Science.gov

Sample records for aeolian dune fields

  1. Boundary Conditions for Aeolian Activity in North American Dune Fields

    NASA Astrophysics Data System (ADS)

    Halfen, A. F.; Lancaster, N.; Wolfe, S.

    2014-12-01

    Geomorphic and chronological data for dune fields are evaluated for three contrasting areas of North America: 1) the Prairie-Parkland-Boreal ecozones of the northern Great Plains in Canada; 2) the Central Great Plains of the USA; and 3) the deserts of southwestern USA and northern Mexico. Luminescence and radiocarbon ages for periods of dune accumulation and stability are compared with palaeoenvironment proxies to provide an assessment of the boundary conditions of dune system response to changes in sediment supply, availability, and mobility. Dune fields in the northern Great Plains were formed from sediment originating from glaciofluvial or glaciolacustrine sediments deposited during deglaciation 16-11 ka. Subsequent aeolian deposition occurred in Parkland and Prairie dune fields as a result of mid-Holocene (8-5 ka) and late-Holocene (< 3.5 ka) activity related to drought conditions that reworked pre-existing aeolian sands. In the Central Great Plains, dune fields are closely linked to fluvial sediment sources. Sediment supply was high during deglaciation of the Rocky Mountains and resulted in widespread dune construction 16-10 ka. Multiple periods of Holocene reactivation are recorded and reflect increased sediment availability during drought episodes. Dune fields in the southwestern deserts experienced periods of construction as a result of enhanced supply of sediment from fluvial and lacustrine sources during the period 11.8-8 ka and at multiple intervals during the late Holocene. Despite spatial and temporal gaps in chronometric data as a result of sampling biases, the record from North American dune fields indicates the strong influence of sediment supply on dune construction, with changes in sediment availability as a result of drought episodes resulting in dune field reactivation and reworking of pre-existing sediment.

  2. Multi-spatial analysis of aeolian dune-field patterns

    NASA Astrophysics Data System (ADS)

    Ewing, Ryan C.; McDonald, George D.; Hayes, Alex G.

    2015-07-01

    Aeolian dune-fields are composed of different spatial scales of bedform patterns that respond to changes in environmental boundary conditions over a wide range of time scales. This study examines how variations in spatial scales of dune and ripple patterns found within dune fields are used in environmental reconstructions on Earth, Mars and Titan. Within a single bedform type, different spatial scales of bedforms emerge as a pattern evolves from an initial state into a well-organized pattern, such as with the transition from protodunes to dunes. Additionally, different types of bedforms, such as ripples, coarse-grained ripples and dunes, coexist at different spatial scales within a dune-field. Analysis of dune-field patterns at the intersection of different scales and types of bedforms at different stages of development provides a more comprehensive record of sediment supply and wind regime than analysis of a single scale and type of bedform. Interpretations of environmental conditions from any scale of bedform, however, are limited to environmental signals associated with the response time of that bedform. Large-scale dune-field patterns integrate signals over long-term climate cycles and reveal little about short-term variations in wind or sediment supply. Wind ripples respond instantly to changing conditions, but reveal little about longer-term variations in wind or sediment supply. Recognizing the response time scales across different spatial scales of bedforms maximizes environmental interpretations from dune-field patterns.

  3. Vegetation and substrate properties of aeolian dune fields in the Colorado River corridor, Grand Canyon, Arizona

    USGS Publications Warehouse

    Draut, Amy E.

    2011-01-01

    This report summarizes vegetation and substrate properties of aeolian landscapes in the Colorado River corridor through Grand Canyon, Arizona, in Grand Canyon National Park. Characterizing these parameters provides a basis from which to assess future changes in this ecosystem, including the spread of nonnative plant species. Differences are apparent between aeolian dune fields that are downwind of where modern controlled flooding deposits new sandbars (modern-fluvial-sourced dune fields) and those that have received little or no new windblown sand since river regulation began in the 1960s (relict-fluvial-sourced dune fields). The most substantial difference between modern- and relict-fluvial-sourced aeolian dune fields is the greater abundance of biologic soil crust in relict dune fields. These findings can be used with similar investigations in other geomorphic settings in Grand Canyon and elsewhere in the Colorado River corridor to evaluate the health of the Colorado River ecosystem over time.

  4. Trickle-down boundary conditions in aeolian dune-field pattern formation

    NASA Astrophysics Data System (ADS)

    Ewing, R. C.; Kocurek, G.

    2015-12-01

    One the one hand, wind-blown dune-field patterns emerge within the overarching boundary conditions of climate, tectonics and eustasy implying the presence of these signals in the aeolian geomorphic and stratigraphic record. On the other hand, dune-field patterns are a poster-child of self-organization, in which autogenic processes give rise to patterned landscapes despite remarkable differences in the geologic setting (i.e., Earth, Mars and Titan). How important are climate, tectonics and eustasy in aeolian dune field pattern formation? Here we develop the hypothesis that, in terms of pattern development, dune fields evolve largely independent of the direct influence of 'system-scale' boundary conditions, such as climate, tectonics and eustasy. Rather, these boundary conditions set the stage for smaller-scale, faster-evolving 'event-scale' boundary conditions. This 'trickle-down' effect, in which system-scale boundary conditions indirectly influence the event scale boundary conditions provides the uniqueness and richness of dune-field patterned landscapes. The trickle-down effect means that the architecture of the stratigraphic record of dune-field pattern formation archives boundary conditions, which are spatially and temporally removed from the overarching geologic setting. In contrast, the presence of an aeolian stratigraphic record itself, reflects changes in system-scale boundary conditions that drive accumulation and preservation of aeolian strata.

  5. Southern high latitude dune fields on Mars: Morphology, aeolian inactivity, and climate change

    USGS Publications Warehouse

    Fenton, L.K.; Hayward, R.K.

    2010-01-01

    In a study area spanning the martian surface poleward of 50?? S., 1190 dune fields have been identified, mapped, and categorized based on dune field morphology. Dune fields in the study area span ??? 116400km2, leading to a global dune field coverage estimate of ???904000km2, far less than that found on Earth. Based on distinct morphological features, the dune fields were grouped into six different classes that vary in interpreted aeolian activity level from potentially active to relatively inactive and eroding. The six dune field classes occur in specific latitude zones, with a sequence of reduced activity and degradation progressing poleward. In particular, the first signs of stabilization appear at ???60?? S., which broadly corresponds to the edge of high concentrations of water-equivalent hydrogen content (observed by the Neutron Spectrometer) that have been interpreted as ground ice. This near-surface ground ice likely acts to reduce sand availability in the present climate state on Mars, stabilizing high latitude dunes and allowing erosional processes to change their morphology. As a result, climatic changes in the content of near-surface ground ice are likely to influence the level of dune activity. Spatial variation of dune field classes with longitude is significant, suggesting that local conditions play a major role in determining dune field activity level. Dune fields on the south polar layered terrain, for example, appear either potentially active or inactive, indicating that at least two generations of dune building have occurred on this surface. Many dune fields show signs of degradation mixed with crisp-brinked dunes, also suggesting that more than one generation of dune building has occurred since they originally formed. Dune fields superposed on early and late Amazonian surfaces provide potential upper age limits of ???100My on the south polar layered deposits and ???3Ga elsewhere at high latitudes. No craters are present on any identifiable dune

  6. Numerical study of turbulent flow over complex aeolian dune fields: the White Sands National Monument.

    PubMed

    Anderson, William; Chamecki, Marcelo

    2014-01-01

    The structure and dynamics of fully developed turbulent flows responding to aeolian dune fields are studied using large-eddy simulation with an immersed boundary method. An aspect of particular importance in these flows is the downwind migration of coherent motions associated with Kelvin-Helmholtz instabilities that originate at the dune crests. These instabilities are responsible for enhanced downward transport of high-momentum fluid via the so-called turbulent sweep mechanism. However, the presence of such structures and their role in determining the bulk characteristics of fully developed dune field sublayer aerodynamics have received relatively limited attention. Moreover, many existing studies address mostly symmetric or mildly asymmetric dune forms. The White Sands National Monument is a field of aeolian gypsum sand dunes located in the Tularosa Basin in southern New Mexico. Aeolian processes at the site result in a complex, anisotropic dune field. In the dune field sublayer, the flow statistics resemble a mixing layer: At approximately the dune crest height, vertical profiles of streamwise velocity exhibit an inflection and turbulent Reynolds stresses are maximum; below this, the streamwise and vertical velocity fluctuations are positively and negatively skewed, respectively. We evaluate the spatial structure of Kelvin-Helmholtz instabilities present in the dune field sublayer (shear length L(s) and vortex spacing Λ(x)) and show that Λ(x)=m(dune)L(s), where m(dune)≈7.2 in the different sections considered (for turbulent mixing layers, 7

  7. Optically stimulated luminescence dating of aeolian sand in the otindag dune field and holocene climate change

    USGS Publications Warehouse

    Zhou, Y.L.; Lu, H.Y.; Mason, J.; Miao, X.D.; Swinehart, J.; Goble, R.

    2008-01-01

    The dune system in Otindag sand field of northern China is sensitive to climate change, where effective moisture and related vegetation cover play a controlling role for dune activity and stability. Therefore, aeolian deposits may be an archive of past environmental changes, possibly at the millennial scale, but previous studies on this topic have rarely been reported. In this study, thirty-five optically stimulated luminescence (OSL) ages of ten representative sand-paleosol profiles in Otindag sand field are obtained, and these ages provide a relatively complete and well-dated chronology for wet and dry variations in Holocene. The results indicate that widespread dune mobilization occurred from 9.9 to 8.2 ka, suggesting a dry early Holocene climate. The dunes were mainly stabilized between 8.0 and 2.7 ka, implying a relatively wet climate, although there were short-term penetrations of dune activity during this wet period. After ???2.3 ka, the region became dry again, as inferred from widespread dune activity. The "8.2 ka" cold event and the Little Ice Age climatic deterioration are detected on the basis of the dune records and OSL ages. During the Medieval Warm Period and the Sui-Tang Warm Period (570-770 AD), climate in Otindag sand field was relatively humid and the vegetation was denser, and the sand dunes were stabilized again. These aeolian records may indicate climate changes at millennial time scale during Holocene, and these climatic changes may be the teleconnection to the climate changes elsewhere in the world. ?? Science in China Press and Springer-Verlag GmbH 2008.

  8. Controls on and effects of armoring and vertical sorting in aeolian dune fields: A numerical simulation study

    NASA Astrophysics Data System (ADS)

    Gao, Xin; Narteau, Clément; Rozier, Olivier

    2016-03-01

    Unlike ripples, there are only few numerical studies on grain size segregation at the scale of dunes in aeolian environments. Here we use a cellular automaton model to analyze vertical sorting in granular mixtures under steady unidirectional flow conditions. We investigate the feedbacks between dune growth and the segregation mechanisms by varying the size of coarse grains and their proportion within the bed. We systematically observe the development of a horizontal layer of coarse grains at the top of which sorted bed forms may grow by amalgamation. The formation of such an armor layer controls the overall sediment transport and availability. The emergence of dunes and the transition from barchan to transverse dune fields depend only on the grain size distribution of the initial sediment layer. As confirmed by observation, this result indicates that armor layers should be present in most arid deserts, where they are likely to control dune morphodynamics.

  9. Recent Aeolian Dune Change on Mars

    NASA Technical Reports Server (NTRS)

    Bourke, M. C.; Edgett, K. S.; Cantor, B. A.

    2007-01-01

    Previous comparisons of Martian aeolian dunes in satellite images have not detected any change in dune form or position. Here, we show dome dunes in the north polar region that shrank and then disappeared over a period of 3.04 Mars years (5.7 Earth years), while larger, neighboring dunes showed no erosion or movement. The removal of sand from these dunes indicates that not only is the threshold wind speed for saltation exceeded under present conditions on Mars, but that any sand that is available for transport is likely to be moved. Dunes that show no evidence of change could be crusted, indurated. or subject to infrequent episodes of movement.

  10. Morphology and stratigraphic evolution of aeolian protodunes at White Sands Dune Field

    NASA Astrophysics Data System (ADS)

    Ewing, R. C.; Weymer, B. A.; Barrineaux, P.

    2014-12-01

    Protodunes are low-relief, slipfaceless migrating bed forms thought to represent fundamental emergent bed forms that develop from a flat bed of sand and evolve into dunes. Protodunes at White Sands Dune Field in New Mexico are found at the upwind margin of the field, on dune stoss slopes and in interdune areas. Here we used time-series aerial photos from 1996, 2003, 2005 and 2012 and digital elevation models from 2007, 2008, 2009 and 2010 in conjunction with ground penetrating radar (GPR) to characterize the morphodynamics of protodunes and the stratigraphy generated by protodune migration. Protodunes at the upwind margin of the dune field are larger in wavelength and amplitude and coarser grained than those in the interior of the field. Wind ripples cover protodunes in all areas of the field, but the protodunes at the upwind margin are covered by coarse grained ripples. A consistent progression of ripple patterns occurs over protodunes in which ripples coarsen in wavelength and grain size toward the protodune crest and then decrease in wavelength and grain size toward the troughs. Ripple migration across the protodunes appears to the primary mode by which the protodunes migrate. Trenching and GPR data show low-angle cross-stratification generated by wind ripples migrating down the protodune lee slope of the protodunes. Internal bounding surfaces within the protodunes likely arise from laterally migration and lee slope reactivation in response to the complex wind regime and dune-modified secondary flow within the dune field at White Sands. Understanding the morphology, distribution and genesis of protodunes in dune fields provides a basis to evaluate the significance of protodune strata in the rock record.

  11. Dynamics of sediment storage and release on aeolian dune slip faces: A field study in Jericoacoara, Brazil

    NASA Astrophysics Data System (ADS)

    Pelletier, Jon D.; Sherman, Douglas J.; Ellis, Jean T.; Farrell, Eugene J.; Jackson, Nancy L.; Li, Bailiang; Nordstrom, Karl F.; Maia, Luis Parente; Omidyeganeh, Mohammad

    2015-09-01

    Sediment transport on the lee sides of aeolian dunes involves a combination of grain-fall deposition on the upper portion of the slip face until a critical angle is exceeded, transport of a portion of those sediments down the slip face by grain flows and, finally, deposition at an angle of repose. We measured the mean critical and repose angles and the rate of slip-face avalanching using terrestrial laser scanning (TLS) on two barchans of different size in Jericoacoara, Brazil. Wind speeds and sand fluxes were measured simultaneously at the dune crests. We found that the mean critical decreased with increasing wind speed. We attribute this effect to turbulent shear stresses, the magnitude of which we quantified using 3-D large eddy simulation modeling, that randomly act down the slip face (i.e., in the direction of gravity) to trigger grain flows at lower angles than would be possible with gravity stresses alone. We developed and tested a new predictive model for the frequency of avalanching that depends on both the sediment flux delivered to the slip face and changes in the critical angle with time. In this model, increasing turbulent shear stresses drive avalanching even in the absence of sand flux delivered to the slip face if the critical angle decreases below the slope angle. We also document that the mean critical angle decreases slightly with increasing slip-face height. These results have important implications for aeolian dune evolution, interpretations of aeolian stratigraphy, and granular mechanics.

  12. Boundary Conditions and the Aeolian Sediment State of the Olympia Undae Dune Field, Mars

    NASA Astrophysics Data System (ADS)

    Middlebrook, W.; Ewing, R. C.; Ayoub, F.; Bridges, N. T.; Smith, I.; Spiga, A.

    2015-05-01

    We evaluate the boundary conditions in Olympia Undae. We map two and three dimensional dune parameters from two locations proximal and distal to Planum Boreum and constrain sediment fluxes. We compare our results with a mesoscale atmospheric model.

  13. Stratigraphic Architecture of Aeolian Dune Interactions

    NASA Astrophysics Data System (ADS)

    Brothers, S. C.; Kocurek, G.

    2015-12-01

    Dune interactions, which consist of collisions and detachments, are a known driver of changing dune morphology and provide the dynamics for field-scale patterning. Although interactions are ubiquitous in modern dune fields, the stratigraphic record of interactions has not been explored. This raises the possibility that an entire class of signature architectures of bounding surfaces and cross-strata has gone misidentified or unrecognized. A unique data set for the crescentic dunes of the White Sands Dune Field, New Mexico, allows for the coupling of dune interactions with their resultant stratigraphic architecture. Dune interactions are documented by a decadal time-series of aerial photos and LiDAR-derived digital elevation models. Plan-view cross-strata in interdune areas provide a record tying past dune positions and morphologies to the current dunes. Three-dimensional stratigraphic architecture is revealed by imaging of dune interiors with ground-penetrating radar. The architecture of a dune defect merging with a target dune downwind consists of lateral truncation of the target dune set by an interaction bounding surface. Defect cross-strata tangentially approach and downlap onto the surface. Downwind, the interaction surface curves, and defect and adjacent target dune sets merge into a continuous set. Predictable angular relationships reflect field-scale patterns of dune migration direction and approach angle of migrating defects. The discovery of interaction architectures emphasizes that although dunes appear as continuous forms on the surface, they consist of discrete segments, each with a distinct morphodynamic history. Bedform interactions result in the morphologic recombination of dune bodies, which is manifested stratigraphically within the sets of cross-strata.

  14. Understanding early-stage dune development: morphodynamics of aeolian protodunes

    NASA Astrophysics Data System (ADS)

    Baddock, Matthew; Wiggs, Giles; Nield, Joanna

    2016-04-01

    For such a fundamental aspect of bedform development, the initiation and early-stage growth of sand dunes remain poorly understood. Protodunes are bedforms within the continuum of early-stage depositional aeolian features that exist between flat sand patches and small dunes. As transitory bedforms with the potential to develop into dunes, the detailed study of protodune morphodynamics can provide significant insights into nascent dune development. As part of a multi-annual study investigating bedform change through repeat morphological surveys of bedforms with differing maturity, measurements of near-surface airflow and sand transport were conducted over a protodune in a small Namibian barchan dune field. The protodune was approximately 85 m in length and 1 m high, and was without a slipface. Data show that over the course of a week, patterns of airflow and transport flux variation were linked with accretion at the crest, and erosion of the leeside edge showing an increase in protodune height, and providing evidence of the dune's vertical development. Surveys reveal the longer term evolution of the protodune, in the context of changes exhibited by nearby, fully developed barchan dunes, and long term monitoring of wind regime at the site.

  15. Corrigendum to "Dune field reactivation from blowouts: Sevier Desert, UT, USA" [Aeolian Res. 11 (2013) 75-84

    NASA Astrophysics Data System (ADS)

    Barchyn, Thomas E.; Hugenholtz, Chris H.

    2016-06-01

    This corrigendum corrects an error made in the flux calculations in 'Dune field reactivation from blowouts: Sevier Desert, UT, USA'. The corrected data differ only slightly from the original publication and do not affect the conclusions of the paper.

  16. Avalanche grainflow on a simulated aeolian dune

    NASA Astrophysics Data System (ADS)

    Sutton, S. L. F.; McKenna Neuman, C.; Nickling, W.

    2013-09-01

    Avalanches maintain the slipface of aeolian dunes, which alters their airflow characteristics and sediment dynamics, and results in the development of grainflow cross-bedding. We report on a series of experiments in which avalanches were observed on a 1:1 replica of a small (1.2 m brink height) transverse dune in the Dune Simulation Wind Tunnel under wind velocities of 8-11 m s-1. Changes in slipface topography were observed photographically and measured utilizing a 3-D laser scanner with 1 mm2 spatial resolution. Avalanches in noncohesive sands were observed to progress through scarp recession from the point of initiation and continue until the slope angle is reduced. Changes in local slope confirm that the steep, pre-avalanche mean slope relaxes to a uniform value equal to the angle of repose of the test sand (32°) over all involved portions of the slipface. Avalanche volumes are measured, and demonstrate that avalanche magnitude is independent of wind speed over the range of velocities observed. This independence provides the potential to significantly simplify the modeling of grainflow as a function of only the total cross brink sediment transport.

  17. High albedo dune features suggest past dune migration and possible geochemical cementation of aeolian sediments on Mars

    NASA Astrophysics Data System (ADS)

    Gardin, Emilie; Bourke, Mary C.; Allemand, Pascal; Quantin, Cathy

    2011-04-01

    High albedo features are identified in association with barchan dunes in an equatorial inter-crater dune field on Mars using images from the MRO mission. This paper describes the morphometric properties of these features and their association with the present barchan dune field. We propose that these features are cemented aeolian deposits that form at the foot of the dune avalanche face. A possible terrestrial analog exists at White Sands National Monument, in south-central New Mexico, USA. The presence of these features suggests past episodes of dune migration in inter-crater dunefields and liquid water in the near sub-surface in sufficient quantity to cause the cementation of aeolian dune sediment.

  18. Aeolian dunes as ground truth for atmospheric modeling on Mars

    USGS Publications Warehouse

    Hayward, R.K.; Titus, T.N.; Michaels, T.I.; Fenton, L.K.; Colaprete, A.; Christensen, P.R.

    2009-01-01

    Martian aeolian dunes preserve a record of atmosphere/surface interaction on a variety of scales, serving as ground truth for both Global Climate Models (GCMs) and mesoscale climate models, such as the Mars Regional Atmospheric Modeling System (MRAMS). We hypothesize that the location of dune fields, expressed globally by geographic distribution and locally by dune centroid azimuth (DCA), may record the long-term integration of atmospheric activity across a broad area, preserving GCM-scale atmospheric trends. In contrast, individual dune morphology, as expressed in slipface orientation (SF), may be more sensitive to localized variations in circulation, preserving topographically controlled mesoscale trends. We test this hypothesis by comparing the geographic distribution, DCA, and SF of dunes with output from the Ames Mars GCM and, at a local study site, with output from MRAMS. When compared to the GCM: 1) dunes generally lie adjacent to areas with strongest winds, 2) DCA agrees fairly well with GCM modeled wind directions in smooth-floored craters, and 3) SF does not agree well with GCM modeled wind directions. When compared to MRAMS modeled winds at our study site: 1) DCA generally coincides with the part of the crater where modeled mean winds are weak, and 2) SFs are consistent with some weak, topographically influenced modeled winds. We conclude that: 1) geographic distribution may be valuable as ground truth for GCMs, 2) DCA may be useful as ground truth for both GCM and mesoscale models, and 3) SF may be useful as ground truth for mesoscale models. Copyright 2009 by the American Geophysical Union.

  19. Remote sensing and spatial analysis of aeolian sand dunes: A review and outlook

    NASA Astrophysics Data System (ADS)

    Hugenholtz, Chris H.; Levin, Noam; Barchyn, Thomas E.; Baddock, Matthew C.

    2012-03-01

    For more than four decades remote sensing images have been used to document and understand the evolution of aeolian sand dunes. Early studies focused on mapping and classifying dunes. Recent advances in sensor technology and software have allowed investigators to move towards quantitative investigation of dune form evolution and pattern development. These advances have taken place alongside progress in numerical models, which are capable of simulating the multitude of dune patterns observed in nature. The potential to integrate remote sensing (RS), spatial analysis (SA), and modeling to predict the future changes of real-world dune systems is steadily becoming a reality. Here we present a comprehensive review of significant recent advances involving RS and SA. Our objective is to demonstrate the capacity of these technologies to provide new insight on three important research domains: (1) dune activity, (2) dune patterns and hierarchies, and (3) extra-terrestrial dunes. We outline how several recent advances have capitalized on the improved spatial and spectral resolution of RS data, the availability of topographic data, and new SA methods and software. We also discuss some of the key research challenges and opportunities in the application of RS and SA dune field, including: the integration of RS data with field-based measurements of vegetation cover, structure, and aeolian transport rate in order to develop predictive models of dune field activity; expanding the observational evidence of dune form evolution at temporal and spatial scales that can be used to validate and refine simulation models; the development and application of objective and reproducible SA methods for characterizing dune field pattern; and, expanding efforts to quantify three-dimensional topographic changes of dune fields in order to develop improved understanding of spatio-temporal patterns of erosion and deposition. Overall, our review indicates a progressive evolution in the way sand dunes

  20. Aeolian sedimentary processes at the Bagnold Dunes, Mars: Implications for modern dune dynamics and sedimentary structures in the aeolian stratigraphic record of Mars

    NASA Astrophysics Data System (ADS)

    Ewing, Ryan C.; Bridges, Nathan T.; Sullivan, Rob; Lapotre, Mathieu G. A.; Fischer, Woodward W.; Lamb, Mike P.; Rubin, David M.; Lewis, Kevin W.; Gupta, Sanjeev

    2016-04-01

    Wind-blown sand dunes are ubiquitous on the surface of Mars and are a recognized component of the martian stratigraphic record. Our current knowledge of the aeolian sedimentary processes that determine dune morphology, drive dune dynamics, and create aeolian cross-stratification are based upon orbital studies of ripple and dune morphodynamics, rover observations of stratification on Mars, Earth analogs, and experimental and theoretical studies of sand movement under Martian conditions. In-situ observations of sand dunes (informally called the Bagnold Dunes) by Curiosity Rover in Gale Crater, Mars provide the first opportunity to make observations of dunes from the grain-to-dune scale thereby filling the gap in knowledge between theory and orbital observations and refining our understanding of the martian aeolian stratigraphic record. We use the suite of cameras on Curiosity, including Navigation Camera (Navcam), Mast Camera (Mastcam) and Mars Hand Lens Imager (MAHLI), to make observations of the Bagnold Dunes. Measurements of sedimentary structures are made where stereo images are available. Observations indicate that structures generated by gravity-driven processes on the dune lee slopes, such as grainflow and grainfall, are similar to the suite of aeolian sedimentary structures observed on Earth and should be present and recognizable in Mars' aeolian stratigraphic record. Structures formed by traction-driven processes deviate significantly from those found on Earth. The dune hosts centimeter-scale wind ripples and large, meter-scale ripples, which are not found on Earth. The large ripples migrate across the depositional, lee slopes of the dune, which implies that these structures should be present in Mars' stratigraphic record and may appear similar to compound-dune stratification.The Mars Science Laboratory Curiosity Rover Team is acknowledged for their support of this work.

  1. Aeolian Processes of the Pismo-Oceano Dune Complex, California

    NASA Astrophysics Data System (ADS)

    Barrineau, C. P.; Tchakerian, V.; Houser, C.

    2012-12-01

    The Pismo Dunes are located approximately 250 km northwest of Los Angeles and consist of 90 km2 of transverse, parabolic and paleodunes. The Pismo Dunes are one of the largest dune complexes on the west coast and are the largest remaining south of San Francisco Bay, but despite their size, relatively few process morphology studies have focused on their form and history. Specifically, the dune field includes 12 km2 of actively migrating transverse dune ridges advancing onshore in three distinct phases separated by small depressions easily indentified using a LiDAR-generated elevation model. An early field investigation by Tchakerian (1983) revealed a uniform increase in slip face heights and crestline wavelengths inland with no apparent change in grain size. Measurement of recent aerial imagery shows variable migration rates throughout the dunes and wavelengths between 30 and 100 m closest to the beach, in the second ridge between 50 and 140 m, and from 70 to 250 m furthest inland. During El Niño and La Niña periods, westerly winds advance onshore nearly perpendicular to the crestlines, fueling episodic migration of the dune field. It is hypothesized that particularly strong ENSO periods may have led to the development of distinct dune phases with separating depressions and the development of defects along the dune crest. Defects associated with the wakes of incipient vegetation and inter-dune depressions are conspicuous and widespread, though localized and variable through time and space. Aerial imagery taken in September 1994 shows a wider, more even distribution of defects across the dune field than currently visible. The signal is, however, complicated by the closure of the dune field to oversand vehicles in 1982. The closure of much of the complex to vehicular traffic in 1982 may play a role, as Tchakerian's crestline wavelength measurements were far smaller than those obtained for this study while maintaining a likewise increase between phases. At a decadal

  2. Aeolian processes and dune morphology in the Gobi and Badain Jaran Desert using LandSat Imagery.

    NASA Astrophysics Data System (ADS)

    Cardinale, Marco; Cannito, Arturo; Marinangeli, Lucia

    2014-05-01

    The Gobi and Badain Jaran Deserts are parts of the vast sand sea of the Alashan Region, one of the greatest dunefield in China [1]. They lie between the southern Mongolia and the northern China (latitude 37° 06'N - 41°50'N; longitude 99°10'E - 107°09'E) [2]. The studied area is characterized by an arid climate with low average annual rainfall between 50-60mm, extreme fluctuation in temperature, very strong winds and by the occurrence of mega dunes and permanent lakes within the dunefield [3]. According to our morphological analysis, wind action has been one of the main factors that have shaped the surface features inside the investigated area. We produce a detailed geomorphological map of the desertic zone, highlighting the aeolian morphologies, in order to characterize aeolian deposits and processes. The LandSat ETM+ data [4], providing a continuous coverage of the dune fields with no gaps, were processed using ENVI software and then ingested in a GIS project. We also used DTMs (30m / pixel) from Aster data [5]. The dune morphology was classified using McKee criteria [6] and we interpreted the pattern of the complex ergs as the result of self - organization within complex systems [7]. Compound transverse mega dunes and barchanoid dunes developed under a variable wind regime, star dunes in the northern area near the mountain have been formed under a multi directional wind regime. The area covered by mega dunes suggests a complex evolution of these features dominated by the wind activity. Different episodes of deposition, erosion and motion, could explain the height of these dunes measured by the DTMs. The diverse aeolian features identified in the investigated area suggest that aeolian activity play a key role for the evolution of the surface morphologies of the Gobi Desert. To understand the local dynamics of aeolian processes, we are currently comparing these features with meteorological data from mesoscale wind models. References: [1] E. D.McKee. A Study of

  3. Holden Crater Dune Field

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    Our topic for the weeks of April 4 and April 11 is dunes on Mars. We will look at the north polar sand sea and at isolated dune fields at lower latitudes. Sand seas on Earth are often called 'ergs,' an Arabic name for dune field. A sand sea differs from a dune field in two ways: 1) a sand sea has a large regional extent, and 2) the individual dunes are large in size and complex in form.

    A common location for dune fields on Mars is in the basin of large craters. This dune field is located in Holden Crater at 25 degrees South atitude.

    Image information: VIS instrument. Latitude -25.5, Longitude 326.8 East (33.2 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  4. Crater Floor Dune Field

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    Our topic for the weeks of April 4 and April 11 is dunes on Mars. We will look at the north polar sand sea and at isolated dune fields at lower latitudes. Sand seas on Earth are often called 'ergs,' an Arabic name for dune field. A sand sea differs from a dune field in two ways: 1) a sand sea has a large regional extent, and 2) the individual dunes are large in size and complex in form.

    Our final dune image shows a small dune field inside an unnamed crater south of Nili Fossae.

    Image information: VIS instrument. Latitude 20.6, Longitude 79 East (281 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  5. Vegetated dune morphodynamics during recent stabilization of the Mu Us dune field, north-central China

    NASA Astrophysics Data System (ADS)

    Xu, Zhiwei; Mason, Joseph A.; Lu, Huayu

    2015-01-01

    The response of dune fields to changing environmental conditions can be better understood by investigating how changing vegetation cover affects dune morphodynamics. Significant increases in vegetation and widespread dune stabilization over the years 2000-2012 are evident in high-resolution satellite imagery of the Mu Us dune field in north-central China, possibly a lagged response to changing wind strength and temperature since the 1970s. These trends provide an opportunity to study how dune morphology changes with increasing vegetation stabilization. Vegetation expansion occurs mainly by expansion of pre-existing patches in interdunes. As vegetation spreads from interdunes onto surrounding dunes, it modifies their shapes in competition with wind-driven sand movement, primarily in three ways: 1) vegetation anchoring horns of barchans transforms them to parabolic dunes; 2) vegetation colonizes stoss faces of barchan and transverse dunes, resulting in lower dune height and an elongated stoss face, with shortening of barchan horns; and 3) on transverse dunes, the lee face is fixed by plants that survive sand burial. Along each of these pathways of stabilization, dune morphology tends to change from more barchanoid to more parabolic forms, but that transformation is not always completed before full stabilization. Artificial stabilization leads to an extreme case of "frozen" barchans or transverse dunes with original shapes preserved by rapid establishment of vegetation. Observations in the Mu Us dune field emphasize the point that vegetation growth and aeolian sand transport not only respond to external factors such as climate but also interact with each other. For example, some barchans lose sand mass during vegetation fixation, and actually migrate faster as they become smaller, and vegetation growth on a barchan's lower stoss face may alter sand transport over the dune in a way that favors more rapid stabilization. Conceptual models were generalized for the

  6. Alluvial Fans on Dunes in Kaiser Crater Suggest Niveo-Aeolian and Denivation Processes on Mars

    NASA Technical Reports Server (NTRS)

    Bourke, M. C.

    2005-01-01

    On Earth, cold region sand dunes often contain inter-bedded sand, snow, and ice. These mixed deposits of wind-driven snow, sand, silt, vegetal debris, or other detritus have been termed Niveo-aeolian deposits. These deposits are often coupled with features that are due to melting or sublimation of snow, called denivation features. Snow and ice may be incorporated into dunes on Mars in three ways. Diffusion of water vapour into pore spaces is the widely accepted mechanism for the accretion of premafrost ice. Additional mechanisms may include the burial by sand of snow that has fallen on the dune surface or the synchronous transportation and deposition of snow, sand and ice. Both of these mechanisms have been reported for polar dunes on Earth. Niveo-aeolian deposits in polar deserts on Earth have unique morphologies and sedimentary structures that are generally not found in warm desert dunes. Recent analysis of MOC-scale data have found evidence for potential niveo-aeolian and denivation deposits in sand dunes on Mars.

  7. Nili Patera Dune Field

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    Our topic for the weeks of April 4 and April 11 is dunes on Mars. We will look at the north polar sand sea and at isolated dune fields at lower latitudes. Sand seas on Earth are often called 'ergs,' an Arabic name for dune field. A sand sea differs from a dune field in two ways: 1) a sand sea has a large regional extent, and 2) the individual dunes are large in size and complex in form.

    This VIS image shows a dune field within Nili Patera, the northern caldera of a large volcanic complex in Syrtis Major.

    Image information: VIS instrument. Latitude 9, Longitude 67 East (293 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  8. Temperature and humidity measurements within desert barchan sand dunes, relation to dune aeolian mobility and microbial growth

    NASA Astrophysics Data System (ADS)

    Louge, Michel; Hay, Anthony; Richer, Renee; Valance, Alexandre; Ould el Moctar, Ahmed; Xu, Jin; Abdul-Majid, Sara

    2013-04-01

    We present diurnal variations of temperature and humidity profiles below the surface of hyper-arid aeolian crescent-shaped "barchan" dunes in Qatar and Mauritania, measured using a thermal probe and a new ultra-sensitive capacitance instrument that we developed for this purpose. We also report long-term measurements from a probe sunk on the downwind avalanche face of a mobile Qatar barchan, recording temperature and humidity until it emerged on the upwind slope 15 months later. We interpret the data by modeling heat and moisture transfer at the surface in terms of measured net surface radiation, wind, and atmospheric conditions. We demonstrate the presence of microbes on sand grains within these mobile dunes using microscopic observations, fluorescence counts, metagenomic sequencing, and C12/C13 isotope analysis of carbon dioxide sampled below the surface. By determining how water activity grows with moisture adsorbed on these sands, we delimit regions within the dune where our instruments recorded humidity conducive to microbial growth. Finally, we compare the mobility of two adjacent Mauritania barchans having distinct surface grain size, shape, and depth humidity profiles. Armored by large grains on its surface, the smaller dune was more oblong. As a result, it lacked flow recirculation in its wake, trapped less aeolian sand downwind, and was much less mobile than its smaller size would suggest. This slower mobility led to greater humidity and cohesion at depth than the larger dune exposed to the same atmospheric and wind conditions.

  9. Martian Dune Field

    NASA Technical Reports Server (NTRS)

    1976-01-01

    This spectacular picture of the Martian landscape by the Viking 1 Lander shows a dune field with features remarkably similar to many seen in the deserts of Earth. The dramatic early morning lighting - 7:30 a.m. local Mars time--reveals subtle details and shading. Taken yesterday (August 3) by the Lander s camera #1, the picture covers 100 , looking northeast at left and southeast at right. Viking scientists have studied areas very much like the one in this view in Mexico and in California (Kelso, Death Valley, Yuma). The sharp dune crests indicate the most recent wind storms capable of moving sand over the dunes in the general direction from upper left to lower right. Small deposits downwind of rocks also indicate this wind direction. Large boulder at left is about eight meters (25 feet) from the spacecraft and measures about one by three meters (3 by 10 feet). The meteorology boom, which supports Viking s miniature weather station, cuts through the picture s center. The sun rose two hours earlier and is about 30 above the horizon near the center of the picture.

  10. 3D numerical simulation of the evolutionary process of aeolian downsized crescent-shaped dunes

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaosi; Zhang, Yang; Wang, Yuan; Li, Min

    2016-06-01

    A dune constitutive model was coupled with a large eddy simulation (LES) with the Smagorinsky subgrid-scale (SGS) model to accurately describe the evolutionary process of dunes from the macroscopic perspective of morphological dynamics. A 3D numerical simulation of the evolution of aeolian downsized crescent-shaped dunes was then performed. The evolution of the 3D structure of Gaussian-shaped dunes was simulated under the influence of gravity modulation, which was the same with the vertical oscillation of the sand bed to adjust the threshold of sand grain liftoff in wind tunnel experiments under the same wind speed. The influence of gravity modulation intensity on the characteristic scale parameter of the dune was discussed. Results indicated that the crescent shape of the dune was reproduced with the action of gravity during regulation of the saturation of wind-sand flow at specific times. The crescent shape was not dynamically maintained as time passed, and the dunes dwindled until they reached final decomposition because of wind erosion. The height of the dunes decreased over time, and the height-time curve converged as the intensity of modulation increased linearly. The results qualitatively agreed with those obtained from wind tunnel experiments.

  11. Climate-driven changes to dune activity during the Last Glacial Maximum and deglaciation in the Mu Us dune field, north-central China

    NASA Astrophysics Data System (ADS)

    Xu, Zhiwei; Lu, Huayu; Yi, Shuangwen; Vandenberghe, Jef; Mason, Joseph A.; Zhou, Yali; Wang, Xianyan

    2015-10-01

    One significant change of terrestrial landscapes in response to past climate change has been the transformation between activity and stability of extensively distributed wind-blown sand dunes. The relations between the dynamics of the aeolian landscape and its drivers are not yet completely understood, however. Evidence of aeolian sand deposition during the Last Glacial Maximum (LGM) is scarce in many mid-latitude dune fields, whereas abundant evidence exists for aeolian sand accumulation during the deglaciation, i.e. after about 15 ka. Whether this contrast actually reflects changes in dune activity is still unclear, making paleoclimatic interpretation uncertain. Comprehensive field investigation and luminescence dating in the Mu Us dune field, north-central China, demonstrates that aeolian sands deposited during the LGM are preserved as fills in periglacial sand wedges and beneath loess deposits near the downwind dune field margin. The scarcity of LGM dune sand elsewhere in the dune field is interpreted as the result of intensive aeolian activity without substantial net sand accumulation. Increasing sand accumulation after 15 ka, reflected by much more extensive preservation, signals a change in sand supply relative to sand transportation through the dune field. Reduced wind strength and other environmental changes including regional permafrost degradation after 15 ka transformed the dune field state from net erosion to net accumulation; the dunes, however, remained largely mobile as they were in the LGM. Similar diverging patterns of dune sand accumulation and preservation before and after 15 ka in many mid-latitude dune fields imply broad climatic controls linked to the changes in high-northern-latitude forcing.

  12. Meso-scale modelling of aeolian sediment input to coastal dunes

    NASA Astrophysics Data System (ADS)

    Delgado-Fernandez, Irene

    2011-07-01

    The collection of a time series coupling hourly wind data (speed and direction) with sand transport over months has provided new insights into the dynamics of transport events that input sediment to the foredune at Greenwich Dunes, Prince Edward Island National Park, Canada. This paper summarises the key aspects of aeolian sediment movement for a period of 9 months and presents a modelling approach for resolving aeolian transport to coastal dunes at the meso-scale. The main hypothesis of the modelling approach is that a small number of key factors control both the occurrence and the magnitude of transport events. Thresholds associated with these factors may be used to filter the time series and isolate potential transport periods over the year. The impacts of nearshore processes are included in the approach as part of the dynamics of coastal dunes, as are supply-limiting factors and trade-offs between fetch distances, angle of wind approach, and beach dimensions. A simple analytical procedure, based on previously published equations, is carried out to assess the general viability of the conceptual approach. Results show that the incorporation of moisture and fetch effects in the calculation of transport for isolated potential transport periods result in improved predictions of sediment input to the dune. Net changes, measured with three different techniques, suggest that survey data with coarse temporal resolution underestimates the amount of sand input to the dune, because sediment is often removed from the embryo dune and foredune by other processes such as wave scarping. Predictions obtained by the proposed modelling approach are of the same order of magnitude as measured deposition and much less than predicted by models based solely on wind speed and direction. Areas for improvement and alternative modelling approaches, such as probabilistic approaches similar to weather forecasting, are covered in the discussion.

  13. Global map of Titan's dune fields

    NASA Astrophysics Data System (ADS)

    Le Corre, L.; Le Mouélic, S.; Sotin, C.; Barnes, J. W.; Brown, R. H.; Baines, K.; Buratti, B.; Clark, R.; Nicholson, P.

    2008-09-01

    small dunes in low sand supply zones. Most of the aeolian sand deposits are found in sand seas. In addition, isolated groups of "cat scratches", very sinuous short dunes [9] and sand sheets [10] (visible as dark uniform terrains) are recognized. Their emplacement is most probably related to the available sand supply. Comparison of infrared and SAR units Sand seas and small dunes match different kind of terrains in the infrared. Radar dune fields boundaries in the infrared. The dune fields in SAR images generally end at the limit between infrared brown and bright units (Fig. 1b and 1c). Dunes can also be found on dark blue terrains as seen by [7] and [11]. 82% of SAR dunes are located in brown units and 4.5% in dark blue units. The remnant dunes corresponding to "cat scratches" or not well defined dune fields appear in infrared bright units as isolated patches. These dunes may form with a low sand supply, thus VIMS detects a bright terrain because of the lower resolution than SAR. It could account for some of the 13.5% radar dunes found on bright areas. It should be noted that the limit between SAR dunes and brown units is sometimes shifted by about 20 km. This could be due to the obliquity and spin rate of Titan, which are not taken into account in our georeferenced images [12]. An accurate model of Titan obliquity and spin rate would be needed to correct this effect. But yet, there is a significant overlapping between VIMS brown units and dunes seen with the RADAR at global scale. The relationship seems to be more complex for the dark blue terrains, since dunes overlap this unit or are stopped at the border. Dark blue units may correspond to an aeolian deposit younger than the dunes [6]. By using a mean height of 150 m for the dunes [3, 10] and an average thickness of 20 m [3], we find a total amount of dune material in the brown units of 3.01 105 km3. This is consistent with the estimation from [3]. Conclusion From the global mapping, we inferred that dunes in the

  14. Syrtis Major Dune Field

    NASA Technical Reports Server (NTRS)

    2004-01-01

    20 December 2003

    This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows barchan sand dunes west of the Meroe Patera volcanic caldera in central Syrtis Major. The winds that shape these dunes blow from the right/upper right (northeast). The surface across which the dunes have traveled is probably composed of volcanic rocks; the dunes, too, may have volcanic materials, such as sand-sized grains of tephra-volcanic ash-in them. This October 2003 view is located near 7.4oN, 292.3oW, and covers an area 3 km (1.9 mi) wide. Sunlight illuminates the scene from the lower left.

  15. How High is that Dune? A Comparison of Methods Used to Constrain the Morphometry of Aeolian Bedforms on Mars

    NASA Technical Reports Server (NTRS)

    Bourke, M.; Balme, M.; Beyer, R. A.; Williams, K. K.

    2004-01-01

    Methods traditionally used to estimate the relative height of surface features on Mars include: photoclinometry, shadow length and stereography. The MOLA data set enables a more accurate assessment of the surface topography of Mars. However, many small-scale aeolian bedforms remain below the sample resolution of the MOLA data set. In response to this a number of research teams have adopted and refined existing methods and applied them to high resolution (2-6 m/pixel) narrow angle MOC satellite images. Collectively, the methods provide data on a range of morphometric parameters (many not previously available for dunes on Mars). These include dune height, width, length, surface area, volume, longitudinal and cross profiles). This data will facilitate a more accurate analysis of aeolian bedforms on Mars. In this paper we undertake a comparative analysis of methods used to determine the height of aeolian dunes and ripples.

  16. Abstracts for the Planetary Geology Field Conference on Aeolian Processes

    NASA Technical Reports Server (NTRS)

    Greeley, R. (Editor); Black, D. (Editor)

    1978-01-01

    The Planetary Geology Field Conference on Aeolian Processes was organized at the request of the Planetary Geology Program office of the National Aeronautics and Space Administration to bring together geologists working on aeolian problems on earth and planetologists concerned with similar problems on the planets. Abstracts of papers presented at the conference are arranged herein by alphabetical order of the senior author. Papers fall into three broad categories: (1) Viking Orbiter and Viking Lander results on aeolian processes and/or landforms on Mars, (2) laboratory results on studies of aeolian processes, and (3) photogeology and field studies of aeolian processes on Earth.

  17. A Comparative Analysis of Barchan Dunes in the Intra-Crater Dune Fields and the North Polar Sand Sea

    NASA Technical Reports Server (NTRS)

    Bourke, M. C.; Balme, M.; Zimbelman, J.

    2004-01-01

    Martian sand dunes have the potential to contribute data on geological history through a study of their form. Recognition of the characteristics of both recent and ancient dunes is the first step towards understanding the present as well as past aeolian systems, and by proxy, climatic conditions on Mars. Dunes studied in detail in Viking 1 and 2 Orbiter images have been classified as barchan, barchanoid, transverse, and complex. Regionally, they are concentrated in four locations: The North and South Polar regions, in intra crater dune fields and in troughs and valleys. Here we present the results of a morphometric analysis of barchan dunes in two of these locations: the North Polar Sand Sea (NPSS) and intra-crater dunes.

  18. Facies architecture and stratigraphic evolution of aeolian dune and interdune deposits, Permian Caldeirão Member (Santa Brígida Formation), Brazil

    NASA Astrophysics Data System (ADS)

    Jones, Fábio Herbert; Scherer, Claiton Marlon dos Santos; Kuchle, Juliano

    2016-05-01

    The Permian Caldeirão Member (Santa Brígida Formation), located in the Tucano Central Basin, northeast region of Brazil, is characterized by a sandstone succession of aeolian origin that comprises the preserved deposits of dunes and interdunes. Grainflow and translatent wind-ripple strata, and frequent presence of reactivation surface, compose the cross-bedding of crescent aeolian dune deposits. The aeolian cross-strata show a mean dip toward the ENE. In places, interlayered with dune cross-beds, occur interdune units composed of facies indicative of dry, damp and wet condition of the substrate, suggesting spatial and/or temporal variations in the moisture content of the interdune accumulation surface. The presence of NNW current ripple cross-lamination in wet interdune areas indicates streamflows confined to interdune corridors and oriented perpendicular to aeolian transport direction. Lenses of damp and wet interdune strata exhibit mainly interdigitated and transitional relationships with the toe-sets of overlying aeolian dune units in sections parallel to aeolian transport, indicating that dune migration was contemporaneous with accumulation in adjacent interdunes. Lateral variations in the preserved thickness of the interdune units and the associated rare occurrence of abrupt and erosive contacts between interdune and overlying dune sets, suggest temporal variations in the angle of dune and interdune climb that may be related to high-frequency changes in water table position. Four stratigraphic intervals in the Caldeirão Member can be identified, two intervals showing cross-bedding of aeolian dunes without wet interdune areas and two intervals exhibiting aeolian dunes separated by wet interdune areas, marking the transition between dry aeolian systems (Intervals I and III) and wet aeolian systems (Intervals II and IV). The temporal alternations between dry and wet aeolian systems reflect changes in the availability of dry sand and/or the rate in the water

  19. Spatial and temporal patterns of aeolian sediment transport on an inland parabolic dune, Bigstick Sand Hills, Saskatchewan, Canada

    NASA Astrophysics Data System (ADS)

    Hugenholtz, C. H.; Wolfe, S. A.; Walker, I. J.; Moorman, B. J.

    2009-04-01

    Topographic changes from erosion pins and on-site meteorological data document the spatial and temporal patterns of aeolian sediment transport at monthly to annual timescales across an active parabolic dune within a vegetation-stabilized inland, prairie dune field. Over two years, the sediment budget, calculated from digital elevation models, shows that the total volume of erosion (9890 m 3) is greater than the amount of deposition (6990 m 3), indicating a net loss of 2900 m 3 of sediment (or ˜ 29% of eroded sediment) from the dune. Sediment erosion occurred mainly on the stoss slope (3600 m 3; ˜ 36% of eroded sediment), but also on the south (2100 m 3; ˜ 21%) and north sides of the dune head (1700 m 3; ˜ 17%), the blowouts along the arms (1740 m 3, ˜ 18%) and the crest (650 m 3; ˜ 7%). Erosion from the deflation basin is limited by surface roughness and armoring effects of a gravel lag deposit (100 m 3; ˜ 1%). Thus, the blowouts currently contribute to maintaining dune mobility because no other sediment input occurs from upwind. Sediment deposition onto the dune occurred primarily beyond the brink on the south and southeast lee slopes (5500 m 3; ˜ 80%), coinciding with the southeasterly resultant transport direction for November 2004-05. The net loss of about 2900 m 3 (˜ 29%) may be attributed to sediment carried in suspension over and beyond the dune. Correlation analysis between sediment transport and meteorological variables suggests that monthly to seasonal changes of surface conditions (e.g., vegetation cover, ground freezing, moisture) buffer the relative importance of temperature and precipitation on rates of sediment transport. Conversely, wind correlates well on a monthly to seasonal basis because it is a driver of transport under all types of surface conditions. Seasonal effects produce a complex interaction between wind, climate and surface conditions. This leads to a dynamic range of threshold velocities, which in turn causes spatial and

  20. Predicting vegetation-stabilized dune field morphology

    NASA Astrophysics Data System (ADS)

    Barchyn, Thomas E.; Hugenholtz, Chris H.

    2012-09-01

    The morphology of vegetation-stabilized dune fields on the North American Great Plains (NAGP) mostly comprises parabolic dunes; stabilized barchan and transverse dunes are rare, with the exception of transverse and barchan mega-dunes in the Nebraska Sand Hills. We present a hypothesis from a numerical dune field model explaining the vegetation-stabilized morphology of dunes under unidirectional wind. Simulations with a range of initial dune morphologies (closely-spaced transverse to disperse barchans) indicate that stabilized morphology is determined by the ratio of slipface deposition rate to deposition tolerance of vegetation. Slipface deposition rate is related to dune height, flux, and celerity. With a fixed depositional tolerance, large, slow-moving dunes have low slipface deposition rates and ‘freeze’ in place once vegetation is introduced. Relatively small, fast dunes have high slipface deposition rates and evolve into parabolic dunes, often colliding during stabilization. Our hypothesis could explain differences in stabilized morphology across the NAGP and elsewhere.

  1. Aeolian sand as a tool for understanding Mars: Thermal infrared remote sensing of volcaniclastic Mars-analog sand dunes in Christmas Lake Valley, Oregon, U.S.A.

    NASA Astrophysics Data System (ADS)

    Edgett, Kenneth S.

    1996-10-01

    INTRODUCTION: On Earth, aeolian sand dunes are used as tools of scientific inquiry. Holocene and Pleistocene dunes preserve clues about Quaternary climate variations and human activities ranging from Ice Age hunting practices to Twentieth Century warfare. Modern dunes contain the sedimentary textures and structures necessary for interpreting ancient sandstones, and they provide natural laboratories for investigation of aeolian physics and desertification processes. The dunes of Mars can likewise be used as scientific tools. Dunes provide relatively dust-free surfaces. From a remote sensing perspective, martian dunes have much potential for providing clues about surface mineralogy and the interaction between the surface and atmosphere. Such information can in turn provide insights regarding crust composition, volcanic evolution, present and past climate events, and perhaps weathering rates. The Mars Global Surveyor Thermal Emission Spectrometer (TES) is expected to reach the planet in September 1997. TES will provide 6 to 50 micrometer spectra of the martian surface at ground resolutions of 3 to 9 km. Sandy aeolian environments on Mars might provide key information about bedrock composition. To prepare for the TES investigation, I have been examining a thermal infrared image of a Mars-composition analog dune field in Christmas Lake Valley, Oregon. COMPOSITION AND GEOLOGIC SETTING: The "Shifting Sand Dunes" dune field is located at the eastern end of Christmas Lake Valley, in what was once the Pleistocene Fort Rock Lake [1]. Much of the sand that makes up the Shifting Sand Dunes dune field is reworked Mt. Mazama airfall from its terminal eruption 6,800 years ago, plus material deflated from the lake bed [1, 2]. The main constituents of the dunes are volcanic glass and devitrified glass fragments, plagioclase crystals, basalt lithic fragments, aggregates of silt and clay-size volcanic ash, pyroxenes, opaque oxide minerals (mostly magnetite), and trace occurrences of

  2. Great Kobuk Sand Dunes, Alaska: A Terrestrial Analog Site for Polar, Topographically Confined Martian Dune Fields

    NASA Astrophysics Data System (ADS)

    Dinwiddie, C. L.; Hooper, D. M.; Michaels, T. I.; McGinnis, R. N.; Stillman, D.; Bjella, K.; Stothoff, S.; Walter, G. R.; Necsoiu, M.; Grimm, R. E.

    2010-12-01

    Martian dune systems belong to two broad categories: (i) the sprawling north polar erg, rich in and immobilized by seasonal and perennial volatiles; and (ii) isolated low- to high-latitude dune fields confined by topography. While modern dune migration on Mars is nearly imperceptibly slow, recent studies are producing robust evidence for aeolian activity, including bedform modification. Cold-climate terrestrial dunes containing volatile reservoirs provide an important analog to Martian polar dunes because permafrost and seasonal cycles of CO2 and H2O frost mantling are thought to partially decouple Martian polar dunes from atmospheric forcing. The 67°N latitude, 62 km2 Great Kobuk Sand Dunes (GKSD) are a terrestrial analog for polar, intercrater dune fields on Mars. Formative winds affected by complex topography and the presence of volatiles and intercalated snow within the GKSD have direct analogy to factors that impede migration of Martian polar dunes. This system offers the opportunity to study cold-climate, noncoastal, topographically constrained, climbing and reversing barchanoid, transverse, longitudinal, and star dunes. The Kobuk Valley climate is subarctic and semiarid with long, cold winters and brief, warm summers. Niveoaeolian sedimentation occurs within west-facing lee slope catchments. In March 2010, we found the seasonally frozen layer to range in thickness from 1.5 to 4.0 m, and no evidence for shallow permafrost. Instead, using GPR and boreholes, we found a system-wide groundwater aquifer that nearly parallels topography and cuts across steeply dipping bedforms. GPR cannot uniquely detect ice and water; however, a similar analysis of rover-based GPR might be used to detect volatiles in Martian dunes. The perennial volatile reservoir is liquid because of mean annual air temperature, intense solar heating before, during, and after 38 days of continuous summer daylight, high dry sand thermal conductivity, higher wet sand thermal conductivity

  3. Dune Field in Nili Pateria

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) took this image of the southeastern edge of a large dune field within Nili Patera, an irregularly shaped volcanic caldera that is about 65 kilometers (40 miles) in diameter. The image was acquired at 1333 UTC (8:33 a.m. EST) on Feb. 1, 2007, near 8.8 degrees north latitude, 67.3 degrees east longitude. CRISM's image was taken in 544 colors covering 0.36-3.92 micrometers, and shows features as small as 20 meters (66 feet) across. The region covered by the image is just over 10 kilometers (6 miles) wide at its narrowest point.

    The top image was constructed from three visible wavelengths that correspond to what our eyes would see; the colors are stretched to bring out subtle color contrast. The bottom image is a spectral map constructed using three infrared wavelengths that usually highlight compositional variations. Areas with high concentrations of iron- and magnesium-rich igneous minerals appear red.

    The entire dune field, covering about 500 square kilometers, resides mainly in the southwest quadrant of the caldera, occupying approximately 15% of its floor. Some of the dune forms seen here are 'barchans' -- individual, crescent shaped dunes that form when winds come primarily from one direction, resulting in one slipface. The orientation of the slipfaces indicates that primary winds were coming from the east-northeast. Using images from Mars Global Surveyor's narrow-angle camera, researchers measured approximately 400 slipfaces throughout the dune field and calculated an average azimuth of 245 degrees. Some of the barchans have elongated horns, suggesting that they experienced a slight secondary wind, or that the primary wind direction varied a little. When sufficient sand is available, barchans will coalesce, losing their individual crescentic shape. The resulting dune form, referred to as barchanoid, describes the vast majority of dunes in this image.

    In the lower left portion of

  4. Sand Flux Results for Aeolian Dunes at Current and Candidate Landing Sites on Mars

    NASA Astrophysics Data System (ADS)

    Chojnacki, M.; Urso, A.; Yingling, W.

    2015-12-01

    It is now known unambiguously that wind-driven bedform activity is occurring on Mars today. It has also been demonstrated the rapid aeolian abrasion of sedimentary deposits that potentially host ancient habitable environments may provide the best mechanism for exposing samples containing relatively undegraded organics (Farley et al. 2014). Thus, current processes operating on the surface of Mars are highly relevant to our understanding of the past. Here, we discuss new sand flux results of active dune across Mars, including several current and candidate landing sites with Meridiani Planum, Gale crater, Valles Marineris, and Mawrth Vallis. For this task, we have utilized multi-temporal images acquired annually by the HiRISE camera (25 cm/pixel) along with co-located HiRISE Digital Terrain Models. Falling dunes in Coprates Chasma (Mars 2020 candidate landing site) measuring 6-10 meters in height were detected migrating on average 0.5 m per Earth year, yielding crest fluxes of 3.1 m3 m-1 yr-1 (units hereafter assumed). Barchans near the MSL rover at Gale crater have slightly lower fluxes of 1.2, while earlier work in Endeavour crater, the current site of the Opportunity Rover, showed dome dunes with fluxes as high as 13 (average of 6.8; Chojnacki et al. 2015). New results of Mawrth Vallis (Mars 2020 candidate) dunes suggest these high rates are not uncommon, as barchans there possess average fluxes of 11.5. Assuming ripple reptation rates are 1/10th that of crest fluxes, total flux (saltation plus reptation) would range 3.2 to 12.7 m3 m-1 yr-1 for all sites studied herein. Active dunes and the abrasion susceptibility (Sa) of local rocks are relevant to assess how sand fluxes modify the landscape. Using the methodology and assumptions (Sa for basalt, mean trajectory height etc.) described in Bridges et al. (2012), we estimated abrasion rates of local basaltic bedrock. For example, sand blasting at Mawrth Vallis is estimated to produce 2-8 μm/yr for flat ground and 15

  5. 3D airflow dynamics over transverse ridges Mpekweni, South Africa: implications for dune field migration behaviour

    NASA Astrophysics Data System (ADS)

    Jackson, Derek; Cooper, Andrew; Green, Andrew; Beyers, Meiring; Wiles, Errol; Benallack, Keegan

    2016-04-01

    Un-vegetated dune fields provide excellent opportunities to examine airflow dynamics over various types and scales of dune landforms. The three dimensional surface over which lower boundary layers travel, help adjust surface airflow and consequently the aeolian response of the dunes themselves. The use of computational fluid dynamic (CFD) modelling in recent studies now enables investigation of the 3D behaviour of airflow over complex terrain, providing new insights into heterogeneous surface flow and aeolian response of dune surfaces on a large (dunefield) scale. Using a largely un-vegetated coastal dune field site at Mpekweni, Eastern Cape, South Africa, a detailed (0.1m gridded) terrestrial laser scanning survey was conducted to create a high resolution topographical surface. Using local wind flow measurements and local met station records as input, CFD modelling was performed for a number of scenarios involving variable direction and magnitude to examine surface flow patterns across multiple dune forms. Near surface acceleration, expansion and separation of airflow inducing convergence and divergence (steering) of flow velocity streamlines are investigated. Flow acceleration over dune crests/brink lines is a key parameter in driving dune migration and slip face dynamics. Dune aspect ratio (height to length) is also important in determining the degree of crestal flow acceleration, with an increase in flow associated with increasing aspect ratios. Variations in dune height appear to be the most important parameter in driving general flow acceleration. The results from the study provide new insights into dune migration behaviour at this site as well as surface flow behaviour across multiple dune configurations and length scales within un-vegetated dune fields.

  6. Development of spatially diverse and complex dune-field patterns: Gran Desierto Dune Field, Sonora, Mexico

    USGS Publications Warehouse

    Beveridge, C.; Kocurek, G.; Ewing, R.C.; Lancaster, N.; Morthekai, P.; Singhvi, A.K.; Mahan, S.A.

    2006-01-01

    The pattern of dunes within the Gran Desierto of Sonora, Mexico, is both spatially diverse and complex. Identification of the pattern components from remote-sensing images, combined with statistical analysis of their measured parameters demonstrate that the composite pattern consists of separate populations of simple dune patterns. Age-bracketing by optically stimulated luminescence (OSL) indicates that the simple patterns represent relatively short-lived aeolian constructional events since ???25 ka. The simple dune patterns consist of: (i) late Pleistocene relict linear dunes; (ii) degraded crescentic dunes formed at ???12 ka; (iii) early Holocene western crescentic dunes; (iv) eastern crescentic dunes emplaced at ???7 ka; and (v) star dunes formed during the last 3 ka. Recognition of the simple patterns and their ages allows for the geomorphic backstripping of the composite pattern. Palaeowind reconstructions, based upon the rule of gross bedform-normal transport, are largely in agreement with regional proxy data. The sediment state over time for the Gran Desierto is one in which the sediment supply for aeolian constructional events is derived from previously stored sediment (Ancestral Colorado River sediment), and contemporaneous influx from the lower Colorado River valley and coastal influx from the Bahia del Adair inlet. Aeolian constructional events are triggered by climatic shifts to greater aridity, changes in the wind regime, and the development of a sediment supply. The rate of geomorphic change within the Gran Desierto is significantly greater than the rate of subsidence and burial of the accumulation surface upon which it rests. ?? 2006 The Authors. Journal compilation 2006 International Association of Sedimentologists.

  7. Three-dimensional modeling of an aeolian dune/interdune system: Applications to hydrocarbon production

    SciTech Connect

    Pugh, J.M.; Glennie, K.W.; Williams, B.P.J. )

    1993-09-01

    The Al Liwa region of the northeast Rub Al Khali, United Arab Emirates, comprises compound crescentic draa and subcircular inland sabkhas that are flanked to their north by a sand sea of smaller dunes extending almost to the coast of the Arabian Gulf. This controlled the supply of sand from the north and influenced water-table positions within interdune areas. The draa, up to 170 m high, comprise both fine and coarse sands with a strong carbonate component, and are migrating very slowly to the south-southeast. The evaporite-encrusted interdune sabkhas often are underlain by foreset dune sands that also indicate transport to the south-southeast. The northern fringe of smaller dunes migrates southward more rapidly than the draa, but their northern supply of sand now has been cut off by flooding of the Gulf, initiating the deflation of coastal areas down to the water table. A deep-penetrating radar survey, coupled with large-scale trenching, provides a three-dimensional model of dune/interdune systems. This fieldwork aids a clearer understanding of dune/interdune heterogeneities and interconnectedness, which in turn is providing more realistic reservoir models for interwell simulation studies within the Permian Rotliegende gas fields of northwest Europe.

  8. Global map of Titan's dune fields

    NASA Astrophysics Data System (ADS)

    Le Corre, L.; Le Mouélic, S.; Sotin, C.; Barnes, J. W.; Brown, R. H.; Baines, K.; Buratti, B.; Clark, R.; Nicholson, P.

    2008-09-01

    Introduction Methane is the second major constituent of Titan's atmosphere; but it should be totally removed at least in ten million years by photochemistry in the stratosphere and condensation in the troposphere [1]. The first process produces hydrocarbons which form the haze and can condensate onto the surface. The second process causes methane rains on the surface, which carve channels networks. The loss of methane is possibly balanced by outgassing during cryovolcanic event [2]. But hydrocarbons grains deposited onto the surface cannot be recycled. They may be stored in the dunes [3], which were first seen by SAR (Synthetic Aperture Radar) [4]. We focus our study on the mapping of the dune fields in order to determine their global distribution. The aim is to constrain the amount of hydrocarbon material existing in the dunes, and to relate it to the duration of the methane cycle. Data from the Visual and Infrared Mapping Spectrometer (VIMS) and RADAR instruments onboard Cassini spacecraft can be used to map Titan's surface. Infrared images, which are mainly sensitive to composition and grain size, are very complementary to the microwave measurements which depend mainly on roughness and topography. We used spectral criteria after empirical correction of aerosols to map the distribution of heterogeneous units on Titan [5]. These units are compared with SAR images in overlapping regions. Titan's surface mosaics with VIMS VIMS probes the first ten of microns of the ground in seven narrow atmospheric windows in the 0.88 to 5.11 μm wavelength range. We built infrared mosaics with cubes sorted by spatial resolution, by keeping cubes corresponding to favorable observing conditions (incidence, emergence, phase and time exposure). Band ratios were computed and combined in false color composite images (red as 1.59/1.27-μm, green as 2.03/1.27-μm and blue as 1.27/1.08-μm). Band ratios are useful to minimize the effect of illuminating conditions and albedo variations [6

  9. A linear dune dam - a unique late Pleistocene aeolian-fluvial archive bordering the northwestern Negev Desert dunefield, Israel

    NASA Astrophysics Data System (ADS)

    Roskin, Joel; Bookman, Revital; Friesem, David; Vardi, Jacob

    2016-04-01

    Interactions between aeolian and fluvial processes, known as aeolian-fluvial (A-F) interactions, play a fundamental role in shaping the surface of the Earth especially in arid zones. The blocking of wadis by dunes (dune-damming) is an A-F interaction that is perceived to be an archive of periods of aeolian 'superiority' on fluvial transport power and has had a strong impact on arid landscapes and prehistoric man since the late Quaternary. The southern fringes of the northwestern Negev dunefield are lined with discontinuous surfaces of light-colored, playa-like, low-energy, fine-grained fluvial deposits (LFFDs). Abundant Epipalaeolithic camp sites mainly border the LFFDs. The LFFDs are understood to be reworked loess-like sediment deposited in short-lived shallow water bodies during the late Pleistocene. These developed adjacently upstream of hypothesized dune dams of wadis that drain the Negev highlands. However, no dune dam structures by the LFFDs have been explicitly identified or analyzed. This paper presents for the first time the morphology, stratigraphy and sedimentology of a hypothesized dune dam. The studied linear-like dune dam structure extends west-east for several hundred meters, has an asymmetric cross-section and is comprised of two segments. In the west, the structure is 3-5 m high, 80 m wide, with a steep southern slope, and is covered by pebbles. Here, its morphology and orientation resembles the prevailing vegetated linear dunes (VLDs) of the adjacent dunefield though its slope angles differ from VLDs. To the south of the structure extends a thick LFFD sequence. In the east the structure flattens and is covered by nebkhas with its southern edge overlapped by LFFD units. The structures' stratigraphy is found to be comprised of a thick LFFD base, overlaid by aeolian and fluvially reworked sand, a thin middle LFFD unit, and a crest comprised of LFFDs, fluvial sand and pebbles. Carbonate contents and particle size distributions of the sediments easily

  10. Basaltic lava flows covering active aeolian dunes in the Paraná Basin in southern Brazil: Features and emplacement aspects

    NASA Astrophysics Data System (ADS)

    Waichel, Breno L.; Scherer, Claiton M. S.; Frank, Heinrich T.

    2008-03-01

    Burial of active aeolian dunes by lava flows can preserve the morphology of the dunes and generate diverse features related to interaction between unconsolidated sediments and lavas. In the study area, located in southern Brazil, burial of aeolian deposits by Cretaceous basaltic lava flows completely preserved dunes, and generate sand-deformation features, sand diapirs and peperite-like breccia. The preserved dunes are crescentic and linear at the main contact with basalts, and smaller crescentic where interlayered with lavas. The various feature types formed on sediment surfaces by the advance of the flows reflect the emplacement style of the lavas which are compound pahoehoe type. Four feature types can be recognized: (a) type 1 features are related to the advance of sheet flows in dune-interdune areas with slopes > 5°, (b) type 2 is formed where the lava flows advance in lobes and climb the stoss slope of crescentic dunes (slopes 8-12°), (c) type 3 is generated by toes that descend the face of linear dunes (slopes 17-23°) and (d) type 4 occurs when lava lobes descend the stoss slope of crescentic dunes (slopes 10-15°). The direction of the flows, the disposition and morphology of the dunes and the ground slope are the main factors controlling formation of the features. The injection of unconsolidated sand in lava lobes forms diapirs and peperite-like breccias. Sand diapirs occur at the basal portion of lobes where the lava was more solidified. Peperite-like breccias occur in the inner portion where lava was more plastic, favoring the mingling of the components. The generation of both features is related to a mechanical process: the weight of the lava causes the injection of sand into the lava and the warming of the air in the pores of the sand facilitates this process. The lava-sediment interaction features presented here are consistent with previous reports of basalt lavas with unconsolidated arid sediments, and additional new sand-deformation features

  11. Size distribution and structure of Barchan dune fields

    NASA Astrophysics Data System (ADS)

    Durán, O.; Schwämmle, V.; Lind, P. G.; Herrmann, H. J.

    2011-07-01

    Barchans are isolated mobile dunes often organized in large dune fields. Dune fields seem to present a characteristic dune size and spacing, which suggests a cooperative behavior based on dune interaction. In Duran et al. (2009), we propose that the redistribution of sand by collisions between dunes is a key element for the stability and size selection of barchan dune fields. This approach was based on a mean-field model ignoring the spatial distribution of dune fields. Here, we present a simplified dune field model that includes the spatial evolution of individual dunes as well as their interaction through sand exchange and binary collisions. As a result, the dune field evolves towards a steady state that depends on the boundary conditions. Comparing our results with measurements of Moroccan dune fields, we find that the simulated fields have the same dune size distribution as in real fields but fail to reproduce their homogeneity along the wind direction.

  12. Transport Conditions and Stages of Dune Development in the Olympia Undae Dune Field

    NASA Astrophysics Data System (ADS)

    Ewing, R. C.; Bourke, M.; Kocurek, G.

    2009-03-01

    Dune patterns analyzed in Olympia Undae indicate two generations of dune construction and a change in wind regime. Flow fields inferred from wind ripple orientations indicate transport from the ENE, which aligns with the youngest dunes.

  13. Reactivation of supply-limited dune fields from blowouts: A conceptual framework for state characterization

    NASA Astrophysics Data System (ADS)

    Barchyn, Thomas E.; Hugenholtz, Chris H.

    2013-11-01

    Aeolian dune fields mantle the Earth in both vegetated (stable) and unvegetated (active) states. Changes in state are poorly understood; in particular, little is known about reactivation (devegetation) from a vegetated state. Available evidence indicates that dune reactivation can be driven by changes in aridity, increased wind speed, fire, biogenic disturbance, human disturbance, or a combination of the previous. How these controls fit together and define the reactivation potential of dune fields is presently unknown. Here we develop a framework to describe reactivation potential for a specific case: presently vegetated, supply-limited dune fields that develop blowouts under a unidirectional wind. We first define a conceptual model of blowout expansion, and then split the functions of vegetation in a stable dune field into: (i) maintenance of a protective skin, and (ii) blowout suppression. We model reactivation as disturbance breaking through the protective skin, which forms a blowout that is either (i) suppressed by colonizer species, or (ii) capable of advancing downwind and reactivating part of the dune field. The capacity for disturbance to break through the protective skin is a function of disturbance magnitude, area, and resistance of the skin. The blowout suppression capacity of a dune field is a function of sediment flux, blowout depth (related to geomorphology), and colonizer species vitality. By plotting a given dune field with two variables (protective skin breach rate and blowout suppression capacity) we define four states: (i) stable, (ii) blowout dominated, (iii) reactivating, or (iv) stable but disturbance susceptible. We reinforce the conceptual model with qualitative examples and discussion of experiments on grassland-stabilized dunes in Canada. Overall, our framework provides a starting point for quantifying the reactivation potential of vegetated dune fields.

  14. Natural and human controls of the Holocene evolution of the beach, aeolian sand and dunes of Caesarea (Israel)

    NASA Astrophysics Data System (ADS)

    Roskin, J.; Sivan, D.; Shtienberg, G.; Roskin, E.; Porat, N.; Bookman, R.

    2015-12-01

    The study focuses on the Holocene appearance, chronology and drivers of beach sand deposition and inland aeolian sand transport around the Roman-Byzantine ruins of Caesarea, Israel. Beach sand, sand sheets, nebkha, linear and transverse dunes as well as parabolic and transverse interdunes along two transects were sampled in the current study down to their substrate. Sixteen new optically stimulated luminescence ages cluster at ∼5.9-3.3 ka, ∼1.2-1.1 ka (800-900 AD) and ∼190-120 years ago (1825-1895 AD) indicating times of middle and late Holocene sand sheet depositions and historical dune stabilization. The first age cluster indicates that beach sand accumulated when rates of global sea level rise declined around 6-5 ka. Until ∼4 ka sand sheets encroached up to 2.5 km inland. Historical and archaeological evidence points to sand mobilization since the first century AD. Sand sheets dating to 1.2-1.1 ka, coevally found throughout the dunefield represent sand stabilization due to vegetation reestablishment attributed to gradual and fluctuating decline in human activity from the middle Early Islamic period until the 10th century. Historical and chronological evidence of the existence of transverse and coppice dunes from the 19th century suggest that dunes only formed in the last few centuries. The study illustrates the initial role of natural processes, in this case decline in global sea level rise and the primary and later role of fluctuating human activity upon coastal sand mobility. The study distinguishes between sand sheets and dunes and portrays them as sensors of environmental changes.

  15. Conceptual models of the evolution of transgressive dune field systems

    NASA Astrophysics Data System (ADS)

    Hesp, Patrick A.

    2013-10-01

    This paper examines the evolutionary paths of some transgressive dune fields that have formed on different coasts of the world, and presents some initial conceptual models of system dynamics for transgressive dune sheets and dune fields. Various evolutionary pathways are conceptualized based on a visual examination of dune fields from around the world. On coasts with high sediment supply, dune sheets and dune fields tend to accumulate as large scale barrier systems with little colonization of vegetation in arid-hyper to arid climate regimes, and as multiple, active discrete phases of dune field and deflation plain couplets in temperate to tropical environments. Active dune fields tend to be singular entities on coasts with low to moderate sediment supply. Landscape complexity and vegetation richness and diversity increases as dune fields evolve from simple active sheets and dunes to single and multiple deflation plains and basins, precipitation ridges, nebkha fields and a host of other dune types associated with vegetation (e.g. trailing ridges, slacks, remnant knobs, gegenwalle ridges and dune track ridges, 'tree islands' and 'bush pockets'). Three principal scenarios of transgressive dune sheet and dune field development are discussed, including dune sheets or dune fields evolving directly from the backshore, development following foredune and/or dune field erosion, and development from the breakdown or merging of parabolic dunes. Various stages of evolution are outlined for each scenario. Knowledge of evolutionary patterns and stages in coastal dune fields is very limited and caution is urged in attempts to reverse, change and/or modify dune fields to 'restore' some perceived loss of ecosystem or dune functioning.

  16. Conceptual models of the evolution of transgressive dune field systems

    NASA Astrophysics Data System (ADS)

    A. Hesp, Patrick

    2013-10-01

    This paper examines the evolutionary paths of some transgressive dune fields that have formed on different coasts of the world, and presents some initial conceptual models of system dynamics for transgressive dune sheets and dune fields. Various evolutionary pathways are conceptualized based on a visual examination of dune fields from around the world. On coasts with high sediment supply, dune sheets and dune fields tend to accumulate as large scale barrier systems with little colonization of vegetation in arid-hyper to arid climate regimes, and as multiple, active discrete phases of dune field and deflation plain couplets in temperate to tropical environments. Active dune fields tend to be singular entities on coasts with low to moderate sediment supply. Landscape complexity and vegetation richness and diversity increases as dune fields evolve from simple active sheets and dunes to single and multiple deflation plains and basins, precipitation ridges, nebkha fields and a host of other dune types associated with vegetation (e.g. trailing ridges, slacks, remnant knobs, gegenwalle ridges and dune track ridges, ‘tree islands' and ‘bush pockets'). Three principal scenarios of transgressive dune sheet and dune field development are discussed, including dune sheets or dune fields evolving directly from the backshore, development following foredune and/or dune field erosion, and development from the breakdown or merging of parabolic dunes. Various stages of evolution are outlined for each scenario. Knowledge of evolutionary patterns and stages in coastal dune fields is very limited and caution is urged in attempts to reverse, change and/or modify dune fields to ‘restore' some perceived loss of ecosystem or dune functioning.

  17. Preliminary study of Kelso Dunes using AVIRIS, TM, and AIRSAR

    NASA Technical Reports Server (NTRS)

    Xu, Pung; Blumberg, Dan G.; Greeley, Ronald

    1995-01-01

    Remote sensing of sand dunes helps in the understanding of aeolian process and provides important information about the regional geologic history, environmental change, and desertification. Remotely sensed data combined with field studies are valuable in studying dune morphology, regional aeolian dynamics, and aeolian depositional history. In particular, active and inactive sands of the Kelso Dunes have been studied using landsat TM and AIRSAR. In this report, we describe the use of AVIRIS data to study the Kelso dunes and to compare the AVIRIS information with that from TM and AIRSAR.

  18. Meso-scale aeolian transport of beach sediment via dune blowout pathways within a linear foredune

    NASA Astrophysics Data System (ADS)

    O'Keeffe, Nicholas; Delgado-Fernandez, Irene; Jackson, Derek; Aplin, Paul; Marston, Christopher

    2016-04-01

    The evolution of coastal foredunes is largely controlled by sediment exchanges between the geomorphic sub-units of the nearshore, beach, foredune and dune field. Although blowouts are widely recognised as efficient sediment transport pathways, both event-scale and meso-scale quantification of their utility in transferring beach sediments landwards is limited. Foredunes characterised by multiple blowouts may be more susceptible to coastline retreat through the enhanced landwards transport of beach or foredune sediments. To date, a key constraint for investigations of such scenarios has been the absence of accurate blowout sediment transport records. Here we use the Sefton coast in north-west England as a study area where an unprecedented temporal coverage of LIDAR data is available between 1999 and 2015. Additionally, an extensive set of aerial photography also exists, dating back to 1945 allowing comparison of blowout frequency and magnitude together with the alongshore limits of coastline retreat. Digital terrain models are derived for each year that LIDAR data is available. Informed by LIDAR based topography and areas of bare sand (aerial photos) terrain models have been created containing individual blowouts. Differentials in 'z' values between each terrain model of each available year has identified topographic change and total levels of transport. Preliminary results have confirmed the importance of blowouts in transporting beach or foredune sediment landwards and thus potentially promoting coastline retreat. Repetition of processes across a larger number of blowout topographies will allow better identification of individual blowouts for 'event' scale field investigations to examine spatial and temporal variability of beach sediment transport via blowouts routes.

  19. Turbulent flow structures and aeolian sediment transport over a barchan sand dune

    NASA Astrophysics Data System (ADS)

    Wiggs, G. F. S.; Weaver, C. M.

    2012-03-01

    The turbulent structure of airflow over a barchan sand dune is determined using quadrant analysis of wind velocity data derived from sonic anemometers. Results indicate an increased frequency of ejection and sweep events in the toe region of the dune, characteristic of the turbulent bursting process. In contrast, at the crest there was a significant increase in the occurrence of outward interactions. Combined with high frequency saltation data our analyses show that turbulent structures characterised by a positive streamwise fluctuating velocity (+u‧ sweeps at the toe and outward interactions at the crest) have a dominant influence on sand transport on the dune, together accounting for up to 83% and 95% of transporting events at the toe and crest respectively.

  20. Modeling emergent large-scale structures of barchan dune fields

    NASA Astrophysics Data System (ADS)

    Worman, S. L.; Murray, A. B.; Littlewood, R.; Andreotti, B.; Claudin, P.

    2013-10-01

    In nature, barchan dunes typically exist as members of larger fields that display striking, enigmatic structures that cannot be readily explained by examining the dynamics at the scale of single dunes, or by appealing to patterns in external forcing. To explore the possibility that observed structures emerge spontaneously as a collective result of many dunes interacting with each other, we built a numerical model that treats barchans as discrete entities that interact with one another according to simplified rules derived from theoretical and numerical work and from field observations: (1) Dunes exchange sand through the fluxes that leak from the downwind side of each dune and are captured on their upstream sides; (2) when dunes become sufficiently large, small dunes are born on their downwind sides (`calving'); and (3) when dunes collide directly enough, they merge. Results show that these relatively simple interactions provide potential explanations for a range of field-scale phenomena including isolated patches of dunes and heterogeneous arrangements of similarly sized dunes in denser fields. The results also suggest that (1) dune field characteristics depend on the sand flux fed into the upwind boundary, although (2) moving downwind, the system approaches a common attracting state in which the memory of the upwind conditions vanishes. This work supports the hypothesis that calving exerts a first-order control on field-scale phenomena; it prevents individual dunes from growing without bound, as single-dune analyses suggest, and allows the formation of roughly realistic, persistent dune field patterns.

  1. Modeling emergent large-scale structures of barchan dune fields

    NASA Astrophysics Data System (ADS)

    Worman, S. L.; Murray, A.; Littlewood, R. C.; Andreotti, B.; Claudin, P.

    2013-12-01

    In nature, barchan dunes typically exist as members of larger fields that display striking, enigmatic structures that cannot be readily explained by examining the dynamics at the scale of single dunes, or by appealing to patterns in external forcing. To explore the possibility that observed structures emerge spontaneously as a collective result of many dunes interacting with each other, we built a numerical model that treats barchans as discrete entities that interact with one another according to simplified rules derived from theoretical and numerical work, and from field observations: Dunes exchange sand through the fluxes that leak from the downwind side of each dune and are captured on their upstream sides; when dunes become sufficiently large, small dunes are born on their downwind sides ('calving'); and when dunes collide directly enough, they merge. Results show that these relatively simple interactions provide potential explanations for a range of field-scale phenomena including isolated patches of dunes and heterogeneous arrangements of similarly sized dunes in denser fields. The results also suggest that (1) dune field characteristics depend on the sand flux fed into the upwind boundary, although (2) moving downwind, the system approaches a common attracting state in which the memory of the upwind conditions vanishes. This work supports the hypothesis that calving exerts a first order control on field-scale phenomena; it prevents individual dunes from growing without bound, as single-dune analyses suggest, and allows the formation of roughly realistic, persistent dune field patterns.

  2. Holocene evolution of the Xagó dune field (Asturias, NW Spain) reconstructed by means of morphological mapping and ground penetrating radar surveys

    NASA Astrophysics Data System (ADS)

    Flor-Blanco, G.; Rubio-Melendi, D.; Flor, G.; Fernández-Álvarez, J. P.; Jackson, D. W. T.

    2016-02-01

    Morphological mapping and ground penetrating radar (GPR) profiling were carried out in the Xagó aeolian dune field along the Asturias coast of NW Spain to reconstruct its Holocene evolution. Such data provide a much more accurate picture than can be inferred from surficial morphological studies alone. Three successive dune sequences were identified: an inner (climbing dunes), a middle (large transverse ridge and minor elongated dunes) and an outer dune field (foredune with lee-projection dunes and incipient foredune). A late Holocene sea-level fall is inferred from the relative position of the dunes together with a prograding tendency. Long intervals of stabilisation, during which each dune sequence was formed, are interspersed within the deposit. The GPR records also reveal a period of erosion in the southern middle field, which was followed by accretion. The results show that both progradational and erosional processes occurred during the Holocene evolution of the dune field, features that can be extended to other dune fields in similar settings at these latitudes. Stratigraphically, the Xagó dune field is an excellent example where internal reflectors reveal an erosion surface representing a transgressive or sea-level stillstand event that had previously remained undetected.

  3. Lee slope sediment processes leading to avalanche initiation on an aeolian dune

    NASA Astrophysics Data System (ADS)

    Sutton, S. L. F.; McKenna Neuman, C.; Nickling, W.

    2013-09-01

    In order to detail the governing conditions through which a slipface matures to the point of failure, dry sand avalanches were observed in the Dune Simulation Wind Tunnel on a 1:1 replica transverse dune with a crest height of approximately 1.2 m. Areal distributions of grainfall and reptation were measured using traps. Changes in the slipface elevation were observed using 3-D laser scanning with a vertical accuracy of 0.096 mm for approximately every 1 mm2 of surface area. Grainfall decayed exponentially from the brink with a constant rate across all wind velocities. Reptation removed sediment from areas close to the brink and deposited it downslope, creating low amplitude, cross-slope ripples on the slipface. A critical length scale separating grainscale and bulk sediment behavior is identified, and it defines the lower limit to the validity of angle of repose measurements. Avalanche initiation occurred in an area of steep surface slope below a sediment bulge, with distance from the brink independent of wind velocity. The time between avalanches was found to be constant for constant wind velocity.

  4. Hybrid eolian dunes of William River Dune field, northern Saskatchewan, Canada

    SciTech Connect

    Carson, M.A.; MacLean, P.A.

    1985-02-01

    A series of northwest-southeast aligned, large-scale (up to 30 m high) eolian dunes, occurring in a confined (600 km/sup 2/) desert area in northern Saskatchewan, Canada, was examined in the field. Observations were made of dune morphology and internal structure, and patterns of sand movement on the dunes were analyzed in relation to wind events during the summer of 1981. Present cross-sectional profiles exhibit steeper northeast slopes, the lower segment of which are intermittently covered by psammophilous grasses. Dune structure is dominated by northeast-dipping accretion laminae. Three /sup 14/C dates from organic material cropping out on the lower southwest slopes reveal that the dunes have migrated as transverse bed forms at rates of roughly 0.5 m/yr during the last few hundred years. However, a progressive increase in height, bulk, and symmetry along the dune axis from northwest to southeast, suggests an along-dune component of sand transport. This view is supported by (1) field measurements of airflow and along-dune sand transport patterns on 2 dunes, and (2) the present-day wind regime (1963-78). Dominated by north-northeast to northeast winds from January to June and by west-southwest winds from July to December, the resultant potential sand transport vector is toward the southeast, virtually identical to the dune axis.

  5. Effects of river regulation on aeolian landscapes, Colorado River, southwestern USA

    USGS Publications Warehouse

    Draut, Amy E.

    2012-01-01

    Connectivity between fluvial and aeolian sedimentary systems plays an important role in the physical and biological environment of dryland regions. This study examines the coupling between fluvial sand deposits and aeolian dune fields in bedrock canyons of the arid to semiarid Colorado River corridor, southwestern USA. By quantifying significant differences between aeolian landscapes with and without modern fluvial sediment sources, this work demonstrates for the first time that the flow- and sediment-limiting effects of dam operations affect sedimentary processes and ecosystems in aeolian landscapes above the fluvial high water line. Dune fields decoupled from fluvial sand supply have more ground cover (biologic crust and vegetation) and less aeolian sand transport than do dune fields that remain coupled to modern fluvial sand supply. The proportion of active aeolian sand area also is substantially lower in a heavily regulated river reach (Marble–Grand Canyon, Arizona) than in a much less regulated reach with otherwise similar environmental conditions (Cataract Canyon, Utah). The interconnections shown here among river flow and sediment, aeolian sand transport, and biologic communities in aeolian dunes demonstrate a newly recognized means by which anthropogenic influence alters dryland environments. Because fluvial–aeolian coupling is common globally, it is likely that similar sediment-transport connectivity and interaction with upland ecosystems are important in other dryland regions to a greater degree than has been recognized previously.

  6. Effects of river regulation on aeolian landscapes, Colorado River, southwestern USA

    NASA Astrophysics Data System (ADS)

    Draut, Amy E.

    2012-06-01

    Connectivity between fluvial and aeolian sedimentary systems plays an important role in the physical and biological environment of dryland regions. This study examines the coupling between fluvial sand deposits and aeolian dune fields in bedrock canyons of the arid to semiarid Colorado River corridor, southwestern USA. By quantifying significant differences between aeolian landscapes with and without modern fluvial sediment sources, this work demonstrates for the first time that the flow- and sediment-limiting effects of dam operations affect sedimentary processes and ecosystems in aeolian landscapes above the fluvial high water line. Dune fields decoupled from fluvial sand supply have more ground cover (biologic crust and vegetation) and less aeolian sand transport than do dune fields that remain coupled to modern fluvial sand supply. The proportion of active aeolian sand area also is substantially lower in a heavily regulated river reach (Marble-Grand Canyon, Arizona) than in a much less regulated reach with otherwise similar environmental conditions (Cataract Canyon, Utah). The interconnections shown here among river flow and sediment, aeolian sand transport, and biologic communities in aeolian dunes demonstrate a newly recognized means by which anthropogenic influence alters dryland environments. Because fluvial-aeolian coupling is common globally, it is likely that similar sediment-transport connectivity and interaction with upland ecosystems are important in other dryland regions to a greater degree than has been recognized previously.

  7. Field measurement and analysis of climatic factors affecting dune mobility near Grand Falls on the Navajo Nation, southwestern United States

    USGS Publications Warehouse

    Bogle, Rian C.; Redsteer, Margaret Hiza; Vogel, John M.

    2015-01-01

    Aeolian sand covers extensive areas of the Navajo Nation in the southwestern United States. Much of this sand is currently stabilized by vegetation, although many drier parts of these Native lands also have active and partly active dunes. Current prolonged drought conditions that started in the mid-1990s are producing significant changes in dune mobility. Reactivation of regional aeolian deposits due to drought or increasing aridity from rising temperatures resulting from climate change could have serious consequences for human and animal populations, agriculture, grazing, and infrastructure. To understand and document the current and future potential for mobility, seasonally repeated surveys were used to track the location of multiple active barchan dunes. By utilizing Real-Time Kinematic GPS field surveys and simultaneously collecting in-situ meteorological data, it is possible to examine climatic parameters and seasonal variations that affect dune mobility and their relative influences. Through analysis of the recorded data, we examined the fit of various climate parameters, and demonstrate that under the current prolonged drought, wind power is the dominant factor controlling dune mobility.

  8. The Role of Reproductive Phenology, Seedling Emergence and Establishment of Perennial Salix gordejevii in Active Sand Dune Fields

    PubMed Central

    Yan, Qiaoling; Liu, Zhimin; Ma, Junling; Jiang, Deming

    2007-01-01

    Background and Aims The function of sexual reproduction of perennials in restoration of vegetation of active dune fields frequently has been underestimated. The objective of this study was to evaluate the role of sexual reproduction of the perennial Salix gordejevii in the revegetation of active dunes. Methods Seedling emergence and establishment of S. gordejevii were examined both in controlled experiments (germination at different burial depths with different watering regimes) and in field observations in three dune slacks. The reproductive phenology and soil seed bank of S. gordejevii, the dynamics of soil moisture, the groundwater table and the landform level of three dune slacks were monitored. Key Results Seeds of S. gordejevii began maturation on 1 May, and seed dispersal lasted from 8 May to 20 May. Seeds on the soil surface germinated significantly faster than those buried in soil (P<0·05). Seedling emergence was negatively correlated with landform level. When most seedlings emerged, there was a significantly positive correlation between soil moisture and seedling emergence (P<0·01). Rainfall was negatively correlated with seedling emergence. Seedling establishment was significantly and positively correlated with seedling emergence (P<0·05), and 72·3 % of the emergent seedlings were established at the end of the growing season. These results indicated that (a) seeds matured and dispersed before the rainy season; (b) seeds germinated as soon as they contacted a moist surface and relied more on soil moisture than on rainfall; and (c) more seedlings emerged at lower sampling points in dune slacks. Conclusions In natural conditions, restoration of active sand dune fields generally commences with revegetation of dune slacks where sexual reproduction of perennials contributes greatly to species encroachment and colonization and hence plays an important role in restoration of active dune fields. Furthermore, aeolian erosion in dune slacks, leading to good

  9. Dune field pattern formation and recent transporting winds in the Olympia Undae Dune Field, north polar region of Mars

    NASA Astrophysics Data System (ADS)

    Ewing, Ryan C.; Peyret, Aymeric-Pierre B.; Kocurek, Gary; Bourke, Mary

    2010-08-01

    High-Resolution Imaging Science Experiment (HiRISE) imagery of the central Olympia Undae Dune Field in the north polar region of Mars shows a reticulate dune pattern consisting of two sets of nearly orthogonal dune crestlines, with apparent slipfaces on the primary crests, ubiquitous wind ripples, areas of coarse-grained wind ripples, and deflated interdune areas. Geomorphic evidence and dune field pattern analysis of dune crest length, spacing, defect density, and orientation indicates that the pattern is complex, representing two constructional generations of dunes. The oldest and best-organized generation forms the primary crestlines and is transverse to circumpolar easterly winds. Gross bed form-normal analysis of the younger pattern of crestlines indicates that it emerged with both circumpolar easterly winds and NE winds and is reworking the older pattern. Mapping of secondary flow fields over the dunes indicates that the most recent transporting winds were from the NE. The younger pattern appears to represent an influx of sediment to the dune field associated with the development of the Olympia Cavi reentrant, with NE katabatic winds channeling through the reentrant. A model of the pattern reformation based upon the reconstructed primary winds and resulting secondary flow fields shows that the development of the secondary pattern is controlled by the boundary condition of the older dune topography.

  10. Gully annealing by aeolian sediment: field and remote-sensing investigation of aeolian-hillslope-fluvial interactions, Colorado River corridor, Arizona, USA

    NASA Astrophysics Data System (ADS)

    Sankey, Joel B.; Draut, Amy E.

    2014-09-01

    Processes contributing to development of ephemeral gully channels are of great importance to landscapes worldwide, and particularly in dryland regions where soil loss and land degradation from gully erosion pose long-term land-management problems. Whereas gully formation has been relatively well studied, much less is known of the processes that anneal gullies and impede their growth. This study of gully annealing by aeolian sediment, spanning 95 km along the Colorado River corridor in Glen, Marble, and Grand Canyon, Arizona, USA, employed field and remote sensing observations, including digital topographic modelling. Results indicate that aeolian sediment activity can be locally effective at counteracting gully erosion. Gullies are less prevalent in areas where surficial sediment undergoes active aeolian transport, and have a greater tendency to terminate in active aeolian sand. Although not common, examples exist in the record of historical imagery of gullies that underwent infilling by aeolian sediment in past decades and evidently were effectively annealed. We thus provide new evidence for a potentially important interaction of aeolian-hillslope-fluvial processes, which could affect dryland regions substantially in ways not widely recognized. Moreover, because the biologic soil crust plays an important role in determining aeolian sand activity, and so in turn the extent of gully development, this study highlights a critical role of geomorphic-ecologic interactions in determining arid-landscape evolution.

  11. Source-to-sink cycling of aeolian sediment in the north polar region of Mars

    NASA Astrophysics Data System (ADS)

    Ewing, R. C.; Kocurek, G.

    2012-12-01

    Aeolian sand dunes are prominent features on the landscapes of Earth, Mars, Venus and Titan and sedimentary deposits interpreted as aeolian in origin are found in the rock records of Earth and Mars. The widespread occurrence of aeolian dunes on the surface of these worlds and within their deep-time depositional records suggests that aeolian systems are and likely have been a default depositional environment for the Solar System. Within an aeolian source-to-sink context, we hypothesize that planet-specific boundary conditions strongly impact production, transport, accumulation and preservation of aeolian sediment, whereas dunes and dune-field patterns remain largely similar. This hypothesis is explored within the north polar region of Mars, which hosts the most extensive aeolian dune fields and aeolian sedimentary deposits yet recognized on Mars and appears to be a region of dynamic source-to-sink cycling of aeolian sediments. The Planum Boreum Cavi Unit rests beneath north polar ice cap of Mars and is composed of several hundred meters of niveo-aeolian dune cross-stratification. The overall architecture of the unit consists of sets of preserved dune topography with an upward increase in the abundance of ice. Dune sets are defined by stabilized, polygonally fractured bounding surfaces, erosional bounding surfaces and typical internal lee foresets made of sediment and ice. The accumulation of the Cavi Unit is interpreted as occurring through freezing and serves as an example of a cold temperature boundary condition on aeolian sediment accumulation. Preservation of the Cavi Unit arises because of deposition of the overlying ice cap and contrasts with preservation of aeolian sediment on Earth, which is largely driven by eustasy and tectonics. The Cavi Unit is thought to be one source of sediment for the north polar Olympia Undae Dune Field. The region of Olympia Undae near the Cavi Unit shows a reticulate dune field pattern composed of two sets of nearly orthogonal

  12. Coastal Sand Dune Plant Ecology: Field Phenomena and Interpretation

    ERIC Educational Resources Information Center

    McDonald, K.

    1973-01-01

    Discusses the advantages and disadvantages of selecting coastal sand dunes as the location for field ecology studies. Presents a descriptive zonal model for seaboard sand dune plant communities, suggestions concerning possible observations and activities relevant to interpreting phenomena associated with these forms of vegetation, and additional…

  13. Holocene eolian activity in the Minot dune field, North Dakota

    USGS Publications Warehouse

    Muhs, D.R.; Stafford, Thomas W., Jr.; Been, J.; Mahan, S.A.; Burdett, J.; Skipp, G.; Rowland, Z.M.

    1997-01-01

    Stabilized eolian sand is common over much of the Great Plains region of the United States and Canada, including a subhumid area of ??? 1500 km2 near Minot, North Dakota. Eolian landforms consist of sand sheets and northwest-trending parabolic dunes. Dunes and sand sheets in the Minot field are presently stabilized by a cover of prairie grasses or oak woodland. Stratigraphic studies and accelerator mass spectrometry radiocarbon dating of paleosols indicate at least two periods of eolian sand movement in the late Holocene. Pedologic data suggest that all of the dune field has experienced late Holocene dune activity, though not all parts of the dune field may have been active simultaneously. Similar immobile element (Ti, Zr, La, Ce) concentrations support the interpretation that eolian sands are derived from local glaciofluvial and glaciolacustrine sediments. However, glaciolacustrine and glaciofluvial source sediments have high Ca concentrations from carbonate minerals, whereas dune sands are depleted in Ca. Because noneolian-derived soils in the area are calcareous, these data indicate that the Minot dune field may have had extended periods of activity in the Holocene, such that eolian abrasion removed soft carbonate minerals. The southwest-facing parts of some presently stabilized dunes were active during the 1930s drought, but were revegetated during the wetter years of the 1940s. These observations indicate that severe droughts accompanied by high temperatures are the most likely cause of Holocene eolian activity.

  14. The role of dune interactions and wind fluctuations in the selection of dune sizes within barchan fields

    NASA Astrophysics Data System (ADS)

    Duran Vinent, O.; Parteli, E. J.; Herrmann, H. J.

    2012-12-01

    Sand dunes dominate desert morphology. They naturally emerge under strong winds and sufficient sand supply from the interaction between sand transport, topography and hydrodynamics. The fact that dunes are mobile landforms gives a dynamical character to desert geomorphology with potential implications for the surrounding ecosystems. As dune mobility is closely related to dune morphology, in particular its size, the study of the long-term evolution of desert areas requires a better understanding of (1) the factors behind dune size selection and (2) the multi-scale nature of dune morphology. Recently it has been shown that dune size is bounded both at small and large scales by sand transport and hydrodynamics, respectively. The smallest dune size is limited to several meters in length by the existence of the so called "saturation length", i.e. the characteristic length of transport transients. The maximum dune size, in the order of hundreds of meters, is in turn limited by the stabilizing effect of the upper limit of the atmospheric boundary layer. Dune dynamics at both scales is also qualitatively different as elementary dunes emerge from a linear instability, and are thus ubiquitous, while giant dunes seem to result from the coalescence of smaller ones. In consequence, a typical dune field should consist in a roughly continuous hierarchy of dune sizes, with many elementary dunes and very few giant dunes. However, in several cases this is not the correct picture as dune sizes are quite uniform and seems to cluster around an intermediate value that is well above the minimum but much smaller than the maximum one. This points to an alternative selection mechanism different from the simple dune merging. Here, we argue that the combination of dune collisions and wind fluctuations, at least within barchan fields, is able to stop the continuous merging process and select a characteristic dune size in function of local conditions. To that end we use a morphodynamic dune

  15. Gully annealing by aeolian sediment: field and remote-sensing investigation of aeolian-hillslope-fluvial interactions, Colorado River corridor, Arizona, USA

    USGS Publications Warehouse

    Sankey, Joel B.; Draut, Amy E.

    2014-01-01

    Processes contributing to development of ephemeral gully channels are of great importance to landscapes worldwide, and particularly in dryland regions where soil loss and land degradation from gully erosion pose long-term land-management problems. Whereas gully formation has been relatively well studied, much less is known of the processes that anneal gullies and impede their growth. This study of gully annealing by aeolian sediment, spanning 95 km along the Colorado River corridor in Glen, Marble, and Grand Canyon, Arizona, USA, employed field and remote sensing observations, including digital topographic modelling. Results indicate that aeolian sediment activity can be locally effective at counteracting gully erosion. Gullies are less prevalent in areas where surficial sediment undergoes active aeolian transport, and have a greater tendency to terminate in active aeolian sand. Although not common, examples exist in the record of historical imagery of gullies that underwent infilling by aeolian sediment in past decades and evidently were effectively annealed. We thus provide new evidence for a potentially important interaction of aeolian–hillslope–fluvial processes, which could affect dryland regions substantially in ways not widely recognized. Moreover, because the biologic soil crust plays an important role in determining aeolian sand activity, and so in turn the extent of gully development, this study highlights a critical role of geomorphic–ecologic interactions in determining arid-landscape evolution.

  16. Monitoring of desert dune field migration process by multi angle sensors

    NASA Astrophysics Data System (ADS)

    Park, Ho-Jun; Yoon, Ji-Ye; Yun, Hye-Won; Kim, Jung-Rack; Choi, Yun-Soo

    2013-04-01

    and EO-ALi images were compared with NDAI values. In addition, ICESat beam-broadening effects, which are interpreted as topographic roughness parameters, were analyzed over the target area. These tasks revealed the correlations between the meter-scale height variations and NDAI values over the desert dune fields, proving the effectiveness of NDAI to represent the surface condition for the progress of aeolian interaction. In conclusion, we proved that the trace of the sandy-desert boundaries for a long observation period is feasible with the multi-angle orbital sensor observation by investigating the expanded NDAIs from various sample sand-dune fields. However, it is quite uncertain whether the consistency of MISR NDAIs over sandy deserts originated from the aeolian microstructures, the reflectance of sand, or the aspect angle of dune morphology. Therefore, in the next stage, the local roughness properties extracted from MISR data analysis will be compared with the topographic information from high-resolution stereo satellite imagery. Consequently, this will correctly evaluate the suitability of multi-angle observation parameters as a dune-activity indicator.

  17. Active aeolian processes on Mars: A regional study in Arabia and Meridiani Terrae

    USGS Publications Warehouse

    Silvestro, S.; Vaz, D.A.; Fenton, L.K.; Geissler, P.E.

    2011-01-01

    We present evidence of widespread aeolian activity in the Arabia Terra/Meridiani region (Mars), where different kinds of aeolian modifications have been detected and classified. Passing from the regional to the local scale, we describe one particular dune field in Meridiani Planum, where two ripple populations are distinguished by means of different migration rates. Moreover, a consistent change in the ripple pattern is accompanied by significant dune advancement (between 0.4-1 meter in one Martian year) that is locally triggered by large avalanche features. This suggests that dune advancement may be common throughout the Martian tropics. ?? 2011 by the American Geophysical Union.

  18. Postdam evolution of aeolian landscapes in the Colorado River corridor through Grand Canyon National Park, Arizona, USA

    NASA Astrophysics Data System (ADS)

    Draut, A. E.; Collins, B. D.; Fairley, H. C.; Rubin, D. M.

    2009-12-01

    Sediment deposits within the Colorado River corridor in Grand Canyon, USA, include fluvial sandbars and aeolian dune fields; fluvial deposits are the primary sediment source for the dune fields. We present a conceptual model describing evolution of aeolian landscapes in Grand Canyon, based upon field measurements of wind and sand transport and on surveys of vegetation and substrate properties. The data indicate that Glen Canyon Dam operations can affect geomorphic evolution above the elevation reached by river flows because of the link between fluvial deposition and aeolian transport of sediment. Evolution of aeolian landscapes, in turn, can affect the stability and preservation of archaeological material that occurs in numerous dune fields. Before closure of Glen Canyon Dam on the Colorado River in 1963, sediment-rich floods (mean annual flood 2400 m3/s) formed sandbars from which wind moved sand inland to form aeolian dunes. After dam operations reduced the amplitude and frequency of high flows, and eliminated the mainstream fluvial sediment supply, fluvial sandbars lost open sand area owing to erosion by river flows and the spread of riparian vegetation. Two types of aeolian landscapes now occur: (1) modern fluvial sourced, those downwind of postdam sandbars; and (2) relict fluvial sourced, which are not downwind of postdam sandbars and whose primary sediment source was deposits from predam floods that were larger than any postdam flows have been. Sediment supply has been reduced to type (1) dune fields because postdam sandbars are smaller than in the predam era; new sediment supply to type (2) dune fields has been essentially eliminated. Decreased aeolian sediment supply leads to increased vegetation and biologic soil crust in dune fields, and can result in greater susceptibility to gully formation during rainfall due to lack of infilling aeolian sand. Modern-fluvial-sourced dunes can receive new windblown sand from sandbars formed by controlled

  19. Field measurements of mean and turbulent airflow over a barchan sand dune

    NASA Astrophysics Data System (ADS)

    Weaver, Corinne M.; Wiggs, Giles F. S.

    2011-05-01

    Advances in our knowledge of the aeolian processes governing sand dune dynamics have been restricted by a reliance on measures of time-averaged airflow, such as shear velocity ( u*). It has become clear that such measures are incapable of explaining the complete dynamics of sediment transport across dune surfaces. Past evidence from wind tunnel and modelling studies has suggested that in some regions on a dune's surface the sediment transport might be better explained through investigations of the turbulent nature of the airflow. However, to date there have been no field studies providing data on the turbulent characteristics of the airflow around dunes with which to support or refute such hypotheses. The field investigation presented here provides mean and turbulent airflow measurements across the centre-line of a barchan sand dune in Namibia. Data were collected using arrays of sonic anemometers and were compared with sand flux data measured using wedge-shaped traps. Results support previously published data derived from wind tunnels and numerical models. The decline in mean wind velocity at the upwind toe of the dune is shown to coincide with a rise in turbulence, whilst mean velocity acceleration on the upper slope corresponds with a general decline in measured turbulence. Analysis of the components of Reynold shear stress ( -u'¯w'¯) and normal stresses ( u¯ and w2 ¯) supports the notion that the development of flow turbulence along the dune centre-line is likely to be associated with the interplay between streamline curvature and mean flow deceleration/acceleration. It is suggested that, due to the nature of its calculation, turbulence intensity is a measure of less practical use than direct assessments of the individual components of Reynolds stress, particularly the instantaneous horizontal streamwise component ( u2 ¯) and shear stress ( -uw¯). Whilst, increases in Reynolds shear stress and the horizontal streamwise component of stress in the toe

  20. Cellular automata to understand the behaviour of beach-dune systems: Application to El Fangar Spit active dune system (Ebro delta, Spain)

    NASA Astrophysics Data System (ADS)

    Barrio-Parra, Fernando; Rodríguez-Santalla, Inmaculada

    2016-08-01

    Coastal dunes are sedimentary environments characterized by their high dynamism. Their evolution is determined by sedimentary exchanges between the beach-dune subsystems and the dune dynamics itself. Knowledge about these exchanges is important to prioritize management and conservation strategies of these environments. The aim of this work is the inclusion of the aeolian transport rates obtained using a calibrated cellular automaton to estimate the beach-dune sediment exchange rates in a real active dune field at El Fangar Spit (Ebro Delta, Spain). The dune dynamics model is able to estimate average aeolian sediment fluxes. These are used in combination with the observed net sediment budget to obtain a quantitative characterization of the sediment exchange interactions. The methods produce a substantial improvement in the understanding of coastal sedimentary systems that could have major implications in areas where the management and conservation of dune fields are of concern.

  1. Introducing a New International Society of Aeolian Research

    NASA Astrophysics Data System (ADS)

    Zobeck, T. M.; Lee, J.; Lancaster, N.; Bullard, J. E.

    2008-12-01

    Aeolian research is a long-standing and rapidly growing area of geological study where scientists of many disciplines meet to investigate the effects of wind on the surface of the Earth and other planetary bodies such as Mars and Titan. Fields of study in aeolian research cover a broad spectrum ranging from developing a basic scientific understanding of the fundamental physical processes of grain motion to the effects of soil erosion on landscape health and environmental sustainability. Aeolian research also includes studies of the effects of aeolian particles on global climate, air quality, and human health, coastal sand transport processes, land degradation, dune migration, the formation of sand seas, and much more. A growing number of international conferences have been organized to focus specifically on aeolian phenomena and a vast number of scholarly publications have been produced to support the science. One popular bibliography includes over 30,000 citations and hundreds of peer-reviewed papers are published each year. Until very recently, no scientific society specifically dealing with aeolian research has been available. The new International Society of Aeolian Research (ISAR) that has been organized to bring together aeolian scientists from around the world. The new society was created to promote contacts among researchers in aeolian processes and related subjects for discussion and comparison of research, to initiate conferences (such as the International Conference on Aeolian Research), to organize excursions, and support the publication of a peer-reviewed scientific journal. The International Society of Aeolian Research sponsors the new Elsevier journal Aeolian Research in support of these activities. This paper will provide further details about the new society and the journal. Please see www.aeolianresearch.org for details.

  2. The geomorphology and evolution of aeolian landforms within a river valley in a semi-humid environment: A case study from Mainling Valley, Qinghai-Tibet Plateau

    NASA Astrophysics Data System (ADS)

    Zhou, Na; Zhang, Chun-Lai; Wu, Xiao-Xu; Wang, Xun-ming; Kang, Li-qiang

    2014-11-01

    This paper systematically analyzes a valley's aeolian landforms in a semi-humid region and presents a model of its contemporary evolution. Mainling Valley of the Yarlung Zangbo River on the Qinghai-Tibet Plateau was chosen as the case study for the analysis of morphometric characteristics and the evolution sequence of aeolian landforms via field data and remote sensing images. The aeolian landforms were primarily composed of aeolian sand belts on river terraces and dunes (sheets) on hillside slopes. Three types of aeolian sand belts were identified based on their dune types. In type I belts, an erosive air stream combined with relatively high vegetation cover (10%) produced sparsely distributed parabolic dunes with a high variability of dune heights; in type II belts, the continual reworking by the erosive air stream in combination with low vegetation cover (3%) formed more densely distributed barchans and transitional dunes with a moderate variability of dune heights; and in type III belts, the gradual evolution from an erosive sand-laden air stream to a saturated sand-laden air stream in combination with low vegetation cover (2%) produced the densest crescentic dunefields but with the least variability in dune heights. Dune sizes increase, dune shapes become uniform, and dune distribution becomes close from type I to III belts. Lateral linking and merging of the dunes were also observed within the belts. Together this evidence indicates that an evolution sequence may exist. Aeolian dunefields in the belt appear to evolve from embryonic parabolic dunefields to adolescent barchan dunefields and, subsequently, to mature compound crescentic dunefields. As the aeolian sand belt evolves into the mature stage, sand accumulations at the foot of the mountain valley can be steps for sand accumulation on valley-side slopes.

  3. Dune Field in a Southern Highlands Crater

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Released 5 September 2003

    Dark dunes sit on a rough, eroding sedimentary surface in the floor of an 83 km diameter crater. This crater is one of dozens in Noachis Terra, in the southern highlands of Mars, to have both dark dunes and an eroding surface. Note how the dunes seem to ignore the underlying rough surface in some cases, while in other places the dunes seem to have wrapped themselves around sharp knobs.

    Image information: VIS instrument. Latitude -40.5, Longitude 34.6 East (325.4 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  4. Breeding and solitary wave behavior of dunes.

    PubMed

    Durán, O; Schwämmle, V; Herrmann, H

    2005-08-01

    Beautiful dune patterns can be found in deserts and along coasts due to the instability of a plain sheet of sand under the action of the wind. Barchan dunes are highly mobile aeolian dunes found in areas of low sand availability and unidirectional wind fields. Up to now modelization mainly focused on single dunes or dune patterns without regarding the mechanisms of dune interactions. We study the case when a small dune bumps into a bigger one. Recently Schwämmle and Herrmann [Nature (London) 426, 610 (2003)] and Katsuki [(e-print cond-mat 0403312)] have shown that under certain circumstances dunes can behave like solitary waves. This means that they can "cross" each other which has been questioned by many researchers before. In other cases we observe coalescence--i.e., both dunes merge into one--breeding--i.e., the creation of three baby dunes at the center and horns of a Barchan dune--or budding--i.e., the small dune, after "crossing" the big one, is unstable and splits into two new dunes. PMID:16196557

  5. Niveo-aeolian and Denivation Deposits on Mars

    NASA Astrophysics Data System (ADS)

    Bourke, M. C.

    2004-12-01

    Hydrogen abundance data from the Gamma Ray Spectrometer on board the Mars Odyssey platform indicate that large areas of the North Polar Sand Sea have high concentrations (40-60% weight) of hydrogen molecules in the surface deposits. On Earth, cold region sand dunes often contain inter-bedded sand, snow and ice. These niveo-aeolian deposits have unique morphologies and sedimentary structures that are generally not found in warm desert dunes. An atlas of dune niveo-aeolian and denivation features was compiled from published studies of polar deserts on Earth. Features occur at a range of scales and signatures are both morphologic and stratigraphic. The atlas is used to identify similar features on Mars. Examination of high resolution Mars Orbiter Camera images of the North Polar Sand Sea and Southern Crater dune fields have identified several potential signatures of niveo-aeolian and denivation processes on Mars. These include: over steepened lee slopes, cornices, rounded slipface and/or crest, protruding ice cemented beds, alluvial meltwater channels and fans and sublimation avalanches. Other smaller-scale forms probably occur but are not detectable with current resolution data. While these findings have implications for our understanding of martian dune geomorphology, mobility and the geological evolution of the sand seas, they also highlight the potential for a significant volatile reservoir and biological habitat in sand dunes on Mars.

  6. Summary of the Third International Planetary Dunes Workshop: remote sensing and image analysis of planetary dunes

    USGS Publications Warehouse

    Fenton, Lori K.; Hayward, Rosalyn K.; Horgan, Briony H.N.; Rubin, David M.; Titus, Timothy N.; Bishop, Mark A.; Burr, Devon M.; Chojnacki, Matthew; Dinwiddie, Cynthia L.; Kerber, Laura; Gall, Alice Le; Michaels, Timothy I.; Neakrase, Lynn D.V.; Newman, Claire E.; Tirsch, Daniela; Yizhaq, Hezi; Zimbelman, James R.

    2013-01-01

    The Third International Planetary Dunes Workshop took place in Flagstaff, AZ, USA during June 12–15, 2012. This meeting brought together a diverse group of researchers to discuss recent advances in terrestrial and planetary research on aeolian bedforms. The workshop included two and a half days of oral and poster presentations, as well as one formal (and one informal) full-day field trip. Similar to its predecessors, the presented work provided new insight on the morphology, dynamics, composition, and origin of aeolian bedforms on Venus, Earth, Mars, and Titan, with some intriguing speculation about potential aeolian processes on Triton (a satellite of Neptune) and Pluto. Major advancements since the previous International Planetary Dunes Workshop include the introduction of several new data analysis and numerical tools and utilization of low-cost field instruments (most notably the time-lapse camera). Most presentations represented advancement towards research priorities identified in both of the prior two workshops, although some previously recommended research approaches were not discussed. In addition, this workshop provided a forum for participants to discuss the uncertain future of the Planetary Aeolian Laboratory; subsequent actions taken as a result of the decisions made during the workshop may lead to an expansion of funding opportunities to use the facilities, as well as other improvements. The interactions during this workshop contributed to the success of the Third International Planetary Dunes Workshop, further developing our understanding of aeolian processes on the aeolian worlds of the Solar System.

  7. Dune field reactivation from blowouts: Sevier Desert, UT, USA

    NASA Astrophysics Data System (ADS)

    Barchyn, Thomas E.; Hugenholtz, Chris H.

    2013-12-01

    Dune field reactivation (a shift from vegetated to unvegetated state) has important economic, social, and environmental implications. In some settings reactivation is desired to preserve environmental values, but in arid regions reactivation is typically a form of land degradation. Little is known about reactivation due to a lack of published records, making modeling and prediction difficult. Here we detail dune reactivations from blowout expansion in the Sevier Desert, Utah, USA. We use historical aerial photographs and satellite imagery to track the transition from stable, vegetated dunes to actively migrating sediment in 3 locations. We outline a reactivation sequence: (i) disturbance breaches vegetation and exposes sediment, then (ii) creates a blowout with a deposition apron that (iii) advances downwind with a slipface or as a sand sheet. Most deposition aprons are not colonized by vegetation and are actively migrating. To explore causes we examine local sand flux, climate data, and stream flow. Based on available data the best explanation we can provide is that some combination of anthropogenic disturbance and climate may be responsible for the reactivations. Together, these examples provide a rare glimpse of dune field reactivation from blowouts, revealing the timescales, behaviour, and morphodynamics of devegetating dune fields.

  8. Persistent Aeolian Activity at Endeavour Crater, Mars

    NASA Astrophysics Data System (ADS)

    Chojnacki, M.; Michaels, T. I.; Fenton, L. K.

    2013-12-01

    Long-term monitoring of sites that are known to have active dunes and ripples is generally limited to 3 Mars-Years (MY). Here, we discuss new results of dune activity and albedo change in Endeavour crater (EC), Meridiani Planum (MP) that record eight MY of aeolian activity. MP dune fields often show large yearly variations in albedo; EC darkened by ~12% in TES albedo between MY 24 and 26 (from 0.14 to 0.12). THEMIS VIS albedo of dunes did not change significantly from MY 26 to 29, but did decrease notably (~15 %) in MY 30. These darkening events are most likely related to aeolian-driven dust cleaning (e.g., removal by saltating sand, dust devils). For example, the Opportunity rover (poised on the western rim of EC) observed evidence for a MY 31 dune field dust-clearing event. HiRISE monitoring of MP has shown it be one of the most active regions outside of north polar latitudes. Paired images of western EC taken 3 MY apart show clear evidence for dune modification that include: ripple migration, change in dune perimeters, exposure of previously buried light-toned rock, and/or burial of rock by sand (Fig. 1a-1b). Dune slip face movement is evident for most dunes, where crests and aprons advanced (2-7 m) in the downwind direction (to the SSE) at rates of 0.7-2.3 m per MY. Small dome dunes in the eastern EC were found to have a large degree of aeolian activity (e.g., deflation and/or translation) by an earlier study that used MGS-MRO images (MY 24-30). New MY 31 images validate earlier observations, showing clear evidence for bedform deflation where dunes often occupy less area (~50%) than in earlier MY 29 images (Fig. 1c-1d). Areal removal rates are on par with earlier estimates. Bedform modification and sand streamer orientation appear to be caused by a NNW wind regime, consistent with earlier observations, mesoscale modeling, and the transport direction of barchans to the west. Dunes in EC are now known to be periodically (consistently?) active from over a decade

  9. Sand transport on an estuarine submarine dune field

    NASA Astrophysics Data System (ADS)

    Gómez, Eduardo A.; Cuadrado, Diana G.; Pierini, Jorge O.

    2010-09-01

    By means of surveys carried out with a Phase Measuring Bathymetric System and current profiles obtained through an ADCP of the internal area of the Bahía Blanca estuary, a field of large dunes was analysed. There are two different and well-defined zones characterized by particular dune morphology and differing hydrodynamics. The reduction in the channel cross-section by a geological control leads to the increase in tidal current velocity, which together with the available sediment leads to the formation of Very Large Dunes ( H > 4 m and L > 100 m) with the typical morphology of a limited amount of sediment overlying a rigid substrate. The migration rate of these dunes, between 65 and 130 m year - 1 , decreases as the bedform height increases. Differing sediment transport rates across the channel result in a non-uniform migration rate, which is responsible for the formation of dunes with linear crests oblique to the tidal current direction. This fact indicates that determination of the sediment transport direction by using only large bedform orientation may be subject to a significant error.

  10. Dunes

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    This image shows relatively dark coarse grained material forming individual dunes coalescing into a relatively uniform sand sheet. The origin of the dark sand that formed these dunes have been suggested to be the northern polar layered deposits.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

    Image information: VIS instrument. Latitude 77.7, Longitude 309.4 East (50.6 West). 19 meter/pixel resolution.

  11. Element geochemical analysis of the contribution of aeolian sand to suspended sediment in desert stream flash floods.

    PubMed

    Jia, Xiaopeng; Wang, Haibing

    2014-01-01

    The interaction of wind and water in semiarid and arid areas usually leads to low-frequency flash flood events in desert rivers, which have adverse effects on river systems and ecology. In arid zones, many aeolian dune-fields terminate in stream channels and deliver aeolian sand to the channels. Although aeolian processes are common to many desert rivers, whether the aeolian processes contribute to fluvial sediment loss is still unknown. Here, we identified the aeolian-fluvial cycling process responsible for the high rate of suspended sediment transport in the Sudalaer desert stream in the Ordos plateau of China. On the basis of element geochemistry data analysis, we found that aeolian sand was similar to suspended sediment in element composition, which suggests that aeolian sand contributes to suspended sediment in flash floods. Scatter plots of some elements further confirm that aeolian sand is the major source of the suspended sediment. Factor analysis and the relation between some elements and suspended sediment concentration prove that the greater the aeolian process, the higher the suspended sediment concentration and the greater the contribution of aeolian sand to suspended sediment yield. We conclude that aeolian sand is the greatest contributor to flash floods in the Sudalaer desert stream. PMID:25089295

  12. Element Geochemical Analysis of the Contribution of Aeolian Sand to Suspended Sediment in Desert Stream Flash Floods

    PubMed Central

    Wang, Haibing

    2014-01-01

    The interaction of wind and water in semiarid and arid areas usually leads to low-frequency flash flood events in desert rivers, which have adverse effects on river systems and ecology. In arid zones, many aeolian dune-fields terminate in stream channels and deliver aeolian sand to the channels. Although aeolian processes are common to many desert rivers, whether the aeolian processes contribute to fluvial sediment loss is still unknown. Here, we identified the aeolian-fluvial cycling process responsible for the high rate of suspended sediment transport in the Sudalaer desert stream in the Ordos plateau of China. On the basis of element geochemistry data analysis, we found that aeolian sand was similar to suspended sediment in element composition, which suggests that aeolian sand contributes to suspended sediment in flash floods. Scatter plots of some elements further confirm that aeolian sand is the major source of the suspended sediment. Factor analysis and the relation between some elements and suspended sediment concentration prove that the greater the aeolian process, the higher the suspended sediment concentration and the greater the contribution of aeolian sand to suspended sediment yield. We conclude that aeolian sand is the greatest contributor to flash floods in the Sudalaer desert stream. PMID:25089295

  13. Aeolian processes over gravel beds: Field wind tunnel simulation and its application atop the Mogao Grottoes, China

    NASA Astrophysics Data System (ADS)

    Zhang, Weimin; Tan, Lihai; Zhang, Guobin; Qiu, Fei; Zhan, Hongtao

    2014-12-01

    The aeolian processes of erosion, transport and deposition are threatening the Mogao Grottoes, a world culture heritage site. A field wind tunnel experiment was conducted atop the Mogao Grottoes using weighing sensors to quantify aeolian processes over protective gravel beds. Results reveal that aeolian erosion and deposition over gravel beds are basically influenced by gravel coverage and wind speed. Erosion is a main aeolian process over gravel beds and its strength level is mainly determined by gravel coverage: strong (<30%), medium (30-50%) and slight (>50%). Aeolian deposition only occurs when gravel coverage is equal to or greater than 30% and wind speeds are between 8 and 12 m s-1, and this process continues until the occurrence of the equilibrium coverage. In addition, the change in conditions of external sand supply affects the transition between aeolian deposition and erosion over gravel beds, and the quantity of sand transport at the height of 0-24 mm is an important indicator of aeolian deposition and erosion over gravel beds. Our results also demonstrate that making the best use of wind regime atop the Mogao Grottoes and constructing an artificial gobi surface in staggered arrays, with 30% coverage and 30-mm-high gravels and in 40 mm spacing can trap westerly invading sand flow and enable the stronger easterly wind to return the deposited sand on the gravel surface back to the Mingsha Mountain so as to minimize the damage of the blown sand flux to the Mogao Grottoes.

  14. Genesis of Dune Fields Under Unidirectional Wind with Sand Input Flux Control: An Experimental Approach

    NASA Astrophysics Data System (ADS)

    Garcia, A.; Courrech du Pont, S.; Rodriguez, S.; Valance, A.; Narteau, C.; Gao, X.; Lucas, A.

    2015-05-01

    Our experimental studies with control of wind and sediment source will characterize more precisely the different modes of dune formation and long-term evolution, and constrain the physics behind the morphogenesis and dynamics of dunes fields.

  15. Stars and linear dunes on Mars

    NASA Technical Reports Server (NTRS)

    Edgett, Kenneth S.; Blumberg, Dan G.

    1994-01-01

    A field containing 11 star and incipient star dunes occurs on Mars at 8.8 deg S, 270.9 deg W. Examples of linear dunes are found in a crater at 59.4 deg S, 343 deg W. While rare, dune varieties that form in bi- and multidirectional wind regimes are not absent from the surface of Mars. The occurence of both of these dune fields offers new insight into the nature of martian wind conditions and sand supply. The linear dunes appears to have formed through modification of a formerly transverse aeolian deposit, suggesting a relatively recent change in local wind direction. The 11 dunes in the star dune locality show a progressive change from barchan to star form as each successive dune has traveled up into a valley, into a more complex wind regime. The star dunes corroborate the model of N. Lancaster (1989), for the formation of star dunes by projection of transverse dunes into a complex, topographically influenced wind regime. The star dunes have dark streaks emanating from them, providing evidence that the dunes were active at or near the time the relevant image was obtained by the Viking 1 orbiter in 1978. The star and linear dunes described here are located in different regions on the martian surface. Unlike most star and linear dunes on Earth, both martian examples are isolated occurrences; neither is part of a major sand sea. Previously published Mars general circulation model results suggest that the region in which the linear dune field occurs should be a bimodal wind regime, while the region in which the star dunes occur should be unimodal. The star dunes are probably the result of localized complication of the wind regime owing to topographic confinement of the dunes. Local topographic influence on wind regime is also evident in the linear dune field, as there are transverse dunes in close proximity to the linear dunes, and their occurrence is best explained by funneling of wind through a topographic gap in the upwind crater wall.

  16. Overview of Initial Results From Studies of the Bagnold Dune Field on Mars by the Curiosity Rover

    NASA Astrophysics Data System (ADS)

    Bridges, Nathan; Ehlmann, Bethany; Ewing, Ryan; Newman, Claire; Sullivan, Robert; Conrad, Pamela; Cousin, Agnes; Edgett, Kenneth; Fisk, Martin; Fraeman, Abigail; Johnson, Jeffrey; Lamb, Michael; Lapotre, Mathieu; Le Mouélic, Stéphane; Martinez, German; Meslin, Pierre-Yves; Thompson, Lucy; van Beek, Jason; Vasavada, Ashwin; Wiens, Roger

    2016-04-01

    The Curiosity Rover is currently studying the Bagnold Dunes in Gale Crater. Here we provide a general overview of results and note that other EGU presentations will focus on specific aspects. The in situ activities have not yet occurred as of this writing, but other analyses have been performed approaching and within the dunefield. ChemCam passive spectra of Bagnold Dune sands are consistent with the presence of olivine. Two APXS spots on the High Dune stoss slope margin, and two others in an engineering test sand patch, show less inferred dust, greater Si, and higher Fe/Mn than other "soils" in Gale Crater. ChemCam analyses of more than 300 soils along the Curiosity traverse show that both fine and coarse soils have increasing iron and alkali content as the Bagnold Dunes are approached, a trend that may reflect admixtures of local rocks (alkalis + iron) to the fines, but also a contribution of Bagnold-like sand (iron) that increases toward the dunefield. MAHLI images of sands on the lower east stoss slope of High Dune show medium and coarse sand in ripple forms, and very fine and fine sand in ripple troughs. Most grains are dark gray, but some are also brick-red/brown, white, green translucent, yellow, brown„ colorless translucent, or vitreous spheres HiRISE orbital images show that the Bagnold Dunes migrate on the order of decimeters or more per Earth year. Prior to entering the dune field, wind disruption of dump piles and grain movement was observed over multi-sol time spans, demonstrating that winds are of sufficient strength to mobilize unconsolidated material, either through direct aerodynamic force or via the action of smaller impacting grains. Within the dune field, we are, as of this writing, engaged in change detection experiments with Mastcam and ChemCam's RMI camera. Data we have so far, spanning 8 sols from the same location, shows no changes. Mastcam and RMI images of the stoss sides of Namib, Noctivaga, and High Dune show that the "ripples" seen

  17. Sand transport by wind, erosion and deposition and the origin of aeolian bedforms

    NASA Astrophysics Data System (ADS)

    Duran Vinent, Orencio

    2014-05-01

    Aeolian processes involve the wind action on a sedimentary substrate, namely erosion, sand transport and deposition. They are responsible for the emergence of aeolian dunes and ripples. Here, we discuss the physics of aeolian sediment transport from a physical point of view. Relevant time and length scales associated to turbulent wind fluctuations are summarized using aerodynamic theory. At the microscopic scale, the main forces acting on the grains are detailed. Sand transport is then studied using two phase numerical simulations based on a discrete element method for particles coupled to a continuum Reynolds averaged description of hydrodynamics. We then introduce the concepts - e.g. saturated flux, saturation length - and the relevant framework for the development of a continuum (macroscopic) quantitative description of transport at the core of our current understanding of aeolian dunes formation. At smaller scales, aeolian ripples arise from the interaction of sediment transport and topography. At larger scales, the nonlinear nature of the interaction between dunes leads to the formation of dune fields.

  18. Reconstruction of the coastal morphodynamics of the Fulong-beach dune field in north-eastern Taiwan

    NASA Astrophysics Data System (ADS)

    Dörschner, Nina; Böse, Margot; Frechen, Manfred

    2010-05-01

    The Fulong-beach dune field is located at the north-eastern coast of Taiwan. Built up of medium and fine grained quartz rich sand, it represents a unique feature of only few kilometres along the east coast of Taiwan. This unique sedimentological regime makes the area most perfectly suitable for age estimations by optically stimulated luminescence (OSL). The dune field is crossed by the Shuangsi-river, which flows into the Pacific Ocean. The coastal area is subjected to very dynamic conditions in the transition zone between land and sea. Due to the constant force of marine and aeolian processes from tides, weather and sediment accumulation by rivers, it is a continuously changing area. Taiwan is located in a very active tectonic zone with high elevation rates, which reach from 4 mm per year at the east coast up to 7 mm per year in the southern parts of the island. Furthermore Taiwan is affected by medial 3.8 typhoons per year and minor earthquakes nearly occur every day (LIN ET AL. 2006). The consequences are high rates of erosion and sediment transport during very short time periods. The Fulong-beach coastal area is densely populated and proud for being a tourism destination. At the northern end of the dune field the Lungmen nuclear power plant is currently under construction. Four separate dune ridges could be identified from a digital elevation model and from field mapping. During the field campaign in October and November 2009 17 samples were taken for OSL-dating (MURRAY ET AL. 1995) out of the four dune ridges as well as out of a more than 30 m high elevated outcrop cut by the Shuangsi-river. The measurement and the evaluation of the OSL-samples will provide us an insight into the duration and intensity of the processes affecting the coastal area of Taiwan during the Holocene. We will give an outline during the poster presentation of the methodical approach and the morphodynamical processes affecting the Fulong-beach dune field in north-eastern Taiwan

  19. Definition and origin of the dune-field pattern at White Sands, New Mexico

    NASA Astrophysics Data System (ADS)

    Baitis, Elke; Kocurek, Gary; Smith, Virginia; Mohrig, David; Ewing, Ryan C.; Peyret, A.-P. B.

    2014-12-01

    A LiDAR-derived digital elevation model (DEM) of a representative portion of the White Sands Dune Field, New Mexico, allows for characterization of an unprecedented range of dune-field parameters and serves as a basis for pattern analysis. Dune-field parameters were measured and statistically analyzed for populations of dunes selected at random and occurring along transects. Populations sampled by these two different methods are comparable, but highlight the sensitivity of transect placement in a dune field that has pattern heterogeneity. Based upon coefficients of variation, pattern emerges at White Sands primarily because of a strong fabric of crestline orientation, and secondarily because of the regularity of spacing between dunes of similar shape as defined by sinuosity, height and length. Linear regression of dune parameters shows that dune geometric relationships vary primarily with crestline length, but there is little correlation between other parameters, including dune spacing and height. This result highlights the sensitivity of identifying topographic heterogeneity in a LiDAR-derived DEM, given that mean ratios conform to global averages. Stripping off the dunes in Matlab shows a terraced surface, which is interpreted to represent paleo-shorelines formed during relative still stands in the overall retreat of Lake Otero. Elevated bands of higher, more closely spaced dunes occur just leeward of the paleo-shorelines. A revised model for the White Sands Dune Field consists of the basinward progradation of successive dune-field segments. Each segment is associated with a paleo-shoreline, and consists of an upwind dune ridge, represented by the elevated bands, and a leeward dune field.

  20. Aeolian Processes and Features on Venus

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald; Bender, Kelly C.; Saunders, Stephen; Schubert, Gerald; Weitz, Catherine M.

    1997-01-01

    Aeolian features on Venus include dune fields, eroded hills (yardangs), wind streaks, (miniature dunes of 10 to 30 cm wavelength). Although and possibly microdunes (in repetitive imaging by Magellan did show changes in the appearance of the surface, these changes are attributed to radar artifacts as a consequence of look direction rather than to physical changes of the surface. Nonetheless, measurements of wind speeds near the surface of Venus and wind tunnel simulations suggest that aeolian processes could be currently active on Venus. Study of radar images of terrestrial analogs shows that radar wavelength, polarization, and viewing geometry, including look direction and incidence angle, all influence the detection of dunes, yardangs, and wind streaks. For best detection, dune crests and yardangs should be oriented perpendicular to look direction. Longer wavelength systems can penetrate sand sheets a meter or more thick, rendering them invisible, especially in arid regions. For wind streaks to be visible, there must be a contrast in surface properties between the streak and the background on which it occurs. Nonetheless, more than 6000 aeolian features have been found on Magellan images of Venus, the most common of which are various wind streaks. Mapping wind streak orientations enables near-surface wind patterns to be inferred for the time of their formation. Type P streaks are associated with parabolic ejecta crater deposits and are considered to have formed in association with the impact event. Most Type P streaks are oriented westward, indicative of the upper altitude superrotation winds of Venus. Non Type P streaks have occurrences and orientations consistent with Hadley circulation. Some streaks in the southern hemisphere are oriented to the northeast, suggesting a Coriolis effect.

  1. An integrated coastal model for aeolian and hydrodynamic sediment transport

    NASA Astrophysics Data System (ADS)

    Baart, F.; den Bieman, J.; van Koningsveld, M.; Luijendijk, A. P.; Parteli, E. J. R.; Plant, N. G.; Roelvink, J. A.; Storms, J. E. A.; de Vries, S.; van Thiel de Vries, J. S. M.; Ye, Q.

    2012-04-01

    Dunes are formed by aeolian and hydrodynamic processes. Over the last decades numerical models were developed that capture our knowledge of the hydrodynamic transport of sediment near the coast. At the same time others have worked on creating numerical models for aeolian-based transport. Here we show a coastal model that integrates three existing numerical models into one online-coupled system. The XBeach model simulates storm-induced erosion (Roelvink et al., 2009). The Delft3D model (Lesser et al., 2004) is used for long term morphology and the Dune model (Durán et al., 2010) is used to simulate the aeolian transport. These three models were adapted to be able to exchange bed updates in real time. The updated models were integrated using the ESMF framework (Hill et al., 2004), a system for composing coupled modeling systems. The goal of this integrated model is to capture the relevant coastal processes at different time and spatial scales. Aeolian transport can be relevant during storms when the strong winds are generating new dunes, but also under relative mild conditions when the dunes are strengthened by transporting sand from the intertidal area to the dunes. Hydrodynamic transport is also relevant during storms, when high water in combination with waves can cause dunes to avalanche and erode. While under normal conditions the hydrodynamic transport can result in an onshore transport of sediment up to the intertidal area. The exchange of sediment in the intertidal area is a dynamic interaction between the hydrodynamic transport and the aeolian transport. This dynamic interaction is particularly important for simulating dune evolution at timescales longer than individual storm events. The main contribution of the integrated model is that it simulates the dynamic exchange of sediment between aeolian and hydrodynamic models in the intertidal area. By integrating the numerical models, we hope to develop a model that has a broader scope and applicability than

  2. Sample fields of the Viking landers, physical properties, and aeolian processes

    NASA Technical Reports Server (NTRS)

    Moore, H. J.; Spitzer, C. R.; Bradford, K. Z.; Cates, P. M.; Shorthill, R. W.; Hutton, R. E.

    1979-01-01

    Surface sampler activities on Mars during the Viking extended mission are considered, including excavation of deep trenches, construction of conical piles of materials, backhoe touchdown experiments, and acquisition of contiguous pictures of the surface beneath number 2 terminal descent engines using mirrors. Results of the Physical Properties Investigation that are relevant to aeolian processes are also discussed. Both pictures and surface sampler data indicate that the surface materials in the sample fields of the Viking landers may be grouped, in order of increasing strength, into drift material, crusty to cloddy material, blocky material and rocks.

  3. Effects of River Regulation on Aeolian Landscapes, Grand Canyon National Park, USA

    NASA Astrophysics Data System (ADS)

    Draut, A. E.

    2010-12-01

    Sediment deposits in the Colorado River corridor include fluvial sandbars and aeolian dune fields, and the fluvial deposits are the primary sediment source for sand in the aeolian dunes. This 7-year study examined the effects of river regulation at Glen Canyon Dam (alteration of flow regime, sediment-supply reduction, and consequent loss of fluvial sandbars) on aeolian landscapes downstream in Grand Canyon National Park. A comparative study was developed between aeolian landscapes in Grand Canyon, Arizona, and Cataract Canyon, Utah, upstream of Glen Canyon Dam and its reservoir (Lake Powell), where hydrology and sediment supply of the Colorado River are affected substantially less by artificial river regulation than occurs in Grand Canyon. Before closure of Glen Canyon Dam in 1963, sediment-rich floods (mean annual peak 2400 m3/s) formed sandbars from which wind moved sand inland to form aeolian dunes. After dam operations reduced the amplitude and frequency of high flows, and eliminated the mainstream fluvial sediment supply, Grand Canyon’s fluvial sandbars lost open sand area owing to erosion by river flows and the spread of riparian vegetation. Two types of aeolian landscapes now occur in Grand Canyon: (1) modern fluvial sourced, those downwind of post-dam sandbars; and (2) relict fluvial sourced, whose primary sediment source was deposits from pre-dam floods that were larger than any post-dam flows have been. Sediment supply has been reduced to type (1) dune fields because post-dam sandbars are smaller than in the pre-dam era; new sediment supply to type (2) dune fields essentially has been eliminated. Type 1 aeolian landscapes can receive new windblown sand from sandbars formed by controlled floods (1160 m3/s), which occurred in 1996, 2004, and 2008. Type 1 dune fields, being downwind and within 100 m of controlled-flood sandbars, have significantly higher aeolian sand-transport rates, more open sand, and less biologic soil crust than relict type 2 dune

  4. Control parameters of the martian dune field positions at planetary scale: tests by the MCD

    NASA Astrophysics Data System (ADS)

    allemand, pascal

    2016-04-01

    The surface of Mars is occupied by more than 500 dunes fields mainly located inside impact craters of the south hemisphere and near the north polar cap. The questions of the activity of martian dunes and of the localization of the martian dune fields are not completely solved. It has been demonstrated recently by image observation and image correlation that some of these dune fields are clearly active. The sand flux of one of them has been even estimated. But there is no global view of the degree of activity of each the dune fields. (2)The topography of impact craters in which dune fields are localized is an important factor of their position. But there is no consensus of the effect of global atmospheric circulation on dune field localization. These two questions are addressed using the results of Mars Climate Database 5.2 (MCD) (Millour, 2015; Forget et al., 1999). The wind fields of the MCD have been first validated against the observations made on active dune fields. Using a classical transport law, the Drift Potential (DP) and the Relative Drift Potential (RDP) have been computed for each dune fields. A good correlation exists between the position of dune fields and specific values of these two parameters. The activity of each dune field is estimated from these parameters and tested on some examples by image observations. Finally a map of sand flow has been computed at the scale of the planet. This map shows that sand and dust is trapped in specific regions. These regions correspond to the area of dune field concentration.

  5. Measurement uncertainties in quantifying aeolian mass flux: evidence from wind tunnel and field site data.

    PubMed

    Poortinga, Ate; Keijsers, Joep G S; Maroulis, Jerry; Visser, Saskia M

    2014-01-01

    Aeolian sediment traps are widely used to estimate the total volume of wind-driven sediment transport, but also to study the vertical mass distribution of a saltating sand cloud. The reliability of sediment flux estimations from such measurements are dependent upon the specific configuration of the measurement compartments and the analysis approach used. In this study, we analyse the uncertainty of these measurements by investigating the vertical cumulative distribution and relative sediment flux derived from both wind tunnel and field studies. Vertical flux data was examined using existing data in combination with a newly acquired dataset; comprising meteorological data and sediment fluxes from six different events, using three customized catchers at Ameland beaches in northern Netherlands. Fast-temporal data collected in a wind tunnel shows that the median transport height has a scattered pattern between impact and fluid threshold, that increases linearly with shear velocities above the fluid threshold. For finer sediment, a larger proportion was transported closer to the surface compared to coarser sediment fractions. It was also shown that errors originating from the distribution of sampling compartments, specifically the location of the lowest sediment trap relative to the surface, can be identified using the relative sediment flux. In the field, surface conditions such as surface moisture, surface crusts or frozen surfaces have a more pronounced but localized effect than shear velocity. Uncertainty in aeolian mass flux estimates can be reduced by placing multiple compartments in closer proximity to the surface. PMID:25071984

  6. Measurement uncertainties in quantifying aeolian mass flux: evidence from wind tunnel and field site data

    PubMed Central

    Keijsers, Joep G.S.; Maroulis, Jerry; Visser, Saskia M.

    2014-01-01

    Aeolian sediment traps are widely used to estimate the total volume of wind-driven sediment transport, but also to study the vertical mass distribution of a saltating sand cloud. The reliability of sediment flux estimations from such measurements are dependent upon the specific configuration of the measurement compartments and the analysis approach used. In this study, we analyse the uncertainty of these measurements by investigating the vertical cumulative distribution and relative sediment flux derived from both wind tunnel and field studies. Vertical flux data was examined using existing data in combination with a newly acquired dataset; comprising meteorological data and sediment fluxes from six different events, using three customized catchers at Ameland beaches in northern Netherlands. Fast-temporal data collected in a wind tunnel shows that the median transport height has a scattered pattern between impact and fluid threshold, that increases linearly with shear velocities above the fluid threshold. For finer sediment, a larger proportion was transported closer to the surface compared to coarser sediment fractions. It was also shown that errors originating from the distribution of sampling compartments, specifically the location of the lowest sediment trap relative to the surface, can be identified using the relative sediment flux. In the field, surface conditions such as surface moisture, surface crusts or frozen surfaces have a more pronounced but localized effect than shear velocity. Uncertainty in aeolian mass flux estimates can be reduced by placing multiple compartments in closer proximity to the surface. PMID:25071984

  7. Laboratory Simulations of Martian and Venusian Aeolian Processes

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald

    1999-01-01

    With the flyby of the Neptune system by Voyager, the preliminary exploration of the Solar System was accomplished. Data have been returned for all major planets and satellites except the Pluto system. Results show that the surfaces of terrestrial planets and satellites have been subjected to a wide variety of geological processes. On solid- surface planetary objects having an atmosphere, aeolian processes are important in modifying their surfaces through the redistribution of fine-grained material by the wind. Bedrock may be eroded to produce particles and the particles transported by wind for deposition in other areas. This process operates on Earth today and is evident throughout the geological record. Aeolian processes also occur on Mars, Venus, and possibly Titan and Triton, both of which are outer planet satellites that have atmospheres. Mariner 9 and Viking results show abundant wind-related landforms on Mars, including dune fields and yardangs (wind-eroded hills). On Venus, measurements made by the Soviet Venera and Vega spacecraft and extrapolations from the Pioneer Venus atmospheric probes show that surface winds are capable of transporting particulate materials and suggest that aeolian processes may operate on that planet as well. Magellan radar images of Venus show abundant wind streaks in some areas, as well as dune fields and a zone of possible yardangs. The study of planetary aeolian processes must take into account diverse environments, from the cold, low-density atmosphere of Mars to the extremely hot, high- density Venusian atmosphere. Factors such as threshold wind speeds (minimum wind velocity needed to move particles), rates of erosion and deposition, trajectories of windblown particles, and aeolian flow fields over various landforms are all important aspects of the problem. In addition, study of aeolian terrains on Earth using data analogous to planetary data-collection systems is critical to the interpretation of spacecraft information and

  8. Differing Abundances of Gypsum in the Primary and Secondary Dunes of the Martian Dune Field Olympia Undae

    NASA Astrophysics Data System (ADS)

    Szumila, I. T.; Bishop, J. L.; Fenton, L. K.; Brown, A. J.

    2012-12-01

    We report on a compositional study in Olympia Undae, located around the polar cap of Mars. Gypsum has been detected throughout the sand sea but with a decline in abundance westward (Langevin et al., 2005). Dune crests are the regions of highest apparent gypsum concentration in CRISM images. Olympia Undae consists of primary dunes formed transverse to circumpolar easterly winds and secondary dunes which lie almost orthogonal to the primary dunes (Ewing et al. 2010). METHODS: We examined a number of CRISM and HiRISE images across the dune field. We focused our preliminary study on FRT0000C31A and FRT0000C2FC, which exhibited the best spectral signatures. Gypsum was identified in CRISM images by its unique 1.45/1.49/1.54 μm triplet, ~1.94-1.95 μm band, 2.22/2.27 μm doublet and 2.49 μm band with a 2.42 μm shoulder. Spectra were acquired from regions of interest (ROIs) created along the crests of primary dunes and the low-relief crests of the secondary dunes (Fig. 1). FINDINGS: CRISM spectra of primary and secondary dune crest ROIs from FRT0000C2FC are compared with a gypsum-rich unit in FRT0000CA5C (Fig. 2). The I/F of gypsum-bearing regions is much darker than pure gypsum indicating a mixture composition containing darker components. The depth of the ~1.95 μm hydration band is ~20-30% stronger for primary dune crests relative to the secondaries, which suggests a similar relationship among the gypsum abundance of these features, assuming similar components and grain sizes. Semi-quantitative analyses are underway to measure this in more detail. Continuing studies are planned with additional images as well. Figure 1 A map-projected view of CRISM image FRT0000C2FC with ROI locations for the primary (P) and secondary (S) dune crests marked. Figure 2 CRISM I/F spectra of gypsum-bearing units in Olympia Undae compared with laboratory reflectance spectra of minerals.

  9. The aeolian wind tunnel

    NASA Technical Reports Server (NTRS)

    Iversen, J. D.

    1991-01-01

    The aeolian wind tunnel is a special case of a larger subset of the wind tunnel family which is designed to simulate the atmospheric surface layer winds to small scale (a member of this larger subset is usually called an atmospheric boundary layer wind tunnel or environmental wind tunnel). The atmospheric boundary layer wind tunnel is designed to simulate, as closely as possible, the mean velocity and turbulence that occur naturally in the atmospheric boundary layer (defined as the lowest portion of the atmosphere, of the order of 500 m, in which the winds are most greatly affected by surface roughness and topography). The aeolian wind tunnel is used for two purposes: to simulate the physics of the saltation process and to model at small scale the erosional and depositional processes associated with topographic surface features. For purposes of studying aeolian effects on the surface of Mars and Venus as well as on Earth, the aeolian wind tunnel continues to prove to be a useful tool for estimating wind speeds necessary to move small particles on the three planets as well as to determine the effects of topography on the evolution of aeolian features such as wind streaks and dune patterns.

  10. Valles Marineris Dune Fields as Seen From the HiRISE, CTX and THEMIS Cameras

    NASA Astrophysics Data System (ADS)

    Chojnacki, M.; Moersch, J. E.

    2008-12-01

    Dune fields on Mars offer an opportunity to investigate the nature of eroded sediments and their interactions with the atmosphere. We examined 20 dune fields in Valles Marineris (VM) from the Mars Global Digital Dune Database [Hayward et al., 2007] to identify significant trends in composition, thermophysical properties, morphology and origin. Dune fields were examined in terms of: slopes, albedo, dust index, thermal inertia and the corresponding derived particle size. We have used image data from the Mars Reconnaissance Orbiter (MRO) instruments CTX [McEwen et al., 2006] and HiRISE [Malin et al., 2007] to establish geologic context for the dune fields, and in particular, to examine their relationships to neighboring geologic units. In general, VM dune fields display greater topographic relief and closer proximity to their inferred source regions than is typical for dune fields elsewhere on Mars. These dunes have a relatively high TES-derived thermal inertia mean value (394 Jm-2K-1 s-1/2, units hereafter assumed), which corresponds to ~1000 μm grains [Pelkey et al., 2001] or very coarse sand sizes. In contrast, typical non-VM dunes have a lower thermal inertia value of ~250, corresponding to ~350 μm grains. To investigate this more closely, high-resolution THEMIS-derived thermal inertia maps were created [Putzig et al., 2004]. CTX and HiRISE visible images revealed that bedrock outcrops are commonly found within dune fields, erroneously elevating the TES thermal inertia values over the ~3x5-km TES footprint. However, even after excluding intra-dune outcrop areas using higher-resolution THEMIS data, several VM dune fields have anomalously high thermal inertia values (>500) compared with non-VM dune fields. It is possible that the high thermal inertia values are indicative of indurated (fossilized) dune surfaces, rather than large individual grain sizes. Coprates Chasma contains a concentration of 6 dune fields both within the main chasm and in depressions to the

  11. The Signature of Life in Stabilized Dune Topography

    NASA Astrophysics Data System (ADS)

    Barchyn, T. E.; Hugenholtz, C.

    2012-12-01

    Life dramatically affects aeolian dunes on Earth by modifying dune morphology and immobilizing sediment. Complete immobilization (stabilization) occurs when vegetation growth shelters the surface and eliminates sediment transport (and the capacity of the dune to clear vegetation). In unidirectional dune forms stabilization is usually preceded by a period of transition dominated by pronounced morphological change (e.g., parabolic dunes). Here, we hypothesize that stabilized topography holds previously unidentified clues detailing the kinematics and behavior of vegetation during stabilization (a 'signature'). During stabilization dune ridges advance downwind and 'bulldoze' vegetation in their path. We split dune ridges into a series of wind-parallel 'dune slices' and outline how slipface vegetation could prove to be a 'tipping point' in stabilization for each dune slice. Slipface vegetation sets off a self-reinforcing stabilization feedback, simplifying our treatment and yielding two predictable behaviors: slipfaces either clear vegetation (deposition rate > vegetation deposition tolerance), or succumb to vegetation and become immobilized (deposition rate < vegetation deposition tolerance). We model slipface deposition rates through slipface geometry and show how predictable variations in classical dune forms (i) could be responsible for incipient transformation of barchan to parabolic dunes, (ii) result in a progressive stabilization feedback fundamentally inconsistent with widely used dune activity indices, and (iii) record a quantitative signature of the relative kinematics of sediment flux and vegetation growth in stabilized slipface geometries. To explore the idea in real dune fields, we extract slipface deposition rates through slipface geometry recorded in digital terrain data for three dune fields: (i) Bigstick Sand Hills, SK, Canada, (ii) White Sands, NM, USA, and (iii) Cape Cod, MA, USA. With independent estimates of sediment flux and vegetation deposition

  12. Modeling the Large-Scale Structure and Long-Term Evolution of a Barchan Dune Field

    NASA Astrophysics Data System (ADS)

    Worman, S.; Littlewood, R. C.; Murray, A.; Andreotti, B.; Claudin, P.

    2011-12-01

    Barchans are mobile, crescent-shaped dunes that form atop hard, flat surfaces in regions where sediment supply is limited and fluid flow is approximately unidirectional. At the dune-scale, coupled models of sand transport and fluid dynamics have successfully reproduced their characteristic behavior and morphology. However, in nature, dunes rarely exist as isolated individuals but are instead found in highly-structured fields: Within a dune field with a cross-wind dimension on the order of 10 kilometers, patches of dunes can alternate spatially with sparse or dune-free regions, and the patches may have different characteristic dune size and spacing. The origin of such enigmatic structures cannot seem to be explained by differences in external forcing and remains an open research question. We use a partly rule-based numerical model that treats single dunes as discrete entities, based on the results of a dune-scale fluid-dynamics/sediment transport model. Our model integrates all currently known processes through which dunes interact with one another (i.e. sand flux exchange, collision, and calving). A rich array of patterns similar to those observed in nature emerge from these relatively simple interactions, offering a potential explanation of field-scale phenomena. We also develop simple statistics to characterize these structures and furnish testable predictions for future empirical work.

  13. Debris Flow Gullies at the Great Kobuk Sand Dunes, Alaska: Implications for Analogous Features on Mars

    NASA Astrophysics Data System (ADS)

    Hooper, D. M.; Dinwiddie, C. L.; Mcginnis, R. N.; Smart, K. J.; Roberts, M.

    2011-12-01

    Debris flows with fresh-appearing gullies or erosion tracks occur on the slopes of several mid- to high-latitude dune fields in both Martian hemispheres. These features originate in alcoves near dune crests, become channelized down lee faces, and terminate with depositional fans. They bear a striking resemblance to small meltwater-induced debris flows observed on the lee slopes of large dunes at the 67 degrees N latitude Great Kobuk Sand Dunes (GKSD), Kobuk Valley National Park, Alaska. The high-latitude, cold-climate GKSD are an optimal terrestrial system within which to conduct a Mars analog study focused on understanding the integrated factors that cause alluvial debris flows to initiate on the lee slopes of aeolian dunes. Debris flow processes in the GKSD are activated by seasonal thawing and consist of a mixture of sand and liquid water cascading down the dune slipface. A distinguishing environmental attribute that separates cold-climate dune fields from temperate and warm-climate dune fields is the seasonal and prolonged occurrence of snow and ice. Cold region dunes often include niveo-aeolian deposits composed of interbedded sand, snow, and ice. The GKSD are variably affected by snowcover for ~70% of each year, which likely has direct analogy to hydrocryospheric factors that influence debris flow development on Mars. Melting and/or sublimation of snow and ice during warm periods cause distinctive morphologic and sedimentologic phenomena ascribed as denivation features or forms, including spongy and hummocky surfaces, tensional cracks, deformed strata, slumping, and compressional structures. We observed small debris flows, niveo-aeolian deposits, and denivation features in the GKSD during fieldwork in March 2010. Wind-transported sand and snow accumulated on the lee slopes of large transverse, longitudinal, and barchanoid dunes. Snow banks with intercalated sand layers are especially prominent and thickest near the top of westward-facing lee slopes at the

  14. Cassini SAR, radiometry, scatterometry and altimetry observations of Titan's dune fields

    USGS Publications Warehouse

    Le, Gall A.; Janssen, M.A.; Wye, L.C.; Hayes, A.G.; Radebaugh, J.; Savage, C.; Zebker, H.; Lorenz, R.D.; Lunine, J.I.; Kirk, R.L.; Lopes, R.M.C.; Wall, S.; Callahan, P.; Stofan, E.R.; Farr, Tom

    2011-01-01

    Large expanses of linear dunes cover Titan's equatorial regions. As the Cassini mission continues, more dune fields are becoming unveiled and examined by the microwave radar in all its modes of operation (SAR, radiometry, scatterometry, altimetry) and with an increasing variety of observational geometries. In this paper, we report on Cassini's radar instrument observations of the dune fields mapped through May 2009 and present our key findings in terms of Titan's geology and climate. We estimate that dune fields cover ???12.5% of Titan's surface, which corresponds to an area of ???10millionkm2, roughly the area of the United States. If dune sand-sized particles are mainly composed of solid organics as suggested by VIMS observations (Cassini Visual and Infrared Mapping Spectrometer) and atmospheric modeling and supported by radiometry data, dune fields are the largest known organic reservoir on Titan. Dune regions are, with the exception of the polar lakes and seas, the least reflective and most emissive features on this moon. Interestingly, we also find a latitudinal dependence in the dune field microwave properties: up to a latitude of ???11??, dune fields tend to become less emissive and brighter as one moves northward. Above ???11?? this trend is reversed. The microwave signatures of the dune regions are thought to be primarily controlled by the interdune proportion (relative to that of the dune), roughness and degree of sand cover. In agreement with radiometry and scatterometry observations, SAR images suggest that the fraction of interdunes increases northward up to a latitude of ???14??. In general, scattering from the subsurface (volume scattering and surface scattering from buried interfaces) makes interdunal regions brighter than the dunes. The observed latitudinal trend may therefore also be partially caused by a gradual thinning of the interdunal sand cover or surrounding sand sheets to the north, thus allowing wave penetration in the underlying

  15. Studies in Aeolian geology

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald

    1988-01-01

    The objective of the research was to assess the significance of aeolian (windblown) processes in the evolution of planetary surfaces. The approach was to use wind tunnel simulations, field studies of possible analogs, and analyses of spacecraft data.

  16. Persistent aeolian activity at Endeavour crater, Meridiani Planum, Mars; new observations from orbit and the surface

    NASA Astrophysics Data System (ADS)

    Chojnacki, Matthew; Johnson, Jeffrey R.; Moersch, Jeffrey E.; Fenton, Lori K.; Michaels, Timothy I.; Bell, James F., III

    2015-05-01

    Aeolian-driven bedform activity is now known to occur in many regions of Mars, based on surface and orbital observation of contemporary martian ripple and dune mobility events. Many of these sites have only been monitored with sufficient resolution data for the last few Mars years, when the High Resolution Imaging Science Experiment (HiRISE) began acquiring images of Mars. One exception is the well-monitored Endeavour crater in Meridiani Planum, which was one of the first known sites of unambiguous dune activity (migration and deflation). However, those early detections used lower resolution images over longer temporal baselines (versus the HIRISE data now available), leaving some measurements poorly constrained. New orbital and surface observations of Endeavour show multiple spatial (cm, m, km) and temporal (seasons, Mars year) scales of aeolian-driven surface change, which confirms earlier reports. Dome dunes in the eastern portion of the crater persistently deflate, disseminating dark sand across lighter-toned regolith and/or eroded bright dust, and likely contribute to the crater interior's episodic decreases in orbital albedo measurements. Other dome dunes are detected with the highest migration rates (4-12 m per Mars year) and volumetric sand fluxes reported yet for Mars. Estimated dune construction times or "turnover times" here and elsewhere on Mars are significantly shorter than martian obliquity cycles, implying that it is not necessary to invoke paleoclimate wind regimes to explain current dune morphologies. Located on the crater rim, the Opportunity rover detected evidence for near- and far-field aeolian-driven activity, with observations of spherules/sand movement in the rover workspace, bedform albedo alteration, and dust-lifting events. Observations of intracrater dunes show periodic shifting dark streaks that significantly constrain local wind regimes (directionality and seasonality). Constraints on wind directions from surface and orbital images

  17. Aeolian Slipface Processes on Earth and Mars

    NASA Astrophysics Data System (ADS)

    Cornwall, Carin; Jackson, Derek; Bourke, Mary; Cooper, Andrew

    2016-04-01

    The surface of Mars is dominated by aeolian features and many locations show ripple and dune migration over the past decade with some sediment fluxes comparable to terrestrial dunes. One of the leading goals in investigating aeolian processes on Mars is to explore the boundary conditions of sediment transport, accumulation, and dune mor-phology in relation to wind regime as well as to quantify migration rates and sediment flux. We combine terrestrial field observations, 3D computational fluid dynamics (CFD) modeling and remote sensing data to investigate com-plex, small scale wind patterns and grainflow processes on terrestrial and martian dunes. We aim to constrain grain flow magnitudes and frequencies that occur on slipface slopes of dunes in order to improve estimates of martian dune field migration and sediment flux related to wind velocity and flow patterns. A series of ground-based, high resolution laser scans have been collected in the Maspalomas dune field in Gran Canaria, Spain to investigate grainflow frequency, morphology and slipface advancement. Analysis of these laser scans and simultaneous video recordings have revealed a variety of slipface activity. We identify 6 different grain-flow morphologies including, hourglass shape (classic alcove formation with deposit fan below), superficial flow (thin lenses), narrow trough (vertical lines cm in width), sheet, column (vertical alcove walls), and complex (combi-nation of morphologies triggered simultaneously in the same location). Hourglass grainflow morphologies were the most common and occurred regularly. The superficial and narrow trough morphologies were the second most com-mon and frequently occurred in between large grain flows. Sheet grainflows were rare and unpredictable. These flows involved large portions of the slipface (metres across) and mobilized a substantial amount of sediment in one event. We have compared these grainflow morphologies from Maspalomas to those in martian dune fields and

  18. Aeolian sediment transport over gobi: Field studies atop the Mogao Grottoes, China

    NASA Astrophysics Data System (ADS)

    Tan, Lihai; Zhang, Weimin; Qu, Jianjun; Wang, Junzhan; An, Zhishan; Li, Fang

    2016-06-01

    This paper reports on field studies of aeolian sediment transport over a rough surface-gobi atop the Mogao Grottoes, China, in relation to sediment entrainment, saltation mass flux and transport rate prediction. Wind speeds were measured with five cup anemometers at different heights and sediment entrainment and transport measured with horizontal and vertical sediment traps coupled to weighing sensors, where sediment entrainment and transport were measured synchronously with wind speeds. Four sediment transport events, with a measurement duration ranging between 2.5 and 11 h, were studied. The entrainment threshold determined by the horizontal sediment trap varied between 0.28 and 0.33 m s-1, and the effect of non-erodible roughness elements-gravels increased the entrainment threshold approximately by 1.8 times compared to a uniform sand surface. Unlike the non-monotone curve shape of sediment flux density profile over gobi measured in wind tunnels, the flux density profile measured in the field showed an exponential form. Aeolian sediment transport over gobi could be predicted by an Owen-type saltation model: q = Aρ /gu∗ (u∗2 - u∗t2) , where q is sediment transport rate, A is a soil-related dimensionless factor, u∗ is the friction velocity, u∗t is the threshold friction velocity, g is the gravitational acceleration, ρ is the air density. This study indicates that the sediment flux sampling using horizontal and vertical sediment traps coupled to weighing sensors provides a practical method to determine values for A in this model that can provide good estimates of sediment transport rates in gobi areas.

  19. Martian aeolian processes, sediments, and features

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald; Lancaster, Nicholas; Lee, Steven; Thomas, Peter

    1992-01-01

    In this review of the aeolian regime on Mars, consideration is given to the sources and characteristics of the particles that are involved in aeolian processes and the winds that are required to set grains into motion. Dust storms are reviewed and previous observations and the mechanisms of dust-storm generation are assessed. Various aeolian features, including dunes and albedo features, as well as windblown mantle deposits are discussed. In planning for future missions to Mars, aeolian processes must be taken into account. Surface modifications by the wind and windblown deposits can influence remote-sensing observations, affect sampling strategies, and have detrimental effects on manned and unmanned spacecraft on the surface.

  20. Deviations from self-similarity in barchan form and flux: The case of the Salton Sea dunes, California

    NASA Astrophysics Data System (ADS)

    Pelletier, Jon D.

    2013-12-01

    are the type of aeolian dune associated with a relatively uniform wind direction, incomplete sand coverage of the substrate, and low vegetation cover. Here I present an analysis of the morphology and migration rates of 40 dunes in the Salton Sea dune field using historical aerial orthophotographs, airborne laser swath mapping, terrestrial laser scanning, and measurements of the aerodynamic roughness length derived from wind velocity profiles. The data demonstrate that the Salton Sea dunes deviate from self-similarity such that smaller dunes have a lower ratio of slip face height to crest height and a lower slope, on average, compared with larger dunes and that smaller dunes migrate more slowly than would be predicted based on an inverse relationship between migration rate and dune height. The lack of self-similarity in barchans has been attributed to the dependence of speed-up ratios on dune size and the presence of a finite saturation length in the physics of aeolian transport. Here I argue that deviations from self-similarity at this study site are more likely due to the systematic decrease in aerodynamic roughness length with increasing elevation on stoss slopes. The data set I developed should prove useful to the aeolian geomorphic community for the further testing of models for barchan evolution.

  1. Controls on the large-scale spatial variations of dune field properties in the barchanoid portion of White Sands dune field, New Mexico

    NASA Astrophysics Data System (ADS)

    Pelletier, Jon D.

    2015-03-01

    Previous studies have shown that sediment fluxes and dune sizes are a maximum near the upwind margin of the White Sands dune field and decrease, to first order, with increasing distance downwind. These patterns have alternatively been attributed to a shear-stress overshoot associated with a roughness transition localized at the upwind margin and to the influence of long-wavelength topography on the hydrology and hence erodibility of dune field sediments. I point out an issue that compromises the shear-stress overshoot model and further test the hypothesis that long-wavelength topographic variations, acting in concert with feedbacks among aerodynamic, granulometric, and geomorphic variables, control dune field properties at White Sands. Building upon the existing literature, I document that the mean and variability of grain sizes, sand dryness, aerodynamic roughness lengths, bed shear stresses, sediment fluxes, and ripple and dune heights all achieve local maxima at the crests of the two most prominent scarps in the dune field, one coincident with the upwind margin and the other located 6-7 km downwind. Computational fluid dynamics (CFD) modeling predicts that bed shear stresses, erosion rates, and the supply of relatively coarse, poorly sorted sediments are localized at the two scarps due to flow line convergence, hydrology, and the spatially distributed adjustment of the boundary layer to variations in dune size. As a result, the crests of the scarps have larger ripples due to the granulometric control of ripple size. Larger grain sizes and/or larger ripples lead to larger dunes and hence larger values of bed shear stress in a positive feedback.

  2. The effects of dune slopes and material heterogeneity on the thermal behavior of dune fields in Mars' Southern Hemisphere

    NASA Astrophysics Data System (ADS)

    O'Shea, P. M.; Putzig, N. E.; Van Kooten, S.; Fenton, L. K.

    2015-12-01

    We analyzed the effects of slopes on the thermal properties of three dune fields in Mars' southern hemisphere. Although slope has important thermal effects, it is not the main driver of observed apparent thermal inertia (ATI) for these dunes. Comparing the ATI seasonal behavior as derived from Thermal Emission Spectrometer (TES) data with that modeled for compositional heterogeneities, we found that TES results correlate best with models of duricrust overlying and/or horizontally mixing with fines. We measured slopes and aspects in digital terrain models created from High Resolution Imaging Science Experiment (HiRISE) images of dunes within Proctor, Kaiser, and Wirtz craters. Using the MARSTHERM web toolset, we incorporated the slopes and aspects together with TES albedo, TES thermal inertia, surface pressure, and TES dust opacity, into models of seasonal ATI. Models that incorporate sub-pixel slopes show seasonal day and night ATI values that differ from the TES results by 0-300 J m-2 K-1 s-½. In addition, the models' day-night differences are opposite in sign from those of the TES results, indicating that factors other than slope are involved. We therefore compared the TES data to model results for a broad range of horizontally mixed and two-layered surfaces to seek other possible controls on the observed data, finding that a surface layer of higher thermal inertia is a likely contributor. However, it is clear from this study that the overall composition and morphology of the dune fields are more complex than currently available models allow. Future work will combine slopes with other model parameters such as multi-layered surfaces and lateral changes in layer thickness. Coupling these improvements with broader seasonal coverage from the Thermal Emission Imaging System (THEMIS) at more thermally favorable times of day would allow more accurate characterization of dune thermal behavior.

  3. Bright dunes on mars

    USGS Publications Warehouse

    Thomas, P.C.; Malin, M.C.; Carr, M.H.; Danielson, G.E.; Davies, M.E.; Hartmann, W.K.; Ingersoll, A.P.; James, P.B.; McEwen, A.S.; Soderblom, L.A.; Veverka, J.

    1999-01-01

    Seasonal changes observed on the surface of Mars can in part be attributed to the transport of geological materials by wind. Images obtained by orbiting spacecraft in the 1970s showed large wind-formed features such as dunes, and revealed regional time-varying albedos that could be attributed to the effects of dust erosion and deposition. But the resolution of these images was insufficient to identify different types and sources of aeolian materials, nor could they reveal aeolian deposits other than large dunes or extensive surface coverings that were redistributed by dust storms. Here we present images of Mars with up to 50 times better resolution. These images show that martian dunes include at least two distinct components, the brighter of which we interpret to be composed of relatively soft minerals, possibly sulphates. We also find large areas of the martian surface that have several metres or more of aeolian mantle lacking obvious bedforms.

  4. Video monitoring of meso-scale aeolian activity on a narrow beach

    NASA Astrophysics Data System (ADS)

    Hage, Pam; Ruessink, Gerben

    2014-05-01

    The morphologic evolution of coastal dunes is inextricably linked to the neighbouring beach through the incessant exchange of sand. Intense storm-wave processes erode the foredune within a few hours and transport its sand sand seaward, while aeolian processes return the eroded sand from the beach into the dune system, although at a much lower pace (months to years, or meso scale). Here we use an 8-year long data set of half-hourly snapshot video images, collected from an ≡ 50 m high tower on Egmond Beach (The Netherlands), and a concurrent meteorological and water level data set, to examine which factors affect aeolian sand delivery into the dunes. Egmond is a north-south oriented, micro- to meso-tidal, wave-dominated site that faces the North Sea. Its beach is relatively narrow ( ~ 100 m at spring low tide) and mildly sloping (~ 1 : 30), and consists of quartz sand with a median diameter of about 300 μm. Aeolian activity is clearly visible on the images as sand streamers and, in particular, sand strips, defined as low-amplitude, large-wavelength and slipfaceless deposits that migrate slowly in the wind direction and, depending on wind direction, can have orientations from almost shore-parallel to shore-normal. Beach width in combination with wind direction appeared to be the dominant factors in controlling aeolian activity. Many high wind (>≡ 13 m/s) events, especially from the west and northwest, were associated with a storm surge that inundated almost the entire beach with, accordingly, no possibility for aeolian transport. In contrast, sand-strip fields covered the entire beach during medium wind (≡ 12 - 13 m/s) events, especially when the wind was nearly shore-parallel. Many sand-strip events were observed to be regulated by the tide. Prominent sand-strip fields on the intertidal and upper beach were largely limited to low-tide situations with a wide beach, with a rising tide obviously destroying the intertidal sand strips and sometimes also negatively

  5. Automated Detection of Transverse Aeolian Ridges on Mars Using Convolutional Neural Networks and a Field-Based Terrestrial Orthoimage Training Set

    NASA Astrophysics Data System (ADS)

    Scheidt, S. P.; Palafox, L. F.; Hamilton, C. W.; Zimbelman, J. R.

    2015-05-01

    This work uses field-based photogrammetric data of ripple bedform topography and orthoimages to train a machine learning algorithm to map transverse aeolian ridges (TARs) in planetary remote sensing data of Mars.

  6. Determining soil moisture and sediment availability at White Sands Dune Field, New Mexico, from apparent thermal inertia data

    NASA Astrophysics Data System (ADS)

    Scheidt, Stephen; Ramsey, Michael; Lancaster, Nicholas

    2010-06-01

    Determinations of soil moisture and sediment availability in arid regions are important indicators of local climate variability and the potential for future dust storm events. Data from the Advanced Spaceborne Thermal Emission and Reflection (ASTER) radiometer were used to derive the relationships among potential soil erosion, soil moisture, and thermal inertia (TI) at the spatial scale of aeolian landforms for the White Sands Dune Field between May 2000 and March 2008. Land surface apparent thermal inertia (ATI) data were used to derive an approximation of actual TI in order to estimate the wind threshold velocity ratio (WTR). The WTR is a ratio of the wind velocity thresholds at which soil erosion occurs for wet soil versus dry soil. The ASTER-derived soil moisture retrievals and the changes through time at White Sands were interpreted to be driven primarily by precipitation, but the presence of a perched groundwater table may also influence certain areas. The sediment availability of dunes, active playa surfaces and the margin of the alluvial fans to the west were determined to be consistently higher than the surrounding area. The sediment availability can be primarily explained by precipitation events and the number of dry days prior to the data acquisition. Other factors such as vegetation and the amount of surface crusting may also influence soil mobility, but these were not measured in the field. This approach showed the highest modeled sediment availability values just days prior to the largest dust emission event at White Sands in decades. Such an approach could be extended to a global monitoring technique for arid land systems that are prone to dust storms and for other regional land surface studies in the Sahara.

  7. Morphological characteristics and sand volumes of different coastal dune types in Essaouira Province, Atlantic Morocco

    NASA Astrophysics Data System (ADS)

    Flor-Blanco, Germán; Flor, Germán; Lharti, Saadia; Pando, Luis

    2013-04-01

    Altogether three coastal dune fields, one located north and two south of the city of Essaouira, Atlantic Morocco, have been investigated to establish the distribution and overall sand volumes of various dune types. The purpose of the study was to characterize and classify the aeolian landforms of the coastal dune belt, to estimate their sand volumes and to assess the effectiveness of coastal dune stabilization measures. The northern dune field is 9 km long and lined by a wide artificial foredune complex fixed by vegetation, fences and branches forming a rectangular grid. Active and ephemeral aklé dunes border the inner backshore, while some intrusive dunes have crossed the foredune belt and are migrating farther inland. The total sand volume of the northern dune belt amounts 13,910,255 m3. The central coastal sector comprises a much smaller dune field located just south of the city. It is only 1.2 km long and, with the exception of intrusive dunes, shows all other dune types. The overall sand volume of the central dune field amounts to about 172,463 m3. The southern dune field is characterized by a narrower foredune belt and overall lower dunes that, in addition, become progressively smaller towards the south. In this sector, embryonic dunes (coppice, shadow dunes), tongue-like and tabular dunes, and sand sheets intrude from the beach, the profile of which has a stepped appearance controlled by irregular outcrops of old aeolianite and beach rock. The total volume of the southern dune field amounts 1,446,389 m3. For the whole study area, i.e. for all three dune fields combined, a sand volume of about 15,529,389 m3 has been estimated. The sand of the dune fields is derived from coastal erosion and especially the Tensift River, which enters the sea at Souira Qedima some 70 km north of Essaouira. After entering the sea, the sand is transported southwards by littoral drift driven by the mainly north-westerly swell climate and the Trade Winds blowing from the NNE. This

  8. A field study of the geomorphic effects of sublimating CO2 blocks on dune slopes at Coral Pink Dunes, Utah.

    NASA Astrophysics Data System (ADS)

    Bourke, Mary; Nield, Jo; Diniega, Serina; Hansen, Candy; McElwaine, Jim

    2016-04-01

    The seasonal sublimation of CO2 ice is an active driver of present-day surface change on Mars. Diniega et al (2013) proposed that a discrete type of Martian gully, found on southern hemisphere dunes, were formed by the movement of CO2 seasonal ice blocks. These 'Linear Gullies' consist primarily of long (100 m - 2.5 km) grooves with near-uniform width (few-10 m wide), and typical depth of <2 m. They are near-linear throughout most of their length but sometimes contains zones of low-to-high sinuosity. They are commonly bounded by levées. The groove is generally prefaced by a small alcove that originates at the dune brink. We present the results of a set of field experiments that were undertaken at the Coral Pink sand dunes, Utah. These are sister experiments to those undertaken in Arizona (Bourke et al, 2016). The experiments were undertaken on an active barchan dune with a 16 m long lee slope (30.3°). Ambient air temperature was 30°C and relative humidity was 25%; sand surface temperatures were 26.5°C. A CO2 ice block (60x205x210 mm) was placed at the dune brink and with a gentle nudge it moved downslope. The dynamics of the block movement were recorded using a pair of high resolution video cameras. Geomorphological observations were noted and topographic change was quantified using a Leica P20 terrestrial laser scanner with a resolution of 0.8 mm at 10 m, and change detection limits less than 3 mm. The block run was repeated a total of 10 times and launched from the same location at the dune brink. The experiment ran for 45 minutes. The block size was reduced to (45 x 190 x 195 mm) by the end of the run series. The resultant geomorphology shows that the separate block runs occupied different tracks leading to a triangular plan form shape with a maximum width of 3.5 m. This is different from the findings in Arizona where a narrower track span was recorded (1.7m) (Bourke et al, 2016). Similar block dynamics were observed at both sites (as blocks moved straight

  9. Geospatial analysis of a coastal sand dune field evolution: Jockey's Ridge, North Carolina

    NASA Astrophysics Data System (ADS)

    Mitasova, Helena; Overton, Margery; Harmon, Russell S.

    2005-12-01

    Preservation and effective management of highly dynamic coastal features located in areas under development pressures requires in-depth understanding of their evolution. Modern geospatial technologies such as lidar, real time kinematic GPS, and three-dimensional GIS provide tools for efficient acquisition of high resolution data, geospatial analysis, feature extraction, and quantification of change. These techniques were applied to the Jockey's Ridge, North Carolina, the largest active dune field on the east coast of the United States, with the goal to quantify its deflation and rapid horizontal migration. Digitized contours, photogrammetric, lidar and GPS point data were used to compute a multitemporal elevation model of the dune field capturing its evolution for the period of 1974- 2004. In addition, peak elevation data were available for 1915 and 1953. Analysis revealed possible rapid growth of the dune complex between 1915-1953, followed by a slower rate of deflation that continues today. The main dune peak grew from 20.1 m in 1915 to 41.8 m in 1953 and has since eroded to 21.9 m in 2004. Two of the smaller peaks within the dune complex have recently gained elevation, approaching the current height of the main dune. Steady annual rate of main peak elevation loss since 1953 suggests that increase in the number of visitors after the park was established in 1974 had little effect on the rate of dune deflation. Horizontal dune migration of 3-6 m/yr in southerly direction has carried the sand out of the park boundaries and threatened several houses. As a result, the south dune section was removed and the sand was placed at the northern end of the park to serve as a potential source. Sand fencing has been an effective management strategy for both slowing the dune migration and forcing growth in dune elevation. Understanding the causes of the current movements can point to potential solutions and suggest new perspectives on management of the dune as a tourist

  10. Robotic Measurement of Aeolian Processes

    NASA Astrophysics Data System (ADS)

    Roberts, S.; Duperret, J. M.; Jerolmack, D. J.; Lancaster, N.; Nikolich, G.; Shipley, T. F.; Van Pelt, R. S.; Zobeck, T. M.; Koditschek, D. E.

    2015-12-01

    Local and regional measurements of sand transport and dust emission in complex natural settings presently lack spatiotemporal resolution adequate to inform models relevant for land management, climate policy, and the basic science of geomorphology. Deployments of wind, sand and dust sensors sophisticated enough to begin unpacking the complex relations among wind turbulence, surface roughness, sand flux and dust emission remain largely stationary. Aerial observations from satellites, planes and even UAVs help fill in, but none of these modalities offer the hope of "capturing the action" by being at the right place at the right time relative to the highly localized nature of sediment transport during wind storms. We have been developing a legged robot capable of rapidly traversing desert terrain, and are now adapting it to serve as a platform for scientific instrumentation. We aim to field a semi-autonomous, reactive mobile sensory package suited to the needs of aeolian science that can address the limitations of existing alternatives. This presentation reports on early trials in the Jornada LTER and White Sands National Monument aimed at gathering measurements of airflow and rates of sand transport on a dune face, assessing the role of roughness elements such as vegetation in modifying the wind shear stresses incident on the surface, and estimating erosion susceptibility in a natural arid soil. We will solicit ideas from the audience about other potentially interesting and viable measurement targets. Future close collaboration between aeolian, cognitive and robotics scientists such as we hope to promote through this presentation may yield machines with scientifically relevant sensory suites possessing sufficient autonomy to operate in-situ at the most intense episodes of wind and sediment movement under conditions far too uncomfortable and hazardous for human presence.

  11. The impact of devegetated dune fields on North American climate during the late Medieval Climate Anomaly

    NASA Astrophysics Data System (ADS)

    Cook, B. I.; Seager, R.; Miller, R. L.

    2011-07-01

    During the Medieval Climate Anomaly, North America experienced severe droughts and widespread mobilization of dune fields that persisted for decades. We use an atmosphere general circulation model, forced by a tropical Pacific sea surface temperature reconstruction and changes in the land surface consistent with estimates of dune mobilization (conceptualized as partial devegetation), to investigate whether the devegetation could have exacerbated the medieval droughts. Presence of devegetated dunes in the model significantly increases surface temperatures, but has little impact on precipitation or drought severity, as defined by either the Palmer Drought Severity Index or the ratio of precipitation to potential evapotranspiration. Results are similar to recent studies of the 1930s Dust Bowl drought, suggesting bare soil associated with the dunes, in and of itself, is not sufficient to amplify droughts over North America.

  12. The Impact of Devegetated Dune Fields on North American Climate During the Late Medieval Climate Anomaly

    NASA Technical Reports Server (NTRS)

    Cook, B. I.; Seager, R.; Miller, R. L.

    2011-01-01

    During the Medieval Climate Anomaly, North America experienced severe droughts and widespread mobilization of dune fields that persisted for decades. We use an atmosphere general circulation model, forced by a tropical Pacific sea surface temperature reconstruction and changes in the land surface consistent with estimates of dune mobilization (conceptualized as partial devegetation), to investigate whether the devegetation could have exacerbated the medieval droughts. Presence of devegetated dunes in the model significantly increases surface temperatures, but has little impact on precipitation or drought severity, as defined by either the Palmer Drought Severity Index or the ratio of precipitation to potential evapotranspiration. Results are similar to recent studies of the 1930s Dust Bowl drought, suggesting bare soil associated with the dunes, in and of itself, is not sufficient to amplify droughts over North America.

  13. Aeolian dust emissions in Southern Africa: field measurements of dynamics and drivers

    NASA Astrophysics Data System (ADS)

    Wiggs, Giles; Thomas, David; Washington, Richard; King, James; Eckardt, Frank; Bryant, Robert; Nield, Joanna; Dansie, Andrew; Baddock, Matthew; Haustein, Karsten; Engelstaedter, Sebastian; von Holdt, Johannah; Hipondoka, Martin; Seely, Mary

    2016-04-01

    Airborne dust derived from the world's deserts is a critical component of Earth System behaviour, affecting atmospheric, oceanic, biological, and terrestrial processes as well as human health and activities. However, very few data have been collected on the factors that control dust emission from major source areas, or on the characteristics of the dust that is emitted. Such a paucity of data limits the ability of climate models to properly account for the radiative and dynamical impacts triggered by atmospheric dust. This paper presents field data from the DO4 Models (Dust Observations for Models) project that aims to understand the drivers of variability in dust emission processes from major source areas in southern Africa. Data are presented from three field campaigns undertaken between 2011 and 2015. We analysed remote sensing data to identify the key geomorphological units in southern Africa which are responsible for emission of atmospheric dust. These are the Makgadikgadi pans complex in northern Botswana, the ephemeral river valleys of western Namibia, and Etosha Pan in northern Namibia. Etosha Pan is widely recognised as perhaps the most significant source of atmospheric dust in the southern hemisphere. We deployed an array of field equipment within each source region to measure the variability in and dynamics of aeolian erosivity, as well as dust concentration and flux characteristics. This equipment included up to 11 meteorological stations measuring wind shear stress and other standard climatic parameters, Cimel sun photometers, a LiDAR, sediment transport detectors, high-frequency dust concentration monitors, and dust flux samplers. Further data were gathered at each site on the dynamics of surface characteristics and erodibility parameters that impact upon erosion thresholds. These data were augmented by use of a Pi-Swerl portable wind tunnel. Our data represent the first collected at source for these key dust emission areas and highlight the

  14. Vegetation against dune mobility.

    PubMed

    Durán, Orencio; Herrmann, Hans J

    2006-11-01

    Vegetation is the most common and most reliable stabilizer of loose soil or sand. This ancient technique is for the first time cast into a set of equations of motion describing the competition between aeolian sand transport and vegetation growth. Our set of equations is then applied to study quantitatively the transition between barchans and parabolic dunes driven by the dimensionless fixation index theta which is the ratio between the dune characteristic erosion rate and vegetation growth velocity. We find a fixation index theta(c) below which the dunes are stabilized, characterized by scaling laws. PMID:17155579

  15. Modeling the biogeomorphic evolution of coastal dunes in response to climate change

    NASA Astrophysics Data System (ADS)

    Keijsers, J. G. S.; De Groot, A. V.; Riksen, M. J. P. M.

    2016-06-01

    Coastal dunes form in many parts of the world the first flood defense line against the sea. To study effects of climate change on coastal dune evolution, we used a cellular model of dune, beach, and vegetation development. The model was calibrated and validated against field measurements of the Dutch coast, showing good performance for 10 year simulations. A sensitivity analysis showed that dune size and morphology are most sensitive to the rate of aeolian input and wave dissipation. Finally, 100 year climate change scenarios were run to establish the impacts of sea level rise and changes in vegetation growth rate on dune evolution. The results are in good agreement with conceptual models of dune evolution. Sea level rise largely determines the direction of dune evolution: the rate of rising controls whether dunes are able to preserve their height or sand volume while migrating landward. The effect of changing vegetation growth rates, resulting from climate change, is most manifest in dune response to large disturbances. If vegetation is removed halfway into the simulation, vegetation growth rate determines whether a foredune will revegetate and recover its height. Low vegetation growth rates result in mobile dunes that lose sand. The good agreement between observations and predictions indicates that the model successfully incorporates the suite of biogeomorphic and marine processes involved in dune building.

  16. Aeolian processes in Proctor Crater on Mars: Sedimentary history as analyzed from multiple data sets

    USGS Publications Warehouse

    Fenton, L.K.; Bandfield, J.L.; Ward, A.W.

    2003-01-01

    Proctor Crater is a 150 km diameter crater in Noachis Terra, within the southern highlands of Mars. The analysis leading to the sedimentary history incorporates several data sets including imagery, elevation, composition, and thermal inertia, mostly from the Mars Global Surveyor mission. The resulting stratigraphy reveals that the sedimentary history of Proctor Crater has involved a complex interaction of accumulating and eroding sedimentation. Aeolian features spanning much of the history of the crater interior dominate its surface, including large erosional pits, stratified beds of aeolian sediment, sand dunes, erosional and depositional streaks, dust devil tracks, and small bright bed forms that are probably granule ripples. Long ago, up to 450 m of layered sediment filled the crater basin, now exposed in eroded pits on the crater floor. These sediments are probably part of an ancient deposit of aeolian volcaniclastic material. Since then, some quantity of this material has been eroded from the top layers of the strata. Small, bright dune forms lie stratigraphically beneath the large dark dune field. Relative to the large dark dunes, the bright bed forms are immobile, although in places, their orientations are clearly influenced by the presence of the larger dunes. Their prevalence in the crater and their lack of compositional and thermal distinctiveness relative to the crater floor suggests that these features were produced locally from the eroding basin fill. Dust devil tracks form during the spring and summer, following a west-southwesterly wind. Early in the spring the dust devils are largely restricted to dark patches of sand. As the summer approaches, dust devil tracks become more plentiful and spread to the rest of the crater floor, indicating that the entire region acquires an annual deposit of dust that is revealed by seasonal dust devils. The dark dunes contain few dust devil tracks, suggesting that accumulated dust is swept away directly by saltation

  17. Titan dune heights retrieval by using Cassini Radar Altimeter

    NASA Astrophysics Data System (ADS)

    Mastrogiuseppe, M.; Poggiali, V.; Seu, R.; Martufi, R.; Notarnicola, C.

    2014-02-01

    The Cassini Radar is a Ku band multimode instrument capable of providing topographic and mapping information. During several of the 93 Titan fly-bys performed by Cassini, the radar collected a large amount of data observing many dune fields in multiple modes such as SAR, Altimeter, Scatterometer and Radiometer. Understanding dune characteristics, such as shape and height, will reveal important clues on Titan's climatic and geological history providing a better understanding of aeolian processes on Earth. Dunes are believed to be sculpted by the action of the wind, weak at the surface but still able to activate the process of sand-sized particle transport. This work aims to estimate dunes height by modeling the shape of the real Cassini Radar Altimeter echoes. Joint processing of SAR/Altimeter data has been adopted to localize the altimeter footprints overlapping dune fields excluding non-dune features. The height of the dunes was estimated by applying Maximum Likelihood Estimation along with a non-coherent electromagnetic (EM) echo model, thus comparing the real averaged waveform with the theoretical curves. Such analysis has been performed over the Fensal dune field observed during the T30 flyby (May 2007). As a result we found that the estimated dunes' peak to trough heights difference was in the order of 60-120 m. Estimation accuracy and robustness of the MLE for different complex scenarios was assessed via radar simulations and Monte-Carlo approach. We simulated dunes-interdunes different composition and roughness for a large set of values verifying that, in the range of possible Titan environment conditions, these two surface parameters have weak effects on our estimates of standard dune heights deviation. Results presented here are the first part of a study that will cover all Titan's sand seas.

  18. Methane storms as a driver of Titan's dune orientation

    NASA Astrophysics Data System (ADS)

    Charnay, Benjamin; Barth, Erika; Rafkin, Scot; Narteau, Clément; Lebonnois, Sébastien; Rodriguez, Sébastien; Courrech Du Pont, Sylvain; Lucas, Antoine

    2015-05-01

    The equatorial regions of Saturn's moon Titan are covered by linear dunes that propagate eastwards. Global climate models (GCMs), however, predict westward mean surface winds at low latitudes on Titan, similar to the trade winds on Earth. This apparent contradiction has been attributed to Saturn's gravitational tides, large-scale topography and wind statistics, but none of these hypotheses fully explains the global eastward propagation of dunes in Titan's equatorial band. However, above altitudes of about 5 km, Titan's atmosphere is in eastward super-rotation, suggesting that this momentum may be delivered to the surface. Here we assess the influence of equatorial tropical methane storms--which develop at high altitudes during the equinox--on Titan's dune orientation, using mesoscale simulations of convective methane clouds with a GCM wind profile that includes super-rotation. We find that these storms produce fast eastward gust fronts above the surface that exceed the normal westward surface winds. These episodic gusts generated by tropical storms are expected to dominate aeolian transport, leading to eastward propagation of dunes. We therefore suggest a coupling between super-rotation, tropical methane storms and dune formation on Titan. This framework, applied to GCM predictions and analogies to some terrestrial dune fields, explains the linear shape, eastward propagation and poleward divergence of Titan's dunes, and implies an equatorial origin of dune sand.

  19. Modeling microwave backscatter and thermal emission from linear dune fields: Application to Titan

    NASA Astrophysics Data System (ADS)

    Le Gall, A.; Janssen, M. A.; Kirk, R. L.; Lorenz, R. D.

    2014-02-01

    We present an electromagnetic model that relates the microwave backscatter and thermal emission from linear dune fields to their compositional, physical (roughness, subsurface porosity/heterogeneity) and geometrical (slope, orientation) properties. This model shows the value of exploring these highly directional and geometrical features in light of both their backscattering cross-section and emissivity. Compared to Cassini concurrent radar and radiometry data acquired from October 2004 to June 2011 over Titan's dune fields, it provides clues to understand variations among dune regions on the largest Saturn's moon. In particular, it brings a formal support to the idea first advanced in Le Gall et al. (Le Gall, A., Janssen, M.A., Wye, L.C., Hayes, A.G., Radebaugh, J., Savage, C., Zebker, H., Lorenz, R.D., Lunine, J.I., Kirk, R.L., Lopes, R.M.C., Wall, S., Callahan, P., Stofan, E.R., Farr, T. and the Cassini Radar Team [2011]. Icarus 213, 608-624) that the size of the interdune valleys (relative to that of the dunes) varies across Titan as well as the diffuse scattering properties of these interdune areas due to different thickness of sand cover (i.e. bedrock contribution) or degree of compaction/heterogeneity of the sand cover. The Fensal and Belet dune fields, in particular, are quite different in terms of these properties. The comparison between the model and Cassini data also reveals the potential presence of structures, possibly small-superposed dunes, oriented perpendicular to the dune crests in the Aztlan region.

  20. Characterizing subsurface complexity of aeolian morphotypes with georadar

    NASA Astrophysics Data System (ADS)

    Bentley, Andrew Phillip Keller

    Aeolian landforms are classified based on their plan morphology, which is a function of sediment transport volume, wind direction, and vegetation. In the case of compound landforms or two-dimensional exposures (outcrops), there is insufficient information for discriminating between 3D morphotypes (e.g., barchans vs. parabolic dunes). To characterize the dip-section architecture of near end-member morphologies (interacting barchans and sparsely vegetated parabolics), a series of axial transects were selected from >25 km of high-resolution (500 MHz) ground-penetrating radar (GPR) data from the gypsum dune field of White Sands National Monument, New Mexico. For dunes of comparable size (6-7 m high), a series of attributes were analyzed for unsaturated portions along the thickest (axial) radargram sections. Given the limitations in vertical resolution (7 cm in dry sand), the average measureable slipface thickness in barchans ranged between 10-22 cm, whereas parabolic slipfaces were thinner at 10-14 cm. High-amplitude diffractions produced by buried vegetation, semi-lithified pedestals, and bioturbation structures were rare within barchans (point-source diffraction density = 0.03/m2; hyperbolics per 1-m-wide cross-sectional area of the image), in contrast to a point-source density of 0.07/m2 in parabolics. An aeolian internal complexity threshold (pi) is proposed, which incorporates standardized scores of slipface thickness, point-source diffraction density, and continuity of major bounding surfaces at mesoscale range determined through semivariogram analysis. For the study region, these variables were sufficient for discriminating barchans (pi = -2.39 to -0.25; pib= -1.65) from parabolic (pi = 0.13 to 2.87; pip= 1.65) dunes. This threshold has the potential for differentiating dune morphotypes in areas where surface morphology is masked and for identifying compound landforms (e.g., a re-activated parabolic dune converted into a barchan in situ ). Ultimately

  1. 2008 Weather and Aeolian Sand-Transport Data from the Colorado River Corridor, Grand Canyon, Arizona

    USGS Publications Warehouse

    Draut, Amy E.; Sondossi, Hoda A.; Hazel, Joseph E., Jr.; Andrews, Timothy; Fairley, Helen C.; Brown, Christopher R.; Vanaman, Karen M.

    2009-01-01

    This report presents measurements of weather parameters and aeolian (windblown) sand transport made in 2008 near selected archaeological sites in the Colorado River corridor through Grand Canyon, Ariz. The quantitative methods and data discussed here form a basis for monitoring ecosystem processes that affect archeological-site stability. Combined with forthcoming work to evaluate landscape evolution at nearby archaeological sites, these data can be used to document the relationship between physical processes, including weather and aeolian sand transport, and their effects on the physical integrity of archaeological sites. Data collected in 2008 reveal event- and seasonal-scale variations in rainfall, wind, temperature, humidity, and barometric pressure. Broad seasonal changes in aeolian sediment flux are also apparent at most study sites. The continuation of monitoring that began in 2007, and installation of equipment at several new sites in early 2008, allowed evaluation of the effects of the March 2008 high-flow experiment (HFE) on aeolian sand transport. At two of the nine sites studied, spring and summer winds reworked 2008 HFE sandbars to form new aeolian dunes, at which sand moved inland toward larger, well-established dune fields. At the other seven study sites, neither dune formation nor enhanced sand transport after the HFE were observed. At several of those sites, dominant wind directions in spring 2008 were not oriented such that much HFE sand would have moved inland; at other sites, lack of increased inland sand flux is attributable to lack of sandbar enlargement near the study sites or to inhibition of sand movement by vegetation or local topography.

  2. 2009 weather and aeolian sand-transport data from the Colorado River corridor, Grand Canyon, Arizona

    USGS Publications Warehouse

    Draut, Amy E.; Sondossi, Hoda A.; Dealy, Timothy P.; Hazel, Joseph E., Jr.; Fairley, Helen C.; Brown, Christopher R.

    2010-01-01

    This report presents measurements of weather parameters and aeolian sand transport made in 2009 near selected archeological sites in the Colorado River corridor through Grand Canyon, Ariz. The quantitative methods and data discussed here form a basis for monitoring ecosystem processes that affect archeological-site stability. Combined with forthcoming work to evaluate landscape evolution at nearby archeological sites, these data can be used to document the relation between physical processes, including weather and aeolian sand transport, and their effects on the physical integrity of archeological sites. Data collected in 2009 reveal event- and seasonal-scale variations in rainfall, wind, temperature, humidity, and barometric pressure. Broad seasonal changes in aeolian sediment flux are also apparent at most study sites. Differences in weather patterns between 2008 and 2009 included an earlier spring windy season, greater spring precipitation even though 2009 annual rainfall totals were in general substantially lower than in 2008, and earlier onset of the reduced diurnal barometric-pressure fluctuations commonly associated with summer monsoon conditions. Weather patterns in middle to late 2009 were apparently affected by a transition of the ENSO cycle from a neutral phase to the El Ni?o phase. The continuation of monitoring that began in 2007, and installation of additional equipment at several new sites in early 2008, allowed evaluation of the effects of the March 2008 high-flow experiment (HFE) on aeolian sand transport. As reported earlier, at 2 of the 9 sites studied, spring and summer winds in 2008 reworked the HFE sandbars to form new aeolian dunes, where sand moved inland toward larger, well-established dune fields. Observations in 2009 showed that farther inland migration of the dune at one of those two sites is likely inhibited by vegetation. At the other location, the new aeolian dune form was found to have moved 10 m inland toward older, well

  3. Kaiser Dunes

    NASA Technical Reports Server (NTRS)

    2004-01-01

    16 March 2004 Kaiser Crater, located in Noachis Terra near 46.5oS, 340.7oW, has some rather large, dark, sand dunes on its floor. Some of the dunes are seen in this February 2004 Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) view. Dark streaks on the dunes were formed by passing springtime and summer dust devils that disrupted a very thin, fine coating of dust on the dunes. The light-toned patch at the upper (north) end of this image is an exposure of the rock that underlies the dune field in Kaiser Crater. This picture covers an area about 3 km (1.9 mi) across. Sunlight illuminates the scene from the upper left.

  4. Landscape and soil development in Lower Lusatia - results from archaeological and soil-geomorphological investigations on a small dune field nearby Jänschwalde (Brandenburg, Germany)

    NASA Astrophysics Data System (ADS)

    Nicolay, Alexander; Schulz, Deborah; Raab, Thomas; Raab, Alexandra

    2014-05-01

    Within the apron of the opencast mine Jänschwalde (SE Brandenburg, Germany) archaeological excavations on a multiple populated small dune were complemented with soil-geomorphological investigations in the vicinity. Archaeological findings in the dune stratigraphy (especially cremation graves) are intercalated within aeolian sediments and/or buried soils and thus give a record of the Late Quaternary geomorphodynamic and soil development. The archaeological results confirm the presence of Mesolithic and Neolithic populations at the study site. The Mesolithic to Neolithic factory sites are preferably located on slightly elevated places like the remnants of late glacial dunes. On these late glacial aeolian sediments subsequently a podzol formation took place, indicating stable environmental conditions. At the excavation site, this soil was buried by aeolian drift sands in which a cemetery was found. According to grave goods and grave type the excavated bi-ritual cemetery was created at the end of the 3rd and used until the early 5th century AD (Late Roman Iron Age to Migration Period). Within this period the aeolian activity, proven by about 1 m deep drift sands, increased and a small dune was formed wherein 4 inhumation and approx. 26 cremation graves (Schichtgräberfeld) were documented. The cremation graves were mainly recorded as small reddish/gray 5-20 cm thick sandy layers which were separated by the drift sand layers. Soil-geomorphological investigations, two kilometers north of the excavated cremation and settle-ment site corroborate the detected phases of morphological stability and aeolian activity in this time period. Our complementing investigations indicate that the Late Roman Iron Age to Migration Period population had affected the landscape due to deforestation and agricultural land use.

  5. Quantification of Barchan Dune Evolution over Monthly to Interannual Time Scales Using Airborne LIDAR and Terrestrial Laser Scanning

    NASA Astrophysics Data System (ADS)

    Hoose, M.; Pelletier, J. D.

    2013-12-01

    Barchan dunes are among the most rapidly evolving landforms on Earth, with migration rates of up to 100 m/yr. Despite the central importance of barchan dunes in aeolian geomorphology and the relative ease of quantifying changes in their shape and position, basic questions remain about barchan dune evolution. For example, how does the position of a dune relative to its neighbors affect the evolution of a dune? The presence of a dune influences the air flow around the dune, potentially modifying the evolution of neighboring dunes. Also, a dune may grow in size more rapidly if neighboring dunes are located immediately upwind of the dune, thus providing additional sources of sand for the dune relative to the case of an isolated dune. To address these questions, we quantified the change in the position of 14 dunes, and the sand flux among them, in the Salton Sea dune field over two time scales: 1 month and 3 years. The 1-month change map was created using two TLS surveys completed in the summer of 2013, and the 3-year change map was created using the results of a TLS survey in 2013 and an airborne LIDAR survey from 2010. The PHOENICS Computational Fluid Dynamics solver was used to predict the change in the positions of the dunes and the flux of sand among them. PHOENICS was used to model the shear stress over the dune field using DEM data from the beginning of each interval of study, together with data on the wind profile collected at the study site using a wind tower. The output of PHOENICS was used as input to a shear-stress-dependent aeolian transport formula with the effect of slope on the threshold of entrainment included. Preliminary analyses of the ALSM- and TLS-derived change maps indicate that clustered dunes interact via boundary layer effects to alter the migration and growth rates of their downwind neighbors. Additionally, the effects of subdominant, southeasterly winds were observed in the 1-month change map in the form of sand wedges deposited along the

  6. The persistence of large-scale blowouts in largely vegetated coastal dune fields

    NASA Astrophysics Data System (ADS)

    Delgado-Fernandez, Irene; Smyth, Thomas; Jackson, Derek; Davidson-Arnott, Robin; Smith, Alexander

    2016-04-01

    Coastal dunes move through natural phases of stability and instability during their evolution, displaying various temporal and spatial patterns across the dune field. Recent observations, however, have shown exceptionally rapid rates of stability through increased vegetative growth. This progressive vegetation colonisation and consequent loss of bare sand on coastal dune systems has been noted worldwide. Percentage reductions in bare sand of as much as 80% within just a few decades can been seen in examples from South Africa, Canada and Brazil as well as coastal dune sites across NW Europe. Despite these dramatic trends towards dune stabilisation, it is not uncommon to find particular examples of large-scale active blowouts and parabolic dunes within largely vegetated coastal dunes. While turbulence and airflow dynamics within features such as blowouts and other dune forms has been studied in detail within recent years, there is a lack of knowledge about what maintains dune mobility at these specific points in otherwise largely stabilized dune fields. This work explores the particular example of the 'Devil's Hole' blowout, Sefton Dunes, NW England. Approximately 300 m long by 100 m wide, its basin is below the water-table which leads to frequent flooding. Sefton Dunes in general have seen a dramatic loss of bare sand since the 1940s. However, and coinciding with this period of dune stabilisation, the 'Devil's Hole' has not only remained active but also grown in size at a rate of 4.5 m year-1 along its main axis. An exploration of factors controlling the maintenance of open bare sand areas at this particular location is examined using a variety of techniques including Computational Fluid Dynamics (CFD) airflow modelling and in situ empirical measurements of (short-term experiments) of wind turbulence and sand transport. Field measurements of wind parameters and transport processes were collected over a 2 week period during October 2015. Twenty three 3D ultrasonic

  7. Tracking Topographic Changes from Multitemporal Stereo Images, Application to the Nili Patera Dune Field

    NASA Astrophysics Data System (ADS)

    Avouac, J.; Ayoub, F.; Bridges, N. T.; Leprince, S.; Lucas, A.

    2012-12-01

    The High Resolution Imaging Science Experiment (HiRISE) in orbit around Mars provides images with a nominal ground resolution of 25cm. Its agility allows imaging a same scene with stereo view angles thus allowing for for Digital elevation Model (DEM) extraction through stereo-photogrammetry. This dataset thus offers an exceptional opportunity to measure the topography with high precision and track its eventual evolution with time. In this presentation, we will discuss how multi-temporal acquisitions of HiRISE images of the Nili Patera dune field allow tracking ripples migration, assess sand fluxes and dunes activity. We investigated in particular the use of multi-temporal DEMs to monitor the migration and morphologic evolution of the dune field. We present here the methodology used and the various challenges that must be overcome to best exploit the multi-temporal images. Two DEMs were extracted from two stereo images pairs acquired 390 earth days apart in 2010-2011 using SOCET SET photogrammetry software, with a 1m post-spacing and a vertical accuracy of few tens of centimeters. Prior to comparison the DEMs registration, which was not precise enough out of SOCET-SET, was improved by wrapping the second DEM onto the first one using the bedrock only as a support for registration. The vertical registration residual was estimated at around 40cm RMSE and is mostly due to CCD misalignment and uncorrected spacecraft attitudes. Changes of elevation over time are usually determined from DEMs differentiation: provided that DEMs are perfectly registered and sampled on the same grid, this approach readily quantifies erosion and deposition processes. As the dunes have moved horizontally, they are not physically aligned anymore in the DEMs, and their morphologic evolution cannot be recovered easily from differentiating the DEMs. In this particular setting the topographic evolution is best recovered from correlation of the DEMs. We measure that the fastest dunes have migrated by

  8. A seismic search for the paleoshorelines of Lake Otero beneath White Sands Dune Field, New Mexico

    NASA Astrophysics Data System (ADS)

    Wagner, P. F.; Reece, R.; Ewing, R. C.

    2014-12-01

    The Tularosa Basin, which now houses White Sands Dune Field, was once occupied by Pleistocene Lake Otero. Several paleoshorelines of Lake Otero have been identified throughout the basin by field surveys and remote sensing using digital elevation models. Up to four shorelines may be buried beneath White Sands Dune Field and it has been posited that the current upwind margin of White Sands coincides with a one of these shorelines. Here we employ a novel geophysical instrument and method to image the subsurface: the seismic land streamer. The land streamer utilizes weighted base plates and one-component vertical geophones in a towed array. With a seisgun acoustic source, we imaged in the Alkali Flats area near the upwind margin, one potential location of paleoshorelines, as well as the Film Lot closer to the center of the dune field. Surfaces in both locations are indurated gypsum playa, which made seismic imaging possible and successful. We collected one SW-NE trending seismic line at each location, which matches the dominant wind and dune migration directions. Based on initial data analysis we find some subsurface structure that may coincide with the paleo lake bed of Lake Otero. The successful demonstration of this new method provides the foundation for an expanded regional subsurface study to image the strata and structure of the Tularosa Basin.

  9. Effect of Holocene sea level change on aeolian activity in the coastal plain of Ras El Hekma area, NW coast of Egypt

    NASA Astrophysics Data System (ADS)

    Farghaly, Enas; Torab, Magdy

    2015-04-01

    Ras El Hekma area located in north western coast of Egypt, west of Alexandria city for about 220 km, in this area, environmental changes during the Holocene can be interpreted based on morphological and sedimentological similarities between Holocene geomorphic features such as cemented beaches and fossilized dunes with recent coastal features. Sand dunes and nebkhas are the most common aeolian landforms and they occur in semi-arid climatic conditions. The active separated coastal dunes and nebkhas dunes of Ras El-Hekma area are located between the swash zone and the coastal limestone ridges as well as in the coastal sabkhas. The effect of waves during storms reaches far beyond the actual beach and can cause great changes to sandy beaches at an exceptional speed. Sand accumulated by swash drifts with the wind on open beaches and bays. The aeolian sand, which originates from fluvial-marine sediments washed by sea waves. the available sediment depends on fluvial transport to the littoral zone and on biological activity in the carbonate environments as well as on longshore and cross-shore currents. This paper treats the coastal dunes in Ras El Hekma area in their entirety and defines the effects of sea level change on coastal sand dunes and sabkhas dunes, it depends upon field geomorphic surveying, sampling and mapping as well as satellite image interpretation using ENVI software and GIS techniques.

  10. Tyrrhena Dunes

    NASA Technical Reports Server (NTRS)

    2006-01-01

    8 April 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a portion of a field of dark sand dunes superposed on the light-toned floor of a crater in eastern Tyrrhena Terra. The orientation of the dunes -- with the steep faces toward the south (bottom) -- suggests that winds generally blew from north to south at the time the dunes were formed.

    Location near: 14.6oS, 262.3oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Southern Summer

  11. Radar-aeolian roughness project

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald; Dobrovolskis, A.; Gaddis, L.; Iversen, J. D.; Lancaster, N.; Leach, Rodman N.; Rasnussen, K.; Saunders, S.; Vanzyl, J.; Wall, S.

    1991-01-01

    The objective is to establish an empirical relationship between measurements of radar, aeolian, and surface roughness on a variety of natural surfaces and to understand the underlying physical causes. This relationship will form the basis for developing a predictive equation to derive aeolian roughness from radar backscatter. Results are given from investigations carried out in 1989 on the principal elements of the project, with separate sections on field studies, radar data analysis, laboratory simulations, and development of theory for planetary applications.

  12. Recent near-surface wind directions inferred from mapping sand ripples on Martian dunes

    NASA Astrophysics Data System (ADS)

    Liu, Zac Yung-Chun; Zimbelman, James R.

    2015-11-01

    The High Resolution Imaging Science Experiment (HiRISE) provides the capability to obtain orbital images of Mars that are of sufficient resolution to record wind ripple patterns on the surfaces of sand dunes. Ripple patterns provide valuable insights into aeolian erosion and deposition on Earth and Mars. In this study, we develop a systematic mapping procedure to examine sand ripple orientations and create surface process maps to evaluate the recent wind flow over the dunes, as well as the interplay of wind and dune shape. By carefully examining the morphology of the dunes and the location of grainflow and grainfall on dune slipfaces, the recent near-surface wind direction (short-term wind) can be identified. Results from the analysis of three dune fields on the floors of craters west of Hellas Basin show regional N, NW, SE, and ESE wind directions. In the three adjacent dune fields, surface process and flow maps suggest a complex wind pattern. The comparison of short-term wind with dune-constructing wind (long-term wind) shows NE and ESE winds may be persistent at least for the past thousands of years. The results also show that the orientation of inferred wind direction on linear dunes is correlated with the crestlines, which suggest that form-flow interaction may take place. The results of local wind flow documentation should improve Martian surface wind modeling and advance our understanding of sand transport, as well as the rates of sand mobility on both Mars and Earth.

  13. Dune morphodynamics

    NASA Astrophysics Data System (ADS)

    Courrech du Pont, Sylvain

    2015-01-01

    The physics of dunes relies on the interaction between a wind flow and an erodible topography. Thus, if strong enough to transport grains, the wind shapes sandy areas into dune fields. These dunes are reminiscent of a wavy sea so that sandy deserts are called sand seas. However, the comparison stops there. Contrary to water waves, dunes propagate only under wind action and when the wind stops, they do not vanish but stand. Consequently, dunes are not only the result of the present winds, but can integrate the wind regimes over long periods. Thus, they exhibit a range of shapes and sizes with superimposed patterns. They are witnesses of past wind regimes and their shape and orientation are used to constraint climatic models on other planetary bodies where they are observed as well (e.g., Mars, Titan and Venus). Here, we discuss the morphodynamics of dunes and endeavor to identify and to explain the physical mechanisms at play in the selection of their shape, size and orientation, whilst focusing on Earth desert sand dunes.

  14. Transverse Aeolian Ridges on Mars: Sediment sources, volumes, and ages.

    NASA Astrophysics Data System (ADS)

    Berman, D. C.; Balme, M. R.

    2014-12-01

    Transverse Aeolian Ridges (TARs) are aeolian bedforms that are morphologically and dimensionally distinct from Large Dark Dune (LDD) fields, being generally brighter than, or of similar albedo to, the surrounding terrain. These features are significantly smaller than the LDDs, appear to form normal to local winds, and tend to have simple, transverse, ripple-like morphologies. Whether these small martian bedforms represent large granule ripples, small transverse dunes, or something else entirely is currently under debate. The spatial distribution of TARs provides important information about where on Mars aeolian sediments are concentrated, and determining their volume can help us constrain the sediment transport regime on Mars. Also, if we can determine if TARs were active only in the past, or whether TARs are mobile under today's wind conditions, then we can begin to assess when and where TARs are/were active over Mars' recent geological history. Thus TARs have the potential for being indicators/records of climate change on Mars. In this work we build on previous work [1,2] and focus on the local/regional scale. We have identified six regional study areas, each 5° by 5°, to investigate the behavior of TARs in detail; one in the northern hemisphere, three in the equatorial band, and two in the southern hemisphere. We have systematically mapped TAR and LDD deposits in each study area to constrain sediment transport pathways and identify sediment sources. In general, TAR sediments appear to be tied to local sources such as LDDs or layered terrains. HiRISE DTMs were utilized to measure TAR heights, widths, wavelengths, and lengths to calculate sediment volumes and estimate volumes over entire study areas based on mapping. Crater count analyses on contiguous TAR fields in the equatorial regions, where the bedforms appear more lithified, reveal ages of several million years. Mid-latitude TAR fields do not show any superposed craters, suggesting much younger deposits

  15. Centennial record of wind-field variations from a coastal dune (German Bight)

    NASA Astrophysics Data System (ADS)

    Lindhorst, Sebastian; Costas, Iria; Betzler, Christian

    2015-04-01

    We show that coastal wandering dunes bear a valuable climate record on time scales of seasons to years and can provide data on past wind-field variations for regions and/or time spans where no instrumental weather observations exist. To access this archive, we propose a combined approach, integrating sedimentological and geophysical methods. Sedimentary architecture and grain-size properties of a 32 m high parabolic dune on the barrier island Sylt (southern North Sea) were investigated using ground-penetrating radar (GPR) and laser-diffraction particle-size analyzer. A chronostratigraphic framework was established based on a series of historical aerial images covering the time period 1936 to 2009. GPR data reveal the internal sedimentary architecture of the dune with an effective resolution of about 0.3 m. Large inland-dipping foresets, being the result of the predominance of onshore winds, form the building block of the dune. The dune exhibits a complex internal architecture comprising numerous unconformities, i.e. gaps in the sedimentary record, slumps, top-lap geometries and shifting depocenters. Therefore, careful mapping of the dunes architectural elements prior to sediment sampling is essential. Grain-size statistics are based on 4900 samples taken equidistantly in a 245 m long trench parallel to the direction of dune movement. Sedimentological proxy data were calibrated using a time series of instrumental weather observations from a meteorological station, 2 km off the dune. These data reach back until the year 1950. Variations in wind speed are best reflected by the sorting of the grain-size distribution: periods of weaker winds result in better sorted sediments, whereas higher wind speeds yield a wider grain-size spectrum. This approach allows us to present a reconstruction of variations in the strength of onshore directed winds covering approximately the last 100 years. Our data show slightly increased wind speeds at the beginning of the 20th century

  16. High-Resolution Monitoring of Coastal Dune Erosion and Growth Using an Unmanned Aerial Vehicle

    NASA Astrophysics Data System (ADS)

    Ruessink, G.; Markies, H.; Van Maarseveen, M.

    2014-12-01

    Coastal foredunes lose and gain sand through marine and aeolian processes, but coastal-evolution models that can accurately predict both wave-driven dune erosion and wind-blown dune growth are non-existing. This is, together with a limited understanding of coastal aeolian process dynamics, due to the lack of adequate field data sets from which erosion and supply volumes can be studied simultaneously. Here, we quantify coastal foredune dynamics using nine topographic surveys performed near Egmond aan Zee, The Netherlands, between September 2011 and March 2014 using an unmanned aerial vehicle (UAV). The approximately 0.75-km long study site comprises a 30-100 m wide sandy beach and a 20-25 m high foredune, of which the higher parts are densely vegetated with European marram grass. Using a structure-from-motion workflow, the 200-500 photographs taken during each UAV flight were processed into a point cloud, from which a geo-referenced digital surface model with a 0.25 x 0.25 m resolution was subsequently computed. Our data set contains two dune-erosion events, including that due to storm Xaver (December 2013), which caused one of the highest surge levels in the southern North Sea region for the last decades. Dune erosion during both events varied alongshore from the destruction of embryonic dunes on the upper beach to the slumping of the entire dune face. During the first storm (January 2012), erosion volumes ranged from 5 m3/m in the (former) embryonic dune field to over 40 m3/m elsewhere. During the subsequent 11 (spring - autumn) months, the foredune accreted by (on average) 8 m3/m, again with substantial alongshore variability (0 - 20 m3/m). Intriguingly, volume changes during the 2012-2013 winter were minimal. We will compare the observed aeolian supply rates with model predictions and discuss reasons for their temporal variability. Funded by the Dutch Organisation for Scientific Research NWO.

  17. Geochemical and geomorphological evidence for the provenance of aeolian deposits in the Badain Jaran Desert, northwestern China

    NASA Astrophysics Data System (ADS)

    Hu, Fangen; Yang, Xiaoping

    2016-01-01

    Identifying provenance of aeolian deposits in the mid-latitude deserts of Asia is essential for understanding formation and changes of Earth surface processes due to palaeoclimatic fluctuations. While some earlier studies focused on the interpretation of palaeoenvironments on the basis of aeolian deposits mainly in the desert margins and inter-dune lacustrine sediments, research on provenance of desert sands in the vast Asian mid-latitude deserts is still rare. In this paper, we present new geochemical data which provide insight to the provenance of dune sands in the Badain Jaran Desert, northwestern China, an important part of this desert belt. We sampled aeolian and lacustrine sediments in various parts of the Badain Jaran Desert, and examined their major, trace and rare earth elements (REE) in bulk samples, coarse and fine fractions, respectively. In addition, we took and analyzed samples from a rarely known dune field with red sands, northeast of the Badain Jaran. Our results show that the sands from the Badain Jaran Desert are generally different from those in the red sand dune field in terms of REE pattern and geochemical characteristics, suggesting different sediment origins. Geochemical composition of the aeolian sand samples indicates these sediments should be mainly derived from mixed source rocks of granite, granitoids and granodiorite. Comparing the immobile trace elements and REE ratios of the samples from the Badain Jaran Desert, red sand dune field with rocks of granite, granitoids in their potential source areas, we conclude that: (1) The aeolian deposits in the Badain Jaran Desert are predominantly derived from the Qilian Mountains, northeastern Tibetan Plateau initially via fluvial processes; (2) The Altay Mountains and Mongolian Gobi are the ultimate source areas for the red sand dune field; (3) The Altai Mountains and Mongolian Gobi in the northwest, that could produce massive amounts of materials via intensive deflation and alluvial process

  18. Dune and ripple migration along Curiosity's traverse in Gale Crater on Mars

    NASA Astrophysics Data System (ADS)

    Silvestro, S.; Vaz, D.; Ewing, R. C.; Fenton, L. K.; Michaels, T. I.; Ayoub, F.; Bridges, N. T.

    2013-12-01

    The NASA Mars Science Laboratory (MSL) rover, Curiosity, has safely landed near a 35-km-long dark dune field in Gale Crater on Mars. This dune field lies along Curiosity's traverse to Aeolis Mons (Mt. Sharp). Here we present new evidence of aeolian activity and further estimate wind directions within the dune field through analysis of ripple migration with the COSI-Corr technique, which provides precise measurements of ripple displacement at the sub-pixel scale.The area analyzed is located ~10 km southwest of rover Curiosity's current position and ~4 km SW of its selected path through Aeolis Mons (Mt. Sharp) (Fig. 1a). Here barchan dunes with elongated horns and seif dunes coexist with more typical barchan and dome dunes (Fig. 1a, b), with slopes sculpted by two intersecting ripple crestline orientations trending at 45° and 330°. The range of dune types and ripple orientations indicate the dune field morphology is influenced by at least two winds from the NW and the NE. The direction of migration is toward the SW, suggesting the most recent sand transporting winds were from the NE (Fig. 1c). These results match previous predictions and can be used to forecast the wind conditions close to the entry point to Mt. Sharp. Fig. 1: a-b) Study area c) Ripple migration direction computed using the COSI-Corr technique

  19. High (ground) water levels and dune development in central Australia: TL dates from gypsum and quartz dunes around Lake Lewis (Napperby), Northern Territory

    NASA Astrophysics Data System (ADS)

    Chen, X. Y.; Chappell, J.; Murray, A. S.

    1995-03-01

    An episode of high lake levels prior to the last maximum glaciation has been identified at many localities in wastern Australia. Similar events have been recognized at playa lakes in central Australia, where gypsum dunes along playa margins formed during one or more episodes of high groundwater discharge, with a large influx of calcium sulphate. At Lake Lewis, exposures at two islands show similar sediment sequences: three pedogenic gypcrete layers interbedded with aeolian quartz and gypsum sand horizons form three units within gypsum dunes up to 7 m high. The lowest unit has cliffed edges buried by the upper units, indicating a significant time break. Four TL dates (coarse-grained quartz) show that this lowest unit was deposited at or before 70-80 ka. The middle unit of mixed gypsum and quartz sand capped by gypcrete represents the major phase of gypsum dune formation, and 6 TL dates range from 33 to 46 ka with overlapping error bars. These are slightly younger but statistically similar to TL dates (from 39 to 59 ka) of the shoreline gypsum dune at Lake Amadeus in the same region. The top unit of the two islands, up to 1 m thick, has not yet been well dated. One date is inconsistent with the well dated middle layer below, possibly because of incomplete bleaching, and has been rejected. The other date (17 ± 5 ka) is much younger which possibly indicates a minor and local reactivation of old gypsum sediments. At the lake margin, there are quartz dunes overlying the gypsum dunes, and a buried aeolian quartz sand layer occurs in a lake-margin terrace. These represent reactivation of the regional quartz dune field after the major gypsum dune formation. Two consistent TL dates (21 ± 4 ka and 23 ± 6 ka) indicate that regional dunes were active at about the time of the Last Glacial Maximum.

  20. Arkhangelsky Dunes

    NASA Technical Reports Server (NTRS)

    2004-01-01

    29 April 2004 These dark-toned barchan sand dunes in Arkhangelsky Crater were viewed by the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) in late southern summer on 17 February 2004. Hundreds of narrow, dark streaks crisscross the dunes and the interdune terrain; these were most likely formed by the disruption of fine sediment by passing dust devils. The dune field is located near 41.2oS, 25.0oW, and is illuminated by sunlight from the upper left. Dune horns and slip faces indicate that the dominant winds blow from the southwest (lower left). The picture covers an area about 3 km (1.9 mi) across.

  1. Modeling flow and shear stress fields over unsteady three dimensional dunes

    NASA Astrophysics Data System (ADS)

    Hardy, Richard; Parsons, Dan; Ashworth, Phil; Reesink, Arjan; Best, Jim

    2014-05-01

    The flow field over dunes has been extensively measured in laboratory conditions and there is general understanding on the nature of the flow over dunes formed under equilibrium flow conditions. This has allowed an understanding of bed shear stress to be derived and the development of morpho-dynamic models. However, fluvial systems typically experience unsteady flow and therefore the sediment-water interface is constantly responding and reorganizing to these unsteady flows and stresses, over a range of both spatial and temporal scales. This is primarily through the adjustment of bed forms (including ripples, dunes and bar forms) which then subsequently alter the flow field. This paper investigates, through the application of a numerical model, the influence of these roughness elements on the overall flow and bed shear stress. A series of physical experiments were undertaken in a flume, 16m long and 2m wide, where a fine sand (D50 of 239µm) was water worked under a range of unsteady hydraulic conditions to generate a series of quasi-equilibrium three dimensional bed forms. During the experiments flow was measured with acoustic Doppler velocimeters, (aDv's). On four occasions the flume was drained and the bed topography measured with terrestrial LiDAR to create digital elevation models. This data provide the necessary boundary conditions and validation data for a numerical three dimensional flow model. The prediction of flow over the four static beds demonstrates the spatial distribution of shear stress and the potential sediment transport paths between the dune crests. These appear to be associated with coherent flow structures formed by localized shear flow. These flow predictions are currently being used to develop a fully three dimensional morphodynamic model to further understand dune dynamics under unsteady flow conditions.

  2. Impacts of Vegetation and Development on the Morphology of Coastal Sand Dunes Using Modern Geospatial Techniques: Jockey's Ridge Case Study

    NASA Astrophysics Data System (ADS)

    Weaver, K.; Mitasova, H.; Overton, M.

    2011-12-01

    area of sand that once fed the dunes, limiting aeolian sand transport and migration of the dune system. Not only are vegetation and development increasing around the Jockey's Ridge State Park, but vegetation is increasing inside the park boundaries with the majority of growth along the windward side of the dune system, blocking sand from feeding the dunes. Vegetation growth is also found to increase in front of the dune field, recently causing the migration of the dune to slow down.

  3. A comparison of general circulation model predictions to sand drift and dune orientations

    SciTech Connect

    Blumberg, D.G.; Greeley, R. |

    1996-12-01

    The growing concern over climate change and decertification stresses the importance of aeolian process prediction. In this paper the use of a general circulation model to predict current aeolian features is examined. A GCM developed at NASA/Goddard Space Flight Center was used in conjunction with White`s aeolian sand flux model to produce a global potential aeolian transport map. Surface wind shear stress predictions were used from the output of a GCM simulation that was performed as part of the Atmospheric Model Intercomparison Project on 1979 climate conditions. The spatial resolution of this study (as driven by the GCM) is 4{degrees} X 5{degrees}; instantaneous 6-hourly wind stress data were saved by the GCM and used in this report. A global map showing potential sand transport was compared to drift potential directions as inferred from Landsat images from the 1980s for several sand seas and a coastal dune field. Generally, results show a good correlation between the simulated sand drift direction and the drift direction inferred for dune forms. Discrepancies between the drift potential and the drift inferred from images were found in the North American deserts and the Arabian peninsula. An attempt to predict the type of dune that would be formed in specific regions was not successful. The model could probably be further improved by incorporating soil moisture, surface roughness, and vegetation information for a better assessment of sand threshold conditions. The correlation may permit use of a GCM to analyze {open_quotes}fossil{close_quotes} dunes or to forecast aeolian processes. 48 refs., 8 figs.

  4. Building of shore-oblique transverse dune ridges revealed by ground-penetrating radar and optical dating over the last 500 years on Tottori coast, Japan Sea

    NASA Astrophysics Data System (ADS)

    Tamura, Toru; Bateman, Mark D.; Kodama, Yoshinori; Saitoh, Yu; Watanabe, Kazuaki; Yamaguchi, Naofumi; Matsumoto, Dan

    2011-09-01

    Coastal dunes provide valuable information on the past aeolian activity. Better characterization of internal dune structures and their chronology potentially can greatly improve the interpretation of past environmental changes. Ground-penetrating radar (GPR) and optically-stimulated luminescence (OSL) dating was applied to two transverse dune ridges which are arranged obliquely to the shoreline on the Tottori coast, Japan Sea. Data shows that the inner ridge has a core of Pleistocene dune draped with Holocene sand, while the outer ridge consists only of Holocene sand. The Holocene dune is generally dominated by landward migration, but the outer ridge shows a clear seaward accretion during the 18th century AD. OSL dating showed concordant results with radar stratigraphy and topographic changes since AD 1932 revealed by maps. From this we were able to present the first detailed report of the multi-decadal- to centennial-scale dune formation for the last 500 years in East Asia, contemporaneous with the Little Ice Age, during which many European coastal and inland dunes were activated. In East Asia, it is thought that the winter monsoon plays an important role for aeolian processes. The seaward migration during the 18th century reflects a decrease in wind capacity, which restricted sand transport nearshore, being related to decline in winter monsoon revealed by Chinese historical documents. In contrast, two remarkable events of landward accretion occurred in AD 1580-1640 and around AD 1840, respectively, corresponding to periods of increased dust fall in China, which suggest enhanced winter monsoon. The zone of maximum sedimentation shifted through time from the inner to outer ridges, and also towards the seaward end of the shore-oblique dune ridge, reflecting an expansion of the dune field caused by shoreline progradation. These suggest that the effective combination of GPR and OSL dating was critical in detailed characterization of the complicated depositional

  5. Dune Variety

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    Our topic for the weeks of April 4 and April 11 is dunes on Mars. We will look at the north polar sand sea and at isolated dune fields at lower latitudes. Sand seas on Earth are often called 'ergs,' an Arabic name for dune field. A sand sea differs from a dune field in two ways: 1) a sand sea has a large regional extent, and 2) the individual dunes are large in size and complex in form.

    Our final look at the north polar erg was taken at 80 degrees North latitude during Northern summer. This image is of lower resolution than the previous images, but covers a much larger area. The dunes have very little remaining frost cover. Note the large extent of coverage, and the different dune forms.

    Image information: VIS instrument. Latitude 80.8, Longitude 184.6 East (175.4 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  6. Holocene coastal dune fields used as indicators of net littoral transport: West Coast, USA

    USGS Publications Warehouse

    Peterson, C.D.; Stock, E.; Hart, R.; Percy, D.; Hostetler, S.W.; Knott, J.R.

    2010-01-01

    Between Point Grenville, Washington, and Point Conception, California (1500 km distance) 21 dune fields record longshore transport in 20 littoral cells during the late Holocene. The direction of predominant littoral transport is established by relative positions of dune fields (north, central, or south) in 17 representative littoral cells. Dune field position is north of cell midpoints in northernmost Oregon and Washington, but is south of cell midpoints in southern Oregon and California. Downdrift sand trapping occurs at significant changes in shoreline angle and/or at bounding headlands that project at least 2.5 km seaward from the general coastal trend. Sand bypassing occurs around small headlands of less than 0.5 km in projection distance. A northward shift of the winter low-pressure center in the northeast Pacific Ocean is modeled from 11 ka to 0 ka. Nearshore current forcing in southern Oregon and northern California switched from northward in earliest Holocene time to southward in late Holocene time. The late Holocene (5-0 ka) is generally characterized by net northward littoral drift in northernmost Oregon and Washington and by net southward littoral drift in southernmost Oregon and California. A regional divergence of net transport direction in central Oregon, i.e. no net drift, is consistent with modeled wind and wave forcing at the present time (0 ka). ?? 2009 Elsevier B.V.

  7. Is Titan's Dune Orientation Controlled by Tropical Methane Storms?

    NASA Astrophysics Data System (ADS)

    Charnay, Benjamin; Barth, Erika; Rafkin, Scot; Narteau, Clément; Lebonnois, Sébastien; Rodriguez, Sébastien; Courrech du Pont, Sylvain; Lucas, Antoine

    2014-11-01

    Titan’s equatorial regions are covered by eastward oriented linear dunes. This direction is opposite to mean surface winds simulated by Global Climate Models (GCMs) at these latitudes, oriented westward as trade winds on Earth [1, 2].Here, we propose that Titan’s dune orientation is actually determined by equinoctial tropical methane storms producing a coupling with superrotation and dune formation. Using meso-scale simulations of convective methane clouds [3, 4] with a GCM wind profile featuring the superrotation [5, 6], we show that Titan’s storms should produce fast eastward gust fronts above the surface. Such gusts dominate the aeolian transport. Using GCM wind roses and analogies with terrestrial dune fields [7], we show that Titan's dune growth occurs eastward under these conditions. Finally, this scenario combining global circulation winds and methane storms can explain other major features of Titan's dunes (i.e. divergence from the equator, size and spacing).References:[1] Lorenz et al.: The Sand Seas of Titan: Cassini RADAR Observations of Longitudinal Dunes, Science (2006)[2] Lorenz & Radebaugh: Global pattern of Titan’s dunes: Radar survey from the Cassini prime mission, Geophysical Research Letter (2009)[3] Barth & Rafkin.: TRAMS: A new dynamic cloud model for Titan’s methane clouds, Geophysical Research Letter (2007)[4] Barth & Rafkin.: Convective cloud heights as a diagnostic for methane environment on Titan, Icarus (2010)[5] Charnay & Lebonnois: Two boundary layers in Titan's lower troposphere inferred from a climate model, Nature Geoscience (2012)[6] Lebonnois et al.: Titan global climate model: A new 3-dimensional version of the IPSL Titan GCM, Icarus (2012)[7] Courrech du Pont, Narteau & Gao: Two modes for dune orientation, Geology (2014)

  8. Visualization and laser measurements on the flow field and sand movement on sand dunes with porous fences

    NASA Astrophysics Data System (ADS)

    Tsukahara, Takahiro; Sakamoto, Yusuke; Aoshima, Daisuke; Yamamoto, Makoto; Kawaguchi, Yasuo

    2012-04-01

    The installation of windbreak sand fences around sand dunes is one of the most promising methods to suppress windblown sand movement. In the study reported in this paper, we investigated the influence and validity of a small fence mounted on a model sand dune, in order to understand the fence's suppression mechanism on the sand movement. The flow field around the dune and the process of sand-dune erosion were measured using LDV, PIV, and laser-sheet visualization techniques. A non-porous fence was found to suppress sand movements in its upstream area, but to enhance erosion downstream of the fence. This intensive erosion was caused by separated shear flow from the leading edge of the fence. In this study, four levels of porosity rate of the fence were tested. The fence-porosity dependences of the turbulent flow field and the erosion were discussed. The shapes of eroded sand dunes were found to depend on the porosity rate. The relationship between the sand-dune erosion and the flow field around the dune was illustrated with schematic diagrams. We concluded that the most desirable fence porosity should be 30% in order to avoid dune erosion if installed at a middle height on the stoss surface of a dune. This porosity provides a mean velocity reduction with avoiding a separated flow, although the flow bleeding through the porous fence is accompanied by grid turbulence and induces serious erosion in a narrow space behind the fence. Furthermore, we confirmed that the empirical correlation of the critical friction velocity can be applied to sand movements influenced by a fence.

  9. Remote Sensing of Desert Loess and Dune Fields Aids Revealing Proximal Loess Sources

    NASA Astrophysics Data System (ADS)

    Crouvi, O.; Gillespie, A.; Amit, R.; Enzel, Y.

    2008-12-01

    Loess is an eolian deposit composed mostly of silt-sized quartz, which serves as an important archive of Quaternary climate changes. Despite the long term support for the 'classical' glacial concept of loess formation, there have been challenges to this model focusing on the formation of silt grains in deserts, which is still controversial. The aim of this study is to trace the proximal dust sources of the Negev loess, Israel, using comprehensive remote-sensing mapping, field surveys, and laboratory analyses of hilltop, primary loess sequences. Based on field and spectral characterization of primary and secondary loess, we developed remote-sensing methodology to: 1) distinguish and classify loess types to better choose hilltop, un-reworked loess study sites; 2) map loess regionally and examine its spatial association with potential dust sources. The different loess types are spectrally distinguishable by using the difference in the magnitude of chlorophyll, ferric, Al-OH, and carbonate absorptions features that vary systematically by the relative abundance of clasts, loessial biogenic crust, and vegetation. We used band ratios and liner un-mixing techniques on ASTER and Landsat TM reflectance and thermal data to successfully map the different loess types and the regional loess distribution. We conclude that the border between the loess and the adjacent, upwind sand dunes exhibit gradual patterns of grain size, mineralogy, and spectral characteristics. These findings, together with detailed analyses of loess sequences show that the proximal dust source of the Negev loess is the adjacent sand dunes, and suggest that the silt grains were formed through eolian abrasion of sand grains. Applying the remote-sensing methodology on other desert loess (e.g. Tunisia) indicates similar pattern of gradual transition from sand dunes to loess, and suggests that this association is not unique to the Negev. Our findings imply that sand dunes are much more important proximal dust

  10. Aeolian Sediments on the northeastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Stauch, G.; Lehmkuhl, F.

    2013-12-01

    The timing and spatial distribution of aeolian sediments on the northeastern Tibetan Plateau have gained increasing interest during the last decades. The formation of the aeolian deposits is often related to cold and dry climate conditions. However, further important parameters are the local geomorphological setting and sediment availability in the source areas of the sediments. Aeolian sediments including loess, sandy loess and sands are widespread in the catchment of the Donggi Cona on the northeastern Tibetan Plateau at around 4000 m asl. Detailed geomorphological mapping of the deposits and geochemical analyses of the sediments revealed varying sources throughout the Holocene. The timing of the sediment deposition is based on 43 OSL (optical stimulated luminescence) ages. Several phases of enhanced aeolian deposition took place during the Holocene. The accumulation of aeolian sands lasted from 10.5 until 7 ka. The main source area of these sands was a large alluvial fan. Parallel to the formation of the dunes loess was deposited on the adjacent slopes from 10.5 until 7.5 ka. These sediments most probably originate in the nearby Qaidam Basin. In contrast to the general linkage of aeolian sediments to dryer climate conditions formation of these aeolian deposits is related to wetter conditions due to a strengthening of the Asian Summer Monsoons. The wetter climate enhanced the trapping and continuous fixation of the aeolian sediments by vegetation. With the further strengthening of the Monsoon fluvial processes eroded the aeolian deposits at least until 6 ka. From about 3 ka to the present a reactivation of aeolian sands and the formation of new dunes took place. This reactivation is related to drier conditions on the north-eastern Tibetan Plateau. Additionally, an increased human influence might have enhanced the aeolian activity. Similar phases of enhanced aeolian activity have been documented in more than 170 available OSL ages from loess and aeolian sands in

  11. Environmental Controls and Eco-geomorphic Interactions of the Barchan-to-parabolic Dune Stabilisation and the Parabolic-to-barchan Dune Reactivation

    NASA Astrophysics Data System (ADS)

    Yan, Na; Baas, Andreas

    2015-04-01

    Parabolic dunes are one of a few common aeolian landforms which are highly controlled by eco-geomorphic interactions. Parabolic dunes, on the one hand, can be developed from highly mobile dune landforms, barchans for instance, in an ameliorated vegetation condition; or on the other hand, they can be reactivated and transformed back into mobile dunes due to vegetation deterioration. The fundamental mechanisms and eco-geomorphic interactions controlling both dune transformations remain poorly understood. To bridge the gap between complex processes involved in dune transformations on a relatively long temporal scale and real world monitoring records on a very limited temporal scale, this research has extended the DECAL model to incorporate 'dynamic' growth functions and the different 'growth' of perennial shrubs between growing and non-growing seasons, informed by field measurements and remote sensing analysis, to explore environmental controls and eco-geomorphic interactions of both types of dune transformation. A non-dimensional 'dune stabilising index' is proposed to capture the interactions between environmental controls (i.e. the capabilities of vegetation to withstand wind erosion and sand burial, the sandy substratum thickness, the height of the initial dune, and the sand transport potential), and establish the linkage between these controls and the geometry of a stabilising dune. An example demonstrates how to use the power-law relationship between the dune stabilising index and the normalised migration distance to assist in extrapolating the historical trajectories of transforming dunes. The modelling results also show that a slight increase in vegetation cover of an initial parabolic dune can significantly increase the reactivation threshold of climatic impact (both drought stress and wind strength) required to reactivate a stabilising parabolic dune into a barchan. Four eco-geomorphic interaction zones that govern a barchan-to-parabolic dune transformation

  12. Explaining the surprisingly poor correlation between turbulent surface wind and aeolian sand flux

    NASA Astrophysics Data System (ADS)

    Martin, R. L.; Barchyn, T. E.; Hugenholtz, C.; Jerolmack, D. J.; Kok, J. F.

    2012-12-01

    Existing models of aeolian sand transport, derived theoretically and from wind-tunnel experiments, often disagree substantially with field observations. Despite advancements in anemometry and sediment flux detection technologies, even very high-resolution observations of aeolian sand transport show only weak correlation with concurrent surface wind speeds and model predictions. Unlike in experiments and numerical models, winds in natural environments exhibit turbulent fluctuations over a broad range of length scales extending from individual grains to the top of the atmospheric boundary layer and over a similarly large range of time scales. Here, we present simultaneous high-resolution (10 Hz) measurements of surface wind and saltation sand transport over a ~5 m tall barchan dune (median grain diameter = 0.35 mm) collected at White Sands Dune Field, New Mexico, USA. Studying aeolian transport in the field offered a natural experiment for understanding how the rate of aeolian saltation responds to turbulent changes in wind and frequent crossings of the threshold for particle motion. In agreement with past observations, our data indicate that: (1) saltation flux lags wind fluctuations by about 1 second, (2) the threshold for initiation of particle motion ("entrainment") exceeds the threshold for cessation ("distrainment") by about 20%, (3) concurrent instantaneous wind and sediment flux measurements are poorly correlated. Based on our data, we show how lagged transport and threshold hysteresis are related to inertia in the transport system arising from ballistic particle trajectories and non-instantaneous momentum transfers among grains and wind. We argue that this nonlinear and lagged response of saltation to turbulent wind fluctuations accounts for the poor correlation between wind and transport as well as the poor performance of existing saltation models.

  13. Insights from a Geophysical and Geomorphological Mars Analog Field Study at the Great Kobuk Sand Dunes, Northwestern Alaska

    NASA Astrophysics Data System (ADS)

    McGinnis, R. N.; Dinwiddie, C. L.; Stillman, D.; Bjella, K.; Hooper, D. M.; Grimm, R. E.

    2010-12-01

    Terrestrial dune systems are used as natural analogs to improve understanding of the processes by which planetary dunes form and evolve. Selected terrestrial analogs are often warm-climate dune fields devoid of frozen volatiles, but cold-climate dunes offer a better analog for polar dunes on Mars. The cold-climate Great Kobuk Sand Dunes (GKSD) of Kobuk Valley National Park, Alaska, are a high-latitude, slowly migrating analog for polar, inter- and intracrater dune fields on Mars. The 67°N latitude, 62 km2 GKSD consist of moderately well sorted, fine-grained sands deposited within the Kobuk River valley ~50 km north of the Arctic Circle and ~160 km inland from Kotzebue Sound. Winds at the GKSD are influenced significantly by complex surrounding topography, an influence that is similar to many high-latitude inter- and intracrater dune fields on Mars. Average annual temperature and precipitation at the GKSD are -5°C and 430 mm. The dune field is generally resistant to atmospheric forcing (wind) for a significant portion of the year because of snowcover, similar to the effect that seasonal CO2 and H2O frost mantling have on Martian polar dunes. The dune field, which ranges in elevation from 33 to 170 m above mean sea level, consists of sand sheets as well as climbing and reversing barchanoid, transverse, longitudinal, and star dunes. Several tributaries to the Kobuk River bound and dissect the GKSD, producing cutbank exposures and alcoves that reveal internal structure. We report results from our detailed geophysical and geomorphological site characterization field study, which was conducted near peak freeze conditions from March 15 through April 2, 2010. We used multifrequency ground-penetrating radar (25, 50, 100, 250, 500, 1000 MHz) and capacitively coupled resistivity methods to image the internal structure of representative dunes, and performed ground truthing using a sampling auger, natural exposures, and Real-Time Kinematic Differential GPS. Data from twenty

  14. Aeolian Sediment Transport Pathways and Aerodynamics at Troughs on Mars

    NASA Technical Reports Server (NTRS)

    Bourke, Mary C.; Bullard, Joanna E.; Barnouin-Jha, Olivier S.

    2004-01-01

    Interaction between wind regimes and topography can give rise to complex suites of aeolian landforms. This paper considers aeolian sediment associated wit11 troughs on Mars and identifies a wider range of deposit types than has previously been documented. These include wind streaks, falling dunes, "lateral" dunes, barchan dunes, linear dunes, transverse ridges, sand ramps, climbing dunes, sand streamers, and sand patches. The sediment incorporated into these deposits is supplied by wind streaks and ambient Planitia sources as well as originating within the trough itself, notably from the trough walls and floor. There is also transmission of sediment between dneTsh. e flow dynamics which account for the distribution of aeolian sediment have been modeled using two-dimensional computational fluid dynamics. The model predicts flow separation on the upwind side of the trough followed by reattachment and acceleration at the downwind margin. The inferred patterns of sediment transport compare well with the distribution of aeolian forms. Model data indicate an increase of wind velocity by approx. 30 % at the downwind trough margin. This suggests that the threshold wind speed necessary for sand mobilization on Mars will be more freqentmlye t in these inclined locations.

  15. Arabian Dunes

    NASA Technical Reports Server (NTRS)

    2005-01-01

    11 June 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a field of low-albedo (dark) barchan sand dunes in a crater located in western Arabia Terra. Small dunes like these are common in the craters of western Arabia Terra and they are often the source of finer, dark sediment that forms windstreaks further downwind. The steepest slopes on the dunes, their slipfaces, are pointed toward the southeast (lower right), indicating that the dominant winds in this location come from the opposite direction.

    Location near: 6.4oN, 346.2oW Image width: 3 km (1.9 mi Illumination from: lower left Season: Northern Autumn

  16. Biodiversity impact of the aeolian periglacial geomorphologic evolution of the Fontainebleau Massif (France)

    NASA Astrophysics Data System (ADS)

    Thiry, M.; Liron, M. N.

    2009-04-01

    Landscape features The geomorphology of the Fontainebleau Massif is noteworthy for its spectacular narrow ridges, up to 10 km long and 0.5 km wide, armored by tightly cemented sandstone lenses and which overhang sandy depressions of about 50m. Denudation of the sandstone pans lead to a highly contrasted landscape, with sandstone ridges ("platières") towering sandy depressions ("vallées") and limestone plateaus ("monts"). This forms the geological frame of the spectacular sceneries of the Fontainebleau Massif (Thiry & Liron, 2007). Nevertheless, there is little know about the erosive processes that have built-up these landscapes. Periglacial processes, and among them aeolian ones, appear significant in the development of the Fontainebleau Massif physiography. The periglacial aeolian geomorphology Dunes and dune fields are known since long and cover about 15% to 25% of the Fontainebleau Massif. The aeolian dunes developed as well on the higher parts of the landscape, as well as in the lower parts of the landscape. The dunes are especially well developed in the whole eastern part of the massif, whereas the western part of the massif is almost devoid of dunes. Nevertheless, detailed mapping shows that dunes can locally be found in the western district, they are of limited extension, restricted to the east facing backslope of outliers. Loamy-sand covers the limestone plateaus of the "monts". The loam cover is of variable thickness: schematically thicker in the central part of the plateaus, where it my reach 3 m; elsewhere it may thin down to 0,20-0,30 m, especially at the plateau edges. Blowout hollows are "negative" morphologies from where the sand has been withdrawed. Often these blowouts are decametric sized and well-delimited structures. Others, more complex structures, are made up of several elongated hectometric hollows relaying each other from and which outline deflation corridor more than 1 km long. A characteristic feature of these blowout hollows is the

  17. The buried dune-fields of the Río Paraná, Argentina: an extreme in sedimentary preservation?

    NASA Astrophysics Data System (ADS)

    Reesink, Arjan; Van den Berg, Janrik; Parsons, Daniel; Amsler, Mario; Best, Jim; Hardy, Richard; Szuipany, Ricardo

    2015-04-01

    Extremes in dune preservation can be used to constrain and extend our understanding of sedimentary preservation. Ground Penetrating Radar surveys reveal that fully-preserved dune fields exist in bar deposits in the Río Paraná, Argentina. These observations contradict the notion that the tops of dunes are always eroded by recurrence of scour, and provide a unique opportunity to investigate the completeness of the fluvial deposits. These intact dune fields i) are found in >5% of the mid-channel bar deposits ii) exist only in the upper 5 m of the channel deposits, iii) are restricted to unit-bar troughs, iv) are up to 300 m in length, v) occur in multiple levels, vi) show signs of reactivation, and vii) match the size of average-flow dunes rather than those that form in extreme floods. These observations suggest that the development, abandonment, and burial of dune-fields is a common process that is linked to the distinct changes in flow and sediment transport that occur in the lee of bars in response to changes in discharge, especially in large seasonal rivers. Further analysis shows that changes in flow conditions caused by bar-scale morphology affect dune heights, lengths, bedform shapes and scour, the flux of sediment to the bed, and bedform migration rates: all the basic parameters known to control dune preservation. Thus, bar-scale variation in flow and sediment transport can be expected to cause differences in preservation potential between the thalweg, and the flanks, tops, lee- and stoss slopes of larger bar forms. This highlights that the physical boundary conditions that control sedimentary preservation do not necessarily coincide with an easily classified environment such as a river channel, and provides a conceptual basis for improvements in the interpretation, discrimination, and characterisation of river channel deposits.

  18. Evidence of active dune sand on the Great Plains in the 19th century from accounts of early explorers

    USGS Publications Warehouse

    Muhs, D.R.; Holliday, V.T.

    1995-01-01

    Dune fields are found in several areas of the Great Plains, and though mostly stabilised today, the accounts of early explorers show that they were more mobile in the last century. Using an index of dune mobility and tree ring data, it is found that these periods of mobility were related to temperature-induced drought, the high temperatures increasing evapotranspiration. Explorers also record that rivers upwind of these dune fields had shallow braided channels in the 19th century, and these would have supplied further aeolian sand. It is concluded that these dunes are extremely susceptible to climate change and that it may not need global warming to increase their mobility again. -K.Clayton

  19. Summary of the Second International Planetary Dunes Workshop: Planetary Analogs - Integrating Models, Remote Sensing, and Field Data, Alamosa, Colorado, USA, May 18-21, 2010

    USGS Publications Warehouse

    Fenton, L.K.; Bishop, M.A.; Bourke, M.C.; Bristow, C.S.; Hayward, R.K.; Horgan, B.H.; Lancaster, N.; Michaels, T.I.; Tirsch, D.; Titus, T.N.; Valdez, A.

    2010-01-01

    The Second International Planetary Dunes Workshop took place in Alamosa, Colorado, USA from May 18-21, 2010. The workshop brought together researchers from diverse backgrounds to foster discussion and collaboration regarding terrestrial and extra-terrestrial dunes and dune systems. Two and a half days were spent on five oral sessions and one poster session, a full-day field trip to Great Sand Dunes National Park, with a great deal of time purposefully left open for discussion. On the last day of the workshop, participants assembled a list of thirteen priorities for future research on planetary dune systems. ?? 2010.

  20. Using High-Resolution Field Measurements to Model Dune Kinematics in a Large Elongate Meander Bend.

    NASA Astrophysics Data System (ADS)

    Konsoer, K. M.; Rhoads, B. L.; Best, J.; Frias, C. E.; Abad, J. D.; Langendoen, E. J.

    2014-12-01

    Due to recent advances in hydroacoustic technology, such as the development of multibeam echo sounders, it is now possible to obtain highly accurate and detailed bathymetric data for river channels. These data provide the basis for detailed characterizations of bed form morphology ranging from individual ripples to composite dune fields. Theoretical models suggest that bed forms reach an equilibrium morphology based on hydraulic conditions during steady flow. However, at the scale of individual meander bends, bed form morphology will vary according to the local flow structure as influenced by overall bed morphology and planform curvature. Thus, the coevolution of flow structure, bed form morphology, and sediment transport should vary throughout a meander bend. This paper examines spatial variation in bed form characteristics and rates of bed form migration, and thus bed material transport, within a large, actively migrating, elongate meander loop. During a May 2013 flood event on Maier Bend, Wabash River (IL-IN, USA), repeat multibeam echo sounding surveys were conducted ~4 hours apart, providing estimates of dune celerity and volumetric rates of sediment transport at different locations around the bend. Three-dimensional velocity measurements, obtained using an acoustic Doppler current profiler, provide hydraulic data for evaluating interactions between flow structure and bed form morphology. Results show that bed form morphology is highly variable within the bend, ranging from barchans dunes on the upstream limb, 2D ripples across the point bar, and 3D composite dunes with wavelength of ~20 meters near the bend apex. Rates of dune celerity varied from 0.3 m/hr to 0.7 m/hr and were dependent on bed form geometry and local hydraulic conditions. The high-resolution data on flow and form are used to calibrate a 2D numerical model of sediment transport through the bend. Simulations using the calibrated model are used to evaluate the fluvial processes underlying

  1. Aeolian Sand Transport with Collisional Suspension

    NASA Technical Reports Server (NTRS)

    Jenkins, James T.; Pasini, Jose Miguel; Valance, Alexandre

    2004-01-01

    Aeolian transport is an important mechanism for the transport of sand on Earth and on Mars. Dust and sand storms are common occurrences on Mars and windblown sand is responsible for many of the observed surface features, such as dune fields. A better understanding of Aeolian transport could also lead to improvements in pneumatic conveying of materials to be mined for life support on the surface of the Moon and Mars. The usual view of aeolian sand transport is that for mild winds, saltation is the dominant mechanism, with particles in the bed being dislodged by the impact of other saltating particles, but without in-flight collisions. As the wind becomes stronger, turbulent suspension keeps the particles in the air, allowing much longer trajectories, with the corresponding increase in transport rate. We show here that an important regime exists between these two extremes: for strong winds, but before turbulent suspension becomes dominant, there is a regime in which in-flight collisions dominate over turbulence as a suspension mechanism, yielding transport rates much higher than those for saltation. The theory presented is based on granular kinetic theory, and includes both turbulent suspension and particle-particle collisions. The wind strengths for which the calculated transport rates are relevant are beyond the published strengths of current wind tunnel experiments, so these theoretical results are an invitation to do experiments in the strong-wind regime. In order to make a connection between the regime of saltation and the regime of collisional suspension, it is necessary to better understand the interaction between the bed and the particles that collide with it. This interaction depends on the agitation of the particles of the bed. In mild winds, collisions with the bed are relatively infrequent and the local disturbance associated with a collision can relax before the next nearby collision. However, as the wind speed increases, collision become more frequent

  2. Holocene aeolian activities in the southeastern Mu Us Desert, China

    NASA Astrophysics Data System (ADS)

    Jia, Feifei; Lu, Ruijie; Gao, Shangyu; Li, Jinfeng; Liu, Xiaokang

    2015-12-01

    Aeolian deposits from three sites in the Mu Us Desert were used to reconstruct the history of aeolian activities during the Holocene. The results of the lithologies, chronologies and proxy indicators showed that aeolian activities occurred at ∼9.96 cal ka BP, 7.9-6.9 ka BP, 6.4 ka BP and 3.8 cal ka BP∼. The cold event that occurred around 6.4 ka BP interrupted the Holocene Optimum period, which is largely consistent with the findings from sediments in adjacent regions and the monsoon areas of China. Combined with punished OSL and 14C ages of aeolian deposits samples in this region, the environmental changes in the Mu Us Desert were divided into four stages. Active sand dunes dominated before 11 ka BP. Aeolian activities occurred regionally from 11 to 8.5 ka BP and typical sandy paleosol widely developed with episodic aeolian activities between 8.5 and 4 ka BP. Dunes have reactivated and active sand dunes have gradually increased since 4 ka BP. Comparisons with the other paleoclimatic records indicated that the evolution of the Mu Us Desert was closely related to the East Asian monsoon. Paleosol development depended more on the precipitation brought by the East Asian summer monsoon (EASM). The stronger East Asian winter monsoon (EAMW) and higher isolation resulted in the aeolian activities in the early Holocene, while during the mid-Holocene the fluctuating EAWM played a more important role in inducing episodic aeolian activities. The environmental deterioration during the late Holocene can be related to weakened EASM or to increased anthropogenic influence.

  3. A 45-year time series of Saharan dune mobility from remote sensing

    NASA Astrophysics Data System (ADS)

    Vermeesch, P.

    2012-04-01

    Decadal trends in the aeolian dust record of the Sahara affect the global climate system and the nutrient budget of the Atlantic Ocean. One proposed cause of these trends are changes in the frequency and intensity of dust storms, which have hitherto been hard to quantify. Because sand flux scales with the cube of wind speed, dune migration rates can be used as a proxy for storminess. Relative changes in the storminess of the Sahara can thus be monitored by tracking the migration rates of individual sand dunes over time. The Bodélé Depression of northern Chad was selected as a target area for this method, because it is the most important point-source of aeolian dust on the planet and features the largest and fastest dunes on Earth. A collection of co-registered Landsat, SPOT, and ASTER scenes, combined with declassified American spy satellite images was used to construct a 45 year record of dune migration in the Bodélé Depression. One unexpected outcome of the study was the observation of binary dune interactions in the imagery sequence, which reveals that when two barchan dunes collide, a transfer of mass occurs so that one dune appears to travel through the other unscathed, like a solitary wave. This confirms a controversial numerical model prediction and settles a decade-old debate in aeolian geomorphology. The COSI-Corr change detection method was used to measure the dune migration rates from 1984 until 1987, 1990, 1996, 2000, 2003, 2005, 2007, 2008, 2009, and 2010. An algorithm was developed to automatically warp the resulting displacement fields back to a common point in time. Thus, individual image pixels of a dune field were tracked over time, allowing the extraction of a time series from the co-registered satellite images without further human intervention. The automated analysis was extended further back into the past by comparison of the 1984 image with declassified American spy satellite (Corona) images from 1965 and 1970. Due to the presence of

  4. Semiarid landscapes response to Aeolian processes during Holocene in Baikal Region

    NASA Astrophysics Data System (ADS)

    Dan'ko, Lidia; Opekunova, Marina

    2010-05-01

    Arid and semiarid landscapes play a significant role in global climate, biogeochemical, and hydrological processes. Regional analysis of the past aeolian processes is essential for improve our understanding of how various landscape and ecosystems responded to climate change in the past. Our investigation presents details on sand dunes and on loess-like sediments. The study areas are situated in the northern part of Baikal Region (Eastern Siberia). In its depressions, the so-called Barguzinskaya and Tunkinskaya Valley surrounded mountain ranges local dunefieds and loess-like sediments have developed. Present climate in the study areas is continental, characterized by low precipitation(mean annual 250-450 mm) and wide annual range of temperature. Field investigations indicate that the Holocene deposits of the Barguzinskaya and Tunkinskaya Valley are sealed the pedo-sedimentary interface. The analytical results suggest that one's represents a changeover from intensified soil formation to accelerated aeolian dust accumulation. The original content of calcium carbonate and gypsum at the base of some sections of loess-like sediments indicates the aeolian origin of these sediments. In whole, the soil horizons are a proof for humid phases. The change was forced by climatic aridity. Absolute dating of the organogenic components of soils (14C) indicate the age positions of the arid and humid climate phases. Our results indicate not only 1-4 long-time episodes of aeolian dust accumulation during the Holocene, but shot-time aeolian accumulation episodes, that were specific for Late Holocene. For example, in the Tunkinskaya Valley the Late Holocene soil formation replaced by aeolian deposit at 1700 - 1900, 800 and 200-250 years ago, in the Barguzinskaya Valley - about 3100 - 2900, 2300 and 600 years ago. It can be concluded that a periodical formation of the aeolian deposits in the semiarid landscapes during Holocene can be postulated. Aeolian and loess-like sediments of the

  5. Dune Variety

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA02173 Dune Variety

    This image of the east end of Coprates Chasma contains several dune fields. The dunes in the center of the image are larger and darker than the dunes at the bottom.

    Image information: VIS instrument. Latitude -14.8N, Longitude 304.3E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  6. Laboratory Analyses Of Basaltic Dunes In The Ka'u Desert Of Hawaii And Implications For Understanding Dark Dunes On Mars

    NASA Astrophysics Data System (ADS)

    Tirsch, D.; Craddock, R. A.; Nanson, G.; Tooth, S.; Langhans, M.

    2010-12-01

    Dark dunes are the dominant aeolian bedforms on Mars and consist of ancient volcanic ashes and reworked basaltic lavas. Basaltic dunes are rare on Earth and only occur in limited areas, such Hawaii. Because the Hawaiian dunes are composed of reworked basaltic sediments transported by eolian processes, they are a promising subject matter of analogy studies. Samples of dark dune sands, ash, and tephra collected in Hawaii's Ka'u Desert were collected during field trips in summer 2009 and 2010. They were analyzed by a variety of laboratory methods, including spectral, microscope, and microprobe investigations, in order examine their detailed mineralogical composition and constitution. We then compared the results to the eolian dunes on Mars. Sand samples were collected from three different dark dunes in Ka'u Desert: a large, vegetated, parabolic dune, a falling dune, and a large climbing dune. Tephra from the phreatic eruption that began in March 2008 was collected over a two year period using sample collectors placed at different locations downwind of Kilauea caldera. Analyses of these samples allow us to determining the initial composition, grain shape, and grain size of probable source materials. The visible and near-infrared reflectance spectra of the samples were acquired for the 0.5 to 2.5µm range. The overall spectral shape of the dune sand samples indicates a mineralogical correlation between Martian and terrestrial dune sands indicating a similar volcanic origin of the sediments. The spectra of the Hawaiian samples reveal some aqueous alteration, which is probably related to hydrated amorphous silica. Initial microscope and microprobe analyses reveal a high amount of volcanic glass and rock fragments in the samples, followed by olivine, feldspars, and pyroxene. Vitric particles that dominate the majority of the dune samples indicate in situ material accumulation following larger phreatic eruptions. The top coarse-grained layer of the climbing dune comprises a

  7. Aerolian erosion, transport, and deposition of volcaniclastic sands among the shifting sand dunes, Christmas Lake Valley, Oregon: TIMS image analysis

    NASA Technical Reports Server (NTRS)

    Edgett, Kenneth S.; Ramsey, Michael S.; Christensen, Philip R.

    1995-01-01

    Remote sensing is a tool that, in the context of aeolian studies, offers a synoptic view of a dune field, sand sea, or entire desert region. Blount et al. (1990) presented one of the first studies demonstrating the power of multispectral images for interpreting the dynamic history of an aeolian sand sea. Blount's work on the Gran Desierto of Mexico used a Landsat TM scene and a linear spectral mixing model to show where different sand populations occur and along what paths these sands may have traveled before becoming incorporated into dunes. Interpretation of sand transport paths and sources in the Gran Desierto led to an improved understanding of the origin and Holocene history of the dunes. With the anticipated advent of the EOS-A platform and ASTER thermal infrared capability in 1998, it will become possible to look at continental sand seas and map sand transport paths using 8-12 mu m bands that are well-suited to tracking silicate sediments. A logical extension of Blount's work is to attempt a similar study using thermal infrared images. One such study has already begun by looking at feldspar, quartz, magnetite, and clay distributions in the Kelso Dunes of southern California. This paper describes the geology and application of TIMS image analysis of a less-well known Holocene dune field in south central Oregon using TIMS data obtained in 1991.

  8. The origin and fate of the sediments composing a migrating dune field, Amagansett, NY

    SciTech Connect

    Maher, T. . Environmental Science Dept.); Kandelin, J. . Dept. of Earth and Space Science); Black, J.A. )

    1993-03-01

    The migrating dune system, located in Amagansett, NY, consists of a series of three parabolic dunes ranging in heights from 10 to 30 meters. The dunes are migrating under the influence of the prevailing winds, in a southeasterly direction. The migration continues until the dunes encounter the countervailing prevailing winds, off the Atlantic Ocean. A series of flow charts have been prepared to indicate the possible sources of sediment for this system. These charts, in conjunction with geomorphic analysis, stratigraphic data and various sediment characteristics indicate that the sediments are transported by coastal currents. Once deposited they form a linear dune system. Eolian transport from this dune then supplies the sediment to the migrating dune system.

  9. Mega-ripples in Iran: A new analog for transverse aeolian ridges on Mars

    NASA Astrophysics Data System (ADS)

    Foroutan, M.; Zimbelman, J. R.

    2016-08-01

    A new terrestrial analog site for transverse aeolian ridges (TARs) is described in this study. The Lut desert of Iran hosts large ripple-like aeolian bedforms, with the same horizontal length scales and patterns of TARs on Mars. Different classes of TARs and different types of other aeolian features such as sand dunes, zibars, dust devil tracks and yardangs can be found in this area, which signify an active aeolian region. This area represents a unique site to study the formation and evolution of these enigmatic features, with potential relevance toward a better understanding of TARs on Mars.

  10. Field characterization of three-dimensional lee-side airflow patterns under offshore winds at a beach-dune system

    NASA Astrophysics Data System (ADS)

    Delgado-Fernandez, Irene; Jackson, Derek W. T.; Cooper, J. Andrew G.; Baas, Andreas C. W.; Beyers, J. H. Meiring; Lynch, Kevin

    2013-06-01

    Characterization of three-dimensional (3D) airflow remains elusive within a variety of environments and is particularly challenging over complex dune topography. Previous work examining airflow over and in the lee of dunes has been restricted to two-dimensional studies and has concentrated on dune shapes containing angle of repose lee sides only. However, the presence of vegetation in coastal dunes creates topographic differences and irregular shapes that interfere with flow separation at the crest and significantly modify lee-side airflow patterns and potential transport. This paper presents the first 3D field characterization of airflow patterns at the lee side of a subaerial dune. Flow information was obtained using an array of 3D ultrasonic anemometers deployed over a beach surface during seven offshore wind events. Data were used to measure cross-shore and alongshore lee-side airflow patterns using the three dimensions of the wind vector. Distances to re-attachment were similar to previous studies, but the range of transverse incident wind directions resulting in flow separation (0+/-35°) was almost twice that previously reported (0+/-20°). Airflow reversal took place with winds as slow as 1 m s-1. Transverse offshore winds generated areas of opposing wind directions both within the reversed zone and beyond re-attachment, contrary to consistent deflection in only one direction found in transverse desert dunes. Patterns of flow convergence-divergence have been reported in fluvial studies. However, while convergence was associated with weak reversal in fluvial settings, it appeared to be related to strong flow reversal here and could be produced by pressure differentials at the dune crest.

  11. Late Pleistocene and Holocene aeolian sedimentation in Gonghe Basin, northeastern Qinghai-Tibetan Plateau: Variability, processes, and climatic implications

    NASA Astrophysics Data System (ADS)

    Qiang, Mingrui; Jin, Yanxiang; Liu, Xingxing; Song, Lei; Li, Hao; Li, Fengshan; Chen, Fahu

    2016-01-01

    Although stratigraphic sequences of aeolian deposits in dryland areas have long been recognized as providing information about past environments, the exact nature of the environmental processes they reflect remains unclear. Here, we report the results of a detailed investigation of eight outcrop sections in the Gonghe Basin, northeastern Qinghai-Tibetan Plateau. Measurements of sediment grain-size and chemical composition indicate that the deposits are primarily of aeolian origin, consisting of interbedded, well-sorted sand, silty sand, loess and/or palaeosol; however, their occurrence varies from site to site. Fossil dune sands mainly occur in or close to the currently stabilized or semi-stabilized dune fields, whereas loess is distributed along the downwind marginal areas. This pattern of basin-scale differentiation was controlled mainly by spatial variability of sediment supply due to the antecedent sedimentary patterns within the basin. Together with previously-published optically stimulated luminescence (OSL) ages, 24 new OSL dates are used to elucidate the history of aeolian activity and its relationship to climatic changes. There is no apparent relationship between past dune activity and downwind loess deposits. Deposition of silty sand probably occurred during past phases of windy, dry and cold climate in the Late Pleistocene. However, climatic factors alone cannot explain the occurrence of silty sand deposition. This is because the deposition of silty sand was always preceded by episodes of fluvial deposition prior to river incision, thereby indicating the importance of an 'activated' sediment supply associated with fluvial processes. Deposition of well-sorted sand occurred episodically, not only during the Late Pleistocene, but also during the early- to mid-Holocene. Vegetation conditions, controlled either by the occurrence of intervals of moisture deficit during the Late Pleistocene or by changes in the balance between precipitation and

  12. A bibliography of dunes: Earth, Mars, and Venus

    NASA Technical Reports Server (NTRS)

    Lancaster, N.

    1988-01-01

    Dunes are important depositional landforms and sedimentary environments on Earth and Mars, and may be important on Venus. The similarity of dune forms on Earth and Mars, together with the dynamic similarity of aeolian processes on the terrestrial planets indicates that it is appropriate to interpret dune forms and processes on Mars and Venus by using analog studies. However, the literature on dune studies is large and scattered. The aim of this bibliography is to assist investigators by providing a literature resource on techniques which have proved successful in elucidating dune characteristics and processes on Earth, Mars, and Venus. This bibliography documents the many investigations of dunes undertaken in the last century. It concentrates on studies of inland dunes in both hot and cold desert regions on Earth and includes investigations of coastal dunes only if they discuss matters of general significance for dune sediments, processes, or morphology.

  13. Implementation of Automated Infiltration Soil Water Sampler: Application to Unsaturated Soil in Dune Fields

    NASA Astrophysics Data System (ADS)

    Higashi, N.; Inoue, M.; Mori, Y.

    2003-12-01

    Accurate measurement and sampling of infiltration water from root zone are necessary to understand soil and groundwater contamination processes. The traditional instruments for sampling water leaching below the root zone cause divergence or bypass of the water flow around the instrument itself. That results in undesired soil water profile and inaccurate sampling. A suction controlled lysimeter, which consists of porous plate connected to an automated vacuum system and tensiometers has developed. Soil matric pressure heads are measured just above the porous plate that installed horizontally and at the same depth in the natural soil profile. The vacuum system is automatically controlled so that the readings of the matric pressure heads match each other. This instrument does not disturb the water flow and the water sampling flux (qe) is almost similar to that of natural infiltration flux (qd). However, for sandy soils, porous plate would show some resistance to flow and soil water could easily accumulate above the porous plate. We improved the existing automated water sampler in order to measure the unsaturated zone in dune fields. High flow rate glass filters with different pore size; 0.02 to 0.03 mm (G3), 0.005 to 0.01 mm (G4), and 0.002 to 0.005 mm (G5) were studied in laboratory instead of the traditionally used porous plate. In the unsaturated steady-state water flow experiment, the value of vacuum pressure was set manually in reference to retention curve of dune sand. The water sampling flux measured by these samplers corresponded well with the irrigation flux (qi) when a suction of 60 cm H2O was applied to G4 and G5 filters. Four different irrigation fluxes were studied. The average water collecting efficiency (WCE = qe divided by qi) was 118 percent for G4 and 147 percent for G5. We concluded that glass filter, especially, G4 filter was suitable as soil water sampler in dune fields. Finally, the improved sampler using G4 filter was buried into a lysimeter (120

  14. Unchanging Desert Sand Dunes

    NASA Astrophysics Data System (ADS)

    Gadhiraju, S.; Banerjee, B.; Buddhiraju, K.; Shah, V.

    2013-12-01

    Deserts are one of the major landforms on earth. They occupy nearly 20% of the total land area but are relatively less studied. With the rise in human population, desert regions are being gradually occupied for settlement posing a management challenge to the concerned authorities. Unrestrained erosion is generally a feature of bare dunes. Stabilized dunes, on the other hand, do not undergo major changes in textures, and can thus facilitate the growth of vegetation. Keeping in view of the above factors, better mapping and monitoring of deserts and particularly of sand dunes is needed. Mapping dunes using field instruments is very arduous and they generate relatively sparse data. In this communication, we present a method of clustering and monitoring sand dunes through imagery captured by remote sensing sensors. Initially Radon spectrum of an area is obtained by decomposition of the image into various projections sampled at finer angular directions. Statistical features such as mode, entropy and standard deviation of Radon spectrum are used in delineation and clustering of regions with different dune orientations. These clustered boundaries are used to detect if there are any changes occurring in the dune regions. In the experiment's, remote sensing data covering various dune regions of the world are observed for possible changes in dune orientations. In all the cases, it is seen that there are no major changes in desert dune orientations. While these findings have implications for understanding of dune geomorphology and changes occurring in dune directions, they also highlight the importance of a wider study of dunes and their evolution both at regional and global scales. Results for Dataset 1 & Dataset 2 Results for Dataset 3

  15. Lunar and Planetary Science XXXV: Martian Aeolian and Mass Wasting Processes: Blowing and Flowing

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session Martian Aeolian and Mass Wasting Processes: BLowing and Flowing included the following topics: 1) Three Decades of Martian Surface Changes; 2) Thermophysical Properties of Isidis Basin, Mars; 3) Intracrater Material in Eastern Arabia Terra: THEMIS, MOC, and MOLA Analysis of Wind-blown Deposits and Possible High-Inertia Source Material; 4) Thermal Properties of Sand from TES and THEMIS: Do Martian Dunes Make a Good Control for Thermal Inertia Calculations? 5) A Comparative Analysis of Barchan Dunes in the Intra-Crater Dune Fields and the North Polar Sand Sea; 6) Diluvial Dunes in Athabasca Valles, Mars: Morphology, Modeling and Implications; 7) Surface Profiling of Natural Dust Devils; 8) Martian Dust Devil Tracks: Inferred Directions of Movement; 9) Numerical Simulations of Anastomosing Slope Streaks on Mars; 10) Young Fans in an Equatorial Crater in Xanthe Terra, Mars; 11) Large Well-exposed Alluvual Fans in Deep Late-Noachian Craters; 12) New Evidence for the Formation of Large Landslides on Mars; and 13) What Can We Learn from the Ages of Valles Marineris Landslides on Martian Impact History?

  16. Late Quaternary aeolian sand deposition sustained by fluvial reworking and sediment supply in the Hexi Corridor - An example from northern Chinese drylands

    NASA Astrophysics Data System (ADS)

    Nottebaum, Veit; Lehmkuhl, Frank; Stauch, Georg; Lu, Huayu; Yi, Shuangwen

    2015-12-01

    Aeolian deposits are frequently used for palaeoenvironmental change studies. Their formation depends on an array of requirements: the supply of material suitable for aeolian transport and favorable conditions of sediment availability and wind strength. In order to infer palaeoenvironmental information from aeolian sand deposits these factors need to be carefully evaluated. We present a study from northern Chinese Hexi Corridor, based on 11 optically stimulated luminescence (OSL) dated sediment sections. These represent interchanging aeolian and alluvial deposits under gravel surfaces and aeolian sand in dune fields interrupted by interdunal flood deposits. Investigations in two subareas reveal contrasting geomorphologic and sedimentary histories: (1) sediment deposition during the Pleistocene-Holocene transition (~ 12 ka) followed by deflation during the Holocene and (2) frequent sediment recycling revealed by a wide spectrum of ages throughout the Holocene. The late glacial sediment pulse recorded in the western Hexi Corridor is attributed to high sediment supply, generated by efficient (peri-)glacial sediment production during glacial times in the adjacent Qilian Shan (< 5700 m asl) and a moisture increase inducing the reworking of those (glacio-)fluvial deposits during the Pleistocene-Holocene transition. The absence of a powerful reworking agent preserved these late glacial deposits in the western Hexi Corridor in contrast to moister eastern parts where Holocene sediment reworking prevailed. Geomorphological and hydrological preconditions of the subareas are discussed and reveal the controlling influence of fluvial processes on sand supply for the aeolian system. While a perennial drainage is missing in the drier western part, the Hei River drainage is fed by higher monsoonal precipitation in the central Hexi Corridor. It maintains a sediment recycling system and has ensured a sufficient sediment supply throughout the Holocene. The study promotes closer

  17. Modeling grain size variations of aeolian gypsum deposits at White Sands, New Mexico, using AVIRIS imagery

    USGS Publications Warehouse

    Ghrefat, H.A.; Goodell, P.C.; Hubbard, B.E.; Langford, R.P.; Aldouri, R.E.

    2007-01-01

    Visible and Near-Infrared (VNIR) through Short Wavelength Infrared (SWIR) (0.4-2.5????m) AVIRIS data, along with laboratory spectral measurements and analyses of field samples, were used to characterize grain size variations in aeolian gypsum deposits across barchan-transverse, parabolic, and barchan dunes at White Sands, New Mexico, USA. All field samples contained a mineralogy of ?????100% gypsum. In order to document grain size variations at White Sands, surficial gypsum samples were collected along three Transects parallel to the prevailing downwind direction. Grain size analyses were carried out on the samples by sieving them into seven size fractions ranging from 45 to 621????m, which were subjected to spectral measurements. Absorption band depths of the size fractions were determined after applying an automated continuum-removal procedure to each spectrum. Then, the relationship between absorption band depth and gypsum size fraction was established using a linear regression. Three software processing steps were carried out to measure the grain size variations of gypsum in the Dune Area using AVIRIS data. AVIRIS mapping results, field work and laboratory analysis all show that the interdune areas have lower absorption band depth values and consist of finer grained gypsum deposits. In contrast, the dune crest areas have higher absorption band depth values and consist of coarser grained gypsum deposits. Based on laboratory estimates, a representative barchan-transverse dune (Transect 1) has a mean grain size of 1.16 ??{symbol} (449????m). The error bar results show that the error ranges from - 50 to + 50????m. Mean grain size for a representative parabolic dune (Transect 2) is 1.51 ??{symbol} (352????m), and 1.52 ??{symbol} (347????m) for a representative barchan dune (Transect 3). T-test results confirm that there are differences in the grain size distributions between barchan and parabolic dunes and between interdune and dune crest areas. The t-test results

  18. Aeolian Morphodynamics of Loess Landscapes

    NASA Astrophysics Data System (ADS)

    Mason, J. A.; Hanson, P. R.; Sweeney, M.; Loope, H. M.; Miao, X.; Lu, H.

    2012-12-01

    Striking aeolian landforms characterize loess landscapes of the Great Plains and Upper Mississippi Valley, USA, shaped in Late Pleistocene environments with many characteristics of modern deserts including large active dunefields. Similar aeolian morphodynamics are evident in northern China and the Columbia Basin, USA, and are clearly important for interpreting the paleoenvironmental record of loess. Four zones spanning the upwind margin of thick loess can be defined from landforms and surficial deposits. From upwind to downwind, they are: A) A largely loess-free landscape, with patchy to continuous aeolian sand mantling bedrock. B) Patchy loess deposits, often streamlined and potentially wind-aligned, intermingled with dunes and sand sheets; interbedding of loess and sand may be common. C) Thick, coarse loess with an abrupt upwind edge, with troughs, yardang-like ridges, and/or wind-aligned scarps recording large-scale wind erosion. D) Thinner, finer loess with little evidence of post-depositional wind erosion. The degree of development and spatial scale of these zones varies among the loess regions we studied. To explain this zonation we emphasize controls on re-entrainment of loess by the wind after initial deposition, across gradients of climate and vegetation. The role of saltating sand in dust entrainment through abrasion of fine materials is well known. Using the Portable In situ Wind Erosion Laboratory (PI-SWERL), we recently demonstrated that unvegetated Great Plains loess can also be directly entrained under wind conditions common in the region today (Sweeney et al., 2011, GSA Abstracts with Programs, Vol. 43, No. 5, p. 251). Rainfall-induced crusts largely prevent direct entrainment in fine loess, but appear less effective in coarse loess. We propose that in zone A, any loess deposited was both abraded by saltating sand and directly re-entrained, so none accumulated. Sparse vegetation in this zone was primarily an effect of climate, but the resulting

  19. Advanced InSAR imaging for dune mapping

    NASA Astrophysics Data System (ADS)

    Havivi, Shiran; August, Yitzhak; Blumberg, Dan G.; Rotman, Stanley R.

    2015-04-01

    Aeolian morphologies are formed in the presence of sufficient wind energy and available particles. These processes occur naturally or are further enhanced or reduced by human intervention. The dimensions of change are dependent primarily on the wind energy and surface properties. Since the 1970's, remote sensing imagery both optical and radar, are used for documentation and interpretation of the geomorphologic changes of sand dunes. Remote sensing studies of Aeolian morphologies is mostly useful to document major changes, yet, subtle changes, occurring in a period of days or months in scales of centimeters, are very difficult to detect in imagery. Interferometric Synthetic Aperture Radar (InSAR) is an imaging technique for measuring Earth's surface topography and deformation. InSAR images are produced by measuring the radar phase difference between two separated antennas that view the same surface area. Classical InSAR is based on high coherence between two images or more. The output (interferogram) can show subtle changes with an accuracy of several millimeters to centimeters. Very little work has been done on measuring or identifying the changes in dunes using InSAR. The reason is that dunes tend to be less coherent than firm, stable, surfaces. This research aims to demonstrate how interferometric decorrelation, or, coherence change detection, can be used for identifying dune instability. We hypothesize and demonstrate that the loss of radar coherence over time on dunes can be used as an indication of the dune's instability. When SAR images are acquired at sufficiently close intervals one can measure the time it takes to lose coherence and associate this time with geomorphic stability. To achieve our goals, the Nitzanim coastal dunes along the Mediterranean, 40 km south of Tel-Aviv, Israel, were chosen as a case study. The dunes in this area are of varying levels of stability and vegetation cover and have been monitored meteorologically, geomorphologically and

  20. The investigation of moving dunes over Mars using very high resolution topography and sub pixel co-registration method.

    NASA Astrophysics Data System (ADS)

    Kim, J.; Baik, H.; Seol, H.

    2015-12-01

    Although the origins and processes of Martian aeolian features, especially dunes, have not been fully identified yet, it has been better understood by the orbital observation method which has led to the identification of Martian dune migration such as a case in Nili Patera (Bridges, 2012), and the numerical model employing advanced computational fluid dynamics. Specifically, the recent introduction of very high-resolution image products, such as 25 cm-resolution HiRISE imagery and its precise photogrammetric processor, allows us to trace the estimated, although tiny, dune migration over the Martian surface. In this study, we attempted to improve the accuracy of active dune migration measurements by 1) the introduction of very high resolution ortho images and stereo analysis based on the hierarchical geodetic control (Kim and Muller, 2009) for better initial point settings; and 2) the improved sub-pixel co-registration algorithms using optical flow with a refinement stage based on a least squares correlation conducted on a pyramidal processor. Consequently, this scheme not only measured Martian dune migration more precisely, but it also achieved the extension of 3D observations combining stereo analysis and photoclinometry. The established algorithms have been tested using the HiRISE time series images over several dune fields, such as the Kaiser, Procter, and Rabe craters, which were reported by the Mars Global Digital Dune Database (Hayward et al., 2013). The detected dune migrations were significantly larger than previously reported values. The outcomes in our study will be demonstrated with the quantified values in 2D and volumetric direction. In the future, the method will be further applied to the dune fields in the Mars Global dune database comprehensively and can be compared with the improved General Circulation Model and the numerical simulation.

  1. Deflated rims along the Xiangshui River on the Xiliaohe Plain, Northeast China: A case of active fluvial-aeolian interactions

    NASA Astrophysics Data System (ADS)

    Han, Guang; Zhang, Guifang; You, Li; Wang, Yong; Yang, Lin; Yang, Ji; Zhou, Liang; Yuan, Minghuan; Zou, Xueyong; Cheng, Hong

    2016-03-01

    Riverine source-bordering sand dunes, as a result of active fluvial-aeolian interactions, are a pronounced feature on the semiarid Xiliaohe Plain, Northeast China. By means of satellite imagery analysis, and both field survey and observation, this paper presents a new type of riverine source-bordering sand dunes - deflated rims, on the downwind margins of the Xiangshui River. They largely result from the deflation of escarpments on the downwind side of valley by local prevailing winds of NW direction, not from the reworking of point bars on floodplain by wind. In general, a rim is primarily composed of three distinct zones: 1) the upwind frontal escarpment zone with variable plan-form shape, gradient and relief, which is formed by either active lateral erosion by river or significant erosion by wind and transient slope runoff; 2) the deflation zone with gentle slopes of 8-18° and small-scale aeolian bedforms, i.e. ripples of fine sand, ridges of coarse sand; and 3) the downwind dynamic deposition zone with distinctive bedforms with variable superficial texture and slip faces. The sand mass on rims derives overwhelmingly from underlying loose late Quaternary sediments, is sufficient and sustainable by successive retreats of the escarpment, and is gradually transported downwind by pulse motions of bedforms, coupled with high wind events. Essentially, deflated rims are a starting point and the incipient phase of mature riverine dunefields. The superimposed bedforms on rims are fundamentally governed by windflow dynamics, sand sediments and antecedent bedform, exhibiting in turn the manner and intensity of rim development. Consequently, the upwind river valley and downwind deflated rim can jointly stimulate marked wave-like motion of both windflow and aeolian bedforms at different scales, especially when high wind events occur. This study sheds some light on the understanding of the origin and development of riverine source-bordering dunefields, and offers new

  2. Orographic forcing of dune forming winds on Titan

    NASA Astrophysics Data System (ADS)

    Larson, E. J.; Toon, O. B.; Friedson, A. J.

    2013-12-01

    Cassini has observed hundreds of dune fields on Titan, nearly all of which lie in the tropics and suggest westerly (from west to east) winds dominate at the surface [1,2]. Most GCMs however have obtained easterly surface winds in the tropics, seemingly contradicting the wind direction suggested by the dunes. This has led to an active debate in the community about the origin of the dune forming winds on Titan and their direction and modality. This discussion is mostly driven by a study of Earth dunes seen as analogous to Titan [1,2,3]. One can find examples of dunes on Earth that fit several wind regimes. To date only one GCM, that of Tokano [4,5], has presented detailed analysis of its near surface winds and their dune forming capabilities. Despite the bulk of the wind being easterly, this GCM produces faster westerlies at equinox, thus transporting sand to the east. Our model, the Titan CAM [6], is unable to reproduce the fast westerlies, although it is possible we are not outputting frequently enough to catch them. Our GCM has been updated to include realistic topography released by the Cassini radar team. Preliminary results suggest our tropical wind regime now has net westerly winds in the tropics, albeit weak. References: [1], Lorenz, R. et al. 2006. Science, 312, 724-727. [2], Radebaugh, J. et al. 2008. Icarus, 194, 690-703. [3] Rubin, D. and Hesp, P. 2009. Nature Geoscience 2, 653-658. [4] Tokano, T. 2008. Icarus 194, 243-262. [5] Tokano, T. 2010. Aeolian Research 2, 113-127. [6] Friedson, J. et al. 2009. Planetary Space Science, 57, 1931-1949.

  3. Water Use for Cultivation Management of Watermelon in Upland Field on Sand Dune

    NASA Astrophysics Data System (ADS)

    Hashimoto, Iwao; Senge, Masateru; Itou, Kengo; Maruyama, Toshisuke

    Early-maturing cultivation of watermelon in a plastic tunnel was invetigated in upland field on sand dune on the coast of the Japan Sea to find water use to control blowing sand and to transplant seedlings. This region has low precipitation, low humidity, and strong wind in March and April, when sand is readily blown in the field. Water is used to control blowing sand on days with precipitation below 5 mm, minimum humidity below the meteorological average in April, and maximum wind velocity above the meteorological average in April. For the rooting and growth of watermelon seedlings, soil temperature needs to be raised because it is low in April. Ridges are mulched with transparent, porous polyethylene films 10 or more days before transplanting the seedlings and irrigated with sprinklers on fine days for the thermal storage of solar energy. The stored heat steams the mulched ridges to raise soil temperature to 15°C or higher on the day of transplanting the seedlings. The total amount of irrigation water used for watermelon cultivation was 432.7 mm, of which 23.6 mm was for blowing sand control and 26.6 mm was for transplanting the seedlings. The combined amount, 50.2 mm, is 11.6% of the total amount of water used for cultivation management.

  4. Polar gypsum on Mars : wind-driven exhumation from the North Polar Cap and redistribution in the Circumpolar Dune Field

    NASA Astrophysics Data System (ADS)

    Masse, M.; Bourgeois, O.; Le Mouélic, S.; Verpoorter, C.; Le Deit, L.; Mercier, E.; Bibring, J.

    2010-12-01

    The North Polar Cap of Mars is associated with different kinds of superficial sediments, including the Circumpolar Dune Field and sedimentary veneers scattered over the ice cap. In order to resolve the mineralogical composition of these sediments, we processed OMEGA and CRISM hyperspectral data with an original method based on spectral derivation (Huguenin and Jones, 1986). We find that gypsum is present in all areas where undefined hydrated minerals had been previously detected (Poulet et al., 2008; Horgan et al., 2009; Calvin et al., 2010), including the superficial sedimentary veneers found on the North Polar Cap and the whole Circumpolar Dune Field. Integrated morphological and structural analyses reveal that these gypsum crystals derive directly from the interior of the ice cap (Massé et al., 2010). The source of sedimentary veneers is the dust that was previously contained in the upper part of the ice cap, the ice-rich North Polar Layered Deposits (NPLD). This gypsum-bearing dust was exhumed, on south-facing slopes of spiral troughs and arcuate scarps, by ice ablation induced by katabatic winds. By the analysis of all associations of erosional scarps and dune fields over the North Polar Cap, we also demonstrate that the source of the polar dunes are sand-sized particles that were previously contained in the sediment-rich BU (Basal Unit), corresponding to the lower part of the ice cap. These particles were exhumed from the BU, by regressive ablation of the ice at marginal scarps that border the North Polar Cap, or by vertical ablation of the ice on Olympia Planum. From a reconstruction of wind flow lines over and around the ice cap, we infer that katabatic winds descending from the polar high and rotating around the North Polar Cap are responsible for the exhumation of this gypsum-bearing sand and for its redistribution in the Circumpolar Dune Field. The intensity of gypsum diagnostic spectral absorption bands decreases along wind flow lines in the

  5. Experimental and numerical study of turbulent flow associated with interacting barchan dunes

    NASA Astrophysics Data System (ADS)

    Barros, J. M., Jr.; Blois, G.; Anderson, W.; Tang, Z.; Best, J.; Christensen, K. T.

    2014-12-01

    Barchan dunes are naturally occurring three-dimensional topographic features that have been observed on the surface of several planets. They occur both in aeolian and in subaqueous environments. Barchans typically form in fields having a broad distribution in dune size and migration rates. This results in variable bedform spacing and eventually dynamic bedform-bedform interactions that involve morphodynamic processes (e.g. collision, merging, splitting). These processes are controlled by complex feedback mechanisms mutually linking three key elements: fluid flow, sediment transport and bed morphology. The aim of this work is to contribute to the understanding of the fluid-flow mechanisms responsible for the formation, migration and interaction of these dunes. To this end, we study the three-dimensional flow generated by the interactions between fixed barchan-dune models arranged in tandem in collision and ejection scenarios via experiments in an optically-accessible flow environment using planar particle-image velocimetry (PIV) measurements of the flow field. These measurements are complemented by targeted large-eddy simulations (LES) meant to provide a three-dimensional view of the flow processes for these fixed dune arrangements.

  6. Experimental and numerical study of turbulent flow associated with interacting barchan dunes

    NASA Astrophysics Data System (ADS)

    Blois, Gianluca; Anderson, William; Tang, Zhanqi; Barros, Julio; Best, James; Christensen, Kenneth

    2014-11-01

    Barchan dunes are naturally occurring three-dimensional topographic features that have been observed on the surface of several planets. They occur both in aeolian and in subaqueous environments. Barchans typically form in fields having a broad distribution in dune size and migration rates. This results in variable bedform spacing and eventually dynamic bedform -bedform interactions that involve morphodynamic processes (e.g. collision, merging, splitting). These processes are controlled by complex feedback mechanisms mutually linking three key elements: fluid flow, sediment transport and bed morphology. The aim of this work is to contribute to the understanding of the fluid-flow mechanisms responsible for the formation, migration and interaction of these dunes. To this end, we study the three-dimensional flow generated by the interactions between fixed barchan-dune models arranged in tandem in collision and ejection scenarios via experiments in an optically-accessible flow environment using planar particle-image velocimetry (PIV) measurements of the flow field. These measurements are complemented by targeted large-eddy simulations (LES) meant to provide a three-dimensional view of the flow processes for these fixed dune arrangements. In transition to University of Texas at Dallas, USA.

  7. Defrosting Sand Dunes

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-434, 27 July 2003

    This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) picture shows retreating patches of frost on a field of large, dark sand dunes in the Noachis region of Mars. Large, windblown ripples of coarse sediment are also seen on some of the dunes. This dune field is located in a crater at 47.5oS, 326.3oW. The scene is illuminated by sunlight from the upper left.

  8. Introducing a New International Society of Aeolian Research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aeolian research is long-standing and rapidly growing area of study where scientists of many disciplines meet to investigate the effects of wind on the surface of the Earth and other planetary bodies, such as Mars and Titan. Fields of study in aeolian research cover a broad spectrum ranging from dev...

  9. The potential scale of aeolian structures on Venus

    NASA Technical Reports Server (NTRS)

    Marshall, J. R.; Greeley, Ronald

    1991-01-01

    Simulations of the Venusian aeolian environment with the Venus Wind Tunnel have shown that microdunes are formed during the entrainment of sand-sized material. These structures are several tens of centimeters long (2-3 cm high) and combine the morphological and behavioral characteristics of both full-scale terrestrial dunes and current ripples formed in subaqueous environments. Their similarity to both reflects the fact that the Venusian atmosphere has a density intermediate between air and water. Although the development of microdunes in the wind tunnel experiments was limited by tunnel dimensions, it is possible to make some predictions about their potential size on Venus, and the potential size of related aeolian structures. Microdunes are fluid-filled structures (as are dunes and current ripples) and as such have no theoretical upper limit to their size from a fluid dynamics viewpoint. Limitations to size observed in subaqueous structures are set by, for example, water depth; limitations to the size of dunes are set by, for example, sand supply. It is therefore reasonable to suppose that the microdunes on Venus could evolve into much larger features than those observed in experiments. In addition, the researchers note that current ripples (which are closely related to microdunes) are often found in association with giant ripples that have dimensions similar to aeolian dunes. Thus, it may be reasonable to assume that analogous large scale structures occur on Venus. Both (terrestrial) aeolian and subaqueous environments generate structures in excess of one hundred meters in wavelength. Such dimensions may therefore be applicable to Venusian bedforms. Analysis of Magellan data may resolve the issue.

  10. Transport and mixing of eolian sand from local sources resulting in variations in grain size in a gypsum dune field, White Sands, New Mexico, USA

    NASA Astrophysics Data System (ADS)

    Langford, Richard P.; Gill, Thomas E.; Jones, Slade B.

    2016-03-01

    The White Sands Dune Field, New Mexico (USA), provides a unique opportunity to study sources and eolian transport of sand. End member mixing analysis provides unbiased correlation of the grain size distributions of populations that mix sands from four different local source surface types. Textural differences between sources allow local transport paths to be deduced. In total, 1214 surface samples from 10 dunes and 2 downwind-oriented transects were collected. Neither elevation on the dune, lee or stoss location nor distance downwind correlated with mean grain size, coarsest 10% (D90), or sorting. Instead, grain size distributions are controlled by mixing of locally sourced sand populations. Adjacent dunes can have different mean grain sizes, resulting from different local source populations. Local within-dune and between-dune variability resulting from different sand sources dominates any larger-scale trends across and within dunes. Four sand populations are identified, based on microscopically observable differences in grain size, shape and angularity. Each correlates with high loading of a different statistical factor, derived from End Member Mixing Analysis. End Member 1 (EM1) correlates with well-sorted populations of finer-grained, equant, rounded sands. EM2 correlates with samples that contain moderately sorted populations containing angular blades and crystal aggregates associated with erosional interdunes. EM3 is associated with samples of moderately to poorly sorted fine-grained sand containing fine sand-sized gypsum needles collected from areas of vegetated interdunes, and EM4 is associated with moderately well sorted coarse- and very coarse-grained sands collected from granule ripples. These results suggest that downwind mixing of different populations and segregation by different depositional processes influence grain size distributions in the dune field, rather than by dune-scale or erg-scale transport and sorting.

  11. Dunes reveal Titan's recent history

    NASA Astrophysics Data System (ADS)

    Savage, Christopher J.; Radebaugh, Jani

    2010-04-01

    Large fields of linear dunes are abundant on Titan, covering nearly 20% of the surface. They are among the youngest features and represent interactions between near-surface winds and sediment. This interaction may vary from area to area creating unique populations of eolian features identified by dune field parameters such as crest-to-crest spacing, dune width and orientation. These parameters respond to changes in near-surface conditions over periods of time ranging from minutes to many thousands of years depending on dune size and the duration of the changes. While pattern analysis of dune field parameters on Earth and, in this study, Titan reveals much about current climatic conditions, such as wind regimes and wetter vs. drier areas, many inferences about past conditions can also be made. Initial pattern analysis of linear dunes on Titan reveals a single population of linear dunes representing a large percentage of all observed dunes. This single population is the result of two leading possibilities: Either there has been only one long period of dune building, leading to very old cores that have been built upon over long periods of time, perhaps punctuated with few or many intervals of non-deposition; or the current conditions of dune building have persisted long enough to completely erase any evidence of previous conditions. We have not yet worked through all the input parameters to adjust Earth's time scales to Titan's, and thus it is not yet possible to give a precise age for Titan's dunes. However, if these large linear dunes are similar to Earth's large linear dunes, they may represent at least several thousand years of dune building.

  12. Dune Avalanche Scars

    NASA Technical Reports Server (NTRS)

    2004-01-01

    05 August 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows large, low albedo (dark) sand dunes in Kaiser Crater near 47.2oS, 340.4oW. The dunes are--ever so slowly--moving east to west (right to left) as sand avalanches down the steeper, slip face slopes of each. Avalanching sand in the Kaiser dune field has left deep scars on these slopes, suggesting that the sand is not loose but is instead weakly cemented. The image covers an area approximately 3 km (1.9 mi) wide and is illuminated by sunlight from the upper left.

  13. North Polar Dunes

    NASA Technical Reports Server (NTRS)

    2006-01-01

    23 January 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows dark sand dunes in the north polar region of Mars. Surrounding much of the north polar ice cap are fields of sand dunes. In this case, the strongest winds responsible for the dunes blew off the polar cap (not seen here), from the north-northwest (upper left).

    Location near: 76.5oN, 63.7oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Summer

  14. Fortune Cookie Sand Dunes

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-432, 25 July 2003

    This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a field of small barchan sand dunes in the north polar region near 71.7oN, 51.3oW. Some of them are shaped like fortune cookies. The message these dunes provide: winds blow through this region from the lower right toward the upper left. The steep slip face slopes of these dunes, which point toward the upper left, indicate the wind direction. The scene is illuminated by sunlight from the upper right. The image is 3 km (1.9 mi) wide.

  15. Chasma Boreale Dunes

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-354, 8 May 2003

    In this Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image, wind has streaked a field of defrosting sand dunes in Chasma Boreale in the martian north polar region. Dune slip faces--the steep slope formed by avalanching sand on each dune--and the dark streaks indicate that wind transports sediment from the lower left toward the upper right. The picture covers an area about 3 km (1.9 mi) wide near 84.6oN, 358.5oW. Sunlight illuminates the scene from the lower left.

  16. Aeolian transport pathways along the transition from Tibetan highlands towards northwestern Chinese deserts

    NASA Astrophysics Data System (ADS)

    Nottebaum, Veit; Lehmkuhl, Frank; Stauch, Georg

    2014-05-01

    basins leads to fluvial sediment aggradation and allows comparably high fine sand deflation. This supports the formation of sandy loess in these regions and on foreland alluvial fans, whereas in contrast, sandy loess is absent in the high mountain geomorphologic setting. Aeolian sand distribution in the study area indicates a high dependence on sand supply. In eastern forelands perennial Hei River and northerly bordering Badain Jaran desert are important sand sources and hence support dune field formation in the northern Qilian Shan foreland (Hexi Corridor). In contrast, western forelands, dominated by gravel gobi surfaces, exhibit very few aeolian sand accumulations on the surface. The latter area shows only ephemeral discharge and is lacking large sand source areas. Therefore, although sufficient wind speeds occur, aeolian sand transport is limited due to restricted sand supply. Concluding, the medium scale geomorphological setting (103 m) exerts a rather underestimated influence when reconstructing aeolian transport processes. However, considering the spatial distribution of aeolian sediments in combination with their grain size distribution allows the reconstruction of dominant transport pathways.

  17. Two modes for dune orientation

    NASA Astrophysics Data System (ADS)

    Courrech Du Pont, Sylvain; Narteau, Clément; Gao, Xin

    2015-11-01

    Earth sand seas experience winds that blow with different strengths and from different directions in line with the seasons. In response, dune fields show a rich variety of shapes from small crescentic barchans to big star and linear dunes. Linear dunes often exhibit complex and compound patterns with different length scales and orientations, which seem difficult to relate to a single wind cycle. We present results of underwater experiments and numerical simulations where a single wind regime can lead to two different dunes orientation depending on sediment availability. Sediment availability selects the overriding mechanism for the formation of dunes: increasing in height from the destabilization of a sand bed or elongating in a finger on a non-erodible ground from a localized sand source. These mechanisms drive the dunes orientation. Therefore, dunes alignment maximizes dunes orthogonality to sand fluxes in the bed instability mode, while dunes are aligned with the sand transport direction in the fingering mode. Then, we derive a model for dunes orientation, which explains the coexistence of bedforms with different alignments and quantitatively predicts the orientation of dunes in Earth deserts. Finally, we explore the phase diagram and the stability of the fingering mode.

  18. Selective deposition response to aeolian-fluvial sediment supply in the desert braided channel of the upper Yellow River, China

    NASA Astrophysics Data System (ADS)

    Wang, H.; Jia, X.; Li, Y.; Peng, W.

    2015-09-01

    Rivers flow across aeolian dunes and develop braided stream channels. Both aeolian and fluvial sediment supplies regulate sediment transport and deposition in such cross-dune braided rivers. Here we show a significant selective deposition in response to both aeolian and fluvial sediment supplies in the Ulan Buh desert braided channel. The Ulan Buh desert is the main coarse sediment source for this desert braided channel, and the mean percentage of the coarser (> 0.08 mm) grains on the aeolian dunes surface is 95.34 %. The lateral selective deposition process is developed by the interaction between the flows and the aeolian-fluvial sediment supplies, causing the coarser sediments (> 0.08 mm) from aeolian sand supply and bank erosion to accumulate in the channel centre and the finer fluvial sediments (< 0.08 mm) to be deposited on the bar and floodplain surfaces, forming a coarser-grained thalweg bed bounded by finer-grained floodplain surfaces. This lateral selective deposition reduces the downstream sediment transport and is a primary reason for the formation of an "above-ground" river in the braided reach of the upper Yellow River in response to aeolian and fluvial sediment supplies.

  19. Advanced Interferometric Synthetic Aperture Imaging Radar (InSAR) for Dune Mapping

    NASA Astrophysics Data System (ADS)

    Havivi, Shiran; Amir, Doron; Schvartzman, Ilan; August, Yitzhak; Mamman, Shimrit; Rotman, Stanely R.; Blumberg, Dan G.

    2016-04-01

    Aeolian morphologies are formed in the presence of sufficient wind energy and available lose particles. These processes occur naturally or are further enhanced or reduced by human intervention. The dimensions of change are dependent primarily on the wind energy and surface properties. Since the 1970s, remote sensing imagery, both optical and radar, have been used for documentation and interpretation of the geomorphologic changes of sand dunes. Remote sensing studies of aeolian morphologies is mostly useful to document major changes, yet, subtle changes, occurring in a period of days or months in scales of centimeters, are very difficult to detect in imagery. Interferometric Synthetic Aperture Radar (InSAR) is an imaging technique for measuring Earth's surface topography and deformation. InSAR images are produced by measuring the radar phase difference between two separated antennas that view the same surface area. Classical InSAR is based on high coherence between two or more images. The output (interferogram) can show subtle changes with an accuracy of several millimeters to centimeters. Very little work has been done on measuring or identifying the changes in dunes using InSAR methods. The reason is that dunes tend to be less coherent than firm, stable, surfaces. This work aims to demonstrate how interferometric decorrelation can be used for identifying dune instability. We hypothesize and demonstrate that the loss of radar coherence over time on dunes can be used as an indication of the dune's instability. When SAR images are acquired at sufficiently close intervals one can measure the time it takes to lose coherence and associate this time with geomorphic stability. To achieve our goals, the coherence change detection method was used, in order to identify dune stability or instability and the dune activity level. The Nitzanim-Ashdod coastal dunes along the Mediterranean, 40 km south of Tel-Aviv, Israel, were chosen as a case study. The dunes in this area are of

  20. [Nutrient contents and microbial populations of aeolian sandy soil in Sanjiangyuan region of Qinghai Province].

    PubMed

    Lin, Chao-feng; Chen, Zhan-quan; Xue, Quan-hong; Lai, Hang-xian; Chen, Lai-sheng; Zhang, Deng-shan

    2007-01-01

    Sanjiangyuan region (the headstream of three rivers) in Qinghai Province of China is the highest and largest inland alpine wetland in the world. The study on the nutrient contents and microbial populations of aeolian sandy soils in this region showed that soil organic matter content increased with the evolution of aeolian sand dunes from un-stabilized to stabilized state, being 5.9 and 3.8 times higher in stabilized sand dune than in mobile and semi-stabilized sand dunes, respectively. Soil nitrogen and phosphorus contents increased in line with the amount of organic matter, while potassium content and pH value varied slightly. The microbial populations changed markedly with the development of vegetation, fixing of mobile sand, and increase of soil nutrients. The quantities of soil bacteria, fungi and actinomycetes were 4.0 and 2.8 times, 19.6 and 6.3 times, and 12.4 and 2.6 times higher in stabilized and semi-stabilized sand dunes than in mobile sand dune, respectively, indicating that soil microbial bio-diversity was increased with the evolution of aeolian sand dunes from mobile to stabilized state. In addition, the quantities of soil microbes were closely correlated with the contents of soil organic matter, total nitrogen, and available nitrogen and phosphorus, but not correlated with soil total phosphorus, total and available potassium, or pH value. PMID:17396507

  1. Aeolian sediment transport and landforms in managed coastal systems: A review

    NASA Astrophysics Data System (ADS)

    Jackson, Nancy L.; Nordstrom, Karl F.

    2011-11-01

    Humans modify beaches and dunes and aeolian transport potential by building structures, walking or driving, extracting resources, accommodating recreation, increasing levels of protection, removing storm deposits, or restoring landforms and habitats. The effects of human adjustments are reviewed here in terms of cross-shore zones because humans tend to compartmentalize landforms and habitats through their actions and regulations. Common human modifications in the beach zone include nourishing beaches, constructing shore protection structures and raking to remove litter. Modifications affecting the dune zone include altering the location, size and stability of dunes using sand-trapping fences, vegetation plantings and bulldozers or replacing dunes with shore-parallel structures. Modifications affecting the landward zone include buildings, roads, and parking lots. Landform and habitat resilience requires levels of dynamism and geomorphic complexity not often found in managed systems. Preserving or enhancing dynamism and complexity requires emphasis on innovative designs rooted in geomorphological and aeolian research. Future studies are suggested for: (1) quantifying the effect of small and large scale beach nourishment designs and sediment characteristics on dune initiation, development, and evolution; (2) quantifying the extent to which size and spacing of human structures and landform alterations inhibit sediment transfers alongshore or onshore; (3) identifying the advantages or disadvantages of "niche" dunes formed by structures; (4) providing quantitative data on the effects of raking or driving on the beach; (5) identifying the role of aeolian landforms on private properties; and (6) identifying alternative ways of employing sand fences and vegetation plantings to increase topographic and habitat diversity.

  2. Isolated Northern Dunes

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    Our topic for the weeks of April 4 and April 11 is dunes on Mars. We will look at the north polar sand sea and at isolated dune fields at lower latitudes. Sand seas on Earth are often called 'ergs,' an Arabic name for dune field. A sand sea differs from a dune field in two ways: 1) a sand sea has a large regional extent, and 2) the individual dunes are large in size and complex in form.

    This VIS image was taken at 81 degrees North latitude during Northern spring. In this region, the dunes are isolated from each other. The dunes are just starting to emerge from the winter frost covering appearing dark with bright crests. These dunes are located on top of ice.

    Image information: VIS instrument. Latitude 82.1, Longitude 191.3 East (168.7 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  3. Booming Sand Dunes

    NASA Astrophysics Data System (ADS)

    Vriend, Nathalie

    "Booming" sand dunes are able to produce low-frequency sound that resembles a pure note from a music instrument. The sound has a dominant audible frequency (70-105 Hz) and several higher harmonics and may be heard from far distances away. A natural or induced avalanche from a slip face of the booming dune triggers the emission that may last for several minutes. There are various references in travel literature to the phenomenon, but to date no scientific explanation covered all field observations. This thesis introduces a new physical model that describes the phenomenon of booming dunes. The waveguide model explains the selection of the booming frequency and the amplification of the sound in terms of constructive interference in a confined geometry. The frequency of the booming is a direct function of the dimensions and velocities in the waveguide. The higher harmonics are related to the higher modes of propagation in the waveguide. The experimental validation includes quantitative field research at the booming dunes of the Mojave Desert and Death Valley National Park. Microphone and geophone recordings of the acoustic and seismic emission show a variation of booming frequency in space and time. The analysis of the sensor data quantifies wave propagation characteristics such as speed, dispersion, and nonlinear effects and allows the distinction between the source mechanism of the booming and the booming itself. The migration of sand dunes results from a complicated interplay between dune building, wind regime, and precipitation. The morphological and morphodynamical characteristics of two field locations are analyzed with various geophysical techniques. Ground-penetrating radar images the subsurface structure of the dunes and reveal a natural, internal layering that is directly related to the history of dune migration. The seismic velocity increases abruptly with depth and gradually increases with downhill position due to compaction. Sand sampling shows local

  4. Life and death in a Late Cretaceous dune field, Nemegt basin, Mongolia

    NASA Astrophysics Data System (ADS)

    Loope, David B.; Dingus, Lowell; Swisher, Carl C., III; Minjin, Chuluun

    1998-01-01

    For more than 70 years, red sandstones of the Gobi Desert have yielded abundant articulated skeletons of Late Cretaceous dinosaurs, lizards, and mammals. At Ukhaa Tolgod, structureless sandstones are the only fossiliferous facies, and we present new evidence for deposition on dune-sand sourced alluvial fans that were built at the margins of stabilized eolian bedforms during mesic climatic episodes. In laterally and vertically adjacent large-scale eolian cross-strata in which skeletons are absent, we have found abundant tracks of dinosaurs that walked on sparsely vegetated dunes that were active under xeric conditions. Our study of calcareous concretions in vaguely bedded eolian sandstones suggests that bedding was nearly destroyed by burrowing invertebrates and trampling dinosaurs. The accumulation of illuvial clays and pedogenic calcite in these sediments reduced infiltration of rainwater and, with attendant climatic change and heavy rainfall events, led to fan development.

  5. Analysis of dark albedo features on a southern polar dune field of Mars.

    PubMed

    Horváth, András; Kereszturi, Akos; Bérczi, Szaniszló; Sik, András; Pócs, Tamás; Gánti, Tibor; Szathmáry, Eörs

    2009-01-01

    We observed 20-200 m sized low-albedo seepage-like streaks and their annual change on defrosting polar dunes in the southern hemisphere of Mars, based on the Mars Orbiter Camera (MOC), High Resolution Stereo Camera (HRSC), and High Resolution Imaging Science Experiment (HiRISE) images. The structures originate from dark spots and can be described as elongated or flowlike and, at places, branching streaks. They frequently have another spotlike structure at their end. Their overall appearance and the correlation between their morphometric parameters suggest that some material is transported downward from the spots and accumulates at the bottom of the dune's slopes. Here, we present possible scenarios for the origin of such streaks, including dry avalanche, liquid CO(2), liquid H(2)O, and gas-phase CO(2). Based on their morphology and the currently known surface conditions of Mars, no model interprets the streaks satisfactorily. The best interpretation of only the morphology and morphometric characteristics is only given by the model that implies some liquid water. The latest HiRISE images are also promising and suggest liquid flow. We suggest, with better knowledge of sub-ice temperatures that result from extended polar solar insolation and the heat insulator capacity of water vapor and water ice, future models and measurements may show that ephemeral water could appear and flow under the surface ice layer on the dunes today. PMID:19203240

  6. Microdunes and other aeolian bedforms on Venus - Wind Tunnel simulations

    NASA Astrophysics Data System (ADS)

    Greeley, R.; Marshall, J. R.; Leach, R. N.

    1984-10-01

    The development of aeolian bedforms in the simulated Venusian environment has been experimentally studied in the Venus Wind Tunnel. It is found that the development of specific bedforms, including ripples, dunes, and 'waves', as well as their geometry, are controlled by a combination of factors including particle size, wind speed, and atmospheric density. Microdunes are formed which are analogous to full-size terrestrial dunes and are characterized by the development of slip faces, internal cross-bedding, a low ratio of saltation path length to dune length, and a lack of particle-size sorting. They begin to develop at wind speeds just above saltation threshold and evolve into waves at higher velocities. At wind speeds of about 1.5 m/sec and higher, the bed is flat and featureless. This evolution is explained by a model based on the interaction of alternating zones of erosion and deposition and particle saltation distances.

  7. Microdunes and Other Aeolian Bedforms on Venus: Wind Tunnel Simulations

    NASA Technical Reports Server (NTRS)

    Greeley, R.; Marshall, J. R.; Leach, R. N.

    1985-01-01

    The development of aeolian bedforms in the simulated Venusian environment has been experimentally studied in the Venus Wind tunnel. It is found that the development of specific bedforms, including ripples, dunes, and waves, as well as their geometry, are controlled by a combination of factors including particle size, wind speed, and atmospheric density. Microdunes are formed which are analogous to full-size terrestrial dunes and are characterized by the development of slip faces, internal cross-bedding, a low ratio of saltation path length to dune length, and a lack of particle-size sorting. They begin to develop at wind speeds just above saltation threshold and evolve into waves at higher velocities. At wind speeds of about 1.5 m/sec and higher, the bed is flat and featureless. This evolution is explained by a model based on the interaction of alternating zones of erosion and deposition and particle saltation distances.

  8. Microdunes and other aeolian bedforms on Venus - Wind Tunnel simulations

    NASA Technical Reports Server (NTRS)

    Greeley, R.; Marshall, J. R.; Leach, R. N.

    1984-01-01

    The development of aeolian bedforms in the simulated Venusian environment has been experimentally studied in the Venus Wind Tunnel. It is found that the development of specific bedforms, including ripples, dunes, and 'waves', as well as their geometry, are controlled by a combination of factors including particle size, wind speed, and atmospheric density. Microdunes are formed which are analogous to full-size terrestrial dunes and are characterized by the development of slip faces, internal cross-bedding, a low ratio of saltation path length to dune length, and a lack of particle-size sorting. They begin to develop at wind speeds just above saltation threshold and evolve into waves at higher velocities. At wind speeds of about 1.5 m/sec and higher, the bed is flat and featureless. This evolution is explained by a model based on the interaction of alternating zones of erosion and deposition and particle saltation distances.

  9. Parabolic dunes and their transformations under environmental and climatic changes: Towards a conceptual framework for understanding and prediction

    NASA Astrophysics Data System (ADS)

    Yan, Na; Baas, Andreas C. W.

    2015-01-01

    The formation and evolution of parabolic aeolian dunes depend on vegetation, and as such are particularly sensitive to changes in environmental controls (e.g., temperature, precipitation, and wind regime) as well as to human disturbances (e.g., grazing, agriculture, and recreation). Parabolic dunes can develop from the stabilisation of highly mobile barchan dunes and transverse dunes as well as from blowouts, as a consequence of colonisation and establishment of vegetation when aeolian sand transport is reduced and/or when water stress is relieved (by increasing precipitation, for instance). Conversely, existing parabolic dunes can be activated and may be transformed into barchan dunes and/or transverse dunes when vegetation suffers environmental or anthropogenic stresses. Predicted increases in temperature and drought severity in various regions raise concerns that dune activation and transformations may intensify, and this intensification would have far-reaching implications for environmental, social, and economic sustainability. To date, a broad examination of the development of parabolic dunes and their related transformations across a variety of climate gradients has been absent. This paper reviews existing literature, compares data on the morphology and development of parabolic dunes in a comprehensive global inventory, and scrutinises the mechanisms of different dune transformations and the eco-geomorphic interactions involved. This knowledge is then integrated into a conceptual framework to facilitate understanding and prediction of potential aeolian dune transformations induced by changes in environmental controls and human activities. This conceptual framework can aid judicious land management policies for better adaptations to climatic changes.

  10. Aeolian sand preserved in Silver Lake: a new signal of Holocene high stands of Lake Michigan

    USGS Publications Warehouse

    Fisher, Timothy G.; Loope, Walter L.

    2005-01-01

    Aeolian sand within lake sediment from Silver Lake, Michigan can be used as a proxy for the timing of high lake levels of Lake Michigan.We demonstrate that the sand record from Silver Lake plotted as percent weight is in-phase with the elevation curve of Lake Michigan since the mid-Holocene Nipissing Phase. Because fluctuations in Lake Michigan's lake level are recorded in beach ridges, and are a response to climate change, the aeolian sand record within Silver Lake is also a proxy for climate change. It appears that increases in dune activity and lake sand are controlled by similar climatic shifts that drive fluctuations in lake level of Lake Michigan. High lake levels destabilize coastal bluffs that drive dune sand instability, and along with greater wintertime storminess, increase niveo-aeolian transport of sand across lake ice. The sand is introduced into the lake each spring as the ice cover melts.

  11. The observation of Martian dune migration using very high resolution image analysis and photogrammetric data processing

    NASA Astrophysics Data System (ADS)

    Kim, Jungrack; Yun, Hyewon; Kim, Younghwi; Baik, Hyunseob

    2016-04-01

    Although the origins and processes of Martian aeolian features, especially dunes, have not been fully identified yet, it has been better understood by the orbital observation method which has led to the identification of Martian dune migration such as a case in Nili Patera (Bridges, 2012), and the numerical model employing advanced computational fluid dynamics (Jackson et al., 2015). Specifically, the recent introduction of very high-resolution image products, such as 25 cm-resolution HiRISE imagery and its precise photogrammetric processor, allows us to trace the estimated, although tiny, dune migration over the Martian surface. In this study, we attempted to improve the accuracy of active dune migration measurements by 1) the introduction of very high resolution ortho images and stereo analysis based on the hierarchical geodetic control (Kim and Muller, 2009) for better initial point settings; 2) positioning error removal throughout polynomial image control; and 3) the improved sub-pixel co-registration algorithms using optical flow with a refinement stage conducted on a pyramidal grid processor and a blunder classifier. Consequently, this scheme not only measured Martian dune migration more precisely, but it will further achieve the extension of 3D observations combining stereo analysis and photoclinometry. The established algorithms have been tested using the HiRISE time series images over several dune fields, such as the Kaiser, Procter, and Wirtz craters, which were reported by the Mars Global Digital Dune Database (Hayward et al., 2013). The detected dune migrations were significantly larger than previously reported values and slightly correlated with the wind directions estimated by Martian Climate Database (Bingham et al., 2003). The outcomes in our study will be demonstrated with the quantified values in 2D and volumetric direction. In the future, the method will be further applied to the dune fields in the Mars Global dune database comprehensively and

  12. Dark Barchan Dunes

    NASA Technical Reports Server (NTRS)

    2004-01-01

    13 May 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows north polar sand dunes in the summertime. During winter and early spring, north polar dunes are covered with bright frost. When the frost sublimes away, the dunes appear darker than their surroundings. To a geologist, sand has a very specific meaning. A sand grain is defined independently of its composition; it is a particle with a size between 62.5 and 2000 microns. Two thousand microns equals 2 millimeters. The dunes are dark because they are composed of sand grains made of dark minerals and/or rock fragments. Usually, dark grains indicate the presence of unoxidized iron, for example, the dark volcanic rocks of Hawaii, Iceland, and elsewhere. This dune field is located near 71.7oN, 51.3oW. Dune slip faces indicate winds that blow from the upper left toward lower right. This picture covers an area approximately 3 km (1.9 mi) across and is illuminated by sunlight from the lower left.

  13. Aeolian processes on Venus

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald

    1989-01-01

    This review assesses the potential aeolian regime on Venus as derived from spacecraft observations, laboratory simulations, and theoretical considerations. The two requirements for aeolian processes (a supply of small, loose particles and winds of sufficient strength to move them) appear to be met on Venus. Venera 9, 10, 13, and 14 images show particles considered to be sand and silt size on the surface. In addition, dust spurts (grains 5 to 50 microns in diameter) observed via lander images and inferred from the Pioneer-Venus nephalometer experiments suggest that the particles are loose and subject to movement. Although data on near surface winds are limited, measurements of 0.3 to 1.2 m/sec from the Venera lander and Pioneer-Venus probes appear to be well within the range required for sand and dust entrainment. Aeolian activity involves the interaction of the atmosphere, lithosphere, and loose particles. Thus, there is the potential for various physical and chemical weathering processes that can effect not only rates of erosion, but changes in the composition of all three components. The Venus Simulator is an apparatus used to simulate weathering under venusian conditions at full pressure (to 112 bars) and temperature (to 800 K). In one series of tests, the physical modifications of windblown particles and rock targets were assessed and it was shown that particles become abraded even when moved by gentle winds. However, little abrasion occurs on the target faces. Thus, compositional signatures for target rocks may be more indicative of the windblown particles than of the bedrock. From these and other considerations, aeolian modifications of the venusian surface may be expected to occur as weathering, erosion, transportation, and deposition of surficial materials. Depending upon global and local wind regimes, there may be distinctive sources and sinks of windblown materials. Radar imaging, especially as potentially supplied via the Magellan mission, may enable the

  14. 26Al/10Be dating of an aeolian dust mantle soil in western New South Wales, Australia

    NASA Astrophysics Data System (ADS)

    Fisher, Adrian; Fink, David; Chappell, John; Melville, Michael

    2014-08-01

    Aeolian dust mantle soils are an important element of many landscapes in south-eastern Australia, though the age of these aeolian deposits has not been radiometrically determined. At Fowlers Gap in western New South Wales, surface cobbles of silcrete and quartz overlie a stone-free, aeolian dust mantle soil, which has a thickness of about 1.6 m. The clay-rich aeolian dust deposit in turn lies upon a buried silcrete and quartz stone layer. Modelling in-situ cosmogenic 26Al and 10Be concentrations measured in both the surface quartz stones and in the buried quartz layer of rocks, reveals that each has experienced a complex exposure-burial history. Due to the absence of quartz stones or sand at intermediate depths, our cosmogenic 26Al and 10Be modelling was not able to determine a definitive mechanism of stone pavement formation and stone burial. Various scenarios of stone formation, transport, burial and exhumation were tested that constrain the age of the deposit to range from 0.9 ± 0.2 Ma to 1.8 ± 0.2 Ma, based largely on different assumptions taken for the time-dependency of the net sedimentation rate. This corresponds with the initiation of the Simpson Desert dune fields and the deflation of lakes in central Australia, which probably responded to the shift to longer-wavelength, larger-amplitude Quaternary glacial cycles at around 1 Ma. Sensitivity analyses were carried out to identify those parameters which better constrained model outputs. Within model errors, which largely are the result of analytical errors in measured 26Al and 10Be concentrations, all three competing theories of colluvial wash, upward displacement of stones, and cumulic pedogenesis are possible mechanisms for the formation of the surface stone pavement.

  15. Regional aeolian dynamics and sand mixing in the Gran Desierto: Evidence from Landsat thematic mapper images

    SciTech Connect

    Blount, G.; Greeley, R.; Christensen, P.R. ); Smith, M.O.; Adams, J.B. )

    1990-09-10

    Spatial variations in sand composition were mapped on a regional scale in a terrestrial sand sea, the Gran Desierto of Sonora, Mexico. Mesoscale mapping on a satellite image base allowed quantitative interpretation of the dynamic development of sand sheets and dunes. The results were used to interpret the Quaternary geologic history of the tectonically active region at the mouth of the Colorado River. Landsat thematic mapper multispectral images were used to predict the abundance of different mineralogies of sand grains in a mixed aeolian terrain. A spectral mixing model separated the effects of vegetation and topographically induced shading and shadow from the effects produced by different mineral and rock types. Compositions determined remotely agreed well with samples from selected areas within the spectral limitations of the thematic mapper. A simple discrimination capability for active versus inactive sand surfaces is demonstrated based upon differences in the percentage of low-albedo accessory grains occurring on dormant aeolian surfaces. A technique for discriminating between low-albedo materials and macroscopic shade is implemented by combing thermal images with the results of the spectral mixing model. The image analysis revealed important compositional variations over large areas that were not readily apparent in the field.

  16. Mars sampling strategy and aeolian processes

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald

    1988-01-01

    It is critical that the geological context of planetary samples (both in situ analyses and return samples) be well known and documented. Apollo experience showed that this goal is often difficult to achieve even for a planet on which surficial processes are relatively restricted. On Mars, the variety of present and past surface processes is much greater than on the Moon and establishing the geological context of samples will be much more difficult. In addition to impact hardening, Mars has been modified by running water, periglacial activity, wind, and other processes, all of which have the potential for profoundly affecting the geological integrity of potential samples. Aeolian, or wind, processes are ubiquitous on Mars. In the absence of liquid water on the surface, aeolian activity dominates the present surface as documented by frequent dust storms (both local and global), landforms such as dunes, and variable features, i.e., albedo patterns which change their size, shape, and position with time in response to the wind.

  17. Barchan Dunes

    NASA Technical Reports Server (NTRS)

    2004-01-01

    28 April 2004 One of the simplest forms a sand dune can take is the barchan. The term, apparently, comes from the Arabic word for crescent-shaped dunes. They form in areas with a single dominant wind direction that are also not overly-abundant in sand. The barchan dunes shown here were imaged in March 2004 by the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) as it passed over a crater in western Arabia Terra near 21.1oN, 17.6oW. The horns and steep slope on each dune, known as the slip face, point toward the south, indicating prevailing winds from the north (top). The picture covers an area about 3 km (1.9 mi) across and is illuminated by sunlight from the lower left.

  18. Spring Dunes

    NASA Technical Reports Server (NTRS)

    2006-01-01

    22 July 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows dunes in the north polar region of Mars. In this scene, the dunes, and the plain on which the dunes reside, are at least in part covered by a bright carbon dioxide frost. Dark spots indicate areas where the frost has begun to change, either by subliming away to expose dark sand, changing to a coarser particle size, or both. The winds responsible for the formation of these dunes blew from the lower left (southwest) toward the upper right (northeast).

    Location near: 76.3oN, 261.2oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Spring

  19. Groovy Dunes

    NASA Technical Reports Server (NTRS)

    2005-01-01

    23 April 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a favorite among the MGS MOC operations team at Malin Space Science Systems, another example of the grooved dunes in Herschel Crater. The fine-scale grooves on the sand dune surfaces were formed by wind erosion. The sand dune surfaces have, over time, become crusted and the dunes immobilized. Wind now has to scour sand from the surfaces of these bedforms, creating small wind erosion features known as yardangs in the sand.

    Location near: 15.7oS, 228.9oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Winter

  20. Aeolian desertification from the mid-1970s to 2005 in Otindag Sandy Land, Northern China

    NASA Astrophysics Data System (ADS)

    Liu, Shulin; Wang, Tao

    2007-01-01

    Aeolian desertification in Otindag Sandy Land has expanded dramatically during the past 50 years. This research explored processes and causes of aeolian desertification in the study area. The results showed that aeolian desertification development in Zhenglan Qi of typical region located at the center in the study area can be divided into three stages including rapid occurrence before 1987, parts of rehabilitation and most of deterioration from 1987 to 2000 and little rapid rehabilitation occurrence from 2000 to 2005, according to remote sensing images and field investigations. Gradually declining MI indicated that climate change was not the major cause of aeolian desertification development during the last 40 years, while increasing population should be the underlying cause of local aeolian desertification. Irrational human activities mainly including unsuitable reclamation in the 1960s and lasting over-grazing after 1980 are direct causes contributing to local aeolian desertification, especially over-grazing, while climate change often played a revealer of irrational human activities mainly through drought events. Over-grazing and undesirable climate have different functions during the whole aeolian desertification process. Over-grazing gradually changed grasslands to slight aeolian desertified lands at the initial stage, while climate with windy days or droughts often accelerated formation of serious aeolian desertified lands. Aeolian desertification in the study area both possesses occurrence possibility and great rehabilitative potential. At present, more integrated countermeasures combating local aeolian desertification still are expected.

  1. Aeolian Transport of Invertebrates

    NASA Astrophysics Data System (ADS)

    Gill, T. E.; Walsh, E. J.; Wallace, R. L.; Rojo, L.; Rivas, J. A.

    2012-12-01

    Playas and other ephemeral desert wetlands are preferential terrestrial landforms for dust emission. These sites also are habitat for a diverse assemblage of minute invertebrates. When wetlands desiccate, these invertebrates survive as resting stages (propagules). Thus, playas serve as isolated, ephemeral, biogeographical islands for aquatic invertebrates, but it is unclear how propagules disperse across distances as far as hundreds of kilometers to colonize hydrologically disconnected basins. Aeolian transport (anemochory) may provide the mechanism, especially since many invertebrate propagules are long-lived, aerodynamically shaped, possess low-density, and their size (30-600 μm) falls within the same texture as aeolian dust and sand grains. We are collecting and culturing wind-transported sediment to document its ability to serve in the dispersal of aridland invertebrate propagules. Deposited aeolian sediment was collected from marble-type traps placed on the roof of the Biological Sciences Building at the University of Texas, El Paso, during 19 individual regional-scale Chihuahuan Desert blowing dust/sand events between April 2010 and May 2012. Known source areas for these dust events include playas and ephemeral streams ~40- 150 km upwind. The mean dry grain size of the deposited sediment for each event ranged from 66 to 141 μm. Clean-water rinses of material from each event or standard rehydrations for culturing invertebrates were monitored microscopically for the appearance of organisms. Invertebrates hatched from the sediment of 13 events. Ciliates were detected in each of those samples: gastrotrichs appeared in three samples, nematodes and bdelloid rotifers in two samples, and clam shrimp in one. We have also rehydrated aeolian sediments, collected in standard dust traps, from many dust-emitting playas in Southwest North America and hatched viable organisms including all those previously mentioned as well as branchiopods, fairy shrimp, copepods

  2. Russell Dunes

    NASA Technical Reports Server (NTRS)

    2004-01-01

    26 March 2004 Dark streaks made by dozens of spring and summer dust devils created a form of martian graffiti on the sand dunes of Russell Crater near 54.5oS, 347.4oW. Gullies have developed on some of the dune slopes, as well. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image covers an area about 3 km (1.9 mi) across. Sunlight illuminates the scene from the upper left.

  3. Predicting vegetation-stabilized dune morphology

    NASA Astrophysics Data System (ADS)

    Barchyn, T.; Hugenholtz, C.

    2012-04-01

    The morphology of vegetation-stabilized dune fields on the North American Great Plains mostly comprises parabolic dunes; stabilized barchan and transverse dunes are rare. One notable exception is the Nebraska Sand Hills (NSH), where massive grass-covered barchan and transverse dunes bear proof of former desert-like conditions. We present a hypothesis from a numerical dune field model to explain the vegetation-stabilized morphology of dunes. The model incorporates a growth curve that preferentially grows vegetation in regions of sediment deposition with a sharp drop in growth at the peak depositional tolerance of vegetation, qualitatively matching biological response to erosion and deposition. Simulations on a range of pre-stabilization dune morphologies, from large closely-spaced transverse dunes to small dispersed barchans, indicate that the stabilized morphology is largely determined by the ratio of slipface deposition rate to peak depositional tolerance of vegetation. Conceptually, slipface deposition rate is related to dune height and celerity. By keeping depositional tolerance constant (representing a constant vegetation type and climate) the model shows that large slow-moving dunes have low slipface deposition rates and essentially 'freeze' in place once vegetation is introduced, retaining their pre-vegetation morphology. Small fast-moving dunes have higher slipface deposition rates and evolve into parabolic dunes. We hypothesize that, when barchan and transverse dunes are subjected to a stabilizing climate shift that increases vegetation growth rate, they retain their pre-stabilization morphology if deposition rates are below the depositional tolerance of stabilizing vegetation, otherwise they become parabolic dunes. This could explain why NSH dunes are stabilized in barchan and transverse morphologies while elsewhere on the Great Plains dune fields are dominated by smaller parabolic dunes.

  4. Interdisciplinary research produces results in understanding planetary dunes

    USGS Publications Warehouse

    Titus, Timothy N.; Hayward, Rosalyn K.; Dinwiddie, Cynthia L.

    2012-01-01

    Third International Planetary Dunes Workshop: Remote Sensing and Image Analysis of Planetary Dunes; Flagstaff, Arizona, 12–16 June 2012. This workshop, the third in a biennial series, was convened as a means of bringing together terrestrial and planetary researchers from diverse backgrounds with the goal of fostering collaborative interdisciplinary research. The small-group setting facilitated intensive discussions of many problems associated with aeolian processes on Earth, Mars, Venus, Titan, Triton, and Pluto. The workshop produced a list of key scientifc questions about planetary dune felds.

  5. Contemporary research in aeolian geomorphology

    NASA Astrophysics Data System (ADS)

    Bauer, B. O.

    2009-04-01

    The first International Conference on Aeolian Geomorphology (ICAR) was held in 1986, and every four years since then, aeolian geomorphologists from around the world have assembled to discuss their research and to showcase recent advancements in understanding and modeling of aeolian processes. A content analysis of the "Bibliography of Aeolian Research" [Stout, J.E., Warren, A., Gill, T.E., 2009. Publication trends in aeolian research: An analysis of the Bibliography of Aeolian Research. Geomorphology 105, 6-17 (this volume)] shows that the number of publications on aeolian topics has increased exponentially from the mid-20th Century with approximately 50 publications per year to about 500 publications per year when the first ICAR was held, to almost 1000 publications per year currently. Areas of focus have shifted historically from initial concerns with aeolian erosion and dust events as isolated phenomenon of localized curiosity or only regional importance, to comprehensive physically-based investigations and modeling of the mechanics of aeolian transport. Recently, more applied studies have been motivated by the recognition of the importance of aeolian processes to dust emissions into the atmosphere (with relevance for human health and for meteorological conditions and climate change) and within regional management contexts (especially on coasts where impending sea-level rise is of great concern and in arid and semi-arid environments given the dependence of sediment surface stability and remobilization on meteorological and ecological conditions). Aeolian geomorphology is a rapidly growing sub-discipline of Geomorphology that offers rich opportunities for interdisciplinary collaborations with colleagues from the Atmospheric Sciences, Climatology, Sedimentology, Quaternary Geology, Fluid Mechanics, Physics, Mathematics, Computer Science, Physical Geography, Ecology, and Agricultural Sciences, as well as our counterparts in fluvial, coastal, and arid

  6. Development and steady states of transverse dunes: A numerical analysis of dune pattern coarsening and giant dunes

    NASA Astrophysics Data System (ADS)

    Gao, Xin; Narteau, Clément; Rozier, Olivier

    2015-10-01

    We investigate the development and steady states of transverse dunes for ranges of flow depths and velocities using a cellular automaton dune model. Subsequent to the initial bed instability, dune pattern coarsening is driven by bed form interactions. Collisions lead to two types of coalescence associated with upstream or downstream dominant dunes. In addition, a single collision-ejection mechanism enhances the exchange of mass between two adjacent bed forms (throughpassing dunes). The power law increases in wavelength and amplitude exhibit the same exponents, which are independent of flow properties. Contrary to the wavelength, dune height is limited not only by flow depth but also by the strength of the flow. Superimposed bed forms may propagate and continuously destabilize the largest dunes. We identify three classes of steady state transverse dune fields according to the periodicity in crest-to-crest spacing and the mechanism of size limitation. In all cases, the steady state is reached and maintained through the dynamic equilibrium between flow strength and dune aspect ratio. In the limit of low flow strength, where it becomes the primary factor of size limitation, the bed shear stress in the dune trough regions is close to its critical value for motion inception. Comparisons with natural dune fields suggest that many of them may have reached a steady state. Finally, we infer that the sedimentary patterns in the model may be used to bring new constraints on the development of modern and ancient dune fields.

  7. Ecogeomorphology of Sand Dunes Shaped by Vegetation

    NASA Astrophysics Data System (ADS)

    Tsoar, H.

    2014-12-01

    Two dune types associated with vegetation are known: Parabolic and Vegetated Linear Dunes (VLDs), the latters are the dominant dune type in the world deserts. Parabolic dunes are formed in humid, sub-humid and semi-arid environments (rather than arid) where vegetation is nearby. VLDs are known today in semiarid and arid lands where the average yearly rainfall is ≥100 mm, enough to support sparse cover of vegetation. These two dune types are formed by unidirectional winds although they demonstrate a different form and have a distinct dynamics. Conceptual and mathematical models of dunes mobility and stability, based on three control parameters: wind power (DP), average annual precipitation (p), and the human impact parameter (μ) show that where human impact is negligible the effect of wind power (DP) on vegetative cover is substantial. The average yearly rainfall of 60-80 mm is the threshold of annual average rainfall for vegetation growth on dune sand. The model is shown to follow a hysteresis path, which explains the bistability of active and stabilized dunes under the same climatic conditions with respect to wind power. We have discerned formation of parabolic dunes from barchans and transverse dunes in the coastal plain of Israel where a decrease in human activity during the second half of the 20th century caused establishment of vegetation on the crest of the dunes, a process that changed the dynamics of these barchans and transverse dunes and led to a change in the shape of the windward slope from convex to concave. These dunes gradually became parabolic. It seems that VLDs in Australia or the Kalahari have always been vegetated to some degree, though the shrubs were sparser in colder periods when the aeolian erosion was sizeable. Those ancient conditions are characterized by higher wind power and lower rainfall that can reduce, but not completely destroy, the vegetation cover, leading to the formation of lee (shadow) dunes behind each shrub. Formation of

  8. Geomorphological Evidence of Plausible Water Activity and Evaporatic Deposition in Interdune Areas of the Gypsum-rich Olympia Undae Dune Field

    NASA Astrophysics Data System (ADS)

    Szynkiewicz, A.; Ewing, R. C.; Fishbaugh, K. E.; Bourke, M. C.; Bustos, D.; Pratt, L. M.

    2009-03-01

    New morphological features (e.g., cross-bedding strata, bright patches), revealed by HiRISE for the gypsum-rich Olympia Undae Dune Field, appear to indicate the change(s) in paleoenvironmental conditions likely controlled by climate fluctuations in the North Pole of Mars.

  9. Reestablishing Naturally Functioning Dunes on Developed Coasts.

    PubMed

    Nordstrom; Lampe; Vandemark

    2000-01-01

    / The potential for reestablishing dune habitat is investigated in municipalities in New Jersey, USA, where natural coastal landforms and biota have been eliminated or reduced in extent. Dunes are classified using width, relationship to natural and cultural features, and changes through time, and they are assessed for their value as naturally functioning landforms in developed municipalities. The relationship between size and longevity that exists under natural conditions is altered by human activity. Small dunes on privately owned lots can survive as long as larger dunes in natural areas that are located farther inland, and foredunes repaired using sand fences and earth-moving equipment can survive where they could not under natural conditions.Common beach management practices reduce the ecological values of coastal dunes. Mechanical beach cleaning eliminates incipient dunes, habitat for nesting birds, seed sources for pioneer dune colonizers and food for fauna, and artificially small, stabilized foredunes reduce the variability in microenvironments necessary for biodiversity. Recent initiatives for reducing coastal hazards, protecting nesting birds, and encouraging nature-based tourism provide incentive for the development of a restoration program for beaches and dunes that is compatible with human use. Suggested changes in management practice include restricting or rerouting pedestrian traffic, altering beach-cleaning procedures, using symbolic fences to allow for aeolian transport while preventing trampling of dunes, and eliminating or severely restricting exotic species. Landforms will be more natural in function and appearance but will be more dynamic, smaller and in a different position from those in natural areas. Research needs are specified for ecological, geomorphological, and attitudinal studies to support and inform restoration planning. PMID:10552101

  10. Martian Dunes

    NASA Technical Reports Server (NTRS)

    2004-01-01

    22 September 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows dark, windblown sand dunes in a south mid-latitude crater near 49.5oS, 352.9oW. The elongated portions of these dunes indicate that, for some period of time during their development, there were two dominant wind directions involved. The most dominant of these winds blew from the south-southeast (lower right), as indicated by the presence of the steepest dune slopes on their northwest (facing upper left) sides. This image covers an area approximately 3 km (1.9 mi) across and is illuminated by sunlight from the upper left.

  11. A Comparison of Methods Used to Estimate the Height of Sand Dunes on Mars

    NASA Technical Reports Server (NTRS)

    Bourke, M. C.; Balme, M.; Beyer, R. A.; Williams, K. K.; Zimbelman, J.

    2006-01-01

    The collection of morphometric data on small-scale landforms from other planetary bodies is difficult. We assess four methods that can be used to estimate the height of aeolian dunes on Mars. These are (1) stereography, (2) slip face length, (3) profiling photoclinometry, and (4) Mars Orbiter Laser Altimeter (MOLA). Results show that there is good agreement among the methods when conditions are ideal. However, limitations inherent to each method inhibited their accurate application to all sites. Collectively, these techniques provide data on a range of morphometric parameters, some of which were not previously available for dunes on Mars. They include dune height, width, length, surface area, volume, and longitudinal and transverse profiles. Thc utilization of these methods will facilitate a more accurate analysis of aeolian dunes on Mars and enable comparison with dunes on other planetary surfaces.

  12. Sand Dunes, Afghanistan

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This ASTER image covers an area of 10.5 x 15 km in southern Afghanistan and was acquired on August 20, 2000. The band 3-2-1 composite shows part of an extensive field of barchan sand dunes south of Kandahar. The shape of the dunes indicates that the prevailing wind direction is from the west. The image is located at 30.7 degrees north latitude and 65.7 degrees east longitude.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  13. Dunes in Brashear

    NASA Technical Reports Server (NTRS)

    2006-01-01

    8 January 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a field of dark sand dunes on the northwestern floor of Brashear Crater. The dunes formed largely from winds that blew from the southeast (lower right).

    Location near: 253.7oS, 119.4oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Summer

  14. Dunes with Frost

    NASA Technical Reports Server (NTRS)

    2004-01-01

    31 May 2004 Springtime for the martian northern hemisphere brings defrosting spots and patterns to the north polar dune fields. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows an example located near 76.7oN, 250.4oW. In summer, these dunes would be darker than their surroundings. However, while they are still covered by frost, they are not any darker than the substrate across which the sand is slowly traveling. Dune movement in this case is dominated by winds that blow from the southwest (lower left) toward the northeast (upper right). The picure covers an area about 3 km (1.9 mi) across and is illuminated by sunlight from the lower left.

  15. Biodiversity impact of the aeolian periglacial geomorphologic evolution of the Fontainebleau Massif (France)

    NASA Astrophysics Data System (ADS)

    Thiry, M.; Liron, M. N.

    2009-04-01

    Landscape features The geomorphology of the Fontainebleau Massif is noteworthy for its spectacular narrow ridges, up to 10 km long and 0.5 km wide, armored by tightly cemented sandstone lenses and which overhang sandy depressions of about 50m. Denudation of the sandstone pans lead to a highly contrasted landscape, with sandstone ridges ("platières") towering sandy depressions ("vallées") and limestone plateaus ("monts"). This forms the geological frame of the spectacular sceneries of the Fontainebleau Massif (Thiry & Liron, 2007). Nevertheless, there is little know about the erosive processes that have built-up these landscapes. Periglacial processes, and among them aeolian ones, appear significant in the development of the Fontainebleau Massif physiography. The periglacial aeolian geomorphology Dunes and dune fields are known since long and cover about 15% to 25% of the Fontainebleau Massif. The aeolian dunes developed as well on the higher parts of the landscape, as well as in the lower parts of the landscape. The dunes are especially well developed in the whole eastern part of the massif, whereas the western part of the massif is almost devoid of dunes. Nevertheless, detailed mapping shows that dunes can locally be found in the western district, they are of limited extension, restricted to the east facing backslope of outliers. Loamy-sand covers the limestone plateaus of the "monts". The loam cover is of variable thickness: schematically thicker in the central part of the plateaus, where it my reach 3 m; elsewhere it may thin down to 0,20-0,30 m, especially at the plateau edges. Blowout hollows are "negative" morphologies from where the sand has been withdrawed. Often these blowouts are decametric sized and well-delimited structures. Others, more complex structures, are made up of several elongated hectometric hollows relaying each other from and which outline deflation corridor more than 1 km long. A characteristic feature of these blowout hollows is the

  16. Formation of aeolian ripples and sand sorting.

    PubMed

    Manukyan, Edgar; Prigozhin, Leonid

    2009-03-01

    We present a continuous model capable of demonstrating some salient features of aeolian sand ripples: the realistic asymmetric ripple shape, coarsening of the ripple field at the nonlinear stage of ripple growth, saturation of ripple growth for homogeneous sand, typical size segregation of sand, and formation of armoring layers of coarse particles on ripple crests and windward slopes if the sand is inhomogeneous. PMID:19391931

  17. Windblown Dunes

    NASA Technical Reports Server (NTRS)

    2004-01-01

    18 June 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows barchan and linear dunes that seem to have grown from the coalescence of barchans in a crater in the Noachis Terra region. The winds responsible for these dunes blow from the lower left (southwest). The image occurs near 46.0oS, 323.6oW, and covers an area about 3 km (1.9 mi) wide. Sunlight illuminates the scene from the upper left.

  18. Copernicus Dunes

    NASA Technical Reports Server (NTRS)

    2005-01-01

    22 December 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows dark teardrop-shaped sand dunes in eastern Copernicus Crater. The winds responsible for these dunes generally blow from the south-southwest (lower left).

    Location near: 48.7oS, 167.4oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Summer

  19. Frosty Dunes

    NASA Technical Reports Server (NTRS)

    2005-01-01

    29 August 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows frost-covered sand dunes in the martian north polar region. The winds responsible for these dunes generally blew from the southwest (lower left).

    Location near: 80.0oN, 114.6oW Image width: width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Spring

  20. Nilosyrtis Dunes

    NASA Technical Reports Server (NTRS)

    2005-01-01

    31 July 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a rare patch of dark sand dunes in the Nilosyrtis Mensae region of Mars. The steepest slopes on these dunes, their slipfaces, point toward the south-southwest, indicating that the dominant winds that formed them came from the north-northeast (top/upper right).

    Location near: 34.5oN, 295.1oW Image width: width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Autumn

  1. Caterpillar Dunes

    NASA Technical Reports Server (NTRS)

    2004-01-01

    28 June 2004 Looking somewhat like caterpillars, this April 2004 Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows some of the rounded, wind-eroded sand dune features in a crater in the southern hemisphere near 61.7oS, 160.3oW. For such rounding to occur, the dune sand might need to be somewhat cemented. The picture covers an area about 3 km (1.9 mi) wide and is illuminated by sunlight from the upper left.

  2. Timing of frost deposition on Martian dunes: A clue to properties of dune particles?

    NASA Technical Reports Server (NTRS)

    Thomas, P.

    1987-01-01

    Scans were made across the Martian dunes found in images taken at several different times to determine the time history of the dune albedo. Atmospheric contributions were estimated using optical depth data and the brightness of shadows in some images. The data show that the dunes brighten very substantially between L(s) = 10 and 40 deg, depending on the latitude. Bright coverings on dunes form outliers 1 to 5 deg north of the cap edge. Formation of the general cap then sometimes reverses the contrast of the dune field with the surrounding area. Causes for the early deposition of frost on dunes relative to surroundings are discussed.

  3. Aeolian sand ripples: experimental study of fully developed states.

    PubMed

    Andreotti, Bruno; Claudin, Philippe; Pouliquen, Olivier

    2006-01-20

    We report an experimental investigation of aeolian sand ripples, performed both in a wind tunnel and on stoss slopes of dunes. Starting from a flat bed, we can identify three regimes: appearance of an initial wavelength, coarsening of the pattern, and finally saturation of the ripples. We show that both initial and final wavelengths, as well as the propagative speed of the ripples, are linear functions of the wind velocity. Investigating the evolution of an initially corrugated bed, we exhibit nonlinear stable solutions for a finite range of wavelengths, which demonstrates the existence of a saturation in amplitude. These results contradict most of the models. PMID:16486644

  4. Evolution of the Salinas-El Espartal and Xagó beach/dune systems in north-western Spain over recent decades: evidence for responses to natural processes and anthropogenic interventions

    NASA Astrophysics Data System (ADS)

    Flor-Blanco, Germán; Flor, Germán; Pando, Luis

    2013-04-01

    The confining barrier comprising the Salinas-El Espartal beach/dune system forms part of the mouth complex of the Avilés estuary on the central coast of Asturias (NW Spain). In this study the evolution of the beach and its dune field, as well as the estuary, is established based on appraisal of both natural and anthropogenic processes. In particular, dredging in the estuary mouth has had a strong negative impact on the system, including the recession of the dune front by between 20 and 30 m, and degradation of the seafront, first built at the edge of the beach dunes in 1965 and rebuilt in 1994. By contrast, the dumping of dredged material at a nearby beach, Xagó, has caused a remarkable dune progradation of 45 m on average, creating aeolian tabular sheets. The future dredging management of the mouth of the Avilés estuary should be directly related to the evolution of the El Espartal and Xagó dune fields.

  5. Field Measurement of Sand Dune Bidirectional Reflectance Characteristics for Absolute Radiometric Calibration of Optical Remote Sensing Data.

    NASA Astrophysics Data System (ADS)

    Coburn, C. A.; Logie, G.; Beaver, J.; Helder, D.

    2015-12-01

    The use of Pseudo Invariant Calibration Sites (PICS) for establishing the radiometric trending of optical remote sensing systems has a long history of successful implementation. Past studies have shown that the PICS method is useful for evaluating the trend of sensors over time or cross-calibration of sensors but was not considered until recently for deriving absolute calibration. Current interest in using this approach to establish absolute radiometric calibration stems from recent research that indicates that with empirically derived models of the surface properties and careful atmospheric characterisation Top of Atmosphere (TOA) reflectance values can be predicted and used for absolute sensor radiometric calibration. Critical to the continued development of this approach is the accurate characterization of the Bidirectional Reflectance Distribution Function (BRDF) of PICS sites. This paper presents the field data collected by a high-performance portable goniometer system in order to develop a BRDF model for the Algodones Dunes in California. These BRDF data are part of a larger study that is seeking to evaluate and quantify all aspects of this dune system (from regional effects to the micro scale optical properties of the sand) in order to provide an absolute radiometric calibration PICS. This paper presents the results of a dense temporal measurement sequence (several measurements per hour with high angular resolution), to yield detailed information on the nature of the surface reflectance properties. The BRDF data were collected covering typical view geometry of space borne sensors and will be used to close the loop on the calibration to create an absolute calibration target for optical satellite absolute radiometric calibration.

  6. The Enigmatic Longevity of Granular Materials on Mars: The Case for Geologically Episodic Dune Formation

    NASA Technical Reports Server (NTRS)

    Marshall, J.

    1999-01-01

    Martian sand dunes are concentrated in vast sand seas in the circumpolar belt of the planet's northern hemisphere, but they are also pervasive over the whole planet. Their occurrence is to be expected on a super-arid planetary surface subjected to boundary layer drag from a continually active atmosphere. Whilst their occurrence is to be expected, their survival is enigmatic. But the enigma only arises if the martian system is considered similar to Earth's --where sand is moved highly frequently, more or less on a seasonal basis. Experimentally it is readily demonstrated that active sand will soon wear down to small grains and eventually diminish to below the critical sand size required to sustain dune formation. According to conventional wisdom, sand moves at higher speeds on Mars than on Earth, and if it were to move as frequently as it does on Earth, then the dune-forming sand population should have long since disappeared, given the great longevity of the martian aeolian system (Sagan coined the term "kamikaze" grains to express this disappearance). No supply of sand could keep pace with this depletion, especially in light of the fact that Mars does not have very active weathering, nor significant crustal differentiation. On Earth, plate tectonics, magmatic activity, and general crustal differentiation over geological time have produced great concentrations of quartz crystals in the continental crustal masses. Not only are these quartz grains chemically and mechanically resilient, they are about the right size for being transported by either wind or water. Add to this, the geologically recent contribution of glacial grinding, and it is easy to see why there are dune field on Earth. So what are the martian dunes composed of, and how does the material survive the eons of attrition? In addition to experimental demonstrations of sand comminution in laboratory aeolian simulations, the problem can be approached from first principles. Sagan showed that by simple

  7. 'Endurance Crater's' Dazzling Dunes (false-color)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    As NASA's Mars Exploration Rover Opportunity creeps farther into 'Endurance Crater,' the dune field on the crater floor appears even more dramatic. This false-color image taken by the rover's panoramic camera shows that the dune crests have accumulated more dust than the flanks of the dunes and the flat surfaces between them. Also evident is a 'blue' tint on the flat surfaces as compared to the dune flanks. This results from the presence of the hematite-containing spherules ('blueberries') that accumulate on the flat surfaces.

    Sinuous tendrils of sand less than 1 meter (3.3 feet) high extend from the main dune field toward the rover. Scientists hope to send the rover down to one of these tendrils in an effort to learn more about the characteristics of the dunes. Dunes are a common feature across the surface of Mars, and knowledge gleaned from investigating the Endurance dunes close-up may apply to similar dunes elsewhere.

    Before the rover heads down to the dunes, rover drivers must first establish whether the slippery slope that leads to them is firm enough to ensure a successful drive back out of the crater. Otherwise, such hazards might make the dune field a true sand trap.

  8. Aeolian particle flux profiles and transport unsteadiness

    NASA Astrophysics Data System (ADS)

    Bauer, Bernard O.; Davidson-Arnott, Robin G. D.

    2014-07-01

    Vertical profiles of aeolian sediment flux are commonly modeled as an exponential decay of particle (mass) transport with height above the surface. Data from field and wind-tunnel studies provide empirical support for this parameterization, although a large degree of variation in the precise shape of the vertical flux profile has been reported. This paper explores the potential influence of wind unsteadiness and time-varying intensity of transport on the geometry (slope, curvature) of aeolian particle flux profiles. Field evidence from a complex foredune environment demonstrates that (i) the time series of wind and sediment particle flux are often extremely variable with periods of intense transport (referred to herein as sediment "flurries") separated by periods of weak or no transport; (ii) sediment flurries contribute the majority of transport in a minority of the time; (iii) the structure of a flurry includes a "ramp-up" phase lasting a few seconds, a "core" phase lasting a few seconds to many tens of seconds, and a "ramp-down" phase lasting a few seconds during which the system relaxes to a background, low-intensity transport state; and (iv) conditional averaging of flux profiles for flurry and nonflurry periods reveals differences between the geometry of the mean profiles and hence the transport states that produce them. These results caution against the indiscriminate reliance on regression statistics derived from time-averaged sediment flux profiles, especially those with significant flurry and nonflurry periods, when calibrating or assessing the validity of steady state models of aeolian saltation.

  9. Stability of transverse dunes against perturbations: A theoretical study using dune skeleton model

    NASA Astrophysics Data System (ADS)

    Niiya, Hirofumi; Awazu, Akinori; Nishimori, Hiraku

    2013-06-01

    The dune skeleton model is a reduced model to describe the formation process and dynamics of characteristic types of dunes emerging under unidirectional steady wind. Using this model, we study the dependency of the morphodynamics of transverse dunes on the initial random perturbations and the lateral field size. It was found that (i) an increase of the lateral field size destabilizes the transverse dune to cause deformation of a barchan, (ii) the initial random perturbations decay with time by the power function until a certain time; thereafter, the dune shapes change into three phases according to the amount of sand and sand diffusion coefficient, and (iii) the duration time, until the transverse dune is broken, increases exponentially with increasing the amount of sand and sand diffusion coefficient. Moreover, under the condition without the sand supply from windward ground, the destabilization of transverse dune in this model qualitatively corresponds to the subaqueous dunes in water tank experiments.

  10. Measuring aeolian sand transport using acoustic sensors

    NASA Astrophysics Data System (ADS)

    Poortinga, Ate; van Rheenen, Hans; Ellis, Jean T.; Sherman, Douglas J.

    2015-03-01

    Acoustic sensors are frequently used to measure aeolian saltation. Different approaches are used to process the signals from these instruments. The goal of this paper is to describe and discuss a method to measure aeolian saltation with acoustic sensors. In a laboratory experiment, we measured the output from an advanced signal processing scheme on the circuit board of the saltiphone. We use a software implementation of this processing scheme to re-analyse data from four miniphones obtained during a field experiment. It is shown that a set of filters remove background noise outside the frequency spectrum of aeolian saltation (at 8 kHz), whereas signals within this frequency spectrum are amplified. The resulting analogue signal is a proxy of the energy. Using an AC pulse convertor, this signal can be converted into a digital and analogue count signal or an analogue energy signal, using a rectifier and integrator. Spatio-temporal correlation between field deployed miniphones increases by using longer integration times for signal processing. To quantify aeolian grain impact, it is suggested to use the analogue energy output, as this mode is able to detect changes in frequency and amplitude. The analogue and digital count signals are able to detect an increase in frequency, but are not able to detect an increase in signal amplitude. We propose a two-stage calibration scheme consisting of (1) a factory calibration, to set the frequency spectrum of the sensor and (2) a standardized drop-test conducted before and after the experiment to evaluate the response of the sensor.

  11. Aeolian sand ripples around plants.

    PubMed

    Zhang, Qian-Hua; Miao, Tian-De

    2003-05-01

    Plants in the desert may locally change the aeolian process, and hence the pattern of sand ripples traveling nearby. The effect of plants on ripples is investigated using a coupled map lattice model with nonuniform coupling coefficients. PMID:12786143

  12. Crest line minimal model for sand dune

    NASA Astrophysics Data System (ADS)

    Guignier, Lucie; Valance, Alexandre; Lague, Dimitri

    2013-04-01

    In desert, complex patterns of dunes form. Under unidirectional wind, transverse rectilinear dunes or crescent shaped dunes called barchan dunes can appear, depending on the amount of sediment available. Most rectilinear transverse sand dunes are observed to fragment, for example at White Sands (New Mexico, United States of America) or Walvis Bay (Namibia). We develop a reduced complexity model to investigate the morphodynamics of sand dunes migrating over a non-erodible bed under unidirectional wind. The model is simply based on two physical ingredients, namely, the sand capture process at the slip face and the cross-wind sand transport. The efficiency of the sand capture process is taken to be dependent of the dune height and lateral diffusion is considered on both the windward and lee sides of the dune. In addition, the dune cross section is assumed to be scale invariant and is approximated by a triangular shape. In this framework, the dune dynamics is reduced to the motion of a string representing the dune crest line and is expressed as a set of two coupled nonlinear differential equations. This simple model reveals its ability to reproduce basic features of barchan and transverse dunes. Analytical predictions are drawn concerning dune equilibrium shape, stability and long-term dynamics. We derive, in particular, analytical solutions for barchan dunes, yielding explicit relationships between their shape and the lateral sand diffusion; and analytical predictions for the migration speed and equilibrium sand flux. A stability analysis of a rectilinear transverse dune allows us to predict analytically the wavelength emerging from fluctuations of the dune crest. We also determine the characteristic time needed for the rectilinear dune to fragment into a multitude of barchan dunes. These outcomes show that extremely simple ingredients can generate complex patterns for migrating dunes. From several dune field data, we are able to determine values of the model

  13. Development and stability of bed forms: a numerical analysis of dune pattern coarsening and giant dunes

    NASA Astrophysics Data System (ADS)

    Gao, Xin; Narteau, Clement; Rozier, Olivier

    2015-04-01

    We investigate the development and stability of transverse dunes for ranges of flow depths and velocities using a cellular automaton dune model. Subsequent to the initial bed instability, dune pattern coarsening is driven by bed form interactions. Collisions lead to two types of coalescence associated with upstream or downstream dominant dunes. In addition, a single collision-ejection mechanism enhances the exchange of mass between two consecutive bed forms (through-passing dunes). The power-law increases in wavelength and amplitude exhibit the same exponents, which are independent of flow properties. Contrary to the wavelength, dune height is not only limited by flow depth but also by the strength of the flow. Superimposed bedforms may propagate and continuously destabilize the largest dunes. Then, we identify three classes of steady-state transverse dune fields according to the periodicity in crest-to-crest spacing and the mechanism of size limitation. In all cases, the steady state is reached when the bed shear stress in the dune trough regions is close to its critical value for motion inception. Such a critical shear stress value is reached and maintained through the dynamic equilibrium between flow strength and dune aspect ratio. Comparisons with natural dune fields show that many of them may have reached such a steady state. Finally, we infer that the sedimentary patterns in the model may be used to bring new constraints on the stability of modern and ancient dune fields.

  14. An introduction to the INQUA Dunes Atlas Chronologic Database

    NASA Astrophysics Data System (ADS)

    Lancaster, Nicholas; Bristow, Charlie; Bubenzer, Olaf; Burrough, Sallie; Duller, Geoff; Halfen, Alan; Hesse, Paul; Roskin, Joel; Singhvi, Ashok; Thomas, David; Tripaldi, Alfonsina; Yang, Xiaoping; Wolfe, Stephen; Zarate, Marcelo

    2015-04-01

    The INQUA Dunes Atlas project has developed a global digital database of chronologic information for periods of desert sand dune accumulation and stabilization. The database currently contains 3278 luminescence and 535 radiocarbon records of directly dated periods of aeolian sand deposition from 1200 inland dune locations throughout the world, mostly in low- and mid-latitudes. Co-authors of this abstract have compiled data for their geographic region of expertise. Additional data are being added from publications, reports, and theses and dissertations as they become available. In addition to age data, the database includes information on the site location (including coordinates), dune type, and stratigraphic context, pertinent analytical information (e.g. luminescence procedures), and literature citations to the original data source (with doi). The database has so far enabled: (1) analysis of patterns of dated dune deposits at multiple temporal and spatial scales; (2) correlation of these patterns with other paleoclimatic proxies; and (3) assessment of the paleoclimatic and paleohydrologic implications of periods of aeolian deposition. The database has highlighted several issues with the available luminescence data set, especially the uneven spatial coverage of dated dune deposits and the heterogenous nature of the dune sedimentary record in many areas. It is clear that resolution of these issues to provide a better understanding of dune and dunefield responses to Quaternary climate change is not just a matter of additional dates. A systematic dating program that reflects fundamental patterns of dunefield sensitivity to climatic and hydrologic changes and relates dated deposits to patterns of dune morphology and sedimentology is needed as a research priority.

  15. Jenkins Dune

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image is of a landform informally called Jenkins Dune and is thought to be a small barchan dune. This feature is less than 1 foot (0.3 m) tall and perhaps 2-3 meters wide. Inferred wind direction is from the left to the right. Near the crest of the feature is a demarcation that may represent the exposure of a crust on the sediments; similar features were seen on sediments on the rock Big Joe at the Viking landing site.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech).

  16. Rippled Dune

    NASA Technical Reports Server (NTRS)

    2004-01-01

    10 October 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows ripples on the surface of a dune in a crater west of Sinus Meridiani near 2.5oN, 9.3oW. Most martian dune surfaces do not show ripples at the scale of MOC images---a higher resolution (better than 15 cm/pixel) view would be needed. These ripples are probably not typical sand ripples; they may be coarser-grained granule ripples (usually made up, in part, of grains 1-4 millimeters in size). The light-toned features in the image are wind-eroded outcrops of sedimentary rock. The image covers an area about 1.5 km (0.9 mi) wide. Sunlight illuminates the scene from the upper left.

  17. Numerical modeling of subaqueous sand dune morphodynamics

    NASA Astrophysics Data System (ADS)

    Doré, Arnaud; Bonneton, Philippe; Marieu, Vincent; Garlan, Thierry

    2016-03-01

    The morphodynamic evolution of subaqueous sand dunes is investigated, using a 2-D Reynolds-averaged Navier-Stokes numerical model. A laboratory experiment where dunes are generated under stationary unidirectional flow conditions is used as a reference case. The model reproduces the evolution of the erodible bed until a state of equilibrium is reached. In particular, the simulation exhibits the different stages of the bed evolution, e.g., the incipient ripple generation, the nonlinear bed form growing phase, and the dune field equilibrium phase. The results show good agreement in terms of dune geometrical dimensions and time to equilibrium. After the emergence of the first ripple field, the bed growth is driven by cascading merging sequences between bed forms of different heights. A sequence extracted from the simulation shows how the downstream bed form is first eroded before merging with the upstream bed form. Superimposed bed forms emerge on the dune stoss sides during the simulation. An analysis of the results shows that they emerge downstream of a slight deflection on the dune profile. The deflection arises due to a modification of the sediment flux gradient consecutive to a reduction in the turbulence relaxation length while the upstream bed form height decreases. As they migrate, superimposed bed forms grow on the dune stoss side and eventually provoke the degeneration of the dune crest. Cascading merging sequences and superimposed bed forms dynamics both influence the dune field evolution and size and therefore play a fundamental role in the dune field self-organization process.

  18. Frosty Dunes

    NASA Technical Reports Server (NTRS)

    2006-01-01

    12 April 2006 Today, the MOC Team celebrates the 45th anniversary of the first human flight into space, that of Yuri Gagarin on 12 April 1961, and the 25th anniversary of the first NASA Space Shuttle flight on 12 April 1981, by briefly pondering the wonders of our Solar System and the opportunities of the age in which we live. Although humans have not ventured to the Moon in more than 30 years, and have not yet gone to Mars, we can all go there through the eyes of our robotic explorers.

    Mars, perhaps the most Earth-like (yet so very different!) planet in our star's system, is tilted on its axis by about 25o-not all that different than Earth's 23.5o. Thus, Mars, like Earth, experiences a changing of seasons as the planet revolves around the Sun. At high latitudes in each hemisphere during autumn and winter, carbon dioxide frost accumulates on the surface.

    This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows dunes covered and delineated by seasonal frost in the north polar region of Mars. The winds responsible for the formation of these dunes blew primarily from the northwest (upper left), with additional influences from the north and northeast. During the late spring and summer seasons, these dunes would look much darker than their surroundings, but in this late winter image, the dunes and the plains on which they occur are all covered with carbon dioxide frost.

    Location near: 78.4oN, 76.7oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Winter

  19. Richardson Dunes

    NASA Technical Reports Server (NTRS)

    2005-01-01

    25 December 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a summertime view of sand dunes in Richardson Crater in the Mare Chromium region of the martian southern hemisphere.

    Location near: 72.4oS, 179.7oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Summer

  20. Development of cliff-top dunes in the Hengchun Peninsula of the southern Taiwan

    NASA Astrophysics Data System (ADS)

    Ho, Lih-Der; Wong, Yi-Chia; Lüthgens, Christopher; Chyi, Shyhjeng; Yen, Jiun-Yee

    2016-04-01

    Fung-Chuei-Sha cliff-top dune is located on a 60-meter-high cliff surface in the Hengchun Peninsula of Taiwan. It is still unclear that the history of the aeolian sediment deposition on the top of the cliff, and what factors may influence the evolution of the cliff-top dune. This study aims to investigate the evolutionary history of the Fung-Chuei-Sha cliff-top dune by analyzing the grain size, CaCO3 concentration and absolute dates of the dune sediment, and the land snail species found in the deposit.The results show three phases of aeolian sand accumulation in the Fung-Chuei-Sha cliff-top dune. 1. Phase I: aeolian sediment may accumulate in the bottom of the cliff between 2800 yr BP and 2100 yr BP. 2. Phase II: the cliff-top dune accumulated a 3.1-meter-thick sediment layer from 1500 yr BP to 1300 yr BP. In this phase, dune sediment deposited in a rate of 1.55 cm/yr. The paleoclimate proxy data from the nearby area indicate that the environment was cool and dry, and the Asian winter monsoon was strong during 1500-1300 yr BP. It blew the old coastal dune deposit at the bottom of the cliff up to the cliff top, and induced the C14 age reverse phenomenon. The aeolian deposition began to stabilize because of the wetter environment in the end of the Phase II. At the same time, the stable dune formed the silt and clay layer on the surface of the dune. A layer cemented by CaCO3 may indicate the position of the palaeo-groundwater table. 3. Phase III: the phase stared from 1500-1300 yr BP to the present. A 2.4-meter-thick eolian deposit was accumulated in a rate of 0.18 cm/yr during this phase. Four kinds of land snail shells, Cyclophorus formosensis, Hemiphaedusa similaris, Platyrhaphe swinhoei, Odontartemon heudei, which prefer to live in a relatively humid environment, were commonly observed in the dune deposit, indicating the environment was wet and consequently caused a slower aeolian deposition rate at this phase. Between 1000 yr BP and 500 yr BP, there was a

  1. Quantifying the effects of European beach grass on aeolian sand transport over the last century: Bodega Marine Reserve, California

    NASA Astrophysics Data System (ADS)

    Cesmat, R.; Werner, S.; Smith, M. E.; Riedel, T.; Best, R.; Olyarnik, S.

    2012-12-01

    Introduction of European beach grass (Ammophila arenaria) to coastal dune systems of western North America induced significant changes to the transport and storage of sediment, and consequently the nesting habitat of the western snowy plover (Charadrius alexandrinus nivosus). At the Bodega Marine Reserve and Sonoma Coast State Park, Ammophila was introduced within the ~0.5 km2 dune area in the 1920's to limit the flux of sand through Bodega Harbor and agricultural land. To assess the potential impact of restoration efforts (Ammophila removal) on aeolian sediment flux, we measured sediment flux as a function of wind speeds and ground cover, and used these measurements to parameterize a spatial model for historical sand deposition Fine- to coarse-grained lithic to sub-lithic sand is delivered to the Bodega dune system from Salmon Creek beach, the down-shore terminus of a littoral system fed by the 3846 km2 Russian River catchment, several small (<100 km2) coastal catchments, and seacliff erosion. Littoral sediment traverses the 1.8 km wide dune system from NW to SE via aeolian transport. Ammophila colonization occurred initially adjacent to the shoreface, inducing deposition of a ~10 meter-high foredune and has subsequently encroached the ~0.5 km2 region between the foredune and Bodega Harbor. Comparison of historical topographic maps via raster subtraction indicates rapid construction of both the foredune and a ~15 meter-high transverse dune (Gaffney ridge) at the edge of the planted region. An average accumulation rate of ~4,000 m3/yr is indicated within the study swath by the preserved sediment volumes. Within the modern dune system, unvegetated areas exhibit 2-3 meter wavelength, ~1/2 meter amplitude mega-ripples, and the uppermost 2-10 cm consists of coarse-sand to granule-sized armor layer. In contrast, grain-sizes in vegetated areas are largely vertically homogenous. Open areas are typically 2-8 meters lower than adjacent vegetated areas, and show evidence for

  2. Dunes on Titan observed by Cassini Radar

    USGS Publications Warehouse

    Radebaugh, J.; Lorenz, R.D.; Lunine, J.I.; Wall, S.D.; Boubin, G.; Reffet, E.; Kirk, R.L.; Lopes, R.M.; Stofan, E.R.; Soderblom, L.; Allison, M.; Janssen, M.; Paillou, P.; Callahan, P.; Spencer, C.; The Cassini Radar Team

    2008-01-01

    Thousands of longitudinal dunes have recently been discovered by the Titan Radar Mapper on the surface of Titan. These are found mainly within ??30?? of the equator in optically-, near-infrared-, and radar-dark regions, indicating a strong proportion of organics, and cover well over 5% of Titan's surface. Their longitudinal duneform, interactions with topography, and correlation with other aeolian forms indicate a single, dominant wind direction aligned with the dune axis plus lesser, off-axis or seasonally alternating winds. Global compilations of dune orientations reveal the mean wind direction is dominantly eastwards, with regional and local variations where winds are diverted around topographically high features, such as mountain blocks or broad landforms. Global winds may carry sediments from high latitude regions to equatorial regions, where relatively drier conditions prevail, and the particles are reworked into dunes, perhaps on timescales of thousands to tens of thousands of years. On Titan, adequate sediment supply, sufficient wind, and the absence of sediment carriage and trapping by fluids are the dominant factors in the presence of dunes. ?? 2007 Elsevier Inc. All rights reserved.

  3. Springtime Dunes, 2004

    NASA Technical Reports Server (NTRS)

    2004-01-01

    12 April 2004 Today is April 12, 2004, the 43rd anniversary of the first human flight into space (Yuri Gagarin, 1961) and the 23rd anniversary of the first NASA Space Shuttle flight (Columbia, 1981). Meanwhile, on Mars, spring is in full swing in the martian northern hemisphere. With spring comes the annual defrosting of the north polar dunes. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image, acquired on April 7, 2004, shows a field of small barchan (crescent-shaped) dunes covered with the remains of wintertime frost. The dark spots around the base of each dune mark the first signs of the spring thaw. The sand in these dunes is dark, like the black sand beaches of Hawaii or the dark, sandy soil of the rover, Opportunity, landing site, but in winter and spring their dark tone is obscured by bright carbon dioxide frost. This picture is located near 75.9oN, 45.3oW, and covers an area about 3 km (1.9 mi) across. Sunlight illuminates the scene from the lower left.

  4. Sand Dunes in Kaiser Crater

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Full size (780 KBytes) This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) high resolution image shows a field of dark sand dunes on the floor of Kaiser Crater in southeastern Noachis Terra. The steepest slopes on each dune, the slip faces, point toward the east, indicating that the strongest winds that blow across the floor of Kaiser move sand in this direction. Wind features of three different scales are visible in this image: the largest (the dunes) are moving across a hard surface (light tone) that is itself partially covered by large ripples. These large ripples appear not to be moving--the dunes are burying some and revealing others. Another type of ripple pattern is seen on the margins of the dunes and where dunes coalesce. They are smaller (both in their height and in their separation) than the large ripples. These are probably coarse sediments that are moving with the dunes. This picture covers an area approximately 3 km (1.9 mi) across and is illuminated from the upper left.

  5. Avalanche slope angles in low-gravity environments from active Martian sand dunes

    NASA Astrophysics Data System (ADS)

    Atwood-Stone, Corwin; McEwen, Alfred S.

    2013-06-01

    The properties of granular material have an important effect on surface landforms and processes. Recently, it has been suggested that material properties called dynamic and static angle of repose vary with gravitational acceleration, which would have a significant effect on many planetary surface processes such as crater collapse and gully formation. In order to test that hypothesis, we measured lee slopes of active aeolian sand dunes on Mars using the High Resolution Imaging Experiment (HiRISE) DTMs (Digital Terrain Model). We examined dune fields in Nili Patera, Herschel Crater, and Gale Crater. Our measurements showed that the dynamic angles of repose for the sands in these areas are 33-34° in the first region and 30-31° in the other two. These results fall within the 30° to 35° window for the dynamic angles of repose for terrestrial dunes with similar flow depths and grain properties and thus show that this angle does not significantly vary with decreasing gravity.

  6. Transverse Aeolian Ridges (TARs) on Mars II: Distributions, orientations, and ages

    NASA Astrophysics Data System (ADS)

    Berman, Daniel C.; Balme, Matthew R.; Rafkin, Scot C. R.; Zimbelman, James R.

    2011-05-01

    Transverse Aeolian Ridges (TARs), 10 m scale, ripple-like aeolian bedforms with simple morphology, are widespread on Mars but it is unknown what role they play in Mars' wider sediment cycle. We present the results of a survey of all Mars Global Surveyor Narrow angle images in a pole-to-pole study area, 45° longitude wide. Following on from the classification scheme and preliminary surveys of Balme et al. (Balme, M.R., Berman, D.C., Bourke, M.C., Zimbelman, J.R. [2008a]. Geomorphology 101, 703-720) and Wilson and Zimbelman (Wilson, S.A., Zimbelman, J.R. [2004]. J. Geophys. Res. 109 (E10). doi: 10.1029/2004JE002247) we searched more than 10,000 images, and found that over 2000 reveal at least 5% areal cover by TARs. The mean TAR areal cover in the study area is about 7% (3% in the northern hemisphere and 11% in the southern hemisphere) but TARs are not homogenously distributed - they are concentrated in the mid-low latitudes and almost absent poleward of 35°N and 55°S. We found no clear correlation between TAR distribution and any of thermal inertia, kilometer-scale roughness, or elevation. We did find that TARs are less common at extremes of elevation. We found that TARs are most common near the equator (especially in the vicinity of Meridiani Planum, in which area they have a distinctive "barchan-like" morphology) and in large southern-hemisphere impact craters. TARs in the equatorial band are usually associated with outcrops of layered terrain or steep slopes, hence their relative absence in the northern hemisphere. TARs in the southern hemisphere are most commonly associated with low albedo, intercrater dune fields. We speculate that the mid-latitude mantling terrain (e.g., Mustard, J.F., Cooper, C.D., Rifkin, M.K. [2001]. Nature 412, 411-414; Kreslavsky, M.A., Head, J.W. [2002]. J. Geophys. Res. 29 (15). doi: 10.1029/2002GL015392) could also play a role in covering TARs or inhibiting saltation. We compared TAR distribution with general circulation model (GCM

  7. 10 years of aeolian geomorphology at the EGU: past achievements and future challenges

    NASA Astrophysics Data System (ADS)

    Baas, Andreas C. W.; Wiggs, Giles F. S.; Claudin, Philippe

    2016-04-01

    On this tenth anniversary of the Aeolian Processes & Landforms session at the EGU the original conveners review and reflect on the recent achievements and expansion in aeolian geomorphological research, focussing on advances in our understanding of sand transport processes, dune development and dynamics, and the mechanisms and scalings involved. This talk will highlight the variety and impact of the dramatic increase in the extent and interest of research on aeolian processes and landforms in the last ten years, including the increasingly strong community presence at international meetings, the diversity and extent of collaborations across subject boundaries, and the application of new measurement technologies and mathematical approaches. We conclude with a forward-looking prospectus of exciting future challenges and open research questions.

  8. Proctor Crater Dunes

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [figure removed for brevity, see original site]

    This image, located near 30E and 47.5S, displays sand dunes within Proctor Crater. These dunes are composed of basaltic sand that has collected in the bottom of the crater. The topographic depression of the crater forms a sand trap that prevents the sand from escaping. Dune fields are common in the bottoms of craters on Mars and appear as dark splotches that lean up against the downwind walls of the craters. Dunes are useful for studying both the geology and meteorology of Mars. The sand forms by erosion of larger rocks, but it is unclear when and where this erosion took place on Mars or how such large volumes of sand could be formed. The dunes also indicate the local wind directions by their morphology. In this case, there are few clear slipfaces that would indicate the downwind direction. The crests of the dunes also typically run north-south in the image. This dune form indicates that there are probably two prevailing wind directions that run east and west (left to right and right to left).

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project

  9. Luminescence chronology of the inland sand dunes from SE India

    NASA Astrophysics Data System (ADS)

    Reddy, Dontireddy Venkat; Singaraju, Vuddaraju; Mishra, Rakesh; Kumar, Devender; Thomas, Puthusserry Joseph; Rao, Karra Kameshwa; Singhvi, Ashok Kumar

    2013-09-01

    Records of past climate changes have been preserved variously on the earth's surface. Sand dunes are one such prominent imprint, and it is suggested that their presence is an indicator of periods of transition from arid to less arid phases. We report inland sand dunes from Andhra Pradesh (SE India) spread over an area of ~ 500 km2, ~ 75 km inland from the east coast. The dune sands are examined to understand their provenance, transportation, timing of sand aggradation and their relationship to past climates. The dune distribution, grain morphology and the grain-size studies on sands suggest an aeolian origin. Physiography of the study area, heavy mineral assemblage, and abundance of quartz in the parent rocks indicate that the dune sands are largely derived from first-order streams emanating from hills in the region and from weathering of the Nellore schist belt. It appears that the geomorphology and wind direction pattern both facilitated and restricted the dune aggradation and preservation to a limited area. OSL dating of 47 dune samples ranged from the present to ~ 50 ka, thereby suggesting a long duration of sand-dune aggradation and/or reworking history.

  10. Mars aeolian sand: Regional variations among dark-hued crater floor features

    NASA Astrophysics Data System (ADS)

    Edgett, K. S.; Christensen, P. R.

    1994-01-01

    Different regions on Mars appear to have low-albedo intracrater deposits that have distinct regional thermophysical and/or aeolian dune characteristics. Thermal inertia derived from a carefully selected set of Viking infrared thermal mapper observations of the dark features obtained in 1977-1978 supports this conclusion. The observed similarities and differences among dark intracrater features on Mars is probably a function of the combined influences of sand availability and regional wind conditions.

  11. Aeolian Coastal Landscapes in changes (a study from Tahkuna, Estonia)

    NASA Astrophysics Data System (ADS)

    Anderson, A.

    2012-04-01

    The openness of the coast to the winds and storm waves has an important part in changing aeolian coastal landscapes as well as anthropogenic factor. The aeolian coastal landscapes are probably the most dynamic areas. Occurrence of aeolian coastal landscapes in Estonia is limited. They consist of sandy beaches, sandy beach ridges and dunes. The coastal ecosystems are strongly affected by their topography, based on the character of deposits and moisture conditions. The majority of their ecosystems are quite close to the specific natural habitat. These ecosystems are represented in the list of the European Union Habitats (Natura 2000). In recent decades human influence has changed the landscape over time in different activities (recreation, trampling, off-road driving) and their intensities, which has led to destruction or degradation of various habitats. Previously coastal landscapes were used for forestry and pasture. Nowadays one of the most serious threats to open landscape is afforestation. This study examines the relationships between landscape components during last decades. Trying to find out how much aeolian coastal landscapes are influenced by natural processes or human activities. The results are based on cartographic analysis, fieldwork data. The method of landscape complex profile was used. The profiles show a cross-sections of landforms and interrelationships between landscape components, most frequently describing the relations between soils and vegetation. In each sample point the mechanical composition of sediments, vegetation cover and soil is determined. Results show that changes in landscapes are induced by their own development as well as changes in environmental factors and human activities. Larger changes are due to increase of coastal processes activity. These processes can be observed in sandy beaches, which are easily transformed by waves. Higher sea levels during storm surges are reaching older beach formation, causing erosion and creating

  12. Holocene aeolian sediments on the NE Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Stauch, G.; Lehmkuhl, F.; Hilgers, A.; Zhao, H.

    2012-04-01

    The semiarid climate of the northeastern Tibetan Plateau supports the formation of different types of aeolian sediments and landforms during the Holocene. Aeolians silts and sands in the catchment of the Donggi Cona in an elevation above 4000m to 4800 m asl reflect variable climate conditions during that time as well as different sediment sources. Based on 51 OSL datings and catchment wide geomorphological mapping a complex pattern of long and short distance sediment transport has been reconstructed. Only few aeolian archives are preserved from the late Pleistocene in this mountain environment indicating cold and dry climate conditions which prevented a continuous accumulation. During the early Holocene a phase of increased aeolian sedimentation of sand at the slopes of the mountains has been reconstructed. The sand originated from a large alluvial fan which was highly active during the Pleistocene. In addition, a thin loess cover is preserved at a few sites in the neighboring mountains ranges. The sedimentation of the loess started around 2000 years later than the sedimentation of the sand at the foot slope. Both archives are related to an increase in precipitation at the northern margin of the Tibetan Plateau which was related to a strengthening of the Asian Monsoon during that time. The wetter climate conditions favored the development of a vegetation cover which leads to the trapping and fixation of the aeolian sediments. However, with a further strengthening of the Monsoon systems these archives subsequently eroded due to higher run off and accumulated as colluvial and fluvial deposits in the basins. These phase lasted until 6 ka. A second aeolian period started at around 3 ka with the formation new dunes in the basins. This period can be associated with dry and cold climate of the late Holocene supporting the reactivation of the sand in the area. This might be further enhanced by an increased human impact by grazing during the late Holocene and resulting

  13. Detecting Patterns of Aeolian Transport Direction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The magnitude and direction of aeolian transport are of direct interest to those engaged in the study of aeolian processes. Although the magnitude of sediment transport has been studied extensively, the study of aeolian transport direction has garnered less attention. This paper describes the deve...

  14. 21Ne, 10Be and 26Al cosmogenic burial ages of near-surface eolian sand from the Packard Dune field, McMurdo Dry Valleys, Antarctica.

    NASA Astrophysics Data System (ADS)

    Fink, David; Augustinus, Paul; Rhodes, Ed; Bristow, Charles; Balco, Greg

    2015-04-01

    The McMurdo Dry Valleys, Antarctica, have been ice-free for at least 10 Ma. In Victoria Valley, the largest of the Dry Valleys, permafrosted yet still actively migrating dune-fields, occupy an area of ~8 km2 with dune thicknesses varying from ~5 to 70 meters. High-resolution ground penetrating radar (GPR) imaging of selected dunes reveal numerous unconformities and complex stratigraphy inferring cycles of sand accretion and deflation from westerly katabatic winter winds sourced from the East Antarctic Ice Sheet and anabatic summer winds sourced from the Ross Sea. Samples above permafrost depth were taken for OSL and cosmogenic 26Al/10Be burial ages. OSL ages from shallow (<1m) pits range from modern to ~1.3ka suggesting that deposition/reworking of the dunes is on-going and their present configuration is a late Holocene feature. The same 7 samples gave a mean 26Al/10Be = 4.53 +/- 5% with an average apparent continuous 10Be surface exposure age of 525 +/- 25 ka surprisingly indicating a common pre-history independent of depth. Correcting for minor post-burial production based on OSL ages, the minimum (integrated) burial period for these sand grains is 0.51+/- 0.12 Ma which represents the burial age at the time of arrival at the dune. A possible explanation is that this common burial signal reflects recycling episodes of exposure, deposition, burial and deflation, sufficiently frequent to move all grains towards a common pre-dune deposition history. However, it is unclear over what length of time this processes has been active and fraction of time the sand has been buried. Consequently we also analysed purified quartz aliquots of the same samples for a third and stable nuclide, 21Ne, to determine the total surface and burial exposure periods. Using the 21Ne/10Be system we obtain burial ages of 1.10 +/- 0.10 Ma. Further coring below permafrost is planned for austral summer 2015.

  15. Relevant length scale of barchan dunes.

    PubMed

    Hersen, Pascal; Douady, Stéphane; Andreotti, Bruno

    2002-12-23

    A new experiment can create small scale barchan dunes under water: some sand is put on a tray moving periodically and asymmetrically in a water tank, and barchans rapidly form. We measure basic morphological and dynamical properties of these dunes and compare them to field data. These favorable results demonstrate experimentally the relevance of the so-called "saturation length" for the control of the dunes physics. PMID:12484824

  16. Discrimination of active and inactive sand from remote sensing - Kelso dunes, Mojave Desert, California

    NASA Technical Reports Server (NTRS)

    Paisley, Elizabeth C. I.; Lancaster, Nicholas; Gaddis, Lisa R.; Greeley, Ronald

    1991-01-01

    Landsat TM images, field data, and laboratoray reflectance spectra were examined for the Kelso dunes, Mojave Desert, California to assess the use of visible and near-infrared (VNIR) remote sensing data to discriminate aeolian sand populations on the basis of spectral brightness. Results show that areas of inactive sand have a larger percentage of dark, fine-grained materials compared to those composed of active sand, which contain less dark fines and a higher percentage of quartz sand-size grains. Both areas are spectrally distinct in the VNIR, suggesting that VNIR spectral data can be used to discriminate active and inactive sand populations in the Mojave Desert. Analysis of laboratory spectra was complicated by the presence of magnetite in the active sands, which decreases their laboratory reflectance values to those of inactive sands. For this application, comparison of TM and laboratory spectra suggests that less than 35 percent vegetation cover does not influence the TM spectra.

  17. Tracking aeolian transport patterns across a mega-nourishment using video imagery

    NASA Astrophysics Data System (ADS)

    Wijnberg, Kathelijne; van der Weerd, Lianne; Hulscher, Suzanne

    2014-05-01

    Coastal dune areas protect the hinterland from flooding. In order to maintain the safety level provided by the dunes, it may be necessary to artificially supply the beach-dune system with sand. How to best design these shore nourishments, amongst others with respect to optimal dune growth on the long-term (decadal scale), is not yet clear. One reason for this is that current models for aeolian transport on beaches appear to have limited predictive capabilities regarding annual onshore sediment supply. These limited capabilities may be attributed to the lack of appropriate input data, for instance on moisture content of the beach surface, or shortcomings in process understanding. However, it may also be argued that for the long-term prediction of onshore aeolian sand supply from the beach to the dunes, we may need to develop some aggregated-scale transport equations, because the detailed input data required for the application of process-scale transport equations may never be available in reality. A first step towards the development of such new concepts for aggregated-scale transport equations is to increase phenomenological insight into the characteristics and number of aeolian transport events that account for the annual volume changes of the foredunes. This requires high-frequency, long-term data sets to capture the only intermittently occurring aeolian transport events. Automated video image collection seems a promising way to collect such data. In the present study we describe the movement (direction and speed) of sand patches and aeolian bed forms across a nourished site, using video imagery, to characterize aeolian transport pathways and their variability in time. The study site is a mega-nourishment (21 Mm3 of sand) that was recently constructed at the Dutch coast. This mega-nourishment, also referred to as the Sand Motor, is a pilot project that may potentially replace current practice of more frequently applying small scale nourishments. The mega

  18. ASTER Dunes

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This image of Saudi Arabia shows a great sea of linear dunes in part of the Rub' al Khali, or the Empty Quarter. Acquired on June 25, 2000, the image covers an area 37 kilometers (23 miles) wide and 28 kilometers (17 miles) long in three bands of the reflected visible and infrared wavelength region. The dunes are yellow due to the presence of iron oxide minerals. The inter-dune area is made up of clays and silt and appears blue due to its high reflectance in band 1. The Rub' al Khali is the world's largest continuous sand desert. It covers about 650,000 square kilometers (250,966 square miles) and lies mainly in southern Saudi Arabia, though it does extend into the United Arab Emirates, Oman, and Yemen. One of the world's driest areas, it is uninhabited except for the Bedouin nomads who cross it. The first European to travel through the desert was Bertram Thomas in 1930.

    Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high-resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.

    The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping and monitoring dynamic conditions and temporal change. Examples

  19. Rapid Anthropogenic Response to Short-Term Local Aeolian and Fluvial Palaeoenvironmental Changes during the Late Pleistocene-Holocene Transition (at the Edge of the Northwestern Negev Dunefield, Israel)

    NASA Astrophysics Data System (ADS)

    Roskin, Joel; Barzilai, Omry; Goring-Morris, Nigel; Katra, Itzhak; Porat, Naomi; Agha, Nuha; Boaretto, Elisabetta

    2013-04-01

    Several prehistoric camp sites, mainly attributed to the Natufian culture, were excavated over the past decades along Nahal Sekher on the eastern edge of Israel's northwestern Negev Desert dunefield. In this research we reconstruct the aeolian and fluvial environs of these sites by integrating field mapping, stratigraphic sections, particle-size analysis, sand spectroscopy, optically stimulated luminescence ages, and radiocarbon dates. Intermittent surface stabilization and aeolian deflation are hypothesized to explain the appearance of the Natufians who probably inhabited the region during the last main Negev dune encroachment in a windy palaeoenvironment. It is argued that the residual sequences of diagnostic low-energy fluvial fine-grained deposits (LFFDs) documented around the Natufian sites resemble the ephemeral event-layers of hyper-concentrated flow into the ever-emptying dryland-type reservoirs formed by dunes that dammed wadis. The location of the Natufian sites along the shorelines of these water bodies point to rapid but temporary anthropogenic responses to short-term and improved local palaeoenvironmental conditions during the Late Pleistocene-Holocene transition.

  20. Marching Dunes

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Released 15 September 2003

    The Ruza impact crater observed in this THEMIS image taken north of Argyre Planitia shows very interesting gullies and migrating sand dunes. The gullies appear to be more mature and subdued than some previously described gullies and are possibly being covered by a mantle of material. The barchan sand dunes observed in the northern edge of the impact crater are likely migrating up the crater wall as indicated by the crescent shape that points in the wind direction.

    Image information: VIS instrument. Latitude -34.2, Longitude 307.2 East (52.8 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  1. A Japan-Sino joint project, ADEC - Aeolian Dust Experiment on Climate Impact

    NASA Astrophysics Data System (ADS)

    Mikami, M.

    2004-05-01

    In recent years, aeolian dust has been thought to be an important factor of the climate system on the earth by the radiative forcing effect in the atmosphere and by the influence on the carbon dioxide cycle because deposited dust supplies nutrient salts for the phytoplankton on the ocean surface. Among them, radiative forcing direct and/or indirect effects are important factors of the global warming. Nevertheless, the reliability of the evaluation regarding the radiative forcing impact of aeolian dust is very low. [IPCC, 2001]. This is because the understanding and the model representations of dust entrainment, spatial and temporal distribution of dust, and optical properties of dust particles are not so accurate. Based on this background, Aeolian Dust Experiment on Climate Impact (ADEC) was started in April 2000 as a Japan-Sino Joint Project. The goal of this project is to evaluate the global dust supply to the atmosphere and its radiative forcing direct effect. For this purpose, we have made: 1) in situ observations at desert areas in China for wind erosion processes, 2) network observations from China to Japan, ranging from 80 to 140 East, for understanding spatial-size distribution, chemical, and optical properties of dust particles, and 3) numerical simulation by GCM dust model for evaluation of dust impact on the global climate over the past 50 years. This was planned as a five-year project and two intensive observations, IOP-1, April 12-25 2002, and IOP-2, March 15-26 2003, were put into practice. Intensive observations were made at 6 sites in China (Qira, Aksu, Dunhuang, Shapotou, Beijing, and Qingdao) and 4 sites in Japan (Naha, Fukuoka, Nagoya, and Tsukuba). Preliminary results show that 1) saltation flux at a gobi desert monitored by a newly developed sand particle counter was around 10 times larger than that of a sand dune, which will be caused by the difference of the parent soil size distribution of each ground condition, 2) the background of KOSA

  2. Secondary Airflow Structure around Clustered Shrubs and Its Significance for Vegetated Dune Evolution

    NASA Astrophysics Data System (ADS)

    Luo, Wanyin; Dong, Zhibao; Qian, Guangqiang; Lu, Junfeng

    2016-04-01

    Shrubs have an important significance in aeolian processes due to their disturbance of the local airflow. In the formation of vegetated dunes, there is an iterative interaction between shrub geometry, the structure of the secondary airflow, and the interaction between neighboring shrubs. Understanding the dynamics of vegetated dunes thus requires an insight into the airflow fields around shrubs. Based on aerodynamic and aeolian sand physics theory, this project measured the complex secondary flow field and aeolian sand deposition pattern around single and cluster shrubs with varied densities (i.e., 0.05, 0.08, 0.15, 0.20) and gap ratios (the ratio of the gap spacing between the shrub models to the center-to-center distance for the shrub models, ranged from 1.1 to 1.8 with side-by-side arrangement and 1.2 to 4.3 with tandem arrangement) using the particle image velocimetry system through wind tunnle simulation. The relationship between the secondary airflow structure and the shrub's porosity and arrangement was analyzed quantitatively. Research results revealed that porosity (density) is the key parameter to affect the flow patterns around single shrub. Compared to solid obstacles, bleed flow through the shrubs has great influence on the secondary airflow patterns around itself. Under cluster modes, the distance between two adjacent shrubs has great influence on flow field structures around them. The flow patterns around two side-by-side arranged shrubs can be classified into three kinds of modes, that is: single-bluff-body, biased flow pattern and parallel vortex streets. The flow patterns around two tandem arranged shrubs can be classified into three regimes, that is: the extended body regime, reattachment regime and co-shedding regime. The "shadow zone" with low velocity in the lee of shrubs is the optimal position for sand deposition, but its form, size and orientation would varied with the shrub porosity and gap ratio between them. With the increase of the gap

  3. Vegetation controls on the maximum size of coastal dunes

    NASA Astrophysics Data System (ADS)

    Durán, Orencio; Moore, Laura J.

    2013-10-01

    Coastal dunes, in particular foredunes, support a resilient ecosystem and reduce coastal vulnerability to storms. In contrast to dry desert dunes, coastal dunes arise from interactions between biological and physical processes. Ecologists have traditionally addressed coastal ecosystems by assuming that they adapt to preexisting dune topography, whereas geomorphologists have studied the properties of foredunes primarily in connection to physical, not biological, factors. Here, we study foredune development using an ecomorphodynamic model that resolves the coevolution of topography and vegetation in response to both physical and ecological factors. We find that foredune growth is eventually limited by a negative feedback between wind flow and topography. As a consequence, steady-state foredunes are scale invariant, which allows us to derive scaling relations for maximum foredune height and formation time. These relations suggest that plant zonation (in particular for strand "dune-building" species) is the primary factor controlling the maximum size of foredunes and therefore the amount of sand stored in a coastal dune system. We also find that aeolian sand supply to the dunes determines the timescale of foredune formation. These results offer a potential explanation for the empirical relation between beach type and foredune size, in which large (small) foredunes are found on dissipative (reflective) beaches. Higher waves associated with dissipative beaches increase the disturbance of strand species, which shifts foredune formation landward and thus leads to larger foredunes. In this scenario, plants play a much more active role in modifying their habitat and altering coastal vulnerability than previously thought.

  4. Vegetation controls on the maximum size of coastal dunes

    PubMed Central

    Durán, Orencio; Moore, Laura J.

    2013-01-01

    Coastal dunes, in particular foredunes, support a resilient ecosystem and reduce coastal vulnerability to storms. In contrast to dry desert dunes, coastal dunes arise from interactions between biological and physical processes. Ecologists have traditionally addressed coastal ecosystems by assuming that they adapt to preexisting dune topography, whereas geomorphologists have studied the properties of foredunes primarily in connection to physical, not biological, factors. Here, we study foredune development using an ecomorphodynamic model that resolves the coevolution of topography and vegetation in response to both physical and ecological factors. We find that foredune growth is eventually limited by a negative feedback between wind flow and topography. As a consequence, steady-state foredunes are scale invariant, which allows us to derive scaling relations for maximum foredune height and formation time. These relations suggest that plant zonation (in particular for strand “dune-building” species) is the primary factor controlling the maximum size of foredunes and therefore the amount of sand stored in a coastal dune system. We also find that aeolian sand supply to the dunes determines the timescale of foredune formation. These results offer a potential explanation for the empirical relation between beach type and foredune size, in which large (small) foredunes are found on dissipative (reflective) beaches. Higher waves associated with dissipative beaches increase the disturbance of strand species, which shifts foredune formation landward and thus leads to larger foredunes. In this scenario, plants play a much more active role in modifying their habitat and altering coastal vulnerability than previously thought. PMID:24101481

  5. Defrosting Richardson Dunes

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-492, 23 September 2003

    This is a mid-southern spring view, taken in August 2003, of defrosting patterns on sand dunes in Richardson Crater. The picture was acquired by the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC). The frost on these dunes might be a combination of frozen carbon dioxide left over from the previous winter, and water ice. As the ices sublime away, they create dark spots. Winds create dark streaks, either by moving the dark sand that underlies the frost, or by removing frost to expose the sand. Alternatively, the frost itself is roughened by the wind or has been made coarse by wind and sublimation processes. The Richardson dune field undergoes a long series of changes as it defrosts from late winter through spring and into early summer. Summer will arrive at the end of September 2003. This picture is located near 72oS, 181oW, and covers an area 3 km (1.9 mi) across. Sunlight illuminates the scene from the upper left.

  6. Dark Dunes Over-riding Bright Dunes

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Some martian sand dunes may be more active than others. In this picture, wind has caused the dark and somewhat crescent-shaped dunes to advance toward the lower left. While their movement cannot actually be seen in this April 1998snapshot, the location of their steepest slopes--their slip faces--on their southwestern sides indicates the direction of movement. Oddly, these dark dunes have moved across and partly cover sets of smaller, bright ridges that also formed by wind action.

    This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image illustrates an intriguing martian 'find.' Strangely, the two dune types have different shapes and a different relative brightness. There are two explanations for the relationship seen here, and neither can be distinguished as 'the answer'--(1) it is possible that the brighter dunes are old and cemented, and represent some ancient wind activity, whereas the dark dunes are modern and are marching across the older, 'fossilized' dune forms, or (2) the bright dunes are composed of grains that are much larger or more dense than those that compose the dark dunes. In the latter scenario, the bright dunes move more slowly and are over-taken by the dark dunes because their grains are harder to transport. An interpretation involving larger or denser grains is consistent with the small size and even-spacing of the bright dunes, as well, but usually on Earth such features occur on the surfaces of larger, finer-grained dunes, not under them. The actual composition of either the bright or dark materials are unknown. This example is located on the floor of an impact crater in western Arabia Terra at 10.7oN, 351.0oW. The picture is illuminated from the right.

  7. Aeolian sands and buried soils in the Mecklenburg Lake District, NE Germany: Holocene land-use history and pedo-geomorphic response

    NASA Astrophysics Data System (ADS)

    Küster, Mathias; Fülling, Alexander; Kaiser, Knut; Ulrich, Jens

    2014-04-01

    The present study is a pedo-geomorphic approach to reconstructing Holocene aeolian sand dynamics in the Mecklenburg Lake District (NE Germany). Stratigraphical, sedimentological and soil research supplemented by morphogenetic interpretations of the genesis of dunes and aeolian sands are discussed. A complex Late Holocene aeolian stratigraphy within a drift sand area was developed at the shore of Lake Müritz. The results were confirmed using palynological records, archaeological data and regional history. Accelerated aeolian activity was triggered by the intensification of settlement and land-use activities during the 13th and in the 15th to 16th century AD. After a period of stability beginning with population decline during the ‘Thirty Years War' and continuing through the 18th century, a final aeolian phase due to the establishment of glassworks was identified during the 19th century AD. We assume a direct link between Holocene aeolian dynamics and human activities. Prehistoric Holocene drift sands on terrestrial sites have not been documented in the Mecklenburg Lake District so far. This might be explained either by erosion and incorporation of older aeolian sediments during younger aeolian phases and/or a lower regional land-use intensity in older periods of the Holocene. The investigated drift sands are stratigraphically and sedimentologically characterised by a high degree of heterogeneity, reflecting the spatial and temporal variability of Holocene human impact.

  8. Braidplain, floodplain and playa lake, alluvial-fan, aeolian and palaeosol facies composing a diversified lithogenetical sequence in the permian and triassic of South Devon (England)

    NASA Astrophysics Data System (ADS)

    Mader, Detlef

    flat seaming the toes of the fan chain. Sedimentation is characterized by flashy discharge with many episodic flood pulses of short periodicity and mainly rapid waning of high-water phases with quick underrunning of the threshold velocity for keeping the large clasts rolling. Pronounced slack water episodes allow occasionally the draping of gravel sheets with thin veneers of waning-flow and stagnant-water fines. Spectacular invertebrate burrows in finer breccias underline the flashy nature of most of the flood and flow events, allowing the colonization of the sediments with ground-living invertebrates during interruptions of transport and accumulation. Some peculiar dewatering structures being infilling of crack systems in breccias with wash-load sand are probably induced by earthquake shocks thus pointing to the active tectonic setting of the depositional area. Aeolian sands originate as transverse dune ridges in restricted dune fields and extensive sand seas and as sheet sands in interdune playa depressions. Associated mudstones and ventifact gravel form in wet interdunes or in playa lakes and in deflationary interdunes, respectively. Accumulation of aeolian dunes and interdune sheet sands takes place by both spreading out of drapes on flats and infilling of abandoned fluvial channels which enhance the trapping of sand by topographical effects. The dunes and wind ripple trains migrate across dry interdune floors under predominantly unidirectional winds. Sedimentary processes are grainfall and grainflow on the lee slope of dunes and subcritical climbing of wind ripples. Episodical wetting and dampening of dry interdune flats by intermittent rainfall, periodical dew and even ephemeral fluvial or alluvial-fan incursions allow formation of adhesion-rippled sands on damp surfaces and origin of sandy and silty-clayey lacustrine sediments in shallow water veneers of the flooded playa. Aquatic modification of aeolian sands by invading flood surges of atmospheric or alluvial

  9. Dune ages in the sand deserts of the southern Sahara and Sahel

    NASA Astrophysics Data System (ADS)

    Bristow, Charlie; Armitage, Simon

    2015-04-01

    In this paper we aim to document the history of aeolian processes within the southern Sahara as part of the INQUA Dune Atlas. We review available luminescence ages for sand dunes across the southern Sahara and attempt to correlate periods of sand accumulation and to develop an improved understanding of the dune chronology on a regional basis. This was achieved by analysing dune age by country, as well as by latitude and longitude. The results show a very patchy spatial distribution of dune ages with large gaps that encompass some of the largest sand seas. Despite these gaps, some related patterns in dune morphology and stratigraphy appear to be consistent between northern Nigeria and southern Mali where older linear dunes are distinct from younger Late Holocene transverse and barchanoid dunes. Elsewhere in Mauretania linear dunes with different orientations appear to have accumulated at different times, most likely in response to changes in atmospheric circulation. Regional climatic changes are identified where dunes are transgressed by lake deposits within endorehic basins. We identify four locations where dune accumulation is terminated by lacustrine transgressions, two of which, in Lake Chad and the Bodélé Depression, occur shortly after the last glacial maximum (LGM). The third example at Gobiero in Niger occurred later, in the early Holocene, around 8.4 ka and a fourth marks a later transgression of Palaeolake MegaChad after 4.7 ka. Larger-scale latitudinal and longitudinal distributions in dune ages across the southern Sahara do not show any consistent patterns, though this may due to the small sample size relative to the study area. In addition, local variations in external controls such as wind regime, rainfall, vegetation and sand supply need to be considered, sometimes on a site by site basis. Limiting the analysis to dune ages determined using the single-aliquot regenerative-dose (SAR) protocol indicates a lack of dune preservation during the LGM and

  10. The north-eastern aeolian 'European Sand Belt' as potential record of environmental changes: A case study from Eastern Latvia and Southern Estonia

    NASA Astrophysics Data System (ADS)

    Kalińska-Nartiša, Edyta; Thiel, Christine; Nartišs, Māris; Buylaert, Jan-Pieter; Murray, Andrew S.

    2016-09-01

    The Latvian and Estonian inland dunes belong to the north-eastern part of the 'European Sand Belt' (ESB). These dunes are widely distributed over broad glaciolacustrine plains and Late Glacial alluvial deltas, considered to be potential sources for the aeolian material. Little is known about these aeolian sediments and their substratum; here we present a detailed sedimentary structural and textural characterisation together with a luminescence-based chronology. Through a comparison between grain-size, rounding of quartz grains and surface characteristics in medium/coarse (0.5-0.8 mm) sand, and the light mineral content, we found an alternation of aeolian and periglacial components. Further, short-lasting aeolian abrasion and/or transportation periods, and a significant contribution of a nearby sediment source are suggested. Luminescence dating points to aeolian sand accumulation and dune formation between ∼16 ka and ∼9 ka. However, we also observed some presumably watertable controlled environmental conditions at ∼13 ka; this corresponds with the occurrence of an ice-dammed/proglacial lake.

  11. Predicting the migration rates of subaqueous dunes

    NASA Astrophysics Data System (ADS)

    Mohrig, David; Smith, J. Dungan

    1996-10-01

    In this paper we develop a simple, physically based method for predicting what fraction of sediment moving over the crests of dunes will bypass their lee faces. The bypass fraction is found by calculating a characteristic excursion length for every grain size making up a particular train of dunes. All particles with excursion lengths greater than the downstream span of the lee face of the average dune are assumed not to contribute to dune propagation. Bypass fractions based on distributions of excursion lengths account for the discrepancies between total sediment discharge and dune migration rate measured by Stein [1965] and Guy et al. [1966] in laboratory flumes, as well as by us in the North Loup River of Nebraska. Calculations and these data agree over sediment-transporting conditions associated with the entire stability field for dunes composed of medium sand. The two laboratory studies show that commonly 30-60% of all sand moving over fully developed dunes is not deposited on slip faces. Measurements from the North Loup River reveal that of all sediment moving over the dune crests there, roughly 45% is not being captured on lee faces even though 99% of sediment is transported within 2 cm of the bed. The method developed herein successfully estimates measured values for the bypass fraction from 0 to 80%. Our analysis indicates that the division between grains that are deposited versus those that are bypassing falls within the range of sand sizes making up the suspended load at dune crests.

  12. Transient Electromagnetic Soundings Near Great Sand Dunes National Park and Preserve, San Luis Valley, Colorado (2006 Field Season)

    USGS Publications Warehouse

    Fitterman, David V.; de Sozua Filho, Oderson A.

    2009-01-01

    Time-domain electromagnetic (TEM) soundings were made near Great Sand Dunes National Park and Preserve in the San Luis Valley of southern Colorado to obtain subsurface information of use to hydrologic modeling. Seventeen soundings were made to the east and north of the sand dunes. Using a small loop TEM system, maximum exploration depths of about 75 to 150 m were obtained. In general, layered earth interpretations of the data found that resistivity decreases with depth. Comparison of soundings with geologic logs from nearby wells found that zones logged as having increased clay content usually corresponded with a significant resistivity decrease in the TEM determined model. This result supports the use of TEM soundings to map the location of the top of the clay unit deposited at the bottom of the ancient Lake Alamosa that filled the San Luis Valley from Pliocene to middle Pleistocene time.

  13. Mars Global Digital Dune Database and initial science results

    NASA Astrophysics Data System (ADS)

    Hayward, Rosalyn K.; Mullins, Kevin F.; Fenton, Lori K.; Hare, Trent M.; Titus, Timothy N.; Bourke, Mary C.; Colaprete, Anthony; Christensen, Philip R.

    2007-11-01

    A new Mars Global Digital Dune Database (MGD3) constructed using Thermal Emission Imaging System (THEMIS) infrared (IR) images provides a comprehensive and quantitative view of the geographic distribution of moderate- to large-size dune fields (area >1 km2) that will help researchers to understand global climatic and sedimentary processes that have shaped the surface of Mars. MGD3 extends from 65°N to 65°S latitude and includes ~550 dune fields, covering ~70,000 km2, with an estimated total volume of ~3,600 km3. This area, when combined with polar dune estimates, suggests moderate- to large-size dune field coverage on Mars may total ~800,000 km2, ~6 times less than the total areal estimate of ~5,000,000 km2 for terrestrial dunes. Where availability and quality of THEMIS visible (VIS) or Mars Orbiter Camera narrow-angle (MOC NA) images allow, we classify dunes and include dune slipface measurements, which are derived from gross dune morphology and represent the prevailing wind direction at the last time of significant dune modification. For dunes located within craters, the azimuth from crater centroid to dune field centroid (referred to as dune centroid azimuth) is calculated and can provide an accurate method for tracking dune migration within smooth-floored craters. These indicators of wind direction are compared to output from a general circulation model (GCM). Dune centroid azimuth values generally correlate to regional wind patterns. Slipface orientations are less well correlated, suggesting that local topographic effects may play a larger role in dune orientation than regional winds.

  14. Mars global digital dune database and initial science results

    USGS Publications Warehouse

    Hayward, R.K.; Mullins, K.F.; Fenton, L.K.; Hare, T.M.; Titus, T.N.; Bourke, M.C.; Colaprete, A.; Christensen, P.R.

    2007-01-01

    A new Mars Global Digital Dune Database (MGD3) constructed using Thermal Emission Imaging System (THEMIS) infrared (IR) images provides a comprehensive and quantitative view of the geographic distribution of moderate- to large-size dune fields (area >1 kM2) that will help researchers to understand global climatic and sedimentary processes that have shaped the surface of Mars. MGD3 extends from 65??N to 65??S latitude and includes ???550 dune fields, covering ???70,000 km2, with an estimated total volume of ???3,600 km3. This area, when combined with polar dune estimates, suggests moderate- to large-size dune field coverage on Mars may total ???800,000 km2, ???6 times less than the total areal estimate of ???5,000,000 km2 for terrestrial dunes. Where availability and quality of THEMIS visible (VIS) or Mars Orbiter Camera. narrow-angle (MOC NA) images allow, we classify dunes and include dune slipface measurements, which are derived from gross dune morphology and represent the prevailing wind direction at the last time of significant dune modification. For dunes located within craters, the azimuth from crater centroid to dune field centroid (referred to as dune centroid azimuth) is calculated and can provide an accurate method for tracking dune migration within smooth-floored craters. These indicators of wind direction are compared to output from a general circulation model (GCM). Dune centroid azimuth values generally correlate to regional wind patterns. Slipface orientations are less well correlated, suggesting that local topographic effects may play a larger role in dune orientation than regional winds. Copyright 2007 by the American Geophysical Union.

  15. The developmental trend and influencing factors of aeolian desertification in the Zoige Basin, eastern Qinghai-Tibet Plateau

    NASA Astrophysics Data System (ADS)

    Hu, Guangyin; Dong, Zhibao; Lu, Junfeng; Yan, Changzhen

    2015-12-01

    The Zoige Basin is located in the northeastern region of the Qinghai-Tibet Plateau and covers an area of 19,400 km2. At a mean altitude of 3500 m, the basin is highly sensitive to global environmental change and human disturbance due to its high elevation and fragile cold environment. The process of aeolian desertification in the basin can be clearly recognized in Landsat images that show the development of sand sheets and dunes over time. To monitor the spatial and temporal changes of aeolian desertification in the Zoige Basin, we analyzed Landsat images recorded in 1975, 1990, 2000, 2005, and 2010. Results showed that aeolian desertification increased rapidly from 1975 to 1990, was stable from 1990 to 2000, decreased slightly from 2000 to 2005, and decreased sharply from 2005 to 2010. Increasing temperature, overgrazing, rodent damage, and drainage of wetlands were considered the key driving factors of the expansion of aeolian desertification. A number of political measures were initiated in the 1990s to slow desertification, but the countermeasures of grazing prohibition, enclosures, and paving straw checkerboard barriers were not implemented until around 2005. These measures resulted in a dramatic recovery of aeolian desertified land between 2005 and 2010. Based on the cause analysis, anthropogenic factors were identified as the dominant driving force for both development and recovery of aeolian desertified land.

  16. Identifying sources of aeolian mineral dust: Present and past

    USGS Publications Warehouse

    Muhs, Daniel R; Prospero, Joseph M; Baddock, Matthew C; Gill, Thomas E

    2014-01-01

    Aeolian mineral dust is an important component of the Earth’s environmental systems, playing roles in the planetary radiation balance, as a source of fertilizer for biota in both terrestrial and marine realms and as an archive for understanding atmospheric circulation and paleoclimate in the geologic past. Crucial to understanding all of these roles of dust is the identification of dust sources. Here we review the methods used to identify dust sources active at present and in the past. Contemporary dust sources, produced by both glaciogenic and non-glaciogenic processes, can be readily identified by the use of Earth-orbiting satellites. These data show that present dust sources are concentrated in a global dust belt that encompasses large topographic basins in low-latitude arid and semiarid regions. Geomorphic studies indicate that specific point sources for dust in this zone include dry or ephemeral lakes, intermittent stream courses, dune fields, and some bedrock surfaces. Back-trajectory analyses are also used to identify dust sources, through modeling of wind fields and the movement of air parcels over periods of several days. Identification of dust sources from the past requires novel approaches that are part of the geologic toolbox of provenance studies. Identification of most dust sources of the past requires the use of physical, mineralogical, geochemical, and isotopic analyses of dust deposits. Physical properties include systematic spatial changes in dust deposit thickness and particle size away from a source. Mineralogy and geochemistry can pinpoint dust sources by clay mineral ratios and Sc-Th-La abundances, respectively. The most commonly used isotopic methods utilize isotopes of Nd, Sr, and Pb and have been applied extensively in dust archives of deep-sea cores, ice cores, and loess. All these methods have shown that dust sources have changed over time, with far more abundant dust supplies existing during glacial periods. Greater dust supplies in

  17. An optical luminescence chronology for late Pleistocene aeolian activity in the Colombian and Venezuelan Llanos

    NASA Astrophysics Data System (ADS)

    Carr, Andrew S.; Armitage, Simon J.; Berrío, Juan-Carlos; Bilbao, Bibiana A.; Boom, Arnoud

    2016-03-01

    The lowland savannas (Llanos) of Colombia and Venezuela are covered by extensive aeolian landforms for which little chronological information exists. We present the first optically stimulated luminescence (OSL) age constraints for dunes in the Llanos Orientales of lowland Colombia and new ages for dunes in the Venezuelan Llanos. The sampled dunes are fully vegetated and show evidence of post-depositional erosion. Ages range from 4.5 ± 0.4 to 66 ± 4 ka, with the majority dating to 27-10 ka (Marine Isotope Stage 2). Some dunes accumulated quickly during the last glacial maximum, although most were active 16-10 ka. Accretion largely ceased after 10 ka. All dunes are elongated downwind from rivers, parallel with dry season winds, and are interpreted as source-bordering features. As they are presently isolated from fluvial sediments by gallery forest it is proposed that activity was associated with a more prolonged dry season, which restricted gallery forest, leading to greater sediment availability on river shorelines. Such variability in dry season duration was potentially mediated by the mean latitude of the ITCZ. The cessation of most dune accretion after ca. 10 ka suggests reduced seasonality and a more northerly ITCZ position, consistent with evidence from the Cariaco Basin.

  18. Aeolian features and processes at the Mars Pathfinder landing site

    USGS Publications Warehouse

    Greeley, Ronald; Kraft, Michael; Sullivan, Robert; Wilson, Gregory; Bridges, Nathan; Herkenhoff, Ken; Kuzmin, Ruslan O.; Malin, Michael; Ward, Wes

    1999-01-01

    The Mars Pathfinder landing site contains abundant features attributed to aeolian, or wind, processes. These include wind tails, drift deposits, duneforms of various types, ripplelike features, and ventifacts (the first clearly seen on Mars). Many of these features are consistant with formation involving sand-size particles. Although some features, such as dunes, could develop from saltating sand-size aggregates of finer grains, the discovery of ventifact flutes cut in rocks strongly suggests that at least some of the grains are crystalline, rather than aggregates. Excluding the ventifacts, the orientations of the wind-related features correlate well with the orientations of bright wind steaks seen on Viking Orbiter images in the general area. They also correlate with wind direction predictions from the NASA-Ames General Circulation Model (GCM) which show that the strongest winds in the area occur in the northern hemisphere winter and are directed toward 209°. Copyright 1999 by the American Geophysical Union.

  19. Barchan dunes morphology dynamics under different environmental conditions

    NASA Astrophysics Data System (ADS)

    Dluzewski, M.

    2012-04-01

    The aim of this study was to emphasize significance of diversified dynamics of barchans dune morphology. We analyzed and compared barchans found in two dune fields: Kharga (S Egypt) and Tarfaya-Laâyoune (S-Morocco). These dune fields are characterized by significantly different factors responsible for dunes development e.g. textural and mineralogical composition of dune sand, dune sand moisture, air humidity, inter dune vegetation cover. For each investigated dune filed and study period (2008, 2010, 2012 for Kharga and 2007, 2011, 2012 for Tarfaya-Laâyoune dune fields) detailed shape measurement of 20 simple isolated barchans of different dune sizes was made. The ± 10-2 m horizontal and ± 1,5 10-2m vertical accuracy was obtained (1 measuring point per 1m2 on average).In order to compare barchan dunes morphology and to determine depositional and erosional patterns, the 3D models were created. For better understanding of this processes, sand bulk density of barchan surface was measured (1 measuring point per 2m2 on average). The velocity of dunes in relation to dune shape was also analyzed. The results show that the relationship between typically correlated parameters change during movement of the barchans. Most values change by a few percent per year (slip face height, dune base area and dune volume) or by a dozen or so percent per year (windward side length, horns length and width). We obtain good linear relationship (with 0,05 significant level) between slip face height and the dune base area (0,77 < R2 < 0,83), dune volume (0,66 < R2 < 0,72), windward side length (0,58 < R2 < 0,87), horns length (0,71 < R2 < 0,90) or horns width (0,79 < R2 < 0,93). The linear relationship between displacement rate and the morphological parameters is not strong (0,54< R2 < 0,81) for Kharga dune field and (0,41< R2 < 0,66) for Tarfaya-Laâyoune dune field. We noted also good linear relationship between displacement rate and the angle of span of the horns (R2=0,73 on Tarfaya

  20. Sedimentary Rocks and Dunes

    NASA Technical Reports Server (NTRS)

    2004-01-01

    25 November 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows buttes composed of light-toned, sedimentary rock exposed by erosion within a crater occurring immediately west of Schiaparelli Basin near 4.0oS, 347.9oW. Surrounding these buttes is a field of dark sand dunes and lighter-toned, very large windblown ripples. The sedimentary rocks might indicate that the crater interior was once the site of a lake. The image covers an area about 3 km (1.9 mi) wide. Sunlight illuminates the scene from the lower left.

  1. Mars Global Digital Dune Database (MGD3): Global dune distribution and wind pattern observations

    USGS Publications Warehouse

    Hayward, Rosalyn K.; Fenton, Lori; Titus, Timothy N.

    2013-01-01

    The Mars Global Digital Dune Database (MGD3) is complete and now extends from 90°N to 90°S latitude. The recently released south pole (SP) portion (MC-30) of MGD3 adds ∼60,000 km2 of medium to large-size dark dune fields and ∼15,000 km2 of sand deposits and smaller dune fields to the previously released equatorial (EQ, ∼70,000 km2), and north pole (NP, ∼845,000 km2) portions of the database, bringing the global total to ∼975,000 km2. Nearly all NP dunes are part of large sand seas, while the majority of EQ and SP dune fields are individual dune fields located in craters. Despite the differences between Mars and Earth, their dune and dune field morphologies are strikingly similar. Bullseye dune fields, named for their concentric ring pattern, are the exception, possibly owing their distinctive appearance to winds that are unique to the crater environment. Ground-based wind directions are derived from slipface (SF) orientation and dune centroid azimuth (DCA), a measure of the relative location of a dune field inside a crater. SF and DCA often preserve evidence of different wind directions, suggesting the importance of local, topographically influenced winds. In general however, ground-based wind directions are broadly consistent with expected global patterns, such as polar easterlies. Intriguingly, between 40°S and 80°S latitude both SF and DCA preserve their strongest, though different, dominant wind direction, with transport toward the west and east for SF-derived winds and toward the north and west for DCA-derived winds.

  2. Mars Global Digital Dune Database (MGD3): Global dune distribution and wind pattern observations

    NASA Astrophysics Data System (ADS)

    Hayward, R. K.; Fenton, L. K.; Titus, T. N.

    2014-02-01

    The Mars Global Digital Dune Database (MGD3) is complete and now extends from 90°N to 90°S latitude. The recently released south pole (SP) portion (MC-30) of MGD3 adds ˜60,000 km2 of medium to large-size dark dune fields and ˜15,000 km2 of sand deposits and smaller dune fields to the previously released equatorial (EQ, ˜70,000 km2), and north pole (NP, ˜845,000 km2) portions of the database, bringing the global total to ˜975,000 km2. Nearly all NP dunes are part of large sand seas, while the majority of EQ and SP dune fields are individual dune fields located in craters. Despite the differences between Mars and Earth, their dune and dune field morphologies are strikingly similar. Bullseye dune fields, named for their concentric ring pattern, are the exception, possibly owing their distinctive appearance to winds that are unique to the crater environment. Ground-based wind directions are derived from slipface (SF) orientation and dune centroid azimuth (DCA), a measure of the relative location of a dune field inside a crater. SF and DCA often preserve evidence of different wind directions, suggesting the importance of local, topographically influenced winds. In general however, ground-based wind directions are broadly consistent with expected global patterns, such as polar easterlies. Intriguingly, between 40°S and 80°S latitude both SF and DCA preserve their strongest, though different, dominant wind direction, with transport toward the west and east for SF-derived winds and toward the north and west for DCA-derived winds.

  3. Studies in Martian Aeolian Geology

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald

    2001-01-01

    This report gives the results from the investigation through March 15, 1999 for the first two years of the three year investigation (year 3 runs from March 1, 1999 to February 27, 2000). The investigation included three tasks, all involving windblown dust (particles a few micrometers in diameter) to simulate the aeolian regime on Mars. Experiments were conducted primarily in the Mars Surface Wind Tunnel (MARSWIT) at NASA-Ames Research Center.

  4. Downslope coarsening in aeolian grainflows of the Navajo Sandstone

    NASA Astrophysics Data System (ADS)

    Loope, David B.; Elder, James F.; Sweeney, Mark R.

    2012-07-01

    Downslope coarsening in grainflows has been observed on present-day dunes and generated in labs, but few previous studies have examined vertical sorting in ancient aeolian grainflows. We studied the grainflow strata of the Jurassic Navajo Sandstone in the southern Utah portion of its outcrop belt from Zion National Park (west) to Coyote Buttes and The Dive (east). At each study site, thick sets of grainflow-dominated cross-strata that were deposited by large transverse dunes comprise the bulk of the Navajo Sandstone. We studied three stratigraphic columns, one per site, composed almost exclusively of aeolian cross-strata. For each column, samples were obtained from one grainflow stratum in each consecutive set of the column, for a total of 139 samples from thirty-two sets of cross-strata. To investigate grading perpendicular to bedding within individual grainflows, we collected fourteen samples from four superimposed grainflow strata at The Dive. Samples were analyzed with a Malvern Mastersizer 2000 laser diffraction particle analyser. The median grain size of grainflow samples ranges from fine sand (164 μm) to coarse sand (617 μm). Using Folk and Ward criteria, samples are well-sorted to moderately-well-sorted. All but one of the twenty-eight sets showed at least slight downslope coarsening, but in general, downslope coarsening was not as well-developed or as consistent as that reported in laboratory subaqueous grainflows. Because coarse sand should be quickly sequestered within preserved cross-strata when bedforms climb, grain-size studies may help to test hypotheses for the stacking of sets of cross-strata.

  5. How Altitude and Latitude Control Dune Morphometry on Titan

    NASA Technical Reports Server (NTRS)

    Le Gall, A.; Hayes, A.; Ewing, R.; Janssen, M. A.; Radebaugh, J.; Savage, C.; Encrenaz, P.

    2011-01-01

    Dune fields are one of the dominant landforms and represent the largest known organic reservoir on Titan. SAR-derived topography show that Titan's dune terrains tend to occupy the lowest altitude areas in equatorial regions occurring at mean elevations between approx.-400 and 0 m. In elevated dune terrains, there is a definite trend towards a smaller dune to interdune ratio, interpreted as due to limited sediment availability. A similar linear correlation is observed with latitude, suggesting that the quantity of windblown sand in the dune fields tends to decrease as one moves farther north. These findings place important constraints on Titan's geology and climate.

  6. Material transport map of Titan: The fate of dunes

    NASA Astrophysics Data System (ADS)

    Malaska, Michael J.; Lopes, Rosaly M.; Hayes, Alex G.; Radebaugh, Jani; Lorenz, Ralph D.; Turtle, Elizabeth P.

    2016-05-01

    Using SAR data from Cassini's RADAR instrument, we examined the orientations of three terrain units on Titan, bright lineated plains, streak-like plains, and linear dunes. From the overall integrated pattern of their orientation, we were able to determine Titan's global material transport vectors. The analysis indicates that, in both the northern and southern hemispheres, materials from 0 to 35 deg latitude are transported poleward to a belt centred at roughly 35 deg. Materials from 60 to 35 deg latitude are transported equatorward to the belt at roughly 35 deg. Comparison with the global topographical gradient (Lorenz, R.D. et al. [2013]. Icarus 225, 367-377) suggests that fluvial transport is not the dominant process for material transport on Titan, or that it is at least overprinted with another transport mechanism. Our results are consistent with aeolian transport being the dominant mechanism in the equatorial and mid-latitude zones. The zone at 35 deg is thus the ultimate sink for materials from the equator to low polar latitudes; materials making up the equatorial dunes will be transported to the latitude 35-deg belts. Only plains units are observed at latitudes of ∼35 deg; dunes and materials with the spectral characteristics of dunes are not observed at these latitudes. This observation suggests that either dune materials are converted or modified into plains units or that the margins of dunes are transport limited.

  7. Publication trends in Aeolian research: An analysis of the biblography of Aeolian research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An analysis of the Bibliography of Aeolian Research has provided information regarding publication trends in aeolian research. Overall, results suggest that there has been a significant increase in the number of publications per year since the first aeolian-research publication appeared in 1646. P...

  8. Late Quaternary geoarchaeology and geochronology of stratified aeolian deposits, Tar River, North Carolina

    NASA Astrophysics Data System (ADS)

    Moore, Christopher R.

    Recent geoarchaeological work on relict aeolian deposits in the North Carolina Coastal Plain has shown the potential for understanding prehistoric hunter-gatherer adaptations to changing environmental conditions likely related to Holocene climate change. Archaeological surveys and testing along the Tar River has revealed numerous sites with stratified Early Archaic through Woodland occupations. Geophysical, archeostratigraphic and sedimentological analysis along with chronometric dating (OSL and 14C) of source-bordering aeolian sediments along the Tar River in North Carolina indicate dune drapes (˜1 meter thick) accreted throughout much of the Holocene. Aeolian burial events along the Tar River appear to reflect Holocene millennial-scale climatic cyclicity (e.g., Bond Events) and its related effects on the fluvial system. These events likely influenced both hunter-gatherer adaptation and site preservation along the Tar River. Combined radiocarbon and OSL ages from lower paleo-braidplain sites, indicate incision of the lower paleo-braidplain and initiation of dune deposition just before or during the Younger Dryas stadial. The presence of stratified archaeological remains in these sediments preserves a record of both prehistoric human adaptations to local conditions and changes in depositional processes marking large-scale climatic change in the southeastern United States.

  9. Aeolian cliff-top deposits and buried soils in the White River Badlands, South Dakota, USA

    USGS Publications Warehouse

    Rawling, J. E., III; Fredlund, G.G.; Mahan, S.

    2003-01-01

    Aeolian deposits in the North American Great Plains are important sources of Holocene palaeo-environmental records. Although there are extensive studies on loess and dune records in the region, little is known about records in aeolian cliff-top deposits. These are common on table (mesa) edges in the White River Badlands. These sediments typically have loam and sandy-loam textures with dominantly very fine sand, 0.5-1% organic carbon and 0.5-5% CaCO3. Some of these aeolian deposits are atypically coarse and contain granules and fine pebbles. Buried soils within these deposits are weakly developed with A-C and A-AC-C profiles. Beneath these are buried soils with varying degrees of pedogenic development formed in fluvial, aeolian or colluvial deposits. Thickness and number of buried soils vary. However, late-Holocene soils from several localities have ages of approximately 1300, 2500 and 3700 14C yrs BP. The 1300 14C yr BP soil is cumulic, with a thicker and lighter A horizon. Soils beneath the cliff-top deposits are early-Holocene (typically 7900 but as old as 10000 14C yrs BP) at higher elevation (???950 m) tables, and late-Holocene (2900 14C yrs BP) at lower (???830 m) tables. These age estimates are based on total organic matter 14C ages from the top 5 cm of buried soils, and agreement is good between an infrared stimulated luminescence age and bracketing 14C ages. Our studies show that cliff-top aeolian deposits have a history similar to that of other aeolian deposits on the Great Plains, and they are another source of palaeoenvironmental data.

  10. Distribution of compaction bands in 3D in an aeolian sandstone: The role of cross-bed orientation

    NASA Astrophysics Data System (ADS)

    Deng, Shang; Aydin, Atilla

    2012-10-01

    We report the occurrence of bed-parallel and high-angle compaction bands as well as crooked or wiggly compaction bands in the aeolian Aztec Sandstone exposed throughout the Valley of Fire State Park, Nevada. Field observations at several locations within the Park show that depositional domains (dune units characterized by cross-beds therein) with particular ranges of cross-bed orientations corresponding to certain deformational/structural domains (compaction bands of different orientations) occur adjacent to each other in a consistent pattern. We distinguish three architectural categories of depositional and structural domains: 1) cross-beds with bed-parallel compaction bands, 2) cross-beds with high-angle compaction bands, and 3) cross-beds with both bed-parallel and high-angle compaction bands overlapping in a relatively narrow transition zone. The field data demonstrates that the orientation of the cross-beds for each of these domains falls into a certain range. In fact, there is a strong correlation between the bottom set and high-angle compaction bands and the top set and the low-angle bed-parallel compaction bands. This implies that the cross-bed heterogeneity and the resulting mechanical anisotropy may play a significant role in the formation, orientation, distribution, and compartmentalization of compaction bands in the study area. Data sets on the dimensions of both depositional and structural domains indicate that they are interrelated and show a wide range of distributions. There is plenty of evidence for contemporaneous age relationships between compaction bands of various orientations. Based on this temporal relationship, we propose that at least one set of bands, and perhaps all of them, accommodated primarily localized compaction oblique to the principal planes of stress. Alternatively, if each set of the compaction bands represents the principal planes, then, the stress orientation must have varied spatially, perhaps due to the anisotropy of the

  11. Geomorphology of coastal sand dunes, Baldwin County, Alabama

    USGS Publications Warehouse

    Bearden, Bennett L.; Hummell, Richard L.; Mink, Robert M.

    1989-01-01

    Alabama's coastal eolian deposits are primarily vegetated dunes that are exemplified by sand ridges with flat to undulating upper surfaces and continuous irregular crests. Dune fields occur along Morgan peninsula between the foredune line and Little Lagoon and the Mobile Bay area. These dune fields consist primarily of one or more continuous ridges that parallel the coast and are generally vegetaed to grassy. Washover of the beach and backshore during Hurricane Frederic (1979) and subsequent smaller scale storms resulted in significant erosion of many of Alabama's dune fields. The primary dunes or foredunes are beginning to recover from the effects of these storms; however, numerous breaks in the primary dune line are present. Sand dunes in coastal Alabama provide protection against storm-generated waves and washover. The foredunes are protected by adherence to a Coastal Construction Control Line (CCCL) or construction setback line identified by markers along coastal Baldwin County.

  12. Exploring inner structure of Titan's dunes from Cassini Radar observations

    NASA Astrophysics Data System (ADS)

    Sharma, P.; Heggy, E.; Farr, T. G.

    2013-12-01

    Linear dunes discovered in the equatorial regions of Titan by the Cassini-Huygens mission are morphologically very similar to many terrestrial linear dune fields. These features have been compared with terrestrial longitudinal dune fields like the ones in Namib desert in western Africa. This comparison is based on the overall parallel orientation of Titan's dunes to the predominant wind direction on Titan, their superposition on other geomorphological features and the way they wrap around topographic obstacles. Studying the internal layering of dunes has strong implications in understanding the hypothesis for their origin and evolution. In Titan's case, although the morphology of the dunes has been studied from Cassini Synthetic Aperture Radar (SAR) images, it has not been possible to investigate their internal structure in detail as of yet. Since no radar sounding data is available for studying Titan's subsurface yet, we have developed another technique to examine the inner layering of the dunes. In this study, we utilize multiple complementary radar datasets, including radar imaging data for Titan's and Earth's dunes and Ground Penetrating Radar (GPR)/radar sounding data for terrestrial dunes. Based on dielectric mixing models, we suggest that the Cassini Ku-band microwaves should be able to penetrate up to ~ 3 m through Titan's dunes, indicating that the returned radar backscatter signal would include contributions from both surface and shallow subsurface echoes. This implies that the shallow subsurface properties can be retrieved from the observed radar backscatter (σ0). In our analysis, the variation of the radar backscatter as a function of dune height is used to provide an insight into the layering in Titan's dunes. We compare the variation of radar backscatter with elevation over individual dunes on Titan and analogous terrestrial dunes in three sites (Great Sand Sea, Siwa dunes and Qattaniya dunes) in the Egyptian Sahara. We observe a strong, positive

  13. Transverse instability of dunes.

    PubMed

    Parteli, Eric J R; Andrade, José S; Herrmann, Hans J

    2011-10-28

    The simplest type of dune is the transverse one, which propagates with invariant profile orthogonally to a fixed wind direction. Here we show, by means of numerical simulations, that transverse dunes are unstable with respect to along-axis perturbations in their profile and decay on the bedrock into barchan dunes. Any forcing modulation amplifies exponentially with growth rate determined by the dune turnover time. We estimate the distance covered by a transverse dune before fully decaying into barchans and identify the patterns produced by different types of perturbation. PMID:22107675

  14. Transverse Instability of Dunes

    NASA Astrophysics Data System (ADS)

    Parteli, Eric J. R.; Andrade, José S., Jr.; Herrmann, Hans J.

    2011-10-01

    The simplest type of dune is the transverse one, which propagates with invariant profile orthogonally to a fixed wind direction. Here we show, by means of numerical simulations, that transverse dunes are unstable with respect to along-axis perturbations in their profile and decay on the bedrock into barchan dunes. Any forcing modulation amplifies exponentially with growth rate determined by the dune turnover time. We estimate the distance covered by a transverse dune before fully decaying into barchans and identify the patterns produced by different types of perturbation.

  15. Sand availability control on dune shape and orientation

    NASA Astrophysics Data System (ADS)

    Gao, Xin; Narteau, Clement; Rozier, Olivier; Courrech Du Pont, Sylvain

    2015-04-01

    An increasing body of evidence indicates that sand availability does not only control dune type but also the underlying dune growth mechanism. Consequently, the same wind regime can produce different bedform orientations. Here, we use numerical simulations with different conditions of sand availability to predict dune shape and alignment in asymmetric bimodal wind regimes. In zones of abundant sand supply, linear dunes grow in height and propagate selecting the orientation for which the normal to crest components of transport reaches a maximum. In zones of limited sand supply, linear dunes grow by extension in the direction of the resultant sand flux. Considering these two independent dune growth mechanisms, we find good agreement between numerical and analytical models, and estimate the magnitude of wind velocity acceleration up the dune stoss slopes. In the extensional mode of linear dune formation, there is no abrupt change in dune trend when the divergence angle between the two winds crosses 90°. Instead, there are systematic transitions in dune type from linear to barchan for critical values of the divergence angle that depend on the transport ratio. We show how the growth rates of the two dune growth mechanisms may be used to infer the dune field morphology in zones of low sediment availability.

  16. Proctor Cr. Dunes

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA03293 Proctor Cr. Dunes

    This large dune field is located on the floor of Proctor Crater.

    Image information: VIS instrument. Latitude -47.4N, Longitude 30.7E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  17. Longevity of aeolian megaripples

    NASA Astrophysics Data System (ADS)

    Yizhaq, H.; Katra, I.

    2015-07-01

    Megaripples are distinguished from regular ripples by their larger dimensions and bimodal grain-size distributions. The interplay between wind, grain size and ripple morphology (height and wavelength) controls their development. Two main mechanisms limit megaripple height. The first, megaripple flattening due to winds that are above the fluid threshold of the coarse grains, destroys the armoring layer of the megaripple. The second is megaripple erosion by the impacts of fast-moving, fine saltating grains that propel the coarse grains constituting the armoring layer. For any given wind regime and grain size distribution, the potential megaripple dimensions are limited by these two mechanisms. Here we study the first mechanism and estimate the duration of strong winds (sustained above the fluid threshold) needed to flatten megaripples. Strong gusts of wind, in contrast, cannot destroy the megaripples but can cause ripple migration. Based on data from previous works on megaripples, we find a scaling law between the ripple morphology and the coarse mode of grains at the crest. Using this scaling relation allows us to calculate the wind velocity and duration needed for megaripple flattening. In general, the coarser the particles at the megaripple crest, the stronger the wind needed to flatten the megaripples. Moreover, the greater the strength of the wind required to flatten the megaripples, the lower the recurrence probability. Taken together, these findings increase the longevity of megaripples. We apply the results for a megaripple field in the southern Arava valley (Israel).

  18. A Threshold Continuum for Aeolian Sand Transport

    NASA Astrophysics Data System (ADS)

    Swann, C.; Ewing, R. C.; Sherman, D. J.

    2015-12-01

    The threshold of motion for aeolian sand transport marks the initial entrainment of sand particles by the force of the wind. This is typically defined and modeled as a singular wind speed for a given grain size and is based on field and laboratory experimental data. However, the definition of threshold varies significantly between these empirical models, largely because the definition is based on visual-observations of initial grain movement. For example, in his seminal experiments, Bagnold defined threshold of motion when he observed that 100% of the bed was in motion. Others have used 50% and lesser values. Differences in threshold models, in turn, result is large errors in predicting the fluxes associated with sand and dust transport. Here we use a wind tunnel and novel sediment trap to capture the fractions of sand in creep, reptation and saltation at Earth and Mars pressures and show that the threshold of motion for aeolian sand transport is best defined as a continuum in which grains progress through stages defined by the proportion of grains in creep and saltation. We propose the use of scale dependent thresholds modeled by distinct probability distribution functions that differentiate the threshold based on micro to macro scale applications. For example, a geologic timescale application corresponds to a threshold when 100% of the bed in motion whereas a sub-second application corresponds to a threshold when a single particle is set in motion. We provide quantitative measurements (number and mode of particle movement) corresponding to visual observations, percent of bed in motion and degrees of transport intermittency for Earth and Mars. Understanding transport as a continuum provides a basis for revaluating sand transport thresholds on Earth, Mars and Titan.

  19. Aeolian beach ridges and their significance for climate and sea level: Concept and insight from the Levant coast (East Mediterranean)

    NASA Astrophysics Data System (ADS)

    Mauz, B.; Hijma, M. P.; Amorosi, A.; Porat, N.; Galili, E.; Bloemendal, J.

    2013-06-01

    Relict beach ridges of aeolian origin and associated soils are often used for inferring relative sea level and climate with contrasting results. Most studies link the aeolian coastal deposits to regressive phases, some to high sea-level stands, and a few to intermediate relative sea-level positions. We interpret the apparent contradictions as indicating the lack of an over-arching concept and the inconsistent usage of sea level-related terms. In this paper we present an integrated morpho-sedimentological concept for a microtidal, mid-latitudinal coast and review existing data from the Levant (East Mediterranean) coast to evaluate the concept and to eliminate nomenclatural confusion. A coastal depositional environment in a semi-arid environment consists of shallow-marine, aeolian and alluvial facies which together form an aeolian beach-ridge complex as a package of strata which respond simultaneously to sea-level change. A transgressive complex forms through reworking or overstepping of the coastal foredune and a regressive complex forms by downstepping. Under transgression the aeolian beach ridge represents the highstand deposit and its adjacent shallow marine sediment is the transgressive deposit. Under regression the complex represents the falling stage and the associated downdip surface marks the lowstand. On the Levant coast we find chronologically well-constrained, offlapping aeolian beach ridges as parts of six downstepping beach ridge complexes formed between ~ 200 ka and 10 ka. The complexes represent the falling stage systems tract (FSST) of a short-lived (5th-order) depositional sequence when the shoreline shifted from a position close to the modern coastline to the shelf or below the shelf edge. Three of these FSSTs and their up dip and down dip super bounding surface together form the 4th order (~ 100 ka) sequence of the last interglacial/glacial cycle. The absence of transgressive, highstand and lowstand systems tract is explained by the poor

  20. Origins of barchan dune asymmetry: Insights from numerical simulations

    NASA Astrophysics Data System (ADS)

    Parteli, Eric J. R.; Durán, Orencio; Bourke, Mary C.; Tsoar, Haim; Pöschel, Thorsten; Herrmann, Hans

    2014-03-01

    Barchan dunes — crescent-shaped dunes that form in areas of unidirectional winds and low sand availability — commonly display an asymmetric shape, with one limb extended downwind. Several factors have been identified as potential causes for barchan dune asymmetry on Earth and Mars: asymmetric bimodal wind regime, topography, influx asymmetry and dune collision. However, the dynamics and potential range of barchan morphologies emerging under each specific scenario that leads to dune asymmetry are far from being understood. In the present work, we use dune modeling in order to investigate the formation and evolution of asymmetric barchans. We find that a bimodal wind regime causes limb extension when the divergence angle between primary and secondary winds is larger than 90°, whereas the extended limb evolves into a seif dune if the ratio between secondary and primary transport rates is larger than 25%. Calculations of dune formation on an inclined surface under constant wind direction also lead to barchan asymmetry, however no seif dune is obtained from surface tilting alone. Asymmetric barchans migrating along a tilted surface move laterally, with transverse migration velocity proportional to the slope of the terrain. Limb elongation induced by topography can occur when a barchan crosses a topographic rise. Furthermore, transient asymmetric barchan shapes with extended limb also emerge during collisions between dunes or due to an asymmetric influx. Our findings can be useful for making quantitative inference on local wind regimes or spatial heterogeneities in transport conditions of planetary dune fields hosting asymmetric barchans.

  1. Minimal size of a barchan dune.

    PubMed

    Parteli, E J R; Durán, O; Herrmann, H J

    2007-01-01

    Barchans are dunes of high mobility which have a crescent shape and propagate under conditions of unidirectional wind. However, sand dunes only appear above a critical size, which scales with the saturation distance of the sand flux [P. Hersen, S. Douady, and B. Andreotti, Phys. Rev. Lett. 89, 264301 (2002); B. Andreotti, P. Claudin, and S. Douady, Eur. Phys. J. B 28, 321 (2002); G. Sauermann, K. Kroy, and H. J. Herrmann, Phys. Rev. E 64, 31305 (2001)]. It has been suggested by P. Hersen, S. Douady, and B. Andreotti, Phys. Rev. Lett. 89, 264301 (2002)] that this flux fetch distance is itself constant. Indeed, this could not explain the protosize of barchan dunes, which often occur in coastal areas of high litoral drift, and the scale of dunes on Mars. In the present work, we show from three-dimensional calculations of sand transport that the size and the shape of the minimal barchan dune depend on the wind friction speed and the sand flux on the area between dunes in a field. Our results explain the common appearance of barchans a few tens of centimeter high which are observed along coasts. Furthermore, we find that the rate at which grains enter saltation on Mars is one order of magnitude higher than on Earth, and is relevant to correctly obtain the minimal dune size on Mars. PMID:17358139

  2. Gullies and Dunes

    NASA Technical Reports Server (NTRS)

    2006-01-01

    7 July 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows gullies overlain by seasonal frost in the north wall of an unnamed crater west of Hellas Planitia. The gullies likely formed by a combination of mass movement (i.e., landsliding) and fluid flow (i.e., water-rich debris flows). Below (south of) the gullies is a field of sand dunes; they, too, are covered by seasonal frost.

    Location near: 47.4oS, 322.8oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Winter

  3. Corridors of barchan dunes: Stability and size selection.

    PubMed

    Hersen, P; Andersen, K H; Elbelrhiti, H; Andreotti, B; Claudin, P; Douady, S

    2004-01-01

    Barchans are crescentic dunes propagating on a solid ground. They form dune fields in the shape of elongated corridors in which the size and spacing between dunes are rather well selected. We show that even very realistic models for solitary dunes do not reproduce these corridors. Instead, two instabilities take place. First, barchans receive a sand flux at their back proportional to their width while the sand escapes only from their horns. Large dunes proportionally capture more sand than they lose, while the situation is reversed for small ones: therefore, solitary dunes cannot remain in a steady state. Second, the propagation speed of dunes decreases with the size of the dune: this leads, through the collision process, to a coarsening of barchan fields. We show that these phenomena are not specific to the model, but result from general and robust mechanisms. The length scales needed for these instabilities to develop are derived and discussed. They turn out to be much smaller than the dune field length. As a conclusion, there should exist further, yet unknown, mechanisms regulating and selecting the size of dunes. PMID:14995611

  4. Sedimentological, Mineralogical and Geochemical Characterization of Sand Dunes in Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Benaafi, Mohammed; Abdullatif, Osman

    2014-05-01

    Sedimentological, mineralogical, morphological and geochemical studies of sand dunes from ten locations in Saudi Arabia were conducted in order to determine the differences between them and to find out the provenance and tectonic setting of these sand dunes. Sixty seven samples were collected from different sand dunes types ranging in morphology from linear, barchans, parabolic to stars dunes. In overall, the sand dunes are fine to coarse grained mean grain size, moderately sorted, near symmetrical skewness with mesokurtic distribution characterized sand dunes in most locations. The sand dunes grains are subrounded in all locations except in the Red sea, Qassim, central Arabia and the eastern province which showed sub-angular grains. The main mineral compositions of studied aeolian sand dunes are quartz, feldspar, calcite, and mica. Quartz is the dominant mineral in locations with significant amount of feldspars and mica in Najran, Red sea and Central Arabia locations. Moreover, calcite is present in Sakaka and NW Empty Quarter (Jafurah). Basement related sand dunes in Najran, Central Arabia and Red sea locations are sub-mature in terms of their mineralogical maturity. Whereas, sand dunes in other locations are texturally mature except those from the Red sea which showed sub-mature sand. The sands are classified as quartz arenite, except in the basement related sand dunes in Najran, central Arabia and the Red sea are ranging from sub-arkose, sub-litharenite and lithraenite. Morphologically, parallel to sub-parallel sand ridges with NE-SW orientation occurred in east and north parts of Empty Quarter (Najran and Jafurah) and NW-SE orientation in Dahna and Nafud deserts in central and north regions of Saudi Arabia. Parabolic sand dunes characterized the Nafud desert (Hail, Sakaka, Tayma locations). Barchans and star sand dunes characterize the Empty Quarter (Jafurah). Major, trace, and rare earth elements studies were carried out to determine the composition

  5. Paleoclimatic implications of late Pleistocene and Holocene aeolian sediments in lake catchments on the northeastern part of the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Lehmkuhl, F.; Stauch, G.; IJmker, J.; Poetsch, S.; Hilgers, A.; Hui, Z.; Diekmann, B.; Hartmann, K.; Wuennemann, B.

    2011-12-01

    On the northeastern part of the Tibetan Plateau aeolian sediments, such as loess, loess-like sediments, dunes and sand sheets, have been investigated. Such archives provide additional information for paleoclimate and environmental change in the catchments of lakes. We present a detailed analysis of aeolian sediments from the Donggi Cona catchment and a loess section from the Aynemachin Mts. on the north-eastern part of the Tibetan Plateau. In the Donggi Cona catchment long and short distance transport leads to a complex pattern in the aeolian sediments. Based on the largest dataset of luminescence dating (n = 51) from a single catchment so far different periods of enhanced sediment transport have been discriminated. Enhanced aeolian deposition in this environment in elevations of more than 4000m a.s.l. started in the early Holocene with the accumulation of sands from around 12 to 7.5ka. Loess have been preserved from a period from 10.5 to 7.5ka. However, further to the east on the southern slopes of the Aynemachin Mts. the sedimentation period of loess lasted longer and was interrupted by two paleosols around 10-9 and 5 ka. Both archives, sand and loess, are related to the strengthening of the East-Asian summer monsoon with wetter and warmer climate conditions. This climate leads to the trapping of aeolian sediments, in the moisture region of the Aynemachin including the development of initial paleosols. In addition, in some parts of the Donggi Cona catchment the enhanced summer monsoon from around 10 ka onwards lead to fluvial erosion of the aeolian archives and the formation of colluvial sediments until 6 ka. A reactivation of dune sands from 3 ka to the present can be associated to dryer and cooler climate conditions in combination with an enhanced human impact on the landscape. Aeolian sediments on the Tibetan Plateau therefore indicate two different climatic modes. During the early Holocene wetter conditions were favourable to retain aeolian sediments while

  6. Bursts in discontinuous Aeolian saltation.

    PubMed

    Carneiro, M V; Rasmussen, K R; Herrmann, H J

    2015-01-01

    Close to the onset of Aeolian particle transport through saltation we find in wind tunnel experiments a regime of discontinuous flux characterized by bursts of activity. Scaling laws are observed in the time delay between each burst and in the measurements of the wind fluctuations at the fluid threshold Shields number θc. The time delay between each burst decreases on average with the increase of the Shields number until sand flux becomes continuous. A numerical model for saltation including the wind-entrainment from the turbulent fluctuations can reproduce these observations and gives insight about their origin. We present here also for the first time measurements showing that with feeding it becomes possible to sustain discontinuous flux even below the fluid threshold. PMID:26073305

  7. Bursts in discontinuous Aeolian saltation

    PubMed Central

    Carneiro, M. V.; Rasmussen, K. R.; Herrmann, H. J.

    2015-01-01

    Close to the onset of Aeolian particle transport through saltation we find in wind tunnel experiments a regime of discontinuous flux characterized by bursts of activity. Scaling laws are observed in the time delay between each burst and in the measurements of the wind fluctuations at the fluid threshold Shields number θc. The time delay between each burst decreases on average with the increase of the Shields number until sand flux becomes continuous. A numerical model for saltation including the wind-entrainment from the turbulent fluctuations can reproduce these observations and gives insight about their origin. We present here also for the first time measurements showing that with feeding it becomes possible to sustain discontinuous flux even below the fluid threshold. PMID:26073305

  8. They're Alive! Present-Day Evolution of Martian Dunes

    NASA Technical Reports Server (NTRS)

    Diniega, S.; Bridges, N.; Hansen, C.

    2011-01-01

    The sharp brinks and margins, smooth and steep lee slopes, and lack of superimposed landforms (such as small impact craters) on many Martian sand dunes suggests that these features are geologically young clean brinks and smooth/steep lee slopes (HiRISE image PSP_010413_1920; 20 deg N,79 deg E; image widthis about 500m).Within the last decade, and often primarily through the detailed inspection of high-resolution (HiRISE) images, we have finally found clear evidence that many dunes of Mars are active -- through both aeolian and seasonal (frost) processes. However, it is yet unclear if active dune formation does occur or if we are observing surficial modification of dunes which formed under different climate conditions.

  9. The nature and formation of aeolian mineral dust material

    NASA Astrophysics Data System (ADS)

    Smalley, Ian; O'hara-Dhand, Ken; McLaren, Sue

    2013-04-01

    Aeolian dust affects climate and records past climates. It has become a much studied material but there has been a certain lack of emphasis on the actual nature of the dust, and an even greater neglect of actual production mechanisms for dust particles. Huge amounts of dust may be raised from the Bodele depression and other parts of North Africa, and much of it may be carried across the North Atlantic to aid in soil formation in Brazil. But what does it consist of? We know that much of the Bodele dust is diatoms from old Lake Chad, but what of the lithological inorganic mineral content? A very crude division of aeolian dust into large dust(say around 20-50um) and small dust (2-5um)has been proposed. Much of the study of loess has been confused by the failure to make this distinction, and similar problems may arise in the study of the finer fractions of aeolian dust. Much aeolian material is clay-mineral based- formed from clay mineral aggregates(CMA), from lake bottom sediments. This can form large dust particles, as in parna in Australia, but also contributes largely to small long travel aerosolic dust. Another major contributor is the quartz fragment. The large dust for classic loess deposits is mostly quartz silt- and there is considerable discussion about the controls that affect quartz silt. There are some interesting modalities in the world of quartz particle sedimentology which need to be examined. Quartz sand (say 200-500um) is the key initiating material and the formation processes for quartz sand have a down-the-line effect on the formation of smaller particles. The central observation is the action of two processes- a eutectic-like reaction in the proto-rock granite which defines the essential nature of sand particles, and the high-low displacive crystallographic transformation which introduces tensile stresses into the quartz particle systems. The limited range of eutectic particle size means a limited range of tensile stresses. A neat combination of

  10. Dune Morphometry in the Age of Digital Elevation Models

    NASA Astrophysics Data System (ADS)

    Lancaster, N.

    2014-12-01

    Dune patterns can be characterized in many different ways. Relationships between dune height, width and spacing, and the spatial variation in these parameters have been widely employed to provide quantitative information that can be used to describe dune patterns and make comparisons between dunes in widely separated areas, as well as to identify different generations of dunes. Digital elevation models (e.g. ASTER GDEM) provide a rich resource of data for analyses of dune patterns at landscape scales in several ways, including: (1) more extensive analyses using traditional measures, such as relationships between dune height and spacing, and the spatial variation in these parameters; and (2) estimation of sediment thickness on a regional scale. Analyses of data for Arabian and Namibian sand seas and dune fields show that dune height and spacing relationships are much more variable than previously reported and call into question existing models. Regional patterns of sediment thickness reveal areas of erosion, bypass, and accumulation that can be related to transport pathways and wind regimes. The widespread occurrence of complex dune patterns as well as the magnitude of the newly available data sets however requires more sophisticated analyses than simple extraction of dune morphometric parameters using GIS approaches. Geostatistical analyses using spatial autocorrelation, Fourier, and Wavelet methods have been employed in analyses of sub-aqueous bedforms and show promise for dune systems. Automated or semi-automated identification of dune length, width, spacing, and trends using advanced image analysis techniques such as linear segment detection is a potentially transformative approach. The strengths and weaknesses of these methods to provide pertinent geomorphic information are currently being evaluated, but they have the potential to provide new insights into the nature of dune patterns.

  11. Particle-size fractionation of aeolian sand along a climatic and geomorphic gradient of the Sinai-Negev erg

    NASA Astrophysics Data System (ADS)

    Roskin, Joel; Katra, Itzhak; Blumberg, Dan G.

    2015-04-01

    This study examines changes in the aeolian sand fractions along the west-east aeolian transport path of the northern Sinai Peninsula - northwestern (NW) Negev erg of Egypt and Israel. This erg originates from the Nile Delta and is composed of currently active linear (seif) dunes in northern Sinai (its western part), and currently stabilized vegetated linear dunes (VLDs) in the NW Negev dunefield (its eastern part). Sand samples from the Nile Delta, northern Sinai and NW Negev were analyzed for particle-size distribution and sand grain morphology in accordance to their Eastern Mediterranean INQUA Dunes Atlas luminescence and radiocarbon chronologies. Linear seif dunes differ from VLDs in their vegetation cover, linearity, and dynamics. Although both are continuous landforms with similar orientations and sand-grain roundness values, the linear dunes of Sinai are coarser-grained than the Negev VLDs. The VLDs have a significantly higher proportion of very fine sand (125-50 μm) content and a varying but lower sand fining ratio defined as the ratio of fine sand percentage to very fine sand percentage. Very fine sands are suggested to have been winnowed by saltation and low suspension from source deposits and sand sheets. Detailed semi-quantitative examinations of sand grains by a SEM of a Negev VLD shows that most grains do not exhibit features that can be attributed to aeolian abrasion by sand grain-grain collisions. From these observations we infer that fractionation of sand was a major process leading to downwind fining along the studied aeolian transport path. We suggest that the very fine sand fraction of Nile Delta and Sinai sands has been transported downwind since the late middle Pleistocene. In the late Pleistocene, sand reached the NW Negev in the form of VLDs due to last-glacial period windiness of intensities unprecedented today and probably larger sediment supply. Generally current and inferred past decreasing wind velocities and increasing precipitation

  12. Aeolian geomorphology from the global perspective

    NASA Technical Reports Server (NTRS)

    Greeley, R.

    1985-01-01

    Any planet or satellite having a dynamic atmosphere and a solid surface has the potential for experiencing aeolian (wind) processes. A survey of the Solar System shows at least four planetary objects which potentially meet these criteria: Earth, Mars, Venus, and possibly Titan, the largest satellite of Saturn. While the basic process is the same among these four objects, the movement of particles by the atmosphere, the aeolian environment is drastically different. It ranges from the hot (730 K), dense atmosphere of Venus to the extremely cold desert (218 K) environment of Mars where the atmospheric surface pressure is only approximately 7.5 mb. In considering aeolian processes in the planetary perspective, all three terrestrial planets share some common areas of attention for research, especially in regard to wind erosion and dust storms. Relevant properties of planetary objects potentially subject to aeolian processes are given in tabular form.

  13. Flood-formed dunes in Athabasca Valles, Mars: Morphology, modeling, and implications

    USGS Publications Warehouse

    Burr, D.M.; Carling, P.A.; Beyer, R.A.; Lancaster, N.

    2004-01-01

    Estimates of discharge for martian outflow channels have spanned orders of magnitude due in part to uncertainties in floodwater height. A methodology of estimating discharge based on bedforms would reduce some of this uncertainty. Such a methodology based on the morphology and granulometry of flood-formed ('diluvial') dunes has been developed by Carling (1996b, in: Branson, J., Brown, A.G., Gregory, K.J. (Eds.), Global Continental Changes: The Context of Palaeohydrology. Geological Society Special Publication No. 115, London, UK, 165-179) and applied to Pleistocene flood-formed dunes in Siberia. Transverse periodic dune-like bedforms in Athabasca Valles, Mars, have previously been classified both as flood-formed dunes and as antidunes. Either interpretation is important, as they both imply substantial quantities of water, but each has different hydraulic implications. We undertook photoclinometric measurements of these forms, and compared them with data from flood-formed dunes in Siberia. Our analysis of those data shows their morphology to be more consistent with dunes than antidunes, thus providing the first documentation of flood-formed dunes on Mars. Other reasoning based on context and likely hydraulics also supports the bedforms' classification as dunes. Evidence does not support the dunes being aeolian, although a conclusive determination cannot be made with present data. Given the preponderance of evidence that the features are flood-formed instead of aeolian, we applied Carling's (1996b, in: Branson, J., Brown, A.G., Gregory, K.J. (Eds.), Global Continental Changes: The Context of Palaeohydrology. Geological Society Special Publication No. 115, London, UK, 165-179) dune-flow model to derive the peak discharge of the flood flow that formed them. The resultant estimate is approximately 2??106 m3/s, similar to previous estimates. The size of the Athabascan dunes' in comparison with that of terrestrial dunes suggests that these martian dunes took at least 1

  14. 'Sharks Teeth' -- Sand Dunes in Proctor Crater

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Sometimes, pictures received from Mars Global Surveyor's Mars Orbiter Camera (MOC) are 'just plain pretty.' This image, taken in early September 2000, shows a group of sand dunes at the edge of a much larger field of dark-toned dunes in Proctor Crater. Located at 47.9oS, 330.4oW, in the 170 km (106 mile) diameter crater named for 19th Century British astronomer Richard A. Proctor (1837-1888), the dunes shown here are created by winds blowing largely from the east/northeast. A plethora of smaller, brighter ripples covers the substrate between the dunes. Sunlight illuminates them from the upper left.

  15. Object-based Dune Analysis: Automated dune mapping and pattern characterization for Ganges Chasma and Gale crater, Mars

    NASA Astrophysics Data System (ADS)

    Vaz, David A.; Sarmento, Pedro T. K.; Barata, Maria T.; Fenton, Lori K.; Michaels, Timothy I.

    2015-12-01

    A method that enables the automated mapping and characterization of dune fields on Mars is described. Using CTX image mosaics, the introduced Object-based Dune Analysis (OBDA) technique produces an objective and reproducible mapping of dune morphologies over extensive areas. The data set thus obtained integrates a large variety of data, allowing a simple cross-analysis of dune patterns, spectral and morphometric information, and mesoscale wind models. Two dune fields, located in Gale crater and Ganges Chasma, were used to test and validate the methodology. The segmentation of dune-related morphologies is highly efficient, reaching overall accuracies of 95%. In addition, we show that the automated segmentation of slipface traces is also possible with expected accuracies of 85-90%. A qualitative and quantitative comparison of the final outputs with photointerpretations is performed, and the precision of the directional characterization of the dune patterns is evaluated. We demonstrate a good agreement between the OBDA outputs and the photointerpreted dune morphologies, with local trend deviations below 45° for 80-95% of the mapped areas. Because the developed algorithm is tuned for the recognition of linear features from the imagery, the slipfaces of small barchans can be preferentially overlooked owing to their small extent at the spatial resolution of the CTX mosaics. Dune types composed of longer linear morphologies are much better represented, including correct mapping of secondary structures. Having proved the effectiveness and accuracy of the mapping procedure, we discuss its future applications for the improvement of dune catalogs on Mars.

  16. Dark-toned dunes in the western Medusae Fossae Formation: Characteristics, distribution, and source

    NASA Astrophysics Data System (ADS)

    Burr, D. M.; Zimbelman, J. R.; Brown, A. J.; Qualls, F. B.; Michaels, T. I.; Chojnacki, M.

    2010-12-01

    Aeolian bedforms are nearly ubiquitous on Mars but the origin of the sediments remains unidentified. Dark-toned Martian sand may originate as volcaniclastic sediment (Edgett and Lancaster 1993). The Medusae Fossae Formation (MFF) has been hypothesized to be a volcaniclastic deposit. The two lobes of the western-most MFF (westMFF) host dark -toned sediments (Fig. 1) categorized here as aeolian based on morphologies, surface textures, and locations within lows. These sediments are bright in both day and night infrared (IR) images, indicating a large grain size and low albedo, and are concentrated along the westMFF southern margin, below the highland-lowland boundary (HLB) scarp. Indications of an MFF origin for this dark-toned dune sediment include: 1) gradation of tone: the dark sediments frequently grade into lighter toned MFF slope materials. 2) morphology and location: The dark dune morphologies indicate emplacement by a northerly (toward the south) wind regime (Fig. 1), for which the westMFF immediately to the north provides a sediment origin. 3) composition: Limited spectral data of the dark dunes indicate an olivine-poor composition, in contrast to the olivine-rich spectra of dunes in southern highland (SH) and Cerberus plains (Cp) craters, indicating a different source for those SH or Cp dunes than for the westMFF dunes. Thus, while minor amounts of sediment have likely been contributed from elsewhwere, we hypothesize that the dark-toned dunes in the westMFF originate(d) from the breakdown of MFF sediments, winnowing of bright fines, and concentration of dark, coarse sand into dunes. Given the putative origin of the MFF as volcaniclastic, this identification of the origin of the westMFF dark-toned dunes supports the paradigm of dark aeolian sediments on Mars originating as volcaniclastic material. Portion of P07_003769_1742_XN_05S209W, showing gradation between lighter- and dark-toned sediments (upper portion of image), and echo dune morphology (white oval

  17. Aeolian Sand Transport in the Planetary Context: Respective Roles of Aerodynamic and Bed-Dilatancy Thresholds

    NASA Technical Reports Server (NTRS)

    Marshall, J. R.; Borucki, J.; Bratton, C.

    1999-01-01

    The traditional view of aeolian sand transport generally estimates flux from the perspective of aerodynamic forces creating the airborne grain population, although it has been recognized that "reptation" causes a significant part of the total airborne flux; reptation involves both ballistic injection of grains into the air stream by the impact of saltating grains as well as the "nudging" of surface grains into a creeping motion. Whilst aerodynamic forces may initiate sand motion, it is proposed here that within a fully-matured grain cloud, flux is actually governed by two thresholds: an aerodynamic threshold, and a bed-dilatancy threshold. It is the latter which controls the reptation population, and its significance increases proportionally with transport energy. Because we only have experience with terrestrial sand transport, extrapolations of aeolian theory to Mars and Venus have adjusted only the aerodynamic factor, taking gravitational forces and atmospheric density as the prime variables in the aerodynamic equations, but neglecting reptation. The basis for our perspective on the importance of reptation and bed dilatancy is a set of experiments that were designed to simulate sand transport across the surface of a martian dune. Using a modified sporting crossbow in which a sand-impelling sabot replaced the bolt-firing mechanism, individual grains of sand were fired at loose sand targets with glancing angles typical of saltation impact; grains were projected at about 80 m/s to simulate velocities commensurate with those predicted for extreme martian aeolian conditions. The sabot impelling method permitted study of individual impacts without the masking effect of bed mobilization encountered in wind-tunnel studies. At these martian impact velocities, grains produced small craters formed by the ejection of several hundred grains from the bed. Unexpectedly, the craters were not elongated, despite glancing impact; the craters were very close to circular in planform

  18. Submarine sand dunes and sedimentary environments in Oceanographer Canyon.

    USGS Publications Warehouse

    Valentine, P.C.; Cooper, R.A.; Uzmann, J.R.

    1984-01-01

    Reveals an extensive field of large sand dunes on the canyon floor. The dunes are medium to coarse sand, are oriented across the axis, and the largest of them are as high as 3m and have wavelengths up to 15m. Their asymmetry, grain size, and height suggest that they are formed by axial currents flowing up- and downcanyon and that the largest dunes require flows of at least 70 cm/sec.-from Authors

  19. Mars Global Digital Dune Database: MC2-MC29

    USGS Publications Warehouse

    Hayward, Rosalyn K.; Mullins, Kevin F.; Fenton, L.K.; Hare, T.M.; Titus, T.N.; Bourke, M.C.; Colaprete, Anthony; Christensen, P.R.

    2007-01-01

    Introduction The Mars Global Digital Dune Database presents data and describes the methodology used in creating the database. The database provides a comprehensive and quantitative view of the geographic distribution of moderate- to large-size dune fields from 65? N to 65? S latitude and encompasses ~ 550 dune fields. The database will be expanded to cover the entire planet in later versions. Although we have attempted to include all dune fields between 65? N and 65? S, some have likely been excluded for two reasons: 1) incomplete THEMIS IR (daytime) coverage may have caused us to exclude some moderate- to large-size dune fields or 2) resolution of THEMIS IR coverage (100m/pixel) certainly caused us to exclude smaller dune fields. The smallest dune fields in the database are ~ 1 km2 in area. While the moderate to large dune fields are likely to constitute the largest compilation of sediment on the planet, smaller stores of sediment of dunes are likely to be found elsewhere via higher resolution data. Thus, it should be noted that our database excludes all small dune fields and some moderate to large dune fields as well. Therefore the absence of mapped dune fields does not mean that such dune fields do not exist and is not intended to imply a lack of saltating sand in other areas. Where availability and quality of THEMIS visible (VIS) or Mars Orbiter Camera narrow angle (MOC NA) images allowed, we classifed dunes and included dune slipface measurements, which were derived from gross dune morphology and represent the prevailing wind direction at the last time of significant dune modification. For dunes located within craters, the azimuth from crater centroid to dune field centroid was calculated. Output from a general circulation model (GCM) is also included. In addition to polygons locating dune fields, the database includes over 1800 selected Thermal Emission Imaging System (THEMIS) infrared (IR), THEMIS visible (VIS) and Mars Orbiter Camera Narrow Angle (MOC NA

  20. Digital mapping of the extent of global dune systems

    NASA Astrophysics Data System (ADS)

    Hesse, Paul; Lancaster, Nicholas; Telfer, Matt

    2015-04-01

    Inland dune systems occur on all continents and at all latitudes, yet until now there is no digital map of their location and extent. We have compiled a new digital map of the extent of inland dune systems worldwide from published and unpublished sources, supplemented by manual digitizing of additional sand seas and dune fields. The digital database is compiled in ArcGIS, allowing mapping at scales from global to regional. The database contains spatial information on approximately 200 dune fields and sand seas ranging in size from less than 2 square km to as much as 630,000 sq km, covering a total global area of 29.4 million sq km. It includes both currently active unvegetated sand seas and dune fields, as well as partially vegetated and vegetated areas of dunes and sand sheets. Where available, the database contains information on dune type and status (active or stabilized). Manual digitizing of dune and sand sheet areas, as well as correction of existing digital coverages was accomplished mainly using ESRI imagery resources, with constant reference to ancillary information from publications and previous mapping. Compilation of the database required extensive research on the geographic names for different dune areas, as well as dunefield status and extent. The database and maps derived from it will be available online at http://inquadunesatlas.dri.edu/. We envisage it will be a dynamic and ongoing project and solicit corrections and additional information, including new and revised digital coverages, from the scientific community.

  1. Defrosting of Russell Crater Dunes

    NASA Technical Reports Server (NTRS)

    2007-01-01

    These two images (at right) were acquired by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) 39 days apart at 19:10 UTC (2:10 PM EST) on December 28, 2006 (upper right) and at 20:06 UTC (3:06 PM EST) on February 5, 2007 (lower right). These CRISM data were acquired in 544 colors covering the wavelength range from 0.36-3.92 micrometers, and show features as small as 20 meters (about 65 feet) across. Both images are false color composites of bands at 2.5, 1.5, and 1.25 micrometers, and are nearly centered at the same location, 54.875oS, 12.919oE (upper right) and 54.895oS, 12.943oE (lower right). Each image is approximately 11 kilometers (7 miles) across at its narrowest. These are part of a series of images capturing the evolution of carbon dioxide frost on the surface of the dunes in Russell Crater.

    Russell Crater is one of many craters in the southern highland region of Mars that contain large areas of sand dunes. The sand in these dunes has accumulated over a very long time period -- perhaps millions of years -- as wind blows over the highland terrain, picking up sand in some places and depositing in others. The topography of the craters forces the wind to blow up and over the crater rims, and the wind often isn't strong enough to keep the tiny grains suspended. This makes the sand fall to the ground and gradually pile up, and over time the surface breezes shape the sand into ripples and dunes. A similar process is at work at the Great Sand Dunes National Park and Preserve in Colorado, USA.

    The above left image shows a THEMIS daytime infrared mosaic of Russell Crater and the location of its (approximately) 30-kilometer wide dune field in the northeastern quadrant of the crater floor. Superposed on this view and shown enlarged at the upper right is CRISM image FRT000039DF. This CRISM image was acquired during the late Martian southern winter (solar longitude = 157.7o), and the bright blue in this false color composite indicates the

  2. Sensitivity of the Automatic Determination of Sand Transport Direction and Rate to Dune Morphology (Invited)

    NASA Astrophysics Data System (ADS)

    Scheidt, S. P.; Lancaster, N.

    2010-12-01

    Measurements of rates of dune migration and sand flux are important to understanding the dynamics of aeolian systems, including sand encroachment, desertification, and response to changes in climate. The recent development of the Coregistration of Optically Sensed Images and Correlation (COSI-Corr) algorithm allows a unique remote-sensing approach for measuring dune migration rates. Fast- and slow-moving dunes have been analyzed by previous researchers using the algorithm, but the technique has mostly been tested on simple dune forms, which lack second-order geomorphic features that might cause errors. Our work tested the algorithm’s sensitivity to different dune types and evaluated the performance of the algorithm by making comparisons to previous studies and manual traces of the dunes in a GIS. Different parameters were chosen when applying the COSI-Corr algorithm, which were set according to the expected magnitude of dune displacement and the dune size with respect to image resolution. The dunes under study were chosen from the Namib Desert in locations where dune migration rates had previously been measured. These areas included (1) barchan dunes in Walvis Bay, (2) linear dunes just south of the Kuiseb River and (3) convoys of barchan dunes in the southern Namib. Orthorectified ASTER data from different dates were used to study the incremental and maximal changes between 1967 and 2009. These and other dune areas were studied to understand how varied geographic conditions (e.g.., the presence of coastlines, topography and background surface reflectance) affect the algorithm results. Walvis Bay dune migration vectors indicate rates between 3 and 30 m/yr to the north-northeast, which compares well to the range of previously reported values (2-27 m/yr). Individual dune migration rates between 1961 and 2005 also compared well to distances measured from dune crests in a GIS. Some vectors are overestimated because of interdune albedo effects, resulting from variable

  3. Morphology and dynamics of large subtidal dunes in Bahia Blanca estuary, Argentina

    NASA Astrophysics Data System (ADS)

    Minor Salvatierra, Marta; Aliotta, Salvador; Ginsberg, Silvia Susana

    2015-10-01

    The purpose of this paper is to carry out a detailed analysis of subtidal dune morphology and temporal variability and to estimate dune migration rate to improve knowledge of this topic, and so enhance the existing data on different marine environments in the world and especially in South America where this information is limited. Two swath bathymetry surveys were conducted across a dune field in the Bahia Blanca Estuary (Argentina). Morphometric parameters and migration rate according to the dune type, were analyzed. The field is composed of large dunes exhibiting two morphological configurations, which are differentiated into sinuous and barchan dunes. The dunes studied are the largest of the estuary, with heights and wavelengths greater than 5 m and 130 m, respectively. The crests of the large dunes are arranged with an orientation perpendicular to the axis of the channel. From geometrical analysis of the parameters, the dunes show a weakly positive correlation between dune height and wavelength as too between dune height and water depth. No clear relationship was observed between maximum height and wavelength parameters with water depth. Across the estuary, the bedforms migrate in the ebb direction, with mean rate of 43 m year- 1. Comparison of our results with previous data shows that during three decades the western boundary of dune field has been displaced 900 m towards the outer estuary, however the dune field configuration and distribution of diverse types of bedform appear to be relatively stable.

  4. Dark Martian Dunes

    NASA Technical Reports Server (NTRS)

    2005-01-01

    30 June 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows dark, windblown sand dunes in a crater in the Hesperia region of Mars. The steepest slopes on the dunes -- their slipfaces -- point toward the south-southwest, indicating that the winds responsible for the dunes blew from the north-northeast (top/upper right).

    Location near: 12.4oS, 236.5oW Image width: 3 km (1.9 mi) Illumination from: upper left Season Southern Spring

  5. Dunes in Brashear

    NASA Technical Reports Server (NTRS)

    2005-01-01

    10 October 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows dark, windblown sand dunes on the floor of Brashear Crater in the southern hemisphere. The dominant winds responsible for these dunes blew from the southeast (lower right). Grooves on some of the dune surfaces suggest that the sand may be somewhat cemented; the grooves form by wind erosion.

    Location near: 53.9oS, 119.6oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Spring

  6. Mid-latitude Dunes

    NASA Technical Reports Server (NTRS)

    2005-01-01

    7 August 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows dark sand dunes on the floor of a southern mid-latitude impact crater. Craters are commonly the site of sand dunes, as sand may become trapped in these topographic depressions. In this case, the winds responsible for the dunes generally blew from the south/southeast (bottom/lower right),

    Location near: 51.8oS, 105.5oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Spring

  7. Inconsistencies in coastal dune genesis and development in the western Mediterranean Cabopino Dune system, southern Spain

    NASA Astrophysics Data System (ADS)

    Guisado-Pintado, Emilia; Malvárez, Gonzalo; Jackson, Derek; Navas, Fatima

    2016-04-01

    It is generally agreed that a falling sea level regime is required in the long term to establish dunes as distinctive landform features along a coast. Sedimentary (supply) bodies from fluvial, glacial sources or marine platform processes also need to be in place. In most Atlantic-facing coastal dune systems the current morpho-sedimentary structures are usually associated with the period between 18K BP and present when both glacial and riverine sediments emplaced sediments within the active zone of present sea level to help form beaches and dunes. Mediterranean coastal dunes fronted by steep continental shelves, such as in the western Mediterranean coast of southern Spain are, however, not associated with glacial deposits and thus are only present in association with river mouths and/or coastal lagoons. Their development is attributed to very recent sediment supply, which, combined with other forcing factors such as wind and waves, several orders of magnitude below those of north Atlantic systems, explains their limited extent. Some coastal dune fields however, do not seem to respond to this general pattern because of their scale and, more importantly, their origin linked possibly to marine platform processes rather than riverine or lagoonal development. Here, we examine the Cabopino dune system in southern Spain offering a conceptual model of their genesis and development as an "Atlantic" dune system within a Mediterranean setting. This is demonstrated by their scale (the largest in the Spanish Mediterranean) and their morphodynamic link to nearshore and platform processes in the last 18,000 years.

  8. Aeolian sediment transport on a beach with a varying sediment supply

    NASA Astrophysics Data System (ADS)

    de Vries, S.; Arens, S. M.; de Schipper, M. A.; Ranasinghe, R.

    2014-12-01

    Variability in aeolian sediment transport rates have traditionally been explain by variability in wind speed. Although it is recognised in literature that limitations in sediment supply can influence sediment transport significantly, most models that predict aeolian sediment transport attribute a dominant role to the magnitude of the wind speed. In this paper it is proposed that spatio-temporal variability of aeolian sediment transport on beaches can be dominated by variations in sediment supply rather than variations in wind speed. A new dataset containing wind speed, direction and sediment transport is collected during a 3 day field campaign at Vlugtenburg beach, The Netherlands. During the measurement campaign, aeolian sediment transport varied in time with the tide while wind speed remained constant. During low tide, measured transport was significantly larger than during high tide. Measured spatial gradients in sediment transport at the lower and upper beaches during fairly constant wind conditions suggest that aeolian sediment transport on beaches may be partly governed by the spatial variability in sediment supply, with relatively large supply in the intertidal zone when exposed and small supply on the upper beach due to sorting processes. The measurements support earlier findings that the intertidal zone can be significant source of sediment for sediment transport on beaches. Both a traditional cubic model (with respect to the wind speed) and a newly proposed linear model are fitted to the field data. The fit quality of both types of models are found to be similar.

  9. Use of coal ash for enhancing biocrust development in stabilizing sand dunes

    NASA Astrophysics Data System (ADS)

    Zaady, Eli; Katra, Itzhak; Sarig, Shlomo

    2015-04-01

    In dryland environments, biocrusts are considered ecosystem engineers since they play significant roles in ecosystem processes. In the successional pathway of crust communities, the new areas are colonized after disturbance by pioneers such as filamentous cyanobacteria - Microcoleus spp. This stage is followed by colonization of green algae, mosses, and lichens. Aggregation of soil granules is caused by metabolic polysaccharides secreted by cyanobacteria and green algae, gluing the soil particles to form the crust layer. It was suggested that incorporating dust into the biocrusts encourages the growth of cyanobacteria, leading to a strengthening of the biocrusts' cohesion. Moreover, biocrusts cover a larger portion of the surface when the soil contains finer particles, and it was observed that at least 4-5% of clay and silt is required to support a measurable biocrust. While natural and undisturbed sand dunes are generally stabilized by biocrusts in the north-western Negev desert, stabilization of disturbed and movable sand dunes is one of the main problems in this desertified land, as in vast areas in the world. Daily breezes and seasonal wind storms transport sand particles to populated and agricultural areas causing damages to field crops and livelihood. Moving sand dunes consist of relatively coarse grains (250-2000 μm) with a low percent of clay and silt. This phenomenon negatively affects cyanobacterial colonization rate, even in relatively wet desert areas (100-250 mm rainfalls). In order to face the problem it was suggested to enrich the dune surface by using coal fly-ash. The research was conducted in two stages: first, examining the feasibility in Petri-dishes in laboratory conditions and in Experimental Aeolian Greenhouse conditions. The results showed that adding coal fly-ash and biocrust inoculum increased aggregate stability, penetration resistance and shear strength, as opposed to the control-sand plot. Using mobile wind-tunnel simulations, sand

  10. Aeolian Sand Transport in the Planetary Context: Respective Roles of Aerodynamic and Bed-Dilatancy Thresholds

    NASA Technical Reports Server (NTRS)

    Marshall, J. R.; Borucki, J.; Bratton, C.

    1999-01-01

    The traditional view of aeolian sand transport generally estimates flux from the perspective of aerodynamic forces creating the airborne grain population, although it has been recognized that "reptation" causes a significant part of the total airborne flux; reptation involves both ballistic injection of grains into the air stream by the impact of saltating grains as well as the "nudging" of surface grains into a creeping motion. Whilst aerodynamic forces may initiate sand motion, it is proposed here that within a fully-matured grain cloud, flux is actually governed by two thresholds: an aerodynamic threshold, and a bed-dilatancy threshold. It is the latter which controls the reptation population, and its significance increases proportionally with transport energy. Because we only have experience with terrestrial sand transport, extrapolations of aeolian theory to Mars and Venus have adjusted only the aerodynamic factor, taking gravitational forces and atmospheric density as the prime variables in the aerodynamic equations, but neglecting reptation. The basis for our perspective on the importance of reptation and bed dilatancy is a set of experiments that were designed to simulate sand transport across the surface of a martian dune. Using a modified sporting crossbow in which a sand-impelling sabot replaced the bolt-firing mechanism, individual grains of sand were fired at loose sand targets with glancing angles typical of saltation impact; grains were projected at about 80 m/s to simulate velocities commensurate with those predicted for extreme martian aeolian conditions. The sabot impelling method permitted study of individual impacts without the masking effect of bed mobilization encountered in wind-tunnel studies. At these martian impact velocities, grains produced small craters formed by the ejection of several hundred grains from the bed. Unexpectedly, the craters were not elongated, despite glancing impact; the craters were very close to circular in planform

  11. Aeolian Sand Transport in the Planetary Context: Respective Roles of Aerodynamic and Bed-Dilatancy Thresholds

    NASA Astrophysics Data System (ADS)

    Marshall, J. R.; Borucki, J.; Bratton, C.

    1999-09-01

    The traditional view of aeolian sand transport generally estimates flux from the perspective of aerodynamic forces creating the airborne grain population, although it has been recognized that "reptation" causes a significant part of the total airborne flux; reptation involves both ballistic injection of grains into the air stream by the impact of saltating grains as well as the "nudging" of surface grains into a creeping motion. Whilst aerodynamic forces may initiate sand motion, it is proposed here that within a fully-matured grain cloud, flux is actually governed by two thresholds: an aerodynamic threshold, and a bed-dilatancy threshold. It is the latter which controls the reptation population, and its significance increases proportionally with transport energy. Because we only have experience with terrestrial sand transport, extrapolations of aeolian theory to Mars and Venus have adjusted only the aerodynamic factor, taking gravitational forces and atmospheric density as the prime variables in the aerodynamic equations, but neglecting reptation. The basis for our perspective on the importance of reptation and bed dilatancy is a set of experiments that were designed to simulate sand transport across the surface of a martian dune. Using a modified sporting crossbow in which a sand-impelling sabot replaced the bolt-firing mechanism, individual grains of sand were fired at loose sand targets with glancing angles typical of saltation impact; grains were projected at about 80 m/s to simulate velocities commensurate with those predicted for extreme martian aeolian conditions. The sabot impelling method permitted study of individual impacts without the masking effect of bed mobilization encountered in wind-tunnel studies. At these martian impact velocities, grains produced small craters formed by the ejection of several hundred grains from the bed. Unexpectedly, the craters were not elongated, despite glancing impact; the craters were very close to circular in planform

  12. Windblown Sand Dunes

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-557, 27 November 2003

    This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows sand dunes and large ripples in a crater in the Hellespontus region of Mars. The winds that formed these dunes generally blew from the left/lower-left (west/southwest). Unlike the majority of dunes on Earth, sand dunes on Mars are mostly made up of dark, rather than light, grains. This scene is located near 50.3oS, 327.5oW. The image covers an area 3 km (1.9 mi) wide, and is illuminated by sunlight from the upper left.

  13. Field, Laboratory and Imaging spectroscopic Analysis of Landslide, Debris Flow and Flood Hazards in Lacustrine, Aeolian and Alluvial Fan Deposits Surrounding the Salton Sea, Southern California

    NASA Astrophysics Data System (ADS)

    Hubbard, B. E.; Hooper, D. M.; Mars, J. C.

    2015-12-01

    High resolution satellite imagery, field spectral measurements using a portable ASD spectrometer, and 2013 hyperspectral AVIRIS imagery were used to evaluate the age of the Martinez Mountain Landslide (MML) near the Salton Sea, in order to determine the relative ages of adjacent alluvial fan surfaces and the potential for additional landslides, debris flows, and floods. The Salton Sea (SS) occupies a pluvial lake basin, with ancient shorelines ranging from 81 meters to 113 meters above the modern lake level. The highest shoreline overlaps the toe of the 0.24 - 0.38 km3 MML deposit derived from hydrothermally altered granites exposed near the summit of Martinez Mountain. The MML was originally believed to be of early Holocene age. However, AVIRIS mineral maps show abundant desert varnish on the top and toe of the landslide. Desert varnish can provide a means of relative dating of alluvial fan (AF) or landslide surfaces, as it accumulates at determinable rates over time. Based on the 1) highest levels of desert varnish accumulation mapped within the basin, 2) abundant evaporite playa minerals on top of the toe of the landslide, and 3) the highest shoreline of the ancestral lake overtopping the toe of the landslide with gastropod and bivalve shells, we conclude that the MML predates the oldest alluvial fan terraces and lake sediments exposed in the Coachella and Imperial valleys and must be older than early Holocene (i.e. Late Pleistocene?). Thus, the MML landslide has the potential to be used as a spectral endmember for desert varnish thickness and thus proxy for age discrimination of active AF washes versus desert pavements. Given the older age of the MML landslide and low water levels in the modern SS, the risk from future rockslides of this size and related seiches is rather low. However, catastrophic floods and debris flows do occur along the most active AF channels; and the aftermath of such flows can be identified spectrally by montmorillonite crusts forming in

  14. Lohse Crater Dunes

    NASA Technical Reports Server (NTRS)

    2005-01-01

    8 January 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows windblown sand dunes in Lohse Crater in Noachis Terra near 43.8oS, 16.8oW. The winds responsible for these dunes blew largely from the lower left (southwest) toward the upper right (northeast). The picture covers an area about 3 km (1.9 mi) across, and is illuminated by sunlight from the upper left.

  15. Dark Sand Dunes

    NASA Technical Reports Server (NTRS)

    2005-01-01

    13 January 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows dark sand dunes in the north polar region of Mars. The dominant winds responsible for these dunes blew from the lower left (southwest). They are located near 76.6oN, 257.2oW. The picture covers an area 3 km (1.9 mi) across; sunlight illuminates the scene from the upper right.

  16. Frost on Dunes

    NASA Technical Reports Server (NTRS)

    2005-01-01

    18 March 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows dark dunes on a crater floor during the southern spring. Some of the dunes have frost on their south-facing slopes.

    Location near: 52.3oS, 326.7oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Spring

  17. Mulitple Origins of Sand Dune-Topography Interactions on Titan

    NASA Astrophysics Data System (ADS)

    Goggin, H.; Ewing, R. C.; Hayes, A.; Cisneros, J.; Epps, J. C.

    2015-12-01

    The interaction between sand dune patterns and topographic obstacles is a primary signal of sand transport direction in the equatorial region of Saturn's moon, Titan. The streamlined, tear drop appearance of the sand-dune patterns as they wrap around obstacles and a dune-free zone on the east side of many obstacles gives the impression that sand transport is from the west to east at equatorial latitudes. However, the physical mechanism behind the dune-obstacle interaction is not well explained, leaving a gap in our understanding of the equatorial sand transport and implied wind directions and magnitudes on Titan. In order to better understand this interaction and evaluate wind and sand transport direction, we use morphometric analysis of optical images on Earth and Cassini SAR images on Titan combined with analog wind tunnel experiments to study dune-topography interactions. Image analysis is performed in a GIS environment to map spatial variations in dune crestline orientations proximal to obstacles. We also use digital elevation models to and analyze the three-dimensional geometry - height, length, width and slope of the dune-topography relationships on Earth. Preliminary results show that dune patterns are deflected similarly around positive, neutral, or negative topography, where positive topography is greater than the surrounding dune height, neutral topography is at dune height and negative topography is lower than dune heights. In the latter case these are typically intra-dune field playas. The obstacle height, width, slope and wind variability appear to play a primary role in determining if a lee-dune, rather than a dune-free lee-zone, develops. In many cases a dune-free playa with evaporite and mud desiccation polygons forms lee-ward of the obstacle. To support and elaborate on the mapping and spatial characterization of dune-topography interactions, a series of experiments using a wind tunnel were conducted. Wind tunnel experiments examine the formation

  18. Aeolian Processes at the Mars Exploration Rover Opportunity Landing Site

    NASA Technical Reports Server (NTRS)

    Sullivan, R.; Bell, J. F., III; Calvin, W.; Fike, D.; Golombek, M.; Greeley, R.; Grotzinger, J.; Herkenhoff, K.; Jerolmack, D.; Malin, M.

    2005-01-01

    The traverse of the Mars Exploration Rover Opportunity across its Meridiani Planum landing site has shown that wind has affected regolith by creating drifts, dunes, and ubiquitous ripples, by sorting grains during aeolian transport, by forming bright wind streaks downwind from craters seen from orbit, and by eroding rock with abrading, wind-blown material. Pre-landing orbiter observations showed bright and dark streaks tapering away from craters on the Meridiani plains. Further analysis of orbiter images shows that major dust storms can cause bright streak orientations in the area to alternate between NW and SE, implying bright wind streak materials encountered by Opportunity are transient, potentially mobilized deposits. Opportunity performed the first in situ investigation of a martian wind streak, focusing on a bright patch of material just outside the rim of Eagle crater. Data from Pancam, the Miniature Thermal Emission Spectrometer (Mini-TES), the Alpha-Particle X-Ray Spectrometer (APXS), and the Mossbauer spectrometer either are consistent with or permit an air fall dust interpretation. We conclude that air fall dust, deposited in the partial wind shadow of Eagle crater, is responsible for the bright streak seen from orbit, consistent with models involving patchy, discontinuous deposits of air fall dust distributed behind obstacles during periods of atmospheric thermal stability during major dust storms.

  19. The birth and death of transverse aeolian ridges on Mars

    USGS Publications Warehouse

    Geissler, Paul E.

    2014-01-01

    Transverse aeolian ridges (TARs) are small bright windblown deposits found throughout the Martian tropics that stand a few meters tall and are spaced a few tens of meters apart. The origin of these features remains mysterious more than 20 years after their discovery on Mars. This paper presents a new hypothesis, that some of the TARs could be indurated dust deposits emplaced millions of years ago during periods of higher axial obliquity. It suggests that these TARs are primary depositional bed forms that accumulated in place from dust carried by the winds in suspension, perhaps in a manner comparable to antidunes on Earth, and were subsequently indurated and eroded to their current states by eons of sandblasting. It points out examples of modern dust drifts and dune-like features that appear to have been recently formed by dust accumulating directly onto the surface from atmospheric suspension. It shows how these pristine dust deposits could evolve to explain the range of morphologies of the TARs. Finally, it explains how the known properties of many TARs are consistent with this hypothesis, including their composition, thermal behavior, and distribution.

  20. Sand dunes as migrating strings.

    PubMed

    Guignier, L; Niiya, H; Nishimori, H; Lague, D; Valance, A

    2013-05-01

    We develop a reduced complexity model for three-dimensional sand dunes, based on a simplified description of the longitudinal and lateral sand transport. The spatiotemporal evolution of a dune migrating over a nonerodible bed under unidirectional wind is reduced to the dynamics of its crest line, providing a simple framework for the investigation of three-dimensional dunes, such as barchan and transverse dunes. Within this model, we derive analytical solutions for barchan dunes and investigate the stability of a rectilinear transverse dune against lateral fluctuations. We show, in particular, that the latter is unstable only if the lateral transport on the dune slip face prevails over that on the upwind face. We also predict the wavelength and the characteristic time that control the subsequent evolution of an unstable transverse dune into a wavy ridge and the ultimate fragmentation into barchan dunes. PMID:23767529

  1. Sand dunes as migrating strings

    NASA Astrophysics Data System (ADS)

    Guignier, L.; Niiya, H.; Nishimori, H.; Lague, D.; Valance, A.

    2013-05-01

    We develop a reduced complexity model for three-dimensional sand dunes, based on a simplified description of the longitudinal and lateral sand transport. The spatiotemporal evolution of a dune migrating over a nonerodible bed under unidirectional wind is reduced to the dynamics of its crest line, providing a simple framework for the investigation of three-dimensional dunes, such as barchan and transverse dunes. Within this model, we derive analytical solutions for barchan dunes and investigate the stability of a rectilinear transverse dune against lateral fluctuations. We show, in particular, that the latter is unstable only if the lateral transport on the dune slip face prevails over that on the upwind face. We also predict the wavelength and the characteristic time that control the subsequent evolution of an unstable transverse dune into a wavy ridge and the ultimate fragmentation into barchan dunes.

  2. Last Glacial Maximum Development of Parna Dunes in Panhandle Oklahoma, USA

    NASA Astrophysics Data System (ADS)

    Johnson, W. C.; Halfen, A. F.; McGowen, S.; Carter, B.; Fine, S.; Bement, L. C.; Simms, A. R.

    2012-12-01

    landscape destabilized, and aeolian processes dominated. Peoria Loess began accumulating throughout parts of Oklahoma and much of Kansas, Nebraska, and beyond, until landscape stabilization was re-attained about 14-13 ka. Our chronological and geomorphic data suggest that parna dune construction in the Oklahoma panhandle was the result of strong, northerly winds, which precipitated aeolian activity at the beginning of MIS 2. Furthermore, these features appear to be more analogous to the regional loess record than the sand dune activation record, and, with more research, may prove to be a reliable record of late-Quaternary landscape change in the central Great Plains.

  3. Morphodynamic implications of flow around interacting barchan dunes

    NASA Astrophysics Data System (ADS)

    Tang, Z.; Blois, G.; Best, J.; Jiang, N.; Christensen, K. T.

    2013-12-01

    Barchan dunes are three-dimensional topographic features characterized by a crescentic shape. These bedforms are ubiquitous on Earth's surface and are also observed on Mars. Barchan dunes are predominantly found in regions of sediment starvation and unidirectional flow. The barchans-dune migration rates for a given wind speed are a function of their respective volume. A barchan dune field is composed of a widely distributed dune size, which provides the potential for barchan dunes to approach and amalgamate. The mechanisms governing dune-dune interaction, collision and merging remain poorly understood for such complex three-dimensional bedforms due to the complexity of their shape and the high number of geometrical configurations that can occur. In order to quantify the flow structure produced by interacting barchan dunes, particle-image Velocimetry (PIV) is coupled with a refractive-index-matching (RIM) approach, facilitating full optical access to the obstructed regions of flow and eliminates reflections from the liquid-solid boundaries, allowing near-wall data to be collected. Transparent barchan dune models with different volumes are arranged in tandem, immersed in a turbulent flow and rendered invisible through accurate matching of the index of refraction of the solid and fluid phases. The approach applied herein facilitates flow-field measurements in both streamwise-wall-normal planes at varying spanwise positions and streamwise-spanwise planes at varying elevations. Ensemble-averaged flow fields and Reynolds stresses were obtained for different barchan dune spacings and compared to the reference case of an isolated barchan. Additionally, proper orthogonal decomposition (POD) analysis was employed to shed light as to the energetic attributes of the shear-layer interactions. The morphodynamic implications of these results are discussed. Shear-layer interactions between adjacent bedforms, stoss-side erosion and downstream separation of new bedforms from the

  4. Sorting during Migration of Aeolian Megaripples

    NASA Astrophysics Data System (ADS)

    Sullivan, R. J., Jr.; Zimbelman, J. R.

    2014-12-01

    Aeolian sediments commonly are well sorted. However, aeolian megaripples (aka coarse-grained ripples or granule ripples) have bimodal grain size-frequencies. Distinguishing aeolian megaripple deposits from mixed grain size fluvial deposits is important, particularly for martian sedimentary rocks where implications for flowing water in the martian past (if revealed by legitimate fluvial deposits) are important mission drivers for rovers and landers. Aeolian megaripples are relatively minor components of terrestrial aeolian settings (e.g., as interdune features), but on Mars, megaripples have been encountered in many locations by landers and rovers, are durable due to indurated, armoring surface layers of very coarse sand, and therefore are likely candidates for preservation in the martian sedimentary rock record. Unfortunately, megaripple deposits preserved in martian sedimentary rocks must be recognized with much less data or context than obtained typically during terrestrial fieldwork. We have undertaken wind tunnel experiments and fieldwork to assist interpretations distinguishing aeolian megaripple deposits from mixed grain fluvial materials. Lags of coarse or very coarse sand from ancient aeolian environments within the White Rim Sandstone, Canyonlands NP, UT, and at some localities along the J2 Unconformity at Buckhorn Wash, UT, are well sorted, with a sharply defined maximum grain size in each case. We conducted wind tunnel experiments to explore whether the well-sorted, sharp cutoff in maximum grain size of the coarse fraction in these deposits could be diagnostic of aeolian megaripple formation and migration. Wind tunnel experiments involved 250 μm sand saltating against 600-2800 μm grains. For a given wind tunnel speed, only a narrow grain size range appeared on megaripple surfaces as these bedforms developed spontaneously from the bed; somewhat finer grains migrated rapidly downwind, while slightly coarser grains remained immobile. The physics of

  5. Riverine Eolian Dunes in Uruguay: OSL Ages and Paleoenvironmental Significance

    NASA Astrophysics Data System (ADS)

    Leigh, D. S.; Suarez, R.; Brook, G. A.

    2012-12-01

    Relict parabolic dunes occur along Rio Negro and Rio Tacuarembó in Uruguay under the current humid temperate climate. These dunes offer important terrestrial evidence of drier conditions in the past and may provide foresight about landscape consequences of future climate change. The ages of these dunes previously had not been measured by any absolute dating technique. Two dune fields were selected for optically stimulated luminescence (OSL) dating using the single aliquot regeneration method, including four samples along Rio Negro near Pueblo de la Arena and three samples along Rio Tacuarembó near Ansina. Results indicate that the dunes were active during the late Pleistocene, with five of the OSL ages in the 22 ka to 12 ka range. One OSL age at the Ansina dune field returned an age of 6 ka, indicating the possibility of limited dune reactivation during the Holocene. There is clear evidence of historical dune activation (e.g. buried fences) at both the Rio Negro and Rio Tacuarembó sites; one OSL sample from Rio Negro dunes confirms an historical age of 107 years BP. However, human land disturbance rather than climatic factors may explain the historical reactivation. Late Pleistocene dune activity in central Uruguay indicates much drier and windier paleoclimate (at least seasonally) than present, and correlates well with eolian activity in more arid parts of South America in western Argentina. Age and paleoenvironment of the riverine dunes in Uruguay are remarkably similar to those of the southeastern United States (USA), indicating similar patterns of paleoclimate in both hemispheres. Such similarities help to resolve the spatial patterns of global scale climate change.

  6. Multiple dust sources in the Sahara Desert: The importance of sand dunes

    NASA Astrophysics Data System (ADS)

    Crouvi, Onn; Schepanski, Kerstin; Amit, Rivka; Gillespie, Alan R.; Enzel, Yehouda

    2012-07-01

    We determine the current sources of dust in the Sahara Desert using quantitative correlation between the number of days with dust storms (NDS), derived from remote-sensing data of high temporal resolution, with the distribution of the soil types and geomorphic units. During 2006-8 the source of over 90% of the NDS was found to be sand dunes, leptosols, calcisols, arenosols, and rock debris. In contrast to previous studies, only few dust storms originated from playas and dry lake beds. Land erodibility was estimated by regressing the NDS to the number of days with high-speed wind events, and was found to be high for sand dunes. Clay and fine-silt grains and aggregates are scarce in sand dunes, which most likely produce dust particles through aeolian abrasion of sand grains. Thus, saltating sand grains impacting clay aggregates on playa surfaces cannot be the sole process for generating dust in the Sahara.

  7. Allostratigraphy and Quaternary dune sediments: Not all bounding surfaces are the same

    NASA Astrophysics Data System (ADS)

    Leighton, Carly L.; Thomas, David S. G.; Bailey, Richard M.

    2013-12-01

    A lack of knowledge of the underlying stratigraphy is often cited as a limitation of dunefield optically stimulated luminescence (OSL) sampling campaigns. Here we examine the role of allostratigraphy in characterising aeolian structural sequences, and the implications of the relationship between visible internal structure and dune accumulation chronologies. We argue that whilst allostratigraphy offers the most appropriate approach to the description of dune internal structure, it has fundamental limitations that reduce the utility of its direct application to constructing chronologies of dune accumulation. Allostratigraphical units are not synonymous with chronologically-distinct accumulation units, and not all significant bounding surfaces are unconformities. Therefore, the utility of an allostratigraphical approach in guiding sampling for OSL dating is limited.

  8. Evaluation of a new model of aeolian transport in the presence of vegetation

    USGS Publications Warehouse

    Li, Junran; Okin, Gregory S.; Herrick, Jeffrey E.; Belnap, Jayne; Miller, Mark E.; Vest, Kimberly; Draut, Amy E.

    2013-01-01

    Aeolian transport is an important characteristic of many arid and semiarid regions worldwide that affects dust emission and ecosystem processes. The purpose of this paper is to evaluate a recent model of aeolian transport in the presence of vegetation. This approach differs from previous models by accounting for how vegetation affects the distribution of shear velocity on the surface rather than merely calculating the average effect of vegetation on surface shear velocity or simply using empirical relationships. Vegetation, soil, and meteorological data at 65 field sites with measurements of horizontal aeolian flux were collected from the Western United States. Measured fluxes were tested against modeled values to evaluate model performance, to obtain a set of optimum model parameters, and to estimate the uncertainty in these parameters. The same field data were used to model horizontal aeolian flux using three other schemes. Our results show that the model can predict horizontal aeolian flux with an approximate relative error of 2.1 and that further empirical corrections can reduce the approximate relative error to 1.0. The level of error is within what would be expected given uncertainties in threshold shear velocity and wind speed at our sites. The model outperforms the alternative schemes both in terms of approximate relative error and the number of sites at which threshold shear velocity was exceeded. These results lend support to an understanding of the physics of aeolian transport in which (1) vegetation's impact on transport is dependent upon the distribution of vegetation rather than merely its average lateral cover and (2) vegetation impacts surface shear stress locally by depressing it in the immediate lee of plants rather than by changing the bulk surface's threshold shear velocity. Our results also suggest that threshold shear velocity is exceeded more than might be estimated by single measurements of threshold shear stress and roughness length

  9. Evaluation of a new model of aeolian transport in the presence of vegetation

    NASA Astrophysics Data System (ADS)

    Li, Junran; Okin, Gregory S.; Herrick, Jeffrey E.; Belnap, Jayne; Miller, Mark E.; Vest, Kimberly; Draut, Amy E.

    2013-03-01

    Aeolian transport is an important characteristic of many arid and semiarid regions worldwide that affects dust emission and ecosystem processes. The purpose of this paper is to evaluate a recent model of aeolian transport in the presence of vegetation. This approach differs from previous models by accounting for how vegetation affects the distribution of shear velocity on the surface rather than merely calculating the average effect of vegetation on surface shear velocity or simply using empirical relationships. Vegetation, soil, and meteorological data at 65 field sites with measurements of horizontal aeolian flux were collected from the Western United States. Measured fluxes were tested against modeled values to evaluate model performance, to obtain a set of optimum model parameters, and to estimate the uncertainty in these parameters. The same field data were used to model horizontal aeolian flux using three other schemes. Our results show that the model can predict horizontal aeolian flux with an approximate relative error of 2.1 and that further empirical corrections can reduce the approximate relative error to 1.0. The level of error is within what would be expected given uncertainties in threshold shear velocity and wind speed at our sites. The model outperforms the alternative schemes both in terms of approximate relative error and the number of sites at which threshold shear velocity was exceeded. These results lend support to an understanding of the physics of aeolian transport in which (1) vegetation's impact on transport is dependent upon the distribution of vegetation rather than merely its average lateral cover and (2) vegetation impacts surface shear stress locally by depressing it in the immediate lee of plants rather than by changing the bulk surface's threshold shear velocity. Our results also suggest that threshold shear velocity is exceeded more than might be estimated by single measurements of threshold shear stress and roughness length

  10. Roughness configuration matters for aeolian sediment flux

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The parameterisation of surface roughness effects on aeolian sediment transport is a key source of uncertainty in wind erosion models. Roughness effects are typically represented by bulk drag-partitioning schemes that scale the threshold friction velocity (u*t) for soil entrainment by the ratio of s...

  11. Aligned Defrosting Dunes

    NASA Technical Reports Server (NTRS)

    2004-01-01

    17 August 2004 This July 2004 Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a group of aligned barchan sand dunes in the martian north polar region. At the time, the dunes were covered with seasonal frost, but the frost had begun to sublime away, leaving dark spots and dark outlines around the dunes. The surrounding plains exhibit small, diffuse spots that are also the result of subliming seasonal frost. This northern spring image, acquired on a descending ground track (as MGS was moving north to south on the 'night' side of Mars) is located near 78.8oN, 34.8oW. The image covers an area about 3 km (1.9 mi) across and sunlight illuminates the scene from the upper left.

  12. Dunes of the North

    NASA Technical Reports Server (NTRS)

    2005-01-01

    30 March 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows linear and barchan sand dunes in Chasma Boreale, a broad erosional trough in the martian north polar region. Winds responsible for these dunes generally blow from upper right toward the lower left. Martian dunes tend to be darker than their counterparts on Earth because they are composed of darker, iron-bearing minerals and rock fragments.

    Location near: 84.2oN, 37.9oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Summer

  13. Dynamic sand dunes.

    PubMed

    Amarouchene, Y; Boudet, J F; Kellay, H

    2001-05-01

    When sand falling in the spacing between two plates goes past an obstacle, a dynamic dune with a parabolic shape and an inner triangular region of nonflowing or slowly creeping sand forms. The angle of the triangular zone increases with the height of the dune and saturates at a value determined by the geometry of the cell. The width of the dune, related to the radius of curvature at the tip, shows universal features versus its height rescaled by geometrical parameters. The velocity profile in the flowing part is determined and found to be nonlinear. The parabolic shape can be accounted for using a simple driven convection-diffusion equation for the interface. PMID:11328156

  14. Ripples and Dunes

    NASA Technical Reports Server (NTRS)

    2006-01-01

    27 May 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows dark sand dunes on the floor of an impact crater west of Hellas Planitia. Portions of the crater floor are exposed near the center and lower right corner of the image but, in general, the floor is covered by large, windblown ripples. The dark dune sand typically covers ripples, indicating that the dunes are younger and made of a more mobile material.

    Location near: 43.7oS, 320.4oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Summer

  15. Influence de la maturation des sols de mangrove sur la déflation éolienne et la formation des dunes argileuses dans le delta du fleuve Sénégal

    NASA Astrophysics Data System (ADS)

    Barbiéro, Laurent; Mohamedou, Abdallahi Ould; Caruba, Raoul

    1998-07-01

    The study of clay dunes is frequently used for the reconstitution of the palaeoenviron ment. A stop in the sedimentation is generally attributed to changes in the climatic, or hydrological environment. Our study in the Senegal delta shows that transformations in the superficial part of the soil can result in a stop of the aeolian deflation and clay dune formation, without changes in the environmental conditions.

  16. Flood Induced Increases in Aeolian Transport Along the Missouri River

    NASA Astrophysics Data System (ADS)

    Benthem, A. J.; Strong, L.; Schenk, E.; Skalak, K.; Hupp, C. R.; Galloway, J.

    2014-12-01

    In 2011, heavy winter snow melt combined with extensive spring rains caused the Missouri River to experience the most extensive flooding since the river was dammed in the 1950s. Large sections of the river banks, islands, and floodplains experienced weeks of prolonged inundation, resulting in extensive sand deposition as up to1 km inland from the established channel. Though locally variable, deposits of up to 3m of loose sand were deposited on the floodplain and extensive areas of shrub, grasslands, and agricultural fields were completely buried or had vegetation washed away in the inundation zone. The flooding also created a number of new unvegetated islands which provide important habitat for endangered species including the Piping Plover (Charadrius melodus). These newly created sand surfaces are unconsolidated and have very little vegetation to prevent aeolian transport. Strong sustained regional winds of up to 20m/s (45mph) cause substantial sediment fluxes which modify landscape topography, shift river morphology, and increase regional dust levels. Our study monitors and quantifies the increase in aeolian transport that occurred following flooding along the Garrison Reach, a 110 km section of free flowing Missouri River in North Dakota. In 2012 and 2013 we measured sand transport and accumulation rates using Leatherman style sand traps and erosion pins to at 9 sites of varying vegetation densities. We apply these flux rates to a high resolution remote sensing vegetation map to estimate the total flux of sand for this segment of the river. We also quantify total available new sand for transport using repeat Light Detection and Ranging (LiDAR) coverage from before and after the flood and examine the relationship between sand deposition and the rate of reestablishment of vegetation. All of these results are used to estimate the scale of flood induced aeolian processes and predict where they may continue to influence the landscape.

  17. The Icelandic volcanic aeolian environment: Processes and impacts - A review

    NASA Astrophysics Data System (ADS)

    Arnalds, Olafur; Dagsson-Waldhauserova, Pavla; Olafsson, Haraldur

    2016-03-01

    Iceland has the largest area of volcaniclastic sandy desert on Earth or 22,000 km2. The sand has been mostly produced by glacio-fluvial processes, leaving behind fine-grained unstable sediments which are later re-distributed by repeated aeolian events. Volcanic eruptions add to this pool of unstable sediments, often from subglacial eruptions. Icelandic desert surfaces are divided into sand fields, sandy lavas and sandy lag gravel, each with separate aeolian surface characteristics such as threshold velocities. Storms are frequent due to Iceland's location on the North Atlantic Storm track. Dry winds occur on the leeward sides of mountains and glaciers, in spite of the high moisture content of the Atlantic cyclones. Surface winds often move hundreds to more than 1000 kg m-1 per annum, and more than 10,000 kg m-1 have been measured in a single storm. Desertification occurs when aeolian processes push sand fronts and have thus destroyed many previously fully vegetated ecosystems since the time of the settlement of Iceland in the late ninth century. There are about 135 dust events per annum, ranging from minor storms to >300,000 t of dust emitted in single storms. Dust production is on the order of 30-40 million tons annually, some traveling over 1000 km and deposited on land and sea. Dust deposited on deserts tends to be re-suspended during subsequent storms. High PM10 concentrations occur during major dust storms. They are more frequent in the wake of volcanic eruptions, such as after the Eyjafjallajökull 2010 eruption. Airborne dust affects human health, with negative effects enhanced by the tubular morphology of the grains, and the basaltic composition with its high metal content. Dust deposition on snow and glaciers intensifies melting. Moreover, the dust production probably also influences atmospheric conditions and parameters that affect climate change.

  18. Multi-Resolution Analysis of LiDAR data for Characterizing a Stabilized Aeolian Landscape in South Texas

    NASA Astrophysics Data System (ADS)

    Barrineau, C. P.; Dobreva, I. D.; Bishop, M. P.; Houser, C.

    2014-12-01

    Aeolian systems are ideal natural laboratories for examining self-organization in patterned landscapes, as certain wind regimes generate certain morphologies. Topographic information and scale dependent analysis offer the opportunity to study such systems and characterize process-form relationships. A statistically based methodology for differentiating aeolian features would enable the quantitative association of certain surface characteristics with certain morphodynamic regimes. We conducted a multi-resolution analysis of LiDAR elevation data to assess scale-dependent morphometric variations in an aeolian landscape in South Texas. For each pixel, mean elevation values are calculated along concentric circles moving outward at 100-meter intervals (i.e. 500 m, 600 m, 700 m from pixel). The calculated average elevation values plotted against distance from the pixel of interest as curves are used to differentiate multi-scalar variations in elevation across the landscape. In this case, it is hypothesized these curves may be used to quantitatively differentiate certain morphometries from others like a spectral signature may be used to classify paved surfaces from natural vegetation, for example. After generating multi-resolution curves for all the pixels in a selected area of interest (AOI), a Principal Components Analysis is used to highlight commonalities and singularities between generated curves from pixels across the AOI. Our findings suggest that the resulting components could be used for identification of discrete aeolian features like open sands, trailing ridges and active dune crests, and, in particular, zones of deflation. This new approach to landscape characterization not only works to mitigate bias introduced when researchers must select training pixels for morphometric investigations, but can also reveal patterning in aeolian landscapes that would not be as obvious without quantitative characterization.

  19. North Polar Dunes

    NASA Technical Reports Server (NTRS)

    2005-01-01

    10 April 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows low-albedo sand dunes in the north polar region. The slip faces on the dunes face toward the lower left, indicating that the dominant winds in this region blow or blew from the upper right.

    Location near: 82.4oN, 46.5oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Summer

  20. Dunes of Herschel

    NASA Technical Reports Server (NTRS)

    2005-01-01

    4 August 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows dark-toned sand dunes on the floor of the large martian impact crater, Herschel, located in the Terra Cimmeria region of Mars. The winds responsible for these dunes blew from the northeast (upper right).

    Location near: 15.7oS, 228.6oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Spring

  1. Nili Patera Dunes

    NASA Technical Reports Server (NTRS)

    2005-01-01

    6 July 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows dark, windblown sand dunes in the caldera of Nili Patera, a volcanic crater in Syrtis Major. The dunes were formed by winds blowing from the northeast (upper right).

    Location near: 9.0oN, 292.9oW Image width: 3 km (1.9 mi) Illumination from: lower left Season Northern Autumn

  2. Frosted Chasma Boreale Dunes

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-390, 13 June 2003

    This is a Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) view of frost-covered sand dunes in Chasma Boreale in the early northern spring season. Dark spots, some of them with bright halos of re-precipitated frost, have formed as the dunes begin to defrost. Most of the frost is carbon dioxide which freezes out of the atmosphere during the cold martian polar winters. This picture is located near 84.7oN, 358.8oW, and is illuminated from the lower left.

  3. Sand Dunes with Frost

    NASA Technical Reports Server (NTRS)

    2004-01-01

    9 May 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a suite of frost-covered sand dunes in the north polar region of Mars in early spring, 2004. The dunes indicate wind transport of sand from left to right (west to east). These landforms are located near 78.1oN, 220.8oW. This picture is illuminated by sunlight from the lower left and covers an area about 3 km (1.9 mi) across.

  4. Sand Dunes in Hellas

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-537, 7 November 2003

    The smooth, rounded mounds in this Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) picture are sand dunes. The scene is located in southern Hellas Planitia and was acquired in mid-southern autumn, the ideal time of year for Hellas imaging. Sunlight illuminates the scene from the upper left. These dunes are located near 49.1oS, 292.6oW. The picture covers an area 3 km (1.9 mi) wide.

  5. Potential of Probing the Lunar Regolith using Rover-Mounted Ground Penetrating Radar: Moses Lake Dune Field Analog Study

    NASA Technical Reports Server (NTRS)

    Horz, F.; Heggy, E.; Fong, T.; Kring, D.; Deans, M.; Anglade, A.; Mahiouz, K.; Bualat, M.; Lee, P.; Bluethmann, W.

    2009-01-01

    Probing radars have been widely recognized by the science community to be an efficient tool to explore lunar subsurface providing a unique capability to address several scientific and operational issues. A wideband (200 to 1200 MHz) Ground Penetrating Radar (GPR) mounted on a surface rover can provide high vertical resolution and probing depth from few tens of centimeters to few tens of meters depending on the sounding frequency and the ground conductivity. This in term can provide a better understand regolith thickness, elemental iron concentration (including ilmenite), volatile presence, structural anomalies and fracturing. All those objectives are of important significance for understanding the local geology and potential sustainable resources for future landing sites in particular exploring the thickness, structural heterogeneity and potential volatiles presence in the lunar regolith. While the operation and data collection of GPR is a straightforward case for most terrestrial surveys, it is a challenging task for remote planetary study especially on robotic platforms due to the complexity of remote operation in rough terrains and the data collection constrains imposed by the mechanical motion of the rover and limitation in data transfer. Nevertheless, Rover mounted GPR can be of great support to perform systematic subsurface surveys for a given landing site as it can provide scientific and operational support in exploring subsurface resources and sample collections which can increase the efficiency of the EVA activities for potential human crews as part of the NASA Constellation Program. In this study we attempt to explore the operational challenges and their impact on the EVA scientific return for operating a rover mounted GPR in support of potential human activity on the moon. In this first field study, we mainly focused on the ability of GPR to support subsurface sample collection and explore shallow subsurface volatiles.

  6. Hematite Outlier and Sand Dunes

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Released 4 December 2003

    This image shows a crater just south of the edge of the famous hematite-bearing surface, which is visible in the context image as a smooth area to the north. The crater has two features of immediate note. The first is a layered mound in the north part of the crater floor. This mound contains hematite, and it is an outlying remnant of the greater deposits to the north that have otherwise completely disappeared in this crater. The second feature is a dune field in the center of the crater floor, with dark dunes indicating winds from the northwest. The dunes grade into a dark sand sheet with no coherent structure, indicating that the sand layer thins out to the south and east.

    Image information: VIS instrument. Latitude -4.4, Longitude 357.3 East (2.7 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  7. Frost-covered dunes

    NASA Technical Reports Server (NTRS)

    1999-01-01

    MOC image of dunes in Chasma Boreale, a giant trough in the north polar cap. This September 1998 view shows dark sand emergent from beneath a veneer of bright frost left over from the northern winter that ended in July 1998.

  8. Two-dimensional airflow modeling underpredicts the wind velocity over dunes.

    PubMed

    Michelsen, Britt; Strobl, Severin; Parteli, Eric J R; Pöschel, Thorsten

    2015-01-01

    We investigate the average turbulent wind field over a barchan dune by means of Computational Fluid Dynamics. We find that the fractional speed-up ratio of the wind velocity over the three-dimensional barchan shape differs from the one obtained from two-dimensional calculations of the airflow over the longitudinal cut along the dune's symmetry axis - that is, over the equivalent transverse dune of same size. This finding suggests that the modeling of the airflow over the central slice of barchan dunes is insufficient for the purpose of the quantitative description of barchan dune dynamics as three-dimensional flow effects cannot be neglected. PMID:26572966

  9. Municipal initiatives for managing dunes in coastal residential areas: a case study of Avalon, New Jersey, USA

    NASA Astrophysics Data System (ADS)

    Nordstrom, Karl F.; Jackson, Nancy L.; Bruno, Michael S.; de Butts, Harry A.

    2002-10-01

    The characteristics of foredunes created in a municipal management program on a developed barrier island are evaluated to identify how landforms used as protection structures can be natural in appearance and function yet compatible with human values. Shoreline management zones include a naturally evolving, undeveloped segment; a noneroding, developed segment; eroding and noneroding segments of an "improved beach" where dunes have been built by artificial nourishment; and a privately built, artificially nourished dune on the shoreline of an inlet. A disastrous storm in 1962 resulted in an aggressive program for building dunes using sand fences, vegetation plantings, purchase of undeveloped lots, and sediment backpassing to maintain beach widths and dune elevations. The present nourished and shaped foredune in the improved beach is higher, wider, and closer to the berm crest than the natural dune. Restricted inputs of aeolian sand keep the surface flat and poorly vegetated. A stable section of this engineered shore has a wider beach, and sand fences have created a higher foredune with greater topographic diversity. The cross shore zonation of vegetation here is more typical of natural dunes, but the environmental gradient is much narrower. The privately built dune is low, narrow, and located where it could not be created naturally. Foreshore and aeolian sediments in the undeveloped segment and the improved beach are similar in mean grain size (0.16-0.21 mm) and sorting (0.31-0.39 φ), but sediment on the surface of the nourished dune is coarser (28.1% gravel) with a more poorly sorted sand fraction (1.30 φ) representing lag elements on the deflation surface. Willingness to enhance beaches and dunes for protection has reduced insurance premiums and allowed the municipality to qualify for funds from the Federal Emergency Management Agency (FEMA) to replace lost sediment, thus placing an economic value on dunes. Success of the management program is attributed to: (i

  10. Assessing significant geomorphic changes and effectiveness of dynamic restoration in a coastal dune ecosystem

    NASA Astrophysics Data System (ADS)

    Walker, Ian J.; Eamer, Jordan B. R.; Darke, Ian B.

    2013-10-01

    A shift from restoring coastal dunes as stabilized landscapes toward more morphodynamic ecosystems is underway. This paper uses results from a recent case study where invasive vegetation was removed from a coastal dune complex in western Canada as a first step in a dynamic ecosystem restoration project. Spatial statistical methods, used in the natural sciences to quantify patterns of significant spatial-temporal changes, are reviewed and the local Moran's Ii spatial autocorrelation statistic is explored for detecting and assessing significant changes. Cluster maps of positive (depositional) and negative (erosional) changes were used to derive statistically significant volumetric changes within discrete geomorphic units (beach, foredune, transgressive dune) over one year following vegetation removal. All units experienced net increases in sediment budgets compared to a pre-restoration surface. The beach experienced the highest episodic erosion and volumetric change and greatest net annual sediment budget. Compared to the beach, the annual sediment budget of the foredune was 19% whereas the transgressive dune was 33%. The foredune recovered rapidly to initial erosion during restoration and subsequent natural events with consistently positive sediment volumes and attained a form similar to that pre-restoration. Aeolian deflation and sand bypassing through the foredune was greatest in the two months following vegetation removal and peak accretion in the transgressive dune resulted from depositional lobes extending from the foredune, smaller dunes migrating within the complex, and growth of a precipitation ridge along the eastern margin. Several methodological and logistical considerations for detecting significant change in dynamic dune landscapes are discussed including sampling strategy design, data normalization and control measures, and incorporating uncertainty and inherent spatial relations within acquired datasets to ensure accuracy and comparability of results

  11. Dynamics of a cliff top dune

    NASA Astrophysics Data System (ADS)

    Rasmussen, K. R.

    2012-12-01

    Morphological changes during more than 100 years have been investigated for a cliff-top dune complex at Rubjerg at the Danish North Sea coast. Here the lower 50 m of the cliff front is composed of Pleistocene steeply inclined floes of silt and clay with coarse sand in between which gives it a saw-tooth appearance. On top of this the dunes are found for several kilometres along the coastline. Due to erosion by the North Sea the cliff has retreated about 120 m between approximately 1880 and 1970 as indicated from two national surveys, and recent GPS-surveys indicate that erosion is continuing at a similar rate. Nevertheless the cliff top dune complex has survived, but its morphology has undergone some changed. The old maps indicate that around 1880 the dune complex was composed of several up to about 20 m high dunes streamlined in the East-West direction which is parallel to the prevailing wind direction. When protective planting started during the first half of the 20th Century the cliff top dunes gradually merged together forming a narrow, tall ridge parallel to the shore line with the highest part reaching about 90 m near 1970. In 1993 the highest points along the ridge was almost 95 m high, but then the protective planting was considerably reduced and recent annual GPS-surveys indicate that the dunes respond quickly to this by changing their morphology towards the original appearance. It is remarkable that despite the mass wasting caused by the constant erosion of the cliff front the dunes have remained more or less intact. Theoretical studies of hill flow indicate given the proper geometry of the cliff then suspension of even coarse grains can be a very effective agent for carrying sand from the exposed parts of the cliff front to and beyond the cliff-top. Mostly the sand grains are deposited within some hundred meters downwind of the cliff dune while silt is often carried more than 10 km inland. Field observations indicate that where the dislodged floes and

  12. Discrete Element Method simulations of the saturation of aeolian sand transport

    NASA Astrophysics Data System (ADS)

    Pähtz, Thomas; Omeradžić, Amir; Carneiro, Marcus V.; Araújo, Nuno A. M.; Herrmann, Hans J.

    2015-03-01

    The saturation length of aeolian sand transport (Ls), characterizing the distance needed by wind-blown sand to adapt to changes in the wind shear, is essential for accurate modeling of the morphodynamics of Earth's sandy landscapes and for explaining the formation and shape of sand dunes. In the last decade, it has become a widely accepted hypothesis that Ls is proportional to the characteristic distance needed by transported particles to reach the wind speed (the "drag length"). Here we challenge this hypothesis. From extensive numerical Discrete Element Method simulations, we find that, for medium and strong winds, Ls∝Vs2/g, where Vs is the saturated value of the average speed of sand particles traveling above the surface and g is the gravitational constant. We show that this proportionality is consistent with a recent analytical model, in which the drag length is just one of four similarly important length scales relevant for sand transport saturation.

  13. Sedimentology of coastal chevron deposits - tsunamigenic versus aeolian origin

    NASA Astrophysics Data System (ADS)

    Garcia Garcia, A.; Spiske, M.; Tsukamoto, S.; Schmidt, V.

    2012-12-01

    The genesis of v-shaped coastal chevrons is currently controversially discussed. So far, chevrons are only described regarding their morphology, but not in terms of their origin. Two possible origins of chevrons are proposed: both aeolian transport and tsunami inundation are discussed as depositing processes. We present initial results of a detailed sedimentological survey of Holocene coastal chevrons from the American and Australian west coasts. The chevrons were measured and levelled using a differential GPS system. Large scale internal structures were recorded by ground penetrating radar imaging. Trenches were dug for sampling and analyzing small scale internal structures. The sediment samples were used for the analysis of grain-size distributions, mineral composition and content of marine microorganisms. Additional samples were taken for optically stimulated luminescence (OSL) and radiocarbon dating. Furthermore, we took reference samples from beaches, cliffs and rivers, which could act as potential sediment sources for the surveyed chevrons. Tsunami deposits are commonly polymodal, exhibit a grain-size decrease and tend to show better sorting in landward direction. Such trends are not present in the surveyed chevrons. Most samples are well to moderately well sorted and unimodal. The OSL ages decrease in transport direction and indicate a long term generation process, such as dune migration, rather than a short term event like a tsunami. This fact is additionally underlined by land snails found in different stratigraphic levels within the Australian chevrons. Furthermore, the occurrence of intercalated soil horizons implies a change of stable and active migration phases. The initial results of this study point out to an aoelian origin of coastal chevrons and do not support the previously supposed thesis of a tsunamigenic origin.

  14. The Origin of Transverse Aeolian Ridges on Mars

    NASA Astrophysics Data System (ADS)

    Geissler, P.

    2015-12-01

    Transverse aeolian ridges, or TARs, are found throughout the tropics of Mars and typically appear as rows of bright ripples that are several meters tall and spaced semi-regularly several tens of meters apart. The origin of these features remained mysterious for decades after their discovery in Viking and Mars Global Surveyor images. A new hypothesis (Geissler, 2014, 10.1002-2014JE004633) suggests that TARs might be deposits left behind by dusty turbidity currents in the Martian atmosphere. The hypothesis assumes that the micron-sized dust particles are transported in suspension in turbulent flows, driven both by the winds and by gravity. The dust is concentrated near the surface, much like turbidity currents on Earth. Because of the difference in density, however, the dust clouds behave as a fluid distinct from the clear sky above. In particular, waves can appear at the surface of the dense "fluid" when the flows encounter topographic obstacles along their paths. Such gravity waves travel at speeds that are determined by gravity and the thickness of the flow, much like waves in shallow water on Earth. When the wave propagation speed matches the speed of the flow, stationary waves are produced that persist in fixed locations. The bedforms deposited by such stationary waves are called "antidunes" (Gilbert, 1914, USGS Prof. Paper 86) because, unlike dunes, they can migrate upstream in a supercritical flow. Antidunes are commonly seen in shallow, high energy fluvial deposits on Earth. They are usually destroyed as quickly as they form, and are rarely preserved. The Martian TARs survive because the dust is sticky; TARs are deposited by currents that are much slower than the wind speeds needed to lift the dust again. Subaerial antidunes are much rarer on Earth and less well studied, and so the giant subaerial stationary antidunes of Mars, if that is what the TARs turn out to be, may teach us much about a geological process that is poorly known on our planet.

  15. Dynamic monitoring of avalanches and barchan dune morphology change at different timescales

    NASA Astrophysics Data System (ADS)

    Nield, Joanna; Wiggs, Giles; Baddock, Matthew; Hipondoka, Martin

    2016-04-01

    Aeolian dune morphology responds dynamically to changing wind conditions. The lee slope avalanche dynamics of dunes are particularly sensitive to prior morphological conditions as well as the varying intensity and duration characteristics of sand transport events. Here we use terrestrial laser scanning (TLS) to measure dune surface change over minutes, hours, a week and a year during conditions of variable approach flow resulting in considerable lee slope reworking. Several different avalanche patterns are recognised that can be related to slope characteristics, wind direction and slope reworking. We find that during oblique winds, horn reworking can reduce the lee slope angle. When the dominant, formative winds of the barchan return, the reworked lee slope, perpendicular to the prior oblique wind, takes longer to start avalanching. In the central region of the dune, avalanche frequency and the extent of lee slope reworking depends on wind speed. Under high winds from the dominant direction, there is continual erosion near the dune brink central area, due to the exceedance of a critical angle of repose, whilst under weaker winds the frequency of grainfall sedimentation and avalanches diminishes and net deposition in the brink area is more common. During the week of measurements, changes to the crest-brink area and lee slope form are considerable, based on the reworking of the slope by avalanche events, and this ultimately influences the dune migration rate. Over the course of a year, we demonstrate that the shape of the barchan stoss and lee slopes can change significantly, whilst the overall dune size and general planform is maintained. Our findings help elucidate dune mobility mechanics and pattern modifications at the wind storm event scale.

  16. Storms, shoreface morphodynamics, sand supply, and the accretion and erosion of coastal dune barriers in the southern North Sea

    NASA Astrophysics Data System (ADS)

    Anthony, Edward J.

    2013-10-01

    The coast of the southern North Sea is bound by dune barriers that have developed adjacent to a shallow storm- and tide-dominated shoreface comprising numerous shore-parallel to sub-shore-parallel tidal sand banks. The banks evolve under the joint control of tide-, wave- and wind-induced shore-parallel currents, which tend to ‘stretch' them, eventually leading to bank division, and to shoaling and breaking storm waves, which tend to drive them ashore. The banks, thus, modulate the delivery of storm wave energy to the coast, redirect currents alongshore and are the sand sources for the accretion of coastal dunes. Foredune accretion occurs where major sand banks have migrated shoreward over the last centuries to be finally driven ashore and weld under the impact of storm waves. Morphological changes in the bank field can impact on shoreline stability through dissipation or enhanced shoreward transmission of storm wave energy and effects on radiation stress, particularly when waves are breaking over the banks. Where banks are close to the shore, mitigation of offshore sediment transport, especially during storms, can occur because of gradients in radiation stress generated by the complex 3D bank structure. These macro-scale mechanisms involve embedded meso-scale interactions that revolve around the mobility of sand waves, mobility of beach bars and troughs and foredune mobility, and micro-scale processes of bedform mobility in the subaqueous and intertidal domains, and of swash and aeolian beach-dune sand transport. These embedded interactions and the morphodynamic feedback loops illustrate the importance of synchroneity of sand transport from shoreface to dune on this coast. Large stretches of the foredunes show either signs of stability, or mild but chronic erosion. Furthermore, a demonstrated lack of a clear relationship occurs between storminess and coastal response over the second half of the 20th century. The present situation may be indicative of conditions

  17. Movement of Whole Martian Dunes Difficult to Detect or Confirm

    NASA Technical Reports Server (NTRS)

    2000-01-01

    of less than 20 meters (66 ft) in 11 martian years (nearly 22 Earth years) is slower than some dunes of similar size and shape on Earth. Thus, it appears that martian dunes are not 'experiencing' the level of activity commonly reported for some of the modern desert dunes found on Earth. The dune field illustrated in these pictures is located in a western Arabia Terra crater at 1.6oN, 351.6oW. Both the Viking and MOC images are illuminated from the left.

  18. Origin and lateral migration of linear dunes in the Qaidam Basin of NW China revealed by dune sediments, internal structures, and optically stimulated luminescence ages, with implications for linear dunes on Titan: discussion

    USGS Publications Warehouse

    Rubin, David M.; Rubin, Alan M.

    2013-01-01

    Zhou et al. (2012) proposed that longitudinal dunes in the Qaidam Basin, China, formed like yardangs: by erosion into sediment that was not deposited by those dunes. Because erosion occurs on the upwind flanks of most migrating dunes (Rubin and Hunter, 1982, 1985), the key to demonstrating a yardang-like origin is to show that the dunes did not deposit the strata that they contain. Zhou et al. made this argument by proposing that: (1) The dunes have not deposited cross-strata in the past 810 yr. (2) Cross-bedding within the dunes was not deposited by the dunes on the present-day land surface, but rather by older dunes that had a different morphology. (3) The present dunes are a later generation, “most likely of erosional origin similar to yardangs with orientations controlled by strikes of joints,” (p. 1147). (4) Rates of deflation in the dune field have been extremely high for the past 810–2440 yr. This commentary reviews these conclusions, reviews contradictory observations, and considers alternative interpretations.

  19. Experimental Observation of Flow Structure and Resistance over High- and Low-angle Dunes

    NASA Astrophysics Data System (ADS)

    Kwoll, E.; Venditti, J. G.; Bradley, R. W.; Winter, C.

    2015-12-01

    A prominent control on the flow over dunes in sedimentary environments is the slope of the downstream lee-side. While previous work has focused on steep (~30°), asymmetric dunes with permanent flow separation ('high-angle dunes'), little is known about dunes with lower lee-slope angles for which flow separation is absent or intermittent ('low-angle dunes'). Here, we use laboratory experiments to systematically vary and isolate the effect of the dune lee-slope on the turbulent flow field over dunes. Three sets of fixed dunes with lee-slope angles of 10°, 20° and 30° were separately installed in a 15 m long and 1 m wide flume and subjected to flow 0.20 m deep. At present, no clear hydraulic scaling has been demonstrated for low- and high-angle dunes as both dune configurations occur at the same Froude and Reynolds numbers. However, observations indicate that low-angle dunes are more frequent in environments dominated by suspension of bed material. Therefore, we focus on matching the transport stage between field conditions and our experiments using field observations of bedform morphology and flow stage. Measurements consisted of high-frequency, vertical profiles collected with a Laser Doppler Velocimeter (LDV) along one dune-length and Particle Image Velocimetry (PIV) of the flow field. We show that the temporal and spatial occurrence of flow separation decreases with dune lee-slope and may be fully absent for lee-slopes <<10°, only. Velocity gradients in the dune leeside depict a free shear layer downstream of the 30° dunes and a weaker shear layer closer to the bed for the 20° and 10° dunes. The decrease in velocity gradients leads to lower turbulence production for gentle lee-slopes. Consequently, flow resistance of dunes decreases with lee-slope; the transition being non-linear. Over the 10°, 20° and 30° dunes, shear stress is 8%, 33% and 90 % greater than a flat bed, respectively. Our results demonstrate that dune shape plays an important, but often

  20. Underground physics with DUNE

    SciTech Connect

    Kudryavtsev, Vitaly A.

    2016-01-01

    The Deep Underground Neutrino Experiment (DUNE) is a project to design, construct and operate a next-generation long-baseline neutrino detector with a liquid argon (LAr) target capable also of searching for proton decay and supernova neutrinos. It is a merger of previous efforts of the LBNE and LBNO collaborations, as well as other interested parties to pursue a broad programme with a staged 40-kt LAr detector at the Sanford Underground Research Facility (SURF) 1300 km from Fermilab. This programme includes studies of neutrino oscillations with a powerful neutrino beam from Fermilab, as well as proton decay and supernova neutrino burst searches. In this study, we will focus on the underground physics with DUNE.

  1. Underground physics with DUNE

    DOE PAGESBeta

    Kudryavtsev, Vitaly A.

    2016-01-01

    The Deep Underground Neutrino Experiment (DUNE) is a project to design, construct and operate a next-generation long-baseline neutrino detector with a liquid argon (LAr) target capable also of searching for proton decay and supernova neutrinos. It is a merger of previous efforts of the LBNE and LBNO collaborations, as well as other interested parties to pursue a broad programme with a staged 40-kt LAr detector at the Sanford Underground Research Facility (SURF) 1300 km from Fermilab. This programme includes studies of neutrino oscillations with a powerful neutrino beam from Fermilab, as well as proton decay and supernova neutrino burst searches.more » In this study, we will focus on the underground physics with DUNE.« less

  2. Underground physics with DUNE

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, Vitaly A.; DUNE Collaboration

    2016-05-01

    The Deep Underground Neutrino Experiment (DUNE) is a project to design, construct and operate a next-generation long-baseline neutrino detector with a liquid argon (LAr) target capable also of searching for proton decay and supernova neutrinos. It is a merger of previous efforts of the LBNE and LBNO collaborations, as well as other interested parties to pursue a broad programme with a staged 40-kt LAr detector at the Sanford Underground Research Facility (SURF) 1300 km from Fermilab. This programme includes studies of neutrino oscillations with a powerful neutrino beam from Fermilab, as well as proton decay and supernova neutrino burst searches. In this paper we will focus on the underground physics with DUNE.

  3. Layer Outcrops and Dunes

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-561, 1 December 2003

    This October 2003 Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) picture shows dark, windblown sand dunes amid outcrops of light-toned, sedimentary rock in a crater in western Arabia Terra. The darkest material in the scene is windblown sand; the steep slopes--the slip faces--of the dunes face toward the southwest (lower left), indicating that wind transport of sand has been from the northeast (upper right). The layered mounds are the remains of sedimentary rock that were once more extensive across this crater floor. The image is located near 8.9oN, 1.2oW, and covers an area 3 km (1.9 mi) wide. Sunlight illuminates the scene from the lower left.

  4. Publication trends in aeolian research: An analysis of the Bibliography of Aeolian Research

    NASA Astrophysics Data System (ADS)

    Stout, John E.; Warren, Andrew; Gill, Thomas E.

    2009-04-01

    An analysis of the Bibliography of Aeolian Research has provided information regarding publication trends in aeolian research. Results suggest that there has been a significant increase in the number of publications per year since the first aeolian-research publication appeared in 1646. Rates of publication have increased from only three publications in the 17th Century to nearly three publications per day in the 21st Century. The temporal distribution of publications follows a complex pattern that is influenced by many factors. In the 17th and 18th Centuries, publications appear as isolated clusters indicating limited interest in aeolian research and limited opportunities for individuals to contribute to scientific literature. With time, many new scientific societies are formed and many new scientific journals are established, opening new opportunities for scientists to contribute to scientific discourse. Landmark publications open up new research areas and define new directions for aeolian research. General advances in science and technology provide new techniques for sampling blowing sand and dust. In addition, clear signs exist that publication rates respond to major environmental and climatic events, especially large-scale disasters that focus attention on wind erosion and blowing dust. The Sirocco dust events of 1901-1903, the North American Dust Bowl of the1930s, and the recent sand and dust storm problems in China have all led to significant increases in the number of publications in aeolian research. Rates of publication are negatively influenced by major political and social upheavals, especially global conflicts such as World Wars I and II. Sudden shifts in government structure and support can also influence publication rates. A good example is the increased publication rates in China following the end of the Cultural Revolution, a trend that continues today.

  5. Comment on ``Minimal size of a barchan dune''

    NASA Astrophysics Data System (ADS)

    Andreotti, B.; Claudin, P.

    2007-12-01

    It is now an accepted fact that the size at which dunes form from a flat sand bed as well as their “minimal size” scales on the flux saturation length. This length is by definition the relaxation length of the slowest mode toward equilibrium transport. The model presented by Parteli, Durán, and Herrmann [Phys. Rev. E 75, 011301 (2007)] predicts that the saturation length decreases to zero as the inverse of the wind shear stress far from the threshold. We first show that their model is not self-consistent: even under large wind, the relaxation rate is limited by grain inertia and thus cannot decrease to zero. A key argument presented by these authors comes from the discussion of the typical dune wavelength on Mars (650 m) on the basis of which they refute the scaling of the dune size with the drag length evidenced by Claudin and Andreotti [Earth Planet. Sci. Lett. 252, 30 (2006)]. They instead propose that Martian dunes, composed of large grains (500μm) , were formed in the past under very strong winds. We emphasize that this saltating grain size, estimated from thermal diffusion measurements, is far from straightforward. Moreover, the microscopic photographs taken by the rovers on Martian Aeolian bedforms show a grain size of 87±25μm together with hematite spherules at millimeter scale. As those so-called “blueberries” cannot be entrained more frequently than a few hours per century, we conclude that the saltating grains on Mars are the small ones, which gives a second strong argument against the model of Parteli

  6. Comment on "Minimal size of a barchan dune".

    PubMed

    Andreotti, B; Claudin, P

    2007-12-01

    It is now an accepted fact that the size at which dunes form from a flat sand bed as well as their "minimal size" scales on the flux saturation length. This length is by definition the relaxation length of the slowest mode toward equilibrium transport. The model presented by Parteli, Durán, and Herrmann [Phys. Rev. E 75, 011301 (2007)] predicts that the saturation length decreases to zero as the inverse of the wind shear stress far from the threshold. We first show that their model is not self-consistent: even under large wind, the relaxation rate is limited by grain inertia and thus cannot decrease to zero. A key argument presented by these authors comes from the discussion of the typical dune wavelength on Mars (650 m) on the basis of which they refute the scaling of the dune size with the drag length evidenced by Claudin and Andreotti [Earth Planet. Sci. Lett. 252, 30 (2006)]. They instead propose that Martian dunes, composed of large grains (500 microm), were formed in the past under very strong winds. We emphasize that this saltating grain size, estimated from thermal diffusion measurements, is far from straightforward. Moreover, the microscopic photographs taken by the rovers on Martian Aeolian bedforms show a grain size of 87+/-25 microm together with hematite spherules at millimeter scale. As those so-called "blueberries" cannot be entrained more frequently than a few hours per century, we conclude that the saltating grains on Mars are the small ones, which gives a second strong argument against the model of Parteli. PMID:18233886

  7. Atmospheric stability and diurnal patterns of aeolian saltation on the Llano Estacado

    NASA Astrophysics Data System (ADS)

    Lanigan, David; Stout, John; Anderson, William

    2016-06-01

    Aeolian transport is driven by aerodynamic surface stress imposed by turbulent winds in the Earth's atmospheric boundary layer (ABL). ABL regime is influenced by stratification, which can either enhance or suppress production of turbulence by shear associated with the vertical gradient of streamwise velocity. During the day and night, surface heat fluxes induce a negative (unstable) and positive (stable) vertical gradient of potential temperature, respectively, which modifies the role of buoyancy in turbulence production. During the brief morning and evening transition periods, the vertical gradient of potential temperature vanishes (neutral stratification). The Monin-Obukhov similarity theory describes how the vertical gradient of streamwise velocity varies with stratification. Simultaneous field measurement of wind speed and aeolian activity were obtained over a 218-day period on a bare, sandy surface on the high plains of the Llano Estacado region of west Texas. Wind speed was measured at a height of 2 m with a propeller-type anemometer and aeolian activity was measured at the surface with a piezoelectric saltation sensor. We have used the wind speed measurements within the framework of the Monin-Obukhov similarity theory to estimate "typical" shear velocity, u∗ , of the ABL as stratification is varied (characterized with the stability parameter). This approach results in a color flood contour of u∗ against time of day and stability parameter: the procedure demonstrates that aeolian activity is most likely to occur during the day, when buoyancy acts in conjunction with mechanical shear to increase u∗ .

  8. Hydrogen content of sand dunes within Olympia Undae

    NASA Astrophysics Data System (ADS)

    Feldman, W. C.; Bourke, M. C.; Elphic, R. C.; Maurice, S.; Bandfield, J.; Prettyman, T. H.; Diez, B.; Lawrence, D. J.

    2008-08-01

    Neutron currents measured using the Mars Odyssey Neutron Spectrometer, seasonally varying temperatures measured using the Thermal Emission Spectrometer, and visible images measured using the High Resolution Imaging Science Experiment (HiRISE) are studied to determine the water content and stratigraphy of Olympia Undae. Both the neutron and thermal infrared data are best represented by a two-layered model having a water-ice equivalent hydrogen content of 30±5% in a lower semi-infinite layer, buried beneath a relatively desiccated upper layer that is 9±6 g/cm thick (about 6 cm depth at a density of 1.5 g/cm 3). A model that is consistent with all three data sets is that the dunes contain a top layer that is relatively mobile, which overlays a niveo-aeolian lower layer. The geomorphology shown by the HiRISE images suggests that the bottom layer may be cemented in place and therefore relatively immobile.

  9. Russell Dune Gullies

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-343, 27 April 2003

    This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows the mysterious dune gullies of Russell Crater. The terrain shown here is one very large sand dune; the surface slopes from upper right toward lower left. Gullies start on the slope at the upper right and indicate flow toward the lower left. These might have formed by the presence of a fluid-either liquid or gas-mixed with sand that avalanched down the dune slope. Or not. Their origin is unknown, although it is known that they tend to occur only on slopes facing southward. The MOC team has re-imaged these gullies several times in the past three Mars years, but no new gullies have formed. The picture covers an area about 3 km (1.9 mi) wide near 54.5oS, 347.3oW. Sunlight illuminates the scene from the upper left.

  10. Frost-free Dunes

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA03291 Frost-free Dunes

    These dark dunes are frost covered for most of the year. As southern summer draws to a close, the dunes have been completely defrosted.

    Image information: VIS instrument. Latitude -66.6N, Longitude 37.0E. 34 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  11. Windblown Dunes and Ripples

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-411, 4 July 2003

    July 4, 2003, is the 6th anniversary of the Mars Pathfinder landing. One of the elements carried to the red planet by Pathfinder was the Wind Sock Experiment. This project was designed to measure wind activity by taking pictures of three aluminum 'wind socks.' While the winds at the Mars Pathfinder site did not blow particularly strong during the course of that mission, dust storms seen from orbit and Earth-based telescopes attest to the fact that wind is a major force of change on the dry, desert surface of Mars today. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) narrow angle image shows dark sand dunes and lighter-toned ripples trapped among the mountainous central peak of an old impact crater in Terra Tyrrhena near 13.9oS, 246.7oW. The dune slip faces--the steepest slope on the larger dunes--indicate sand transport is from the top/upper left toward the bottom/lower right. North is toward the top/upper right; the picture is 3 km (1.9 mi) across. Sunlight illuminates the scene from the upper left. This picture was obtained in April 2003.

  12. Measurement of saltation process over gobi and sand dunes in the Taklimakan desert, China, with newly developed sand particle counter

    NASA Astrophysics Data System (ADS)

    Mikami, Masao; Yamada, Yutaka; Ishizuka, Masahide; Ishimaru, Taminoe; Gao, Weidong; Zeng, Fanjiang

    2005-09-01

    The Japan-Sino joint project, Aeolian Dust Experiment on Climate impact (ADEC), was initiated in April 2000 in order to understand the aeolian dust impact on climate via radiative forcing. As a part of the ADEC project, we have conducted field research in a sand dune and a gobi (i.e., a desert in which the soil surface consists of sand and pebbles with flat surfaces) in the south of the Taklimakan desert, China. The purpose of this study is to understand the wind erosion process and its relation to the meteorological and soil physical parameters. For this purpose, we measured the vertical profiles of wind speed, air temperature, and humidity as well as the other meteorological elements using an automatic weather station. A new sand particle counter (SPC) was newly developed to measure the saltation process. The SPC detects a signal change when a saltation particle passes through the slit between the laser beam transmitter and receiver. From this signal change, we can measure saltation particles from 30 to 667 μm diameter with 32 bin classes and particle numbers of each bin class every second. We have operated this SPC in the field, and it proved to be useful for the saltation process study when data corrections and calibration were properly made. During the observation period (1-21 April 2002), a total of eight dust events occurred; we analyzed two events: 5 April and 14 April cases. The results can be summarized as follows: (1) Total saltation fluxes in the 5 April case from 1223 to 1430 UT were 37.93 kg m-2 at 30 cm height and 43.71 kg m-2 at 20 cm height for the gobi site and 2.61 kg m-2 at 30 cm height for the dune site. (2) In the 14 April case, from 0327 to 0830 UT, the total saltation flux was 8.95 kg m-2 at 30 cm height for the gobi site. (3) Saltation flux at the gobi site in the 5 April case was more than 10 times larger than that of the sand dune, though the distance between the sites is 4 km. This is because the number of the parent soil particles

  13. An agent-based model of dune interactions produces the emergence of patterns in deserts

    NASA Astrophysics Data System (ADS)

    Génois, M.; Courrech Du Pont, S.

    2013-12-01

    Crescent-shaped barchan dunes are highly mobile dunes which are ubiquitous on Earth and other solar system bodies. Although they are unstable when considered separately, they form large assemblies in deserts and spatially organize in narrow corridors that extend in the wind direction. Collision of barchans has been proposed as a mechanism to redistribute sand between dunes and prevent the formation of very large dunes. Here, we use an agent-based model with elementary rules of sand redistribution during collisions to access the full dynamics of very large barchan fields. We tune the dune field density by changing the sand load/lost ratio and follow the transition between dilute fields, where barchans barely interact, and dense fields, where dune collisions control and stabilize the dune field. In this dense regime, barchans have a small, well selected size and form flocks: the dune field self-organizes in narrow corridors of dunes, as it is observed in real dense barchan deserts. Simulated dense barchan field, with spatial structuring along the wind direction.

  14. Morphology and origin of the Fair Oaks Dunes in NW Indiana, USA

    NASA Astrophysics Data System (ADS)

    Kilibarda, Z.; Blockland, J.

    2011-01-01

    The Fair Oaks Dunes (FOD) of NW Indiana, USA is a large (~ 4500 km 2) inland dune field associated with the late Wisconsin deglaciation of the Laurentide Ice Sheet. Meltwaters released by the Michigan, Saginaw, and Huron-Erie lobes transported fluvioglacial sediment through the Kankakee and Tippecanoe Valleys and their tributaries. The texture and composition of the sand in the FOD suggest a Saginaw Lobe origin of sediment with some Huron-Erie Lobe sediment. Sub-mature sand with sub-angular grains and a large feldspar content suggests relatively short distance of transport during two or possibly three dune-building and dune reworking events. We propose a model which explains the development of the dunes in three stages. Dune development began during the Bølling-Allerød (stage 1, ~ 15-13 ka) interval. During this stage anticyclonic easterly and north-easterly winds deflated the sand from outwash deposits and built transverse and barchanoid dunes on the western sides of the Tippecanoe Valley and paleo-channels. Further downwind, on the western and southwestern windward margins of the FOD, loess was deposited. During the early Younger Dryas (stage 2, ~ 12.5 ka) atmospheric circulation changed, and westerly winds reworked the original dunes to create a great variety of parabolic dunes. Simple, hemicyclic and lobate parabolic dunes developed in the western FOD, while further downwind, in the eastern and the southern FOD, more elongated hairpin and windrift dunes developed. On the upwind side of the dune field, loess deposits remained stable and were not remobilized during the second stage dune development. By the early Holocene the FOD dunes were stabilized until their minor remobilization during the Middle Holocene (stage 3). Minor disturbances caused by anthropogenic activities have occurred in last two centuries.

  15. Dune formation under bimodal winds

    PubMed Central

    Parteli, Eric J. R.; Durán, Orencio; Tsoar, Haim; Schwämmle, Veit; Herrmann, Hans J.

    2009-01-01

    The study of dune morphology represents a valuable tool in the investigation of planetary wind systems—the primary factor controlling the dune shape is the wind directionality. However, our understanding of dune formation is still limited to the simplest situation of unidirectional winds: There is no model that solves the equations of sand transport under the most common situation of seasonally varying wind directions. Here we present the calculation of sand transport under bimodal winds using a dune model that is extended to account for more than one wind direction. Our calculations show that dunes align longitudinally to the resultant wind trend if the angle θw between the wind directions is larger than 90°. Under high sand availability, linear seif dunes are obtained, the intriguing meandering shape of which is found to be controlled by the dune height and by the time the wind lasts at each one of the two wind directions. Unusual dune shapes including the “wedge dunes” observed on Mars appear within a wide spectrum of bimodal dune morphologies under low sand availability. PMID:20018703

  16. Dunes and Microdunes on Venus: Why Were So Few Found in the Magellan Data?

    NASA Technical Reports Server (NTRS)

    Weitz, Catherine M.; Plaut, Jeffrey J.; Greeley, Ronald; Saunders, R. Steven

    1994-01-01

    A search through cycle 1, 2, and 3 Magellan radar data covering 98% of the surface of Venus revealed very few dunes. Only two possible dune fields and several areas that may contain microdunes smaller than the resolution of the images (75 m) were identified. The Aglaonice dune field was identified in the cycle I images by the specular returns characteristic of dune faces oriented perpendicular to the radar illumination. Cycle 1 and 2 data of the Fortuna-Meshkenet dune field indicate that there has been no noticeable movement of the dunes over an 8-month period. The dunes, which are oriented both parallel and perpendicular to the radar illumination, appear to be dark features on a brighter substrate. Bright and dark patches that were visible in either cycle 1 or 2 data, but not both, allowed identification of several regions in the southern part of Venus that may contain microdunes. The microdunes are associated with several parabolic crater deposits in the region and are probably similar to those formed in wind tunnel experiments under Venus-like conditions. Bragg scattering and/or subpixel reflections from the near-normal face on asymmetric microdunes may account for these bright and dark patches. Look-angle effects and the lack of sufficient sand-size particles seem to be the most likely reasons so few dunes were identified in Magellan data. Insufficient wind speeds, thinness of sand cover, and difficulty in identifying isolated dunes may also be contributors to the scarcity of dunes.

  17. Dunes and microdunes on Venus: Why were so few found in the Magellan data?

    NASA Technical Reports Server (NTRS)

    Weitz, Catherine M.; Plaut, Jeffrey J.; Greeley, Ronald; Saunders, R. Steven

    1994-01-01

    A search through cycle 1, 2, and 3 Magellan radar data covering 98% of the surface of Venus revealed very few dunes. Only two possible dune fields and several areas that may contain microdunes smaller than the resolution of the images (75 m) were identified. The Aglaonice dune field was identified in the cycle 1 images by the specular returns characteristic of dune faces oriented perpendicular to the radar illumination. Cycle 1 and 2 data of the Fortuna-Meshkenet dune field indicate that there has been no noticeable movement of the dunes over an 8-month period. The dunes, which are oriented both parallel and perpendicular to the radar illumination, appear to be dark features on a brighter substrate. Bright and dark patches that were visible in either cycle 1 or 2 data, but not both, allowed identification of several regions in the southern part of Venus that may contain microdunes. The microdunes are associated with several parabolic crater deposits in the region and are probably similar to those formed in wind tunnel experiments under Venus-like conditions. Bragg scattering and/or subpixel relfections from the near-normal face on asymmetric microdunes may account for these bright and dark patches. Look-angle effects and the lack of sufficient sand-size particles seem to be most likely reasons so few dunes were identified in Magellan data. Insufficient wind speeds, thinness of sand cover, and difficulty in identifying isolated dunes may also be contributors to the scarcity of dunes.

  18. Late Holocene dune activity in the Eastern Platte River Valley, Nebraska

    NASA Astrophysics Data System (ADS)

    Hanson, P. R.; Joeckel, R. M.; Young, A. R.; Horn, J.

    2009-02-01

    Large-scale dune activity in the Nebraska Sand Hills and elsewhere on the western Great Plains has been linked to prehistoric "megadroughts" that triggered the activation of regional dune fields. The effect of megadroughts on the smaller dune fields east of the Nebraska Sand Hills has never been assessed, however. This study focuses on the Duncan dune field near the confluence of the Loup and Platte rivers in eastern Nebraska. Seventeen optically stimulated luminescence age estimates were obtained and reveal two periods of dune activation that occurred between 4.4 to 3.4 ka and 0.8 to 0.5 ka. Significantly, both periods chronologically overlap large-scale dune activity identified in the Nebraska Sand Hills. Geochemical evidence indicates that the Duncan dunes received sand not only from the terrace underlying them, but also from the Loup River. These data link dune activity in the Duncan area, at least indirectly, to increased sediment supply from streams that drain the Sand Hills during megadroughts, implying the activation of the dunes occurred as an indirect response to regional megadroughts. Calculations of dune migration rates, however, argue in favor of local, drought-driven hydrologic changes as a causative factor in dune activation, in other words, a direct effect of megadroughts. Whether the impact was direct or indirect, it is highly likely that the repeated reactivation of the Duncan dunes resulted in some way from regional, large-magnitude droughts. Other paleoclimate proxies from the Great Plains tend to support this conclusion. We conclude that the megadroughts that have been identified in the Sand Hills and other Great Plains dune fields were indeed regional events with far-reaching effects.

  19. Assessing the Martian Surface Distribution of Aeolian Sand using a Mars General Circulation Model

    NASA Technical Reports Server (NTRS)

    Anderson, F. S.; Greeley, R.; Xu, P.; Lo, E.; Blumberg, D. G.; Haberle, R. M.; Murphy, J. R.

    1999-01-01

    A sand transport model using White's sand flux equation and the Mars beneral circulation model was developed to understand the erosional sources, transport pathways, and depositional sinks of windblown sand on Mars. An initially uniform distribution of sand (4 mm over the entire surface) is reeionally transported based on wind stress, saltation threshold, and percentage of topogaphic trapping. Results are consistsnt with the , observed polar and Hellespontus dunes and Christensen's madeled block size distribution, butonly for an extremely law saltation threshold (0.024 N/sq m): Low thresholds generally result in transport of sand-sized particles originating in the northern mid latitudes to the north pole, and transport from the northern lower latitudes to the southern hemisphere. Our results indicate that the polar dune fields could form in 50,000 years, consistent with the active polar dunes and lack of longitudinal dunes observed on the surface of Mars.

  20. Field observations of wind profiles and sand fluxes above the windward slope of a sand dune before and after the establishment of semi-buried straw checkerboard barriers

    NASA Astrophysics Data System (ADS)

    Zhang, Chunlai; Li, Qing; Zhou, Na; Zhang, Jiaqiong; Kang, Liqiang; Shen, Yaping; Jia, Wenru

    2016-03-01

    Straw checkerboard barriers are effective and widely used measures to control near-surface sand flow. The present study measured the wind profiles and sand mass flux above the windward slope of a transverse dune before and after the establishment of semi-buried straw checkerboards. The 0.2 m high checkerboards enhanced the aerodynamic roughness length to larger than 0.02 m, which was two to three orders of magnitude higher than that of the bare sand. The modified Charnock model predicted the roughness length of the sand bed during saltation well, with Cm = 0.138 ± 0.003. For the checkerboards, z0 increased slowly to a level around 0.037 m with increasing wind velocity and the rate of increase tended to slow down in strong wind. The barriers reduced sand flux and altered its vertical distribution. The total height-integrated dimensionless mass flux of saltating particles (q0) above bare sand followed the relationship ln q0 = a + b(u∗t/u∗) + c(u∗t/u∗)2, with a peak at u∗/u∗t ≈ 2, whereas a possible peak appeared at u∗/u∗t ≈ 1.5 above 1 m × 1 m straw checkerboards. The vertical distribution of mass flux above these barriers resembled an "elephant trunk", with maximum mass flux at 0.05-0.2 m above the bed, in contrast with the continuously and rapidly decreasing mass flux with increasing height above the bare sand. The influences of the barriers on the wind and sand flow prevent dune movement and alter the evolution of dune morphology.

  1. Weichselian Aeolian Geoheritage Top 20 of the Netherlands

    NASA Astrophysics Data System (ADS)

    van den Ancker, Hanneke; Jungerius, Pieter Dirk; Platform Aardkundige Waarden, members

    2016-04-01

    The Netherlands are known world-wide for its engineered landscapes, its deep polders and bulb fields. The deep polders, up to more than 5 meters below sea level, originated by reclaiming peat lakes and peat quarries made for fuel. Its bulb fields are situated on levelled permeable dunes on which the precise water management is possible that growing bulbs requires. The Waddensea and -islands are less widely known (except by German bathers), although they are a World Heritage. The Waddensea is a highly pristine tidal landscape that already occurs along the Dutch coast for over 10,000 years and an important Natura 2000 area. The Wadden islands have an interesting history of erosion and re-growth and old cultural landscapes that show the interaction of land use and small-scale differences in geology and geomorphology during different cultural periods. Therefore, it is time to change the international perception of foreign visitors to The Netherlands and add the high variety of its historical landscapes, partly pristine and partly old cultural landscapes, to its tourism qualities. The poster presents a Top 20 of a less spectacular but another internationally important Dutch landscape: the coversand sites of the Netherlands. The Top 20 is selected by Geoheritage NL's Platform Aardkundige Waarden. The coversands evolved during the Late Weichselian, when the Netherlands was not covered by land ice and for a long period of time was part of a polar desert. The coversand landscape with dunes of 0,5 m up to 15 metres is not spectacular, but very characteristic. The coversands comprise of more than half a kilometre broad and 40 kilometre long dunes, series of river dunes as well as isolated dunes. The coversands and related Holocene drift sands make up about a quarter of the Dutch landscape. Over a century ago more than half of this landscape still had its pristine topography. Now less than a few percent is remaining. Especially the few remaining heathlands on coversand are an

  2. A conceptual framework for dryland aeolian sediment transport along the grassland-forest continuum: Effects of woody plant canopy cover and disturbance

    USGS Publications Warehouse

    Breshears, D.D.; Whicker, J.J.; Zou, C.B.; Field, J.P.; Allen, C.D.

    2009-01-01

    Aeolian processes are of particular importance in dryland ecosystems where ground cover is inherently sparse because of limited precipitation. Dryland ecosystems include grassland, shrubland, savanna, woodland, and forest, and can be viewed collectively as a continuum of woody plant cover spanning from grasslands with no woody plant cover up to forests with nearly complete woody plant cover. Along this continuum, the spacing and shape of woody plants determine the spatial density of roughness elements, which directly affects aeolian sediment transport. Despite the extensiveness of dryland ecosystems, studies of aeolian sediment transport have generally focused on agricultural fields, deserts, or highly disturbed sites where rates of transport are likely to be greatest. Until recently, few measurements have been made of aeolian sediment transport over multiple wind events and across a variety of types of dryland ecosystems. To evaluate potential trends in aeolian sediment transport as a function of woody plant cover, estimates of aeolian sediment transport from recently published studies, in concert with rates from four additional locations (two grassland and two woodland sites), are reported here. The synthesis of these reports leads to the development of a new conceptual framework for aeolian sediment transport in dryland ecosystems along the grassland-forest continuum. The findings suggest that: (1) for relatively undisturbed ecosystems, shrublands have inherently greater aeolian sediment transport because of wake interference flow associated with intermediate levels of density and spacing of woody plants; and (2) for disturbed ecosystems, the upper bound for aeolian sediment transport decreases as a function of increasing amounts of woody plant cover because of the effects of the height and density of the canopy on airflow patterns and ground cover associated with woody plant cover. Consequently, aeolian sediment transport following disturbance spans the largest

  3. An agent-based model of dune interactions produces the emergence of patterns in deserts

    NASA Astrophysics Data System (ADS)

    GéNois, Mathieu; Pont, Sylvain Courrech; Hersen, Pascal; GréGoire, Guillaume

    2013-08-01

    Crescent-shaped barchan dunes are highly mobile dunes which are ubiquitous on Earth and other solar system bodies. Although they are unstable when considered separately, they form large assemblies in deserts and spatially organize in narrow corridors that extend in the wind direction. Collision of barchans has been proposed as a mechanism to redistribute sand between dunes and prevent the formation of very large dunes. Here we use an agent-based model with elementary rules of sand redistribution during collisions to access the full dynamics of very large barchan fields. We tune the dune field density by changing the sand load/lost ratio and follow the transition between dilute fields, where barchans barely interact, and dense fields, where dune collisions control and stabilize the dune field. In this dense regime, barchans have a small, well-selected size and form flocks: the dune field self-organizes in narrow corridors of dunes, as it is observed in real dense barchan deserts.

  4. Defrosting Polar Dunes--'The Snow Leopard'

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The patterns created by dark spots on defrosting south polar dunes are often strange and beautiful. This picture, which the Mars Orbiter Camera team has dubbed, 'the snow leopard,' shows a dune field located at 61.5oS, 18.9oW, as it appeared on July 1, 1999. The spots are areas where dark sand has been exposed from beneath bright frost as the south polar winter cap begins to retreat. Many of the spots have a diffuse, bright ring around them this is thought to be fresh frost that was re-precipitated after being removed from the dark spot. The spots seen on defrosting polar dunes are a new phenomenon that was not observed by previous spacecraft missions to Mars. Thus, there is much about these features that remains unknown. For example, no one yet knows why the dunes become defrosted by forming small spots that grow and grow over time. No one knows for sure if the bright rings around the dark spots are actually composed of re-precipitated frost. And no one knows for sure why some dune show spots that appear to be 'lined-up' (as they do in the picture shown here).

    This Mars Global Surveyor Mars Orbiter Camera image is illuminated from the upper left. North is toward the upper right. The scale bar indicates a distance of 200 meters (656 feet).

    Malin Space Science Systems and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  5. Morphologic characteristics and migration rate assessment of barchan dunes in the Southeastern Western Desert of Egypt

    NASA Astrophysics Data System (ADS)

    Hamdan, M. A.; Refaat, A. A.; Abdel Wahed, M.

    2016-03-01

    This work explores the morphologic characteristics of aeolian dune sand in the southeastern part of Western Desert of Egypt. It aims to assess the movement of barchan dunes and evaluate their environmental influence on the Toshka Project. Morphometric investigation of barchan dunes in the Toshka area revealed that most barchans have high length/width (a/c) ratios (fat to pudgy), while one-fifth of the studied barchans have lower a/c ratios and so appear normal in their morphologic forms. Statistical analysis of the main parameters of barchan dunes in Toshka and other desert regions in the Kharga (Egypt), Kuwait, Southern Morocco, California and Southern Peru demonstrates that barchans of the Toshka area are distinctive in their appearance. They are characterized by distinct aspect with higher values of length and width and greater growth in height. The high-energy wind environment in addition to the large amount of drifting sand are principal factors responsible for the unique shape of Toshka barchans. The migration rate of barchan dunes in four chosen test locations, within the central and western Toshka area, ranges from about 3 to 10.82 m/year. The calculated average migration rate of these dunes is about 6 m/year in a SSW direction. Sand encroachment is more extensive in the central and western parts of the investigated Toshka area. Risk evaluation of sand dune movements in the southeastern part of the Western Desert points to medium to high sand encroachment risk values. These may represent serious hazards to the newly-established Toshka Project, threatening roads, as well as cultivated lands in the area.

  6. Rate of dune formation and sediment transfer in the past few hundred years on the Danube-Tisza Interfluve, Hungary

    NASA Astrophysics Data System (ADS)

    Schubert, Gábor; Sipos, György

    2010-05-01

    Environmental change let it be induced either by climatic or anthropogenic factors has had a key role in determining the rate of aeolian sediment transfer, on the highly sensitive landscape of the Danube-Tisza Interfluve, Hungary. The study area is located on a former alluvial fan of the Danube, abandoned by the river in the Late Pleistocene, and then reshaped by aeolian activity. The resultant dune fields were time to time reactivated during the Holocene and historical times. As this part of the Carpathian Basin is often stricken by droughts, anthropogenic factors, such as forest clearances and/or overgrazing could easily lead to the disturbance of morphological stability. These effects acted on a local level, however in certain historical periods they supposedly were more extended and general. An era of this type was the time of Turkish occupation (16th-17th c.) and the following two centuries. During the Turkish rule the territory was cleared of forests and became deserted. Following the slow recolonisation by people and vegetation the land was mainly used for grazing. There are numerous historical reports on repeated sand storms and wind erosional events. However, we have no concept on the true amount of sediment reworked these times and the rate of geomorphic change. The major aim of the present study is therefore to quantify the possible amount of sediment transfer in a wind blown depression-hummock system on the central part of the Danube-Tisza Interfluve during the past 500 years. The determination of dune formation and migration rate provides further insight into the active morphological processes of the region, and also highlights the possible geomorphic responses to environmental changes (mostly climatic) currently affecting the central part of the Carpathian Basin. Seven drillings were made on the chosen hummock and the adjacent blow out to set up the chronological framework of dune formation by the means of luminescence dating (OSL). The relatively

  7. Aeolian processes and the bioshpere: Interactions and feedback loops

    Technology Transfer Automated Retrieval System (TEKTRAN)