Science.gov

Sample records for aeolian dune sands

  1. Numerical study of turbulent flow over complex aeolian dune fields: the White Sands National Monument.

    PubMed

    Anderson, William; Chamecki, Marcelo

    2014-01-01

    The structure and dynamics of fully developed turbulent flows responding to aeolian dune fields are studied using large-eddy simulation with an immersed boundary method. An aspect of particular importance in these flows is the downwind migration of coherent motions associated with Kelvin-Helmholtz instabilities that originate at the dune crests. These instabilities are responsible for enhanced downward transport of high-momentum fluid via the so-called turbulent sweep mechanism. However, the presence of such structures and their role in determining the bulk characteristics of fully developed dune field sublayer aerodynamics have received relatively limited attention. Moreover, many existing studies address mostly symmetric or mildly asymmetric dune forms. The White Sands National Monument is a field of aeolian gypsum sand dunes located in the Tularosa Basin in southern New Mexico. Aeolian processes at the site result in a complex, anisotropic dune field. In the dune field sublayer, the flow statistics resemble a mixing layer: At approximately the dune crest height, vertical profiles of streamwise velocity exhibit an inflection and turbulent Reynolds stresses are maximum; below this, the streamwise and vertical velocity fluctuations are positively and negatively skewed, respectively. We evaluate the spatial structure of Kelvin-Helmholtz instabilities present in the dune field sublayer (shear length L(s) and vortex spacing Λ(x)) and show that Λ(x)=m(dune)L(s), where m(dune)≈7.2 in the different sections considered (for turbulent mixing layers, 7

  2. Remote sensing and spatial analysis of aeolian sand dunes: A review and outlook

    NASA Astrophysics Data System (ADS)

    Hugenholtz, Chris H.; Levin, Noam; Barchyn, Thomas E.; Baddock, Matthew C.

    2012-03-01

    For more than four decades remote sensing images have been used to document and understand the evolution of aeolian sand dunes. Early studies focused on mapping and classifying dunes. Recent advances in sensor technology and software have allowed investigators to move towards quantitative investigation of dune form evolution and pattern development. These advances have taken place alongside progress in numerical models, which are capable of simulating the multitude of dune patterns observed in nature. The potential to integrate remote sensing (RS), spatial analysis (SA), and modeling to predict the future changes of real-world dune systems is steadily becoming a reality. Here we present a comprehensive review of significant recent advances involving RS and SA. Our objective is to demonstrate the capacity of these technologies to provide new insight on three important research domains: (1) dune activity, (2) dune patterns and hierarchies, and (3) extra-terrestrial dunes. We outline how several recent advances have capitalized on the improved spatial and spectral resolution of RS data, the availability of topographic data, and new SA methods and software. We also discuss some of the key research challenges and opportunities in the application of RS and SA dune field, including: the integration of RS data with field-based measurements of vegetation cover, structure, and aeolian transport rate in order to develop predictive models of dune field activity; expanding the observational evidence of dune form evolution at temporal and spatial scales that can be used to validate and refine simulation models; the development and application of objective and reproducible SA methods for characterizing dune field pattern; and, expanding efforts to quantify three-dimensional topographic changes of dune fields in order to develop improved understanding of spatio-temporal patterns of erosion and deposition. Overall, our review indicates a progressive evolution in the way sand dunes

  3. Optically stimulated luminescence dating of aeolian sand in the otindag dune field and holocene climate change

    USGS Publications Warehouse

    Zhou, Y.L.; Lu, H.Y.; Mason, J.; Miao, X.D.; Swinehart, J.; Goble, R.

    2008-01-01

    The dune system in Otindag sand field of northern China is sensitive to climate change, where effective moisture and related vegetation cover play a controlling role for dune activity and stability. Therefore, aeolian deposits may be an archive of past environmental changes, possibly at the millennial scale, but previous studies on this topic have rarely been reported. In this study, thirty-five optically stimulated luminescence (OSL) ages of ten representative sand-paleosol profiles in Otindag sand field are obtained, and these ages provide a relatively complete and well-dated chronology for wet and dry variations in Holocene. The results indicate that widespread dune mobilization occurred from 9.9 to 8.2 ka, suggesting a dry early Holocene climate. The dunes were mainly stabilized between 8.0 and 2.7 ka, implying a relatively wet climate, although there were short-term penetrations of dune activity during this wet period. After ???2.3 ka, the region became dry again, as inferred from widespread dune activity. The "8.2 ka" cold event and the Little Ice Age climatic deterioration are detected on the basis of the dune records and OSL ages. During the Medieval Warm Period and the Sui-Tang Warm Period (570-770 AD), climate in Otindag sand field was relatively humid and the vegetation was denser, and the sand dunes were stabilized again. These aeolian records may indicate climate changes at millennial time scale during Holocene, and these climatic changes may be the teleconnection to the climate changes elsewhere in the world. ?? Science in China Press and Springer-Verlag GmbH 2008.

  4. Temperature and humidity measurements within desert barchan sand dunes, relation to dune aeolian mobility and microbial growth

    NASA Astrophysics Data System (ADS)

    Louge, Michel; Hay, Anthony; Richer, Renee; Valance, Alexandre; Ould el Moctar, Ahmed; Xu, Jin; Abdul-Majid, Sara

    2013-04-01

    We present diurnal variations of temperature and humidity profiles below the surface of hyper-arid aeolian crescent-shaped "barchan" dunes in Qatar and Mauritania, measured using a thermal probe and a new ultra-sensitive capacitance instrument that we developed for this purpose. We also report long-term measurements from a probe sunk on the downwind avalanche face of a mobile Qatar barchan, recording temperature and humidity until it emerged on the upwind slope 15 months later. We interpret the data by modeling heat and moisture transfer at the surface in terms of measured net surface radiation, wind, and atmospheric conditions. We demonstrate the presence of microbes on sand grains within these mobile dunes using microscopic observations, fluorescence counts, metagenomic sequencing, and C12/C13 isotope analysis of carbon dioxide sampled below the surface. By determining how water activity grows with moisture adsorbed on these sands, we delimit regions within the dune where our instruments recorded humidity conducive to microbial growth. Finally, we compare the mobility of two adjacent Mauritania barchans having distinct surface grain size, shape, and depth humidity profiles. Armored by large grains on its surface, the smaller dune was more oblong. As a result, it lacked flow recirculation in its wake, trapped less aeolian sand downwind, and was much less mobile than its smaller size would suggest. This slower mobility led to greater humidity and cohesion at depth than the larger dune exposed to the same atmospheric and wind conditions.

  5. Sand Flux Results for Aeolian Dunes at Current and Candidate Landing Sites on Mars

    NASA Astrophysics Data System (ADS)

    Chojnacki, M.; Urso, A.; Yingling, W.

    2015-12-01

    It is now known unambiguously that wind-driven bedform activity is occurring on Mars today. It has also been demonstrated the rapid aeolian abrasion of sedimentary deposits that potentially host ancient habitable environments may provide the best mechanism for exposing samples containing relatively undegraded organics (Farley et al. 2014). Thus, current processes operating on the surface of Mars are highly relevant to our understanding of the past. Here, we discuss new sand flux results of active dune across Mars, including several current and candidate landing sites with Meridiani Planum, Gale crater, Valles Marineris, and Mawrth Vallis. For this task, we have utilized multi-temporal images acquired annually by the HiRISE camera (25 cm/pixel) along with co-located HiRISE Digital Terrain Models. Falling dunes in Coprates Chasma (Mars 2020 candidate landing site) measuring 6-10 meters in height were detected migrating on average 0.5 m per Earth year, yielding crest fluxes of 3.1 m3 m-1 yr-1 (units hereafter assumed). Barchans near the MSL rover at Gale crater have slightly lower fluxes of 1.2, while earlier work in Endeavour crater, the current site of the Opportunity Rover, showed dome dunes with fluxes as high as 13 (average of 6.8; Chojnacki et al. 2015). New results of Mawrth Vallis (Mars 2020 candidate) dunes suggest these high rates are not uncommon, as barchans there possess average fluxes of 11.5. Assuming ripple reptation rates are 1/10th that of crest fluxes, total flux (saltation plus reptation) would range 3.2 to 12.7 m3 m-1 yr-1 for all sites studied herein. Active dunes and the abrasion susceptibility (Sa) of local rocks are relevant to assess how sand fluxes modify the landscape. Using the methodology and assumptions (Sa for basalt, mean trajectory height etc.) described in Bridges et al. (2012), we estimated abrasion rates of local basaltic bedrock. For example, sand blasting at Mawrth Vallis is estimated to produce 2-8 μm/yr for flat ground and 15

  6. Natural and human controls of the Holocene evolution of the beach, aeolian sand and dunes of Caesarea (Israel)

    NASA Astrophysics Data System (ADS)

    Roskin, J.; Sivan, D.; Shtienberg, G.; Roskin, E.; Porat, N.; Bookman, R.

    2015-12-01

    The study focuses on the Holocene appearance, chronology and drivers of beach sand deposition and inland aeolian sand transport around the Roman-Byzantine ruins of Caesarea, Israel. Beach sand, sand sheets, nebkha, linear and transverse dunes as well as parabolic and transverse interdunes along two transects were sampled in the current study down to their substrate. Sixteen new optically stimulated luminescence ages cluster at ∼5.9-3.3 ka, ∼1.2-1.1 ka (800-900 AD) and ∼190-120 years ago (1825-1895 AD) indicating times of middle and late Holocene sand sheet depositions and historical dune stabilization. The first age cluster indicates that beach sand accumulated when rates of global sea level rise declined around 6-5 ka. Until ∼4 ka sand sheets encroached up to 2.5 km inland. Historical and archaeological evidence points to sand mobilization since the first century AD. Sand sheets dating to 1.2-1.1 ka, coevally found throughout the dunefield represent sand stabilization due to vegetation reestablishment attributed to gradual and fluctuating decline in human activity from the middle Early Islamic period until the 10th century. Historical and chronological evidence of the existence of transverse and coppice dunes from the 19th century suggest that dunes only formed in the last few centuries. The study illustrates the initial role of natural processes, in this case decline in global sea level rise and the primary and later role of fluctuating human activity upon coastal sand mobility. The study distinguishes between sand sheets and dunes and portrays them as sensors of environmental changes.

  7. Recent Aeolian Dune Change on Mars

    NASA Technical Reports Server (NTRS)

    Bourke, M. C.; Edgett, K. S.; Cantor, B. A.

    2007-01-01

    Previous comparisons of Martian aeolian dunes in satellite images have not detected any change in dune form or position. Here, we show dome dunes in the north polar region that shrank and then disappeared over a period of 3.04 Mars years (5.7 Earth years), while larger, neighboring dunes showed no erosion or movement. The removal of sand from these dunes indicates that not only is the threshold wind speed for saltation exceeded under present conditions on Mars, but that any sand that is available for transport is likely to be moved. Dunes that show no evidence of change could be crusted, indurated. or subject to infrequent episodes of movement.

  8. Turbulent flow structures and aeolian sediment transport over a barchan sand dune

    NASA Astrophysics Data System (ADS)

    Wiggs, G. F. S.; Weaver, C. M.

    2012-03-01

    The turbulent structure of airflow over a barchan sand dune is determined using quadrant analysis of wind velocity data derived from sonic anemometers. Results indicate an increased frequency of ejection and sweep events in the toe region of the dune, characteristic of the turbulent bursting process. In contrast, at the crest there was a significant increase in the occurrence of outward interactions. Combined with high frequency saltation data our analyses show that turbulent structures characterised by a positive streamwise fluctuating velocity (+u‧ sweeps at the toe and outward interactions at the crest) have a dominant influence on sand transport on the dune, together accounting for up to 83% and 95% of transporting events at the toe and crest respectively.

  9. Morphology and stratigraphic evolution of aeolian protodunes at White Sands Dune Field

    NASA Astrophysics Data System (ADS)

    Ewing, R. C.; Weymer, B. A.; Barrineaux, P.

    2014-12-01

    Protodunes are low-relief, slipfaceless migrating bed forms thought to represent fundamental emergent bed forms that develop from a flat bed of sand and evolve into dunes. Protodunes at White Sands Dune Field in New Mexico are found at the upwind margin of the field, on dune stoss slopes and in interdune areas. Here we used time-series aerial photos from 1996, 2003, 2005 and 2012 and digital elevation models from 2007, 2008, 2009 and 2010 in conjunction with ground penetrating radar (GPR) to characterize the morphodynamics of protodunes and the stratigraphy generated by protodune migration. Protodunes at the upwind margin of the dune field are larger in wavelength and amplitude and coarser grained than those in the interior of the field. Wind ripples cover protodunes in all areas of the field, but the protodunes at the upwind margin are covered by coarse grained ripples. A consistent progression of ripple patterns occurs over protodunes in which ripples coarsen in wavelength and grain size toward the protodune crest and then decrease in wavelength and grain size toward the troughs. Ripple migration across the protodunes appears to the primary mode by which the protodunes migrate. Trenching and GPR data show low-angle cross-stratification generated by wind ripples migrating down the protodune lee slope of the protodunes. Internal bounding surfaces within the protodunes likely arise from laterally migration and lee slope reactivation in response to the complex wind regime and dune-modified secondary flow within the dune field at White Sands. Understanding the morphology, distribution and genesis of protodunes in dune fields provides a basis to evaluate the significance of protodune strata in the rock record.

  10. Aeolian sand as a tool for understanding Mars: Thermal infrared remote sensing of volcaniclastic Mars-analog sand dunes in Christmas Lake Valley, Oregon, U.S.A.

    NASA Astrophysics Data System (ADS)

    Edgett, Kenneth S.

    1996-10-01

    INTRODUCTION: On Earth, aeolian sand dunes are used as tools of scientific inquiry. Holocene and Pleistocene dunes preserve clues about Quaternary climate variations and human activities ranging from Ice Age hunting practices to Twentieth Century warfare. Modern dunes contain the sedimentary textures and structures necessary for interpreting ancient sandstones, and they provide natural laboratories for investigation of aeolian physics and desertification processes. The dunes of Mars can likewise be used as scientific tools. Dunes provide relatively dust-free surfaces. From a remote sensing perspective, martian dunes have much potential for providing clues about surface mineralogy and the interaction between the surface and atmosphere. Such information can in turn provide insights regarding crust composition, volcanic evolution, present and past climate events, and perhaps weathering rates. The Mars Global Surveyor Thermal Emission Spectrometer (TES) is expected to reach the planet in September 1997. TES will provide 6 to 50 micrometer spectra of the martian surface at ground resolutions of 3 to 9 km. Sandy aeolian environments on Mars might provide key information about bedrock composition. To prepare for the TES investigation, I have been examining a thermal infrared image of a Mars-composition analog dune field in Christmas Lake Valley, Oregon. COMPOSITION AND GEOLOGIC SETTING: The "Shifting Sand Dunes" dune field is located at the eastern end of Christmas Lake Valley, in what was once the Pleistocene Fort Rock Lake [1]. Much of the sand that makes up the Shifting Sand Dunes dune field is reworked Mt. Mazama airfall from its terminal eruption 6,800 years ago, plus material deflated from the lake bed [1, 2]. The main constituents of the dunes are volcanic glass and devitrified glass fragments, plagioclase crystals, basalt lithic fragments, aggregates of silt and clay-size volcanic ash, pyroxenes, opaque oxide minerals (mostly magnetite), and trace occurrences of

  11. Spatial and temporal patterns of aeolian sediment transport on an inland parabolic dune, Bigstick Sand Hills, Saskatchewan, Canada

    NASA Astrophysics Data System (ADS)

    Hugenholtz, C. H.; Wolfe, S. A.; Walker, I. J.; Moorman, B. J.

    2009-04-01

    Topographic changes from erosion pins and on-site meteorological data document the spatial and temporal patterns of aeolian sediment transport at monthly to annual timescales across an active parabolic dune within a vegetation-stabilized inland, prairie dune field. Over two years, the sediment budget, calculated from digital elevation models, shows that the total volume of erosion (9890 m 3) is greater than the amount of deposition (6990 m 3), indicating a net loss of 2900 m 3 of sediment (or ˜ 29% of eroded sediment) from the dune. Sediment erosion occurred mainly on the stoss slope (3600 m 3; ˜ 36% of eroded sediment), but also on the south (2100 m 3; ˜ 21%) and north sides of the dune head (1700 m 3; ˜ 17%), the blowouts along the arms (1740 m 3, ˜ 18%) and the crest (650 m 3; ˜ 7%). Erosion from the deflation basin is limited by surface roughness and armoring effects of a gravel lag deposit (100 m 3; ˜ 1%). Thus, the blowouts currently contribute to maintaining dune mobility because no other sediment input occurs from upwind. Sediment deposition onto the dune occurred primarily beyond the brink on the south and southeast lee slopes (5500 m 3; ˜ 80%), coinciding with the southeasterly resultant transport direction for November 2004-05. The net loss of about 2900 m 3 (˜ 29%) may be attributed to sediment carried in suspension over and beyond the dune. Correlation analysis between sediment transport and meteorological variables suggests that monthly to seasonal changes of surface conditions (e.g., vegetation cover, ground freezing, moisture) buffer the relative importance of temperature and precipitation on rates of sediment transport. Conversely, wind correlates well on a monthly to seasonal basis because it is a driver of transport under all types of surface conditions. Seasonal effects produce a complex interaction between wind, climate and surface conditions. This leads to a dynamic range of threshold velocities, which in turn causes spatial and

  12. Avalanche grainflow on a simulated aeolian dune

    NASA Astrophysics Data System (ADS)

    Sutton, S. L. F.; McKenna Neuman, C.; Nickling, W.

    2013-09-01

    Avalanches maintain the slipface of aeolian dunes, which alters their airflow characteristics and sediment dynamics, and results in the development of grainflow cross-bedding. We report on a series of experiments in which avalanches were observed on a 1:1 replica of a small (1.2 m brink height) transverse dune in the Dune Simulation Wind Tunnel under wind velocities of 8-11 m s-1. Changes in slipface topography were observed photographically and measured utilizing a 3-D laser scanner with 1 mm2 spatial resolution. Avalanches in noncohesive sands were observed to progress through scarp recession from the point of initiation and continue until the slope angle is reduced. Changes in local slope confirm that the steep, pre-avalanche mean slope relaxes to a uniform value equal to the angle of repose of the test sand (32°) over all involved portions of the slipface. Avalanche volumes are measured, and demonstrate that avalanche magnitude is independent of wind speed over the range of velocities observed. This independence provides the potential to significantly simplify the modeling of grainflow as a function of only the total cross brink sediment transport.

  13. Aeolian sand ripples around plants.

    PubMed

    Zhang, Qian-Hua; Miao, Tian-De

    2003-05-01

    Plants in the desert may locally change the aeolian process, and hence the pattern of sand ripples traveling nearby. The effect of plants on ripples is investigated using a coupled map lattice model with nonuniform coupling coefficients. PMID:12786143

  14. Unchanging Desert Sand Dunes

    NASA Astrophysics Data System (ADS)

    Gadhiraju, S.; Banerjee, B.; Buddhiraju, K.; Shah, V.

    2013-12-01

    Deserts are one of the major landforms on earth. They occupy nearly 20% of the total land area but are relatively less studied. With the rise in human population, desert regions are being gradually occupied for settlement posing a management challenge to the concerned authorities. Unrestrained erosion is generally a feature of bare dunes. Stabilized dunes, on the other hand, do not undergo major changes in textures, and can thus facilitate the growth of vegetation. Keeping in view of the above factors, better mapping and monitoring of deserts and particularly of sand dunes is needed. Mapping dunes using field instruments is very arduous and they generate relatively sparse data. In this communication, we present a method of clustering and monitoring sand dunes through imagery captured by remote sensing sensors. Initially Radon spectrum of an area is obtained by decomposition of the image into various projections sampled at finer angular directions. Statistical features such as mode, entropy and standard deviation of Radon spectrum are used in delineation and clustering of regions with different dune orientations. These clustered boundaries are used to detect if there are any changes occurring in the dune regions. In the experiment's, remote sensing data covering various dune regions of the world are observed for possible changes in dune orientations. In all the cases, it is seen that there are no major changes in desert dune orientations. While these findings have implications for understanding of dune geomorphology and changes occurring in dune directions, they also highlight the importance of a wider study of dunes and their evolution both at regional and global scales. Results for Dataset 1 & Dataset 2 Results for Dataset 3

  15. Aeolian sedimentary processes at the Bagnold Dunes, Mars: Implications for modern dune dynamics and sedimentary structures in the aeolian stratigraphic record of Mars

    NASA Astrophysics Data System (ADS)

    Ewing, Ryan C.; Bridges, Nathan T.; Sullivan, Rob; Lapotre, Mathieu G. A.; Fischer, Woodward W.; Lamb, Mike P.; Rubin, David M.; Lewis, Kevin W.; Gupta, Sanjeev

    2016-04-01

    Wind-blown sand dunes are ubiquitous on the surface of Mars and are a recognized component of the martian stratigraphic record. Our current knowledge of the aeolian sedimentary processes that determine dune morphology, drive dune dynamics, and create aeolian cross-stratification are based upon orbital studies of ripple and dune morphodynamics, rover observations of stratification on Mars, Earth analogs, and experimental and theoretical studies of sand movement under Martian conditions. In-situ observations of sand dunes (informally called the Bagnold Dunes) by Curiosity Rover in Gale Crater, Mars provide the first opportunity to make observations of dunes from the grain-to-dune scale thereby filling the gap in knowledge between theory and orbital observations and refining our understanding of the martian aeolian stratigraphic record. We use the suite of cameras on Curiosity, including Navigation Camera (Navcam), Mast Camera (Mastcam) and Mars Hand Lens Imager (MAHLI), to make observations of the Bagnold Dunes. Measurements of sedimentary structures are made where stereo images are available. Observations indicate that structures generated by gravity-driven processes on the dune lee slopes, such as grainflow and grainfall, are similar to the suite of aeolian sedimentary structures observed on Earth and should be present and recognizable in Mars' aeolian stratigraphic record. Structures formed by traction-driven processes deviate significantly from those found on Earth. The dune hosts centimeter-scale wind ripples and large, meter-scale ripples, which are not found on Earth. The large ripples migrate across the depositional, lee slopes of the dune, which implies that these structures should be present in Mars' stratigraphic record and may appear similar to compound-dune stratification.The Mars Science Laboratory Curiosity Rover Team is acknowledged for their support of this work.

  16. Understanding early-stage dune development: morphodynamics of aeolian protodunes

    NASA Astrophysics Data System (ADS)

    Baddock, Matthew; Wiggs, Giles; Nield, Joanna

    2016-04-01

    For such a fundamental aspect of bedform development, the initiation and early-stage growth of sand dunes remain poorly understood. Protodunes are bedforms within the continuum of early-stage depositional aeolian features that exist between flat sand patches and small dunes. As transitory bedforms with the potential to develop into dunes, the detailed study of protodune morphodynamics can provide significant insights into nascent dune development. As part of a multi-annual study investigating bedform change through repeat morphological surveys of bedforms with differing maturity, measurements of near-surface airflow and sand transport were conducted over a protodune in a small Namibian barchan dune field. The protodune was approximately 85 m in length and 1 m high, and was without a slipface. Data show that over the course of a week, patterns of airflow and transport flux variation were linked with accretion at the crest, and erosion of the leeside edge showing an increase in protodune height, and providing evidence of the dune's vertical development. Surveys reveal the longer term evolution of the protodune, in the context of changes exhibited by nearby, fully developed barchan dunes, and long term monitoring of wind regime at the site.

  17. Boundary Conditions for Aeolian Activity in North American Dune Fields

    NASA Astrophysics Data System (ADS)

    Halfen, A. F.; Lancaster, N.; Wolfe, S.

    2014-12-01

    Geomorphic and chronological data for dune fields are evaluated for three contrasting areas of North America: 1) the Prairie-Parkland-Boreal ecozones of the northern Great Plains in Canada; 2) the Central Great Plains of the USA; and 3) the deserts of southwestern USA and northern Mexico. Luminescence and radiocarbon ages for periods of dune accumulation and stability are compared with palaeoenvironment proxies to provide an assessment of the boundary conditions of dune system response to changes in sediment supply, availability, and mobility. Dune fields in the northern Great Plains were formed from sediment originating from glaciofluvial or glaciolacustrine sediments deposited during deglaciation 16-11 ka. Subsequent aeolian deposition occurred in Parkland and Prairie dune fields as a result of mid-Holocene (8-5 ka) and late-Holocene (< 3.5 ka) activity related to drought conditions that reworked pre-existing aeolian sands. In the Central Great Plains, dune fields are closely linked to fluvial sediment sources. Sediment supply was high during deglaciation of the Rocky Mountains and resulted in widespread dune construction 16-10 ka. Multiple periods of Holocene reactivation are recorded and reflect increased sediment availability during drought episodes. Dune fields in the southwestern deserts experienced periods of construction as a result of enhanced supply of sediment from fluvial and lacustrine sources during the period 11.8-8 ka and at multiple intervals during the late Holocene. Despite spatial and temporal gaps in chronometric data as a result of sampling biases, the record from North American dune fields indicates the strong influence of sediment supply on dune construction, with changes in sediment availability as a result of drought episodes resulting in dune field reactivation and reworking of pre-existing sediment.

  18. Windblown Sand Dunes

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-557, 27 November 2003

    This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows sand dunes and large ripples in a crater in the Hellespontus region of Mars. The winds that formed these dunes generally blew from the left/lower-left (west/southwest). Unlike the majority of dunes on Earth, sand dunes on Mars are mostly made up of dark, rather than light, grains. This scene is located near 50.3oS, 327.5oW. The image covers an area 3 km (1.9 mi) wide, and is illuminated by sunlight from the upper left.

  19. Dark Sand Dunes

    NASA Technical Reports Server (NTRS)

    2005-01-01

    13 January 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows dark sand dunes in the north polar region of Mars. The dominant winds responsible for these dunes blew from the lower left (southwest). They are located near 76.6oN, 257.2oW. The picture covers an area 3 km (1.9 mi) across; sunlight illuminates the scene from the upper right.

  20. Booming Sand Dunes

    NASA Astrophysics Data System (ADS)

    Vriend, Nathalie

    "Booming" sand dunes are able to produce low-frequency sound that resembles a pure note from a music instrument. The sound has a dominant audible frequency (70-105 Hz) and several higher harmonics and may be heard from far distances away. A natural or induced avalanche from a slip face of the booming dune triggers the emission that may last for several minutes. There are various references in travel literature to the phenomenon, but to date no scientific explanation covered all field observations. This thesis introduces a new physical model that describes the phenomenon of booming dunes. The waveguide model explains the selection of the booming frequency and the amplification of the sound in terms of constructive interference in a confined geometry. The frequency of the booming is a direct function of the dimensions and velocities in the waveguide. The higher harmonics are related to the higher modes of propagation in the waveguide. The experimental validation includes quantitative field research at the booming dunes of the Mojave Desert and Death Valley National Park. Microphone and geophone recordings of the acoustic and seismic emission show a variation of booming frequency in space and time. The analysis of the sensor data quantifies wave propagation characteristics such as speed, dispersion, and nonlinear effects and allows the distinction between the source mechanism of the booming and the booming itself. The migration of sand dunes results from a complicated interplay between dune building, wind regime, and precipitation. The morphological and morphodynamical characteristics of two field locations are analyzed with various geophysical techniques. Ground-penetrating radar images the subsurface structure of the dunes and reveal a natural, internal layering that is directly related to the history of dune migration. The seismic velocity increases abruptly with depth and gradually increases with downhill position due to compaction. Sand sampling shows local

  1. Fortune Cookie Sand Dunes

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-432, 25 July 2003

    This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a field of small barchan sand dunes in the north polar region near 71.7oN, 51.3oW. Some of them are shaped like fortune cookies. The message these dunes provide: winds blow through this region from the lower right toward the upper left. The steep slip face slopes of these dunes, which point toward the upper left, indicate the wind direction. The scene is illuminated by sunlight from the upper right. The image is 3 km (1.9 mi) wide.

  2. Defrosting Sand Dunes

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-434, 27 July 2003

    This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) picture shows retreating patches of frost on a field of large, dark sand dunes in the Noachis region of Mars. Large, windblown ripples of coarse sediment are also seen on some of the dunes. This dune field is located in a crater at 47.5oS, 326.3oW. The scene is illuminated by sunlight from the upper left.

  3. Sand Dunes with Frost

    NASA Technical Reports Server (NTRS)

    2004-01-01

    9 May 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a suite of frost-covered sand dunes in the north polar region of Mars in early spring, 2004. The dunes indicate wind transport of sand from left to right (west to east). These landforms are located near 78.1oN, 220.8oW. This picture is illuminated by sunlight from the lower left and covers an area about 3 km (1.9 mi) across.

  4. Stratigraphic Architecture of Aeolian Dune Interactions

    NASA Astrophysics Data System (ADS)

    Brothers, S. C.; Kocurek, G.

    2015-12-01

    Dune interactions, which consist of collisions and detachments, are a known driver of changing dune morphology and provide the dynamics for field-scale patterning. Although interactions are ubiquitous in modern dune fields, the stratigraphic record of interactions has not been explored. This raises the possibility that an entire class of signature architectures of bounding surfaces and cross-strata has gone misidentified or unrecognized. A unique data set for the crescentic dunes of the White Sands Dune Field, New Mexico, allows for the coupling of dune interactions with their resultant stratigraphic architecture. Dune interactions are documented by a decadal time-series of aerial photos and LiDAR-derived digital elevation models. Plan-view cross-strata in interdune areas provide a record tying past dune positions and morphologies to the current dunes. Three-dimensional stratigraphic architecture is revealed by imaging of dune interiors with ground-penetrating radar. The architecture of a dune defect merging with a target dune downwind consists of lateral truncation of the target dune set by an interaction bounding surface. Defect cross-strata tangentially approach and downlap onto the surface. Downwind, the interaction surface curves, and defect and adjacent target dune sets merge into a continuous set. Predictable angular relationships reflect field-scale patterns of dune migration direction and approach angle of migrating defects. The discovery of interaction architectures emphasizes that although dunes appear as continuous forms on the surface, they consist of discrete segments, each with a distinct morphodynamic history. Bedform interactions result in the morphologic recombination of dune bodies, which is manifested stratigraphically within the sets of cross-strata.

  5. Dynamic sand dunes.

    PubMed

    Amarouchene, Y; Boudet, J F; Kellay, H

    2001-05-01

    When sand falling in the spacing between two plates goes past an obstacle, a dynamic dune with a parabolic shape and an inner triangular region of nonflowing or slowly creeping sand forms. The angle of the triangular zone increases with the height of the dune and saturates at a value determined by the geometry of the cell. The width of the dune, related to the radius of curvature at the tip, shows universal features versus its height rescaled by geometrical parameters. The velocity profile in the flowing part is determined and found to be nonlinear. The parabolic shape can be accounted for using a simple driven convection-diffusion equation for the interface. PMID:11328156

  6. Sand Dunes, Afghanistan

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This ASTER image covers an area of 10.5 x 15 km in southern Afghanistan and was acquired on August 20, 2000. The band 3-2-1 composite shows part of an extensive field of barchan sand dunes south of Kandahar. The shape of the dunes indicates that the prevailing wind direction is from the west. The image is located at 30.7 degrees north latitude and 65.7 degrees east longitude.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  7. Sand Dunes in Hellas

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-537, 7 November 2003

    The smooth, rounded mounds in this Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) picture are sand dunes. The scene is located in southern Hellas Planitia and was acquired in mid-southern autumn, the ideal time of year for Hellas imaging. Sunlight illuminates the scene from the upper left. These dunes are located near 49.1oS, 292.6oW. The picture covers an area 3 km (1.9 mi) wide.

  8. High albedo dune features suggest past dune migration and possible geochemical cementation of aeolian sediments on Mars

    NASA Astrophysics Data System (ADS)

    Gardin, Emilie; Bourke, Mary C.; Allemand, Pascal; Quantin, Cathy

    2011-04-01

    High albedo features are identified in association with barchan dunes in an equatorial inter-crater dune field on Mars using images from the MRO mission. This paper describes the morphometric properties of these features and their association with the present barchan dune field. We propose that these features are cemented aeolian deposits that form at the foot of the dune avalanche face. A possible terrestrial analog exists at White Sands National Monument, in south-central New Mexico, USA. The presence of these features suggests past episodes of dune migration in inter-crater dunefields and liquid water in the near sub-surface in sufficient quantity to cause the cementation of aeolian dune sediment.

  9. Vegetation and substrate properties of aeolian dune fields in the Colorado River corridor, Grand Canyon, Arizona

    USGS Publications Warehouse

    Draut, Amy E.

    2011-01-01

    This report summarizes vegetation and substrate properties of aeolian landscapes in the Colorado River corridor through Grand Canyon, Arizona, in Grand Canyon National Park. Characterizing these parameters provides a basis from which to assess future changes in this ecosystem, including the spread of nonnative plant species. Differences are apparent between aeolian dune fields that are downwind of where modern controlled flooding deposits new sandbars (modern-fluvial-sourced dune fields) and those that have received little or no new windblown sand since river regulation began in the 1960s (relict-fluvial-sourced dune fields). The most substantial difference between modern- and relict-fluvial-sourced aeolian dune fields is the greater abundance of biologic soil crust in relict dune fields. These findings can be used with similar investigations in other geomorphic settings in Grand Canyon and elsewhere in the Colorado River corridor to evaluate the health of the Colorado River ecosystem over time.

  10. Alluvial Fans on Dunes in Kaiser Crater Suggest Niveo-Aeolian and Denivation Processes on Mars

    NASA Technical Reports Server (NTRS)

    Bourke, M. C.

    2005-01-01

    On Earth, cold region sand dunes often contain inter-bedded sand, snow, and ice. These mixed deposits of wind-driven snow, sand, silt, vegetal debris, or other detritus have been termed Niveo-aeolian deposits. These deposits are often coupled with features that are due to melting or sublimation of snow, called denivation features. Snow and ice may be incorporated into dunes on Mars in three ways. Diffusion of water vapour into pore spaces is the widely accepted mechanism for the accretion of premafrost ice. Additional mechanisms may include the burial by sand of snow that has fallen on the dune surface or the synchronous transportation and deposition of snow, sand and ice. Both of these mechanisms have been reported for polar dunes on Earth. Niveo-aeolian deposits in polar deserts on Earth have unique morphologies and sedimentary structures that are generally not found in warm desert dunes. Recent analysis of MOC-scale data have found evidence for potential niveo-aeolian and denivation deposits in sand dunes on Mars.

  11. Aeolian Sand Transport with Collisional Suspension

    NASA Technical Reports Server (NTRS)

    Jenkins, James T.; Pasini, Jose Miguel; Valance, Alexandre

    2004-01-01

    Aeolian transport is an important mechanism for the transport of sand on Earth and on Mars. Dust and sand storms are common occurrences on Mars and windblown sand is responsible for many of the observed surface features, such as dune fields. A better understanding of Aeolian transport could also lead to improvements in pneumatic conveying of materials to be mined for life support on the surface of the Moon and Mars. The usual view of aeolian sand transport is that for mild winds, saltation is the dominant mechanism, with particles in the bed being dislodged by the impact of other saltating particles, but without in-flight collisions. As the wind becomes stronger, turbulent suspension keeps the particles in the air, allowing much longer trajectories, with the corresponding increase in transport rate. We show here that an important regime exists between these two extremes: for strong winds, but before turbulent suspension becomes dominant, there is a regime in which in-flight collisions dominate over turbulence as a suspension mechanism, yielding transport rates much higher than those for saltation. The theory presented is based on granular kinetic theory, and includes both turbulent suspension and particle-particle collisions. The wind strengths for which the calculated transport rates are relevant are beyond the published strengths of current wind tunnel experiments, so these theoretical results are an invitation to do experiments in the strong-wind regime. In order to make a connection between the regime of saltation and the regime of collisional suspension, it is necessary to better understand the interaction between the bed and the particles that collide with it. This interaction depends on the agitation of the particles of the bed. In mild winds, collisions with the bed are relatively infrequent and the local disturbance associated with a collision can relax before the next nearby collision. However, as the wind speed increases, collision become more frequent

  12. Sand dunes as migrating strings.

    PubMed

    Guignier, L; Niiya, H; Nishimori, H; Lague, D; Valance, A

    2013-05-01

    We develop a reduced complexity model for three-dimensional sand dunes, based on a simplified description of the longitudinal and lateral sand transport. The spatiotemporal evolution of a dune migrating over a nonerodible bed under unidirectional wind is reduced to the dynamics of its crest line, providing a simple framework for the investigation of three-dimensional dunes, such as barchan and transverse dunes. Within this model, we derive analytical solutions for barchan dunes and investigate the stability of a rectilinear transverse dune against lateral fluctuations. We show, in particular, that the latter is unstable only if the lateral transport on the dune slip face prevails over that on the upwind face. We also predict the wavelength and the characteristic time that control the subsequent evolution of an unstable transverse dune into a wavy ridge and the ultimate fragmentation into barchan dunes. PMID:23767529

  13. Sand dunes as migrating strings

    NASA Astrophysics Data System (ADS)

    Guignier, L.; Niiya, H.; Nishimori, H.; Lague, D.; Valance, A.

    2013-05-01

    We develop a reduced complexity model for three-dimensional sand dunes, based on a simplified description of the longitudinal and lateral sand transport. The spatiotemporal evolution of a dune migrating over a nonerodible bed under unidirectional wind is reduced to the dynamics of its crest line, providing a simple framework for the investigation of three-dimensional dunes, such as barchan and transverse dunes. Within this model, we derive analytical solutions for barchan dunes and investigate the stability of a rectilinear transverse dune against lateral fluctuations. We show, in particular, that the latter is unstable only if the lateral transport on the dune slip face prevails over that on the upwind face. We also predict the wavelength and the characteristic time that control the subsequent evolution of an unstable transverse dune into a wavy ridge and the ultimate fragmentation into barchan dunes.

  14. Aeolian sand preserved in Silver Lake: a new signal of Holocene high stands of Lake Michigan

    USGS Publications Warehouse

    Fisher, Timothy G.; Loope, Walter L.

    2005-01-01

    Aeolian sand within lake sediment from Silver Lake, Michigan can be used as a proxy for the timing of high lake levels of Lake Michigan.We demonstrate that the sand record from Silver Lake plotted as percent weight is in-phase with the elevation curve of Lake Michigan since the mid-Holocene Nipissing Phase. Because fluctuations in Lake Michigan's lake level are recorded in beach ridges, and are a response to climate change, the aeolian sand record within Silver Lake is also a proxy for climate change. It appears that increases in dune activity and lake sand are controlled by similar climatic shifts that drive fluctuations in lake level of Lake Michigan. High lake levels destabilize coastal bluffs that drive dune sand instability, and along with greater wintertime storminess, increase niveo-aeolian transport of sand across lake ice. The sand is introduced into the lake each spring as the ice cover melts.

  15. Formation of aeolian ripples and sand sorting.

    PubMed

    Manukyan, Edgar; Prigozhin, Leonid

    2009-03-01

    We present a continuous model capable of demonstrating some salient features of aeolian sand ripples: the realistic asymmetric ripple shape, coarsening of the ripple field at the nonlinear stage of ripple growth, saturation of ripple growth for homogeneous sand, typical size segregation of sand, and formation of armoring layers of coarse particles on ripple crests and windward slopes if the sand is inhomogeneous. PMID:19391931

  16. Luminescence chronology of the inland sand dunes from SE India

    NASA Astrophysics Data System (ADS)

    Reddy, Dontireddy Venkat; Singaraju, Vuddaraju; Mishra, Rakesh; Kumar, Devender; Thomas, Puthusserry Joseph; Rao, Karra Kameshwa; Singhvi, Ashok Kumar

    2013-09-01

    Records of past climate changes have been preserved variously on the earth's surface. Sand dunes are one such prominent imprint, and it is suggested that their presence is an indicator of periods of transition from arid to less arid phases. We report inland sand dunes from Andhra Pradesh (SE India) spread over an area of ~ 500 km2, ~ 75 km inland from the east coast. The dune sands are examined to understand their provenance, transportation, timing of sand aggradation and their relationship to past climates. The dune distribution, grain morphology and the grain-size studies on sands suggest an aeolian origin. Physiography of the study area, heavy mineral assemblage, and abundance of quartz in the parent rocks indicate that the dune sands are largely derived from first-order streams emanating from hills in the region and from weathering of the Nellore schist belt. It appears that the geomorphology and wind direction pattern both facilitated and restricted the dune aggradation and preservation to a limited area. OSL dating of 47 dune samples ranged from the present to ~ 50 ka, thereby suggesting a long duration of sand-dune aggradation and/or reworking history.

  17. Ecogeomorphology of Sand Dunes Shaped by Vegetation

    NASA Astrophysics Data System (ADS)

    Tsoar, H.

    2014-12-01

    Two dune types associated with vegetation are known: Parabolic and Vegetated Linear Dunes (VLDs), the latters are the dominant dune type in the world deserts. Parabolic dunes are formed in humid, sub-humid and semi-arid environments (rather than arid) where vegetation is nearby. VLDs are known today in semiarid and arid lands where the average yearly rainfall is ≥100 mm, enough to support sparse cover of vegetation. These two dune types are formed by unidirectional winds although they demonstrate a different form and have a distinct dynamics. Conceptual and mathematical models of dunes mobility and stability, based on three control parameters: wind power (DP), average annual precipitation (p), and the human impact parameter (μ) show that where human impact is negligible the effect of wind power (DP) on vegetative cover is substantial. The average yearly rainfall of 60-80 mm is the threshold of annual average rainfall for vegetation growth on dune sand. The model is shown to follow a hysteresis path, which explains the bistability of active and stabilized dunes under the same climatic conditions with respect to wind power. We have discerned formation of parabolic dunes from barchans and transverse dunes in the coastal plain of Israel where a decrease in human activity during the second half of the 20th century caused establishment of vegetation on the crest of the dunes, a process that changed the dynamics of these barchans and transverse dunes and led to a change in the shape of the windward slope from convex to concave. These dunes gradually became parabolic. It seems that VLDs in Australia or the Kalahari have always been vegetated to some degree, though the shrubs were sparser in colder periods when the aeolian erosion was sizeable. Those ancient conditions are characterized by higher wind power and lower rainfall that can reduce, but not completely destroy, the vegetation cover, leading to the formation of lee (shadow) dunes behind each shrub. Formation of

  18. Sand Dunes in Noachis Terra

    NASA Technical Reports Server (NTRS)

    2004-01-01

    11 February 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows dark-toned sand dunes in a crater in eastern Noachis Terra. Most big martian dunes tend to be dark, as opposed to the more familiar light-toned dunes of Earth. This difference is a product of the composition of the dunes; on Earth, most dunes contain abundant quartz. Quartz is usually clear (transparent), though quartz sand grains that have been kicked around by wind usually develop a white, frosty surface. On Mars, the sand is mostly made up of the darker minerals that comprise iron- and magnesium-rich volcanic rocks--i.e., like the black sand beaches found on volcanic islands like Hawaii. Examples of dark sand dunes on Earth are found in central Washington state and Iceland, among other places. This picture is located near 49.0oS, 326.3oW. Sunlight illuminates this scene from the upper left; the image covers an area 3 km (1.9 mi) wide.

  19. Southern high latitude dune fields on Mars: Morphology, aeolian inactivity, and climate change

    USGS Publications Warehouse

    Fenton, L.K.; Hayward, R.K.

    2010-01-01

    In a study area spanning the martian surface poleward of 50?? S., 1190 dune fields have been identified, mapped, and categorized based on dune field morphology. Dune fields in the study area span ??? 116400km2, leading to a global dune field coverage estimate of ???904000km2, far less than that found on Earth. Based on distinct morphological features, the dune fields were grouped into six different classes that vary in interpreted aeolian activity level from potentially active to relatively inactive and eroding. The six dune field classes occur in specific latitude zones, with a sequence of reduced activity and degradation progressing poleward. In particular, the first signs of stabilization appear at ???60?? S., which broadly corresponds to the edge of high concentrations of water-equivalent hydrogen content (observed by the Neutron Spectrometer) that have been interpreted as ground ice. This near-surface ground ice likely acts to reduce sand availability in the present climate state on Mars, stabilizing high latitude dunes and allowing erosional processes to change their morphology. As a result, climatic changes in the content of near-surface ground ice are likely to influence the level of dune activity. Spatial variation of dune field classes with longitude is significant, suggesting that local conditions play a major role in determining dune field activity level. Dune fields on the south polar layered terrain, for example, appear either potentially active or inactive, indicating that at least two generations of dune building have occurred on this surface. Many dune fields show signs of degradation mixed with crisp-brinked dunes, also suggesting that more than one generation of dune building has occurred since they originally formed. Dune fields superposed on early and late Amazonian surfaces provide potential upper age limits of ???100My on the south polar layered deposits and ???3Ga elsewhere at high latitudes. No craters are present on any identifiable dune

  20. Aeolian sand ripples: experimental study of fully developed states.

    PubMed

    Andreotti, Bruno; Claudin, Philippe; Pouliquen, Olivier

    2006-01-20

    We report an experimental investigation of aeolian sand ripples, performed both in a wind tunnel and on stoss slopes of dunes. Starting from a flat bed, we can identify three regimes: appearance of an initial wavelength, coarsening of the pattern, and finally saturation of the ripples. We show that both initial and final wavelengths, as well as the propagative speed of the ripples, are linear functions of the wind velocity. Investigating the evolution of an initially corrugated bed, we exhibit nonlinear stable solutions for a finite range of wavelengths, which demonstrates the existence of a saturation in amplitude. These results contradict most of the models. PMID:16486644

  1. Sand Dunes in Kaiser Crater

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Full size (780 KBytes) This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) high resolution image shows a field of dark sand dunes on the floor of Kaiser Crater in southeastern Noachis Terra. The steepest slopes on each dune, the slip faces, point toward the east, indicating that the strongest winds that blow across the floor of Kaiser move sand in this direction. Wind features of three different scales are visible in this image: the largest (the dunes) are moving across a hard surface (light tone) that is itself partially covered by large ripples. These large ripples appear not to be moving--the dunes are burying some and revealing others. Another type of ripple pattern is seen on the margins of the dunes and where dunes coalesce. They are smaller (both in their height and in their separation) than the large ripples. These are probably coarse sediments that are moving with the dunes. This picture covers an area approximately 3 km (1.9 mi) across and is illuminated from the upper left.

  2. 3D numerical simulation of the evolutionary process of aeolian downsized crescent-shaped dunes

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaosi; Zhang, Yang; Wang, Yuan; Li, Min

    2016-06-01

    A dune constitutive model was coupled with a large eddy simulation (LES) with the Smagorinsky subgrid-scale (SGS) model to accurately describe the evolutionary process of dunes from the macroscopic perspective of morphological dynamics. A 3D numerical simulation of the evolution of aeolian downsized crescent-shaped dunes was then performed. The evolution of the 3D structure of Gaussian-shaped dunes was simulated under the influence of gravity modulation, which was the same with the vertical oscillation of the sand bed to adjust the threshold of sand grain liftoff in wind tunnel experiments under the same wind speed. The influence of gravity modulation intensity on the characteristic scale parameter of the dune was discussed. Results indicated that the crescent shape of the dune was reproduced with the action of gravity during regulation of the saturation of wind-sand flow at specific times. The crescent shape was not dynamically maintained as time passed, and the dunes dwindled until they reached final decomposition because of wind erosion. The height of the dunes decreased over time, and the height-time curve converged as the intensity of modulation increased linearly. The results qualitatively agreed with those obtained from wind tunnel experiments.

  3. Element geochemical analysis of the contribution of aeolian sand to suspended sediment in desert stream flash floods.

    PubMed

    Jia, Xiaopeng; Wang, Haibing

    2014-01-01

    The interaction of wind and water in semiarid and arid areas usually leads to low-frequency flash flood events in desert rivers, which have adverse effects on river systems and ecology. In arid zones, many aeolian dune-fields terminate in stream channels and deliver aeolian sand to the channels. Although aeolian processes are common to many desert rivers, whether the aeolian processes contribute to fluvial sediment loss is still unknown. Here, we identified the aeolian-fluvial cycling process responsible for the high rate of suspended sediment transport in the Sudalaer desert stream in the Ordos plateau of China. On the basis of element geochemistry data analysis, we found that aeolian sand was similar to suspended sediment in element composition, which suggests that aeolian sand contributes to suspended sediment in flash floods. Scatter plots of some elements further confirm that aeolian sand is the major source of the suspended sediment. Factor analysis and the relation between some elements and suspended sediment concentration prove that the greater the aeolian process, the higher the suspended sediment concentration and the greater the contribution of aeolian sand to suspended sediment yield. We conclude that aeolian sand is the greatest contributor to flash floods in the Sudalaer desert stream. PMID:25089295

  4. Element Geochemical Analysis of the Contribution of Aeolian Sand to Suspended Sediment in Desert Stream Flash Floods

    PubMed Central

    Wang, Haibing

    2014-01-01

    The interaction of wind and water in semiarid and arid areas usually leads to low-frequency flash flood events in desert rivers, which have adverse effects on river systems and ecology. In arid zones, many aeolian dune-fields terminate in stream channels and deliver aeolian sand to the channels. Although aeolian processes are common to many desert rivers, whether the aeolian processes contribute to fluvial sediment loss is still unknown. Here, we identified the aeolian-fluvial cycling process responsible for the high rate of suspended sediment transport in the Sudalaer desert stream in the Ordos plateau of China. On the basis of element geochemistry data analysis, we found that aeolian sand was similar to suspended sediment in element composition, which suggests that aeolian sand contributes to suspended sediment in flash floods. Scatter plots of some elements further confirm that aeolian sand is the major source of the suspended sediment. Factor analysis and the relation between some elements and suspended sediment concentration prove that the greater the aeolian process, the higher the suspended sediment concentration and the greater the contribution of aeolian sand to suspended sediment yield. We conclude that aeolian sand is the greatest contributor to flash floods in the Sudalaer desert stream. PMID:25089295

  5. Sand Dunes of Schaeberle Crater

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-391, 14 June 2003

    This March 2003 Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows dark sand dunes near the center of Schaeberle Crater, located at 24.6oS, 310.3oW. The steepest slopes on the dunes point toward the left/upper left (northwest), indicating that, when the dunes were active, the dominant regional winds blew from the right/lower right (southeast). The dunes today, however, have a somewhat stunted and sculpted appearance, which suggests that in the most recent part of their history, they have been somewhat eroded. This image covers an area 3 km (1.9 mi) wide and is illuminated from the upper left.

  6. Sand transport by wind, erosion and deposition and the origin of aeolian bedforms

    NASA Astrophysics Data System (ADS)

    Duran Vinent, Orencio

    2014-05-01

    Aeolian processes involve the wind action on a sedimentary substrate, namely erosion, sand transport and deposition. They are responsible for the emergence of aeolian dunes and ripples. Here, we discuss the physics of aeolian sediment transport from a physical point of view. Relevant time and length scales associated to turbulent wind fluctuations are summarized using aerodynamic theory. At the microscopic scale, the main forces acting on the grains are detailed. Sand transport is then studied using two phase numerical simulations based on a discrete element method for particles coupled to a continuum Reynolds averaged description of hydrodynamics. We then introduce the concepts - e.g. saturated flux, saturation length - and the relevant framework for the development of a continuum (macroscopic) quantitative description of transport at the core of our current understanding of aeolian dunes formation. At smaller scales, aeolian ripples arise from the interaction of sediment transport and topography. At larger scales, the nonlinear nature of the interaction between dunes leads to the formation of dune fields.

  7. Facies architecture and stratigraphic evolution of aeolian dune and interdune deposits, Permian Caldeirão Member (Santa Brígida Formation), Brazil

    NASA Astrophysics Data System (ADS)

    Jones, Fábio Herbert; Scherer, Claiton Marlon dos Santos; Kuchle, Juliano

    2016-05-01

    The Permian Caldeirão Member (Santa Brígida Formation), located in the Tucano Central Basin, northeast region of Brazil, is characterized by a sandstone succession of aeolian origin that comprises the preserved deposits of dunes and interdunes. Grainflow and translatent wind-ripple strata, and frequent presence of reactivation surface, compose the cross-bedding of crescent aeolian dune deposits. The aeolian cross-strata show a mean dip toward the ENE. In places, interlayered with dune cross-beds, occur interdune units composed of facies indicative of dry, damp and wet condition of the substrate, suggesting spatial and/or temporal variations in the moisture content of the interdune accumulation surface. The presence of NNW current ripple cross-lamination in wet interdune areas indicates streamflows confined to interdune corridors and oriented perpendicular to aeolian transport direction. Lenses of damp and wet interdune strata exhibit mainly interdigitated and transitional relationships with the toe-sets of overlying aeolian dune units in sections parallel to aeolian transport, indicating that dune migration was contemporaneous with accumulation in adjacent interdunes. Lateral variations in the preserved thickness of the interdune units and the associated rare occurrence of abrupt and erosive contacts between interdune and overlying dune sets, suggest temporal variations in the angle of dune and interdune climb that may be related to high-frequency changes in water table position. Four stratigraphic intervals in the Caldeirão Member can be identified, two intervals showing cross-bedding of aeolian dunes without wet interdune areas and two intervals exhibiting aeolian dunes separated by wet interdune areas, marking the transition between dry aeolian systems (Intervals I and III) and wet aeolian systems (Intervals II and IV). The temporal alternations between dry and wet aeolian systems reflect changes in the availability of dry sand and/or the rate in the water

  8. 2008 Weather and Aeolian Sand-Transport Data from the Colorado River Corridor, Grand Canyon, Arizona

    USGS Publications Warehouse

    Draut, Amy E.; Sondossi, Hoda A.; Hazel, Joseph E., Jr.; Andrews, Timothy; Fairley, Helen C.; Brown, Christopher R.; Vanaman, Karen M.

    2009-01-01

    This report presents measurements of weather parameters and aeolian (windblown) sand transport made in 2008 near selected archaeological sites in the Colorado River corridor through Grand Canyon, Ariz. The quantitative methods and data discussed here form a basis for monitoring ecosystem processes that affect archeological-site stability. Combined with forthcoming work to evaluate landscape evolution at nearby archaeological sites, these data can be used to document the relationship between physical processes, including weather and aeolian sand transport, and their effects on the physical integrity of archaeological sites. Data collected in 2008 reveal event- and seasonal-scale variations in rainfall, wind, temperature, humidity, and barometric pressure. Broad seasonal changes in aeolian sediment flux are also apparent at most study sites. The continuation of monitoring that began in 2007, and installation of equipment at several new sites in early 2008, allowed evaluation of the effects of the March 2008 high-flow experiment (HFE) on aeolian sand transport. At two of the nine sites studied, spring and summer winds reworked 2008 HFE sandbars to form new aeolian dunes, at which sand moved inland toward larger, well-established dune fields. At the other seven study sites, neither dune formation nor enhanced sand transport after the HFE were observed. At several of those sites, dominant wind directions in spring 2008 were not oriented such that much HFE sand would have moved inland; at other sites, lack of increased inland sand flux is attributable to lack of sandbar enlargement near the study sites or to inhibition of sand movement by vegetation or local topography.

  9. A Threshold Continuum for Aeolian Sand Transport

    NASA Astrophysics Data System (ADS)

    Swann, C.; Ewing, R. C.; Sherman, D. J.

    2015-12-01

    The threshold of motion for aeolian sand transport marks the initial entrainment of sand particles by the force of the wind. This is typically defined and modeled as a singular wind speed for a given grain size and is based on field and laboratory experimental data. However, the definition of threshold varies significantly between these empirical models, largely because the definition is based on visual-observations of initial grain movement. For example, in his seminal experiments, Bagnold defined threshold of motion when he observed that 100% of the bed was in motion. Others have used 50% and lesser values. Differences in threshold models, in turn, result is large errors in predicting the fluxes associated with sand and dust transport. Here we use a wind tunnel and novel sediment trap to capture the fractions of sand in creep, reptation and saltation at Earth and Mars pressures and show that the threshold of motion for aeolian sand transport is best defined as a continuum in which grains progress through stages defined by the proportion of grains in creep and saltation. We propose the use of scale dependent thresholds modeled by distinct probability distribution functions that differentiate the threshold based on micro to macro scale applications. For example, a geologic timescale application corresponds to a threshold when 100% of the bed in motion whereas a sub-second application corresponds to a threshold when a single particle is set in motion. We provide quantitative measurements (number and mode of particle movement) corresponding to visual observations, percent of bed in motion and degrees of transport intermittency for Earth and Mars. Understanding transport as a continuum provides a basis for revaluating sand transport thresholds on Earth, Mars and Titan.

  10. Multi-spatial analysis of aeolian dune-field patterns

    NASA Astrophysics Data System (ADS)

    Ewing, Ryan C.; McDonald, George D.; Hayes, Alex G.

    2015-07-01

    Aeolian dune-fields are composed of different spatial scales of bedform patterns that respond to changes in environmental boundary conditions over a wide range of time scales. This study examines how variations in spatial scales of dune and ripple patterns found within dune fields are used in environmental reconstructions on Earth, Mars and Titan. Within a single bedform type, different spatial scales of bedforms emerge as a pattern evolves from an initial state into a well-organized pattern, such as with the transition from protodunes to dunes. Additionally, different types of bedforms, such as ripples, coarse-grained ripples and dunes, coexist at different spatial scales within a dune-field. Analysis of dune-field patterns at the intersection of different scales and types of bedforms at different stages of development provides a more comprehensive record of sediment supply and wind regime than analysis of a single scale and type of bedform. Interpretations of environmental conditions from any scale of bedform, however, are limited to environmental signals associated with the response time of that bedform. Large-scale dune-field patterns integrate signals over long-term climate cycles and reveal little about short-term variations in wind or sediment supply. Wind ripples respond instantly to changing conditions, but reveal little about longer-term variations in wind or sediment supply. Recognizing the response time scales across different spatial scales of bedforms maximizes environmental interpretations from dune-field patterns.

  11. Crest line minimal model for sand dune

    NASA Astrophysics Data System (ADS)

    Guignier, Lucie; Valance, Alexandre; Lague, Dimitri

    2013-04-01

    In desert, complex patterns of dunes form. Under unidirectional wind, transverse rectilinear dunes or crescent shaped dunes called barchan dunes can appear, depending on the amount of sediment available. Most rectilinear transverse sand dunes are observed to fragment, for example at White Sands (New Mexico, United States of America) or Walvis Bay (Namibia). We develop a reduced complexity model to investigate the morphodynamics of sand dunes migrating over a non-erodible bed under unidirectional wind. The model is simply based on two physical ingredients, namely, the sand capture process at the slip face and the cross-wind sand transport. The efficiency of the sand capture process is taken to be dependent of the dune height and lateral diffusion is considered on both the windward and lee sides of the dune. In addition, the dune cross section is assumed to be scale invariant and is approximated by a triangular shape. In this framework, the dune dynamics is reduced to the motion of a string representing the dune crest line and is expressed as a set of two coupled nonlinear differential equations. This simple model reveals its ability to reproduce basic features of barchan and transverse dunes. Analytical predictions are drawn concerning dune equilibrium shape, stability and long-term dynamics. We derive, in particular, analytical solutions for barchan dunes, yielding explicit relationships between their shape and the lateral sand diffusion; and analytical predictions for the migration speed and equilibrium sand flux. A stability analysis of a rectilinear transverse dune allows us to predict analytically the wavelength emerging from fluctuations of the dune crest. We also determine the characteristic time needed for the rectilinear dune to fragment into a multitude of barchan dunes. These outcomes show that extremely simple ingredients can generate complex patterns for migrating dunes. From several dune field data, we are able to determine values of the model

  12. Sedimentological, Mineralogical and Geochemical Characterization of Sand Dunes in Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Benaafi, Mohammed; Abdullatif, Osman

    2014-05-01

    Sedimentological, mineralogical, morphological and geochemical studies of sand dunes from ten locations in Saudi Arabia were conducted in order to determine the differences between them and to find out the provenance and tectonic setting of these sand dunes. Sixty seven samples were collected from different sand dunes types ranging in morphology from linear, barchans, parabolic to stars dunes. In overall, the sand dunes are fine to coarse grained mean grain size, moderately sorted, near symmetrical skewness with mesokurtic distribution characterized sand dunes in most locations. The sand dunes grains are subrounded in all locations except in the Red sea, Qassim, central Arabia and the eastern province which showed sub-angular grains. The main mineral compositions of studied aeolian sand dunes are quartz, feldspar, calcite, and mica. Quartz is the dominant mineral in locations with significant amount of feldspars and mica in Najran, Red sea and Central Arabia locations. Moreover, calcite is present in Sakaka and NW Empty Quarter (Jafurah). Basement related sand dunes in Najran, Central Arabia and Red sea locations are sub-mature in terms of their mineralogical maturity. Whereas, sand dunes in other locations are texturally mature except those from the Red sea which showed sub-mature sand. The sands are classified as quartz arenite, except in the basement related sand dunes in Najran, central Arabia and the Red sea are ranging from sub-arkose, sub-litharenite and lithraenite. Morphologically, parallel to sub-parallel sand ridges with NE-SW orientation occurred in east and north parts of Empty Quarter (Najran and Jafurah) and NW-SE orientation in Dahna and Nafud deserts in central and north regions of Saudi Arabia. Parabolic sand dunes characterized the Nafud desert (Hail, Sakaka, Tayma locations). Barchans and star sand dunes characterize the Empty Quarter (Jafurah). Major, trace, and rare earth elements studies were carried out to determine the composition

  13. A Comparative Analysis of Barchan Dunes in the Intra-Crater Dune Fields and the North Polar Sand Sea

    NASA Technical Reports Server (NTRS)

    Bourke, M. C.; Balme, M.; Zimbelman, J.

    2004-01-01

    Martian sand dunes have the potential to contribute data on geological history through a study of their form. Recognition of the characteristics of both recent and ancient dunes is the first step towards understanding the present as well as past aeolian systems, and by proxy, climatic conditions on Mars. Dunes studied in detail in Viking 1 and 2 Orbiter images have been classified as barchan, barchanoid, transverse, and complex. Regionally, they are concentrated in four locations: The North and South Polar regions, in intra crater dune fields and in troughs and valleys. Here we present the results of a morphometric analysis of barchan dunes in two of these locations: the North Polar Sand Sea (NPSS) and intra-crater dunes.

  14. Meso-scale modelling of aeolian sediment input to coastal dunes

    NASA Astrophysics Data System (ADS)

    Delgado-Fernandez, Irene

    2011-07-01

    The collection of a time series coupling hourly wind data (speed and direction) with sand transport over months has provided new insights into the dynamics of transport events that input sediment to the foredune at Greenwich Dunes, Prince Edward Island National Park, Canada. This paper summarises the key aspects of aeolian sediment movement for a period of 9 months and presents a modelling approach for resolving aeolian transport to coastal dunes at the meso-scale. The main hypothesis of the modelling approach is that a small number of key factors control both the occurrence and the magnitude of transport events. Thresholds associated with these factors may be used to filter the time series and isolate potential transport periods over the year. The impacts of nearshore processes are included in the approach as part of the dynamics of coastal dunes, as are supply-limiting factors and trade-offs between fetch distances, angle of wind approach, and beach dimensions. A simple analytical procedure, based on previously published equations, is carried out to assess the general viability of the conceptual approach. Results show that the incorporation of moisture and fetch effects in the calculation of transport for isolated potential transport periods result in improved predictions of sediment input to the dune. Net changes, measured with three different techniques, suggest that survey data with coarse temporal resolution underestimates the amount of sand input to the dune, because sediment is often removed from the embryo dune and foredune by other processes such as wave scarping. Predictions obtained by the proposed modelling approach are of the same order of magnitude as measured deposition and much less than predicted by models based solely on wind speed and direction. Areas for improvement and alternative modelling approaches, such as probabilistic approaches similar to weather forecasting, are covered in the discussion.

  15. Hematite Outlier and Sand Dunes

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Released 4 December 2003

    This image shows a crater just south of the edge of the famous hematite-bearing surface, which is visible in the context image as a smooth area to the north. The crater has two features of immediate note. The first is a layered mound in the north part of the crater floor. This mound contains hematite, and it is an outlying remnant of the greater deposits to the north that have otherwise completely disappeared in this crater. The second feature is a dune field in the center of the crater floor, with dark dunes indicating winds from the northwest. The dunes grade into a dark sand sheet with no coherent structure, indicating that the sand layer thins out to the south and east.

    Image information: VIS instrument. Latitude -4.4, Longitude 357.3 East (2.7 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  16. Debris Flow Gullies at the Great Kobuk Sand Dunes, Alaska: Implications for Analogous Features on Mars

    NASA Astrophysics Data System (ADS)

    Hooper, D. M.; Dinwiddie, C. L.; Mcginnis, R. N.; Smart, K. J.; Roberts, M.

    2011-12-01

    Debris flows with fresh-appearing gullies or erosion tracks occur on the slopes of several mid- to high-latitude dune fields in both Martian hemispheres. These features originate in alcoves near dune crests, become channelized down lee faces, and terminate with depositional fans. They bear a striking resemblance to small meltwater-induced debris flows observed on the lee slopes of large dunes at the 67 degrees N latitude Great Kobuk Sand Dunes (GKSD), Kobuk Valley National Park, Alaska. The high-latitude, cold-climate GKSD are an optimal terrestrial system within which to conduct a Mars analog study focused on understanding the integrated factors that cause alluvial debris flows to initiate on the lee slopes of aeolian dunes. Debris flow processes in the GKSD are activated by seasonal thawing and consist of a mixture of sand and liquid water cascading down the dune slipface. A distinguishing environmental attribute that separates cold-climate dune fields from temperate and warm-climate dune fields is the seasonal and prolonged occurrence of snow and ice. Cold region dunes often include niveo-aeolian deposits composed of interbedded sand, snow, and ice. The GKSD are variably affected by snowcover for ~70% of each year, which likely has direct analogy to hydrocryospheric factors that influence debris flow development on Mars. Melting and/or sublimation of snow and ice during warm periods cause distinctive morphologic and sedimentologic phenomena ascribed as denivation features or forms, including spongy and hummocky surfaces, tensional cracks, deformed strata, slumping, and compressional structures. We observed small debris flows, niveo-aeolian deposits, and denivation features in the GKSD during fieldwork in March 2010. Wind-transported sand and snow accumulated on the lee slopes of large transverse, longitudinal, and barchanoid dunes. Snow banks with intercalated sand layers are especially prominent and thickest near the top of westward-facing lee slopes at the

  17. Great Kobuk Sand Dunes, Alaska: A Terrestrial Analog Site for Polar, Topographically Confined Martian Dune Fields

    NASA Astrophysics Data System (ADS)

    Dinwiddie, C. L.; Hooper, D. M.; Michaels, T. I.; McGinnis, R. N.; Stillman, D.; Bjella, K.; Stothoff, S.; Walter, G. R.; Necsoiu, M.; Grimm, R. E.

    2010-12-01

    Martian dune systems belong to two broad categories: (i) the sprawling north polar erg, rich in and immobilized by seasonal and perennial volatiles; and (ii) isolated low- to high-latitude dune fields confined by topography. While modern dune migration on Mars is nearly imperceptibly slow, recent studies are producing robust evidence for aeolian activity, including bedform modification. Cold-climate terrestrial dunes containing volatile reservoirs provide an important analog to Martian polar dunes because permafrost and seasonal cycles of CO2 and H2O frost mantling are thought to partially decouple Martian polar dunes from atmospheric forcing. The 67°N latitude, 62 km2 Great Kobuk Sand Dunes (GKSD) are a terrestrial analog for polar, intercrater dune fields on Mars. Formative winds affected by complex topography and the presence of volatiles and intercalated snow within the GKSD have direct analogy to factors that impede migration of Martian polar dunes. This system offers the opportunity to study cold-climate, noncoastal, topographically constrained, climbing and reversing barchanoid, transverse, longitudinal, and star dunes. The Kobuk Valley climate is subarctic and semiarid with long, cold winters and brief, warm summers. Niveoaeolian sedimentation occurs within west-facing lee slope catchments. In March 2010, we found the seasonally frozen layer to range in thickness from 1.5 to 4.0 m, and no evidence for shallow permafrost. Instead, using GPR and boreholes, we found a system-wide groundwater aquifer that nearly parallels topography and cuts across steeply dipping bedforms. GPR cannot uniquely detect ice and water; however, a similar analysis of rover-based GPR might be used to detect volatiles in Martian dunes. The perennial volatile reservoir is liquid because of mean annual air temperature, intense solar heating before, during, and after 38 days of continuous summer daylight, high dry sand thermal conductivity, higher wet sand thermal conductivity

  18. Morphological characteristics and sand volumes of different coastal dune types in Essaouira Province, Atlantic Morocco

    NASA Astrophysics Data System (ADS)

    Flor-Blanco, Germán; Flor, Germán; Lharti, Saadia; Pando, Luis

    2013-04-01

    Altogether three coastal dune fields, one located north and two south of the city of Essaouira, Atlantic Morocco, have been investigated to establish the distribution and overall sand volumes of various dune types. The purpose of the study was to characterize and classify the aeolian landforms of the coastal dune belt, to estimate their sand volumes and to assess the effectiveness of coastal dune stabilization measures. The northern dune field is 9 km long and lined by a wide artificial foredune complex fixed by vegetation, fences and branches forming a rectangular grid. Active and ephemeral aklé dunes border the inner backshore, while some intrusive dunes have crossed the foredune belt and are migrating farther inland. The total sand volume of the northern dune belt amounts 13,910,255 m3. The central coastal sector comprises a much smaller dune field located just south of the city. It is only 1.2 km long and, with the exception of intrusive dunes, shows all other dune types. The overall sand volume of the central dune field amounts to about 172,463 m3. The southern dune field is characterized by a narrower foredune belt and overall lower dunes that, in addition, become progressively smaller towards the south. In this sector, embryonic dunes (coppice, shadow dunes), tongue-like and tabular dunes, and sand sheets intrude from the beach, the profile of which has a stepped appearance controlled by irregular outcrops of old aeolianite and beach rock. The total volume of the southern dune field amounts 1,446,389 m3. For the whole study area, i.e. for all three dune fields combined, a sand volume of about 15,529,389 m3 has been estimated. The sand of the dune fields is derived from coastal erosion and especially the Tensift River, which enters the sea at Souira Qedima some 70 km north of Essaouira. After entering the sea, the sand is transported southwards by littoral drift driven by the mainly north-westerly swell climate and the Trade Winds blowing from the NNE. This

  19. Mars aeolian sand: Regional variations among dark-hued crater floor features

    NASA Astrophysics Data System (ADS)

    Edgett, K. S.; Christensen, P. R.

    1994-01-01

    Different regions on Mars appear to have low-albedo intracrater deposits that have distinct regional thermophysical and/or aeolian dune characteristics. Thermal inertia derived from a carefully selected set of Viking infrared thermal mapper observations of the dark features obtained in 1977-1978 supports this conclusion. The observed similarities and differences among dark intracrater features on Mars is probably a function of the combined influences of sand availability and regional wind conditions.

  20. 2009 weather and aeolian sand-transport data from the Colorado River corridor, Grand Canyon, Arizona

    USGS Publications Warehouse

    Draut, Amy E.; Sondossi, Hoda A.; Dealy, Timothy P.; Hazel, Joseph E., Jr.; Fairley, Helen C.; Brown, Christopher R.

    2010-01-01

    This report presents measurements of weather parameters and aeolian sand transport made in 2009 near selected archeological sites in the Colorado River corridor through Grand Canyon, Ariz. The quantitative methods and data discussed here form a basis for monitoring ecosystem processes that affect archeological-site stability. Combined with forthcoming work to evaluate landscape evolution at nearby archeological sites, these data can be used to document the relation between physical processes, including weather and aeolian sand transport, and their effects on the physical integrity of archeological sites. Data collected in 2009 reveal event- and seasonal-scale variations in rainfall, wind, temperature, humidity, and barometric pressure. Broad seasonal changes in aeolian sediment flux are also apparent at most study sites. Differences in weather patterns between 2008 and 2009 included an earlier spring windy season, greater spring precipitation even though 2009 annual rainfall totals were in general substantially lower than in 2008, and earlier onset of the reduced diurnal barometric-pressure fluctuations commonly associated with summer monsoon conditions. Weather patterns in middle to late 2009 were apparently affected by a transition of the ENSO cycle from a neutral phase to the El Ni?o phase. The continuation of monitoring that began in 2007, and installation of additional equipment at several new sites in early 2008, allowed evaluation of the effects of the March 2008 high-flow experiment (HFE) on aeolian sand transport. As reported earlier, at 2 of the 9 sites studied, spring and summer winds in 2008 reworked the HFE sandbars to form new aeolian dunes, where sand moved inland toward larger, well-established dune fields. Observations in 2009 showed that farther inland migration of the dune at one of those two sites is likely inhibited by vegetation. At the other location, the new aeolian dune form was found to have moved 10 m inland toward older, well

  1. Direct numerical simulations of aeolian sand ripples

    PubMed Central

    Durán, Orencio; Claudin, Philippe; Andreotti, Bruno

    2014-01-01

    Aeolian sand beds exhibit regular patterns of ripples resulting from the interaction between topography and sediment transport. Their characteristics have been so far related to reptation transport caused by the impacts on the ground of grains entrained by the wind into saltation. By means of direct numerical simulations of grains interacting with a wind flow, we show that the instability turns out to be driven by resonant grain trajectories, whose length is close to a ripple wavelength and whose splash leads to a mass displacement toward the ripple crests. The pattern selection results from a compromise between this destabilizing mechanism and a diffusive downslope transport which stabilizes small wavelengths. The initial wavelength is set by the ratio of the sediment flux and the erosion/deposition rate, a ratio which increases linearly with the wind velocity. We show that this scaling law, in agreement with experiments, originates from an interfacial layer separating the saltation zone from the static sand bed, where momentum transfers are dominated by midair collisions. Finally, we provide quantitative support for the use of the propagation of these ripples as a proxy for remote measurements of sediment transport. PMID:25331873

  2. Direct numerical simulations of aeolian sand ripples.

    PubMed

    Durán, Orencio; Claudin, Philippe; Andreotti, Bruno

    2014-11-01

    Aeolian sand beds exhibit regular patterns of ripples resulting from the interaction between topography and sediment transport. Their characteristics have been so far related to reptation transport caused by the impacts on the ground of grains entrained by the wind into saltation. By means of direct numerical simulations of grains interacting with a wind flow, we show that the instability turns out to be driven by resonant grain trajectories, whose length is close to a ripple wavelength and whose splash leads to a mass displacement toward the ripple crests. The pattern selection results from a compromise between this destabilizing mechanism and a diffusive downslope transport which stabilizes small wavelengths. The initial wavelength is set by the ratio of the sediment flux and the erosion/deposition rate, a ratio which increases linearly with the wind velocity. We show that this scaling law, in agreement with experiments, originates from an interfacial layer separating the saltation zone from the static sand bed, where momentum transfers are dominated by midair collisions. Finally, we provide quantitative support for the use of the propagation of these ripples as a proxy for remote measurements of sediment transport. PMID:25331873

  3. Aerolian erosion, transport, and deposition of volcaniclastic sands among the shifting sand dunes, Christmas Lake Valley, Oregon: TIMS image analysis

    NASA Technical Reports Server (NTRS)

    Edgett, Kenneth S.; Ramsey, Michael S.; Christensen, Philip R.

    1995-01-01

    Remote sensing is a tool that, in the context of aeolian studies, offers a synoptic view of a dune field, sand sea, or entire desert region. Blount et al. (1990) presented one of the first studies demonstrating the power of multispectral images for interpreting the dynamic history of an aeolian sand sea. Blount's work on the Gran Desierto of Mexico used a Landsat TM scene and a linear spectral mixing model to show where different sand populations occur and along what paths these sands may have traveled before becoming incorporated into dunes. Interpretation of sand transport paths and sources in the Gran Desierto led to an improved understanding of the origin and Holocene history of the dunes. With the anticipated advent of the EOS-A platform and ASTER thermal infrared capability in 1998, it will become possible to look at continental sand seas and map sand transport paths using 8-12 mu m bands that are well-suited to tracking silicate sediments. A logical extension of Blount's work is to attempt a similar study using thermal infrared images. One such study has already begun by looking at feldspar, quartz, magnetite, and clay distributions in the Kelso Dunes of southern California. This paper describes the geology and application of TIMS image analysis of a less-well known Holocene dune field in south central Oregon using TIMS data obtained in 1991.

  4. Aeolian dunes as ground truth for atmospheric modeling on Mars

    USGS Publications Warehouse

    Hayward, R.K.; Titus, T.N.; Michaels, T.I.; Fenton, L.K.; Colaprete, A.; Christensen, P.R.

    2009-01-01

    Martian aeolian dunes preserve a record of atmosphere/surface interaction on a variety of scales, serving as ground truth for both Global Climate Models (GCMs) and mesoscale climate models, such as the Mars Regional Atmospheric Modeling System (MRAMS). We hypothesize that the location of dune fields, expressed globally by geographic distribution and locally by dune centroid azimuth (DCA), may record the long-term integration of atmospheric activity across a broad area, preserving GCM-scale atmospheric trends. In contrast, individual dune morphology, as expressed in slipface orientation (SF), may be more sensitive to localized variations in circulation, preserving topographically controlled mesoscale trends. We test this hypothesis by comparing the geographic distribution, DCA, and SF of dunes with output from the Ames Mars GCM and, at a local study site, with output from MRAMS. When compared to the GCM: 1) dunes generally lie adjacent to areas with strongest winds, 2) DCA agrees fairly well with GCM modeled wind directions in smooth-floored craters, and 3) SF does not agree well with GCM modeled wind directions. When compared to MRAMS modeled winds at our study site: 1) DCA generally coincides with the part of the crater where modeled mean winds are weak, and 2) SFs are consistent with some weak, topographically influenced modeled winds. We conclude that: 1) geographic distribution may be valuable as ground truth for GCMs, 2) DCA may be useful as ground truth for both GCM and mesoscale models, and 3) SF may be useful as ground truth for mesoscale models. Copyright 2009 by the American Geophysical Union.

  5. Particle-size fractionation of aeolian sand along a climatic and geomorphic gradient of the Sinai-Negev erg

    NASA Astrophysics Data System (ADS)

    Roskin, Joel; Katra, Itzhak; Blumberg, Dan G.

    2015-04-01

    This study examines changes in the aeolian sand fractions along the west-east aeolian transport path of the northern Sinai Peninsula - northwestern (NW) Negev erg of Egypt and Israel. This erg originates from the Nile Delta and is composed of currently active linear (seif) dunes in northern Sinai (its western part), and currently stabilized vegetated linear dunes (VLDs) in the NW Negev dunefield (its eastern part). Sand samples from the Nile Delta, northern Sinai and NW Negev were analyzed for particle-size distribution and sand grain morphology in accordance to their Eastern Mediterranean INQUA Dunes Atlas luminescence and radiocarbon chronologies. Linear seif dunes differ from VLDs in their vegetation cover, linearity, and dynamics. Although both are continuous landforms with similar orientations and sand-grain roundness values, the linear dunes of Sinai are coarser-grained than the Negev VLDs. The VLDs have a significantly higher proportion of very fine sand (125-50 μm) content and a varying but lower sand fining ratio defined as the ratio of fine sand percentage to very fine sand percentage. Very fine sands are suggested to have been winnowed by saltation and low suspension from source deposits and sand sheets. Detailed semi-quantitative examinations of sand grains by a SEM of a Negev VLD shows that most grains do not exhibit features that can be attributed to aeolian abrasion by sand grain-grain collisions. From these observations we infer that fractionation of sand was a major process leading to downwind fining along the studied aeolian transport path. We suggest that the very fine sand fraction of Nile Delta and Sinai sands has been transported downwind since the late middle Pleistocene. In the late Pleistocene, sand reached the NW Negev in the form of VLDs due to last-glacial period windiness of intensities unprecedented today and probably larger sediment supply. Generally current and inferred past decreasing wind velocities and increasing precipitation

  6. Aeolian processes and dune morphology in the Gobi and Badain Jaran Desert using LandSat Imagery.

    NASA Astrophysics Data System (ADS)

    Cardinale, Marco; Cannito, Arturo; Marinangeli, Lucia

    2014-05-01

    The Gobi and Badain Jaran Deserts are parts of the vast sand sea of the Alashan Region, one of the greatest dunefield in China [1]. They lie between the southern Mongolia and the northern China (latitude 37° 06'N - 41°50'N; longitude 99°10'E - 107°09'E) [2]. The studied area is characterized by an arid climate with low average annual rainfall between 50-60mm, extreme fluctuation in temperature, very strong winds and by the occurrence of mega dunes and permanent lakes within the dunefield [3]. According to our morphological analysis, wind action has been one of the main factors that have shaped the surface features inside the investigated area. We produce a detailed geomorphological map of the desertic zone, highlighting the aeolian morphologies, in order to characterize aeolian deposits and processes. The LandSat ETM+ data [4], providing a continuous coverage of the dune fields with no gaps, were processed using ENVI software and then ingested in a GIS project. We also used DTMs (30m / pixel) from Aster data [5]. The dune morphology was classified using McKee criteria [6] and we interpreted the pattern of the complex ergs as the result of self - organization within complex systems [7]. Compound transverse mega dunes and barchanoid dunes developed under a variable wind regime, star dunes in the northern area near the mountain have been formed under a multi directional wind regime. The area covered by mega dunes suggests a complex evolution of these features dominated by the wind activity. Different episodes of deposition, erosion and motion, could explain the height of these dunes measured by the DTMs. The diverse aeolian features identified in the investigated area suggest that aeolian activity play a key role for the evolution of the surface morphologies of the Gobi Desert. To understand the local dynamics of aeolian processes, we are currently comparing these features with meteorological data from mesoscale wind models. References: [1] E. D.McKee. A Study of

  7. Basaltic lava flows covering active aeolian dunes in the Paraná Basin in southern Brazil: Features and emplacement aspects

    NASA Astrophysics Data System (ADS)

    Waichel, Breno L.; Scherer, Claiton M. S.; Frank, Heinrich T.

    2008-03-01

    Burial of active aeolian dunes by lava flows can preserve the morphology of the dunes and generate diverse features related to interaction between unconsolidated sediments and lavas. In the study area, located in southern Brazil, burial of aeolian deposits by Cretaceous basaltic lava flows completely preserved dunes, and generate sand-deformation features, sand diapirs and peperite-like breccia. The preserved dunes are crescentic and linear at the main contact with basalts, and smaller crescentic where interlayered with lavas. The various feature types formed on sediment surfaces by the advance of the flows reflect the emplacement style of the lavas which are compound pahoehoe type. Four feature types can be recognized: (a) type 1 features are related to the advance of sheet flows in dune-interdune areas with slopes > 5°, (b) type 2 is formed where the lava flows advance in lobes and climb the stoss slope of crescentic dunes (slopes 8-12°), (c) type 3 is generated by toes that descend the face of linear dunes (slopes 17-23°) and (d) type 4 occurs when lava lobes descend the stoss slope of crescentic dunes (slopes 10-15°). The direction of the flows, the disposition and morphology of the dunes and the ground slope are the main factors controlling formation of the features. The injection of unconsolidated sand in lava lobes forms diapirs and peperite-like breccias. Sand diapirs occur at the basal portion of lobes where the lava was more solidified. Peperite-like breccias occur in the inner portion where lava was more plastic, favoring the mingling of the components. The generation of both features is related to a mechanical process: the weight of the lava causes the injection of sand into the lava and the warming of the air in the pores of the sand facilitates this process. The lava-sediment interaction features presented here are consistent with previous reports of basalt lavas with unconsolidated arid sediments, and additional new sand-deformation features

  8. Layers, Landslides, and Sand Dunes

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Released 27 October 2003

    This image shows the northern rim of one of the Valles Marineris canyons. Careful inspection shows many interesting features here. Note that the spurs and gullies in the canyon wall disappear some distance below the top of the canyon wall, indicating the presence of some smooth material here that weathers differently from the underlying rocks. On the floor of the canyon, there are remains from a landslide that came hurtling down the canyon wall between two spurs. Riding over the topography of the canyon floor are many large sand dunes, migrating generally from the lower right to upper left.

    Image information: VIS instrument. Latitude -14.1, Longitude 306.7 East (53.3 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  9. Discrete Element Method simulations of the saturation of aeolian sand transport

    NASA Astrophysics Data System (ADS)

    Pähtz, Thomas; Omeradžić, Amir; Carneiro, Marcus V.; Araújo, Nuno A. M.; Herrmann, Hans J.

    2015-03-01

    The saturation length of aeolian sand transport (Ls), characterizing the distance needed by wind-blown sand to adapt to changes in the wind shear, is essential for accurate modeling of the morphodynamics of Earth's sandy landscapes and for explaining the formation and shape of sand dunes. In the last decade, it has become a widely accepted hypothesis that Ls is proportional to the characteristic distance needed by transported particles to reach the wind speed (the "drag length"). Here we challenge this hypothesis. From extensive numerical Discrete Element Method simulations, we find that, for medium and strong winds, Ls∝Vs2/g, where Vs is the saturated value of the average speed of sand particles traveling above the surface and g is the gravitational constant. We show that this proportionality is consistent with a recent analytical model, in which the drag length is just one of four similarly important length scales relevant for sand transport saturation.

  10. Numerical modeling of subaqueous sand dune morphodynamics

    NASA Astrophysics Data System (ADS)

    Doré, Arnaud; Bonneton, Philippe; Marieu, Vincent; Garlan, Thierry

    2016-03-01

    The morphodynamic evolution of subaqueous sand dunes is investigated, using a 2-D Reynolds-averaged Navier-Stokes numerical model. A laboratory experiment where dunes are generated under stationary unidirectional flow conditions is used as a reference case. The model reproduces the evolution of the erodible bed until a state of equilibrium is reached. In particular, the simulation exhibits the different stages of the bed evolution, e.g., the incipient ripple generation, the nonlinear bed form growing phase, and the dune field equilibrium phase. The results show good agreement in terms of dune geometrical dimensions and time to equilibrium. After the emergence of the first ripple field, the bed growth is driven by cascading merging sequences between bed forms of different heights. A sequence extracted from the simulation shows how the downstream bed form is first eroded before merging with the upstream bed form. Superimposed bed forms emerge on the dune stoss sides during the simulation. An analysis of the results shows that they emerge downstream of a slight deflection on the dune profile. The deflection arises due to a modification of the sediment flux gradient consecutive to a reduction in the turbulence relaxation length while the upstream bed form height decreases. As they migrate, superimposed bed forms grow on the dune stoss side and eventually provoke the degeneration of the dune crest. Cascading merging sequences and superimposed bed forms dynamics both influence the dune field evolution and size and therefore play a fundamental role in the dune field self-organization process.

  11. Dynamics of sediment storage and release on aeolian dune slip faces: A field study in Jericoacoara, Brazil

    NASA Astrophysics Data System (ADS)

    Pelletier, Jon D.; Sherman, Douglas J.; Ellis, Jean T.; Farrell, Eugene J.; Jackson, Nancy L.; Li, Bailiang; Nordstrom, Karl F.; Maia, Luis Parente; Omidyeganeh, Mohammad

    2015-09-01

    Sediment transport on the lee sides of aeolian dunes involves a combination of grain-fall deposition on the upper portion of the slip face until a critical angle is exceeded, transport of a portion of those sediments down the slip face by grain flows and, finally, deposition at an angle of repose. We measured the mean critical and repose angles and the rate of slip-face avalanching using terrestrial laser scanning (TLS) on two barchans of different size in Jericoacoara, Brazil. Wind speeds and sand fluxes were measured simultaneously at the dune crests. We found that the mean critical decreased with increasing wind speed. We attribute this effect to turbulent shear stresses, the magnitude of which we quantified using 3-D large eddy simulation modeling, that randomly act down the slip face (i.e., in the direction of gravity) to trigger grain flows at lower angles than would be possible with gravity stresses alone. We developed and tested a new predictive model for the frequency of avalanching that depends on both the sediment flux delivered to the slip face and changes in the critical angle with time. In this model, increasing turbulent shear stresses drive avalanching even in the absence of sand flux delivered to the slip face if the critical angle decreases below the slope angle. We also document that the mean critical angle decreases slightly with increasing slip-face height. These results have important implications for aeolian dune evolution, interpretations of aeolian stratigraphy, and granular mechanics.

  12. Explaining the surprisingly poor correlation between turbulent surface wind and aeolian sand flux

    NASA Astrophysics Data System (ADS)

    Martin, R. L.; Barchyn, T. E.; Hugenholtz, C.; Jerolmack, D. J.; Kok, J. F.

    2012-12-01

    Existing models of aeolian sand transport, derived theoretically and from wind-tunnel experiments, often disagree substantially with field observations. Despite advancements in anemometry and sediment flux detection technologies, even very high-resolution observations of aeolian sand transport show only weak correlation with concurrent surface wind speeds and model predictions. Unlike in experiments and numerical models, winds in natural environments exhibit turbulent fluctuations over a broad range of length scales extending from individual grains to the top of the atmospheric boundary layer and over a similarly large range of time scales. Here, we present simultaneous high-resolution (10 Hz) measurements of surface wind and saltation sand transport over a ~5 m tall barchan dune (median grain diameter = 0.35 mm) collected at White Sands Dune Field, New Mexico, USA. Studying aeolian transport in the field offered a natural experiment for understanding how the rate of aeolian saltation responds to turbulent changes in wind and frequent crossings of the threshold for particle motion. In agreement with past observations, our data indicate that: (1) saltation flux lags wind fluctuations by about 1 second, (2) the threshold for initiation of particle motion ("entrainment") exceeds the threshold for cessation ("distrainment") by about 20%, (3) concurrent instantaneous wind and sediment flux measurements are poorly correlated. Based on our data, we show how lagged transport and threshold hysteresis are related to inertia in the transport system arising from ballistic particle trajectories and non-instantaneous momentum transfers among grains and wind. We argue that this nonlinear and lagged response of saltation to turbulent wind fluctuations accounts for the poor correlation between wind and transport as well as the poor performance of existing saltation models.

  13. Multiple dust sources in the Sahara Desert: The importance of sand dunes

    NASA Astrophysics Data System (ADS)

    Crouvi, Onn; Schepanski, Kerstin; Amit, Rivka; Gillespie, Alan R.; Enzel, Yehouda

    2012-07-01

    We determine the current sources of dust in the Sahara Desert using quantitative correlation between the number of days with dust storms (NDS), derived from remote-sensing data of high temporal resolution, with the distribution of the soil types and geomorphic units. During 2006-8 the source of over 90% of the NDS was found to be sand dunes, leptosols, calcisols, arenosols, and rock debris. In contrast to previous studies, only few dust storms originated from playas and dry lake beds. Land erodibility was estimated by regressing the NDS to the number of days with high-speed wind events, and was found to be high for sand dunes. Clay and fine-silt grains and aggregates are scarce in sand dunes, which most likely produce dust particles through aeolian abrasion of sand grains. Thus, saltating sand grains impacting clay aggregates on playa surfaces cannot be the sole process for generating dust in the Sahara.

  14. Recent near-surface wind directions inferred from mapping sand ripples on Martian dunes

    NASA Astrophysics Data System (ADS)

    Liu, Zac Yung-Chun; Zimbelman, James R.

    2015-11-01

    The High Resolution Imaging Science Experiment (HiRISE) provides the capability to obtain orbital images of Mars that are of sufficient resolution to record wind ripple patterns on the surfaces of sand dunes. Ripple patterns provide valuable insights into aeolian erosion and deposition on Earth and Mars. In this study, we develop a systematic mapping procedure to examine sand ripple orientations and create surface process maps to evaluate the recent wind flow over the dunes, as well as the interplay of wind and dune shape. By carefully examining the morphology of the dunes and the location of grainflow and grainfall on dune slipfaces, the recent near-surface wind direction (short-term wind) can be identified. Results from the analysis of three dune fields on the floors of craters west of Hellas Basin show regional N, NW, SE, and ESE wind directions. In the three adjacent dune fields, surface process and flow maps suggest a complex wind pattern. The comparison of short-term wind with dune-constructing wind (long-term wind) shows NE and ESE winds may be persistent at least for the past thousands of years. The results also show that the orientation of inferred wind direction on linear dunes is correlated with the crestlines, which suggest that form-flow interaction may take place. The results of local wind flow documentation should improve Martian surface wind modeling and advance our understanding of sand transport, as well as the rates of sand mobility on both Mars and Earth.

  15. A comparison of general circulation model predictions to sand drift and dune orientations

    SciTech Connect

    Blumberg, D.G.; Greeley, R. |

    1996-12-01

    The growing concern over climate change and decertification stresses the importance of aeolian process prediction. In this paper the use of a general circulation model to predict current aeolian features is examined. A GCM developed at NASA/Goddard Space Flight Center was used in conjunction with White`s aeolian sand flux model to produce a global potential aeolian transport map. Surface wind shear stress predictions were used from the output of a GCM simulation that was performed as part of the Atmospheric Model Intercomparison Project on 1979 climate conditions. The spatial resolution of this study (as driven by the GCM) is 4{degrees} X 5{degrees}; instantaneous 6-hourly wind stress data were saved by the GCM and used in this report. A global map showing potential sand transport was compared to drift potential directions as inferred from Landsat images from the 1980s for several sand seas and a coastal dune field. Generally, results show a good correlation between the simulated sand drift direction and the drift direction inferred for dune forms. Discrepancies between the drift potential and the drift inferred from images were found in the North American deserts and the Arabian peninsula. An attempt to predict the type of dune that would be formed in specific regions was not successful. The model could probably be further improved by incorporating soil moisture, surface roughness, and vegetation information for a better assessment of sand threshold conditions. The correlation may permit use of a GCM to analyze {open_quotes}fossil{close_quotes} dunes or to forecast aeolian processes. 48 refs., 8 figs.

  16. Dune ages in the sand deserts of the southern Sahara and Sahel

    NASA Astrophysics Data System (ADS)

    Bristow, Charlie; Armitage, Simon

    2015-04-01

    In this paper we aim to document the history of aeolian processes within the southern Sahara as part of the INQUA Dune Atlas. We review available luminescence ages for sand dunes across the southern Sahara and attempt to correlate periods of sand accumulation and to develop an improved understanding of the dune chronology on a regional basis. This was achieved by analysing dune age by country, as well as by latitude and longitude. The results show a very patchy spatial distribution of dune ages with large gaps that encompass some of the largest sand seas. Despite these gaps, some related patterns in dune morphology and stratigraphy appear to be consistent between northern Nigeria and southern Mali where older linear dunes are distinct from younger Late Holocene transverse and barchanoid dunes. Elsewhere in Mauretania linear dunes with different orientations appear to have accumulated at different times, most likely in response to changes in atmospheric circulation. Regional climatic changes are identified where dunes are transgressed by lake deposits within endorehic basins. We identify four locations where dune accumulation is terminated by lacustrine transgressions, two of which, in Lake Chad and the Bodélé Depression, occur shortly after the last glacial maximum (LGM). The third example at Gobiero in Niger occurred later, in the early Holocene, around 8.4 ka and a fourth marks a later transgression of Palaeolake MegaChad after 4.7 ka. Larger-scale latitudinal and longitudinal distributions in dune ages across the southern Sahara do not show any consistent patterns, though this may due to the small sample size relative to the study area. In addition, local variations in external controls such as wind regime, rainfall, vegetation and sand supply need to be considered, sometimes on a site by site basis. Limiting the analysis to dune ages determined using the single-aliquot regenerative-dose (SAR) protocol indicates a lack of dune preservation during the LGM and

  17. Autumn Frost, North Polar Sand Dunes

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Autumn in the martian northern hemisphere began around August 1, 1999. Almost as soon as northern fall began, the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) started documenting the arrival of autumn frost--a precursor to the cold winter that will arrive in late December 1999. The first features to become covered by frost were the sand dunes that surround the north polar ice cap. The dunes seen here would normally appear very dark--almost black--except when covered by frost. Why the dunes begin to frost sooner than the surrounding surfaces is a mystery: perhaps the dunes contain water vapor that emerges from the sand during the day and condenses again at night. This picture shows dunes near 74.7oN, 61.4oW at a resolution of about 7.3 meters (24 feet) per pixel. The area covered is about 3 km (1.9 mi) across and is illuminated from the upper right. The picture appears to be somewhat fuzzy and grainy because the dunes here are seen through the thin haze of the gathering north polar winter hood (i.e., clouds).

  18. Measuring aeolian sand transport using acoustic sensors

    NASA Astrophysics Data System (ADS)

    Poortinga, Ate; van Rheenen, Hans; Ellis, Jean T.; Sherman, Douglas J.

    2015-03-01

    Acoustic sensors are frequently used to measure aeolian saltation. Different approaches are used to process the signals from these instruments. The goal of this paper is to describe and discuss a method to measure aeolian saltation with acoustic sensors. In a laboratory experiment, we measured the output from an advanced signal processing scheme on the circuit board of the saltiphone. We use a software implementation of this processing scheme to re-analyse data from four miniphones obtained during a field experiment. It is shown that a set of filters remove background noise outside the frequency spectrum of aeolian saltation (at 8 kHz), whereas signals within this frequency spectrum are amplified. The resulting analogue signal is a proxy of the energy. Using an AC pulse convertor, this signal can be converted into a digital and analogue count signal or an analogue energy signal, using a rectifier and integrator. Spatio-temporal correlation between field deployed miniphones increases by using longer integration times for signal processing. To quantify aeolian grain impact, it is suggested to use the analogue energy output, as this mode is able to detect changes in frequency and amplitude. The analogue and digital count signals are able to detect an increase in frequency, but are not able to detect an increase in signal amplitude. We propose a two-stage calibration scheme consisting of (1) a factory calibration, to set the frequency spectrum of the sensor and (2) a standardized drop-test conducted before and after the experiment to evaluate the response of the sensor.

  19. 'Sharks Teeth' -- Sand Dunes in Proctor Crater

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Sometimes, pictures received from Mars Global Surveyor's Mars Orbiter Camera (MOC) are 'just plain pretty.' This image, taken in early September 2000, shows a group of sand dunes at the edge of a much larger field of dark-toned dunes in Proctor Crater. Located at 47.9oS, 330.4oW, in the 170 km (106 mile) diameter crater named for 19th Century British astronomer Richard A. Proctor (1837-1888), the dunes shown here are created by winds blowing largely from the east/northeast. A plethora of smaller, brighter ripples covers the substrate between the dunes. Sunlight illuminates them from the upper left.

  20. Mapping the Stratigraphy of Booming Sand Dunes

    NASA Astrophysics Data System (ADS)

    Vriend, N. M.; Hunt, M. L.; Clayton, R. W.

    2008-12-01

    Booming dunes emit a loud rumbling sound after a man-made or natural sand avalanche is generated on the slip face of a large desert dune. The sound consist of one dominant frequency (70 - 105 Hz) with several higher harmonics. A recent publication (Vriend et al., 2007) presented a model of an internal, natural waveguide that propagates the booming emission, amplifies the sound, and sets the booming frequency. The mapping of the subsurface layering, which is necessary for the existence of a waveguide, prompted additional work on the dune structure and stratigraphy. The current work highlights geophysical measurements at Eureka Dunes in Death Valley National Park, CA and Dumont Dunes in the Mojave Desert, CA. Seismic refraction studies indicate strong layering with large velocity jumps across the interfaces. Ground Penetrating Radar (GPR) profiles, at frequencies of 100 MHz and 200 MHz, map out the stratigraphic structure of the dunes. Variations in the near surface layering are able to predict the seasonal variability in booming frequency both quantitatively and qualitatively. The Kirchhoff migrated GPR profiles are superimposed on the local topography obtained with a laser rangefinder. The complex dune structure is resolved to a depth of over 30 meters for the 100 MHz antenna. The GPR profiles of the longitudinal Eureka dune display complex internal structures from old dune crests. Both slopes have slip faces at 30 degrees with parallel layering (< 2m) at the near surface. At the transverse Dumont dune the GPR profile exhibits strong parallel layering on the booming leeward slipface only. The shallower windward face features a remarkable tilted repetitive layering that cuts through the surface. At Dumont Dunes the layering on the leeward face explains the change in booming frequency between 70 - 95 Hertz in the period 2005 - 2008. The tilted layering structure of the shallow windward face prevents the formation of a waveguide and is never able to sustain the

  1. A linear dune dam - a unique late Pleistocene aeolian-fluvial archive bordering the northwestern Negev Desert dunefield, Israel

    NASA Astrophysics Data System (ADS)

    Roskin, Joel; Bookman, Revital; Friesem, David; Vardi, Jacob

    2016-04-01

    Interactions between aeolian and fluvial processes, known as aeolian-fluvial (A-F) interactions, play a fundamental role in shaping the surface of the Earth especially in arid zones. The blocking of wadis by dunes (dune-damming) is an A-F interaction that is perceived to be an archive of periods of aeolian 'superiority' on fluvial transport power and has had a strong impact on arid landscapes and prehistoric man since the late Quaternary. The southern fringes of the northwestern Negev dunefield are lined with discontinuous surfaces of light-colored, playa-like, low-energy, fine-grained fluvial deposits (LFFDs). Abundant Epipalaeolithic camp sites mainly border the LFFDs. The LFFDs are understood to be reworked loess-like sediment deposited in short-lived shallow water bodies during the late Pleistocene. These developed adjacently upstream of hypothesized dune dams of wadis that drain the Negev highlands. However, no dune dam structures by the LFFDs have been explicitly identified or analyzed. This paper presents for the first time the morphology, stratigraphy and sedimentology of a hypothesized dune dam. The studied linear-like dune dam structure extends west-east for several hundred meters, has an asymmetric cross-section and is comprised of two segments. In the west, the structure is 3-5 m high, 80 m wide, with a steep southern slope, and is covered by pebbles. Here, its morphology and orientation resembles the prevailing vegetated linear dunes (VLDs) of the adjacent dunefield though its slope angles differ from VLDs. To the south of the structure extends a thick LFFD sequence. In the east the structure flattens and is covered by nebkhas with its southern edge overlapped by LFFD units. The structures' stratigraphy is found to be comprised of a thick LFFD base, overlaid by aeolian and fluvially reworked sand, a thin middle LFFD unit, and a crest comprised of LFFDs, fluvial sand and pebbles. Carbonate contents and particle size distributions of the sediments easily

  2. Aeolian sands and buried soils in the Mecklenburg Lake District, NE Germany: Holocene land-use history and pedo-geomorphic response

    NASA Astrophysics Data System (ADS)

    Küster, Mathias; Fülling, Alexander; Kaiser, Knut; Ulrich, Jens

    2014-04-01

    The present study is a pedo-geomorphic approach to reconstructing Holocene aeolian sand dynamics in the Mecklenburg Lake District (NE Germany). Stratigraphical, sedimentological and soil research supplemented by morphogenetic interpretations of the genesis of dunes and aeolian sands are discussed. A complex Late Holocene aeolian stratigraphy within a drift sand area was developed at the shore of Lake Müritz. The results were confirmed using palynological records, archaeological data and regional history. Accelerated aeolian activity was triggered by the intensification of settlement and land-use activities during the 13th and in the 15th to 16th century AD. After a period of stability beginning with population decline during the ‘Thirty Years War' and continuing through the 18th century, a final aeolian phase due to the establishment of glassworks was identified during the 19th century AD. We assume a direct link between Holocene aeolian dynamics and human activities. Prehistoric Holocene drift sands on terrestrial sites have not been documented in the Mecklenburg Lake District so far. This might be explained either by erosion and incorporation of older aeolian sediments during younger aeolian phases and/or a lower regional land-use intensity in older periods of the Holocene. The investigated drift sands are stratigraphically and sedimentologically characterised by a high degree of heterogeneity, reflecting the spatial and temporal variability of Holocene human impact.

  3. Regional aeolian dynamics and sand mixing in the Gran Desierto: Evidence from Landsat thematic mapper images

    SciTech Connect

    Blount, G.; Greeley, R.; Christensen, P.R. ); Smith, M.O.; Adams, J.B. )

    1990-09-10

    Spatial variations in sand composition were mapped on a regional scale in a terrestrial sand sea, the Gran Desierto of Sonora, Mexico. Mesoscale mapping on a satellite image base allowed quantitative interpretation of the dynamic development of sand sheets and dunes. The results were used to interpret the Quaternary geologic history of the tectonically active region at the mouth of the Colorado River. Landsat thematic mapper multispectral images were used to predict the abundance of different mineralogies of sand grains in a mixed aeolian terrain. A spectral mixing model separated the effects of vegetation and topographically induced shading and shadow from the effects produced by different mineral and rock types. Compositions determined remotely agreed well with samples from selected areas within the spectral limitations of the thematic mapper. A simple discrimination capability for active versus inactive sand surfaces is demonstrated based upon differences in the percentage of low-albedo accessory grains occurring on dormant aeolian surfaces. A technique for discriminating between low-albedo materials and macroscopic shade is implemented by combing thermal images with the results of the spectral mixing model. The image analysis revealed important compositional variations over large areas that were not readily apparent in the field.

  4. Nonlinear dynamics of Aeolian sand ripples.

    PubMed

    Prigozhin, L

    1999-07-01

    We study the initial instability of flat sand surface and further nonlinear dynamics of wind ripples. The proposed continuous model of ripple formation allowed us to simulate the development of a typical asymmetric ripple shape and the evolution of a sand ripple pattern. We suggest that this evolution occurs via ripple merger preceded by several soliton-like interaction of ripples. PMID:11969814

  5. A Mystery Unraveled: Booming Sand Dunes

    NASA Astrophysics Data System (ADS)

    Vriend, N. M.; Hunt, M. L.; Clayton, R. W.

    2007-12-01

    "Booming" sand dunes have intrigued travelers and scientist for centuries. These dunes emit a persistent, low-frequency sound during a slumping event or a natural avalanche on the leeward face of the dune. The sound can last for several minutes and be audible from miles away. The resulting acoustic emission is characterized by a dominant audible frequency (70 - 105 Hz) and several higher harmonics. In the work of Vriend et al. (2007), seismic refraction experiments proved the existence of a multi-layer internal structure in the dune that acts as a waveguide for the acoustic energy. Constructive interference between the reflecting waves enables the amplification and sets the frequency of each boom. A relationship was established that correctly predicts the measured frequency in terms of the thickness (~ 2.0 m) and the seismic body wave velocity of the loose, dry surficial layer (~ 240 m/s) and the substrate half-space (~ 350 m/s). The current work highlights additional measurements and simulations supporting the waveguide model for booming sand dunes. Experiments with ground penetrating radar continuously display the subsurface features which confirm the layered subsurface structure within the dune. Cross-correlation analysis shows that the booming sound propagates at speeds close to the measured body wave velocity. Squeaking sounds, which are generated during the onset of the slide and precede the sustained booming emission, have been found to have distinctly different characteristics. These short bursts of sound are emitted at a lower frequency (50 - 65 Hz) and propagate at a lower propagation speed (125 m/s) than the booming emission. The acoustic and elastic wave propagation in the dune has been simulated with a finite difference code. The interaction between the air and the ground produces a coupling wave along the surface. The reflections in the surficial layer propagate in a dispersive band at a group velocity that is slower than the phase velocity of the

  6. Aeolian sand transport: a wind tunnel model

    NASA Astrophysics Data System (ADS)

    Dong, Zhibao; Liu, Xiaoping; Wang, Hongtao; Wang, Xunming

    2003-09-01

    Wind sand transport is an important geological process on earth and some other planets. Formulating the wind sand transport model has been of continuing significance. Majority of the existing models relate sand transport rate to the wind shear velocity based on dynamic analysis. However, the wind shear velocity readapted to blown sand is difficult to determine from the measured wind profiles when sand movement occurs, especially at high wind velocity. Moreover, the effect of grain size on sand transport is open to argument. Detailed wind tunnel tests were carried out with respect to the threshold velocity, threshold shear velocity, and transport rate of differently sized, loose dry sand at different wind velocities to reformulate the transport model. The results suggest that the relationship between threshold shear velocity and grain size basically follow the Bagnold-type equation for the grain size d>0.1 mm. However, the threshold coefficient A in the equation is not constant as suggested by Bagnold, but decreases with the particle Reynolds number. The threshold velocity at the centerline height of the wind tunnel proved to be directly proportional to the square root of grain diameter. Attempts have been made to relate sand transport rate to both the wind velocity and shear velocity readapted to the blown sand movement. The reformulated transport model for loose dry sand follows the modified O'Brien-Rindlaub-type equation: Q= f1( d)(1- Ru) 2( ρ/ g) V3, or the modified Bagnold-type equation: Q= f2( d)(1- Rt) 0.25( ρ/ g) U*3. Where Q is the sand transport rate, the sand flux per unit time and per unit width, in kg m -1 s -1; ρ is the air density, 1.25 kg m -3; g is the acceleration due to gravity, 9.81 m s -2; Ru= Vt/ V; Rt= U*t/ U*; V is the wind velocity at the centerline of the wind tunnel, in m s -1; Vt is the threshold velocity measured at the same height as V, in m s -1; U* is the shear velocity with saltating flux, in m s -1; U*t is threshold shear

  7. Trickle-down boundary conditions in aeolian dune-field pattern formation

    NASA Astrophysics Data System (ADS)

    Ewing, R. C.; Kocurek, G.

    2015-12-01

    One the one hand, wind-blown dune-field patterns emerge within the overarching boundary conditions of climate, tectonics and eustasy implying the presence of these signals in the aeolian geomorphic and stratigraphic record. On the other hand, dune-field patterns are a poster-child of self-organization, in which autogenic processes give rise to patterned landscapes despite remarkable differences in the geologic setting (i.e., Earth, Mars and Titan). How important are climate, tectonics and eustasy in aeolian dune field pattern formation? Here we develop the hypothesis that, in terms of pattern development, dune fields evolve largely independent of the direct influence of 'system-scale' boundary conditions, such as climate, tectonics and eustasy. Rather, these boundary conditions set the stage for smaller-scale, faster-evolving 'event-scale' boundary conditions. This 'trickle-down' effect, in which system-scale boundary conditions indirectly influence the event scale boundary conditions provides the uniqueness and richness of dune-field patterned landscapes. The trickle-down effect means that the architecture of the stratigraphic record of dune-field pattern formation archives boundary conditions, which are spatially and temporally removed from the overarching geologic setting. In contrast, the presence of an aeolian stratigraphic record itself, reflects changes in system-scale boundary conditions that drive accumulation and preservation of aeolian strata.

  8. Hierarchical organization of a Sardinian sand dune plant community.

    PubMed

    Cusseddu, Valentina; Ceccherelli, Giulia; Bertness, Mark

    2016-01-01

    Coastal sand dunes have attracted the attention of plant ecologists for over a century, but they have largely relied on correlations to explain dune plant community organization. We examined long-standing hypotheses experimentally that sand binding, inter-specific interactions, abiotic factors and seedling recruitment are drivers of sand dune plant community structure in Sardinia, Italy. Removing foundation species from the fore-, middle- and back-dune habitats over three years led to erosion and habitat loss on the fore-dune and limited plant recovery that increased with dune elevation. Reciprocal species removals in all zones suggested that inter-specific competition is common, but that dominance is transient, particularly due to sand burial disturbance in the middle-dune. A fully factorial 2-year manipulation of water, nutrient availability and substrate stability revealed no significant proximate response to these physical factors in any dune zone. In the fore- and middle-dune, plant seeds are trapped under adult plants during seed germination, and seedling survivorship and growth generally increase with dune height in spite of increased herbivory in the back-dune. Sand and seed erosion leads to limited seed recruitment on the fore-dune while high summer temperatures and preemption of space lead to competitive dominance of woody plants in the back-dune. Our results suggest that Sardinian sand dune plant communities are organized hierarchically, structured by sand binding foundation species on the fore-dune, sand burial in the middle-dune and increasingly successful seedling recruitment, growth and competitive dominance in the back-dune. PMID:27478701

  9. Hierarchical organization of a Sardinian sand dune plant community

    PubMed Central

    Ceccherelli, Giulia; Bertness, Mark

    2016-01-01

    Coastal sand dunes have attracted the attention of plant ecologists for over a century, but they have largely relied on correlations to explain dune plant community organization. We examined long-standing hypotheses experimentally that sand binding, inter-specific interactions, abiotic factors and seedling recruitment are drivers of sand dune plant community structure in Sardinia, Italy. Removing foundation species from the fore-, middle- and back-dune habitats over three years led to erosion and habitat loss on the fore-dune and limited plant recovery that increased with dune elevation. Reciprocal species removals in all zones suggested that inter-specific competition is common, but that dominance is transient, particularly due to sand burial disturbance in the middle-dune. A fully factorial 2-year manipulation of water, nutrient availability and substrate stability revealed no significant proximate response to these physical factors in any dune zone. In the fore- and middle-dune, plant seeds are trapped under adult plants during seed germination, and seedling survivorship and growth generally increase with dune height in spite of increased herbivory in the back-dune. Sand and seed erosion leads to limited seed recruitment on the fore-dune while high summer temperatures and preemption of space lead to competitive dominance of woody plants in the back-dune. Our results suggest that Sardinian sand dune plant communities are organized hierarchically, structured by sand binding foundation species on the fore-dune, sand burial in the middle-dune and increasingly successful seedling recruitment, growth and competitive dominance in the back-dune. PMID:27478701

  10. Discrimination of active and inactive sand from remote sensing - Kelso dunes, Mojave Desert, California

    NASA Technical Reports Server (NTRS)

    Paisley, Elizabeth C. I.; Lancaster, Nicholas; Gaddis, Lisa R.; Greeley, Ronald

    1991-01-01

    Landsat TM images, field data, and laboratoray reflectance spectra were examined for the Kelso dunes, Mojave Desert, California to assess the use of visible and near-infrared (VNIR) remote sensing data to discriminate aeolian sand populations on the basis of spectral brightness. Results show that areas of inactive sand have a larger percentage of dark, fine-grained materials compared to those composed of active sand, which contain less dark fines and a higher percentage of quartz sand-size grains. Both areas are spectrally distinct in the VNIR, suggesting that VNIR spectral data can be used to discriminate active and inactive sand populations in the Mojave Desert. Analysis of laboratory spectra was complicated by the presence of magnetite in the active sands, which decreases their laboratory reflectance values to those of inactive sands. For this application, comparison of TM and laboratory spectra suggests that less than 35 percent vegetation cover does not influence the TM spectra.

  11. Impacts of Vegetation and Development on the Morphology of Coastal Sand Dunes Using Modern Geospatial Techniques: Jockey's Ridge Case Study

    NASA Astrophysics Data System (ADS)

    Weaver, K.; Mitasova, H.; Overton, M.

    2011-12-01

    area of sand that once fed the dunes, limiting aeolian sand transport and migration of the dune system. Not only are vegetation and development increasing around the Jockey's Ridge State Park, but vegetation is increasing inside the park boundaries with the majority of growth along the windward side of the dune system, blocking sand from feeding the dunes. Vegetation growth is also found to increase in front of the dune field, recently causing the migration of the dune to slow down.

  12. The north-eastern aeolian 'European Sand Belt' as potential record of environmental changes: A case study from Eastern Latvia and Southern Estonia

    NASA Astrophysics Data System (ADS)

    Kalińska-Nartiša, Edyta; Thiel, Christine; Nartišs, Māris; Buylaert, Jan-Pieter; Murray, Andrew S.

    2016-09-01

    The Latvian and Estonian inland dunes belong to the north-eastern part of the 'European Sand Belt' (ESB). These dunes are widely distributed over broad glaciolacustrine plains and Late Glacial alluvial deltas, considered to be potential sources for the aeolian material. Little is known about these aeolian sediments and their substratum; here we present a detailed sedimentary structural and textural characterisation together with a luminescence-based chronology. Through a comparison between grain-size, rounding of quartz grains and surface characteristics in medium/coarse (0.5-0.8 mm) sand, and the light mineral content, we found an alternation of aeolian and periglacial components. Further, short-lasting aeolian abrasion and/or transportation periods, and a significant contribution of a nearby sediment source are suggested. Luminescence dating points to aeolian sand accumulation and dune formation between ∼16 ka and ∼9 ka. However, we also observed some presumably watertable controlled environmental conditions at ∼13 ka; this corresponds with the occurrence of an ice-dammed/proglacial lake.

  13. Modeling grain size variations of aeolian gypsum deposits at White Sands, New Mexico, using AVIRIS imagery

    USGS Publications Warehouse

    Ghrefat, H.A.; Goodell, P.C.; Hubbard, B.E.; Langford, R.P.; Aldouri, R.E.

    2007-01-01

    Visible and Near-Infrared (VNIR) through Short Wavelength Infrared (SWIR) (0.4-2.5????m) AVIRIS data, along with laboratory spectral measurements and analyses of field samples, were used to characterize grain size variations in aeolian gypsum deposits across barchan-transverse, parabolic, and barchan dunes at White Sands, New Mexico, USA. All field samples contained a mineralogy of ?????100% gypsum. In order to document grain size variations at White Sands, surficial gypsum samples were collected along three Transects parallel to the prevailing downwind direction. Grain size analyses were carried out on the samples by sieving them into seven size fractions ranging from 45 to 621????m, which were subjected to spectral measurements. Absorption band depths of the size fractions were determined after applying an automated continuum-removal procedure to each spectrum. Then, the relationship between absorption band depth and gypsum size fraction was established using a linear regression. Three software processing steps were carried out to measure the grain size variations of gypsum in the Dune Area using AVIRIS data. AVIRIS mapping results, field work and laboratory analysis all show that the interdune areas have lower absorption band depth values and consist of finer grained gypsum deposits. In contrast, the dune crest areas have higher absorption band depth values and consist of coarser grained gypsum deposits. Based on laboratory estimates, a representative barchan-transverse dune (Transect 1) has a mean grain size of 1.16 ??{symbol} (449????m). The error bar results show that the error ranges from - 50 to + 50????m. Mean grain size for a representative parabolic dune (Transect 2) is 1.51 ??{symbol} (352????m), and 1.52 ??{symbol} (347????m) for a representative barchan dune (Transect 3). T-test results confirm that there are differences in the grain size distributions between barchan and parabolic dunes and between interdune and dune crest areas. The t-test results

  14. Sand availability control on dune shape and orientation

    NASA Astrophysics Data System (ADS)

    Gao, Xin; Narteau, Clement; Rozier, Olivier; Courrech Du Pont, Sylvain

    2015-04-01

    An increasing body of evidence indicates that sand availability does not only control dune type but also the underlying dune growth mechanism. Consequently, the same wind regime can produce different bedform orientations. Here, we use numerical simulations with different conditions of sand availability to predict dune shape and alignment in asymmetric bimodal wind regimes. In zones of abundant sand supply, linear dunes grow in height and propagate selecting the orientation for which the normal to crest components of transport reaches a maximum. In zones of limited sand supply, linear dunes grow by extension in the direction of the resultant sand flux. Considering these two independent dune growth mechanisms, we find good agreement between numerical and analytical models, and estimate the magnitude of wind velocity acceleration up the dune stoss slopes. In the extensional mode of linear dune formation, there is no abrupt change in dune trend when the divergence angle between the two winds crosses 90°. Instead, there are systematic transitions in dune type from linear to barchan for critical values of the divergence angle that depend on the transport ratio. We show how the growth rates of the two dune growth mechanisms may be used to infer the dune field morphology in zones of low sediment availability.

  15. Ecology of Pacific Northwest coastal sand dunes: a community profile

    SciTech Connect

    Wiedemann, A.M.

    1984-03-01

    Sand dunes occur in 33 localities along the 950 km of North American Pacific coast between the Straits of Juan de Fuca (49/sup 0/N) and Cape Mendocino (40/sup 0/). The dune landscape is a mosaic of dune forms: transverse ridge, oblique dune, retention ridge, foredune, parabola dune, sand hummock, blowout, sand plain, deflation plain, dune ridge, swale, remnant forest, and ponds and lakes. These forms are the basic morphological units making up the four dune systems: parallel ridge, parabola dune, transverse ridge, and bay dune. Vegetation is well-developed on stabilized dunes. Of the 21 plant communities identified, nine are herbaceous, five are shrub, and seven are forest. A wide variety of vertebrate animals occur in seven distinct habitats: open dunes, grassland and meadow, shrub thicket, forest, marsh, riparian, and lakes and ponds. Urban development, increased rate of stabilization due to the introduction of European beachgrass (Ammophila arenaria (L.) Link), and massive disturbance resulting from heavy off-road vehicle traffic are the greatest threats to the long-term survival and stability of a number of sand dune habitats. Two animals and three plants dependent on dune habitats are listed as rare, threatened, or endangered. 93 references, 52 figures, 13 tables.

  16. New Method for Estimation of Aeolian Sand Transport Rate Using Ceramic Sand Flux Sensor (UD-101)

    PubMed Central

    Udo, Keiko

    2009-01-01

    In this study, a new method for the estimation of aeolian sand transport rate was developed; the method employs a ceramic sand flux sensor (UD-101). UD-101 detects wind-blown sand impacting on its surface. The method was devised by considering the results of wind tunnel experiments that were performed using a vertical sediment trap and the UD-101. Field measurements to evaluate the estimation accuracy during the prevalence of unsteady winds were performed on a flat backshore. The results showed that aeolian sand transport rates estimated using the developed method were of the same order as those estimated using the existing method for high transport rates, i.e., for transport rates greater than 0.01 kg m−1 s−1. PMID:22291553

  17. Aeolian Processes of the Pismo-Oceano Dune Complex, California

    NASA Astrophysics Data System (ADS)

    Barrineau, C. P.; Tchakerian, V.; Houser, C.

    2012-12-01

    The Pismo Dunes are located approximately 250 km northwest of Los Angeles and consist of 90 km2 of transverse, parabolic and paleodunes. The Pismo Dunes are one of the largest dune complexes on the west coast and are the largest remaining south of San Francisco Bay, but despite their size, relatively few process morphology studies have focused on their form and history. Specifically, the dune field includes 12 km2 of actively migrating transverse dune ridges advancing onshore in three distinct phases separated by small depressions easily indentified using a LiDAR-generated elevation model. An early field investigation by Tchakerian (1983) revealed a uniform increase in slip face heights and crestline wavelengths inland with no apparent change in grain size. Measurement of recent aerial imagery shows variable migration rates throughout the dunes and wavelengths between 30 and 100 m closest to the beach, in the second ridge between 50 and 140 m, and from 70 to 250 m furthest inland. During El Niño and La Niña periods, westerly winds advance onshore nearly perpendicular to the crestlines, fueling episodic migration of the dune field. It is hypothesized that particularly strong ENSO periods may have led to the development of distinct dune phases with separating depressions and the development of defects along the dune crest. Defects associated with the wakes of incipient vegetation and inter-dune depressions are conspicuous and widespread, though localized and variable through time and space. Aerial imagery taken in September 1994 shows a wider, more even distribution of defects across the dune field than currently visible. The signal is, however, complicated by the closure of the dune field to oversand vehicles in 1982. The closure of much of the complex to vehicular traffic in 1982 may play a role, as Tchakerian's crestline wavelength measurements were far smaller than those obtained for this study while maintaining a likewise increase between phases. At a decadal

  18. Coastal Sand Dune Plant Ecology: Field Phenomena and Interpretation

    ERIC Educational Resources Information Center

    McDonald, K.

    1973-01-01

    Discusses the advantages and disadvantages of selecting coastal sand dunes as the location for field ecology studies. Presents a descriptive zonal model for seaboard sand dune plant communities, suggestions concerning possible observations and activities relevant to interpreting phenomena associated with these forms of vegetation, and additional…

  19. Submarine sand dunes and sedimentary environments in Oceanographer Canyon.

    USGS Publications Warehouse

    Valentine, P.C.; Cooper, R.A.; Uzmann, J.R.

    1984-01-01

    Reveals an extensive field of large sand dunes on the canyon floor. The dunes are medium to coarse sand, are oriented across the axis, and the largest of them are as high as 3m and have wavelengths up to 15m. Their asymmetry, grain size, and height suggest that they are formed by axial currents flowing up- and downcanyon and that the largest dunes require flows of at least 70 cm/sec.-from Authors

  20. Variation of bee communities on a sand dune complex in the Great Basin: Implications for sand dune conservation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sand dunes across the Mojave and Great Basin Deserts house rich bee communities. The pollination services these bees provide can be vital in maintaining the diverse, and often endemic, dune flora. These dune environments, however, are threatened by intense off-highway vehicle (OHV) use. Conservati...

  1. Sensitivity of the Automatic Determination of Sand Transport Direction and Rate to Dune Morphology (Invited)

    NASA Astrophysics Data System (ADS)

    Scheidt, S. P.; Lancaster, N.

    2010-12-01

    Measurements of rates of dune migration and sand flux are important to understanding the dynamics of aeolian systems, including sand encroachment, desertification, and response to changes in climate. The recent development of the Coregistration of Optically Sensed Images and Correlation (COSI-Corr) algorithm allows a unique remote-sensing approach for measuring dune migration rates. Fast- and slow-moving dunes have been analyzed by previous researchers using the algorithm, but the technique has mostly been tested on simple dune forms, which lack second-order geomorphic features that might cause errors. Our work tested the algorithm’s sensitivity to different dune types and evaluated the performance of the algorithm by making comparisons to previous studies and manual traces of the dunes in a GIS. Different parameters were chosen when applying the COSI-Corr algorithm, which were set according to the expected magnitude of dune displacement and the dune size with respect to image resolution. The dunes under study were chosen from the Namib Desert in locations where dune migration rates had previously been measured. These areas included (1) barchan dunes in Walvis Bay, (2) linear dunes just south of the Kuiseb River and (3) convoys of barchan dunes in the southern Namib. Orthorectified ASTER data from different dates were used to study the incremental and maximal changes between 1967 and 2009. These and other dune areas were studied to understand how varied geographic conditions (e.g.., the presence of coastlines, topography and background surface reflectance) affect the algorithm results. Walvis Bay dune migration vectors indicate rates between 3 and 30 m/yr to the north-northeast, which compares well to the range of previously reported values (2-27 m/yr). Individual dune migration rates between 1961 and 2005 also compared well to distances measured from dune crests in a GIS. Some vectors are overestimated because of interdune albedo effects, resulting from variable

  2. Geomorphology of coastal sand dunes, Baldwin County, Alabama

    USGS Publications Warehouse

    Bearden, Bennett L.; Hummell, Richard L.; Mink, Robert M.

    1989-01-01

    Alabama's coastal eolian deposits are primarily vegetated dunes that are exemplified by sand ridges with flat to undulating upper surfaces and continuous irregular crests. Dune fields occur along Morgan peninsula between the foredune line and Little Lagoon and the Mobile Bay area. These dune fields consist primarily of one or more continuous ridges that parallel the coast and are generally vegetaed to grassy. Washover of the beach and backshore during Hurricane Frederic (1979) and subsequent smaller scale storms resulted in significant erosion of many of Alabama's dune fields. The primary dunes or foredunes are beginning to recover from the effects of these storms; however, numerous breaks in the primary dune line are present. Sand dunes in coastal Alabama provide protection against storm-generated waves and washover. The foredunes are protected by adherence to a Coastal Construction Control Line (CCCL) or construction setback line identified by markers along coastal Baldwin County.

  3. Sand dune materials and polar layered deposits on Mars

    NASA Astrophysics Data System (ADS)

    Thomas, P.; Weitz, C.

    1989-09-01

    The possible place of sand in the Martian polar layered deposits is examined. The erosional features in layered deposits and the morphologic relationship of dunes and the layered deposits are discussed. The colors of the polar dunes are shown to be similar to the colors of dunes at other latitudes, suggesting that the polar dunes can be explained without any special or exotic mechanism. Consideration is given to mixing and segregation of materials by eolian processes observed on Mars, showing that sand was probably carried to the polar regions during part of the formation of the layered deposits.

  4. Indirect Interaction of Barchan Dunes by Inter-dune Sand Flow

    NASA Astrophysics Data System (ADS)

    Katsuki, A.

    2008-12-01

    The most impressive sand structure seen in desert is crescent sand dunes called barchan. Barchan dune has two horns and sand flow release from the tips of them. Seeing aerial photos of deserts, we recognize that barchan dunes tend to align in a characteristic pattern, that is, the horn of one barchan pointing to the center of leeward barchan. As a result, barchans form a convoy with a geese-flying like triangular pattern or align in an slanted line. The pattern has been observed also for barchans found on Mars, and thus there should be some universal mechanism underlying it. Also barchan dunes are highly mobile; human-made structures such as roads or pipelines in their way are sometimes buried in sand. It has been a long-standing problem how we can control this unstoppable march of barchan dunes. There are some interaction such as collision and inter-dune sand flow in marching barchan dunes. Here we investigated interaction dynamics of barchan dunes focusing on the effect of indirect interactions mediated by an inter-dune sand flow using computer simulations. We showed that a barchan is driven laterally by a sand stream to right below the point source of sand.Principal mechanism of this motion is a fast mixing of sand in a barchan that keeps the symmetric shape unchanged.We thereby propose a possibility of controlling the motion of a barchan using a sand stream. In addition,the very same mechanism produces an indirect interaction between barchans mediated by sand stream and can induce the self-organization of the geese-flying like pattern.

  5. Mulitple Origins of Sand Dune-Topography Interactions on Titan

    NASA Astrophysics Data System (ADS)

    Goggin, H.; Ewing, R. C.; Hayes, A.; Cisneros, J.; Epps, J. C.

    2015-12-01

    The interaction between sand dune patterns and topographic obstacles is a primary signal of sand transport direction in the equatorial region of Saturn's moon, Titan. The streamlined, tear drop appearance of the sand-dune patterns as they wrap around obstacles and a dune-free zone on the east side of many obstacles gives the impression that sand transport is from the west to east at equatorial latitudes. However, the physical mechanism behind the dune-obstacle interaction is not well explained, leaving a gap in our understanding of the equatorial sand transport and implied wind directions and magnitudes on Titan. In order to better understand this interaction and evaluate wind and sand transport direction, we use morphometric analysis of optical images on Earth and Cassini SAR images on Titan combined with analog wind tunnel experiments to study dune-topography interactions. Image analysis is performed in a GIS environment to map spatial variations in dune crestline orientations proximal to obstacles. We also use digital elevation models to and analyze the three-dimensional geometry - height, length, width and slope of the dune-topography relationships on Earth. Preliminary results show that dune patterns are deflected similarly around positive, neutral, or negative topography, where positive topography is greater than the surrounding dune height, neutral topography is at dune height and negative topography is lower than dune heights. In the latter case these are typically intra-dune field playas. The obstacle height, width, slope and wind variability appear to play a primary role in determining if a lee-dune, rather than a dune-free lee-zone, develops. In many cases a dune-free playa with evaporite and mud desiccation polygons forms lee-ward of the obstacle. To support and elaborate on the mapping and spatial characterization of dune-topography interactions, a series of experiments using a wind tunnel were conducted. Wind tunnel experiments examine the formation

  6. Sand dunes on the central Delmarva Peninsula, Maryland and Delaware

    USGS Publications Warehouse

    Denny, Charles Storrow; Owens, James Patrick

    1979-01-01

    Inconspicuous ancient sand dunes are present in parts of the central Delmarva Peninsula, Maryland and Delaware. Many dunes are roughly V-shaped, built by northwest winds, especially on the east sides of some of the large rivers. On the uplands, the form and spacing of the dunes are variable. A surficial blanket composed mainly of medium and fine-grained sand-the Parsonsburg Sand-forms both the ancient dunes and the broad plains between the dunes. The sand that forms the dunes is massive and intensely burrowed in the upper part; traces of horizontal or slightly inclined bedding appear near the base. Quartz is the dominant mineral constituent of the sand. Microline is abundant in the very fine to fine sand fraction. The heavy-mineral assemblages (high zircon, tourmaline, rutile) are more mature than in most of the possible source rocks. The most abundant minerals in the clay-sized fraction are dioctahedral vermiculite, kaolinite, illite, montmorillonite, and gibbsite. The first four minerals are common in deposits of late Wisconsin and Holocene age. The gibbsite may be detrital, coming from weathered rocks of Tertiary age. The soil profile in the dune sand is weakly to moderately developed. At or near the base of the Parsonsburg Sand are peaty beds that range in age from about 30,000 to about 13,000 radiocarbon years B.P. Microfloral assemblages in the peaty beds suggest that the dunes on the uplands formed in a spruce parkland during the late Wisconsin glacial maximum. The river dunes may also be of late Wisconsin age, but could be Holocene.

  7. Optical dating of dune sand from Blombos Cave, South Africa: I--multiple grain data.

    PubMed

    Jacobs, Z; Wintle, A G; Duller, G A T

    2003-05-01

    An aeolian sand unit overlies the Middle Stone Age deposits at Blombos Cave on the southern Cape coast. These deposits contained culturally-important artefacts, including bone tools and pieces of engraved ochre, as well as a large number of worked lithics. The aeolian sand and two other remnants of the sand dune formed against the coastal cliff were dated using optical dating. To determine the dose received since deposition, measurements were made on 5mg aliquots of purified quartz grains using the single-aliquot regenerative-dose (SAR) protocol. The results of several internal check procedures are reported and at least 15 replicate dose determinations are presented for each sample. Combining these dose values with measurements of the radioactive content of each sample resulted in an age of 69.2+/-3.9 ka for the unit within the cave, and a mean age of 70.1+/-1.9 ka for all three dune samples. This provides a minimum age for the Middle Stone Age material at Blombos Cave. PMID:12765620

  8. Aerial view of old station and sand dunes looking east ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Aerial view of old station and sand dunes looking east from tower of newer station. - Vermilion Life Saving Station, Shore of Lake Superior, 10 miles west of Whitefish Point, Paradise, Chippewa County, MI

  9. Effects of sand fences on coastal dune vegetation distribution

    NASA Astrophysics Data System (ADS)

    Grafals-Soto, Rosana

    2012-04-01

    Sand fences are important human adjustments modifying the morphology of developed shores. The effects of sand fences on sediment transport and deposition in their initial stages have been well studied, but little is known about the effect of deteriorated sand fences that have become partially buried low scale barriers within the dune, potentially benefiting vegetation growth by protecting it from onshore stress. Data on vegetation, topography and fence characteristics were gathered at three dune sites in Ocean City, New Jersey on September 2007 and March 2008 to evaluate the effect of fences within the dune on vegetation distribution. Variables include: distance landward of dune toe, degree of sheltering from onshore stressors, net change in surface elevation (deposition or erosion), vegetation diversity and density, presence of remnant fence, and distance landward of fence. Results for the studied environment reveal that 1) vegetation diversity or density does not increase near remnant fences because most remnants are lower than average vegetation height and can not provide shelter; but 2) vegetation distribution is related to topographic variables, such as degree of sheltering, that are most likely the result of sand accretion caused by fence deployment. Fence deployment that prioritizes the creation of topographically diverse dunes within a restricted space may increase the diversity and density of the vegetation, and the resilience and value of developed dunes. Managers should consider the benefits of using sand fences on appropriately wide beaches to create a protective dune that is also diverse, functional and better able to adapt to change.

  10. Energy regimes for aeolian sand grain surface textures

    NASA Astrophysics Data System (ADS)

    Marshall, J. R.; Bull, P. A.; Morgan, R. M.

    2012-05-01

    An experimental study of aeolian sand grain surface texture development was undertaken with an air-driven grain-recirculating desktop apparatus. Scanning electron microscope analysis of resulting textures indicated that different texture types can be associated with distinct zones in a grain-shape/grain speed matrix. In particular, for subrounded and rounded grains, low and high energy transport can be unequivocally distinguished by the occurrence of upturned plates and Hertzian frustra respectively. Textural development does not have a simple relationship to grain velocity, but appears to relate to the energy expended per unit area within the contact zone generated by elastic deformation during impact. Hertzian theory was adapted to irregular sand grain shapes and close agreement was found between experimental results and theoretical predictions for textural development. Results of this study improve our ability to reconstruct palaeoaeolian environments and therefore our ability to determine grain provenance; in particular, the latter is shown to have direct relevance to forensic inquiries and terrorism investigations.

  11. Relating climate and sand transport to incipient dune development.

    NASA Astrophysics Data System (ADS)

    van Puijenbroek, Marinka; Limpens, Juul; Gleichman, Maurits; Berendse, Frank

    2014-05-01

    Sea levels are continuously rising, increasing the risk of flooding and coastal erosion in low-elevation countries, such as the Netherlands. Coastal dunes are seen as a flexible and natural type of coastal defence, that is able to keep pace with rising water levels. Until now most research has focussed on dynamics and maintenance of established dunes, largely ignoring two critical transitions in early dune development: the transition from bare beach to vegetated incipient dune and that from incipient dune to established foredune. This knowledge is essential to enable more accurate prediction and even stimulation of new dune formation through sand nourishment. We explored the relative contributions of climate and sand transport to incipient dune development combining a 30 year time-series of aerial photographs (1979 - 2010) of the natural Wadden Island coast with high-resolution monitoring data of sand volume changes and climatic parameters. We selected 20 strips of 2.5 km in length along the coast of the Wadden Islands, with a 2 km buffer between them to avoid autocorrelation. For each of these strips of coast we assessed the changes in presence and area of incipient dunes over periods of 5-6 years. Change in fore dune volume and beach width were derived from high resolution beach elevation data. Seawater level and climate data were derived from a nearby meteorological station Preliminary analysis of the first half of the dataset showed that incipient dune area was positively related to beach width, but negatively to storm intensity. In our poster we will present the whole dataset and discuss the implications of our results for future dune development and anthropogenic sand nourishment schemes.

  12. Three-dimensional modeling of an aeolian dune/interdune system: Applications to hydrocarbon production

    SciTech Connect

    Pugh, J.M.; Glennie, K.W.; Williams, B.P.J. )

    1993-09-01

    The Al Liwa region of the northeast Rub Al Khali, United Arab Emirates, comprises compound crescentic draa and subcircular inland sabkhas that are flanked to their north by a sand sea of smaller dunes extending almost to the coast of the Arabian Gulf. This controlled the supply of sand from the north and influenced water-table positions within interdune areas. The draa, up to 170 m high, comprise both fine and coarse sands with a strong carbonate component, and are migrating very slowly to the south-southeast. The evaporite-encrusted interdune sabkhas often are underlain by foreset dune sands that also indicate transport to the south-southeast. The northern fringe of smaller dunes migrates southward more rapidly than the draa, but their northern supply of sand now has been cut off by flooding of the Gulf, initiating the deflation of coastal areas down to the water table. A deep-penetrating radar survey, coupled with large-scale trenching, provides a three-dimensional model of dune/interdune systems. This fieldwork aids a clearer understanding of dune/interdune heterogeneities and interconnectedness, which in turn is providing more realistic reservoir models for interwell simulation studies within the Permian Rotliegende gas fields of northwest Europe.

  13. Evidence of active dune sand on the Great Plains in the 19th century from accounts of early explorers

    USGS Publications Warehouse

    Muhs, D.R.; Holliday, V.T.

    1995-01-01

    Dune fields are found in several areas of the Great Plains, and though mostly stabilised today, the accounts of early explorers show that they were more mobile in the last century. Using an index of dune mobility and tree ring data, it is found that these periods of mobility were related to temperature-induced drought, the high temperatures increasing evapotranspiration. Explorers also record that rivers upwind of these dune fields had shallow braided channels in the 19th century, and these would have supplied further aeolian sand. It is concluded that these dunes are extremely susceptible to climate change and that it may not need global warming to increase their mobility again. -K.Clayton

  14. Predicting aeolian sand transport rates: A reevaluation of models

    NASA Astrophysics Data System (ADS)

    Sherman, Douglas J.; Li, Bailiang

    2012-01-01

    Eight aeolian sand-transport models are evaluated using a field data set and a new approach to estimating shear velocity. The models are those of Bagnold (1937), Kawamura (1951), Zingg (1953), Owen (1964), Kadib (1965), Hsu (1971), Lettau and Lettau (1978) and Sørensen (2004). All of these models predict transport as a function of shear velocity to the third power. Shear velocities are estimated using wind profile data (log-linear slope) with the von Kármán constant and with the apparent von Kármán parameter and the results of the different approaches are evaluated based on comparison of regression statistics and RMS error. The models were not adjusted to account for sediment moisture content or local surface slope effects. All of the models have about the same statistical explanatory power, so evaluations were made by comparing slopes and intercepts of best fit (least-squares) lines and RMSE. From this basis, we conclude that predictions made with the Bagnold (1937) model best match our observations, with the models of Kadib (1965) and Hsu (1971) performing nearly as well. The Lettau and Lettau (1978) and Kawamura (1951) model predictions match observations least.

  15. Feasibility of using sand dunes as archives of old air

    NASA Astrophysics Data System (ADS)

    Severinghaus, Jeffrey P.; Keeling, Ralph F.; Miller, Benjamin R.; Weiss, Ray F.; Deck, Bruce; Broecker, Wallace S.

    1997-07-01

    Large unaltered samples of the atmosphere covering the past century would complement the history of atmospheric gases obtained from bubbles in ice cores, enabling measurement of geochemically important species such as O2, 14CH4, and 14CO. Sand dunes are a porous media with interstitial air in diffusive contact with the atmosphere, somewhat analogous to the unconsolidated layer of firn atop glaciers. Recent studies have demonstrated the value of firn as an archive of old air [Battle et al., 1996; Bender et al., 1994a]. Unlike firn, sand dunes are incompressible and so remain permeable to greater depths and may extend the firn record into the past century. To evaluate the feasibility of using sand dunes as archives of old air, we drilled 60 m deep test holes in the Algodones Dunes, Imperial Valley, California. The main objective was to see if the air in a sand dune is as old as predicted by a diffusion model, or if the dune is rapidly flushed by advective pumping during windstorms and barometric pressure changes. We dated the air with chlorofluorocarbons and krypton-85, anthropogenic tracers whose atmospheric concentrations are known and have been increasing rapidly in the past half century. These tracer data match the pure diffusion model well, showing that advection in this dune is negligible compared to diffusion as a transport mechanism and that the mean age of the air at 61 m depth is ˜10 years. Dunes therefore do contain old air. However, dunes appear to suffer from two serious drawbacks as archives. Microbial metabolism is evident in elevated CO2 and N2O and depressed CH4 and O2 concentrations in this dune, corrupting the signals of interest in this and probably most dunes. Second, isotopic analyses of N2 and O2 from the dune show that fractionation of the gases occurs due to diffusion of water vapor, complicating the interpretation of the O2 signal beyond the point of viability for an air archive. Sand dunes may be useful for relatively inert gases with

  16. Aeolian Sand Transport in the Planetary Context: Respective Roles of Aerodynamic and Bed-Dilatancy Thresholds

    NASA Technical Reports Server (NTRS)

    Marshall, J. R.; Borucki, J.; Bratton, C.

    1999-01-01

    The traditional view of aeolian sand transport generally estimates flux from the perspective of aerodynamic forces creating the airborne grain population, although it has been recognized that "reptation" causes a significant part of the total airborne flux; reptation involves both ballistic injection of grains into the air stream by the impact of saltating grains as well as the "nudging" of surface grains into a creeping motion. Whilst aerodynamic forces may initiate sand motion, it is proposed here that within a fully-matured grain cloud, flux is actually governed by two thresholds: an aerodynamic threshold, and a bed-dilatancy threshold. It is the latter which controls the reptation population, and its significance increases proportionally with transport energy. Because we only have experience with terrestrial sand transport, extrapolations of aeolian theory to Mars and Venus have adjusted only the aerodynamic factor, taking gravitational forces and atmospheric density as the prime variables in the aerodynamic equations, but neglecting reptation. The basis for our perspective on the importance of reptation and bed dilatancy is a set of experiments that were designed to simulate sand transport across the surface of a martian dune. Using a modified sporting crossbow in which a sand-impelling sabot replaced the bolt-firing mechanism, individual grains of sand were fired at loose sand targets with glancing angles typical of saltation impact; grains were projected at about 80 m/s to simulate velocities commensurate with those predicted for extreme martian aeolian conditions. The sabot impelling method permitted study of individual impacts without the masking effect of bed mobilization encountered in wind-tunnel studies. At these martian impact velocities, grains produced small craters formed by the ejection of several hundred grains from the bed. Unexpectedly, the craters were not elongated, despite glancing impact; the craters were very close to circular in planform

  17. Documentation of Recent Surface Winds on Martian Sand Dunes

    NASA Astrophysics Data System (ADS)

    Zimbelman, J. R.; Johnson, M. B.

    2013-12-01

    Images from the High Resolution Imaging Science Experiment (HiRISE) are of sufficient resolution to record wind ripple patterns on the surfaces of sand dunes present across the surface of Mars. We are in the early stages of an investigation to map the ripple orientations preserved on Martian sand dunes, in order to evaluate the recent wind flow over the dunes, and compare that wind flow pattern to the winds documented over terrestrial sand dunes. HiRISE image ESP_025645_1455 covers a sand dune field on the floor of a 20-km-diameter unnamed impact crater in the Terra Cimmeria region of the southern highlands, east of the Hellas impact basin. This image is centered at 34.23 S latitude, 138.437 E longitude with 25 cm/pixel resolution, and was taken on Jan 25 of 2012 during northern spring (Ls = 57.4). Using ArcGIS, lines were drawn across three ripples perpendicular to the ripple crests, avoiding places where complex ripple patterns suggest more than one recent wind direction. The length of the lines provides a measure of ripple wavelength, and the line orientation gives azimuth (with a 180 degree absolute ambiguity). The barchan-like shape of some dunes, including occasional slip faces, suggest sand driving winds were from the southwest, although dune asymmetries indicate the wind regime likely was much more complex than a unimodal wind. Measurements of ripple orientations are being collected from dune locations across the planet, which should provide new constraints for the modeling of recent Martian winds. This work was supported by NASA MDAP grant NNX12AJ38G.

  18. How High is that Dune? A Comparison of Methods Used to Constrain the Morphometry of Aeolian Bedforms on Mars

    NASA Technical Reports Server (NTRS)

    Bourke, M.; Balme, M.; Beyer, R. A.; Williams, K. K.

    2004-01-01

    Methods traditionally used to estimate the relative height of surface features on Mars include: photoclinometry, shadow length and stereography. The MOLA data set enables a more accurate assessment of the surface topography of Mars. However, many small-scale aeolian bedforms remain below the sample resolution of the MOLA data set. In response to this a number of research teams have adopted and refined existing methods and applied them to high resolution (2-6 m/pixel) narrow angle MOC satellite images. Collectively, the methods provide data on a range of morphometric parameters (many not previously available for dunes on Mars). These include dune height, width, length, surface area, volume, longitudinal and cross profiles). This data will facilitate a more accurate analysis of aeolian bedforms on Mars. In this paper we undertake a comparative analysis of methods used to determine the height of aeolian dunes and ripples.

  19. Late Quaternary aeolian sand deposition sustained by fluvial reworking and sediment supply in the Hexi Corridor - An example from northern Chinese drylands

    NASA Astrophysics Data System (ADS)

    Nottebaum, Veit; Lehmkuhl, Frank; Stauch, Georg; Lu, Huayu; Yi, Shuangwen

    2015-12-01

    Aeolian deposits are frequently used for palaeoenvironmental change studies. Their formation depends on an array of requirements: the supply of material suitable for aeolian transport and favorable conditions of sediment availability and wind strength. In order to infer palaeoenvironmental information from aeolian sand deposits these factors need to be carefully evaluated. We present a study from northern Chinese Hexi Corridor, based on 11 optically stimulated luminescence (OSL) dated sediment sections. These represent interchanging aeolian and alluvial deposits under gravel surfaces and aeolian sand in dune fields interrupted by interdunal flood deposits. Investigations in two subareas reveal contrasting geomorphologic and sedimentary histories: (1) sediment deposition during the Pleistocene-Holocene transition (~ 12 ka) followed by deflation during the Holocene and (2) frequent sediment recycling revealed by a wide spectrum of ages throughout the Holocene. The late glacial sediment pulse recorded in the western Hexi Corridor is attributed to high sediment supply, generated by efficient (peri-)glacial sediment production during glacial times in the adjacent Qilian Shan (< 5700 m asl) and a moisture increase inducing the reworking of those (glacio-)fluvial deposits during the Pleistocene-Holocene transition. The absence of a powerful reworking agent preserved these late glacial deposits in the western Hexi Corridor in contrast to moister eastern parts where Holocene sediment reworking prevailed. Geomorphological and hydrological preconditions of the subareas are discussed and reveal the controlling influence of fluvial processes on sand supply for the aeolian system. While a perennial drainage is missing in the drier western part, the Hei River drainage is fed by higher monsoonal precipitation in the central Hexi Corridor. It maintains a sediment recycling system and has ensured a sufficient sediment supply throughout the Holocene. The study promotes closer

  20. Quantifying the effects of European beach grass on aeolian sand transport over the last century: Bodega Marine Reserve, California

    NASA Astrophysics Data System (ADS)

    Cesmat, R.; Werner, S.; Smith, M. E.; Riedel, T.; Best, R.; Olyarnik, S.

    2012-12-01

    Introduction of European beach grass (Ammophila arenaria) to coastal dune systems of western North America induced significant changes to the transport and storage of sediment, and consequently the nesting habitat of the western snowy plover (Charadrius alexandrinus nivosus). At the Bodega Marine Reserve and Sonoma Coast State Park, Ammophila was introduced within the ~0.5 km2 dune area in the 1920's to limit the flux of sand through Bodega Harbor and agricultural land. To assess the potential impact of restoration efforts (Ammophila removal) on aeolian sediment flux, we measured sediment flux as a function of wind speeds and ground cover, and used these measurements to parameterize a spatial model for historical sand deposition Fine- to coarse-grained lithic to sub-lithic sand is delivered to the Bodega dune system from Salmon Creek beach, the down-shore terminus of a littoral system fed by the 3846 km2 Russian River catchment, several small (<100 km2) coastal catchments, and seacliff erosion. Littoral sediment traverses the 1.8 km wide dune system from NW to SE via aeolian transport. Ammophila colonization occurred initially adjacent to the shoreface, inducing deposition of a ~10 meter-high foredune and has subsequently encroached the ~0.5 km2 region between the foredune and Bodega Harbor. Comparison of historical topographic maps via raster subtraction indicates rapid construction of both the foredune and a ~15 meter-high transverse dune (Gaffney ridge) at the edge of the planted region. An average accumulation rate of ~4,000 m3/yr is indicated within the study swath by the preserved sediment volumes. Within the modern dune system, unvegetated areas exhibit 2-3 meter wavelength, ~1/2 meter amplitude mega-ripples, and the uppermost 2-10 cm consists of coarse-sand to granule-sized armor layer. In contrast, grain-sizes in vegetated areas are largely vertically homogenous. Open areas are typically 2-8 meters lower than adjacent vegetated areas, and show evidence for

  1. Simulation of barchan dynamics with inter-dune sand streams

    NASA Astrophysics Data System (ADS)

    Katsuki, Atsunari; Kikuchi, Macoto

    2011-06-01

    A group of barchans, crescent sand dunes, exhibit a characteristic flying-geese pattern in deserts on Earth and Mars. This pattern implies that an indirect interaction between barchans, mediated by an inter-dune sand stream, which is released from one barchan's horns and caught by another barchan, plays an important role in the dynamics of barchan fields. We used numerical simulations of a recently proposed cell model to investigate the effects of inter-dune sand streams on barchan fields. We found that a sand stream from a point source moves a downstream barchan laterally until the head of the barchan is finally situated behind the stream. This final configuration was shown to be stable by a linear stability analysis. These results indicate that flying-geese patterns are formed by the lateral motion of barchans mediated by inter-dune sand streams. By using simulations we also found a barchan mono-corridor generation effect, which is another effect of sand streams from point sources.

  2. The dune effect on sand-transporting winds on Mars

    PubMed Central

    Jackson, Derek W. T.; Bourke, Mary C; Smyth, Thomas A. G.

    2015-01-01

    Wind on Mars is a significant agent of contemporary surface change, yet the absence of in situ meteorological data hampers the understanding of surface–atmospheric interactions. Airflow models at length scales relevant to landform size now enable examination of conditions that might activate even small-scale bedforms (ripples) under certain contemporary wind regimes. Ripples have the potential to be used as modern ‘wind vanes' on Mars. Here we use 3D airflow modelling to demonstrate that local dune topography exerts a strong influence on wind speed and direction and that ripple movement likely reflects steered wind direction for certain dune ridge shapes. The poor correlation of dune orientation with effective sand-transporting winds suggests that large dunes may not be mobile under modelled wind scenarios. This work highlights the need to first model winds at high resolution before inferring regional wind patterns from ripple movement or dune orientations on the surface of Mars today. PMID:26537669

  3. The dune effect on sand-transporting winds on Mars.

    PubMed

    Jackson, Derek W T; Bourke, Mary C; Smyth, Thomas A G

    2015-01-01

    Wind on Mars is a significant agent of contemporary surface change, yet the absence of in situ meteorological data hampers the understanding of surface-atmospheric interactions. Airflow models at length scales relevant to landform size now enable examination of conditions that might activate even small-scale bedforms (ripples) under certain contemporary wind regimes. Ripples have the potential to be used as modern 'wind vanes' on Mars. Here we use 3D airflow modelling to demonstrate that local dune topography exerts a strong influence on wind speed and direction and that ripple movement likely reflects steered wind direction for certain dune ridge shapes. The poor correlation of dune orientation with effective sand-transporting winds suggests that large dunes may not be mobile under modelled wind scenarios. This work highlights the need to first model winds at high resolution before inferring regional wind patterns from ripple movement or dune orientations on the surface of Mars today. PMID:26537669

  4. The dune effect on sand-transporting winds on Mars

    NASA Astrophysics Data System (ADS)

    Jackson, Derek W. T.; Bourke, Mary C.; Smyth, Thomas A. G.

    2015-11-01

    Wind on Mars is a significant agent of contemporary surface change, yet the absence of in situ meteorological data hampers the understanding of surface-atmospheric interactions. Airflow models at length scales relevant to landform size now enable examination of conditions that might activate even small-scale bedforms (ripples) under certain contemporary wind regimes. Ripples have the potential to be used as modern `wind vanes' on Mars. Here we use 3D airflow modelling to demonstrate that local dune topography exerts a strong influence on wind speed and direction and that ripple movement likely reflects steered wind direction for certain dune ridge shapes. The poor correlation of dune orientation with effective sand-transporting winds suggests that large dunes may not be mobile under modelled wind scenarios. This work highlights the need to first model winds at high resolution before inferring regional wind patterns from ripple movement or dune orientations on the surface of Mars today.

  5. Investigation of the sand sea with the tallest dunes on Earth: China's Badain Jaran Sand Sea

    NASA Astrophysics Data System (ADS)

    Dong, Zhibao; Qian, Guangqiang; Lv, Ping; Hu, Guangyin

    2013-05-01

    China's Badain Jaran Sand Sea features the tallest dunes on Earth and a unique mega-dune-lake landscape. It had been explored little until the 1990s, though early scientific explorations surrounding the sand sea had begun by the early 20th century. Heated debates now focus on the desert environment, and particularly how the mega-dunes and desert lakes develop and evolve. This paper reviews the status of these debates and summarizes the supporting evidences. The environmental research mainly concerns formation and evolution of the sand sea, and its relationship with climate change. The proposed formation time ranges from the Early Pleistocene to the Holocene. Opinions vary about climate change on different time scales. The reconstructed climate change history is shorter than the sand sea's history, with the longest record extending to the Late Pleistocene. The mega-dune research focuses on sediments, dune morphology, and formation processes. It remains unclear whether the mega-dunes result primarily from wind action, control by the underlying topography, or groundwater maintenance. The sources of lake water are also debated, but there are four main hypotheses: atmospheric precipitation, groundwater from nearby areas, precipitation and snowmelt in remote areas such as the Qilian Mountains and the Qinghai-Tibetan Plateau, or paleowater that formed during past periods of wet climate. We believe that the sand sea deserves further study in terms of its dune geomorphology, evolution, and hydrology, and their responses to climate change. Meteorological and hydrological observations and monitoring in the sand sea are particularly necessary.

  6. Field measurements of mean and turbulent airflow over a barchan sand dune

    NASA Astrophysics Data System (ADS)

    Weaver, Corinne M.; Wiggs, Giles F. S.

    2011-05-01

    Advances in our knowledge of the aeolian processes governing sand dune dynamics have been restricted by a reliance on measures of time-averaged airflow, such as shear velocity ( u*). It has become clear that such measures are incapable of explaining the complete dynamics of sediment transport across dune surfaces. Past evidence from wind tunnel and modelling studies has suggested that in some regions on a dune's surface the sediment transport might be better explained through investigations of the turbulent nature of the airflow. However, to date there have been no field studies providing data on the turbulent characteristics of the airflow around dunes with which to support or refute such hypotheses. The field investigation presented here provides mean and turbulent airflow measurements across the centre-line of a barchan sand dune in Namibia. Data were collected using arrays of sonic anemometers and were compared with sand flux data measured using wedge-shaped traps. Results support previously published data derived from wind tunnels and numerical models. The decline in mean wind velocity at the upwind toe of the dune is shown to coincide with a rise in turbulence, whilst mean velocity acceleration on the upper slope corresponds with a general decline in measured turbulence. Analysis of the components of Reynold shear stress ( -u'¯w'¯) and normal stresses ( u¯ and w2 ¯) supports the notion that the development of flow turbulence along the dune centre-line is likely to be associated with the interplay between streamline curvature and mean flow deceleration/acceleration. It is suggested that, due to the nature of its calculation, turbulence intensity is a measure of less practical use than direct assessments of the individual components of Reynolds stress, particularly the instantaneous horizontal streamwise component ( u2 ¯) and shear stress ( -uw¯). Whilst, increases in Reynolds shear stress and the horizontal streamwise component of stress in the toe

  7. Avalanche slope angles in low-gravity environments from active Martian sand dunes

    NASA Astrophysics Data System (ADS)

    Atwood-Stone, Corwin; McEwen, Alfred S.

    2013-06-01

    The properties of granular material have an important effect on surface landforms and processes. Recently, it has been suggested that material properties called dynamic and static angle of repose vary with gravitational acceleration, which would have a significant effect on many planetary surface processes such as crater collapse and gully formation. In order to test that hypothesis, we measured lee slopes of active aeolian sand dunes on Mars using the High Resolution Imaging Experiment (HiRISE) DTMs (Digital Terrain Model). We examined dune fields in Nili Patera, Herschel Crater, and Gale Crater. Our measurements showed that the dynamic angles of repose for the sands in these areas are 33-34° in the first region and 30-31° in the other two. These results fall within the 30° to 35° window for the dynamic angles of repose for terrestrial dunes with similar flow depths and grain properties and thus show that this angle does not significantly vary with decreasing gravity.

  8. Use of coal ash for enhancing biocrust development in stabilizing sand dunes

    NASA Astrophysics Data System (ADS)

    Zaady, Eli; Katra, Itzhak; Sarig, Shlomo

    2015-04-01

    In dryland environments, biocrusts are considered ecosystem engineers since they play significant roles in ecosystem processes. In the successional pathway of crust communities, the new areas are colonized after disturbance by pioneers such as filamentous cyanobacteria - Microcoleus spp. This stage is followed by colonization of green algae, mosses, and lichens. Aggregation of soil granules is caused by metabolic polysaccharides secreted by cyanobacteria and green algae, gluing the soil particles to form the crust layer. It was suggested that incorporating dust into the biocrusts encourages the growth of cyanobacteria, leading to a strengthening of the biocrusts' cohesion. Moreover, biocrusts cover a larger portion of the surface when the soil contains finer particles, and it was observed that at least 4-5% of clay and silt is required to support a measurable biocrust. While natural and undisturbed sand dunes are generally stabilized by biocrusts in the north-western Negev desert, stabilization of disturbed and movable sand dunes is one of the main problems in this desertified land, as in vast areas in the world. Daily breezes and seasonal wind storms transport sand particles to populated and agricultural areas causing damages to field crops and livelihood. Moving sand dunes consist of relatively coarse grains (250-2000 μm) with a low percent of clay and silt. This phenomenon negatively affects cyanobacterial colonization rate, even in relatively wet desert areas (100-250 mm rainfalls). In order to face the problem it was suggested to enrich the dune surface by using coal fly-ash. The research was conducted in two stages: first, examining the feasibility in Petri-dishes in laboratory conditions and in Experimental Aeolian Greenhouse conditions. The results showed that adding coal fly-ash and biocrust inoculum increased aggregate stability, penetration resistance and shear strength, as opposed to the control-sand plot. Using mobile wind-tunnel simulations, sand

  9. Assessing the Martian Surface Distribution of Aeolian Sand using a Mars General Circulation Model

    NASA Technical Reports Server (NTRS)

    Anderson, F. S.; Greeley, R.; Xu, P.; Lo, E.; Blumberg, D. G.; Haberle, R. M.; Murphy, J. R.

    1999-01-01

    A sand transport model using White's sand flux equation and the Mars beneral circulation model was developed to understand the erosional sources, transport pathways, and depositional sinks of windblown sand on Mars. An initially uniform distribution of sand (4 mm over the entire surface) is reeionally transported based on wind stress, saltation threshold, and percentage of topogaphic trapping. Results are consistsnt with the , observed polar and Hellespontus dunes and Christensen's madeled block size distribution, butonly for an extremely law saltation threshold (0.024 N/sq m): Low thresholds generally result in transport of sand-sized particles originating in the northern mid latitudes to the north pole, and transport from the northern lower latitudes to the southern hemisphere. Our results indicate that the polar dune fields could form in 50,000 years, consistent with the active polar dunes and lack of longitudinal dunes observed on the surface of Mars.

  10. Large-eddy simulation of sand dune morphodynamics

    NASA Astrophysics Data System (ADS)

    Khosronejad, Ali; Sotiropoulos, Fotis; St. Anthony Falls Laboratory, University of Minnesota Team

    2015-11-01

    Sand dunes are natural features that form under complex interaction between turbulent flow and bed morphodynamics. We employ a fully-coupled 3D numerical model (Khosronejad and Sotiropoulos, 2014, Journal of Fluid Mechanics, 753:150-216) to perform high-resolution large-eddy simulations of turbulence and bed morphodynamics in a laboratory scale mobile-bed channel to investigate initiation, evolution and quasi-equilibrium of sand dunes (Venditti and Church, 2005, J. Geophysical Research, 110:F01009). We employ a curvilinear immersed boundary method along with convection-diffusion and bed-morphodynamics modules to simulate the suspended sediment and the bed-load transports respectively. The coupled simulation were carried out on a grid with more than 100 million grid nodes and simulated about 3 hours of physical time of dune evolution. The simulations provide the first complete description of sand dune formation and long-term evolution. The geometric characteristics of the simulated dunes are shown to be in excellent agreement with observed data obtained across a broad range of scales. This work was supported by NSF Grants EAR-0120914 (as part of the National Center for Earth-Surface Dynamics). Computational resources were provided by the University of Minnesota Supercomputing Institute.

  11. 76 FR 57074 - Transfer of Administrative Jurisdiction at or Near Great Sand Dunes National Park

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-15

    ... National Park Service Transfer of Administrative Jurisdiction at or Near Great Sand Dunes National Park... benefit of Great Sand Dunes National Park, Baca National Wildlife Refuge, and the Rio Grande National... (Secretary) acquired certain lands and interests in land for the benefit of Great Sand Dunes National...

  12. 76 FR 68503 - Ungulate Management Plan/Environmental Impact Statement, Great Sand Dunes National Park and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-04

    ... National Park Service Ungulate Management Plan/Environmental Impact Statement, Great Sand Dunes National... Intent to prepare an Environmental Impact Statement for the Ungulate Management Plan, Great Sand Dunes... Ungulate Management Plan, Great Sand Dunes National Park and Preserve, Colorado. The purpose of this...

  13. Aeolian Sand Transport in the Planetary Context: Respective Roles of Aerodynamic and Bed-Dilatancy Thresholds

    NASA Technical Reports Server (NTRS)

    Marshall, J. R.; Borucki, J.; Bratton, C.

    1999-01-01

    The traditional view of aeolian sand transport generally estimates flux from the perspective of aerodynamic forces creating the airborne grain population, although it has been recognized that "reptation" causes a significant part of the total airborne flux; reptation involves both ballistic injection of grains into the air stream by the impact of saltating grains as well as the "nudging" of surface grains into a creeping motion. Whilst aerodynamic forces may initiate sand motion, it is proposed here that within a fully-matured grain cloud, flux is actually governed by two thresholds: an aerodynamic threshold, and a bed-dilatancy threshold. It is the latter which controls the reptation population, and its significance increases proportionally with transport energy. Because we only have experience with terrestrial sand transport, extrapolations of aeolian theory to Mars and Venus have adjusted only the aerodynamic factor, taking gravitational forces and atmospheric density as the prime variables in the aerodynamic equations, but neglecting reptation. The basis for our perspective on the importance of reptation and bed dilatancy is a set of experiments that were designed to simulate sand transport across the surface of a martian dune. Using a modified sporting crossbow in which a sand-impelling sabot replaced the bolt-firing mechanism, individual grains of sand were fired at loose sand targets with glancing angles typical of saltation impact; grains were projected at about 80 m/s to simulate velocities commensurate with those predicted for extreme martian aeolian conditions. The sabot impelling method permitted study of individual impacts without the masking effect of bed mobilization encountered in wind-tunnel studies. At these martian impact velocities, grains produced small craters formed by the ejection of several hundred grains from the bed. Unexpectedly, the craters were not elongated, despite glancing impact; the craters were very close to circular in planform

  14. Aeolian Sand Transport in the Planetary Context: Respective Roles of Aerodynamic and Bed-Dilatancy Thresholds

    NASA Astrophysics Data System (ADS)

    Marshall, J. R.; Borucki, J.; Bratton, C.

    1999-09-01

    The traditional view of aeolian sand transport generally estimates flux from the perspective of aerodynamic forces creating the airborne grain population, although it has been recognized that "reptation" causes a significant part of the total airborne flux; reptation involves both ballistic injection of grains into the air stream by the impact of saltating grains as well as the "nudging" of surface grains into a creeping motion. Whilst aerodynamic forces may initiate sand motion, it is proposed here that within a fully-matured grain cloud, flux is actually governed by two thresholds: an aerodynamic threshold, and a bed-dilatancy threshold. It is the latter which controls the reptation population, and its significance increases proportionally with transport energy. Because we only have experience with terrestrial sand transport, extrapolations of aeolian theory to Mars and Venus have adjusted only the aerodynamic factor, taking gravitational forces and atmospheric density as the prime variables in the aerodynamic equations, but neglecting reptation. The basis for our perspective on the importance of reptation and bed dilatancy is a set of experiments that were designed to simulate sand transport across the surface of a martian dune. Using a modified sporting crossbow in which a sand-impelling sabot replaced the bolt-firing mechanism, individual grains of sand were fired at loose sand targets with glancing angles typical of saltation impact; grains were projected at about 80 m/s to simulate velocities commensurate with those predicted for extreme martian aeolian conditions. The sabot impelling method permitted study of individual impacts without the masking effect of bed mobilization encountered in wind-tunnel studies. At these martian impact velocities, grains produced small craters formed by the ejection of several hundred grains from the bed. Unexpectedly, the craters were not elongated, despite glancing impact; the craters were very close to circular in planform

  15. Discussion. Cemented horizon in subarctic Alaskan sand dunes.

    USGS Publications Warehouse

    Galloway, J.P.; Koster, E.A.; Hamilton, T.D.

    1985-01-01

    Exception is taken to the conclusions (M.A. 84M/4465) concerning the distribution, age and origin of the cementing materials of carbonate crusts in the eaeolian sand deposits of the dune field in the central Kobuk Valley. (Following abstract)-M.S.

  16. Analysis of wind-blown sand movement over transverse dunes.

    PubMed

    Jiang, Hong; Huang, Ning; Zhu, Yuanjian

    2014-01-01

    Wind-blown sand movement often occurs in a very complicated desert environment where sand dunes and ripples are the basic forms. However, most current studies on the theoretic and numerical models of wind-blown sand movement only consider ideal conditions such as steady wind velocity, flat sand surface, etc. In fact, the windward slope gradient plays a great role in the lift-off and sand particle saltation. In this paper, we propose a numerical model for the coupling effect between wind flow and saltating sand particles to simulate wind-blown sand movement over the slope surface and use the SIMPLE algorithm to calculate wind flow and simulate sands transport by tracking sand particle trajectories. We furthermore compare the result of numerical simulation with wind tunnel experiments. These results prove that sand particles have obvious effect on wind flow, especially that over the leeward slope. This study is a preliminary study on windblown sand movement in a complex terrain, and is of significance in the control of dust storms and land desertification. PMID:25434372

  17. Analysis of Wind-blown Sand Movement over Transverse Dunes

    PubMed Central

    Jiang, Hong; Huang, Ning; Zhu, Yuanjian

    2014-01-01

    Wind-blown sand movement often occurs in a very complicated desert environment where sand dunes and ripples are the basic forms. However, most current studies on the theoretic and numerical models of wind-blown sand movement only consider ideal conditions such as steady wind velocity, flat sand surface, etc. In fact, the windward slope gradient plays a great role in the lift-off and sand particle saltation. In this paper, we propose a numerical model for the coupling effect between wind flow and saltating sand particles to simulate wind-blown sand movement over the slope surface and use the SIMPLE algorithm to calculate wind flow and simulate sands transport by tracking sand particle trajectories. We furthermore compare the result of numerical simulation with wind tunnel experiments. These results prove that sand particles have obvious effect on wind flow, especially that over the leeward slope. This study is a preliminary study on windblown sand movement in a complex terrain, and is of significance in the control of dust storms and land desertification. PMID:25434372

  18. Analysis of Wind-blown Sand Movement over Transverse Dunes

    NASA Astrophysics Data System (ADS)

    Jiang, Hong; Huang, Ning; Zhu, Yuanjian

    2014-12-01

    Wind-blown sand movement often occurs in a very complicated desert environment where sand dunes and ripples are the basic forms. However, most current studies on the theoretic and numerical models of wind-blown sand movement only consider ideal conditions such as steady wind velocity, flat sand surface, etc. In fact, the windward slope gradient plays a great role in the lift-off and sand particle saltation. In this paper, we propose a numerical model for the coupling effect between wind flow and saltating sand particles to simulate wind-blown sand movement over the slope surface and use the SIMPLE algorithm to calculate wind flow and simulate sands transport by tracking sand particle trajectories. We furthermore compare the result of numerical simulation with wind tunnel experiments. These results prove that sand particles have obvious effect on wind flow, especially that over the leeward slope. This study is a preliminary study on windblown sand movement in a complex terrain, and is of significance in the control of dust storms and land desertification.

  19. Controls on and effects of armoring and vertical sorting in aeolian dune fields: A numerical simulation study

    NASA Astrophysics Data System (ADS)

    Gao, Xin; Narteau, Clément; Rozier, Olivier

    2016-03-01

    Unlike ripples, there are only few numerical studies on grain size segregation at the scale of dunes in aeolian environments. Here we use a cellular automaton model to analyze vertical sorting in granular mixtures under steady unidirectional flow conditions. We investigate the feedbacks between dune growth and the segregation mechanisms by varying the size of coarse grains and their proportion within the bed. We systematically observe the development of a horizontal layer of coarse grains at the top of which sorted bed forms may grow by amalgamation. The formation of such an armor layer controls the overall sediment transport and availability. The emergence of dunes and the transition from barchan to transverse dune fields depend only on the grain size distribution of the initial sediment layer. As confirmed by observation, this result indicates that armor layers should be present in most arid deserts, where they are likely to control dune morphodynamics.

  20. Early diagenesis of eolian dune and interdune sands at White Sands, New Mexico

    USGS Publications Warehouse

    Schenk, C.J.; Fryberger, S.G.

    1988-01-01

    The degree of early diagenesis in eolian dune and interdune sands at White Sands, New Mexico, is largely a function of the relationship between sand location and the water table. Most active and vegetation-stabilized dune sands are in the vadose zone, whereas interdune sands are in the capillary fringe and phreatic zones. Crystallographically controlled dissolution of the framework gypsum grains results in elongate, prismatic etch pits on sand grains from the capillary fringe and phreatic zones, whereas dissolution of sand grains in the vadose zone is slight, causing minute irregularities on grain surfaces. Vadose water percolating through the sand is manifest as meniscus layers. Consequently, dune sands in the vadose zone are cemented mainly by meniscus-shaped gypsum at grain contacts. Pendant cements formed on the lower margins of some sand grains. Cementation in the capillary fringe and the phreatic zone is more extensive than the vadose regardless of strata type. Typically, well-developed gypsum overgrowths form along the entire edge of a grain, or may encompass the entire grain. Complex diagenetic histories are suggested by multiple overgrowths and several episodes of dissolution on single grains, attesting to changing saturation levels with respect to gypsum in the shallow ground water. These changes in saturation are possibly due to periods of dilution by meteoric recharge, alternating with periods of concentration of ions and the formation of cement due to evaporation through the capillary fringe. ?? 1988.

  1. Non-dune eolian sand in Indian mounds

    NASA Astrophysics Data System (ADS)

    Tanner, William F.

    1980-02-01

    Indian mounds, near Careyville, Florida, about 2.0 m high, are located on hillsides and hilltops 10 to 20 m above the floodplain of the nearest river (Choctawhatchee). Each mound is composed largely of quartz sand, with a scattering of artefacts and stream pebbles (not in layers), but with no visible bedding. Probability plots showed 25 Gaussian distributions, 18 having the 'dune hump', three having the 'surf break' and nine being doubly-truncated or having other patterns of unknown or uncertain origin. The surf breaks probably were inherited from pre-Pleistocene marine terraces in the area. The pebbles and the sand were not introduced by the same agency. The sand probability plots, taken as a set, indicate an eolian origin. The rough symmetry of the mounds, and the lack of cross-bedding, argue against a migrating dune origin. On a variability plot (showing the variability of the means versus the variability of the standard deviations), one suite of samples fell clearly within the 'dune' number field, a second suite in the overlap area between 'dune' and 'beach', and a third suite, taken immediately adjacent to a creek bed, plotted in the overlap area between 'beach' and 'coastal plain stream'. The pebbles, of common Southern Appalachian types, are attributed to the activities of the inhabitants, perhaps children. The sand is thought to have been carried by the wind, perhaps from nearby river sand bars, or from areas burned either by lightning-set wildfires or as part of "slash-and-burn" agriculture. The mounds are thought to represent clearings (for huts), and hence good trapping devices for wind-borne sand.

  2. Comparison of two Satellite Imaging Platforms for Evaluating Sand Dune Migration in the Ubari Sand Sea (Libyan Fazzan)

    NASA Astrophysics Data System (ADS)

    Els, A.; Merlo, S.; Knight, J.

    2015-04-01

    Sand dunes can change location, form or dimensions depending on wind direction and strength. Sand dune movements can be effectively monitored through the comparison of multi-temporal satellite images. However, not all remote sensing platforms are suitable to study sand dunes. This study compares coarse (Landsat) and fine (Worldview) resolution platforms, specifically focussing on sand dunes within the Ubari Sand Sea (Libya). Sand dune features (crest line, dune ridge basal outlines) were extracted from Landsat and Worldview 2 imagery in order to construct geomorphic maps. These geomorphic maps were then compared using image overlay and differencing, and the Root Mean Squared Error (RMSE) was used to determine if the mapped dune patterns were significantly different. It was found that Landsat is a sufficient data source when studying dune patterns within a regional sand sea, but smaller dunes identified from Worldview data were not capable of being extracted in the data sourced from Landsat. This means that for studies concerned with the dune patterns and movements within sand seas, Landsat is sufficient. But in studies where the specific dynamics of specific dunes are required, a finer resolution is required; platforms such as Worldview are needed in order to gain more detailed insight and to link the past and present day climate and environmental change.

  3. Preliminary study of Kelso Dunes using AVIRIS, TM, and AIRSAR

    NASA Technical Reports Server (NTRS)

    Xu, Pung; Blumberg, Dan G.; Greeley, Ronald

    1995-01-01

    Remote sensing of sand dunes helps in the understanding of aeolian process and provides important information about the regional geologic history, environmental change, and desertification. Remotely sensed data combined with field studies are valuable in studying dune morphology, regional aeolian dynamics, and aeolian depositional history. In particular, active and inactive sands of the Kelso Dunes have been studied using landsat TM and AIRSAR. In this report, we describe the use of AVIRIS data to study the Kelso dunes and to compare the AVIRIS information with that from TM and AIRSAR.

  4. Sand ripple dynamics in the case of out-of-equilibrium aeolian regimes.

    PubMed

    Misbah, C; Valance, A

    2003-12-01

    From a phenomenological hydrodynamical model, we analyze the aeolian sand ripple evolution in an out-of-equilibrium aeolian regime where erosion exceeds accretion (and vice versa). We find, in particular, that the ripple structure can be destroyed in favor of a flat sand bed. In the ripple regime we report on a new class of generic dynamics described by the Benney equation. This equation reveals either order or disorder depending on whether wave dispersion is strong or weak. In both cases, the average wavelength of the pattern is fixed in time. This markedly contrasts with the regime of equilibrium aeolian regime -reached when erosion balances deposition- where ripples undergo a coarsening process at long time (i.e., the wavelength increases indefinitely with time). PMID:15007749

  5. Wind profiles on the stoss slope of sand dunes: Implications for eolian sand transport

    SciTech Connect

    Frank, A.; Kocurek, G. . Dept. of Geological Sciences)

    1993-04-01

    Starting with the work of R.A. Bagnold it has been recognized that the shear stress exerted by the wind on sand grains is the driving force for eolian sand transport. Calculation of accurate rates of sand transport is essential for prediction of migration rates of sand dunes in modern environments as well as reconstructing paleoclimates (wind speed and direction) from eolian deposits. Because a sand dune is a streamlined obstacle in the path of the wind, continuity necessitates that the flow field is compressed over the windward side of a dune and shear stress should progressively increase up the slope as the flow accelerates. However, airflow measurements over 14 dunes (at White Sands, New Mexico; Algodones, CA; and Padre Island, TX) show that compression of the flow field occurs very close to the surface and as a consequence, the overlying flow actually shows an overall decrease in shear stress up the slope. Measurements commonly collected in the overlying zone are not representative of the near-surface, sand-driving wind. Furthermore, near-surface compression of the flow field implies that a pressure gradient exists that would render the current transport models inappropriate for sloping surfaces that dominate natural sandy desert terrains.

  6. Simulation of aeolian sand saltation with rotational motion

    NASA Astrophysics Data System (ADS)

    Huang, Ning; Wang, Cong; Pan, Xiying

    2010-11-01

    In this work, we propose a theoretical model based on the distribution functions of initial liftoff velocity and angular velocity of sand grains to describe a sand saltation process in which both wind field-sand grain coupling and the Magnus force experienced by saltating sand grains have been incorporated. The computation results showed that the Magnus force had significant effects on sand grain saltation. In particular, when the Magnus force was incorporated, the calculated sand transport fluxes and sand transport rate per unit width were closer to the experimental value than when this force was excluded. The sand transport flux is enhanced because the Magnus force owing to particle rotation causes the particles to have higher and longer trajectories, so the particles can get more speed and energy from the wind, which leads to a larger sand transport flux. In addition, it was found that when taking the Magnus force into account, the probability density of the impact velocity and angular velocity of saltating sand grains followed an exponential distribution and a unimodal asymmetric distribution, respectively. Moreover, the sand energy flux increased with the height above the sand surface until the energy flux reached its maximum and then decreased. Furthermore, the energy flux near the ground surface decreased as the grain diameter increased, but beyond a specific height the energy flux increased with the grain diameter. Finally, for the same sand grain diameter, the energy flux increased with the friction velocity.

  7. Diurnal emissivity dynamics in bare versus biocrusted sand dunes.

    PubMed

    Rozenstein, Offer; Agam, Nurit; Serio, Carmine; Masiello, Guido; Venafra, Sara; Achal, Stephen; Puckrin, Eldon; Karnieli, Arnon

    2015-02-15

    Land surface emissivity (LSE) in the thermal infrared depends mainly on the ground cover and on changes in soil moisture. The LSE is a critical variable that affects the prediction accuracy of geophysical models requiring land surface temperature as an input, highlighting the need for an accurate derivation of LSE. The primary aim of this study was to test the hypothesis that diurnal changes in emissivity, as detected from space, are larger for areas mostly covered by biocrusts (composed mainly of cyanobacteria) than for bare sand areas. The LSE dynamics were monitored from geostationary orbit by the Spinning Enhanced Visible and Infrared Imager (SEVIRI) over a sand dune field in a coastal desert region extending across both sides of the Israel-Egypt political borderline. Different land-use practices by the two countries have resulted in exposed, active sand dunes on the Egyptian side (Sinai), and dunes stabilized by biocrusts on the Israeli side (Negev). Since biocrusts adsorb more moisture from the atmosphere than bare sand does, and LSE is affected by the soil moisture, diurnal fluctuations in LSE were larger for the crusted dunes in the 8.7 μm channel. This phenomenon is attributed to water vapor adsorption by the sand/biocrust particles. The results indicate that LSE is sensitive to minor changes in soil water content caused by water vapor adsorption and can, therefore, serve as a tool for quantifying this effect, which has a large spatial impact. As biocrusts cover vast regions in deserts worldwide, this discovery has repercussions for LSE estimations in deserts around the globe, and these LSE variations can potentially have considerable effects on geophysical models from local to regional scales. PMID:25437760

  8. Diurnal emissivity dynamics in bare versus biocrusted sand dunes

    NASA Astrophysics Data System (ADS)

    Rozenstein, O.

    2015-12-01

    Land surface emissivity (LSE) in the thermal infrared depends mainly on the ground cover and on changes in soil moisture. The LSE is a critical variable that affects the prediction accuracy of geophysical models requiring land surface temperature as an input, highlighting the need for an accurate derivation of LSE. The primary aim of this study was to test the hypothesis that diurnal changes in emissivity, as detected from space, are larger for areas mostly covered by biocrusts (composed mainly of cyanobacteria) than for bare sand areas. The LSE dynamics were monitored from geostationary orbit by the Spinning Enhanced Visible and Infrared Imager (SEVIRI) over a sand dune field in a coastal desert region extending across both sides of the Israel-Egypt political borderline. Different land-use practices by the two countries have resulted in exposed, active sand dunes on the Egyptian side (Sinai), and dunes stabilized by biocrusts on the Israeli side (Negev). Since biocrusts adsorb more moisture from the atmosphere than bare sand does, and LSE is affected by the soil moisture, diurnal fluctuations in LSE were larger for the crusted dunes in the 8.7 μm channel. This phenomenon is attributed to water vapor adsorption by the sand / biocrust particles. The results indicate that LSE is sensitive to minor changes in soil water content caused by water vapor adsorption and can, therefore, serve as a tool for quantifying this effect, which has a large spatial impact. As biocrusts cover vast regions in deserts worldwide, this discovery has repercussions for LSE estimations in deserts around the globe, and these LSE variations can potentially have considerable effects on geophysical models from local to regional scales.

  9. 2007 Weather and Aeolian Sand-Transport Data from the Colorado River Corridor, Grand Canyon, Arizona

    USGS Publications Warehouse

    Draut, Amy E.; Andrews, Timothy; Fairley, Helen C.; Brown, Christopher R.

    2009-01-01

    Weather data constitute an integral part of ecosystem monitoring in the Colorado River corridor and are particularly valuable for understanding processes of landscape change that contribute to the stability of archeological sites. Data collected in 2007 are reported from nine weather stations in the Colorado River corridor through Grand Canyon, Ariz. The stations were deployed in February and March 2007 to measure wind speed and direction, rainfall, air temperature, relative humidity, and barometric pressure. Sand traps near each weather station collect windblown sand, from which daily aeolian sand-transport rates are calculated. The data reported here were collected as part of an ongoing study to test and evaluate methods for quantifying processes that affect the physical integrity of archeological sites along the river corridor; as such, these data can be used to identify rainfall events capable of causing gully incision and to predict likely transport pathways for aeolian sand, two landscape processes integral to the preservation of archeological sites. Weather data also have widespread applications to other studies of physical, cultural, and biological resources in Grand Canyon. Aeolian sand-transport data reported here, collected in the year before the March 2008 High-Flow Experiment (HFE) at Glen Canyon Dam, represent baseline data against which the effects of the 2008 HFE on windblown sand will be compared in future reports.

  10. Phase diagrams of dune shape and orientation depending on sand availability.

    PubMed

    Gao, Xin; Narteau, Clément; Rozier, Olivier; Courrech du Pont, Sylvain

    2015-01-01

    New evidence indicates that sand availability does not only control dune type but also the underlying dune growth mechanism and the subsequent dune orientation. Here we numerically investigate the development of bedforms in bidirectional wind regimes for two different conditions of sand availability: an erodible sand bed or a localized sand source on a non-erodible ground. These two conditions of sand availability are associated with two independent dune growth mechanisms and, for both of them, we present the complete phase diagrams of dune shape and orientation. On an erodible sand bed, linear dunes are observed over the entire parameter space. Then, the divergence angle and the transport ratio between the two winds control dune orientation and dynamics. For a localized sand source, different dune morphologies are observed depending on the wind regime. There are systematic transitions in dune shape from barchans to linear dunes extending away from the localized sand source, and vice-versa. These transitions are captured fairly by a new dimensionless parameter, which compares the ability of winds to build the dune topography in the two modes of dune orientation. PMID:26419614

  11. Phase diagrams of dune shape and orientation depending on sand availability

    PubMed Central

    Gao, Xin; Narteau, Clément; Rozier, Olivier; du Pont, Sylvain Courrech

    2015-01-01

    New evidence indicates that sand availability does not only control dune type but also the underlying dune growth mechanism and the subsequent dune orientation. Here we numerically investigate the development of bedforms in bidirectional wind regimes for two different conditions of sand availability: an erodible sand bed or a localized sand source on a non-erodible ground. These two conditions of sand availability are associated with two independent dune growth mechanisms and, for both of them, we present the complete phase diagrams of dune shape and orientation. On an erodible sand bed, linear dunes are observed over the entire parameter space. Then, the divergence angle and the transport ratio between the two winds control dune orientation and dynamics. For a localized sand source, different dune morphologies are observed depending on the wind regime. There are systematic transitions in dune shape from barchans to linear dunes extending away from the localized sand source, and vice-versa. These transitions are captured fairly by a new dimensionless parameter, which compares the ability of winds to build the dune topography in the two modes of dune orientation. PMID:26419614

  12. The Role of Reproductive Phenology, Seedling Emergence and Establishment of Perennial Salix gordejevii in Active Sand Dune Fields

    PubMed Central

    Yan, Qiaoling; Liu, Zhimin; Ma, Junling; Jiang, Deming

    2007-01-01

    Background and Aims The function of sexual reproduction of perennials in restoration of vegetation of active dune fields frequently has been underestimated. The objective of this study was to evaluate the role of sexual reproduction of the perennial Salix gordejevii in the revegetation of active dunes. Methods Seedling emergence and establishment of S. gordejevii were examined both in controlled experiments (germination at different burial depths with different watering regimes) and in field observations in three dune slacks. The reproductive phenology and soil seed bank of S. gordejevii, the dynamics of soil moisture, the groundwater table and the landform level of three dune slacks were monitored. Key Results Seeds of S. gordejevii began maturation on 1 May, and seed dispersal lasted from 8 May to 20 May. Seeds on the soil surface germinated significantly faster than those buried in soil (P<0·05). Seedling emergence was negatively correlated with landform level. When most seedlings emerged, there was a significantly positive correlation between soil moisture and seedling emergence (P<0·01). Rainfall was negatively correlated with seedling emergence. Seedling establishment was significantly and positively correlated with seedling emergence (P<0·05), and 72·3 % of the emergent seedlings were established at the end of the growing season. These results indicated that (a) seeds matured and dispersed before the rainy season; (b) seeds germinated as soon as they contacted a moist surface and relied more on soil moisture than on rainfall; and (c) more seedlings emerged at lower sampling points in dune slacks. Conclusions In natural conditions, restoration of active sand dune fields generally commences with revegetation of dune slacks where sexual reproduction of perennials contributes greatly to species encroachment and colonization and hence plays an important role in restoration of active dune fields. Furthermore, aeolian erosion in dune slacks, leading to good

  13. Fire scars and ancient sand dunes in southern Australia

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The rectangular green areas in this view of southern Australia are protected areas of natural forest (national parks and biospheric reserves), and the lighter surrounding colors (tan-brown) are agricultural croplands occupying land which once must have looked as green as the nature reserves but are now cleared of forest. The major green patch has been recently burned, as shown by the irregular pattern of a large, multiple burn scar. The pattern of the fire scar indicates that the fires were driven by winds blowing from left to right. Close examination of the view shows that the forests are rooted in a soil made up of a widespread sheet of ancient dune sand. The dunes can be seen best within the area of the large fire scar where the characteristic wavy, scalloped pattern of crescent dunes can be detected. The crescents indicate that the sand was heaped up by winds blowing from right to left in this view, in the opposite direction to the winds which fanned the fires. A few straight dunes

  14. Spring Time View of North Polar Sand Dunes

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Spring has come to the martian northern hemisphere. The northern spring season began in mid-July 1998. With the arrival of spring comes the annual shrinkage of the north polar frost cap. Sunlight is now falling on the north polar cap, and all of the carbon dioxide frost and snow that accumulated during winter has been sublimating--going directly from solid to gas--and the surface beneath the frost is being revealed.

    The MOC image shown above, 45205, was obtained during the 452nd orbit of Mars Global Surveyor at 3:10 p.m. PDT on July 26, 1998. The image is located near latitude 76.87oN, longitude 253.81oW, and it shows a close-up view of martian sand dunes. These dunes were not visible to MOC until the last week of July. Just a few months earlier, the dunes were likely covered with frost, obscured by thick clouds, and cloaked by the darkness of the martian polar winter. Indeed, small patches of bright frost were still present when the picture was taken (e.g., the bright patches on the west (left) side of each crescentic dune in (left image).

    As the above picture illustrates, the camera on board Mars Global Surveyor (MOC) continued to take exciting new views of the martian surface throughout July 1998. As the month progressed, the ground track-- the area visible to the camera--migrated farther north. Simultaneously, sunlight began falling on the north polar regions, making it possible to take some pictures at far northern latitudes. However, these regions have been tricky to photograph because of thick clouds and hazes. The image shown here, for example, is relatively bland gray (has relatively low contrast) because of clouds.

    As first seen by the Viking 2 Orbiter in 1976, a vast 'sea' of sand dunes surrounds the north polar cap. The dunes imaged by MOC (above) are classic forms known as barchan dunes--the small, crescent-shaped hills (see left image above)-- and transverse dunes--ridges that resemble coalesced barchans (shown in right image above). These

  15. Hydrogen content of sand dunes within Olympia Undae

    NASA Astrophysics Data System (ADS)

    Feldman, W. C.; Bourke, M. C.; Elphic, R. C.; Maurice, S.; Bandfield, J.; Prettyman, T. H.; Diez, B.; Lawrence, D. J.

    2008-08-01

    Neutron currents measured using the Mars Odyssey Neutron Spectrometer, seasonally varying temperatures measured using the Thermal Emission Spectrometer, and visible images measured using the High Resolution Imaging Science Experiment (HiRISE) are studied to determine the water content and stratigraphy of Olympia Undae. Both the neutron and thermal infrared data are best represented by a two-layered model having a water-ice equivalent hydrogen content of 30±5% in a lower semi-infinite layer, buried beneath a relatively desiccated upper layer that is 9±6 g/cm thick (about 6 cm depth at a density of 1.5 g/cm 3). A model that is consistent with all three data sets is that the dunes contain a top layer that is relatively mobile, which overlays a niveo-aeolian lower layer. The geomorphology shown by the HiRISE images suggests that the bottom layer may be cemented in place and therefore relatively immobile.

  16. Effects of river regulation on aeolian landscapes, Colorado River, southwestern USA

    USGS Publications Warehouse

    Draut, Amy E.

    2012-01-01

    Connectivity between fluvial and aeolian sedimentary systems plays an important role in the physical and biological environment of dryland regions. This study examines the coupling between fluvial sand deposits and aeolian dune fields in bedrock canyons of the arid to semiarid Colorado River corridor, southwestern USA. By quantifying significant differences between aeolian landscapes with and without modern fluvial sediment sources, this work demonstrates for the first time that the flow- and sediment-limiting effects of dam operations affect sedimentary processes and ecosystems in aeolian landscapes above the fluvial high water line. Dune fields decoupled from fluvial sand supply have more ground cover (biologic crust and vegetation) and less aeolian sand transport than do dune fields that remain coupled to modern fluvial sand supply. The proportion of active aeolian sand area also is substantially lower in a heavily regulated river reach (Marble–Grand Canyon, Arizona) than in a much less regulated reach with otherwise similar environmental conditions (Cataract Canyon, Utah). The interconnections shown here among river flow and sediment, aeolian sand transport, and biologic communities in aeolian dunes demonstrate a newly recognized means by which anthropogenic influence alters dryland environments. Because fluvial–aeolian coupling is common globally, it is likely that similar sediment-transport connectivity and interaction with upland ecosystems are important in other dryland regions to a greater degree than has been recognized previously.

  17. Effects of river regulation on aeolian landscapes, Colorado River, southwestern USA

    NASA Astrophysics Data System (ADS)

    Draut, Amy E.

    2012-06-01

    Connectivity between fluvial and aeolian sedimentary systems plays an important role in the physical and biological environment of dryland regions. This study examines the coupling between fluvial sand deposits and aeolian dune fields in bedrock canyons of the arid to semiarid Colorado River corridor, southwestern USA. By quantifying significant differences between aeolian landscapes with and without modern fluvial sediment sources, this work demonstrates for the first time that the flow- and sediment-limiting effects of dam operations affect sedimentary processes and ecosystems in aeolian landscapes above the fluvial high water line. Dune fields decoupled from fluvial sand supply have more ground cover (biologic crust and vegetation) and less aeolian sand transport than do dune fields that remain coupled to modern fluvial sand supply. The proportion of active aeolian sand area also is substantially lower in a heavily regulated river reach (Marble-Grand Canyon, Arizona) than in a much less regulated reach with otherwise similar environmental conditions (Cataract Canyon, Utah). The interconnections shown here among river flow and sediment, aeolian sand transport, and biologic communities in aeolian dunes demonstrate a newly recognized means by which anthropogenic influence alters dryland environments. Because fluvial-aeolian coupling is common globally, it is likely that similar sediment-transport connectivity and interaction with upland ecosystems are important in other dryland regions to a greater degree than has been recognized previously.

  18. Measurement of saltation process over gobi and sand dunes in the Taklimakan desert, China, with newly developed sand particle counter

    NASA Astrophysics Data System (ADS)

    Mikami, Masao; Yamada, Yutaka; Ishizuka, Masahide; Ishimaru, Taminoe; Gao, Weidong; Zeng, Fanjiang

    2005-09-01

    The Japan-Sino joint project, Aeolian Dust Experiment on Climate impact (ADEC), was initiated in April 2000 in order to understand the aeolian dust impact on climate via radiative forcing. As a part of the ADEC project, we have conducted field research in a sand dune and a gobi (i.e., a desert in which the soil surface consists of sand and pebbles with flat surfaces) in the south of the Taklimakan desert, China. The purpose of this study is to understand the wind erosion process and its relation to the meteorological and soil physical parameters. For this purpose, we measured the vertical profiles of wind speed, air temperature, and humidity as well as the other meteorological elements using an automatic weather station. A new sand particle counter (SPC) was newly developed to measure the saltation process. The SPC detects a signal change when a saltation particle passes through the slit between the laser beam transmitter and receiver. From this signal change, we can measure saltation particles from 30 to 667 μm diameter with 32 bin classes and particle numbers of each bin class every second. We have operated this SPC in the field, and it proved to be useful for the saltation process study when data corrections and calibration were properly made. During the observation period (1-21 April 2002), a total of eight dust events occurred; we analyzed two events: 5 April and 14 April cases. The results can be summarized as follows: (1) Total saltation fluxes in the 5 April case from 1223 to 1430 UT were 37.93 kg m-2 at 30 cm height and 43.71 kg m-2 at 20 cm height for the gobi site and 2.61 kg m-2 at 30 cm height for the dune site. (2) In the 14 April case, from 0327 to 0830 UT, the total saltation flux was 8.95 kg m-2 at 30 cm height for the gobi site. (3) Saltation flux at the gobi site in the 5 April case was more than 10 times larger than that of the sand dune, though the distance between the sites is 4 km. This is because the number of the parent soil particles

  19. 44 CFR 65.11 - Evaluation of sand dunes in mapping coastal flood hazard areas.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 44 Emergency Management and Assistance 1 2011-10-01 2011-10-01 false Evaluation of sand dunes in... Insurance Program IDENTIFICATION AND MAPPING OF SPECIAL HAZARD AREAS § 65.11 Evaluation of sand dunes in...-established with long-standing vegetative cover, such as the placement of sand materials in a...

  20. Aeolian environments and sand damage along the Qinghai-Tibet Railway, China

    NASA Astrophysics Data System (ADS)

    Zhang, Kecun; Qu, Jiaunjun; Han, Qingjie; An, Zhishan

    2016-04-01

    The Qinghai-Tibet Railway (QTR), with a total length of 1956 km, is the word's longest high-altitude railway. Located in the Tibet Plateau, the QTR is frequently damaged by windblown sand because of strong winds and abundant sand. Based on the detailed wind data, in situ observation of wind blown sand and field wind tunnel simulations along the QTR, the aeolian sand environment, involving sand-laden wind, drift potential, sand transport and their spatial variation were investigated. Sand-laden wind presents unidirectional characteristics along the QTR and its prevailing direction is westerly. The annual drift potential along the QTR reaches 970.54 Vector Units (VU), which belongs to a high-energy wind environment. In cold-high environments, sand transport rate increases with increasing wind velocity, but decreases exponentially with increasing height in the wind stream. As the altitude increases, the threshold velocity for sand movement linearly increases with altitude, and the sand transport per unit width decreases gradually. The results can be used to guide the design of sand-control structures both in the study area and in other areas that experience threats from windblown sand.

  1. A Comparison of Methods Used to Estimate the Height of Sand Dunes on Mars

    NASA Technical Reports Server (NTRS)

    Bourke, M. C.; Balme, M.; Beyer, R. A.; Williams, K. K.; Zimbelman, J.

    2006-01-01

    The collection of morphometric data on small-scale landforms from other planetary bodies is difficult. We assess four methods that can be used to estimate the height of aeolian dunes on Mars. These are (1) stereography, (2) slip face length, (3) profiling photoclinometry, and (4) Mars Orbiter Laser Altimeter (MOLA). Results show that there is good agreement among the methods when conditions are ideal. However, limitations inherent to each method inhibited their accurate application to all sites. Collectively, these techniques provide data on a range of morphometric parameters, some of which were not previously available for dunes on Mars. They include dune height, width, length, surface area, volume, and longitudinal and transverse profiles. Thc utilization of these methods will facilitate a more accurate analysis of aeolian dunes on Mars and enable comparison with dunes on other planetary surfaces.

  2. Laboratory studies of dune sand for the use of construction industry in Sri Lanka

    NASA Astrophysics Data System (ADS)

    de Silva Jayawardena, Upali; Wijesuriya, Roshan; Abayaweera, Gayan; Viduranga, Tharaka

    2015-04-01

    With the increase of the annual sand demand for the construction industry the excessive excavation of river sand is becoming a serious environmental problem in Sri Lanka. Therefore, it is necessary to explore the possibility for an alternative to stop or at least to minimize river sand mining activities. Dune sand is one of the available alternative materials to be considered instead of river sand in the country. Large quantities of sand dunes occur mainly along the NW and SE coastal belt which belong to very low rainfall Dry Zone coasts. The height of dune deposits, vary from 1m to about 30 meters above sea level. The objective of this paper is to indicate some studies and facts on the dune sand deposits of Sri Lanka. Laboratory studies were carried out for visual observations and physical properties at the initial stage and then a number of tests were carried out according to ASTM standards to obtain the compressive strength of concrete cylinders and mortar cubes mixing dune sand and river sand in different percentages keeping a constant water cement ratio. Next the water cement ratio was changed for constant dune sand and river sand proportion. Microscopic analysis shows that the dune sand consist of 95 % of quartz and 5 % of garnet, feldspar, illmenite and other heavy minerals with clay, fine dust, fine shell fragments and organic matters. Grains are sub-rounded to angular and tabular shapes. The grain sizes vary from fine to medium size of sand with silt. The degree of sorting and particle size observed with dune sands are more suited with the requirement of fine aggregates in the construction industry. The test result indicates that dune sand could be effectively used in construction work without sieving and it is ideal for wall plastering due to its'-uniformity. It could also be effectively used in concrete and in mortars mixing with river sand. The best mixing ratio is 75% dune sand and 25% river sand as the fine aggregate of concrete. For mortar the mixing

  3. Dynamics of Unusual Debris Flows on Martian Sand Dunes

    NASA Technical Reports Server (NTRS)

    Miyamoto, Hideaki; Dohm, James M.; Baker, Victor R.; Beyer, Ross A.; Bourke, Mary

    2004-01-01

    Gullies that dissect sand dunes in Russell impact crater often display debris flow-like deposits in their distal reaches. The possible range of both the rheological properties and the flow rates are estimated using a numerical simulation code of a Bingham plastic flow to help explain the formation of these features. Our simulated results are best explained by a rapid debris flow. For example, a debris flow with the viscosity of 10(exp 2) Pa s and the yield strength of 10(exp 2) Pa can form the observed deposits with a flow rate of 0.5 cu m/s sustained over several minutes and total discharged water volume on the order of hundreds of cubic meters, which may be produced by melting a surface layer of interstitial ice within the dune deposits to several centimeters depth.

  4. The soils on the calcareous sand dunes southeast of South Australia

    NASA Astrophysics Data System (ADS)

    Urushibara-Yoshino, K.

    1996-10-01

    The properties of soils on previously dated sand dunes from Robe to Naracoorte in South Australia were examined. In these areas younger sand dunes are composed of fresh sand, but older sand dunes are composed of calcarenited sand. The soils on the sand dunes developed successionally by the age of sand dunes. The soil properties of these sand dunes differ depending on the ages of the sand dunes. The properties of sand particles in soils are as follows: (1) On the sand dunes of 4300 years B.P., A/C profile developed (Rendzina). On the sand dunes older than 125 000 years B.P. and on the plateau of Tertiary limestone, soil profiles of A1/AB/B/C on the sand dunes of 83 000 years B.P. and A1/A3/B1/B2/C (Terra rossa) are well developed. (2) Within the sand of A/C horizons of the sand dunes with the age of 4300 year B.P., the calcite grain content is about 64%, and the quartz content is about 35%. Within the B horizons of soils on the dunes from 83 000 years B.P. to 347 000 years B.P., the calcite grain content is only 1 2%; however, the quartz grain content is about 92%. In the B2 horizons of soils on the dune of 690 000 years B.P. and on the Tertiary plateau, there are some calcite grains but the quartz grain content is about 96%. (3) The average size of quartz grains in the soils on the sand dunes from 4300 B.P. to 347 000 years B.P. is generally smaller, but the average size of quartz on the sand dunes of 690 000 year B.P. becomes larger and the grains are well rounded. On the Tertiary limestone plateau, the average quartz size becomes again smaller, and the grains are more rounded. (4) Fet in B2 horizon of the soil profiles increases clearly corresponding to the age. Iron activity expressed by Feo/Fed also shows a close relation to the chronological sequence. The B horizon of the soil profiles shows a drastic decrease of Feo/Fed according to the age. Iron crystalinity, (Fed-Feo)/Fet, has a tendency for a positive relation with increasing age.

  5. A preliminary source-to-sink sediment budget for aeolian sands

    NASA Astrophysics Data System (ADS)

    Sebe, Krisztina; Csillag, Gábor; Timár, Gábor; Jámbor, Áron

    2015-04-01

    Source-to-sink sediment budgets are being intensively studied in fluvial systems. In contrast, sediment budget calculations are very rare for wind-transported material. This may be attributed to the fact that the exact delineation of both source and sink areas in aeolian systems can pose difficulties. In the Pannonian Basin, aeolian action by northwesterly to northerly winds exerted a thorough impact on landscape evolution during the Quaternary, testified among others by yardangs, wind corridors and numerous ventifacts as well as extensive blown sand fields. Wind erosion has been dated to be important since at least 1.5 Ma ago. Considering the sand fraction, the Pleistocene Pannonian Basin seems to be a nearly complete aeolian sedimentary system from source to sink, thus it provides a good opportunity to carry out sediment budget calculations. The largest blown sand accumulation occupies ~10 000 km2 in the central part of the Pannonian Basin, in the area called Kiskunság, and contains considerable volumes of aeolian sands extending down to the Lower Pleistocene. Its material is traditionally considered to originate from fluvial sediments of the Danube floodplain. However, recent studies on wind erosion and wind direction reconstructions have indicated that a considerable portion of the sand can have had a provenance in the extensive unconsolidated sediments of the Late Miocene Lake Pannon, which cover the uplifting Transdanubian Range and its surroundings. To gain data on this question, we carried out sediment budget calculations to assess if material volumes of the supposed source and sink areas are comparable. In the source area we reconstructed a paleotopography, practically a bounding envelope surface for the Pliocene/Pleistocene boundary using existing knowledge e.g. on the typical succession of Lake Pannon sediments and the evolution history of the area. The missing volume down to the present-day surface was then calculated, where the removed material was

  6. The composition of Martian aeolian sands: Thermal emissivity from Viking IRTM observations

    NASA Technical Reports Server (NTRS)

    Edgett, Kenneth S.; Christensen, Philip R.

    1992-01-01

    Aeolian sands provide excellent surfaces for the remote determination of the mineralogic composition of Martian materials, because such deposits consist of relatively well-sorted, uniform particle sizes and might consist of chemically unaltered, primary mineral grains derived from bedrock. Dark features on the floors of Martian craters are controlled by aeolian processes and many consist largely of unconsolidated, windblown sand. Measurement of the thermal emissivity of geologic materials provides a way to identify mid-infrared absorption bands, the strength and positions of which vary with mineral structure and composition. The Viking Infrared Thermal Mapper (IRTM) had four surface-sensing mid-IR bands, three of which, the 7, 9, and 11 micron channels, correspond to absorption features characteristic of carbonates, sialic, and mafic minerals, respectively. In this study, the highest quality IRTM data were constrained so as to avoid the effects of atmospheric dust, clouds, surface frosts, and particle size variations (the latter using data obtained between 7 and 9 H, and they were selected for dark intracrater features such that only data taken directly from the dark feature were used, so as to avoid thermal contributions from adjacent but unrelated materials. Three-point emissivity spectra of Martian dart intracrater features were compared with laboratory emission spectra of minerals and terrestrial aeolian sands convolved using the IRTM response function to the four IRTM spectral channels.

  7. Storms, shoreface morphodynamics, sand supply, and the accretion and erosion of coastal dune barriers in the southern North Sea

    NASA Astrophysics Data System (ADS)

    Anthony, Edward J.

    2013-10-01

    The coast of the southern North Sea is bound by dune barriers that have developed adjacent to a shallow storm- and tide-dominated shoreface comprising numerous shore-parallel to sub-shore-parallel tidal sand banks. The banks evolve under the joint control of tide-, wave- and wind-induced shore-parallel currents, which tend to ‘stretch' them, eventually leading to bank division, and to shoaling and breaking storm waves, which tend to drive them ashore. The banks, thus, modulate the delivery of storm wave energy to the coast, redirect currents alongshore and are the sand sources for the accretion of coastal dunes. Foredune accretion occurs where major sand banks have migrated shoreward over the last centuries to be finally driven ashore and weld under the impact of storm waves. Morphological changes in the bank field can impact on shoreline stability through dissipation or enhanced shoreward transmission of storm wave energy and effects on radiation stress, particularly when waves are breaking over the banks. Where banks are close to the shore, mitigation of offshore sediment transport, especially during storms, can occur because of gradients in radiation stress generated by the complex 3D bank structure. These macro-scale mechanisms involve embedded meso-scale interactions that revolve around the mobility of sand waves, mobility of beach bars and troughs and foredune mobility, and micro-scale processes of bedform mobility in the subaqueous and intertidal domains, and of swash and aeolian beach-dune sand transport. These embedded interactions and the morphodynamic feedback loops illustrate the importance of synchroneity of sand transport from shoreface to dune on this coast. Large stretches of the foredunes show either signs of stability, or mild but chronic erosion. Furthermore, a demonstrated lack of a clear relationship occurs between storminess and coastal response over the second half of the 20th century. The present situation may be indicative of conditions

  8. Visualization and laser measurements on the flow field and sand movement on sand dunes with porous fences

    NASA Astrophysics Data System (ADS)

    Tsukahara, Takahiro; Sakamoto, Yusuke; Aoshima, Daisuke; Yamamoto, Makoto; Kawaguchi, Yasuo

    2012-04-01

    The installation of windbreak sand fences around sand dunes is one of the most promising methods to suppress windblown sand movement. In the study reported in this paper, we investigated the influence and validity of a small fence mounted on a model sand dune, in order to understand the fence's suppression mechanism on the sand movement. The flow field around the dune and the process of sand-dune erosion were measured using LDV, PIV, and laser-sheet visualization techniques. A non-porous fence was found to suppress sand movements in its upstream area, but to enhance erosion downstream of the fence. This intensive erosion was caused by separated shear flow from the leading edge of the fence. In this study, four levels of porosity rate of the fence were tested. The fence-porosity dependences of the turbulent flow field and the erosion were discussed. The shapes of eroded sand dunes were found to depend on the porosity rate. The relationship between the sand-dune erosion and the flow field around the dune was illustrated with schematic diagrams. We concluded that the most desirable fence porosity should be 30% in order to avoid dune erosion if installed at a middle height on the stoss surface of a dune. This porosity provides a mean velocity reduction with avoiding a separated flow, although the flow bleeding through the porous fence is accompanied by grid turbulence and induces serious erosion in a narrow space behind the fence. Furthermore, we confirmed that the empirical correlation of the critical friction velocity can be applied to sand movements influenced by a fence.

  9. Vegetation against dune mobility.

    PubMed

    Durán, Orencio; Herrmann, Hans J

    2006-11-01

    Vegetation is the most common and most reliable stabilizer of loose soil or sand. This ancient technique is for the first time cast into a set of equations of motion describing the competition between aeolian sand transport and vegetation growth. Our set of equations is then applied to study quantitatively the transition between barchans and parabolic dunes driven by the dimensionless fixation index theta which is the ratio between the dune characteristic erosion rate and vegetation growth velocity. We find a fixation index theta(c) below which the dunes are stabilized, characterized by scaling laws. PMID:17155579

  10. Lee slope sediment processes leading to avalanche initiation on an aeolian dune

    NASA Astrophysics Data System (ADS)

    Sutton, S. L. F.; McKenna Neuman, C.; Nickling, W.

    2013-09-01

    In order to detail the governing conditions through which a slipface matures to the point of failure, dry sand avalanches were observed in the Dune Simulation Wind Tunnel on a 1:1 replica transverse dune with a crest height of approximately 1.2 m. Areal distributions of grainfall and reptation were measured using traps. Changes in the slipface elevation were observed using 3-D laser scanning with a vertical accuracy of 0.096 mm for approximately every 1 mm2 of surface area. Grainfall decayed exponentially from the brink with a constant rate across all wind velocities. Reptation removed sediment from areas close to the brink and deposited it downslope, creating low amplitude, cross-slope ripples on the slipface. A critical length scale separating grainscale and bulk sediment behavior is identified, and it defines the lower limit to the validity of angle of repose measurements. Avalanche initiation occurred in an area of steep surface slope below a sediment bulge, with distance from the brink independent of wind velocity. The time between avalanches was found to be constant for constant wind velocity.

  11. Regional aeolian dynamics and sand mixing in the Gran Desierto - Evidence from Landsat Thematic Mapper images

    NASA Technical Reports Server (NTRS)

    Blount, Grady; Greeley, Ronald; Christensen, Phillip R.; Smith, Milton O.; Adams, John B.

    1990-01-01

    Mesoscale mapping of spatial variations in sand composition of the Gran Desierto (Sonora, Mexico) was carried out on multispectral Landsat TM images of this region, making it possible to examine the dynamic development of sand sheets and dunes. Compositions determined from remote imagery were found to agree well with samples from selected areas. The sand populations delineated were used to describe the sediment source areas, transport paths, and deposition sites. The image analysis revealed important compositional variations aver large areas that were not readily apparent in the field data.

  12. Turbulence and sediment transport over sand dunes and ripples

    NASA Astrophysics Data System (ADS)

    Bennis, A.; Le Bot, S.; lafite, R.; Bonneton, P.; Ardhuin, F.

    2013-12-01

    Several bedforms are present near to the surfzone of natural beaches. Dunes and ripples are frequently observed. Understanding the turbulence over these forms is essential for the sediment transport. The turbulent flow and the suspended sand particles interact with each other. At the moment, the modelling strategy for turbulence is still a challenge. According to the spatial scales, some different methods to model the turbulence are employed, in particular the RANS (Reynolds Averaged Navier-Stokes) and the LES (Large Eddy Simulation). A hybrid method combining both RANS and LES is set up here. We have adapted this method, initially developed for atmospheric flow, to the oceanic flow. This new method is implemented inside the 3D hydrodynamic model, MARS 3D, which is forced by waves. LES is currently the best way to simulate turbulent flow but its higher cost prevents it from being used for large scale applications. So, here we use RANS near the bottom while LES is set elsewhere. It allows us minimize the computational cost and ensure a better accuracy of the results than with a fully RANS model. In the case of megaripples, the validation step was performed with two sets of field data (Sandy Duck'97 and Forsoms'13) but also with the data from Dune2D model which uses only RANS for turbulence. The main findings are: a) the vertical profiles of the velocity are similar throughout the data b) the turbulent kinetic energy, which was underestimated by Dune2D, is in line with the observations c) the concentration of the suspended sediment is simulated with a better accuracy than with Dune2D but this remains lower than the observations.

  13. Climate-driven changes to dune activity during the Last Glacial Maximum and deglaciation in the Mu Us dune field, north-central China

    NASA Astrophysics Data System (ADS)

    Xu, Zhiwei; Lu, Huayu; Yi, Shuangwen; Vandenberghe, Jef; Mason, Joseph A.; Zhou, Yali; Wang, Xianyan

    2015-10-01

    One significant change of terrestrial landscapes in response to past climate change has been the transformation between activity and stability of extensively distributed wind-blown sand dunes. The relations between the dynamics of the aeolian landscape and its drivers are not yet completely understood, however. Evidence of aeolian sand deposition during the Last Glacial Maximum (LGM) is scarce in many mid-latitude dune fields, whereas abundant evidence exists for aeolian sand accumulation during the deglaciation, i.e. after about 15 ka. Whether this contrast actually reflects changes in dune activity is still unclear, making paleoclimatic interpretation uncertain. Comprehensive field investigation and luminescence dating in the Mu Us dune field, north-central China, demonstrates that aeolian sands deposited during the LGM are preserved as fills in periglacial sand wedges and beneath loess deposits near the downwind dune field margin. The scarcity of LGM dune sand elsewhere in the dune field is interpreted as the result of intensive aeolian activity without substantial net sand accumulation. Increasing sand accumulation after 15 ka, reflected by much more extensive preservation, signals a change in sand supply relative to sand transportation through the dune field. Reduced wind strength and other environmental changes including regional permafrost degradation after 15 ka transformed the dune field state from net erosion to net accumulation; the dunes, however, remained largely mobile as they were in the LGM. Similar diverging patterns of dune sand accumulation and preservation before and after 15 ka in many mid-latitude dune fields imply broad climatic controls linked to the changes in high-northern-latitude forcing.

  14. 75 FR 45653 - Notice of Re-Opening of Comment Period for the Draft Imperial Sand Dunes Recreation Area...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-03

    ... Bureau of Land Management Notice of Re-Opening of Comment Period for the Draft Imperial Sand Dunes... of the comment period on the Draft Imperial Sand Dunes Recreation Area Management Plan (RAMP) and... So. 4th St., El Centro, California 92243. Copies of the Draft Imperial Sand Dunes RAMP/EIS...

  15. Definition and origin of the dune-field pattern at White Sands, New Mexico

    NASA Astrophysics Data System (ADS)

    Baitis, Elke; Kocurek, Gary; Smith, Virginia; Mohrig, David; Ewing, Ryan C.; Peyret, A.-P. B.

    2014-12-01

    A LiDAR-derived digital elevation model (DEM) of a representative portion of the White Sands Dune Field, New Mexico, allows for characterization of an unprecedented range of dune-field parameters and serves as a basis for pattern analysis. Dune-field parameters were measured and statistically analyzed for populations of dunes selected at random and occurring along transects. Populations sampled by these two different methods are comparable, but highlight the sensitivity of transect placement in a dune field that has pattern heterogeneity. Based upon coefficients of variation, pattern emerges at White Sands primarily because of a strong fabric of crestline orientation, and secondarily because of the regularity of spacing between dunes of similar shape as defined by sinuosity, height and length. Linear regression of dune parameters shows that dune geometric relationships vary primarily with crestline length, but there is little correlation between other parameters, including dune spacing and height. This result highlights the sensitivity of identifying topographic heterogeneity in a LiDAR-derived DEM, given that mean ratios conform to global averages. Stripping off the dunes in Matlab shows a terraced surface, which is interpreted to represent paleo-shorelines formed during relative still stands in the overall retreat of Lake Otero. Elevated bands of higher, more closely spaced dunes occur just leeward of the paleo-shorelines. A revised model for the White Sands Dune Field consists of the basinward progradation of successive dune-field segments. Each segment is associated with a paleo-shoreline, and consists of an upwind dune ridge, represented by the elevated bands, and a leeward dune field.

  16. Petrology of dune sand derived from basalt on the Ka'u Desert, Hawaii

    NASA Technical Reports Server (NTRS)

    Gooding, J. L.

    1982-01-01

    Dune sand from the Ka'u Desert, southwest flank of Kilauea volcano, Hawaii, is moderately well-sorted (median = 1.60 Phi, deviation = 0.60, skewness = 0.25, kurtosis = 0.68) and composed mostly of frosted subangular particles of basalt glass ('unfractionated' olivine-normative tholeitte), olivine, lithic fragments (subophitic and intersertal basalts; magnetite-ilmenite-rich basalts), reticular basalt glass, magnetite, ilmenite, and plagioclase, in approximately that order of abundance. Quantitative lithological comparison of the dune sand with sand-sized ash from the Keanakakoi Formation supports suggestions that the dune sand was derived largely from Keanakakoi ash. The dune sand is too well sorted to have been emplaced in its present form by base-surge but could have evolved by post-eruption reworking of the ash.

  17. Large-eddy Simulation of Boundary Layer Flow over Desert Sand Dune Structures

    NASA Astrophysics Data System (ADS)

    Uhlrich, S.; Anderson, W.; Passalacqua, P.; Mohrig, D. C.; Kocurek, G.

    2012-12-01

    Complex spatiotemporal coupling exists between desert sand dune topography and surface layer physics of the atmospheric boundary layer (ABL). Although the interactions of individual desert sand dunes have been extensively studied, with categorical interaction mechanisms identified, the aero-mechanical coupling associated with these dune interactions remains an open problem. Large-eddy simulation (LES) is used to simulate turbulent boundary layer flow over dune structures from White Sands, NM. The dunes are resolved with an immersed boundary method (IBM). The flow-forcing (imposed pressure gradient) is varied to simulate the three common prevailing wind conditions at White Sands (southwest, southeast, and northwest, with southwest being the most common). In the present research, comparison between flow statistics (dune wall pressure distribution retrieved from the IBM) and time-difference dune elevation data are used to characterize the mechanisms responsible for erosion (stoss side) and deposition (lee side) of sand. Additionally, statistical details of time series of aerodynamic forcing at different locations on the dune face are evaluated, which may be used to deepen understanding of erosion and deposition events observed in the time-difference lidar data.

  18. Niveo-aeolian and Denivation Deposits on Mars

    NASA Astrophysics Data System (ADS)

    Bourke, M. C.

    2004-12-01

    Hydrogen abundance data from the Gamma Ray Spectrometer on board the Mars Odyssey platform indicate that large areas of the North Polar Sand Sea have high concentrations (40-60% weight) of hydrogen molecules in the surface deposits. On Earth, cold region sand dunes often contain inter-bedded sand, snow and ice. These niveo-aeolian deposits have unique morphologies and sedimentary structures that are generally not found in warm desert dunes. An atlas of dune niveo-aeolian and denivation features was compiled from published studies of polar deserts on Earth. Features occur at a range of scales and signatures are both morphologic and stratigraphic. The atlas is used to identify similar features on Mars. Examination of high resolution Mars Orbiter Camera images of the North Polar Sand Sea and Southern Crater dune fields have identified several potential signatures of niveo-aeolian and denivation processes on Mars. These include: over steepened lee slopes, cornices, rounded slipface and/or crest, protruding ice cemented beds, alluvial meltwater channels and fans and sublimation avalanches. Other smaller-scale forms probably occur but are not detectable with current resolution data. While these findings have implications for our understanding of martian dune geomorphology, mobility and the geological evolution of the sand seas, they also highlight the potential for a significant volatile reservoir and biological habitat in sand dunes on Mars.

  19. Temporal observations of a linear sand dune in the Simpson Desert, central Australia: Testing models for dune formation on planetary surfaces

    NASA Astrophysics Data System (ADS)

    Craddock, Robert A.; Tooth, Stephen; Zimbelman, James R.; Wilson, Sharon A.; Maxwell, Ted A.; Kling, Corbin

    2015-10-01

    Linear dunes are the most common dune form found on planetary surfaces, yet questions remain about their formation. Temporal observations of a linear dune located in the Simpson Desert of central Australia were made to monitor dune movement and to test competing hypotheses regarding linear dune formation. Our observations were collected on three separate occasions from 2006 to 2014. Rebar stakes were placed in a gridded pattern so that multiple measurements of sand thickness, GPS surveys, and photographs could be taken at the same locations over time. We observed widespread reworking of sand on and around the dune crest, with sand accumulation locally exceeding a meter between surveys. Overall, the height of the dune crest increased by several centimeters. We also observed fluctuations in the sand cover in the adjacent swales that often exceeded 2-3 cm between surveys, yet we did not observe any appreciable changes in the position of the dune's downwind terminus. Weather data indicate that the effective sand-transporting winds in the Simpson are widely unimodal. Net sediment flux (resultant drift direction) is toward the north-northwest, locally at an oblique angle to dune orientation. Collectively, our results suggest that the linear dune is actively maintained by vertical accretion. The implications from our observations are that linear dunes on other planetary surfaces could form in wind regimes that are widely unimodal, even where the resultant drift direction is locally oblique to dune orientation. In particular, such findings may provide support for global circulation models of Titan.

  20. The geomorphology and evolution of aeolian landforms within a river valley in a semi-humid environment: A case study from Mainling Valley, Qinghai-Tibet Plateau

    NASA Astrophysics Data System (ADS)

    Zhou, Na; Zhang, Chun-Lai; Wu, Xiao-Xu; Wang, Xun-ming; Kang, Li-qiang

    2014-11-01

    This paper systematically analyzes a valley's aeolian landforms in a semi-humid region and presents a model of its contemporary evolution. Mainling Valley of the Yarlung Zangbo River on the Qinghai-Tibet Plateau was chosen as the case study for the analysis of morphometric characteristics and the evolution sequence of aeolian landforms via field data and remote sensing images. The aeolian landforms were primarily composed of aeolian sand belts on river terraces and dunes (sheets) on hillside slopes. Three types of aeolian sand belts were identified based on their dune types. In type I belts, an erosive air stream combined with relatively high vegetation cover (10%) produced sparsely distributed parabolic dunes with a high variability of dune heights; in type II belts, the continual reworking by the erosive air stream in combination with low vegetation cover (3%) formed more densely distributed barchans and transitional dunes with a moderate variability of dune heights; and in type III belts, the gradual evolution from an erosive sand-laden air stream to a saturated sand-laden air stream in combination with low vegetation cover (2%) produced the densest crescentic dunefields but with the least variability in dune heights. Dune sizes increase, dune shapes become uniform, and dune distribution becomes close from type I to III belts. Lateral linking and merging of the dunes were also observed within the belts. Together this evidence indicates that an evolution sequence may exist. Aeolian dunefields in the belt appear to evolve from embryonic parabolic dunefields to adolescent barchan dunefields and, subsequently, to mature compound crescentic dunefields. As the aeolian sand belt evolves into the mature stage, sand accumulations at the foot of the mountain valley can be steps for sand accumulation on valley-side slopes.

  1. Sand Dunes And Large Rocks Revealed By Camera 1

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Sand dunes and large rocks are revealed in this panorama picture of Mars, the first photograph taken by Viking l's Camera 1 on July 23. The horizon is approximately 3 kilometers (2 miles) away. The left and right thirds of this picture are the same areas that were photographed on July 20 (Sol O) by Camera 2 and provide stereo coverage. The middle third reveals a part of the Martian surface not seen on the July 20 panorama. The late afternoon sun is high in the sky over the left side of the picture. The support struts of the S-band high-gain antenna extend to the top of the picture. The American flags are located on the two RTG (Radioisotope Thermoelectric Generator) wind screens. In the middle third of the picture, the rocky surface is covered by thick deposits of wind-blown material, forming numerous dunes. At the center of the picture on the horizon are two low hills which may be part of the rim of a distant crater. Two very large rocks are visible in the middleground; the nearer one is 3 meters (10 feet) in diameter and is 8 meters (25 feet) from the spacecraft. A cloud layer is visible halfway between the horizon and the top of the picture. The meteorology boom is located right of center. Behind it, the 'White Mesa' is visible, which could be seen on the far left side of the Sol O Camera 2 panorama. In the near ground are numerous rocks about 10 cm (4 inches) across, with horseshoe-shaped scour marks on their upwind side and wind tails in their lee. The fine-grained material in front of them contains small pits formed by impact of material kicked out by the Lander spacecraft's rocket engines.

  2. Monitoring and analysis of sand dune movement and growth on the Navajo Nation, southwestern United States

    USGS Publications Warehouse

    Redsteer, Margaret Hiza; Bogle, Rian C.; Vogel, John M.

    2011-01-01

    Recurring drought and rising temperatures have caused reactivation and renewed growth of sand dunes on the lands of the Navajo Nation on the Colorado Plateau. Migrating dunes threaten health, housing, and transportation pathways. U.S. Geological Survey (USGS) scientists are conducting research to better understand the processes of dune growth and movement. This research will provide critical data to the Native peoples of the region in their response to the changing environment.

  3. Mapping Winds over Martian Sand Dunes from Ripples and Digital Terrain Models

    NASA Astrophysics Data System (ADS)

    Johnson, M. B.; Zimbelman, J. R.

    2015-05-01

    Sand dunes preserve wind flow patterns in their ripple formations. DTMs can be used with wind modeling software to simulate wind speed and direction over these dunes. Results can be compared and together offer a more complete picture of recent wind.

  4. Gully annealing by fluvially-sourced Aeolian sand: remote sensing investigations of connectivity along the Fluvial-Aeolian-hillslope continuum on the Colorado River

    USGS Publications Warehouse

    Sankey, Joel B.; East, Amy E.; Collins, Brian D.; Caster, Joshua

    2015-01-01

    Processes contributing to development of ephemeral gully channels are of great importance to landscapes worldwide, and particularly in dryland regions where soil loss and land degradation from gully erosion pose long-term, land-management problems. Whereas gully formation has been relatively well studied, much less is known of the processes that anneal gullies and impede their growth. This work investigates gully annealing by aeolian sediment, along the Colorado River downstream of Glen Canyon Dam in Glen, Marble, and Grand Canyons, Arizona, USA (Figure 1). In this segment of the Colorado River, gully erosion potentially affects the stability and preservation of archaeological sites that are located within valley margins. Gully erosion occurs as a function of ephemeral, rainfall-induced overland flow associated with intense episodes of seasonal precipitation. Measurements of sediment transport and topographic change have demonstrated that fluvial sand in some locations is transported inland and upslope by aeolian processes to areas affected by gully erosion, and aeolian sediment activity can be locally effective at counteracting gully erosion (Draut, 2012; Collins and others, 2009, 2012; Sankey and Draut, 2014). The degree to which specific locations are affected by upslope wind redistribution of sand from active channel sandbars to higher elevation valley margins is termed “connectivity”. Connectivity is controlled spatially throughout the river by (1) the presence of upwind sources of fluvial sand within the contemporary active river channel (e.g., sandbars), and (2) bio-physical barriers that include vegetation and topography that might impede aeolian sediment transport. The primary hypothesis of this work is that high degrees of connectivity lead to less gullying potential.

  5. Meso-scale aeolian transport of beach sediment via dune blowout pathways within a linear foredune

    NASA Astrophysics Data System (ADS)

    O'Keeffe, Nicholas; Delgado-Fernandez, Irene; Jackson, Derek; Aplin, Paul; Marston, Christopher

    2016-04-01

    The evolution of coastal foredunes is largely controlled by sediment exchanges between the geomorphic sub-units of the nearshore, beach, foredune and dune field. Although blowouts are widely recognised as efficient sediment transport pathways, both event-scale and meso-scale quantification of their utility in transferring beach sediments landwards is limited. Foredunes characterised by multiple blowouts may be more susceptible to coastline retreat through the enhanced landwards transport of beach or foredune sediments. To date, a key constraint for investigations of such scenarios has been the absence of accurate blowout sediment transport records. Here we use the Sefton coast in north-west England as a study area where an unprecedented temporal coverage of LIDAR data is available between 1999 and 2015. Additionally, an extensive set of aerial photography also exists, dating back to 1945 allowing comparison of blowout frequency and magnitude together with the alongshore limits of coastline retreat. Digital terrain models are derived for each year that LIDAR data is available. Informed by LIDAR based topography and areas of bare sand (aerial photos) terrain models have been created containing individual blowouts. Differentials in 'z' values between each terrain model of each available year has identified topographic change and total levels of transport. Preliminary results have confirmed the importance of blowouts in transporting beach or foredune sediment landwards and thus potentially promoting coastline retreat. Repetition of processes across a larger number of blowout topographies will allow better identification of individual blowouts for 'event' scale field investigations to examine spatial and temporal variability of beach sediment transport via blowouts routes.

  6. The cumulative effects of using fine particles and cyanobacteria for rehabilitation of disturbed active sand dunes

    NASA Astrophysics Data System (ADS)

    Zaady, Eli; Katra, Itzhak; Barkai, Daniel; Knoll, Yaakov; Sarig, Shlomo

    2016-04-01

    One of the main problems in desertified lands worldwide is active wind-borne sand dunes, which lead to covering of fertile soils and agricultural fields. In regions with more than 100 mm of annual rainfall, sand dunes may be naturally stabilized by biocrusts (biological soil crusts). One of the main restraints of biocrust development is the typical lack of fine particles in sand dunes. Our study investigated the combined application of fine particles [coal fly-ash <100 micrometer] and bio-inoculant of filamentous cyanobacteria, isolated from nearby natural stabilized sand dunes, on the soil surface of active sands for increasing resistance to wind erosion. Boundary-layer wind tunnel experiments were conducted in experimental plots within a greenhouse for examining the effects of adding coal fly-ash and bio-inoculant to active sands. The biocrust development was evaluated via several physical and bio-physiological variables. In all the physical measurements and the bio-physiological variables, the treatment of "sand+inoculum+coal fly-ash" showed significant differences from the "sand-control". The combination led to the best results of surface stabilization in boundary-layer wind tunnel experiments, with the lowest sand fluxes. The filamentous cyanobacteria use the fine particles of the coal fly-ash as bridges for growing toward and adhering to the large sand particles. The cumulative effects of biocrusts and coal fly-ash enhance soil surface stabilization and may allow long-term sustainability.

  7. Plant functional traits and diversity in sand dune ecosystems across different biogeographic regions

    NASA Astrophysics Data System (ADS)

    Mahdavi, P.; Bergmeier, E.

    2016-07-01

    Plant species of a functional group respond similarly to environmental pressures and may be expected to act similarly on ecosystem processes and habitat properties. However, feasibility and applicability of functional groups in ecosystems across very different climatic regions have not yet been studied. In our approach we specified the functional groups in sand dune ecosystems of the Mediterranean, Hyrcanian and Irano-Turanian phytogeographic regions. We examined whether functional groups are more influenced by region or rather by habitat characteristics, and identified trait syndromes associated with common habitat types in sand dunes (mobile dunes, stabilized dunes, salt marshes, semi-wet sands, disturbed habitats). A database of 14 traits, 309 species and 314 relevés was examined and trait-species, trait-plot and species-plot matrices were built. Cluster analysis revealed similar plant functional groups in sand dune ecosystems across regions of very different species composition and climate. Specifically, our study showed that plant traits in sand dune ecosystems are grouped reflecting habitat affiliation rather than region and species pool. Environmental factors and constraints such as sand mobility, soil salinity, water availability, nutrient status and disturbance are more important for the occurrence and distribution of plant functional groups than regional belonging. Each habitat is shown to be equipped with specific functional groups and can be described by specific sets of traits. In restoration ecology the completeness of functional groups and traits in a site may serve as a guideline for maintaining or restoring the habitat.

  8. Solitary wave behavior in sand dunes observed from space

    NASA Astrophysics Data System (ADS)

    Vermeesch, P.

    2011-11-01

    Although the dynamics of individual barchan dunes are well understood, their interactions are the subject of ongoing scientific interest and debate. Numerical and analog model predictions of shape-preserving binary dune collisions have been hard to test due to the long timescales over which such processes typically occur. This paper documents ten binary dune collisions in a 45-year time sequence of satellite images from the Bodélé Depression in Chad. The observations confirm that when two barchan dunes collide, a transfer of mass occurs so that one dune appears to travel through the other unscathed, like a solitary wave.

  9. Aeolian Sediment Transport Pathways and Aerodynamics at Troughs on Mars

    NASA Technical Reports Server (NTRS)

    Bourke, Mary C.; Bullard, Joanna E.; Barnouin-Jha, Olivier S.

    2004-01-01

    Interaction between wind regimes and topography can give rise to complex suites of aeolian landforms. This paper considers aeolian sediment associated wit11 troughs on Mars and identifies a wider range of deposit types than has previously been documented. These include wind streaks, falling dunes, "lateral" dunes, barchan dunes, linear dunes, transverse ridges, sand ramps, climbing dunes, sand streamers, and sand patches. The sediment incorporated into these deposits is supplied by wind streaks and ambient Planitia sources as well as originating within the trough itself, notably from the trough walls and floor. There is also transmission of sediment between dneTsh. e flow dynamics which account for the distribution of aeolian sediment have been modeled using two-dimensional computational fluid dynamics. The model predicts flow separation on the upwind side of the trough followed by reattachment and acceleration at the downwind margin. The inferred patterns of sediment transport compare well with the distribution of aeolian forms. Model data indicate an increase of wind velocity by approx. 30 % at the downwind trough margin. This suggests that the threshold wind speed necessary for sand mobilization on Mars will be more freqentmlye t in these inclined locations.

  10. The interaction of unidirectional winds with an isolated barchan sand dune

    NASA Technical Reports Server (NTRS)

    Gad-El-hak, M.; Pierce, D.; Howard, A.; Morton, J. B.

    1976-01-01

    Velocity profile measurements are determined on and around a barchan dune model inserted in the roughness layer on the tunnel floor. A theoretical investigation is made into the factors influencing the rate of sand flow around the dune. Flow visualization techniques are employed in the mapping of streamlines of flow on the dune's surface. Maps of erosion and deposition of sand are constructed for the barchan model, utilizing both flow visualization techniques and friction velocities calculated from the measured velocity profiles. The sediment budget found experimentally for the model is compared to predicted and observed results reported. The comparison shows fairly good agreement between the experimentally determined and predicted sediment budgets.

  11. 2010 weather and aeolian sand-transport data from the Colorado River corridor, Grand Canyon, Arizona

    USGS Publications Warehouse

    Dealy, Timothy P.; East, Amy E.; Fairley, Helen C.

    2014-01-01

    Measurements of weather parameters and aeolian sand transport were made in 2010 near selected archeological sites in the Colorado River corridor through Grand Canyon, Arizona. Data collected in 2010 indicate event- and seasonal-scale variations in rainfall, wind, temperature, humidity, and barometric pressure. Differences in weather patterns between 2009 and 2010 included a slightly later spring windy season, greater spring precipitation and annual rainfall totals, and a later onset and length of the reduced diurnal barometric-pressure fluctuations commonly associated with summer monsoon conditions. The increase in spring precipitation was consistent with the 2010 spring El Niño conditions compared to the 2009 spring La Niña conditions, whereas the subsequent transition to an El Niño-Southern Oscillation neutral phase appeared to delay the reduction in diurnal barometric fluctuations.

  12. Boundary Conditions and the Aeolian Sediment State of the Olympia Undae Dune Field, Mars

    NASA Astrophysics Data System (ADS)

    Middlebrook, W.; Ewing, R. C.; Ayoub, F.; Bridges, N. T.; Smith, I.; Spiga, A.

    2015-05-01

    We evaluate the boundary conditions in Olympia Undae. We map two and three dimensional dune parameters from two locations proximal and distal to Planum Boreum and constrain sediment fluxes. We compare our results with a mesoscale atmospheric model.

  13. A comparison of seed banks across a sand dune successional gradient at Lake Michigan dunes (Indiana, USA)

    USGS Publications Warehouse

    Leicht-Young, S. A.; Pavlovic, N.B.; Grundel, R.; Frohnapple, K.J.

    2009-01-01

    In habitats where disturbance is frequent, seed banks are important for the regeneration of vegetation. Sand dune systems are dynamic habitats in which sand movement provides intermittent disturbance. As succession proceeds from bare sand to forest, the disturbance decreases. At Indiana Dunes National Lakeshore, we examined the seed banks of three habitat types across a successional gradient: foredunes, secondary dunes, and oak savanna. There were differences among the types of species that germinated from each of the habitats. The mean seed bank density increased across the successional gradient by habitat, from 376 to 433 to 968 seeds m-2, but with foredune and secondary dune seed bank densities being significantly lower than the savanna seed bank density. The number of seeds germinated was significantly correlated with soil organic carbon, demonstrating for this primary successional sequence that seed density increases with stage and age. The seed bank had much lower species richness than that of the aboveground vegetation across all habitats. Among sites within a habitat type, the similarity of species germinated from the seed banks was very low, illustrating the variability of the seed bank even in similar habitat types. These results suggest that restoration of these habitats cannot rely on seed banks alone. ?? 2008 Springer Science+Business Media B.V.

  14. Determining soil moisture and sediment availability at White Sands Dune Field, New Mexico, from apparent thermal inertia data

    NASA Astrophysics Data System (ADS)

    Scheidt, Stephen; Ramsey, Michael; Lancaster, Nicholas

    2010-06-01

    Determinations of soil moisture and sediment availability in arid regions are important indicators of local climate variability and the potential for future dust storm events. Data from the Advanced Spaceborne Thermal Emission and Reflection (ASTER) radiometer were used to derive the relationships among potential soil erosion, soil moisture, and thermal inertia (TI) at the spatial scale of aeolian landforms for the White Sands Dune Field between May 2000 and March 2008. Land surface apparent thermal inertia (ATI) data were used to derive an approximation of actual TI in order to estimate the wind threshold velocity ratio (WTR). The WTR is a ratio of the wind velocity thresholds at which soil erosion occurs for wet soil versus dry soil. The ASTER-derived soil moisture retrievals and the changes through time at White Sands were interpreted to be driven primarily by precipitation, but the presence of a perched groundwater table may also influence certain areas. The sediment availability of dunes, active playa surfaces and the margin of the alluvial fans to the west were determined to be consistently higher than the surrounding area. The sediment availability can be primarily explained by precipitation events and the number of dry days prior to the data acquisition. Other factors such as vegetation and the amount of surface crusting may also influence soil mobility, but these were not measured in the field. This approach showed the highest modeled sediment availability values just days prior to the largest dust emission event at White Sands in decades. Such an approach could be extended to a global monitoring technique for arid land systems that are prone to dust storms and for other regional land surface studies in the Sahara.

  15. Dune-dammed lakes of the Nebraska Sand Hills: Geologic setting and paleoclimatic implications

    SciTech Connect

    Loope, D.B.; Swinehart, J.B. )

    1992-01-01

    Within the western half of this grass-stabilized dunefield, about 1,000 interdune lakes are grouped into two clusters here named the Blue and Birdwood lake basins. In the lake basins, those parts of the valley not filled by dune sand are occupied by modern lakes and Holocene lake sediments. The Blue Creek dam is mounded transverse to flow; spill-over of the lake basin takes place over bedrock on the east side of the dam when lake level is 2 m higher than present. The permeability of dune sand prevents massive overflow, and thereby contributes to the integrity and longevity of the dam. Preserved lake sediments in the basin indicate that Blue Creek was obstructed prior to 13,000 yr BP, probably during glacial maximum (18,000 yr BP). Extensive peats dated at 1,500-1,000 yr BP lie directly on fluvial sand and gravel along the Calamus River, a stream that presently discharges a nearly constant 350 cfs. These sediments indicate blockage of streams also took place when linear dunes were active in the eastern Sand Hills in Late Holocene time. With the onset of an arid episode, dunes forming an interfluves curtail the severity of runoff events. As the regional water table drops, drainages go dry and dunes move uncontested into blocking positions. Although drainages of the eastern Sand Hills appear to have repeatedly broken through sand-blocked channels, the Blue and Birdwood lake basins are still blocked by Late Pleistocene dune dams. The repeated episodes of stream blockage and interbedded lake sediments and dune sands behind the extant dams record several strong fluctuations in Holocene climate. Recently proposed climatic models indicate that the northward flow of warm, moist air from the Gulf of Mexico is enhanced when the Gulf's surface temperature is low and the Bermuda high is intensified and in a western position. When the Bermuda high moves eastward, the core of the North American continent becomes desiccated.

  16. Bed load and suspended load contributions to migrating sand dunes in equilibrium

    NASA Astrophysics Data System (ADS)

    Naqshband, S.; Ribberink, J. S.; Hurther, D.; Hulscher, S. J. M. H.

    2014-05-01

    Dunes dominate the bed of sand rivers and are of central importance in predicting flow roughness and water levels. The present study has focused on the details of flow and sediment dynamics along migrating sand dunes in equilibrium. Using a recently developed acoustic system (Acoustic Concentration and Velocity Profiler), new insights are obtained in the behavior of the bed and the suspended load transport along mobile dunes. Our data have illustrated that, due to the presence of a dense sediment layer close to the bed and migrating secondary bedforms over the stoss side of the dune toward the dune crest, the near-bed flow and sediment processes are significantly different from the near-bed flow and sediment dynamics measured over fixed dunes. It was observed that the shape of the total sediment transport distribution along dunes is mainly dominated by the bed load transport, although the bed load and the suspended load transport are of the same order of magnitude. This means that it was especially the bed load transport that is responsible for the continuous erosion and deposition of sediment along the migrating dunes. Whereas the bed load is entirely captured in the dune with zero transport at the flow reattachment point, a significant part of the suspended load is advected to the downstream dune depending on the flow conditions. For the two flow conditions measured, the bypass fraction was about 10% for flow with a Froude number (Fr) of 0.41 and 27% for flow with Froude number of 0.51. This means that respectively 90% (for the Fr = 0.41 flow) and 73% (for the Fr = 0.51 flow) of the total sediment load that arrived at the dune crests contributed to the migration of the dunes.

  17. Postdam evolution of aeolian landscapes in the Colorado River corridor through Grand Canyon National Park, Arizona, USA

    NASA Astrophysics Data System (ADS)

    Draut, A. E.; Collins, B. D.; Fairley, H. C.; Rubin, D. M.

    2009-12-01

    Sediment deposits within the Colorado River corridor in Grand Canyon, USA, include fluvial sandbars and aeolian dune fields; fluvial deposits are the primary sediment source for the dune fields. We present a conceptual model describing evolution of aeolian landscapes in Grand Canyon, based upon field measurements of wind and sand transport and on surveys of vegetation and substrate properties. The data indicate that Glen Canyon Dam operations can affect geomorphic evolution above the elevation reached by river flows because of the link between fluvial deposition and aeolian transport of sediment. Evolution of aeolian landscapes, in turn, can affect the stability and preservation of archaeological material that occurs in numerous dune fields. Before closure of Glen Canyon Dam on the Colorado River in 1963, sediment-rich floods (mean annual flood 2400 m3/s) formed sandbars from which wind moved sand inland to form aeolian dunes. After dam operations reduced the amplitude and frequency of high flows, and eliminated the mainstream fluvial sediment supply, fluvial sandbars lost open sand area owing to erosion by river flows and the spread of riparian vegetation. Two types of aeolian landscapes now occur: (1) modern fluvial sourced, those downwind of postdam sandbars; and (2) relict fluvial sourced, which are not downwind of postdam sandbars and whose primary sediment source was deposits from predam floods that were larger than any postdam flows have been. Sediment supply has been reduced to type (1) dune fields because postdam sandbars are smaller than in the predam era; new sediment supply to type (2) dune fields has been essentially eliminated. Decreased aeolian sediment supply leads to increased vegetation and biologic soil crust in dune fields, and can result in greater susceptibility to gully formation during rainfall due to lack of infilling aeolian sand. Modern-fluvial-sourced dunes can receive new windblown sand from sandbars formed by controlled

  18. Oceanobacillus chungangensis sp. nov., isolated from a sand dune.

    PubMed

    Lee, Dong Chae; Kang, Hyeonji; Weerawongwiwat, Veeraya; Kim, Beomjoon; Choi, Young-Wan; Kim, Wonyong

    2013-10-01

    A Gram-stain-positive, spore-forming, rod-shaped, motile, strictly aerobic bacterial strain, designated CAU 1051(T), was isolated from a sand dune and its taxonomic position was investigated using a polyphasic approach. Strain CAU 1051(T) grew optimally at pH 5.0 and 30 °C. NaCl was not required for growth but up to 10.0 % (w/v) NaCl was tolerated. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain CAU 1051(T) formed a distinct lineage within the genus Oceanobacillus and was most closely related to Oceanobacillus profundus CL-MP28(T), Oceanobacillus caeni S-11(T), and Oceanobacillus picturae LMG 19492(T) (96.8 %, 95.6 % and 95.3 % similarity, respectively). DNA-DNA reassociation analysis showed that strain CAU 1051(T) displayed 28.2±0.7 % relatedness to O. profundus KCTC 13625(T). Strain CAU 1051(T) contained MK-7 as the only isoprenoid quinone and anteiso-C15 : 0 as the major fatty acid. The cell wall peptidoglycan of strain CAU 1051(T) contained meso-diaminopimelic acid. The polar lipids were composed of diphosphatidylglycerol, phosphatidylglycerol, six unidentified phospholipids, an unidentified glycolipid, and six unidentified polar lipids. The major whole-cell sugars were glucose and ribose. The DNA G+C content was 36.3 mol%. On the basis of phenotypic data and phylogenetic inference, strain CAU 1051(T) represents a novel species of the genus Oceanobacillus for which the name Oceanobacillus chungangensis sp. nov. is proposed. The type strain is CAU 1051(T) ( = KCTC 33035(T) = CCUG 63270(T)). PMID:23625258

  19. Eolian Dune, interdune, sand sheet, and Siliciclastic Sabkha sediments of an offshore prograding Sand Sea, Dhahran Area, Saudi Arabia

    SciTech Connect

    Fryberger, S.G.; Al-Sari, A.M.; Clisham, T.J.

    1983-02-01

    An offshore prograding sand sea exists along portions of the Arabian Gulf coastline near Dhahran, Saudi Arabia. In this region, sediments of eolian dune, interdune, sand sheet, and siliciclastic sabkha intercalate with marine deposits. This depositional setting is characterized by strong offshore winds which supply abundant sand to the coastline, and cause at present time the outbuilding of the dune system. This quartz-detrital dominant setting contrasts markedly with the carbonate dominant setting resulting from onshore winds in the Trucial Coast area to the south. The broad intercalation of eolian and marine deposits which results creates ideal potential for subregional stratigraphic petroleum traps, due to pinch-out of porous and permeable dune sands into impermeable marine mudstones. Within the eolian system itself are potential reservoir rocks, sources, (organic-rich sabkha and interdune deposits), and seals (zones of early cementation in all deposits). Early cementation is very common in all facies of the eolian sand sea. The early cementation occurs owing to (1) soil formation, (2) deposition of pore-filling gypsiferous cements from saturated solutions near water table, and (3) addition of sand-size windblown evaporitic material to sands downwind of sabkhas.

  20. Mesophilic Actinomycetes in the natural and reconstructed sand dune vegetation zones of Fraser Island, Australia.

    PubMed

    Kurtböke, D I; Neller, R J; Bellgard, S E

    2007-08-01

    The natural coastal habitat of Fraser Island located in the State of Queensland, Australia, has been disturbed in the past for mining of the mineral sand ilmenite. Currently, there is no information available on whether these past mining disturbances have affected the distribution, diversity, and survival of beneficial soil microorganisms in the sand dunes of the island. This in turn could deleteriously affect the success of the natural regeneration, plant growth, and establishment on the sand dunes. To support ongoing restoration efforts at sites like these mesophilic actinomycetes were isolated using conventional techniques, with particular emphasis on the taxa previously reported to produce plant-growth-promoting substances and providing support to mycorrhizal fungi, were studied at disturbed sites and compared with natural sites. In the natural sites, foredunes contained higher densities of micromonosporae replaced by increasing numbers of streptomycete species in the successional dune and finally leading to complex actinomycete communities in the mature hind dunes. Whereas in the disturbed zones affected by previous mining activities, which are currently being rehabilitated, no culturable actinomycete communities were detected. These findings suggest that the paucity of beneficial microflora in the rehabilitated sand dunes may be limiting the successful colonization by pioneer plant species. Failure to establish a cover of plant species would result in the mature hind dune plants being exposed to harsh salt and climatic conditions. This could exacerbate the incidence of wind erosion, resulting in the destabilization of well-defined and vegetated successional dunal zones. PMID:17578635

  1. Multifrequency and multipolarization radar scatterometry of sand dunes and comparison with spaceborne and airborne radar images

    NASA Technical Reports Server (NTRS)

    Blom, Ronald; Elachi, Charles

    1987-01-01

    Airborne radar scatterometer data on sand dunes, acquired at multiple frequencies and polarizations, are reported. Radar backscatter from sand dunes is very sensitive to the imaging geometry. At small incidence angles the radar return is mainly due to quasi-specular reflection from dune slopes favorably oriented toward the radar. A peak return usually occurs at the incidence angle equal to the angle of repose for the dunes. The peak angle is the same at all frequencies as computed from specular reflection theory. At larger angles the return is significantly weaker. The scatterometer measurements verified observations made with airborne and spaceborne radar images acquired over a number of dune fields in the U.S., central Africa, and the Arabian peninsula. The imaging geometry constraints indicate that possible dunes on other planets, such as Venus, will probably not be detected in radar images unless the incidence angle is less than the angles of repose of such dunes and the radar look direction is approximately orthogonal to the dune trends.

  2. Radionuclide transfer to invertebrates and small mammals in a coastal sand dune ecosystem.

    PubMed

    Wood, M D; Leah, R T; Jones, S R; Copplestone, D

    2009-06-15

    International intercomparisons of models to assess the impact of ionising radiation on wildlife have identified radionuclide transfer assumptions as a significant source of uncertainty in the modelling process. There is a need to improve the underpinning data sets on radionuclide transfer to reduce this uncertainty, especially for poorly-studied ecosystems such as coastal sand dunes. This paper presents the results of the first published study of radionuclide transfer to invertebrates and small mammals in a coastal sand dune ecosystem. Activity concentrations of (137)Cs, (238)Pu, (239+240)Pu and (241)Am are reported for detritivorous, herbivorous, carnivorous and omnivorous biota. Differences in activity concentrations measured in the sand dune biota are related to the trophic level of the organisms and the influence of sea-to-land transfer is apparent in the food chain transfer observed at the site. There are notable differences in the concentration ratios (CRs) calculated for the sand dune biota compared to other terrestrial ecosystems, especially for the small mammals which have CRs that are two orders of magnitude lower than the generic terrestrial ecosystem CRs published by the recent EC EURATOM ERICA project. The lower CRs at the sand dunes may be due to the influence of other cations from the marine environment (e.g. K and Na) on the net radionuclide transfer observed, but further research is required to test this hypothesis. PMID:19345398

  3. Sand dune patterns on Titan controlled by long-term climate cycles

    NASA Astrophysics Data System (ADS)

    Ewing, Ryan C.; Hayes, Alex G.; Lucas, Antoine

    2015-01-01

    Linear sand dunes cover the equatorial latitudes of Saturn's moon Titan and are shaped by global wind patterns. These dunes are thought to reflect present-day diurnal, tidal and seasonal winds, but climate models have failed to reproduce observed dune morphologies with these wind patterns. Dunes diagnostic of a specific wind or formative timescale have remained elusive. Here we analyse radar imagery from NASA's Cassini spacecraft and identify barchan, star and reoriented dunes in sediment-limited regions of Titan's equatorial dune fields that diverge by 23° on average from the orientation of linear dunes. These morphologies imply shifts in wind direction and sediment availability. Using a numerical model, we estimate that the observed reorientation of dune crests to a change in wind direction would have taken around 3,000 Saturn years (1 Saturn year ~ 29.4 Earth years) or longer--a timescale that exceeds diurnal, seasonal or tidal cycles. We propose that shifts in winds and sediment availability are the product of long-term climate cycles associated with variations in Saturn's orbit. Orbitally controlled landscape evolution--also proposed to explain the distribution of Titan's polar lakes--implies a dune-forming climate on equatorial Titan that is analogous to Earth.

  4. Effects of Sand Dune Stabilization on the Spatial Pattern of Artemisia ordosica Population in Mu Us Desert, Northwest China.

    PubMed

    Zhang, Jiachen; Zhang, Yuqing; Fan, Dongqing; Qin, Shugao; Jia, Xin; Wu, Bin; Chen, Dong; Gao, Hao; Zhu, Linfeng

    2015-01-01

    Vegetation patterns are strongly influenced by sand mobility in desert ecosystems. However, little is known about the spatial patterns of Artemisia ordosica, a dominant shrub in the Mu Us desert of Northwest China, in relation to sand fixation. The aim of this study was to investigate and contrast the effects of sand dune stabilization on the population and spatial distribution of this desert shrub. Spatial autocorrelation, semi-variance analysis, and point-pattern analysis were used jointly in this study to investigate the spatial patterns of A. ordosica populations on dunes in Yanchi County of Ningxia, China. The results showed that the spatial autocorrelation and spatial heterogeneity declined gradually, and the distance between the clustered individuals shortened following sand dune fixation. Seedlings were more aggregated than adults in all stage of dune stabilization, and both were more aggregated on shifting sand dunes separately. Spatial associations of the seedlings with the adults were mostly positive at distances of 0-5 m in shifting sand dunes, and the spatial association changed from positive to neutral in semi-fixed sand dunes. The seedlings were spaced in an almost random pattern around the adults, and their distances from the adults did not seem to affect their locations in semi-fixed sand dunes. Furthermore, spatial associations of the seedlings with the adults were negative in the fixed sand dune. These findings demonstrate that sand stabilization is an important factor affecting the spatial patterns of A. ordosica populations in the Mu Us desert. These findings suggest that, strong association between individuals may be the mechanism to explain the spatial pattern formation at preliminary stage of dune fixation. Sand dune stabilization can change the spatial pattern of shrub population by weakening the spatial association between native shrub individuals, which may affect the development direction of desert shrubs. PMID:26102584

  5. Effects of Sand Dune Stabilization on the Spatial Pattern of Artemisia ordosica Population in Mu Us Desert, Northwest China

    PubMed Central

    Zhang, Jiachen; Zhang, Yuqing; Fan, Dongqing; Qin, Shugao; Jia, Xin; Wu, Bin; Chen, Dong; Gao, Hao; Zhu, Linfeng

    2015-01-01

    Vegetation patterns are strongly influenced by sand mobility in desert ecosystems. However, little is known about the spatial patterns of Artemisia ordosica, a dominant shrub in the Mu Us desert of Northwest China, in relation to sand fixation. The aim of this study was to investigate and contrast the effects of sand dune stabilization on the population and spatial distribution of this desert shrub. Spatial autocorrelation, semi-variance analysis, and point-pattern analysis were used jointly in this study to investigate the spatial patterns of A. ordosica populations on dunes in Yanchi County of Ningxia, China. The results showed that the spatial autocorrelation and spatial heterogeneity declined gradually, and the distance between the clustered individuals shortened following sand dune fixation. Seedlings were more aggregated than adults in all stage of dune stabilization, and both were more aggregated on shifting sand dunes separately. Spatial associations of the seedlings with the adults were mostly positive at distances of 0–5 m in shifting sand dunes, and the spatial association changed from positive to neutral in semi-fixed sand dunes. The seedlings were spaced in an almost random pattern around the adults, and their distances from the adults did not seem to affect their locations in semi-fixed sand dunes. Furthermore, spatial associations of the seedlings with the adults were negative in the fixed sand dune. These findings demonstrate that sand stabilization is an important factor affecting the spatial patterns of A. ordosica populations in the Mu Us desert. These findings suggest that, strong association between individuals may be the mechanism to explain the spatial pattern formation at preliminary stage of dune fixation. Sand dune stabilization can change the spatial pattern of shrub population by weakening the spatial association between native shrub individuals, which may affect the development direction of desert shrubs. PMID:26102584

  6. Nourishment of perched sand dunes and the issue of erosion control in the Great Lakes

    NASA Astrophysics Data System (ADS)

    Marsh, William M.

    1990-09-01

    Although limited in coverage, perched sand dunes situated on high coastal bluffs are considered the most prized of Great Lakes dunes. Grand Sable Dunes on Lake Superior and Sleeping Bear Dunes on Lake Michigan are featured attractions of national lakeshores under National Park Service management. The source of sand for perched dunes is the high bluff along their lakeward edge. As onshore wind crosses the bluff, flow is accelerated upslope, resulting in greatly elevated levels of wind stress over the slope brow. On barren, sandy bluffs, wind erosion is concentrated in the brow zone, and for the Grand Sable Bluff, it averaged 1 m3/yr per linear meter along the highest sections for the period 1973 1983. This mechanism accounts for about 6,500 m3 of sand nourishment to the dunefield annually and clearly has been the predominant mechanism for the long-term development of the dunefield. However, wind erosion and dune nourishment are possible only where the bluff is denuded of plant cover by mass movements and related processes induced by wave erosion. In the Great Lakes, wave erosion and bluff retreat vary with lake levels; the nourishment of perched dunes is favored by high levels. Lake levels have been relatively high for the past 50 years, and shore erosion has become a major environmental issue leading property owners and politicians to support lake-level regulation. Trimming high water levels could reduce geomorphic activity on high bluffs and affect dune nourishment rates. Locally, nourishment also may be influenced by sediment accumulation associated with harbor protection facilities and by planting programs aimed at stabilizing dunes.

  7. An eco-spatial index for evaluating stabilization state of sand dunes

    NASA Astrophysics Data System (ADS)

    Rubinstein, Yehonathan; Groner, Elli; Yizhaq, Hezi; Svoray, Tal; Bar (Kutiel), Pua

    2013-06-01

    Geomorphologies tend to categorize dunes into three major states (mobile, semi-stabilized and stabilized) based on their shape and mobility rate. However, the ecologists try to find bio-indicators that can characterize the mobility rate and the ecological features of the various dune states. Unfortunately, there are limited numbers of significant bio-indicators, if any. The aim of our study was to develop a Dune Assemblage Index (DAI) in order to indicate the affinity of annual plants and arthropods assemblages to dune mobility. The DAI values range between 0 for stabilized dunes and 1 for bare and active dunes. The index was calculated for 10 coastal dunes in Nizzanim nature reserve, located at the southern part of the Israeli Mediterranean coast, from data that were collected in the years 2006 and 2007. Generally, the lower the vegetation cover is, the higher are DAI values for both taxon groups. Generalist species tend to mask the differences between active and stabilized dunes whereas psammophiles (sand-dwelling species) tend to increase the DAI values. Additionally, the DAI may differ among dunes with the same perennial coverage due to differences in the spatial plant distribution patterns. Likewise, the DAI depends also on the distance of the dunes from rural areas, which encourage invasion of generalist species, thus decreases the DAI value. This new defined spatial index that relies on plant and animal assemblages, rather than on individual bio-indicators, can be adapted to any taxon and dune ecosystems. The use of several taxons may support better understanding of the ecosystem state of the dune.

  8. Digital data from the Great Sand Dunes airborne gravity gradient survey, south-central Colorado

    USGS Publications Warehouse

    Drenth, B.J.; Abraham, J.D.; Grauch, V.J.S.; Labson, V.F.; Hodges, G.

    2013-01-01

    This report contains digital data and supporting explanatory files describing data types, data formats, and survey procedures for a high-resolution airborne gravity gradient (AGG) survey at Great Sand Dunes National Park, Alamosa and Saguache Counties, south-central Colorado. In the San Luis Valley, the Great Sand Dunes survey covers a large part of Great Sand Dunes National Park and Preserve. The data described were collected from a high-resolution AGG survey flown in February 2012, by Fugro Airborne Surveys Corp., on contract to the U.S. Geological Survey. Scientific objectives of the AGG survey are to investigate the subsurface structural framework that may influence groundwater hydrology and seismic hazards, and to investigate AGG methods and resolution using different flight specifications. Funding was provided by an airborne geophysics training program of the U.S. Department of Defense's Task Force for Business & Stability Operations.

  9. Mycorrhizal fungal communities in coastal sand dunes and heaths investigated by pyrosequencing analyses.

    PubMed

    Botnen, Synnøve; Kauserud, Håvard; Carlsen, Tor; Blaalid, Rakel; Høiland, Klaus

    2015-08-01

    Maritime sand dunes and coastal ericaceous heaths are unstable and dynamic habitats for mycorrhizal fungi. Creeping willow (Salix repens) is an important host plant in these habitats in parts of Europe. In this study, we wanted to assess which mycorrhizal fungi are associated with S. repens in four different coastal vegetation types in Southern Norway, three types from sand dunes and one from heaths. Moreover, we investigated which ecological factors are important for the fungal community structure in these vegetation types. Mycorrhizal fungi on S. repens root samples were identified by 454 pyrosequencing of tag-encoded internal transcribed spacer 1 (ITS1) amplicons. Significantly higher fungal richness was observed in hummock dunes and dune slacks compared to eroded dune vegetation. The compositional variation was mainly accounted for by location (plot) and vegetation type and was significantly correlated to content of carbon, nitrogen and phosphorus in soil. The investigated maritime sand dunes and coastal ericaceous heaths hosted mycorrhizal taxa mainly associated with Helotiales, Sebacinales, Thelephorales and Agaricales. PMID:25597300

  10. [Nutrient contents and microbial populations of aeolian sandy soil in Sanjiangyuan region of Qinghai Province].

    PubMed

    Lin, Chao-feng; Chen, Zhan-quan; Xue, Quan-hong; Lai, Hang-xian; Chen, Lai-sheng; Zhang, Deng-shan

    2007-01-01

    Sanjiangyuan region (the headstream of three rivers) in Qinghai Province of China is the highest and largest inland alpine wetland in the world. The study on the nutrient contents and microbial populations of aeolian sandy soils in this region showed that soil organic matter content increased with the evolution of aeolian sand dunes from un-stabilized to stabilized state, being 5.9 and 3.8 times higher in stabilized sand dune than in mobile and semi-stabilized sand dunes, respectively. Soil nitrogen and phosphorus contents increased in line with the amount of organic matter, while potassium content and pH value varied slightly. The microbial populations changed markedly with the development of vegetation, fixing of mobile sand, and increase of soil nutrients. The quantities of soil bacteria, fungi and actinomycetes were 4.0 and 2.8 times, 19.6 and 6.3 times, and 12.4 and 2.6 times higher in stabilized and semi-stabilized sand dunes than in mobile sand dune, respectively, indicating that soil microbial bio-diversity was increased with the evolution of aeolian sand dunes from mobile to stabilized state. In addition, the quantities of soil microbes were closely correlated with the contents of soil organic matter, total nitrogen, and available nitrogen and phosphorus, but not correlated with soil total phosphorus, total and available potassium, or pH value. PMID:17396507

  11. Dunes

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    This image shows relatively dark coarse grained material forming individual dunes coalescing into a relatively uniform sand sheet. The origin of the dark sand that formed these dunes have been suggested to be the northern polar layered deposits.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

    Image information: VIS instrument. Latitude 77.7, Longitude 309.4 East (50.6 West). 19 meter/pixel resolution.

  12. Aeolian Sediments on the northeastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Stauch, G.; Lehmkuhl, F.

    2013-12-01

    The timing and spatial distribution of aeolian sediments on the northeastern Tibetan Plateau have gained increasing interest during the last decades. The formation of the aeolian deposits is often related to cold and dry climate conditions. However, further important parameters are the local geomorphological setting and sediment availability in the source areas of the sediments. Aeolian sediments including loess, sandy loess and sands are widespread in the catchment of the Donggi Cona on the northeastern Tibetan Plateau at around 4000 m asl. Detailed geomorphological mapping of the deposits and geochemical analyses of the sediments revealed varying sources throughout the Holocene. The timing of the sediment deposition is based on 43 OSL (optical stimulated luminescence) ages. Several phases of enhanced aeolian deposition took place during the Holocene. The accumulation of aeolian sands lasted from 10.5 until 7 ka. The main source area of these sands was a large alluvial fan. Parallel to the formation of the dunes loess was deposited on the adjacent slopes from 10.5 until 7.5 ka. These sediments most probably originate in the nearby Qaidam Basin. In contrast to the general linkage of aeolian sediments to dryer climate conditions formation of these aeolian deposits is related to wetter conditions due to a strengthening of the Asian Summer Monsoons. The wetter climate enhanced the trapping and continuous fixation of the aeolian sediments by vegetation. With the further strengthening of the Monsoon fluvial processes eroded the aeolian deposits at least until 6 ka. From about 3 ka to the present a reactivation of aeolian sands and the formation of new dunes took place. This reactivation is related to drier conditions on the north-eastern Tibetan Plateau. Additionally, an increased human influence might have enhanced the aeolian activity. Similar phases of enhanced aeolian activity have been documented in more than 170 available OSL ages from loess and aeolian sands in

  13. Acoustic mode coupling due to subaqueous sand dunes in the South China Sea.

    PubMed

    Chiu, Linus Y S; Reeder, D Benjamin

    2013-08-01

    The large subaqueous sand dunes on the upper continental slope of the South China Sea are expected to couple acoustic propagating normal modes. In this letter, the criterion of adiabatic invariance is extended to the case of a waveguide possessing bedforms. Using the extended criterion to examine mode propagation over the bedforms observed in the sand dune field in 2012, results demonstrate that bedforms increase mode coupling strength such that the criterion for adiabatic propagation is exceeded for waveguides with small bedform amplitude to water depth ratios; increasing bedform amplitude enhances mode coupling. Numerical simulations confirm the extended criterion parameterization. PMID:23927225

  14. Mega-ripples in Iran: A new analog for transverse aeolian ridges on Mars

    NASA Astrophysics Data System (ADS)

    Foroutan, M.; Zimbelman, J. R.

    2016-08-01

    A new terrestrial analog site for transverse aeolian ridges (TARs) is described in this study. The Lut desert of Iran hosts large ripple-like aeolian bedforms, with the same horizontal length scales and patterns of TARs on Mars. Different classes of TARs and different types of other aeolian features such as sand dunes, zibars, dust devil tracks and yardangs can be found in this area, which signify an active aeolian region. This area represents a unique site to study the formation and evolution of these enigmatic features, with potential relevance toward a better understanding of TARs on Mars.

  15. Sand transport on an estuarine submarine dune field

    NASA Astrophysics Data System (ADS)

    Gómez, Eduardo A.; Cuadrado, Diana G.; Pierini, Jorge O.

    2010-09-01

    By means of surveys carried out with a Phase Measuring Bathymetric System and current profiles obtained through an ADCP of the internal area of the Bahía Blanca estuary, a field of large dunes was analysed. There are two different and well-defined zones characterized by particular dune morphology and differing hydrodynamics. The reduction in the channel cross-section by a geological control leads to the increase in tidal current velocity, which together with the available sediment leads to the formation of Very Large Dunes ( H > 4 m and L > 100 m) with the typical morphology of a limited amount of sediment overlying a rigid substrate. The migration rate of these dunes, between 65 and 130 m year - 1 , decreases as the bedform height increases. Differing sediment transport rates across the channel result in a non-uniform migration rate, which is responsible for the formation of dunes with linear crests oblique to the tidal current direction. This fact indicates that determination of the sediment transport direction by using only large bedform orientation may be subject to a significant error.

  16. Geospatial analysis of a coastal sand dune field evolution: Jockey's Ridge, North Carolina

    NASA Astrophysics Data System (ADS)

    Mitasova, Helena; Overton, Margery; Harmon, Russell S.

    2005-12-01

    Preservation and effective management of highly dynamic coastal features located in areas under development pressures requires in-depth understanding of their evolution. Modern geospatial technologies such as lidar, real time kinematic GPS, and three-dimensional GIS provide tools for efficient acquisition of high resolution data, geospatial analysis, feature extraction, and quantification of change. These techniques were applied to the Jockey's Ridge, North Carolina, the largest active dune field on the east coast of the United States, with the goal to quantify its deflation and rapid horizontal migration. Digitized contours, photogrammetric, lidar and GPS point data were used to compute a multitemporal elevation model of the dune field capturing its evolution for the period of 1974- 2004. In addition, peak elevation data were available for 1915 and 1953. Analysis revealed possible rapid growth of the dune complex between 1915-1953, followed by a slower rate of deflation that continues today. The main dune peak grew from 20.1 m in 1915 to 41.8 m in 1953 and has since eroded to 21.9 m in 2004. Two of the smaller peaks within the dune complex have recently gained elevation, approaching the current height of the main dune. Steady annual rate of main peak elevation loss since 1953 suggests that increase in the number of visitors after the park was established in 1974 had little effect on the rate of dune deflation. Horizontal dune migration of 3-6 m/yr in southerly direction has carried the sand out of the park boundaries and threatened several houses. As a result, the south dune section was removed and the sand was placed at the northern end of the park to serve as a potential source. Sand fencing has been an effective management strategy for both slowing the dune migration and forcing growth in dune elevation. Understanding the causes of the current movements can point to potential solutions and suggest new perspectives on management of the dune as a tourist

  17. Constraints on the age of the Great Sand Dunes, Colorado, from subsurface stratigraphy and OSL dates

    USGS Publications Warehouse

    Madole, Richard F.; Mahan, Shannon; Romig, Joe H.; Havens, Jeremy C.

    2013-01-01

    The age of the Great Sand Dunes has been debated for nearly 150 yr. Seven ages ranging from Miocene to late Holocene have been proposed for them. This paper presents new information—chiefly subsurface stratigraphic data, OSL dates, and geomorphic evidence—that indicates that the Great Sand Dunes began to form in the latter part of the middle Pleistocene. The dunes overlie a thick wedge of piedmont-slope deposits, which in turn overlies sediment of Lake Alamosa, a paleolake that began to drain about 440 ka. The wedge of piedmont-slope deposits extends westward for at least 23 km and is as much as 60 m thick at a distance of 10 km from the Sangre de Cristo Range. Ostracodes from one well indicate that the eastern shoreline of Lake Alamosa extended to within 4.3 km of where the Great Sand Dunes eventually formed. The time represented by the wedge of piedmont-slope deposits is not known exactly, but the wedge post-dates 440 ka and was in place prior to 130 ka because by then the dunes overlying it were sufficiently close and tall enough to obstruct streams draining from the Sangre de Cristo Range.

  18. The influence of barchan shape on the moisture and temperature of the dune sand and the diversity of local climate

    NASA Astrophysics Data System (ADS)

    Dluzewski, M.; Zmudzka, E.; Woronko, D.; Biejat, K.

    2012-04-01

    The aim of the research was to determine the impact of the barchan shape on moisture and temperature of dune sand in near surface layer. The study was carried out in the spring 2010 on the dune field located 20 km to the north of Laâyoune (Western Sahara). This region is one of the most humid, located in tropical, desert areas, which is associated with the influx of air masses from the Atlantic. Moisture and temperature of the dune sand in near surface layer was analysed on the basis of measurements in different parts of barchans. The studies included also analysis of the physical condition of the atmosphere, meteorological elements within the analyzed dune fields, the grain size distribution and mineral composition of dune sand. Shape of barchans and their orientations were determined on the basis of the detailed topographic survey. The results show important spatial variation in moisture and temperature of dune sand in near surface layer, characterized by very small differences on grain size distribution and mineral composition. It was found that variations in moisture and temperature of dune material were mainly related to the inflow of solar energy. The advection played a lesser role. The main factors affecting the distribution of moisture and temperature of dune sand as well the air surface layer were the aspect and the slope angle of the dunes. Eastern and southern (lee side) parts of the dunes were characterized by several times less moisture than their western and northern parts (stoss side). With the direction of advection from the north-west which occurred during the field studies, there was no evidence of less moisture in the sand of the stoss sides of dunes (despite the greater wind speed intensifying the process of evaporation). It can therefore be assumed that the intensity of sand transport within a dune located in the region with the impact of oceanic air masses depends mainly on the shape and spatial orientation of barchans.

  19. Transport and mixing of eolian sand from local sources resulting in variations in grain size in a gypsum dune field, White Sands, New Mexico, USA

    NASA Astrophysics Data System (ADS)

    Langford, Richard P.; Gill, Thomas E.; Jones, Slade B.

    2016-03-01

    The White Sands Dune Field, New Mexico (USA), provides a unique opportunity to study sources and eolian transport of sand. End member mixing analysis provides unbiased correlation of the grain size distributions of populations that mix sands from four different local source surface types. Textural differences between sources allow local transport paths to be deduced. In total, 1214 surface samples from 10 dunes and 2 downwind-oriented transects were collected. Neither elevation on the dune, lee or stoss location nor distance downwind correlated with mean grain size, coarsest 10% (D90), or sorting. Instead, grain size distributions are controlled by mixing of locally sourced sand populations. Adjacent dunes can have different mean grain sizes, resulting from different local source populations. Local within-dune and between-dune variability resulting from different sand sources dominates any larger-scale trends across and within dunes. Four sand populations are identified, based on microscopically observable differences in grain size, shape and angularity. Each correlates with high loading of a different statistical factor, derived from End Member Mixing Analysis. End Member 1 (EM1) correlates with well-sorted populations of finer-grained, equant, rounded sands. EM2 correlates with samples that contain moderately sorted populations containing angular blades and crystal aggregates associated with erosional interdunes. EM3 is associated with samples of moderately to poorly sorted fine-grained sand containing fine sand-sized gypsum needles collected from areas of vegetated interdunes, and EM4 is associated with moderately well sorted coarse- and very coarse-grained sands collected from granule ripples. These results suggest that downwind mixing of different populations and segregation by different depositional processes influence grain size distributions in the dune field, rather than by dune-scale or erg-scale transport and sorting.

  20. Ground-water recharge through active sand dunes in northwestern Nevada

    USGS Publications Warehouse

    Berger, D.L.

    1992-01-01

    Most water-resource investigations in semiarid basins of the Great Basin in western North America conclude that ground-water recharge from direct precipitation on the valley floor is negligible. However, many of these basins contain large areas covered by unvegetated, active sand dunes that may act as conduits for ground-water recharge. The potential for this previously undocumented recharge was investigated in an area covered by sand dunes in Desert Valley, northwestern Nevada, using a deep percolation model. The model uses daily measurements of precipitation and temperature to determine energy and moisture balance, from which estimates of long-term mean annual recharge are made. For the study area, the model calculated a mean annual recharge rate of as much as 1.3 inches per year, or 17 percent of the long-term mean precipitation. Model simulations also indicate that recharge would be virtually zero if the study area were covered by vegetation rather than dunes.

  1. The sand seas of titan: Cassini RADAR observations of longitudinal dunes

    USGS Publications Warehouse

    Lorenz, R.D.; Wall, S.; Radebaugh, J.; Boubin, G.; Reffet, E.; Janssen, M.; Stofan, E.; Lopes, R.; Kirk, R.; Elachi, C.; Lunine, J.; Mitchell, Ken; Paganelli, F.; Soderblom, L.; Wood, C.; Wye, L.; Zebker, H.; Anderson, Y.; Ostro, S.; Allison, M.; Boehmer, R.; Callahan, P.; Encrenaz, P.; Ori, G.G.; Francescetti, G.; Gim, Y.; Hamilton, G.; Hensley, S.; Johnson, W.; Kelleher, K.; Muhleman, D.; Picardi, G.; Posa, F.; Roth, L.; Seu, R.; Shaffer, S.; Stiles, B.; Vetrella, S.; Flamini, E.; West, R.

    2006-01-01

    The most recent Cassini RADAR images of Titan show widespread regions (up to 1500 kilometers by 200 kilometers) of near-parallel radar-dark linear features that appear to be seas of longitudinal dunes similar to those seen in the Namib desert on Earth. The Ku-band (2.17-centimeter wavelength) images show ???100-meter ridges consistent with duneforms and reveal flow interactions with underlying hills. The distribution and orientation of the dunes support a model of fluctuating surface winds of ???0.5 meter per second resulting from the combination of an eastward flow with a variable tidal wind. The existence of dunes also requires geological processes that create sand-sized (100- to 300-micrometer) particulates and a lack of persistent equatorial surface liquids to act as sand traps.

  2. Vegetated dune morphodynamics during recent stabilization of the Mu Us dune field, north-central China

    NASA Astrophysics Data System (ADS)

    Xu, Zhiwei; Mason, Joseph A.; Lu, Huayu

    2015-01-01

    The response of dune fields to changing environmental conditions can be better understood by investigating how changing vegetation cover affects dune morphodynamics. Significant increases in vegetation and widespread dune stabilization over the years 2000-2012 are evident in high-resolution satellite imagery of the Mu Us dune field in north-central China, possibly a lagged response to changing wind strength and temperature since the 1970s. These trends provide an opportunity to study how dune morphology changes with increasing vegetation stabilization. Vegetation expansion occurs mainly by expansion of pre-existing patches in interdunes. As vegetation spreads from interdunes onto surrounding dunes, it modifies their shapes in competition with wind-driven sand movement, primarily in three ways: 1) vegetation anchoring horns of barchans transforms them to parabolic dunes; 2) vegetation colonizes stoss faces of barchan and transverse dunes, resulting in lower dune height and an elongated stoss face, with shortening of barchan horns; and 3) on transverse dunes, the lee face is fixed by plants that survive sand burial. Along each of these pathways of stabilization, dune morphology tends to change from more barchanoid to more parabolic forms, but that transformation is not always completed before full stabilization. Artificial stabilization leads to an extreme case of "frozen" barchans or transverse dunes with original shapes preserved by rapid establishment of vegetation. Observations in the Mu Us dune field emphasize the point that vegetation growth and aeolian sand transport not only respond to external factors such as climate but also interact with each other. For example, some barchans lose sand mass during vegetation fixation, and actually migrate faster as they become smaller, and vegetation growth on a barchan's lower stoss face may alter sand transport over the dune in a way that favors more rapid stabilization. Conceptual models were generalized for the

  3. Measurements of Coupled Fluid and Sediment Motion Over Mobile Sand Dunes in a Laboratory Flume

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The relation between turbulent fluid motions and sediment particles over mobile sand dunes may be better understood by examining the time scales over which the quantities fluctuate. In laboratory experiments performed at the USDA-ARS-National Sedimentation Laboratory, profiles of acoustic backscatt...

  4. Time Scales in Turbulence and Sediment Concentration Over Mobile Sand Dunes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The relationship between turbulent fluid motions and sediment particles over mobile sand dunes may be better understood by examining the time scales over which the quantities fluctuate. In laboratory experiments performed at the USDA-ARS-National Sedimentation Laboratory, profiles of acoustic backs...

  5. Video monitoring of meso-scale aeolian activity on a narrow beach

    NASA Astrophysics Data System (ADS)

    Hage, Pam; Ruessink, Gerben

    2014-05-01

    The morphologic evolution of coastal dunes is inextricably linked to the neighbouring beach through the incessant exchange of sand. Intense storm-wave processes erode the foredune within a few hours and transport its sand sand seaward, while aeolian processes return the eroded sand from the beach into the dune system, although at a much lower pace (months to years, or meso scale). Here we use an 8-year long data set of half-hourly snapshot video images, collected from an ≡ 50 m high tower on Egmond Beach (The Netherlands), and a concurrent meteorological and water level data set, to examine which factors affect aeolian sand delivery into the dunes. Egmond is a north-south oriented, micro- to meso-tidal, wave-dominated site that faces the North Sea. Its beach is relatively narrow ( ~ 100 m at spring low tide) and mildly sloping (~ 1 : 30), and consists of quartz sand with a median diameter of about 300 μm. Aeolian activity is clearly visible on the images as sand streamers and, in particular, sand strips, defined as low-amplitude, large-wavelength and slipfaceless deposits that migrate slowly in the wind direction and, depending on wind direction, can have orientations from almost shore-parallel to shore-normal. Beach width in combination with wind direction appeared to be the dominant factors in controlling aeolian activity. Many high wind (>≡ 13 m/s) events, especially from the west and northwest, were associated with a storm surge that inundated almost the entire beach with, accordingly, no possibility for aeolian transport. In contrast, sand-strip fields covered the entire beach during medium wind (≡ 12 - 13 m/s) events, especially when the wind was nearly shore-parallel. Many sand-strip events were observed to be regulated by the tide. Prominent sand-strip fields on the intertidal and upper beach were largely limited to low-tide situations with a wide beach, with a rising tide obviously destroying the intertidal sand strips and sometimes also negatively

  6. Clear cutting (10-13th century) and deep stable economy (18-19th century) as responsible interventions for sand drifting and plaggic deposition in cultural landscapes on aeolian sands (SE-Netherlands).

    NASA Astrophysics Data System (ADS)

    van Mourik, Jan; Vera, Hein; Wallinga, Jakob

    2013-04-01

    landscapes, characterized by deflation plains (gleyic arenosols) and complexes of inland dunes (haplic arenosols). Clear cutting was responsible for the mediaeval first large scale expansion of drift sand landscapes. In such driftsand landscapes, the majority of the podzolic soils in coversand has been truncated by aeolian erosion. Only on scattered sheltered sites in the landscape, palaeopodzols were buried under mono or polycyclic driftsand deposits. They are now the valuable soil archives for palaeoecological research. During the 18th century, the population growth and regional economic activity stimulated the agricultural productivity. Farmers introduced the innovative 'deep stable' technique to increase the production of fertilizers. Farmers started sod digging, including the top of the Ah horizon of the humus forms. This consequently promoted heath degradation and sand drifting, resulting in the extension of driftsand landscapes. Deep stable economy and sod digging was responsible for the 18th century second large scale expansion of drift sand landscapes. During the 19th century, farmers tried to find alternative fertilizers and authorities initiated reforestation projects. The invention of chemical fertilizers at the end of the 19th century marked the end of the period of heath management and plaggic agriculture. The heath was no longer used for the harvesting of plaggic matter and new land management practices were introduced. Heath was reclaimed to new arable land or reforested with Scotch pine. Geomorphological features as inland dunes and plaggic covers survived in the landscape and are now included in the geological inheritance.

  7. Breeding and solitary wave behavior of dunes.

    PubMed

    Durán, O; Schwämmle, V; Herrmann, H

    2005-08-01

    Beautiful dune patterns can be found in deserts and along coasts due to the instability of a plain sheet of sand under the action of the wind. Barchan dunes are highly mobile aeolian dunes found in areas of low sand availability and unidirectional wind fields. Up to now modelization mainly focused on single dunes or dune patterns without regarding the mechanisms of dune interactions. We study the case when a small dune bumps into a bigger one. Recently Schwämmle and Herrmann [Nature (London) 426, 610 (2003)] and Katsuki [(e-print cond-mat 0403312)] have shown that under certain circumstances dunes can behave like solitary waves. This means that they can "cross" each other which has been questioned by many researchers before. In other cases we observe coalescence--i.e., both dunes merge into one--breeding--i.e., the creation of three baby dunes at the center and horns of a Barchan dune--or budding--i.e., the small dune, after "crossing" the big one, is unstable and splits into two new dunes. PMID:16196557

  8. The physics of wind-blown sand and dust.

    PubMed

    Kok, Jasper F; Parteli, Eric J R; Michaels, Timothy I; Karam, Diana Bou

    2012-10-01

    The transport of sand and dust by wind is a potent erosional force, creates sand dunes and ripples, and loads the atmosphere with suspended dust aerosols. This paper presents an extensive review of the physics of wind-blown sand and dust on Earth and Mars. Specifically, we review the physics of aeolian saltation, the formation and development of sand dunes and ripples, the physics of dust aerosol emission, the weather phenomena that trigger dust storms, and the lifting of dust by dust devils and other small-scale vortices. We also discuss the physics of wind-blown sand and dune formation on Venus and Titan. PMID:22982806

  9. Introducing a New International Society of Aeolian Research

    NASA Astrophysics Data System (ADS)

    Zobeck, T. M.; Lee, J.; Lancaster, N.; Bullard, J. E.

    2008-12-01

    Aeolian research is a long-standing and rapidly growing area of geological study where scientists of many disciplines meet to investigate the effects of wind on the surface of the Earth and other planetary bodies such as Mars and Titan. Fields of study in aeolian research cover a broad spectrum ranging from developing a basic scientific understanding of the fundamental physical processes of grain motion to the effects of soil erosion on landscape health and environmental sustainability. Aeolian research also includes studies of the effects of aeolian particles on global climate, air quality, and human health, coastal sand transport processes, land degradation, dune migration, the formation of sand seas, and much more. A growing number of international conferences have been organized to focus specifically on aeolian phenomena and a vast number of scholarly publications have been produced to support the science. One popular bibliography includes over 30,000 citations and hundreds of peer-reviewed papers are published each year. Until very recently, no scientific society specifically dealing with aeolian research has been available. The new International Society of Aeolian Research (ISAR) that has been organized to bring together aeolian scientists from around the world. The new society was created to promote contacts among researchers in aeolian processes and related subjects for discussion and comparison of research, to initiate conferences (such as the International Conference on Aeolian Research), to organize excursions, and support the publication of a peer-reviewed scientific journal. The International Society of Aeolian Research sponsors the new Elsevier journal Aeolian Research in support of these activities. This paper will provide further details about the new society and the journal. Please see www.aeolianresearch.org for details.

  10. Diversity of AMF associated with Ammophila arenaria ssp. arundinacea in Portuguese sand dunes.

    PubMed

    Rodríguez-Echeverría, Susana; Freitas, Helena

    2006-11-01

    Dune vegetation is essential for the formation and preservation of sand dunes and the protection of the coast line. Coastal sand dunes are harsh environments where arbuscular mycorrhizal fungi (AMF) play an important role in promoting plant establishment and growth. We present a study of the diversity of AMF associated with A. arenaria ssp. arundinacea in two locations of the Portuguese coast under a Mediterranean climate. These two locations were selected to compare a well-preserved dune system from a protected area with a degraded dune system from a public beach. AMF diversity was assessed mainly by cloning and sequencing of a fragment of the ribosomal SSU using the primer NS31 and AM1. Most of the 89 AMF clones obtained from the rhizosphere and roots of A. arenaria belonged to the genus Glomus, the largest clade within the Glomeromycota. Higher AMF diversity was found in the least disturbed site, in which spores of Scutellospora persica, Glomus constrictum and Glomus globiferum were found in the rhizosphere of A. arenaria. PMID:17043895

  11. A seismic search for the paleoshorelines of Lake Otero beneath White Sands Dune Field, New Mexico

    NASA Astrophysics Data System (ADS)

    Wagner, P. F.; Reece, R.; Ewing, R. C.

    2014-12-01

    The Tularosa Basin, which now houses White Sands Dune Field, was once occupied by Pleistocene Lake Otero. Several paleoshorelines of Lake Otero have been identified throughout the basin by field surveys and remote sensing using digital elevation models. Up to four shorelines may be buried beneath White Sands Dune Field and it has been posited that the current upwind margin of White Sands coincides with a one of these shorelines. Here we employ a novel geophysical instrument and method to image the subsurface: the seismic land streamer. The land streamer utilizes weighted base plates and one-component vertical geophones in a towed array. With a seisgun acoustic source, we imaged in the Alkali Flats area near the upwind margin, one potential location of paleoshorelines, as well as the Film Lot closer to the center of the dune field. Surfaces in both locations are indurated gypsum playa, which made seismic imaging possible and successful. We collected one SW-NE trending seismic line at each location, which matches the dominant wind and dune migration directions. Based on initial data analysis we find some subsurface structure that may coincide with the paleo lake bed of Lake Otero. The successful demonstration of this new method provides the foundation for an expanded regional subsurface study to image the strata and structure of the Tularosa Basin.

  12. Application of the ERICA Integrated Approach to the Drigg coastal sand dunes.

    PubMed

    Wood, M D; Marshall, W A; Beresford, N A; Jones, S R; Howard, B J; Copplestone, D; Leah, R T

    2008-09-01

    The EC-funded project 'Environmental Risks from Ionising Contaminants: Assessment and Management' (ERICA) developed an 'Integrated Approach' for assessing the impact of ionising radiation on ecosystems. This paper presents the application of the ERICA Integrated Approach, supported by a software programme (the ERICA Tool) and guidance documentation, to an assessment of the Drigg coastal sand dunes (Cumbria, UK). Targeted sampling provided site-specific data for sand dune biota, including amphibians and reptiles. Radionuclides reported included (90)Sr, (99)Tc, (137)Cs, (238)Pu, (239+240)Pu and (241)Am. Site-specific data were compared to predictions derived using the ERICA Tool. Some under- and over-predictions of biota activity concentrations were identified but can be explained by the specific ecological characteristics and contamination mechanism of the dunes. Overall, the results indicated no significant impact of ionising radiation on the sand dune biota and the Integrated Approach was found to be a flexible and effective means of conducting a radiation impact assessment. PMID:18450343

  13. A High Resolution Look at Black Sand Particles from Sand Dunes of Saudi Arabia Using Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Hussain, M. M.; Aburizaiza, O. S.; Siddique, A.; Hershey, D. L.; Guerrieri, D. A.; Qurashi, J.; Abbass, M.; Blake, D. R.; Khwaja, H. A.

    2013-12-01

    Particulate air pollution is a problem of health concern. The microscopic make-up of different varieties of sand particles found and collected at a sand dune site in Badr, Saudi Arabia has been determined. Primary emphasis is given to the use of multiple high resolution electron microscopy (viz., Scanning Electron Microscopy with Energy Dispersive X-ray spectrometry (SEM/EDS) and Laser Scanning Microscopy (LSM)) to study the morphologies, emission source types, size, and elemental composition of the particles, and to evaluate the presence of ';coatings or contaminants' adsorbed or carried on by the black sand particles. White sand contains natural coarse particles associated with wind-blown releases from crustal surfaces, weathering of an igneous/metamorphic rock source, and volcanic activities. Silicates (alumino-silicates) and quartz (clear, milky, rose) dominate white sand and rest appears to contain calcite, olivine, feldspar, and magnetite. Black sand particles exhibit very different morphologies and microstructures (surface roughness) compared with white sand and volcanic ash. Morphological analyses have shown that the black sand contain ultrafine particles. Black sand is strongly magnetic, which indicates the mineral magnetite (strongly magnetic) or elemental iron. Iron, C, O, Ti, Si, V, and S particles dominate the black sand. Natural and anthropogenic sources have been implicated for the observed particles. Analysis revealed that the surface of white sand particles is mainly covered with the fine particles. It is known that emissions from combustion contain carbon soot and other contaminants that are easily absorbed by soil particles during a long-range transport.

  14. Holocene aeolian activities in the southeastern Mu Us Desert, China

    NASA Astrophysics Data System (ADS)

    Jia, Feifei; Lu, Ruijie; Gao, Shangyu; Li, Jinfeng; Liu, Xiaokang

    2015-12-01

    Aeolian deposits from three sites in the Mu Us Desert were used to reconstruct the history of aeolian activities during the Holocene. The results of the lithologies, chronologies and proxy indicators showed that aeolian activities occurred at ∼9.96 cal ka BP, 7.9-6.9 ka BP, 6.4 ka BP and 3.8 cal ka BP∼. The cold event that occurred around 6.4 ka BP interrupted the Holocene Optimum period, which is largely consistent with the findings from sediments in adjacent regions and the monsoon areas of China. Combined with punished OSL and 14C ages of aeolian deposits samples in this region, the environmental changes in the Mu Us Desert were divided into four stages. Active sand dunes dominated before 11 ka BP. Aeolian activities occurred regionally from 11 to 8.5 ka BP and typical sandy paleosol widely developed with episodic aeolian activities between 8.5 and 4 ka BP. Dunes have reactivated and active sand dunes have gradually increased since 4 ka BP. Comparisons with the other paleoclimatic records indicated that the evolution of the Mu Us Desert was closely related to the East Asian monsoon. Paleosol development depended more on the precipitation brought by the East Asian summer monsoon (EASM). The stronger East Asian winter monsoon (EAMW) and higher isolation resulted in the aeolian activities in the early Holocene, while during the mid-Holocene the fluctuating EAWM played a more important role in inducing episodic aeolian activities. The environmental deterioration during the late Holocene can be related to weakened EASM or to increased anthropogenic influence.

  15. Sand Dune Ridge Alignment Effects on Surface BRF over Libya-4 Calibration Site

    NASA Astrophysics Data System (ADS)

    Govaerts, Yves

    2015-12-01

    The Libya-4 desert area, located in the Great Sand Sea, is one of the most important bright desert CEOS pseudo-invariant calibration sites by its size and radiometric stability. This site is intensively used for radiometer drift monitoring, sensor intercalibration and as an absolute calibration reference based on simulated radiances traceable to the SI standard. The Libya-4 morphology is composed of oriented sand dunes shaped by dominant winds. The effects of sand dune spatial organization on the surface bidirectional reflectance factor is analyzed in this paper using Raytran, a 3D radiative transfer model. The topography is characterized with the 30 m resolution ASTER digital elevation model. Four different regions-of-interest sizes, ranging from 10 km up to 100 km, are analyzed. Results show that sand dunes generate more backscattering than forward scattering at the surface. The mean surface reflectance averaged over different viewing and illumination angles is pretty much independent of the size of the selected area, though the standard deviation differs. Sun azimuth position has an effect on the surface reflectance field, which is more pronounced for high Sun zenith angles. Such 3D azimuthal effects should be taken into account to decrease the simulated radiance uncertainty over Libya-4 below 3% for wavelengths larger than 600 nm..

  16. Sand dune ridge alignment effects on surface BRF over the Libya-4 CEOS calibration site.

    PubMed

    Govaerts, Yves M

    2015-01-01

    The Libya-4 desert area, located in the Great Sand Sea, is one of the most important bright desert CEOS pseudo-invariant calibration sites by its size and radiometric stability. This site is intensively used for radiometer drift monitoring, sensor intercalibration and as an absolute calibration reference based on simulated radiances traceable to the SI standard. The Libya-4 morphology is composed of oriented sand dunes shaped by dominant winds. The effects of sand dune spatial organization on the surface bidirectional reflectance factor is analyzed in this paper using Raytran, a 3D radiative transfer model. The topography is characterized with the 30 m resolution ASTER digital elevation model. Four different regions-of-interest sizes, ranging from 10 km up to 100 km, are analyzed. Results show that sand dunes generate more backscattering than forward scattering at the surface. The mean surface reflectance averaged over different viewing and illumination angles is pretty much independent of the size of the selected area, though the standard deviation differs. Sun azimuth position has an effect on the surface reflectance field, which is more pronounced for high Sun zenith angles. Such 3D azimuthal effects should be taken into account to decrease the simulated radiance uncertainty over Libya-4 below 3% for wavelengths larger than 600 nm. PMID:25654721

  17. Sand Dune Ridge Alignment Effects on Surface BRF over the Libya-4 CEOS Calibration Site

    PubMed Central

    Govaerts, Yves M.

    2015-01-01

    The Libya-4 desert area, located in the Great Sand Sea, is one of the most important bright desert CEOS pseudo-invariant calibration sites by its size and radiometric stability. This site is intensively used for radiometer drift monitoring, sensor intercalibration and as an absolute calibration reference based on simulated radiances traceable to the SI standard. The Libya-4 morphology is composed of oriented sand dunes shaped by dominant winds. The effects of sand dune spatial organization on the surface bidirectional reflectance factor is analyzed in this paper using Raytran, a 3D radiative transfer model. The topography is characterized with the 30 m resolution ASTER digital elevation model. Four different regions-of-interest sizes, ranging from 10 km up to 100 km, are analyzed. Results show that sand dunes generate more backscattering than forward scattering at the surface. The mean surface reflectance averaged over different viewing and illumination angles is pretty much independent of the size of the selected area, though the standard deviation differs. Sun azimuth position has an effect on the surface reflectance field, which is more pronounced for high Sun zenith angles. Such 3D azimuthal effects should be taken into account to decrease the simulated radiance uncertainty over Libya-4 below 3% for wavelengths larger than 600 nm. PMID:25654721

  18. Ground-water resources of the Clatsop Plains sand-dune area, Clatsop County, Oregon

    USGS Publications Warehouse

    Frank, F.J.

    1970-01-01

    Although the average annual precipitation of the Clatsop Plains is 78.5 inches, the area is not without problems of water supply. The Clatsop Plains area ix underlain by Tertiary bedrock of low permeability that stores and yields small quantities of ground water, which may be of poor chemical quality. This Tertiary bedrock furnishes only minor ground-water discharge to maintain the base flow of streams. The flow of rivers and creeks, normally abundant during the wet season, decreases greatly during the dry summer months. The lowlands are overlain by extensive deposits of dune and beach sand. The dune sand is permeable and can absorb and store, as fresh water, a large percentage of the annual precipitation. In the central part of the dune area, the saturated thickness of the sand ranges from 95 to more than 150 feet. Most of the ground water in the sand discharges to the ocean through beach-line seeps and underflow. Much of the water now being discharged to the ocean could be recovered by pumping from properly located, designed, and constructed wells. Three test wells drilled as part of this study are capable of yielding 100 gallons per minute although they are equipped with only short lengths of well screen. It is estimated that 2,500 acre-feet of ground water per year per square mile of area may be available for withdrawal in the 10 square mile area that is most favorable for development. The water from the dune sand is soft to moderately hard, has a low chloride concentration, and is of generally good chemical quality; however, at places it is weakly acidic and contains sufficient dissolved iron to make iron removal necessary for some uses. Ground water from shallow depths beneath a few swampy low-lying areas is brown and contains excessive concentrations of iron.

  19. Vertical structure of aeolian turbulence in a boundary layer with sand transport

    NASA Astrophysics Data System (ADS)

    Lee, Zoe S.; Baas, Andreas C. W.

    2016-04-01

    originating from the top of the boundary layer, indicating a downwards direction of eddy motion. While directionality of turbulence cannot be definitively determined, our results indicate that the top-down turbulence model is a suitable explanation, further supported by the presence of 'incomplete' eddies which originate at higher elevations but fail to extend to the surface. This provides the first evidence in support of a top down turbulence model as observed in aeolian geomorphology, and we present preliminary findings on its relationship to sand transport activity. Lee, Z.S., Baas, A.C.W. (2016) Variable and conflicting shear stress estimates inside a boundary layer with sediment transport. Earth Surface Processes and Landforms; DOI: 10.1002/esp.3829

  20. Evaluation of Surface Slope Effects on Ripple Orientations Observed on Sand Dunes in the Terra Tyrrhena Region of Mars

    NASA Astrophysics Data System (ADS)

    Zimbelman, J. R.; Johnson, M. B.

    2014-12-01

    The High Resolution Imaging Science Experiment (HiRISE) has revealed abundant wind ripples on sand dunes across Mars. Ripple orientations have been documented using HiRISE images of sand dunes at 24 widely distributed sites across Mars, in order to identify the last significant wind directions at these locations. Howard (GSAB, 1977) gives a mathematical expression for how surface slopes on a sand dune can affect the orientation of ripples with respect to the formative winds. In order to evaluate this mechanism for measured ripple orientations on Mars, quantitative data for surface slopes on the sand dunes is required. Stereo pairs of HiRISE images are used to generate Digital Terrain Models (DTMs) with postings of one meter. In June 2014 we produced a DTM of sand dunes in the Terra Tyrrhena region of Mars (14.55° S, 97.77° E) using SOCET SET at the Astrogeology Branch, USGS-Flagstaff. Typically it is difficult for feature matching software to work well on sand dunes, but our stereo images (ESP_022609_1655 and ESP_026675_1655) were obtained only six Earth days apart under excellent illumination conditions. The Terra Tyrrhena DTM had remarkably few artifacts on the sand dunes (except at slip faces, where the average slope between slip face crest and base was interpolated) and excellent control from irregular terrain exposed in interdune areas. Slopes on the stoss sides of sand dunes are generally <10°; the Howard equation indicates ripple deflection angles should be <17° with respect to the actual surface wind direction. We are adjusting documented ripple orientations to account for surface slopes utilizing the DTM data, and so far we do not see major changes to inferred surface wind directions that would be derived directly from the ripple orientations.

  1. Persistent Aeolian Activity at Endeavour Crater, Mars

    NASA Astrophysics Data System (ADS)

    Chojnacki, M.; Michaels, T. I.; Fenton, L. K.

    2013-12-01

    Long-term monitoring of sites that are known to have active dunes and ripples is generally limited to 3 Mars-Years (MY). Here, we discuss new results of dune activity and albedo change in Endeavour crater (EC), Meridiani Planum (MP) that record eight MY of aeolian activity. MP dune fields often show large yearly variations in albedo; EC darkened by ~12% in TES albedo between MY 24 and 26 (from 0.14 to 0.12). THEMIS VIS albedo of dunes did not change significantly from MY 26 to 29, but did decrease notably (~15 %) in MY 30. These darkening events are most likely related to aeolian-driven dust cleaning (e.g., removal by saltating sand, dust devils). For example, the Opportunity rover (poised on the western rim of EC) observed evidence for a MY 31 dune field dust-clearing event. HiRISE monitoring of MP has shown it be one of the most active regions outside of north polar latitudes. Paired images of western EC taken 3 MY apart show clear evidence for dune modification that include: ripple migration, change in dune perimeters, exposure of previously buried light-toned rock, and/or burial of rock by sand (Fig. 1a-1b). Dune slip face movement is evident for most dunes, where crests and aprons advanced (2-7 m) in the downwind direction (to the SSE) at rates of 0.7-2.3 m per MY. Small dome dunes in the eastern EC were found to have a large degree of aeolian activity (e.g., deflation and/or translation) by an earlier study that used MGS-MRO images (MY 24-30). New MY 31 images validate earlier observations, showing clear evidence for bedform deflation where dunes often occupy less area (~50%) than in earlier MY 29 images (Fig. 1c-1d). Areal removal rates are on par with earlier estimates. Bedform modification and sand streamer orientation appear to be caused by a NNW wind regime, consistent with earlier observations, mesoscale modeling, and the transport direction of barchans to the west. Dunes in EC are now known to be periodically (consistently?) active from over a decade

  2. Spatial-temporal evolution of aeolian blowout dunes at Cape Cod

    NASA Astrophysics Data System (ADS)

    Abhar, Kimia C.; Walker, Ian J.; Hesp, Patrick A.; Gares, Paul A.

    2015-05-01

    This paper explores historical evolution of blowouts at Cape Cod National Seashore (CCNS), USA - a site that hosts one of the world's highest densities of active and stabilized blowouts. The Spatial-Temporal Analysis of Moving Polygons (STAMP) method is applied to a multi-decadal dataset of aerial photography and LiDAR to extract patterns of two-dimensional movement and morphometric changes in erosional deflation basins and depositional lobes. Blowout development in CCNS is characterized by several geometric (overlap) and movement (proximity) responses, including: i) generation and disappearance, ii) extension and contraction, iii) union or division, iv) clustering and v) divergence by stabilization. Other possible movement events include migration, amalgamation and proximal stabilization, but they were not observed in this study. Generation events were more frequent than disappearance events; the former were highest between 1985 and 1994, while the latter were highest between 2000 and 2005. High rates of areal change in erosional basins occurred between 1998 and 2000 (+ 3932 m2 a-1), the lowest rate (+ 333 m2 a-1) between 2005 and 2009, and the maximum rate (+ 4589 m2 a-1) between 2009 and 2011. Union events occurred mostly in recent years (2000-2012), while only one division was observed earlier (1985-1994). Net areal changes of lobes showed gradual growth from a period of contraction (- 1119 m2 a-1) between 1998 and 2000 to rapid extension (+ 2030 m2 a-1) by 2010, which is roughly concurrent with rapid growth of erosional basins between 2005 and 2009. Blowouts extended radially in this multi-modal wind regime and, despite odd shapes initially, they became simpler in form (more circular) and larger over time. Net extension of erosional basins was toward ESE (109°) while depositional lobes extended SSE (147°). Lobes were aligned with the strongest (winter) sand drift vector although their magnitude of areal extension was only 33% that of the basins. These

  3. Development of a grazing monitoring program for Great Sand Dunes National Park, Colorado

    USGS Publications Warehouse

    Zeigenfuss, Linda C.; Schoenecker, Kathryn A.

    2015-01-01

    National parks in the United States face the difficult task of managing natural resources within park boundaries that are influenced to a large degree by historical land uses or by forces outside of the park’s protection and mandate. Among the many challenges faced by parks is management of wildlife populations that occupy larger landscapes than individual park units but that concentrate within park lands both seasonally and opportunistically. Great Sand Dunes National Park and Preserve in south-central Colorado is currently developing an Ungulate Management Plan to address management of elk and bison populations within the park. Execution of the Ungulate Management Plan will require monitoring and assessment of habitat conditions in areas that appear sensitive to ungulate use or heavily used by elk and bison. Several sources of information on the various habitats within the park and their use and response to foraging elk and bison exist from recent and on-going research in Great Sand Dunes National Park and Preserve as well as from studies in other regions of the Intermountain West. All of this data can be used to inform the planning process. This report provides background on vegetation types that make up the primary bison and elk ranges in Great Sand Dunes National Park and Preserve and on the potential effects of ungulate grazing and browsing in these specific vegetation communities (both locally and regionally). The report also provides a review of the elements necessary to develop a long-term monitoring program for Great Sand Dunes National Park and Preserve that addresses both the responses to ungulate herbivory seen in important habitats in the park and the amount and patterns of ungulate habitat use.

  4. Mineral resources of the Buffalo Hump and Sand Dunes Addition Wilderness Study Areas, Sweetwater County, Wyoming

    SciTech Connect

    Gibbons, A.B.; Barbon, H.N.; Kulik, D.M. ); McDonnell, J.R. Jr. )

    1990-01-01

    The authors present a study to assess the potential for undiscovered mineral resources and appraise the identified resources of the Buffalo Hump and Sand Dunes Addition Wilderness Study Areas, southwestern Wyoming, There are no mines, prospects, or mineralized areas nor any producing oil or gas wells; however, there are occurrences of coal, claystone and shale, and sand. There is a moderate resource potential for oil shale and natural gas and a low resource potential for oil, for metals, including uranium, and for geothermal sources.

  5. Impact of early diagenesis of Eolian reservoirs, Great Sand Dunes National Monument, Colorado

    SciTech Connect

    Krystinik, L.F.; Andrews, S.; Fryberger, S.G.

    1985-02-01

    Dune and associated alluvial and playa deposits at Great Sand Dunes National Monument, Colorado, provide an excellent opportunity to study early diagenetic development of vertical and horizontal permeability barriers in recent eolian deposits (> 10 ka). Cements observed include calcite, aragonite, protodolomite(.), amorphous silica, iron hydroxide, smectite, trona, and halite. Cementation is controlled by the availability of water, with several hydrologic subenvironments producing different cements. Evaporative cementation in dunes adjacent to playas is commonly dominated by trona and halite, but calcite, aragonite, and amorphous silica also bind the sediment. These cements are generally most concentrated in fine laminations where capillary action has pulled water into dunes. Iron hydroxides, calcite, and amorphous silica precipitate at the interface between ground water and streams or lakes, where the pH gradient may exceed 5 pH units (pH 5.7-11.5). Subsequent movement of the ground-water table can result in cross-cutting cement zones. Early cementation in dunes prevents deflation and provides a mechanism for preservation of the reservoir unit. Intense cementation may permanently occlude porosity, or leaching may reestablish well-interconnected porosity. An understanding of the extent and composition of early cement zones can be used to improve hydrodynamic models for production and enhanced recovery.

  6. A win-win technique of stabilizing sand dune and purifying paper mill black-liquor.

    PubMed

    Hanjie, Wang; Frits, Penning de Vries; Yongcan, Jin

    2009-01-01

    The principle and technique were reported here to produce lignin-based sand stabilizing material (LSSM) using extracted lignin from black liquor of straw paper mills. Field tests using LSSM to stabilize and green sand dunes were started in 2002. The field experiment was carried out in August 2005 when the newly formed plant community was 3 years old. The results from the comprehensive field experiment demonstrated that unlike polyvinyl acetate or foamed asphalt commonly used for dune stabilization, LSSM was plant-friendly material and could be used in combination with seeding and planting of desert species. With the help of LSSM, the desert species (i.e., Agriophyllum squarrosum (L.) Moq. and Artemisia desertorum Spreng. etc.) could be used to form community in 2-3 yeas and to stabilize sand dune effectively. The newly formed community was sustainable under an extremely dry climate condition. The organic matter and total nitrogen in the soil increased significantly as the community were formed, while the change in P and K contents in the soil was negligible. PMID:19634424

  7. Microbial Diversity in Soil, Sand Dune and Rock Substrates of the Thar Monsoon Desert, India.

    PubMed

    Rao, Subramanya; Chan, Yuki; Bugler-Lacap, Donnabella C; Bhatnagar, Ashish; Bhatnagar, Monica; Pointing, Stephen B

    2016-03-01

    A culture-independent diversity assessment of archaea, bacteria and fungi in the Thar Desert in India was made. Six locations in Ajmer, Jaisalmer, Jaipur and Jodhupur included semi-arid soils, arid soils, arid sand dunes, plus arid cryptoendolithic substrates. A real-time quantitative PCR approach revealed that bacteria dominated soils and cryptoendoliths, whilst fungi dominated sand dunes. The archaea formed a minor component of all communities. Comparison of rRNA-defined community structure revealed that substrate and climate rather than location were the most parsimonious predictors. Sequence-based identification of 1240 phylotypes revealed that most taxa were common desert microorganisms. Semi-arid soils were dominated by actinobacteria and alpha proteobacteria, arid soils by chloroflexi and alpha proteobacteria, sand dunes by ascomycete fungi and cryptoendoliths by cyanobacteria. Climatic variables that best explained this distribution were mean annual rainfall and maximum annual temperature. Substrate variables that contributed most to observed diversity patterns were conductivity, soluble salts, Ca(2+) and pH. This represents an important addition to the inventory of desert microbiota, novel insight into the abiotic drivers of community assembly, and the first report of biodiversity in a monsoon desert system. PMID:26843695

  8. Detecting changes on coastal primary sand dunes using multi-temporal Landsat imagery

    NASA Astrophysics Data System (ADS)

    Gonçalves, Gil; Duro, Nuno; Sousa, Ercilia; Pinto, Luís.; Figueiredo, Isabel

    2014-10-01

    Due to both natural and anthropogenic causes the coastal primary sand dunes, keeps changing dynamically and continuously their shape, position and extend over time. In this paper we use a case study to show how we monitor the Portuguese coast, between the period 2000 to 2014, using free available multi-temporal Landsat imagery (ETM+ and OLI sensors). First, all the multispectral images are panshaperned to meet the 15 meters spatial resolution of the panchromatic images. Second, using the Modification of Normalized Difference Water Index (MNDWI) and kmeans clustering method we extract the raster shoreline for each image acquisition time. Third, each raster shoreline is smoothed and vectorized using a penalized least square method. Fourth, using an image composed by five synthetic bands and an unsupervised classification method we extract the primary sand dunes. Finally, the visual comparison of the thematic primary sand dunes maps shows that an effective monitoring system can be implemented easily using free available remote sensing imagery data and open source software (QGIS and Orfeo toolbox).

  9. Source-to-sink cycling of aeolian sediment in the north polar region of Mars

    NASA Astrophysics Data System (ADS)

    Ewing, R. C.; Kocurek, G.

    2012-12-01

    Aeolian sand dunes are prominent features on the landscapes of Earth, Mars, Venus and Titan and sedimentary deposits interpreted as aeolian in origin are found in the rock records of Earth and Mars. The widespread occurrence of aeolian dunes on the surface of these worlds and within their deep-time depositional records suggests that aeolian systems are and likely have been a default depositional environment for the Solar System. Within an aeolian source-to-sink context, we hypothesize that planet-specific boundary conditions strongly impact production, transport, accumulation and preservation of aeolian sediment, whereas dunes and dune-field patterns remain largely similar. This hypothesis is explored within the north polar region of Mars, which hosts the most extensive aeolian dune fields and aeolian sedimentary deposits yet recognized on Mars and appears to be a region of dynamic source-to-sink cycling of aeolian sediments. The Planum Boreum Cavi Unit rests beneath north polar ice cap of Mars and is composed of several hundred meters of niveo-aeolian dune cross-stratification. The overall architecture of the unit consists of sets of preserved dune topography with an upward increase in the abundance of ice. Dune sets are defined by stabilized, polygonally fractured bounding surfaces, erosional bounding surfaces and typical internal lee foresets made of sediment and ice. The accumulation of the Cavi Unit is interpreted as occurring through freezing and serves as an example of a cold temperature boundary condition on aeolian sediment accumulation. Preservation of the Cavi Unit arises because of deposition of the overlying ice cap and contrasts with preservation of aeolian sediment on Earth, which is largely driven by eustasy and tectonics. The Cavi Unit is thought to be one source of sediment for the north polar Olympia Undae Dune Field. The region of Olympia Undae near the Cavi Unit shows a reticulate dune field pattern composed of two sets of nearly orthogonal

  10. Effects of River Regulation on Aeolian Landscapes, Grand Canyon National Park, USA

    NASA Astrophysics Data System (ADS)

    Draut, A. E.

    2010-12-01

    Sediment deposits in the Colorado River corridor include fluvial sandbars and aeolian dune fields, and the fluvial deposits are the primary sediment source for sand in the aeolian dunes. This 7-year study examined the effects of river regulation at Glen Canyon Dam (alteration of flow regime, sediment-supply reduction, and consequent loss of fluvial sandbars) on aeolian landscapes downstream in Grand Canyon National Park. A comparative study was developed between aeolian landscapes in Grand Canyon, Arizona, and Cataract Canyon, Utah, upstream of Glen Canyon Dam and its reservoir (Lake Powell), where hydrology and sediment supply of the Colorado River are affected substantially less by artificial river regulation than occurs in Grand Canyon. Before closure of Glen Canyon Dam in 1963, sediment-rich floods (mean annual peak 2400 m3/s) formed sandbars from which wind moved sand inland to form aeolian dunes. After dam operations reduced the amplitude and frequency of high flows, and eliminated the mainstream fluvial sediment supply, Grand Canyon’s fluvial sandbars lost open sand area owing to erosion by river flows and the spread of riparian vegetation. Two types of aeolian landscapes now occur in Grand Canyon: (1) modern fluvial sourced, those downwind of post-dam sandbars; and (2) relict fluvial sourced, whose primary sediment source was deposits from pre-dam floods that were larger than any post-dam flows have been. Sediment supply has been reduced to type (1) dune fields because post-dam sandbars are smaller than in the pre-dam era; new sediment supply to type (2) dune fields essentially has been eliminated. Type 1 aeolian landscapes can receive new windblown sand from sandbars formed by controlled floods (1160 m3/s), which occurred in 1996, 2004, and 2008. Type 1 dune fields, being downwind and within 100 m of controlled-flood sandbars, have significantly higher aeolian sand-transport rates, more open sand, and less biologic soil crust than relict type 2 dune

  11. Measuring sand flux on Mars using HiRISE Images

    NASA Astrophysics Data System (ADS)

    Ayoub, F.; Bridges, N. T.; Avouac, J.; Leprince, S.; Lucas, A.; Mattson, S.

    2011-12-01

    As wind is the major agent of sediment transport on Mars, a quantitative estimate of aeolian processes is therefore essential to assess recent geological evolution and current climate. We adapted the Co-registration of Optically Sensed Image and Correlation (COSI-Corr) toolbox to the MRO HiRISE imager specifications to produce a dense map of the ripples migration on the surface of the Martian dunes on the Nili Patera area. The ripple migration rate, along with an estimate of the ripple height, were used to derive the sand flux, a key quantity that controls the style and rate of landscape evolution. Using the dunes shape, size, and height, which were extracted from a DEM of the dune field, we show that the dunes are near steady state, and we observe that dune migration rate varies inversely with size and position within the dune field. The time scale associated with the formation and evolution of the Nili Patera dune field, estimated from comparing the sand volume with the sand flux and the dunes migration rates with the length scale of the dune field, is on the order of 10s to 100s of thousands Earth years. However, sand fluxes at the dune crests are 0.7 - 4.8 m3 m-1 per Earth year, which is comparable to that of dunes in Victoria Valley, Antarctica. This implies that rates of landscape modification from aeolian abrasion on Mars may be comparable to that on Earth.

  12. Debris-flow benches: Dune-contact deposits record paleo-sand dune positions in north Panamint Valley, Inyo County, California

    SciTech Connect

    Anderson, S.P. ); Anderson, R.S. )

    1990-06-01

    Debris flows debouching onto the alluvial fan at the north end of Panamint Valley, California, have been episodically impounded behind sand dunes, resulting in boulder-strewn, nearly flat topped deposits in irregular basins upslope of the dune, whose upper surface is higher than the adjacent fan surface. Upslope migration of the dune field over and beyond these deposits eventually leaves them as debris-flow benches rising above the general fan surface. These features are therefore dune-contact forms, analogous to ice-contact forms such as kame terraces, in that both involve deposition against ephemeral barriers. Benches punctuate the alluvial-fan surface for 5 km downfan from the modern dune field. Clast seismic velocities of boulders on these benches indicate that bench ages increase monotonically with distance from the present dunes, implying that the dune field has migrated up the fan. Because the oldest bench is below the altitude of the highest pluvial lake shoreline in Panamint Valley (Gale Stage, ca. 50 ka) and slightly above the latest lakeshore (I Stage, ca. 14 ka), it seems likely that the dunes originated near the shore of the latest lake and have moved upfan at an average rate of 0.8 m/yr.

  13. Controls on the large-scale spatial variations of dune field properties in the barchanoid portion of White Sands dune field, New Mexico

    NASA Astrophysics Data System (ADS)

    Pelletier, Jon D.

    2015-03-01

    Previous studies have shown that sediment fluxes and dune sizes are a maximum near the upwind margin of the White Sands dune field and decrease, to first order, with increasing distance downwind. These patterns have alternatively been attributed to a shear-stress overshoot associated with a roughness transition localized at the upwind margin and to the influence of long-wavelength topography on the hydrology and hence erodibility of dune field sediments. I point out an issue that compromises the shear-stress overshoot model and further test the hypothesis that long-wavelength topographic variations, acting in concert with feedbacks among aerodynamic, granulometric, and geomorphic variables, control dune field properties at White Sands. Building upon the existing literature, I document that the mean and variability of grain sizes, sand dryness, aerodynamic roughness lengths, bed shear stresses, sediment fluxes, and ripple and dune heights all achieve local maxima at the crests of the two most prominent scarps in the dune field, one coincident with the upwind margin and the other located 6-7 km downwind. Computational fluid dynamics (CFD) modeling predicts that bed shear stresses, erosion rates, and the supply of relatively coarse, poorly sorted sediments are localized at the two scarps due to flow line convergence, hydrology, and the spatially distributed adjustment of the boundary layer to variations in dune size. As a result, the crests of the scarps have larger ripples due to the granulometric control of ripple size. Larger grain sizes and/or larger ripples lead to larger dunes and hence larger values of bed shear stress in a positive feedback.

  14. Deposition of carbonate mud beds within high-energy subtidal sand Dunes, Bahamas

    SciTech Connect

    Dill, R.F.; Steinen, R.P.

    1988-01-01

    Laminated, carbonate mud beds are being deposited in the interisland channels of the Exuma Cays in the Bahamas. They are associated with stromatolites and interbedded with ooid sands that form large migrating subtidal dunes on flood tidal deltas and bars. Currents up to 3 knots sweep in and out of the 4-8 m deep channels 3 hours out of every 6 hours, creating a high-energy bank margin environment not usually considered to be the site of mud-sized particle deposition. Mud deposits reach thicknesses of 1 m and have individual beds 2-5 cm thick. When exposed to flowing seawater, bed surfaces become encrusted with carbonate cement and algal mats. The white interior of mud beds between the crusts appears homogeneous, is soft, and has the consistency of ''tooth paste.'' Loose uncemented ooid sand is found above and below the mud beds, showing that both are occupying the same depositional environment. Rip-up clasts of the crusted mud beds, formed by scour of underlying sands, are carried throughout the channels and accumulate as a lag deposit within the troughs of migrating dunes. Some clasts are colonized by algal mats that trap ooid and skeletal sands forming stromatolite structures that can grow up to 2 m high.

  15. Heavy metal levels in dune sands from Matanzas urban resorts and Varadero beach (Cuba): Assessment of contamination and ecological risks.

    PubMed

    Díaz Rizo, Oscar; Buzón González, Fran; Arado López, Juana O; Denis Alpízar, Otoniel

    2015-12-30

    Concentrations of chromium (Cr), nickel (Ni), copper (Cu), zinc (Zn) and lead (Pb) in dune sands from six urban and suburban Matanzas (Cuba) resorts and Varadero beach were estimated by X-ray fluorescence analysis. Ranges of metal contents in dune sands show a strong variation across the studied locations (in mg/kg(-1)): 20-2964 for Cr, 17-183 for Ni, 17-51 for Cu, 18-88 for Zn and 5-29 for Pb. The values of contamination factors and contamination degrees how that two of the studied Matanzas's resorts (Judio and Chirry) are strongly polluted. The comparison with Sediment Quality Guidelines shows that dune sands from Judio resort represent a serious risk for humans, due to polluted Cr and Ni levels, while sands from the rest of the studied resorts, including Varadero beach, do not represent any risk for public use. PMID:26481414

  16. Using Ground Penetrating Radar to Image Paleotopography and Structural Controls at Coral Pink Sand Dunes, Kane County, Utah

    NASA Astrophysics Data System (ADS)

    Rozar, E. J.; Bradford, J. H.; Ford, R. L.; Wilkins, D. E.

    2014-12-01

    The Coral Pink Sand Dunes (CPSD) are one of the largest dune fields in the Great Basin-Colorado Plateau Transition Zone. The dune field rests on Navajo Sandstone, and is bisected by the Sevier Normal Fault, which also forms the bedrock escarpment along the eastern boundary of the lower dune field (LDF). Limited ground penetrating radar (GPR) collected previously, as well as recent ground-based LiDAR data and geomorphic observations, suggest that underlying bedrock is topographically lower in the center of the LDF than on its margins. In order to image the dune-bedrock interface and any structures contained within the bedrock, including buried faults, 50-MHz and 100-MHz GPR antennae with 400-V transmitters were used to conduct over 25 transects, totaling several kilometers, across the LDF. We recorded radar reflections at depths of up to 30 m within the bedrock beneath the modern dunes. Outcrops and/or shallow boreholes along some transects provide ground truth for dune-bedrock contacts. The resulting radar profiles suggest at least two antithetic fault zones within the LDF that, in places, appear to control the location of smaller dunes. Further examination of the relationship between these fault zones and dune forms, as imaged with LiDAR, will help inform whether or not these structural controls affect variation in dune type and patterning across the LDF, and may also explain why the CPSD exist in this location.

  17. Erosion of North Polar Layers and Genesis of nearby Sand Dunes

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) is used by the MOC science team as a tool to test hypotheses about the geology, geomorphology, and meteorology of Mars. In 1999, MOC images revealed that the layers of the martian north polar cap are divided into two distinct units: an upper, light-toned sequence of layers, and a lower, darker-toned suite of layers. The team suspected that the lower unit, because of its dark tone and apparent association with nearby dune fields, might be a source of windblown sand. However, most of the 1999 images were of very low contrast because the frequent dust storms in the region made the atmosphere extremely hazy. Very few images of the north polar cap were obtained in 2000 because it was first hidden during the long winter's night, then coated by springtime frost. By early 2001, the north polar cap was in summer and the MOC team set out to test the idea that sand is eroding out of the lower unit. This picture, obtained in February 2001, shows streamers of dark sand coming from outcrops of the lower, dark-toned unit. The streamers join a nearby dune field less than a few kilometers (less than a mile) away. Erosion of the lower layered unit liberates sand that was long ago deposited in these layers. The upper unit, by contrast, contains almost no sand. Wind erosion of the lower unit leads to creation of steep scarps as the sand is removed and the upper unit is undermined. The sand moves downwind (in this case, toward the bottom left of the image) and creates dunes. The new views of the martian north polar cap obtained in 1999 and 2001 suggest that it may not contain as much water ice as previously believed. Indeed, the amount of ice may be as little as half of what was once thought. The picture shown here is 3 km (1.9 mi) wide and illuminated from the lower left.

  18. Anatomy and controlling factors of a Late Cretaceous Aeolian sand sheet: The Marília and the Adamantina formations, NW Bauru Basin, Brazil

    NASA Astrophysics Data System (ADS)

    Basilici, Giorgio; Führ Dal'Bó, Patrick Francisco

    2010-04-01

    Few previous studies have given significant consideration to the palaeosols in aeolian sand sheet sedimentary successions and, mainly, to their palaeoenvironmental and stratigraphic meaning in interaction with the deposits. These themes are considered in this study that deals with the depositional architecture and the factors controlling the construction, accumulation and preservation of an ancient aeolian sand sheet, that forms part of the Adamantina and Marília formations, in the Bauru Basin (Late Cretaceous, Brazil). In the NW portion of the Bauru Basin, these two units, ca 220 m thick, consist of sandstone, and secondarily of sandy conglomerate and mudstone, and are characterised by vertically alternated palaeosols and deposits. Facies analyses of the deposits and macroscopic characterisation of the palaeosols in 45 outcrops were integrated with laboratory analyses that consisted in descriptions of slabs of rock samples, petrographic analyses, clay mineralogy determination, geochemical analyses of the major oxides, and micromorphological characterisation of the palaeosols. Three architectural elements were recognised: palaeosols, wind-ripple-dominated aeolian sand sheet deposits, and ephemeral river deposits. The palaeosols constitute 66% of the entire sedimentary succession, and consist principally of Aridisols and, subordinately, of Alfisols, Vertisols, and Entisols. The wind-ripple-dominated aeolian sand sheet deposits (25%) are composed of sandstone, organised in translatent climbing wind-ripple strata, and secondarily of sandstone and mudstone deposited by infrequent floods. The ephemeral river deposits (9%) consist of sandy conglomerates 4 m thick and ca 2 km wide. Wind-ripple-dominated aeolian sand sheet deposits formed during relatively dry climate period on an unstable topographic surface of an aeolian sand sheet, where aeolian deposition or erosion prevailed. Palaeosols and ephemeral river deposits formed in a more humid climate period on a stable

  19. Periodic temporal oscillations in biocrust-vegetation dynamics on sand dunes

    NASA Astrophysics Data System (ADS)

    Yizhaq, Hezi; Ashkenazy, Yosef

    2016-03-01

    We show that the system of biocrust and vegetation on sand dunes modeled by two coupled ordinary nonlinear differential equations exhibits self-sustained oscillations. Such oscillations can occur on vegetated linear dunes that are mostly covered by biocrust. The vegetation-biocrust interaction underlies these oscillations and these do not occur if only vegetation dynamics is considered. The oscillations are "relaxation oscillations" which are characterized by two alternating attraction processes to equilibrium states with high low vegetation covers. The complex dynamics of the biocrust-vegetation model leads to unexpected scenarios, such as vegetation rehabilitation induced by drought or by grazing during which the system shifts to one of the bistable state dominated by a higher vegetation cover, or rehabilitation of vegetation that is induced by decrease in precipitation. The oscillation periods range from decades to millennia and they can interact and be affected by the climate system variability.

  20. Acoustic observations of near-bed sediment concentration and flux statistics above migrating sand dunes

    NASA Astrophysics Data System (ADS)

    Wilson, G. W.; Hay, A. E.

    2016-06-01

    A coherent Doppler profiler was used to measure coincident time series of velocity (u,w), sediment mass concentration (c), and sediment grain size (d), above mobile sand dunes in unidirectional flow (˜1 m/s, ˜1 m water depth). The measurements are used to extract statistical distributions of sediment concentration and flux just above the bed. Observed mass fluxes (uc,wc) were well fit by quasi-exponential distributions, at all positions along the dune profile, similar to previous observations of single-particle momenta for bed load over flat beds. Observed concentrations of moving particles were well fit by negative-binomial distributions, also similar to previous observations over flat beds. These probability distributions relate to two recent stochastic theories, previously derived and verified for uniform flow over flat beds. It is hypothesized that these theories may also be used as a local approximation in natural-scale flows with bed forms.

  1. Biosystematics of alkaliphilic streptomycetes isolated from seven locations across a beach and dune sand system.

    PubMed

    Antony-Babu, Sanjay; Goodfellow, Michael

    2008-11-01

    Alkaliphilic streptomycetes were isolated from composite sand samples collected from six out of seven locations across a beach and dune sand system using starch-casein-nitrate agar supplemented with cycloheximide and buffered to pH 10.5. The isolates had colonial and chemotaxonomic properties consistent with their classification in the genus Streptomyces. They were assigned to 49 multimembered and 114 single-membered colour-groups given their ability to produce pigments on oatmeal and peptone-yeast-extract-iron agars and to corresponding taxa based on whole-genome rep-PCR banding patterns. Twenty-four isolates representing the colour and rep-PCR groups grew well from pH 5 to 11, and optimally at pH 9, as did phylogenetically close members of the Streptomyces griseus 16S rRNA gene clade. One hundred and twelve representative alkaliphilic streptomycetes formed a heterogeneous but distinct clade in the Streptomyces 16S rRNA gene tree. A 3-dimensional representation of 16S rRNA sequence data showed that the alkaliphilic streptomycetes formed a distinct group in multidimensional taxospace. It is evident that alkaliphilic streptomycetes are common in the beach and dune sand system and that representatives of this community form new centers of taxonomic variation within the genus Streptomyces that can be equated with species. PMID:18777141

  2. Resonant interaction of acoustic waves with subaqueous bedforms: Sand dunes in the South China Sea.

    PubMed

    Chiu, Linus Y S; Chang, Andrea Y Y; Reeder, D Benjamin

    2015-12-01

    The large subaqueous sand dunes in the South China Sea are expected to produce the coupling of energy between acoustic normal modes. In this letter, resonant interaction between acoustic propagating modes and subaqueous bedforms are numerically investigated as a function of bedform wavelength, acoustic frequency and bedform packet length. The results demonstrate that bedform wavelength impacts acoustic mode coupling behavior, with the principal transfer of energy occurring between acoustic modes whose eigenvalue difference is equal to the peak value in the bedform wavenumber spectrum. The observed effect of wavelength is greater than that of acoustic frequency and bedform packet length. PMID:26723360

  3. Water Use for Cultivation Management of Watermelon in Upland Field on Sand Dune

    NASA Astrophysics Data System (ADS)

    Hashimoto, Iwao; Senge, Masateru; Itou, Kengo; Maruyama, Toshisuke

    Early-maturing cultivation of watermelon in a plastic tunnel was invetigated in upland field on sand dune on the coast of the Japan Sea to find water use to control blowing sand and to transplant seedlings. This region has low precipitation, low humidity, and strong wind in March and April, when sand is readily blown in the field. Water is used to control blowing sand on days with precipitation below 5 mm, minimum humidity below the meteorological average in April, and maximum wind velocity above the meteorological average in April. For the rooting and growth of watermelon seedlings, soil temperature needs to be raised because it is low in April. Ridges are mulched with transparent, porous polyethylene films 10 or more days before transplanting the seedlings and irrigated with sprinklers on fine days for the thermal storage of solar energy. The stored heat steams the mulched ridges to raise soil temperature to 15°C or higher on the day of transplanting the seedlings. The total amount of irrigation water used for watermelon cultivation was 432.7 mm, of which 23.6 mm was for blowing sand control and 26.6 mm was for transplanting the seedlings. The combined amount, 50.2 mm, is 11.6% of the total amount of water used for cultivation management.

  4. A contribution to the understanding of late Pleistocene dune sand-paleosol-sequences in Fuerteventura (Canary Islands)

    NASA Astrophysics Data System (ADS)

    Faust, Dominik; Yanes, Yurena; Willkommen, Tobias; Roettig, Christopher; Richter, Daniel; Richter, David; Suchodoletz, Hans v.; Zöller, Ludwig

    2015-10-01

    This paper describes dune sand-paleosol-sequences of four pits in Northern Fuerteventura (Canary Islands). The elaborated stratigraphy is reinforced with luminescence dating to provide a first chronological estimation. Apart from a Holocene colluvial layer, the sequence spans the period from ca. 50 ka to ca. 280 ka. Paleosols were formed during glacial times and point to a standstill in sand supply. The isotopic composition of terrestrial gastropod shells retrieved from soil horizons reflects fluctuations in humidity conditions during different edaphic phases. Because eolian sands were deposited during glacial times as well, it is inferred that soil development was simply caused by a decrease in sand supply independent of climate change. Our geomorphic, geochronological and isotopic results are discussed considering different perspectives of dune sand-paleosol intercalation and more broadly, soil-forming conditions in general.

  5. A gradient-based approach for automated crest-line detection and analysis of sand dune patterns on planetary surfaces

    NASA Astrophysics Data System (ADS)

    Lancaster, N.; LeBlanc, D.; Bebis, G.; Nicolescu, M.

    2015-12-01

    Dune-field patterns are believed to behave as self-organizing systems, but what causes the patterns to form is still poorly understood. The most obvious (and in many cases the most significant) aspect of a dune system is the pattern of dune crest lines. Extracting meaningful features such as crest length, orientation, spacing, bifurcations, and merging of crests from image data can reveal important information about the specific dune-field morphological properties, development, and response to changes in boundary conditions, but manual methods are labor-intensive and time-consuming. We are developing the capability to recognize and characterize patterns of sand dunes on planetary surfaces. Our goal is to develop a robust methodology and the necessary algorithms for automated or semi-automated extraction of dune morphometric information from image data. Our main approach uses image processing methods to extract gradient information from satellite images of dune fields. Typically, the gradients have a dominant magnitude and orientation. In many cases, the images have two major dominant gradient orientations, for the sunny and shaded side of the dunes. A histogram of the gradient orientations is used to determine the dominant orientation. A threshold is applied to the image based on gradient orientations which agree with the dominant orientation. The contours of the binary image can then be used to determine the dune crest-lines, based on pixel intensity values. Once the crest-lines have been extracted, the morphological properties can be computed. We have tested our approach on a variety of images of linear and crescentic (transverse) dunes and compared dune detection algorithms with manually-digitized dune crest lines, achieving true positive values of 0.57-0.99; and false positives values of 0.30-0.67, indicating that out approach is generally robust.

  6. Experimental measurement of diffusive extinction depth and soil moisture gradients in dune sand of Western Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Mughal, I.; Jadoon, K. Z.; Mai, P. M.; Al-Mashharawi, S.; Missimer, T. M.

    2012-12-01

    In arid lands, a major contribution to water loss is by soil water evaporation. Desert sand dunes in arid regions are devoid of runoff and have high rates of infiltration and water is commonly stored within them because of the low hydraulic conductivity soils within the underlying desert pavement. In such cases, moisture is confined in the sand dune below a depth, termed as the "extinction depth", where it is protected from evaporation during the long dry periods. The stored moisture below the extinction depth can be utilized to support desert agriculture and the subsurface areas below this depth can serve as potential sites for storage of surface runoff or treated waste water by artificial recharge. In this study, field experiments were conducted in Western Saudi Arabia to monitor the soil moisture gradients and determine the diffusive extinction depth of dune sand. A barrel with a diameter 150 cm and a height of 150 cm was installed underground in the field and was filled with dune sand. The sand was saturated with water and was exposed to natural conditions (evaporation and precipitation) for thirty days. The decline of the water level in the sand column was continuously recorded by using transducers and sensors installed at different depths to monitor the temporal variation of temperature and moisture content within the sand. The moisture content gradient showed a gradual decline during measurement. The effect of the diurnal variation of temperature was observed by the sensors installed in the upper 75 cm and was negligible at greater depths. The water level decline stabilized after twenty days and the extinction depth was established at 85 cm. In the field, a similar extinction depth was observed in the region where sand dunes overlay an impervious basement.

  7. Corrigendum to "Dune field reactivation from blowouts: Sevier Desert, UT, USA" [Aeolian Res. 11 (2013) 75-84

    NASA Astrophysics Data System (ADS)

    Barchyn, Thomas E.; Hugenholtz, Chris H.

    2016-06-01

    This corrigendum corrects an error made in the flux calculations in 'Dune field reactivation from blowouts: Sevier Desert, UT, USA'. The corrected data differ only slightly from the original publication and do not affect the conclusions of the paper.

  8. Early Successional Microhabitats Allow the Persistence of Endangered Plants in Coastal Sand Dunes

    PubMed Central

    2015-01-01

    Many species are adapted to disturbance and occur within dynamic, mosaic landscapes that contain early and late successional microhabitats. Human modification of disturbance regimes alters the availability of microhabitats and may affect the viability of species in these ecosystems. Because restoring historical disturbance regimes is typically expensive and requires action at large spatial scales, such restoration projects must be justified by linking the persistence of species with successional microhabitats. Coastal sand dune ecosystems worldwide are characterized by their endemic biodiversity and frequent disturbance. Dune-stabilizing invasive plants alter successional dynamics and may threaten species in these ecosystems. We examined the distribution and population dynamics of two federally endangered plant species, the annual Layia carnosa and the perennial Lupinus tidestromii, within a dune ecosystem in northern California, USA. We parameterized a matrix population model for L. tidestromii and examined the magnitude by which the successional stage of the habitat (early or late) influenced population dynamics. Both species had higher frequencies and L. tidestromii had higher frequency of seedlings in early successional habitats. Lupinus tidestromii plants in early successional microhabitats had higher projected rates of population growth than those associated with stabilized, late successional habitats, due primarily to higher rates of recruitment in early successional microhabitats. These results support the idea that restoration of disturbance is critical in historically dynamic landscapes. Our results suggest that large-scale restorations are necessary to allow persistence of the endemic plant species that characterize these ecosystems. PMID:25835390

  9. Early successional microhabitats allow the persistence of endangered plants in coastal sand dunes.

    PubMed

    Pardini, Eleanor A; Vickstrom, Kyle E; Knight, Tiffany M

    2015-01-01

    Many species are adapted to disturbance and occur within dynamic, mosaic landscapes that contain early and late successional microhabitats. Human modification of disturbance regimes alters the availability of microhabitats and may affect the viability of species in these ecosystems. Because restoring historical disturbance regimes is typically expensive and requires action at large spatial scales, such restoration projects must be justified by linking the persistence of species with successional microhabitats. Coastal sand dune ecosystems worldwide are characterized by their endemic biodiversity and frequent disturbance. Dune-stabilizing invasive plants alter successional dynamics and may threaten species in these ecosystems. We examined the distribution and population dynamics of two federally endangered plant species, the annual Layia carnosa and the perennial Lupinus tidestromii, within a dune ecosystem in northern California, USA. We parameterized a matrix population model for L. tidestromii and examined the magnitude by which the successional stage of the habitat (early or late) influenced population dynamics. Both species had higher frequencies and L. tidestromii had higher frequency of seedlings in early successional habitats. Lupinus tidestromii plants in early successional microhabitats had higher projected rates of population growth than those associated with stabilized, late successional habitats, due primarily to higher rates of recruitment in early successional microhabitats. These results support the idea that restoration of disturbance is critical in historically dynamic landscapes. Our results suggest that large-scale restorations are necessary to allow persistence of the endemic plant species that characterize these ecosystems. PMID:25835390

  10. Parabolic dunes and their transformations under environmental and climatic changes: Towards a conceptual framework for understanding and prediction

    NASA Astrophysics Data System (ADS)

    Yan, Na; Baas, Andreas C. W.

    2015-01-01

    The formation and evolution of parabolic aeolian dunes depend on vegetation, and as such are particularly sensitive to changes in environmental controls (e.g., temperature, precipitation, and wind regime) as well as to human disturbances (e.g., grazing, agriculture, and recreation). Parabolic dunes can develop from the stabilisation of highly mobile barchan dunes and transverse dunes as well as from blowouts, as a consequence of colonisation and establishment of vegetation when aeolian sand transport is reduced and/or when water stress is relieved (by increasing precipitation, for instance). Conversely, existing parabolic dunes can be activated and may be transformed into barchan dunes and/or transverse dunes when vegetation suffers environmental or anthropogenic stresses. Predicted increases in temperature and drought severity in various regions raise concerns that dune activation and transformations may intensify, and this intensification would have far-reaching implications for environmental, social, and economic sustainability. To date, a broad examination of the development of parabolic dunes and their related transformations across a variety of climate gradients has been absent. This paper reviews existing literature, compares data on the morphology and development of parabolic dunes in a comprehensive global inventory, and scrutinises the mechanisms of different dune transformations and the eco-geomorphic interactions involved. This knowledge is then integrated into a conceptual framework to facilitate understanding and prediction of potential aeolian dune transformations induced by changes in environmental controls and human activities. This conceptual framework can aid judicious land management policies for better adaptations to climatic changes.

  11. Aeolian sediment transport and landforms in managed coastal systems: A review

    NASA Astrophysics Data System (ADS)

    Jackson, Nancy L.; Nordstrom, Karl F.

    2011-11-01

    Humans modify beaches and dunes and aeolian transport potential by building structures, walking or driving, extracting resources, accommodating recreation, increasing levels of protection, removing storm deposits, or restoring landforms and habitats. The effects of human adjustments are reviewed here in terms of cross-shore zones because humans tend to compartmentalize landforms and habitats through their actions and regulations. Common human modifications in the beach zone include nourishing beaches, constructing shore protection structures and raking to remove litter. Modifications affecting the dune zone include altering the location, size and stability of dunes using sand-trapping fences, vegetation plantings and bulldozers or replacing dunes with shore-parallel structures. Modifications affecting the landward zone include buildings, roads, and parking lots. Landform and habitat resilience requires levels of dynamism and geomorphic complexity not often found in managed systems. Preserving or enhancing dynamism and complexity requires emphasis on innovative designs rooted in geomorphological and aeolian research. Future studies are suggested for: (1) quantifying the effect of small and large scale beach nourishment designs and sediment characteristics on dune initiation, development, and evolution; (2) quantifying the extent to which size and spacing of human structures and landform alterations inhibit sediment transfers alongshore or onshore; (3) identifying the advantages or disadvantages of "niche" dunes formed by structures; (4) providing quantitative data on the effects of raking or driving on the beach; (5) identifying the role of aeolian landforms on private properties; and (6) identifying alternative ways of employing sand fences and vegetation plantings to increase topographic and habitat diversity.

  12. Paleoenvironmental change in central Chile as inferred from OSL dating of ancient coastal sand dunes

    NASA Astrophysics Data System (ADS)

    Andrade, Belisario; Garcia, Juan L.; Lüthgens, Christopher; Fiebig, Markus

    2013-04-01

    To present day, the climatic and geographic expression of glacials and interglacials in the semiarid coast of central Chile remains unclear. The lack of well dated paleoclimatic records has up to now precluded firm conclusions whether maximum glacials evident in the Andes mountain range probably coincide with wetter (e.g., pluvials) or drier conditions at the coast. The natural region locally known as "Norte Chico" represents a transitional semiarid area between the extreme Atacama Desert to the North and the wetter, Mediterranean-like type of climate, to the South. In this semiarid region of Chile several generations of eolian sand dunes, some of them separated by paleosoils, have been preserved. In addition to the occurrence of paleosoils, thick debris flow deposits in some places overly ancient dune bodies, likely indicating significant environmental changes during the formation of these archives. However, the exact timing of these processes within the mid to late Pleistocene and Holocene is still unclear. A key aspect is that some of the ancient dunes are recently hanging above rocky coastlines, where no supply of sand exists today, likely implying their formation during a lower than present, probably glacio-eustatically induced sea level. The location of the research area in a key mid-latitude region of the eastern Pacific in combination with the preserved landform record offers a chance to reconstruct climatic shifts during the Quaternary by studying the variability of morphogenetic conditions throughout time, in order to promote knowledge about possible forcing factors driving climatic variability. Within this pilot study, samples for optically stimulated luminescence (OSL) dating were taken from three different stratigraphic sections that denote a complex environmental variability as indicated by paleosoils and debris flow units intercalated in ancient sand dunes. First dating results inferred from OSL measurements using a post-IR IRSL (pIRIR) protocol for

  13. Laboratory simulation of debris flows over sand dunes: Insights into gully-formation (Mars)

    NASA Astrophysics Data System (ADS)

    Jouannic, Gwenaël; Gargani, Julien; Conway, Susan J.; Costard, François; Balme, Matthew R.; Patel, Manish R.; Massé, Marion; Marmo, Chiara; Jomelli, Vincent; Ori, Gian G.

    2015-02-01

    Gully morphology (often summarized as comprising an alcove, channel and debris apron) is one of the key elements used to support the argument for liquid water in the recent past on Mars. Nevertheless, the processes that create different gully morphologies, on both Mars and Earth, are not fully understood. One of the puzzling morphologic attributes of Martian dune gullies is their apparent lack of an apron, or terminal deposit, which has caused debate about their formation process. Several physical processes such as runoff, debris flows, granular flows, and sliding blocks falling downslope could explain the formation of these gullies. In this work, we focus on the role of liquid in the substrate as well as in the flow and choose to experimentally test the plausibility of this hypothesis. We performed a series of analogue experiments to investigate the formation of gullies on sand dune-like substrates. We used controlled flows of water over an inclined sand-box to produce gully-like forms. Ice-rich sedimentary substrates were used, including substrates that included a thin liquid water-saturated thawed layer (an 'active layer') above the ice-saturated zone to give an analogue for a 'periglacial' environment. We quantitatively demonstrate that debris flow processes in 'periglacial' experiments are conducive to the formation of narrow and long channels with small terminal deposits with perched channels. By re-analysis of Martian elevation data for dune-gullies on Mars, we have found good evidence that such terminal deposits could exist. Our experiments revealed that increased water content in the thawed layer above the frozen bed increases flow-length due to the subsequent reduction in infiltration capacity. Water is incorporated into the flow by erosion of the wet thawed layer (sand plus water) and by drainage of the thawed layer. Using a Mars environment simulation chamber, we found that atmospheric pressure conditions seem to have a limited influence on the

  14. Application of spatial cross correlation to detection of migration of submarine sand dunes

    NASA Astrophysics Data System (ADS)

    Duffy, Garret P.; Hughes-Clarke, John E.

    2005-12-01

    Knowledge of migration rates of bedforms provides an indirect indication of the behavior of tidally averaged bottom currents, enables optimization of hydrographic survey frequency and may enable calculation of bedload transport rate. To measure bedform migration rate, we test the use of spatial correlation as a measurement method, which quantifies and locates a region of maximum similarity between two spatial variables. For the latter, we use consecutive eight-bit images of spatial gradient, derived from bathymetric digital terrain models, carrying out the correlation over this representation of the shape of the seabed rather than the bathymetric surface. The digital terrain models were compiled from six repeat multibeam surveys of a headland-associated bank near Saint John, New Brunswick, with a roughly 30-day interval. Vectors are drawn depicting the movement of a sand dune at time t0 toward a point in the spatial correlation array at a later time, t1. A number of different techniques of picking the end of the migration vector were used. The sinuosity of the dune crest at the scale of the correlation window has an impact on which migration vector is the better pick. Averaging of migration vectors from consecutive epochs diminishes random errors in the correlation picks using any single pair of images and creates a more accurate picture of the migration field. Migration rates and crest-relative migration directions vary substantially across the sand bank, reflecting the high gradients in bottom shear stress around the headland.

  15. Digital Data from the Great Sand Dunes and Poncha Springs Aeromagnetic Surveys, South-Central Colorado

    USGS Publications Warehouse

    Drenth, B.J.; Grauch, V.J.S.; Bankey, Viki; New Sense Geophysics, Ltd.

    2009-01-01

    This report contains digital data, image files, and text files describing data formats and survey procedures for two high-resolution aeromagnetic surveys in south-central Colorado: one in the eastern San Luis Valley, Alamosa and Saguache Counties, and the other in the southern Upper Arkansas Valley, Chaffee County. In the San Luis Valley, the Great Sand Dunes survey covers a large part of Great Sand Dunes National Park and Preserve and extends south along the mountain front to the foot of Mount Blanca. In the Upper Arkansas Valley, the Poncha Springs survey covers the town of Poncha Springs and vicinity. The digital files include grids, images, and flight-line data. Several derivative products from these data are also presented as grids and images, including two grids of reduced-to-pole aeromagnetic data and data continued to a reference surface. Images are presented in various formats and are intended to be used as input to geographic information systems, standard graphics software, or map plotting packages.

  16. New Ways to Continuous Measurements of Soil Moisture in a Hyper-arid Dune Sand Environment

    NASA Astrophysics Data System (ADS)

    Rödiger, T.; Königer, F.; Bonitz, F.; Siebert, C.

    2014-12-01

    Particularly in arid regions, a profound knowledge about infiltration rates eventually leading to groundwater recharge is the major parameter for any resources management. Unfortunately, in arid areas, the rate of infiltration is one of the most difficult values to derive with sufficient accuracy. In 2010 a 3D monitoring site was developed within a sand-dune belt SW of Riyadh (KSA). At the site, one 45°-sloped and 6 vertical drillings were deepened down to max. 13 m below ground and each is equipped with (i) continuous TDR sensors: Taupe- (sloped drilling) and tube- (vertical drilling) sensors as well as (ii) discrete temperature sensors to allow continuous moisture and temperature monitoring within the upper 13 m. The combination of the chosen sensors and the application of direct push by using a Geoprobe 7730DT guaranteed two major advantages: minimal invasiveness and continuous measurements of the relative dielectric permittivity along the borehole walls. Topp equation (Topp et al. 1980) was used to convert the raw signals from sensor into volumetric water content. To calibrate TDR data, the actual soil-moisture contents in the upper 8 m of the dune were derived from drilling core samples. Within the dune, the moisture fluctuates between 0-10.3 vol.-% and quickly reacts on seasonal climatic impacts in the uppermost 2 m, while moisture below persists at around 1.5 vol.-%. Only precipitation events with exceeding 6 mm/d induce increasing moisture in the uppermost 1.5 m of minimum 1.5 vol.-%. That indicates a threshold for effective precipitation of 6 mm/d below of which no remarkable infiltration occurs. During the observation, we derived from the observed precipitation events and the depth of the resulting infiltration fronts, that the infiltration process is driven by the amount of a singular precipitation event. As a consequence, recharge estimations for the so-called sand seas based on annual or monthly precipitation data are not applicable for the region.

  17. An integrated coastal model for aeolian and hydrodynamic sediment transport

    NASA Astrophysics Data System (ADS)

    Baart, F.; den Bieman, J.; van Koningsveld, M.; Luijendijk, A. P.; Parteli, E. J. R.; Plant, N. G.; Roelvink, J. A.; Storms, J. E. A.; de Vries, S.; van Thiel de Vries, J. S. M.; Ye, Q.

    2012-04-01

    Dunes are formed by aeolian and hydrodynamic processes. Over the last decades numerical models were developed that capture our knowledge of the hydrodynamic transport of sediment near the coast. At the same time others have worked on creating numerical models for aeolian-based transport. Here we show a coastal model that integrates three existing numerical models into one online-coupled system. The XBeach model simulates storm-induced erosion (Roelvink et al., 2009). The Delft3D model (Lesser et al., 2004) is used for long term morphology and the Dune model (Durán et al., 2010) is used to simulate the aeolian transport. These three models were adapted to be able to exchange bed updates in real time. The updated models were integrated using the ESMF framework (Hill et al., 2004), a system for composing coupled modeling systems. The goal of this integrated model is to capture the relevant coastal processes at different time and spatial scales. Aeolian transport can be relevant during storms when the strong winds are generating new dunes, but also under relative mild conditions when the dunes are strengthened by transporting sand from the intertidal area to the dunes. Hydrodynamic transport is also relevant during storms, when high water in combination with waves can cause dunes to avalanche and erode. While under normal conditions the hydrodynamic transport can result in an onshore transport of sediment up to the intertidal area. The exchange of sediment in the intertidal area is a dynamic interaction between the hydrodynamic transport and the aeolian transport. This dynamic interaction is particularly important for simulating dune evolution at timescales longer than individual storm events. The main contribution of the integrated model is that it simulates the dynamic exchange of sediment between aeolian and hydrodynamic models in the intertidal area. By integrating the numerical models, we hope to develop a model that has a broader scope and applicability than

  18. Macroinvertebrate community sample collection methods and data collected from Sand Creek and Medano Creek, Great Sand Dunes National Park and Preserve, Colorado, 2005–07

    USGS Publications Warehouse

    Ford, Morgan A.; Zuellig, Robert E.; Walters, David M.; Bruce, James F.

    2016-01-01

    This report provides a table of site descriptions, sample information, and semiquantitative aquatic macroinvertebrate data from 105 samples collected between 2005 and 2007 from 7 stream sites within the Sand Creek and Medano Creek watersheds in Great Sand Dunes National Park and Preserve, Saguache County, Colorado. Additionally, a short description of sample collection methods and laboratory sample processing procedures is presented. These data were collected in anticipation of assessing the potential effects of fish toxicants on macroinvertebrates.

  19. Persistent aeolian activity at Endeavour crater, Meridiani Planum, Mars; new observations from orbit and the surface

    NASA Astrophysics Data System (ADS)

    Chojnacki, Matthew; Johnson, Jeffrey R.; Moersch, Jeffrey E.; Fenton, Lori K.; Michaels, Timothy I.; Bell, James F., III

    2015-05-01

    Aeolian-driven bedform activity is now known to occur in many regions of Mars, based on surface and orbital observation of contemporary martian ripple and dune mobility events. Many of these sites have only been monitored with sufficient resolution data for the last few Mars years, when the High Resolution Imaging Science Experiment (HiRISE) began acquiring images of Mars. One exception is the well-monitored Endeavour crater in Meridiani Planum, which was one of the first known sites of unambiguous dune activity (migration and deflation). However, those early detections used lower resolution images over longer temporal baselines (versus the HIRISE data now available), leaving some measurements poorly constrained. New orbital and surface observations of Endeavour show multiple spatial (cm, m, km) and temporal (seasons, Mars year) scales of aeolian-driven surface change, which confirms earlier reports. Dome dunes in the eastern portion of the crater persistently deflate, disseminating dark sand across lighter-toned regolith and/or eroded bright dust, and likely contribute to the crater interior's episodic decreases in orbital albedo measurements. Other dome dunes are detected with the highest migration rates (4-12 m per Mars year) and volumetric sand fluxes reported yet for Mars. Estimated dune construction times or "turnover times" here and elsewhere on Mars are significantly shorter than martian obliquity cycles, implying that it is not necessary to invoke paleoclimate wind regimes to explain current dune morphologies. Located on the crater rim, the Opportunity rover detected evidence for near- and far-field aeolian-driven activity, with observations of spherules/sand movement in the rover workspace, bedform albedo alteration, and dust-lifting events. Observations of intracrater dunes show periodic shifting dark streaks that significantly constrain local wind regimes (directionality and seasonality). Constraints on wind directions from surface and orbital images

  20. Seed Germination and Seedling Emergence of Three Annuals Growing on Desert Sand Dunes in China

    PubMed Central

    TOBE, KAZUO; ZHANG, LIPING; OMASA, KENJI

    2005-01-01

    • Background and Aims Information on the initial growth characteristics of annuals found in Chinese deserts is very limited. The aim of this study was to investigate seed germination and interactive effects of irrigation and seed burial depth in sand on seedling emergence and seedling survival in three annuals (Agriophyllum squarrosum, Bassia dasyphylla and Aristida adscensionis) commonly growing on sand dunes in these regions. • Methods Effects of temperature, light and polyethylene glycol-6000 on seed germination were examined by irrigating seeds sown on filter paper in Petri dishes. Seedling emergence was examined for seeds sown on the surface of, or at different depths (5, 10, 20, 30, 40 and 50 mm) in, sand-filled pots, which were irrigated under different regimes. For seeds buried at a depth of 50 mm, seed viability was examined after irrigation of the pots. • Key Results Seeds of three species germinated at most temperatures recorded between spring and autumn in their native habitats. No seed dormancy was found in any species. For all three species, seedling emergence was most favoured when seeds were buried at a depth of 10 mm. When seeds sown on the sand surface were irrigated, seed germination was considerably suppressed due to water deficiency, but many seeds remained viable. For A. squarrosum and B. dasyphylla, many seeds that were deeply buried and irrigated remained ungerminated but viable, while for A. adscensionis deeply buried seeds germinated, but the seedlings did not emerge due to unfavourable seedling growth in deep sand. • Conclusions Precipitation is the most crucial factor in determining the seasonal emergence of seedlings of the three tested species in the field. The vertical distribution of seeds in sand determines the proportion of seeds that germinate after precipitation and acts to maintain seed banks over multiple years. PMID:15644383

  1. Stars and linear dunes on Mars

    NASA Technical Reports Server (NTRS)

    Edgett, Kenneth S.; Blumberg, Dan G.

    1994-01-01

    A field containing 11 star and incipient star dunes occurs on Mars at 8.8 deg S, 270.9 deg W. Examples of linear dunes are found in a crater at 59.4 deg S, 343 deg W. While rare, dune varieties that form in bi- and multidirectional wind regimes are not absent from the surface of Mars. The occurence of both of these dune fields offers new insight into the nature of martian wind conditions and sand supply. The linear dunes appears to have formed through modification of a formerly transverse aeolian deposit, suggesting a relatively recent change in local wind direction. The 11 dunes in the star dune locality show a progressive change from barchan to star form as each successive dune has traveled up into a valley, into a more complex wind regime. The star dunes corroborate the model of N. Lancaster (1989), for the formation of star dunes by projection of transverse dunes into a complex, topographically influenced wind regime. The star dunes have dark streaks emanating from them, providing evidence that the dunes were active at or near the time the relevant image was obtained by the Viking 1 orbiter in 1978. The star and linear dunes described here are located in different regions on the martian surface. Unlike most star and linear dunes on Earth, both martian examples are isolated occurrences; neither is part of a major sand sea. Previously published Mars general circulation model results suggest that the region in which the linear dune field occurs should be a bimodal wind regime, while the region in which the star dunes occur should be unimodal. The star dunes are probably the result of localized complication of the wind regime owing to topographic confinement of the dunes. Local topographic influence on wind regime is also evident in the linear dune field, as there are transverse dunes in close proximity to the linear dunes, and their occurrence is best explained by funneling of wind through a topographic gap in the upwind crater wall.

  2. An annotated list of the mayflies, stoneflies, and caddisflies of the Sand Creek basin, Great Sand Dunes National Park and Preserve, Colorado, 2004 and 2005

    USGS Publications Warehouse

    Zuellig, Robert E.; Kondratieff, Boris C.; Ruiter, David E.; Thorp, Richard A.

    2006-01-01

    The U.S. Geological Survey, in conjunction with the Great Sand Dunes National Park and Preserve and its cooperators, did an extensive inventory of certain targeted aquatic-insect groups in the Sand Creek Basin, Great Sand Dunes National Park and Preserve, to establish a species list for future monitoring efforts. Study sites were established to monitor these groups following disturbance events. Such potential disturbances may include, but are not limited to, chemical treatment of perennial stream reaches to remove nonnative fishes and the subsequent reintroduction of native fish species, increased public use of backcountry habitat (such as hiking and fishing), and natural disturbances such as fire. This report is an annotated list of the mayflies, stoneflies, and caddisflies found in the Sand Creek Basin, Great Sand Dunes National Park and Preserve, 2004 and 2005. The primary objective of the study was to qualitatively inventory target aquatic-insect groups in perennial streams, and selected unique standing-water habitats, such as springs, and wetlands associated with the Sand Creek Basin. Efforts focused on documenting the presence of aquatic-insect species within the following taxonomic groups: Ephemeroptera (mayflies), Plecoptera (stoneflies), and Trichoptera (caddisflies). These insect orders were chosen because published species accounts, geographic distribution, and identification keys exist for many Colorado species. Given the extent of available information for these groups, there existed a potential for identifying new species and documenting range extensions of known species.

  3. Selective deposition response to aeolian-fluvial sediment supply in the desert braided channel of the upper Yellow River, China

    NASA Astrophysics Data System (ADS)

    Wang, H.; Jia, X.; Li, Y.; Peng, W.

    2015-09-01

    Rivers flow across aeolian dunes and develop braided stream channels. Both aeolian and fluvial sediment supplies regulate sediment transport and deposition in such cross-dune braided rivers. Here we show a significant selective deposition in response to both aeolian and fluvial sediment supplies in the Ulan Buh desert braided channel. The Ulan Buh desert is the main coarse sediment source for this desert braided channel, and the mean percentage of the coarser (> 0.08 mm) grains on the aeolian dunes surface is 95.34 %. The lateral selective deposition process is developed by the interaction between the flows and the aeolian-fluvial sediment supplies, causing the coarser sediments (> 0.08 mm) from aeolian sand supply and bank erosion to accumulate in the channel centre and the finer fluvial sediments (< 0.08 mm) to be deposited on the bar and floodplain surfaces, forming a coarser-grained thalweg bed bounded by finer-grained floodplain surfaces. This lateral selective deposition reduces the downstream sediment transport and is a primary reason for the formation of an "above-ground" river in the braided reach of the upper Yellow River in response to aeolian and fluvial sediment supplies.

  4. Atlas of Dutch drift sands

    NASA Astrophysics Data System (ADS)

    Riksen, Michel; Jungerius, Pieter

    2013-04-01

    The Netherlands is well known for its aeolian landscapes. Frequent storms during the High Middle Ages (1000-1300 AD) reactivated Pleistocene coversands and river dunes and are responsible for the formation of the Holocene drift sands at a scale which is unique for Europe. A hypothesized relationship with farmer practices for making plaggensoils has recently been refuted, because drift sand formation began centuries earlier. The coastal dune belt with their parabolic dunes dates from the same period as the drift sand. An estimate of the extent of drift sands can be made from soil maps: drift sands are too young to show much profile development (Regosols). With this method Koster estimated the maximum extent of Holocene drift sands in the Netherlands to be about 800 km2 (Koster 2005). Laser altimetry allows a more precise estimate of the total surface affected by wind from the characteristic relief patterns produced by the Holocene wind, which is different from the smooth surface of cover sand deposits. Laser altimetry has been used before to investigate the mechanism of drift sand formation (Jungerius & Riksen 2010). Most of the surface affected by wind is not active anymore, but the tell-tale rough surface survived ages of different landuse. The total affected surface amounts to 825 km2. It is noteworthy that both methods give comparable results. We recorded a total number of 367 of affected areas of varying shapes, ranging in size from 1.6 ha to a large complex of drif sands of 7,119.5 ha. As is to be expected from their mode of origin, most occurrences are associated with cover sands, and with river dunes along the river Meuse and smaller rivers in other parts of the country. Particularly the final phases of cover sand and river dunes that show more relief as parabolic dunes were affected. There are also small aeolian deposits at the lee side blown from fallow agricultural fields but they are (sub)recent. Most of the relief is irregular, but the larger

  5. Hydrological behaviour of microbiotic crusts on sand dunes of NW China: Experimental evidences and numerical simulations

    NASA Astrophysics Data System (ADS)

    Wang, Xin Ping; Tedeschi, Anna; Orefice, Nadia; de Mascellis, Roberto; Menenti, Massimo

    2010-05-01

    Large ecological engineering projects were established to reduce and combat the hazards of sandstorms and desertification in northern China. An experiment to evaluate the effects of dunes stabilization by vegetation was carried out at Shapotou in Ningxia Hui Autonomous Region at the southeast edge of the Tengger Desert using xerophyte shrubs (Caragana korshinskii, Hedysarum scoparium and Artemisia ordosica) planted in straw checkerboard plots in 1956, 1964, 1981, 1987, 1998, and 2002. The fixed sand surface led to the formation of biotic soil crusts. Biotic crusts formed at the soil surface in the interspaces between shrubs and contribute to stabilization of soil surfaces. Previous results on the area have showed that: i) straw checkerboards enhance the capacity of the dune system to trap dust, leading to the accumulation of soil organic matter and nutrients; ii) the longer the period of dune stabilization, the greater the soil clay content in the shallow soil profile (0-5 cm), and greater the fractal dimension of soil particle size distribution. Benefit apart, one should be aware that the formation of a crusted layer at the soil surface is generally characterized by an altered pore-size distribution, with a frequent decrease of hydraulic conductivity which can induce changes of the water regime of the whole soil profile. Accordingly, the main objective of the paper is to evaluate the equivalent (from a hydraulic point of view) geometry of the crusted layer and to verify if the specific characteristics of the crusted soil layer, although local by nature, affect the hydrological behaviour of the whole soil profile. In fact, it is expected that, due to the formation of an upper, impeding soil layer, the lower soil layers do not reach saturation. Such behaviour has important consequences on both water flow and storages in soils. The final aim will be to understand how the crust at the surface of the artificially stabilized sand dune affects the infiltration capacity

  6. Evidence of Active Dune Sand on the Great Plains in the 19th Century from Accounts of Early Explorers

    NASA Astrophysics Data System (ADS)

    Muhs, Daniel R.; Holliday, Vance T.

    1995-03-01

    Eolian sand is extensive over the Great Plains of North America, but is at present mostly stabilized by vegetation. Accounts published by early explorers, however, indicate that at least parts of dune fields in Nebraska, Colorado, Kansas, New Mexico, and Texas were active in the 19th century. Based on an index of dune mobility and a regional tree-ring record, the probable causes for these periods of greater eolian activity are droughts, accompanied by higher temperatures, which greatly lowered the precipitation-to-evapotranspiration ratio and diminished the cover of stabilizing vegetation. In addition, observations by several explorers, and previous historical studies, indicate that rivers upwind of Great Plains dune fields had shallow, braided, sandy channels, as well as intermittent flow in the 19th century. Wide, braided, sandy rivers that were frequently dry would have increased sand supplies to active dune fields. We conclude that dune fields in the Great Plains are extremely sensitive to climate change and that the potential for reactivation of stabilized dunes in the future is high, with or without greenhouse warming.

  7. 44 CFR 65.11 - Evaluation of sand dunes in mapping coastal flood hazard areas.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... storm-induced dune erosion potential in its determination of coastal flood hazards and risk mapping efforts. The criterion to be used in the evaluation of dune erosion will apply to primary frontal dunes...

  8. 44 CFR 65.11 - Evaluation of sand dunes in mapping coastal flood hazard areas.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... storm-induced dune erosion potential in its determination of coastal flood hazards and risk mapping efforts. The criterion to be used in the evaluation of dune erosion will apply to primary frontal dunes...

  9. 44 CFR 65.11 - Evaluation of sand dunes in mapping coastal flood hazard areas.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... storm-induced dune erosion potential in its determination of coastal flood hazards and risk mapping efforts. The criterion to be used in the evaluation of dune erosion will apply to primary frontal dunes...

  10. 44 CFR 65.11 - Evaluation of sand dunes in mapping coastal flood hazard areas.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... storm-induced dune erosion potential in its determination of coastal flood hazards and risk mapping efforts. The criterion to be used in the evaluation of dune erosion will apply to primary frontal dunes...

  11. Aeolian Morphodynamics of Loess Landscapes

    NASA Astrophysics Data System (ADS)

    Mason, J. A.; Hanson, P. R.; Sweeney, M.; Loope, H. M.; Miao, X.; Lu, H.

    2012-12-01

    Striking aeolian landforms characterize loess landscapes of the Great Plains and Upper Mississippi Valley, USA, shaped in Late Pleistocene environments with many characteristics of modern deserts including large active dunefields. Similar aeolian morphodynamics are evident in northern China and the Columbia Basin, USA, and are clearly important for interpreting the paleoenvironmental record of loess. Four zones spanning the upwind margin of thick loess can be defined from landforms and surficial deposits. From upwind to downwind, they are: A) A largely loess-free landscape, with patchy to continuous aeolian sand mantling bedrock. B) Patchy loess deposits, often streamlined and potentially wind-aligned, intermingled with dunes and sand sheets; interbedding of loess and sand may be common. C) Thick, coarse loess with an abrupt upwind edge, with troughs, yardang-like ridges, and/or wind-aligned scarps recording large-scale wind erosion. D) Thinner, finer loess with little evidence of post-depositional wind erosion. The degree of development and spatial scale of these zones varies among the loess regions we studied. To explain this zonation we emphasize controls on re-entrainment of loess by the wind after initial deposition, across gradients of climate and vegetation. The role of saltating sand in dust entrainment through abrasion of fine materials is well known. Using the Portable In situ Wind Erosion Laboratory (PI-SWERL), we recently demonstrated that unvegetated Great Plains loess can also be directly entrained under wind conditions common in the region today (Sweeney et al., 2011, GSA Abstracts with Programs, Vol. 43, No. 5, p. 251). Rainfall-induced crusts largely prevent direct entrainment in fine loess, but appear less effective in coarse loess. We propose that in zone A, any loess deposited was both abraded by saltating sand and directly re-entrained, so none accumulated. Sparse vegetation in this zone was primarily an effect of climate, but the resulting

  12. Morphologic and Computational Fluid Dynamic Analysis of Sand Dune-Topographic Obstacle Interactions on Earth and Titan

    NASA Astrophysics Data System (ADS)

    Cisneros, J.; McDonald, G. D.; Hayes, A. G., Jr.; Ewing, R. C.

    2014-12-01

    Earth and Titan have vastly different physical environments but similar landscapes. Sand dunes, like those found in Earth's deserts, cover large areas of Titan's equatorial region and are important records of climate. Titan's linear dunes and their interaction with topographic obstacles within the dune fields suggest westerly wind flow, which is opposite the easterly flow predicted from several global climate models (GCMs). This interpretation of wind direction is largely based on the notion of the dunes as streamlines that flow around the obstacles. However, the mechanics of this behavior in granular, sandy material and bimodal flows are poorly understood. We examine the interactions between linear dunes and topographic obstacles by mapping the morphology of the obstacles and nearby dunes and using computational fluid dynamic (CFD) analysis of wind flow near obstacles. We map crest line orientation, length, and spacing of the dunes using visible satellite imagery for Earth and radar imagery for Titan. Obstacles are mapped from both satellite imagery and digital terrain models (DTMs). Topographic information about the obstacles, taken from DTMs, and wind data for Earth and Titan, taken from either wind stations or GCMs, are input into a CFD model called WindNinja 2.2.0. We use the CFD model to estimate wind velocity and direction near the obstacles, calculate gross bedform normal transport, and determine dune orientations around the obstacles. Our results indicate greatest variations in wind velocity and direction for regions where wind initially strikes the topographic obstacle and uniform wind flow patterns upwind and downwind of the obstacle. The modeled dune orientations deviate greatest from the mean regional orientations around areas of elevation change. This behavior is consistent on both Earth and Titan. Identifying how dune orientations are affected by topography on Titan provides a new basis to evaluate wind directions on Titan.

  13. Robotic Measurement of Aeolian Processes

    NASA Astrophysics Data System (ADS)

    Roberts, S.; Duperret, J. M.; Jerolmack, D. J.; Lancaster, N.; Nikolich, G.; Shipley, T. F.; Van Pelt, R. S.; Zobeck, T. M.; Koditschek, D. E.

    2015-12-01

    Local and regional measurements of sand transport and dust emission in complex natural settings presently lack spatiotemporal resolution adequate to inform models relevant for land management, climate policy, and the basic science of geomorphology. Deployments of wind, sand and dust sensors sophisticated enough to begin unpacking the complex relations among wind turbulence, surface roughness, sand flux and dust emission remain largely stationary. Aerial observations from satellites, planes and even UAVs help fill in, but none of these modalities offer the hope of "capturing the action" by being at the right place at the right time relative to the highly localized nature of sediment transport during wind storms. We have been developing a legged robot capable of rapidly traversing desert terrain, and are now adapting it to serve as a platform for scientific instrumentation. We aim to field a semi-autonomous, reactive mobile sensory package suited to the needs of aeolian science that can address the limitations of existing alternatives. This presentation reports on early trials in the Jornada LTER and White Sands National Monument aimed at gathering measurements of airflow and rates of sand transport on a dune face, assessing the role of roughness elements such as vegetation in modifying the wind shear stresses incident on the surface, and estimating erosion susceptibility in a natural arid soil. We will solicit ideas from the audience about other potentially interesting and viable measurement targets. Future close collaboration between aeolian, cognitive and robotics scientists such as we hope to promote through this presentation may yield machines with scientifically relevant sensory suites possessing sufficient autonomy to operate in-situ at the most intense episodes of wind and sediment movement under conditions far too uncomfortable and hazardous for human presence.

  14. 78 FR 37845 - Meeting of the Imperial Sand Dunes Recreation Area (ISDRA) Subgroup of the California Desert...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-24

    ... California Desert District Advisory Council SUMMARY: Notice is hereby given, in accordance with Public Laws 92-463 and 94-579, that the Imperial Sand Dunes Recreation Area Subgroup of the California Desert... filed in advance of the meeting for the California Desert District Advisory Council ISDRA Subgroup,...

  15. Optical dating of tufa via in situ aeolian sand grains: A case example from the Southern High Plains, USA

    USGS Publications Warehouse

    Rich, J.; Stokes, S.; Wood, W.; Bailey, R.

    2003-01-01

    Precipitated carbonates (commonly termed tufas or travertines) maybe of considerable utility for palaeoenvironmental reconstruction. Their potential, however, for such reconstruction is commonly limited by difficulties associated with their absolute age control. Attempts to date such deposits via uranium series techniques have been complicated by their chemically open behaviour. Here we describe an alternative approach to date tufa deposits associated with ephemeral saline lake basins from the Southern High Plains, USA. We have optically dated sand grains of a mixed aeolian/fluvial (spring fed) origin as the integrating dosimeter. We assume that the grains are fully resetting prior to their incorporation into the tufa deposits and employ a time-dependent disequilibrium dosimetric model to account for the build-up of uranium series daughter products. The approach was applied to a set of four samples with known stratigraphic association. We obtained stratigraphically sensible optical ages ranging from 78??8 to 56??4ka. These data are consistent with existing palaeoenvironmental models of regional recharge. ?? 2003 Elsevier Science Ltd. All rights reserved.

  16. Arbuscular mycorrhizal fungal community divergence within a common host plant in two different soils in a subarctic Aeolian sand area.

    PubMed

    Francini, Gaia; Männistö, Minna; Alaoja, Vilhelmiina; Kytöviita, Minna-Maarit

    2014-10-01

    There is rising awareness that different arbuscular mycorrhizal (AM) fungi have different autoecology and occupy different soil niches and that the benefits they provide to the host plant are dependent on plant-AM fungus combination. However, the role and community composition of AM fungi in succession are not well known and the northern latitudes remain poorly investigated ecosystems. We studied AM fungal communities in the roots of the grass Deschampsia flexuosa in two different, closely located, successional stages in a northern Aeolian sand area. The AM fungal taxa richness in planta was estimated by cloning and sequencing small subunit ribosomal RNA genes. AM colonization, shoot δ (13)C signature, and %N and %C were measured. Soil microbial community structure and AM fungal mycelium abundance were estimated using phospholipid (PLFA) and neutral lipid (NLFA) analyses. The two successional stages were characterized by distinct plant, microbial, and fungal communities. AM fungal species richness was very low in both the early and late successional stages. AM frequency in D. flexuosa roots was higher in the early successional stage than in the late one. The AM fungal taxa retrieved belonged to the genera generally adapted to Arctic or extreme environments. AM fungi seemed to be important in the early stage of the succession, suggesting that AM fungi may help plants to better cope with the harsh environmental conditions, especially in an early successional stage with more extreme environmental fluctuations. PMID:24687606

  17. Nonomuraea aegyptia sp. nov., a novel actinomycete isolated from a sand dune.

    PubMed

    Hozzein, Wael N; Goodfellow, Michael

    2007-08-01

    The taxonomic position of an unknown actinomycete isolated from a sand dune soil sample collected at Borg El-Arab in Egypt was established using a combination of genotypic and phenotypic data. Isolate S136(T) had chemotaxonomic and morphological properties consistent with its classification in the genus Nonomuraea and formed a distinct phyletic line in the Nonomuraea 16S rRNA gene tree. It was most closely related to the type strains of Nonomuraea helvata, Nonomuraea kuesteri and Nonomuraea turkmeniaca, sharing 16S rRNA gene similarities with these species of 97.1, 97.2 and 97.3%, respectively. The organism was distinguished from representatives of validly described Nonomuraea species using a range of phenotypic properties. It is apparent that the isolate belongs to a novel Nonomuraea species. The name proposed for this taxon is Nonomuraea aegyptia sp. nov., the type strain is S136(T) (=CGMCC 4.2054(T) = DSM 45082(T)). PMID:17318331

  18. Active sand dunes are largest dust source in the Sahara Desert

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Atreyee

    2012-09-01

    Dried up lakebeds and playas in the Sahara Desert of North Africa are large sources of dust in the atmosphere. The Bodélé Depression at the southern edge of the Sahara Desert, for example, is the single largest source of dust in the world; on average, 100 dust storms a year originate from the Bodélé Depression. A new study by Crouvi et al., however, finds that active sand dunes could be even bigger sources of desert dust in the atmosphere. Atmospheric dust plays active roles in climate and biological processes in the ocean: It regulates heating at the surface of the Earth; modifies cloud properties that affect rainfall; and acts as the only source of iron, a critical nutrient for microorganisms in the ocean. Little is known about types of dust sources in the Sahara Desert, which alone accounts for more than 50% of the dust in the atmosphere.

  19. Ecohydrology of biological soil crusts in arid sand dunes - integration from the micro-scale to the landscape

    NASA Astrophysics Data System (ADS)

    Veste, M.; Yair, A.; Breckle, S.-W.; Littmann, T.

    2012-04-01

    Biological soil crusts are distributed in many ecosystems from the polar, boreal, temperate, and mediterranean to the tropical regions. They are typical in habitats where the vegetation cover is sparse and microclimatic conditions permit their development. They play an important role for ecosystem processes, enhancing surface stability, changing surface properties and influencing hydrological processes and water re-distribution. The spatial distribution and availability of the water resources are the important factors for the vegetation in drylands. Key questions are (i) how the hydrological processes of the BSC are triggering the vegetation pattern on the landscape level and (ii) how we can integrate the hydrological processes on the micro-scale into the landscape processes and patterns? We studied the interrelations between biological soil crusts and vegetation pattern in arid sand dunes of the north-western Negev. Most of the dunes are covered by biological soil crusts and various types can be distinguished in different exposition and along a 40 km geo-ecological gradient. Rainfall increases from approx. 90 mm in the south to 170 mm in the northern dunes. Biological crusts cover nearly 90% of the sand dunes of the northern Haluza sand field, whereas the parts of the southern dune crests are still mobile. Furthermore, soil lichens plays an important role in the northern dunes, covering 30%-90% of the interdune area as well as of the stable north-/northwest slopes. The surrounding dune slopes are covered by a biological crust with cyanobacteria, green algae, mosses. Upon wetting, infiltration decreases and runoff can be observed in crust cover areas, even in sand dunes. Runoff depends on rainfall intensity, soil thickness and composition. The change of surface properties counteracts the effects of increasing rainfall on the vegetation along the geo-ecological gradient. Because of the increase in soil crust thickness the infiltration rates decrease in the dune area

  20. Theoretical and measured aeolian sand transport on a barrier island, Louisiana, USA

    USGS Publications Warehouse

    Dingler, J.R.; Hsu, S.A.; Reiss, T.E.

    1992-01-01

    Over the past 100 yr, the Isles Dernieres, a low lying barrier island chain along the coast of central Louisiana, has undergone more than 1km of northward beach face retreat within the loss of 70% of its surface area. The erosion results from a long term relative sea level rise coupled with day to day wind and wave action that ultimately favours erosion over deposition. The theoretical estimate of 1.28 m3 m-1 for the rate of sand transport by the northerly wind compares well with the measured backshore erosion rate of 1.26m3 m-1, which was determined by comparing beach profiles from the start and end of the period of northerly winds. The theoretical estimate of 0.04m3 m-1 for the rate of sand transport by the southerly wind, however, is notably less than the measured rate of 0.45m3 m-1. -from Authors

  1. Biological soil crusts of sand dunes in Cape Cod National Seashore, Massachusetts, USA.

    PubMed

    Smith, S M; Abed, R M M; Gercia-Pichel, F

    2004-08-01

    Biological soil crusts cover hundreds of hectares of sand dunes at the northern tip of Cape Cod National Seashore (Massachusetts, USA). Although the presence of crusts in this habitat has long been recognized, neither the organisms nor their ecological roles have been described. In this study, we report on the microbial community composition of crusts from this region and describe several of their physical and chemical attributes that bear on their environmental role. Microscopic and molecular analyses revealed that eukaryotic green algae belonging to the genera Klebsormidium or Geminella formed the bulk of the material sampled. Phylogenetic reconstruction of partial 16S rDNA sequences obtained from denaturing gradient gel electrophoresis (DGGE) fingerprints also revealed the presence of bacterial populations related to the subclass of the Proteobacteria, the newly described phylum Geothrix/ Holophaga/ Acidobacterium, the Cytophaga/ Flavobacterium/ Bacteroides group, and spirochetes. The presence of these crusts had significant effects on the hydric properties and nutrient status of the natural substrate. Although biological soil crusts are known to occur in dune environments around the world, this study enhances our knowledge of their geographic distribution and suggests a potential ecological role for crust communities in this landscape. PMID:15546040

  2. Mediterranean Coastal Sand Dune Vegetation: Influence of Natural and Anthropogenic Factors

    NASA Astrophysics Data System (ADS)

    Ciccarelli, Daniela

    2014-08-01

    The aim of the present work was to assess the conservation status of coastal dune systems in Tuscany (Italy). Emphasis was given to the presence and abundance of plant communities identified as habitat in accordance with the Directive 92/43/EEC. Twenty transects perpendicular to the shoreline were randomly positioned on the whole coastal area (30 km in length) in order to sample the full spectrum of plant communities. Vegetation zonation and relationships with the most frequent disturbance factors in the study area—beach cleaning, coastline erosion, presence of paths and roads, bathing settlements and trampling—were investigated through principal coordinate analysis and canonical correspondence analysis. Natural factors, such as distance from the sea and total length, were also considered. Differences in the conservation status of the sites were found, ranging from the total disappearance of the foredune habitats to the presence of the complete psammophilous (sand-loving) plant communities. Erosion, trampling, and paths were found to be closely correlated with degradation and habitat loss. Furthermore, the overall plant species diversity of dunes was measured with NHDune, a modified version of the Shannon index; while the incidence of invasive taxa was calculated using N, a naturalness index. However, these diversity indices proved to be a weaker bioindicator of ecosystem integrity than habitat composition along transects. A possible strategy for the conservation and management of these coastal areas could be to protect the foredunes from erosion and limit trampling through the installation of footbridges or the use of appropriate fences.

  3. Field observations of wind profiles and sand fluxes above the windward slope of a sand dune before and after the establishment of semi-buried straw checkerboard barriers

    NASA Astrophysics Data System (ADS)

    Zhang, Chunlai; Li, Qing; Zhou, Na; Zhang, Jiaqiong; Kang, Liqiang; Shen, Yaping; Jia, Wenru

    2016-03-01

    Straw checkerboard barriers are effective and widely used measures to control near-surface sand flow. The present study measured the wind profiles and sand mass flux above the windward slope of a transverse dune before and after the establishment of semi-buried straw checkerboards. The 0.2 m high checkerboards enhanced the aerodynamic roughness length to larger than 0.02 m, which was two to three orders of magnitude higher than that of the bare sand. The modified Charnock model predicted the roughness length of the sand bed during saltation well, with Cm = 0.138 ± 0.003. For the checkerboards, z0 increased slowly to a level around 0.037 m with increasing wind velocity and the rate of increase tended to slow down in strong wind. The barriers reduced sand flux and altered its vertical distribution. The total height-integrated dimensionless mass flux of saltating particles (q0) above bare sand followed the relationship ln q0 = a + b(u∗t/u∗) + c(u∗t/u∗)2, with a peak at u∗/u∗t ≈ 2, whereas a possible peak appeared at u∗/u∗t ≈ 1.5 above 1 m × 1 m straw checkerboards. The vertical distribution of mass flux above these barriers resembled an "elephant trunk", with maximum mass flux at 0.05-0.2 m above the bed, in contrast with the continuously and rapidly decreasing mass flux with increasing height above the bare sand. The influences of the barriers on the wind and sand flow prevent dune movement and alter the evolution of dune morphology.

  4. Aeolian Processes and Features on Venus

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald; Bender, Kelly C.; Saunders, Stephen; Schubert, Gerald; Weitz, Catherine M.

    1997-01-01

    Aeolian features on Venus include dune fields, eroded hills (yardangs), wind streaks, (miniature dunes of 10 to 30 cm wavelength). Although and possibly microdunes (in repetitive imaging by Magellan did show changes in the appearance of the surface, these changes are attributed to radar artifacts as a consequence of look direction rather than to physical changes of the surface. Nonetheless, measurements of wind speeds near the surface of Venus and wind tunnel simulations suggest that aeolian processes could be currently active on Venus. Study of radar images of terrestrial analogs shows that radar wavelength, polarization, and viewing geometry, including look direction and incidence angle, all influence the detection of dunes, yardangs, and wind streaks. For best detection, dune crests and yardangs should be oriented perpendicular to look direction. Longer wavelength systems can penetrate sand sheets a meter or more thick, rendering them invisible, especially in arid regions. For wind streaks to be visible, there must be a contrast in surface properties between the streak and the background on which it occurs. Nonetheless, more than 6000 aeolian features have been found on Magellan images of Venus, the most common of which are various wind streaks. Mapping wind streak orientations enables near-surface wind patterns to be inferred for the time of their formation. Type P streaks are associated with parabolic ejecta crater deposits and are considered to have formed in association with the impact event. Most Type P streaks are oriented westward, indicative of the upper altitude superrotation winds of Venus. Non Type P streaks have occurrences and orientations consistent with Hadley circulation. Some streaks in the southern hemisphere are oriented to the northeast, suggesting a Coriolis effect.

  5. Observations of Sand Dune Migration on the Colorado River in Grand Canyon using High-Resolution Multibeam Bathymetry

    NASA Astrophysics Data System (ADS)

    Kaplinski, M. A.; Buscmobe, D.; Ashley, T.; Tusso, R.; Grams, P. E.; McElroy, B. J.; Mueller, E. R.; Hamill, D.

    2015-12-01

    Repeat, high-resolution multibeam bathymetric surveys were conducted in March and July 2015 along a reach of the Colorado River in Grand Canyon near the Diamond Creek gage (362 km downstream of Lees Ferry, AZ) to characterize the migration of sand dunes. The surveys were collected as part of a study designed to quantify the relative importance of bedload and suspended sediment transport and develop a predictive relationship for bedload transport. Concurrent measurements of suspended-sediment concentrations, bed-sediment grain size, and water velocity were also collected. The study site is approximately 350 m long and 50 m wide; water depths are 7 to 10 m during normal flows; and a field of sand dunes form along its entire length with negligible coarse material at the bed surface. Full swath coverage of the site required about 6 to 10 minutes to complete with two passes of the survey vessel. Mapping occurred continuously during several survey periods. For each survey period, time-series of bathymetric maps were constructed from each pair of survey lines. In March, surveys were collected over durations of 2, 3, 9, and 11 hours, at discharges of 339 to 382 m3/s. In July, surveys were collected over durations of 4, 4, and 13 hours, at discharges ranging from 481 to 595 ft3/s. These surveys capture the migration of sand dunes over a wide range of discharge with an unprecedented temporal resolution. The dunes in March were between 30 and 50 cm in height, 5 m in length, and migrating downstream at about 1 m per hour. In July, dunes were between 75 and 130 cm in height and 10-15 m in length, and were migrating downstream at rates of 5 to 2 m per hour. The surveys also reveal that the dune migration is spatially and temporally variable, with fast-migrating small dunes variably superimposed on slower-moving larger dunes. The dunes also refract around shoreline talus piles and other flow constrictions collectively causing a large degree of dune deformation as they migrate.

  6. The potential scale of aeolian structures on Venus

    NASA Technical Reports Server (NTRS)

    Marshall, J. R.; Greeley, Ronald

    1991-01-01

    Simulations of the Venusian aeolian environment with the Venus Wind Tunnel have shown that microdunes are formed during the entrainment of sand-sized material. These structures are several tens of centimeters long (2-3 cm high) and combine the morphological and behavioral characteristics of both full-scale terrestrial dunes and current ripples formed in subaqueous environments. Their similarity to both reflects the fact that the Venusian atmosphere has a density intermediate between air and water. Although the development of microdunes in the wind tunnel experiments was limited by tunnel dimensions, it is possible to make some predictions about their potential size on Venus, and the potential size of related aeolian structures. Microdunes are fluid-filled structures (as are dunes and current ripples) and as such have no theoretical upper limit to their size from a fluid dynamics viewpoint. Limitations to size observed in subaqueous structures are set by, for example, water depth; limitations to the size of dunes are set by, for example, sand supply. It is therefore reasonable to suppose that the microdunes on Venus could evolve into much larger features than those observed in experiments. In addition, the researchers note that current ripples (which are closely related to microdunes) are often found in association with giant ripples that have dimensions similar to aeolian dunes. Thus, it may be reasonable to assume that analogous large scale structures occur on Venus. Both (terrestrial) aeolian and subaqueous environments generate structures in excess of one hundred meters in wavelength. Such dimensions may therefore be applicable to Venusian bedforms. Analysis of Magellan data may resolve the issue.

  7. Insights from a Geophysical and Geomorphological Mars Analog Field Study at the Great Kobuk Sand Dunes, Northwestern Alaska

    NASA Astrophysics Data System (ADS)

    McGinnis, R. N.; Dinwiddie, C. L.; Stillman, D.; Bjella, K.; Hooper, D. M.; Grimm, R. E.

    2010-12-01

    Terrestrial dune systems are used as natural analogs to improve understanding of the processes by which planetary dunes form and evolve. Selected terrestrial analogs are often warm-climate dune fields devoid of frozen volatiles, but cold-climate dunes offer a better analog for polar dunes on Mars. The cold-climate Great Kobuk Sand Dunes (GKSD) of Kobuk Valley National Park, Alaska, are a high-latitude, slowly migrating analog for polar, inter- and intracrater dune fields on Mars. The 67°N latitude, 62 km2 GKSD consist of moderately well sorted, fine-grained sands deposited within the Kobuk River valley ~50 km north of the Arctic Circle and ~160 km inland from Kotzebue Sound. Winds at the GKSD are influenced significantly by complex surrounding topography, an influence that is similar to many high-latitude inter- and intracrater dune fields on Mars. Average annual temperature and precipitation at the GKSD are -5°C and 430 mm. The dune field is generally resistant to atmospheric forcing (wind) for a significant portion of the year because of snowcover, similar to the effect that seasonal CO2 and H2O frost mantling have on Martian polar dunes. The dune field, which ranges in elevation from 33 to 170 m above mean sea level, consists of sand sheets as well as climbing and reversing barchanoid, transverse, longitudinal, and star dunes. Several tributaries to the Kobuk River bound and dissect the GKSD, producing cutbank exposures and alcoves that reveal internal structure. We report results from our detailed geophysical and geomorphological site characterization field study, which was conducted near peak freeze conditions from March 15 through April 2, 2010. We used multifrequency ground-penetrating radar (25, 50, 100, 250, 500, 1000 MHz) and capacitively coupled resistivity methods to image the internal structure of representative dunes, and performed ground truthing using a sampling auger, natural exposures, and Real-Time Kinematic Differential GPS. Data from twenty

  8. The Signature of Life in Stabilized Dune Topography

    NASA Astrophysics Data System (ADS)

    Barchyn, T. E.; Hugenholtz, C.

    2012-12-01

    Life dramatically affects aeolian dunes on Earth by modifying dune morphology and immobilizing sediment. Complete immobilization (stabilization) occurs when vegetation growth shelters the surface and eliminates sediment transport (and the capacity of the dune to clear vegetation). In unidirectional dune forms stabilization is usually preceded by a period of transition dominated by pronounced morphological change (e.g., parabolic dunes). Here, we hypothesize that stabilized topography holds previously unidentified clues detailing the kinematics and behavior of vegetation during stabilization (a 'signature'). During stabilization dune ridges advance downwind and 'bulldoze' vegetation in their path. We split dune ridges into a series of wind-parallel 'dune slices' and outline how slipface vegetation could prove to be a 'tipping point' in stabilization for each dune slice. Slipface vegetation sets off a self-reinforcing stabilization feedback, simplifying our treatment and yielding two predictable behaviors: slipfaces either clear vegetation (deposition rate > vegetation deposition tolerance), or succumb to vegetation and become immobilized (deposition rate < vegetation deposition tolerance). We model slipface deposition rates through slipface geometry and show how predictable variations in classical dune forms (i) could be responsible for incipient transformation of barchan to parabolic dunes, (ii) result in a progressive stabilization feedback fundamentally inconsistent with widely used dune activity indices, and (iii) record a quantitative signature of the relative kinematics of sediment flux and vegetation growth in stabilized slipface geometries. To explore the idea in real dune fields, we extract slipface deposition rates through slipface geometry recorded in digital terrain data for three dune fields: (i) Bigstick Sand Hills, SK, Canada, (ii) White Sands, NM, USA, and (iii) Cape Cod, MA, USA. With independent estimates of sediment flux and vegetation deposition

  9. Possible seasonal activity of gullies on an sand dune (Russell crater, Mars)

    NASA Astrophysics Data System (ADS)

    Jouannic, Gwénaël.; Gargani, Julien; Costard, François

    2010-05-01

    . Geophysical Research Letters, 30, doi:10.1029/2002GL016704. Vedie, E., Costard, F., Font, M. and Lagarde, J.L., 2008. Laboratory simulations of Martian gullies on sand dunes. Geophysical Research Letters, 35, doi:10.1029/2008GL035638.

  10. Timing and origin for sand dunes in the Green River Lowland of Illinois, upper Mississippi River Valley, USA

    USGS Publications Warehouse

    Miao, X.; Hanson, P.R.; Wang, Hongfang; Young, A.R.

    2010-01-01

    The recent increase in dune studies in North America has been heavily focused in the Great Plains, while less attention has historically been given to the dune fields east of the Mississippi River. Here we report ages and suggest a potential sediment source for sand dunes in the Green River Lowland, Illinois, which may provide a better understanding of the dynamic interactions between eolian, glacial, lacustrine and fluvial processes that shaped the landscapes of the upper Midwest. Seven coherent optically stimulated luminescence ages (OSL, or optical ages) obtained from four sites suggest that major dune construction in the Green River Lowland occurred within a narrow time window around 17,500 ago. This implies either an enhanced aridity or an episodic increase of sediment supply at 17,500 years ago, or combination of the both. Contrary to previous assertions that dune sand was sourced from the deflation of the underlying outwash sand deposited when the Lake Michigan Lobe retreated from the area, we propose that Green River Lowland dunes sand originated from the Green Bay Lobe through the Rock River. Specifically, sediment supply increased in the Rock River valley during drainage of Glacial Lake Scuppernong, which formed between ???18,000 and 17,000 years ago, when the Green Bay Lobe retreated from its terminal moraine. The lake drained catastrophically through the Rock River valley, providing glacial sediment and water to erode the preexisting sandy sediments. Throughout the remainder of the late Pleistocene, the Laurentide Ice Sheet drained into larger more northerly glacial lakes that in turn drained through other river valleys. Therefore, the dunes in the Green River Lowland formed only during the catastrophic drainage of Glacial Lake Scuppernong, but were stabilized through the remainder of the Pleistocene. This scenario explains the abrupt dune construction around 17,500 years ago, and explains the lack of later dune activity up to the Pleistocene

  11. Aeolian processes in Proctor Crater on Mars: Sedimentary history as analyzed from multiple data sets

    USGS Publications Warehouse

    Fenton, L.K.; Bandfield, J.L.; Ward, A.W.

    2003-01-01

    Proctor Crater is a 150 km diameter crater in Noachis Terra, within the southern highlands of Mars. The analysis leading to the sedimentary history incorporates several data sets including imagery, elevation, composition, and thermal inertia, mostly from the Mars Global Surveyor mission. The resulting stratigraphy reveals that the sedimentary history of Proctor Crater has involved a complex interaction of accumulating and eroding sedimentation. Aeolian features spanning much of the history of the crater interior dominate its surface, including large erosional pits, stratified beds of aeolian sediment, sand dunes, erosional and depositional streaks, dust devil tracks, and small bright bed forms that are probably granule ripples. Long ago, up to 450 m of layered sediment filled the crater basin, now exposed in eroded pits on the crater floor. These sediments are probably part of an ancient deposit of aeolian volcaniclastic material. Since then, some quantity of this material has been eroded from the top layers of the strata. Small, bright dune forms lie stratigraphically beneath the large dark dune field. Relative to the large dark dunes, the bright bed forms are immobile, although in places, their orientations are clearly influenced by the presence of the larger dunes. Their prevalence in the crater and their lack of compositional and thermal distinctiveness relative to the crater floor suggests that these features were produced locally from the eroding basin fill. Dust devil tracks form during the spring and summer, following a west-southwesterly wind. Early in the spring the dust devils are largely restricted to dark patches of sand. As the summer approaches, dust devil tracks become more plentiful and spread to the rest of the crater floor, indicating that the entire region acquires an annual deposit of dust that is revealed by seasonal dust devils. The dark dunes contain few dust devil tracks, suggesting that accumulated dust is swept away directly by saltation

  12. Effects of non-erodible particles on aeolian erosion: Wind-tunnel simulations of a sand oblong storage pile

    NASA Astrophysics Data System (ADS)

    Furieri, B.; Russeil, S.; Santos, J. M.; Harion, J. L.

    2013-11-01

    Non-erodible particles have strong influence on the aeolian erosion phenomena. An oblong stockpile model of sand (bimodal granulometry) was implemented to perform wind-tunnel experiments as similar literature works have only carried out experimental investigations on a flat bed of particles. Thus, the influence of the fluid flow structures around the complex obstacle will be analysed. The tested configurations consisted of two different values of non-erodible particles cover rate (10% and 20%), and three free stream velocities (6, 7 and 8 m s-1). Good repeatability was found. The results showed that the largest amount of particles emitted was for the highest wind velocity and the smallest cover rate. The temporal decreasing of emitted mass flux was found steeper for larger amount of non-erodible particles and higher velocity. The mass flux of particles decreases very strongly in the first four minutes of measurements and the cover rate influences this downward sloping. The same analysis applies for the effects of the free stream velocity. The qualitative analysis (high quality photographic system) of the stockpile surface gradual change has shown that non-erodible particles aggregation induces a pavement effect on some areas of the pile. This analysis indicated typical wind erosion zones: high wall friction on the crest line and lateral sides; low wall friction on the windward wall near the ground and on the recirculation downstream the leeward wall. The results and discussions presented here allows for the understanding of the impact of non-erodible particle on dust emissions.

  13. Using Lidar Data has Helped Improve the Understanding and Interpretation of Resources at Great Sand Dunes National Park and Preserve, Colorado, U.S.A.

    NASA Astrophysics Data System (ADS)

    Valdez, A. D.

    2015-05-01

    In 2011 Great Sand Dunes National Park, Colorado, was mapped using airborne lidar. The lidar dataset has been used by the National Park Service to measure resource properties and as a landform visualization tool. Examples will be presented.

  14. Effect of Holocene sea level change on aeolian activity in the coastal plain of Ras El Hekma area, NW coast of Egypt

    NASA Astrophysics Data System (ADS)

    Farghaly, Enas; Torab, Magdy

    2015-04-01

    Ras El Hekma area located in north western coast of Egypt, west of Alexandria city for about 220 km, in this area, environmental changes during the Holocene can be interpreted based on morphological and sedimentological similarities between Holocene geomorphic features such as cemented beaches and fossilized dunes with recent coastal features. Sand dunes and nebkhas are the most common aeolian landforms and they occur in semi-arid climatic conditions. The active separated coastal dunes and nebkhas dunes of Ras El-Hekma area are located between the swash zone and the coastal limestone ridges as well as in the coastal sabkhas. The effect of waves during storms reaches far beyond the actual beach and can cause great changes to sandy beaches at an exceptional speed. Sand accumulated by swash drifts with the wind on open beaches and bays. The aeolian sand, which originates from fluvial-marine sediments washed by sea waves. the available sediment depends on fluvial transport to the littoral zone and on biological activity in the carbonate environments as well as on longshore and cross-shore currents. This paper treats the coastal dunes in Ras El Hekma area in their entirety and defines the effects of sea level change on coastal sand dunes and sabkhas dunes, it depends upon field geomorphic surveying, sampling and mapping as well as satellite image interpretation using ENVI software and GIS techniques.

  15. Genesis of Dune Fields Under Unidirectional Wind with Sand Input Flux Control: An Experimental Approach

    NASA Astrophysics Data System (ADS)

    Garcia, A.; Courrech du Pont, S.; Rodriguez, S.; Valance, A.; Narteau, C.; Gao, X.; Lucas, A.

    2015-05-01

    Our experimental studies with control of wind and sediment source will characterize more precisely the different modes of dune formation and long-term evolution, and constrain the physics behind the morphogenesis and dynamics of dunes fields.

  16. Transient Electromagnetic Soundings Near Great Sand Dunes National Park and Preserve, San Luis Valley, Colorado (2006 Field Season)

    USGS Publications Warehouse

    Fitterman, David V.; de Sozua Filho, Oderson A.

    2009-01-01

    Time-domain electromagnetic (TEM) soundings were made near Great Sand Dunes National Park and Preserve in the San Luis Valley of southern Colorado to obtain subsurface information of use to hydrologic modeling. Seventeen soundings were made to the east and north of the sand dunes. Using a small loop TEM system, maximum exploration depths of about 75 to 150 m were obtained. In general, layered earth interpretations of the data found that resistivity decreases with depth. Comparison of soundings with geologic logs from nearby wells found that zones logged as having increased clay content usually corresponded with a significant resistivity decrease in the TEM determined model. This result supports the use of TEM soundings to map the location of the top of the clay unit deposited at the bottom of the ancient Lake Alamosa that filled the San Luis Valley from Pliocene to middle Pleistocene time.

  17. Geochemical and geomorphological evidence for the provenance of aeolian deposits in the Badain Jaran Desert, northwestern China

    NASA Astrophysics Data System (ADS)

    Hu, Fangen; Yang, Xiaoping

    2016-01-01

    Identifying provenance of aeolian deposits in the mid-latitude deserts of Asia is essential for understanding formation and changes of Earth surface processes due to palaeoclimatic fluctuations. While some earlier studies focused on the interpretation of palaeoenvironments on the basis of aeolian deposits mainly in the desert margins and inter-dune lacustrine sediments, research on provenance of desert sands in the vast Asian mid-latitude deserts is still rare. In this paper, we present new geochemical data which provide insight to the provenance of dune sands in the Badain Jaran Desert, northwestern China, an important part of this desert belt. We sampled aeolian and lacustrine sediments in various parts of the Badain Jaran Desert, and examined their major, trace and rare earth elements (REE) in bulk samples, coarse and fine fractions, respectively. In addition, we took and analyzed samples from a rarely known dune field with red sands, northeast of the Badain Jaran. Our results show that the sands from the Badain Jaran Desert are generally different from those in the red sand dune field in terms of REE pattern and geochemical characteristics, suggesting different sediment origins. Geochemical composition of the aeolian sand samples indicates these sediments should be mainly derived from mixed source rocks of granite, granitoids and granodiorite. Comparing the immobile trace elements and REE ratios of the samples from the Badain Jaran Desert, red sand dune field with rocks of granite, granitoids in their potential source areas, we conclude that: (1) The aeolian deposits in the Badain Jaran Desert are predominantly derived from the Qilian Mountains, northeastern Tibetan Plateau initially via fluvial processes; (2) The Altay Mountains and Mongolian Gobi are the ultimate source areas for the red sand dune field; (3) The Altai Mountains and Mongolian Gobi in the northwest, that could produce massive amounts of materials via intensive deflation and alluvial process

  18. Studies of the terrestrial O{sub 2} and carbon cycles in sand dune gases and in biosphere 2

    SciTech Connect

    Severinghaus, J.P.

    1995-12-31

    Molecular oxygen in the atmosphere is coupled tightly to the terrestrial carbon cycle by the processes of photosynthesis, respiration, and burning. This dissertation examines different aspects of this coupling in four chapters. Chapter 1 explores the feasibility of using air from sand dunes to reconstruct atmospheric O{sub 2} composition centuries ago. Such a record would reveal changes in the mass of the terrestrial biosphere, after correction for known fossil fuel combustion, and constrain the fate of anthropogenic CO{sub 2}.

  19. Deviations from self-similarity in barchan form and flux: The case of the Salton Sea dunes, California

    NASA Astrophysics Data System (ADS)

    Pelletier, Jon D.

    2013-12-01

    are the type of aeolian dune associated with a relatively uniform wind direction, incomplete sand coverage of the substrate, and low vegetation cover. Here I present an analysis of the morphology and migration rates of 40 dunes in the Salton Sea dune field using historical aerial orthophotographs, airborne laser swath mapping, terrestrial laser scanning, and measurements of the aerodynamic roughness length derived from wind velocity profiles. The data demonstrate that the Salton Sea dunes deviate from self-similarity such that smaller dunes have a lower ratio of slip face height to crest height and a lower slope, on average, compared with larger dunes and that smaller dunes migrate more slowly than would be predicted based on an inverse relationship between migration rate and dune height. The lack of self-similarity in barchans has been attributed to the dependence of speed-up ratios on dune size and the presence of a finite saturation length in the physics of aeolian transport. Here I argue that deviations from self-similarity at this study site are more likely due to the systematic decrease in aerodynamic roughness length with increasing elevation on stoss slopes. The data set I developed should prove useful to the aeolian geomorphic community for the further testing of models for barchan evolution.

  20. Streptomyces synnematoformans sp. nov., a novel actinomycete isolated from a sand dune soil in Egypt.

    PubMed

    Hozzein, Wael N; Goodfellow, Michael

    2007-09-01

    A polyphasic taxonomic study was undertaken to establish the status of a novel actinomycete, strain S155(T), isolated from a sand dune soil in Egypt. The organism formed characteristic synnemata-like structures and exhibited chemical and morphological features consistent with its classification in the genus Streptomyces. An almost-complete 16S rRNA gene sequence of the isolate was compared with corresponding sequences of representative streptomycetes. The 16S rRNA gene sequence data supported the assignment of the strain to the genus Streptomyces and showed that it formed a distinct phyletic line; the organism was most similar to the type strains of Streptomyces ruber (97.0 %), Streptomyces rubiginosus (97.0 %), Streptomyces roseiscleroticus (96.9 %) and Streptomyces thermoalcalitolerans (97.1 %). It was readily distinguished from the type strains of these species using a combination of phenotypic properties. On the basis of these results, strain S155(T) (=CGMCC 4.2055(T) =DSM 41902(T)) is proposed as the type strain of the novel species Streptomyces synnematoformans sp. nov. PMID:17766864

  1. Nocardiopsis arabia sp. nov., a halotolerant actinomycete isolated from a sand-dune soil.

    PubMed

    Hozzein, Wael N; Goodfellow, Michael

    2008-11-01

    The taxonomic status of an unknown actinomycete isolated from a sand-dune soil was established using a polyphasic approach. Isolate S186(T) had chemotaxonomic and morphological properties consistent with its classification in the genus Nocardiopsis, grew on agar plates at NaCl concentrations of up to 15 % (w/v) and formed a distinct phyletic line in the Nocardiopsis 16S rRNA gene sequence tree. Its closest phylogenetic neighbours were Nocardiopsis chromatogenes, Nocardiopsis composta, Nocardiopsis gilva and Nocardiopsis trehalosi, with sequence similarity to the various type strains of 96.9 %, but it was readily distinguished from the type strains of these and related species using a range of phenotypic properties. It is apparent from the genotypic and phenotypic data that strain S186(T) belongs to a novel species of the genus Nocardiopsis, for which the name Nocardiopsis arabia sp. nov. is proposed. The type strain is S186(T) (=CGMCC 4.2057(T) =DSM 45083(T)). PMID:18984686

  2. Immunotoxicological and neurotoxicological profile of health effects following subacute exposure to geogenic dust from sand dunes at the Nellis Dunes Recreation Area, Las Vegas, NV.

    PubMed

    Keil, Deborah; Buck, Brenda; Goossens, Dirk; Teng, Yuanxin; Leetham, Mallory; Murphy, Lacey; Pollard, James; Eggers, Margaret; McLaurin, Brett; Gerads, Russell; DeWitt, Jamie

    2016-01-15

    Exposure to geogenic particulate matter (PM) comprised of mineral particles has been linked to human health effects. However, very little data exist on health effects associated with geogenic dust exposure in natural settings. Therefore, we characterized particulate matter size, metal chemistry, and health effects of dust collected from the Nellis Dunes Recreation Area (NDRA), a popular off-road vehicle area located near Las Vegas, NV. Adult female B6C3F1 mice were exposed to several concentrations of mineral dust collected from active and vegetated sand dunes in NDRA. Dust samples (median diameter: 4.4 μm) were suspended in phosphate-buffered saline and delivered at concentrations ranging from 0.01 to 100 mg dust/kg body weight by oropharyngeal aspiration. ICP-MS analyses of total dissolution of the dust resulted in aluminum (55,090 μg/g), vanadium (70 μg/g), chromium (33 μg/g), manganese (511 μg/g), iron (21,600 μg/g), cobalt (9.4 μg/g), copper (69 μg/g), zinc (79 μg/g), arsenic (62 μg/g), strontium (620 μg/g), cesium (13 μg/g), lead 25 μg/g) and uranium (4.7 μg/g). Arsenic was present only as As(V). Mice received four exposures, once/week over 28-days to mimic a month of weekend exposures. Descriptive and functional assays to assess immunotoxicity and neurotoxicity were performed 24 h after the final exposure. The primary observation was that 0.1 to 100 mg/kg of this sand dune derived dust dose-responsively reduced antigen-specific IgM antibody responses, suggesting that dust from this area of NDRA may present a potential health risk. PMID:26644169

  3. Effects of disturbance on vegetation by sand accretion and erosion across coastal dune habitats on a barrier island

    PubMed Central

    Miller, Thomas E.

    2015-01-01

    Coastal geomorphology and vegetation are expected to be particularly sensitive to climate change, because of disturbances caused by sea-level rise and increased storm frequency. Dunes have critical reciprocal interactions with vegetation; dunes create habitats for plants, while plants help to build dunes and promote geomorphological stability. These interactions are also greatly affected by disturbances associated with sand movement, either in accretion (dune building) or in erosion. The magnitude and intensity of disturbances are expected to vary with habitat, from the more exposed and less stable foredunes, to low-lying and flood-prone interdunes, to the protected and older backdunes. Permanent plots were established at three different spatial scales on St George Island, FL, USA, where the vegetation and dune elevation were quantified annually from 2011 to 2013. Change in elevation, either through accretion or erosion, was used as a measure of year-to-year disturbance over the 2 years of the study. At the scale of different dune habitats, foredunes were found to have the greatest disturbance, while interdunes had the least. Elevation and habitat (i.e. foredune, interdune, backdune) were significantly correlated with plant community composition. Generalized linear models conducted within each habitat show that the change in elevation (disturbance) is also significantly correlated with the plant community, but only within foredunes and interdunes. The importance of disturbance in exposed foredunes was expected and was found to be related to an increasing abundance of a dominant species (Uniola paniculata) in eroding areas. The significant effect of disturbance in the relatively stable interdunes was surprising, and may be due to the importance of flooding associated with small changes in elevation in these low-lying areas. Overall, this study documents changes in the plant community associated with elevation, and demonstrates that the foredune and interdune

  4. Effects of disturbance on vegetation by sand accretion and erosion across coastal dune habitats on a barrier island.

    PubMed

    Miller, Thomas E

    2015-01-01

    Coastal geomorphology and vegetation are expected to be particularly sensitive to climate change, because of disturbances caused by sea-level rise and increased storm frequency. Dunes have critical reciprocal interactions with vegetation; dunes create habitats for plants, while plants help to build dunes and promote geomorphological stability. These interactions are also greatly affected by disturbances associated with sand movement, either in accretion (dune building) or in erosion. The magnitude and intensity of disturbances are expected to vary with habitat, from the more exposed and less stable foredunes, to low-lying and flood-prone interdunes, to the protected and older backdunes. Permanent plots were established at three different spatial scales on St George Island, FL, USA, where the vegetation and dune elevation were quantified annually from 2011 to 2013. Change in elevation, either through accretion or erosion, was used as a measure of year-to-year disturbance over the 2 years of the study. At the scale of different dune habitats, foredunes were found to have the greatest disturbance, while interdunes had the least. Elevation and habitat (i.e. foredune, interdune, backdune) were significantly correlated with plant community composition. Generalized linear models conducted within each habitat show that the change in elevation (disturbance) is also significantly correlated with the plant community, but only within foredunes and interdunes. The importance of disturbance in exposed foredunes was expected and was found to be related to an increasing abundance of a dominant species (Uniola paniculata) in eroding areas. The significant effect of disturbance in the relatively stable interdunes was surprising, and may be due to the importance of flooding associated with small changes in elevation in these low-lying areas. Overall, this study documents changes in the plant community associated with elevation, and demonstrates that the foredune and interdune

  5. Late Pleistocene and Holocene aeolian sedimentation in Gonghe Basin, northeastern Qinghai-Tibetan Plateau: Variability, processes, and climatic implications

    NASA Astrophysics Data System (ADS)

    Qiang, Mingrui; Jin, Yanxiang; Liu, Xingxing; Song, Lei; Li, Hao; Li, Fengshan; Chen, Fahu

    2016-01-01

    Although stratigraphic sequences of aeolian deposits in dryland areas have long been recognized as providing information about past environments, the exact nature of the environmental processes they reflect remains unclear. Here, we report the results of a detailed investigation of eight outcrop sections in the Gonghe Basin, northeastern Qinghai-Tibetan Plateau. Measurements of sediment grain-size and chemical composition indicate that the deposits are primarily of aeolian origin, consisting of interbedded, well-sorted sand, silty sand, loess and/or palaeosol; however, their occurrence varies from site to site. Fossil dune sands mainly occur in or close to the currently stabilized or semi-stabilized dune fields, whereas loess is distributed along the downwind marginal areas. This pattern of basin-scale differentiation was controlled mainly by spatial variability of sediment supply due to the antecedent sedimentary patterns within the basin. Together with previously-published optically stimulated luminescence (OSL) ages, 24 new OSL dates are used to elucidate the history of aeolian activity and its relationship to climatic changes. There is no apparent relationship between past dune activity and downwind loess deposits. Deposition of silty sand probably occurred during past phases of windy, dry and cold climate in the Late Pleistocene. However, climatic factors alone cannot explain the occurrence of silty sand deposition. This is because the deposition of silty sand was always preceded by episodes of fluvial deposition prior to river incision, thereby indicating the importance of an 'activated' sediment supply associated with fluvial processes. Deposition of well-sorted sand occurred episodically, not only during the Late Pleistocene, but also during the early- to mid-Holocene. Vegetation conditions, controlled either by the occurrence of intervals of moisture deficit during the Late Pleistocene or by changes in the balance between precipitation and

  6. Modeling the biogeomorphic evolution of coastal dunes in response to climate change

    NASA Astrophysics Data System (ADS)

    Keijsers, J. G. S.; De Groot, A. V.; Riksen, M. J. P. M.

    2016-06-01

    Coastal dunes form in many parts of the world the first flood defense line against the sea. To study effects of climate change on coastal dune evolution, we used a cellular model of dune, beach, and vegetation development. The model was calibrated and validated against field measurements of the Dutch coast, showing good performance for 10 year simulations. A sensitivity analysis showed that dune size and morphology are most sensitive to the rate of aeolian input and wave dissipation. Finally, 100 year climate change scenarios were run to establish the impacts of sea level rise and changes in vegetation growth rate on dune evolution. The results are in good agreement with conceptual models of dune evolution. Sea level rise largely determines the direction of dune evolution: the rate of rising controls whether dunes are able to preserve their height or sand volume while migrating landward. The effect of changing vegetation growth rates, resulting from climate change, is most manifest in dune response to large disturbances. If vegetation is removed halfway into the simulation, vegetation growth rate determines whether a foredune will revegetate and recover its height. Low vegetation growth rates result in mobile dunes that lose sand. The good agreement between observations and predictions indicates that the model successfully incorporates the suite of biogeomorphic and marine processes involved in dune building.

  7. Using Large-Scale Roughness Elements to Control Sand and Dust Flux at the Keeler Dunes, Keeler, CA

    NASA Astrophysics Data System (ADS)

    Gillies, John; McCarley-Holder, Grace

    2014-05-01

    Controlling dust emission from areas that subsequently degrade air quality and threaten human and animal health and reduce the quality of life for people residing in proximity to such sources is necessary, but also challenging. Recent research has indicated that arrays of large roughness elements (height >0.3 m) can be used effectively to modulate sand transport and the associated dust emissions. Prediction of the rate of sand flux reduction as a function of downwind distance upon entering an array of roughness elements, and the equilibrium flux reduction in the interior of the array is possible using the known geometric properties of the roughness elements, their number, and published relationships. Air quality in the town of Keeler, CA (36 deg 29' 17.92" N, 117 deg 52' 24.62" W) is degraded by levels of particulate matter <10 µm aerodynamic diameter (PM10) during periods of elevated wind speeds due to sand transport and dust emissions in the nearby Keeler Dunes. A demonstration project was designed to evaluate the effectiveness of an array of roughness elements composed of solid elements and managed vegetation to meet sand and dust flux reduction criteria. This project has two major goals: 1) to demonstrate that solid roughness elements placed on areas of the Keeler Dunes immediately arrest sand movement to specified levels (target of 85% reduction), and 2) to assess whether native plant species, planted in the sheltered area of the solid roughness elements can effectively thrive and subsequently replace the solid roughness to achieve the desired sand flux reduction control efficiency. This poster describes the results related mostly to objective one, as considerable time has to pass before sufficient data will be obtained to evaluate the success of the planted and managed vegetation to achieve a control level provided by the solid element roughness array.

  8. Quantification of Barchan Dune Evolution over Monthly to Interannual Time Scales Using Airborne LIDAR and Terrestrial Laser Scanning

    NASA Astrophysics Data System (ADS)

    Hoose, M.; Pelletier, J. D.

    2013-12-01

    Barchan dunes are among the most rapidly evolving landforms on Earth, with migration rates of up to 100 m/yr. Despite the central importance of barchan dunes in aeolian geomorphology and the relative ease of quantifying changes in their shape and position, basic questions remain about barchan dune evolution. For example, how does the position of a dune relative to its neighbors affect the evolution of a dune? The presence of a dune influences the air flow around the dune, potentially modifying the evolution of neighboring dunes. Also, a dune may grow in size more rapidly if neighboring dunes are located immediately upwind of the dune, thus providing additional sources of sand for the dune relative to the case of an isolated dune. To address these questions, we quantified the change in the position of 14 dunes, and the sand flux among them, in the Salton Sea dune field over two time scales: 1 month and 3 years. The 1-month change map was created using two TLS surveys completed in the summer of 2013, and the 3-year change map was created using the results of a TLS survey in 2013 and an airborne LIDAR survey from 2010. The PHOENICS Computational Fluid Dynamics solver was used to predict the change in the positions of the dunes and the flux of sand among them. PHOENICS was used to model the shear stress over the dune field using DEM data from the beginning of each interval of study, together with data on the wind profile collected at the study site using a wind tower. The output of PHOENICS was used as input to a shear-stress-dependent aeolian transport formula with the effect of slope on the threshold of entrainment included. Preliminary analyses of the ALSM- and TLS-derived change maps indicate that clustered dunes interact via boundary layer effects to alter the migration and growth rates of their downwind neighbors. Additionally, the effects of subdominant, southeasterly winds were observed in the 1-month change map in the form of sand wedges deposited along the

  9. Size distributions and dispersions along a 485-year chronosequence for sand dune vegetation

    PubMed Central

    Waugh, Jennifer M; Aarssen, Lonnie W

    2012-01-01

    Using a sand dune chronosequence that spans 485 years of primary succession, we collected nearest-neighbor vegetation data to test two predictions associated with the traditional “size-advantage” hypothesis for plant competitive ability: (1) the relative representation of larger species should increase in later stages of succession; and (2) resident species that are near neighbors should, over successional time, become more similar in plant body size and/or seed size than expected by random assembly. The first prediction was supported over the time period between mid to later succession, but the second prediction was not; that is, there was no temporal pattern across the chronosequence indicating that either larger resident species, or larger seeded resident species, increasingly exclude smaller ones from local neighborhoods over time. Rather, neighboring species were generally more different from each other in seed sizes than expected by random assembly. As larger species accumulate over time, some relatively small species are lost from later stages of succession, but species size distributions nevertheless remain strongly right-skewed—even in late succession—and species of disparate sizes are just as likely as in early succession to coexist as immediate neighbors. This local-scale coexistence of disparate sized neighbors might be accounted for—as in traditional interpretations—in terms of species differences in “physical-space-niches” (e.g., involving different rooting depths), combined with possible facilitation effects. We propose, however, that this coexistence may also occur because competitive ability involves more than just a size advantage, with traits associated with survival (tolerance of intense competition) and fecundity (offspring production despite intense competition) being at least equally important. PMID:22837820

  10. Mechanism of early meteoric diagenesis in carbonate dune sands, Tarama Island, Ryukyu Islands, southwestern Japan

    NASA Astrophysics Data System (ADS)

    Kumai, N.; Matsuda, H.

    2012-12-01

    Carbonate sediments are useful for the interpretation of depositional environments and environmental changes because their components and chemistry reflect depositional environments sensitively. However, primary records on their depositional environments are often modified by various types of early carbonate diagenesis immediately after their deposition. Longman (1980) pointed out that sedimentary textures and mineral compositions of carbonate sediments near a subaerial exposure surface are easily changed by dissolution and cementation associated with early meteoric diagenesis. Hudson (1977) also suggested that their primary stable carbon and oxygen isotopic compositions are altered by early meteoric diagenesis. In this way, the qualitative changes of carbonate sediments with early meteoric diagenesis are well known. On the other hand, the quantitative changes, time scale and detailed mechanisms of early meteoric diagenesis are not fully understood at present. To clarify the detailed mechanism of early meteoric diagenesis, the Upper Pleistocene carbonate dune sands in Tarama Island, the Ryukyu Islands, southwestern Japan, were analyzed. These sediments consist mainly of unconsolidated to weakly-consolidated carbonate sands, composed mainly of a variety of shallow marine bioclasts. Detailed petrographical observation and XRD and isotopic analyses were carried out. As a result of examinations of these carbonate sediments, low-Mg calcite (LMC), high-Mg calcite (HMC) and aragonite (ARG) contents of unconsolidated carbonate sands (UCS) are 20 to 47%, 0 to 44% and 33 to 54%, respectively. On the other hand, LMC, HMC and ARG contents of weakly-consolidated carbonate sands (WCS) are 64 to 95%, 0 to 18% and 5 to 18%, respectively. δ13C and δ18O values of UCS have narrow ranges of 0.51 to 1.70‰ and -1.87 to -1.46‰, respectively. On the other hand, δ13C and δ18O values of WCS have wide ranges of -4.67 to 0.62‰ and -4.82 to 2.92‰, respectively. The mineral and

  11. Speculation on martian north polar wind circulation and the resultant orientations of polar sand dunes

    USGS Publications Warehouse

    Ward, A.W.; Doyle, K.B.

    1983-01-01

    Dunes in the Martian north polar erg show two dominant orientations. When seen at frost cap minimum, dunes north of 80??N record east winds, dunes south of 80??N record west winds. Many of the transverse dunes are considered to be reversing dunes. Dunes in two fields may have reversed at least once during the lifetime of the Viking Orbiters. Poor agreement exists among published predictive models of north polar winds and the interpretations derived from the major published map of the north polar dunes. We propose that the average polar winds are: (1) strong, off-pole northwest winds in fall; (2) moderate west winds in winter; (3) latitude-dependent weak to strong off-pole northeast winds in spring; and (4) weak west winds in summer. Viking images of near-polar clouds confirm much of the hypothesis. Images discussed in other studies can be given alternative interpretations that support this hypothesis also. Over millenia, the combination of reversing west and east winds could produce the binodal distributions of dune orientations observed at the north pole. ?? 1983.

  12. An introduction to the INQUA Dunes Atlas Chronologic Database

    NASA Astrophysics Data System (ADS)

    Lancaster, Nicholas; Bristow, Charlie; Bubenzer, Olaf; Burrough, Sallie; Duller, Geoff; Halfen, Alan; Hesse, Paul; Roskin, Joel; Singhvi, Ashok; Thomas, David; Tripaldi, Alfonsina; Yang, Xiaoping; Wolfe, Stephen; Zarate, Marcelo

    2015-04-01

    The INQUA Dunes Atlas project has developed a global digital database of chronologic information for periods of desert sand dune accumulation and stabilization. The database currently contains 3278 luminescence and 535 radiocarbon records of directly dated periods of aeolian sand deposition from 1200 inland dune locations throughout the world, mostly in low- and mid-latitudes. Co-authors of this abstract have compiled data for their geographic region of expertise. Additional data are being added from publications, reports, and theses and dissertations as they become available. In addition to age data, the database includes information on the site location (including coordinates), dune type, and stratigraphic context, pertinent analytical information (e.g. luminescence procedures), and literature citations to the original data source (with doi). The database has so far enabled: (1) analysis of patterns of dated dune deposits at multiple temporal and spatial scales; (2) correlation of these patterns with other paleoclimatic proxies; and (3) assessment of the paleoclimatic and paleohydrologic implications of periods of aeolian deposition. The database has highlighted several issues with the available luminescence data set, especially the uneven spatial coverage of dated dune deposits and the heterogenous nature of the dune sedimentary record in many areas. It is clear that resolution of these issues to provide a better understanding of dune and dunefield responses to Quaternary climate change is not just a matter of additional dates. A systematic dating program that reflects fundamental patterns of dunefield sensitivity to climatic and hydrologic changes and relates dated deposits to patterns of dune morphology and sedimentology is needed as a research priority.

  13. Speculation on Martian north polar wind circulation and the resultant orientations of polar sand dunes

    NASA Technical Reports Server (NTRS)

    Ward, A. W.; Doyle, K. B.

    1983-01-01

    When seen at frost cap minimum, Martian north polar erg dunes north of 80 deg N record east winds, while those south of that latitude record west winds. Many of the transverse dunes are considered to be reversing dunes, and dunes in the two fields may have reversed at least once during the lifetime of the Viking Orbiters. It is proposed that the average polar winds are strong, off-pole northwest winds in the fall, moderate west winds in winter, latitude-dependent weak-to-strong off-pole northeast winds in spring, and weak west winds in summer, as has been largely confirmed by Viking images of near polar clouds. Over millenia, the combination of reversing west and east winds could produce the biomodal distributions of dune orientations observed at the north pole.

  14. Impacts of simulated climate change and fungal symbionts on survival and growth of a foundation species in sand dunes.

    PubMed

    Emery, Sarah M; Rudgers, Jennifer A

    2013-12-01

    For many ecosystems, one of the primary avenues of climate impact may be through changes to foundation species, which create habitats and sustain ecosystem services. For plants, microbial symbionts can often act as mutualists under abiotic stress and may mediate foundational plant responses to climate change. We manipulated the presence of endophytes in Ammophila breviligulata, a foundational sand dune species, to evaluate their potential to influence plant responses to climate change. We simulated projected climate change scenarios for temperature and precipitation using a growth chamber experiment. A 5 °C increase in temperature relative to current climate in northern Michigan reduced A. breviligulata survival by 45 %. Root biomass of A. breviligulata, which is critical to dune stabilization, was also strongly reduced by temperature. Plants inoculated with the endophyte had 14 % higher survival than endophyte-free plants. Contrary to our prediction, endophyte symbiosis did not alter the magnitude or direction of the effects of climate manipulations on A. breviligulata survival. However, in the absence of the endophyte, an increase in temperature increased the number of sand grains bound by roots by 80 %, while in symbiotic plants sand adherence did not significantly respond to temperature. Thus, plant-endophyte symbiosis actually negated the benefits in ecosystem function gained under a warmer climate. This study suggests that heat stress related to climate change in the Great Lakes may compromise the ability of A. breviligulata to stabilize dune ecosystems and reduce carbon storage and organic matter build-up in these early-successional systems due to reduced plant survival and root growth. PMID:23793582

  15. Groovy Dunes

    NASA Technical Reports Server (NTRS)

    2005-01-01

    23 April 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a favorite among the MGS MOC operations team at Malin Space Science Systems, another example of the grooved dunes in Herschel Crater. The fine-scale grooves on the sand dune surfaces were formed by wind erosion. The sand dune surfaces have, over time, become crusted and the dunes immobilized. Wind now has to scour sand from the surfaces of these bedforms, creating small wind erosion features known as yardangs in the sand.

    Location near: 15.7oS, 228.9oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Winter

  16. Tracking aeolian transport patterns across a mega-nourishment using video imagery

    NASA Astrophysics Data System (ADS)

    Wijnberg, Kathelijne; van der Weerd, Lianne; Hulscher, Suzanne

    2014-05-01

    Coastal dune areas protect the hinterland from flooding. In order to maintain the safety level provided by the dunes, it may be necessary to artificially supply the beach-dune system with sand. How to best design these shore nourishments, amongst others with respect to optimal dune growth on the long-term (decadal scale), is not yet clear. One reason for this is that current models for aeolian transport on beaches appear to have limited predictive capabilities regarding annual onshore sediment supply. These limited capabilities may be attributed to the lack of appropriate input data, for instance on moisture content of the beach surface, or shortcomings in process understanding. However, it may also be argued that for the long-term prediction of onshore aeolian sand supply from the beach to the dunes, we may need to develop some aggregated-scale transport equations, because the detailed input data required for the application of process-scale transport equations may never be available in reality. A first step towards the development of such new concepts for aggregated-scale transport equations is to increase phenomenological insight into the characteristics and number of aeolian transport events that account for the annual volume changes of the foredunes. This requires high-frequency, long-term data sets to capture the only intermittently occurring aeolian transport events. Automated video image collection seems a promising way to collect such data. In the present study we describe the movement (direction and speed) of sand patches and aeolian bed forms across a nourished site, using video imagery, to characterize aeolian transport pathways and their variability in time. The study site is a mega-nourishment (21 Mm3 of sand) that was recently constructed at the Dutch coast. This mega-nourishment, also referred to as the Sand Motor, is a pilot project that may potentially replace current practice of more frequently applying small scale nourishments. The mega

  17. 10 years of aeolian geomorphology at the EGU: past achievements and future challenges

    NASA Astrophysics Data System (ADS)

    Baas, Andreas C. W.; Wiggs, Giles F. S.; Claudin, Philippe

    2016-04-01

    On this tenth anniversary of the Aeolian Processes & Landforms session at the EGU the original conveners review and reflect on the recent achievements and expansion in aeolian geomorphological research, focussing on advances in our understanding of sand transport processes, dune development and dynamics, and the mechanisms and scalings involved. This talk will highlight the variety and impact of the dramatic increase in the extent and interest of research on aeolian processes and landforms in the last ten years, including the increasingly strong community presence at international meetings, the diversity and extent of collaborations across subject boundaries, and the application of new measurement technologies and mathematical approaches. We conclude with a forward-looking prospectus of exciting future challenges and open research questions.

  18. Geology along Mosca Pass Trail, Great Sand Dunes National Park and Preserve, Colorado

    USGS Publications Warehouse

    Lindsey, David A.; Klein, Terry L.; Valdez, Andrew; Webster, Robert J.

    2012-01-01

    Mosca Pass Trail takes the hiker on a journey into the Earth's crust. Here you can see the results of tremendous tectonic forces that bend and tear rocks apart and raise mountain ranges. The trail begins near the Sangre de Cristo fault, which separates the Sangre de Cristo Range from the San Luis Valley. The valley is part of the Rio Grande rift, a series of fault basins extending from southern New Mexico to central Colorado, wherein the Earth's crust has been pulled apart during the last 30 million years. Thousands of feet of sediment, brought by streams mostly from the Sangre de Cristo Range, fill the San Luis Valley beneath the Great Sand Dunes. The trail ends at Mosca Pass overlooking Huerfano Park. The park is part of the larger Raton Basin, formed by compression of the Earth's crust during the Laramide orogeny, which occurred 70–40 million years ago. Massive highlands, the remnants of which are preserved in the Sangre de Cristo Range, were uplifted and pushed over the western side of the Raton Basin. Streams eroded the highland as it rose and filled the Raton Basin with sediment. After the sediment was compacted and cemented to form sedimentary rock, the Huerfano River and other streams began to excavate the basin. Over an unknown but long timespan that probably lasted millions of years, relatively soft sedimentary rocks were removed by the river to form the valley we call "Huerfano Park." Between the ends of the trail, the hiker walks through an erosional "window," or opening, into red sedimentary rocks overridden by gneiss, a metamorphic rock, during the Laramide orogeny. This window gives the hiker a glimpse into the Laramide highland of 70–40 million years ago that preceded the present-day Sangre de Cristo Range. The window is the focus of this trail guide. At the east end of the trail, near Mosca Pass, another trail follows the ridgeline south to Carbonate Mountain. Immediately after reaching the first summit above tree line, this trail crosses a

  19. The aeolian wind tunnel

    NASA Technical Reports Server (NTRS)

    Iversen, J. D.

    1991-01-01

    The aeolian wind tunnel is a special case of a larger subset of the wind tunnel family which is designed to simulate the atmospheric surface layer winds to small scale (a member of this larger subset is usually called an atmospheric boundary layer wind tunnel or environmental wind tunnel). The atmospheric boundary layer wind tunnel is designed to simulate, as closely as possible, the mean velocity and turbulence that occur naturally in the atmospheric boundary layer (defined as the lowest portion of the atmosphere, of the order of 500 m, in which the winds are most greatly affected by surface roughness and topography). The aeolian wind tunnel is used for two purposes: to simulate the physics of the saltation process and to model at small scale the erosional and depositional processes associated with topographic surface features. For purposes of studying aeolian effects on the surface of Mars and Venus as well as on Earth, the aeolian wind tunnel continues to prove to be a useful tool for estimating wind speeds necessary to move small particles on the three planets as well as to determine the effects of topography on the evolution of aeolian features such as wind streaks and dune patterns.

  20. Development of cliff-top dunes in the Hengchun Peninsula of the southern Taiwan

    NASA Astrophysics Data System (ADS)

    Ho, Lih-Der; Wong, Yi-Chia; Lüthgens, Christopher; Chyi, Shyhjeng; Yen, Jiun-Yee

    2016-04-01

    Fung-Chuei-Sha cliff-top dune is located on a 60-meter-high cliff surface in the Hengchun Peninsula of Taiwan. It is still unclear that the history of the aeolian sediment deposition on the top of the cliff, and what factors may influence the evolution of the cliff-top dune. This study aims to investigate the evolutionary history of the Fung-Chuei-Sha cliff-top dune by analyzing the grain size, CaCO3 concentration and absolute dates of the dune sediment, and the land snail species found in the deposit.The results show three phases of aeolian sand accumulation in the Fung-Chuei-Sha cliff-top dune. 1. Phase I: aeolian sediment may accumulate in the bottom of the cliff between 2800 yr BP and 2100 yr BP. 2. Phase II: the cliff-top dune accumulated a 3.1-meter-thick sediment layer from 1500 yr BP to 1300 yr BP. In this phase, dune sediment deposited in a rate of 1.55 cm/yr. The paleoclimate proxy data from the nearby area indicate that the environment was cool and dry, and the Asian winter monsoon was strong during 1500-1300 yr BP. It blew the old coastal dune deposit at the bottom of the cliff up to the cliff top, and induced the C14 age reverse phenomenon. The aeolian deposition began to stabilize because of the wetter environment in the end of the Phase II. At the same time, the stable dune formed the silt and clay layer on the surface of the dune. A layer cemented by CaCO3 may indicate the position of the palaeo-groundwater table. 3. Phase III: the phase stared from 1500-1300 yr BP to the present. A 2.4-meter-thick eolian deposit was accumulated in a rate of 0.18 cm/yr during this phase. Four kinds of land snail shells, Cyclophorus formosensis, Hemiphaedusa similaris, Platyrhaphe swinhoei, Odontartemon heudei, which prefer to live in a relatively humid environment, were commonly observed in the dune deposit, indicating the environment was wet and consequently caused a slower aeolian deposition rate at this phase. Between 1000 yr BP and 500 yr BP, there was a

  1. Temperature and humidity within a mobile barchan sand dune, implications for microbial survival

    NASA Astrophysics Data System (ADS)

    Louge, M. Y.; Valance, A.; el-Moctar, A. Ould; Xu, J.; Hay, A. G.; Richer, R.

    2013-12-01

    Although microorganisms play an important role in biological soil crusts and plant rhizospheres in deserts, it is unclear whether temperature and moisture deep within relatively fast moving hyperarid mobile dunes present a suitable habitat for microbes. To inform this question, we report measurements of temperature and humidity from probes initially sunk below the leeward avalanche face of a mobile barchan dune in the Qatar desert, emerging windward after 15 months of deep burial. Despite large diurnal variations on the surface, temperature within this dune of 5.6 m height is predictable, as long as dune advection is properly considered. It evolves on smaller amplitude and longer timescale than the surface, lagging average seasonal atmospheric conditions by about 2 months. We contrast these deep thermal records with measurements of diurnal variations of the temperature profile just below the surface, which we calculate with a thermal model predicting the relative roles of wind‒driven convective heat transfer and net radiation flux on the dune. Observations and analyses also suggest why random precipitation on the leeward face produces a more unpredictable moisture patchwork on the windward slope. By rapidly reaching sheltered depths, small quantities of rain falling on that face escape evaporation and endure within the dune until resurfacing upwind. At depths below 10 cm, we show that moisture, rather than temperature, determines the viability of microbes and we provide initial microscopic and respiration‒based evidence of their presence below the windward slope.

  2. High (ground) water levels and dune development in central Australia: TL dates from gypsum and quartz dunes around Lake Lewis (Napperby), Northern Territory

    NASA Astrophysics Data System (ADS)

    Chen, X. Y.; Chappell, J.; Murray, A. S.

    1995-03-01

    An episode of high lake levels prior to the last maximum glaciation has been identified at many localities in wastern Australia. Similar events have been recognized at playa lakes in central Australia, where gypsum dunes along playa margins formed during one or more episodes of high groundwater discharge, with a large influx of calcium sulphate. At Lake Lewis, exposures at two islands show similar sediment sequences: three pedogenic gypcrete layers interbedded with aeolian quartz and gypsum sand horizons form three units within gypsum dunes up to 7 m high. The lowest unit has cliffed edges buried by the upper units, indicating a significant time break. Four TL dates (coarse-grained quartz) show that this lowest unit was deposited at or before 70-80 ka. The middle unit of mixed gypsum and quartz sand capped by gypcrete represents the major phase of gypsum dune formation, and 6 TL dates range from 33 to 46 ka with overlapping error bars. These are slightly younger but statistically similar to TL dates (from 39 to 59 ka) of the shoreline gypsum dune at Lake Amadeus in the same region. The top unit of the two islands, up to 1 m thick, has not yet been well dated. One date is inconsistent with the well dated middle layer below, possibly because of incomplete bleaching, and has been rejected. The other date (17 ± 5 ka) is much younger which possibly indicates a minor and local reactivation of old gypsum sediments. At the lake margin, there are quartz dunes overlying the gypsum dunes, and a buried aeolian quartz sand layer occurs in a lake-margin terrace. These represent reactivation of the regional quartz dune field after the major gypsum dune formation. Two consistent TL dates (21 ± 4 ka and 23 ± 6 ka) indicate that regional dunes were active at about the time of the Last Glacial Maximum.

  3. Contribution to the physical-mechanical study of cement CRS basis of dune-sand powder and other minerals

    NASA Astrophysics Data System (ADS)

    Dahmani, Saci; Kriker, Abdelouahed

    2016-07-01

    The Portland cements are increasingly used for the manufacture of cement materials (mortar or concrete). Sighting the increasing demand of the cement in the field of construction, and the wealth of our country of minerals. It is time to value these local materials in construction materials and in the manufacture of cement for the manufacture of a new type of cement or for the improvement of the cement of characteristics for several reasons either technical, or ecological or economic or to improve certain properties to the State fees or hardened. The uses of mineral additions remain associated to disadvantages on the time of solidification and the development of the mechanical resistance at the young age [8]. The objective of our work is to study the effects of the incorporation of additions minerals such the pozzolan (active addition) [3], slag of blast furnace (active addition) [4] and the sand dune powder (inert addition) on the physico-mechanical properties of compositions of mortar collaborated compositions according to different binary combinations basis of these additions. This will allow selecting of optimal dosages of these combinations the more efficient, from the point of view of mechanical resistanceas well. The results of this research work confirm that the rate of 10% of pozzolan, slag or powder of dune sand contributes positively on the development of resistance in the long term, at of this proportion time,there is a decrease in the latter except for the slag (20 - 40%) [4]Seems the more effective resistors and physical properties.

  4. Ectomycorrhizal ecology under primary succession on coastal sand dunes: interactions involving Pinus contorta, suilloid fungi and deer.

    PubMed

    Ashkannejhad, Sara; Horton, Thomas R

    2006-01-01

    Ectomycorrhizal fungi (EMF) are critical for pine establishment under primary succession. The species of EMF supporting primary successional pine seedlings on coastal sand dunes and mechanisms for their establishment were investigated. Fungi were identified from ectomycorrhizal roots using molecular techniques. Field seedlings were collected from forested and nonforested zones. Laboratory seedlings were grown in soils collected from the same zones, and in sterile soils inoculated with fresh and 1-yr-old dry deer fecal pellets. Suilloid fungi were frequently observed on all seedlings. A diverse group of fungi was available to seedlings in forested zones. A less diverse group of fungi was available to field seedlings in nonforested zones and all laboratory bioassay seedlings. Deer fecal inoculant yielded an average of two EMF per seedling. Both Suillus and Rhizopogon species dominated seedlings inoculated with fresh deer feces, but only Rhizopogon species dominated seedlings inoculated with 1-yr-old feces. Suilloid fungi are dispersed by deer, produce resistant spore banks and are the principle fungi supporting seedlings on the sand dunes. PMID:16411937

  5. Vegetation controls on the maximum size of coastal dunes

    NASA Astrophysics Data System (ADS)

    Durán, Orencio; Moore, Laura J.

    2013-10-01

    Coastal dunes, in particular foredunes, support a resilient ecosystem and reduce coastal vulnerability to storms. In contrast to dry desert dunes, coastal dunes arise from interactions between biological and physical processes. Ecologists have traditionally addressed coastal ecosystems by assuming that they adapt to preexisting dune topography, whereas geomorphologists have studied the properties of foredunes primarily in connection to physical, not biological, factors. Here, we study foredune development using an ecomorphodynamic model that resolves the coevolution of topography and vegetation in response to both physical and ecological factors. We find that foredune growth is eventually limited by a negative feedback between wind flow and topography. As a consequence, steady-state foredunes are scale invariant, which allows us to derive scaling relations for maximum foredune height and formation time. These relations suggest that plant zonation (in particular for strand "dune-building" species) is the primary factor controlling the maximum size of foredunes and therefore the amount of sand stored in a coastal dune system. We also find that aeolian sand supply to the dunes determines the timescale of foredune formation. These results offer a potential explanation for the empirical relation between beach type and foredune size, in which large (small) foredunes are found on dissipative (reflective) beaches. Higher waves associated with dissipative beaches increase the disturbance of strand species, which shifts foredune formation landward and thus leads to larger foredunes. In this scenario, plants play a much more active role in modifying their habitat and altering coastal vulnerability than previously thought.

  6. Vegetation controls on the maximum size of coastal dunes

    PubMed Central

    Durán, Orencio; Moore, Laura J.

    2013-01-01

    Coastal dunes, in particular foredunes, support a resilient ecosystem and reduce coastal vulnerability to storms. In contrast to dry desert dunes, coastal dunes arise from interactions between biological and physical processes. Ecologists have traditionally addressed coastal ecosystems by assuming that they adapt to preexisting dune topography, whereas geomorphologists have studied the properties of foredunes primarily in connection to physical, not biological, factors. Here, we study foredune development using an ecomorphodynamic model that resolves the coevolution of topography and vegetation in response to both physical and ecological factors. We find that foredune growth is eventually limited by a negative feedback between wind flow and topography. As a consequence, steady-state foredunes are scale invariant, which allows us to derive scaling relations for maximum foredune height and formation time. These relations suggest that plant zonation (in particular for strand “dune-building” species) is the primary factor controlling the maximum size of foredunes and therefore the amount of sand stored in a coastal dune system. We also find that aeolian sand supply to the dunes determines the timescale of foredune formation. These results offer a potential explanation for the empirical relation between beach type and foredune size, in which large (small) foredunes are found on dissipative (reflective) beaches. Higher waves associated with dissipative beaches increase the disturbance of strand species, which shifts foredune formation landward and thus leads to larger foredunes. In this scenario, plants play a much more active role in modifying their habitat and altering coastal vulnerability than previously thought. PMID:24101481

  7. Difference in the wind speeds required for initiation versus continuation of sand transport on mars: implications for dunes and dust storms.

    PubMed

    Kok, Jasper F

    2010-02-19

    Much of the surface of Mars is covered by dunes, ripples, and other features formed by the blowing of sand by wind, known as saltation. In addition, saltation loads the atmosphere with dust aerosols, which dominate the Martian climate. We show here that saltation can be maintained on Mars by wind speeds an order of magnitude less than required to initiate it. We further show that this hysteresis effect causes saltation to occur for much lower wind speeds than previously thought. These findings have important implications for the formation of dust storms, sand dunes, and ripples on Mars. PMID:20366891

  8. Holocene aeolian sediments on the NE Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Stauch, G.; Lehmkuhl, F.; Hilgers, A.; Zhao, H.

    2012-04-01

    The semiarid climate of the northeastern Tibetan Plateau supports the formation of different types of aeolian sediments and landforms during the Holocene. Aeolians silts and sands in the catchment of the Donggi Cona in an elevation above 4000m to 4800 m asl reflect variable climate conditions during that time as well as different sediment sources. Based on 51 OSL datings and catchment wide geomorphological mapping a complex pattern of long and short distance sediment transport has been reconstructed. Only few aeolian archives are preserved from the late Pleistocene in this mountain environment indicating cold and dry climate conditions which prevented a continuous accumulation. During the early Holocene a phase of increased aeolian sedimentation of sand at the slopes of the mountains has been reconstructed. The sand originated from a large alluvial fan which was highly active during the Pleistocene. In addition, a thin loess cover is preserved at a few sites in the neighboring mountains ranges. The sedimentation of the loess started around 2000 years later than the sedimentation of the sand at the foot slope. Both archives are related to an increase in precipitation at the northern margin of the Tibetan Plateau which was related to a strengthening of the Asian Monsoon during that time. The wetter climate conditions favored the development of a vegetation cover which leads to the trapping and fixation of the aeolian sediments. However, with a further strengthening of the Monsoon systems these archives subsequently eroded due to higher run off and accumulated as colluvial and fluvial deposits in the basins. These phase lasted until 6 ka. A second aeolian period started at around 3 ka with the formation new dunes in the basins. This period can be associated with dry and cold climate of the late Holocene supporting the reactivation of the sand in the area. This might be further enhanced by an increased human impact by grazing during the late Holocene and resulting

  9. Titan dune heights retrieval by using Cassini Radar Altimeter

    NASA Astrophysics Data System (ADS)

    Mastrogiuseppe, M.; Poggiali, V.; Seu, R.; Martufi, R.; Notarnicola, C.

    2014-02-01

    The Cassini Radar is a Ku band multimode instrument capable of providing topographic and mapping information. During several of the 93 Titan fly-bys performed by Cassini, the radar collected a large amount of data observing many dune fields in multiple modes such as SAR, Altimeter, Scatterometer and Radiometer. Understanding dune characteristics, such as shape and height, will reveal important clues on Titan's climatic and geological history providing a better understanding of aeolian processes on Earth. Dunes are believed to be sculpted by the action of the wind, weak at the surface but still able to activate the process of sand-sized particle transport. This work aims to estimate dunes height by modeling the shape of the real Cassini Radar Altimeter echoes. Joint processing of SAR/Altimeter data has been adopted to localize the altimeter footprints overlapping dune fields excluding non-dune features. The height of the dunes was estimated by applying Maximum Likelihood Estimation along with a non-coherent electromagnetic (EM) echo model, thus comparing the real averaged waveform with the theoretical curves. Such analysis has been performed over the Fensal dune field observed during the T30 flyby (May 2007). As a result we found that the estimated dunes' peak to trough heights difference was in the order of 60-120 m. Estimation accuracy and robustness of the MLE for different complex scenarios was assessed via radar simulations and Monte-Carlo approach. We simulated dunes-interdunes different composition and roughness for a large set of values verifying that, in the range of possible Titan environment conditions, these two surface parameters have weak effects on our estimates of standard dune heights deviation. Results presented here are the first part of a study that will cover all Titan's sand seas.

  10. Building of shore-oblique transverse dune ridges revealed by ground-penetrating radar and optical dating over the last 500 years on Tottori coast, Japan Sea

    NASA Astrophysics Data System (ADS)

    Tamura, Toru; Bateman, Mark D.; Kodama, Yoshinori; Saitoh, Yu; Watanabe, Kazuaki; Yamaguchi, Naofumi; Matsumoto, Dan

    2011-09-01

    Coastal dunes provide valuable information on the past aeolian activity. Better characterization of internal dune structures and their chronology potentially can greatly improve the interpretation of past environmental changes. Ground-penetrating radar (GPR) and optically-stimulated luminescence (OSL) dating was applied to two transverse dune ridges which are arranged obliquely to the shoreline on the Tottori coast, Japan Sea. Data shows that the inner ridge has a core of Pleistocene dune draped with Holocene sand, while the outer ridge consists only of Holocene sand. The Holocene dune is generally dominated by landward migration, but the outer ridge shows a clear seaward accretion during the 18th century AD. OSL dating showed concordant results with radar stratigraphy and topographic changes since AD 1932 revealed by maps. From this we were able to present the first detailed report of the multi-decadal- to centennial-scale dune formation for the last 500 years in East Asia, contemporaneous with the Little Ice Age, during which many European coastal and inland dunes were activated. In East Asia, it is thought that the winter monsoon plays an important role for aeolian processes. The seaward migration during the 18th century reflects a decrease in wind capacity, which restricted sand transport nearshore, being related to decline in winter monsoon revealed by Chinese historical documents. In contrast, two remarkable events of landward accretion occurred in AD 1580-1640 and around AD 1840, respectively, corresponding to periods of increased dust fall in China, which suggest enhanced winter monsoon. The zone of maximum sedimentation shifted through time from the inner to outer ridges, and also towards the seaward end of the shore-oblique dune ridge, reflecting an expansion of the dune field caused by shoreline progradation. These suggest that the effective combination of GPR and OSL dating was critical in detailed characterization of the complicated depositional

  11. Characterizing subsurface complexity of aeolian morphotypes with georadar

    NASA Astrophysics Data System (ADS)

    Bentley, Andrew Phillip Keller

    Aeolian landforms are classified based on their plan morphology, which is a function of sediment transport volume, wind direction, and vegetation. In the case of compound landforms or two-dimensional exposures (outcrops), there is insufficient information for discriminating between 3D morphotypes (e.g., barchans vs. parabolic dunes). To characterize the dip-section architecture of near end-member morphologies (interacting barchans and sparsely vegetated parabolics), a series of axial transects were selected from >25 km of high-resolution (500 MHz) ground-penetrating radar (GPR) data from the gypsum dune field of White Sands National Monument, New Mexico. For dunes of comparable size (6-7 m high), a series of attributes were analyzed for unsaturated portions along the thickest (axial) radargram sections. Given the limitations in vertical resolution (7 cm in dry sand), the average measureable slipface thickness in barchans ranged between 10-22 cm, whereas parabolic slipfaces were thinner at 10-14 cm. High-amplitude diffractions produced by buried vegetation, semi-lithified pedestals, and bioturbation structures were rare within barchans (point-source diffraction density = 0.03/m2; hyperbolics per 1-m-wide cross-sectional area of the image), in contrast to a point-source density of 0.07/m2 in parabolics. An aeolian internal complexity threshold (pi) is proposed, which incorporates standardized scores of slipface thickness, point-source diffraction density, and continuity of major bounding surfaces at mesoscale range determined through semivariogram analysis. For the study region, these variables were sufficient for discriminating barchans (pi = -2.39 to -0.25; pib= -1.65) from parabolic (pi = 0.13 to 2.87; pip= 1.65) dunes. This threshold has the potential for differentiating dune morphotypes in areas where surface morphology is masked and for identifying compound landforms (e.g., a re-activated parabolic dune converted into a barchan in situ ). Ultimately

  12. Have the northwest Negev dunefield sands reddened since their deposition?

    NASA Astrophysics Data System (ADS)

    Roskin, Joel; Tsoar, Haim; Blumberg, Dan G.; Porat, Naomi; Rozensten, Ofer

    2010-05-01

    Sand grain coating redness has been extensively both in coastal and inland desert dunes. In Israel, sand redness has been quantified by calculating a spectral redness index (RI) using single RGB bands (RI= R2/(B*G3)) from reflectance spectroscopy. The RI values have been correlated to ferric oxide mass that was dissolved from sand grain coatings (Ben Dor et al., 2006; Tsoar et al., 2008). Five main requirements have been proposed to enhance sand grain reddening: iron source from the weathering of iron-bearing minerals originating from parent rock or aeolian dust, minimum moisture content, oxidizing interstitial conditions, sediment stability and time. Thus, as many researches have suggested, when the source factors and climatic conditions are homogenous, redder sands indicate increased maturity. The northwest Negev dunefield has been classified by Tsoar et al. (2008) into 3 incursion units based upon contouring a grid of RI values for surface sand samples. The central incursion unit has been suggested to be younger due to relatively lower RI values that decrease to the east. This work tests the relationship between RI values and optically stimulated luminescence (OSL) ages of aeolian sand sampled from the near surface down to dune substrate throughout the NW Negev dunefield. Room-dried sand samples were measured in the laboratory with an ASD FieldSpec spectrometer and RI was calculated. Dune sections have been found to usually have similar RI values throughout their vertical profile despite OSL ages ranging between recent and Late Pleistocene. Along a W-E transect, RI values also tend to be similar. The central (Haluzza) part of the dunefield exhibits significantly lower RI values than RI of sands south of the Qeren Ridge. Dune base OSL ages possibly representing burial/stabilization of an initial incursion are slightly more mature in the south and may be evidence of the earliest dune incursion into the Negev. Thus the increased redness may be attributed to an

  13. Martian aeolian processes, sediments, and features

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald; Lancaster, Nicholas; Lee, Steven; Thomas, Peter

    1992-01-01

    In this review of the aeolian regime on Mars, consideration is given to the sources and characteristics of the particles that are involved in aeolian processes and the winds that are required to set grains into motion. Dust storms are reviewed and previous observations and the mechanisms of dust-storm generation are assessed. Various aeolian features, including dunes and albedo features, as well as windblown mantle deposits are discussed. In planning for future missions to Mars, aeolian processes must be taken into account. Surface modifications by the wind and windblown deposits can influence remote-sensing observations, affect sampling strategies, and have detrimental effects on manned and unmanned spacecraft on the surface.

  14. Methane storms as a driver of Titan's dune orientation

    NASA Astrophysics Data System (ADS)

    Charnay, Benjamin; Barth, Erika; Rafkin, Scot; Narteau, Clément; Lebonnois, Sébastien; Rodriguez, Sébastien; Courrech Du Pont, Sylvain; Lucas, Antoine

    2015-05-01

    The equatorial regions of Saturn's moon Titan are covered by linear dunes that propagate eastwards. Global climate models (GCMs), however, predict westward mean surface winds at low latitudes on Titan, similar to the trade winds on Earth. This apparent contradiction has been attributed to Saturn's gravitational tides, large-scale topography and wind statistics, but none of these hypotheses fully explains the global eastward propagation of dunes in Titan's equatorial band. However, above altitudes of about 5 km, Titan's atmosphere is in eastward super-rotation, suggesting that this momentum may be delivered to the surface. Here we assess the influence of equatorial tropical methane storms--which develop at high altitudes during the equinox--on Titan's dune orientation, using mesoscale simulations of convective methane clouds with a GCM wind profile that includes super-rotation. We find that these storms produce fast eastward gust fronts above the surface that exceed the normal westward surface winds. These episodic gusts generated by tropical storms are expected to dominate aeolian transport, leading to eastward propagation of dunes. We therefore suggest a coupling between super-rotation, tropical methane storms and dune formation on Titan. This framework, applied to GCM predictions and analogies to some terrestrial dune fields, explains the linear shape, eastward propagation and poleward divergence of Titan's dunes, and implies an equatorial origin of dune sand.

  15. Reestablishing Naturally Functioning Dunes on Developed Coasts.

    PubMed

    Nordstrom; Lampe; Vandemark

    2000-01-01

    / The potential for reestablishing dune habitat is investigated in municipalities in New Jersey, USA, where natural coastal landforms and biota have been eliminated or reduced in extent. Dunes are classified using width, relationship to natural and cultural features, and changes through time, and they are assessed for their value as naturally functioning landforms in developed municipalities. The relationship between size and longevity that exists under natural conditions is altered by human activity. Small dunes on privately owned lots can survive as long as larger dunes in natural areas that are located farther inland, and foredunes repaired using sand fences and earth-moving equipment can survive where they could not under natural conditions.Common beach management practices reduce the ecological values of coastal dunes. Mechanical beach cleaning eliminates incipient dunes, habitat for nesting birds, seed sources for pioneer dune colonizers and food for fauna, and artificially small, stabilized foredunes reduce the variability in microenvironments necessary for biodiversity. Recent initiatives for reducing coastal hazards, protecting nesting birds, and encouraging nature-based tourism provide incentive for the development of a restoration program for beaches and dunes that is compatible with human use. Suggested changes in management practice include restricting or rerouting pedestrian traffic, altering beach-cleaning procedures, using symbolic fences to allow for aeolian transport while preventing trampling of dunes, and eliminating or severely restricting exotic species. Landforms will be more natural in function and appearance but will be more dynamic, smaller and in a different position from those in natural areas. Research needs are specified for ecological, geomorphological, and attitudinal studies to support and inform restoration planning. PMID:10552101

  16. Computational modeling of dissipation and regeneration of fluvial sand dunes under variable discharges

    NASA Astrophysics Data System (ADS)

    Nabi, M.; Kimura, I.; Hsu, S. M.; Giri, S.; Shimizu, Y.

    2015-07-01

    It is observed, during flood events, that bed forms initially grow in height and make the riverbed rougher. But later, under high discharge, the bed forms grow longer with the opposite effect of making the riverbed smoother. After the discharge drops to a lower value, new bed forms regenerate on top of the elongated bed forms. This mechanism leads to a significant variation in the bed roughness and the water stage and hence determines the behavior of floods and the risk of flood disasters. This work presents detailed modeling of bed forms under discharge hydrographs and simulates the conditions under which the bed is flattened out in the upper plane bed regime. The flow was simulated by large-eddy simulation, and the sediments were considered as rigid spheres and modeled in a Lagrangian framework. The bed morphodynamics were the result of entrainment and deposition of sediment particles. We examined several discharge hydrographs. In the first case, we increased the discharge linearly and then kept it constant after reaching the upper plane bed condition. The dunes were generated and grew during the rising stage of discharge. When the flow conditions reached the upper plane bed regime, high-frequency ripples were generated and helped to flatten the bed. The results also showed that in contrast with mechanisms in the dune regime, the flattening of the bed was associated with a distinct pattern of sediment transport which deposited sediment mainly in the lee side of the dunes and led to flattening of the bed. After flattening, the sediments were mainly transported in suspension mode. As long as flow conditions stayed in the upper plane bed regime, the bed remained flat with small high-frequency ripples. We also examined two other scenarios: one with an immediate falling stage of discharge after the rising stage and the other with a period of constant discharge between the rising and falling stages. Dunes were regenerated during the falling stage of discharge for both

  17. Concentration and grain-size distribution of aeolian sands in peat bogs as an indicator of past storminess in coastal areas of Estonia

    NASA Astrophysics Data System (ADS)

    Vandel, Egert; Vaasma, Tiit; Tõnisson, Hannes; Sugita, Shinya; Vilumaa, Kadri; Anderson, Agnes; Terasmaa, Jaanus; Kangur, Mihkel; Pensa, Margus; Küttim, Martin; Umbleja, Liisa; Puusepp, Liisa

    2016-04-01

    Storminess in the Baltic Sea region has significantly increased over the last 50 years. As we do not have meteorological data beyond 20th century, therefore the long-term changes in storminess (e.g., frequency and magnitude of the storms) and its impact on the coastal evolution are mostly unknown. This study aims to reconstruct the extreme storm events along the coast of Estonia in late Holocene, inferred from changes in grain-size distribution and concentration of aeolian sands preserved in peat deposits. Four cores in total were collected from bogs of coastal Estonia; three from west Estonian archipelago (Hiiumaa Island and Saaremaa Island); one from the northern coast of the mainland (Juminda Peninsula). Core from Saaremaa (166 cm) covers the last 2700 years, cores from Hiiumaa (171 cm and 330 cm) cover ca 4000 years, and core from Juminda (465 cm) covers ca 8500 years. All AMS dates (77) are converted to cal yrs BP. Analyses of LOI and grain size are carried out at every centimetre in order to obtain data for mineral matter content and concentration of sand particles. The Juminda core shows a consistently low content of mineral matter (LOI < 2%) without clear peaks over the last 8000 years. The LOI results at both Hiiumaa sites show that mineral matter content gradually decreases from 4000 to 1500 cal yrs BP and then becomes the lowest in the period of 1500-1000 cal yrs BP; since then, it becomes higher (up to 10%) with fluctuations and has a clear peak around 700 cal yrs BP. At Saaremaa, the overall trend of mineral matter content is similar to that at the Hiiumaa sites: gradual decline from 2700 to 1500 cal yrs BP, lowest in 1500-1000 cal yrs BP, and relatively high over the last millennium. Concentration of mineral particles reveal clear peaks of aeolian sands at each site. At northern Hiiumaa, concentration has peaks around 3500, 3000 and 2500 cal yrs BP and is relatively high over the last 700 years. At Saaremaa, concentration has peaked at 2100, 1600 and

  18. Dynamics of soil organic carbon and its fractions after revegetation on sand dunes in the Tengger Desert, Northern China

    NASA Astrophysics Data System (ADS)

    Li, X.; Liu, Y.; Li, X.

    2015-12-01

    Revegetation has become increasingly important for desertified land restoration in arid and semiarid regions. Little is known about the dynamics of soil organic carbon (SOC) after the establishment of shrubland on shifting sand dunes; especially the changes in SOC fractions following planting were poorly understood. 0-10 cm soil samples were collected along chronosequence plots were to: (1) quantitatively analyze the changes of SOC and its fractions over time following the establishment of shrublands on shifting sand dunes; (2) precisely assess the relative contribution of different components to total organic carbon at different times. The results showed that revegetation can promote SOC accumulation in desert regions. SOC increased from 0.33±0.11 g kg-1 in mobile sand dunes to 5.08±0.11 g kg-1 in 57-year shrublands, while the light fraction of organic C (LF-OC) ranged from 0.05±0.02 g kg-1 to 2.96±0.24 g kg-1, the dissolved organic C (DOC) increased from 5.95±0.42 mg kg-1 to 23.63±2.79 mg kg-1 and microbial biomass C (MBC) from 6.54±1.64 mg kg-1 to 135.35±19.49 mg kg-1. Their dynamics patterns can be divided into three stages, i.e. slow increase, fast increase and slow increase stages; especially, both SOC and its fractions showed no significant changes in the first 14 years, which suggested that soil restoration is a slow process in dry environments, and therefore the maintenance of soil habitat is a crucial for land management. Our results also demonstrated that revegetation can increase the ratio of labile to stable pools in desert regions. Although, the content of HF-OC significantly increased after afforestation, but its contribution to SOC decreased from 85.15% to 41.52%, implied that more SOC stocks were stabilized in labile pools with the elapse of time, this would give rise to the risk of significant SOC losses caused by potential global warming and human-induced disturbances.

  19. ESTIMATING THE ECONOMIC VALUE OF NATIONAL PARKS WITH COUNT DATA MODELS USING ON-SITE, SECONDARY DATA: THE CASE OF THE GREAT SAND DUNES NATIONAL PARK AND PRESERVE

    EPA Science Inventory

    We estimate an individual travel cost model for Great Sand Dunes National Park and Preserve (GSD) in Colorado using on-site, secondary data. The purpose of the on-site survey was to help the National Park Service better understand the visitors of GSD; it was not intended for a t...

  20. Breeding system and its consequence on fruit set of a rare sand dune shrub Eremosparton songoricum (Fabaceae: Papilionoideae): implications for conservation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The breeding system and its consequence on fruit set of Eremosparton songoricum (Litv.) Vass., a rare shrubby legume occurring in moving or semi-fixed sand dunes of Central Asian deserts, were examined by manipulative experiments and observational studies in natural populations during the period of ...

  1. The negative effect of biocrusts upon annual-plant growth on sand dunes during extreme droughts

    NASA Astrophysics Data System (ADS)

    Kidron, Giora J.

    2014-01-01

    The moisture content of crusted and non-crusted habitats on sand was measured.Higher available water characterized the non-crusted habitats during drought years.Non-crusted habitats had higher species diversity, density and biomass.Crusts exert a negative effect on annual plants during droughts.Mobile sand serve as fertility belts for annual plants during drought years.

  2. Inferring the impact of rainfall gradient on biocrusts’ developmental stage and thus on soil physical structures in sand dunes

    NASA Astrophysics Data System (ADS)

    Zaady, Eli; Katra, Itzhak; Yizhaq, Hezi; Kinast, Shai; Ashkenazy, Yosef

    2014-06-01

    The aims of this study were to investigate the impact of biological soil crusts’ (biocrust) developmental stage on soil physical structures in sand dunes under two different rainfall regimes. It was hypothesized that biocrust’s developmental stage and function, as affected by the aridity level, may impact soil surface properties, pedogenesis and hydrology. Bio-physiological parameters of the biocrust (polysaccharide, protein and chlorophyll contents) were studied for the determination of its developmental stage. The soil physical surface properties that were measured included the surface breaking pressure and granulometry. Hydrological measurements included the infiltration rate and soil moisture regime in deep layers and structure granulometry. These measurements were taken over two years, in scraped top soil surfaces and in homogeneous sandy dunes, and were compared with natural biocrust surfaces. Higher precipitation at the northern site, with a more advanced developmental stage of the natural biocrust compared to the southern site, has affected the structure granulometry by increasing the cohesive fractions of clay and very-fine silt within the soil surface layer. Higher infiltration rates and soil moisture (%) below the biocrust were obtained with the cyanobacterial crust at the dry southern site. Biocrust controls water infiltration into the soil sub-surface by affecting the surface penetrability. The infiltration controlled by the crust was inversed to the rainfall gradient. The novelty of this study is that by characterizing the bio-physiological parameters of biocrusts as affected by aridity levels, it is possible to imitate climate change scenarios on soil moisture in specific sites.

  3. Deflated rims along the Xiangshui River on the Xiliaohe Plain, Northeast China: A case of active fluvial-aeolian interactions

    NASA Astrophysics Data System (ADS)

    Han, Guang; Zhang, Guifang; You, Li; Wang, Yong; Yang, Lin; Yang, Ji; Zhou, Liang; Yuan, Minghuan; Zou, Xueyong; Cheng, Hong

    2016-03-01

    Riverine source-bordering sand dunes, as a result of active fluvial-aeolian interactions, are a pronounced feature on the semiarid Xiliaohe Plain, Northeast China. By means of satellite imagery analysis, and both field survey and observation, this paper presents a new type of riverine source-bordering sand dunes - deflated rims, on the downwind margins of the Xiangshui River. They largely result from the deflation of escarpments on the downwind side of valley by local prevailing winds of NW direction, not from the reworking of point bars on floodplain by wind. In general, a rim is primarily composed of three distinct zones: 1) the upwind frontal escarpment zone with variable plan-form shape, gradient and relief, which is formed by either active lateral erosion by river or significant erosion by wind and transient slope runoff; 2) the deflation zone with gentle slopes of 8-18° and small-scale aeolian bedforms, i.e. ripples of fine sand, ridges of coarse sand; and 3) the downwind dynamic deposition zone with distinctive bedforms with variable superficial texture and slip faces. The sand mass on rims derives overwhelmingly from underlying loose late Quaternary sediments, is sufficient and sustainable by successive retreats of the escarpment, and is gradually transported downwind by pulse motions of bedforms, coupled with high wind events. Essentially, deflated rims are a starting point and the incipient phase of mature riverine dunefields. The superimposed bedforms on rims are fundamentally governed by windflow dynamics, sand sediments and antecedent bedform, exhibiting in turn the manner and intensity of rim development. Consequently, the upwind river valley and downwind deflated rim can jointly stimulate marked wave-like motion of both windflow and aeolian bedforms at different scales, especially when high wind events occur. This study sheds some light on the understanding of the origin and development of riverine source-bordering dunefields, and offers new

  4. Barchan Dunes

    NASA Technical Reports Server (NTRS)

    2004-01-01

    28 April 2004 One of the simplest forms a sand dune can take is the barchan. The term, apparently, comes from the Arabic word for crescent-shaped dunes. They form in areas with a single dominant wind direction that are also not overly-abundant in sand. The barchan dunes shown here were imaged in March 2004 by the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) as it passed over a crater in western Arabia Terra near 21.1oN, 17.6oW. The horns and steep slope on each dune, known as the slip face, point toward the south, indicating prevailing winds from the north (top). The picture covers an area about 3 km (1.9 mi) across and is illuminated by sunlight from the lower left.

  5. Ground-Water Flow Direction, Water Quality, Recharge Sources, and Age, Great Sand Dunes National Monument, South-Central Colorado, 2000-2001

    USGS Publications Warehouse

    Rupert, Michael G.; Plummer, L. Niel

    2004-01-01

    Great Sand Dunes National Monument is located in south-central Colorado along the eastern edge of the San Luis Valley. The Great Sand Dunes National Monument contains the tallest sand dunes in North America; some rise up to750 feet. Important ecological features of the Great Sand Dunes National Monument are palustrine wetlands associated with interdunal ponds and depressions along the western edge of the dune field. The existence and natural maintenance of the dune field and the interdunal ponds are dependent on maintaining ground-water levels at historic elevations. To address these concerns, the U.S. Geological Survey conducted a study, in collaboration with the National Park Service, of ground-water flow direction, water quality, recharge sources, and age at the Great Sand Dunes National Monument. A shallow unconfined aquifer and a deeper confined aquifer are the two principal aquifers at the Great Sand Dunes National Monument. Ground water in the unconfined aquifer is recharged from Medano and Sand Creeks near the Sangre de Cristo Mountain front, flows underneath the main dune field, and discharges to Big and Little Spring Creeks. The percentage of calcium in ground water in the unconfined aquifer decreases and the percentage of sodium increases because of ionic exchange with clay minerals as the ground water flows underneath the dune field. It takes more than 60 years for the ground water to flow from Medano and Sand Creeks to Big and Little Spring Creeks. During this time, ground water in the upper part of the unconfined aquifer is recharged by numerous precipitation events. Evaporation of precipitation during recharge prior to reaching the water table causes enrichment in deuterium (2H) and oxygen-18 (18O) relative to waters that are not evaporated. This recharge from precipitation events causes the apparent ages determined using chlorofluorocarbons and tritium to become younger, because relatively young precipitation water is mixing with older waters

  6. Aeolian features and processes at the Mars Pathfinder landing site

    USGS Publications Warehouse

    Greeley, Ronald; Kraft, Michael; Sullivan, Robert; Wilson, Gregory; Bridges, Nathan; Herkenhoff, Ken; Kuzmin, Ruslan O.; Malin, Michael; Ward, Wes

    1999-01-01

    The Mars Pathfinder landing site contains abundant features attributed to aeolian, or wind, processes. These include wind tails, drift deposits, duneforms of various types, ripplelike features, and ventifacts (the first clearly seen on Mars). Many of these features are consistant with formation involving sand-size particles. Although some features, such as dunes, could develop from saltating sand-size aggregates of finer grains, the discovery of ventifact flutes cut in rocks strongly suggests that at least some of the grains are crystalline, rather than aggregates. Excluding the ventifacts, the orientations of the wind-related features correlate well with the orientations of bright wind steaks seen on Viking Orbiter images in the general area. They also correlate with wind direction predictions from the NASA-Ames General Circulation Model (GCM) which show that the strongest winds in the area occur in the northern hemisphere winter and are directed toward 209°. Copyright 1999 by the American Geophysical Union.

  7. Bright dunes on mars

    USGS Publications Warehouse

    Thomas, P.C.; Malin, M.C.; Carr, M.H.; Danielson, G.E.; Davies, M.E.; Hartmann, W.K.; Ingersoll, A.P.; James, P.B.; McEwen, A.S.; Soderblom, L.A.; Veverka, J.

    1999-01-01

    Seasonal changes observed on the surface of Mars can in part be attributed to the transport of geological materials by wind. Images obtained by orbiting spacecraft in the 1970s showed large wind-formed features such as dunes, and revealed regional time-varying albedos that could be attributed to the effects of dust erosion and deposition. But the resolution of these images was insufficient to identify different types and sources of aeolian materials, nor could they reveal aeolian deposits other than large dunes or extensive surface coverings that were redistributed by dust storms. Here we present images of Mars with up to 50 times better resolution. These images show that martian dunes include at least two distinct components, the brighter of which we interpret to be composed of relatively soft minerals, possibly sulphates. We also find large areas of the martian surface that have several metres or more of aeolian mantle lacking obvious bedforms.

  8. Laboratory Analyses Of Basaltic Dunes In The Ka'u Desert Of Hawaii And Implications For Understanding Dark Dunes On Mars

    NASA Astrophysics Data System (ADS)

    Tirsch, D.; Craddock, R. A.; Nanson, G.; Tooth, S.; Langhans, M.

    2010-12-01

    Dark dunes are the dominant aeolian bedforms on Mars and consist of ancient volcanic ashes and reworked basaltic lavas. Basaltic dunes are rare on Earth and only occur in limited areas, such Hawaii. Because the Hawaiian dunes are composed of reworked basaltic sediments transported by eolian processes, they are a promising subject matter of analogy studies. Samples of dark dune sands, ash, and tephra collected in Hawaii's Ka'u Desert were collected during field trips in summer 2009 and 2010. They were analyzed by a variety of laboratory methods, including spectral, microscope, and microprobe investigations, in order examine their detailed mineralogical composition and constitution. We then compared the results to the eolian dunes on Mars. Sand samples were collected from three different dark dunes in Ka'u Desert: a large, vegetated, parabolic dune, a falling dune, and a large climbing dune. Tephra from the phreatic eruption that began in March 2008 was collected over a two year period using sample collectors placed at different locations downwind of Kilauea caldera. Analyses of these samples allow us to determining the initial composition, grain shape, and grain size of probable source materials. The visible and near-infrared reflectance spectra of the samples were acquired for the 0.5 to 2.5µm range. The overall spectral shape of the dune sand samples indicates a mineralogical correlation between Martian and terrestrial dune sands indicating a similar volcanic origin of the sediments. The spectra of the Hawaiian samples reveal some aqueous alteration, which is probably related to hydrated amorphous silica. Initial microscope and microprobe analyses reveal a high amount of volcanic glass and rock fragments in the samples, followed by olivine, feldspars, and pyroxene. Vitric particles that dominate the majority of the dune samples indicate in situ material accumulation following larger phreatic eruptions. The top coarse-grained layer of the climbing dune comprises a

  9. Russell Dunes

    NASA Technical Reports Server (NTRS)

    2004-01-01

    26 March 2004 Dark streaks made by dozens of spring and summer dust devils created a form of martian graffiti on the sand dunes of Russell Crater near 54.5oS, 347.4oW. Gullies have developed on some of the dune slopes, as well. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image covers an area about 3 km (1.9 mi) across. Sunlight illuminates the scene from the upper left.

  10. Kaiser Dunes

    NASA Technical Reports Server (NTRS)

    2004-01-01

    16 March 2004 Kaiser Crater, located in Noachis Terra near 46.5oS, 340.7oW, has some rather large, dark, sand dunes on its floor. Some of the dunes are seen in this February 2004 Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) view. Dark streaks on the dunes were formed by passing springtime and summer dust devils that disrupted a very thin, fine coating of dust on the dunes. The light-toned patch at the upper (north) end of this image is an exposure of the rock that underlies the dune field in Kaiser Crater. This picture covers an area about 3 km (1.9 mi) across. Sunlight illuminates the scene from the upper left.

  11. Dominance of an ~150-year cycle of sand-supply change in late Holocene dune-building along the eastern shore of Lake Michigan

    USGS Publications Warehouse

    Loope, W.L.; Arbogast, A.F.

    2000-01-01

    Outcrops of buried soils on lake-plains and glacial headlands along Lake Michigan's eastern shore suggest that periodic dune-building has occurred there after relatively long (≥100 yr) periods of low sand supply. We located, described, and radiocarbon dated 75 such buried soils that crop out in 32 coastal dune fields beside the lake. We assume that peaks in probability distributions of calibrated 14C ages obtained from wood, charcoal, and other organic matter from buried A horizons approximate the time of soil burial by dunes. Plotted against a late Holocene lake-level curve for Lake Michigan, these peaks are closely associated with many ∼150-yr lake highstands previously inferred from beach ridge studies. Intervening periods of lower lake levels and relative sand starvation apparently permitted forestation and soil development at the sites we studied. While late Holocene lake-level change led to development and preservation of prominent foredunes along the southern and southwestern shores of Lake Michigan, the modern dune landscape of the eastern shore is dominated by perched dunes formed during ∼150-yr lake highstands over the past 1500 yr.

  12. Tyrrhena Dunes

    NASA Technical Reports Server (NTRS)

    2006-01-01

    8 April 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a portion of a field of dark sand dunes superposed on the light-toned floor of a crater in eastern Tyrrhena Terra. The orientation of the dunes -- with the steep faces toward the south (bottom) -- suggests that winds generally blew from north to south at the time the dunes were formed.

    Location near: 14.6oS, 262.3oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Southern Summer

  13. The developmental trend and influencing factors of aeolian desertification in the Zoige Basin, eastern Qinghai-Tibet Plateau

    NASA Astrophysics Data System (ADS)

    Hu, Guangyin; Dong, Zhibao; Lu, Junfeng; Yan, Changzhen

    2015-12-01

    The Zoige Basin is located in the northeastern region of the Qinghai-Tibet Plateau and covers an area of 19,400 km2. At a mean altitude of 3500 m, the basin is highly sensitive to global environmental change and human disturbance due to its high elevation and fragile cold environment. The process of aeolian desertification in the basin can be clearly recognized in Landsat images that show the development of sand sheets and dunes over time. To monitor the spatial and temporal changes of aeolian desertification in the Zoige Basin, we analyzed Landsat images recorded in 1975, 1990, 2000, 2005, and 2010. Results showed that aeolian desertification increased rapidly from 1975 to 1990, was stable from 1990 to 2000, decreased slightly from 2000 to 2005, and decreased sharply from 2005 to 2010. Increasing temperature, overgrazing, rodent damage, and drainage of wetlands were considered the key driving factors of the expansion of aeolian desertification. A number of political measures were initiated in the 1990s to slow desertification, but the countermeasures of grazing prohibition, enclosures, and paving straw checkerboard barriers were not implemented until around 2005. These measures resulted in a dramatic recovery of aeolian desertified land between 2005 and 2010. Based on the cause analysis, anthropogenic factors were identified as the dominant driving force for both development and recovery of aeolian desertified land.

  14. Dune morphodynamics

    NASA Astrophysics Data System (ADS)

    Courrech du Pont, Sylvain

    2015-01-01

    The physics of dunes relies on the interaction between a wind flow and an erodible topography. Thus, if strong enough to transport grains, the wind shapes sandy areas into dune fields. These dunes are reminiscent of a wavy sea so that sandy deserts are called sand seas. However, the comparison stops there. Contrary to water waves, dunes propagate only under wind action and when the wind stops, they do not vanish but stand. Consequently, dunes are not only the result of the present winds, but can integrate the wind regimes over long periods. Thus, they exhibit a range of shapes and sizes with superimposed patterns. They are witnesses of past wind regimes and their shape and orientation are used to constraint climatic models on other planetary bodies where they are observed as well (e.g., Mars, Titan and Venus). Here, we discuss the morphodynamics of dunes and endeavor to identify and to explain the physical mechanisms at play in the selection of their shape, size and orientation, whilst focusing on Earth desert sand dunes.

  15. Temporal characteristics of coherent flow structures generated over alluvial sand dunes, Mississippi River, revealed by acoustic doppler current profiling and multibeam echo sounding

    USGS Publications Warehouse

    Czuba, John A.; Oberg, Kevin A.; Best, Jim L.; Parsons, Daniel R.; Simmons, S. M.; Johnson, K.K.; Malzone, C.

    2009-01-01

    This paper investigates the flow in the lee of a large sand dune located at the confluence of the Mississippi and Missouri Rivers, USA. Stationary profiles collected from an anchored boat using an acoustic Doppler current profiler (ADCP) were georeferenced with data from a real-time kinematic differential global positioning system. A multibeam echo sounder was used to map the bathymetry of the confluence and provided a morphological context for the ADCP measurements. The flow in the lee of a low-angle dune shows good correspondence with current conceptual models of flow over dunes. As expected, quadrant 2 events (upwellings of low-momentum fluid) are associated with high backscatter intensity. Turbulent events generated in the lower lee of a dune near the bed are associated with periods of vortex shedding and wake flapping. Remnant coherent structures that advect over the lower lee of the dune in the upper portion of the water column, have mostly dissipated and contribute little to turbulence intensities. The turbulent events that occupy most of the water column in the upper lee of the dune are associated with periods of wake flapping.

  16. Initial insights into the age and origin of the Kubuqi sand sea of northern China

    NASA Astrophysics Data System (ADS)

    Yang, Xiaoping; Forman, Steven; Hu, Fangen; Zhang, Deguo; Liu, Ziting; Li, Hongwei

    2016-04-01

    The Kubuqi Desert is the only active sand sea in the semiarid regions of northern China and occurs along the southern margin of the Yellow River. Little is known about the age and origin of this large (17,000 km2) sand sea with a present annual precipitation of 200-480 mm. Sand drift potentials indicated net capable winds for aeolian transport are from the northwest, though winds are stronger to north beyond the dune field than within the sand sea. Geomorphic and stratigraphic observations indicate that Holocene aeolian sand often drapes over bedrock and river terraces as a palimpsest landscape. Field investigations identified four stratigraphic sections with multiple aeolian sand units and palaeosols, with age control by optically stimulated luminescence (OSL) dating of quartz grains. Palaeosols are weakly developed, mostly accumulative A horizon with organic carbon content < 1% and reflect sand sheet deposition possibly in a steppe environment. Although sediments near river channels or former lakes might give old ages, the initial formation and age of the Kubuqi sand sea should be judged from the occurrence of the sandy palimpsest of the landscape that is OSL dated to the Holocene in general. The latest period of aeolian reactivation may be related to human activity associated with grazing and farming from lost cities in the Kubuqi Desert during the Han (206 B.C. - A.D. 220) and the Tang (A.D. 608 - 907) Dynasties. Also, variable discharge of the Yellow River with local diversions for irrigation and throughout the catchment resulted in possibly an increased supply of aeolian particles for dune field expansion in the past 2 ka.

  17. Paleoclimatic implications of late Pleistocene and Holocene aeolian sediments in lake catchments on the northeastern part of the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Lehmkuhl, F.; Stauch, G.; IJmker, J.; Poetsch, S.; Hilgers, A.; Hui, Z.; Diekmann, B.; Hartmann, K.; Wuennemann, B.

    2011-12-01

    On the northeastern part of the Tibetan Plateau aeolian sediments, such as loess, loess-like sediments, dunes and sand sheets, have been investigated. Such archives provide additional information for paleoclimate and environmental change in the catchments of lakes. We present a detailed analysis of aeolian sediments from the Donggi Cona catchment and a loess section from the Aynemachin Mts. on the north-eastern part of the Tibetan Plateau. In the Donggi Cona catchment long and short distance transport leads to a complex pattern in the aeolian sediments. Based on the largest dataset of luminescence dating (n = 51) from a single catchment so far different periods of enhanced sediment transport have been discriminated. Enhanced aeolian deposition in this environment in elevations of more than 4000m a.s.l. started in the early Holocene with the accumulation of sands from around 12 to 7.5ka. Loess have been preserved from a period from 10.5 to 7.5ka. However, further to the east on the southern slopes of the Aynemachin Mts. the sedimentation period of loess lasted longer and was interrupted by two paleosols around 10-9 and 5 ka. Both archives, sand and loess, are related to the strengthening of the East-Asian summer monsoon with wetter and warmer climate conditions. This climate leads to the trapping of aeolian sediments, in the moisture region of the Aynemachin including the development of initial paleosols. In addition, in some parts of the Donggi Cona catchment the enhanced summer monsoon from around 10 ka onwards lead to fluvial erosion of the aeolian archives and the formation of colluvial sediments until 6 ka. A reactivation of dune sands from 3 ka to the present can be associated to dryer and cooler climate conditions in combination with an enhanced human impact on the landscape. Aeolian sediments on the Tibetan Plateau therefore indicate two different climatic modes. During the early Holocene wetter conditions were favourable to retain aeolian sediments while

  18. Caterpillar Dunes

    NASA Technical Reports Server (NTRS)

    2004-01-01

    28 June 2004 Looking somewhat like caterpillars, this April 2004 Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows some of the rounded, wind-eroded sand dune features in a crater in the southern hemisphere near 61.7oS, 160.3oW. For such rounding to occur, the dune sand might need to be somewhat cemented. The picture covers an area about 3 km (1.9 mi) wide and is illuminated by sunlight from the upper left.

  19. Aeolian transport pathways along the transition from Tibetan highlands towards northwestern Chinese deserts

    NASA Astrophysics Data System (ADS)

    Nottebaum, Veit; Lehmkuhl, Frank; Stauch, Georg

    2014-05-01

    basins leads to fluvial sediment aggradation and allows comparably high fine sand deflation. This supports the formation of sandy loess in these regions and on foreland alluvial fans, whereas in contrast, sandy loess is absent in the high mountain geomorphologic setting. Aeolian sand distribution in the study area indicates a high dependence on sand supply. In eastern forelands perennial Hei River and northerly bordering Badain Jaran desert are important sand sources and hence support dune field formation in the northern Qilian Shan foreland (Hexi Corridor). In contrast, western forelands, dominated by gravel gobi surfaces, exhibit very few aeolian sand accumulations on the surface. The latter area shows only ephemeral discharge and is lacking large sand source areas. Therefore, although sufficient wind speeds occur, aeolian sand transport is limited due to restricted sand supply. Concluding, the medium scale geomorphological setting (103 m) exerts a rather underestimated influence when reconstructing aeolian transport processes. However, considering the spatial distribution of aeolian sediments in combination with their grain size distribution allows the reconstruction of dominant transport pathways.

  20. Dune Variety

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    Our topic for the weeks of April 4 and April 11 is dunes on Mars. We will look at the north polar sand sea and at isolated dune fields at lower latitudes. Sand seas on Earth are often called 'ergs,' an Arabic name for dune field. A sand sea differs from a dune field in two ways: 1) a sand sea has a large regional extent, and 2) the individual dunes are large in size and complex in form.

    Our final look at the north polar erg was taken at 80 degrees North latitude during Northern summer. This image is of lower resolution than the previous images, but covers a much larger area. The dunes have very little remaining frost cover. Note the large extent of coverage, and the different dune forms.

    Image information: VIS instrument. Latitude 80.8, Longitude 184.6 East (175.4 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  1. [Spatial distribution pattern and allometric growth of three common species on moving sand dunes in Horqin Sandy Land, China].

    PubMed

    Jia, Mei-yu; Li, Xue-hua; Oh, Choong-hyeon; Park, Hong-chul; Miao, Chun-ping; Han, Xu

    2015-10-01

    Research on fine scale pattern and characteristics of allometric growth could contribute to better understanding plants' adaptation in moving sandy dunes. The abundance, height and biomass of 3 species Agriophilum aquarrosum, Corispermum candelabrum and Setaria viridis in twenty-eight 1 m x 1 m quadrats of Horqin Sandy Land were identified, mapped and described. The nearest neighbor method and O-ring O(r) function analysis were applied to analyze the spatial patterns. The results showed that the individual spatial pattern was mainly aggregated in 1 m x 1 m quadrat at community level but mainly random at population level. At 0-50 cm individual distance scale, both intraspecific and interspecific relationship were facilitation and aggregated distribution occurred at some scales and varied with increasing plant abundance in 1 m x 1 m quadrat. In 0-40 cm, the aggregated distribution of S. viridis and A. aquarrosum increased obviously; in 10-20 cm, both intraspecific and interspecific aggregation increased; in 10-30 cm, the occurrence possibility of positive correlations between S. viridis and A. aquarrosum, S. viridis and C. candelabrum all increased; in 40-50 cm, the possibility of positive correlations between A. squarrosum and S. viridis, A. squarrosum and C. candelabrum all increased. Research on the three species components indicated that the growth rate of above-ground was faster than that of underground. S. viridis had the highest ratio of under-ground biomass to above-ground biomass but its nutritional organs' biomass ratio was medium. C. candelabrum allocated more biomass to propagative organs and stem, but A. squarrosum allocated more biomass to nutritional organs. Based on the spatial distribution and allometric characteristics, the three common species in moving sand dunes preferred r strategy in their life history. PMID:26995902

  2. Field Measurement of Sand Dune Bidirectional Reflectance Characteristics for Absolute Radiometric Calibration of Optical Remote Sensing Data.

    NASA Astrophysics Data System (ADS)

    Coburn, C. A.; Logie, G.; Beaver, J.; Helder, D.

    2015-12-01

    The use of Pseudo Invariant Calibration Sites (PICS) for establishing the radiometric trending of optical remote sensing systems has a long history of successful implementation. Past studies have shown that the PICS method is useful for evaluating the trend of sensors over time or cross-calibration of sensors but was not considered until recently for deriving absolute calibration. Current interest in using this approach to establish absolute radiometric calibration stems from recent research that indicates that with empirically derived models of the surface properties and careful atmospheric characterisation Top of Atmosphere (TOA) reflectance values can be predicted and used for absolute sensor radiometric calibration. Critical to the continued development of this approach is the accurate characterization of the Bidirectional Reflectance Distribution Function (BRDF) of PICS sites. This paper presents the field data collected by a high-performance portable goniometer system in order to develop a BRDF model for the Algodones Dunes in California. These BRDF data are part of a larger study that is seeking to evaluate and quantify all aspects of this dune system (from regional effects to the micro scale optical properties of the sand) in order to provide an absolute radiometric calibration PICS. This paper presents the results of a dense temporal measurement sequence (several measurements per hour with high angular resolution), to yield detailed information on the nature of the surface reflectance properties. The BRDF data were collected covering typical view geometry of space borne sensors and will be used to close the loop on the calibration to create an absolute calibration target for optical satellite absolute radiometric calibration.

  3. Biodiversity impact of the aeolian periglacial geomorphologic evolution of the Fontainebleau Massif (France)

    NASA Astrophysics Data System (ADS)

    Thiry, M.; Liron, M. N.

    2009-04-01

    Landscape features The geomorphology of the Fontainebleau Massif is noteworthy for its spectacular narrow ridges, up to 10 km long and 0.5 km wide, armored by tightly cemented sandstone lenses and which overhang sandy depressions of about 50m. Denudation of the sandstone pans lead to a highly contrasted landscape, with sandstone ridges ("platières") towering sandy depressions ("vallées") and limestone plateaus ("monts"). This forms the geological frame of the spectacular sceneries of the Fontainebleau Massif (Thiry & Liron, 2007). Nevertheless, there is little know about the erosive processes that have built-up these landscapes. Periglacial processes, and among them aeolian ones, appear significant in the development of the Fontainebleau Massif physiography. The periglacial aeolian geomorphology Dunes and dune fields are known since long and cover about 15% to 25% of the Fontainebleau Massif. The aeolian dunes developed as well on the higher parts of the landscape, as well as in the lower parts of the landscape. The dunes are especially well developed in the whole eastern part of the massif, whereas the western part of the massif is almost devoid of dunes. Nevertheless, detailed mapping shows that dunes can locally be found in the western district, they are of limited extension, restricted to the east facing backslope of outliers. Loamy-sand covers the limestone plateaus of the "monts". The loam cover is of variable thickness: schematically thicker in the central part of the plateaus, where it my reach 3 m; elsewhere it may thin down to 0,20-0,30 m, especially at the plateau edges. Blowout hollows are "negative" morphologies from where the sand has been withdrawed. Often these blowouts are decametric sized and well-delimited structures. Others, more complex structures, are made up of several elongated hectometric hollows relaying each other from and which outline deflation corridor more than 1 km long. A characteristic feature of these blowout hollows is the

  4. They're Alive! Present-Day Evolution of Martian Dunes

    NASA Technical Reports Server (NTRS)

    Diniega, S.; Bridges, N.; Hansen, C.

    2011-01-01

    The sharp brinks and margins, smooth and steep lee slopes, and lack of superimposed landforms (such as small impact craters) on many Martian sand dunes suggests that these features are geologically young clean brinks and smooth/steep lee slopes (HiRISE image PSP_010413_1920; 20 deg N,79 deg E; image widthis about 500m).Within the last decade, and often primarily through the detailed inspection of high-resolution (HiRISE) images, we have finally found clear evidence that many dunes of Mars are active -- through both aeolian and seasonal (frost) processes. However, it is yet unclear if active dune formation does occur or if we are observing surficial modification of dunes which formed under different climate conditions.

  5. Photosynthetic Responses of Plant Communities to Sand Burial on the Machair Dune Systems of the Outer Hebrides, Scotland

    PubMed Central

    KENT, MARTIN; OWEN, NIA W.; DALE, M. PAMELA

    2005-01-01

    • Background and Aims The effects of both short-term (2 weeks) and long-term (6 weeks) burial on the photosynthetic efficiency of four typical plant sub-communities of the machair sand dunes of the Outer Hebrides are described. Previous studies have examined the photosynthetic responses on individual species rather than the response at the community level. • Methods Three replicate turves from four different sub-community types (foredune grassland, dune slack, three-year fallow and unploughed grassland) were subjected to short- and long-term burial treatments after acclimatisation in an unheated greenhouse for approximately 10 weeks. Three replicate control turves from each sub-community were left unburied. After treatment, photosynthetic rate was measured at 16–20 h and 40–44 h after re-exposure, using an infra-red gas analyser, with standardization by total leaf area for each turf. Effects of sub-community type, burial duration and time since re-exposure were analysed by 3-factor split-plot analysis of variance (ANOVA) with repeated measures for time since re-exposure in the subplots. • Key Results Buried turves were characterized by a low dark respiration rate, which may represent a maintenance response to burial. After removal of sand, each machair sub-community showed some capacity for an elastic photosynthetic response. There were no differences between the effects of short- and long-term burial on the photosynthetic efficiency of machair vegetation, although turves buried for 6 weeks generally attained photosynthetic rates approaching those of control rates sooner than turves buried for 2 weeks. Photosynthetic responses to burial varied between sub-communities, with the slack turves exhibiting the poorest capacity for recovery within the investigated 44-h period. • Conclusions In the machair environment, the ability to maintain photosynthetic equipment whilst buried, and the ability to bring about a relatively rapid reinstatement of

  6. The contribution of micrometeorites to the iron stocks of buried podzols, developed in Late-glacial aeolian sand deposits (Brabant, The Netherlands)

    NASA Astrophysics Data System (ADS)

    van Mourik, Jan; de Vet, Sebastiaan

    2015-04-01

    The surface geology of an extensive part of NW-Europe is dominated by coversands (Late-glacial chemical poor aeolian sand deposits). The geomorphology of coversand landscapes is dominated by ridges and planes. Podzolation is the dominant soil forming process in coversands under moderate humid climatic conditions. Umbric Podzols developed on the ridges under Quercetum-mixtum, Gleyic and Histic Podzols developed in the planes under Alnetum. Even in chemical poor coversands, iron will be released by hydrolysis from iron containing silicate minerals (such as feldspars). It is well known that the vertical iron distribution in Podzols is effected by translocation of active iron from eluvial to illuvial horizons and that iron is leaching to the aquifer. Iron stocks of Podzols, in contrasts, have not been widely studied for comparison purposes of individual soil horizons or between soils. We determined the stocks of active and immobile iron in the horizons of buried xeromorphic Podzols (soils that developed without any contact with groundwater). The results show that the total amount of iron exceeds the potential amount which can be released by hydrolysis from the parent material. Furthermore, to amount of iron that leached to the groundwater is unknown. It is evident that we must find an additional source to explain the total iron stocks in buried Podzols. It is known from analysis of ice cores that the earth atmosphere is subjected to a continuous influx of (iron rich) micrometeorites. The precipitation of micrometeorites (and other aerosols) on the earth surface is concentrated in humid climatic zones with (intensive) rain fall. We analyzed minerals, extracted from the ectorganic horizon of the Initial Podzols, developed in driftsand that stabilized around 1900 AD, overlying Palaeopodzols, buried around 1200 AD. Among blown in quartz grains, we could determine also micrometeorites, embedded in the organic skeleton of the fermentation horizon of the Initial Podzol

  7. Assessing radiation impact at a protected coastal sand dune site: an intercomparison of models for estimating the radiological exposure of non-human biota.

    PubMed

    Wood, Michael D; Beresford, Nicholas A; Barnett, Catherine L; Copplestone, David; Leah, Richard T

    2009-12-01

    This paper presents the application of three publicly available biota dose assessment models (the ERICA Tool, R&D128/SP1a and RESRAD-BIOTA) to an assessment of the Drigg coastal sand dunes. Using measured (90)Sr, (99)Tc, (137)Cs, (238)Pu, (239+240)Pu and (241)Am activity concentrations in sand dune soil, activity concentration and dose rate predictions are made for a range of organisms including amphibians, birds, invertebrates, mammals, reptiles, plants and fungi. Predicted biota activity concentrations are compared to measured data where available. The main source of variability in the model predictions is the transfer parameters used and it is concluded that developing the available transfer databases should be a focus of future research effort. The value of taking an informed user approach to investigate the way in which models may be expected to be applied in practice is highlighted and a strategy for the future development of intercomparison exercises is presented. PMID:19447531

  8. Downslope coarsening in aeolian grainflows of the Navajo Sandstone

    NASA Astrophysics Data System (ADS)

    Loope, David B.; Elder, James F.; Sweeney, Mark R.

    2012-07-01

    Downslope coarsening in grainflows has been observed on present-day dunes and generated in labs, but few previous studies have examined vertical sorting in ancient aeolian grainflows. We studied the grainflow strata of the Jurassic Navajo Sandstone in the southern Utah portion of its outcrop belt from Zion National Park (west) to Coyote Buttes and The Dive (east). At each study site, thick sets of grainflow-dominated cross-strata that were deposited by large transverse dunes comprise the bulk of the Navajo Sandstone. We studied three stratigraphic columns, one per site, composed almost exclusively of aeolian cross-strata. For each column, samples were obtained from one grainflow stratum in each consecutive set of the column, for a total of 139 samples from thirty-two sets of cross-strata. To investigate grading perpendicular to bedding within individual grainflows, we collected fourteen samples from four superimposed grainflow strata at The Dive. Samples were analyzed with a Malvern Mastersizer 2000 laser diffraction particle analyser. The median grain size of grainflow samples ranges from fine sand (164 μm) to coarse sand (617 μm). Using Folk and Ward criteria, samples are well-sorted to moderately-well-sorted. All but one of the twenty-eight sets showed at least slight downslope coarsening, but in general, downslope coarsening was not as well-developed or as consistent as that reported in laboratory subaqueous grainflows. Because coarse sand should be quickly sequestered within preserved cross-strata when bedforms climb, grain-size studies may help to test hypotheses for the stacking of sets of cross-strata.

  9. Sand dunes development of Vistula River mouth during May 2014 flood

    NASA Astrophysics Data System (ADS)

    Lisimenka, Aliaksandr; Rudowski, Stanisław; Kałas, Maciej; Szefler, Kazimierz

    2015-04-01

    The Vistula, Poland's primary river, is the largest river of the southern Baltic Sea and is one of the least regulated amongst large rivers in Europe. The Vistula has a vast delta with the main mouth in the form of an artificial cross-cut channel of about 3000 m length, 400 m width and up to 10 m depth. The comprehensive riverbed morphology in the area is characterized by the set of both 2D and 3D sandy bedforms of various orientations (Lisimenka et al., 2013). About 95% of total Vistula water, with the long-term average annual water discharge of 1081 m3/s, outflows into the Baltic Sea through this channel, which also plays a crucial role in sediment delivery processes into the Vistula External Delta, coast and neighbouring marine waters. Results of bathymetry measurements which were carried out in the main Vistula river mouth during the 23-26 May 2014 flood are presented. Echosounding records were made using boat mounted high-resolution Reson Seabat 7101 multibeam echosounder system (MBES) operating at 240 kHz. The measurements set includes data from: (1) the central part of the river channel with a wide band width for the first and last days of the experiment; (2) the riverbed elevation along axis longitudinal profile obtained on a daily basis with a twice per day registration at the final stage of the rising limb of a flood wave. During the considered period of time, extremely high magnitudes of water level and water discharge values changed from 2590 m3/s up to 4110 m3/s were observed. Estimated based on positioning system data, water flow velocity amounted to about 2 m/s and exceeded a long-term average conditions in more than two times. Based on bedform tracking tool proposed by Van der Mark and Blom (2007), the geometric variables of individual bedforms for each elevation profiles were extracted and histograms of the dune height and length were obtained. The results revealed significant changes in bedform geometry with a counterclockwise hysteresis effect as

  10. Global map of Titan's dune fields

    NASA Astrophysics Data System (ADS)

    Le Corre, L.; Le Mouélic, S.; Sotin, C.; Barnes, J. W.; Brown, R. H.; Baines, K.; Buratti, B.; Clark, R.; Nicholson, P.

    2008-09-01

    small dunes in low sand supply zones. Most of the aeolian sand deposits are found in sand seas. In addition, isolated groups of "cat scratches", very sinuous short dunes [9] and sand sheets [10] (visible as dark uniform terrains) are recognized. Their emplacement is most probably related to the available sand supply. Comparison of infrared and SAR units Sand seas and small dunes match different kind of terrains in the infrared. Radar dune fields boundaries in the infrared. The dune fields in SAR images generally end at the limit between infrared brown and bright units (Fig. 1b and 1c). Dunes can also be found on dark blue terrains as seen by [7] and [11]. 82% of SAR dunes are located in brown units and 4.5% in dark blue units. The remnant dunes corresponding to "cat scratches" or not well defined dune fields appear in infrared bright units as isolated patches. These dunes may form with a low sand supply, thus VIMS detects a bright terrain because of the lower resolution than SAR. It could account for some of the 13.5% radar dunes found on bright areas. It should be noted that the limit between SAR dunes and brown units is sometimes shifted by about 20 km. This could be due to the obliquity and spin rate of Titan, which are not taken into account in our georeferenced images [12]. An accurate model of Titan obliquity and spin rate would be needed to correct this effect. But yet, there is a significant overlapping between VIMS brown units and dunes seen with the RADAR at global scale. The relationship seems to be more complex for the dark blue terrains, since dunes overlap this unit or are stopped at the border. Dark blue units may correspond to an aeolian deposit younger than the dunes [6]. By using a mean height of 150 m for the dunes [3, 10] and an average thickness of 20 m [3], we find a total amount of dune material in the brown units of 3.01 105 km3. This is consistent with the estimation from [3]. Conclusion From the global mapping, we inferred that dunes in the

  11. Abrupt sand-dune accumulation at the northeastern margin of the Tibetan Plateau challenges the wet MIS3a inferred from numerous lake-highstands

    PubMed Central

    Long, Hao; Fuchs, Markus; Yang, Linhai; Cheng, Hongyi

    2016-01-01

    Over the Tibetan Plateau and adjacent regions, numerous 14C-based lake records revealed a ubiquitous wet climatic period during 40–25 ka (late MIS 3), which is in contradiction with the global pattern of generally cold and dry climates. This paper focuses on OSL dating results of a large set of sand dunes and alluvial sediments (50 OSL ages) from the Qinwangchuan (QWC) Basin at the northeast edge of the Tibetan Plateau, with the aim to test the validity of the anomalous wet condition for the late MIS 3 interval, evidenced by numerous lake highstands. The abrupt sand dune accumulation as indication of increased aridity in the study area was OSL dated to ~40–13 ka. This dry climatic inference of the sand dune system from QWC apparently shows no wet MIS 3a event. Thus, the anomalous wet conditions revealed by high lake levels for the late MIS 3 phase may not be a universal phenomena across entire western China. PMID:27172907

  12. Abrupt sand-dune accumulation at the northeastern margin of the Tibetan Plateau challenges the wet MIS3a inferred from numerous lake-highstands.

    PubMed

    Long, Hao; Fuchs, Markus; Yang, Linhai; Cheng, Hongyi

    2016-01-01

    Over the Tibetan Plateau and adjacent regions, numerous (14)C-based lake records revealed a ubiquitous wet climatic period during 40-25 ka (late MIS 3), which is in contradiction with the global pattern of generally cold and dry climates. This paper focuses on OSL dating results of a large set of sand dunes and alluvial sediments (50 OSL ages) from the Qinwangchuan (QWC) Basin at the northeast edge of the Tibetan Plateau, with the aim to test the validity of the anomalous wet condition for the late MIS 3 interval, evidenced by numerous lake highstands. The abrupt sand dune accumulation as indication of increased aridity in the study area was OSL dated to ~40-13 ka. This dry climatic inference of the sand dune system from QWC apparently shows no wet MIS 3a event. Thus, the anomalous wet conditions revealed by high lake levels for the late MIS 3 phase may not be a universal phenomena across entire western China. PMID:27172907

  13. Abrupt sand-dune accumulation at the northeastern margin of the Tibetan Plateau challenges the wet MIS3a inferred from numerous lake-highstands

    NASA Astrophysics Data System (ADS)

    Long, Hao; Fuchs, Markus; Yang, Linhai; Cheng, Hongyi

    2016-05-01

    Over the Tibetan Plateau and adjacent regions, numerous 14C-based lake records revealed a ubiquitous wet climatic period during 40–25 ka (late MIS 3), which is in contradiction with the global pattern of generally cold and dry climates. This paper focuses on OSL dating results of a large set of sand dunes and alluvial sediments (50 OSL ages) from the Qinwangchuan (QWC) Basin at the northeast edge of the Tibetan Plateau, with the aim to test the validity of the anomalous wet condition for the late MIS 3 interval, evidenced by numerous lake highstands. The abrupt sand dune accumulation as indication of increased aridity in the study area was OSL dated to ~40–13 ka. This dry climatic inference of the sand dune system from QWC apparently shows no wet MIS 3a event. Thus, the anomalous wet conditions revealed by high lake levels for the late MIS 3 phase may not be a universal phenomena across entire western China.

  14. Spring Dunes

    NASA Technical Reports Server (NTRS)

    2006-01-01

    22 July 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows dunes in the north polar region of Mars. In this scene, the dunes, and the plain on which the dunes reside, are at least in part covered by a bright carbon dioxide frost. Dark spots indicate areas where the frost has begun to change, either by subliming away to expose dark sand, changing to a coarser particle size, or both. The winds responsible for the formation of these dunes blew from the lower left (southwest) toward the upper right (northeast).

    Location near: 76.3oN, 261.2oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Spring

  15. Arkhangelsky Dunes

    NASA Technical Reports Server (NTRS)

    2004-01-01

    29 April 2004 These dark-toned barchan sand dunes in Arkhangelsky Crater were viewed by the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) in late southern summer on 17 February 2004. Hundreds of narrow, dark streaks crisscross the dunes and the interdune terrain; these were most likely formed by the disruption of fine sediment by passing dust devils. The dune field is located near 41.2oS, 25.0oW, and is illuminated by sunlight from the upper left. Dune horns and slip faces indicate that the dominant winds blow from the southwest (lower left). The picture covers an area about 3 km (1.9 mi) across.

  16. Under-canopy microclimate within sand dunes in the Negev Desert

    NASA Astrophysics Data System (ADS)

    Kidron, Giora J.

    2010-10-01

    SummaryScattered shrubs are a common phenomenon in many arid landscapes. Once established, shrubs are known to create "islands of fertility", i.e., preferential habitats for annuals and animals. In an attempt to characterize the physical conditions prevailing under the shrub, radiation, temperatures and soil moisture (0-40 cm) following rain were measured during 1993-1995 at the shaded under-canopy (UC) and at the exposed inter-shrub habitat (EXP) of two pairs of shrubs located at the north- and south-facing slopes of dunes in the Nizzana research site, western Negev Desert, Israel. In addition, the soil organic matter (SOM) and the fine (silt and clay) content (FC) were also measured. Whereas the differences in the amounts of SOM and FC were small, daylight temperatures at UC were substantially lower (6-15 °C), subsequently resulting in extended time during which the UC habitat remained wet. Moisture was retained for up to 10.5-42.6% longer at UC in comparison to EXP, mainly explained by the shading effect. SOM was found to explain only 8.6-19.6% of the results. By shading, shrubs in the Negev Desert may thus provide relatively wetter conditions for annuals, rendering them an advantage over inter-shrub habitats at this harsh arid environment.

  17. Examining the Relationship Between Suspended Sand Load and Bedload on the Colorado River Using Concurrent Measurements of Suspended Sand and Observations of Sand Dune Migration.

    NASA Astrophysics Data System (ADS)

    Ashley, T.; McElroy, B. J.; Buscombe, D.; Grams, P. E.; Kaplinski, M. A.

    2015-12-01

    Spatial variability in sediment flux is directly related to geomorphic change. Along the Colorado River, measurements of sediment flux are used to track changes in sediment storage and time the release of controlled floods aimed at building eroded sandbars. The very high uncertainty typical of measurements of sediment flux has been reduced by a program of continuous measurement of suspended-sediment concentration by acoustic surrogates. However, there is still significant uncertainty in calculations of total flux. A large fraction of that uncertainty may be caused by overly simplified treatment of bedload flux, which is currently estimated as a constant 5% of the suspended sand flux. That constant is based on estimates of bedform migration rate made with side-scan sonar. Here, we apply theory which relates bedform migration and streamwise sediment flux, to bathymetric data collected at unprecedented temporal and spatial resolution adjacent to the USGS sediment monitoring station above Diamond Creek (362 km downstream from Lees Ferry, AZ). Quantitative time series measurements of reach averaged bedform transport are calculated and compared to fluxes estimated by expressing bedload as a constant fraction of suspended load. Over the range of discharges expected during normal dam operations, bedload transport estimated from the migration of bedforms in the study reach is at least 20% of instantaneous suspended sand load measured at the gage. While bedload appears to be controlled primarily by discharge (and therefore transport capacity of the flow), suspended sand load varies inversely with the grain size of suspended material, suggesting dependence on sediment supply. Sediment transport capacity can vary significantly at a given discharge depending on local hydraulic geometry, so it is likely that there is more spatial variability in bedload transport than suspended sand transport.

  18. Sand transport on Mars: Preliminary results from models

    NASA Technical Reports Server (NTRS)

    Greeley, R.; Anderson, F. S.; Blumberg, D.; Lo, E.; Xu, P.; Pollack, J.

    1993-01-01

    Most studies of active aeolian processes on Mars have focused on dust, i.e., particles approximately 1 micron in diameter that are transported in suspension by wind. The presence of sand dunes on Mars indicates that larger grains (approximately greater than 60 microns, transported primarily in saltation) are also present. Although indirect evidence suggests that some dunes may be active, definitive evidence is lacking. Nonetheless, numerous studies demonstrate that sand is substantially easier to transport by wind than dust, and it is reasonable to infer that sand transportation in saltation occurs under present Martian conditions. In order to assess potential source regions, transportation pathways, and sites of deposition for sand on Mars, an iterative sand transport algorithm was developed that is based on the Mars General Circulation Model of Pollack et al. The results of the dust transport model are then compared with observed surface features, such as dune field locations observed on images, and surficial deposits as inferred from Viking IRTM observations. Preliminary results suggest that the north polar dune fields in the vicinity of 270 degrees W, 70 degrees N originated from weathered polar layered plains centered at 280 degrees W, 85 degrees N, and that Thaumasia Fossae, southern Hellas Planitia, and the area west of Hellespontus Montes are sand depositional sites. Examples of transportation 'corridors' include a westward pathway in the latitudinal band 35 degrees N to 45 degrees N, and a pathway southward from Solis Planum to Thaumasia Fossae, among others.

  19. Environmental Controls and Eco-geomorphic Interactions of the Barchan-to-parabolic Dune Stabilisation and the Parabolic-to-barchan Dune Reactivation

    NASA Astrophysics Data System (ADS)

    Yan, Na; Baas, Andreas

    2015-04-01

    Parabolic dunes are one of a few common aeolian landforms which are highly controlled by eco-geomorphic interactions. Parabolic dunes, on the one hand, can be developed from highly mobile dune landforms, barchans for instance, in an ameliorated vegetation condition; or on the other hand, they can be reactivated and transformed back into mobile dunes due to vegetation deterioration. The fundamental mechanisms and eco-geomorphic interactions controlling both dune transformations remain poorly understood. To bridge the gap between complex processes involved in dune transformations on a relatively long temporal scale and real world monitoring records on a very limited temporal scale, this research has extended the DECAL model to incorporate 'dynamic' growth functions and the different 'growth' of perennial shrubs between growing and non-growing seasons, informed by field measurements and remote sensing analysis, to explore environmental controls and eco-geomorphic interactions of both types of dune transformation. A non-dimensional 'dune stabilising index' is proposed to capture the interactions between environmental controls (i.e. the capabilities of vegetation to withstand wind erosion and sand burial, the sandy substratum thickness, the height of the initial dune, and the sand transport potential), and establish the linkage between these controls and the geometry of a stabilising dune. An example demonstrates how to use the power-law relationship between the dune stabilising index and the normalised migration distance to assist in extrapolating the historical trajectories of transforming dunes. The modelling results also show that a slight increase in vegetation cover of an initial parabolic dune can significantly increase the reactivation threshold of climatic impact (both drought stress and wind strength) required to reactivate a stabilising parabolic dune into a barchan. Four eco-geomorphic interaction zones that govern a barchan-to-parabolic dune transformation

  20. Diet of the lizard Liolaemus occipitalis in the coastal sand dunes of southern Brazil (Squamata-Liolaemidae).

    PubMed

    Verrastro, L; Ely, I

    2015-05-01

    Knowledge of a species' diet provides important information on adaptation and the relationship between the organism and its environment. The genus Liolaemus occurs in the southern region of South America and is an excellent model to investigate the adaptive processes of vertebrate ecology in ecosystems of this region of the world. Liolaemus occipitalis is an endangered species that inhabits the coastal sand dunes of southern Brazil. This species is the most abundant vertebrate in this environment, and it presents unique adaptation characteristics to the restinga environment. The present study analyzed this lizard's diet to verify similarities or differences between this species and other species of the same genus. Specimens were collected monthly from January 1996 to December 1997. The number of items, frequency of occurrence and volume of each prey taxon were determined. Arthropods were identified to the order level, and plant material was identified as flower, fruit, seed and leaves. Variations in the diet of males and females, adults and juveniles and seasons were also analyzed. The data indicate that Liolaemus occipitalis is a generalist, "sit-and-wait" or ambush predator as well as omnivorous, feeding on both arthropods and plant material. Significant ontogenetic differences were verified. Juveniles are more carnivorous, and the intake of plant material increases with size and age. Seasonal differences in diet composition were also observed. In the spring, arthropod and plant materials were more diversified and, therefore, consumed more often. PMID:26132010

  1. An Assessment of Spontaneous Vegetation Recovery in Aggregate Quarries in Coastal Sand Dunes in Buenos Aires Province, Argentina

    NASA Astrophysics Data System (ADS)

    Fernández Montoni, María Victoria; Fernández Honaine, Mariana; del Río, Julio Luis

    2014-08-01

    Sand dune quarries are a location of common aggregate mining activity developed in coastal areas, especially in the southeast Buenos Aires province, Argentina. In this article, spontaneous plant development after extraction activity ceased was evaluated. Five areas (three quarried and two natural/conservation areas) were sampled for plant cover and composition as well as sediment characterization. Different indexes, principal component analysis, and cluster analyses were applied to compare the areas. The dominant families observed in four of the five areas were Asteraceae, Poaceae, and Cyperaceae, and most of the species are commonly found in sandy and humid soils and/or modified/anthropized ones. Percentages of plant cover increased with time because of the cessation of active aggregate extraction. Indexes and multivariate analyses showed that it was possible to distinguish quarried and natural areas based on composition and vegetation cover. The distribution of plant species among the four areas responded to the presence of mining activity, but it also responded to the topographical position and consequently the depth of the groundwater level. Besides these differences, the four areas shared many native species. The results might indicate that once the activity has ceased, quarried areas may spontaneously and quickly develop a plant community with some similarities to those present in the nonquarried areas. However, given that the extracting activity involves the removal of the soil, revegetation of this type of environment depends on the presence of natural areas in the surroundings, which can serve as a source of seeds and propagules for plant regeneration.

  2. Population dynamics of Agriophyllum squarrosum, a pioneer annual plant endemic to mobile sand dunes, in response to global climate change

    PubMed Central

    Qian, Chaoju; Yin, Hengxia; Shi, Yong; Zhao, Jiecai; Yin, Chengliang; Luo, Wanyin; Dong, Zhibao; Chen, Guoxiong; Yan, Xia; Wang, Xiao-Ru; Ma, Xiao-Fei

    2016-01-01

    Climate change plays an important role in the transition of ecosystems. Stratigraphic investigations have suggested that the Asian interior experienced frequent transitions between grassland and desert ecosystems as a consequence of global climate change. Using maternally and bi-parentally inherited markers, we investigated the population dynamics of Agriophyllum squarrosum (Chenopodiaceae), an annual pioneer plant endemic to mobile sand dunes. Phylogeographic analysis revealed that A. squarrosum could originate from Gurbantunggut desert since ~1.6 Ma, and subsequently underwent three waves of colonisation into other deserts and sandy lands corresponding to several glaciations. The rapid population expansion and distribution range shifts of A. squarrosum from monsoonal climate zones suggested that the development of the monsoonal climate significantly enhanced the population growth and gene flow of A. squarrosum. These data also suggested that desertification of the fragile grassland ecosystems in the Qinghai-Tibetan Plateau was more ancient than previously suggested and will be aggravated under global warming in the future. This study provides new molecular phylogeographic insights into how pioneer annual plant species in desert ecosystems respond to global climate change, and facilitates evaluation of the ecological potential and genetic resources of future crops for non-arable dry lands to mitigate climate change. PMID:27210568

  3. Population dynamics of Agriophyllum squarrosum, a pioneer annual plant endemic to mobile sand dunes, in response to global climate change.

    PubMed

    Qian, Chaoju; Yin, Hengxia; Shi, Yong; Zhao, Jiecai; Yin, Chengliang; Luo, Wanyin; Dong, Zhibao; Chen, Guoxiong; Yan, Xia; Wang, Xiao-Ru; Ma, Xiao-Fei

    2016-01-01

    Climate change plays an important role in the transition of ecosystems. Stratigraphic investigations have suggested that the Asian interior experienced frequent transitions between grassland and desert ecosystems as a consequence of global climate change. Using maternally and bi-parentally inherited markers, we investigated the population dynamics of Agriophyllum squarrosum (Chenopodiaceae), an annual pioneer plant endemic to mobile sand dunes. Phylogeographic analysis revealed that A. squarrosum could originate from Gurbantunggut desert since ~1.6 Ma, and subsequently underwent three waves of colonisation into other deserts and sandy lands corresponding to several glaciations. The rapid population expansion and distribution range shifts of A. squarrosum from monsoonal climate zones suggested that the development of the monsoonal climate significantly enhanced the population growth and gene flow of A. squarrosum. These data also suggested that desertification of the fragile grassland ecosystems in the Qinghai-Tibetan Plateau was more ancient than previously suggested and will be aggravated under global warming in the future. This study provides new molecular phylogeographic insights into how pioneer annual plant species in desert ecosystems respond to global climate change, and facilitates evaluation of the ecological potential and genetic resources of future crops for non-arable dry lands to mitigate climate change. PMID:27210568

  4. Wind regime and sand transport in China's Badain Jaran Desert

    NASA Astrophysics Data System (ADS)

    Zhang, Zhengcai; Dong, Zhibao; Li, Chunxiao

    2015-06-01

    Wind controls the formation and development of aeolian dunes, therefore understanding the wind environment is necessary in aeolian dune research. In recent years, climate has changed in and around the Badain Jaran Desert, and the factors that control aeolian dune development have changed with it. In this paper, we analyzed characteristics of the desert's wind regime based on data from seven weather stations in and around the desert. The temporal and spatial variation in the wind regime's characteristics have different effects on dune formation and development. The annual mean wind velocity, maximum wind velocity, and the proportion of the time the wind exceeded the sand-entrainment threshold are largest at the northern margin of the desert, and these values decrease from north to south and from east to west. The dominant winds are from the northwest, northeast, and southwest. The drift potential (DP) in the desert decreases from north to south, and can be divided into three regions: high in the north, intermediate in the central region, and low in the south. The effects of climate change on the calculated DP will be complex; although DP increased with increasing mean wind velocity and temperature, there was little or no relationship with precipitation and relative humidity.

  5. High-Resolution Monitoring of Coastal Dune Erosion and Growth Using an Unmanned Aerial Vehicle

    NASA Astrophysics Data System (ADS)

    Ruessink, G.; Markies, H.; Van Maarseveen, M.

    2014-12-01

    Coastal foredunes lose and gain sand through marine and aeolian processes, but coastal-evolution models that can accurately predict both wave-driven dune erosion and wind-blown dune growth are non-existing. This is, together with a limited understanding of coastal aeolian process dynamics, due to the lack of adequate field data sets from which erosion and supply volumes can be studied simultaneously. Here, we quantify coastal foredune dynamics using nine topographic surveys performed near Egmond aan Zee, The Netherlands, between September 2011 and March 2014 using an unmanned aerial vehicle (UAV). The approximately 0.75-km long study site comprises a 30-100 m wide sandy beach and a 20-25 m high foredune, of which the higher parts are densely vegetated with European marram grass. Using a structure-from-motion workflow, the 200-500 photographs taken during each UAV flight were processed into a point cloud, from which a geo-referenced digital surface model with a 0.25 x 0.25 m resolution was subsequently computed. Our data set contains two dune-erosion events, including that due to storm Xaver (December 2013), which caused one of the highest surge levels in the southern North Sea region for the last decades. Dune erosion during both events varied alongshore from the destruction of embryonic dunes on the upper beach to the slumping of the entire dune face. During the first storm (January 2012), erosion volumes ranged from 5 m3/m in the (former) embryonic dune field to over 40 m3/m elsewhere. During the subsequent 11 (spring - autumn) months, the foredune accreted by (on average) 8 m3/m, again with substantial alongshore variability (0 - 20 m3/m). Intriguingly, volume changes during the 2012-2013 winter were minimal. We will compare the observed aeolian supply rates with model predictions and discuss reasons for their temporal variability. Funded by the Dutch Organisation for Scientific Research NWO.

  6. XRD and mineralogical analysis of gypsum dunes at White Sands National Monument, New Mexico and applications to gypsum detection on Mars

    NASA Astrophysics Data System (ADS)

    Lafuente, B.; Bishop, J. L.; Fenton, L. K.; King, S. J.; Blake, D.; Sarrazin, P.; Downs, R.; Horgan, B. H.

    2013-12-01

    A field portable X-ray Diffraction (XRD) instrument was used at White Sands National Monument to perform in-situ measurements followed by laboratory analyses of the gypsum-rich dunes and to determine its modal mineralogy. The field instrument is a Terra XRD (Olympus NDT) based on the technology of the CheMin (Chemistry and Mineralogy) instrument onboard the Mars Science Laboratory (MSL) rover Curiosity which is providing the mineralogical and chemical composition of scooped soil samples and drilled rock powders collected at Gale Crater [1]. Using Terra at White Sands will contribute to 'ground truth' for gypsum-bearing environments on Mars. Together with data provided by VNIR spectra [2], this study clarifies our understanding of the origin and history of gypsum-rich sand dunes discovered near the northern polar region of Mars [3]. The results obtained from the field analyses performed by XRD and VNIR spectroscopy in four dunes at White Sands revealed the presence of quartz and dolomite. Their relative abundance has been estimated using the Reference Intensity Ratio (RIR) method. For this study, particulate samples of pure natural gypsum, quartz and dolomite were used to prepare calibration mixtures of gypsum-quartz and gypsum-dolomite with the 90-150μm size fractions. All single phases and mixtures were analyzed by XRD and RIR factors were calculated. Using this method, the relative abundance of quartz and dolomite has been estimated from the data collected in the field. Quartz appears to be present in low amounts (2-5 wt.%) while dolomite is present at percentages up to 80 wt.%. Samples from four dunes were collected and prepared for subsequent XRD analysis in the lab to estimate their composition and illustrate the changes in mineralogy with respect to location and grain size. Gypsum-dolomite mixtures: The dolomite XRD pattern is dominated by an intense diffraction peak at 2θ≈36 deg. which overlaps a peak of gypsum, This makes low concentrations of dolomite

  7. Last Glacial Maximum Development of Parna Dunes in Panhandle Oklahoma, USA

    NASA Astrophysics Data System (ADS)

    Johnson, W. C.; Halfen, A. F.; McGowen, S.; Carter, B.; Fine, S.; Bement, L. C.; Simms, A. R.

    2012-12-01

    landscape destabilized, and aeolian processes dominated. Peoria Loess began accumulating throughout parts of Oklahoma and much of Kansas, Nebraska, and beyond, until landscape stabilization was re-attained about 14-13 ka. Our chronological and geomorphic data suggest that parna dune construction in the Oklahoma panhandle was the result of strong, northerly winds, which precipitated aeolian activity at the beginning of MIS 2. Furthermore, these features appear to be more analogous to the regional loess record than the sand dune activation record, and, with more research, may prove to be a reliable record of late-Quaternary landscape change in the central Great Plains.

  8. Landscape and soil development in Lower Lusatia - results from archaeological and soil-geomorphological investigations on a small dune field nearby Jänschwalde (Brandenburg, Germany)

    NASA Astrophysics Data System (ADS)

    Nicolay, Alexander; Schulz, Deborah; Raab, Thomas; Raab, Alexandra

    2014-05-01

    Within the apron of the opencast mine Jänschwalde (SE Brandenburg, Germany) archaeological excavations on a multiple populated small dune were complemented with soil-geomorphological investigations in the vicinity. Archaeological findings in the dune stratigraphy (especially cremation graves) are intercalated within aeolian sediments and/or buried soils and thus give a record of the Late Quaternary geomorphodynamic and soil development. The archaeological results confirm the presence of Mesolithic and Neolithic populations at the study site. The Mesolithic to Neolithic factory sites are preferably located on slightly elevated places like the remnants of late glacial dunes. On these late glacial aeolian sediments subsequently a podzol formation took place, indicating stable environmental conditions. At the excavation site, this soil was buried by aeolian drift sands in which a cemetery was found. According to grave goods and grave type the excavated bi-ritual cemetery was created at the end of the 3rd and used until the early 5th century AD (Late Roman Iron Age to Migration Period). Within this period the aeolian activity, proven by about 1 m deep drift sands, increased and a small dune was formed wherein 4 inhumation and approx. 26 cremation graves (Schichtgräberfeld) were documented. The cremation graves were mainly recorded as small reddish/gray 5-20 cm thick sandy layers which were separated by the drift sand layers. Soil-geomorphological investigations, two kilometers north of the excavated cremation and settle-ment site corroborate the detected phases of morphological stability and aeolian activity in this time period. Our complementing investigations indicate that the Late Roman Iron Age to Migration Period population had affected the landscape due to deforestation and agricultural land use.

  9. Column experiments to study nonlinear removal of bacteriophages by passage through saturated dune sand.

    PubMed

    Schijven, J F; Hassanizadeh, S M; de Bruin, H A M

    2002-10-01

    In a recent field study on dune recharge, bacteriophages MS2 and PRD1 were found to be removed 3 log10 over the first 2.4 m and only 5 log10 over the next 27 m. To understand the causes of this nonlinear removal, column experiments were carried out under conditions similar to the field: same recharge water, temperature (5 +/- 3 degrees C) and pore water velocity (1.5 m day(-1)). Soil samples were taken along a streamline between the recharge canal and the first monitoring well. Bacteriophage phiX174 was included for comparison. The high initial removal in the field was found not to be due to heterogeneity of phage suspensions but to soil heterogeneity. Phage removal rates correlated strongly positively with soil organic carbon content, and relatively strongly positively with silt content and the presence of ferric oxyhydroxides. Soil organic carbon content, silt content and the presence of ferric oxyhydroxides were found to decrease exponentially with travel distance. Removal rates of phiX174 were found to be 3-10 times higher than those of MS2 and PRD1 due to the lower electrostatic repulsion that the less negatively charged phiX174 experiences. It is suggested that the high initial removal in the field is due to the presence of favorable sites for attachment formed by ferric oxyhydroxides that decrease exponentially with travel distance. Similar removal rates may be found at both laboratory and field scale. However, due to local variations at field scale detailed knowledge on soil heterogeneity may be needed to enable a reliable prediction of removal. PMID:12400835

  10. Aeolian processes on Venus

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald

    1989-01-01

    This review assesses the potential aeolian regime on Venus as derived from spacecraft observations, laboratory simulations, and theoretical considerations. The two requirements for aeolian processes (a supply of small, loose particles and winds of sufficient strength to move them) appear to be met on Venus. Venera 9, 10, 13, and 14 images show particles considered to be sand and silt size on the surface. In addition, dust spurts (grains 5 to 50 microns in diameter) observed via lander images and inferred from the Pioneer-Venus nephalometer experiments suggest that the particles are loose and subject to movement. Although data on near surface winds are limited, measurements of 0.3 to 1.2 m/sec from the Venera lander and Pioneer-Venus probes appear to be well within the range required for sand and dust entrainment. Aeolian activity involves the interaction of the atmosphere, lithosphere, and loose particles. Thus, there is the potential for various physical and chemical weathering processes that can effect not only rates of erosion, but changes in the composition of all three components. The Venus Simulator is an apparatus used to simulate weathering under venusian conditions at full pressure (to 112 bars) and temperature (to 800 K). In one series of tests, the physical modifications of windblown particles and rock targets were assessed and it was shown that particles become abraded even when moved by gentle winds. However, little abrasion occurs on the target faces. Thus, compositional signatures for target rocks may be more indicative of the windblown particles than of the bedrock. From these and other considerations, aeolian modifications of the venusian surface may be expected to occur as weathering, erosion, transportation, and deposition of surficial materials. Depending upon global and local wind regimes, there may be distinctive sources and sinks of windblown materials. Radar imaging, especially as potentially supplied via the Magellan mission, may enable the

  11. Dune Avalanche Scars

    NASA Technical Reports Server (NTRS)

    2004-01-01

    05 August 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows large, low albedo (dark) sand dunes in Kaiser Crater near 47.2oS, 340.4oW. The dunes are--ever so slowly--moving east to west (right to left) as sand avalanches down the steeper, slip face slopes of each. Avalanching sand in the Kaiser dune field has left deep scars on these slopes, suggesting that the sand is not loose but is instead weakly cemented. The image covers an area approximately 3 km (1.9 mi) wide and is illuminated by sunlight from the upper left.

  12. Dynamic dune management, integrating objectives of nature development and coastal safety: Examples from the Netherlands

    NASA Astrophysics Data System (ADS)

    Arens, Sebastiaan M.; Mulder, Jan P. M.; Slings, Quirinus L.; Geelen, Luc H. W. T.; Damsma, Petra

    2013-10-01

    This paper discusses and compares results of management interventions to remobilise dunes and obtain more autonomous changes in foredunes resulting from a change in coastal defence policy. In recent decades, nature conservation managers tried to restore aeolian dynamics and dune mobility landward of foredunes to maintain threatened, rare pioneer species. Results indicate that destabilisation activities yielded an important increase of blowing sand and its effects on ecology but with a limited effect on the desired integral remobilization of dunes. Roots remaining in the sand after removal of vegetation and soil is one of the main problems. Follow up removal of roots for 3 to 5 years seems to be essential, but it is not clear whether the dunes will remain mobile in the long term. In 1990 the Dutch government decided to maintain the position of the coastline by artificial sand nourishment. An intensive management of the foredunes was no longer required. Consequently, natural processes in the foredunes revived, and the sediment budget of the beach-dune system changed. Two main types of responses are visible. In some areas, increased input of sand resulted in the development of embryonic dunes seaward of the former foredunes, leading to increased stabilisation of the former foredunes. In other areas, development of embryonic dunes was insignificant despite the increased sand input, but wind erosion features developed in the foredunes, and the environment was more dynamic. The reasons for the differences are not clear, and the interaction between shoreface, beach and dunes is still poorly understood. Until now, attempts to mobilise the inner dunes were independent of changes made to the foredunes. We argue that an integrated, dynamic approach to coastal management, taking account of all relevant functions (including safety and natural values) and the dune-beach system as a whole, may provide new and durable solutions. An integrated approach would ideally provide fresh

  13. [Viability and germination characteristics of canopy-stored seeds of plants in sand dune area].

    PubMed

    Ma, Jun-Ling; Liu, Zhi-Min

    2008-02-01

    The study on the viability and germination characteristics of canopy-stored seeds remained in canopy until next May after maturation of 10 plants species in Horqin sandy land showed that more than 80% of the canopy-stored seeds of psammophytes such as Agriophyllum squarrosum, Artemisia wudanica and A. halodendron had viability, while less than 80% or even less than 30% of non-psammophytes seeds had viability. The canopy-stored seeds of psammophytes presented a rapid germination pattern. The canopy seed bank made the seed release of psammophytes postponed until the windy season ended and the rainy season started, when the seeds had high viability and could germinate rapidly. The canopy seed bank is one of ways for psammophytes to adapt drift sand and seasonal drought. PMID:18464627

  14. Aeolian beach ridges and their significance for climate and sea level: Concept and insight from the Levant coast (East Mediterranean)

    NASA Astrophysics Data System (ADS)

    Mauz, B.; Hijma, M. P.; Amorosi, A.; Porat, N.; Galili, E.; Bloemendal, J.

    2013-06-01

    preservation potential due to the small sediment budget of the complex. The falling stage complex has a high preservation potential because sediment source area increases while the sand drift potential remains above the local threshold. On the Levant coast, sand delivery to the backshore continued during relative sea-level falls for distances of up to 10 km between dune and coastline which is unprecedented in most modern analogues. The significance of the dune-soil succession for climate is limited because the dunes are governed by relative sea-level change; the vegetation response to changes in precipitation is non-linear and the dune dynamics are characterised by low resilience and hysteresis.

  15. Field measurement and analysis of climatic factors affecting dune mobility near Grand Falls on the Navajo Nation, southwestern United States

    USGS Publications Warehouse

    Bogle, Rian C.; Redsteer, Margaret Hiza; Vogel, John M.

    2015-01-01

    Aeolian sand covers extensive areas of the Navajo Nation in the southwestern United States. Much of this sand is currently stabilized by vegetation, although many drier parts of these Native lands also have active and partly active dunes. Current prolonged drought conditions that started in the mid-1990s are producing significant changes in dune mobility. Reactivation of regional aeolian deposits due to drought or increasing aridity from rising temperatures resulting from climate change could have serious consequences for human and animal populations, agriculture, grazing, and infrastructure. To understand and document the current and future potential for mobility, seasonally repeated surveys were used to track the location of multiple active barchan dunes. By utilizing Real-Time Kinematic GPS field surveys and simultaneously collecting in-situ meteorological data, it is possible to examine climatic parameters and seasonal variations that affect dune mobility and their relative influences. Through analysis of the recorded data, we examined the fit of various climate parameters, and demonstrate that under the current prolonged drought, wind power is the dominant factor controlling dune mobility.

  16. Dune and ripple migration along Curiosity's traverse in Gale Crater on Mars

    NASA Astrophysics Data System (ADS)

    Silvestro, S.; Vaz, D.; Ewing, R. C.; Fenton, L. K.; Michaels, T. I.; Ayoub, F.; Bridges, N. T.

    2013-12-01

    The NASA Mars Science Laboratory (MSL) rover, Curiosity, has safely landed near a 35-km-long dark dune field in Gale Crater on Mars. This dune field lies along Curiosity's traverse to Aeolis Mons (Mt. Sharp). Here we present new evidence of aeolian activity and further estimate wind directions within the dune field through analysis of ripple migration with the COSI-Corr technique, which provides precise measurements of ripple displacement at the sub-pixel scale.The area analyzed is located ~10 km southwest of rover Curiosity's current position and ~4 km SW of its selected path through Aeolis Mons (Mt. Sharp) (Fig. 1a). Here barchan dunes with elongated horns and seif dunes coexist with more typical barchan and dome dunes (Fig. 1a, b), with slopes sculpted by two intersecting ripple crestline orientations trending at 45° and 330°. The range of dune types and ripple orientations indicate the dune field morphology is influenced by at least two winds from the NW and the NE. The direction of migration is toward the SW, suggesting the most recent sand transporting winds were from the NE (Fig. 1c). These results match previous predictions and can be used to forecast the wind conditions close to the entry point to Mt. Sharp. Fig. 1: a-b) Study area c) Ripple migration direction computed using the COSI-Corr technique

  17. Is Titan's Dune Orientation Controlled by Tropical Methane Storms?

    NASA Astrophysics Data System (ADS)

    Charnay, Benjamin; Barth, Erika; Rafkin, Scot; Narteau, Clément; Lebonnois, Sébastien; Rodriguez, Sébastien; Courrech du Pont, Sylvain; Lucas, Antoine

    2014-11-01

    Titan’s equatorial regions are covered by eastward oriented linear dunes. This direction is opposite to mean surface winds simulated by Global Climate Models (GCMs) at these latitudes, oriented westward as trade winds on Earth [1, 2].Here, we propose that Titan’s dune orientation is actually determined by equinoctial tropical methane storms producing a coupling with superrotation and dune formation. Using meso-scale simulations of convective methane clouds [3, 4] with a GCM wind profile featuring the superrotation [5, 6], we show that Titan’s storms should produce fast eastward gust fronts above the surface. Such gusts dominate the aeolian transport. Using GCM wind roses and analogies with terrestrial dune fields [7], we show that Titan's dune growth occurs eastward under these conditions. Finally, this scenario combining global circulation winds and methane storms can explain other major features of Titan's dunes (i.e. divergence from the equator, size and spacing).References:[1] Lorenz et al.: The Sand Seas of Titan: Cassini RADAR Observations of Longitudinal Dunes, Science (2006)[2] Lorenz & Radebaugh: Global pattern of Titan’s dunes: Radar survey from the Cassini prime mission, Geophysical Research Letter (2009)[3] Barth & Rafkin.: TRAMS: A new dynamic cloud model for Titan’s methane clouds, Geophysical Research Letter (2007)[4] Barth & Rafkin.: Convective cloud heights as a diagnostic for methane environment on Titan, Icarus (2010)[5] Charnay & Lebonnois: Two boundary layers in Titan's lower troposphere inferred from a climate model, Nature Geoscience (2012)[6] Lebonnois et al.: Titan global climate model: A new 3-dimensional version of the IPSL Titan GCM, Icarus (2012)[7] Courrech du Pont, Narteau & Gao: Two modes for dune orientation, Geology (2014)

  18. A test of a climatic index of dune mobility using measurements from the southwestern United States

    USGS Publications Warehouse

    Lancaster, N.; Helm, P.

    2000-01-01

    The climatic index of dune mobility developed by Lancaster (1988) has been applied to a variety of different environments. The index is, however, untested and unverified. We tested the index by comparison of values of the dune mobility index calculated from climate data with rates of sand transport measured at three stations in Arizona and New Mexico over the period 1985 to 1997. Our results show that changes in measured rates of sand transport closely parallel temporal changes in the dune mobility index. The mobility index is, however, a relatively poor predictor of the magnitude of actual sand transport on a year-to-year basis. This discrepancy is probably due to the fact that sand transport rates at these sites are strongly influenced by vegetation cover, the state of which may lag changes in annual precipitation. There is, however, a good relation between the mean annual mobility index and mean annual rates of sand transport. This indicates that the dune mobility index is a valid predictor of the long-term state of the aeolian system and can be used confidently for the purposes for which it was originally intended. Copyright (C) 2000 John Wiley and Sons, Ltd.

  19. Morphology and Sediment Transport Dynamics of a Trough-Blowout Dune, Bodega Marine Reserve, Northern California

    NASA Astrophysics Data System (ADS)

    Jorgenson, D.; Dunleavy, C. J.; Smith, M. E.

    2014-12-01

    Blowout dunes are a primary mechanism for transporting sand within vegetated coastal dune systems. Understanding the fine-scale variation in sediment transport within these systems is critical to predicting their formation and migration. Previous investigations of a coastal dune system located at the Bodega Marine Reserve, on the Sonoma Coast of Northern California have indicated that aeolian sand flux in unvegetated sand is ~450x greater than in vegetated areas. To better understand sand flux and its relationship with wind speed, direction and precipitation, we deployed an array of 12 sand traps within a single blowout area adjacent to the BOON marine climatology station. The blowout is trough- shaped, approximately 50 meters long and 15 meters wide. Its main 'fairway' is 5-10 meters below the surrounding beach grass (Ammophila)-covered land surface. Surface sediment within the blowout is fine-grained to granule-sized lithic to sub-lithic sand, and is coarsest in the center. Dune sediment in the Bodega Marine Reserve has been transported by aeolian processes from Salmon Creek Beach to the NW. Within the blowout, typical bedforms include 15-25 cm-wavelength, ~10 cm high sinuous to lingoid ripples arranged perpendicularly to the dominant wind direction (~280 degrees). An 8-10 meter-high mound at the downwind end has accumulated due to the trapping of sand flux by vegetation. Sediment flux across the studied blowout was sampled monthly over a 10-month period of 2013-2014. Sand traps were constructed using modified PVC cylinders, and are 0.5 meter high and 0.3 meter in diameter, with a 0.74-micron mesh screen. Based on measured sand flux, the sites can be categorized into three groups-axial, medial, and peripheral. Rates increase downwind within the blowout. Inter-site sand flux variability within unvegetated locations of the blowout is greater than two orders of magnitude. Axial sites, which experience the greatest sand flux, occur on the edge of the blowout adjacent

  20. 21Ne, 10Be and 26Al cosmogenic burial ages of near-surface eolian sand from the Packard Dune field, McMurdo Dry Valleys, Antarctica.

    NASA Astrophysics Data System (ADS)

    Fink, David; Augustinus, Paul; Rhodes, Ed; Bristow, Charles; Balco, Greg

    2015-04-01

    The McMurdo Dry Valleys, Antarctica, have been ice-free for at least 10 Ma. In Victoria Valley, the largest of the Dry Valleys, permafrosted yet still actively migrating dune-fields, occupy an area of ~8 km2 with dune thicknesses varying from ~5 to 70 meters. High-resolution ground penetrating radar (GPR) imaging of selected dunes reveal numerous unconformities and complex stratigraphy inferring cycles of sand accretion and deflation from westerly katabatic winter winds sourced from the East Antarctic Ice Sheet and anabatic summer winds sourced from the Ross Sea. Samples above permafrost depth were taken for OSL and cosmogenic 26Al/10Be burial ages. OSL ages from shallow (<1m) pits range from modern to ~1.3ka suggesting that deposition/reworking of the dunes is on-going and their present configuration is a late Holocene feature. The same 7 samples gave a mean 26Al/10Be = 4.53 +/- 5% with an average apparent continuous 10Be surface exposure age of 525 +/- 25 ka surprisingly indicating a common pre-history independent of depth. Correcting for minor post-burial production based on OSL ages, the minimum (integrated) burial period for these sand grains is 0.51+/- 0.12 Ma which represents the burial age at the time of arrival at the dune. A possible explanation is that this common burial signal reflects recycling episodes of exposure, deposition, burial and deflation, sufficiently frequent to move all grains towards a common pre-dune deposition history. However, it is unclear over what length of time this processes has been active and fraction of time the sand has been buried. Consequently we also analysed purified quartz aliquots of the same samples for a third and stable nuclide, 21Ne, to determine the total surface and burial exposure periods. Using the 21Ne/10Be system we obtain burial ages of 1.10 +/- 0.10 Ma. Further coring below permafrost is planned for austral summer 2015.

  1. Dark-toned dunes in the western Medusae Fossae Formation: Characteristics, distribution, and source

    NASA Astrophysics Data System (ADS)

    Burr, D. M.; Zimbelman, J. R.; Brown, A. J.; Qualls, F. B.; Michaels, T. I.; Chojnacki, M.

    2010-12-01

    Aeolian bedforms are nearly ubiquitous on Mars but the origin of the sediments remains unidentified. Dark-toned Martian sand may originate as volcaniclastic sediment (Edgett and Lancaster 1993). The Medusae Fossae Formation (MFF) has been hypothesized to be a volcaniclastic deposit. The two lobes of the western-most MFF (westMFF) host dark -toned sediments (Fig. 1) categorized here as aeolian based on morphologies, surface textures, and locations within lows. These sediments are bright in both day and night infrared (IR) images, indicating a large grain size and low albedo, and are concentrated along the westMFF southern margin, below the highland-lowland boundary (HLB) scarp. Indications of an MFF origin for this dark-toned dune sediment include: 1) gradation of tone: the dark sediments frequently grade into lighter toned MFF slope materials. 2) morphology and location: The dark dune morphologies indicate emplacement by a northerly (toward the south) wind regime (Fig. 1), for which the westMFF immediately to the north provides a sediment origin. 3) composition: Limited spectral data of the dark dunes indicate an olivine-poor composition, in contrast to the olivine-rich spectra of dunes in southern highland (SH) and Cerberus plains (Cp) craters, indicating a different source for those SH or Cp dunes than for the westMFF dunes. Thus, while minor amounts of sediment have likely been contributed from elsewhwere, we hypothesize that the dark-toned dunes in the westMFF originate(d) from the breakdown of MFF sediments, winnowing of bright fines, and concentration of dark, coarse sand into dunes. Given the putative origin of the MFF as volcaniclastic, this identification of the origin of the westMFF dark-toned dunes supports the paradigm of dark aeolian sediments on Mars originating as volcaniclastic material. Portion of P07_003769_1742_XN_05S209W, showing gradation between lighter- and dark-toned sediments (upper portion of image), and echo dune morphology (white oval

  2. Copernicus Dunes

    NASA Technical Reports Server (NTRS)

    2005-01-01

    22 December 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows dark teardrop-shaped sand dunes in eastern Copernicus Crater. The winds responsible for these dunes generally blow from the south-southwest (lower left).

    Location near: 48.7oS, 167.4oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Summer

  3. Frosty Dunes

    NASA Technical Reports Server (NTRS)

    2005-01-01

    29 August 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows frost-covered sand dunes in the martian north polar region. The winds responsible for these dunes generally blew from the southwest (lower left).

    Location near: 80.0oN, 114.6oW Image width: width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Spring

  4. Nilosyrtis Dunes

    NASA Technical Reports Server (NTRS)

    2005-01-01

    31 July 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a rare patch of dark sand dunes in the Nilosyrtis Mensae region of Mars. The steepest slopes on these dunes, their slipfaces, point toward the south-southwest, indicating that the dominant winds that formed them came from the north-northeast (top/upper right).

    Location near: 34.5oN, 295.1oW Image width: width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Autumn

  5. Morphologic characteristics and migration rate assessment of barchan dunes in the Southeastern Western Desert of Egypt

    NASA Astrophysics Data System (ADS)

    Hamdan, M. A.; Refaat, A. A.; Abdel Wahed, M.

    2016-03-01

    This work explores the morphologic characteristics of aeolian dune sand in the southeastern part of Western Desert of Egypt. It aims to assess the movement of barchan dunes and evaluate their environmental influence on the Toshka Project. Morphometric investigation of barchan dunes in the Toshka area revealed that most barchans have high length/width (a/c) ratios (fat to pudgy), while one-fifth of the studied barchans have lower a/c ratios and so appear normal in their morphologic forms. Statistical analysis of the main parameters of barchan dunes in Toshka and other desert regions in the Kharga (Egypt), Kuwait, Southern Morocco, California and Southern Peru demonstrates that barchans of the Toshka area are distinctive in their appearance. They are characterized by distinct aspect with higher values of length and width and greater growth in height. The high-energy wind environment in addition to the large amount of drifting sand are principal factors responsible for the unique shape of Toshka barchans. The migration rate of barchan dunes in four chosen test locations, within the central and western Toshka area, ranges from about 3 to 10.82 m/year. The calculated average migration rate of these dunes is about 6 m/year in a SSW direction. Sand encroachment is more extensive in the central and western parts of the investigated Toshka area. Risk evaluation of sand dune movements in the southeastern part of the Western Desert points to medium to high sand encroachment risk values. These may represent serious hazards to the newly-established Toshka Project, threatening roads, as well as cultivated lands in the area.

  6. Municipal initiatives for managing dunes in coastal residential areas: a case study of Avalon, New Jersey, USA

    NASA Astrophysics Data System (ADS)

    Nordstrom, Karl F.; Jackson, Nancy L.; Bruno, Michael S.; de Butts, Harry A.

    2002-10-01

    The characteristics of foredunes created in a municipal management program on a developed barrier island are evaluated to identify how landforms used as protection structures can be natural in appearance and function yet compatible with human values. Shoreline management zones include a naturally evolving, undeveloped segment; a noneroding, developed segment; eroding and noneroding segments of an "improved beach" where dunes have been built by artificial nourishment; and a privately built, artificially nourished dune on the shoreline of an inlet. A disastrous storm in 1962 resulted in an aggressive program for building dunes using sand fences, vegetation plantings, purchase of undeveloped lots, and sediment backpassing to maintain beach widths and dune elevations. The present nourished and shaped foredune in the improved beach is higher, wider, and closer to the berm crest than the natural dune. Restricted inputs of aeolian sand keep the surface flat and poorly vegetated. A stable section of this engineered shore has a wider beach, and sand fences have created a higher foredune with greater topographic diversity. The cross shore zonation of vegetation here is more typical of natural dunes, but the environmental gradient is much narrower. The privately built dune is low, narrow, and located where it could not be created naturally. Foreshore and aeolian sediments in the undeveloped segment and the improved beach are similar in mean grain size (0.16-0.21 mm) and sorting (0.31-0.39 φ), but sediment on the surface of the nourished dune is coarser (28.1% gravel) with a more poorly sorted sand fraction (1.30 φ) representing lag elements on the deflation surface. Willingness to enhance beaches and dunes for protection has reduced insurance premiums and allowed the municipality to qualify for funds from the Federal Emergency Management Agency (FEMA) to replace lost sediment, thus placing an economic value on dunes. Success of the management program is attributed to: (i

  7. Aeolian cliff-top deposits and buried soils in the White River Badlands, South Dakota, USA

    USGS Publications Warehouse

    Rawling, J. E., III; Fredlund, G.G.; Mahan, S.

    2003-01-01

    Aeolian deposits in the North American Great Plains are important sources of Holocene palaeo-environmental records. Although there are extensive studies on loess and dune records in the region, little is known about records in aeolian cliff-top deposits. These are common on table (mesa) edges in the White River Badlands. These sediments typically have loam and sandy-loam textures with dominantly very fine sand, 0.5-1% organic carbon and 0.5-5% CaCO3. Some of these aeolian deposits are atypically coarse and contain granules and fine pebbles. Buried soils within these deposits are weakly developed with A-C and A-AC-C profiles. Beneath these are buried soils with varying degrees of pedogenic development formed in fluvial, aeolian or colluvial deposits. Thickness and number of buried soils vary. However, late-Holocene soils from several localities have ages of approximately 1300, 2500 and 3700 14C yrs BP. The 1300 14C yr BP soil is cumulic, with a thicker and lighter A horizon. Soils beneath the cliff-top deposits are early-Holocene (typically 7900 but as old as 10000 14C yrs BP) at higher elevation (???950 m) tables, and late-Holocene (2900 14C yrs BP) at lower (???830 m) tables. These age estimates are based on total organic matter 14C ages from the top 5 cm of buried soils, and agreement is good between an infrared stimulated luminescence age and bracketing 14C ages. Our studies show that cliff-top aeolian deposits have a history similar to that of other aeolian deposits on the Great Plains, and they are another source of palaeoenvironmental data.

  8. Chryseobacterium soldanellicola sp. nov. and Chryseobacterium taeanense sp. nov., isolated from roots of sand-dune plants.

    PubMed

    Park, Myung Soo; Jung, Se Ra; Lee, Kang Hyun; Lee, Myung-Sook; Do, Jin Ok; Kim, Seung Bum; Bae, Kyung Sook

    2006-02-01

    Two Gram-negative, yellow-pigmented bacteria designated PSD1-4T and PHA3-4T, isolated from two sand-dune plant species inhabiting coastal areas in Tae-an, Korea, were subjected to taxonomic investigation. 16S rRNA gene sequence analysis indicated that both isolates should be placed in the genus Chryseobacterium of the family Flavobacteriaceae. The phenotypic properties of the strains were also consistent with their classification into this genus. The levels of 16S rRNA gene sequence similarity between strain PSD1-4T and other Chryseobacterium species were 95.2-97.2%; those between PHA3-4T and others were 93.7-97.8%. The DNA-DNA relatedness data indicated that strains PSD1-4T and PHA3-4T were clearly different from the nearest species, Chryseobacterium indoltheticum and Chryseobacterium taichungense. The major fatty acids were 13-methyltetradecanoic acid (iso-C15:0), 3-hydroxy-15-methylhexadecanoic acid (iso-C17:0 3-OH) and omega-9-cis-15-methylhexadecenoic acid (iso-C17:1omega9c) for both strains. On the basis of polyphasic taxonomic analysis results, it is evident that each of these strains represents a novel species of Chryseobacterium, for which the names Chryseobacterium soldanellicola sp. nov. (type strain PSD1-4T=KCTC 12382T=NBRC 100864T) and Chryseobacterium taeanense sp. nov. (type strain PHA3-4T=KCTC 12381T=NBRC 100863T) are proposed. PMID:16449453

  9. Temporal and spatial variation of groundwater in quantity and quality in sand dune at coastal region, Kamisu city, central Japan.

    NASA Astrophysics Data System (ADS)

    Umei, Yohei; Tsujimura, Maki; Sakakibara, Koichi; Watanabe, Yasuto; Minema, Motomitsu

    2016-04-01

    The role of groundwater in integrated water management has become important in recent 10 years, though the surface water is the major source of drinking water in Japan. Especially, it is remarked that groundwater recharge changed due to land cover change under the anthropogenic and climatic condition factors. Therefore, we need to investigate temporal and spatial variation of groundwater in quantity and quality focusing on the change during recent 10-20 years in specific region. We performed research on groundwater level and quality in sand dune at coastal region facing Pacific Ocean, Kamisu city, Ibaraki Prefecture, which have been facing environmental issues, such as land cover change due to soil mining for construction and urbanization. We compared the present situation of groundwater with that in 2000 using existed data to clarify the change of groundwater from 2000 to 2015. The quality of water is dominantly characterized by Ca2+-HCO3‑ in both 2000 and 2015, and nitrate was not observed in 2015, though it was detected in some locations in 2000. This may be caused by improvement of the domestic wastewater treatment. The topography of groundwater table was in parallel with that of ground surface in 2015, same as that in 2000. However, a depletion of groundwater table was observed in higher elevation area in 2015 as compared with that in 2000, and this area corresponds to the locations where the land cover has changed due to soil mining and urbanization between 2015 and 2000. In the region of soil mining, the original soil is generally replaced by impermeable soil after mining, and this may cause a decrease of percolation and net groundwater recharge, thus the depletion of groundwater table occurred after the soil mining.

  10. Lunar and Planetary Science XXXV: Martian Aeolian and Mass Wasting Processes: Blowing and Flowing

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session Martian Aeolian and Mass Wasting Processes: BLowing and Flowing included the following topics: 1) Three Decades of Martian Surface Changes; 2) Thermophysical Properties of Isidis Basin, Mars; 3) Intracrater Material in Eastern Arabia Terra: THEMIS, MOC, and MOLA Analysis of Wind-blown Deposits and Possible High-Inertia Source Material; 4) Thermal Properties of Sand from TES and THEMIS: Do Martian Dunes Make a Good Control for Thermal Inertia Calculations? 5) A Comparative Analysis of Barchan Dunes in the Intra-Crater Dune Fields and the North Polar Sand Sea; 6) Diluvial Dunes in Athabasca Valles, Mars: Morphology, Modeling and Implications; 7) Surface Profiling of Natural Dust Devils; 8) Martian Dust Devil Tracks: Inferred Directions of Movement; 9) Numerical Simulations of Anastomosing Slope Streaks on Mars; 10) Young Fans in an Equatorial Crater in Xanthe Terra, Mars; 11) Large Well-exposed Alluvual Fans in Deep Late-Noachian Craters; 12) New Evidence for the Formation of Large Landslides on Mars; and 13) What Can We Learn from the Ages of Valles Marineris Landslides on Martian Impact History?

  11. Aeolian Transport of Invertebrates

    NASA Astrophysics Data System (ADS)

    Gill, T. E.; Walsh, E. J.; Wallace, R. L.; Rojo, L.; Rivas, J. A.

    2012-12-01

    Playas and other ephemeral desert wetlands are preferential terrestrial landforms for dust emission. These sites also are habitat for a diverse assemblage of minute invertebrates. When wetlands desiccate, these invertebrates survive as resting stages (propagules). Thus, playas serve as isolated, ephemeral, biogeographical islands for aquatic invertebrates, but it is unclear how propagules disperse across distances as far as hundreds of kilometers to colonize hydrologically disconnected basins. Aeolian transport (anemochory) may provide the mechanism, especially since many invertebrate propagules are long-lived, aerodynamically shaped, possess low-density, and their size (30-600 μm) falls within the same texture as aeolian dust and sand grains. We are collecting and culturing wind-transported sediment to document its ability to serve in the dispersal of aridland invertebrate propagules. Deposited aeolian sediment was collected from marble-type traps placed on the roof of the Biological Sciences Building at the University of Texas, El Paso, during 19 individual regional-scale Chihuahuan Desert blowing dust/sand events between April 2010 and May 2012. Known source areas for these dust events include playas and ephemeral streams ~40- 150 km upwind. The mean dry grain size of the deposited sediment for each event ranged from 66 to 141 μm. Clean-water rinses of material from each event or standard rehydrations for culturing invertebrates were monitored microscopically for the appearance of organisms. Invertebrates hatched from the sediment of 13 events. Ciliates were detected in each of those samples: gastrotrichs appeared in three samples, nematodes and bdelloid rotifers in two samples, and clam shrimp in one. We have also rehydrated aeolian sediments, collected in standard dust traps, from many dust-emitting playas in Southwest North America and hatched viable organisms including all those previously mentioned as well as branchiopods, fairy shrimp, copepods

  12. Expression of terrain and surface geology in high-resolution helicopter-borne gravity gradient (AGG) data: examples from Great Sand Dunes National Park, Rio Grande Rift, Colorado

    USGS Publications Warehouse

    Drenth, Benjamin J.

    2013-01-01

    Airborne gravity gradient (AGG) data are rapidly becoming standard components of geophysical mapping programs, due to their advantages in cost, access, and resolution advantages over measurements of the gravity field on the ground. Unlike conventional techniques that measure the gravity field, AGG methods measure derivatives of the gravity field. This means that effects of terrain and near-surface geology are amplified in AGG data, and that proper terrain corrections are critically important for AGG data processing. However, terrain corrections require reasonable estimates of density for the rocks and sediments that make up the terrain. A recommended philosophical approach is to use the terrain and surface geology, with their strong expression in AGG data, to the interpreter’s advantage. An example of such an approach is presented here for an area with very difficult ground access and little ground gravity data. Nettleton-style profiling is used with AGG data to estimate the densities of the sand dunefield and adjacent Precambrian rocks from the area of Great Sand Dunes National Park in southern Colorado. Processing of the AGG data using the density estimate for the dunefield allows buried structures, including a hypothesized buried basement bench, to be mapped beneath the sand dunes.

  13. Assessing the morphological characteristics and formation time of the Deliblato Sands, Serbia

    NASA Astrophysics Data System (ADS)

    Sipos, György; Markovic, Slobodan; Tóth, Orsolya; Gavrilov, Milivoj; Balla, Alexia; Kiss, Tímea; Urdea, Petru; Meszaros, Minucer

    2016-04-01

    The Deliblato Sands is among the largest uniform fixed sand dune areas of Europe, with a highly distinct morphology from its loess covered surroundings. Moreover, its dune forms, concerning their horizontal extension and relative height, are outstanding in the Pannonian Basin and reflect intensive Aeolian processes in the past. As such, the Deliblato Sands is considered to be a sensitive landscape, and therefore it can provide important information for understanding the morphological development of the Southern Banat Region. So far there has been a limited data concerning the morphological parameters of dune forms in the area and previous research, in the lack of numerical age data, hypothesised various timing in terms of major aeolian phases. Consequently, the aim of the present research is to determine the morphological units of Deliblato Sands by analysing the spatial distribution of different dune forms and their horizontal morphological parameters, and to provide the first ages for the identified dune associations. Morphological mapping was made by using topographical and military maps and satellite images. The dominant direction of dune ridges was also compared to the present day prevailing wind direction. Ages were determined by OSL from four drill cores made on dunes representing major dune types. To assess the suitability of Deliblato sediments for luminescence dating several tests have been performed. Based on the first results, in general a longitudinal and a transversal parabolic dune association have been identified in the area, the later being morphologically superimposed on the previous one. Longitudinal forms fit well to the present day prevailing SE wind, Kosava, however transversal forms assume a slightly different direction during their formation. The ages received for longitudinal dunes are older than previous authors suggested and place the development of these forms to the Boreal and Preboreal. Meanwhile the transversal dune association is

  14. Denivation Features of Polar Dunes: An Earth Analogue for Morphological Indicators of Solid Water on Mars

    NASA Astrophysics Data System (ADS)

    McGowan, H. A.; Neil, D.

    2005-12-01

    The identification of sources of water on Mars will be critical to the successful exploration of the planet and the establishment of a permanent presence by humans. While the Martian polar ice caps contain up to 70% water by mass, the extreme climate of these regions means that they may not be suitable for habitation. As a result, other sites must be identified where access to water is possible. Recent evidence has emerged that suggests sand dunes on Mars may contain 40-50% water by mass (Bourke 2005). In this paper, we present niveo-aeolian features observed in the sand dunes of the Victoria Valley, Antarctica, which have long been considered an Earth analogue for those on Mars (Morris et al. 1972). These features include cornices of permafrosted sand in dune-crest deflation hollows, exposed erosion resistant frozen water and sand lenses, wet sand flows and seeps. We also report on the morphological characteristics of sand sink holes which form in chains above layers of buried, melting and/or sublimating snow. This process is apparently reliant on the melting of inter-grain ice bonds and subsequent formation of a dry mobile sand layer on the dune surface. These micro-morphological features associated with summertime denivation of the Victoria Valley sand dunes, which are 5 to 10 m high and several hundred meters in crest length, are too small to identify on air photographs, satellite imagery and LIDAR DEMS of these transverse barchanoid ridges. However, on Mars where sand dunes are 1 to 2 orders of magnitude larger, these features may be identifiable if solid water exists within them, as suggested by Bourke (2005). Perhaps of greater importance, they may indicate the presence of buried palaeo-snow layers which have been preserved beneath the erosion resistant permafrosted sand dunes on Mars. We believe that the formation and subsequent exposure of these snow layers is the primary cause of the denivation features present in the polar dunes of the Victoria Valley

  15. Arabian Dunes

    NASA Technical Reports Server (NTRS)

    2005-01-01

    11 June 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a field of low-albedo (dark) barchan sand dunes in a crater located in western Arabia Terra. Small dunes like these are common in the craters of western Arabia Terra and they are often the source of finer, dark sediment that forms windstreaks further downwind. The steepest slopes on the dunes, their slipfaces, are pointed toward the southeast (lower right), indicating that the dominant winds in this location come from the opposite direction.

    Location near: 6.4oN, 346.2oW Image width: 3 km (1.9 mi Illumination from: lower left Season: Northern Autumn

  16. Martian Dunes

    NASA Technical Reports Server (NTRS)

    2004-01-01

    22 September 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows dark, windblown sand dunes in a south mid-latitude crater near 49.5oS, 352.9oW. The elongated portions of these dunes indicate that, for some period of time during their development, there were two dominant wind directions involved. The most dominant of these winds blew from the south-southeast (lower right), as indicated by the presence of the steepest dune slopes on their northwest (facing upper left) sides. This image covers an area approximately 3 km (1.9 mi) across and is illuminated by sunlight from the upper left.

  17. Mid-latitude Dunes

    NASA Technical Reports Server (NTRS)

    2005-01-01

    7 August 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows dark sand dunes on the floor of a southern mid-latitude impact crater. Craters are commonly the site of sand dunes, as sand may become trapped in these topographic depressions. In this case, the winds responsible for the dunes generally blew from the south/southeast (bottom/lower right),

    Location near: 51.8oS, 105.5oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Spring

  18. Quantifying spatiotemporal dynamics of root-zone soil water in a mixed forest on subtropical coastal sand dune using surface ERT and spatial TDR

    NASA Astrophysics Data System (ADS)

    Fan, Junliang; Scheuermann, Alexander; Guyot, Adrien; Baumgartl, Thomas; Lockington, David A.

    2015-04-01

    We jointly used surface electrical resistivity tomography (surface ERT) and spatial time domain reflectometry (spatial TDR) to quantify spatial patterns and seasonal dynamics of root-zone soil water under three contrasting vegetation covers in a sand dune forest of subtropical coastal Australia. We wanted to obtain a better understanding of the applicability of both techniques in these environments as well as investigate vegetation-soil water interactions. Soil temperature and topographic changes were taken into account in soil resistivity interpretation. The results demonstrated the capability of both surface ERT and spatial TDR to spatially monitor root-zone soil water dynamics, with root mean square error (RMSE) <0.018 cm3 cm-3 and absolute deviation <0.034 cm3 cm-3 between gravimetrically derived water content and those derived by the two geophysical techniques. Soil water was depleted to low levels during the dry season but quickly replenished with onset of the wet season. Soil water content profiles revealed obvious differences in water dynamics of the dune sands under different vegetation covers, with highest infiltration and deep drainage under the grassland compared with tree cover. The spatial variation in soil water content due to rainfall interception by trees, root water uptake and preferential infiltration associated with stemflow could be detected by the joint use of surface ERT and spatial TDR. We conclude that surface ERT can be an effective method for quantifying two-dimensional root-zone soil water dynamics and understanding the hydrological processes in these sand dune environments, if complemented by the one-dimensional high-resolution soil water measurements from spatial TDR.

  19. A 45-year time series of Saharan dune mobility from remote sensing

    NASA Astrophysics Data System (ADS)

    Vermeesch, P.

    2012-04-01

    Decadal trends in the aeolian dust record of the Sahara affect the global climate system and the nutrient budget of the Atlantic Ocean. One proposed cause of these trends are changes in the frequency and intensity of dust storms, which have hitherto been hard to quantify. Because sand flux scales with the cube of wind speed, dune migration rates can be used as a proxy for storminess. Relative changes in the storminess of the Sahara can thus be monitored by tracking the migration rates of individual sand dunes over time. The Bodélé Depression of northern Chad was selected as a target area for this method, because it is the most important point-source of aeolian dust on the planet and features the largest and fastest dunes on Earth. A collection of co-registered Landsat, SPOT, and ASTER scenes, combined with declassified American spy satellite images was used to construct a 45 year record of dune migration in the Bodélé Depression. One unexpected outcome of the study was the observation of binary dune interactions in the imagery sequence, which reveals that when two barchan dunes collide, a transfer of mass occurs so that one dune appears to travel through the other unscathed, like a solitary wave. This confirms a controversial numerical model prediction and settles a decade-old debate in aeolian geomorphology. The COSI-Corr change detection method was used to measure the dune migration rates from 1984 until 1987, 1990, 1996, 2000, 2003, 2005, 2007, 2008, 2009, and 2010. An algorithm was developed to automatically warp the resulting displacement fields back to a common point in time. Thus, individual image pixels of a dune field were tracked over time, allowing the extraction of a time series from the co-registered satellite images without further human intervention. The automated analysis was extended further back into the past by comparison of the 1984 image with declassified American spy satellite (Corona) images from 1965 and 1970. Due to the presence of

  20. Richardson Dunes

    NASA Technical Reports Server (NTRS)

    2005-01-01

    25 December 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a summertime view of sand dunes in Richardson Crater in the Mare Chromium region of the martian southern hemisphere.

    Location near: 72.4oS, 179.7oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Summer

  1. Exploring the topography and structure of Saharan linear dunes: Implications for characterizing dunes on Titan

    NASA Astrophysics Data System (ADS)

    Farr, T. G.; Heggy, E.; Radebaugh, J.

    2011-12-01

    Tens of thousands of sand dunes encircle the equatorial latitudes of Saturn's moon Titan, as seen by the Cassini Radar and visible-NIR instruments. These are linear in form, comparable in size and morphology to large linear dunes in the Egyptian Sahara. Studies of linear dunes in the Sahara can therefore assist in understanding the characteristics and formation of Titan's dunes. High-resolution topographic profiles of the Egyptian dunes indicate winds draw dune sands into broad stable plinths with steep summits that shift with recent winds. The summits of the Qattaniya Dunes west of Cairo are drawn out into crescents along the dune long axis from dominant, northerly winds on a NNW-trending crestline. Ground penetrating radar surveys show equally spaced layers within the dune, suggesting continuous, regular wind regimes formed the dunes. Larger dunes of the Great Sand Sea south of Siwa Oasis exhibit generally similar topographic profiles and fine layering although numerous flanking features complicate the overall morphology. These analyses can be related to studies of wind pattern effects on Titan's dune forms, residence time of sands within dunes on Titan, and the creation and maintenance of evolved dune forms across Titan. Studies of the effects of morphology and internal structure of these dunes on terrestrial radar remote sensing observations will yield additional information concerning Titan's dunes. Scattering models, for example, seek to explain the radar returns from Titan's dunes based on geometry and sand composition so it is valuable to understand the effects of these parameters on terrestrial dunes.

  2. Two modes for dune orientation

    NASA Astrophysics Data System (ADS)

    Courrech Du Pont, Sylvain; Narteau, Clément; Gao, Xin

    2015-11-01

    Earth sand seas experience winds that blow with different strengths and from different directions in line with the seasons. In response, dune fields show a rich variety of shapes from small crescentic barchans to big star and linear dunes. Linear dunes often exhibit complex and compound patterns with different length scales and orientations, which seem difficult to relate to a single wind cycle. We present results of underwater experiments and numerical simulations where a single wind regime can lead to two different dunes orientation depending on sediment availability. Sediment availability selects the overriding mechanism for the formation of dunes: increasing in height from the destabilization of a sand bed or elongating in a finger on a non-erodible ground from a localized sand source. These mechanisms drive the dunes orientation. Therefore, dunes alignment maximizes dunes orthogonality to sand fluxes in the bed instability mode, while dunes are aligned with the sand transport direction in the fingering mode. Then, we derive a model for dunes orientation, which explains the coexistence of bedforms with different alignments and quantitatively predicts the orientation of dunes in Earth deserts. Finally, we explore the phase diagram and the stability of the fingering mode.

  3. Mapping of Sand Types and Dune Morphologies in the Aeolis Dorsa Region, Western Medusae Fossae Formation, Mars

    NASA Astrophysics Data System (ADS)

    Boyd, A. S.; Burr, D. M.

    2016-06-01

    Preliminary mapping of low- and high-albedo sand deposits in the Aeolis Dorsa region, Medusae Fossae Formation (MFF), suggests sand transport from the north, consistent with sand source(s) in Elysium Mons, the Cerberus plains, or the MFF itself.

  4. Spatial Heterogeneity of Soil Nutrients after the Establishment of Caragana intermedia Plantation on Sand Dunes in Alpine Sandy Land of the Tibet Plateau

    PubMed Central

    Li, Qingxue; Jia, Zhiqing; Zhu, Yajuan; Wang, Yongsheng; Li, Hong; Yang, Defu; Zhao, Xuebin

    2015-01-01

    The Gonghe Basin region of the Tibet Plateau is severely affected by desertification. Compared with other desertified land, the main features of this region is windy, cold and short growing season, resulting in relatively difficult for vegetation restoration. In this harsh environment, identification the spatial distribution of soil nutrients and analysis its impact factors after vegetation establishment will be helpful for understanding the ecological relationship between soil and environment. Therefore, in this study, the 12-year-old C. intermedia plantation on sand dunes was selected as the experimental site. Soil samples were collected under and between shrubs on the windward slopes, dune tops and leeward slopes with different soil depth. Then analyzed soil organic matter (SOM), total nitrogen (TN), total phosphorus (TP), total potassium (TK), available nitrogen (AN), available phosphorus (AP) and available potassium (AK). The results showed that the spatial heterogeneity of soil nutrients was existed in C. intermedia plantation on sand dunes. (1) Depth was the most important impact factor, soil nutrients were decreased with greater soil depth. One of the possible reasons is that windblown fine materials and litters were accumulated on surface soil, when they were decomposed, more nutrients were aggregated on surface soil. (2) Topography also affected the distribution of soil nutrients, more soil nutrients distributed on windward slopes. The herbaceous coverage were higher and C. intermedia ground diameter were larger on windward slopes, both of them probably related to the high soil nutrients level for windward slopes. (3) Soil “fertile islands” were formed, and the “fertile islands” were more marked on lower soil nutrients level topography positions, while it decreased towards higher soil nutrients level topography positions. The enrichment ratio (E) for TN and AN were higher than other nutrients, most likely because C. intermedia is a leguminous

  5. Spatial Heterogeneity of Soil Nutrients after the Establishment of Caragana intermedia Plantation on Sand Dunes in Alpine Sandy Land of the Tibe