urban agglomerations infested by Ae. aegypti is the Brazilian megalopolis of Sao Paulo, where >26,900 cases of dengue were reported until June 2015. Unfortunately, the dynamics of the genetic variability of Ae. aegypti in the Sao Paulo area have not been well studied. To reduce this knowledge gap, we assessed the morphogenetic variability of a population of Ae. aegypti from a densely urbanised neighbourhood of Sao Paulo. We tested if allelic patterns could vary over a short term and if wing shape could be a predictor of the genetic variation. Over a period of 14 months, we examined the variation of genetic (microsatellites loci) and morphological (wing geometry) markers in Ae. aegypti. Polymorphisms were detected, as revealed by the variability of 20 microsatellite loci (115 alleles combined; overall Fst = 0.0358) and 18 wing landmarks (quantitative estimator Qst = 0.4732). These levels of polymorphism are higher than typically expected to an exotic species. Allelic frequencies of the loci changed over time and temporal variation in the wing shape was even more pronounced, permitting high reclassification levels of chronological samples. In spite of the fact that both markers underwent temporal variation, no correlation was detected between their dynamics. We concluded that microevolution was detected despite the short observational period, but the intensities of change of the markers were discrepant. Wing shape failed from predicting allelic temporal variation. Possibly, natural selection (Qst>Fst) or variance of expressivity of wing phenotype are involved in this discrepancy. Other possibly influential factors on microevolution of Ae. aegypti are worth searching. Additionally, the implications of the rapid evolution and high polymorphism of this mosquito vector on the efficacy of control methods

  14. Microevolution of Aedes aegypti.

    PubMed

    Louise, Caroline; Vidal, Paloma Oliveira; Suesdek, Lincoln

    2015-01-01

    Scientific research into the epidemiology of dengue frequently focuses on the microevolution and dispersion of the mosquito Aedes aegypti. One of the world's largest urban agglomerations infested by Ae. aegypti is the Brazilian megalopolis of Sao Paulo, where >26,900 cases of dengue were reported until June 2015. Unfortunately, the dynamics of the genetic variability of Ae. aegypti in the Sao Paulo area have not been well studied. To reduce this knowledge gap, we assessed the morphogenetic variability of a population of Ae. aegypti from a densely urbanised neighbourhood of Sao Paulo. We tested if allelic patterns could vary over a short term and if wing shape could be a predictor of the genetic variation. Over a period of 14 months, we examined the variation of genetic (microsatellites loci) and morphological (wing geometry) markers in Ae. aegypti. Polymorphisms were detected, as revealed by the variability of 20 microsatellite loci (115 alleles combined; overall Fst = 0.0358) and 18 wing landmarks (quantitative estimator Qst = 0.4732). These levels of polymorphism are higher than typically expected to an exotic species. Allelic frequencies of the loci changed over time and temporal variation in the wing shape was even more pronounced, permitting high reclassification levels of chronological samples. In spite of the fact that both markers underwent temporal variation, no correlation was detected between their dynamics. We concluded that microevolution was detected despite the short observational period, but the intensities of change of the markers were discrepant. Wing shape failed from predicting allelic temporal variation. Possibly, natural selection (Qst>Fst) or variance of expressivity of wing phenotype are involved in this discrepancy. Other possibly influential factors on microevolution of Ae. aegypti are worth searching. Additionally, the implications of the rapid evolution and high polymorphism of this mosquito vector on the efficacy of control methods have

  15. Immunisation against a serine protease inhibitor reduces intensity of Plasmodium berghei infection in mosquitoes.

    PubMed

    Williams, Andrew R; Zakutansky, Sara E; Miura, Kazutoyo; Dicks, Matthew D J; Churcher, Thomas S; Jewell, Kerry E; Vaughan, Aisling M; Turner, Alison V; Kapulu, Melissa C; Michel, Kristin; Long, Carole A; Sinden, Robert E; Hill, Adrian V S; Draper, Simon J; Biswas, Sumi

    2013-10-01

    The mosquito innate immune response is able to clear the majority of Plasmodium parasites. This immune clearance is controlled by a number of regulatory molecules including serine protease inhibitors (serpins). To determine whether such molecules could represent a novel target for a malaria transmission-blocking vaccine, we vaccinated mice with Anopheles gambiae serpin-2. Antibodies against Anopheles gambiae serpin-2 significantly reduced the infection of a heterologous Anopheles species (Anopheles stephensi) by Plasmodium berghei, however this effect was not observed with Plasmodium falciparum. Therefore, this approach of targeting regulatory molecules of the mosquito immune system may represent a novel approach to transmission-blocking malaria vaccines.

  16. Vector competence of Aedes albopictus and Aedes aegypti (Diptera: Culicidae) for the DEN2-FJ10 and DEN2-FJ11 strains of the dengue 2 virus in Fujian, China.

    PubMed

    Guo, Xiao-Xia; Li, Chun-Xiao; Zhang, Ying-Mei; Xing, Dan; Dong, Yan-De; Zhang, Heng-Duan; Qin, Cheng-Feng; Zhao, Tong-Yan

    2016-09-01

    Dengue is an acute, emerging, infectious disease transmitted by Aedes mosquitoes that has become a serious global public health problem. The DEN2-FJ10 and DEN2-FJ11 strains of the dengue 2 virus were originally isolated from the serum of a patient with dengue fever in Fujian Province, China, in 1999. Our data provide the first assessment of the vector competence of Aedes mosquitoes with respect to the DEN2-FJ10 and DEN2-FJ11 strains of the dengue virus. There were significant differences in the replication rates of these two viral strains in Aedes albopictus and Aedes aegypti (P<0.05); replication of the DEN2-FJ10 strain was greater in Ae. aegypti than in Ae. albopictus 5 days post infection whereas replication of the DEN2-FJ11 was greater in Ae. albopictus than in Ae. aegypti 7 days post infection. The replicative ability of the DEN2-FJ11 strain was greater than that of the DEN2-FJ10 strain in infected Ae. albopictus. In infected Ae. aegypti, rapid proliferation of the DEN2-FJ10 strain occurred earlier than in the DEN2-FJ11 strain. There were no significant differences in the midgut and salivary gland infection rates of Ae. albopictus and Ae. aegypti with respect to either viral strain. Although the DEN2-FJ10 and DEN2-FJ11 strains differ in their virulence to neonatal rats, there was no significant difference in the ability of either Ae. albopictus or Ae. aegypti to transmit the DEN2-FJ10 and DEN2-FJ10 strains of the dengue 2 virus (P>0.05). In summary, our results indicate that Ae. albopictus and Ae. aegypti mosquitoes are moderately competent vectors of the DEN2-FJ10 and DEN2-FJ11 strains of the dengue virus and provide the first evidence of the effect of these two viral strains on the vector competence of mosquitoes in China.

  17. Vector competence of Aedes albopictus and Aedes aegypti (Diptera: Culicidae) for the DEN2-FJ10 and DEN2-FJ11 strains of the dengue 2 virus in Fujian, China.

    PubMed

    Guo, Xiao-Xia; Li, Chun-Xiao; Zhang, Ying-Mei; Xing, Dan; Dong, Yan-De; Zhang, Heng-Duan; Qin, Cheng-Feng; Zhao, Tong-Yan

    2016-09-01

    Dengue is an acute, emerging, infectious disease transmitted by Aedes mosquitoes that has become a serious global public health problem. The DEN2-FJ10 and DEN2-FJ11 strains of the dengue 2 virus were originally isolated from the serum of a patient with dengue fever in Fujian Province, China, in 1999. Our data provide the first assessment of the vector competence of Aedes mosquitoes with respect to the DEN2-FJ10 and DEN2-FJ11 strains of the dengue virus. There were significant differences in the replication rates of these two viral strains in Aedes albopictus and Aedes aegypti (P<0.05); replication of the DEN2-FJ10 strain was greater in Ae. aegypti than in Ae. albopictus 5 days post infection whereas replication of the DEN2-FJ11 was greater in Ae. albopictus than in Ae. aegypti 7 days post infection. The replicative ability of the DEN2-FJ11 strain was greater than that of the DEN2-FJ10 strain in infected Ae. albopictus. In infected Ae. aegypti, rapid proliferation of the DEN2-FJ10 strain occurred earlier than in the DEN2-FJ11 strain. There were no significant differences in the midgut and salivary gland infection rates of Ae. albopictus and Ae. aegypti with respect to either viral strain. Although the DEN2-FJ10 and DEN2-FJ11 strains differ in their virulence to neonatal rats, there was no significant difference in the ability of either Ae. albopictus or Ae. aegypti to transmit the DEN2-FJ10 and DEN2-FJ10 strains of the dengue 2 virus (P>0.05). In summary, our results indicate that Ae. albopictus and Ae. aegypti mosquitoes are moderately competent vectors of the DEN2-FJ10 and DEN2-FJ11 strains of the dengue virus and provide the first evidence of the effect of these two viral strains on the vector competence of mosquitoes in China. PMID:27260668

  18. Isolation and identification of mosquito (Aedes aegypti) biting deterrent fatty acids from male inflorescences of breadfruit (Artocarpus altilis (Parkinson)Fosberg)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dried male inflorescences of breadfruit (Artocarpus altilis, Moraceae) are burned in communities throughout Oceania to repel flying insects, including mosquitoes. This study was conducted to identify chemicals responsible for mosquito deterrence. Various crude extracts were evaluated, and the most a...

  19. Flavivirus infection from mosquitoes in vitro reveals cell entry at the plasma membrane

    SciTech Connect

    Vancini, Ricardo; Kramer, Laura D.; Ribeiro, Mariana; Hernandez, Raquel; Brown, Dennis

    2013-01-20

    Dengue and West Nile viruses are enveloped RNA viruses that belong to genus Flavivirus (family Flaviviridae) and are considered important mosquito-borne viral pathogenic agents worldwide. A potential target for intervention strategies is the virus cell entry mechanism. Previous studies of flavivirus entry have focused on the effects of biochemical and molecular inhibitors on viral entry leading to controversial conclusions suggesting that the process is dependent upon endocytosis and low pH mediated membrane fusion. In this study we analyzed the early events in the infection process by means of electron microscopy and immuno-gold labeling of viral particles during cell entry, and used as a new approach for infecting cells with viruses obtained directly from mosquitoes. The results show that Dengue and West Nile viruses may infect cells by a mechanism that involves direct penetration of the host cell plasma membrane as proposed for alphaviruses.

  20. Countering a Bioterrorist Introduction of Pathogen-Infected Mosquitoes through Mosquito Control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A workshop titled “Counteracting Bioterrorist Introduction of Pathogen-Infected Vector Mosquitoes” was held in Gainesville, Florida on May 20-22, 2010 to discuss (1) disease and vector surveillance, (2) pre-bioterrorist attack preparations, (3) actions during an ongoing bioterrorist attack, and (4) ...

  1. Loss of Glycosaminoglycan Receptor Binding after Mosquito Cell Passage Reduces Chikungunya Virus Infectivity

    PubMed Central

    Acharya, Dhiraj; Paul, Amber M.; Anderson, John F.; Huang, Faqing; Bai, Fengwei

    2015-01-01

    Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that can cause fever and chronic arthritis in humans. CHIKV that is generated in mosquito or mammalian cells differs in glycosylation patterns of viral proteins, which may affect its replication and virulence. Herein, we compare replication, pathogenicity, and receptor binding of CHIKV generated in Vero cells (mammal) or C6/36 cells (mosquito) through a single passage. We demonstrate that mosquito cell-derived CHIKV (CHIKVmos) has slower replication than mammalian cell-derived CHIKV (CHIKVvero), when tested in both human and murine cell lines. Consistent with this, CHIKVmos infection in both cell lines produce less cytopathic effects and reduced antiviral responses. In addition, infection in mice show that CHIKVmos produces a lower level of viremia and less severe footpad swelling when compared with CHIKVvero. Interestingly, CHIKVmos has impaired ability to bind to glycosaminoglycan (GAG) receptors on mammalian cells. However, sequencing analysis shows that this impairment is not due to a mutation in the CHIKV E2 gene, which encodes for the viral receptor binding protein. Moreover, CHIKVmos progenies can regain GAG receptor binding capability and can replicate similarly to CHIKVvero after a single passage in mammalian cells. Furthermore, CHIKVvero and CHIKVmos no longer differ in replication when N-glycosylation of viral proteins was inhibited by growing these viruses in the presence of tunicamycin. Collectively, these results suggest that N-glycosylation of viral proteins within mosquito cells can result in loss of GAG receptor binding capability of CHIKV and reduction of its infectivity in mammalian cells. PMID:26484530

  2. Miami's Zika Infections Up to 14: Officials

    MedlinePlus

    ... still seeing new larval mosquitoes and moderately high Aedes aegypti counts, which is not something that we had ... cluster" that do not indicate widespread transmission. "The Aedes aegypti mosquito does not travel more than 150 meters ...

  3. Temporal Correlations Between Mosquito-Based Dengue Virus Surveillance Measures or Indoor Mosquito Abundance and Dengue Case Numbers in Mérida City, México

    PubMed Central

    EISEN, LARS; GARCÍA-REJÓN, JULIÁN E.; GÓMEZ-CARRO, SALVADOR; VÁSQUEZ, MARÍA DEL ROSARIO NÁJERA; KEEFE, THOMAS J.; BEATY, BARRY J.; LOROÑO-PINO, MARÍA ALBA

    2014-01-01

    Surveillance of dengue virus (DENV) in Aedes (Stegomyia) aegypti (L.) females is of potential interest because human DENV infections are commonly asymptomatic, which decreases the effectiveness of dengue case surveillance to provide early warning of building outbreaks. Our primary aim was to examine if mosquito-based virological measures – monthly percentages of examined Ae. aegypti females infected with DENV or examined homes from which ≥1 DENV-infected Ae. aegypti female was collected – are correlated with reported dengue cases in the same or subsequent months within study neighborhoods in Mérida City, México. The study encompassed ~30 neighborhoods in the southern and eastern parts of the city. Mosquitoes were collected monthly over a 15-month period within study homes (average of 145 homes examined per month); this produced ~5,800 Ae. aegypti females subsequently examined for DENV RNA. Although monthly dengue case numbers in the study neighborhoods varied more than 100-fold during the study period, we did not find statistically significant positive correlations between monthly data for mosquito-based DENV surveillance measures and reported dengue cases in the same or subsequent months. Monthly average temperature, rainfall, and indoor abundance of Ae. aegypti females were positively correlated (P ≤ 0.001) with dengue case numbers in subsequent months with lag times of 3–5, 2, and 1–2 months, respectively. However, because dengue outbreak risk is strongly influenced by serotype-specific susceptibility of the human population to DENV, the value of weather conditions and entomological indices to predict outbreaks is very limited. Potential ways to improve the sensitivity of mosquito-based DENV surveillance are discussed. PMID:25118425

  4. Potential for Co-Infection of a Mosquito-Specific Flavivirus, Nhumirim Virus, to Block West Nile Virus Transmission in Mosquitoes

    PubMed Central

    Goenaga, Silvina; Kenney, Joan L.; Duggal, Nisha K.; Delorey, Mark; Ebel, Gregory D.; Zhang, Bo; Levis, Silvana C.; Enria, Delia A.; Brault, Aaron C.

    2015-01-01

    Nhumirim virus (NHUV) is an insect-specific virus that phylogenetically affiliates with dual-host mosquito-borne flaviviruses. Previous in vitro co-infection experiments demonstrated prior or concurrent infection of Aedes albopictus C6/36 mosquito cells with NHUV resulted in a 10,000-fold reduction in viral production of West Nile virus (WNV). This interference between WNV and NHUV was observed herein in an additional Ae. albopictus mosquito cell line, C7-10. A WNV 2K peptide (V9M) mutant capable of superinfection with a pre-established WNV infection demonstrated a comparable level of interference from NHUV as the parental WNV strain in C6/36 and C7-10 cells. Culex quinquefasciatus and Culex pipiens mosquitoes intrathoracically inoculated with NHUV and WNV, or solely with WNV as a control, were allowed to extrinsically incubate the viruses up to nine and 14 days, respectively, and transmissibility and replication of WNV was determined. The proportion of Cx. quinquefasciatus mosquitoes capable of transmitting WNV was significantly lower for the WNV/NHUV group than the WNV control at seven and nine days post inoculation (dpi), while no differences were observed in the Cx. pipiens inoculation group. By dpi nine, a 40% reduction in transmissibility in mosquitoes from the dual inoculation group was observed compared to the WNV-only control. These data indicate the potential that infection of some Culex spp. vectors with NHUV could serve as a barrier for efficient transmissibility of flaviviruses associated with human disease. PMID:26569286

  5. Susceptibility of Florida Aedes aegypti and Aedes albopictus to dengue viruses from Puerto Rico.

    PubMed

    Alto, Barry W; Smartt, Chelsea T; Shin, Dongyoung; Bettinardi, David; Malicoate, Jolene; Anderson, Sheri L; Richards, Stephanie L

    2014-12-01

    Locally acquired dengue cases in the continental U.S. are rare. However, outbreaks of dengue-1 during 2009, 2010, and 2013 in Florida and dengue-1 and -2 in Texas suggest vulnerability to transmission. Travel and commerce between Puerto Rico and the U.S. mainland is common, which may pose a risk for traveler-imported dengue cases. Mosquitoes were collected in Florida and used to evaluate their susceptibility to dengue viruses (DENV) from Puerto Rico. Aedes aegypti and Ae. albopictus were susceptible to virus infection with DENV-1 and -2. No significant differences were observed in rates of midgut infection or dissemination between Ae. aegypti or Ae. albopictus for DENV-1 (6-14%). Aedes aegypti was significantly more susceptible to midgut infection with DENV-2 than Ae. albopictus (Ae. aegypti, ∼28%; Ae. albopictus, ∼9%). The dissemination rate with dengue-2 virus for Ae. aegypti (23%) was greater than Ae. albopictus (0%), suggesting that Ae. albopictus is not likely to be an important transmitter of the DENV-2 isolate from Puerto Rico. These results are discussed in light of Florida's vulnerability to DENV transmission.

  6. Chikungunya virus and its mosquito vectors.

    PubMed

    Higgs, Stephen; Vanlandingham, Dana

    2015-04-01

    Chikungunya virus (CHIKV), a mosquito-borne alphavirus of increasing public health significance, has caused large epidemics in Africa and the Indian Ocean basin; now it is spreading throughout the Americas. The primary vectors of CHIKV are Aedes (Ae.) aegypti and, after the introduction of a mutation in the E1 envelope protein gene, the highly anthropophilic and geographically widespread Ae. albopictus mosquito. We review here research efforts to characterize the viral genetic basis of mosquito-vector interactions, the use of RNA interference and other strategies for the control of CHIKV in mosquitoes, and the potentiation of CHIKV infection by mosquito saliva. Over the past decade, CHIKV has emerged on a truly global scale. Since 2013, CHIKV transmission has been reported throughout the Caribbean region, in North America, and in Central and South American countries, including Brazil, Columbia, Costa Rica, El Salvador, French Guiana, Guatemala, Guyana, Nicaragua, Panama, Suriname, and Venezuela. Closing the gaps in our knowledge of driving factors behind the rapid geographic expansion of CHIKV should be considered a research priority. The abundance of multiple primate species in many of these countries, together with species of mosquito that have never been exposed to CHIKV, may provide opportunities for this highly adaptable virus to establish sylvatic cycles that to date have not been seen outside of Africa. The short-term and long-term ecological consequences of such transmission cycles, including the impact on wildlife and people living in these areas, are completely unknown.

  7. Effects of Beauveria bassiana on Survival, Blood-Feeding Success, and Fecundity of Aedes aegypti in Laboratory and Semi-Field Conditions

    PubMed Central

    Darbro, Jonathan M.; Johnson, Petrina H.; Thomas, Matthew B.; Ritchie, Scott A.; Kay, Brian H.; Ryan, Peter A.

    2012-01-01

    The fungus Beauveria bassiana reduces Aedes aegypti longevity in laboratory conditions, but effects on survival, blood-feeding behavior, and fecundity in realistic environmental conditions have not been tested. Adult, female Ae. aegypti infected with B. bassiana (FI-277) were monitored for blood-feeding success and fecundity in the laboratory. Fungal infection reduced mosquito-human contact by 30%. Fecundity was reduced by (mean ± SD) 29.3 ± 8.6 eggs per female per lifetime in the laboratory; egg batch size and viability were unaffected. Mosquito survival, blood-feeding behavior, and fecundity were also tested in 5 meter×7 meter×4 meter semi-field cages in northern Queensland, Australia. Fungal infection reduced mosquito survival in semi-field conditions by 59–95% in large cages compared with 61–69% in small cages. One semi-field cage trial demonstrated 80% reduction in blood-feeding; a second trial showed no significant effect. Infection did not affect fecundity in large cages. Beauveria bassiana can kill and may reduce biting of Ae. aegypti in semi-field conditions and in the laboratory. These results further support the use of B. bassiana as a potential biocontrol agent against Ae. aegypti. PMID:22492151

  8. Mosquito larvicidal and pupaecidal potential of prodigiosin from Serratia marcescens and understanding its mechanism of action.

    PubMed

    Suryawanshi, Rahul K; Patil, Chandrashekhar D; Borase, Hemant P; Narkhede, Chandrakant P; Salunke, Bipinchandra K; Patil, Satish V

    2015-09-01

    Mosquitoes spread lethal diseases like malaria and dengue fever to humans. Considering mosquito vector control as one of the best alternatives to reduce new infections, here we have analyzed the effect of purified pigment prodigiosin extracted from Serratia marcescens (NMCC 75) against larval and pupal stages of Aedes aegypti and Anopheles stephensi mosquitoes. Mosquito larvicidal activities of purified prodigiosin revealed LC50 values of 14 ± 1.2, 15.6 ± 1.48, 18 ± 1.3, 21 ± 0.87 µg/ml against early IInd, IIIrd, IVth instar and pupal stages of Ae. aegypti, respectively. LC50 values for An. stephensi were found to be 19.7 ± 1.12, 24.7 ± 1.47, 26.6 ± 1.67, 32.2 ± 1.79 µg/ml against early IInd, IIIrd, IVth instar and pupae of An. stephensi, respectively. Further investigations toward understanding modes of action revealed variations in the activities of esterases, acetylcholine esterases, phosphatases, proteases and total proteins in the fourth instar larvae of Ae. aegypti indicating intrinsic difference in biochemical features due to prodigiosin treatment. Although there was no inhibition of enzymes like catalase and oxidase but may have profound inhibitory effect on carbonic anhydrase or H(+)-V-ATPase which is indicated by change in the pH of midgut and caeca of mosquito larvae. This reduced pH may be possibly due to the proton pump inhibitory activity of prodigiosin. Pure prodigiosin can prove to be an important molecule for mosquito control at larval and pupal stages of Ae. aegypti and An. stephensi. This is the first report on the mosquito pupaecidal activity of prodigiosin and its possible mechanism of action.

  9. High Wolbachia density correlates with cost of infection for insecticide resistant Culex pipiens mosquitoes.

    PubMed

    Duron, Olivier; Labbé, Pierrick; Berticat, Claire; Rousset, François; Guillot, Sylvain; Raymond, Michel; Weill, Mylène

    2006-02-01

    In the mosquito Culex pipiens, insecticide resistance genes alter many life-history traits and incur a fitness cost. Resistance to organophosphate insecticides involves two loci, with each locus coding for a different mechanism of resistance (degradation vs. insensitivity to insecticides). The density of intracellular Wolbachia bacteria has been found to be higher in resistant mosquitoes, regardless of the mechanism involved. To discriminate between costs of resistance due to resistance genes from those associated with elevated Wolbachia densities, we compared strains of mosquito sharing the same genetic background but differing in their resistance alleles and Wolbachia infection status. Life-history traits measured included strength of insecticide resistance, larval mortality, adult female size, fecundity, predation avoidance, mating competition, and strength of cytoplasmic incompatibility (CI). We found that: (1) when Wolbachia are removed, insecticide resistance genes still affect some life-history traits; (2) Wolbachia are capable of modifying the cost of resistance; (3) the cost of Wolbachia infections increases with their density; (4) different interactions occurred depending on the resistance alleles involved; and (5) high densities of Wolbachia do not increase the strength of CI or maternal transmission efficiency relative to low Wolbachia densities. Insecticide resistance genes generated variation in the costs of Wolbachia infections and provided an interesting opportunity to study how these costs evolve, a process generally operating when Wolbachia colonizes a new host.

  10. Mosquito-borne infections in Fiji. V. The 1971-73 dengue epidemic.

    PubMed

    Maguire, T; Miles, J A; Macnamara, F N; Wilkinson, P J; Austin, F J; Mataika, J U

    1974-10-01

    A dengue epidemic due to type 2 virus involving some 3,400 cases began in Fiji early in 1971, had a peak during May, June and July, and cases have continued to occur with a low incidence during 1972 and 1973. Many of the notified cases showed classical dengue fever symptoms and there were no confirmed cases of haemorrhagic fever. A serological survey indicated that there had been at least 20,000 subclinical infections. It is probable that the virus was introduced to Fiji either through the port of Lautoka or Nadi international airport in February 1971. The normal travel patterns of residents must have spread the virus to all the more accessible localities but, with the exception of Rotuma, it caused infections only in areas where Aedes aegypti was available as a vector. There was no evidence that pre-existing dengue type 1 serum antibody gave any protection during this epidemic.

  11. Genome analysis and polar tube firing dynamics of mosquito-infecting microsporidia

    PubMed Central

    Troemel, Emily R.; Becnel, James J.

    2015-01-01

    Microsporidia are highly divergent fungi that are obligate intracellular pathogens of a wide range of host organisms. Here we review recent findings from the genome sequences of mosquito-infecting microsporidian species Edhazardia aedis and Vavraia culicis, which show large differences in genome size, although similar numbers of predicted genes. We also show a video of E. aedis polar tube firing, which is the dramatic mechanism used by microsporidia to deliver the germ cell (sporoplasm) into the host cell to initiate intracellular infection. PMID:26300319

  12. Heat Sensitivity of wMel Wolbachia during Aedes aegypti Development

    PubMed Central

    Beier, John C.; Devine, Gregor J.; Hugo, Leon E.

    2016-01-01

    The wMel strain of Wolbachia bacteria is known to prevent dengue and Zika virus transmission in the mosquito vector Aedes aegypti. Accordingly, the release of wMel-infected A. aegypti in endemic regions has been recommended by the World Health Organization as a potential strategy for controlling dengue and Zika outbreaks. However, the utility of this approach could be limited if high temperatures in the aquatic habitats where A. aegypti develop are detrimental to Wolbachia. We exposed wMel-infected A. aegypti eggs and larvae to fluctuating daily temperatures of 30–40°C for three, five, or seven days during their development. We found that Wolbachia levels in females emerging from heat treatments were significantly lower than in the controls that had developed at 20–30°C. Notably, seven days of high temperatures starting at the egg stage reduced Wolbachia levels in emerging females to less than 0.1% of the wMel control levels. However, after adult females returned to 20–30°C for 4–7 days, they experienced differing degrees of Wolbachia recovery. Our findings suggest that the spread of Wolbachia in wild A. aegypti populations and any consequent protection from dengue and Zika viruses might be limited in ecosystems that experience periods of extreme heat, but Wolbachia levels recover partially after temperatures return to normal. PMID:27459519

  13. Heat Sensitivity of wMel Wolbachia during Aedes aegypti Development.

    PubMed

    Ulrich, Jill N; Beier, John C; Devine, Gregor J; Hugo, Leon E

    2016-07-01

    The wMel strain of Wolbachia bacteria is known to prevent dengue and Zika virus transmission in the mosquito vector Aedes aegypti. Accordingly, the release of wMel-infected A. aegypti in endemic regions has been recommended by the World Health Organization as a potential strategy for controlling dengue and Zika outbreaks. However, the utility of this approach could be limited if high temperatures in the aquatic habitats where A. aegypti develop are detrimental to Wolbachia. We exposed wMel-infected A. aegypti eggs and larvae to fluctuating daily temperatures of 30-40°C for three, five, or seven days during their development. We found that Wolbachia levels in females emerging from heat treatments were significantly lower than in the controls that had developed at 20-30°C. Notably, seven days of high temperatures starting at the egg stage reduced Wolbachia levels in emerging females to less than 0.1% of the wMel control levels. However, after adult females returned to 20-30°C for 4-7 days, they experienced differing degrees of Wolbachia recovery. Our findings suggest that the spread of Wolbachia in wild A. aegypti populations and any consequent protection from dengue and Zika viruses might be limited in ecosystems that experience periods of extreme heat, but Wolbachia levels recover partially after temperatures return to normal.

  14. Heat Sensitivity of wMel Wolbachia during Aedes aegypti Development.

    PubMed

    Ulrich, Jill N; Beier, John C; Devine, Gregor J; Hugo, Leon E

    2016-07-01

    The wMel strain of Wolbachia bacteria is known to prevent dengue and Zika virus transmission in the mosquito vector Aedes aegypti. Accordingly, the release of wMel-infected A. aegypti in endemic regions has been recommended by the World Health Organization as a potential strategy for controlling dengue and Zika outbreaks. However, the utility of this approach could be limited if high temperatures in the aquatic habitats where A. aegypti develop are detrimental to Wolbachia. We exposed wMel-infected A. aegypti eggs and larvae to fluctuating daily temperatures of 30-40°C for three, five, or seven days during their development. We found that Wolbachia levels in females emerging from heat treatments were significantly lower than in the controls that had developed at 20-30°C. Notably, seven days of high temperatures starting at the egg stage reduced Wolbachia levels in emerging females to less than 0.1% of the wMel control levels. However, after adult females returned to 20-30°C for 4-7 days, they experienced differing degrees of Wolbachia recovery. Our findings suggest that the spread of Wolbachia in wild A. aegypti populations and any consequent protection from dengue and Zika viruses might be limited in ecosystems that experience periods of extreme heat, but Wolbachia levels recover partially after temperatures return to normal. PMID:27459519

  15. Malaria infection potential of anopheline mosquitoes sampled by light trapping indoors in coastal Tanzanian villages.

    PubMed

    Shiff, C J; Minjas, J N; Hall, T; Hunt, R H; Lyimo, S; Davis, J R

    1995-07-01

    Anopheline mosquito populations were studied during 1992 in seven villages south of Bagamoyo, coastal Tanzania, prior to malaria control intervention using insecticide treated bednets. To collect mosquitoes, CDC light traps were used in ten houses per village fortnightly for 12 months. Anopheles females were identified and checked by ELISA for the presence of malaria sporozoite antigen and source of bloodmeal. An.funestus peaked in June-July after the long rains. Three members of the An.gambiae complex had different seasonality: An.arabiensis, An.gambiae and small numbers of An.merus were collected. In most villages transmission was extremely high and perennial with the entomological inoculation rate reaching three to eleven infective bites per person per night in July and persisting at around 0.1 and 1 for most of the remainder of the year. Sporozoite infection rates within the An.gambiae complex ranged from 2% to 25%, with the peaks in January and July following the two rainy periods. An.funestus showed a similar pattern. The light traps were reliable, simple to operate, and proved to be satisfactory to study the mosquito vector population.

  16. Female Adult Aedes albopictus Suppression by Wolbachia-Infected Male Mosquitoes

    PubMed Central

    Mains, James W.; Brelsfoard, Corey L.; Rose, Robert I.; Dobson, Stephen L.

    2016-01-01

    Dengue, chikungunya and zika viruses are pathogens with an increasing global impact. In the absence of an approved vaccine or therapy, their management relies on controlling the mosquito vectors. But traditional controls are inadequate, and the range of invasive species such as Aedes albopictus (Asian Tiger Mosquito) is expanding. Genetically modified mosquitoes are being tested, but their use has encountered regulatory barriers and public opposition in some countries. Wolbachia bacteria can cause a form of conditional sterility, which can provide an alternative to genetic modification or irradiation. It is unknown however, whether openly released, artificially infected male Ae. albopictus can competitively mate and sterilize females at a level adequate to suppress a field population. Also, the unintended establishment of Wolbachia at the introduction site could result from horizontal transmission or inadvertent female release. In 2014, an Experimental Use Permit from the United States Environmental Protection Agency approved a pilot field trial in Lexington, Kentucky, USA. Here, we present data showing localized reduction of both egg hatch and adult female numbers. The artificial Wolbachia type was not observed to establish in the field. The results are discussed in relation to the applied use of Wolbachia-infected males as a biopesticide to suppress field populations of Ae. albopictus. PMID:27659038

  17. Mosquito densonucleosis virus non-structural protein NS2 is necessary for a productive infection

    SciTech Connect

    Azarkh, Eugene; Robinson, Erin; Hirunkanokpun, Supanee; Afanasiev, Boris; Kittayapong, Pattamaporn; Carlson, Jonathan Corsini, Joe

    2008-04-25

    Mosquito densonucleosis viruses synthesize two non-structural proteins, NS1 and NS2. While NS1 has been studied relatively well, little is known about NS2. Antiserum was raised against a peptide near the N-terminus of NS2, and used to conduct Western blot analysis and immuno-fluorescence assays. Western blots revealed a prominent band near the expected size (41 kDa). Immuno-fluorescence studies of mosquito cells transfected with AeDNV indicate that NS2 has a wider distribution pattern than does NS1, and the distribution pattern appears to be a function of time post-infection. Nuclear localization of NS2 requires intact C-terminus but does not require additional viral proteins. Mutations ranging from complete NS2 knock-out to a single missense amino acid substitution in NS2 can significantly reduce viral replication and production of viable progeny.

  18. Vector Competence of Australian Mosquitoes for Yellow Fever Virus

    PubMed Central

    van den Hurk, Andrew F.; McElroy, Kate; Pyke, Alyssa T.; McGee, Charles E.; Hall-Mendelin, Sonja; Day, Andrew; Ryan, Peter A.; Ritchie, Scott A.; Vanlandingham, Dana L.; Higgs, Stephen

    2011-01-01

    The vector competence of Australian mosquitoes for yellow fever virus (YFV) was evaluated. Infection and transmission rates in Cairns and Townsville populations of Aedes aegypti and a Brisbane strain of Ae. notoscriptus were not significantly different from a well-characterized YFV-susceptible strain of Ae. aegypti. After exposure to 107.2 tissue culture infectious dose (TCID50)/mL of an African strain of YFV, > 70% of Ae. aegypti and Ae. notoscriptus became infected, and > 50% transmitted the virus. When exposed to 106.7 TCID50/mL of a South American strain of YFV, the highest infection (64%) and transmission (56%) rates were observed in Ae. notoscriptus. The infection and transmission rates in the Cairns Ae. aegypti were both 24%, and they were 36% and 28%, respectively, for the Townsville population. Because competent vectors are present, the limited number of travelers from endemic areas and strict vaccination requirements will influence whether YFV transmission occurs in Australia. PMID:21896802

  19. Small RNA Profiling in Dengue Virus 2-Infected Aedes Mosquito Cells Reveals Viral piRNAs and Novel Host miRNAs

    PubMed Central

    Miesen, Pascal; Ivens, Alasdair; Buck, Amy H.; van Rij, Ronald P.

    2016-01-01

    In Aedes mosquitoes, infections with arthropod-borne viruses (arboviruses) trigger or modulate the expression of various classes of viral and host-derived small RNAs, including small interfering RNAs (siRNAs), PIWI interacting RNAs (piRNAs), and microRNAs (miRNAs). Viral siRNAs are at the core of the antiviral RNA interference machinery, one of the key pathways that limit virus replication in invertebrates. Besides siRNAs, Aedes mosquitoes and cells derived from these insects produce arbovirus-derived piRNAs, the best studied examples being viruses from the Togaviridae or Bunyaviridae families. Host miRNAs modulate the expression of a large number of genes and their levels may change in response to viral infections. In addition, some viruses, mostly with a DNA genome, express their own miRNAs to regulate host and viral gene expression. Here, we perform a comprehensive analysis of both viral and host-derived small RNAs in Aedes aegypti Aag2 cells infected with dengue virus 2 (DENV), a member of the Flaviviridae family. Aag2 cells are competent in producing all three types of small RNAs and provide a powerful tool to explore the crosstalk between arboviral infection and the distinct RNA silencing pathways. Interestingly, besides the well-characterized DENV-derived siRNAs, a specific population of viral piRNAs was identified in infected Aag2 cells. Knockdown of Piwi5, Ago3 and, to a lesser extent, Piwi6 results in reduction of vpiRNA levels, providing the first genetic evidence that Aedes PIWI proteins produce DENV-derived small RNAs. In contrast, we do not find convincing evidence for the production of virus-derived miRNAs. Neither do we find that host miRNA expression is strongly changed upon DENV2 infection. Finally, our deep-sequencing analyses detect 30 novel Aedes miRNAs, complementing the repertoire of regulatory small RNAs in this important vector species. PMID:26914027

  20. Using Wolbachia Releases to Estimate Aedes aegypti (Diptera: Culicidae) Population Size and Survival

    PubMed Central

    Garcia, Gabriela de Azambuja; dos Santos, Lilha Maria Barbosa; Villela, Daniel Antunes Maciel; Maciel-de-Freitas, Rafael

    2016-01-01

    Mosquitoes carrying the endosymbiont bacterium Wolbachia have been deployed in field trials as a biological control intervention due to Wolbachia effects on reducing transmission of arboviruses. We performed mark, release and recapture (MRR) experiments using Wolbachia as an internal marker with daily collections with BG-Traps during the first two weeks of releases in Rio de Janeiro, Brazil. The MRR design allowed us to investigate two critical parameters that determine whether Wolbachia would successful invade a field population: the probability of daily survival (PDS) of Wolbachia-infected Aedes aegypti females, and the wild population density during releases. Released females had a PDS of 0.82 and 0.89 in the first and second weeks, respectively, immediately after releases, which is well within the range of previous estimates of survivorship of wild mosquitoes in Rio de Janeiro. Abundance estimation of wild population varied up to 10-fold higher depending on the estimation method used (634–3565 females on the average-difference model to 6365–16188 females according to Lincoln-Petersen). Wolbachia-released mosquitoes were lower than the density estimation of their wild counterparts, irrespectively of the model used. Individually screening mosquitoes for the presence of Wolbachia reduced uncertainty on abundance estimations due to fluctuation in capturing per week. A successful invasion into local population requires Ae. aegypti fitness is unaffected by Wolbachia presence, but also reliable estimates on the population size of wild mosquitoes. PMID:27479050

  1. Using Wolbachia Releases to Estimate Aedes aegypti (Diptera: Culicidae) Population Size and Survival.

    PubMed

    Garcia, Gabriela de Azambuja; Dos Santos, Lilha Maria Barbosa; Villela, Daniel Antunes Maciel; Maciel-de-Freitas, Rafael

    2016-01-01

    Mosquitoes carrying the endosymbiont bacterium Wolbachia have been deployed in field trials as a biological control intervention due to Wolbachia effects on reducing transmission of arboviruses. We performed mark, release and recapture (MRR) experiments using Wolbachia as an internal marker with daily collections with BG-Traps during the first two weeks of releases in Rio de Janeiro, Brazil. The MRR design allowed us to investigate two critical parameters that determine whether Wolbachia would successful invade a field population: the probability of daily survival (PDS) of Wolbachia-infected Aedes aegypti females, and the wild population density during releases. Released females had a PDS of 0.82 and 0.89 in the first and second weeks, respectively, immediately after releases, which is well within the range of previous estimates of survivorship of wild mosquitoes in Rio de Janeiro. Abundance estimation of wild population varied up to 10-fold higher depending on the estimation method used (634-3565 females on the average-difference model to 6365-16188 females according to Lincoln-Petersen). Wolbachia-released mosquitoes were lower than the density estimation of their wild counterparts, irrespectively of the model used. Individually screening mosquitoes for the presence of Wolbachia reduced uncertainty on abundance estimations due to fluctuation in capturing per week. A successful invasion into local population requires Ae. aegypti fitness is unaffected by Wolbachia presence, but also reliable estimates on the population size of wild mosquitoes. PMID:27479050

  2. Sustained activation of Akt elicits mitochondrial dysfunction to block Plasmodium falciparum infection in the mosquito host.

    PubMed

    Luckhart, Shirley; Giulivi, Cecilia; Drexler, Anna L; Antonova-Koch, Yevgeniya; Sakaguchi, Danielle; Napoli, Eleonora; Wong, Sarah; Price, Mark S; Eigenheer, Richard; Phinney, Brett S; Pakpour, Nazzy; Pietri, Jose E; Cheung, Kong; Georgis, Martha; Riehle, Michael

    2013-02-01

    The overexpression of activated, myristoylated Akt in the midgut of female transgenic Anopheles stephensi results in resistance to infection with the human malaria parasite Plasmodium falciparum but also decreased lifespan. In the present study, the understanding of mitochondria-dependent midgut homeostasis has been expanded to explain this apparent paradox in an insect of major medical importance. Given that Akt signaling is essential for cell growth and survival, we hypothesized that sustained Akt activation in the mosquito midgut would alter the balance of critical pathways that control mitochondrial dynamics to enhance parasite killing at some cost to survivorship. Toxic reactive oxygen and nitrogen species (RNOS) rise to high levels in the midgut after blood feeding, due to a combination of high NO production and a decline in FOXO-dependent antioxidants. Despite an apparent increase in mitochondrial biogenesis in young females (3 d), energy deficiencies were apparent as decreased oxidative phosphorylation and increased [AMP]/[ATP] ratios. In addition, mitochondrial mass was lower and accompanied by the presence of stalled autophagosomes in the posterior midgut, a critical site for blood digestion and stem cell-mediated epithelial maintenance and repair, and by functional degradation of the epithelial barrier. By 18 d, the age at which An. stephensi would transmit P. falciparum to human hosts, mitochondrial dysfunction coupled to Akt-mediated repression of autophagy/mitophagy was more evident and midgut epithelial structure was markedly compromised. Inhibition of RNOS by co-feeding of the nitric-oxide synthase inhibitor L-NAME at infection abrogated Akt-dependent killing of P. falciparum that begins within 18 h of infection in 3-5 d old mosquitoes. Hence, Akt-induced changes in mitochondrial dynamics perturb midgut homeostasis to enhance parasite resistance and decrease mosquito infective lifespan. Further, quality control of mitochondrial function in the

  3. Sustained Activation of Akt Elicits Mitochondrial Dysfunction to Block Plasmodium falciparum Infection in the Mosquito Host

    PubMed Central

    Drexler, Anna L.; Antonova-Koch, Yevgeniya; Sakaguchi, Danielle; Napoli, Eleonora; Wong, Sarah; Price, Mark S.; Eigenheer, Richard; Phinney, Brett S.; Pakpour, Nazzy; Pietri, Jose E.; Cheung, Kong; Georgis, Martha; Riehle, Michael

    2013-01-01

    The overexpression of activated, myristoylated Akt in the midgut of female transgenic Anopheles stephensi results in resistance to infection with the human malaria parasite Plasmodium falciparum but also decreased lifespan. In the present study, the understanding of mitochondria-dependent midgut homeostasis has been expanded to explain this apparent paradox in an insect of major medical importance. Given that Akt signaling is essential for cell growth and survival, we hypothesized that sustained Akt activation in the mosquito midgut would alter the balance of critical pathways that control mitochondrial dynamics to enhance parasite killing at some cost to survivorship. Toxic reactive oxygen and nitrogen species (RNOS) rise to high levels in the midgut after blood feeding, due to a combination of high NO production and a decline in FOXO-dependent antioxidants. Despite an apparent increase in mitochondrial biogenesis in young females (3 d), energy deficiencies were apparent as decreased oxidative phosphorylation and increased [AMP]/[ATP] ratios. In addition, mitochondrial mass was lower and accompanied by the presence of stalled autophagosomes in the posterior midgut, a critical site for blood digestion and stem cell-mediated epithelial maintenance and repair, and by functional degradation of the epithelial barrier. By 18 d, the age at which An. stephensi would transmit P. falciparum to human hosts, mitochondrial dysfunction coupled to Akt-mediated repression of autophagy/mitophagy was more evident and midgut epithelial structure was markedly compromised. Inhibition of RNOS by co-feeding of the nitric-oxide synthase inhibitor L-NAME at infection abrogated Akt-dependent killing of P. falciparum that begins within 18 h of infection in 3–5 d old mosquitoes. Hence, Akt-induced changes in mitochondrial dynamics perturb midgut homeostasis to enhance parasite resistance and decrease mosquito infective lifespan. Further, quality control of mitochondrial function in the

  4. Sterol Carrier Protein 2, a Critical Host Factor for Dengue Virus Infection, Alters the Cholesterol Distribution in Mosquito Aag2 Cells.

    PubMed

    Fu, Qiang; Inankur, Bahar; Yin, John; Striker, Rob; Lan, Que

    2015-09-01

    Host factors that enable dengue virus (DENV) to propagate in the mosquito host cells are unclear. It is known that cellular cholesterol plays an important role in the life cycle of DENV in human host cells but unknown if the lipid requirements differ for mosquito versus mammalian. In mosquito Aedes aegypti, sterol carrier protein 2 (SCP-2) is critical for cellular cholesterol homeostasis. In this study, we identified SCP-2 as a critical host factor for DENV production in mosquito Aag2 cells. Treatment with a small molecule commonly referred to as SCPI-1, (N-(4-{[4-(3,4-dichlorophenyl)-1,3-thiazol-2-yl]amino}phenyl)acetamide hydrobromide, a known inhibitor of SCP-2, or knockdown of SCP-2 dramatically repressed the virus production in mosquito but not mammalian cells. We showed that the intracellular cholesterol distribution in mosquito cells was altered by SCP-2 inhibitor treatment, suggesting that SCP-2-mediated cholesterol trafficking pathway is important for DENV viral production. A comparison of the effect of SCP-2 on mosquito and human cells suggests that SCPI-1 treatment decreases cholesterol in both cell lines, but this decrease in cholesterol only leads to a decline in viral titer in mosquito host cells, perhaps, owing to a more drastic effect on perinuclear cholesterol storages in mosquito cells that was absent in human cells. SCP-2 had no inhibitory effect on another enveloped RNA virus grown in mosquito cells, suggesting that SCP-2 does not have a generalized anti-cellular or antiviral effect. Our cell culture results imply that SCP-2 may play a limiting role in mosquito-dengue vector competence.

  5. West Nile virus infection in birds and mosquitoes, New York State, 2000.

    PubMed Central

    Bernard, K. A.; Maffei, J. G.; Jones, S. A.; Kauffman, E. B.; Ebel, G.; Dupuis, A. P.; Ngo, K. A.; Nicholas, D. C.; Young, D. M.; Shi, P. Y.; Kulasekera, V. L.; Eidson, M.; White, D. J.; Stone, W. B.; Kramer, L. D.

    2001-01-01

    West Nile (WN) virus was found throughout New York State in 2000, with the epicenter in New York City and surrounding counties. We tested 3,403 dead birds and 9,954 mosquito pools for WN virus during the transmission season. Sixty-three avian species, representing 30 families and 14 orders, tested positive for WN virus. The highest proportion of dead birds that tested positive for WN virus was in American Crows in the epicenter (67% positive, n=907). Eight mosquito species, representing four genera, were positive for WN virus. The minimum infection rate per 1,000 mosquitoes (MIR) was highest for Culex pipiens in the epicenter: 3.53 for the entire season and 7.49 for the peak week of August 13. Staten Island had the highest MIR (11.42 for Cx. pipiens), which was associated with the highest proportion of dead American Crows that tested positive for WN virus (92%, n=48) and the highest number of human cases (n=10). PMID:11585532

  6. Aedes aegypti from temperate regions of South America are highly competent to transmit dengue virus

    PubMed Central

    2013-01-01

    Background Aedes aegypti is extensively spread throughout South America where it has been responsible for large dengue epidemics during the last decades. Intriguingly, dengue transmission has not been reported in Uruguay and is essentially prevalent in subtropical northern Argentina which borders Uruguay. Methods We assessed vector competence for dengue virus (DENV) of Ae. aegypti populations collected in subtropical Argentina (Corrientes) as well as temperate Uruguay (Salto) and Argentina (Buenos Aires) in 2012 using experimental oral infections with DENV-2. Mosquitoes were incubated at 28°C and examined at 14 and 21 days p.i. to access viral dissemination and transmission. Batches of the Buenos Aires mosquitoes were also incubated at 15°C and 20°C. Results Although mosquitoes from temperate Uruguay and Argentina were competent to transmit DENV, those from subtropical Argentina were more susceptible, displaying the highest virus titters in the head and presenting the highest dissemination of infection and transmission efficiency rates when incubated at 28°C. Interestingly, infectious viral particles could be detected in saliva of mosquitoes from Buenos Aires exposed to 15°C and 20°C. Conclusions There is a potential risk of establishing DENV transmission in Uruguay and for the spread of dengue outbreaks to other parts of subtropical and temperate Argentina, notably during spring and summer periods. PMID:24373423

  7. Infection-Induced Interaction between the Mosquito Circulatory and Immune Systems

    PubMed Central

    King, Jonas G.; Hillyer, Julián F.

    2012-01-01

    Insects counter infection with innate immune responses that rely on cells called hemocytes. Hemocytes exist in association with the insect's open circulatory system and this mode of existence has likely influenced the organization and control of anti-pathogen immune responses. Previous studies reported that pathogens in the mosquito body cavity (hemocoel) accumulate on the surface of the heart. Using novel cell staining, microdissection and intravital imaging techniques, we investigated the mechanism of pathogen accumulation in the pericardium of the malaria mosquito, Anopheles gambiae, and discovered a novel insect immune tissue, herein named periostial hemocytes, that sequesters pathogens as they flow with the hemolymph. Specifically, we show that there are two types of endocytic cells that flank the heart: periostial hemocytes and pericardial cells. Resident periostial hemocytes engage in the rapid phagocytosis of pathogens, and during the course of a bacterial or Plasmodium infection, circulating hemocytes migrate to the periostial regions where they bind the cardiac musculature and each other, and continue the phagocytosis of invaders. Periostial hemocyte aggregation occurs in a time- and infection dose-dependent manner, and once this immune process is triggered, the number of periostial hemocytes remains elevated for the lifetime of the mosquito. Finally, the soluble immune elicitors peptidoglycan and β-1,3-glucan also induce periostial hemocyte aggregation, indicating that this is a generalized and basal immune response that is induced by diverse immune stimuli. These data describe a novel insect cellular immune response that fundamentally relies on the physiological interaction between the insect circulatory and immune systems. PMID:23209421

  8. Energy metabolism affects susceptibility of A. gambiae mosquitoes to Plasmodium infection

    PubMed Central

    Oliveira, Jose Henrique M.; Gonçalves, Renata L.S.; Oliveira, Giselle A.; Oliveira, Pedro L.; Oliveira, Marcus F.; Barillas-Mury, Carolina

    2011-01-01

    Previous studies showed that A. gambiae L35 females, which are refractory (R) to Plasmodium infection, express higher levels of genes involved in redox-metabolism and mitochondrial respiration than susceptible (S) G3 females. Our studies revealed that R females have reduced longevity, faster utilization of lipid reserves, impaired mitochondrial State-3 respiration, increased rate of mitochondrial electron leak and higher expression levels of several glycolytic enzyme genes. Furthermore, when State-3 respiration was reduced in S females by silencing expression of the adenine nucleotide translocator (ANT), hydrogen peroxide generation was higher and the mRNA levels of lactate dehydrogenase increased in the midgut, while the prevalence and intensity of P. berghei infection were significantly reduced. We conclude that there are broad metabolic differences between R and S An. gambiae mosquitoes that influence their susceptibility to Plasmodium infection. PMID:21320598

  9. West Nile virus infection in mosquitoes, birds, horses, and humans, Staten Island, New York, 2000.

    PubMed Central

    Kulasekera, V. L.; Kramer, L.; Nasci, R. S.; Mostashari, F.; Cherry, B.; Trock, S. C.; Glaser, C.; Miller, J. R.

    2001-01-01

    West Nile (WN) virus transmission in the United States during 2000 was most intense on Staten Island, New York, where 10 neurologic illnesses among humans and 2 among horses occurred. WN virus was isolated from Aedes vexans, Culex pipiens, Cx. salinarius, Ochlerotatus triseriatus, and Psorophora ferox, and WN viral RNA was detected in Anopheles punctipennis. An elevated weekly minimum infection rate (MIR) for Cx. pipiens and increased dead bird density were present for 2 weeks before the first human illness occurred. Increasing mosquito MIRs and dead bird densities in an area may be indicators of an increasing risk for human infections. A transmission model is proposed involving Cx. pipiens and Cx. restuans as the primary enzootic and epizootic vectors among birds, Cx. salinarius as the primary bridge vector for humans, and Aedes/Ochlerotatus spp. as bridge vectors for equine infection. PMID:11589172

  10. Wolbachia and bacteriophage WO-B density of Wolbachia A-infected Aedes albopictus mosquito.

    PubMed

    Ahantarig, A; Trinachartvanit, W; Chauvatcharin, N; Kittayapong, P; Baimai, V

    2008-01-01

    Wolbachia are maternally inherited symbiotic bacteria capable of inducing an extensive range of reproductive abnormalities in their hosts, including cytoplasmic incompatibility (CI). Its density (concentration) is likely to influence the penetrance of CI in incompatible crosses. The variations of Wolbachia density could also be linked with phage WO density. We determined the relative density (relative concentration) of prophage WO orf7 and Wolbachia (phage-to-bacteria ratio) during early developmental and adult stages of singly infected Aedes albopictus mosquito (Wolbachia A-infected) by using real-time quantitative PCR. Phage WO and Wolbachia did not develop at the same rate. Relative Wolbachia density (bacteria-to-host ratio) was high later in development (adult stages) whilst relative prophage WO density (phage-to-bacteria ratio) was low in the adult stages. Furthermore, 12-d-old adults of singly infected female mosquito had the highest Wolbachia density. In contrast, the larval stage 4 (L4) contained the highest prophage WO-B orf7 density. The association of hosts-Wolbachia-phage among diverse species is different. Thus, if phage and Wolbachia are involved in CI mechanism, the information of this association should be acquired for each specific type of organism for future use of population replacement or gene drive system.

  11. Promising new tools to fight Aedes mosquitoes.

    PubMed

    2016-08-01

    Two new tools for suppressing Aedes aegypti mosquito populations have been recommended for pilot testing. Carefully designed trials will be needed to see whether they actually reduce disease as well. Andréia Azevedo Soares reports. PMID:27516632

  12. The role of octopamine receptor agonists in the synergistic toxicity of certain insect growth regulators (IGRs) in controlling Dengue vector Aedes aegypti (Diptera: Culicidae) mosquito.

    PubMed

    Ahmed, Mohamed Ahmed Ibrahim; Vogel, Christoph Franz Adam

    2016-03-01

    The synergistic action of octopamine receptor agonists (OR agonists) on many insecticide classes (e.g., organophosphorus, pyrethroids, and neonicotinoids) on Aedes aegypti L. has been reported recently. An investigation of OR agonist's effect on insect growth regulators (IGRs) was undertaken to provide a better understanding of the mechanism of action. Based on the IGR bioassay, pyriproxyfen was the most potent IGR insecticide tested (EC50=0.0019ng/ml). However, the lethal toxicity results indicate that diafenthiuron was the most potent insecticide (LC50=56ng/cm(2)) on A. aegypti adults after 24h of exposure. The same trend was true after 48 and 72h of exposure. Further, the synergistic effects of OR agonists plus amitraz (AMZ) or chlordimeform (CDM) was significant on adults. Among the tested synergists, AMZ increased the potency of the selected IGRs on adults the greatest. As results, OR agonists were largely synergistic with the selected IGRs. OR agonists enhanced the lethal toxicity of IGRs, which is a valuable new tool in the field of A. aegypti control. However, further field experiments need to be done to understand the unique potential role of OR agonists and their synergistic action on IGRs.

  13. Reappearance of Aedes aegypti (Diptera: Culicidae) in Lima, Peru.

    PubMed

    Andrade, C S; Cáceres, A G; Vaquerizo, A; Ibañez-Bernal, S; Cachay, L S

    2001-07-01

    We report here the reappearance of Aedes aegypti in the Rimac district, and summarize the history of this mosquito species in Peru since its first detection in 1852. On March 17 2000 were found Ae. aegypti and Culex quinquefasciatus in Mariscal Castilla town, Flor de Amancaes, San Juan de Amancaes, El Altillo and Santa Rosa in the Rimac district, Lima Province. PMID:11500764

  14. Vector Competence of American Mosquitoes for Three Strains of Zika Virus

    PubMed Central

    Rückert, Claudia; Chotiwan, Nunya; Nguyen, Chilinh; Garcia Luna, Selene M.; Fauver, Joseph R.; Foy, Brian D.; Perera, Rushika; Black, William C.; Kading, Rebekah C.; Ebel, Gregory D.

    2016-01-01

    In 2015, Zika virus (ZIKV; Flaviviridae; Flavivirus) emerged in the Americas, causing millions of infections in dozens of countries. The rapid spread of the virus and the association with disease outcomes such as Guillain-Barré syndrome and microcephaly make understanding transmission dynamics essential. Currently, there are no reports of vector competence (VC) of American mosquitoes for ZIKV isolates from the Americas. Further, it is not clear whether ZIKV strains from other genetic lineages can be transmitted by American Aedes aegypti populations, and whether the scope of the current epidemic is in part facilitated by viral factors such as enhanced replicative fitness or increased vector competence. Therefore, we characterized replication of three ZIKV strains, one from each of the three phylogenetic clades in several cell lines and assessed their abilities to be transmitted by Ae. aegypti mosquitoes. Additionally, laboratory colonies of different Culex spp. were infected with an American outbreak strain of ZIKV to assess VC. Replication rates were variable and depended on virus strain, cell line and MOI. African strains used in this study outcompeted the American strain in vitro in both mammalian and mosquito cell culture. West and East African strains of ZIKV tested here were more efficiently transmitted by Ae. aegypti from Mexico than was the currently circulating American strain of the Asian lineage. Long-established laboratory colonies of Culex mosquitoes were not efficient ZIKV vectors. These data demonstrate the capacity for additional ZIKV strains to infect and replicate in American Aedes mosquitoes and suggest that neither enhanced virus replicative fitness nor virus adaptation to local vector mosquitoes seems likely to explain the extent and intensity of ZIKV transmission in the Americas. PMID:27783679

  15. Reduction in host-finding behaviour in fungus-infected mosquitoes is correlated with reduction in olfactory receptor neuron responsiveness

    PubMed Central

    2011-01-01

    Background Chemical insecticides against mosquitoes are a major component of malaria control worldwide. Fungal entomopathogens formulated as biopesticides and applied as insecticide residual sprays could augment current control strategies and mitigate the evolution of resistance to chemical-based insecticides. Methods Anopheles stephensi mosquitoes were exposed to Beauveria bassiana or Metarhizium acridum fungal spores and sub-lethal effects of exposure to fungal infection were studied, especially the potential for reductions in feeding and host location behaviours related to olfaction. Electrophysiological techniques, such as electroantennogram, electropalpogram and single sensillum recording techniques were then employed to investigate how fungal exposure affected the olfactory responses in mosquitoes. Results Exposure to B. bassiana caused significant mortality and reduced the propensity of mosquitoes to respond and fly to a feeding stimulus. Exposure to M. acridum spores induced a similar decline in feeding propensity, albeit more slowly than B. bassiana exposure. Reduced host-seeking responses following fungal exposure corresponded to reduced olfactory neuron responsiveness in both antennal electroantennogram and maxillary palp electropalpogram recordings. Single cell recordings from neurons on the palps confirmed that fungal-exposed behavioural non-responders exhibited significantly impaired responsiveness of neurons tuned spe