Science.gov

Sample records for aeolian dust deposition

  1. Granulometric profiling of aeolian dust deposits by automated image analysis

    NASA Astrophysics Data System (ADS)

    Varga, György; Újvári, Gábor; Kovács, János; Jakab, Gergely; Kiss, Klaudia; Szalai, Zoltán

    2016-04-01

    Determination of granulometric parameters is of growing interest in the Earth sciences. Particle size data of sedimentary deposits provide insights into the physicochemical environment of transport, accumulation and post-depositional alterations of sedimentary particles, and are important proxies applied in paleoclimatic reconstructions. It is especially true for aeolian dust deposits with a fairly narrow grain size range as a consequence of the extremely selective nature of wind sediment transport. Therefore, various aspects of aeolian sedimentation (wind strength, distance to source(s), possible secondary source regions and modes of sedimentation and transport) can be reconstructed only from precise grain size data. As terrestrial wind-blown deposits are among the most important archives of past environmental changes, proper explanation of the proxy data is a mandatory issue. Automated imaging provides a unique technique to gather direct information on granulometric characteristics of sedimentary particles. Granulometric data obtained from automatic image analysis of Malvern Morphologi G3-ID is a rarely applied new technique for particle size and shape analyses in sedimentary geology. Size and shape data of several hundred thousand (or even million) individual particles were automatically recorded in this study from 15 loess and paleosoil samples from the captured high-resolution images. Several size (e.g. circle-equivalent diameter, major axis, length, width, area) and shape parameters (e.g. elongation, circularity, convexity) were calculated by the instrument software. At the same time, the mean light intensity after transmission through each particle is automatically collected by the system as a proxy of optical properties of the material. Intensity values are dependent on chemical composition and/or thickness of the particles. The results of the automated imaging were compared to particle size data determined by three different laser diffraction instruments

  2. Aeolian dust deposition rates in Northern French forests and inputs to their biogeochemical cycles

    NASA Astrophysics Data System (ADS)

    Lequy, Émeline; Legout, Arnaud; Conil, Sébastien; Turpault, Marie-Pierre

    2013-12-01

    This study describes the Aeolian dust deposition (ADD) in 4 sites of Northern France. Between December 2009 and March 2012, we sampled (i) Aeolian dust every four weeks, and (ii) 6 episodes of forecasted high atmospheric dust load mainly from the Saharan desert, the largest source of Aeolian dust in the world. These samples were treated with oxygen peroxide to remove organic matter so as to only compare the mineral fraction of the samples in the 4 sampling sites and to analyze their mineralogy. The solid samples contained the hardly soluble part of Aeolian dust (H-ADD). Its deposition was of 1.9 ± 0.3 g m-2 year-1 with a seasonal pattern of high deposition from spring to early autumn and a low deposition in winter. H-ADD deposition during the forecasted episodes of high atmospheric load did not systematically exceed the deposition rate during the rest of the sampling period. This indicates that such episodes little contributed to the annual H-ADD rate. The mineralogy revealed a heterogeneous set of minerals dominated by silicates with a common basis of major types (quartz, feldspars, mica, chlorite, kaolinite and interlayered clay minerals in every sample) with randomly trace minerals (Fe-oxides, sulfates, amphibole, talc, gibbsite and carbonates). The chemistry of H-ADD led to a dominant input of Si (up to 4.4 kg ha-1 year-1), while the nutrients inputs of Ca, K, Mg and P from ADD and the atmospheric organics (APD) in openfield were together of 1.5 ± 0.5 kg ha-1 year-1 with a high contribution of soluble minerals and organic matter of ca. 40% for Mg and K, and of ca. 80% for Ca and P. Nutrient inputs from APD are especially an interesting source of P for forests developed on acidic soils.

  3. Effects of particle optical properties on grain size measurements of aeolian dust deposits

    NASA Astrophysics Data System (ADS)

    Varga, György; Újvári, Gábor; Kovács, János; Szalai, Zoltán

    2015-04-01

    Particle size data are holding crucial information on the sedimentary environment at the time the aeolian dust deposits were accumulated. Various aspects of aeolian sedimentation (wind strength, distance to source(s), possible secondary source regions and modes of sedimentation and transport) can be reconstructed from proper grain size distribution data. Laser diffraction methods provide much more accurate and reliable information on the major granulometric properties of wind-blown sediments compared to the sieve and pipette methods. The Fraunhofer and Mie scattering theories are generally used for laser diffraction grain size measurements. () The two different approaches need different 'background' information on the medium measured. During measurements following the Fraunhofer theory, the basic assumption is that parcticles are relatively large (over 25-30 µm) and opaque. The Mie theory could offer more accurate data on smaller fractions (clay and fine silt), assuming that a proper, a'priori knowledge on refraction and absorption indices exists, which is rarely the case for polymineral samples. This study is aimed at determining the effects of different optical parameters on grain size distributions (e.g. clay-content, median, mode). Multiple samples collected from Hungarian red clay and loess-paleosol records have been analysed using a Malvern Mastersizer 3000 laser diffraction particle sizer (with a Hydro LV unit). Additional grain size measurements have been made on a Fritsch Analysette 22 Microtec and a Horiba Partica La-950 v2 instrument to investigate possible effects of the used laser sources with different wavelengths. XRF and XRD measurements have also been undertaken to gain insight into the geochemical/mineralogical compositions of the samples studied. Major findings include that measurements using the Mie theory provide more accurate data on the grain size distribution of aeolian dust deposits, when we use a proper optical setting. Significant

  4. Aeolian dust deposition during the Eocene-Oligocene in central to eastern Asia

    NASA Astrophysics Data System (ADS)

    Vandenberghe, Jef; Abels, Hemmo; van Cappelle, Marijn

    2015-04-01

    Aeolian dust deposition during the Eocene-Oligocene in central to eastern Asia Jef Vandenberghe1, Hemmo Abels2 and Marijn van Cappelle3 1Dept. of Earth Sciences, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands 2Dept. of Earth Sciences, Universiteit Utrecht, 3584 CD, Utrecht, The Netherlands 3Dept. of Earth Science and Engineering, Imperial College London, London, SW7 2AZ, U.K. The deposition of loess is generally attributed to a monsoonal climate system. Recently it has been shown that such a system existed already at the end of the Eocene on the northeastern Tibetan Plateau (Licht et al., 2014). One of the main arguments to prove the supply of loess by monsoonal winds is the use of grain size properties. The lower part of the Shuiwan section (Eocene) consists of metre-scale alternations of mudstone and gypsum beds; the upper part (Oligocene) is mainly mudstone (Dupont-Nivet et al., 2007; Abels et al., 2010). Sediments are categorized in six grain-size types based on the grain-size distribution and the mode of the silt grain sizes as measured using laser diffraction. Sediments of type 1, the only type with a unimodal grain-size distribution, consist exclusively of clay-sized particles (modal value of 2-2.5 µm). Types 2-6 have a multimodal composition. They contain an additional silt-sized fraction with a modal size of c. 16 µm in type 2; c. 26 µm in type 3 and c. 31 µm in type 4. Type 5 is a mixture of previous types, and type 6 contains in addition a slight amount of sand. Similar bimodal grain-size distributions occur in the Neogene Red Clay and in the Pleistocene loess of the Chinese Loess Plateau. All three silt fractions (with modal sizes 16, 26 and 31 µm) represent typical loess sediments, transported by dust storms in suspension at different altitudes. Their exact grain size depends on wind velocity, source material and transport distance. The 'clay component' may have settled from high suspension clouds in the air down to dry ground or to

  5. A 37,000-year environmental magnetic record of aeolian dust deposition from Burial Lake, Arctic Alaska

    NASA Astrophysics Data System (ADS)

    Dorfman, J. M.; Stoner, J. S.; Finkenbinder, M. S.; Abbott, M. B.; Xuan, C.; St-Onge, G.

    2015-11-01

    Environmental magnetism and radiocarbon dating of Burial Lake sediments constrain the timing and magnitude of regional aeolian deposition for the Noatak region of western Arctic Alaska for the last ˜37,000 years. Burial Lake (68.43°N, 159.17°W, 21.5 m water depth) is optimally located to monitor regional dust deposition because it is perched above local drainage and isolated from glacial processes. Cores collected in the summer of 2010 were studied through the application of magnetizations and progressive alternating field (AF) demagnetization of u-channel samples, with additional data provided by computed tomography (CT) derived density, hysteresis measurements, isothermal remanent magnetization (IRM) acquisition experiments, organic carbon content, biogenic silica, physical grain size, radiocarbon dating of wood, seeds, and plant macrofossils, point source magnetic susceptibility, and X-ray fluorescence (XRF). With similar magnetic properties to regional Alaskan loess deposits, low coercivity, highly magnetic material deposited during the late-Pleistocene contrasts with a high coercivity, weakly magnetic component found throughout the record, consistent with locally-derived detritus. The relative proportion of low coercivity to high coercivity magnetic material, defined by the S-Ratios, is used to reconstruct the regional input of dust to the basin over time. A four-fold decrease in the low coercivity component through the deglacial transition is interpreted to reflect diminished dust input to the region. Comparisons with potential sources of dust show that the timing of deposition in Burial Lake is largely consistent with general aridity, lack of vegetative cover, and increased windiness, rather than glacial advances or retreats. The influence from subaerial exposure of continental shelves cannot be ruled out as a significant far-field source of dust to interior Alaska during the Last Glacial Maximum (LGM), but is unlikely to have been the sole source, or to

  6. Geochemical provenance of soils in Kerman urban areas, Iran: Implications for the influx of aeolian dust

    NASA Astrophysics Data System (ADS)

    Dehbandi, Reza; Aftabi, Alijan

    2016-06-01

    The investigation of the interaction of aeolian dust with residual soils has not been fully explored in the Kerman urban areas, Iran. To assess the geochemical influence of aeolian dust on the residual soils of the Kerman urban areas of Iran, 27 samples were studied petrogeochemically. The arid-semi-arid climate of the area together with the southwest-northeast prevailing wind, have deposited aeolian sands over the residual soils. Residual soils reflect similar mineral compositions to that of the underlying bedrock and include mostly calcite and quartz. However, the minor occurrences of pyroxene, amphibole, olivine, plagioclase and volcanic clasts in urban soils and aeolian dust are attributed to volcanogenic inputs transported by aeolian dust. Urban soils and aeolian dust show different geochemical signatures from the local carbonate rocks. All samples contain trace element concentrations that are higher than the carbonate bedrock. Discrimination diagrams indicate that immobile trace elements have geochemical affinity to the detrital ferromagnesian dust inputs and are different from the local carbonate bedrock. Based on the elemental bivariate and ternary diagrams, the soils and aeolian dust are derived from the interaction of carbonate and volcanic rocks. This highlights that the urban soils in the Kerman urban areas have been formed by interactions of the aeolian dust with the primitive residual soils.

  7. The nature and formation of aeolian mineral dust material

    NASA Astrophysics Data System (ADS)

    Smalley, Ian; O'hara-Dhand, Ken; McLaren, Sue

    2013-04-01

    Aeolian dust affects climate and records past climates. It has become a much studied material but there has been a certain lack of emphasis on the actual nature of the dust, and an even greater neglect of actual production mechanisms for dust particles. Huge amounts of dust may be raised from the Bodele depression and other parts of North Africa, and much of it may be carried across the North Atlantic to aid in soil formation in Brazil. But what does it consist of? We know that much of the Bodele dust is diatoms from old Lake Chad, but what of the lithological inorganic mineral content? A very crude division of aeolian dust into large dust(say around 20-50um) and small dust (2-5um)has been proposed. Much of the study of loess has been confused by the failure to make this distinction, and similar problems may arise in the study of the finer fractions of aeolian dust. Much aeolian material is clay-mineral based- formed from clay mineral aggregates(CMA), from lake bottom sediments. This can form large dust particles, as in parna in Australia, but also contributes largely to small long travel aerosolic dust. Another major contributor is the quartz fragment. The large dust for classic loess deposits is mostly quartz silt- and there is considerable discussion about the controls that affect quartz silt. There are some interesting modalities in the world of quartz particle sedimentology which need to be examined. Quartz sand (say 200-500um) is the key initiating material and the formation processes for quartz sand have a down-the-line effect on the formation of smaller particles. The central observation is the action of two processes- a eutectic-like reaction in the proto-rock granite which defines the essential nature of sand particles, and the high-low displacive crystallographic transformation which introduces tensile stresses into the quartz particle systems. The limited range of eutectic particle size means a limited range of tensile stresses. A neat combination of

  8. Aeolian dust as a transport hazard

    NASA Astrophysics Data System (ADS)

    Baddock, M. C.; Strong, C. L.; Murray, P. S.; McTainsh, G. H.

    2013-06-01

    The effects of blowing dust on transport operations are often mentioned as one of the significant impacts of aeolian processes on human welfare. However, few studies have been presented to demonstrate this impact. This research examined official air traffic incident reports in Australia for inclusively 1969-2010 to characterise the hazard of blowing dust to aviation in the country, the first such study of its kind. For the 42 year record, 61 incidents were identified (mean 1.4 per annum), with the large majority occurring in the first half of the 1970s. Only 20% of incidents occurred from 1984 onwards. Australian dust activity has not decreased over time, and the reduction in incidents is partly explained by improvements in aviation technology. The centralisation of Air Traffic Control operations to major coastal cities may however have reduced pilot reporting of dust-induced aviation incidents. By type of dust activity, dust storms were associated with nearly half of the reported incidents and dust hazes produced around a quarter. Only 5% of incidents resulted in any physical damage to aircraft and only one case involving personal injury was reported. The majority of the adverse effects on aviation due to dust (nearly 60% of reported incidents) were related to difficulties for navigation and completion of scheduled journey. Since aircraft damage and bodily harm were rare, the impact of dust in Australia is mostly that of inconvenience and associated raised economic costs. From 1990, the temporal pattern of incidents does not show any significant increase despite several intensely dusty years associated with recent droughts. This suggests that Australian aviation safety may be relatively resistant to the adverse effects of atmospheric dust as a hazard.

  9. Identifying sources of aeolian mineral dust: Present and past

    USGS Publications Warehouse

    Muhs, Daniel R; Prospero, Joseph M; Baddock, Matthew C; Gill, Thomas E

    2014-01-01

    Aeolian mineral dust is an important component of the Earth’s environmental systems, playing roles in the planetary radiation balance, as a source of fertilizer for biota in both terrestrial and marine realms and as an archive for understanding atmospheric circulation and paleoclimate in the geologic past. Crucial to understanding all of these roles of dust is the identification of dust sources. Here we review the methods used to identify dust sources active at present and in the past. Contemporary dust sources, produced by both glaciogenic and non-glaciogenic processes, can be readily identified by the use of Earth-orbiting satellites. These data show that present dust sources are concentrated in a global dust belt that encompasses large topographic basins in low-latitude arid and semiarid regions. Geomorphic studies indicate that specific point sources for dust in this zone include dry or ephemeral lakes, intermittent stream courses, dune fields, and some bedrock surfaces. Back-trajectory analyses are also used to identify dust sources, through modeling of wind fields and the movement of air parcels over periods of several days. Identification of dust sources from the past requires novel approaches that are part of the geologic toolbox of provenance studies. Identification of most dust sources of the past requires the use of physical, mineralogical, geochemical, and isotopic analyses of dust deposits. Physical properties include systematic spatial changes in dust deposit thickness and particle size away from a source. Mineralogy and geochemistry can pinpoint dust sources by clay mineral ratios and Sc-Th-La abundances, respectively. The most commonly used isotopic methods utilize isotopes of Nd, Sr, and Pb and have been applied extensively in dust archives of deep-sea cores, ice cores, and loess. All these methods have shown that dust sources have changed over time, with far more abundant dust supplies existing during glacial periods. Greater dust supplies in

  10. Size-differentiated chemical characteristics of Asian paleo dust: records from aeolian deposition on Chinese Loess Plateau.

    PubMed

    Wu, Feng; Chow, Judith C; An, Zhisheng; Watson, John G; Cao, Junji

    2011-02-01

    The Chinese Loess Plateau (CLP) receives and potentially contributes to Asian dust storms that affect particulate matter (PM) concentrations, visibility, and climate. Loess on the CLP has experienced little weathering effect and is regarded as an ideal record to represent geochemical characteristics of Asian paleo dust. Samples were taken from 2-, 9-, and 15-m depths (representing deposition periods from approximately 12,000 to approximately 200,000 yr ago) in the Xi Feng loess profile on the CLP. The samples were resuspended and then sampled through total suspended particulates (TSP), PM10, PM2.5, and PM1 (PM with aerodynamic diameters < approximately 30, 10, 2.5, and 1 microm, respectively) inlets onto filters for mass, elemental, ionic, and carbon analyses using a Desert Research Institute resuspension chamber. The elements Si, Ca, Al, Fe, K, Mg, water-soluble Ca (Ca2+), organic carbon, and carbonate carbon are the major constituents (> 1%) in loess among the four PM fractions (i.e., TSP, PM10, PM2.5, and PM1). Much of Ca is water soluble and corresponds with measures of carbonate, indicating that most of the calcium is in the form of calcium carbonate rather than other calcium minerals. Most of the K is insoluble, indicating that loess can be separated from biomass burning contributions when K+ is measured. The loess has elemental abundances similar to those of the upper continental crust (UCC) for Mg, Fe, Ti, Mn, V, Cr, and Ni, but substantially different ratios for other elements such as Ca, Co, Cu, As, and Pb. These suggest that the use of UCC as a reference to represent pure or paleo Asian dust needs to be further evaluated. The aerosol samples from the source regions have similar ratios to loess for crustal elements, but substantially different ratios for species from anthropogenic sources (e.g., K, P, V, Cr, Cu, Zn, Ni, and Pb), indicating that the aerosol samples from the geological-source-dominated environment are not a "pure" soil product as compared

  11. Aeolian dust in Colorado Plateau soils: Nutrient inputs and recent change in source

    PubMed Central

    Reynolds, Richard; Belnap, Jayne; Reheis, Marith; Lamothe, Paul; Luiszer, Fred

    2001-01-01

    Aeolian dust (windblown silt and clay) is an important component in arid-land ecosystems because it may contribute to soil formation and furnish essential nutrients. Few geologic surfaces, however, have been characterized with respect to dust-accumulation history and resultant nutrient enrichment. We have developed a combination of methods to identify the presence of aeolian dust in arid regions and to evaluate the roles of this dust in ecosystem processes. Unconsolidated sandy sediment on isolated surfaces in the Canyonlands region of the Colorado Plateau differs greatly in mineralogical and chemical composition from associated bedrock, mainly aeolian sandstone. Detrital magnetite in the surficial deposits produces moderately high values of magnetic susceptibility, but magnetite is absent in nearby bedrock. A component of the surficial deposits must be aeolian to account for the abundance of magnetite, which formed originally in far-distant igneous rocks. Particle-size analysis suggests that the aeolian dust component is typically as much as 20–30%. Dust inputs have enriched the sediments in many elements, including P, Mg, Na, K, and Mo, as well as Ca, at sites where bedrock lacks calcite cement. Soil-surface biologic crusts are effective dust traps that apparently record a change in dust sources over the past several decades. Some of the recently fallen dust may result from human disturbance of land surfaces that are far from the Canyonlands, such as the Mojave Desert. Some land-use practices in the study area have the potential to deplete soil fertility by means of wind-erosion removal of aeolian silt. PMID:11390965

  12. Aeolian dust in Colorado Plateau soils: Nutrient inputs and recent change in source

    USGS Publications Warehouse

    Reynolds, R.; Belnap, Jayne; Lamothe, Paul; Luiszer, Fred

    2001-01-01

    Aeolian dust (windblown silt and clay) is an important component in arid-land ecosystems because it may contribute to soil formation and furnish essential nutrients. Few geologic surfaces, however, have been characterized with respect to dust-accumulation history and resultant nutrient enrichment. We have developed a combination of methods to identify the presence of aeolian dust in arid regions and to evaluate the roles of this dust in ecosystem processes. Unconsolidated sandy sediment on isolated surfaces in the Canyonlands region of the Colorado Plateau differs greatly in mineralogical and chemical composition from associated bedrock, mainly aeolian sandstone. Detrital magnetite in the surficial deposits produces moderately high values of magnetic susceptibility, but magnetite is absent in nearby bedrock. A component of the surficial deposits must be aeolian to account for the abundance of magnetite, which formed originally in far-distant igneous rocks. Particle-size analysis suggests that the aeolian dust component is typically as much as 20a??30%. Dust inputs have enriched the sediments in many elements, including P, Mg, Na, K, and Mo, as well as Ca, at sites where bedrock lacks calcite cement. Soil-surface biologic crusts are effective dust traps that apparently record a change in dust sources over the past several decades. Some of the recently fallen dust may result from human disturbance of land surfaces that are far from the Canyonlands, such as the Mojave Desert. Some land-use practices in the study area have the potential to deplete soil fertility by means of wind-erosion removal of aeolian silt.

  13. The origin of bimodal grain-size distribution for aeolian deposits

    NASA Astrophysics Data System (ADS)

    Lin, Yongchong; Mu, Guijin; Xu, Lishuai; Zhao, Xue

    2016-03-01

    Atmospheric dust deposition is a common phenomenon in arid and semi-arid regions. Bimodal grain size distribution (BGSD) (including the fine component and coarse component) of aeolian deposits has been widely reported. But the origin of this pattern is still debated. Here, we focused on the sedimentary process of modern dust deposition, and analyzed the grain size distribution of modern dust deposition, foliar dust, and aggregation of the aeolian dust collected in Cele Oasis, southern margin of Tarim Basin. The results show that BGSD also appear in a dust deposition. The content of fine components (<20 μm size fraction) change with temporal and spatial variation. Fine component from dust storm is significant less than that from subsequent floating dust. Fine component also varies with altitude. These indicate that modern dust deposition have experienced changing aerodynamic environment and be reworked during transportation and deposition, which is likely the main cause for BGSD. The dusts from different sources once being well-mixed in airflow are hard to form multiple peaks respectively corresponding with different sources. In addition, the dust deposition would appear BGSD whether aggregation or not. Modern dust deposition is the continuation of ancient dust deposition. They both may have the same cause of formation. Therefore, the origin of BGSD should provide a theoretical thinking for reconstructing the palaeo-environmental changes with the indicator of grain size.

  14. Optical Properties of Aeolian Dusts Common to West Texas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Both recent models and historical events such as the Dust Bowl and volcanic eruptions have illustrated aerosols can play a significant role in climate change through direct and indirect optical effects. Soil dust aerosols generated by Aeolian processes represent a significant fraction of the total ...

  15. Compositional trends in aeolian dust along a transect across the southwestern United States

    USGS Publications Warehouse

    Goldstein, H.L.; Reynolds, R.L.; Reheis, M.C.; Yount, J.C.; Neff, J.C.

    2008-01-01

    Aeolian dust strongly influences ecology and landscape geochemistry over large areas that span several desert ecosystems of the southwestern United States. This study evaluates spatial and temporal variations and trends of the physical and chemical properties of dust in the southwestern United States by examining dust deposited in natural depressions on high isolated surfaces along a transect from the Mojave Desert to the central Colorado Plateau. Aeolian dust is recognized in these depressions on the basis of textural, chemical, isotopic, and mineralogical characteristics and comparisons of those characteristics to the underlying bedrock units. Spatial and temporal trends suggest that although local dust sources are important to the accumulated material in these depressions, Mojave Desert dust sources may also contribute. Depth trends in the depressions suggest that Mojave sources may have contributed more dust to the Colorado Plateau recently than in the past. These interpretations point to the important roles of far-traveled aeolian dust for landscape geochemistry and imply future changes to soil geochemistry under changing conditions in far-distant dust source areas. Copyright 2008 by the American Geophysical Union.

  16. Mechanics of aeolian processes: Soil erosion and dust production

    NASA Technical Reports Server (NTRS)

    Mehrabadi, M. M.

    1989-01-01

    Aeolian (wind) processes occur as a result of atmosphere/land-surface system interactions. A thorough understanding of these processes and their physical/mechanical characterization on a global scale is essential to monitoring global change and, hence, is imperative to the fundamental goal of the Earth observing system (Eos) program. Soil erosion and dust production by wind are of consequence mainly in arid and semi arid regions which cover 36 percent of the Earth's land surface. Some recent models of dust production due to wind erosion of agricultural soils and the mechanics of wind erosion in deserts are reviewed and the difficulties of modeling the aeolian transport are discussed.

  17. Geochemical investigation of dry- and wet-deposited dust during the same dust-storm event in Harbin, China: Constraint on provenance and implications for formation of aeolian loess

    NASA Astrophysics Data System (ADS)

    Xie, Yuanyun; Chi, Yunping

    2016-04-01

    A strong dust-storm event occurred in Harbin, China on May 11, 2011. The dry- and wet-deposited dust depositions in this dust-storm event, together with the surface sediments from the potential sources, were collected to study grain size distributions, carbonate content and carbon isotopic composition of carbonate, major element, trace element and rare earth elements (REE), and Sr-Nd isotopic compositions. The results indicate as follows. The dry-deposited dusts are characterized by bimodal grain-size distributions with a fine mode at 3.6 μm and a coarse mode at 28 μm whereas the wet-deposited dusts are indicative of unimodal grain-size modes with a fine mode at 6 μm. The dust-storm depositions are influenced to a certain extent by sedimentary sorting and are of a derivation from the recycled sediments. Based on identifying the immobility of element pairs before constraining sources of dust-storm deposits using geochemical elements, in conjunction with REE and especially Sr-Nd isotopic compositions, the primary and strengthening sources for the dust-storm event were detected, respectively. The Hunsandake Sandy Land as the primary source and the Horqin Sandy Land as the strengthening source were together responsible for the derivation of dust depositions during dust-storm event. The Hunsandake Sandy Land, however, contributes less dust to the dust-storm event in Harbin compared to the Horqin Sandy Land, and the Hulun Buir Sandy Land is undoubtedly excluded from being one of the sources for dust-storm depositions in Harbin. There are not notable differences in geochemical (especially Sr-Nd isotopic) compositions between dry- and wet-deposited dusts, indicating that the wet-deposited dust is of identical derivation to the dry-deposited dust. Based on our observations, it is of interest to suggest that fine and coarse particles in the CLP (Chinese Loess Plateau) loess possibly have the same sources.

  18. Lidar measurements of Aeolian dust: Mars and Earth

    NASA Astrophysics Data System (ADS)

    Dickinson, C. S.; Davy, R.; Komguem, L.; Junkermann, W.; Whiteway, J. A.

    2009-12-01

    The Phoenix Lidar system was operated in 2008, beginning in Martian northern spring (L_s = 78) through mid summer (L_s = 147). During this period, nighttime observations of dust indicate both persistent background dust up to heights of approximately 15 km, and enhanced dust loading in the Boundary Layer up to heights of approximately 4 km. The magnitude of the optical extinction was observed to decrease within the Boundary Layer with time following summer solstice. This situation is similar to that observed in the Australian desert: a persistent dust layer up to heights of 6 km, with a daytime Convective Boundary Layer increasing up to heights of 4 km during local dust storm activity, and then decreasing during night. A comparative study was undertaken, with the results being augmented by both in situ measurements of the Australian desert dust, as made by over-flying aircraft, and modeled results of Aeolian dust in both environments.

  19. Sensitivity simulations with direct shortwave radiative forcing by aeolian dust during glacial cycles

    NASA Astrophysics Data System (ADS)

    Bauer, E.; Ganopolski, A.

    2014-07-01

    Possible feedback effects between aeolian dust, climate and ice sheets are studied for the first time with an Earth system model of intermediate complexity over the late Pleistocene period. Correlations between climate and dust deposition records suggest that aeolian dust potentially plays an important role for the evolution of glacial cycles. Here climatic effects from the dust direct radiative forcing (DRF) caused by absorption and scattering of solar radiation are investigated. Key elements controlling the dust DRF are the atmospheric dust distribution and the absorption-scattering efficiency of dust aerosols. Effective physical parameters in the description of these elements are varied within uncertainty ranges known from available data and detailed model studies. Although the parameters can be reasonably constrained, the simulated dust DRF spans a~wide uncertainty range related to the strong nonlinearity of the Earth system. In our simulations, the dust DRF is highly localized. Medium-range parameters result in negative DRF of several watts per square metre in regions close to major dust sources and negligible values elsewhere. In the case of high absorption efficiency, the local dust DRF can reach positive values and the global mean DRF can be insignificantly small. In the case of low absorption efficiency, the dust DRF can produce a significant global cooling in glacial periods, which leads to a doubling of the maximum glacial ice volume relative to the case with small dust DRF. DRF-induced temperature and precipitation changes can either be attenuated or amplified through a feedback loop involving the dust cycle. The sensitivity experiments suggest that depending on dust optical parameters, dust DRF has the potential to either damp or reinforce glacial-interglacial climate changes.

  20. A study of the management strategies for river aeolian dust inhibition at the estuary of Zhuo-shui River

    NASA Astrophysics Data System (ADS)

    Tsai, S. F.; Lin, C. Y.

    2014-12-01

    With the characteristics of humidity in summer and drought in winter, there existing lots of bare lands due to the decline of water level cause large amounts of aeolian dust and environmental deterioration during the monsoon seasons in central Taiwan. How to adopt effective measures to inhibit the damage of dust is an essential issue. This study selected the serious dust-affected section of Zhuo-shui river (bridge Zi-qiang to Xi-bin) to delineate the areas of potential aeolian dust occurrence, explore the relationship between elevation and water level determined from return period analysis, submit the countermeasures for dust inhibition at the bare lands and/or cultivated areas, and address the responsibilities of related authority offices for dust prevention by means of literature review. The return period of inundation for the areas of potential aeolian dust occurrence is 1.1 years. Engineering of dust prevention with highly unit price are not recommended due to could be destroyed annually. The deposition sites of a river are usually located at the convex bank, which with silt texture and high salinity are not suitable for cultivation, are delineated as the areas of potential aeolian dust occurrence. Besides technology consideration in dust prevention, this study also examined the related articles of river management to integrate a comprehensive vision for better riverside environment and air quality.

  1. Optical properties of Aeolian dusts common to West Texas

    NASA Astrophysics Data System (ADS)

    Ma, Lulu; Zobeck, Ted M.; Hsieh, Daniel H.; Holder, Dean; Morgan, Cristine L. S.; Thompson, Jonathan E.

    2011-11-01

    Both recent models and historical events such as the Dust Bowl and volcanic eruptions have illustrated aerosols can play a significant role in climate change through direct and indirect optical effects. Soil dust aerosols generated by Aeolian processes represent a significant fraction of the total mass burden of atmospheric particles. Central to a better understanding of the climate effects of dust aerosols is knowledge of their optical properties. This research study utilized a dust generator and several instruments to determine certain optical properties of Aeolian dust mimics created by the Amarillo and Pullman soil types native to the panhandle of Texas, USA. Values for the mass-extinction coefficient ranged between 1.74 and 2.97 m 2 g -1 at 522 nm depending on how mass concentration was determined. Single-scatter albedo (SSA) for both soil types ranged from 0.947 to 0.980 at visible wavelengths with SSA increasing at longer wavelengths. Angstrom absorption exponents were measured as 1.73 for Pullman and 2.17 for Amarillo soil. Observed Angstrom extinction exponents were 0.110 and 0.168 for the Pullman and Amarillo soil types. The optical properties reported may be of use for optical based estimates of soil erosion and aid in understanding how regional soil dusts may alter radiative transport presently and during historical events such as the Dust Bowl era.

  2. Sensitivity simulations with direct radiative forcing by aeolian dust during glacial cycles

    NASA Astrophysics Data System (ADS)

    Bauer, E.; Ganopolski, A.

    2014-01-01

    Possible feedback effects between aeolian dust, climate and ice sheets are studied for the first time with an Earth system model of intermediate complexity over the late Pleistocene period. Correlations between climate variables and dust deposits suggest that aeolian dust potentially plays an important role for the evolution of glacial cycles. Here climatic effects from the dust direct radiative forcing (DRF) caused by absorption and scattering of solar radiation are investigated. Key factors controlling the dust DRF are the atmospheric dust distribution and the absorption-scattering efficiency of dust aerosols. Effective physical parameters in the description of these factors are varied within uncertainty ranges known from available data and detailed model studies. Although the parameters are reasonably constrained by use of these studies, the simulated dust DRF spans a wide uncertainty range related to nonlinear dependencies. In our simulations, the dust DRF is highly localized. Medium-range parameters result in negative DRF of several W m-2 in regions close to major dust sources and negligible values elsewhere. In case of high absorption efficiency, the local dust DRF can reach positive values and the global mean DRF can be insignificantly small. In case of low absorption efficiency, the dust DRF can produce a significant global cooling in glacial periods which leads to a doubling of the maximum glacial ice volume relative to the case with small dust DRF. DRF-induced temperature and precipitation changes can either be attenuated or amplified through a feedback loop involving the dust cycle. The sensitivity experiments suggest that depending on dust optical parameters the DRF has the potential to either damp or reinforce glacial-interglacial climate changes.

  3. A Japan-Sino joint project, ADEC - Aeolian Dust Experiment on Climate Impact

    NASA Astrophysics Data System (ADS)

    Mikami, M.

    2004-05-01

    In recent years, aeolian dust has been thought to be an important factor of the climate system on the earth by the radiative forcing effect in the atmosphere and by the influence on the carbon dioxide cycle because deposited dust supplies nutrient salts for the phytoplankton on the ocean surface. Among them, radiative forcing direct and/or indirect effects are important factors of the global warming. Nevertheless, the reliability of the evaluation regarding the radiative forcing impact of aeolian dust is very low. [IPCC, 2001]. This is because the understanding and the model representations of dust entrainment, spatial and temporal distribution of dust, and optical properties of dust particles are not so accurate. Based on this background, Aeolian Dust Experiment on Climate Impact (ADEC) was started in April 2000 as a Japan-Sino Joint Project. The goal of this project is to evaluate the global dust supply to the atmosphere and its radiative forcing direct effect. For this purpose, we have made: 1) in situ observations at desert areas in China for wind erosion processes, 2) network observations from China to Japan, ranging from 80 to 140 East, for understanding spatial-size distribution, chemical, and optical properties of dust particles, and 3) numerical simulation by GCM dust model for evaluation of dust impact on the global climate over the past 50 years. This was planned as a five-year project and two intensive observations, IOP-1, April 12-25 2002, and IOP-2, March 15-26 2003, were put into practice. Intensive observations were made at 6 sites in China (Qira, Aksu, Dunhuang, Shapotou, Beijing, and Qingdao) and 4 sites in Japan (Naha, Fukuoka, Nagoya, and Tsukuba). Preliminary results show that 1) saltation flux at a gobi desert monitored by a newly developed sand particle counter was around 10 times larger than that of a sand dune, which will be caused by the difference of the parent soil size distribution of each ground condition, 2) the background of KOSA

  4. Asian Winter Monsoons in the Eocene: Evidence from the Aeolian Dust Series of the Xining Basin

    NASA Astrophysics Data System (ADS)

    Licht, A.; Adriens, R.; Pullen, A. T.; Kapp, P. A.; Abels, H.; van Cappelle, M.; Vandenberghe, J.; Dupont Nivet, G.

    2014-12-01

    The aeolian dust deposits of the Chinese Loess Plateau are attributed to spring and winter monsoonal storms sweeping clastic material from the deserts of the Asian interior into central China and are reported to begin 25-22 million years (Myr) ago. The beginning of aeolian dust sedimentation has been attributed to the onset of central Asia desertification and winter monsoonal circulation, and are commonly linked to development of high topographic relief associated with the Tibetan-Himalayan orogenic system. However, recent papers suggest that the core of the Tibetan Plateau may have reached significant elevation since the earliest phases of the India-Asia collision 55 Myr ago. Here, we extend the sedimentary record of the Chinese Loess Plateau at its western margin to include the late Eocene - late Oligocene deposits of the Xining Basin, which were deposited between 41 and 25 Myr ago based on detailed magnetostratigraphy. The particle size, shape, and surface microtexture of quartz grains in these deposits display textures indicative of prolonged aeolian transport; grain-size distributions show a bimodal distribution similar to Miocene through Quaternary deposits of the Chinese Loess Plateau. The clay mineralogy of the finer fraction and U/Pb zircon ages of the coarser fraction from Xining Loess sediments sampled along three sections spanning the whole studied interval are also similar to those observed in Quaternary and Neogene aeolian deposits of the Chinese Loess Plateau and thus suggest similar sources located in central China. However, slight differences in Eocene U/Pb zircon ages, such as the lack of Cenozoic ages or the scarcity of zircons older than 2000 Myr, suggest that the Tibetan Plateau may have contributed little to the aeolian dust deposition, in favor of sources located further north and west (Kunlun and Tian Shan Ranges). The Xining deposits are thus the first direct evidence that winter monsoonal winds were active 15 Myr earlier than previously

  5. Aeolian removal of dust from photovoltaic surfaces on Mars

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Perez-Davis, Marla E.; Marabito, Mark

    1990-01-01

    It is well documented that Mars is totally engulfed in huge dust storms nearly each Martian year. Dust elevated in these global dust storms, or in any of the numerous local dust storms could settle on photovoltaic surfaces and seriously hamper photovoltaic power system performance. Using a recently developed technique to uniformly dust simulated photovoltaic surfaces, samples were subjected to Martian-like winds in an attempt to determine whether natural aeolian processes on Mars would sweep off the settled dust. The effects of wind velocity, angle of attack, height off the Martian surface, and surface coating material were investigated. Principles which can help to guide the design of photovoltaic arrays bound for the Martian surface were uncovered. Most importantly, arrays mounted with an angle of attack approaching 45 deg show the most efficient clearing. Although the angular dependence is not sharp, horizontally mounted arrays required significantly higher wind velocities to clear off the dust. From the perspective of dust-clearing it appears that the arrays may be erected quite near the ground, but previous studies have suggested that saltation effects can be expected to cause such arrays to be covered by sand if they are set up less than about a meter from the ground. Providing that the surface chemistry of Martian dusts is comparable to our test dust, the materials used for protective coating may be optimized for other considerations such as transparency, and chemical or abrasion resistance. The static threshold velocity is low enough that there are regions on Mars which experience winds strong enough to clear off a photovoltaic array if it is properly oriented. Turbulence fences proved to be an ineffective strategy to keep dust cleared from the photovoltaic surfaces.

  6. Aeolian Removal of Dust Types from Photovoltaic Surfaces on Mars

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Perez-Davis, Marla E.

    1990-01-01

    Dust elevated in local or global dust storms on the Martian surface could settle on photovoltaic (PV) surfaces and seriously hamper their performance. Using a recently developed technique to apply a uniform dust layer, PV surface materials were subjected to simulated Martian winds in an attempt to determine whether natural aeolian processes on Mars would sweep off the settled dust. Three different types of dust were used. The effects of wind velocity, angle of attack, height above the Martian surface, and surface coating material were investigated. It was found that arrays mounted on an angle of attack approaching 45 deg show the most efficient clearing. Although the angular dependence is not sharp, horizontally mounted arrays required much higher wind velocities to clear off the dust. From this test it appears that the arrays may be erected quite near the ground, but previous studies have suggested that saltation effects can be expected to cause such arrays to be covered by soil if they are set up less than about a meter from the ground. Particle size effect appear to dominate over surface chemistry in these experiments, but additional tests are required to confirm this.

  7. Aeolian Removal of Dust Types from Photovoltaic Surfaces on Mars

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Perez-Davis, Marla E.; Marabito, Mark

    1990-01-01

    Dust elevated in local or global dust storms on the Martian surface could settle on photovoltaic (PV) surfaces and seriously hamper their performance. Using a recently developed technique to apply a uniform dust layer, PV surface materials were subjected to simulated Martian winds in an attempt to determine whether natural Aeolian processes on Mars would sweep off the settled dust. Three different types of dust were used; an optical polishing powder, basaltic "trap rock", and iron (III) oxide crystals. The effects of wind velocity, angle of attack, height above the Martian surface, and surface coating material were investigated. It was found that arrays mounted with an angle of attack approaching 45 degrees show the most efficient clearing. Although the angular dependence is not sharp, horizontally mounted arrays required significantly higher wind velocities to clear off the dust. From this test it appears that the arrays may be erected quite near the ground, but previous studies have suggested that saltation effects can be expected to cause such arrays to be covered by soil if they are set up less than about a meter from the ground. Particle size effects appear to dominate over surface chemistry in these experiments, but additional tests are required to confirm this. Providing that the surface chemistry of Martian dusts is not drastically different from simulated dust and that gravity differences have only minor effects, the materials used for protective coatings for photovoltaic arrays may be optimized for other considerations such as transparency, and chemical or abrasion resistance. The static threshold velocity is low enough that there are regions on Mars which experience winds strong enough to clear off a photovoltaic array if it is properly oriented. Turbulence fences proved to be an ineffective strategy to keep dust cleared from the photovoltaic surfaces.

  8. The accretion of aeolian dust in soils of the San Juan Mountains, Colorado, USA

    NASA Astrophysics Data System (ADS)

    Lawrence, Corey R.; Neff, Jason C.; Farmer, G. Lang

    2011-06-01

    Recent observations suggest a contemporary aeolian dust flux of at least 5-10 g m-2 yr-1 to high-elevation ecosystems of the San Juan Mountains of southwestern Colorado. To better quantify the influence of dust on San Juan soil geochemistry, we used Sr and Nd isotopic mixing models to estimate the total mass of accreted dust in soils of two alpine basins underlain by bedrocks of different geochemical composition. In order to minimize the potentially confounding effects caused by transient soil pools of Sr and Nd, we implemented a sequential leaching procedure that isolates the residual mineral fraction of soils and their putative parent materials, including local saprolite and exogenous dust inputs. Using this approach, we calculated masses of accreted dust in soils, which were similar across the two isotopic tracers and differing local geologies. Long-term rates of dust accretion were estimated to be slightly higher than contemporary rates of dust deposition. We conclude that dust inputs comprise from 10% to 40% of the total soil mass in these ecosystems. Our observations suggest that dust inputs have exerted a primary control on soil development in the San Juan Mountains and have likely influenced the physical and chemical characteristics of soils in this region.

  9. Dust on Mars: An Aeolian Threat to Human Exploration?

    NASA Technical Reports Server (NTRS)

    Marshall, J.

    1999-01-01

    The NASA HEDS Program is duly concerned for human explorers regarding the potential hazard posed by the ubiquitous dust mantle on Mars. To evaluate properties of dust that could be hazardous to humans, the NMS 2001 Lander payload will include the Mars Environmental Compatibility Assessment (MECA) experiment. This includes optical and atomic-force microscopy to evaluate soil grains for shape and size, wet chemistry to evaluate toxic substances, electrometry to evaluate triboelectric charging, and test-material palets to evaluate electrostatic and magnetic adhesion, and the hardness/abrasiveness of soil grains; these experimental subcomponents are delivered samples by the camera-equipped robotic arm of the lander which will acquire material from depths of 0.5 to 1.0 m in the soil. Data returned by MECA will be of value to both the hEDS and planetary/astrobiology communities. Dust poses a threat to human exploration because the martian system does not hydrologically or chemically remove fine particles that are being continuously generated by thermal, aeolian, and colluvial weathering, and by volcanism and impact over billions of years. The dust is extremely fine-grained, in copious quantities, ubiquitous in distribution, continually mobile, and a source of poorly-grounded static charges -- a suite of characteristics posing a particulate and electrical threat to explorers and their equipment. Dust is mobilized on global and regional scales, but probably also unpredictably and violently at local scales by dust devils. The latter might be expected in great abundance owing to near surface atmospheric instability (dust devils were detected by Pathfinder during its brief lifetime). Preliminary laboratory experiments suggest that space-suit materials subjected to windblown dust may acquire a uniform, highly adhesive dust layer that is also highly cohesive laterally owing to electrostatic forces. This layer will obscure visibility through the helmet visor, penetrate joints

  10. Dust on Mars: An Aeolian Threat to Human Exploration?

    NASA Technical Reports Server (NTRS)

    Marshall, J.

    1999-01-01

    The NASA HEDS Program is duly concerned for human explorers regarding the potential hazard posed by the ubiquitous dust mantle on Mars. To evaluate properties of dust that could be hazardous to humans, the MPS 2001 Lander payload will include the Mars Environmental Compatibility Assessment (MECA) experiment. This includes optical and atomic-force microscopy to evaluate soil grains for shape and size, wet chemistry to evaluate toxic substances, electrometry to evaluate triboelectric charging, and test-material palets to evaluate electrostatic and magnetic adhesion, and the hardness/abrasiveness of soil grains; these experimental subcomponents are delivered samples by the camera-equipped robotic arm of the lander which will acquire material from depths of 0.5 to 1.0 m in the soil. Data returned by MECA will be of value to both the BEDS and planetary/astrobiology communities. Dust poses a threat to human exploration because the martian system does not hydrologically or chemically remove fine particles that are being continuously generated by thermal, aeolian, and colluvial weathering, and by volcanism and impact over billions of years. The dust is extremely fine-grained, in copious quantities, ubiquitous in distribution, continually mobile, and a source of poorly-grounded static charges -- a suite of characteristics posing a particulate and electrical threat to explorers and their equipment. Dust is mobilized on global and regional scales, but probably also unpredictably and violently at local scales by dust devils. The latter might be expected in great abundance owing to near surface atmospheric instability (dust devils were detected by Pathfinder during its brief lifetime). Preliminary laboratory experiments suggest that space-suit materials subjected to windblown dust may acquire a uniform, highly adhesive dust layer that is also highly cohesive laterally owing to electrostatic forces. This layer will obscure visibility through the helmet visor, penetrate joints

  11. Aeolian transport of biota with dust: A wind tunnel experiment

    NASA Astrophysics Data System (ADS)

    Rivas, J. A., Jr.; Gill, T. E.; Van Pelt, R. S.; Walsh, E.

    2015-12-01

    Ephemeral wetlands are ideal sources for dust emission, as well as repositories for dormant stages of aquatic invertebrates. An important component of invertebrate dispersal and colonization to new areas is the ability to be entrained into the atmosphere. Aquatic invertebrate eggs fall within the size of dust and sand grains (30-600μm), are less dense and aerodynamically shaped. We have shown previously that aquatic invertebrates can be dispersed long distances in dust storms but the extent of transport of taxa based on diapausing egg size/morphology has not been investigated. Here, we control the wind erosion process in a wind tunnel to test entrainment of diapausing stages of brine shrimp, clam shrimp, tadpole shrimp, fairy shrimp, Daphnia, and the rotifers Brachionus plicatilis and B. calyciflorus into the air by saltation. Diapausing eggs were mixed with sterilized wind-erodible soil. The soil/egg mixture was moistened with distilled water and air dried to form a crust. Dust was generated in a wind tunnel by releasing sand grains that act as saltator material similar to wind-entrained natural sands. Maximum wind velocity was 10m/s and entrained particles were sampled through an isokinetic horizontal intake opening. Aeolian sediment was collected from three points in the system; transfer section for coarse sediment, the pan subtending a settling chamber for finer saltation-sized sediment, and two paper filters for suspension-sized sediment. Samples were then passed through 250 and 350 μm sieves to remove abrader sand and rehydrated with various sterile media depending on the type of organism. We retrieved viable brine, fairy, and tadpole shrimp, ostracods, Daphnia, and diapausing eggs of the rotifers after hydration. This experiment demonstrates that resting stages of many invertebrates can be wind-eroded due to size and egg morphology and remain viable under controlled conditions mimicking dust emission.

  12. Mineral dust deposition in Western Mediterranean basin

    NASA Astrophysics Data System (ADS)

    Vincent, Julie; Laurent, Benoit; Bergmatti, Gilles; Losno, Rémi; Bon Nguyen, Elisabeth; Chevaillier, Servanne; Roulet, Pierre; Sauvage, Stéphane; Coddeville, Patrice; Ouboulmane, Noura; Siour, Guillaume; Tovar Sanchez, Antonio; Massanet, Ana; Morales Baquero, Rafael; Di Sarra, Giogio; Sferlazzo, Damiano; Dulac, François; Fornier, Michel; Coursier, Cyril

    2014-05-01

    North African deserts are the world's largest sources of atmospheric mineral dust produced by aeolian erosion. Saharan dust is frequently transported toward Europe over the Mediterranean basin. When deposited in oceanic areas, mineral dust can constitute a key input of nutrients bioavailable for the oceanic biosphere. For instance, Saharan dust deposited in the in the Mediterranean Sea can be a significant source of nutrient like Fe, P and N during summer and autumn. Our objective is to study the deposition Saharan mineral dust in the western Mediterranean basin and to improve how deposition processes are parameterized in 3D regional models. To quantify the deposition flux of Saharan dust in the western Mediterranean region a specific collector (CARAGA) to sample automatically the insoluble atmospheric particle deposition was developed (LISA-ICARE) and a network of CARAGA collectors have been set up. Since 2011, eight CARAGA are then deployed in Frioul, Casset, Montandon and Ersa in France, Mallorca and Granada in Spain, Lampedusa in Italia, and Medenine in Tunisia, along a South-North gradient of almost 2000km from the North African coast to the South of Europe. We observe 10 well identified dust Saharan deposition events at Lampedusa and 6 at Mallorca for a 1-yr sampling period. These dust events are sporadic and the South-North gradient of deposition intensity and frequency is observed (the highest dust mass sampled at the stations are : 2,66 g.m-2 at Lampedusa ; 0,54 g.m-2 at Majorque ; 0,33 g.m-2 at Frioul ; 0,16 g.m-2 at Casset). The ability of the CHIMERE model to reproduce the deposition measurements is tested. The mineral dust plumes simulated over the western Mediterranean basin are also compared to satellite observations (OMI, MODIS) and in-situ measurements performed during the ChArMEx campaign and in the AERONET stations.

  13. Aeolian removal of dust from radiator surfaces on Mars

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Perez-Davis, Marla E.; Rutledge, Sharon K.; Hotes, Deborah

    1990-01-01

    Simulated radiator surfaces made of arc-textured Cu and Nb-1 percent-Zr and ion beam textured graphite and C-C composite were fabricated and their integrated spectral emittance characterized from 300 to 3000 K. A thin layer of aluminum oxide, basalt, or iron (III) oxide dust was then deposited on them, and they were subjected to low pressure winds in the Martian Surface Wind Tunnel. It was found that dust deposited on simulated radiator surfaces may or may not seriously lower their integrated spectral emittance, depending upon the characteristics of the dust. With Al2O3 there is no appreciable degradation of emittance on a dusted sample, with basaltic dust there is a 10 to 20 percent degradation, and with Fe2O3 a 20 to 40 percent degradation. It was also found that very high winds on dusted highly textured surfaces can result in their abrasion. Degradation in emittance due to abrasion was found to vary with radiator material. Arc-textured Cu and Nb-1 percent Zr was found to be more susceptible to emittance degradation than graphite or C-C composite. The most abrasion occurred at low angles, peaking at the 22.5 deg test samples.

  14. Aeolian removal of dust from radiator surfaces on Mars

    SciTech Connect

    Gaier, J.R.; Perez-Davis, M.E.; Rutledge, S.K.; Hotes, D.

    1994-09-01

    Simulated radiator surfaces made of arc-textured copper and niobium-one percent-zirconium, and ion beam textured graphite and carbon-carbon composite were fabricated and their integrated spectral emittance characterized from 300 to 3000 K. A thin layer of aluminum oxide, basalt, or iron (III) oxide dust was then deposited on them, and they were subjected to low pressure winds in the Martian Surface Wind Tunnel. It has been found that dust deposited on simulated radiator surfaces may or may not seriously lower their integrated spectral emittance, depending upon the characteristics of the dust. With Al{sub 2}O{sub 3} there is no appreciable degradation of emittance on a dusted sample, with basaltic dust there is a 10-20 percent degradation, and with Fe{sub 2}O{sub 3} a 20-40 percent degradation. It was also found that very high winds on dusted highly textured surfaces can result in their abrasion. Degradation in emittance due to abrasion was found to vary with radiator material. Arc-textured copper and Nb-1%Zr was found to be more susceptible to emittance degradation than graphite or carbon-carbon composite. The most abrasion occurred at low angles, peaking at the 22.5{degrees} test samples.

  15. Changes in soil aggregation and dust emission potential in response to aeolian processes

    NASA Astrophysics Data System (ADS)

    swet, Nitzan; Katra, Itzhak

    2016-04-01

    Aeolian (wind) dust emission has high environmental and socioeconomic significances due to loss of natural soil and air pollution. Dust emission involves complex interactions between the airflow and the soil surface. The soil aggregates were dust particles are held determine the topsoil erodibility in aeolian erosion. Although the key role of soil aggregation in dust emission mechanisms, information on changes in soil aggregate size distribution (ASD) due to aeolian erosion is lucking. This study is focused on quantitative ASD analyses before and after aeolian processes (saltation). Aeolian experiments and soil analyses were conducted on semiarid loess topsoils with different initial conditions of aggregation. The results show that saltation rates and PM emissions depend on the initial ASD and shear velocity. In all initial soil conditions, the content of aggregates at saltator-sized 63-250 μm was increased by 10-34 % following erosion of macro-aggregates > 500 μm. It revealed that the aggregate-saltator production increases with the shear velocity (up to 0.61 m s-1) for soils with available macro-aggregates. The findings highlight the dynamics in soil aggregation in response to aeolian transport and therefore its significance for determining the mechanisms of dust emission from soil aggregates.

  16. Global connections between aeolian dust, climate and ocean biogeochemistry at the present day and at the last glacial maximum

    NASA Astrophysics Data System (ADS)

    Maher, B. A.; Prospero, J. M.; Mackie, D.; Gaiero, D.; Hesse, P. P.; Balkanski, Y.

    2010-04-01

    Palaeo-dust records in sediments and ice cores show that wind-borne mineral aerosol ('dust') is strongly linked with climate state. During glacial climate stages, for example, the world was much dustier, with dust fluxes two to five times greater than in interglacial stages. However, the influence of dust on climate remains a poorly quantified and actively changing element of the Earth's climate system. Dust can influence climate directly, by the scattering and absorption of solar and terrestrial radiation, and indirectly, by modifying cloud properties. Dust transported to the oceans can also affect climate via ocean fertilization in those regions of the world's oceans where macronutrients like nitrate are abundant but primary production and nitrogen fixation are limited by iron scarcity. Dust containing iron, as fine-grained iron oxides/oxyhydroxides and/or within clay minerals, and other essential micronutrients (e.g. silica) may modulate the uptake of carbon in marine ecosystems and, in turn, the atmospheric concentration of CO 2. Here, in order to critically examine past fluxes and possible climate impacts of dust in general and iron-bearing dust in particular, we consider present-day sources and properties of dust, synthesise available records of dust deposition at the last glacial maximum (LGM); evaluate the evidence for changes in ocean palaeo-productivity associated with, and possibly caused by, changes in aeolian flux to the oceans at the LGM; and consider the radiative forcing effects of increased LGM dust loadings.

  17. 26Al/10Be dating of an aeolian dust mantle soil in western New South Wales, Australia

    NASA Astrophysics Data System (ADS)

    Fisher, Adrian; Fink, David; Chappell, John; Melville, Michael

    2014-08-01

    Aeolian dust mantle soils are an important element of many landscapes in south-eastern Australia, though the age of these aeolian deposits has not been radiometrically determined. At Fowlers Gap in western New South Wales, surface cobbles of silcrete and quartz overlie a stone-free, aeolian dust mantle soil, which has a thickness of about 1.6 m. The clay-rich aeolian dust deposit in turn lies upon a buried silcrete and quartz stone layer. Modelling in-situ cosmogenic 26Al and 10Be concentrations measured in both the surface quartz stones and in the buried quartz layer of rocks, reveals that each has experienced a complex exposure-burial history. Due to the absence of quartz stones or sand at intermediate depths, our cosmogenic 26Al and 10Be modelling was not able to determine a definitive mechanism of stone pavement formation and stone burial. Various scenarios of stone formation, transport, burial and exhumation were tested that constrain the age of the deposit to range from 0.9 ± 0.2 Ma to 1.8 ± 0.2 Ma, based largely on different assumptions taken for the time-dependency of the net sedimentation rate. This corresponds with the initiation of the Simpson Desert dune fields and the deflation of lakes in central Australia, which probably responded to the shift to longer-wavelength, larger-amplitude Quaternary glacial cycles at around 1 Ma. Sensitivity analyses were carried out to identify those parameters which better constrained model outputs. Within model errors, which largely are the result of analytical errors in measured 26Al and 10Be concentrations, all three competing theories of colluvial wash, upward displacement of stones, and cumulic pedogenesis are possible mechanisms for the formation of the surface stone pavement.

  18. Niveo-aeolian and Denivation Deposits on Mars

    NASA Astrophysics Data System (ADS)

    Bourke, M. C.

    2004-12-01

    Hydrogen abundance data from the Gamma Ray Spectrometer on board the Mars Odyssey platform indicate that large areas of the North Polar Sand Sea have high concentrations (40-60% weight) of hydrogen molecules in the surface deposits. On Earth, cold region sand dunes often contain inter-bedded sand, snow and ice. These niveo-aeolian deposits have unique morphologies and sedimentary structures that are generally not found in warm desert dunes. An atlas of dune niveo-aeolian and denivation features was compiled from published studies of polar deserts on Earth. Features occur at a range of scales and signatures are both morphologic and stratigraphic. The atlas is used to identify similar features on Mars. Examination of high resolution Mars Orbiter Camera images of the North Polar Sand Sea and Southern Crater dune fields have identified several potential signatures of niveo-aeolian and denivation processes on Mars. These include: over steepened lee slopes, cornices, rounded slipface and/or crest, protruding ice cemented beds, alluvial meltwater channels and fans and sublimation avalanches. Other smaller-scale forms probably occur but are not detectable with current resolution data. While these findings have implications for our understanding of martian dune geomorphology, mobility and the geological evolution of the sand seas, they also highlight the potential for a significant volatile reservoir and biological habitat in sand dunes on Mars.

  19. Atmospheric dust in modern soil on aeolian sandstone, Colorado Plateau (USA): Variation with landscape position and contribution to potential plant nutrients

    USGS Publications Warehouse

    Reynolds, R.; Neff, J.; Reheis, M.; Lamothe, P.

    2006-01-01

    Rock-derived nutrients in soils originate from both local bedrock and atmospheric dust, including dust from far-distant sources. Distinction between fine particles derived from local bedrock and from dust provides better understanding of the landscape-scale distribution and abundance of soil nutrients. Sandy surficial deposits over dominantly sandstone substrates, covering vast upland areas of the central Colorado Plateau, typically contain 5-40% silt plus clay, depending on geomorphic setting and slope (excluding drainages and depressions). Aeolian dust in these deposits is indicated by the presence of titanium-bearing magnetite grains that are absent in the sedimentary rocks of the region. Thus, contents of far-traveled aeolian dust can be estimated from magnetic properties that primarily reflect magnetite content, such as isothermal remanent magnetization (IRM). Isothermal remanent magnetization was measured on bulk sediment samples taken along two transects in surficial sediment down gentle slopes away from sandstone headwalls. One transect was in undisturbed surficial sediment, the other in a setting that was grazed by domestic livestock until 1974. Calculation of far-traveled dust contents of the surficial deposits is based on measurements of the magnetic properties of rock, surficial deposits, and modern dust using a binary mixing model. At the undisturbed site, IRM-based calculations show a systematic down-slope increase in aeolian dust (ranging from 2% to 18% of the surface soil mass), similar to the down-slope increase in total fines (18-39% of surface soil mass). A combination of winnowing by wind during the past and down-slope movement of sediment likely accounts for the modern distribution of aeolian dust and associated nutrients. At the previously grazed site, dust also increases down slope (5-11%) in sediment with corresponding abundances of 13-25% fines. Estimates of the contributions of aeolian dust to the total soil nutrients range widely

  20. Environmental history recorded in aeolian deposits under stone pavements, Mojave Desert, USA

    NASA Astrophysics Data System (ADS)

    Dietze, Michael; Dietze, Elisabeth; Lomax, Johanna; Fuchs, Markus; Kleber, Arno; Wells, Stephen G.

    2016-01-01

    Reconstructing the evolution of arid landscapes is challenged by limited availability of appropriate environmental archives. A widespread surface feature - stone pavement - traps aeolian fines and forms a special accretionary archive. Seven stone pavement-covered sections on basalt flows in the eastern Mojave Desert are condensed into a composite section, comprising five sedimentological units supported by an OSL-based chronology. Three of the units are of accretionary nature and each is covered by a stone pavement. They were deposited > 50.9-36.6 ka, < 36.6-14.2 ka and < 14.2 ka, and they are intimately coupled with the history of nearby Lake Mojave, which advances the current understanding of regional aeolian activity. End-member modeling analysis of grain-size distributions yielded seven sediment transport regimes. The accretionary system operates in two modes: A) episodic formation of a stone pavement by lateral processes once a vesicular horizon has formed on a barren surface; and B) accretion of dust and eventual burial of the clast layer. These findings improve current concepts about stone pavement evolution and their environmental proxy function in arid landscapes. Stone pavement-covered accretionary deposits are a new key archive that allows quantifying the relative importance of dust accretion, slope processes, soil formation and vegetation cover.

  1. Coastal chevron deposits - sedimentology, methods and aeolian versus tsunamigenic origin

    NASA Astrophysics Data System (ADS)

    Spiske, Michaela; Garcia Garcia, Anna-Marietta; Tsukamoto, Sumiko; Schmidt, Volkmar

    2013-04-01

    The origin of v-shaped sediment bodies, so-called "chevrons", is currently controversially discussed. The term "chevron" is presently only defined in terms of the morphology of the sediment body, but not in terms of its genesis. Both an aeolian and an impact-tsunami origin are discussed. In this study, the sedimentology and origin of chevrons is investigated, examining deposits from the US west coast and the coast of Western Australia. We use internal structures obtained in trenches or by ground penetrating radar surveys, trenches, ages gained by radiocarbon and optically stimulated luminescence dating, grain size analysis and the general sediment composition. If the chevrons were deposited by a tsunami, all chevrons along one coastline should possess the same depositional ages, the grain-size distribution should be polymodal indicating various sediment sources and internal structures should be restricted mainly to normal grading. In case of an aeolian origin, the ages of the individual chevrons may vary and internal ages will reflect the migration of the sediment body. Furthermore, cross bedding should be present throughout the sediment body and soil horizons may represent inactive phases. Preliminary results indicate the presence of internal cross bedding and an unimodal grain-size distribution of the surveyed chevrons. Ages decrease in landward transport direction and to the top within vertical successions. At some locations soil layers intercalate between well sorted sands. The mean grain size of the chevron sands is 0.11-0.25 mm. A comparison of the chevron components with the mineral content of possible sediment sources (e.g., rivers, beaches, cliffs) shows that the chevrons are composed of the fine grain size fraction of the respective sources. Sediments of this grain size can easily be transported by aeolian forces under the local prevailing wind conditions. Terrestrial gastropods found within the chevrons give evidence of a long term development of these

  2. Downwind changes in grain size of aeolian dust; examples from marine and terrestrial archives

    NASA Astrophysics Data System (ADS)

    Stuut, Jan-Berend; Prins, Maarten

    2013-04-01

    Aeolian dust in the atmosphere may have a cooling effect when small particles in the high atmosphere block incoming solar energy (e.g., Claquin et al., 2003) but it may also act as a 'greenhouse gas' when larger particles in the lower atmosphere trap energy that was reflected from the Earth's surface (e.g., Otto et al., 2007). Therefore, it is of vital importance to have a good understanding of the particle-size distribution of aeolian dust in space and time. As wind is a very size-selective transport mechanism, the sediments it carries typically have a very-well sorted grain-size distribution, which gradually fines from proximal to distal deposition sites. This fact has been used in numerous paleo-environmental studies to both determine source-to-sink changes in the particle size of aeolian dust (e.g., Weltje and Prins, 2003; Holz et al., 2004; Prins and Vriend, 2007) and to quantify mass-accumulation rates of aeolian dust (e.g., Prins and Weltje 1999; Stuut et al., 2002; Prins et al., 2007; Prins and Vriend, 2007; Stuut et al., 2007; Tjallingii et al., 2008; Prins et al., 2009). Studies on modern wind-blown particles have demonstrated that particle size of dust not only is a function of lateral but also vertical transport distance (e.g., Torres-Padron et al., 2002; Stuut et al., 2005). Nonetheless, there are still many unresolved questions related to the physical properties of wind-blown particles like e.g., the case of "giant" quartz particles found on Hawaii (Betzer et al., 1988) that can only originate from Asia but have a too large size for the distance they travelled through the atmosphere. Here, we present examples of dust particle-size distributions from terrestrial (loess) as well as marine (deep-sea sediments) sedimentary archives and their spatial and temporal changes. With this contribution we hope to provide quantitative data for the modelling community in order to get a better grip on the role of wind-blown particles in the climate system. Cited

  3. Martian aeolian processes, sediments, and features

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald; Lancaster, Nicholas; Lee, Steven; Thomas, Peter

    1992-01-01

    In this review of the aeolian regime on Mars, consideration is given to the sources and characteristics of the particles that are involved in aeolian processes and the winds that are required to set grains into motion. Dust storms are reviewed and previous observations and the mechanisms of dust-storm generation are assessed. Various aeolian features, including dunes and albedo features, as well as windblown mantle deposits are discussed. In planning for future missions to Mars, aeolian processes must be taken into account. Surface modifications by the wind and windblown deposits can influence remote-sensing observations, affect sampling strategies, and have detrimental effects on manned and unmanned spacecraft on the surface.

  4. Australian dust deposits: modern processes and the Quaternary record

    NASA Astrophysics Data System (ADS)

    Hesse, Paul P.; McTainsh, Grant H.

    2003-09-01

    Dust raising and transport are common and important processes in Australia today. The aridity of the Australian continent and high climatic variability result in widespread dust raising in the arid and semi-arid areas and transport to the humid margins and surrounding oceans. The supply of erodible particles appears to be the greatest limitation on total flux of transported dust. Dust raising is greatest in the Lake Eyre Basin, including the Simpson Desert, and Murray-Darling Basin where internal drainage renews supplies of fine particles to the arid zone. In the west and northwest dust entrainment is low, despite considerable aridity. The marine record of dust flux shows at least a threefold increase in dust flux, compared with the Holocene, in the last glacial maximum in both tropical and temperate Australia, driven by weakened Australian monsoon rains and drier westerly circulation, respectively. Despite the widespread confirmation of aeolian dust deposits in southeastern and southwestern Australia, dated or quantified records are extremely rare. The dominant model of Australian dust deposits, the clay-rich 'parna', is shown to be poorly substantiated while modern and ancient dust deposits examined in detail are shown to bear a strong similarity to conventional definitions of loess.

  5. Sedimentology of coastal chevron deposits - tsunamigenic versus aeolian origin

    NASA Astrophysics Data System (ADS)

    Garcia Garcia, A.; Spiske, M.; Tsukamoto, S.; Schmidt, V.

    2012-12-01

    The genesis of v-shaped coastal chevrons is currently controversially discussed. So far, chevrons are only described regarding their morphology, but not in terms of their origin. Two possible origins of chevrons are proposed: both aeolian transport and tsunami inundation are discussed as depositing processes. We present initial results of a detailed sedimentological survey of Holocene coastal chevrons from the American and Australian west coasts. The chevrons were measured and levelled using a differential GPS system. Large scale internal structures were recorded by ground penetrating radar imaging. Trenches were dug for sampling and analyzing small scale internal structures. The sediment samples were used for the analysis of grain-size distributions, mineral composition and content of marine microorganisms. Additional samples were taken for optically stimulated luminescence (OSL) and radiocarbon dating. Furthermore, we took reference samples from beaches, cliffs and rivers, which could act as potential sediment sources for the surveyed chevrons. Tsunami deposits are commonly polymodal, exhibit a grain-size decrease and tend to show better sorting in landward direction. Such trends are not present in the surveyed chevrons. Most samples are well to moderately well sorted and unimodal. The OSL ages decrease in transport direction and indicate a long term generation process, such as dune migration, rather than a short term event like a tsunami. This fact is additionally underlined by land snails found in different stratigraphic levels within the Australian chevrons. Furthermore, the occurrence of intercalated soil horizons implies a change of stable and active migration phases. The initial results of this study point out to an aoelian origin of coastal chevrons and do not support the previously supposed thesis of a tsunamigenic origin.

  6. Aeolian dust experiment on climate impact: An overview of Japan China joint project ADEC

    NASA Astrophysics Data System (ADS)

    Mikami, M.; Shi, G. Y.; Uno, I.; Yabuki, S.; Iwasaka, Y.; Yasui, M.; Aoki, T.; Tanaka, T. Y.; Kurosaki, Y.; Masuda, K.; Uchiyama, A.; Matsuki, A.; Sakai, T.; Takemi, T.; Nakawo, M.; Seino, N.; Ishizuka, M.; Satake, S.; Fujita, K.; Hara, Y.; Kai, K.; Kanayama, S.; Hayashi, M.; Du, M.; Kanai, Y.; Yamada, Y.; Zhang, X. Y.; Shen, Z.; Zhou, H.; Abe, O.; Nagai, T.; Tsutsumi, Y.; Chiba, M.; Suzuki, J.

    2006-07-01

    The Aeolian Dust Experiment on Climate Impact (ADEC) was initiated in April 2000 as a joint five-year Japan-China project. The goal was to understand the impact of aeolian dust on climate via radiative forcing (RF). Field experiments and numerical simulations were conducted from the source regions in northwestern China to the downwind region in Japan in order to understand wind erosion processes temporal and spatial distribution of dust during their long-range transportation chemical, physical, and optical properties of dust and the direct effect of radiative forcing due to dust. For this, three intensive observation periods (IOP) were conducted from April 2002 to April 2004. The in situ and network observation results are summarized as follows: (1) In situ observations of the wind erosion process revealed that the vertical profile of moving sand has a clear size dependency with height and saltation flux and that threshold wind velocity is dependent on soil moisture. Results also demonstrated that saltation flux is strongly dependent on the parent soil size distribution of the desert surface. (2) Both lidar observations and model simulations revealed a multiple dust layer in East Asia. A numerical simulation of a chemical transport model, CFORS, illustrated the elevated dust layer from the Taklimakan Desert and the lower dust layer from the Gobi Desert. The global-scale dust model, MASINGAR, also simulated the dust layer in the middle to upper free troposphere in East Asia, which originated from North Africa and the Middle East during a dust storm in March 2003. Raman lidar observations at Tsukuba, Japan, found the ice cloud associated with the dust layer at an altitude of 6 to 9 km. Analysis from lidar and the radio-sonde observation suggested that the Asian dust acted as ice nuclei at the ice-saturated region. These results suggest the importance of dust's climate impact via the indirect effect of radiative forcing due to the activation of dust into ice nuclei

  7. Quantifying the Impact of Mineral Dust and Dissolved Iron Deposition on Marine Biological Activity

    NASA Astrophysics Data System (ADS)

    Johnson, M. S.; Meskhidze, N.; Gassó, S.; Solmon, F.

    2009-12-01

    Aeolian dust deposition has proven to be a critical source of iron (Fe) to remote oceanic regions where it can play an important role in regulating marine ecosystem productivity. Increases in marine biological activity have been suggested to reduce atmospheric carbon dioxide (CO2) and enhance oceanic emissions of marine primary organic aerosols and biologically produced trace gases leading to secondary aerosol formation. These mechanisms can affect climate directly by enhancing carbon sequestration rates, and through organic aerosols influencing incoming solar radiation or modulating shallow marine cloud properties. Due to dust emissions and transport also being dependent upon climatic conditions, the relationship between aeolian dust deposition and oceanic emissions (e.g., primary organic matter, dimethylsulphide, halocarbons, and several types of non-methane hydrocarbons) presents a possible ocean-atmosphere feedback cycle. The Southern Ocean (SO) is characterized as being the largest oceanic region with marine primary productivity that is limited by the micronutrient Fe. Despite the potentially important role of dust laden-Fe in this region, few studies exist that can help to constrain the impact of dust-laden Fe fluxes on biological productivity in the Atlantic sector of the SO. Patagonia has been estimated to supply the majority of aeolian-Fe deposited to the South Atlantic Ocean (SAO). Thus, the focus of this study is to quantify the influence of Patagonian dust storms on marine primary productivity in the SAO and assess the potential climatic effect of variability in aeolian dust deposition. In this work we use the global chemistry transport model GEOS-Chem, implemented with a prognostic Fe dissolution scheme (GEOS-Chem/DFeS), to evaluate the deposition of Patagonian dust and associated dissolved iron (DFe) fluxes to the SAO. Model predicted fluxes of DFe were then used to quantify the impact of Patagonian dust on marine primary productivity in the surface

  8. Aeolian cliff-top deposits and buried soils in the White River Badlands, South Dakota, USA

    USGS Publications Warehouse

    Rawling, J. E., III; Fredlund, G.G.; Mahan, S.

    2003-01-01

    Aeolian deposits in the North American Great Plains are important sources of Holocene palaeo-environmental records. Although there are extensive studies on loess and dune records in the region, little is known about records in aeolian cliff-top deposits. These are common on table (mesa) edges in the White River Badlands. These sediments typically have loam and sandy-loam textures with dominantly very fine sand, 0.5-1% organic carbon and 0.5-5% CaCO3. Some of these aeolian deposits are atypically coarse and contain granules and fine pebbles. Buried soils within these deposits are weakly developed with A-C and A-AC-C profiles. Beneath these are buried soils with varying degrees of pedogenic development formed in fluvial, aeolian or colluvial deposits. Thickness and number of buried soils vary. However, late-Holocene soils from several localities have ages of approximately 1300, 2500 and 3700 14C yrs BP. The 1300 14C yr BP soil is cumulic, with a thicker and lighter A horizon. Soils beneath the cliff-top deposits are early-Holocene (typically 7900 but as old as 10000 14C yrs BP) at higher elevation (???950 m) tables, and late-Holocene (2900 14C yrs BP) at lower (???830 m) tables. These age estimates are based on total organic matter 14C ages from the top 5 cm of buried soils, and agreement is good between an infrared stimulated luminescence age and bracketing 14C ages. Our studies show that cliff-top aeolian deposits have a history similar to that of other aeolian deposits on the Great Plains, and they are another source of palaeoenvironmental data.

  9. Aeolian dust emissions in Southern Africa: field measurements of dynamics and drivers

    NASA Astrophysics Data System (ADS)

    Wiggs, Giles; Thomas, David; Washington, Richard; King, James; Eckardt, Frank; Bryant, Robert; Nield, Joanna; Dansie, Andrew; Baddock, Matthew; Haustein, Karsten; Engelstaedter, Sebastian; von Holdt, Johannah; Hipondoka, Martin; Seely, Mary

    2016-04-01

    Airborne dust derived from the world's deserts is a critical component of Earth System behaviour, affecting atmospheric, oceanic, biological, and terrestrial processes as well as human health and activities. However, very few data have been collected on the factors that control dust emission from major source areas, or on the characteristics of the dust that is emitted. Such a paucity of data limits the ability of climate models to properly account for the radiative and dynamical impacts triggered by atmospheric dust. This paper presents field data from the DO4 Models (Dust Observations for Models) project that aims to understand the drivers of variability in dust emission processes from major source areas in southern Africa. Data are presented from three field campaigns undertaken between 2011 and 2015. We analysed remote sensing data to identify the key geomorphological units in southern Africa which are responsible for emission of atmospheric dust. These are the Makgadikgadi pans complex in northern Botswana, the ephemeral river valleys of western Namibia, and Etosha Pan in northern Namibia. Etosha Pan is widely recognised as perhaps the most significant source of atmospheric dust in the southern hemisphere. We deployed an array of field equipment within each source region to measure the variability in and dynamics of aeolian erosivity, as well as dust concentration and flux characteristics. This equipment included up to 11 meteorological stations measuring wind shear stress and other standard climatic parameters, Cimel sun photometers, a LiDAR, sediment transport detectors, high-frequency dust concentration monitors, and dust flux samplers. Further data were gathered at each site on the dynamics of surface characteristics and erodibility parameters that impact upon erosion thresholds. These data were augmented by use of a Pi-Swerl portable wind tunnel. Our data represent the first collected at source for these key dust emission areas and highlight the

  10. Composition of aeolian dust in natural traps on isolated surfaces of the central Mojave Desert - Insights to mixing, sources, and nutrient inputs

    USGS Publications Warehouse

    Reynolds, R.L.; Reheis, M.; Yount, J.; Lamothe, P.

    2006-01-01

    The recognition and characterization of aeolian dust in soil contribute to a better understanding of landscape and ecosystem dynamics of drylands. Results of this study show that recently deposited dust, sampled in isolated, mostly high-ground settings, is chemically and mineralogically similar on varied geologic substrates over a large area (15 000 km2) in the Mojave Desert. The silt-plus-clay fraction (fines) on these isolated surfaces is closely alike in magnetic-mineral composition, in contrast to greatly dissimilar magnetic compositions of rock surfaces of vastly different lithologies, on which the fines have accumulated. The fines, thus, are predominantly deposited dust. The amounts of potential nutrients in the sampled dust are much more uniform than might be provided by direct, local weathering of bedrock or by dust locally derived from nearby weathered products. The compositional similarity of the dust on these surfaces is interpreted to result from mixing of fines in the atmosphere as well as in fluvial, alluvial, and lacustrine depositional settings prior to dust emission.

  11. The Dynamics and Characteristics of Aeolian Dust in Dryland Central Asia: Possible Impacts on Respiratory Health in the Aral Sea Basin

    NASA Astrophysics Data System (ADS)

    Wiggs, G. F.; O'Hara, S.; Wegerdt, J.; van der Meer, J.; Small, I.; Hubbard, R.

    2003-12-01

    Over the last 40 years over 36,000 km2 of the former Aral Sea bed have been exposed creating a potentially significant aeolian dust source. It is widely believed, but little researched, that increased dust storm activity in the region has had a major impact on human health. In this paper we report the findings of a study into the link between dust exposure and respiratory health amongst children in the Autonomous Republic of Karakalpakstan, located on the southern shore of the Aral Sea. Data were collected over a 12 month period at 16 sites located within a broad transect running north to south through Karakalpakstan. At each site monthly measurements of dust deposition were undertaken linked with daily meteorological data at 6 stations. At 3 sites weekly measurements of PM10 were also carried out. Approximately 100 children (aged 7-10 years) were randomly selected within 5 km of each dust trap site and data were collected on their respiratory health and environmental exposures. Lung function data were also collected using a handheld spirometer. A linear regression model was used to predict lung function for the children incorporating variables for Forced Expiratory Volume in one second (FEV1), age, gender, height and weight and we estimated the impact of dust deposition rates on the odds of having abnormal lung function using logistic regression. The findings indicate that dust deposition rates across the region are high with sites located near the former shore of the sea being the worst affected. For these northerly regions the former Aral Sea bed is the most likely source of dust. The situation for the rest of the country seems to be far more complex. In these regions it appears that local sources (agricultural fields, abandoned irrigation grounds, overgrazed dunes, and unpaved roads) and more distant sources to the south and south-west represent significant sediment providers, particularly in the early summer when agricultural fields are ploughed. We found some

  12. Contemporary geochemical composition and flux of aeolian dust to the San Juan Mountains, Colorado, United States

    NASA Astrophysics Data System (ADS)

    Lawrence, Corey R.; Painter, T. H.; Landry, C. C.; Neff, J. C.

    2010-09-01

    Dust deposition in the Rocky Mountains may be an important biogeochemical flux from upwind ecosystems. Seasonal (winter/spring) dust mass fluxes to the San Juan Mountains during the period from 2004 to 2008 ranged from 5 to 10 g m-2, with individual deposition events reaching as high as 2 g m-2. Dust deposited in the San Juan Mountains was primarily composed of silt- and clay-sized particles, indicating a regional source area. The concentrations of most major and minor elements in this dust were similar to or less than average upper continental crustal concentrations, whereas trace element concentrations were often enriched. In particular, dust collected from the San Juan Mountain snowpack was characterized by enrichments of heavy metals including As, Cu, Cd, Mo, Pb, and Zn. The mineral composition of dust partially explained dust geochemistry; however, based on results of a sequential leaching procedure it appeared that trace element enrichments were associated with the organic-, and not the mineral-, fraction of dust. Our observations show that the dust-derived fluxes of several nutrients and trace metals are substantial and, because many elements are deposited in a mobile form, could be important controls of vegetation, soil, or surface water chemistry. The flux measurements reported here are useful benchmarks for the characterization of ecosystem biogeochemical cycling in the Rocky Mountains.

  13. Sand transport by wind, erosion and deposition and the origin of aeolian bedforms

    NASA Astrophysics Data System (ADS)

    Duran Vinent, Orencio

    2014-05-01

    Aeolian processes involve the wind action on a sedimentary substrate, namely erosion, sand transport and deposition. They are responsible for the emergence of aeolian dunes and ripples. Here, we discuss the physics of aeolian sediment transport from a physical point of view. Relevant time and length scales associated to turbulent wind fluctuations are summarized using aerodynamic theory. At the microscopic scale, the main forces acting on the grains are detailed. Sand transport is then studied using two phase numerical simulations based on a discrete element method for particles coupled to a continuum Reynolds averaged description of hydrodynamics. We then introduce the concepts - e.g. saturated flux, saturation length - and the relevant framework for the development of a continuum (macroscopic) quantitative description of transport at the core of our current understanding of aeolian dunes formation. At smaller scales, aeolian ripples arise from the interaction of sediment transport and topography. At larger scales, the nonlinear nature of the interaction between dunes leads to the formation of dune fields.

  14. Rates and environmental controls of aeolian dust accumulation, Athabasca River Valley, Canadian Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Hugenholtz, Chris H.; Wolfe, Stephen A.

    2010-09-01

    Despite an abundance of sedimentary archives of mineral dust (i.e. loess) accumulations from cold, humid environments, the absence of contemporary process investigations limits paleoenvironmental interpretations in these settings. Dust accumulations measured at Jasper Lake, a seasonally-filled reach of the glacially-fed Athabasca River in the Canadian Rocky Mountains, are some of the highest contemporary rates recorded to date. High deposition rates, including a maximum of 27,632 kg ha -1 month -1, occur during river low-flow periods, but even the lowest deposition rates, occurring during bankfull periods, exceed other contemporary rates of deposition. High rates of dust deposition may be attributed to geomorphic and climatic controls affecting sediment supply, availability and transport, and biologic factors affecting accumulation. Localized confinement of the Jasper River by tributary river alluvial fans has caused channel expansion upstream, and formation of the shallow depositional basin known as Jasper Lake. This localized sedimentary basin, coupled with large seasonal water level fluctuations and suitably high wind speeds, favors seasonal dust production. In addition, a dense source-proximal coniferous forest stand encourages high dust accumulation, via increased aerodynamic roughness and airflow deceleration. The forest stand also appears to act as an efficient dust filter, with the interception and storage of dust by the forest canopy playing a significant role with regards to secondary fallout and sediment accumulation. Overall, these results provide new insights on the environmental controls of dust entrainment and accumulation in cold, humid settings, and help clarify controls on the formation of Holocene river-sourced loess deposits.

  15. Aeolian Transport of Invertebrates

    NASA Astrophysics Data System (ADS)

    Gill, T. E.; Walsh, E. J.; Wallace, R. L.; Rojo, L.; Rivas, J. A.

    2012-12-01

    Playas and other ephemeral desert wetlands are preferential terrestrial landforms for dust emission. These sites also are habitat for a diverse assemblage of minute invertebrates. When wetlands desiccate, these invertebrates survive as resting stages (propagules). Thus, playas serve as isolated, ephemeral, biogeographical islands for aquatic invertebrates, but it is unclear how propagules disperse across distances as far as hundreds of kilometers to colonize hydrologically disconnected basins. Aeolian transport (anemochory) may provide the mechanism, especially since many invertebrate propagules are long-lived, aerodynamically shaped, possess low-density, and their size (30-600 μm) falls within the same texture as aeolian dust and sand grains. We are collecting and culturing wind-transported sediment to document its ability to serve in the dispersal of aridland invertebrate propagules. Deposited aeolian sediment was collected from marble-type traps placed on the roof of the Biological Sciences Building at the University of Texas, El Paso, during 19 individual regional-scale Chihuahuan Desert blowing dust/sand events between April 2010 and May 2012. Known source areas for these dust events include playas and ephemeral streams ~40- 150 km upwind. The mean dry grain size of the deposited sediment for each event ranged from 66 to 141 μm. Clean-water rinses of material from each event or standard rehydrations for culturing invertebrates were monitored microscopically for the appearance of organisms. Invertebrates hatched from the sediment of 13 events. Ciliates were detected in each of those samples: gastrotrichs appeared in three samples, nematodes and bdelloid rotifers in two samples, and clam shrimp in one. We have also rehydrated aeolian sediments, collected in standard dust traps, from many dust-emitting playas in Southwest North America and hatched viable organisms including all those previously mentioned as well as branchiopods, fairy shrimp, copepods

  16. Selective deposition response to aeolian-fluvial sediment supply in the desert braided channel of the upper Yellow River, China

    NASA Astrophysics Data System (ADS)

    Wang, H.; Jia, X.; Li, Y.; Peng, W.

    2015-09-01

    Rivers flow across aeolian dunes and develop braided stream channels. Both aeolian and fluvial sediment supplies regulate sediment transport and deposition in such cross-dune braided rivers. Here we show a significant selective deposition in response to both aeolian and fluvial sediment supplies in the Ulan Buh desert braided channel. The Ulan Buh desert is the main coarse sediment source for this desert braided channel, and the mean percentage of the coarser (> 0.08 mm) grains on the aeolian dunes surface is 95.34 %. The lateral selective deposition process is developed by the interaction between the flows and the aeolian-fluvial sediment supplies, causing the coarser sediments (> 0.08 mm) from aeolian sand supply and bank erosion to accumulate in the channel centre and the finer fluvial sediments (< 0.08 mm) to be deposited on the bar and floodplain surfaces, forming a coarser-grained thalweg bed bounded by finer-grained floodplain surfaces. This lateral selective deposition reduces the downstream sediment transport and is a primary reason for the formation of an "above-ground" river in the braided reach of the upper Yellow River in response to aeolian and fluvial sediment supplies.

  17. Mars Environmental Chamber for Dynamic Dust Deposition and Statics Analysis

    NASA Technical Reports Server (NTRS)

    Moeller, L. E.; Tuller, M.; Islam, M. R.; Baker, L.; Kuhlman, K.

    2004-01-01

    Recent observations of the 2001 dust storms encircling Mars confirm predictions of environmental challenges for exploration. Martian dust has been found to completely mantle the Martian surface over thousands of square kilometers and the opacity of airborne dust has been shown to be capable of modifying atmospheric temperature, radiative transfer and albedo. Planetary dust cycling dynamics are suggested to be a key factor in the evolution of the Martian surface. Long-term robotic and manned exploration of Mars will be confronted by dust deposition in periods of atmospheric calm and violent wind storms. Aeolian dust deposition recorded during the Mars Pathfinder mission was estimated to fall at rates of 20-45 microns per Earth year. Although many tools of exploration will be challenged by coating, adhesion, abrasion and possible chemical reaction of deposited, wind blown and actively disturbed Martian dust, solar cells are thought to be of primary concern. Recent modeling work of power output by gallium arsenide/germanium solar cells was validated by the Pathfinder Lander data and showed power output decreases of 0.1 to 0.5% per Martian day. A major determinant for the optimal positioning angle of solar panels employed in future missions is the angle of repose of the settling dust particles that is dependent on a variety of physical and chemical properties of the particles, the panel surface, and the environmental conditions on the Mars surface. While the effects of many of these factors are well understood qualitatively, quantitative analyses, especially under physical and chemical conditions prevailing on the Mars surface are lacking.

  18. Late Quaternary geoarchaeology and geochronology of stratified aeolian deposits, Tar River, North Carolina

    NASA Astrophysics Data System (ADS)

    Moore, Christopher R.

    Recent geoarchaeological work on relict aeolian deposits in the North Carolina Coastal Plain has shown the potential for understanding prehistoric hunter-gatherer adaptations to changing environmental conditions likely related to Holocene climate change. Archaeological surveys and testing along the Tar River has revealed numerous sites with stratified Early Archaic through Woodland occupations. Geophysical, archeostratigraphic and sedimentological analysis along with chronometric dating (OSL and 14C) of source-bordering aeolian sediments along the Tar River in North Carolina indicate dune drapes (˜1 meter thick) accreted throughout much of the Holocene. Aeolian burial events along the Tar River appear to reflect Holocene millennial-scale climatic cyclicity (e.g., Bond Events) and its related effects on the fluvial system. These events likely influenced both hunter-gatherer adaptation and site preservation along the Tar River. Combined radiocarbon and OSL ages from lower paleo-braidplain sites, indicate incision of the lower paleo-braidplain and initiation of dune deposition just before or during the Younger Dryas stadial. The presence of stratified archaeological remains in these sediments preserves a record of both prehistoric human adaptations to local conditions and changes in depositional processes marking large-scale climatic change in the southeastern United States.

  19. Mineral composition of TALDICE aeolian ice core dust by means of synchrotron radiation XAS and XRF techniques

    NASA Astrophysics Data System (ADS)

    Marcelli, A.; Cibin, G.; Sala, M.; Hampai, D.; Maggi, V.; Marino, F.; Delmonte, B.

    2009-04-01

    In this work we present the first accurate non-destructive comparison of the mineral composition of atmospheric dusts contained in a deep ice core from Antarctica using synchrotron radiation. Different mineral assemblages reaching glaciated areas could be correlated to sources areas starting from the knowledge of the dust composition. In this investigation we demonstrate the possibility to characterize with SR the mineral composition of the dust in order to perform its geochemical characterization and to understand the pattern of the transport and the trajectories of the aerosol. This study has been focused on the elemental characterization and the identification of the iron oxidation state of aeolian Antarctic dust by means of synchrotron radiation X-Ray Fluorescence and X-Ray Absorption Spectroscopy. A set of twelve ice samples from the TALDICE (TD, 72˚ 46'S, 159˚ 04'E, 2316 m a.s.l., mean accumulation rate 80 kg*m-2*yr-1) ice core, corresponding to the warm climatic period, Holocene, and to the cold climatic period, Marine Isotopic Stage 3 (MIS 3) have been measured. To obtain both the elemental composition and the iron oxidation state of the mineral dust we performed experiments on specially prepared samples at the Stanford Synchrotron Radiation Lightsource (SSRL) laboratory in the framework of the Proposal N.3082B. Actually, melted ice samples were filtered and then mineral particles were deposited onto Nuclepore polycarbonate membranes in a 1000 class clean room under a 100 class laminar flow bench for both XRF and XAS experiments. A dedicated HV experimental chamber, that allows performing different type of experimental technique on very low absorber concentration samples was developed and tested in Italy. The original experimental setup, including an in-vacuum sample micromanipulator and a special alignment and docking sample system was installed at the beamline 10-2 at SSRL. For the x-ray detection a 7 mm2 high sensitive Silicon Drift Detector was

  20. Geochemical variations in aeolian mineral particles from the Sahara-Sahel Dust Corridor.

    PubMed

    Moreno, Teresa; Querol, Xavier; Castillo, Sonia; Alastuey, Andrés; Cuevas, Emilio; Herrmann, Ludger; Mounkaila, Mohammed; Elvira, Josep; Gibbons, Wes

    2006-10-01

    The Sahara-Sahel Dust Corridor runs from Chad to Mauritania and expels huge amounts of mineral aerosols into the Atlantic Ocean. Data on samples collected from Algeria, Chad, Niger, and Western Sahara illustrate how corridor dust mineralogy and chemistry relate to geological source and weathering/transport history. Dusts sourced directly from igneous and metamorphic massifs are geochemically immature, retaining soluble cations (e.g., K, Na, Rb, Sr) and accessory minerals containing HFSE (e.g., Zr, Hf, U, Th) and REE. In contrast, silicate dust chemistry in desert basins (e.g., Bodélé Depression) is influenced by a longer history of transport, physical winnowing (e.g., loss of Zr, Hf, Th), chemical leaching (e.g., loss of Na, K, Rb), and mixing with intrabasinal materials such as diatoms and evaporitic salts. Mineral aerosols blown along the corridor by the winter Harmattan winds mix these basinal and basement materials. Dusts blown into the corridor from sub-Saharan Africa during the summer monsoon source from deeply chemically weathered terrains and are therefore likely to be more kaolinitic and stripped of mobile elements (e.g., Na, K, Mg, Ca, LILE), but retain immobile and resistant elements (e.g., Zr, Hf, REE). Finally, dusts blown southwestwards into the corridor from along the Atlantic Coastal Basin will be enriched in carbonate from Mesozoic-Cenozoic marine limestones, depleted in Th, Nb, and Ta, and locally contaminated by uranium-bearing phosphate deposits. PMID:16600327

  1. Saharan dust deposition in the Carpathian Basin and its possible effects on interglacial soil formation

    NASA Astrophysics Data System (ADS)

    Varga, György; Cserháti, Csaba; Kovács, János; Szalai, Zoltán

    2016-09-01

    Several hundred tons of windblown dust material are lifted into the atmosphere and are transported every year from Saharan dust source areas towards Europe having an important climatic and other environmental effect also on distant areas. According to the systematic observations of modern Saharan dust events, it can be stated that dust deflated from North African source areas is a significant constituent of the atmosphere of the Carpathian Basin and Saharan dust deposition events are identifiable several times in a year. Dust episodes are connected to distinct meteorological situations, which are also the determining factors of the different kinds of depositional mechanisms. By using the adjusted values of dust deposition simulations of numerical models, the annual Saharan dust flux can be set into the range of 3.2-5.4 g/m2/y. Based on the results of past mass accumulation rates calculated from stratigraphic and sedimentary data of loess-paleosol sequences, the relative contribution of Saharan dust to interglacial paleosol material was quantified. According to these calculations, North African exotic dust material can represent 20-30% of clay and fine silt-sized soil components of interglacial paleosols in the Carpathian Basin. The syngenetic contribution of external aeolian dust material is capable to modify physicochemical properties of soils and hereby the paleoclimatic interpretation of these pedogene stratigraphic units.

  2. Physicochemical Characterization of Aeolian Mine Tailings Dust in the Southwest USA

    NASA Astrophysics Data System (ADS)

    Betterton, E. A.; Barbaris, B.; Conant, W.; Csavina, J.; Gao, S.; Lund, L.; Rheinheimer, P.; Saez, E.; Wonaschutz, A.

    2008-12-01

    Census data reveal that the Southwest is the fastest growing region of the USA, while NOAA GFDL coupled- model results suggest that precipitation is expected to decline in the same region over the coming decades. Besides the obvious impact on water resources, the drier conditions will most likely also result in increased atmospheric dust loads that could impact the health of a rapidly increasing population. This year the US EPA began site assessment and remediation at two mine tailings piles in Arizona contaminated with arsenic, lead, chromium and cadmium. The first is located in the twin towns of Hayden and Winkleman, and the second at the Iron King mine near Humbolt. At a concentration of approximately 0.1 microgram per cubic meter, the level of arsenic in PM10 collected at Hayden/Winkelman sometimes exceeds the Arizona ambient hazardous air pollutant standard (HAPS) by several orders of magnitude. Lead, cadmium and chromium are also sometimes orders of magnitude higher than the HAPS. A top priority is to determine the physicochemical speciation of wind-blown dust as a function of particle diameter because this information can a) help with source apportionment of airborne pollutants (e.g., smelter emissions vs. tailings dust), and b) help to assess the potential health impacts of contaminated dust, since deposition efficiency in human lungs is a strong function of particle diameter. We will present the chemical and physical characteristics of mine tailings dust collected with 10-stage multiple orifice uniform deposit impactors (MOUDI) located at Hayden/Winkleman and Iron King. We will also present scanning mobility particle spectrometer (SMPS) data obtained from the same sites. The MOUDI yields particle composition by size fraction (0.056-18 micrometer aerodynamic diameter) while the SMPS yields particle number by size fraction (0.0025 to 1.0 micrometer diameter). Size selective characteristics such as these have never been previously reported for mine tailings

  3. Distinguishing and characterising point-source mining dust and diffuse-source dust deposits in a semi-arid district of eastern Australia

    NASA Astrophysics Data System (ADS)

    Cattle, Stephen R.; Hemi, Karl; Pearson, Garry L.; Sanderson, Todd

    The routine monitoring of dust deposition around mines does not typically distinguish between allochthonous and locally-sourced dust. In this paper, contemporary aeolian dust deposition within a semi-arid part of eastern Australia is examined to determine the contribution of an open-pit gold mine to local dust dynamics. Over a 2.5 year period, monthly deposited dust samples were obtained from 12 sites located around the Cowal Gold Mine (CGM), and analysed for inorganic and organic proportions and granulometric properties. Although there was considerable variation in deposition between the gauges and sampling periods, there was a moderate and statistically significant seasonal trend, with mineral dust deposition lowest in winter. Imprinted over this seasonal pattern was a distinct spatial pattern of dust deposition, with gauges downwind of the CGM receiving significantly more dust than those gauges upwind (20 t/km2/yr). This effect was most pronounced adjacent to the mine (dust deposition of 60 t/km2/yr), where coarse-grained particles comprised a large proportion of the deposited dust, and diminished with distance east of the mine. Such a spatial trend is typical of a point source of dust. Average dust deposition at gauges located 8 km downwind of the mine was only slightly greater than that of gauges upwind of the mine. The 'background' dust populations captured at the upwind locations were dominated by fine particles, with modal particle diameters of 3-5 and 13-16 μm common. The macro-organic component of dust deposits also tended to vary seasonally, but the spatial distribution of this material was quite erratic.

  4. Lower tropospheric aerosol loadings over South Africa: The relative contribution of aeolian dust, industrial emissions, and biomass burning

    NASA Astrophysics Data System (ADS)

    Piketh, S. J.; Annegarn, H. J.; Tyson, P. D.

    1999-01-01

    The southern African haze layer is a ubiquitous subcontinental-scale feature of the lower atmosphere that extends to a depth of ˜5 km(˜500 hPa level) on non rain days, particularly in winter. Aerosols derived from biomass burning are commonly thought to contribute substantially to the total background aerosol loading within the layer. It is shown that in both summer and winter this supposition is without foundation over South Africa. Summer and winter aerosol loadings are derived from gravimetric analysis of stacked filter units and from proton-induced X ray emission (PIXE) analysis of one to four hourly resolved streaker samples. From concentrations of eleven inorganic elements, apportionment into four primary sources, biomass burning particulates, aeolian dust, industrial sulphur aerosols, and marine aerosols, has been effected. It is shown that the background biomass burning component of the total aerosol loading over South Africa in general, and within the plume of material being recirculated over South Africa and from there exported from the subcontinent south of 22°S to the Indian Ocean in particular, is minimal in both summer and winter. Except over coastal and adjacent inland areas, marine aerosols likewise make up a small fraction of the total loading. This is particularly so over the inland plateau areas. Crustally-derived aeolian dust and industrially-produced sulphur aerosols are demonstrated to be the major summer and winter constituents of the haze layer over South Africa and the particulate material being transported to the Indian Ocean region. Sulphur is transported within the aerosol plume exiting southern Africa to the Indian Ocean as agglomerates on aeolian dust nuclei.

  5. Aeolian processes on Venus

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald

    1989-01-01

    This review assesses the potential aeolian regime on Venus as derived from spacecraft observations, laboratory simulations, and theoretical considerations. The two requirements for aeolian processes (a supply of small, loose particles and winds of sufficient strength to move them) appear to be met on Venus. Venera 9, 10, 13, and 14 images show particles considered to be sand and silt size on the surface. In addition, dust spurts (grains 5 to 50 microns in diameter) observed via lander images and inferred from the Pioneer-Venus nephalometer experiments suggest that the particles are loose and subject to movement. Although data on near surface winds are limited, measurements of 0.3 to 1.2 m/sec from the Venera lander and Pioneer-Venus probes appear to be well within the range required for sand and dust entrainment. Aeolian activity involves the interaction of the atmosphere, lithosphere, and loose particles. Thus, there is the potential for various physical and chemical weathering processes that can effect not only rates of erosion, but changes in the composition of all three components. The Venus Simulator is an apparatus used to simulate weathering under venusian conditions at full pressure (to 112 bars) and temperature (to 800 K). In one series of tests, the physical modifications of windblown particles and rock targets were assessed and it was shown that particles become abraded even when moved by gentle winds. However, little abrasion occurs on the target faces. Thus, compositional signatures for target rocks may be more indicative of the windblown particles than of the bedrock. From these and other considerations, aeolian modifications of the venusian surface may be expected to occur as weathering, erosion, transportation, and deposition of surficial materials. Depending upon global and local wind regimes, there may be distinctive sources and sinks of windblown materials. Radar imaging, especially as potentially supplied via the Magellan mission, may enable the

  6. Geochemistry of metalliferous, hydrothermal deposits in the Aeolian arc (Tyrrhenian Sea)

    NASA Astrophysics Data System (ADS)

    Savelli, C.; Marani, M.; Gamberi, F.

    1999-03-01

    In shallow-water areas of the submerged volcanic complex around the island of Panarea (Aeolian archipelago), hydrothermal precipitation of both low-temperature Fe-oxyhydroxide-rich red muds and crusts, and high-temperature, sediment-hosted massive sulfides was discovered during an integrated, high-resolution survey. Iron-rich crusts were also found on the bathymetric high of Secca del Capo, north of Salina island. The exhalative iron-rich sediments occur in small (closed) depressions or in proximity to faults and scarps at water depths ranging from 55 to 285 m. The principal chemical characteristics of these deposits are high, but variable, Fe content ranging from 12.2 to 45%, and low contents of the transition elements Mn, Cu, Zn, Ni and Co. The low contents of Cu, Ni and Co suggest a hydrothermal origin. The Fe-oxyhydroxide deposits are enriched in light rare earth element (REE) (35-110×chondrite) compared to heavy REE (10-25×chondrite). Their REE patterns are similar to those of associated calc-alkaline volcanics: negative slope of light REE and a horizontal distribution of the heavy ones. This contrasts with the pattern for iron and manganese oxides of hydrogenous origin, which have tilted trends of heavy REE paralleling that of seawater. The mineralogy of the polymetallic sulfide deposits consists of galena, sphalerite, pyrite and barite in the form of silt-sand grains and decimeter-sized fragments disseminated in clay, 30 cm below the seabed, at a waterdepth of 80 m. The chemistry of the Aeolian iron-rich, low-temperature deposits and of the high-temperature, Ba-rich Pb and Zn sulfides suggests that they are genetically analogous to, respectively, the kuroko-type iron formation (`tetsusekiei') and the black ore exposed in the Miocene Hokuroku district of Japan.

  7. Dust deposition on the Mars Exploration Rover Panoramic Camera (Pancam) calibration targets

    USGS Publications Warehouse

    Kinch, K.M.; Sohl-Dickstein, J.; Bell, J.F., III; Johnson, J. R.; Goetz, W.; Landis, G.A.

    2007-01-01

    The Panoramic Camera (Pancam) on the Mars Exploration Rover mission has acquired in excess of 20,000 images of the Pancam calibration targets on the rovers. Analysis of this data set allows estimates of the rate of deposition and removal of aeolian dust on both rovers. During the first 150-170 sols there was gradual dust accumulation on the rovers but no evidence for dust removal. After that time there is ample evidence for both dust removal and dust deposition on both rover decks. We analyze data from early in both rover missions using a diffusive reflectance mixing model. Assuming a dust settling rate proportional to the atmospheric optical depth, we derive spectra of optically thick layers of airfall dust that are consistent with spectra from dusty regions on the Martian surface. Airfall dust reflectance at the Opportunity site appears greater than at the Spirit site, consistent with other observations. We estimate the optical depth of dust deposited on the Spirit calibration target by sol 150 to be 0.44 ?? 0.13. For Opportunity the value was 0.39 ?? 0.12. Assuming 80% pore space, we estimate that the dust layer grew at a rate of one grain diameter per ???100 sols on the Spirit calibration target. On Opportunity the rate was one grain diameter per ???125 sols. These numbers are consistent with dust deposition rates observed by Mars Pathfinder taking into account the lower atmospheric dust optical depth during the Mars Pathfinder mission. Copyright 2007 by the American Geophysical Union.

  8. Aeolian deposition change in the Peruvian central continental shelf during the last millennium and its relationship with atmospheric conditions

    NASA Astrophysics Data System (ADS)

    Briceño, F. J., Sr.; Sifeddine, A.

    2015-12-01

    We present a record of laminated sediment cores retrieved in the Pisco region (14 °S) characterized by local aeolian inputs. This record covers the Medieval Climate Anomaly (MCA) to Little Ice Age (LIA) and the Current Warm Period (CWP) at centennial to sub-decadal resolution. The aim of the study is to reconstruct the patterns of aeolian sedimentation as well as the most important processes that control the input of this material to understand how these components reflect atmospheric climate variability during the last millennium. Assuming that the mineral fraction of the sediment is composed of several lognormally distributed particle populations, we applied an iterative least-square fitting routine to determine the number and the characteristics of the individual particles populations. This allows inferring the spatial and temporal variation of particles populations and thus transport mechanisms involved. Two components with grain size modes at 54±11 μm and 90±11 μm related with local aeolian erosion over the Pisco region were found. Our results showed active aeolian erosion during the second half of the MCA and rapid decrease from the MCA to the LIA. During the LIA the aeolian deposition exhibited a decreasing activity. During the CWP the aeolian deposition increased progressively. Comparison with others South American records indicates that those changes are linked to change in the meridional position of the Intertropical convergence zone (ITCZ) and South Pacific Subtropical High (SPSH) at the centennial time resolution. Finally the CWP period showed an increase in the aeolian deposition and thus in the wind intensity over the past two centuries. This likely represents the result of the modern position of the ITCZ-SPSH system and the associated intensification of the local and regional winds. Nevertheless, the aeolian deposition and in consequence the wind intensity and variability of the last 100 yr are stronger than during the second sequence of the MCA

  9. Surface acoustic wave dust deposition monitor

    DOEpatents

    Fasching, G.E.; Smith, N.S. Jr.

    1988-02-12

    A system is disclosed for using the attenuation of surface acoustic waves to monitor real time dust deposition rates on surfaces. The system includes a signal generator, a tone-burst generator/amplifier connected to a transmitting transducer for converting electrical signals into acoustic waves. These waves are transmitted through a path defining means adjacent to a layer of dust and then, in turn, transmitted to a receiving transducer for changing the attenuated acoustic wave to electrical signals. The signals representing the attenuated acoustic waves may be amplified and used in a means for analyzing the output signals to produce an output indicative of the dust deposition rates and/or values of dust in the layer. 8 figs.

  10. Facies architecture and stratigraphic evolution of aeolian dune and interdune deposits, Permian Caldeirão Member (Santa Brígida Formation), Brazil

    NASA Astrophysics Data System (ADS)

    Jones, Fábio Herbert; Scherer, Claiton Marlon dos Santos; Kuchle, Juliano

    2016-05-01

    The Permian Caldeirão Member (Santa Brígida Formation), located in the Tucano Central Basin, northeast region of Brazil, is characterized by a sandstone succession of aeolian origin that comprises the preserved deposits of dunes and interdunes. Grainflow and translatent wind-ripple strata, and frequent presence of reactivation surface, compose the cross-bedding of crescent aeolian dune deposits. The aeolian cross-strata show a mean dip toward the ENE. In places, interlayered with dune cross-beds, occur interdune units composed of facies indicative of dry, damp and wet condition of the substrate, suggesting spatial and/or temporal variations in the moisture content of the interdune accumulation surface. The presence of NNW current ripple cross-lamination in wet interdune areas indicates streamflows confined to interdune corridors and oriented perpendicular to aeolian transport direction. Lenses of damp and wet interdune strata exhibit mainly interdigitated and transitional relationships with the toe-sets of overlying aeolian dune units in sections parallel to aeolian transport, indicating that dune migration was contemporaneous with accumulation in adjacent interdunes. Lateral variations in the preserved thickness of the interdune units and the associated rare occurrence of abrupt and erosive contacts between interdune and overlying dune sets, suggest temporal variations in the angle of dune and interdune climb that may be related to high-frequency changes in water table position. Four stratigraphic intervals in the Caldeirão Member can be identified, two intervals showing cross-bedding of aeolian dunes without wet interdune areas and two intervals exhibiting aeolian dunes separated by wet interdune areas, marking the transition between dry aeolian systems (Intervals I and III) and wet aeolian systems (Intervals II and IV). The temporal alternations between dry and wet aeolian systems reflect changes in the availability of dry sand and/or the rate in the water

  11. Soil heterogeneity of an East and West facing ridge above timberline due to differences in snow and aeolian deposition

    NASA Astrophysics Data System (ADS)

    Traver, E.

    2015-12-01

    Hans Jenny's soil forming factors—time, parent material, climate, topography, and organisms—represent the major components of his system to describe and quantify soil development. In almost all situations, it is difficult to hold even one of these factors constant while focusing on another factor; however, in our study site—the East and West side of a narrow North-South running ridge, above timberline in SE Wyoming—we can hold three factors nearly constant (time, parent material, and climate) and focus on how topography, in particular, has influenced the soil differences on the two sides. The East side is the leeside of prevailing and strong westerly winds and receives a large snow pack while the West is consistently snow-free during winter creating a very different moisture and soil temperature regime. The East receives aeolian dust deposition while the West loses surface material from wind scour. A standard chemical and physical analysis found that while the two sides are nearly identical textually, with a similar pH and low electrical conductivity, the East side is richer in minerals. During the short growing season, soil moisture results show that the West side is holding more water than the East side; however, the East side has a higher percentage of organic matter and is more shrub and forb rich. An isotope analysis shows that the C:N ratios are very similar on the two sides. Microbial biomass and functional groups will be analyzed in the soil samples as well as a seismic study conducted to quantity depth of soil to bedrock. Using all these results will help quantify the differences on the two sides of this narrow ridge and add to our understanding of fine-scale soil heterogeneity and its relationship to watershed hydrology.

  12. Dust deposition in Antarctica in glacial and interglacial climate conditions: a modelling study

    NASA Astrophysics Data System (ADS)

    Sudarchikova, N.; Mikolajewicz, U.; Timmreck, C.; O'Donnell, D.; Schurgers, G.; Sein, D.; Zhang, K.

    2014-09-01

    The mineral dust cycle responds to climate variations and plays an important role in the climate system by affecting the radiative balance of the atmosphere and modifying biogeochemistry. Polar ice cores provide a unique information about deposition of aeolian dust particles transported over long distance. These cores are a paleoclimate proxy archive of climate variability thousands of years ago. The current study is a first attempt to simulate past interglacial dust cycles with a global aerosol-climate model ECHAM5-HAM. The results are used to explain the dust deposition changes in Antarctica in terms of quantitative contribution of different processes, such as emission, atmospheric transport and precipitation, which will help to interpret paleodata from Antarctic ice cores. The investigated periods include four interglacial time-slices such as the pre-industrial control (CTRL), mid-Holocene (6000 yr BP), last glacial inception (115 000 yr BP) and Eemian (126 000 yr BP). One glacial time interval, which is Last Glacial Maximum (LGM) (21 000 yr BP) was simulated as well as to be a reference test for the model. Results suggest an increase of mineral dust deposition globally, and in Antarctica, in the past interglacial periods relative to the pre-industrial CTRL simulation. Approximately two thirds of the increase in the mid-Holocene and Eemian is attributed to enhanced Southern Hemisphere dust emissions. Slightly strengthened transport efficiency causes the remaining one third of the increase in dust deposition. The moderate change of dust deposition in Antarctica in the last glacial inception period is caused by the slightly stronger poleward atmospheric transport efficiency compared to the pre-industrial. Maximum dust deposition in Antarctica was simulated for the glacial period. LGM dust deposition in Antarctica is substantially increased due to 2.6 times higher Southern Hemisphere dust emissions, two times stronger atmospheric transport towards Antarctica, and

  13. Ocean biogeochemistry exhibits contrasting responses to a large scale reduction in dust deposition

    NASA Astrophysics Data System (ADS)

    Tagliabue, A.; Bopp, L.; Aumont, O.

    2008-01-01

    Dust deposition of iron is thought to be an important control on ocean biogeochemistry and air-sea CO2 exchange. In this study, we examine the impact of a large scale, yet climatically realistic, reduction in the aeolian Fe input during a 240 year transient simulation. In contrast to previous studies, we find that the ocean biogeochemical cycles of carbon and nitrogen are relatively insensitive (globally) to a 60% reduction in Fe input from dust. Net primary productivity (NPP) is reduced in the Fe limited regions, but the excess macronutrients that result are able to fuel additional NPP elsewhere. Overall, NPP and air-sea CO2 exchange are only reduced by around 3% between 1860 and 2100. While the nitrogen cycle is perturbed more significantly (by ~15%), reduced N2 fixation is balanced by a concomitant decline in denitrification. Feedbacks between N2 fixation and denitrification are controlled by variability in surface utilization of inorganic nitrogen and subsurface oxygen consumption, as well as the direct influence of Fe on N2 fixation. Overall, there is relatively little impact of reduced aeolian Fe input (<4%) on cumulative CO2 fluxes over 240 years. The lower sensitivity of our model to changes in dust input is primarily due to the more detailed representation of the continental shelf Fe, which was absent in previous models.

  14. Ocean biogeochemistry exhibits contrasting responses to a large scale reduction in dust deposition

    NASA Astrophysics Data System (ADS)

    Tagliabue, A.; Bopp, L.; Aumont, O.

    2007-08-01

    Dust deposition of iron is thought to be an important control on ocean biogeochemistry and air-sea CO2 exchange. In this study, we examine the impact of a large scale, yet climatically realistic, reduction in the aeolian Fe input during a 240 year transient simulation. In contrast to previous studies, we find that the ocean biogeochemical cycles of carbon and nitrogen are relatively insensitive to a 60% reduction in Fe input from dust. Net primary productivity (NPP) is reduced in the Fe limited regions, but the excess macronutrients that result are able to fuel additional NPP elsewhere. Overall, NPP and air-sea CO2 exchange are only reduced by around 3% between 1860 and 2100. While the nitrogen cycle is perturbed more significantly (by ~15%), reduced N2 fixation is balanced by a concomitant decline in denitrification. Feedbacks between N2 fixation and denitrification are controlled by variability in surface utilization of inorganic nitrogen and subsurface oxygen consumption, as well as the direct influence of Fe on N2 fixation. Overall, there is relatively little impact of reduced aeolian Fe input (<4%) on cumulative CO2 fluxes over 240 years. The lower sensitivity of our model to changes in dust input is primarily due to the more detailed representation of the continental shelf Fe, which was absent in previous models.

  15. A model to study the grain size components of the sediment deposited in aeolian-fluvial interplay erosion watershed

    NASA Astrophysics Data System (ADS)

    Zhang, Xiang; Li, Zhanbin; Li, Peng; Cheng, Shengdong; Zhang, Yang; Tang, Shanshan; Wang, Tian

    2015-12-01

    Aeolian-fluvial interplay erosion areas with complex dynamics and physical sources are the main suppliers of coarse sediment in the Yellow River. Understanding the composition, distribution, and sources of deposited sediments in such areas is of great importance for the control of sediment transport in rivers. In this paper, a typical aeolian-fluvial interplay erosion watershed - the Dongliu Gully - was studied and the frequency distribution curves of sediments deposited in the stream channel were fitted using the Weibull function. Sources of deposited sediment in the stream channel were analyzed based on the law of the conservation of matter. Results showed that the hilly zone accounted for 78% of deposited sediments, which were dominated by material with a median grain size (d50) of 0.093 mm, and the desert zone accounted for 22% of deposited sediments, which were dominated by material with a d50 of 0.01 mm. Wind erosion dynamics accounted for 72% of deposited sediments, while water erosion dynamics accounted for only 28%. This research provides a theoretical basis for the control and management of rivers with high sediment content.

  16. Late Quaternary aeolian sand deposition sustained by fluvial reworking and sediment supply in the Hexi Corridor - An example from northern Chinese drylands

    NASA Astrophysics Data System (ADS)

    Nottebaum, Veit; Lehmkuhl, Frank; Stauch, Georg; Lu, Huayu; Yi, Shuangwen

    2015-12-01

    Aeolian deposits are frequently used for palaeoenvironmental change studies. Their formation depends on an array of requirements: the supply of material suitable for aeolian transport and favorable conditions of sediment availability and wind strength. In order to infer palaeoenvironmental information from aeolian sand deposits these factors need to be carefully evaluated. We present a study from northern Chinese Hexi Corridor, based on 11 optically stimulated luminescence (OSL) dated sediment sections. These represent interchanging aeolian and alluvial deposits under gravel surfaces and aeolian sand in dune fields interrupted by interdunal flood deposits. Investigations in two subareas reveal contrasting geomorphologic and sedimentary histories: (1) sediment deposition during the Pleistocene-Holocene transition (~ 12 ka) followed by deflation during the Holocene and (2) frequent sediment recycling revealed by a wide spectrum of ages throughout the Holocene. The late glacial sediment pulse recorded in the western Hexi Corridor is attributed to high sediment supply, generated by efficient (peri-)glacial sediment production during glacial times in the adjacent Qilian Shan (< 5700 m asl) and a moisture increase inducing the reworking of those (glacio-)fluvial deposits during the Pleistocene-Holocene transition. The absence of a powerful reworking agent preserved these late glacial deposits in the western Hexi Corridor in contrast to moister eastern parts where Holocene sediment reworking prevailed. Geomorphological and hydrological preconditions of the subareas are discussed and reveal the controlling influence of fluvial processes on sand supply for the aeolian system. While a perennial drainage is missing in the drier western part, the Hei River drainage is fed by higher monsoonal precipitation in the central Hexi Corridor. It maintains a sediment recycling system and has ensured a sufficient sediment supply throughout the Holocene. The study promotes closer

  17. Geochemical and geomorphological evidence for the provenance of aeolian deposits in the Badain Jaran Desert, northwestern China

    NASA Astrophysics Data System (ADS)

    Hu, Fangen; Yang, Xiaoping

    2016-01-01

    Identifying provenance of aeolian deposits in the mid-latitude deserts of Asia is essential for understanding formation and changes of Earth surface processes due to palaeoclimatic fluctuations. While some earlier studies focused on the interpretation of palaeoenvironments on the basis of aeolian deposits mainly in the desert margins and inter-dune lacustrine sediments, research on provenance of desert sands in the vast Asian mid-latitude deserts is still rare. In this paper, we present new geochemical data which provide insight to the provenance of dune sands in the Badain Jaran Desert, northwestern China, an important part of this desert belt. We sampled aeolian and lacustrine sediments in various parts of the Badain Jaran Desert, and examined their major, trace and rare earth elements (REE) in bulk samples, coarse and fine fractions, respectively. In addition, we took and analyzed samples from a rarely known dune field with red sands, northeast of the Badain Jaran. Our results show that the sands from the Badain Jaran Desert are generally different from those in the red sand dune field in terms of REE pattern and geochemical characteristics, suggesting different sediment origins. Geochemical composition of the aeolian sand samples indicates these sediments should be mainly derived from mixed source rocks of granite, granitoids and granodiorite. Comparing the immobile trace elements and REE ratios of the samples from the Badain Jaran Desert, red sand dune field with rocks of granite, granitoids in their potential source areas, we conclude that: (1) The aeolian deposits in the Badain Jaran Desert are predominantly derived from the Qilian Mountains, northeastern Tibetan Plateau initially via fluvial processes; (2) The Altay Mountains and Mongolian Gobi are the ultimate source areas for the red sand dune field; (3) The Altai Mountains and Mongolian Gobi in the northwest, that could produce massive amounts of materials via intensive deflation and alluvial process

  18. Modeling grain size variations of aeolian gypsum deposits at White Sands, New Mexico, using AVIRIS imagery

    USGS Publications Warehouse

    Ghrefat, H.A.; Goodell, P.C.; Hubbard, B.E.; Langford, R.P.; Aldouri, R.E.

    2007-01-01

    Visible and Near-Infrared (VNIR) through Short Wavelength Infrared (SWIR) (0.4-2.5????m) AVIRIS data, along with laboratory spectral measurements and analyses of field samples, were used to characterize grain size variations in aeolian gypsum deposits across barchan-transverse, parabolic, and barchan dunes at White Sands, New Mexico, USA. All field samples contained a mineralogy of ?????100% gypsum. In order to document grain size variations at White Sands, surficial gypsum samples were collected along three Transects parallel to the prevailing downwind direction. Grain size analyses were carried out on the samples by sieving them into seven size fractions ranging from 45 to 621????m, which were subjected to spectral measurements. Absorption band depths of the size fractions were determined after applying an automated continuum-removal procedure to each spectrum. Then, the relationship between absorption band depth and gypsum size fraction was established using a linear regression. Three software processing steps were carried out to measure the grain size variations of gypsum in the Dune Area using AVIRIS data. AVIRIS mapping results, field work and laboratory analysis all show that the interdune areas have lower absorption band depth values and consist of finer grained gypsum deposits. In contrast, the dune crest areas have higher absorption band depth values and consist of coarser grained gypsum deposits. Based on laboratory estimates, a representative barchan-transverse dune (Transect 1) has a mean grain size of 1.16 ??{symbol} (449????m). The error bar results show that the error ranges from - 50 to + 50????m. Mean grain size for a representative parabolic dune (Transect 2) is 1.51 ??{symbol} (352????m), and 1.52 ??{symbol} (347????m) for a representative barchan dune (Transect 3). T-test results confirm that there are differences in the grain size distributions between barchan and parabolic dunes and between interdune and dune crest areas. The t-test results

  19. Temporal Dynamics of Sodic Playa Salt Crust Patterns: Implications for Aeolian Dust Emission Potential

    NASA Astrophysics Data System (ADS)

    Nield, J. M.; King, J.; Bryant, R. G.; Wiggs, G.; Eckardt, F. D.; Thomas, D. S.; Washington, R.

    2013-12-01

    Salt pans (or playas) are common in arid environments and can be major sources of windblown mineral dust, but there are uncertainties associated with their dust emission potential. These landforms typically form crusts which modify both their erosivity and erodibility by limiting sediment availability, modifying surface and aerodynamic roughness and limiting evaporation rates and sediment production. Here we show the relationship between seasonal surface moisture change and crust pattern development based on both remote-sensing and field surface and atmospheric measurements. We use high resolution (sub-cm) terrestrial laser scanning (TLS; ground-based lidar) surveys over weekly, monthly and annual timescales to accurately characterise crustal ridge thrusting and collapse. This can be as much as 2 mm/day on fresh pan areas that have recently been reset by flooding. Over a two month period, this ridge growth can change aerodynamic roughness length values by 6.5 mm. At the same time, crack densities across the surface increase and this raises the availability of erodible fluffy, low density dust source sediment stored below the crust layer. Ridge spaces are defined in the early stages of crust development, as identified by Fourier Transform analysis, but wider wavelengths become more pronounced over time. We present a conceptual model accounting for the driving forces (subsurface, surface and atmospheric moisture) and feedbacks between these and surface shape that lead to crust pattern trajectories between highly emissive degraded surfaces and less emissive ridged or continuous crusts. These findings improve our understanding of temporal changes in dust availability and supply from playa source regions.

  20. Planktonic foraminiferal rare earth elements as a potential new aeolian dust proxy

    NASA Astrophysics Data System (ADS)

    Chou, C.; Liu, Y.; Lo, L.; Wei, K.; Shen, C.

    2012-12-01

    Characteristics of rare earth elements (REEs) have widely been used as important tracers in many fields of earth sciences, including lithosphere research, environmental change, ocean circulation and other natural carbonate materials. Foraminiferal test REE signatures have been suggested to reflect ambient seawater conditions and serve as valuable proxies in the fields of paleoceanography and paleoclimate. Here we present a 60-kyr planktonic foraminifera Globigerinoides ruber (white, 250-300 μm) REE record of a sediment core MD05-2925 (9°20.61'S, 151°27.61'E, water depth 1660 m) from the Solomon Sea. The REE diagram shows two dominant sources of local seawater and nearby terrestrial input. The variability of foraminiferal REE/Ca time series is different from Mg/Ca-inferred sea surface temperature and δ18O records during the past 60-kyr. This inconsistency suggests that planktonic foraminiferal REE content cannot result only from changes in ice volume and temperature. Synchroneity between high planktonic foraminiferal REE content and Antarctic ice core dust amount record implies the same dust sources, probably from Australia or mainland China. Our results suggest that foraminiferal REE can potentially be as a new dust proxy and record dry/humid conditions at the source area.

  1. Dust deposits on Mars: The 'parna' analog

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald; Williams, Steven H.

    1994-01-01

    Parna is an Autralian aboriginal word meaning 'sandy dust'. It has been applied to deposits of clay, silt, and sand which were initially transported by the wind as aggregates, or pellets, of sand size. Parna is distinguished by its silt and clay content, which in some cases exceeds 85% of the total volume of the deposit. Much of the fine-grained playa silt and clay is incorporated into the parna as sand-sized aggregates, which greatly facilitate their transportation and reworking by the wind. Rain following aggregate emplacement can cause their disintegration, rendering the parna immobile by the wind, yet some pellets can survive several wetting/drying episodes. Parna deposits on Earth occur both as dune forms and as sheet deposits which mantle older terrains. In both cases the deposits are typically derived from lacustrine (lake) beds, such as playas. There is substantial evidence to suggest that bodies of water existed on Mars in the past. Thus, the potential is high for lacustrine deposits and the formation of parna on Mars. Although no parna dunes have been identified, it is suggested that the deposits derived from White Rock (-8 deg, 335 deg W), near Mamers Valles (34 deg, 343 deg W), and elsewhere on Mars may represent sheet parna. Data obtained from Mars-94/96 missions and potential landed spacecraft may provide additional evidence for the existence of parna on Mars.

  2. Variation in aeolian environments recorded by the particle size distribution of lacustrine sediments in Ebinur Lake, northwest China.

    PubMed

    Ma, Long; Wu, Jinglu; Abuduwaili, Jilili

    2016-01-01

    Particle size analysis of lacustrine core sediments and atmospheric natural dust were conducted in the drainage area of Ebinur Lake in arid northwest China. Using a combination of (137)Cs and (210)Pb dating, a continuous record of aeolian transportation to the lake sediments and related factors over about the past 150 years was analyzed. Factor analysis revealed the particle-size distributions of riverine and aeolian sediments composed of the terrigenous materials of the lake deposits. Compared with the grain-size distributions of natural dust samples, the results showed that the coarser particle size fraction of lake sediments was mainly derived from the sediments that had experienced aeolian transport to the drainage surface, and the finer sediments came from hydraulic inputs. Then, the method of variations in particle-size standard deviation was used to extract the grain size intervals with the highest variability along a sedimentary sequence. The coarser grain-size populations dominated the variation patterns of the sedimentary sequence. During the last 150 years, strong intensity aeolian transportation occurred during three periods, 1915-1935, 1965-1975 and since the beginning of the 2000s. The climate was dry around 1910s-1930s in this region associated with the appropriate dynamic condition, which provided the enhanced source materials and wind power for the aeolian dust transport. Since 1950s, the climate controlled the foundation of aeolian dust transport, and the aeolian dust transport won't be increased under the humid climate. PMID:27217996

  3. Aeolian sediment and dust fluxes during predominant “background” wind conditions for unburned and burned semiarid grassland: Interplay between particle size and temporal scale

    NASA Astrophysics Data System (ADS)

    Merino-Martín, Luis; Field, Jason P.; Villegas, Juan Camilo; Whicker, Jeffrey J.; Breshears, David D.; Law, Darin J.; Urgeghe, Anna M.

    2014-09-01

    Monitoring of aeolian transport is needed for assessment and management of human health risks as well as for soil resources. Human health risks are assessed based on duration of exposure as well as concentration. Many aeolian studies focus on periods of high wind speed when concentrations are greatest but few studies focus on “background” conditions when concentrations are likely lower but which represent the most prevalent conditions. Such “background” conditions might be especially important at sites with recent disturbance such as fire. Exposure assessments also require improved understanding relating longer-term (days to weeks) measurements of saltation of larger particles to shorter-term (minutes to hours) measurements of smaller inhalable dust particles. To address these issues, we employed three commonly used instruments for measuring dust emissions for unburned and recently-burned sites: Big Springs Number Eight (BSNE) samplers for larger saltating soil particles (>50 μm) with weekly to monthly sampling resolution, DustTraks for suspended particles (diameters <10 μm) with 1-s sampling resolution, and Total Suspended Particulate (TSP) filter samplers for measuring with hourly to daily sampling resolution. Significant differences in concentrations between burned and unburned sites were detectable in either short (1-s maximum) interval DustTrak PM10 measurements, or in longer term (weekly) BSNE horizontal sediment flux measurements, but not in intermediate-term (daily 5-h means) for either DustTrak PM10 or TSP measurements. The results highlight ongoing dust emissions during less windy periods and provide insight into the complex interplay among particle-size dependent measures and typical time scales measured.

  4. Evidence for indigenous nitrogen in sedimentary and aeolian deposits from the Curiosity rover investigations at Gale crater, Mars.

    PubMed

    Stern, Jennifer C; Sutter, Brad; Freissinet, Caroline; Navarro-González, Rafael; McKay, Christopher P; Archer, P Douglas; Buch, Arnaud; Brunner, Anna E; Coll, Patrice; Eigenbrode, Jennifer L; Fairen, Alberto G; Franz, Heather B; Glavin, Daniel P; Kashyap, Srishti; McAdam, Amy C; Ming, Douglas W; Steele, Andrew; Szopa, Cyril; Wray, James J; Martín-Torres, F Javier; Zorzano, Maria-Paz; Conrad, Pamela G; Mahaffy, Paul R

    2015-04-01

    The Sample Analysis at Mars (SAM) investigation on the Mars Science Laboratory (MSL) Curiosity rover has detected oxidized nitrogen-bearing compounds during pyrolysis of scooped aeolian sediments and drilled sedimentary deposits within Gale crater. Total N concentrations ranged from 20 to 250 nmol N per sample. After subtraction of known N sources in SAM, our results support the equivalent of 110-300 ppm of nitrate in the Rocknest (RN) aeolian samples, and 70-260 and 330-1,100 ppm nitrate in John Klein (JK) and Cumberland (CB) mudstone deposits, respectively. Discovery of indigenous martian nitrogen in Mars surface materials has important implications for habitability and, specifically, for the potential evolution of a nitrogen cycle at some point in martian history. The detection of nitrate in both wind-drifted fines (RN) and in mudstone (JK, CB) is likely a result of N2 fixation to nitrate generated by thermal shock from impact or volcanic plume lightning on ancient Mars. Fixed nitrogen could have facilitated the development of a primitive nitrogen cycle on the surface of ancient Mars, potentially providing a biochemically accessible source of nitrogen. PMID:25831544

  5. Evidence for indigenous nitrogen in sedimentary and aeolian deposits from the Curiosity rover investigations at Gale crater, Mars

    PubMed Central

    Stern, Jennifer C.; Sutter, Brad; Freissinet, Caroline; Navarro-González, Rafael; McKay, Christopher P.; Archer, P. Douglas; Buch, Arnaud; Brunner, Anna E.; Coll, Patrice; Eigenbrode, Jennifer L.; Fairen, Alberto G.; Franz, Heather B.; Glavin, Daniel P.; Kashyap, Srishti; McAdam, Amy C.; Ming, Douglas W.; Steele, Andrew; Szopa, Cyril; Wray, James J.; Martín-Torres, F. Javier; Zorzano, Maria-Paz; Conrad, Pamela G.; Mahaffy, Paul R.; Kemppinen, Osku; Bridges, Nathan; Johnson, Jeffrey R.; Minitti, Michelle; Cremers, David; Bell, James F.; Edgar, Lauren; Farmer, Jack; Godber, Austin; Wadhwa, Meenakshi; Wellington, Danika; McEwan, Ian; Newman, Claire; Richardson, Mark; Charpentier, Antoine; Peret, Laurent; King, Penelope; Blank, Jennifer; Weigle, Gerald; Schmidt, Mariek; Li, Shuai; Milliken, Ralph; Robertson, Kevin; Sun, Vivian; Baker, Michael; Edwards, Christopher; Ehlmann, Bethany; Farley, Kenneth; Griffes, Jennifer; Grotzinger, John; Miller, Hayden; Newcombe, Megan; Pilorget, Cedric; Rice, Melissa; Siebach, Kirsten; Stack, Katie; Stolper, Edward; Brunet, Claude; Hipkin, Victoria; Léveillé, Richard; Marchand, Geneviève; Sánchez, Pablo Sobrón; Favot, Laurent; Cody, George; Steele, Andrew; Flückiger, Lorenzo; Lees, David; Nefian, Ara; Martin, Mildred; Gailhanou, Marc; Westall, Frances; Israël, Guy; Agard, Christophe; Baroukh, Julien; Donny, Christophe; Gaboriaud, Alain; Guillemot, Philippe; Lafaille, Vivian; Lorigny, Eric; Paillet, Alexis; Pérez, René; Saccoccio, Muriel; Yana, Charles; Armiens-Aparicio, Carlos; Rodríguez, Javier Caride; Blázquez, Isaías Carrasco; Gómez, Felipe Gómez; Gómez-Elvira, Javier; Hettrich, Sebastian; Malvitte, Alain Lepinette; Jiménez, Mercedes Marín; Martínez-Frías, Jesús; Martín-Soler, Javier; - Torres, F. Javier Martín; Jurado, Antonio Molina; Mora-Sotomayor, Luis; Caro, Guillermo Muñoz; López, Sara Navarro; Peinado-González, Verónica; Pla-García, Jorge; Manfredi, José Antonio Rodriguez; Romeral-Planelló, Julio José; Fuentes, Sara Alejandra Sans; Martinez, Eduardo Sebastian; Redondo, Josefina Torres; Urqui-O'Callaghan, Roser; Mier, María-Paz Zorzano; Chipera, Steve; Lacour, Jean-Luc; Mauchien, Patrick; Sirven, Jean-Baptiste; Manning, Heidi; Fairén, Alberto; Hayes, Alexander; Joseph, Jonathan; Squyres, Steven; Sullivan, Robert; Thomas, Peter; Dupont, Audrey; Lundberg, Angela; Melikechi, Noureddine; Mezzacappa, Alissa; DeMarines, Julia; Grinspoon, David; Reitz, Günther; Prats, Benito; Atlaskin, Evgeny; Genzer, Maria; Harri, Ari-Matti; Haukka, Harri; Kahanpää, Henrik; Kauhanen, Janne; Kemppinen, Osku; Paton, Mark; Polkko, Jouni; Schmidt, Walter; Siili, Tero; Fabre, Cécile; Wray, James; Wilhelm, Mary Beth; Poitrasson, Franck; Patel, Kiran; Gorevan, Stephen; Indyk, Stephen; Paulsen, Gale; Gupta, Sanjeev; Bish, David; Schieber, Juergen; Gondet, Brigitte; Langevin, Yves; Geffroy, Claude; Baratoux, David; Berger, Gilles; Cros, Alain; d’Uston, Claude; Forni, Olivier; Gasnault, Olivier; Lasue, Jérémie; Lee, Qiu-Mei; Maurice, Sylvestre; Meslin, Pierre-Yves; Pallier, Etienne; Parot, Yann; Pinet, Patrick; Schröder, Susanne; Toplis, Mike; Lewin, Éric; Brunner, Will; Heydari, Ezat; Achilles, Cherie; Oehler, Dorothy; Sutter, Brad; Cabane, Michel; Coscia, David; Israël, Guy; Szopa, Cyril; Dromart, Gilles; Robert, François; Sautter, Violaine; Le Mouélic, Stéphane; Mangold, Nicolas; Nachon, Marion; Buch, Arnaud; Stalport, Fabien; Coll, Patrice; François, Pascaline; Raulin, François; Teinturier, Samuel; Cameron, James; Clegg, Sam; Cousin, Agnès; DeLapp, Dorothea; Dingler, Robert; Jackson, Ryan Steele; Johnstone, Stephen; Lanza, Nina; Little, Cynthia; Nelson, Tony; Wiens, Roger C.; Williams, Richard B.; Jones, Andrea; Kirkland, Laurel; Treiman, Allan; Baker, Burt; Cantor, Bruce; Caplinger, Michael; Davis, Scott; Duston, Brian; Edgett, Kenneth; Fay, Donald; Hardgrove, Craig; Harker, David; Herrera, Paul; Jensen, Elsa; Kennedy, Megan R.; Krezoski, Gillian; Krysak, Daniel; Lipkaman, Leslie; Malin, Michael; McCartney, Elaina; McNair, Sean; Nixon, Brian; Posiolova, Liliya; Ravine, Michael; Salamon, Andrew; Saper, Lee; Stoiber, Kevin; Supulver, Kimberley; Van Beek, Jason; Van Beek, Tessa; Zimdar, Robert; French, Katherine Louise; Iagnemma, Karl; Miller, Kristen; Summons, Roger; Goesmann, Fred; Goetz, Walter; Hviid, Stubbe; Johnson, Micah

    2015-01-01

    The Sample Analysis at Mars (SAM) investigation on the Mars Science Laboratory (MSL) Curiosity rover has detected oxidized nitrogen-bearing compounds during pyrolysis of scooped aeolian sediments and drilled sedimentary deposits within Gale crater. Total N concentrations ranged from 20 to 250 nmol N per sample. After subtraction of known N sources in SAM, our results support the equivalent of 110–300 ppm of nitrate in the Rocknest (RN) aeolian samples, and 70–260 and 330–1,100 ppm nitrate in John Klein (JK) and Cumberland (CB) mudstone deposits, respectively. Discovery of indigenous martian nitrogen in Mars surface materials has important implications for habitability and, specifically, for the potential evolution of a nitrogen cycle at some point in martian history. The detection of nitrate in both wind-drifted fines (RN) and in mudstone (JK, CB) is likely a result of N2 fixation to nitrate generated by thermal shock from impact or volcanic plume lightning on ancient Mars. Fixed nitrogen could have facilitated the development of a primitive nitrogen cycle on the surface of ancient Mars, potentially providing a biochemically accessible source of nitrogen. PMID:25831544

  6. Aeolian Morphodynamics of Loess Landscapes

    NASA Astrophysics Data System (ADS)

    Mason, J. A.; Hanson, P. R.; Sweeney, M.; Loope, H. M.; Miao, X.; Lu, H.

    2012-12-01

    Striking aeolian landforms characterize loess landscapes of the Great Plains and Upper Mississippi Valley, USA, shaped in Late Pleistocene environments with many characteristics of modern deserts including large active dunefields. Similar aeolian morphodynamics are evident in northern China and the Columbia Basin, USA, and are clearly important for interpreting the paleoenvironmental record of loess. Four zones spanning the upwind margin of thick loess can be defined from landforms and surficial deposits. From upwind to downwind, they are: A) A largely loess-free landscape, with patchy to continuous aeolian sand mantling bedrock. B) Patchy loess deposits, often streamlined and potentially wind-aligned, intermingled with dunes and sand sheets; interbedding of loess and sand may be common. C) Thick, coarse loess with an abrupt upwind edge, with troughs, yardang-like ridges, and/or wind-aligned scarps recording large-scale wind erosion. D) Thinner, finer loess with little evidence of post-depositional wind erosion. The degree of development and spatial scale of these zones varies among the loess regions we studied. To explain this zonation we emphasize controls on re-entrainment of loess by the wind after initial deposition, across gradients of climate and vegetation. The role of saltating sand in dust entrainment through abrasion of fine materials is well known. Using the Portable In situ Wind Erosion Laboratory (PI-SWERL), we recently demonstrated that unvegetated Great Plains loess can also be directly entrained under wind conditions common in the region today (Sweeney et al., 2011, GSA Abstracts with Programs, Vol. 43, No. 5, p. 251). Rainfall-induced crusts largely prevent direct entrainment in fine loess, but appear less effective in coarse loess. We propose that in zone A, any loess deposited was both abraded by saltating sand and directly re-entrained, so none accumulated. Sparse vegetation in this zone was primarily an effect of climate, but the resulting

  7. Deposition Rates and Characterization of Arabian Mineral Dust

    NASA Astrophysics Data System (ADS)

    Puthan Purakkal, J.; Stenchikov, G. L.; Engelbrecht, J. P.

    2015-12-01

    Airborne mineral dust directly and indirectly impacts on global climate, continental and marine biochemistry, human and animal health, agriculture, equipment, and visibility. Annual global dust emissions are poorly known with estimates differing by a factor of at least two. Local dust emission and deposition rates are even less quantified. Dust deposition rate is a key parameter, which helps to constrain the modeled dust budget of the atmosphere. However, dust deposition remains poorly known, due to the limited number of reliable measurements. Simulations and satellite observations suggest that coastal dusts contribute substantially to the total deposition flux into the Red Sea. Starting December 2014, deposition samplers, both the "frisbee" type, and passive samplers for individual particle scanning electron microscopy were deployed at King Abdullah University of Science and Technology (KAUST), along the Red Sea in Saudi Arabia. Sampling periods of one month were adopted. The deposition rates range from 3 g m-2 month-1 for fair weather conditions to 23 g m-2 month-1 for high dust events. The X-ray diffraction (XRD) analyses of deposited dust samples show mineralogical compositions different from any of the parent soils, the former consisting mainly of gypsum, calcite, and smaller amounts of albite, montmorillonite, chlorite, quartz and biotite. The deposited dust samples on the other hand contain more gypsum and less quartz than the previously collected soil samples. This presentation discusses the results from XRD, chemical analysis and SEM-based individual particle analysis of the soils and the deposited dust samples. The monthly dust accumulation rates and their seasonal and spatial variability are compared with the regional model predictions. Data from this study provide an observational basis for validating the regional dust mass balance along the Arabian Red Sea coastal plain.

  8. Development of a dust deposition forecast model for a mine tailings impoundment

    NASA Astrophysics Data System (ADS)

    Stovern, Michael

    Wind erosion, transport and deposition of particulate matter can have significant impacts on the environment. It is observed that about 40% of the global land area and 30% of the earth's population lives in semiarid environments which are especially susceptible to wind erosion and airborne transport of contaminants. With the increased desertification caused by land use changes, anthropogenic activities and projected climate change impacts windblown dust will likely become more significant. An important anthropogenic source of windblown dust in this region is associated with mining operations including tailings impoundments. Tailings are especially susceptible to erosion due to their fine grain composition, lack of vegetative coverage and high height compared to the surrounding topography. This study is focused on emissions, dispersion and deposition of windblown dust from the Iron King mine tailings in Dewey-Humboldt, Arizona, a Superfund site. The tailings impoundment is heavily contaminated with lead and arsenic and is located directly adjacent to the town of Dewey-Humboldt. The study includes in situ field measurements, computational fluid dynamic modeling and the development of a windblown dust deposition forecasting model that predicts deposition patterns of dust originating from the tailings impoundment. Two instrumented eddy flux towers were setup on the tailings impoundment to monitor the aeolian and meteorological conditions. The in situ observations were used in conjunction with a computational fluid dynamic (CFD) model to simulate the transport of windblown dust from the mine tailings to the surrounding region. The CFD model simulations include gaseous plume dispersion to simulate the transport of the fine aerosols, while individual particle transport was used to track the trajectories of larger particles and to monitor their deposition locations. The CFD simulations were used to estimate deposition of tailings dust and identify topographic mechanisms

  9. Abundances and implications of volatile-bearing species from evolved gas analysis of the Rocknest aeolian deposit, Gale Crater, Mars

    NASA Astrophysics Data System (ADS)

    Archer, Paul Douglas; Franz, Heather B.; Sutter, Brad; Arevalo, Ricardo D.; Coll, Patrice; Eigenbrode, Jennifer L.; Glavin, Daniel P.; Jones, John J.; Leshin, Laurie A.; Mahaffy, Paul R.; McAdam, Amy C.; McKay, Christopher P.; Ming, Douglas W.; Morris, Richard V.; Navarro-González, Rafael; Niles, Paul B.; Pavlov, Alex; Squyres, Steven W.; Stern, Jennifer C.; Steele, Andrew; Wray, James J.

    2014-01-01

    The Sample Analysis at Mars (SAM) instrument on the Mars Science Laboratory (MSL) rover Curiosity detected evolved gases during thermal analysis of soil samples from the Rocknest aeolian deposit in Gale Crater. Major species detected (in order of decreasing molar abundance) were H2O, SO2, CO2, and O2, all at the µmol level, with HCl, H2S, NH3, NO, and HCN present at the tens to hundreds of nmol level. We compute weight % numbers for the major gases evolved by assuming a likely source and calculate abundances between 0.5 and 3 wt.%. The evolution of these gases implies the presence of both oxidized (perchlorates) and reduced (sulfides or H-bearing) species as well as minerals formed under alkaline (carbonates) and possibly acidic (sulfates) conditions. Possible source phases in the Rocknest material are hydrated amorphous material, minor clay minerals, and hydrated perchlorate salts (all potential H2O sources), carbonates (CO2), perchlorates (O2 and HCl), and potential N-bearing materials (e.g., Martian nitrates, terrestrial or Martian nitrogenated organics, ammonium salts) that evolve NH3, NO, and/or HCN. We conclude that Rocknest materials are a physical mixture in chemical disequilibrium, consistent with aeolian mixing, and that although weathering is not extensive, it may be ongoing even under current Martian surface conditions.

  10. Contemporary research in aeolian geomorphology

    NASA Astrophysics Data System (ADS)

    Bauer, B. O.

    2009-04-01

    The first International Conference on Aeolian Geomorphology (ICAR) was held in 1986, and every four years since then, aeolian geomorphologists from around the world have assembled to discuss their research and to showcase recent advancements in understanding and modeling of aeolian processes. A content analysis of the "Bibliography of Aeolian Research" [Stout, J.E., Warren, A., Gill, T.E., 2009. Publication trends in aeolian research: An analysis of the Bibliography of Aeolian Research. Geomorphology 105, 6-17 (this volume)] shows that the number of publications on aeolian topics has increased exponentially from the mid-20th Century with approximately 50 publications per year to about 500 publications per year when the first ICAR was held, to almost 1000 publications per year currently. Areas of focus have shifted historically from initial concerns with aeolian erosion and dust events as isolated phenomenon of localized curiosity or only regional importance, to comprehensive physically-based investigations and modeling of the mechanics of aeolian transport. Recently, more applied studies have been motivated by the recognition of the importance of aeolian processes to dust emissions into the atmosphere (with relevance for human health and for meteorological conditions and climate change) and within regional management contexts (especially on coasts where impending sea-level rise is of great concern and in arid and semi-arid environments given the dependence of sediment surface stability and remobilization on meteorological and ecological conditions). Aeolian geomorphology is a rapidly growing sub-discipline of Geomorphology that offers rich opportunities for interdisciplinary collaborations with colleagues from the Atmospheric Sciences, Climatology, Sedimentology, Quaternary Geology, Fluid Mechanics, Physics, Mathematics, Computer Science, Physical Geography, Ecology, and Agricultural Sciences, as well as our counterparts in fluvial, coastal, and arid

  11. SEDIMENT DEPOSITION IN AN ATTIC NEAR A REGION OF DUST PROVENANCE: IMPLICATIONS FOR HISTORIC REGIONAL DUST DISPERSION AND DEPOSITION PATTERNS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fugitive dust emission is a common result of wind erosion in semiarid areas. Recently, research on dust transport, dispersion, and deposition has focused on the nutrients, chemicals, and pathogens that are often transported on dust particles. While many techniques exist for quantifying present day a...

  12. Wet and dry deposition of mineral dust particles in Japan: factors related to temporal variation and spatial distribution

    NASA Astrophysics Data System (ADS)

    Osada, K.; Ura, S.; Kagawa, M.; Mikami, M.; Tanaka, T. Y.; Matoba, S.; Aoki, K.; Shinoda, M.; Kurosaki, Y.; Hayashi, M.; Shimizu, A.; Uematsu, M.

    2014-01-01

    Recent ground networks and satellite remote-sensing observations have provided useful data related to spatial and vertical distributions of mineral dust particles in the atmosphere. However, measurements of temporal variations and spatial distributions of mineral dust deposition fluxes are limited in terms of their duration, location, and processes of deposition. To ascertain temporal variations and spatial distributions of mineral dust deposition using wet and dry processes, weekly deposition samples were obtained at Sapporo, Toyama, Nagoya, Tottori, Fukuoka, and Cape Hedo (Okinawa) in Japan during October 2008-December 2010 using automatic wet and dry separating samplers. Mineral dust weights in water-insoluble residue were estimated from Fe contents measured using an X-ray fluorescence analyser. Wet and dry deposition fluxes of mineral dusts were both high in spring and low in summer, showing similar seasonal variations to frequency of aeolian dust events (Kosa) in Japan. For wet deposition, highest and lowest annual dust fluxes were found at Toyama (9.6 g m-2 yr-1) and at Cape Hedo (1.7 g m-2 yr-1) as average values in 2009 and 2010. Higher wet deposition fluxes were observed at Toyama and Tottori, where frequent precipitation (> 60% days per month) was observed during dusty seasons. For dry deposition among Toyama, Tottori, Fukuoka, and Cape Hedo, the highest and lowest annual dust fluxes were found respectively at Fukuoka (5.2 g m-2 yr-1) and at Cape Hedo (2.0 g m-2 yr-1) as average values in 2009 and 2010. The average ratio of wet and dry deposition fluxes was the highest at Toyama (3.3) and the lowest at Hedo (0.82), showing a larger contribution of the dry process at western sites, probably because of the distance from desert source regions and because of the effectiveness of the wet process in the dusty season. Size distributions of refractory dust particles were obtained using four-stage filtration: > 20, > 10, > 5, and > 1 μm diameter. Weight fractions

  13. Integrated Results from Analysis of the Rocknest Aeolian Deposit by the Curiosity Rover

    NASA Technical Reports Server (NTRS)

    Leshin, L. A.; Grotzinger, J. P.; Blake, D. F.; Edgett, K. S.; Gellert, R.; Mahaffy, P. R.; Malin, M. C.; Wiens, R. C.; Treiman, A. H.; Ming, D. W.; Eigenbrode, J.

    2013-01-01

    The Mars Science Laboratory Curiosity rover spent 45 sols (from sol 56-101) at an area called Rocknest (Fig. 1), characterizing local geology and ingesting its aeolian fines into the analytical instruments CheMin and SAM for mineralogical and chemical analysis. Many abstracts at this meeting present the contextual information and detailed data on these first solid samples analyzed in detail by Curiosity at Rocknest. Here, we present an integrated view of the results from Rocknest - the general agreement from discussions among the entire MSL Science Team.

  14. Intermittency in dust deposition rates around the world

    NASA Astrophysics Data System (ADS)

    Fraser, N.; Schumer, R.

    2011-12-01

    Deposition rates for intermittent processes tend to depend on temporal measurement interval. This age interval bias can be used as a tool in evaluating the intermittency of dust deposition. Dust deposition is an intermittent process controlled by dust creation (erosion) and transport (dry winds). During glacial periods it is more likely that cold, dry winds will transport dust regionally and sometimes globally than during the warmer, wetter interglacial periods As deposition rates are estimated in loess cores over longer and longer time spans, it is more likely that large non-depositional or erosional periods may be incorporated into the average rate. Since loess cores are sampled by depth and material profile, the reported analysis rarely have equally space time intervals which causes age interval bias. 57 loess core profiles from Central Asia, New Zealand, North and South America, and Europe show the presence of power-law distributed hiatuses within the dust deposition record. Regional and global analysis of these 57 loess cores showed that dust deposition rates are equally affected by age interval bias no matter the scale. It is difficult to infer changes in dust deposition rates over time without equally spaced age intervals.

  15. A 20-year simulated climatology of global dust aerosol deposition.

    PubMed

    Zheng, Yu; Zhao, Tianliang; Che, Huizheng; Liu, Yu; Han, Yongxiang; Liu, Chong; Xiong, Jie; Liu, Jianhui; Zhou, Yike

    2016-07-01

    Based on a 20-year (1991-2010) simulation of dust aerosol deposition with the global climate model CAM5.1 (Community Atmosphere Model, version 5.1), the spatial and temporal variations of dust aerosol deposition were analyzed using climate statistical methods. The results indicated that the annual amount of global dust aerosol deposition was approximately 1161±31Mt, with a decreasing trend, and its interannual variation range of 2.70% over 1991-2010. The 20-year average ratio of global dust dry to wet depositions was 1.12, with interannual variation of 2.24%, showing the quantity of dry deposition of dust aerosol was greater than dust wet deposition. High dry deposition was centered over continental deserts and surrounding regions, while wet deposition was a dominant deposition process over the North Atlantic, North Pacific and northern Indian Ocean. Furthermore, both dry and wet deposition presented a zonal distribution. To examine the regional changes of dust aerosol deposition on land and sea areas, we chose the North Atlantic, Eurasia, northern Indian Ocean, North Pacific and Australia to analyze the interannual and seasonal variations of dust deposition and dry-to-wet deposition ratio. The deposition amounts of each region showed interannual fluctuations with the largest variation range at around 26.96% in the northern Indian Ocean area, followed by the North Pacific (16.47%), Australia (9.76%), North Atlantic (9.43%) and Eurasia (6.03%). The northern Indian Ocean also had the greatest amplitude of interannual variation in dry-to-wet deposition ratio, at 22.41%, followed by the North Atlantic (9.69%), Australia (6.82%), North Pacific (6.31%) and Eurasia (4.36%). Dust aerosol presented a seasonal cycle, with typically strong deposition in spring and summer and weak deposition in autumn and winter. The dust deposition over the northern Indian Ocean exhibited the greatest seasonal change range at about 118.00%, while the North Atlantic showed the lowest seasonal

  16. The Icelandic volcanic aeolian environment: Processes and impacts - A review

    NASA Astrophysics Data System (ADS)

    Arnalds, Olafur; Dagsson-Waldhauserova, Pavla; Olafsson, Haraldur

    2016-03-01

    Iceland has the largest area of volcaniclastic sandy desert on Earth or 22,000 km2. The sand has been mostly produced by glacio-fluvial processes, leaving behind fine-grained unstable sediments which are later re-distributed by repeated aeolian events. Volcanic eruptions add to this pool of unstable sediments, often from subglacial eruptions. Icelandic desert surfaces are divided into sand fields, sandy lavas and sandy lag gravel, each with separate aeolian surface characteristics such as threshold velocities. Storms are frequent due to Iceland's location on the North Atlantic Storm track. Dry winds occur on the leeward sides of mountains and glaciers, in spite of the high moisture content of the Atlantic cyclones. Surface winds often move hundreds to more than 1000 kg m-1 per annum, and more than 10,000 kg m-1 have been measured in a single storm. Desertification occurs when aeolian processes push sand fronts and have thus destroyed many previously fully vegetated ecosystems since the time of the settlement of Iceland in the late ninth century. There are about 135 dust events per annum, ranging from minor storms to >300,000 t of dust emitted in single storms. Dust production is on the order of 30-40 million tons annually, some traveling over 1000 km and deposited on land and sea. Dust deposited on deserts tends to be re-suspended during subsequent storms. High PM10 concentrations occur during major dust storms. They are more frequent in the wake of volcanic eruptions, such as after the Eyjafjallajökull 2010 eruption. Airborne dust affects human health, with negative effects enhanced by the tubular morphology of the grains, and the basaltic composition with its high metal content. Dust deposition on snow and glaciers intensifies melting. Moreover, the dust production probably also influences atmospheric conditions and parameters that affect climate change.

  17. Dust and Ice Deposition in the Martian Geologic Record

    USGS Publications Warehouse

    Tanaka, K.L.

    2000-01-01

    The polar layered deposits of Mars demonstrate that thick accumulations of dust and ice deposits can develop on the planet if environmental conditions are favorable. These deposits appear to be hundreds of millions of years old, and other deposits of similar size but of greater age in nonpolar regions may have formed by similar processes. Possible relict dust deposits include, from oldest to youngest: Noachian intercrater materials, including Arabia mantle deposits, Noachian to Early Hesperian south polar pitted deposits, Early Hesperian Hellas and Argyre basin deposits, Late Hesperian Electris deposits, and the Amazonian Medusae Fossae Formation. These deposits typically are hundreds of meters to a couple kilometers thick and cover upward of a million or more square kilometers. The apparent persistence of dust sedimentation at the south pole back to the Early Hesperian or earlier and the early growth of Tharsis during the Late Noachian and perhaps earlier indicates that extensive polar wandering is unlikely following the Middle Noachian. A scenario for the overall history of dust and perhaps ice deposition on Mars includes widespread, voluminous accumulations perhaps planetwide during the Noachian as impacts, volcanism, and surface processes generated large amounts of dust; the Arabia deposits may have formed as ice availability and dust accumulation waned. During the Early Hesperian, thick dust sedimentation became restricted to the south pole and the deep Hellas and Argyre basins; the north polar sedimentary record prior to the Amazonian is largely obscured. Deposits at Electris and Medusae Fossae may have resulted from local sources of fine-grained material - perhaps volcanic eruptions.

  18. The contribution of micrometeorites to the iron stocks of buried podzols, developed in Late-glacial aeolian sand deposits (Brabant, The Netherlands)

    NASA Astrophysics Data System (ADS)

    van Mourik, Jan; de Vet, Sebastiaan

    2015-04-01

    (Mormoder). The exogenic origin of the micrometeorites could be confirmed by SEM-EDX analysis. Micrometeorites could accumulate on the surface level of the Initial Podzols during one century (between 1900 AD till the moment of sampling in 2013), on the surface level of the buried Podzols during eight millennia (between the moment of stabilization in the Preboreal and the moment of burying around 1200 AD). The soil conditions of the ectorganic horizons of (initial) Podzols are moist and acidic, promoting quick release of iron from micrometeorites. An additional source of Iron that could be added to the amount, released from the parent material. The extraction and identification of micrometeorites from ectorganic horizons of Initial Podzols helped illustrate that atmospheric deposition in the form of aerosol and aeolian (e.g. Saharan) dust, micrometeorites and other hydrolysable particles, contributes to soil development. The requisite active iron for podzolation can therefore be derived from chemical weathering of atmospheric iron sources in the acidic soil environment. Reference: 1. Van Mourik, J.M., Seijmonsbergen, A.C., Slotboom, R.T. and Wallinga, J., 2012. The impact of human land use on soils and landforms in cultural landscapes on aeolian sandy substrates (Maashorst, SE Netherlands). Quaternary International 265, 74-89. 2. Van Mourik, J.M. and de Vet, S.B. (2015). Iron stocks of buried Podzols: endogenic iron deficits and potential exogenic enrichment in the Maashorst region, SE Netherlands. Catena, accepted.

  19. First X-Ray absorption spectroscopy results on Aeolian dust archived in Antarctica and Alpine firn cores

    NASA Astrophysics Data System (ADS)

    Marcelli, A.; Maggi, V.; Cibin, G.; Sala, M.; Marino, F.; Delmonte, B.

    2006-12-01

    . Samples for Total Reflection XAS measurements were prepared just for this kind of measurements by depositing the insoluble mineral dust on clean Si wafer substrates. In addition, the XANES spectra show clear differences, corresponding to different samples mineral iron hosts, demonstrating that with this fully non-distructive technique, new information about the dust mineralogy at very low concentration can be performed. The analysis is then complementary to other well established techniques like XRD and PIXE.

  20. Aeolian bedforms, yardangs, and indurated surfaces in the Tharsis Montes as seen by the HiRISE Camera: Evidence for dust aggregates

    NASA Astrophysics Data System (ADS)

    Bridges, N. T.; Banks, M. E.; Beyer, R. A.; Chuang, F. C.; Noe Dobrea, E. Z.; Herkenhoff, K. E.; Keszthelyi, L. P.; Fishbaugh, K. E.; McEwen, A. S.; Michaels, T. I.; Thomson, B. J.; Wray, J. J.

    2010-01-01

    HiRISE images of Mars with ground sampling down to 25 cm/pixel show that the dust-rich mantle covering the surfaces of the Tharsis Montes is organized into ridges whose form and distribution are consistent with formation by aeolian saltation. Other dusty areas near the volcanoes and elsewhere on the planet exhibit a similar morphology. The material composing these "reticulate" bedforms is constrained by their remote sensing properties and the threshold curve combined with the saltation/suspension boundary, both of which vary as a function of elevation (atmospheric pressure), particle size, and particle composition. Considering all of these factors, dust aggregates are the most likely material composing these bedforms. We propose that airfall dust on and near the volcanoes aggregates in situ over time, maybe due to electrostatic charging followed by cementation by salts. The aggregates eventually reach a particle size at which saltation is possible. Aggregates on the flanks are transported downslope by katabatic winds and form linear and "accordion" morphologies. Materials within the calderas and other depressions remain trapped and are subjected to multidirectional winds, forming an interlinked "honeycomb" texture. In many places on and near the volcanoes, light-toned, low thermal inertia yardangs and indurated surfaces are present. These may represent "duststone" formed when aggregates reach a particle size below the threshold curve, such that they become stabilized and subsequently undergo cementation.

  1. Aeolian bedforms, yardangs, and indurated surfaces in the Tharsis Montes as seen by the HiRISE Camera: Evidence for dust aggregates

    USGS Publications Warehouse

    Bridges, N.T.; Banks, M.E.; Beyer, R.A.; Chuang, F.C.; Noe Dobrea, E.Z.; Herkenhoff, K. E.; Keszthelyi, L.P.; Fishbaugh, K.E.; McEwen, A.S.; Michaels, T.I.; Thomson, B.J.; Wray, J.J.

    2010-01-01

    HiRISE images of Mars with ground sampling down to 25 cm/pixel show that the dust-rich mantle covering the surfaces of the Tharsis Montes is organized into ridges whose form and distribution are consistent with formation by aeolian saltation. Other dusty areas near the volcanoes and elsewhere on the planet exhibit a similar morphology. The material composing these "reticulate" bedforms is constrained by their remote sensing properties and the threshold curve combined with the saltation/suspension boundary, both of which vary as a function of elevation (atmospheric pressure), particle size, and particle composition. Considering all of these factors, dust aggregates are the most likely material composing these bedforms. We propose that airfall dust on and near the volcanoes aggregates in situ over time, maybe due to electrostatic charging followed by cementation by salts. The aggregates eventually reach a particle size at which saltation is possible. Aggregates on the flanks are transported downslope by katabatic winds and form linear and "accordion" morphologies. Materials within the calderas and other depressions remain trapped and are subjected to multidirectional winds, forming an interlinked "honeycomb" texture. In many places on and near the volcanoes, light-toned, low thermal inertia yardangs and indurated surfaces are present. These may represent "duststone" formed when aggregates reach a particle size below the threshold curve, such that they become stabilized and subsequently undergo cementation. ?? 2009 Elsevier Inc.

  2. The aeolian wind tunnel

    NASA Technical Reports Server (NTRS)

    Iversen, J. D.

    1991-01-01

    The aeolian wind tunnel is a special case of a larger subset of the wind tunnel family which is designed to simulate the atmospheric surface layer winds to small scale (a member of this larger subset is usually called an atmospheric boundary layer wind tunnel or environmental wind tunnel). The atmospheric boundary layer wind tunnel is designed to simulate, as closely as possible, the mean velocity and turbulence that occur naturally in the atmospheric boundary layer (defined as the lowest portion of the atmosphere, of the order of 500 m, in which the winds are most greatly affected by surface roughness and topography). The aeolian wind tunnel is used for two purposes: to simulate the physics of the saltation process and to model at small scale the erosional and depositional processes associated with topographic surface features. For purposes of studying aeolian effects on the surface of Mars and Venus as well as on Earth, the aeolian wind tunnel continues to prove to be a useful tool for estimating wind speeds necessary to move small particles on the three planets as well as to determine the effects of topography on the evolution of aeolian features such as wind streaks and dune patterns.

  3. Dust fallout in Kuwait city: deposition and characterization.

    PubMed

    Al-Awadhi, Jasem M; Alshuaibi, Arafat A

    2013-09-01

    Dust fallouts in Kuwait city was monitored on monthly basis during the period from March 2011 to February 2012 at 10 locations. The results of this study reveal that: (1) monthly dust deposition rates ranged from 0.002 to 0.32 kg/m(2) with average deposition rate of 0.053 kg/m(2) and annual average deposition rate of 0.59 kg/m(2), ranking the first out of 56 dust deposition rates observed throughout the world; (2) on average, about 55.9% of the settled dust have fine to very fine sand fraction sizes, while silt and clay comprise an average of 37.4 and 1.4% of the total sample, respectively; (3) the concentrations for Zn and Mo out of 15 other elements analyzed from the dust were up to 11 times higher than their soil background values in Kuwait, while Pb and Ni were about seven times higher; (4) Mo, Ni, Pb and Zn show maximum enrichment relative to the upper continental crustal component (Mn); (5) Sr, Zr and Zn show highest concretions among all collected samples; and (6) quartz and calcite were the dominant minerals in the dust samples. The distribution of the heavy metals in dust seems to be controlled mainly by the land uses and the volume of traffic emissions. PMID:23722090

  4. Dust Transport, Deposition and Radiative Effects Observed from MODIS

    NASA Technical Reports Server (NTRS)

    Kaufman, Y. J.; Koren, I.; Remer, L. A.; Tanre, D.; Ginoux, P.; Fan, S.

    2003-01-01

    Carlson (1977) used satellite (AVHRR) observation of dust episodes 3 estimate that 90 tg of dust are emitted from Africa (0-30 N) to the Atlantic Ocean between June and August. MODIS systematic measurements of aerosol optical thickness (AOT) and the fraction of the AOT (f) due to the fine mode (see Remer et al abstract), are used to derive the column concentration, flux and deposition of African dust over the Atlantic Ocean. The main data set is for 2001 but the results are consistent with MODIS measurements from 2002. The analysis first determines the properties of maritime baseline aerosol (AOT=0.06, f=0.5); followed by linear scaling of the dust AOT and the anthropogenic AOT, based on MODIS measured values of the fraction "f" being 0.9 for anthropogenic aerosol and 0.5 for dust. NCEP winds are used in the analysis and are evaluated against observed dust movements between the Terra and Aqua passes (see Koren et al. abstract). Monthly values of dust transport and deposition are calculated. Preliminary results show that 280 tg of dust are emitted annually from Africa to the Atlantic Ocean between 20s and 30N, with 40 tg returning to Africa and Europe between 30N and 50N. 85 tg reach the Americas, with 130-150 tg are deposited in the Atlantic Ocean. The results are compared with dust transport models that indicate 110-230 tg of dust being deposited in the Ocean. It is interesting to note that the early estimates of Carlson (1977) and Carlson & Prosper0 (1972) are very close to our estimate from MODIS of 100 tg for the same latitude range and monthly period.

  5. Sulfur-bearing phases detected by evolved gas analysis of the Rocknest aeolian deposit, Gale Crater, Mars

    NASA Astrophysics Data System (ADS)

    McAdam, Amy C.; Franz, Heather B.; Sutter, Brad; Archer, Paul D.; Freissinet, Caroline; Eigenbrode, Jennifer L.; Ming, Douglas W.; Atreya, Sushil K.; Bish, David L.; Blake, David F.; Bower, Hannah E.; Brunner, Anna; Buch, Arnaud; Glavin, Daniel P.; Grotzinger, John P.; Mahaffy, Paul R.; McLennan, Scott M.; Morris, Richard V.; Navarro-González, Rafael; Rampe, Elizabeth B.; Squyres, Steven W.; Steele, Andrew; Stern, Jennifer C.; Sumner, Dawn Y.; Wray, James J.

    2014-02-01

    The Sample Analysis at Mars (SAM) instrument suite detected SO2, H2S, OCS, and CS2 from ~450 to 800°C during evolved gas analysis (EGA) of materials from the Rocknest aeolian deposit in Gale Crater, Mars. This was the first detection of evolved sulfur species from a Martian surface sample during in situ EGA. SO2 (~3-22 µmol) is consistent with the thermal decomposition of Fe sulfates or Ca sulfites, or evolution/desorption from sulfur-bearing amorphous phases. Reactions between reduced sulfur phases such as sulfides and evolved O2 or H2O in the SAM oven are another candidate SO2 source. H2S (~41-109 nmol) is consistent with interactions of H2O, H2 and/or HCl with reduced sulfur phases and/or SO2 in the SAM oven. OCS (~1-5 nmol) and CS2 (~0.2-1 nmol) are likely derived from reactions between carbon-bearing compounds and reduced sulfur. Sulfates and sulfites indicate some aqueous interactions, although not necessarily at the Rocknest site; Fe sulfates imply interaction with acid solutions whereas Ca sulfites can form from acidic to near-neutral solutions. Sulfides in the Rocknest materials suggest input from materials originally deposited in a reducing environment or from detrital sulfides from an igneous source. The presence of sulfides also suggests that the materials have not been extensively altered by oxidative aqueous weathering. The possibility of both reduced and oxidized sulfur compounds in the deposit indicates a nonequilibrium assemblage. Understanding the sulfur mineralogy in Rocknest materials, which exhibit chemical similarities to basaltic fines analyzed elsewhere on Mars, can provide insight in to the origin and alteration history of Martian surface materials.

  6. An automatic collector to monitor insoluble atmospheric deposition: application for mineral dust deposition

    NASA Astrophysics Data System (ADS)

    Laurent, B.; Losno, R.; Chevaillier, S.; Vincent, J.; Roullet, P.; Bon Nguyen, E.; Ouboulmane, N.; Triquet, S.; Fornier, M.; Raimbault, P.; Bergametti, G.

    2015-07-01

    Deposition is one of the key terms of the mineral dust cycle. However, dust deposition remains poorly constrained in transport models simulating the atmospheric dust cycle. This is mainly due to the limited number of relevant deposition measurements. This paper aims to present an automatic collector (CARAGA), specially developed to sample the total (dry and wet) atmospheric deposition of insoluble dust in remote areas. The autonomy of the CARAGA can range from 25 days to almost 1 year depending on the programmed sampling frequency (from 1 day to 2 weeks respectively). This collector is used to sample atmospheric deposition of Saharan dust on the Frioul islands in the Gulf of Lions in the Western Mediterranean. To quantify the mineral dust mass in deposition samples, a weighing and ignition protocol is applied. Almost 2 years of continuous deposition measurements performed on a weekly sampling basis on Frioul Island are presented and discussed with air mass trajectories and satellite observations of dust. Insoluble mineral deposition measured on Frioul Island was 2.45 g m-2 for February to December 2011 and 3.16 g m-2 for January to October 2012. Nine major mineral deposition events, measured during periods with significant MODIS aerosol optical depths, were associated with air masses coming from the southern Mediterranean Basin and North Africa.

  7. An automatic collector to monitor insoluble atmospheric deposition: an application for mineral dust deposition

    NASA Astrophysics Data System (ADS)

    Laurent, B.; Losno, R.; Chevaillier, S.; Vincent, J.; Roullet, P.; Bon Nguyen, E.; Ouboulmane, N.; Triquet, S.; Fornier, M.; Raimbault, P.; Bergametti, G.

    2015-03-01

    Deposition is one of the key processes controlling the mass budget of the atmospheric mineral dust concentration. However, dust deposition remains poorly constrained in transport models simulating the atmospheric dust cycle. This is mainly due to the limited number of relevant deposition measurements. This paper aims at presenting an automatic collector (CARAGA), specially developed to sample the total (dry and wet) atmospheric deposition of insoluble dust in remote areas. The autonomy of the CARAGA can range from 25 days to almost 1 year depending on the programed sampling time step (1 day and 2 weeks sampling time steps, respectively). This collector is used to sample atmospheric deposition on Frioul Island which is located in the Gulf of Lions in the Western Mediterranean Basin over which Saharan dust can be transported and deposited. To quantify the mineral dust mass in deposition samples, a weighing and ignition protocol is applied. Two years of continuous deposition measurements performed on a weekly time step sampling on Frioul Island are presented and discussed with in-situ measurements, air mass trajectories and satellite observations of dust.

  8. Impact of water mass mixing and dust deposition on Nd concentration and εNd of the Arabian Sea water column

    NASA Astrophysics Data System (ADS)

    Goswami, Vineet; Singh, Sunil K.; Bhushan, Ravi

    2014-11-01

    The concentration and isotopic composition (εNd) of dissolved Nd have been measured in the sub-oxic/denitrifying water column of the eastern Arabian Sea to explore the impact of water mass mixing and release from particles. Dissolved Nd in the north-eastern Arabian Sea is more radiogenic (εNd: -7 to -10) compared to its south-eastern part (εNd: -11 to -15) suggesting contribution of Nd from the Bay of Bengal (BoB). The vertical profile of Nd typically show higher values in surface waters (15.8-27.8 pmol/kg), followed by minima (12-18 pmol/kg) in the subsurface waters (200-300 m) and a gradual increase with depth thereafter. The Nd concentration does not seem to show any changes in the sub-oxic layers suggesting no impact of the sub-oxic/denitrifying conditions in this oceanic region on the biogeochemistry of Nd. The enrichment of Nd in surface waters can be explained either by supply from high Nd low salinity waters from the BoB to the Arabian Sea via the East India Coastal Current (EICC) or, alternatively the Nd surface excess can be result of release from aeolian dust depositing over the sea surface. Inverse modeling computations suggest that in addition to Nd contributed from water mass mixing, some additional excess Nd (Ndxs) is required to balance the Nd inventory in the water column. There is significant Ndxs in the surface waters of the north-eastern Arabian Sea with εNd ∼ -6, similar to that of dust depositing over the Arabian Sea. The fractional solubility of Nd released from the aeolian dust was estimated to be varying from ∼3% to 17% (for excess Nd inventory per unit area (Ndxs∗) of 20 μg m-2 with τNd ranging from 1 to 3 years). This study highlights the significance of aeolian dust deposition in controlling the abundance and distribution of Nd in the Arabian Sea, the western arm of the northern Indian Ocean, lying in the proximity to the arid landmass and characterized by high lithogenic aeolian dust deposition.

  9. Evidence for Perchlorates and the Origin of Chlorinated Hydrocarbons Detected by SAM at the Rocknest Aeolian Deposit in Gale Crater

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Freissinet, Caroline; Miller, Kristen E.; Eigenbrode, Jennifer L.; Brunner, Anna E.; Buch, Arnaud; Sutter, Brad; Archer, P. Douglas, Jr.; Atreya, Sushil K.; Brinckerhoff, William B.; Cabane, Michael; Coll, Patrice; Conrad, Pamela G.; Coscia, David; Dworkin, Jason P.; Franz, Heather B.; Grotzinger, John P.; Leshin, Laurie A.; Martin, Mildred G.; McKay, Christopher; Ming, Douglas W.; Navarro-Gonzalez, Rafael; Pavlov, Alexander; Steele, Andrew; Summons, Roger E.; Szopa, Cyril; Teinturier, Samuel; Mahaffy, Paul R.

    2013-01-01

    Four individual sample portions from a single scoop of the Rocknest aeolian deposit were sieved ( 150 m) and delivered to the Sample Analysis at Mars (SAM) instrument by the Mars Science Laboratory rover's sample acquisition system. The samples were analyzed separately by the SAM pyrolysis evolved gas and gas chromatography mass spectrometry analysis modes. Several chlorinated hydrocarbons including chloromethane, dichloromethane, trichloromethane, a chloromethylpropene, and chlorobenzene were identified by SAM above background levels with abundances of 0.01 to 2.3 nanomole.The evolution of the chloromethanes observed during pyrolysis is coincident with the increase in O2 released from the Rocknest sample and the decomposition of a product of N-methyl-N- (tert-butyldimethylsilyl)trifluoroacetamide (MTBSTFA), a chemical that leaked from a derivatization cup inside SAM.The best candidate for the oxychloride phase in Rocknest is a hydrated calcium perchlorate (Ca(ClO4)2nH2O), based on the temperature release of O2 that correlates with the release of the chlorinated species measured by SAM, although other chlorine bearing phases are being considered. Laboratory pyrolysis experiments suggest that reaction of martian chlorine with organic carbon from MTBSTFA can explain the presence of the chloromethanes and a chloromethylpropene also detected by SAM.However, we cannot exclude the possibility that traces of organic carbon of either martian or exogenous origin contributed to some of the chloromethanes measured by SAM. Although the alteration history and exposure age of the Rocknest deposit is unknown, it is possible that oxidative degradation of complex organic matter by ionizing radiation or other chemical processes in Rocknest has occurred.

  10. Magnetic characteristics of aeolian and fluvial sediments and onset of dust accumulation at Lake Yoa (northern Chad) during the Holocene

    NASA Astrophysics Data System (ADS)

    Just, Janna; Kröpelin, Stefan; Karls, Jens; Rethemeyer, Janet; Melles, Martin

    2014-05-01

    samples will be analyzed using a cryogenic magnetometer. The magnetic grain size will be used to identify the initiation of increased accumulation of aeolian material. By analyzing Isothermal Remanent Magnetization acquisition curves, fluvial and aeolian end-members will be characterized in terms of magnetic mineralogy. Furthermore, a possible climate-induced impact on the formation of pedogenetic magnetic minerals in the source area of fluvial and aeolian sediments will be evaluated by a comparison of the environmental magnetic with organic proxies.

  11. Regional dust deposits on Mars - Physical properties, age, and history

    NASA Technical Reports Server (NTRS)

    Christensen, P. R.

    1986-01-01

    This paper presents a description of the use of Viking infrared thermal mapper (IRTM), earth-based radar, and visual observations for the study of the existence of regional dust deposits. It is pointed out that these observations provide estimates of particle size, rock abundance, surface texture, thermal emissivity, and albedo. These estimates can be used to characterize surface deposits and to determine the degree of surface mantling. Attention is given to the regolith properties, atmospheric dust properties, and a model for formation of low-inertia regions. It is found that global dust storms deposit currently approximately 25 microns of material per year in the equatorial region. Over geologic time this value may vary from 0 to 250 microns due to variations in atmospheric conditions produced by orbital variations.

  12. Dust flux estimates for the Last Glacial Period in East Central Europe based on terrestrial records of loess deposits: a review

    NASA Astrophysics Data System (ADS)

    Újvári, Gábor; Kovács, János; Varga, György; Raucsik, Béla; Marković, Slobodan B.

    2010-11-01

    Loess-paleosol sequences are significant records of the mineral dust cycle of glacial-interglacial periods. As dust particles give rise to direct and indirect radiative forcing, obtaining a reliable picture of the global and regional patterns of mineral dust fluxes during glacial periods can lead to a better understanding of the contribution of mineral dust to past climate changes. Recent progress in absolute dating of loess deposits in the Carpathian Basin in East Central Europe made it possible to provide correct aeolian flux estimates for the Last Glacial period, marine isotope stage (MIS) 2. Mass accumulation rates (MARs) from chronological data of 33 loess sites exhibited a wide range of values, from 150 to 1422 g m -2 a -1, centered around median and mean values of 338 and 417 g m -2 a -1. MAR and MAR estimates have been also calculated using grain size measurements of many loess samples and loess MARs in order to facilitate comparison with models, and since particles larger than 10 μm have a negligible radiative effect. Here we show that some previous model simulations of the dust cycle at the Last Glacial Maximum (LGM) significantly underestimated the real aeolian flux (ranges of our estimates: MAR=34-324 and MAR=9.3-88.2 g m a) in East Central Europe. For this reason, some simulations of dust-induced direct radiative forcing of the LGM climate failed to yield reliable results for this mid-latitude region as they have been based on three-dimensional dust field models that are not capable of estimating the real aeolian fluxes in Central Europe. A recent global model of top of the atmosphere (TOA) radiative forcing by mineral aerosols at the LGM that has been based on more realistic parameterization of dust sources, transport, and deposition revealed zonally averaged surface cooling of -2 °C for the latitudes of our study area. This surface cooling and TOA radiative forcing (-2 to -3 W m -2) are greater than recognized in other models and draws our

  13. Evidence for perchlorates and the origin of chlorinated hydrocarbons detected by SAM at the Rocknest aeolian deposit in Gale Crater

    NASA Astrophysics Data System (ADS)

    Glavin, Daniel P.; Freissinet, Caroline; Miller, Kristen E.; Eigenbrode, Jennifer L.; Brunner, Anna E.; Buch, Arnaud; Sutter, Brad; Archer, P. Douglas; Atreya, Sushil K.; Brinckerhoff, William B.; Cabane, Michel; Coll, Patrice; Conrad, Pamela G.; Coscia, David; Dworkin, Jason P.; Franz, Heather B.; Grotzinger, John P.; Leshin, Laurie A.; Martin, Mildred G.; McKay, Christopher; Ming, Douglas W.; Navarro-González, Rafael; Pavlov, Alexander; Steele, Andrew; Summons, Roger E.; Szopa, Cyril; Teinturier, Samuel; Mahaffy, Paul R.

    2013-10-01

    A single scoop of the Rocknest aeolian deposit was sieved (< 150 µm), and four separate sample portions, each with a mass of ~50 mg, were delivered to individual cups inside the Sample Analysis at Mars (SAM) instrument by the Mars Science Laboratory rover's sample acquisition system. The samples were analyzed separately by the SAM pyrolysis evolved gas and gas chromatograph mass spectrometer analysis modes. Several chlorinated hydrocarbons including chloromethane, dichloromethane, trichloromethane, a chloromethylpropene, and chlorobenzene were identified by SAM above background levels with abundances of ~0.01 to 2.3 nmol. The evolution of the chloromethanes observed during pyrolysis is coincident with the increase in O2 released from the Rocknest sample and the decomposition of a product of N-methyl-N-(tert-butyldimethylsilyl)-trifluoroacetamide (MTBSTFA), a chemical whose vapors were released from a derivatization cup inside SAM. The best candidate for the oxychlorine compounds in Rocknest is a hydrated calcium perchlorate (Ca(ClO4)2·nH2O), based on the temperature release of O2 that correlates with the release of the chlorinated hydrocarbons measured by SAM, although other chlorine-bearing phases are being considered. Laboratory analog experiments suggest that the reaction of Martian chlorine from perchlorate decomposition with terrestrial organic carbon from MTBSTFA during pyrolysis can explain the presence of three chloromethanes and a chloromethylpropene detected by SAM. Chlorobenzene may be attributed to reactions of Martian chlorine released during pyrolysis with terrestrial benzene or toluene derived from 2,6-diphenylphenylene oxide (Tenax) on the SAM hydrocarbon trap. At this time we do not have definitive evidence to support a nonterrestrial carbon source for these chlorinated hydrocarbons, nor do we exclude the possibility that future SAM analyses will reveal the presence of organic compounds native to the Martian regolith.

  14. Holocene moisture change revealed by the Rb/Sr ratio of aeolian deposits in the southeastern Mu Us Desert, China

    NASA Astrophysics Data System (ADS)

    Liu, Bing; Jin, Heling; Sun, Liangying; Sun, Zhong; Niu, Qinghe; Xie, Shengbo; Li, Guanhua

    2014-06-01

    Systematic analysis of the Rb and Sr contents and Rb/Sr ratios in different lithological units of the palaeosol-aeolian sequence in the southeastern Mu Us Desert revealed that the Rb/Sr ratio is an accurate proxy for past East Asian summer monsoonal strength and moisture change. A lower Sr content and a higher Rb/Sr ratio, chemical index of alteration (CIA), and clay and organic matter (OM) content in the palaeosol are coincident with stronger Asian summer monsoons and increased precipitation, whereas a higher Sr content and a lower Rb/Sr ratio, CIA, and clay and OM content correspond to a dry climate with weaker summer monsoonal strength. Based on these results, the history of Holocene moisture changes was reconstructed as follows: the moisture was lower before 7.5 ka and approached an optimal climate between 7.5 ka and 4.6 ka, afterwards, the climate tended to be dry. Additionally, six millennial-scale dry events were recorded at the times of ∼7.5 ka, 7.0-6.8 ka, 6.6-5.7 ka, 4.6-4.1 ka, 3.7-3.5 ka, and 3.3-2.5 ka, which were very accordant with cold phases evidenced by ice cores and deep-sea deposits in the low and high latitudes of the Northern Hemisphere. These were also coincident with weaker Asian summer monsoonal intervals revealed by stalagmites within the dating uncertainties, probably implying a prominent synchronism of Holocene millennial-scale climate changes in the Mu Us Desert and global climate changes.

  15. Evidence for Perchlorates and the Origin of Chlorinated Hydrocarbons Detected by SAM at the Rocknest Aeolian Deposit in Gale Crater

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Freissinet, Caroline; Miller, Kristen E.; Eigenbrode, Jennifer L.; Brunner, Anna E.; Buch, Arnaud; Sutter, Brad; Archer, P. Douglas, Jr.; Atreya, Sushil K.; Brinckerhoff, William B.; Cabane, Michel; Coll, Patrice; Conrad, Pamela G.; Coscia, David; Dworkin, Jason P.; Franz, Heather B.; Grotzinger, John P.; Leshin, Laurie A.; Martin, Mildred G.; McKay, Christopher; Ming, Douglas W.; Navarro-Gonzalez, Rafael; Pavlov, Alexander; Steele, Andrew; Summons, Roger E.; Szopa, Cyril; Teinturier, Samuel; Mahaffy, Paul R.

    2013-01-01

    A single scoop of the Rocknest aeolian deposit was sieved (less than 150 micrometers), and four separate sample portions, each with a mass of approximately 50 mg, were delivered to individual cups inside the Sample Analysis at Mars (SAM) instrument by the Mars Science Laboratory rover's sample acquisition system. The samples were analyzed separately by the SAM pyrolysis evolved gas and gas chromatograph mass spectrometer analysis modes. Several chlorinated hydrocarbons including chloromethane, dichloromethane, trichloromethane, a chloromethylpropene, and chlorobenzene were identified by SAM above background levels with abundances of approximately 0.01 to 2.3 nmol. The evolution of the chloromethanes observed during pyrolysis is coincident with the increase in O2 released from the Rocknest sample and the decomposition of a product of N-methyl-N-(tert-butyldimethylsilyl)-trifluoroacetamide (MTBSTFA), a chemical whose vapors were released from a derivatization cup inside SAM. The best candidate for the oxychlorine compounds in Rocknest is a hydrated calcium perchlorate (Ca(ClO4)2·nH2O), based on the temperature release of O2 that correlates with the release of the chlorinated hydrocarbons measured by SAM, although other chlorine-bearing phases are being considered. Laboratory analog experiments suggest that the reaction of Martian chlorine from perchlorate decomposition with terrestrial organic carbon from MTBSTFA during pyrolysis can explain the presence of three chloromethanes and a chloromethylpropene detected by SAM. Chlorobenzene may be attributed to reactions of Martian chlorine released during pyrolysis with terrestrial benzene or toluene derived from 2,6-diphenylphenylene oxide (Tenax) on the SAM hydrocarbon trap. At this time we do not have definitive evidence to support a nonterrestrial carbon source for these chlorinated hydrocarbons, nor do we exclude the possibility that future SAM analyses will reveal the presence of organic compounds native to the

  16. Physical abrasion of mafic minerals and basalt grains: application to Martian aeolian deposits

    USGS Publications Warehouse

    Cornwall, Carin; Bandfield, Joshua L.; Titus, Timothy N.; Schreiber, B. C.; Montgomery, D.R.

    2015-01-01

    Sediment maturity, or the mineralogical and physical characterization of sediment deposits, has been used to locate sediment source, transport medium and distance, weathering processes, and paleoenvironments on Earth. Mature terrestrial sands are dominated by quartz, which is abundant in source lithologies on Earth and is physically and chemically stable under a wide range of conditions. Immature sands, such as those rich in feldspars or mafic minerals, are composed of grains that are easily physically weathered and highly susceptible to chemical weathering. On Mars, which is predominately mafic in composition, terrestrial standards of sediment maturity are not applicable. In addition, the martian climate today is cold, dry and sediments are likely to be heavily influenced by physical weathering rather than chemical weathering. Due to these large differences in weathering processes and composition, martian sediments require an alternate maturity index. Abrason tests have been conducted on a variety of mafic materials and results suggest that mature martian sediments may be composed of well sorted, well rounded, spherical basalt grains. In addition, any volcanic glass present is likely to persist in a mechanical weathering environment while chemically altered products are likely to be winnowed away. A modified sediment maturity index is proposed that can be used in future studies to constrain sediment source, paleoclimate, mechanisms for sediment production, and surface evolution. This maturity index may also provide details about erosional and sediment transport systems and preservation processes of layered deposits.

  17. Physical abrasion of mafic minerals and basalt grains: Application to martian aeolian deposits

    NASA Astrophysics Data System (ADS)

    Cornwall, C.; Bandfield, J. L.; Titus, T. N.; Schreiber, B. C.; Montgomery, D. R.

    2015-08-01

    Sediment maturity, or the mineralogical and physical characterization of sedimentary deposits, has been used to identify sediment sources, transport medium and distance, weathering processes, and paleoenvironments on Earth. Mature terrestrial sands are dominated by quartz, which is abundant in source lithologies on Earth and is physically and chemically stable under a wide range of conditions. Immature sands, such as those rich in feldspars or mafic minerals, are composed of grains that are easily physically weathered and highly susceptible to chemical weathering. On Mars, which is predominately mafic in composition, terrestrial standards of sediment maturity are not applicable. In addition, the martian climate today is cold and dry and sediments are likely to be heavily influenced by physical weathering rather than chemical weathering. Due to these large differences in weathering processes and composition, martian sediments require an alternate maturity index. This paper reports the results of abrasion tests conducted on a variety of mafic materials and results suggest that mature martian sediments may be composed of well sorted, well rounded, spherical polycrystalline materials, such as basalt. Volcanic glass is also likely to persist in a mechanical weathering environment while more fragile and chemically altered products are likely to be winnowed away. A modified sediment maturity index is proposed that can be used in future studies to constrain sediment source, paleoclimate, mechanisms for sediment production, and surface evolution. This maturity index may also provide insights into erosional and sediment transport systems and preservation processes of layered deposits.

  18. The Origin of Regional Dust Deposits on Mars

    NASA Technical Reports Server (NTRS)

    Christensen, P. R.

    1985-01-01

    Recently, additional evidence was derived from the Viking Infrared Thermal Mapper observations that allows a more complete model for the formation of Low Thermal inertia-high Albedo regions to be proposed. The first observation is that dust appears to be currently accumulating in the low thermal inertia regions. Following each global dust storm a thin layer of dust is deposited globally, as evidenced by an increase in surface albedo seen from orbit and from the Viking Lander sites. During the period following the storm, the bright dust fallout is subsequently removed from low albedo regions, as indicated by the post-storm darkening of these surfaces and by an increase in the atmospheric dust content over dark regions relative to the bright, low thermal inertia regions. Thus, the fine dust storm material is removed from dark regions but not from the bright regions, resulting in a net accumulation within the bright, low thermal inertia regions. Once deposition has begun, the covering of exposed rocks and sand and the accumulation of fine material on the surface make removal of material increasingly difficult, thereby enhancing the likelihood that material will accumulate within the low thermal inertia regions.

  19. Recent and past Saharan dust deposition in the Carpathian Basin and its possible effects on interglacial soil formation

    NASA Astrophysics Data System (ADS)

    Varga, György

    2016-04-01

    . According to our deposition adjustment estimations the annual amount of deposited Saharan dust can be set into the range between 3 and 5 g/m2/y. This study is also aimed at providing an estimate on the Saharan dust sedimentation in past interglacials based on stratigraphic and sedimentary data of loess-paleosoil sequences and by using the values of recent dust accumulation simulations. The possible influence of accumulated aeolian material on soil properties and on paleoenvironmental interpretation of paleosoils (modified by syngenetic, external dust addition) will also be discussed. Support of the Hungarian Research Fund OTKA under contract PD108708 (for G. Varga) is gratefully acknowledged. It was additionally supported (for G. Varga) by the Bolyai János Research Scholarship of the Hungarian Academy of Sciences.

  20. The thermal structure of the atmospheric surface boundary layer on Mars as modified by the radiative effect of aeolian dust

    NASA Technical Reports Server (NTRS)

    Pallmann, A. J.

    1983-01-01

    A computational simulation, based on Mariner 9 data, was performed for the thermal characteristics of the Martian atmospheric surface boundary layer in clear and dust-filled conditions. A radiative transfer model consisting of the atmospheric enthalpy rate equation, the radiative flux integrated over the 0.2-50 microns, the solid angle interval, and 0.50 km altitudes, broken into 52 levels. Mariner 9 IR data for CO2 absorption lines were included in the form of a temperture-dependent equation, while the line-widths were interpreted in terms of the pressure dependene as well as temperature. The lines covered the regions from 1-50 microns and varying conditions of dust content in the atmosphere. Attention was given to the thermal coupling between the ground and the atmosphere. It was found that convective heat exchange develops quickly due to radiative heating of the Martian desert surface, but does not cool the surface because of the attenuated atmosphere. The model predictd the 100 K temperature variations in the dusty atmosphere, as observed by the Viking thermal mapper. It is suggested that radiative flux convergence is as important as convection at equivalent efficiencies.

  1. Estimates of Asian dust deposition over the Asian region by using ADAM2 in 2007.

    PubMed

    Park, Soon-Ung; Choe, Anna; Park, Moon-Soo

    2010-05-01

    The Asian Dust Aerosol Model 2 (ADAM2) with the MM5 meteorological model has been employed to estimate the dust concentration, and wet and dry depositions of dust in the Asian region for the year of 2007. It is found that the model simulates quite reasonably the dust (PM(10)) concentrations both in the dust source region (100-110 degrees E and 37-43 degrees N) and the downstream region of Korea. The starting and ending times of most of dust events and their peak concentration occurring times are well simulated. The annual average dust (PM(10)) concentration near the surface is found to be 171microgm(-3) over the dust source area, 39microgm(-3) over the Yellow Sea, 25microgm(-3) over the Korean peninsula and 17microgm(-3) over the East Sea. It is also found that the annual total deposition of dust is about 118.1tkm(-2) (dry deposition, 101.4tkm(-2); wet deposition, 16.7tkm(-2)) in the dust source region, 19.0tkm(-2) (dry deposition, 7.8tkm(-2); wet deposition, 11.2tkm(-2)) in the Yellow Sea, 12.6tkm(-2) (dry deposition, 6.5tkm(-2); wet deposition, 6.1tkm(-2)) in the Korean peninsula and 10.7tkm(-2) (dry deposition, 2.1tkm(-2); wet deposition, 8.6tkm(-2)) in the East Sea. Their ratios of wet deposition to total deposition of dust in the respective regions are 14%, 59%, 48% and 80%. This clearly indicates that the main dust removal mechanism from the atmosphere is dry deposition over the source region whereas wet deposition predominates in the downstream region of the sea. The estimated dust deposition could adversely impact the eco-environmental system in the downstream regions of the dust source region significantly. PMID:20227107

  2. The birth and death of transverse aeolian ridges on Mars

    USGS Publications Warehouse

    Geissler, Paul E.

    2014-01-01

    Transverse aeolian ridges (TARs) are small bright windblown deposits found throughout the Martian tropics that stand a few meters tall and are spaced a few tens of meters apart. The origin of these features remains mysterious more than 20 years after their discovery on Mars. This paper presents a new hypothesis, that some of the TARs could be indurated dust deposits emplaced millions of years ago during periods of higher axial obliquity. It suggests that these TARs are primary depositional bed forms that accumulated in place from dust carried by the winds in suspension, perhaps in a manner comparable to antidunes on Earth, and were subsequently indurated and eroded to their current states by eons of sandblasting. It points out examples of modern dust drifts and dune-like features that appear to have been recently formed by dust accumulating directly onto the surface from atmospheric suspension. It shows how these pristine dust deposits could evolve to explain the range of morphologies of the TARs. Finally, it explains how the known properties of many TARs are consistent with this hypothesis, including their composition, thermal behavior, and distribution.

  3. Dust storms on Mars: Considerations and simulations

    NASA Technical Reports Server (NTRS)

    Greeley, R.; White, B. R.; Pollack, J. B.; Iverson, J. D.; Leach, R. N.

    1977-01-01

    Aeolian processes are important in modifying the surface of Mars at present, and appear to have been significant in the geological past. Aeolian activity includes local and global dust storms, the formation of erosional features such as yardangs and depositional features such as sand dunes, and the erosion of rock and soil. As a means of understanding aeolian processes on Mars, an investigation is in progress that includes laboratory simulations, field studies of earth analogs, and interpretation of spacecraft data. This report describes the Martian Surface Wind Tunnel, an experimental facility established at NASA-Ames Research Center, and presents some results of the general investigation. Experiments dealing with wind speeds and other conditions required for the initiation of particle movement on Mars are described and considerations are given to the resulting effectiveness of aeolian erosion.

  4. Studies in Martian Aeolian Geology

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald

    2001-01-01

    This report gives the results from the investigation through March 15, 1999 for the first two years of the three year investigation (year 3 runs from March 1, 1999 to February 27, 2000). The investigation included three tasks, all involving windblown dust (particles a few micrometers in diameter) to simulate the aeolian regime on Mars. Experiments were conducted primarily in the Mars Surface Wind Tunnel (MARSWIT) at NASA-Ames Research Center.

  5. Characterisation of atmospheric deposited particles during a dust storm in urban areas of Eastern Australia.

    PubMed

    Gunawardena, Janaka; Ziyath, Abdul M; Bostrom, Thor E; Bekessy, Lambert K; Ayoko, Godwin A; Egodawatta, Prasanna; Goonetilleke, Ashantha

    2013-09-01

    The characteristics of dust particles deposited during the 2009 dust storm in the Gold Coast and Brisbane regions of Australia are discussed in this paper. The study outcomes provide important knowledge in relation to the potential impacts of dust storm related pollution on ecosystem health in the context that the frequency of dust storms is predicted to increase due to anthropogenic desert surface modifications and climate change impacts. The investigated dust storm contributed a large fraction of fine particles to the environment with an increased amount of total suspended solids, compared to dry deposition under ambient conditions. Although the dust storm passed over forested areas, the organic carbon content in the dust was relatively low. The primary metals present in the dust storm deposition were aluminium, iron and manganese, which are common soil minerals in Australia. The dust storm deposition did not contain significant loads of nickel, cadmium, copper and lead, which are commonly present in the urban environment. Furthermore, the comparison between the ambient and dust storm chromium and zinc loads suggested that these metals were contributed to the dust storm by local anthropogenic sources. The potential ecosystem health impacts of the 2009 dust storm include, increased fine solids deposition on ground surfaces resulting in an enhanced capacity to adsorb toxic pollutants as well as increased aluminium, iron and manganese loads. In contrast, the ecosystem health impacts related to organic carbon and other metals from dust storm atmospheric deposition are not considered to be significant. PMID:23712117

  6. Pacific patterns of dust deposition, iron supply and export production

    NASA Astrophysics Data System (ADS)

    Winckler, G.; Anderson, R. F.; Park, J.; Schwartz, R.; Pahnke, K.; Struve, T.; Lamy, F.; Gersonde, R.

    2015-12-01

    The scarcity of iron limits marine export production and carbon uptake in about a quarter of the global ocean where the surface concentration of nitrate and phosphate is high, as biological utilization of these macronutrients is incomplete. Of these high nutrient low chlorophyll (HNLC) regions, the Southern Ocean is the region where variations in iron availability can have the largest effect on Earth's carbon cycle through its fertilizing effect on marine ecosystems, both in the modern and in the past. Recent work in the Subantarctic South Atlantic (Martínez-Garcia et al., 2009, 2014, Anderson et al., 2014) suggests that dust-driven iron fertilization lowered atmospheric CO2 by up to 40 ppm in the latter half of each glacial cycle of the late Pleistocene, with the increase in Subantarctic productivity consuming a greater fraction of the surface nutrients and thus driving more storage of carbon in the ocean interior. The other sectors of the Southern Ocean remain poorly constrained, including the Pacific Sector, that accounts for the largest surface area of the Subantarctic Southern Ocean. Here we report records of dust deposition, iron supply and export production from a set of cores from the Subantarctic Pacific (PS75, Lamy et al 2014) and initial results about the origin of dust transported to the Subantarctic Pacific Ocean from radiogenic isotopes and rare earth elements. We test how tightly dust and biological productivity are coupled over glacial/interglacial and millennial timescales in the Subantarctic Pacific and place the region in a context of global patterns of biological productivity, nutrient utilization and iron fertilization by dust, including comparisons to the other Pacific HNLC regions, the Subarctic North Pacific and equatorial Pacific.

  7. Semiarid landscapes response to Aeolian processes during Holocene in Baikal Region

    NASA Astrophysics Data System (ADS)

    Dan'ko, Lidia; Opekunova, Marina

    2010-05-01

    Arid and semiarid landscapes play a significant role in global climate, biogeochemical, and hydrological processes. Regional analysis of the past aeolian processes is essential for improve our understanding of how various landscape and ecosystems responded to climate change in the past. Our investigation presents details on sand dunes and on loess-like sediments. The study areas are situated in the northern part of Baikal Region (Eastern Siberia). In its depressions, the so-called Barguzinskaya and Tunkinskaya Valley surrounded mountain ranges local dunefieds and loess-like sediments have developed. Present climate in the study areas is continental, characterized by low precipitation(mean annual 250-450 mm) and wide annual range of temperature. Field investigations indicate that the Holocene deposits of the Barguzinskaya and Tunkinskaya Valley are sealed the pedo-sedimentary interface. The analytical results suggest that one's represents a changeover from intensified soil formation to accelerated aeolian dust accumulation. The original content of calcium carbonate and gypsum at the base of some sections of loess-like sediments indicates the aeolian origin of these sediments. In whole, the soil horizons are a proof for humid phases. The change was forced by climatic aridity. Absolute dating of the organogenic components of soils (14C) indicate the age positions of the arid and humid climate phases. Our results indicate not only 1-4 long-time episodes of aeolian dust accumulation during the Holocene, but shot-time aeolian accumulation episodes, that were specific for Late Holocene. For example, in the Tunkinskaya Valley the Late Holocene soil formation replaced by aeolian deposit at 1700 - 1900, 800 and 200-250 years ago, in the Barguzinskaya Valley - about 3100 - 2900, 2300 and 600 years ago. It can be concluded that a periodical formation of the aeolian deposits in the semiarid landscapes during Holocene can be postulated. Aeolian and loess-like sediments of the

  8. Aeolian Processes at the Mars Exploration Rover Opportunity Landing Site

    NASA Technical Reports Server (NTRS)

    Sullivan, R.; Bell, J. F., III; Calvin, W.; Fike, D.; Golombek, M.; Greeley, R.; Grotzinger, J.; Herkenhoff, K.; Jerolmack, D.; Malin, M.

    2005-01-01

    The traverse of the Mars Exploration Rover Opportunity across its Meridiani Planum landing site has shown that wind has affected regolith by creating drifts, dunes, and ubiquitous ripples, by sorting grains during aeolian transport, by forming bright wind streaks downwind from craters seen from orbit, and by eroding rock with abrading, wind-blown material. Pre-landing orbiter observations showed bright and dark streaks tapering away from craters on the Meridiani plains. Further analysis of orbiter images shows that major dust storms can cause bright streak orientations in the area to alternate between NW and SE, implying bright wind streak materials encountered by Opportunity are transient, potentially mobilized deposits. Opportunity performed the first in situ investigation of a martian wind streak, focusing on a bright patch of material just outside the rim of Eagle crater. Data from Pancam, the Miniature Thermal Emission Spectrometer (Mini-TES), the Alpha-Particle X-Ray Spectrometer (APXS), and the Mossbauer spectrometer either are consistent with or permit an air fall dust interpretation. We conclude that air fall dust, deposited in the partial wind shadow of Eagle crater, is responsible for the bright streak seen from orbit, consistent with models involving patchy, discontinuous deposits of air fall dust distributed behind obstacles during periods of atmospheric thermal stability during major dust storms.

  9. Dust deposition during the Early Holocene on the loess plateaus of the Vojvodina region in Northern Serbia

    NASA Astrophysics Data System (ADS)

    Markovic, Slobodan; Timar-Gabor, Alida; Stevens, Thomas; Guo, Zhengtang; Hao, Qingzhen; Song, Yang; Hambach, Ulrich; Lehmkuhl, Frank; Peric, Zoran; Obreht, Igor; Zeeden, Christian; Veres, Daniel; Gavrilov, Milivoj

    2015-04-01

    The Northern Serbian province of Vojvodina is a lowland area encompassing the confluence of the Danube, Sava, Tisa (Tisza), Drava, Morava and Tamiš (Temes, Timiş) rivers, which separate several remnant loess plateaus. Loess sediments in the Vojvodina region are among the oldest and most complete loess-paleosol formations in Europe. These thick sequences contain a detailed paleoclimatic record since the Early Pleistocene. The better preservation of Serbian loess-paleosol sequences compared to other European loess records is most likely related to the persistence of much drier conditions in the region, coupled with "plateau-like" dust accumulation style. Recently and through detailed luminescence-based chronological investigations of accumulation derived from several loess sections we aimed at addressing the timing of the onset of Holocene soil (S0) formation in the wider region. So far, the chronological results demonstrate a lack of intensive pedogenesis coeval with the postulated Holocene onset (ie., 11.7 ka BP), and continuation of Aeolian dust deposition during the Early Holocene in some of the investigated sections. Lake sediment and speleothem records from the wider area also suggest that, at least regionally, the hydroclimatic characteristics of the Early Holocene differed markedly. This evidence leads to an important question about the validity of previously generalized direct stratigraphic correlations between regional terrestrial environmental archives and global marine and ice core records (direct synchronization of records vs. acknowledging leads/lags), that employ the Late Pleistocene/Holocene boundary at 11.7 as an absolute tie point.

  10. Relations between rainfall–runoff-induced erosion and aeolian deposition at archaeological sites in a semi-arid dam-controlled river corridor

    USGS Publications Warehouse

    Collins, Brian; Bedford, David; Corbett, Skye; Fairley, Helen; Cronkite-Ratcliff, Collin

    2016-01-01

    Process dynamics in fluvial-based dryland environments are highly complex with fluvial, aeolian, and alluvial processes all contributing to landscape change. When anthropogenic activities such as dam-building affect fluvial processes, the complexity in local response can be further increased by flood- and sediment-limiting flows. Understanding these complexities is key to predicting landscape behavior in drylands and has important scientific and management implications, including for studies related to paleoclimatology, landscape ecology evolution, and archaeological site context and preservation. Here we use multi-temporal LiDAR surveys, local weather data, and geomorphological observations to identify trends in site change throughout the 446-km-long semi-arid Colorado River corridor in Grand Canyon, Arizona, USA, where archaeological site degradation related to the effects of upstream dam operation is a concern. Using several site case studies, we show the range of landscape responses that might be expected from concomitant occurrence of dam-controlled fluvial sand bar deposition, aeolian sand transport, and rainfall-induced erosion. Empirical rainfall-erosion threshold analyses coupled with a numerical rainfall–runoff–soil erosion model indicate that infiltration-excess overland flow and gullying govern large-scale (centimeter- to decimeter-scale) landscape changes, but that aeolian deposition can in some cases mitigate gully erosion. Whereas threshold analyses identify the normalized rainfall intensity (defined as the ratio of rainfall intensity to hydraulic conductivity) as the primary factor governing hydrologic-driven erosion, assessment of false positives and false negatives in the dataset highlight topographic slope as the next most important parameter governing site response. Analysis of 4+ years of high resolution (four-minute) weather data and 75+ years of low resolution (daily) climate records indicates that dryland erosion is dependent on short

  11. Deposition of Asian Dust in the Tahoe Basin and the Impact of Climate Patterns on Deposition

    NASA Astrophysics Data System (ADS)

    Snyder, Jason

    Routine monitoring of fine aerosols in the Lake Tahoe basin began with the Tahoe Regional Planning Association (TRPA) in 1988 (Molenar et. al., 1994). During this time two sites of aerosol impact analysis were chosen based on prior work done by the ARB (Cahill et. al., 1997). These sites included Bliss SP, which is located near Emerald Bay at 200 m Lake Tahoe. Aerosols deposited at the Bliss SP site during each spring from 1988 to 2004, were predominately from sources outside of the Lake Tahoe basin and contained signatures from an "unknown north Sacramento Valley source" (Cahill and Cliff, 2002). The aerosols amounted to about ½ of all fine soil seen at South Lake Tahoe. With a better knowledge regarding the efficiency of the transport of fine aerosol plumes across the Pacific Ocean to North American combined with the presence of Asian dust signatures at other sites including Crater Lake and the Yukon, it was now determined that the source of fine particles to the Lake Tahoe basin was possibly Asian in origin. For this study, aerosols were collected during spring 2006, which coincides with the annual peak of Asian dust transport toward North America. Aerosols were collected at the TERC Tahoe Fish Hatchery, a relatively pollution free site northeast of Tahoe City. Aerosol collections at this site were done on an offshore pier, which reduced the amount of contamination for shore sources of aerosols and pollution such as road dust. The result was the identification of Asian dust signatures in aerosol deposition data for the period of April 28 to May 15, 2006. Such dust plumes were identified using HYSPLIT trajectories. Chemical signatures were also used including the Fe/Ca ratio, which is unique in Asian dust plumes. The particulate matter in these dust plumes produce a regional haze across the Lake Tahoe basin, which could impact incoming solar radiation. Furthermore, deposition of particles from the aerosol plume into the lake not only contributed to suspended

  12. Aeolian geomorphology from the global perspective

    NASA Technical Reports Server (NTRS)

    Greeley, R.

    1985-01-01

    Any planet or satellite having a dynamic atmosphere and a solid surface has the potential for experiencing aeolian (wind) processes. A survey of the Solar System shows at least four planetary objects which potentially meet these criteria: Earth, Mars, Venus, and possibly Titan, the largest satellite of Saturn. While the basic process is the same among these four objects, the movement of particles by the atmosphere, the aeolian environment is drastically different. It ranges from the hot (730 K), dense atmosphere of Venus to the extremely cold desert (218 K) environment of Mars where the atmospheric surface pressure is only approximately 7.5 mb. In considering aeolian processes in the planetary perspective, all three terrestrial planets share some common areas of attention for research, especially in regard to wind erosion and dust storms. Relevant properties of planetary objects potentially subject to aeolian processes are given in tabular form.

  13. Dynamic Aeolian Deposition of Glacial Iron to the Open Ocean: 2 Years of Time-Series Observations from Middleton Island and the Copper River Delta

    NASA Astrophysics Data System (ADS)

    Schroth, A. W.; Crusius, J.; Campbell, R. W.; Gasso, S.; Moy, C. M.

    2013-12-01

    ron (Fe) is thought to be a limiting nutrient for phytoplankton in much of the north Pacific and the Gulf of Alaska (GoA) in particular. In the subarctic GoA, we have a limited knowledge of the role of glaciers in driving the supply of iron to marine ecosystem, and in particular, the role that dust derived from glacial flour plays in delivering bioavailable iron to the offshore ecosystems. In order to better understand glacial dust deposition in the GoA and its potential role in marine productivity, we combine time-series satellite, meteorological, and aerosol geochemical data from over 2 years of monitoring at Middleton Island and the Copper River Valley. Middleton Island is located on the edge of the continental shelf and is ideally positioned to monitor the flux of aerosol iron into adjacent Fe-limited waters, while the Copper River Delta and Valley are thought to be the source of much of the glacial dust that reaches Middleton. In fact, widespread dust events have been frequently observed (MODIS imagery) emanating from exposed floodplains within the heavily glacierized Copper River Valley. These events are most common in the fall, when high pressure in the AK interior and low pressure in the central GoA establish a pressure gradient that drives anomalously strong northerly winds capable of entraining the abundant glacial flour that is exposed under low water conditions in the Copper River floodplain. Here we present Fe geochemical data from continuous automated aerosol sampling on Middleton Island from 2011-2013. These time-series geochemical data, when coupled with MODIS and meteorological observations, present a remarkable opportunity to examine the drivers of these dust events and how inter-annual meteorological variability between dust seasons influences the annual flux of soluble Fe associated with these phenomena. The dust season of 2011-12, characterized by early and heavy snows and onshore winds, generated very little dust with minimal and infrequent

  14. Reconstructing transport pathways for late Quaternary dust from eastern Australia using the composition of trace elements of long traveled dusts

    NASA Astrophysics Data System (ADS)

    Petherick, Lynda M.; McGowan, Hamish A.; Kamber, Balz S.

    2009-04-01

    The southeast Australian dust transport corridor is the principal pathway through which continental emissions of dust from central and eastern Australia are carried to the oceans by the prevailing mid-latitude westerly circulation. The analysis of trace elements of aeolian dust, preserved in lake sediment on North Stradbroke Island, southeast Queensland, is used to reconstruct variation in the intensity and position of dust transport to the island over the past 25,000 yrs. Separation of local and long traveled dust content of lake sediments is achieved using a unique, four-element (Ga, Ni, Tl and Sc) separation method. The local and continental chronologies of aeolian deposition developed by this study show markedly different records, and indicate varied responses to climate variability on North Stradbroke Island (local aeolian sediment component) and in eastern and central Australia (long traveled dust component). The provenance of the continental component of the record to sub-geologic catchment scales was accomplished using a ternary mixing model in which the chemical identification of dusts extracted, from the lake sediments, was compared to potential chemical characteristics of surface dust from the source areas using 16 trace elements. The results indicate that the position and intensity of dust transport pathways during the late Quaternary varied considerably in response to changing atmospheric circulation patterns as well as to variations in sediment supply to dust source areas, which include the large anabranching river systems of the Lake Eyre and Murray-Darling Basins.

  15. Flood Induced Increases in Aeolian Transport Along the Missouri River

    NASA Astrophysics Data System (ADS)

    Benthem, A. J.; Strong, L.; Schenk, E.; Skalak, K.; Hupp, C. R.; Galloway, J.

    2014-12-01

    In 2011, heavy winter snow melt combined with extensive spring rains caused the Missouri River to experience the most extensive flooding since the river was dammed in the 1950s. Large sections of the river banks, islands, and floodplains experienced weeks of prolonged inundation, resulting in extensive sand deposition as up to1 km inland from the established channel. Though locally variable, deposits of up to 3m of loose sand were deposited on the floodplain and extensive areas of shrub, grasslands, and agricultural fields were completely buried or had vegetation washed away in the inundation zone. The flooding also created a number of new unvegetated islands which provide important habitat for endangered species including the Piping Plover (Charadrius melodus). These newly created sand surfaces are unconsolidated and have very little vegetation to prevent aeolian transport. Strong sustained regional winds of up to 20m/s (45mph) cause substantial sediment fluxes which modify landscape topography, shift river morphology, and increase regional dust levels. Our study monitors and quantifies the increase in aeolian transport that occurred following flooding along the Garrison Reach, a 110 km section of free flowing Missouri River in North Dakota. In 2012 and 2013 we measured sand transport and accumulation rates using Leatherman style sand traps and erosion pins to at 9 sites of varying vegetation densities. We apply these flux rates to a high resolution remote sensing vegetation map to estimate the total flux of sand for this segment of the river. We also quantify total available new sand for transport using repeat Light Detection and Ranging (LiDAR) coverage from before and after the flood and examine the relationship between sand deposition and the rate of reestablishment of vegetation. All of these results are used to estimate the scale of flood induced aeolian processes and predict where they may continue to influence the landscape.

  16. Time resolved measurements of deposition and dust in NSTX

    NASA Astrophysics Data System (ADS)

    Skinner, C. H.; Biewer, T. M.; Nishino, N.; Parker, C. V.

    2005-10-01

    Tritium codeposition and dust accumulation will impact the operation of next-step devices such as ITER and measurements in contemporary tokamaks are important to gain a predictive understanding that can help mitigate the associated risk. We will discuss results from three diagnostics that address these issues. Incandescent particles have been observed by fast cameras moving at 10-100 m/s in some NSTX plasmas. The particle trajectories appear to be complex including velocity reversal, and particle breakup. We also have developed a novel electrostatic device to detect dust on remote surfaces[1,2]. Recent laboratory work with ultra-fine 25 µm trace spacing has shown 1 μg/cm2 sensitivity with information on the particle size in the detected waveform. Quartz crystal microbalances have been deployed in NSTX to measure pulse-by-pulse deposition at various locations[3] and observations from the current campaign will be reported. [1] A. Bader et al., Rev. Sci. Instrum., 75, (2004) 370. [2] C. Voinier et al., J. Nucl. Mater. in press (2005) [3] C. H. Skinner et al., J. Nucl. Mater., 337-339 (2005) 129.

  17. Discovery of laterally extensive drape of siliciclastic silt in the Northern Calcareous Alps, Austria: Late-glacial to ?early Holocene aeolian deposition.

    NASA Astrophysics Data System (ADS)

    Gild, Charlotte; Geitner, Clemens; Haas, Jean Nicolas; Sanders, Diethard

    2016-04-01

    Field surveys in the Northern Calcareous Alps (NCA, a nappe stack of Triassic carbonate rocks) revealed a drape, or drapes, typically 20-40 cm in thickness of siliciclastic silt over extensive landscape areas, from valley floors to LGM (Last Glacial Maximum) nunataks. The drape veneers substrates ranging from country rocks to diverse post-LGM deposits - the latter with depositional and/or erosional topographies. The drape mostly is overlain by vegetated organic material and, in turn, tops inactive/abandoned post-LGM successions of fluvial (including kame terrace), alluvial fan, scree slope, LGM basal till, and rock-avalanche origin. The drape extends over kilometers at least (limit of field investigation in specific areas), up to LGM nunatak plateaus. Deposystems (e.g., scree slopes, alluvial fans) on carbonate-rocky terrain that remained active until the Holocene are not topped by the drape; a level of siliciclastic silt, however, was spotted within a few of these successions. The possibility that several levels of silt are intercalated within or top post-glacial deposits cannot be excluded at present; the large lateral extent and the stratigraphic position, however, suggest that at least most locations pertain to a single widespread level (with that reservation, we prefer to speak in singular of the drape). Over the inspected area (~ 90 x 20 km), the drape consists mainly of silt-sized grains of quartz, feldspars, micas, and amphiboles; at a few sites, calci- or dolosilt are admixed. Most of the grains are angular to subrounded, some grains show features of corrosion. Preliminary palynological analyses of this silt - seven locations from LGM nunataks to kame terrace and alluvial fans - suggest vegetation types that, together, may be assigned to palaeoclimates ranging from the late-glacial (Younger Dryas?) to the middle Holocene. A few of the pollen spectra appear to record sparse vegetation cover allowing for enhanced aeolian deposition, but other spectra (e

  18. Aeolian Sediments on the northeastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Stauch, G.; Lehmkuhl, F.

    2013-12-01

    The timing and spatial distribution of aeolian sediments on the northeastern Tibetan Plateau have gained increasing interest during the last decades. The formation of the aeolian deposits is often related to cold and dry climate conditions. However, further important parameters are the local geomorphological setting and sediment availability in the source areas of the sediments. Aeolian sediments including loess, sandy loess and sands are widespread in the catchment of the Donggi Cona on the northeastern Tibetan Plateau at around 4000 m asl. Detailed geomorphological mapping of the deposits and geochemical analyses of the sediments revealed varying sources throughout the Holocene. The timing of the sediment deposition is based on 43 OSL (optical stimulated luminescence) ages. Several phases of enhanced aeolian deposition took place during the Holocene. The accumulation of aeolian sands lasted from 10.5 until 7 ka. The main source area of these sands was a large alluvial fan. Parallel to the formation of the dunes loess was deposited on the adjacent slopes from 10.5 until 7.5 ka. These sediments most probably originate in the nearby Qaidam Basin. In contrast to the general linkage of aeolian sediments to dryer climate conditions formation of these aeolian deposits is related to wetter conditions due to a strengthening of the Asian Summer Monsoons. The wetter climate enhanced the trapping and continuous fixation of the aeolian sediments by vegetation. With the further strengthening of the Monsoon fluvial processes eroded the aeolian deposits at least until 6 ka. From about 3 ka to the present a reactivation of aeolian sands and the formation of new dunes took place. This reactivation is related to drier conditions on the north-eastern Tibetan Plateau. Additionally, an increased human influence might have enhanced the aeolian activity. Similar phases of enhanced aeolian activity have been documented in more than 170 available OSL ages from loess and aeolian sands in

  19. Variability of mineral dust deposition in the western Mediterranean basin and south-east of France

    NASA Astrophysics Data System (ADS)

    Vincent, Julie; Laurent, Benoit; Losno, Rémi; Bon Nguyen, Elisabeth; Roullet, Pierre; Sauvage, Stéphane; Chevaillier, Servanne; Coddeville, Patrice; Ouboulmane, Noura; di Sarra, Alcide Giorgio; Tovar-Sánchez, Antonio; Sferlazzo, Damiano; Massanet, Ana; Triquet, Sylvain; Morales Baquero, Rafael; Fornier, Michel; Coursier, Cyril; Desboeufs, Karine; Dulac, François; Bergametti, Gilles

    2016-07-01

    Previous studies have provided some insight into the Saharan dust deposition at a few specific locations from observations over long time periods or intensive field campaigns. However, no assessment of the dust deposition temporal variability in connection with its regional spatial distribution has been achieved so far from network observations over more than 1 year. To investigate dust deposition dynamics at the regional scale, five automatic deposition collectors named CARAGA (Collecteur Automatique de Retombées Atmosphériques insolubles à Grande Autonomie in French) have been deployed in the western Mediterranean region during 1 to 3 years depending on the station. The sites include, from south to north, Lampedusa, Majorca, Corsica, Frioul and Le Casset (southern French Alps). Deposition measurements are performed on a common weekly period at the five sites. The mean dust deposition fluxes are higher close to the northern African coasts and decrease following a south-north gradient, with values from 7.4 g m-2 year-1 in Lampedusa (35°31' N, 12°37' E) to 1 g m-2 year-1 in Le Casset (44°59' N, 6°28' E). The maximum deposition flux recorded is of 3.2 g m-2 wk-1 in Majorca with only two other events showing more than 1 g m-2 wk-1 in Lampedusa, and a maximum of 0.5 g m-2 wk-1 in Corsica. The maximum value of 2.1 g m-2 year-1 observed in Corsica in 2013 is much lower than existing records in the area over the 3 previous decades (11-14 g m-2 year-1). From the 537 available samples, 98 major Saharan dust deposition events have been identified in the records between 2011 and 2013. Complementary observations provided by both satellite and air mass trajectories are used to identify the dust provenance areas and the transport pathways from the Sahara to the stations for the studied period. Despite the large size of African dust plumes detected by satellites, more than 80 % of the major dust deposition events are recorded at only one station, suggesting that the dust

  20. Variability of mineral dust deposition in the western Mediterranean basin and South-East of France

    NASA Astrophysics Data System (ADS)

    Vincent, J.; Laurent, B.; Losno, R.; Bon Nguyen, E.; Roullet, P.; Sauvage, S.; Chevaillier, S.; Coddeville, P.; Ouboulmane, N.; di Sarra, A. G.; Tovar-Sánchez, A.; Sferlazzo, D.; Massanet, A.; Triquet, S.; Morales Baquero, R.; Fornier, M.; Coursier, C.; Desboeufs, K.; Dulac, F.; Bergametti, G.

    2015-12-01

    Previous studies have provided some insight into the Saharan dust deposition at a few specific locations from observations over long time periods or intensive field campaigns. However, no assessment of the dust deposition temporal variability in connection with its regional spatial distribution has been achieved so far from network observations over more than one year. To investigate dust deposition dynamics at the regional scale, five automatic deposition collectors named CARAGA ("Collecteur Automatique de Retombées Atmosphériques insolubles à Grande Autonomie" in French) have been deployed in the western Mediterranean region during one to three years depending on the station. The sites include, from South to North, Lampedusa Isl., Mallorca Isl., Corsica Isl., Frioul Isl. and Le Casset (South of French Alps). Deposition measurements are performed on a common weekly period at the 5 sites. The mean Saharan dust deposition fluxes are higher close to the North African coasts and decrease following a South to North gradient, with values from 7.4 g m-2 yr-1 in Lampedusa (35°31' N-12°37' E) to 1 g m-2 yr-1 in Le Casset (44°59' N-6°28' E). The maximum deposition flux recorded is of 3.2 g m-2 wk-1 in Mallorca with only 2 other events showing more than 1 g m-2 wk-1 in Lampedusa, and a maximum of 0.5 g m-2 wk-1 in Corsica. The maximum value of 2.1 g m-2 yr-1 observed in Corsica in 2013 is much lower than existing records in the area over the 3 previous decades (11-14 g m-2 yr-1). From the 537 available samples, ninety eight major Saharan dust deposition events have been identified in the records between 2011 and 2013. Complementary observations provided by both satellite and air mass trajectories are used to identify the dust provenance areas and the transport pathways from the Sahara to the stations. Despite the large size of African dust plumes detected by satellites, more than eighty percent of the major dust deposition events are recorded at only one station

  1. Dust deposition events in Caucasus Mountains as documented by snow/firn pack at Mt Elbrus

    NASA Astrophysics Data System (ADS)

    Kutuzov, S.; Shahgedanova, M.; White, K.; Lavrentiev, I.; Mikhalenko, V.

    2012-12-01

    Mineral dust particles from distant desert sources are transported to the Caucasus Mountains and deposited as clearly visible brown layers in snow pack and glacier ice. These layers of dust provide valuable information on frequency of deposition events and sources and atmospheric pathways of desert dust which can be used to assess variability in emissions of desert dust and its atmospheric trajectories and to validate representation of dust pathways in the atmospheric circulation models. Although there is considerable research on snow chemistry in the Caucasus, characteristics of mineral dust, its provenance and effects on the Caucasus glaciers have not been studied. Here we present a study of dust deposition events over the past five years in Caucasus Mountains as documented by snow and firn pack at Mt Elbrus. Dust samples were collected from the shallow ice core in June 2012 at the western Elbrus plateau (5150 m a.s.l.). Particle size distribution and elemental analysis of individual particles were completed for each sample using scanning electron microscopy (SEM) and ICPMS analysis. Snow-firn pack dating was performed using stratigraphy markers and seasonal signal of the isotopic composition. In total 13 dust horizons were analysed. Provenancing of distant dust was analysed using multi-displinary approach. In addition to elemental analysis, various remote sensing products and atmospheric models were used. A combination of SEVIRI red-green-blue composite imagery, MODIS atmospheric optical depth fields derived using the Deep Blue algorithm, air mass trajectories derived with HYSPLIT model and analysis of meteorological data enabled identification of dust source regions with high temporal (hours) and spatial (circa 100 km) resolution. It was shown that long transported dust deposition (LTD) events occurred in Caucasus 2-4 times a year mostly in spring time between March and June. Two main source regions are Northern Sahara and Middle East deserts. Desert dust may

  2. Mimicking Martian dust: An in-vacuum dust deposition system for testing the ultraviolet sensors on the Curiosity rover

    SciTech Connect

    Sobrado, J. M. Martín-Soler, J.; Martín-Gago, J. A.

    2015-10-15

    We have designed and developed an in-vacuum dust deposition system specifically conceived to simulate and study the effect of accumulation of Martian dust on the electronic instruments of scientific planetary exploration missions. We have used this device to characterize the dust effect on the UV sensor of the Rover Environmental Monitoring Station in the Mars science Laboratory mission of NASA in similar conditions to those found on Mars surface. The UV sensor includes six photodiodes for measuring the radiation in all UV wavelengths (direct incidence and reflected); it is placed on the body of Curiosity rover and it is severely affected by the dust deposited on it. Our experimental setup can help to estimate the duration of reliable reading of this instrument during operation. We have used an analogous of the Martian dust in chemical composition (magnetic species), color, and density, which has been characterized by X-ray spectroscopy. To ensure a Brownian motion of the dust during its fall and a homogeneous coverage on the instrumentation, the operating conditions of the vacuum vessel, determined by partial pressures and temperature, have to be modified to account for the different gravities of Mars with respect to Earth. We propose that our designed device and operational protocol can be of interest to test optoelectronic instrumentation affected by the opacity of dust, as can be the degradation of UV photodiodes in planetary exploration.

  3. Mimicking Martian dust: An in-vacuum dust deposition system for testing the ultraviolet sensors on the Curiosity rover.

    PubMed

    Sobrado, J M; Martín-Soler, J; Martín-Gago, J A

    2015-10-01

    We have designed and developed an in-vacuum dust deposition system specifically conceived to simulate and study the effect of accumulation of Martian dust on the electronic instruments of scientific planetary exploration missions. We have used this device to characterize the dust effect on the UV sensor of the Rover Environmental Monitoring Station in the Mars science Laboratory mission of NASA in similar conditions to those found on Mars surface. The UV sensor includes six photodiodes for measuring the radiation in all UV wavelengths (direct incidence and reflected); it is placed on the body of Curiosity rover and it is severely affected by the dust deposited on it. Our experimental setup can help to estimate the duration of reliable reading of this instrument during operation. We have used an analogous of the Martian dust in chemical composition (magnetic species), color, and density, which has been characterized by X-ray spectroscopy. To ensure a Brownian motion of the dust during its fall and a homogeneous coverage on the instrumentation, the operating conditions of the vacuum vessel, determined by partial pressures and temperature, have to be modified to account for the different gravities of Mars with respect to Earth. We propose that our designed device and operational protocol can be of interest to test optoelectronic instrumentation affected by the opacity of dust, as can be the degradation of UV photodiodes in planetary exploration. PMID:26520990

  4. Mimicking Martian dust: An in-vacuum dust deposition system for testing the ultraviolet sensors on the Curiosity rover

    NASA Astrophysics Data System (ADS)

    Sobrado, J. M.; Martín-Soler, J.; Martín-Gago, J. A.

    2015-10-01

    We have designed and developed an in-vacuum dust deposition system specifically conceived to simulate and study the effect of accumulation of Martian dust on the electronic instruments of scientific planetary exploration missions. We have used this device to characterize the dust effect on the UV sensor of the Rover Environmental Monitoring Station in the Mars science Laboratory mission of NASA in similar conditions to those found on Mars surface. The UV sensor includes six photodiodes for measuring the radiation in all UV wavelengths (direct incidence and reflected); it is placed on the body of Curiosity rover and it is severely affected by the dust deposited on it. Our experimental setup can help to estimate the duration of reliable reading of this instrument during operation. We have used an analogous of the Martian dust in chemical composition (magnetic species), color, and density, which has been characterized by X-ray spectroscopy. To ensure a Brownian motion of the dust during its fall and a homogeneous coverage on the instrumentation, the operating conditions of the vacuum vessel, determined by partial pressures and temperature, have to be modified to account for the different gravities of Mars with respect to Earth. We propose that our designed device and operational protocol can be of interest to test optoelectronic instrumentation affected by the opacity of dust, as can be the degradation of UV photodiodes in planetary exploration.

  5. Publication trends in aeolian research: An analysis of the Bibliography of Aeolian Research

    NASA Astrophysics Data System (ADS)

    Stout, John E.; Warren, Andrew; Gill, Thomas E.

    2009-04-01

    An analysis of the Bibliography of Aeolian Research has provided information regarding publication trends in aeolian research. Results suggest that there has been a significant increase in the number of publications per year since the first aeolian-research publication appeared in 1646. Rates of publication have increased from only three publications in the 17th Century to nearly three publications per day in the 21st Century. The temporal distribution of publications follows a complex pattern that is influenced by many factors. In the 17th and 18th Centuries, publications appear as isolated clusters indicating limited interest in aeolian research and limited opportunities for individuals to contribute to scientific literature. With time, many new scientific societies are formed and many new scientific journals are established, opening new opportunities for scientists to contribute to scientific discourse. Landmark publications open up new research areas and define new directions for aeolian research. General advances in science and technology provide new techniques for sampling blowing sand and dust. In addition, clear signs exist that publication rates respond to major environmental and climatic events, especially large-scale disasters that focus attention on wind erosion and blowing dust. The Sirocco dust events of 1901-1903, the North American Dust Bowl of the1930s, and the recent sand and dust storm problems in China have all led to significant increases in the number of publications in aeolian research. Rates of publication are negatively influenced by major political and social upheavals, especially global conflicts such as World Wars I and II. Sudden shifts in government structure and support can also influence publication rates. A good example is the increased publication rates in China following the end of the Cultural Revolution, a trend that continues today.

  6. Variations of Martian surface albedo: Evidence for yearly dust deposition and removal

    NASA Technical Reports Server (NTRS)

    Christensen, Philip R.

    1987-01-01

    The purpose is to determine the degree, spatial distribution and timing of the deposition and removal of dust storm fallout, and to relate the current patterns of dust deposition and removal to the long-term evolution of the Martian surface. Southern Hemisphere dark areas are found to quickly return to close to their pre-storm albedos, suggesting rapid removal of any dust that was deposited. Northern Hemisphere dark regions are brighter post-storm, but gradually darken to pre-storm levels over the Mars year. In doing so they act as local sources of dust during otherwise clear periods. Dust does not appear to be removed from bright regions, resulting in the 1 to 2 m thick deposits observed today.

  7. The aeolian sedimentary system in the northern Qilian Shan and Hexi Corridor (N-China) - geomorphologic, sedimentologic and climatic drivers

    NASA Astrophysics Data System (ADS)

    Nottebaum, Veit; Lehmkuhl, Frank; Stauch, Georg

    2015-04-01

    The formation of aeolian deposits depends on the influence of climatic factors but also on non-climatic controls, such as local geomorphological setting and tectonic activity. Unravelling the environmental history needs a careful consideration of a set of sections to capture spatial variability and a detailed investigation of depositing processes and chronology. Along the northern margin of the Qilian Shan mountain range 22 OSL-dated loess and aeolian sand sections and additional surface samples reveal the interactions between climatic, geomorphologic and sedimentologic factors. Thin loess covers (~1-2 m) occur in elevations of 2000 to 3800 m asl, which were mainly accumulated during the Holocene. End-member modelling of loess grain size data exhibits three dominant aeolian transport pathways representing local transport from fluvial storages, dust storm contribution and background dust deposition. Their relative contributions show a clear dependence on geomorphological setting, and additionally, synchronous trends throughout the Holocene. Their relative changes allow conclusions about Holocene environmental conditions. Discontinuous archives (aeolian sand, lacustrine, and alluvial deposition) in the lower forelands of the Qilian Shan show a distinct spatial pattern contrasting western and eastern forelands. The comparison of OSL ages exhibits high sediment accumulation (~2 m/ka) in the drier western part during the Late Glacial, while the lack of Holocene ages indicates sediment discharge / deflation. In contrast, moister areas in the eastern foreland yield scattered Holocene ages. This indicates high sediment dynamics, benefiting from fluvial reworking and thus provided sediment availability. Fluvial sediment supply plays an important role in sediment recycling. Meanwhile, western forelands lack efficient sand sources and fluvial reworking agents. The study exemplifies the complex sedimentary systems acting along mountain to foreland transects which often host

  8. Late Pleistocene aeolian dust provenances and wind direction changes reconstructed by heavy mineral analysis of the sediments of the Dehner dry maar (Eifel Mountains, Germany)

    NASA Astrophysics Data System (ADS)

    Lehmkuhl, Frank; Römer, Wolfgang; Sirocko, Frank

    2016-04-01

    The study presents the results of a heavy mineral analysis from a 38 m long record of aeolian sediments from a core section of the Dehner dry maar (Eifel Mountains, Germany). The record encompasses the period from 30 to about 12.5 ka. Heavy-mineral analysis of the silt fraction has been performed at a sampling interval of 1 m. Statistical analyses enabled the distinction of local and regional source areas of aeolian material and revealed pronounced changes in the amounts of different heavy mineral species and corresponding changes in the grain size index (GSI). The results indicate that during the early stages of MIS 2 (40 to 30m depth) aeolian sediments were supplied mostly from local sources. This period is characterized by a low GSI ratio resulting from a reduced mobility of material due to a vegetation cover. The climax of the LGM is characterized by a higher supply of heavy minerals from regional and more distant sources. Changes in the provenance areas are indicated in inverse relationships between zircon, rutile, tourmaline (ZRT) and carbonate particles. Shifts in the wind direction are documented in pronounced peaks of carbonate particles indicating easterly winds that have crossed the limestone basins in the Eifeler North South Zone. ZRT-group minerals on the other hand suggest a westerly source area and a supply from areas consisting of Paleozoic clastic sedimentary rocks. In the periods following the LGM the analyses indicate an increasing degree of mixing of heavy minerals from various provinces. This suggests the existence of a presumably incomplete, thin cover of deflatable loessic sediments that has been repeatedly reworked on the elevated surfaces of the Eifel.

  9. Dust transport and deposition observed from the Terra-MODIS space observations

    NASA Astrophysics Data System (ADS)

    Kaufman, Y. J.; Koren, I.; Tanre, D.; Fan, S.; Remer, L.; Ginoux, P.

    2003-12-01

    Meteorological observations, in situ data and satellite images of dust episodes were used already in the 1970s to estimate that 100 tg of dust are transported from Africa over the Atlantic Ocean every year between June and August and deposited in the Atlantic Ocean and the Americas. Desert dust is a main source of nutrients to oceanic biota and the Amazon forest, but deteriorates air quality and caries pathogens as shown for Florida. Dust affects the Earth radiation budget, thus participating in climate change and feedback mechanisms. There is an urgent need for new tools for quantitative evaluation of the dust distribution, transport and deposition. The Terra spacecraft launched at the dawn of the last millennium provides first systematic well calibrated multispectral measurements from the MODIS instrument, for daily global analysis of aerosol. MODIS data are used here to distinguish dust from smoke and maritime aerosols and evaluate the African dust column concentration, transport and deposition. We found that 230 80 tg of dust are transported annually from Africa to the Atlantic Ocean, 30 tg return to Africa and Europe, 70 tg reach the Caribbean, 45 tg fertilize the Amazon Basin, 4 times as previous estimates thus explaining a paradox regarding the source of nutrition to the Amazon forest, and 120 40 tg are deposited in the Atlantic Ocean. The results are compared favorably with dust transport models for particle radius * 12 m. This study is a first example of quantitative use of MODIS aerosol for a geophysical study.

  10. Modelling the aeolian transport of ammonia emitted from poultry farms and its deposition to a coastal waterbody

    NASA Astrophysics Data System (ADS)

    Wiegand, Aaron N.; Menzel, Sarah; King, Rob; Tindale, Neil

    2011-10-01

    In response to the absence of monitoring data, the Air Pollution Model (TAPM), a 3D prognostic model that predicts both meteorology and air pollution concentrations, was used to investigate the transport of ammonia across part of the Sunshine Coast region (South East Queensland, Australia), following its emission to the atmosphere from 41 poultry farms (egg and broiler) in the district, which cumulatively house approximately 9.8 million fowl. The study estimated the total amount of ammonia that is deposited directly into the Pumicestone Passage waterbody (63 km2) and onto the surrounding catchment (1184 km2), through both wet and dry deposition processes over a twelve-month period. The results indicate that wet deposition is the dominant deposition process into the waterbody (89%) and catchment area (94%). Most of the ammonia deposition is predicted to occur within a relatively short distance from the farms, due to higher concentrations at these locations. In the base case simulation, the estimated 1823 tonnes of annual ammonia emissions were predicted to result in the direct deposition of approximately 2.3 tonnes of ammonia into the Pumicestone Passage waterbody and approximately 53.5 tonnes onto the Pumicestone Passage catchment land surface, where there was potential for its subsequent run-off into the waterbody. This annual loading into the waterbody is not insignificant and is likely to contribute to the formation of algal blooms. The fate of the remaining 91% of the ammonia estimated to be emitted from the farms was not accounted for in the deposition totals. This ammonia most likely remains suspended in the atmosphere and is transported outside of the simulation study area.

  11. The Origin of Transverse Aeolian Ridges on Mars

    NASA Astrophysics Data System (ADS)

    Geissler, P.

    2015-12-01

    Transverse aeolian ridges, or TARs, are found throughout the tropics of Mars and typically appear as rows of bright ripples that are several meters tall and spaced semi-regularly several tens of meters apart. The origin of these features remained mysterious for decades after their discovery in Viking and Mars Global Surveyor images. A new hypothesis (Geissler, 2014, 10.1002-2014JE004633) suggests that TARs might be deposits left behind by dusty turbidity currents in the Martian atmosphere. The hypothesis assumes that the micron-sized dust particles are transported in suspension in turbulent flows, driven both by the winds and by gravity. The dust is concentrated near the surface, much like turbidity currents on Earth. Because of the difference in density, however, the dust clouds behave as a fluid distinct from the clear sky above. In particular, waves can appear at the surface of the dense "fluid" when the flows encounter topographic obstacles along their paths. Such gravity waves travel at speeds that are determined by gravity and the thickness of the flow, much like waves in shallow water on Earth. When the wave propagation speed matches the speed of the flow, stationary waves are produced that persist in fixed locations. The bedforms deposited by such stationary waves are called "antidunes" (Gilbert, 1914, USGS Prof. Paper 86) because, unlike dunes, they can migrate upstream in a supercritical flow. Antidunes are commonly seen in shallow, high energy fluvial deposits on Earth. They are usually destroyed as quickly as they form, and are rarely preserved. The Martian TARs survive because the dust is sticky; TARs are deposited by currents that are much slower than the wind speeds needed to lift the dust again. Subaerial antidunes are much rarer on Earth and less well studied, and so the giant subaerial stationary antidunes of Mars, if that is what the TARs turn out to be, may teach us much about a geological process that is poorly known on our planet.

  12. Asian dust transport during the last century recorded in Lake Suigetsu sediments

    NASA Astrophysics Data System (ADS)

    Nagashima, Kana; Suzuki, Yoshiaki; Irino, Tomohisa; Nakagawa, Takeshi; Tada, Ryuji; Hara, Yukari; Yamada, Kazuyoshi; Kurosaki, Yasunori

    2016-03-01

    Asian dust has a significant impact on the natural environment. Its variability on multiple timescales modulates the ocean biogeochemistry and climate. We demonstrate that temporal changes in the deposition flux of Aeolian dust recorded in sediments from Lake Suigetsu, central Japan, during the last century exhibit a continuous decreasing trend and a decadal-scale decrease in 1952-1974. The former decreasing trend can be explained by a decrease in the dust storm frequency at source regions due to the warming of Mongolia in the twentieth century, suggesting future decrease of Asian dust transport with further warming in Mongolia. Decadal-scale decrease of Aeolian dust is explained by weaker westerlies in lower latitudes in central Japan, reflecting a weaker Aleutian Low during the corresponding period. Decadal-scale westerly change probably causes north-south shifts of the dominant dust transport path, which affects subarctic northern Pacific Ocean biogeochemistry by changing the micronutrient iron supply.

  13. Aeolian processes and the bioshpere: Interactions and feedback loops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aeolian processes affect landform evolution, biogeochemical cycles, regional climate, human health, and desertification. The entrainment, transport and deposition of aeolian sediments are recognized as major drivers in the dynamics of the earth system and there is a growing interest in the scientif...

  14. Late-glacial elevated dust deposition linked to westerly wind shifts in southern South America

    PubMed Central

    Vanneste, Heleen; De Vleeschouwer, François; Martínez-Cortizas, Antonio; von Scheffer, Clemens; Piotrowska, Natalia; Coronato, Andrea; Le Roux, Gaël

    2015-01-01

    Atmospheric dust loadings play a crucial role in the global climate system. Southern South America is a key dust source, however, dust deposition rates remain poorly quantified since the last glacial termination (~17 kyr ago), an important timeframe to anticipate future climate changes. Here we use isotope and element geochemistry in a peat archive from Tierra del Fuego, to reconstruct atmospheric dust fluxes and associated environmental and westerly wind changes for the past 16.2 kyr. Dust depositions were elevated during the Antarctic Cold Reversal (ACR) and second half of the Younger Dryas (YD) stadial, originating from the glacial Beagle Channel valley. This increase was most probably associated with a strengthening of the westerlies during both periods as dust source areas were already available before the onset of the dust peaks and remained present throughout. Congruent with glacier advances across Patagonia, this dust record indicates an overall strengthening of the wind belt during the ACR. On the other hand, we argue that the YD dust peak is linked to strong and poleward shifted westerlies. The close interplay between dust fluxes and climatic changes demonstrates that atmospheric circulation was essential in generating and sustaining present-day interglacial conditions. PMID:26126739

  15. Late-glacial elevated dust deposition linked to westerly wind shifts in southern South America.

    PubMed

    Vanneste, Heleen; De Vleeschouwer, François; Martínez-Cortizas, Antonio; von Scheffer, Clemens; Piotrowska, Natalia; Coronato, Andrea; Le Roux, Gaël

    2015-01-01

    Atmospheric dust loadings play a crucial role in the global climate system. Southern South America is a key dust source, however, dust deposition rates remain poorly quantified since the last glacial termination (~17 kyr ago), an important timeframe to anticipate future climate changes. Here we use isotope and element geochemistry in a peat archive from Tierra del Fuego, to reconstruct atmospheric dust fluxes and associated environmental and westerly wind changes for the past 16.2 kyr. Dust depositions were elevated during the Antarctic Cold Reversal (ACR) and second half of the Younger Dryas (YD) stadial, originating from the glacial Beagle Channel valley. This increase was most probably associated with a strengthening of the westerlies during both periods as dust source areas were already available before the onset of the dust peaks and remained present throughout. Congruent with glacier advances across Patagonia, this dust record indicates an overall strengthening of the wind belt during the ACR. On the other hand, we argue that the YD dust peak is linked to strong and poleward shifted westerlies. The close interplay between dust fluxes and climatic changes demonstrates that atmospheric circulation was essential in generating and sustaining present-day interglacial conditions. PMID:26126739

  16. Late-glacial elevated dust deposition linked to westerly wind shifts in southern South America

    NASA Astrophysics Data System (ADS)

    Vanneste, Heleen; de Vleeschouwer, François; Martínez-Cortizas, Antonio; von Scheffer, Clemens; Piotrowska, Natalia; Coronato, Andrea; Le Roux, Gaël

    2015-07-01

    Atmospheric dust loadings play a crucial role in the global climate system. Southern South America is a key dust source, however, dust deposition rates remain poorly quantified since the last glacial termination (~17 kyr ago), an important timeframe to anticipate future climate changes. Here we use isotope and element geochemistry in a peat archive from Tierra del Fuego, to reconstruct atmospheric dust fluxes and associated environmental and westerly wind changes for the past 16.2 kyr. Dust depositions were elevated during the Antarctic Cold Reversal (ACR) and second half of the Younger Dryas (YD) stadial, originating from the glacial Beagle Channel valley. This increase was most probably associated with a strengthening of the westerlies during both periods as dust source areas were already available before the onset of the dust peaks and remained present throughout. Congruent with glacier advances across Patagonia, this dust record indicates an overall strengthening of the wind belt during the ACR. On the other hand, we argue that the YD dust peak is linked to strong and poleward shifted westerlies. The close interplay between dust fluxes and climatic changes demonstrates that atmospheric circulation was essential in generating and sustaining present-day interglacial conditions.

  17. Enhanced sensitivity of oceanic CO2 uptake to dust deposition by iron-light colimitation

    NASA Astrophysics Data System (ADS)

    Nickelsen, Levin; Oschlies, Andreas

    2015-01-01

    The iron hypothesis suggests that in large areas of the ocean phytoplankton growth and thus photosynthetic CO2 uptake is limited by the micronutrient iron. Phytoplankton requires iron in particular for nitrate uptake, light harvesting, and electron transport in photosynthesis, suggesting a tight coupling of iron and light limitation. One important source of iron to the open ocean is dust deposition. Previous global biogeochemical modeling studies have suggested a low sensitivity of oceanic CO2 uptake to changes in dust deposition. Here we show that this sensitivity is increased significantly when iron-light colimitation, i.e., the impact of iron bioavailability on light-harvesting capabilities, is explicitly considered. Accounting for iron-light colimitation increases the shift of export production from tropical and subtropical regions to the higher latitudes of subpolar regions at high dust deposition and amplifies iron limitation at low dust deposition. Our results reemphasize the role of iron as a key limiting nutrient for phytoplankton.

  18. Dust deposition events in Caucasus Mountains as revealed by shallow ice cores from Mt Elbrus

    NASA Astrophysics Data System (ADS)

    Kutuzov, Stanislav; Shahgedanova, Maria; Kemp, Sarah; Lavrentiev, Ivan; Mikhalenko, Vladimir; Popov, Gregory

    2013-04-01

    Dust aerosol transported to the high mountains and is deposited and stored in snow pack and glacier ice. Present and past records of dust stored in glaciers provide valuable information on frequency of deposition events, source regions and atmospheric pathways of mineral dust. The Caucasus Mountains, located between the Black and the Caspian seas is a glacierized region affected by deposition of desert dust from the Middle East and Sahara. In this study, a combination of ice core analysis, remote sensing and air mass trajectory modelling was used to identify the source regions of dust deposited on the glaciers of Mt Elbrus in the central Greater Caucasus and to characterize atmospheric pathways of dust with high temporal and spatial resolution. Shallow ice cores were extracted at Mt Elbrus in 2009 and 2012. Dust deposition events, recorded as brown layers in the snow, firn and ice were dated to the precision on months using oxygen and deuterium isotopic analyses. Examination of the local meteorological and NCEP/NCAR reanalysis data and application of HYSPLIT atmospheric trajectory model enabled dating dust deposition events with a precision of days, identification of potential source regions of desert dust and its pathways in the atmosphere. Examination of red-blue green infrared composite imagery from Spinning Enhanced Visible and Infra-Red Imager (SEVIRI) on board the Meteosat Second Generation (MSG) satellite enabled further provenancing of desert dust with high temporal (hours) and spatial (c. 100 km) resolution. Seventeen dust layers deposited between May 2009 and July 2012 were detected in the shallow cores. The source regions of the desert dust transported to Mt Elbrus were primarily located in the Middle East, in particular in eastern Syria and in the Syrian Desert at the border between Saudi Arabia, Iraq and Jordan. Northern Sahara, the foothills of the Djebel Akhdar Mountains in eastern Libya and the border region between Libya and Algeria were other

  19. Sandy inland braidplain deposition with local aeolian sedimentation in the lower and middle parts of the buntsandstein and sandy coastal braidplain deposition in the topmost zechstein in the sudetes (Lower Silesia, Poland)

    NASA Astrophysics Data System (ADS)

    Mroczkowski, Jerzy; Mader, Detlef

    The lower and middle parts of the Buntsandstein between Röt and Zechstein in the Sudetes (Lower Silesia, Poland) crop out in the marginal seams of the North Sudetic Trough and the Intra Sudetic Trough. The continental red beds originate in predominantly sandy braided river systems of an extensive inland alluvial plain in almost arid climate. The sediments are laid down in channels and floodplains of a moderately- to highly-braided, sandy to pebbly stream complex consisting of narrowly- to moderately-spaced low-sinuosity watercourses and narrow to wide overbank plains between the channels. Rapid aggradation and abandonment, quick lateral migration or high avulsion rates of the considerably mobile streams result in effective combing of the interchannel areas. Persistent high-energy overspilling of watercourse banks and invasion of bed-load-saturated flood surges into the overbank areas often lead to primary restriction or even suppression of formation of topstratum suspension fines. Secondarily, the silty-clayey and fine sandy overbank sediments which could occasionally originate in remote or sheltered lakes and ponds are frequently completely reworked by considerable lateral and vertical erosion during sidewards displacement of the rivers. As a result of both primary-depositional restriction and secondary-erosional removal of floodplain fines, the channel sediments are commonly stacked upon each other to multistorey stream sand complexes. Emergence and desiccation of parts of the alluvial plain sometimes give rise to aeolian deflation and accumulation of the winnowed sand to small dunelets and wind ripple trains. The aeolian depositional environment representing a more peripheral erg facies with sheet sand interdune milieu could not be fully ascertained due to poor outcrop conditions, but is likely to occur locally in view of comparative interpretation with other mixed dune and river sand sequences in the Mid-European Buntsandstein. Variations of fluvial style are

  20. Towards a phoenix phase in aeolian research: shifting geophysical perspectives from fluvial dominance

    SciTech Connect

    Whicker, Jeffrey J; Field, Jason P; Breshears, David D

    2008-01-01

    Aeolian processes are a fundamental driver of earth surface dynamics, yet the importance of aeolian processes in a broader geosciences context may be overshadowed by an unbalanced emphasis on fluvial processes. Here we wish to highlight that aeolian and fluvial processes need to be considered in concert relative to total erosion and to potential interactions, that relative dominance and sensitivity to disturbance vary with mean annual precipitation, and that there are important scale-dependencies associated with aeolian-fluvial interactions. We build on previous literature to present relevant conceptual syntheses highlighting these issues. We then highlight the relative investments that have been made in aeolian research on dust emission and management relative to that in fluvial research on sediment production. Literature searches highlight that aeolian processes are greatly understudied relative to fluvial processes when considering total erosion in different environmental settings. Notably, within the USA, aeolian research was triggered by the Dust Bowl catastrophe of the 1930s, but the resultant research agencies have shifted to almost completely focusing on fluvial processes, based on number of remaining research stations and on monetary investments in control measures. However, numerous research issues associated with intensification of land use and climate change impacts require a rapid ramping up in aeolian research that improves information about aeolian processes relative to fluvial processes, which could herald a post-Dust Bowl Phoenix phase in which aeolian processes are recognized as broadly critical to geo- and environmental sciences.

  1. Chemical fate and settling of mineral dust in surface seawater after atmospheric deposition observed from dust seeding experiments in large mesocosms

    NASA Astrophysics Data System (ADS)

    Desboeufs, K.; Leblond, N.; Wagener, T.; Nguyen, E. B.; Guieu, C.

    2014-03-01

    We report here the elemental composition of sinking particles in sediment traps and in the water column following 4 artificial mineral dust seedings (representing a flux of 10 g m-2) in mesocosms, simulating dry or wet dust deposition into oligotrophic marine waters. These data were used to examine the rates and mechanisms of total mass, particulate organic carbon (POC) and elemental (Al, Ba, Ca, Co, Cu, Fe, K, Li, Mg, Mn, Mo, N, Nd, P, S, Sr and Ti) transfer from the surface to the sediment traps after dust deposition. The dust additions were carried out with fresh or artificially aged dust (i.e. enriched in nitrate and sulfate by mimicking cloud processing) for various biogeochemical conditions, enabling us to test the effect of these parameters on the chemical evolution and settling of dust after deposition. Whatever the type of seeding (using fresh dust to simulate dry deposition or artificially aged dust to simulate wet deposition), the dust was predominant in the particulate phase in the sediment traps at the bottom of mesocosms and within the water column during each experiment. 15% of initial dust mass was dissolved in the water column in the first 24 h after seeding. For artificially aged dust, this released fraction was mainly nitrate, sulfate and calcium and hence represented a significant source of new N for the marine biota. Except for Ca, S and N, the elemental composition of dust particles was constant during their settling, showing the relevance of using interelemental ratios, such as Ti/Al or Ba/Al as proxy of lithogenic fluxes or of productivity. After 7 days, between 30 and 68% of added dust was still in suspension in the mesocosms depending on the experiment. This difference in the dust settling was directly associated to a difference in POC export, since POC fluxes were highly correlated to dust lithogenic fluxes signifying a ballast effect of dust. The highest fraction of remaining dust in the mesocosm at the end of the experiment was found

  2. Sorting during Migration of Aeolian Megaripples

    NASA Astrophysics Data System (ADS)

    Sullivan, R. J., Jr.; Zimbelman, J. R.

    2014-12-01

    Aeolian sediments commonly are well sorted. However, aeolian megaripples (aka coarse-grained ripples or granule ripples) have bimodal grain size-frequencies. Distinguishing aeolian megaripple deposits from mixed grain size fluvial deposits is important, particularly for martian sedimentary rocks where implications for flowing water in the martian past (if revealed by legitimate fluvial deposits) are important mission drivers for rovers and landers. Aeolian megaripples are relatively minor components of terrestrial aeolian settings (e.g., as interdune features), but on Mars, megaripples have been encountered in many locations by landers and rovers, are durable due to indurated, armoring surface layers of very coarse sand, and therefore are likely candidates for preservation in the martian sedimentary rock record. Unfortunately, megaripple deposits preserved in martian sedimentary rocks must be recognized with much less data or context than obtained typically during terrestrial fieldwork. We have undertaken wind tunnel experiments and fieldwork to assist interpretations distinguishing aeolian megaripple deposits from mixed grain fluvial materials. Lags of coarse or very coarse sand from ancient aeolian environments within the White Rim Sandstone, Canyonlands NP, UT, and at some localities along the J2 Unconformity at Buckhorn Wash, UT, are well sorted, with a sharply defined maximum grain size in each case. We conducted wind tunnel experiments to explore whether the well-sorted, sharp cutoff in maximum grain size of the coarse fraction in these deposits could be diagnostic of aeolian megaripple formation and migration. Wind tunnel experiments involved 250 μm sand saltating against 600-2800 μm grains. For a given wind tunnel speed, only a narrow grain size range appeared on megaripple surfaces as these bedforms developed spontaneously from the bed; somewhat finer grains migrated rapidly downwind, while slightly coarser grains remained immobile. The physics of

  3. Evaluation of the Corrosivity of Dust Deposited on Waste Packages at Yucca Mountain, Nevada

    SciTech Connect

    C. Bryan; R. Jarek; T. Wolery; D. Shields; M. Sutton; E. Hardin; D. Barr

    2005-03-18

    Small amounts of dust will be deposited on the surfaces of waste packages in drifts at Yucca Mountain during the operational and the preclosure ventilation periods. Salts present in the dust will deliquesce as the waste packages cool and relative humidity in the drifts increases. In this paper, we evaluate the potential for brines formed by dust deliquescence to initiate and sustain localized corrosion that results in failure of the waste package outer barrier and early failure of the waste package. These arguments have been used to show that dust deliquescence-induced localized or crevice corrosion of the waste package outer barrier (Alloy 22) is of low consequence with respect to repository performance. Measured atmospheric and underground dust compositions are the basis of thermodynamic modeling and experimental studies to evaluate the likelihood of brine formation and persistence, the volume of brines that may form, and the relative corrosivity of the initial deliquescent brines and of brines modified by processes on the waste package surface. In addition, we evaluate several mechanisms that could inhibit or stifle localized corrosion should it initiate. The dust compositions considered include both tunnel dust samples from Yucca Mountain, National Airfall Deposition Program rainout data, and collected windblown dust samples. Also considered is sublimation of ammonium salts, a process that could affect dust composition prior to deliquescence. Ammonium chlorides, nitrates, and even sulfates sublimate readily into ammonia and acid gases, and will be lost from the surface of the waste package prior to deliquescence.

  4. Mid to late Holocene aeolian activity revealed by a multiproxy peat record in continental CE Europe (Northern Romania)

    NASA Astrophysics Data System (ADS)

    Panait, Andrei Marian; Feurdean, Angelica; Hutchinson, Simon Mark; Tanţǎu, Ioan

    2016-04-01

    Peat bogs, and especially ombrogenous mire, are increasingly used as continental archives of aeolian dust and sand deposition. Since ombrogenous peat is formed above ground water level all the inputs are atmospheric. Dust is more influenced by regional climatic patterns due to its small size, whereas sand tends to record local patterns in storm frequency and intensity reflecting its larger particle size. However, both size fractions are significantly underused proxies of past climate variability. Here, an ombrogenous peat profile from Tǎul Muced in the Rodnei Mountains (Northern Romanian Carpathians), located in a temperate continental climate, with Atlantic and Baltic influences, provides the very first record of mid to late Holocene aeolian activity from Romania highlighting the interplay between local and regional controls in a continental area of CE Europe. We use a multiproxy approach combining radiocarbon dating, the physical properties of the peat (loss-on-ignition, bulk density), mineral magnetic measurements (ARM, SIRM), geochemical (Ti and Zr) and particle size analysis (via both laser diffraction and the manual counting of sand particles under a steromicroscope) to determine changes in: i) atmospheric dust deposition and ii) wind velocities during the last 7800 years. We found that the aeolian particles are mainly silt (3.9-63 μm) (dust) and sand (63-1200 μm). The mineralogical composition of the aeolian sediment in peat is mainly quartz, more rarely calcite and very rarely other minerals such as feldspar, sulphur, mica (biotite and muscovite), magnetite and other melanocrate minerals. The roundness of the sand particles varies from well-rounded to sub-angular and angular, and suggests that the sand particles have different source areas. Results from this study show that over the last 7600 years the pattern of wind frequency changed several times: there are periods characterised by a low aeolian input around 6950-6550, 5000-3900, 3500-2900, 1650

  5. Robotic Measurement of Aeolian Processes

    NASA Astrophysics Data System (ADS)

    Roberts, S.; Duperret, J. M.; Jerolmack, D. J.; Lancaster, N.; Nikolich, G.; Shipley, T. F.; Van Pelt, R. S.; Zobeck, T. M.; Koditschek, D. E.

    2015-12-01

    Local and regional measurements of sand transport and dust emission in complex natural settings presently lack spatiotemporal resolution adequate to inform models relevant for land management, climate policy, and the basic science of geomorphology. Deployments of wind, sand and dust sensors sophisticated enough to begin unpacking the complex relations among wind turbulence, surface roughness, sand flux and dust emission remain largely stationary. Aerial observations from satellites, planes and even UAVs help fill in, but none of these modalities offer the hope of "capturing the action" by being at the right place at the right time relative to the highly localized nature of sediment transport during wind storms. We have been developing a legged robot capable of rapidly traversing desert terrain, and are now adapting it to serve as a platform for scientific instrumentation. We aim to field a semi-autonomous, reactive mobile sensory package suited to the needs of aeolian science that can address the limitations of existing alternatives. This presentation reports on early trials in the Jornada LTER and White Sands National Monument aimed at gathering measurements of airflow and rates of sand transport on a dune face, assessing the role of roughness elements such as vegetation in modifying the wind shear stresses incident on the surface, and estimating erosion susceptibility in a natural arid soil. We will solicit ideas from the audience about other potentially interesting and viable measurement targets. Future close collaboration between aeolian, cognitive and robotics scientists such as we hope to promote through this presentation may yield machines with scientifically relevant sensory suites possessing sufficient autonomy to operate in-situ at the most intense episodes of wind and sediment movement under conditions far too uncomfortable and hazardous for human presence.

  6. Does a theoretical estimation of the dust size distribution at emission suggest more bioavailable iron deposition.

    SciTech Connect

    Ito, A; Kok, J; Feng, Y; Penner, J

    2012-01-01

    Global models have been used to deduce atmospheric iron supply to the ocean, but the uncertainty remains large. We used a global chemical transport model to investigate the effect of the estimated size distribution of dust on the bioavailable iron deposition. Simulations are performed with six different size distributions for dust aerosols at emission using similar aerosol optical depths (AODs) to constrain the total emission flux of dust. The global dust emission rate using a recent theoretical estimate for the dust size distribution at emission (2116 Tg yr{sup -1}) is about two times larger than the average of estimates using the other four empirical size distributions (1089 {+-} 469 Tg yr{sup -1}). In contrast to the large differences in total emissions, the emission of fine dust (diameter < 2.5 {mu}m) is relatively robust (176 {+-} 34 Tg yr{sup -1}), due to the strong constraint of AOD on fine dust emission. Our model results indicate that soluble iron (SFe) deposition is relatively invariant to the dust size distribution at emission in regions where most soluble iron is provided by acid mobilization of fine dust. In contrast, the use of the theoretical size distribution suggests a larger deposition of SFe (by a factor of 1.2 to 5) in regions where the concentration of acidic gases is insufficient to promote iron dissolution in dust particles, such as the South Atlantic. These results could have important implications for the projection of marine ecosystem feedbacks to climate change and highlight the necessity to improve the dust size distribution.

  7. Studies in Aeolian geology

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald

    1988-01-01

    The objective of the research was to assess the significance of aeolian (windblown) processes in the evolution of planetary surfaces. The approach was to use wind tunnel simulations, field studies of possible analogs, and analyses of spacecraft data.

  8. Chemical fate and settling of mineral dust in surface seawater after atmospheric deposition observed from dust seeding experiments in large mesocosms

    NASA Astrophysics Data System (ADS)

    Desboeufs, K.; Leblond, N.; Wagener, T.; Bon Nguyen, E.; Guieu, C.

    2014-10-01

    We report here the elemental composition of sinking particles in sediment traps and in the water column following four artificial dust seeding experiments (each representing a flux of 10 g m-2). Dry or wet dust deposition were simulated during two large mesocosms field campaigns that took place in the coastal water of Corsica (NW Mediterranean Sea) representative of oligotrophic conditions. The dust additions were carried out with fresh or artificially aged dust (i.e., enriched in nitrate and sulfate by mimicking cloud processing) for various biogeochemical conditions, enabling us to test the effect of these parameters on the chemical composition and settling of dust after deposition. The rates and mechanisms of total mass, particulate organic carbon (POC) and chemical elements (Al, Ba, Ca, Co, Cu, Fe, K, Li, Mg, Mn, Mo, N, Nd, P, S, Sr and Ti) transfer from the mesocosm surface to the sediment traps installed at the base of the mesocosms after dust deposition show that (1) 15% of the initial dust mass was dissolved in the water column in the first 24 h after seeding. Except for Ca, S and N, the elemental composition of dust particles was constant during their settling, showing the relevance of using interelemental ratios, such as Ti/Al as proxy of lithogenic fluxes. (2) Whatever the type of seeding (using fresh dust to simulate dry deposition or artificially aged dust to simulate wet deposition), the particulate phase both in the water column and in the sediment traps was dominated by dust particles. (3) Due to the high Ba content in dust, Ba/Al cannot be used as productivity proxy in the case of high dust input in the sediment traps. Instead, our data suggests that the ratio Co/Al could be a good productivity proxy in this case. (4) After 7 days, between 30 and 68% of added dust was still in suspension in the mesocosms. This difference in the dust settling was directly associated with a difference in POC export, since POC fluxes were highly correlated to dust

  9. Influence of the inter tropical discontinuity on Harmattan dust deposition in Ghana

    NASA Astrophysics Data System (ADS)

    Lyngsie, G.; Olsen, J. L.; Awadzi, T. W.; Fensholt, R.; Breuning-Madsen, H.

    2013-09-01

    The Harmattan is a dry dust-laden continental wind, and in the boreal winter Harmattan dust plumes affects many West African countries, including Ghana. When the Harmattan is strongest the southern part of Ghana is affected by the Inter Tropical Discontinuity (ITD). In this study, we investigate if the ITD functions as a barrier, preventing long transported Harmattan dust to settle south of, and below, it. This is done by analyzing a Harmattan dust outbreak, mapped using Earth observation (EO) data from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard the Meteosat Second Generation (MSG) platform, coupled with data from West African AERONET stations, and comparing these observations with wind data from NOAA's Air Resources Laboratory (ARL) program and the mineral suite of samples from seasonal dust deposits in north and south Ghana. In northern Ghana traces of minerals indicate a weak influence of particles from an arid environment, which is found consistent with the mapped dust plumes and NE wind directions. In southern Ghana the mineral composition show no sediments of an arid origin, the mapped dust plumes is less intense, and the surface wind directions and wind mass trajectories are more varying with lower wind speeds. Based on the results of this study it is concluded that dust deposited, or measured near ground, in the Harmattan period under the ITD, and south of it, does not contain material from the Chad Basin due to the local winds conditions.

  10. Dust Transport and Deposition Observed from the Terra-MODIS Space Observations

    NASA Technical Reports Server (NTRS)

    Kaufman, Y. J.; Koren, I.; Remer, L. A.; Tanre, D.; Fan, Ginoux; Fan, S.

    2004-01-01

    Meteorological observations, in situ data and satellite images of dust episodes were used already in the 1970s to estimate that 100 tg of dust are transported from Africa over the Atlantic Ocean every year between June and August and deposited in the Atlantic Ocean and the Americas. Desert dust is a main source of nutrients to oceanic biota and the Amazon forest, but deteriorates air quality and caries pathogens as shown for Florida. Dust affects the Earth radiation budget, thus participating in climate change and feedback mechanisms. There is an urgent need for new tools for quantitative evaluation of the dust distribution, transport and deposition. The Terra spacecraft launched at the dawn of the last millennium provides first systematic well calibrated multispectral measurements from the MODIS instrument, for daily global analysis of aerosol. MODIS data are used here to distinguish dust from smoke and maritime aerosols and evaluate the African dust column concentration, transport and deposition. We found that 230+/-80 tg of dust are transported annually from Africa to the Atlantic Ocean, 30 tg return to Africa and Europe, 70 tg reach the Caribbean, 45 tg fertilize the Amazon Basin, 4 times as previous estimates thus explaining a paradox regarding the source of nutrition to the Amazon forest, and 120+/-40 tg are deposited in the Atlantic Ocean. The results are compared favorably with dust transport models for particle radius less than or equal to 12 microns. This study is a first example of quantitative use of MODIS aerosol for a geophysical study.

  11. Characteristics of modern atmospheric dust deposition in snow in the Mt. Yulong region, southeastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Niu, Hewen; He, Yuanqing; Lu, Xixi; Dong, Zhiwen; Zhao, Guoyong; Zhang, Tao; Du, Jiankuo

    2014-11-01

    We evaluated the concentration, size and distribution, and temporal variation of insoluble dust micro-particles in the snow, rainfall and water taken from the areas surrounding the Mt. Yulong to define the characteristics of modern atmospheric dust deposition and the contributions of different dust sources. The mean mass concentration (4511 μg kg-1) of micro-particles with 0.57 < d < 26 μm, and the diameter (11.5 μm) of dust contained in the water bodies of the Mt. Yulong are roughly similar to those observed in other sites, implying that dust is primarily supplied through short-range transport from proximal source regions (several or hundreds of km distances). The mean mass concentrations of micro-particles with 0.57 < d < 26 μm is lower in the rainfall than in the snow and the river water, suggesting the rain water is an ideal source/carrier for detecting the characteristics of modern atmospheric micro-particles. Volume size distributions of micro-particles in the snow and water showed single modal structures having volume median diameters from 3 to 26 μm. Number concentrations of micro-particles in the snow were higher than that in the rainfall, the river water contains the least amount of micro-particles. Vertical profiles of the snowpits show that there is a strong lateral correlation among the dust peaks, indicating a regional uniformity of dust deposition and suitability of snow analysis for dust deposition. In addition, the bare rock of snow-free terrain in the Mt. Yulong region and the mineral particles from local rock weathering are also important sources for the dust deposition.

  12. Dust Transport and Deposition Observed from the Terra-Moderate Image Spectrometer (MODIS) Space Observations

    NASA Technical Reports Server (NTRS)

    Kaufman, Y.

    2004-01-01

    Meteorological observations, in situ data and satellite images of dust episodes were used already in the 1970s to estimate that 100 tg of dust are transported from Africa over the Atlantic Ocean every year between June and August and deposited in the Atlantic Ocean and the Americas. Desert dust is a main source of nutrients to oceanic biota and the Amazon forest, but deteriorates air quality and caries pathogens as shown for Florida. Dust affects the Earth radiation budget, thus participating in climate change and feedback mechanisms. There is an urgent need for new tools for quantitative evaluation of the dust distribution, transport and deposition. The Terra spacecraft launched at the dawn of the last millennium provides first systematic well calibrated multispectral measurements from the MODIS instrument, for daily global analysis of aerosol. MODIS data are used here to distinguish dust from smoke and maritime aerosols and evaluate the African dust column concentration, transport and deposition. We found that 230 plus or minus 80 tg of dust are transported annually from Africa to the Atlantic Ocean, 30 tg return to Africa and Europe, 70 tg reach the Caribbean, 45 tg fertilize the Amazon Basin, 4 times as previous estimates thus explaining a paradox regarding the source of nutrition to the Amazon forest, and 120 plus or minus 40 tg are deposited in the Atlantic Ocean. The results are compared favorably with dust transport models for particle radius less than or equal to 12 microns. This study is a first example of quantitative use of MODIS aerosol for a geophysical study.

  13. The evolution of dust deposits in the Martian north polar region

    NASA Technical Reports Server (NTRS)

    Squyres, S. W.

    1979-01-01

    The origin and evolution of two major eolian deposits of the Martian north polar region, the layered deposits and the debris mantle, are examined. Both apparently result from deposition of dust along with the seasonal CO2 frost cap. Dust deposited onto the perennial ice is incorporated into the layered deposits, while dust deposited directly onto the surface becomes part of the debris mantle. Climatically induced fluctuation of the perennial ice margin has influenced the evolution of both units. Periodic exposure to the atmosphere has allowed erosion of curvilinear troughs in the surface of the layered deposits. Intervening periods of deposition may have resulted in gradual poleward migration of the trough forms, leaving behind sets of low-amplitude surface undulations in former trough locations. Advance and retreat of the perennial ice margin has also probably resulted in a fine interfingering of the layered deposits-debris mantle contract. Limited post-depositional stripping of the debris mantle has been accomplished by intense winds blowing outward from the pole.

  14. MECA Worksop on Dust on Mars 2

    NASA Technical Reports Server (NTRS)

    Lee, Steven (Editor)

    1986-01-01

    Topics addressed include: sedimentary debris; mineralogy; Martian dust cycles; Mariner 9 mission; Viking observations; Mars Observer; atmospheric circulation; aeolian features; aerosols; and landslides.

  15. Lateral and Seasonal Trends of Saharan Dust Deposition along a Transect over the Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    van der Does, M.; Korte, L.; Munday, C. I.; Brummer, G. J. A.; Stuut, J. B. W.

    2015-12-01

    Every year, an estimated 140 million tons of Saharan dust are deposited in the Atlantic Ocean, which can have several direct and indirect effects on global and regional climate. For example, dust can scatter and absorb incoming and reflected solar radiation, transport nutrients and pathogens, and act as mineral ballast particles in the ocean. In order to constrain the relations between atmospheric dust and climate, submarine sediment traps at five stations along a transect across the Atlantic Ocean at 12°N were deployed, at 1200m and 3500m water depth. Samples of seven of these sediment traps, that sampled from October 2012 to November 2013, have been analyzed on particle size and dust flux. The size of the dust particles is important because it can have an effect on the positive or negative radiation balance in the atmosphere. Small particles in the high atmosphere can reflect incoming radiation and therefore potentially have a cooling effect on climate. Large particles in the lower atmosphere have the opposite effect by absorbing reflected radiation from the Earth's surface. Mineral dust also affects carbon export to the deep ocean by providing mineral ballast for organic particles, and the size of the dust particles directly relates to the downward transport velocity. Here I will present the measured grain-size distributions of first-year samples from seven sediment traps recovered from the 12°N-latitude transect as well as dust flux data. The data show seasonal variations, with finer grained dust particles during winter and spring, and coarser grained particles during summer and fall. Also a fining trend of the grain sizes of the dust particles from source (Africa) to sink (Caribbean) is observed, which is expected due to intuitive relationships between size and transport distance. The observed size of the dust particles at large distances from their source is much larger than previously assumed and applied in climate models. See: www.nioz.nl/dust

  16. Recent atmospheric dust deposition in an ombrotrophic peat bog in Great Hinggan Mountain, Northeast China.

    PubMed

    Bao, Kunshan; Xing, Wei; Yu, Xiaofei; Zhao, Hongmei; McLaughlin, Neil; Lu, Xianguo; Wang, Guoping

    2012-08-01

    Recent deposition of atmospheric soil dust (ASD) was studied using (210)Pb-dated Sphagnum-derived peat sequences from Great Hinggan Mountain in northeast China. Physicochemical indices of peat including dry bulk density, water content, ash content, total organic carbon and mass magnetic susceptibility were measured. Acid-insoluble concentration of lithogenic metals (Al, Ca, Fe, Mn, V and Ti) were measured using ICP-AES. The basic physicochemical properties were used to assess the peat trophic status and indicated that the sections above 45-60 cm are rain-fed peat. A continuous record of ASD fluxes over the past 150 years was reconstructed based on the geochemical data obtained from the ombrotrophic zone, and the average input rate of ASD is 13.4-68.1 g m(-2) year(-1). The source of soil dust deposited in peat was dominated by the long-range transport of mineral aerosol from the drylands in north China and Mongolia. The temporal variation of ASD fluxes in the last 60 years coincides well with the meteorological records of dust storm frequency during 1954-2002 in north China. This suggests that the reconstructed sequence of atmospheric dust deposition is reliable and we can look back in time at the dust evolution before 1949. Dust storm events were observed occasionally in the late Qing dynasty, and their frequency and intensity were smaller than dust weather occurring in recent times. Four peaks of ASD fluxes were distinguished and correlated with the historical events at that time. This study presents the first atmospheric soil dust data in peat records in northeast China, and complements a global database of peat bog archives of atmospheric deposition. The results reflect the patterns of local environmental change over the past century in north China and will be helpful in formulating policies to achieve sustainable and healthy development. PMID:22664536

  17. The Paleozoic Dust Bowl: Dust Deposition in Tropical Western Pangaea (Midcontinent U.S.) at the Terminus of the Late Paleozoic Ice Age

    NASA Astrophysics Data System (ADS)

    Soreghan, G. S.; Heavens, N. G.; Benison, K. C.; Soreghan, M. J.; Mahowald, N. M.; Foster, T.; Zambito, J.; Sweet, A.; Kane, M.

    2012-12-01

    Atmospheric dust is well recognized and studied as both an archive and agent of climate change in Earth's relatively recent past. Archives of past dust include loess deposits and dust recovered from ocean- and ice-cores. Dust remains poorly known in Earth's past prior to the Cenozoic, but is increasingly recognized in the form of paleo-loess deposits, and (epeiric) marine strata that accumulated isolated from fluvio-deltaic influx. Here, we report on the growing recognition of voluminous dust deposits preserved in the Permian record of the U.S. Midcontinent (western tropical Pangaea). Fine-grained redbeds predominate in Permian strata throughout the U.S. Midcontinent, but notably in a swath extending from Oklahoma through South Dakota. These units consist predominantly of red mudstone and siltstone in commonly massive units, but sedimentary structures and bedding that signal aqueous processes (e.g. laminations, ripples) have led most to infer deltaic or tidal deposition. The absence of channel systems to deliver the sediment, as well as the predominantly massive and laterally continuous character and the uniform fine grain size signal wind transport, implying that these units record sustained dust deposition overprinted at times by sub-aqueous deposition in lakes, including ephemeral saline and acid lakes that led to evaporite cementation. Detrital zircon geochronology indicates that much of the dust originated in the relatively distant Appalachian-Ouachita orogenic systems, which formed part of the central Pangaean mountains (CPM), the collisional zone that sutured the supercontinent. Within the Anadarko basin of Oklahoma, Permian redbeds record >2 km of predominantly dust deposition, some of the thickest dust deposits yet documented in Earth's record. Yet the tropical setting is remarkably non-uniformitarian, as much Quaternary loess occurs in mid- to high-latitude regions, commonly linked to glacial genesis. We are currently investigating with both data and

  18. Evaluation of a new model of aeolian transport in the presence of vegetation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aeolian transport is an important characteristic of many arid and semiarid regions worldwide that affects dust emission and ecosystem processes. The purpose of this paper is to evaluate a recent model of aeolian transport in the presence of vegetation [Okin, 2008]. This approach differs from previou...

  19. Saharan dust deposition may affect phytoplankton growth in the Mediterranean sea at ecological time scales.

    PubMed

    Gallisai, Rachele; Peters, Francesc; Volpe, Gianluca; Basart, Sara; Baldasano, José Maria

    2014-01-01

    The surface waters of the Mediterranean Sea are extremely poor in the nutrients necessary for plankton growth. At the same time, the Mediterranean Sea borders with the largest and most active desert areas in the world and the atmosphere over the basin is subject to frequent injections of mineral dust particles. We describe statistical correlations between dust deposition over the Mediterranean Sea and surface chlorophyll concentrations at ecological time scales. Aerosol deposition of Saharan origin may explain 1 to 10% (average 5%) of seasonally detrended chlorophyll variability in the low nutrient-low chlorophyll Mediterranean. Most of the statistically significant correlations are positive with main effects in spring over the Eastern and Central Mediterranean, conforming to a view of dust events fueling needed nutrients to the planktonic community. Some areas show negative effects of dust deposition on chlorophyll, coinciding with regions under a large influence of aerosols from European origin. The influence of dust deposition on chlorophyll dynamics may become larger in future scenarios of increased aridity and shallowing of the mixed layer. PMID:25333783

  20. Saharan Dust Deposition May Affect Phytoplankton Growth in the Mediterranean Sea at Ecological Time Scales

    PubMed Central

    Gallisai, Rachele; Peters, Francesc; Volpe, Gianluca; Basart, Sara; Baldasano, José Maria

    2014-01-01

    The surface waters of the Mediterranean Sea are extremely poor in the nutrients necessary for plankton growth. At the same time, the Mediterranean Sea borders with the largest and most active desert areas in the world and the atmosphere over the basin is subject to frequent injections of mineral dust particles. We describe statistical correlations between dust deposition over the Mediterranean Sea and surface chlorophyll concentrations at ecological time scales. Aerosol deposition of Saharan origin may explain 1 to 10% (average 5%) of seasonally detrended chlorophyll variability in the low nutrient-low chlorophyll Mediterranean. Most of the statistically significant correlations are positive with main effects in spring over the Eastern and Central Mediterranean, conforming to a view of dust events fueling needed nutrients to the planktonic community. Some areas show negative effects of dust deposition on chlorophyll, coinciding with regions under a large influence of aerosols from European origin. The influence of dust deposition on chlorophyll dynamics may become larger in future scenarios of increased aridity and shallowing of the mixed layer. PMID:25333783

  1. Effect of Mars analogue dust deposition on the automated detection of calcite in visible/near-infrared spectra

    NASA Astrophysics Data System (ADS)

    Gilmore, Martha S.; Merrill, Matthew D.; Castaño, Rebecca; Bornstein, Benjamin; Greenwood, James P.

    2004-12-01

    We have developed an artificial neural net detector for use on board Mars rovers that correctly identifies calcite under Mars analogue dust (JSC Mars-1 regolith simulant) layers up to ˜100 μm thickness and 80% aerial coverage. Both the detector output and the band depth of the ˜2300 nm CO =3 absorption are linearly related to the surface area of exposed calcite. This detector provides a means for rapid and robust automated recognition of calcite on Mars in areas of active aeolian erosion.

  2. Saharan Dust Export towards the Caribbean: Transport, Mixing and Deposition Processes over the Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Heinold, Bernd; Schepanski, Kerstin; Haarig, Moritz; Ansmann, Albert; Groß, Silke; Schäfler, Andreas; Weinzierl, Bernadett; Tegen, Ina

    2015-04-01

    Large amounts of Saharan dust are carried towards the Caribbean within the Saharan Air Layer (SAL), with maximum transport in late boreal spring and early summer. During long-range transport, the dust particles are transformed by aging and mixing, which may have significant but as yet unquantified effects on the dust impact on radiation, cloud properties, and the biogeochemical processes of ecosystems. Here, we investigate the long-range transport of Saharan dust across the Atlantic Ocean by means of transport modelling that has been performed within the framework of the SALTRACE (Saharan Aerosol Long-Range Transport and Aerosol-Cloud Interaction Experiment) project. The emission, transport, dry and wet deposition of Saharan dust as well as the effect of dust radiative forcing are simulated with the regional model COSMO-MUSCAT. The model results are evaluated against the various ground and airborne observations from the SALTRACE field measurements at Barbados Island in June and July 2013. The dust simulations, in turn, help to interpret the observations, in particular from a Lagrangian flight experiment, by providing a spatiotemporal context. Specifically, this study addresses the questions of (a) how the Saharan dust export towards the Caribbean is influenced by the atmospheric circulation over West Africa, (b) which role the different removal and mixing processes play during long-range transport, and (c) what is the impact of dust forcing on the vertical structure of the SAL? In addition, the Saharan dust simulations with COSMO-MUSCAT are combined with trajectory analysis to study particle aging and dust-cloud interactions.

  3. The composition of Martian aeolian sands: Thermal emissivity from Viking IRTM observations

    NASA Technical Reports Server (NTRS)

    Edgett, Kenneth S.; Christensen, Philip R.

    1992-01-01

    Aeolian sands provide excellent surfaces for the remote determination of the mineralogic composition of Martian materials, because such deposits consist of relatively well-sorted, uniform particle sizes and might consist of chemically unaltered, primary mineral grains derived from bedrock. Dark features on the floors of Martian craters are controlled by aeolian processes and many consist largely of unconsolidated, windblown sand. Measurement of the thermal emissivity of geologic materials provides a way to identify mid-infrared absorption bands, the strength and positions of which vary with mineral structure and composition. The Viking Infrared Thermal Mapper (IRTM) had four surface-sensing mid-IR bands, three of which, the 7, 9, and 11 micron channels, correspond to absorption features characteristic of carbonates, sialic, and mafic minerals, respectively. In this study, the highest quality IRTM data were constrained so as to avoid the effects of atmospheric dust, clouds, surface frosts, and particle size variations (the latter using data obtained between 7 and 9 H, and they were selected for dark intracrater features such that only data taken directly from the dark feature were used, so as to avoid thermal contributions from adjacent but unrelated materials. Three-point emissivity spectra of Martian dart intracrater features were compared with laboratory emission spectra of minerals and terrestrial aeolian sands convolved using the IRTM response function to the four IRTM spectral channels.

  4. Aeolian processes in Proctor Crater on Mars: Sedimentary history as analyzed from multiple data sets

    USGS Publications Warehouse

    Fenton, L.K.; Bandfield, J.L.; Ward, A.W.

    2003-01-01

    Proctor Crater is a 150 km diameter crater in Noachis Terra, within the southern highlands of Mars. The analysis leading to the sedimentary history incorporates several data sets including imagery, elevation, composition, and thermal inertia, mostly from the Mars Global Surveyor mission. The resulting stratigraphy reveals that the sedimentary history of Proctor Crater has involved a complex interaction of accumulating and eroding sedimentation. Aeolian features spanning much of the history of the crater interior dominate its surface, including large erosional pits, stratified beds of aeolian sediment, sand dunes, erosional and depositional streaks, dust devil tracks, and small bright bed forms that are probably granule ripples. Long ago, up to 450 m of layered sediment filled the crater basin, now exposed in eroded pits on the crater floor. These sediments are probably part of an ancient deposit of aeolian volcaniclastic material. Since then, some quantity of this material has been eroded from the top layers of the strata. Small, bright dune forms lie stratigraphically beneath the large dark dune field. Relative to the large dark dunes, the bright bed forms are immobile, although in places, their orientations are clearly influenced by the presence of the larger dunes. Their prevalence in the crater and their lack of compositional and thermal distinctiveness relative to the crater floor suggests that these features were produced locally from the eroding basin fill. Dust devil tracks form during the spring and summer, following a west-southwesterly wind. Early in the spring the dust devils are largely restricted to dark patches of sand. As the summer approaches, dust devil tracks become more plentiful and spread to the rest of the crater floor, indicating that the entire region acquires an annual deposit of dust that is revealed by seasonal dust devils. The dark dunes contain few dust devil tracks, suggesting that accumulated dust is swept away directly by saltation

  5. Modeling the global emission, transport and deposition of trace elements associated with mineral dust

    DOE PAGESBeta

    Zhang, Y.; Mahowald, N.; Scanza, R.; Journet, E.; Desboeufs, K.; Albani, S.; Kok, J.; Zhuang, G.; Chen, Y.; Cohen, D. D.; et al

    2014-12-17

    Trace element deposition from desert dust has important impacts on ocean primary productivity. In this study, emission inventories for 8 elements, which are primarily of soil origin, Mg, P, Ca, Mn, Fe, K, Al, and Si were determined based on a global mineral dataset and a soils dataset. Datasets of elemental fractions were used to drive the desert dust model in the Community Earth System Model (CESM) in order to simulate the elemental concentrations of atmospheric dust. Spatial variability of mineral dust elemental fractions was evident on a global scale, particularly for Ca. Simulations of global variations in the Camore » / Al ratio, which typically ranged from around 0.1 to 5.0 in soil sources, were consistent with observations, suggesting this ratio to be a good signature for dust source regions. The simulated variable fractions of chemical elements are sufficiently different that estimates of deposition should include elemental variations, especially for Ca, Al and Fe. The model results have been evaluated with observational elemental aerosol concentration data from desert regions and dust events in non-dust regions, providing insights into uncertainties in the modeling approach. The ratios between modeled and observed elemental fractions ranged from 0.7 to 1.6 except for 3.4 and 3.5 for Mg and Mn, respectivly. Using the soil data base improved the correspondence of the spatial hetereogeneity in the modeling of several elements (Ca, Al and Fe) compared to observations. Total and soluble dust associated element fluxes into different ocean basins and ice sheets regions have been estimated, based on the model results. Annual inputs of soluble Mg, P, Ca, Mn, Fe and K associated with dust using mineral dataset were 0.28 Tg, 16.89 Gg, 1.32 Tg, 22.84 Gg, 0.068 Tg, and 0.15 Tg to global oceans and ice sheets.« less

  6. Mega-ripples in Iran: A new analog for transverse aeolian ridges on Mars

    NASA Astrophysics Data System (ADS)

    Foroutan, M.; Zimbelman, J. R.

    2016-08-01

    A new terrestrial analog site for transverse aeolian ridges (TARs) is described in this study. The Lut desert of Iran hosts large ripple-like aeolian bedforms, with the same horizontal length scales and patterns of TARs on Mars. Different classes of TARs and different types of other aeolian features such as sand dunes, zibars, dust devil tracks and yardangs can be found in this area, which signify an active aeolian region. This area represents a unique site to study the formation and evolution of these enigmatic features, with potential relevance toward a better understanding of TARs on Mars.

  7. Atmospheric significance of aeolian salts in the sandy deserts of northwestern China

    NASA Astrophysics Data System (ADS)

    Zhu, B.-Q.

    2015-12-01

    Large sandy deserts in the middle latitudes of northwestern China were investigated for soluble salt variations in modern and ancient aeolian sediments, aiming to explore the environmental significance of "aeolian salts". Results revealed that aeolian salt variations have a clear relationship with the changing meridional and zonal gradients of the desert locations and the aeolian differentiation effect, but are weakly linked to local geological conditions. It suggests that the natural system of aeolian salts is hydrologically open and the chemistry of the parent brines are different from that predicted for hydrologically closed systems. Atmospheric depositions of water-soluble chemical species are an important process/source contributing to aeolian salt. Sequential variations of soluble salts in sedimentary profiles interbedded with aeolian and non-aeolian deposits and their palaeoenvironmental implications in the hinterland areas of these deserts were further evaluated, based on the constraints of OSL dating and radiocarbon dating data. The results indicate that the inorganic salts may be a latent geoproxy in revealing regional palaeoclimatic changes in desert areas for the sediments deposited under onefold depositional environment, but the interpretation should be more careful for the sediments deposited under diverse depositional conditions. This study presents the evidence of atmospheric origin of aeolian salt in sandy deserts, with limited climatic significance in palaeoenvironmental reconstruction.

  8. Tracing the provenance of fine-grained dust deposited on the central Chinese Loess Plateau

    NASA Astrophysics Data System (ADS)

    Sun, Youbin; Tada, Ryuji; Chen, Jun; Liu, Qingsong; Toyoda, Shin; Tani, Atsushi; Ji, Junfeng; Isozaki, Yuko

    2008-01-01

    Eolian dust deposits in north China provide an excellent means of determining past variations in continental paleoclimate and atmospheric circulation. However, debate still exists on which deserts in east Asia are the dominant sources of Chinese loess and whether the dust provenance has shifted significantly at different time scales. Here we present new constraints on the provenance of fine-grained dust deposited on the central Chinese Loess Plateau (CLP) by combining electron spin resonance signal intensity and crystallinity index of fine-grained quartz contained in samples from two loess-paleosol sequences. Our results show that the fine-grained dust deposits on the CLP originate mainly from the Gobi desert in southern Mongolia and the sandy deserts in northern China (primarily the Badain Juran and Tengger deserts), rather than from the Taklimakan desert in western China, at least during the last climatic cycle. The dominant source of fine-grained dust varied significantly, from southern Mongolia during cold periods, to northern China during warm periods. The glacial-interglacial provenance fluctuations are strongly coupled with changes in the intensity of the near-surface northwesterly winter monsoon.

  9. Particle size effect for metal pollution analysis of atmospherically deposited dust

    NASA Astrophysics Data System (ADS)

    Al-Rajhi, M. A.; Al-Shayeb, S. M.; Seaward, M. R. D.; Edwards, H. G. M.

    The metallic compositions of 231 atmospherically deposited dust samples obtained from widely-differing environments in Riyadh city, Saudi Arabia, have been investigated in relation to the particle size distributions. Sample data are presented which show that particle size classification is very important when analysing dust samples for atmospheric metal pollution studies. By cross-correlation and comparison, it was found that the best way to express the results of the metal concentration trend was as an average of particle ratios. Correlations between the six metals studied, namely Pb, Cr, Ni, Cu, Zn and Li, were found for every particle size (eight categories) and reveal that the metal concentrations increased as the particle size decreased. On the basis of this work, it is strongly recommended that future international standards for metal pollutants in atmospherically deposited dusts should be based on particle size fractions.

  10. Metal dust deposition in a shotgun wound associated with barrel modification.

    PubMed

    Williams, Andrew S; Bowes, Matthew J

    2016-03-01

    Contact-range gunshot wounds commonly demonstrate deposition of black soot in and around the wound. Deposition of other visible pigments originating from the firearm has not been specifically described. In the current case, an adult male was found dead adjacent to a shotgun fixed in a vice grip with a modified, shortened barrel. A handheld, powered, metal grinding wheel was nearby. Autopsy revealed an intraoral gunshot wound, including soot deposition in and around the mouth and within the wound track. In addition, there was a peculiar, gray, lustrous film on the lips, gingiva, and anterior teeth. The material was concentrated around the most severe areas of injury in the anterior mouth and easily rubbed off with a cotton swab. It was not visualized in the rest of the mouth and not present in the larynx, or the esophagus. Overall, our opinion is that this unique, gray, lustrous film represents deposition of fine metallic dust that accumulated in the barrel of the shotgun during its modification with the grinding wheel. This type of unique pigment deposition should be recognized by forensic pathologists as possibly being related to the discharge of a firearm with a recently modified barrel or other cause for fine metallic dust accumulation within the barrel. Depending on the circumstances of the case, collection of samples of such metal dust deposits could be indicated for subsequent analysis. PMID:26782960

  11. Effect of inhaled dust mite allergen on regional particle deposition and mucociliary clearance in allergic asthmatics**

    EPA Science Inventory

    Background Acute exacerbations in allergic asthmatics may lead to impaired ability to clear mucus from the airways, a key factor in asthma morbidity. Objective The purpose of this study was to determine the effect of inhaled house dust mite challenge on the regional deposition of...

  12. DEPOSITION AND REMOVAL OF FUGITIVE DUST IN THE ARID SOUTHWESTERN UNITED STATES: MEASUREMENTS AND MODEL RESULTS

    EPA Science Inventory

    This work was motivated by the need to better reconcile emission factors for fugitive dust with the amount of geologic material found on ambient filter samples. The deposition of particulate matter with aerodynamic diameter less than or equal to 10 µm (PM10), generated...

  13. Wet and dry deposition of mineral dust particles in Japan: factors related to temporal variation and spatial distribution

    NASA Astrophysics Data System (ADS)

    Osada, K.; Ura, S.; Kagawa, M.; Mikami, M.; Tanaka, T. Y.; Matoba, S.; Aoki, K.; Shinoda, M.; Kurosaki, Y.; Hayashi, M.; Shimizu, A.; Uematsu, M.

    2013-08-01

    Data of temporal variations and spatial distributions of mineral dust deposition fluxes are very limited in terms of duration, location, and processes of deposition. To ascertain temporal variations and spatial distributions of mineral dust deposition by wet and dry processes, weekly deposition samples were obtained at Sapporo, Toyama, Nagoya, Tottori, Fukuoka, and Cape Hedo (Okinawa) in Japan during October 2008-December 2010 using automatic wet and dry separating samplers. Mineral dust weights in water-insoluble residue were estimated from Fe contents measured using an X-ray fluorescence analyzer. For wet deposition, highest and lowest annual dust fluxes were found at Toyama (9.6 g m-2 yr-1) and at Cape Hedo (1.7 g m-2 yr-1) as average values in 2009 and 2010. Higher wet deposition fluxes were observed at Toyama and Tottori, where frequent precipitation (>60% days per month) was observed during dusty seasons. For dry deposition among Toyama, Tottori, Fukuoka, and Cape Hedo, the highest and lowest annual dust fluxes were found respectively at Fukuoka (5.2 g m-2 yr-1) and at Cape Hedo (2.0 g m-2 yr-1) as average values in 2009 and 2010. Although the seasonal tendency of the monthly dry deposition amount roughly resembled that of monthly days of Kosa dust events, the monthly amount of dry deposition was not proportional to monthly days of the events. Comparison of dry deposition fluxes with vertical distribution of dust particles deduced from Lidar data and coarse particle concentrations suggested that the maximum dust layer height or thickness is an important factor for controlling the dry deposition amount after long-range transport of dust particles. Size distributions of refractory dust particles were obtained using four-stage filtration: >20, >10, >5, and >1 μm diameter. Weight fractions of the sum of >20 μm and 10-20 μm (giant fraction) were higher than 50% for most of the event samples. Irrespective of the deposition type, the giant dust fractions were

  14. Threshold wind velocity dynamics as a driver of aeolian sediment mas flux

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Horizontal (saltation) mass flux is a key driver of aeolian dust emission. Estimates of the horizontal mass flux underpin assessments of the global dust budget and influence our understanding of the dust cycle and its interactions. Current equations for predicting horizontal mass flux are based on l...

  15. Biomagnetic monitoring of heavy metals contamination in deposited atmospheric dust, a case study from Isfahan, Iran.

    PubMed

    Norouzi, Samira; Khademi, Hossein; Cano, Angel Faz; Acosta, Jose A

    2016-05-15

    Tree leaves are considered as one of the best biogenic dust collectors due to their ability to trap and retain particulate matter on their surfaces. In this study, the magnetic susceptibility (MS) and the concentration of selected heavy metals of plane tree (Platanus orientalis L.) leaves and deposited atmospheric dust, sampled by an indirect and a direct method, respectively, were determined to investigate the relationships between leaf magnetic parameters and the concentration of heavy metals in deposited atmospheric dust. The objective was to develop a biomagnetic method as an alternative to the common ones used for determining atmospheric heavy metal contaminations. Plane tree leaves were monthly sampled on the 19th of May to November, 2012 (T1-T7), for seven months from 21 different sites in the city of Isfahan, central Iran. Deposited atmospheric dust samples were also collected using flat glass surfaces from the same sites on the same dates, except for T1. MS (χlf, χhf) values in washed (WL) and unwashed leaves (UL) as well as Cu, Fe, Mn, Ni, Pb, and Zn concentrations in UL and deposited atmospheric dust samples were determined. The results showed that the MS content with a biogenic source was low with almost no significant change during the sampling period, while an increasing trend was observed in the MS content of UL samples due to the deposition of heavy metals and magnetic particles on leaf surfaces throughout the plant growth. The latter type of MS content could be reduced through washing off by rain. Most heavy metals examined, as well as the Tomlinson pollution load index (PLI) in UL, showed statistically significant correlations with MS values. The correlation between heavy metals content in atmospheric dust deposited on glass surfaces and leaf MS values was significant for Cu, Fe, Pb, and Zn. Moreover, the similarity observed between the spatial distribution maps of leaf MS and deposited atmospheric dust PLI provided convincing evidence regarding

  16. Evaluation of long-range transport and deposition of desert dust with the CTM MOCAGE

    NASA Astrophysics Data System (ADS)

    Martet, M.; Peuch, V.-H.; Laurent, B.; Marticorena, B.; Bergametti, G.

    2009-04-01

    Desert dust modelling and forecasting attract growing interest, due to the numerous impacts of dusts on climate, numerical weather prediction, health, ecosystems, transportation, as well as on many industrial activities. The validation of numerical tools is a very important activity in this context, and we present here an example of such an effort, combining in situ (horizontal visibility in SYNOP messages, IMPROVE database) and remote-sensing data (satellite imagery, AERONET aerosol optical thickness data). Interestingly, these measurements are available routinely, and not only in the context of dedicated measurements campaign; thus, they can be used in an operational context to monitor the performances of operational forecasting systems. MOCAGE is the chemistry-transport model of Météo-France, used operationally to forecast the three-dimensional transport of dusts and their deposition. Two very long-range transport episodes of dust have been studied: one case of Saharan dust transported to East America through Asia and Pacific observed in November 2004 and one case of Saharan dust transported from West Africa to Caribbean Islands in May 2007. Episodes of geographical extension had seldom been studied, and they provide a very selective reference to compare the modelled desert dusts with. The representation of dusts in MOCAGE appears to be realistic in these two very different cases. In turn, the model simulations are used to make the link between the complementary information provided by the different measurements tools, providing a fully consistent picture of the entire episodes. The evolution of the aerosol size distribution during the episodes has also been studied. With no surprise, our study underlines that deposition processes are very sensitive to the size of dust particles. If the atmospheric cycle, in terms of mass, is very much under the influence of larger particles (some micrometres and above), only the finer particles actually travel over thousands

  17. High Latitude Dust in the Earth System

    NASA Technical Reports Server (NTRS)

    Bullard, Joanna E.; Baddock, Matthew; Bradwell, Tom; Crusius, John; Darlington, Eleanor; Gaiero, Diego; Gasso, Santiago; Gisladottir, Gudrun; Hodgkins, Richard; McCulloch, Robert; McKenna-Neuman, Cheryl; Mockford, Tom; Stewart, Helena; Thorsteinsson, Throstur

    2016-01-01

    Natural dust is often associated with hot, subtropical deserts, but significant dust events have been reported from cold, high latitudes. This review synthesizes current understanding of high-latitude (> or = 50degN and > or = 40degS) dust source geography and dynamics and provides a prospectus for future research on the topic. Although the fundamental processes controlling aeolian dust emissions in high latitudes are essentially the same as in temperate regions, there are additional processes specific to or enhanced in cold regions. These include low temperatures, humidity, strong winds, permafrost and niveo-aeolian processes all of which can affect the efficiency of dust emission and distribution of sediments. Dust deposition at high latitudes can provide nutrients to the marine system, specifically by contributing iron to high-nutrient, low-chlorophyll oceans; it also affects ice albedo and melt rates. There have been no attempts to quantify systematically the expanse, characteristics, or dynamics of high-latitude dust sources. To address this, we identify and compare the main sources and drivers of dust emissions in the Northern (Alaska, Canada, Greenland, and Iceland) and Southern (Antarctica, New Zealand, and Patagonia) Hemispheres. The scarcity of year-round observations and limitations of satellite remote sensing data at high latitudes are discussed. It is estimated that under contemporary conditions high-latitude sources cover >500,000 sq km and contribute at least 80-100 Tg/yr1 of dust to the Earth system (approx. 5% of the global dust budget); both are projected to increase under future climate change scenarios.

  18. Further Analysis on the Mystery of the Surveyor III Dust Deposits

    NASA Technical Reports Server (NTRS)

    Metzger, Philip; Hintze, Paul; Trigwell, Steven; Lane, John

    2011-01-01

    The Apollo 12 lunar module (LM) landing near the Surveyor 1lI spacecraft at the end of 1969 has remained the primary experimental verification of the predicted physics of plume ejecta effects from a rocket engine interacting with the surface of the moon. This was made possible by the return of the Surveyor 1lI camera housing by the Apollo 12 astronauts, allowing detailed analysis of the composition of dust deposited by the Apollo 12 LM plume. It was soon realized after the initial analysis of the camera housing that the LM plume tended to remove more dust than it had deposited. In the present study, coupons from the camera housing were reexamined by a KSC research team using SEM/EDS and XPS analysis. In addition, plume effects recorded in landing videos from each Apollo mission have been studied for possible clues. Several likely scenarios are proposed to explain the Surveyor III dust observations. These include electrostatic attraction of the dust to the surface of the Surveyor as a result of electrostatic charging of the jet gas exiting the engine nozzle during descent; dust blown by the Apollo 12 LM fly-by while on its descent trajectory; dust ejected from the lunar surface due to gas forced into the soil by the Surveyor 1lI rocket nozzle, based on Darcy's law; and mechanical movement of dust during the Surveyor landing. Even though an absolute answer is not possible based on available data and theory, various computational models are employed to estimate the feasibility of each of these proposed mechanisms. Scenarios are then discussed which combine multiple mechanisms to produce results consistent with observations.

  19. DUSTTRAFFIC: Transatlantic Transport and Deposition of Saharan Dust and its Effects on the Marine Environment

    NASA Astrophysics Data System (ADS)

    Stuut, J. B. W.; Guerreiro, C. V.; Munday, C. I.; Brummer, G. J. A.; Korte, L.; Van der Does, M.

    2015-12-01

    Massive amounts of Northwest African dust are transported westward over the Atlantic Ocean towards the Americas each year. These dust particles are thought to feed back on climate through a number of mechanisms including reflection of solar energy at the top of the atmosphere, absorption of energy that was reflected at the Earth's surface in the lower atmosphere, changes of the Earth's albedo, and fertilisation of both terrestrial and marine ecosystems. We are monitoring Saharan dust transport and deposition using an array of instruments that was deployed along a transect between Northwest Africa and the Caribbean at 12°N. In October 2012, we deployed five moorings along this transect between 23°W and 57°W with sediment traps that collect all material settling down through the water column on a temporal resolution of about two weeks. In November 2013, we added three dust-collecting buoys to the transect. The instruments on these buoys filter air to collect the dust particles that are suspended in the air just above sea level. In January 2015, the instruments were recovered and re-deployed for the third time, so that two years of sampling can help us understand the temporal and spatial variability of Saharan-dust deposition and its marine environmental effects. In this presentation, we will introduce the projects in the framework of which this study is carried out, and present preliminary data on grain-size trends as well as marine-environmental observations. See: www.nioz.nl/dust

  20. Increasing eolian dust deposition in the western United States linked to human activity

    NASA Astrophysics Data System (ADS)

    Neff, J. C.; Ballantyne, A. P.; Farmer, G. L.; Mahowald, N. M.; Conroy, J. L.; Landry, C. C.; Overpeck, J. T.; Painter, T. H.; Lawrence, C. R.; Reynolds, R. L.

    2008-03-01

    Mineral aerosols from dust are an important influence on climate and on marine and terrestrial biogeochemical cycles. These aerosols are generated from wind erosion of surface soils. The amount of dust emission can therefore be affected by human activities that alter surface sediments. However, changes in regional- and global-scale dust fluxes following the rapid expansion of human populations and settlements over the past two centuries are not well understood. Here we determine the accumulation rates and geochemical properties of alpine lake sediments from the western interior United States for the past 5,000 years. We find that dust load levels increased by 500% above the late Holocene average following the increased western settlement of the United States during the nineteenth century. We suggest that the increased dust deposition is caused by the expansion of livestock grazing in the early twentieth century. The larger dust flux, which persists into the early twenty-first century, results in a more than fivefold increase in inputs of K, Mg, Ca, N and P to the alpine ecosystems, with implications for surface-water alkalinity, aquatic productivity and terrestrial nutrient cycling.

  1. Modeling the global emission, transport and deposition of trace elements associated with mineral dust

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Mahowald, N.; Scanza, R. A.; Journet, E.; Desboeufs, K.; Albani, S.; Kok, J. F.; Zhuang, G.; Chen, Y.; Cohen, D. D.; Paytan, A.; Patey, M. D.; Achterberg, E. P.; Engelbrecht, J. P.; Fomba, K. W.

    2015-10-01

    Trace element deposition from desert dust has important impacts on ocean primary productivity, the quantification of which could be useful in determining the magnitude and sign of the biogeochemical feedback on radiative forcing. However, the impact of elemental deposition to remote ocean regions is not well understood and is not currently included in global climate models. In this study, emission inventories for eight elements primarily of soil origin, Mg, P, Ca, Mn, Fe, K, Al, and Si are determined based on a global mineral data set and a soil data set. The resulting elemental fractions are used to drive the desert dust model in the Community Earth System Model (CESM) in order to simulate the elemental concentrations of atmospheric dust. Spatial variability of mineral dust elemental fractions is evident on a global scale, particularly for Ca. Simulations of global variations in the Ca / Al ratio, which typically range from around 0.1 to 5.0 in soils, are consistent with observations, suggesting that this ratio is a good signature for dust source regions. The simulated variable fractions of chemical elements are sufficiently different; estimates of deposition should include elemental variations, especially for Ca, Al and Fe. The model results have been evaluated with observations of elemental aerosol concentrations from desert regions and dust events in non-dust regions, providing insights into uncertainties in the modeling approach. The ratios between modeled and observed elemental fractions range from 0.7 to 1.6, except for Mg and Mn (3.4 and 3.5, respectively). Using the soil database improves the correspondence of the spatial heterogeneity in the modeling of several elements (Ca, Al and Fe) compared to observations. Total and soluble dust element fluxes to different ocean basins and ice sheet regions have been estimated, based on the model results. The annual inputs of soluble Mg, P, Ca, Mn, Fe and K associated with dust using the mineral data set are 0.30 Tg

  2. Modeling the global emission, transport and deposition of trace elements associated with mineral dust

    DOE PAGESBeta

    Zhang, Y.; Mahowald, N.; Scanza, R. A.; Journet, E.; Desboeufs, K.; Albani, S.; Kok, J. F.; Zhuang, G.; Chen, Y.; Cohen, D. D.; et al

    2015-10-12

    Trace element deposition from desert dust has important impacts on ocean primary productivity, the quantification of which could be useful in determining the magnitude and sign of the biogeochemical feedback on radiative forcing. However, the impact of elemental deposition to remote ocean regions is not well understood and is not currently included in global climate models. In this study, emission inventories for eight elements primarily of soil origin, Mg, P, Ca, Mn, Fe, K, Al, and Si are determined based on a global mineral data set and a soil data set. The resulting elemental fractions are used to drive themore » desert dust model in the Community Earth System Model (CESM) in order to simulate the elemental concentrations of atmospheric dust. Spatial variability of mineral dust elemental fractions is evident on a global scale, particularly for Ca. Simulations of global variations in the Ca / Al ratio, which typically range from around 0.1 to 5.0 in soils, are consistent with observations, suggesting that this ratio is a good signature for dust source regions. The simulated variable fractions of chemical elements are sufficiently different; estimates of deposition should include elemental variations, especially for Ca, Al and Fe. The model results have been evaluated with observations of elemental aerosol concentrations from desert regions and dust events in non-dust regions, providing insights into uncertainties in the modeling approach. The ratios between modeled and observed elemental fractions range from 0.7 to 1.6, except for Mg and Mn (3.4 and 3.5, respectively). Using the soil database improves the correspondence of the spatial heterogeneity in the modeling of several elements (Ca, Al and Fe) compared to observations. Total and soluble dust element fluxes to different ocean basins and ice sheet regions have been estimated, based on the model results. The annual inputs of soluble Mg, P, Ca, Mn, Fe and K associated with dust using the mineral data set are

  3. Satellite-based retrieval of desert dust deposition into the Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Jaeger, Malte; Lelli, Luca; Vountas, Marco; Burrows, John P.

    2015-04-01

    Desert dust plays a prominent role in climate as it influences the radiation budget in the atmosphere and, if being transported to the ocean, affects the ecosystem, e.g. by acting as fertilizer. Measurements of dust deposition are usually performed using collectors on land and on buoys as well as sediment traps deployed across the Atlantic Ocean. However, regional to continental coverage can be only achieved with satellites. We present a new methodology for the assessment of desert dust deposition from top-of-atmosphere reflected solar irradiance measured by satellite. This methodology is based on the observation of changes in columnar aerosol optical thickness (AOT) along the transport path of dust outflows from the Sahara. The guiding idea is that, if transport orientation is correctly estimated, a decrease in AOT across the Atlantic can be linked to the deposition of aerosols onto the ocean surface. The Bremen Aerosol Retrieval (BAER), developed at the Institute of Environmental Physics of University of Bremen (IUP/U-Bre), serves as primary AOT retrieval algorithm. It uses multispectral measurements by the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and MEdium Resolution Imaging Spectrometer (MERIS). Especially the correct implementation of the wind fields for trajectory prediction and the choice of comparison sites are of critical importance for deposition estimation. Therefore a two-step wind correction, including a simple implementation of vertical dust layer structure and wind variation, is performed, using ECMWF reanalysis data. First tests show that seasonal patterns of AOT are correctly reproduced, both in space and time. For example the largest peak in AOT mass loss is observed at summer. Moreover, intercomparisons with in-situ sedimentation measurements at various sites show good correlations.

  4. Quartz in Coal Dust Deposited on Internal Surface of Respirable Size Selective Samplers

    PubMed Central

    Soo, Jhy-Charm; Lee, Taekhee; Kashon, Michael; Kusti, Mohannad; Harper, Martin

    2016-01-01

    The objective of the present study is to quantify quartz mass in coal dust deposited on the internal cassette surface of respirable size-selective samplers. Coal dust was collected with four different respirable size-selective samplers (10 mm Dorr-Oliver nylon [Sensidyne, St. Petersburg, Fla.], SKC Aluminum [SKC Inc., Eighty Four, Pa.], BGI4L [BGI USA Inc., Waltham, Mass.], and GK2.69 cyclones [BGI USA Inc.]) with two different cassette types (polystyrene and static-dissipative polypropylene cassettes). The coal dust was aerosolized in a calm air chamber by using a fluidized bed aerosol generator without neutralization under the assumption that the procedure is similar to field sampling conditions. The mass of coal dust was measured gravimetrically and quartz mass was determined by Fourier transform infrared spectroscopy according to the National Institute for Occupational Safety and Health (NIOSH) Manual of Analytical Methods, Method 7603. The mass fractions of the total quartz sample on the internal cassette surface are significantly different between polystyrene and static-dissipative cassettes for all cyclones (p < 0.05). No consistent relationship between quartz mass on cassette internal surface and coal dust filter mass was observed. The BGI4L cyclone showed a higher (but not significantly) and the GK2.69 cyclone showed a significantly lower (p < 0.05) internal surface deposit quartz mass fraction for polystyrene cassettes compared to other cyclones. This study confirms previous observations that the interior surface deposits in polystyrene cassettes attached to cyclone pre-selectors can be a substantial part of the sample, and therefore need to be included in any analysis for accurate exposure assessment. On the other hand, the research presented here supports the position that the internal surface deposits in static-dissipative cassettes used with size-selective cyclones are negligible and that it is only necessary to analyze the filter catch. PMID:25204985

  5. Deposition rate and etching rate due to neutral radicals and dust particles measured using QCMs together with a dust eliminating filter

    NASA Astrophysics Data System (ADS)

    Katayama, Ryu; Koga, Kazunori; Yamashita, Daisuke; Kamataki, Kunihiro; Seo, Hyunwoong; Itagaki, Naho; Shiratani, Masaharu; Ashikawa, Naoko; Tokitani, Masayuki; Masuzaki, Suguru; Nishimura, Kiyohiko; Sagara, Akio; the LHD experimental Group Team

    2015-09-01

    We have developed an in-situ method for measuring deposition rate of radicals and dust particles using quartz crystal microbalances (QCMs) together with a dust eliminating filter. The QCMs have three channels of quartz crystals. Channel 1 was used to measure total deposition rate due to radicals and dust particles. Channel 2 was covered with a dust eliminating filter. Channel 3 was covered with a stainless-steel plate. Moreover, all QCMs are covered with a grounded stainless steel mesh for suppressing influx of charged particles. The measurements were conducted in the Large Helical Device in the National Institute for Fusion Science, Japan. Although the deposition measurements during the discharges were difficult, we obtained deposition rate and etching rate by comparing the data before and after each discharge. The frequency difference for channel 1 changes from 0.1 Hz (etching) to -0.5 Hz (deposition), while those for channels 2 and 3 are within a range of +/-0.1 Hz and +/-0.05 Hz, respectively. The QCM method gives information on deposition rate and etching rate due to neutral radicals and dust particles.

  6. Atmospheric significance of aeolian salts in the sandy deserts of northwestern China

    NASA Astrophysics Data System (ADS)

    Zhu, B.-Q.

    2016-02-01

    Large sandy deserts in the middle latitudes of northwestern China were investigated for soluble salt variations in modern and ancient aeolian sediments, aiming to explore the environmental significance of "aeolian salts". Results revealed that aeolian salt variations have a clear relationship with the changing meridional and zonal gradients of the desert locations and the aeolian differentiation effect, but are weakly linked to local geological conditions. Atmospheric depositions of water-soluble chemical species are an important process/source contributing to aeolian salt. Sequential variations of soluble salts in sedimentary profiles interbedded with aeolian and non-aeolian deposits and their palaeoenvironmental implications in the hinterland areas of these deserts were further evaluated, based on the constraints of OSL dating and radiocarbon dating data. The results indicate that inorganic salts may be a latent geoproxy in revealing regional palaeoclimatic changes in desert areas for sediments deposited under a single depositional environment, but the interpretation should be more cautious for sediments deposited under diverse depositional conditions. This study presents evidence of the atmospheric origin of aeolian salt in sandy deserts, with limited climatic significance in palaeoenvironmental reconstruction.

  7. Potential source regions of dust accumulated in northern Africa

    NASA Astrophysics Data System (ADS)

    Wasowska, S.; Woronko, B.

    2012-04-01

    Sahara is the largest source of the dust in the world. The material sampled from dust storms in Tunisia (Nefta Oasis, El Kantoui Harbor), north Egypt (Alexandria) and Morocco (Mhamid Oasis) (March 2001, March and April 2009) was taken to identify the potential sources of dust accumulation and transport paths in North Africa. The samples were analyzed on grain size, micromorphology of silt grain surfaces in Scanning Electron Microscope (SEM), elemental composition of grains and their surface crusts, loss on ignition, mineralogical composition of samples and carbonate content. Additionally the meteorological situation was analyzed during the dust storm occurrences and preceding periods. The results of grain size analyses show that all studied sediments belong to the small dust type, and dust accumulated in Mhamid is the clay mineral agglomerated (CMA) dust. The source of the CMA are the old dry lake beds. Dust particles are mobilized as aggregates of clay minerals, what is controlled by structure (particle packing) of the original lake sediment, and accumulation is dry and wet as well. The results of the analysis of the quartz grain surface micromorphology, the elemental composition and loss on ignition indicate that dust accumulated in Morocco originated from a relatively homogenous sediment source and, on the other hand, dust found in Alexandria comes from a diversified source. Dust sampled in Tunisia is characterized by the highest content of carbonates and organic matter which suggests the intensive dispelling acting on the weathered material from carbonate rocks and local Mediterranean soil covers rich in CaCO3. The analyses of meteorological conditions during the dust storms and the analyses of the textural characteristics of deposits show that it is highly probable that analysed aeolian dust was transported both for shorter and longer distances. Hypothetic source areas of dust accumulated in Mhamid could be the old ergs, some located 300-500 km away like

  8. Modeling of intercontinental Saharan dust transport: What consequences on atmospheric concentrations and deposition fluxes in the Caribbean?

    NASA Astrophysics Data System (ADS)

    Laurent, Benoit; Formenti, Paola; Desboeufs, Karine; Vincent, Julie; Denjean, Cyrielle; Siour, Guillaume; Mayol-Bracero, Olga L.

    2015-04-01

    The Dust Aging and Transport from Africa to the Caribbean (Dust-AttaCk) project aims todocument the physical and optical properties of long-range transported African dust to the Caribbean. A comprehensive field campaign was conducted in Cape San Juan, Puerto Rico (18.38°N 65.62°W) during June-July 2012, offering the opportunity to constrain the way Saharan dust are transported from North Africa to the Caribbean by 3D models. Our main objectives are: (i) to discuss the ability of the CHIMERE Eulerian off-line chemistry-transport model to simulate atmospheric Saharan dust loads observed in the Caribbean during the Dust-AttaCk campaign, as well as the altitude of the dust plumes transport over the North Atlantic Ocean up to the Caribbean, (ii) to study the main Saharan dust emission source areas contributing to the dust loads in the Caribbean, (iii) to estimate the Saharan dust deposition in the Caribbean for deposition events observed during the Dust-AttaCk campaign. The dust model outputs are hourly dust concentration fields in µg m-3 for 12 aerosol size bins up to 30 µm and for each of the 15 sigma pressure vertical levels, column integrated dustaerosol optical depth (AOD), and dry and wet deposition fluxes.The simulations performed for the Dust-AttaCk campaign period as well as satellite observations (MODIS AOD, SEVIRI AOD) are used to identify the Saharan emission source regions activated and to study the evolution of the dust plumes tothe Cape San Juan station. In complement, the vertical transport of dust plumes transported from Saharan dust sources and over the North Atlantic Ocean is investigated combining model simulations and CALIOP observations. Aerosol surface concentrations and AOD simulated with CHIMERE are compared with sin-situ observations at Cape San Juan and AERONET stations. Wet deposition measurements performed allow us to constrain dust deposition flux simulated in the Caribbean after long-range transport.

  9. Holocene aeolian activities in the southeastern Mu Us Desert, China

    NASA Astrophysics Data System (ADS)

    Jia, Feifei; Lu, Ruijie; Gao, Shangyu; Li, Jinfeng; Liu, Xiaokang

    2015-12-01

    Aeolian deposits from three sites in the Mu Us Desert were used to reconstruct the history of aeolian activities during the Holocene. The results of the lithologies, chronologies and proxy indicators showed that aeolian activities occurred at ∼9.96 cal ka BP, 7.9-6.9 ka BP, 6.4 ka BP and 3.8 cal ka BP∼. The cold event that occurred around 6.4 ka BP interrupted the Holocene Optimum period, which is largely consistent with the findings from sediments in adjacent regions and the monsoon areas of China. Combined with punished OSL and 14C ages of aeolian deposits samples in this region, the environmental changes in the Mu Us Desert were divided into four stages. Active sand dunes dominated before 11 ka BP. Aeolian activities occurred regionally from 11 to 8.5 ka BP and typical sandy paleosol widely developed with episodic aeolian activities between 8.5 and 4 ka BP. Dunes have reactivated and active sand dunes have gradually increased since 4 ka BP. Comparisons with the other paleoclimatic records indicated that the evolution of the Mu Us Desert was closely related to the East Asian monsoon. Paleosol development depended more on the precipitation brought by the East Asian summer monsoon (EASM). The stronger East Asian winter monsoon (EAMW) and higher isolation resulted in the aeolian activities in the early Holocene, while during the mid-Holocene the fluctuating EAWM played a more important role in inducing episodic aeolian activities. The environmental deterioration during the late Holocene can be related to weakened EASM or to increased anthropogenic influence.

  10. Transatlantic transport and deposition of Saharan dust and its effects on the marine environment

    NASA Astrophysics Data System (ADS)

    Stuut, Jan-Berend W.; Korte, Laura; van der Does, Michèlle; Mundy, Chris

    2015-04-01

    Massive amounts of Northwest African dust are transported westward over the Atlantic Ocean towards the Americas each year. These dust particles are thought to feed back on climate through a number of mechanisms including reflection of solar energy at the top of the atmosphere, absorption of energy that was reflected at the Earth's surface in the lower atmosphere, changes of the Earth's albedo, and fertilisation of both terrestrial and marine ecosystems. We are monitoring Saharan dust transport and deposition using an array of instruments that was deployed along a transect between Northwest Africa and the Caribbean at 12°N. In October 2012, we deployed five moorings along this transect between 23°W and 57°W with sediment traps that collect all material settling down through the water column on a temporal resolution of about two weeks. In November 2013, we added three dust-collecting buoys to the transect. The instruments on these buoys filter air to collect the dust particles that are suspended in the air just above sea level. In this presentation, we will introduce the projects in the framework of which this study is carried out, and present preliminary data on grain-size trends as well as marine-environmental observations.

  11. Further Analysis on the Mystery of the Surveyor III Dust Deposits

    NASA Technical Reports Server (NTRS)

    Metzger, Philip; Hintze, Paul; Trigwell, Steven; Lane, John

    2012-01-01

    The Apollo 12 lunar module (LM) landing near the Surveyor III spacecraft at the end of 1969 has remained the primary experimental verification of the predicted physics of plume ejecta effects from a rocket engine interacting with the surface of the moon. This was made possible by the return of the Surveyor III camera housing by the Apollo 12 astronauts, allowing detailed analysis of the composition of dust deposited by the LM plume. It was soon realized after the initial analysis of the camera housing that the LM plume tended to remove more dust than it had deposited. In the present study, coupons from the camera housing have been reexamined. In addition, plume effects recorded in landing videos from each Apollo mission have been studied for possible clues.

  12. Review of the ITER diagnostics suite for erosion, deposition, dust and tritium measurements

    NASA Astrophysics Data System (ADS)

    Reichle, R.; Andrew, P.; Bates, P.; Bede, O.; Casal, N.; Choi, C. H.; Barnsley, R.; Damiani, C.; Bertalot, L.; Dubus, G.; Ferreol, J.; Jagannathan, G.; Kocan, M.; Leipold, F.; Lisgo, S. W.; Martin, V.; Palmer, J.; Pearce, R.; Philipps, V.; Pitts, R. A.; Pampin, R.; Passedat, G.; Puiu, A.; Suarez, A.; Shigin, P.; Shu, W.; Vayakis, G.; Veshchev, E.; Walsh, M.

    2015-08-01

    Dust and tritium inventories in the vacuum vessel have upper limits in ITER that are set by nuclear safety requirements. Erosion, migration and re-deposition of wall material together with fuel co-deposition will be largely responsible for these inventories. The diagnostic suite required to monitor these processes, along with the set of the corresponding measurement requirements is currently under review given the recent decision by the ITER Organization to eliminate the first carbon/tungsten (C/W) divertor and begin operations with a full-W variant Pitts et al. [1]. This paper presents the result of this review as well as the status of the chosen diagnostics.

  13. The likelihood of observing dust-stimulated phytoplankton growth in waters proximal to the Australian continent

    NASA Astrophysics Data System (ADS)

    Cropp, R. A.; Gabric, A. J.; Levasseur, M.; McTainsh, G. H.; Bowie, A.; Hassler, C. S.; Law, C. S.; McGowan, H.; Tindale, N.; Viscarra Rossel, R.

    2013-05-01

    We develop a tool to assist in identifying a link between naturally occurring aeolian dust deposition and phytoplankton response in the ocean. Rather than examining a single, or small number of dust deposition events, we take a climatological approach to estimate the likelihood of observing a definitive link between dust deposition and a phytoplankton bloom for the oceans proximal to the Australian continent. We use a dust storm index (DSI) to determine dust entrainment in the Lake Eyre Basin (LEB) and an ensemble of modelled atmospheric trajectories of dust transport from the basin, the major dust source in Australia. Deposition into the ocean is computed as a function of distance from the LEB source and the local over-ocean precipitation. The upper ocean's receptivity to nutrients, including dust-borne iron, is defined in terms of time-dependent, monthly climatological fields for light, mixed layer depth and chlorophyll concentration relative to the climatological monthly maximum. The resultant likelihood of a dust-phytoplankton link being observed is then mapped as a function of space and time. Our results suggest that the Southern Ocean (north of 45°S), the North West Shelf, and Great Barrier Reef are ocean regions where a rapid biological response to dust inputs is most likely to be observed. Conversely, due to asynchrony between deposition and ocean receptivity, direct causal links appear unlikely to be observed in the Tasman Sea and Southern Ocean south of 45°S.

  14. A Mars Dust Model with Interactive Dynamics, Radiation, and Microphysics

    NASA Astrophysics Data System (ADS)

    Hartwick, Victoria; Toon, O. Brian

    2014-11-01

    Variability of the present day Martian climate is dominated by globally enveloping dust storms that recur with a frequency of approximately three years. Small-scale aeolian processes predictably generate local seasonal storms. However, factors that enhance local storm strength and grow local phenomenon to global scales are poorly understood. Research with Martian general circulation models (GCM) has recently demonstrated a strong correlation between dust storm generation, strength and long-term stability and the global distribution of dust reservoirs and their temporal permanence. Here we present results from the NCAR Mars Community Atmosphere Model (CAM) coupled with a fully interactive dust microphysics scheme. Dust devil lifting and saltation wind driven lifting are parameterized in the emission scheme. Mass is distributed into 20 size bins with a radius range of 0.1 to 8 microns. The initial radial size distribution is log-normal with a sigma value of 1.5. Dust is allowed to advect horizontally and is removed from the atmosphere by dry deposition. Dust also impacts the radiative heating rate, as do water clouds.The large number of dust bins allows for the opportunity to track the size distribution of dust deposits and investigate the long term stability of dust source regions as a function of particle size.

  15. A Mars Dust Model with Interactive Dynamics, Radiation, and Microphysics

    NASA Astrophysics Data System (ADS)

    Hartwick, V.; Toon, B.

    2014-12-01

    Variability of the present day Martian climate is dominated by globally enveloping dust storms that recur with a frequency of approximately three years. Small-scale aeolian processes predictably generate local seasonal storms. However, factors that enhance local storm strength and grow local phenomenon to global scales are poorly understood. Research with Martian general circulation models (GCM) has recently demonstrated a strong correlation between dust storm generation, strength and long-term stability and the global distribution of dust reservoirs and their temporal permanence. Here we present results from the NCAR Mars Community Atmosphere Model (CAM) coupled with a fully interactive dust microphysics scheme. Dust devil lifting and saltation wind driven lifting are parameterized in the emission scheme. Mass is distributed into 20 size bins with a radius range of 0.1 to 8 microns. The initial radial size distribution is log-normal with a sigma value of 1.5. Dust is allowed to advect horizontally and is removed from the atmosphere by dry deposition. Dust also impacts the radiative heating rate, as do water clouds.The large number of dust bins allows for the opportunity to track the size distribution of dust deposits and investigate the long term stability of dust source regions as a function of particle size.

  16. Mineral dust transport in the Arctic modelled with FLEXPART

    NASA Astrophysics Data System (ADS)

    Groot Zwaaftink, Christine; Grythe, Henrik; Stohl, Andreas

    2016-04-01

    Aeolian transport of mineral dust is suggested to play an important role in many processes. For instance, mineral aerosols affect the radiation balance of the atmosphere, and mineral deposits influence ice sheet mass balances and terrestrial and ocean ecosystems. While many efforts have been done to model global dust transport, relatively little attention has been given to mineral dust in the Arctic. Even though this region is more remote from the world's major dust sources and dust concentrations may be lower than elsewhere, effects of mineral dust on for instance the radiation balance can be highly relevant. Furthermore, there are substantial local sources of dust in or close to the Arctic (e.g., in Iceland), whose impact on Arctic dust concentrations has not been studied in detail. We therefore aim to estimate contributions of different source regions to mineral dust in the Arctic. We have developed a dust mobilization routine in combination with the Lagrangian dispersion model FLEXPART to make such estimates. The lack of details on soil properties in many areas requires a simple routine for global simulations. However, we have paid special attention to the dust sources on Iceland. The mobilization routine does account for topography, snow cover and soil moisture effects, in addition to meteorological parameters. FLEXPART, driven with operational meteorological data from European Centre for Medium-Range Weather Forecasts, was used to do a three-year global dust simulation for the years 2010 to 2012. We assess the model performance in terms of surface concentration and deposition at several locations spread over the globe. We will discuss how deposition and dust load patterns in the Arctic change throughout seasons based on the source of the dust. Important source regions for mineral dust found in the Arctic are not only the major desert areas, such as the Sahara, but also local bare-soil regions. From our model results, it appears that total dust load in the

  17. A new dust transport approach to quantify anthropogenic sources of atmospheric PM10 deposition on lakes

    NASA Astrophysics Data System (ADS)

    Weiss, Lee; Thé, Jesse; Gharabaghi, Bahram; Stainsby, Eleanor A.; Winter, Jennifer G.

    2014-10-01

    Windblown dust simulations are one of the most uncertain types of atmospheric transport models. This study presents an integrated PM10 emission, transport and deposition model which has been validated using monitored data. This model characterizes the atmospheric phosphorus load focusing on the major local sources within the Lake Simcoe airshed including paved and unpaved roads, agricultural sources, construction sites and aggregate mining sources. This new approach substantially reduces uncertainty by providing improved estimates of the friction velocities than those developed previously. Modeling improvements were also made by generating and validating an hourly windfield using detailed meteorology, topography and land use data for the study area. The model was used to estimate dust emissions generated in the airshed and to simulate the long-range transport and deposition of PM10 to Lake Simcoe. The deposition results from the model were verified against observed bulk collector phosphorus concentration data for both wet and dry deposition. Bulk collector data from stations situated outside the airshed in a remote, undeveloped area were also compared to determine the background contribution from distant sources.

  18. Soil genesis on the island of Bermuda in the Quaternary: the importance of African dust transport and deposition

    USGS Publications Warehouse

    Muhs, Daniel R.; Budahn, James R.; Prospero, Joseph M.; Skipp, Gary; Herwitz, Stanley R.

    2012-01-01

    The origin of terra rossa, red or reddish-brown, clay-rich soils overlying high-purity carbonate substrates, has intrigued geologists and pedologists for decades. Terra rossa soils can form from accumulation of insoluble residues during dissolution of the host limestones, addition of volcanic ash, or addition of externally derived, long-range-transported (LRT) aeolian particles. We studied soils and paleosols on high-purity, carbonate aeolianites of Quaternary age on Bermuda, where terra rossa origins have been debated for more than a century. Potential soil parent materials on this island include sand-sized fragments of local volcanic bedrock, the LRT, fine-grained (N/YbN, GdN/YbN that can be distinguished from African dust and lower Mississippi River valley loess. Bermuda soils have Sc-Th-La, Cr-Ta-Nd, and Eu/Eu*, LaN/YbN, GdN/YbN that indicate derivation from a combination of LRT dust from Africa and local volcanic bedrock. Our results indicate that soils on islands in a very broad latitudinal belt of the western Atlantic margin have been influenced by African LRT dust inputs over much of the past –500 ka.

  19. Aeolian Slipface Processes on Earth and Mars

    NASA Astrophysics Data System (ADS)

    Cornwall, Carin; Jackson, Derek; Bourke, Mary; Cooper, Andrew

    2016-04-01

    The surface of Mars is dominated by aeolian features and many locations show ripple and dune migration over the past decade with some sediment fluxes comparable to terrestrial dunes. One of the leading goals in investigating aeolian processes on Mars is to explore the boundary conditions of sediment transport, accumulation, and dune mor-phology in relation to wind regime as well as to quantify migration rates and sediment flux. We combine terrestrial field observations, 3D computational fluid dynamics (CFD) modeling and remote sensing data to investigate com-plex, small scale wind patterns and grainflow processes on terrestrial and martian dunes. We aim to constrain grain flow magnitudes and frequencies that occur on slipface slopes of dunes in order to improve estimates of martian dune field migration and sediment flux related to wind velocity and flow patterns. A series of ground-based, high resolution laser scans have been collected in the Maspalomas dune field in Gran Canaria, Spain to investigate grainflow frequency, morphology and slipface advancement. Analysis of these laser scans and simultaneous video recordings have revealed a variety of slipface activity. We identify 6 different grain-flow morphologies including, hourglass shape (classic alcove formation with deposit fan below), superficial flow (thin lenses), narrow trough (vertical lines cm in width), sheet, column (vertical alcove walls), and complex (combi-nation of morphologies triggered simultaneously in the same location). Hourglass grainflow morphologies were the most common and occurred regularly. The superficial and narrow trough morphologies were the second most com-mon and frequently occurred in between large grain flows. Sheet grainflows were rare and unpredictable. These flows involved large portions of the slipface (metres across) and mobilized a substantial amount of sediment in one event. We have compared these grainflow morphologies from Maspalomas to those in martian dune fields and

  20. Deposition of atmospheric (137)Cs in Japan associated with the Asian dust event of March 2002.

    PubMed

    Fujiwara, Hideshi; Fukuyama, Taijiro; Shirato, Yasuhito; Ohkuro, Toshiya; Taniyama, Ichiro; Zhang, Tong-Hui

    2007-10-01

    Considerable deposition of (137)Cs was observed in the northwestern coastal area of Japan in March 2002. Since there were no nuclear explosions or serious nuclear accidents in the early 2000s, transport of previously contaminated dust appears to be the only plausible explanation for this event. In March 2002, there was a massive sandstorm on the East Asian continent, and the dust raised by the storm was transported across the sea to Japan. This dust originated in Mongolia and northeastern China, in an area distant from the Chinese nuclear test site at Lop Nor or any other known possible sources of (137)Cs. Our radioactivity measurements showed (137)Cs enrichment in the surface layer of grassland soils in the area of the sandstorm, which we attributed to accumulation as a result of past nuclear testing. We suggest that the grassland is a potential source of (137)Cs-bearing soil particles. Since the late 1990s, this area has experienced drought conditions, resulting in a considerable reduction of vegetation cover. We attribute the prodigious release of (137)Cs-bearing soil particles into the atmosphere during the sandstorm and the subsequent deposition of (137)Cs in Japan to this change. PMID:17604085

  1. A Lacustrine Record of Postglacial Dust Deposition from the Uinta Mountains, Utah, USA

    NASA Astrophysics Data System (ADS)

    Munroe, Jeffrey

    2015-04-01

    Samplers deployed in 2011 reveal a modern dust flux to the alpine zone (>3000 m asl) of the Uinta Mountains (Utah, USA) of ~4 gm/m2/yr. A notably uniform layer of silt, ~20 cm thick, in soil profiles from throughout the alpine zone, along with the presence in soils and modern dust of minerals not found in the bedrock, indicates that dust deposition has been an important long-term process in this environment. To evaluate how dust flux and properties have changed over the postglacial period a 190 cm-long lacustrine sediment core was analyzed. The core was collected with a percussion corer from a small lake (8 ha) at an elevation of 3043 m asl in 10.6 m of water. Six AMS 14C analyses on conifer needles, wood fragments, and bulk sediment support a depth-age model extending back to 12.7 ka BP. Loose near-surface sediment was not recovered, so the top of the core is truncated at 1.36 ka BP. Geochemical composition was evaluated at 2-cm intervals using ICP-AES after fluxing of ignited samples with LiBO2. The abundance of rare earth elements was determined for a subset of 16 samples using ICP-MS. Mineralogy was investigated at 2-cm intervals using XRD. Grain size distribution, organic matter content, and C:N ratio were determined at 1-cm intervals using laser scattering, loss-on-ignition, and an elemental analyzer, respectively. Results indicate that the flux and properties of dust arriving in the Uinta Mountains have varied over time, with the most significant variations occurring between 6.5 and 4.5 ka BP. During that time ratios of Zr/Al, Ti/Al and (Ca+Mg)/Fe rise to record-high values, and the abundance of Illite+Chlorite increases relative to feldspar. Prominent shifts occur in the abundances of some trace elements, such as Sc, along with changes in median grain size. The ratio La/Lu, as well as the magnitude of the Eu anomaly, also change. Collectively these fluctuations are consistent with a greater flux of dust to the Uinta Mountains, as well as a possible change

  2. Synthesis on Quaternary aeolian research in the unglaciated eastern United States

    NASA Astrophysics Data System (ADS)

    Markewich, Helaine W.; Litwin, Ronald J.; Wysocki, Douglas A.; Pavich, Milan J.

    2015-06-01

    Late-middle and late Pleistocene, and Holocene, inland aeolian sand and loess blanket >90,000 km2 of the unglaciated eastern United States of America (USA). Deposits are most extensive in the Lower Mississippi Valley (LMV) and Atlantic Coastal Plain (ACP), areas presently lacking significant aeolian activity. They provide evidence of paleoclimate intervals when wind erosion and deposition were dominant land-altering processes. This study synthesizes available data for aeolian sand deposits in the LMV, the Eastern Gulf Coastal Plain (EGCP) and the ACP, and loess deposits in the Middle Atlantic Coastal Plain (MACP). Data indicate: (a) the most recent major aeolian activity occurred in response to and coincident with growth and decay of the Laurentide Ice Sheet (LIS); (b) by ∼40 ka, aeolian processes greatly influenced landscape evolution in all three regions; (c) aeolian activity peaked in OIS2; (d) OIS3 and OIS2 aeolian records are in regional agreement with paleoecological records; and (e) limited aeolian activity occurred in the Holocene (EGCP and ACP). Paleoclimate and atmospheric-circulation models (PCMs/ACMs) for the last glacial maximum (LGM) show westerly winter winds for the unglaciated eastern USA, but do not resolve documented W and SW winds in the SEACP and WNW and N winds in the MACP. The minimum areal extent of aeolian deposits in the EGCP and ACP is ∼10,000 km2. For the LMV, it is >80,000 km2. Based on these estimates, published PCMs/ACMs likely underrepresent the areal extent of LGM aeolian activity, as well as the extent and complexity of climatic changes during this interval.

  3. Microbiological fingerprint of African dust deposition in alpine snow pack, Mont Blanc summit

    NASA Astrophysics Data System (ADS)

    Chuvochina, Maria; Alekhina, Irina; Normand, Philippe; Petit, Jean-Robert; Bulat, Sergey

    2010-05-01

    The biogeochemical effect of African dust transport has been reported mostly with respect to nutrient budget change in both terrestrial and aquatic ecosystems and global transport of microorganisms, including pathogens. However, its potential to seed or colonize the remote environments by transported microorganisms is poorly understood. This study has focused on bacterial content and diversity of Saharan dust deposition from 2006, 2008 and 2009 in snow pack of Mont Blanc (MtBl) glacier as well as recognition of bacteria which could be involved in establishing microbiota in this icy environment. Four snow samples recorded Saharan dust events from June 2006 (SDm06/2006 - 3,5 months aged), May and June 2008 (SDm05/2008 and SDm06/2008 - 1 month in between and 1 week aged each) and May 2009 (SDm05/2009 - 1 week aged) were collected at Col du Dome area (4250m a.s.l.). Bacterial community structure was assessed by ribotyping and subsequent sequencing of bacterial 16S rRNA genes. To exclude human-associated and laboratory contamination several controls were run in parallel updating our contaminant library. The obtained phylotypes were tested against this library keeping only those which successfully passed through this exam. Of 176 selected clones from four clone libraries 29.8% were met in our contaminant library. The ‘true' sequences were assigned to 57 phylotypes (>97.5% sequence similarity) originating mostly from soil. The prevalent phylotypes recovered were belonging to different bacterial divisions: Deinococcus-Thermus, Alpha-proteobacteria and CFB groups for SDm06/2006; Actinobacteria, Alpha-proteobacteria and CFB for SDm05/2008 and SDm06/2008; Actinobacteria and chloroplasts/plastids for SDm05/2009. Phylogenetic analysis of all phylotypes showed no shared species amongst all 4 dust layers in MtBl snow pack in 2006, 2008 and 2009. However, two phylotypes (Blastococcus saxobsidens sp. - 99%, Geodermatophilus obscurus sp. - 99%) were shared between 2008 and 2009

  4. Numerical study of particle deposition and scaling in dust exhaust of cyclone separator

    NASA Astrophysics Data System (ADS)

    Xu, W. W.; Li, Q.; Zhao, Y. L.; Wang, J. J.; Jin, Y. H.

    2016-05-01

    The solid particles accumulation in the dust exhaust cone area of the cyclone separator can cause the wall wear. This undoubtedly prevents the flue gas turbine from long period and safe operation. So it is important to study the mechanism how the particles deposited and scale on dust exhaust cone area of the cyclone separator. Numerical simulations of gas-solid flow field have been carried out in a single tube in the third cyclone separator. The three-dimensionally coupled computational fluid dynamic (CFD) technology and the modified Discrete Phase Model (DPM) are adopted to model the gas-solid two-phase flow. The results show that with the increase of the operating temperature and processing capacity, the particle sticking possibility near the cone area will rise. The sticking rates will decrease when the particle diameter becomes bigger.

  5. Dust production and deposition in Asia and the north Pacific Ocean over the past 12 Myr

    NASA Astrophysics Data System (ADS)

    Pettke, Thomas; Halliday, Alex N.; Hall, Chris M.; Rea, David K.

    2000-05-01

    The silicate fractions of recent pelagic sediments in the central north Pacific Ocean are dominated by eolian dust derived from central Asia. An 11 Myr sedimentary record at ODP Sites 885/886 at 44.7°N, 168.3°W allows the evaluation of how such dust and its sources have changed in response to late Cenozoic climate and tectonics. The extracted eolian fraction contains variable amounts (>70%) of clay minerals with subordinate quartz and plagioclase. Uniform Nd isotopic compositions ( ɛNd=-8.6 to -10.5) and Sm/Nd ratios (0.170-0.192) for most of the 11 Myr record demonstrate a well-mixed provenance in the basins north of the Tibetan Plateau and the Gobi Desert that was a source of dust long before the oldest preserved Asian loess formed. ɛNd values of up to -6.5 for samples <2.9 Ma indicate ≤35 wt% admixture of a young, Kamchatka-like volcanic arc component. The coherence of Pb and Nd in the erosional cycle allows us to constrain the Pb isotopic composition of Asian loess devoid of anthropogenic contamination to 206Pb/ 204Pb=18.97±0.06, 207Pb/ 204Pb=15.67±0.02, 208Pb/ 204Pb=39.19±0.11. 87Sr/ 86Sr (0.711-0.721) and Rb/Sr ratios (0.39-1.1) vary with dust mineralogy and provide an age indication of ˜250 Ma. 40Ar/ 39Ar ages of six dust samples are uniform around 200 Ma and match the K-Ar ages of modern dust deposited on Hawaii. These data reflect the weighted age average of illite formation. Changes from illite≥smectite with significant kaolinite to illite- and chlorite-rich, kaolinite-free assemblages since the late Pliocene document changes in the intensity of chemical weathering in the source region. Such weathering evidently did not disturb the K-Ar systematics, and only induced scatter in the Rb-Sr data. We propose that when smectite forms at the expense of illite, K and Ar are quantitatively lost from what becomes smectite, but are quantitatively retained in adjacent illite layers. 40Ar/ 39Ar age data, therefore, are insensitive to smectite formation

  6. Laboratory Measurements and Model Sensitivity Studies of Dust Deposition Ice Nucleation

    SciTech Connect

    Kulkarni, Gourihar R.; Fan, Jiwen; Comstock, Jennifer M.; Liu, Xiaohong; Ovchinnikov, Mikhail

    2012-08-16

    We investigated the ice nucleating properties of mineral dust particles to understand the sensitivity of simulated cloud properties to two different representations of contact angle in the Classical Nucleation Theory (CNT). These contact angle representations are based on two sets of laboratory deposition ice nucleation measurements: Arizona Test Dust (ATD) particles of 100, 300 and 500 nm sizes were tested at three different temperatures (-25, -30 and -35 C), and 400 nm ATD and kaolinite dust species were tested at two different temperatures (-30 and -35 C). These measurements were used to derive the onset relative humidity with respect to ice (RH{sub ice}) required to activate 1% of dust particles as ice nuclei, from which the onset single contact angles were then calculated based on CNT. For the probability density function (PDF) representation, parameters of the log-normal contact angle distribution were determined by fitting CNT-predicted activated fraction to the measurements at different RH{sub ice}. Results show that onset single contact angles vary from {approx}18 to 24 degrees, while the PDF parameters are sensitive to the measurement conditions (i.e. temperature and dust size). Cloud modeling simulations were performed to understand the sensitivity of cloud properties (i.e. ice number concentration, ice water content, and cloud initiation times) to the representation of contact angle and PDF distribution parameters. The model simulations show that cloud properties are sensitive to onset single contact angles and PDF distribution parameters. The comparison of our experimental results with other studies shows that under similar measurement conditions the onset single contact angles are consistent within {+-}2.0 degrees, while our derived PDF parameters have larger discrepancies.

  7. Effects of river regulation on aeolian landscapes, Colorado River, southwestern USA

    USGS Publications Warehouse

    Draut, Amy E.

    2012-01-01

    Connectivity between fluvial and aeolian sedimentary systems plays an important role in the physical and biological environment of dryland regions. This study examines the coupling between fluvial sand deposits and aeolian dune fields in bedrock canyons of the arid to semiarid Colorado River corridor, southwestern USA. By quantifying significant differences between aeolian landscapes with and without modern fluvial sediment sources, this work demonstrates for the first time that the flow- and sediment-limiting effects of dam operations affect sedimentary processes and ecosystems in aeolian landscapes above the fluvial high water line. Dune fields decoupled from fluvial sand supply have more ground cover (biologic crust and vegetation) and less aeolian sand transport than do dune fields that remain coupled to modern fluvial sand supply. The proportion of active aeolian sand area also is substantially lower in a heavily regulated river reach (Marble–Grand Canyon, Arizona) than in a much less regulated reach with otherwise similar environmental conditions (Cataract Canyon, Utah). The interconnections shown here among river flow and sediment, aeolian sand transport, and biologic communities in aeolian dunes demonstrate a newly recognized means by which anthropogenic influence alters dryland environments. Because fluvial–aeolian coupling is common globally, it is likely that similar sediment-transport connectivity and interaction with upland ecosystems are important in other dryland regions to a greater degree than has been recognized previously.

  8. Effects of river regulation on aeolian landscapes, Colorado River, southwestern USA

    NASA Astrophysics Data System (ADS)

    Draut, Amy E.

    2012-06-01

    Connectivity between fluvial and aeolian sedimentary systems plays an important role in the physical and biological environment of dryland regions. This study examines the coupling between fluvial sand deposits and aeolian dune fields in bedrock canyons of the arid to semiarid Colorado River corridor, southwestern USA. By quantifying significant differences between aeolian landscapes with and without modern fluvial sediment sources, this work demonstrates for the first time that the flow- and sediment-limiting effects of dam operations affect sedimentary processes and ecosystems in aeolian landscapes above the fluvial high water line. Dune fields decoupled from fluvial sand supply have more ground cover (biologic crust and vegetation) and less aeolian sand transport than do dune fields that remain coupled to modern fluvial sand supply. The proportion of active aeolian sand area also is substantially lower in a heavily regulated river reach (Marble-Grand Canyon, Arizona) than in a much less regulated reach with otherwise similar environmental conditions (Cataract Canyon, Utah). The interconnections shown here among river flow and sediment, aeolian sand transport, and biologic communities in aeolian dunes demonstrate a newly recognized means by which anthropogenic influence alters dryland environments. Because fluvial-aeolian coupling is common globally, it is likely that similar sediment-transport connectivity and interaction with upland ecosystems are important in other dryland regions to a greater degree than has been recognized previously.

  9. Clear cutting (10-13th century) and deep stable economy (18-19th century) as responsible interventions for sand drifting and plaggic deposition in cultural landscapes on aeolian sands (SE-Netherlands).

    NASA Astrophysics Data System (ADS)

    van Mourik, Jan; Vera, Hein; Wallinga, Jakob

    2013-04-01

    The landscape in extensive areas in SE-Netherlands is underlain by coversand, deposited during the Late Glacial of the Weichselian. In the Preboreal, aeolian processes reduced soil formation. From the Preboreal to the Atlantic a deciduous climax forest developed. The geomorphology was a coversand landscape, composed of ridges (umbric podzols), coversand plains (gleyic podzols), coversand depressions (histic podzols) and small valleys (gleysols). The area was used by hunting people during the Late Paleolithic and Mesolithic. During the Bronze and Iron Ages the area was populated by people, living from forest grazing, shifting cultivation and trade. The natural deciduous forest gradually degraded into Calluna heath. The deforestation accelerated the soil acidification and affected the hydrology, which is reflected in drying out of ridges and wetting of depressions, promoting the development of histic podzols and even histosols. Aeolian erosion was during this period restricted to local, small scale sand drifting, related to natural hazards as forest fires and hurricanes and shifting cultivation. Sustainable crop productivity on chemically poor sandy substrates required application of organic fertilizers, composed of a mixture of organic litter and animal manure with a very low mineral compound, produced in shallow stables. At least since 1000 AD, heath management was regulated by a series of rules that aimed to protect the valuable heat lands against degradation. During the 11th, 12th and 13th centuries there was an increasing demand for wood and clear cutting transformed the majority of the forests in driftsand landscapes. The most important market was formed by the very wealthy Flemish cities. The exposed soil surface was subjected to wind erosion and sand drifting which endangered the Calluna heath, arable land and even farmhouses. As a consequence, umbric podzols, the natural climax soil under deciduous forests on coversand, degraded into larger scale driftsand

  10. Mobilization and distribution of lead originating from roof dust and wet deposition in a roof runoff system.

    PubMed

    Yu, Jianghua; Yu, Haixia; Huang, Xiaogu

    2015-12-01

    In this research, the mobilization and distribution of lead originating in roof dust and wet deposition were investigated within a roof dust-rooftop-runoff system. The results indicated that lead from roof dust and wet deposition showed different transport dynamics in runoff system and that this process was significantly influenced by the rainfall intensity. Lead present in the roof dust could be easily washed off into the runoff, and nearly 60 % of the total lead content was present in particulate form. Most of the lead from the roof dust was transported during the late period of rainfall; however, the lead concentration was higher for several minutes at the rainfall beginning. Even though some of the lead from wet deposition, simulated with a standard isotope substance, was adsorbed onto adhered roof dust and/or retained on rooftop in runoff system, most of it (50-82 %) remained as dissolved lead in the runoff for rainfall events of varying intensity. Regarding the distribution of lead in the runoff system, the results indicated that it could be carried in the runoff in dissolved and particulate form, be adsorbed to adhered roof dust, or remain on the rooftop because of adsorption to the roof material. Lead from the different sources showed different distribution patterns that were also related to the rainfall intensity. Higher rainfall intensity resulted in a higher proportion of lead in the runoff and a lower proportion of lead remaining on the rooftop. PMID:26289339

  11. Response to “Comment on 'The transition on North America from the warm humid Pliocene to the glaciated Quaternary traced by eolian dust deposition at a benchmark North Atlantic Ocean drill site', by David Lang et al.”

    NASA Astrophysics Data System (ADS)

    Lang, David C.; Bailey, Ian; Wilson, Paul A.; Foster, Gavin L.; Bolton, Clara T.; Friedrich, Oliver; Gutjahr, Marcus

    2014-11-01

    In volume 93 of Quaternary Science Reviews we published a new record of terrigenous inputs to Integrated Ocean Drilling Program (IODP) Site U1313 that tracks the history of aeolian dust deposition in the North Atlantic Ocean and aridity on North America during the late Pliocene-earliest Pleistocene intensification of northern hemisphere glaciation (iNHG, 3.3 to 2.4 Ma). Naafs et al. (2014) are generally supportive but question one of our conclusions, specifically our argument that "glacial grinding and transport of fine grained sediments to mid latitude outwash plains is not the fundamental mechanism controlling the magnitude of the flux of higher plant leaf waxes from North America to Site U1313 during iNHG." They suggest that our argument is predominantly based on our observation that the relationship between sediment lightness (L*)-based terrigenous inputs and dust-derived biomarkers, which is observed to be linear elsewhere (Martínez-Garcia et al., 2011), is non-linear at Site U1313.

  12. Dust transport and deposition observed from the Terra-Moderate Resolution Imaging Spectroradiometer (MODIS) spacecraft over the Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Kaufman, Y. J.; Koren, I.; Remer, L. A.; Tanré, D.; Ginoux, P.; Fan, S.

    2005-05-01

    Meteorological observations, in situ data, and satellite images of dust episodes were used already in the 1970s to estimate that 100 Tg of dust are transported from Africa over the Atlantic Ocean every year between June and August and are deposited in the Atlantic Ocean and the Americas. Desert dust is a main source of nutrients to oceanic biota and the Amazon forest, but it deteriorates air quality, as shown for Florida. Dust affects the Earth radiation budget, thus participating in climate change and feedback mechanisms. There is an urgent need for new tools for quantitative evaluation of the dust distribution, transport, and deposition. The Terra spacecraft, launched at the dawn of the last millennium, provides the first systematic well-calibrated multispectral measurements from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument for daily global analysis of aerosol. MODIS data are used here to distinguish dust from smoke and maritime aerosols and to evaluate the African dust column concentration, transport, and deposition. We found that 240 ± 80 Tg of dust are transported annually from Africa to the Atlantic Ocean, 140 ± 40 Tg are deposited in the Atlantic Ocean, 50 Tg fertilize the Amazon Basin (four times as previous estimates, thus explaining a paradox regarding the source of nutrition to the Amazon forest), 50 Tg reach the Caribbean, and 20 Tg return to Africa and Europe. The results are compared favorably with dust transport models for maximum particle diameter between 6 and 12 μm. This study is a first example of quantitative use of MODIS aerosol for a geophysical research.

  13. Geochemical Evidence for Periods of Increased Mineral Dust Deposition in Patagonian Peat Bogs Since the Last Deglaciation

    NASA Astrophysics Data System (ADS)

    Vanneste, H.; De Vleeschouwer, F.; Mattielli, N. D.; Vanderstraeten, A.; von Scheffer, C.; Piotrowska, N.; Coronato, A.; Le Roux, G.

    2013-12-01

    Atmospheric mineral dust plays an important role in the earth's climate system, influencing atmospheric parameters such as cloud condensation as well as biogeochemical cycles, affecting atmospheric CO2 levels. Antarctic ice core records show that mineral dust deposition has varied in the Southern Hemisphere over glacial-interglacial stages, suggesting major changes in atmospheric circulation. Nevertheless, to make predictions for the near future possible, a better understanding of atmospheric dust load and transport variability in the recent past, is essential. Ombrotrophic peat bogs have proven to provide excellent records of atmospheric dust deposition for the Holocene as their accumulation rates are higher than any other archive. Hence two ombrotrophic peat bogs, located southwest (Karukinka) and southeast (Harberton) on Isla Grande de Tierra del Fuego, were sampled to investigate dust-palaeoclimatic interactions in southern South America since the last deglaciation. Here we present a detailed geochemical (major, trace elements and Nd isotopes) record for both sites. The base of the peat sequences in Karukinka and Harberton were dated by 14C at ca. 8,000 cal yr BP and ca. 16,500 cal yr BP, respectively. The distribution of trace elemental (Sc, REE) concentrations within the cores indicates, besides tephra layers, episodes of increased mineral dust deposition at Harberton and Karukinka. The glacial-interglacial transition can be observed in the Harberton record (at ca. 11,500 cal yr BP), marked by a drop in the dust flux from 102 g/m2/yr to 10 g/m2/yr. The most significant episode of mineral dust deposition at Karukinka is concentrated around 1,600 cal yr BP with a maximum dust flux of 108 g/m2/yr. Its neodymium isotopic signature of -1 suggests crustal admixing, compared to the ɛNd values of ˜2, for both tephra layers.

  14. High-latitude dust in the Earth system

    NASA Astrophysics Data System (ADS)

    Bullard, Joanna E.; Baddock, Matthew; Bradwell, Tom; Crusius, John; Darlington, Eleanor; Gaiero, Diego; Gassó, Santiago; Gisladottir, Gudrun; Hodgkins, Richard; McCulloch, Robert; McKenna-Neuman, Cheryl; Mockford, Tom; Stewart, Helena; Thorsteinsson, Throstur

    2016-06-01

    Natural dust is often associated with hot, subtropical deserts, but significant dust events have been reported from cold, high latitudes. This review synthesizes current understanding of high-latitude (≥50°N and ≥40°S) dust source geography and dynamics and provides a prospectus for future research on the topic. Although the fundamental processes controlling aeolian dust emissions in high latitudes are essentially the same as in temperate regions, there are additional processes specific to or enhanced in cold regions. These include low temperatures, humidity, strong winds, permafrost and niveo-aeolian processes all of which can affect the efficiency of dust emission and distribution of sediments. Dust deposition at high latitudes can provide nutrients to the marine system, specifically by contributing iron to high-nutrient, low-chlorophyll oceans; it also affects ice albedo and melt rates. There have been no attempts to quantify systematically the expanse, characteristics, or dynamics of high-latitude dust sources. To address this, we identify and compare the main sources and drivers of dust emissions in the Northern (Alaska, Canada, Greenland, and Iceland) and Southern (Antarctica, New Zealand, and Patagonia) Hemispheres. The scarcity of year-round observations and limitations of satellite remote sensing data at high latitudes are discussed. It is estimated that under contemporary conditions high-latitude sources cover >500,000 km2 and contribute at least 80-100 Tg yr-1 of dust to the Earth system (~5% of the global dust budget); both are projected to increase under future climate change scenarios.

  15. Soil genesis on the island of Bermuda in the Quaternary: The importance of African dust transport and deposition

    NASA Astrophysics Data System (ADS)

    Muhs, Daniel R.; Budahn, James R.; Prospero, Joseph M.; Skipp, Gary; Herwitz, Stanley R.

    2012-09-01

    The origin of terra rossa, red or reddish-brown, clay-rich soils overlying high-purity carbonate substrates, has intrigued geologists and pedologists for decades. Terra rossa soils can form from accumulation of insoluble residues during dissolution of the host limestones, addition of volcanic ash, or addition of externally derived, long-range-transported (LRT) aeolian particles. We studied soils and paleosols on high-purity, carbonate aeolianites of Quaternary age on Bermuda, where terra rossa origins have been debated for more than a century. Potential soil parent materials on this island include sand-sized fragments of local volcanic bedrock, the LRT, fine-grained (<20μm) component of distal loess from the lower Mississippi River Valley, and LRT dust from Africa. These parent materials can be characterized geochemically using trace elements that are immobile in the soil-forming environment. Results indicate that local volcanic bedrock on Bermuda has Sc-Th-La, Cr-Ta-Nd, and Eu/Eu*, LaN/YbN, GdN/YbNthat can be distinguished from African dust and lower Mississippi River valley loess. Bermuda soils have Sc-Th-La, Cr-Ta-Nd, and Eu/Eu*, LaN/YbN, GdN/YbN that indicate derivation from a combination of LRT dust from Africa and local volcanic bedrock. Our results indicate that soils on islands in a very broad latitudinal belt of the western Atlantic margin have been influenced by African LRT dust inputs over much of the past ˜500 ka.

  16. Quantifying silica in filter-deposited mine dusts using infrared spectra and partial least squares regression.

    PubMed

    Weakley, Andrew Todd; Miller, Arthur L; Griffiths, Peter R; Bayman, Sean J

    2014-07-01

    The feasibility of measuring airborne crystalline silica (α-quartz) in noncoal mine dusts using a direct-on-filter method of analysis is demonstrated. Respirable α-quartz was quantified by applying a partial least squares (PLS) regression to the infrared transmission spectra of mine-dust samples deposited on porous polymeric filters. This direct-on-filter method deviates from the current regulatory determination of respirable α-quartz by refraining from ashing the sampling filter and redepositing the analyte prior to quantification using either infrared spectrometry for coal mines or x-ray diffraction (XRD) from noncoal mines. Since XRD is not field portable, this study evaluated the efficacy of Fourier transform infrared spectrometry for silica determination in noncoal mine dusts. PLS regressions were performed using select regions of the spectra from nonashed samples with important wavenumbers selected using a novel modification to the Monte Carlo unimportant variable elimination procedure. Wavenumber selection helped to improve PLS prediction, reduce the number of required PLS factors, and identify additional silica bands distinct from those currently used in regulatory enforcement. PLS regression appeared robust against the influence of residual filter and extraneous mineral absorptions while outperforming ordinary least squares calibration. These results support the quantification of respirable silica in noncoal mines using field-portable infrared spectrometers. PMID:24830397

  17. Aeolian sand ripples around plants.

    PubMed

    Zhang, Qian-Hua; Miao, Tian-De

    2003-05-01

    Plants in the desert may locally change the aeolian process, and hence the pattern of sand ripples traveling nearby. The effect of plants on ripples is investigated using a coupled map lattice model with nonuniform coupling coefficients. PMID:12786143

  18. Agriculture as a source of Aeolian sediment affecting air quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aeolian processes on agricultural lands have been examined for the past several decades on nearly every continent and has led to a better understanding of detachment, entrainment, transport, and deposition. Relatively little is known concerning the effect of these processes on air quality. In fact, ...

  19. Imprint of North-Atlantic abrupt climate changes on western European loess deposits as viewed in a dust emission model

    NASA Astrophysics Data System (ADS)

    Sima, Adriana; Rousseau, Denis-Didier; Kageyama, Masa; Ramstein, Gilles; Schulz, Michael; Balkanski, Yves; Antoine, Pierre; Dulac, François; Hatté, Christine

    2009-12-01

    Western European loess sequences of the last glaciation (˜100,000-15,000 years BP) exhibit strong, cyclic variations of the sedimentation rate, which are coeval to the Greenland stadial/interstadial cycles and the Heinrich events. These North-Atlantic rapid climate changes appear, thus, as a potential cause for the sedimentation variations, via changes in dust intensity cycle. Here we make a first step in testing this hypothesis, by modelling the impact of the North-Atlantic abrupt climate variations on dust emission. Our dust emission calculations use meteorological fields generated by the LMDZ atmospheric general circulation model at a resolution down to 60 km over Western Europe. Three numerical experiments are run, representing a Greenland stadial, an interstadial and a Heinrich event. Orbital parameters and ice-sheet configuration correspond to conditions from Marine Isotope Stage 3 (˜60,000-25,000 years BP), a period characterized by strong millennial-scale climate variability. The only differences we impose in the boundary conditions regard the North-Atlantic surface temperature and sea-ice cover in the latitudinal band 30°-63°N. The changes in wind, precipitation, soil moisture and snow cover from one simulated state to another result in small differences in dust emission intensity. In contrast, when the inhibition of the aeolian erosion by vegetation is taken into account, the dust fluxes for the cold climate states (Greenland stadial and Heinrich event) become generally more than twice higher than those for the relatively warmer Greenland interstadial, in agreement with the loess data. These results support the hypothesis that the North-Atlantic millennial-scale variability is imprinted in Western European loess profiles, and point to vegetation changes as the main factor responsible for millennial-scale sedimentation variations. An analysis for the English Channel and southern North Sea areas, major potential dust sources, shows that the seasonality

  20. Does Saharan dust deposition influence the export of particle fluxes in the tropical North Atlantic Ocean?

    NASA Astrophysics Data System (ADS)

    Korte, Laura; van der Does, Michèlle; Munday, Chris; Brummer, Geert-Jan; Stuut, Jan-Berend

    2015-04-01

    Every year over 200 million tons of Saharan dust are blown over the Atlantic Ocean towards the Caribbean. On its journey most of the dust is removed from the atmosphere by either dry or wet deposition and is ending up in the ocean. Its input potentially stimulates phytoplankton growth and possibly also drags down organic matter through the water column to the sea floor. The role of dust as a means to export organic carbon from the surface ocean to the deep is still controversially discussed. However, aggregation plays a critical role in carbon export since sinking velocities depend amongst others on particle constituents, size and shape, porosity and way of formation. Higher sinking velocities lead to less degradation and remineralization, or, in other words: fresher material. Here we present particle fluxes from one year (October 2012 until November 2013) collected by three sediment traps at 1200 m depth along a profile across the tropical North Atlantic Ocean. Average total mass fluxes vary between 40 and 111 mg/m2/d depending on the location in the ocean. Peak fluxes of 230 and 270 mg/m2/d in the second half of April and by the end of October/start of November 2013 in the western tropical ocean are worth mentioning since they differ in nature; carbonaceous material dominate fluxes in spring and biogenic opal in autumn. The calculated rest fractions, which we interpret as wind-blown dust, vary between 41 mg/m2/d closest to the African coast, and 10 to 18 mg/m2/d to the western open ocean. Total organic carbon (TOC) and biogenic opal are related to the rest fraction for two traps; this relation improves with distance to the source. Unexpectedly, the rest fraction of the sediment trap closest to the African coast, do neither show a relation to organic matter nor to biogenic opal. Same findings hold true for the 15Ntot values of the material: they correlate negatively with the rest fraction, indicating fresher material. These correlations become stronger to the

  1. Radar-aeolian roughness project

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald; Dobrovolskis, A.; Gaddis, L.; Iversen, J. D.; Lancaster, N.; Leach, Rodman N.; Rasnussen, K.; Saunders, S.; Vanzyl, J.; Wall, S.

    1991-01-01

    The objective is to establish an empirical relationship between measurements of radar, aeolian, and surface roughness on a variety of natural surfaces and to understand the underlying physical causes. This relationship will form the basis for developing a predictive equation to derive aeolian roughness from radar backscatter. Results are given from investigations carried out in 1989 on the principal elements of the project, with separate sections on field studies, radar data analysis, laboratory simulations, and development of theory for planetary applications.

  2. Mars sampling strategy and aeolian processes

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald

    1988-01-01

    It is critical that the geological context of planetary samples (both in situ analyses and return samples) be well known and documented. Apollo experience showed that this goal is often difficult to achieve even for a planet on which surficial processes are relatively restricted. On Mars, the variety of present and past surface processes is much greater than on the Moon and establishing the geological context of samples will be much more difficult. In addition to impact hardening, Mars has been modified by running water, periglacial activity, wind, and other processes, all of which have the potential for profoundly affecting the geological integrity of potential samples. Aeolian, or wind, processes are ubiquitous on Mars. In the absence of liquid water on the surface, aeolian activity dominates the present surface as documented by frequent dust storms (both local and global), landforms such as dunes, and variable features, i.e., albedo patterns which change their size, shape, and position with time in response to the wind.

  3. Identification of a late Quaternary alluvial-aeolian sedimentary sequence in the Sichuan Basin, China

    NASA Astrophysics Data System (ADS)

    Feng, Jin-Liang; Ju, Jian-Ting; Chen, Feng; Hu, Zhao-Guo; Zhao, Xiang; Gao, Shao-Peng

    2016-03-01

    The late Quaternary sedimentary sequence in the northwestern part of the Sichuan Basin consists of five lithological units and with increasing depth include the: Chengdu Clay; Brown Clay; Red Clay; Sandy Silt; and basal Muddy Gravel. The genesis, provenance and age of the sediments, as well as the possible presence of hiatuses within this sequence are debated. Measurements of grain-size, magnetic susceptibility, quartz content, quartz δ18O values, element composition, and Sr-Nd isotopic concentrations of samples from a typical sedimentary sequence in the area provides new insights into the genesis and history of the sequence. The new data confirm that the sediments in study site are alluvial-aeolian in origin, with basal alluvial deposits overlain by aeolian deposits. Like the uppermost Chengdu Clay, the underlying Brown Clay and Red Clay are aeolian in origin. In contrast, the Silty Sand, like the basal Muddy Gravel, is an alluvial deposit and not an aeolian deposit as previously thought. Moreover, the succession of the aeolian deposits very likely contains two significant sedimentary hiatuses. Sedimentological analysis demonstrates that the source materials for the aeolian deposits in the northwestern part of the Sichuan Basin and those on the eastern Tibetan Plateau are different. Furthermore, the loess deposits on the eastern Tibetan Plateau are derived from heterogeneous local sources.

  4. Mapping of Fugitive Dust Generation, Transport, and Deposition in the Nogales, Arizona Region Using Enhanced Thematic Mapper Plus (ETM+) Data

    NASA Astrophysics Data System (ADS)

    Stefanov, W. L.; Stefanov, W. L.; Ramsey, M. S.; Christensen, P. R.

    2001-05-01

    Urban centers located along the U.S.-Mexico border represent significant sources of fugitive (airborne) dust. This dust, which can lead to adverse health effects, arises from several factors including construction activities related to land use conversion (i.e., agricultural to residential), unpaved roadways, agricultural activities, and human disturbance of the soil. Fundamental baseline data needed for modeling and monitoring of particulate generation and transport are accurate regional classification of land cover, degree of disturbance, and a metric of land cover change. Identification and delineation of fugitive dust source regions using a purely field-based approach is time and labor intensive and can lead to errors over time as land use changes. Further, restrictions on access to specific areas (such as private lands and reservations) may impede or prevent site investigations in these areas. Remotely gathered information can be used to circumvent these difficulties and provide rapid dust source region identification with quantitative area measurements required in transport models. Landsat ETM+ data was used to identify and delineate surficial materials that were either potential fugitive dust source regions or were important factors in dust transport and deposition. Using a knowledge-based system, land cover was classified into three generalized types: natural and disturbed soils (dust generation sites); asphalt, concrete, and urban materials (dust transport areas); and vegetated areas (dust deposition sites). Accuracy of the land cover classification was assessed using field verification, comparison of field and image reflectance spectra, and digital aerial orthophotographs. Results of image classification and field verification for Landsat data acquired during the winter of 2000 show a strong correlation, and will be used with data collected during the summer dry season for change detection analysis. The digital format of the classified data is optimal for

  5. In search for a compromise between biodiversity conservation and human health protection in restoration of fly ash deposits: effect of anti-dust treatments on five groups of arthropods.

    PubMed

    Tropek, Robert; Cerna, Ilona; Straka, Jakub; Kocarek, Petr; Malenovsky, Igor; Tichanek, Filip; Sebek, Pavel

    2016-07-01

    Recently, fly ash deposits have been revealed as a secondary refuge of critically endangered arthropods specialised on aeolian sands in Central Europe. Simultaneously, these anthropogenic habitats are well known for their negative impact on human health and the surrounding environment. The overwhelming majority of these risks are caused by wind erosion, the substantial decreasing of which is thus necessary. But, any effects of anti-dust treatments on endangered arthropods have never been studied. We surveyed communities of five arthropod groups (wild bees and wasps, leafhoppers, spiders, hoverflies and orthopteroid insects) colonising three fly ash deposits in the western Czech Republic. We focused on two different anti-dust treatments (~70 and 100 % cover of fly ash by barren soil) and their comparison with a control of bare fly ash. Altogether, we recorded 495 species, including 132 nationally threatened species (eight of them were considered to be extinct in the country) and/or 30 species strictly specialised to drift sands. Bees and wasps and leafhoppers contained the overwhelming majority of species of the highest conservation interest; a few other important records were also in spiders and orthopteroids. Total soil cover depleted the unique environment of fly ash and thus destroyed the high conservation potential of the deposits. On the other hand, partial coverage (with ~30 % of bare fly ash) still offered habitats for many of the most threatened species, as we showed by both regression and multivariate analyses, with a decrease of wind erosion. This topic still needs much more research interest, but we consider mosaic-like preservation of smaller spots of fly ash as one of the possible compromises between biodiversity and human health. PMID:25847441

  6. Laboratory Simulations of Martian and Venusian Aeolian Processes

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald

    1999-01-01

    With the flyby of the Neptune system by Voyager, the preliminary exploration of the Solar System was accomplished. Data have been returned for all major planets and satellites except the Pluto system. Results show that the surfaces of terrestrial planets and satellites have been subjected to a wide variety of geological processes. On solid- surface planetary objects having an atmosphere, aeolian processes are important in modifying their surfaces through the redistribution of fine-grained material by the wind. Bedrock may be eroded to produce particles and the particles transported by wind for deposition in other areas. This process operates on Earth today and is evident throughout the geological record. Aeolian processes also occur on Mars, Venus, and possibly Titan and Triton, both of which are outer planet satellites that have atmospheres. Mariner 9 and Viking results show abundant wind-related landforms on Mars, including dune fields and yardangs (wind-eroded hills). On Venus, measurements made by the Soviet Venera and Vega spacecraft and extrapolations from the Pioneer Venus atmospheric probes show that surface winds are capable of transporting particulate materials and suggest that aeolian processes may operate on that planet as well. Magellan radar images of Venus show abundant wind streaks in some areas, as well as dune fields and a zone of possible yardangs. The study of planetary aeolian processes must take into account diverse environments, from the cold, low-density atmosphere of Mars to the extremely hot, high- density Venusian atmosphere. Factors such as threshold wind speeds (minimum wind velocity needed to move particles), rates of erosion and deposition, trajectories of windblown particles, and aeolian flow fields over various landforms are all important aspects of the problem. In addition, study of aeolian terrains on Earth using data analogous to planetary data-collection systems is critical to the interpretation of spacecraft information and

  7. Using the significant dust deposition event on the glaciers of Mt.~Elbrus, Caucasus Mountains, Russia on 5 May 2009 to develop a method for dating and "provenancing" of desert dust events recorded in snow pack

    NASA Astrophysics Data System (ADS)

    Shahgedanova, M.; Kutuzov, S.; White, K. H.; Nosenko, G.

    2013-02-01

    A significant desert dust deposition event occurred on Mt. Elbrus, Caucasus Mountains, Russia on 5 May 2009, where the deposited dust later appeared as a brown layer in the snow pack. An examination of dust transportation history and analysis of chemical and physical properties of the deposited dust were used to develop a new approach for high-resolution "provenancing" of dust deposition events recorded in snow pack using multiple independent techniques. A combination of SEVIRI red-green-blue composite imagery, MODIS atmospheric optical depth fields derived using the Deep Blue algorithm, air mass trajectories derived with HYSPLIT model and analysis of meteorological data enabled identification of dust source regions with high temporal (hours) and spatial (ca. 100 km) resolution. Dust, deposited on 5 May 2009, originated in the foothills of the Djebel Akhdar in eastern Libya where dust sources were activated by the intrusion of cold air from the Mediterranean Sea and Saharan low pressure system and transported to the Caucasus along the eastern Mediterranean coast, Syria and Turkey. Particles with an average diameter below 8 μm accounted for 90% of the measured particles in the sample with a mean of 3.58 μm, median 2.48 μm. The chemical signature of this long-travelled dust was significantly different from the locally-produced dust and close to that of soils collected in a palaeolake in the source region, in concentrations of hematite. Potential addition of dust from a secondary source in northern Mesopotamia introduced uncertainty in the "provenancing" of dust from this event. Nevertheless, the approach adopted here enables other dust horizons in the snowpack to be linked to specific dust transport events recorded in remote sensing and meteorological data archives.

  8. Using the significant dust deposition event on the glaciers of Mt. Elbrus, Caucasus Mountains, Russia on 5 May 2009 to develop a method for dating and provenancing of desert dust events recorded in snow pack

    NASA Astrophysics Data System (ADS)

    Shahgedanova, M.; Kutuzov, S.; White, K.; Nosenko, G.

    2012-09-01

    A significant desert dust deposition event occurred on Mt. Elbrus, Caucasus Mountains, Russia on 5 May 2009, where the deposited dust later appeared as a brown layer in the snow pack. An examination of dust transportation history and analysis of chemical and physical properties of the deposited dust were used to develop a new approach for high-resolution provenancing of dust deposition events recorded in snow pack using multiple independent techniques. A combination of SEVIRI red-green-blue composite imagery, MODIS atmospheric optical depth fields derived using the Deep Blue algorithm, air mass trajectories derived with HYSPLIT model and analysis of meteorological data enabled identification of dust source regions with high temporal (hours) and spatial (ca. 100 km) resolution. Dust, deposited on 5 May 2009, originated in the foothills of the Djebel Akhdar in eastern Libya where dust sources were activated by the intrusion of cold air from the Mediterranean Sea and Saharan low pressure system and transported to the Caucasus along the eastern Mediterranean coast, Syria and Turkey. Particles with an average diameter below 8 μm accounted for 90% of the measured particles in the sample with a mean of 3.58 μm, median 2.48 μm and the dominant mode of 0.60 μm. The chemical signature of this long-travelled dust was significantly different from the locally-produced dust and close to that of soils collected in a palaeolake in the source region, in concentrations of hematite and oxides of aluminium, manganese, and magnesium. Potential addition of dust from a secondary source in northern Mesopotamia introduced uncertainty in the provenancing of dust from this event. Nevertheless, the approach adopted here enables other dust horizons in the snowpack to be linked to specific dust transport events recorded in remote sensing and meteorological data archives.

  9. Aeolian Processes and Features on Venus

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald; Bender, Kelly C.; Saunders, Stephen; Schubert, Gerald; Weitz, Catherine M.

    1997-01-01

    Aeolian features on Venus include dune fields, eroded hills (yardangs), wind streaks, (miniature dunes of 10 to 30 cm wavelength). Although and possibly microdunes (in repetitive imaging by Magellan did show changes in the appearance of the surface, these changes are attributed to radar artifacts as a consequence of look direction rather than to physical changes of the surface. Nonetheless, measurements of wind speeds near the surface of Venus and wind tunnel simulations suggest that aeolian processes could be currently active on Venus. Study of radar images of terrestrial analogs shows that radar wavelength, polarization, and viewing geometry, including look direction and incidence angle, all influence the detection of dunes, yardangs, and wind streaks. For best detection, dune crests and yardangs should be oriented perpendicular to look direction. Longer wavelength systems can penetrate sand sheets a meter or more thick, rendering them invisible, especially in arid regions. For wind streaks to be visible, there must be a contrast in surface properties between the streak and the background on which it occurs. Nonetheless, more than 6000 aeolian features have been found on Magellan images of Venus, the most common of which are various wind streaks. Mapping wind streak orientations enables near-surface wind patterns to be inferred for the time of their formation. Type P streaks are associated with parabolic ejecta crater deposits and are considered to have formed in association with the impact event. Most Type P streaks are oriented westward, indicative of the upper altitude superrotation winds of Venus. Non Type P streaks have occurrences and orientations consistent with Hadley circulation. Some streaks in the southern hemisphere are oriented to the northeast, suggesting a Coriolis effect.

  10. Persistent Aeolian Activity at Endeavour Crater, Mars

    NASA Astrophysics Data System (ADS)

    Chojnacki, M.; Michaels, T. I.; Fenton, L. K.

    2013-12-01

    Long-term monitoring of sites that are known to have active dunes and ripples is generally limited to 3 Mars-Years (MY). Here, we discuss new results of dune activity and albedo change in Endeavour crater (EC), Meridiani Planum (MP) that record eight MY of aeolian activity. MP dune fields often show large yearly variations in albedo; EC darkened by ~12% in TES albedo between MY 24 and 26 (from 0.14 to 0.12). THEMIS VIS albedo of dunes did not change significantly from MY 26 to 29, but did decrease notably (~15 %) in MY 30. These darkening events are most likely related to aeolian-driven dust cleaning (e.g., removal by saltating sand, dust devils). For example, the Opportunity rover (poised on the western rim of EC) observed evidence for a MY 31 dune field dust-clearing event. HiRISE monitoring of MP has shown it be one of the most active regions outside of north polar latitudes. Paired images of western EC taken 3 MY apart show clear evidence for dune modification that include: ripple migration, change in dune perimeters, exposure of previously buried light-toned rock, and/or burial of rock by sand (Fig. 1a-1b). Dune slip face movement is evident for most dunes, where crests and aprons advanced (2-7 m) in the downwind direction (to the SSE) at rates of 0.7-2.3 m per MY. Small dome dunes in the eastern EC were found to have a large degree of aeolian activity (e.g., deflation and/or translation) by an earlier study that used MGS-MRO images (MY 24-30). New MY 31 images validate earlier observations, showing clear evidence for bedform deflation where dunes often occupy less area (~50%) than in earlier MY 29 images (Fig. 1c-1d). Areal removal rates are on par with earlier estimates. Bedform modification and sand streamer orientation appear to be caused by a NNW wind regime, consistent with earlier observations, mesoscale modeling, and the transport direction of barchans to the west. Dunes in EC are now known to be periodically (consistently?) active from over a decade

  11. Lead isotopes combined with a sequential extraction procedure for source apportionment in the dry deposition of Asian dust and non-Asian dust.

    PubMed

    Lee, Pyeong-Koo; Yu, Soonyoung

    2016-03-01

    Lead isotopic compositions were determined in leachates that were generated using sequential extractions of dry deposition samples of Asian dust (AD) and non-Asian dust (NAD) and Chinese desert soils, and used to apportion Pb sources. Results showed significant differences in (206)Pb/(207)Pb and (206)Pb/(204)Pb isotopic compositions in non-residual fractions between the dry deposition samples and the Chinese desert soils while (206)Pb/(207)Pb and (206)Pb/(204)Pb isotopic compositions in residual fraction of the dry deposition of AD and NAD were similar to the mean (206)Pb/(207)Pb and (206)Pb/(204)Pb in residual fraction of the Alashan Plateau soil. These results indicate that the geogenic materials of the dry deposition of AD and NAD were largely influenced by the Alashan Plateau soil, while the secondary sources of the dry deposition were different from those of the Chinese desert soils. In particular, the lead isotopic compositions in non-residual fractions of the dry deposition were homogenous, which implies that the non-residual four fractions (F1 to F4) shared the primary anthropogenic origin. (206)Pb/(207)Pb values and the predominant wind directions in the study area suggested that airborne particulates of heavily industrialized Chinese cities were one of the main Pb sources. Source apportionment calculations showed that the average proportion of anthropogenic Pb in the dry deposition of AD and NAD was 87% and 95% respectively in total Pb extraction, 92% and 97% in non-residual fractions, 15% and 49% in residual fraction. Approximately 81% and 80% of the anthropogenic Pb was contributed by coal combustion in China in the dry deposition of AD and NAD respectively while the remainder was derived from industrial Pb contamination. The research result proposes that sequential extractions with Pb isotope analysis are a useful tool for the discrimination of anthropogenic and geogenic origins in highly contaminated AD and NAD. PMID:26708760

  12. Aeolian Sediment Transport Pathways and Aerodynamics at Troughs on Mars

    NASA Technical Reports Server (NTRS)

    Bourke, Mary C.; Bullard, Joanna E.; Barnouin-Jha, Olivier S.

    2004-01-01

    Interaction between wind regimes and topography can give rise to complex suites of aeolian landforms. This paper considers aeolian sediment associated wit11 troughs on Mars and identifies a wider range of deposit types than has previously been documented. These include wind streaks, falling dunes, "lateral" dunes, barchan dunes, linear dunes, transverse ridges, sand ramps, climbing dunes, sand streamers, and sand patches. The sediment incorporated into these deposits is supplied by wind streaks and ambient Planitia sources as well as originating within the trough itself, notably from the trough walls and floor. There is also transmission of sediment between dneTsh. e flow dynamics which account for the distribution of aeolian sediment have been modeled using two-dimensional computational fluid dynamics. The model predicts flow separation on the upwind side of the trough followed by reattachment and acceleration at the downwind margin. The inferred patterns of sediment transport compare well with the distribution of aeolian forms. Model data indicate an increase of wind velocity by approx. 30 % at the downwind trough margin. This suggests that the threshold wind speed necessary for sand mobilization on Mars will be more freqentmlye t in these inclined locations.

  13. Microbial communities established on Mont Blanc summit with Saharan dust deposition

    NASA Astrophysics Data System (ADS)

    Chuvochina, M.; Alekhina, I.; Normand, P.; Petit, J. R.; Bulat, S.

    2009-04-01

    Dust originating from the Sahara desert can be uplifted during storms, transported across the Mediterranean towards the Alpine region and deposited during snowfalls. The microbes associated with dust particles can be involved in establishing microbiota in icy environments as well as affect ecosystem and human health. Our objective was to use a culture-free DNA-based approach to assess bacterial content and diversity and furthermore, to identify ‘icy' microbes which could be brought on the Mont Blanc (MtBl) summit with Saharan dust and became living in the snow. Saharan dust fallout on MtBl summit from one event (MB5, event June 2006) vs. control libraries and that from another event (May 2008) were collected in Grenoble (SD, 200 m a.s.l.) and at Col du Dome (MB-SD, 4250 m a.s.l.). Soil from Ksar Ghilane (SS, Saharan desert, Tunisia, March 2008) was taken for overall comparison as a possible source population. Fresh snow falling in Grenoble (85) was collected as example of diversity in this area. To assess the microbial diversity 16S rRNA gene libraries (v3-v5 region) were constructed for corresponding dust-snow samples (MB5, SS, SD, 85 and MB-SD) along with clear snow samples and several controls. For both MB5 and MB-SD samples full-gene technique was evoked in attempt to differentiate reproduced bacteria from damaged DNA. Before sequencing the clones were rybotyped. All clone libraries were distinct in community composition except for some single phylotypes (or closely related groups) overlap. Thus, clone libraries from two different events that were collected at Col du Dome area within 2 year interval (MB5 and MB-SD) were different in community composition except one of the abundant phylotype from MB-SD library (Geodermatophilus sp.) which was shared (98% sequence similarity) with single representative from MB-5 library. These bacteria are pigmented and radiation-resistant, so it could be an indicator of desert origin for our sequences. For MB5 library two

  14. Detecting Patterns of Aeolian Transport Direction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The magnitude and direction of aeolian transport are of direct interest to those engaged in the study of aeolian processes. Although the magnitude of sediment transport has been studied extensively, the study of aeolian transport direction has garnered less attention. This paper describes the deve...

  15. Distribution of Atmospheric Mineral Dust across Dryland Ecosystems (Invited)

    NASA Astrophysics Data System (ADS)

    Reynolds, R. L.; Goldstein, H.; Miller, M. E.; Neff, J. C.; Fernandez, D.; Reheis, M. C.

    2010-12-01

    Deposited atmospheric dust in surface sediments of dry landscapes can be identified using geochemical, isotopic, mineralogical, and textural methods that provide compositional contrasts between surficial sediment and local bedrock. In some settings, detrital minerals that are present in surficial sediment but absent in nearby bedrock can be used as proxies for concentration of far-traveled dust. For example, silt-sized, titanium-bearing magnetite is found in silty sediment on high, isolated landforms underlain by Mesozoic and Paleozoic sandstone, which lack such magnetite, from the Mojave Desert eastward across the Colorado Plateau. Magnetite amounts within the top 10 cm of these sediments correlate (r2= 0.54) with amounts of potential plant nutrients, revealing the importance of mineral dust to fertility across ecosystems. Systematic eastward declines in magnetite (determined using magnetic susceptibility or isothermal remanent magnetization, IRM) and Ti indicate dominant dust sources from igneous terrain in the west. Variations in lead isotopes imply that most anthropogenic dust contributions are sourced from the west, consistent with the regional distribution of urban sources. Similar relations are found across gently sloping, dominantly sandy grassland surfaces that have undergone sediment sorting by aeolian and slope-wash processes. In undisturbed settings, fertility indicators and dust amounts (derived from IRM) correlate tightly (r2 as high as 0.96 between IRM and plant nutrients), and the dust amounts are significantly greater than for settings currently grazed by domestic livestock and even those at which grazing ceased 35 years ago. These results, complemented by other field and compositional studies, reveal that disturbance of dry, upland landscapes commonly promotes wind erosion, which then depletes surfaces of originally deposited dust, including aeolian magnetite. Declines in soil fertility, soil fines, and water-holding capacity in these settings can

  16. Characterisation of nutrients wet deposition under influence of Saharan dust at Puerto-Rico in Caribbean Sea

    NASA Astrophysics Data System (ADS)

    Desboeufs, Karine; Formenti, Paola; Triquet, Sylvain; Laurent, Benoit; Denjean, Cyrielle; Gutteriez-Moreno, Ian E.; Mayol-Bracero, Olga L.

    2015-04-01

    Large quantities of African dust are carried across the North Atlantic toward the Caribbean every summer by Trade Winds. Atmospheric deposition of dust aerosols, and in particular wet deposition, is widely acknowledged to be the major delivery pathway for nutrients to ocean ecosystems, as iron, phosphorus and various nitrogen species. The deposition of this dustis so known to have an important impact on biogeochemical processes in the Tropical and Western Atlantic Ocean and Caribbean including Puerto-Rico. However, very few data exists on the chemical composition in nutrients in dusty rain in this region. In the framework of the Dust-ATTAcK project, rainwater was collected at the natural reserve of Cape San Juan (CSJ) (18.38°N, 65.62°W) in Puerto-Ricobetween 20 June 2012 and 12 July 2012 during thedusty period. A total of 7 rainwater events were sampled during various dust plumes. Complementary chemical analyses on aerosols in suspension was also determined during the campaign. The results on dust composition showed that no mixing with anthropogenic material was observed, confirming dust aerosols were the major particles incorporated in rain samples. The partitioning between soluble and particulate nutrients in rain samples showed that phosphorous solubility ranged from 30 and 80%. The average Fe solubility was around 0.5%, in agreement with Fe solubility observed in rains collected in Niger during African monsoon. That means that the high solubility measurements previously observed in Caribbean was probably due to an anthropogenic influence. Atmospheric wet deposition fluxes of soluble and total nutrients (N, P, Si, Fe, Co, Cu, Mn, Ni, Zn) to Caribbean Sea were determined. Atmospheric P and N inputs were strongly depleted relative to the stoichiometry of phytoplankton Fe, N, P and Si requirements.The nitrogen speciation was also determined and showed the predominance of ammonium form. 3-D modeling was used to estimate the spatial extend of these fluxes over the

  17. Peat bog records of dust deposition over the last 2000 years in the Dolomites (NE Italian Alps)

    NASA Astrophysics Data System (ADS)

    Poto, Luisa; Segnana, Michela; Gabrieli, Jacopo; Zaccone, Claudio; Barbante, Carlo

    2016-04-01

    The reconstruction of dust composition and fluxes is crucial to help to understand climate variability and climate changes. Dust fluctuations, linked to changes in dry and wet depositions, can indicate more humid or arid conditions, changes in temperature, vegetation cover and wind regimes. Peatlands are unique terrestrial archives that can capture changes in atmospheric deposition over time. Among them, ombrotrophic environments are hydrologically isolated from the surrounding landscapes receiving all the nutrients from precipitation and wind, with no influence from streams and groundwater. In recent decades biological and chemical proxies from peat bogs were extensively used to trace past climate changes, and rare earth elements (REE) in particular have been developed as inorganic geochemical proxies of mineral dust input in the atmosphere that plays an important role in the marine and terrestrial biogeochemical cycle as source for both major and trace elements. Dust deposition in the Italian Alps during the last 2000 years is estimated from the geochemical signature of two ombrotrophic peatlands. The first bog is located in Danta di Cadore (Belluno province, 1400 m a.s.l.), the second one in Coltrondo (Belluno province, 1800 m a.s.l.): they both allow us to have new insights into climate variability in the Eastern sector of the Italian Alps. The REE and the lithogenic elements concentration, as well as the lead isotopic composition were determined by CRC-ICP-QMS along the first meter of each core. For both the archives chronology is based upon independent 14C and 210Pb measurements. Changes in REE concentration through the bogs were related with those of lithogenic elements in order to test the immobility of the REE. Moreover peat humification degree was used to evaluate the hydroclimatic conditions of the bogs and Pb isotopic signature were used to trace dust deposited at Danta di Cadore and Coltrondo bogs and to discriminate natural from anthropogenic source

  18. Iceland Dust Storms Linked to Glacial Outwash Deposits and to Sub-Glacial Flood (Jökulhlaup) Events

    NASA Astrophysics Data System (ADS)

    Prospero, J. M.; Arnalds, Ó.; Olafsson, H.; Bullard, J.; Hodgkins, R.

    2008-12-01

    Studies of Arctic snow and ice cores reveal large temporal changes in dust concentrations, especially over glacial-interglacial cycles. Most efforts to model dust variability with climate have focused on sources in tropical and mid-latitude arid regions and have neglected high latitude emissions because of a lack of information on possible sources. Here we report on aerosol measurements which show that dust storms are common on Iceland and that major events are associated with glacial sedimentary environments. In July 1991 we established an aerosol sampling site on Heimaey, a small island located 18 km off the southeast coast of Iceland, with the objective of studying the transport of pollutant species to the Arctic. We found that although concentrations of nitrate and non-sea-salt sulfate were generally quite low, there were sporadic peaks that were primarily attributed to pollutant transport from Europe [Prospero et al., 1995]. Recently we expanded our analyses to include mineral dust, covering the period 1997 through 2004. Dust is present during much of the year (annual average 3.9 μg m-3) with a strong seasonal cycle (maximum in April, 14.0 μg m-3). However there are many spikes in the dust record, some exceeding 100 μg m-3, which are not associated with pollutant transport peaks. A search of NASA satellite web archives yielded six "dust storm" images that were acquired during our data period. These show prominent dust plumes streaming off the coast of Iceland. Here we show that each image could be closely linked to a major dust peak in our record (although there were many more peaks than satellite images). Most of these dust events were associated with dust emitted from glacial outwash (sandur) deposits. Some of the largest dust peaks were linked to jökulhlaups, an Icelandic term for sub-glacially generated outburst floods. The dust clouds were typically comprised of a series of well-defined plumes emitted from large "point" sources, mostly associated with

  19. Properties of Modern Dust Accumulating in the Uinta Mountains, Utah, USA, and Soil Evidence of Long-Term Dust Deposition

    NASA Astrophysics Data System (ADS)

    Munroe, J. S.

    2013-12-01

    Modern eolian sediment was collected at four locations in the alpine zone of the Uinta Mountains (Utah, USA) between July 2011 and July 2012. Collectors were a passive design based on the classic marble dust trap, but modified for use in this high-precipitation environment. On average the collectors accumulated 1.5 gm of dust, corresponding to an annual flux of 4.4 g/m2. This result is similar to values measured from snowpack samples in the Wind River (Wyoming) and San Juan (Colorado) Mountains. Dust flux was 3 to 5x higher during the winter compared with summer at the two sites featuring continuous vegetation, but was consistent between the seasons at the two collectors surrounded by a greater area of exposed soil. XRD analysis reveals that dust samples are dominated by quartz, potassium feldspar, plagioclase, and illite. Some samples contain amphibole and chlorite. In contrast, samples of fine sediment collected from the surface of modern snowbanks are dominated by clay with no feldspar or quartz, suggesting that these minerals are derived from the surrounding soil surface, which is snow-covered in the winter. ICP-MS analysis reveals that the geochemistry of the coarse (>63-μm) fraction of the dust resembles that of the underlying bedrock, confirming a local origin for this sediment. In contrast, the fine (<63-μm) fraction of the dust closely matches the fine fraction of the soil A horizon, supporting an eolian origin for the ubiquitous layer of fines that mantles soil profiles throughout the Uinta Mountains. Grain size analysis with laser scattering reveals that modern dust is very well-sorted, with a median size of 8 μm (7.0 Φ). Using the annual dust flux and mean grain size, and taking into account the measured bulk density (0.95 gm/cm3), organic matter content (20%), and silt content (32%) of this loess cap, the extrapolated loess accretion rate is ~18 cm per 10,000 years. Given that prior studies (Bockheim et al., 2000 Catena; Munroe, 2007, Arctic

  20. Aeolian processes over gravel beds: Field wind tunnel simulation and its application atop the Mogao Grottoes, China

    NASA Astrophysics Data System (ADS)

    Zhang, Weimin; Tan, Lihai; Zhang, Guobin; Qiu, Fei; Zhan, Hongtao

    2014-12-01

    The aeolian processes of erosion, transport and deposition are threatening the Mogao Grottoes, a world culture heritage site. A field wind tunnel experiment was conducted atop the Mogao Grottoes using weighing sensors to quantify aeolian processes over protective gravel beds. Results reveal that aeolian erosion and deposition over gravel beds are basically influenced by gravel coverage and wind speed. Erosion is a main aeolian process over gravel beds and its strength level is mainly determined by gravel coverage: strong (<30%), medium (30-50%) and slight (>50%). Aeolian deposition only occurs when gravel coverage is equal to or greater than 30% and wind speeds are between 8 and 12 m s-1, and this process continues until the occurrence of the equilibrium coverage. In addition, the change in conditions of external sand supply affects the transition between aeolian deposition and erosion over gravel beds, and the quantity of sand transport at the height of 0-24 mm is an important indicator of aeolian deposition and erosion over gravel beds. Our results also demonstrate that making the best use of wind regime atop the Mogao Grottoes and constructing an artificial gobi surface in staggered arrays, with 30% coverage and 30-mm-high gravels and in 40 mm spacing can trap westerly invading sand flow and enable the stronger easterly wind to return the deposited sand on the gravel surface back to the Mingsha Mountain so as to minimize the damage of the blown sand flux to the Mogao Grottoes.

  1. Dust Deposition and Pedogenic Modification in an Arid Region: Tracing Soil Development with Strontium, Carbon, and Oxygen Isotopes

    NASA Astrophysics Data System (ADS)

    McLain, A. A.; McFadden, L. D.; Asmerom, Y.; Atudorei, N.; McDonald, E. V.; Sharp, Z.

    2003-12-01

    Numerous studies have shown that accumulation of dust in desert soils is a primary means of pedogenesis in arid regions. Dust deposition is an important factor significantly impacting, among other processes, pavement development, soil water balance and soil infiltration rates, which, in turn, strongly influence vegetation density and distribution. Establishing linkages between the timing and degree of dust deposition and subsequent soil modification with changes in the local ecosystem aid in our understanding of ecological processes and landscape evolution. The Providence Mountains and Cima Volcanic Field in the Mojave Desert, California have been the sites of several important studies concerning the origins of desert pavements, soils, and landscape evolution. More recently we have conducted strontium, and carbon and oxygen isotopic studies of the carbonate fraction in these soils utilizing contrasting parent materials (mixed plutonic and limestone alluvium, basalt flows) and surface ages (mid to late Pleistocene and Holocene) to better understand the sources, changes in composition, and overall impacts of the incorporation of eolian dust on desert soil development. Sr data documents regional differences in dust delivered to the Eastern Mojave area as compared to Southern New Mexico. We document a strong correlation between dust, Av horizon and soil profile composition. Analysis of fine material from the collected dust samples has constrained Sr compositions of dust (87Sr/86Sr = 0.7101 to 0.7107) delivered to the fans and flow surfaces. Comparisons between older and younger surfaces and with the dust data suggest that de-vegetation and de-stabilization of fan surfaces in the Holocene has caused more local recycling of dust in the region. Carbon and oxygen isotopic compositions of soil carbonate enable us to constrain modes and depth of pedogenic carbonate accumulation, and in some cases distinguish between physically recycled carbonate and re-precipitated carbonate

  2. Field, Laboratory and Imaging spectroscopic Analysis of Landslide, Debris Flow and Flood Hazards in Lacustrine, Aeolian and Alluvial Fan Deposits Surrounding the Salton Sea, Southern California

    NASA Astrophysics Data System (ADS)

    Hubbard, B. E.; Hooper, D. M.; Mars, J. C.

    2015-12-01

    High resolution satellite imagery, field spectral measurements using a portable ASD spectrometer, and 2013 hyperspectral AVIRIS imagery were used to evaluate the age of the Martinez Mountain Landslide (MML) near the Salton Sea, in order to determine the relative ages of adjacent alluvial fan surfaces and the potential for additional landslides, debris flows, and floods. The Salton Sea (SS) occupies a pluvial lake basin, with ancient shorelines ranging from 81 meters to 113 meters above the modern lake level. The highest shoreline overlaps the toe of the 0.24 - 0.38 km3 MML deposit derived from hydrothermally altered granites exposed near the summit of Martinez Mountain. The MML was originally believed to be of early Holocene age. However, AVIRIS mineral maps show abundant desert varnish on the top and toe of the landslide. Desert varnish can provide a means of relative dating of alluvial fan (AF) or landslide surfaces, as it accumulates at determinable rates over time. Based on the 1) highest levels of desert varnish accumulation mapped within the basin, 2) abundant evaporite playa minerals on top of the toe of the landslide, and 3) the highest shoreline of the ancestral lake overtopping the toe of the landslide with gastropod and bivalve shells, we conclude that the MML predates the oldest alluvial fan terraces and lake sediments exposed in the Coachella and Imperial valleys and must be older than early Holocene (i.e. Late Pleistocene?). Thus, the MML landslide has the potential to be used as a spectral endmember for desert varnish thickness and thus proxy for age discrimination of active AF washes versus desert pavements. Given the older age of the MML landslide and low water levels in the modern SS, the risk from future rockslides of this size and related seiches is rather low. However, catastrophic floods and debris flows do occur along the most active AF channels; and the aftermath of such flows can be identified spectrally by montmorillonite crusts forming in

  3. Derivation of an observation-based map of North African dust emission

    NASA Astrophysics Data System (ADS)

    Evan, Amato T.; Fiedler, Stephanie; Zhao, Chun; Menut, Laurent; Schepanski, Kerstin; Flamant, Cyrille; Doherty, Owen

    2015-03-01

    Changes in the emission, transport and deposition of aeolian dust have profound effects on regional climate, so that characterizing the lifecycle of dust in observations and improving the representation of dust in global climate models is necessary. A fundamental aspect of characterizing the dust cycle is quantifying surface dust fluxes, yet no spatially explicit estimates of this flux exist for the World's major source regions. Here we present a novel technique for creating a map of the annual mean emitted dust flux for North Africa based on retrievals of dust storm frequency from the Meteosat Second Generation Spinning Enhanced Visible and InfraRed Imager (SEVIRI) and the relationship between dust storm frequency and emitted mass flux derived from the output of five models that simulate dust. Our results suggest that 64 (±16)% of all dust emitted from North Africa is from the Bodélé depression, and that 13 (±3)% of the North African dust flux is from a depression lying in the lee of the Aïr and Hoggar Mountains, making this area the second most important region of emission within North Africa.

  4. Derivation of an observation-based map of North African dust emission

    SciTech Connect

    Evan, Amato T.; Fiedler, Stephanie; Zhao, Chun; Menut, Laurent; Schepanski, Kerstin; Flamant, C.; Doherty, Owen

    2015-03-01

    Changes in the emission, transport and deposition of aeolian dust have profound effects on regional climate, so that characterizing the lifecycle of dust in observations and improving the representation of dust in global climate models is necessary. A fundamental aspect of characterizing the dust cycle is quantifying surface dust fluxes, yet no spatially explicit estimates of this flux exist for the World’s major source regions. Here we present a novel technique for creating a map of the annual mean emitted dust flux for North Africa based on retrievals of dust storm frequency from the Meteosat Second Generation Spinning Enhanced Visible and InfraRed Imager (SEVIRI) and the relationship between dust storm frequency and emitted mass flux derived from the output of five models that simulate dust. Our results suggest that 64 (±16)% of all dust emitted from North Africa is from the Bodélé depression, and that 13 (±3)% of the North African dust flux is from a depression lying in the lee of the Aïr and Hoggar Mountains, making this area the second most important region of emission within North Africa.

  5. Hellas Planitia, Mars - Site of net dust erosion and implications for the nature of basin floor deposits

    NASA Technical Reports Server (NTRS)

    Moore, Jeffrey M.; Edgett, Kenneth S.

    1993-01-01

    Hellas Planitia, located within an enclosed basin which includes the lowest topography on Mars, appears to be undergoing net erosion. Dust is removed from the basin. It probably contributes to global dust storms and should leave behind a coarse lag. The particle size distributions and particularly the rock or boulder populations in this lag might be useful for distinguishing between processes which formed the lithologic units that comprise Hellas Planitia. This report concludes that the abundance of rock particles larger than coarse sand is very low. Although this hypothesis awaits confirmation from forthcoming spacecraft data, the origins for Hellas floor deposits favored by this study are indurated volcanic airfall or ancient loess, lacustrine deposits, and some types of volcanic mud flows. The conclusions of this study tend to disfavor such geologic processes as blocky lava flows, glacial deposits (e,g., moraines), or boulder-laden catastrophic flood outwash.

  6. Change in dust and fluvial deposition variability in the Peruvian central continental coast during the last millennium: Response of the ocean atmospheric systems.

    NASA Astrophysics Data System (ADS)

    Sifeddine, A.; Briceño, F. J., Sr.; Caquineau, S.; Velazco, F.; Salvatecci, R.; Ortlieb, L.; Gutierrez, D.; Cardich, J.; Almeida, C.

    2014-12-01

    The particles from aeolian or fluvial origin are a useful proxy for the reconstruction of atmospheric condition patterns in the past. Changes in continental aridity and the atmospheric condition determine the composition and amount of lithogenic material and the way of transport from the continent. Here we present a record of laminated sediments (core B040506) retrieved in the continental shelf off Peru. Wind long-term suspension (regional) and local aeolian transport during the last millennium (transition from Medieval Climate Anomaly (MCA) to Little Ice Age (LIA) and the current warm period (CWP)) at centennial to decadal resolution are characterized. The particle provenance and grain size components are discussed using a mathematical model of fractionation. This model assumes that lithological composition of the sediment is an assemblage of several log-normally distributed particle populations. In this way, an interactive least square fitting routine is used to fit the particle grain size collected with the mathematical expression. This allows inferring the spatial and temporal variation of particle populations and thus the transport mechanisms involved. Our results showed a decrease in aeolian transport from the MCA - LIA transition and during the LIA with except of the local aeolian transport that shows peaks during the LIA. This decrease during LIA is accompanied by an enhanced fluvial transport. During the CWP the aeolian transport (Paracas dust storm and wind long-term suspension) display a high variability and tendency to increase in detriment of runoff. Comparison with other South American records indicates that those changes are linked to change in the shift of the ITCZ and Pacific high at the centennial time resolution. Finally the great increase of the fluvial transport within the transition of the LIA to the CWP is synchronous to severe drought period recorded in the Indo-Pacific region indicating higher frequency of El Niño events. Hence these

  7. [Aerosol deposition in nasal passages of burrowing and ground rodents when breathing dust-laden air].

    PubMed

    Moshkin, M P; Petrovskiĭ, D V; Akulov, A E; Romashchenko, A V; Gerlinskaia, L A; Muchnaia, M I; Ganimedov, V L; Sadovskiĭ, A S; Savelov, A A; Koptiug, I V; Troitskiĭ, S Iu; Bukhtiiarov, V I; Kolchanov, N A; Sagdeev, R Z; Fomin, V M

    2014-01-01

    In subterranean rodents, which dig down the passages with frontal teeth, adaptation to the underground mode of life presumes forming of mechanisms that provide protection against inhaling dust particles of different size when digging. One of such mechanisms can be specific pattern of air flow organization in the nasal cavity. To test this assumption, comparative study of geometry and aerodynamics of nasal passages has been conducted with regard to typical representative of subterranean rodents, the mole vole, and a representative of ground rodents, the house mouse. Numerical modeling of air flows and deposition of micro- and nanoparticle aerosols indicates that sedimentation of model particles over the whole surface of nasal cavity is higher in mole vole than in house mouse. On the contrary, particles deposition on the surface of olfactory epithelium turns out to be substantially less in the burrowing rodent as compared to the ground one. Adaptive significance of the latter observation has been substantiated by experimental study on the uptake ofnanoparticles of hydrated manganese oxide MnO x (H2O)x and Mn ions from nasal cavity into brain. It has been shown with use of magnetic resonance tomography method that there is no difference between studied species with respect to intake of particles or ions by olfactory bulb when they are introduced intranasally. Meanwhile, when inhaling nanoparticle aerosol of MnCl2, deposition of Mn in mouse's olfactory bulbs surpasses markedly that in vole's bulbs. Thereby, the morphology of nasal passages as a factor determining the aerodynamics of upper respiratory tract ensures for burrowing rodents more efficient protection of both lungs and brain against inhaled aerosols than for ground ones. PMID:25771679

  8. Saharan Dust Fertilizing Atlantic Ocean and Amazon Rainforest via Long-range Transport and Deposition: A Perspective from Multiyear Satellite Measurements

    NASA Astrophysics Data System (ADS)

    Yu, H.; Chin, M.; Yuan, T.; Bian, H.; Remer, L. A.; Prospero, J. M.; Omar, A. H.; Winker, D. M.; Yang, Y.; Zhang, Y.; Zhang, Z.; Zhao, C.

    2015-12-01

    Massive dust emitted from Sahara desert is carried by trade winds across the tropical Atlantic Ocean, reaching the Amazon Rainforest and Caribbean Sea. Airborne dust degrades air quality and interacts with radiation and clouds. Dust falling to land and ocean adds essential nutrients that could increase the productivity of terrestrial and aquatic ecosystems and modulate the biogeochemical cycles and climate. The resultant climate change will feed back on the production of dust in Sahara desert and its subsequent transport and deposition. Understanding the connections among the remote ecosystems requires an accurate quantification of dust transport and deposition flux on large spatial and temporal scales, in which satellite remote sensing can play an important role. We provide the first multiyear satellite-based estimates of altitude-resolved across-Atlantic dust transport and deposition based on eight-year (2007-2014) record of aerosol three-dimensional distributions from the CALIPSO lidar. On a basis of the 8-year average, 179 Tg (million tons) of dust leaves the coast of North Africa and is transported across Atlantic Ocean, of which 102, 20, and 28 Tg of dust is deposited into the tropical Atlantic Ocean, Caribbean Sea, and Amazon Rainforest, respectively. The dust deposition adds 4.3 Tg of iron and 0.1 Tg of phosphorus to the tropical Atlantic Ocean and Caribbean Sea where the productivity of marine ecosystem depends on the availability of these nutrients. The 28 Tg of dust provides about 0.022 Tg of phosphorus to Amazon Rainforest yearly that replenishes the leak of this plant-essential nutrient by rains and flooding, suggesting an important role of Saharan dust in maintaining the productivity of Amazon rainforest on timescales of decades or centuries. We will also discuss seasonal and interannual variations of the dust transport and deposition, and comparisons of the CALIOP-based estimates with model simulations.

  9. Aeolian Sand Transport with Collisional Suspension

    NASA Technical Reports Server (NTRS)

    Jenkins, James T.; Pasini, Jose Miguel; Valance, Alexandre

    2004-01-01

    Aeolian transport is an important mechanism for the transport of sand on Earth and on Mars. Dust and sand storms are common occurrences on Mars and windblown sand is responsible for many of the observed surface features, such as dune fields. A better understanding of Aeolian transport could also lead to improvements in pneumatic conveying of materials to be mined for life support on the surface of the Moon and Mars. The usual view of aeolian sand transport is that for mild winds, saltation is the dominant mechanism, with particles in the bed being dislodged by the impact of other saltating particles, but without in-flight collisions. As the wind becomes stronger, turbulent suspension keeps the particles in the air, allowing much longer trajectories, with the corresponding increase in transport rate. We show here that an important regime exists between these two extremes: for strong winds, but before turbulent suspension becomes dominant, there is a regime in which in-flight collisions dominate over turbulence as a suspension mechanism, yielding transport rates much higher than those for saltation. The theory presented is based on granular kinetic theory, and includes both turbulent suspension and particle-particle collisions. The wind strengths for which the calculated transport rates are relevant are beyond the published strengths of current wind tunnel experiments, so these theoretical results are an invitation to do experiments in the strong-wind regime. In order to make a connection between the regime of saltation and the regime of collisional suspension, it is necessary to better understand the interaction between the bed and the particles that collide with it. This interaction depends on the agitation of the particles of the bed. In mild winds, collisions with the bed are relatively infrequent and the local disturbance associated with a collision can relax before the next nearby collision. However, as the wind speed increases, collision become more frequent

  10. A Threshold Continuum for Aeolian Sand Transport

    NASA Astrophysics Data System (ADS)

    Swann, C.; Ewing, R. C.; Sherman, D. J.

    2015-12-01

    The threshold of motion for aeolian sand transport marks the initial entrainment of sand particles by the force of the wind. This is typically defined and modeled as a singular wind speed for a given grain size and is based on field and laboratory experimental data. However, the definition of threshold varies significantly between these empirical models, largely because the definition is based on visual-observations of initial grain movement. For example, in his seminal experiments, Bagnold defined threshold of motion when he observed that 100% of the bed was in motion. Others have used 50% and lesser values. Differences in threshold models, in turn, result is large errors in predicting the fluxes associated with sand and dust transport. Here we use a wind tunnel and novel sediment trap to capture the fractions of sand in creep, reptation and saltation at Earth and Mars pressures and show that the threshold of motion for aeolian sand transport is best defined as a continuum in which grains progress through stages defined by the proportion of grains in creep and saltation. We propose the use of scale dependent thresholds modeled by distinct probability distribution functions that differentiate the threshold based on micro to macro scale applications. For example, a geologic timescale application corresponds to a threshold when 100% of the bed in motion whereas a sub-second application corresponds to a threshold when a single particle is set in motion. We provide quantitative measurements (number and mode of particle movement) corresponding to visual observations, percent of bed in motion and degrees of transport intermittency for Earth and Mars. Understanding transport as a continuum provides a basis for revaluating sand transport thresholds on Earth, Mars and Titan.

  11. Transport of Alaskan Dust into the Gulf of Alaska and Comparison with Similar High-Latitude Dust Environments

    NASA Technical Reports Server (NTRS)

    Crusium, John; Levy, Rob; Wang, Jun; Campbell, Rob; Schroth, Andrew W.

    2012-01-01

    Transport of Alaskan dust into the Gulf of Alaska and comparison with similar high-latitude dust environments. An airborne flux of the micronutrient iron, derived from dust originating from coastal regions may be an important contributor of iron to the Gulf of Alaska's (GoA) oligotrophic waters. Dust blowing off glacier termini and dry riverbeds is a recurring phenomenon in Alaska, usually occurring in the autumn. Since previous studies assumed that dust originating in the deserts of Asia was the largest source of . airborne iron to the GoA, the budget of aeolian deposition of iron needs to be reassessed. Since late 20 I 0, our group has been monitoring dust activity using satellites over the Copper River Delta (CRD) where the most vigorous dust plumes have been observed. Since 2011, sample aerosol concentration and their composition are being collected at Middleton Island (100km off shore of CRD). This presentation will show a summary of the ongoing dust observations and compare with other similar environments (Patagonia, Iceland) by showing case studies. Common features will be highlighted

  12. Saharan dust storms: nature and consequences

    NASA Astrophysics Data System (ADS)

    Goudie, A. S.; Middleton, N. J.

    2001-12-01

    This paper reviews recent work on the role of Saharan dust in environmental change, the location and strength of source areas, the transport paths of material away from the desert, the rates of Saharan dust deposition, the nature of that material (including PeriSaharan loess) and the changing rates of dust activity in response to long and short-term climatic changes. The Sahara produces more aeolian soil dust than any other world desert, and Saharan dust has an important impact on climatic processes, nutrient cycles, soil formation and sediment cycles. These influences spread far beyond Africa, thanks to the great distances over which Saharan dust is transported. The precise locations of Saharan dust source areas are not well known, but data from the Total Ozone Mapping Spectrometer (TOMS) suggest two major source areas: the Bodélé depression and an area covering eastern Mauritania, western Mali and southern Algeria. Trajectories of long-distance transport are relatively well documented, but the links between source areas and seasonal Saharan dust pathways are not. However, it is possible that Harmattan dust from the Bodélé depression may not be the source of the prominent winter plume over the tropical North Atlantic, as is often suggested in the literature. Few of the data on particle size characteristics of Saharan dust are derived from major source areas or from Africa itself. Saharan dusts sampled from the Harmattan plume and over Europe are dominated by SiO 2 and Al 2O 3, a characteristic they share with North American and Chinese dusts. The concentrations of these two major elements are similar to those found in world rocks. PeriSaharan loess is conspicuous by its relative absence, considering the Sahara's dominance of the global desert dust cycle both in the contemporary era and through the geological past. In recent decades, the frequency of Saharan dust events has varied markedly in response to climatic factors such as drought and anthropogenic

  13. Dust emissions and dune mobilization in the southern Kalahari: possible effects on biotic-abiotic interactions in the Earth system (Invited)

    NASA Astrophysics Data System (ADS)

    D'Odorico, P.; Bhattachan, A.; Zobeck, T. M.; Baddock, M.; Dintwe, K.; Okin, G. S.

    2010-12-01

    Dust emissions from terrestrial landscapes affect global biogeochemical cycles, climate, and human health. Most sources of atmospheric dust are located in the northern hemisphere, while the southern hemisphere remains relatively dust free. The activation of new sources of dust emission is typically associated either with losses/reductions in vegetation cover or with the drying of lakes and rivers. Here we show how, by mobilizing ancient aeolian deposits at the southern and south-western edges of the Kalahari’s sand sea, the loss of vegetation cover resulting from overgrazing and rangeland degradation may activate important new dust sources in the southern hemisphere. We investigate the implications of these dust emissions on local soil nutrient availability, the stability and resilience of the stabilizing vegetation, and the fertilization of the Southern Ocean.

  14. Lunar and Planetary Science XXXV: Martian Aeolian and Mass Wasting Processes: Blowing and Flowing

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session Martian Aeolian and Mass Wasting Processes: BLowing and Flowing included the following topics: 1) Three Decades of Martian Surface Changes; 2) Thermophysical Properties of Isidis Basin, Mars; 3) Intracrater Material in Eastern Arabia Terra: THEMIS, MOC, and MOLA Analysis of Wind-blown Deposits and Possible High-Inertia Source Material; 4) Thermal Properties of Sand from TES and THEMIS: Do Martian Dunes Make a Good Control for Thermal Inertia Calculations? 5) A Comparative Analysis of Barchan Dunes in the Intra-Crater Dune Fields and the North Polar Sand Sea; 6) Diluvial Dunes in Athabasca Valles, Mars: Morphology, Modeling and Implications; 7) Surface Profiling of Natural Dust Devils; 8) Martian Dust Devil Tracks: Inferred Directions of Movement; 9) Numerical Simulations of Anastomosing Slope Streaks on Mars; 10) Young Fans in an Equatorial Crater in Xanthe Terra, Mars; 11) Large Well-exposed Alluvual Fans in Deep Late-Noachian Craters; 12) New Evidence for the Formation of Large Landslides on Mars; and 13) What Can We Learn from the Ages of Valles Marineris Landslides on Martian Impact History?

  15. "Dust Devils": Gardening Agents on the Surface of Mars, and Hidden Hazards to Human Exploration?

    NASA Technical Reports Server (NTRS)

    Marshall, J.; Smith, P.; White, B.; Farrell, W.

    1999-01-01

    dust devils are to be expected in reasonable abundance. First, from a geological perspective, the vortices will act as "gardening" agents for the top few centimeters of entrainable material. Over time (hundreds of millions, or billions of years being available), they will cover the surface with scouring paths, and the grain sizes that can be lofted by a vortex probably extends over the whole sand to dust range. The depositional paths are, of course, much larger, so that vortex-induced deposition is more widespread than vortex-induced erosion, and will without doubt, affect the whole region in which the dust devils occur (this might explain why rocks at the Viking site seemed oddly capped with dust in a region apparently subject to general aeolian scouring). On Mars, the lift forces in dust devils might be less than on earth owing to the much thinner atmosphere, but this may be counterbalanced by lower gravity and greater vortex velocities. Certainly, when active, other aeolian phenomena on Mars --sand motion and dust storms, seem no less energetic and no less capable of lofting sediments than equivalent terrestrial aeolian phenomena. Every several years, within the current climatic regime, the surface of Mars is subject to light dust fall from global dust storms. Over time, this should develop a very uniform surface layer, with commensurate uniformity in grain size, mineralogy, albedo, color, and general spectroscopic properties. Dust devils will disturb this situation by continually mixing the surface dust with underlying layers, perhaps composed of silt and sand. This size mixing will also involve compositional mixing. After some years, the thin layer of dust that may be difficult to entrain alone, becomes progressively mixed with coarser materials that could reduce the general aeolian threshold of the soil. Certainly the continual disturbance by vorticity will prevent surface stabilization that may bind or indurate grains (caused by slow cementation or ice welding

  16. "Dust Devils": Gardening Agents on the Surface of Mars, and Hidden Hazards to Human Exploration?

    NASA Astrophysics Data System (ADS)

    Marshall, J.; Smith, P.; White, B.; Farrell, W.

    1999-09-01

    dust devils are to be expected in reasonable abundance. First, from a geological perspective, the vortices will act as "gardening" agents for the top few centimeters of entrainable material. Over time (hundreds of millions, or billions of years being available), they will cover the surface with scouring paths, and the grain sizes that can be lofted by a vortex probably extends over the whole sand to dust range. The depositional paths are, of course, much larger, so that vortex-induced deposition is more widespread than vortex-induced erosion, and will without doubt, affect the whole region in which the dust devils occur (this might explain why rocks at the Viking site seemed oddly capped with dust in a region apparently subject to general aeolian scouring). On Mars, the lift forces in dust devils might be less than on earth owing to the much thinner atmosphere, but this may be counterbalanced by lower gravity and greater vortex velocities. Certainly, when active, other aeolian phenomena on Mars --sand motion and dust storms, seem no less energetic and no less capable of lofting sediments than equivalent terrestrial aeolian phenomena. Every several years, within the current climatic regime, the surface of Mars is subject to light dust fall from global dust storms. Over time, this should develop a very uniform surface layer, with commensurate uniformity in grain size, mineralogy, albedo, color, and general spectroscopic properties. Dust devils will disturb this situation by continually mixing the surface dust with underlying layers, perhaps composed of silt and sand. This size mixing will also involve compositional mixing. After some years, the thin layer of dust that may be difficult to entrain alone, becomes progressively mixed with coarser materials that could reduce the general aeolian threshold of the soil. Certainly the continual disturbance by vorticity will prevent surface stabilization that may bind or indurate grains (caused by slow cementation or ice welding

  17. Combined impacts of current and future dust deposition and regional warming on Colorado River Basin snow dynamics and hydrology

    USGS Publications Warehouse

    Deems, Jeffrey S.; Painter, Thomas H.; Barsugli, Joseph J.; Belnap, Jayne; Udall, Bradley

    2013-01-01

    The Colorado River provides water to 40 million people in seven western states and two countries and to 5.5 million irrigated acres. The river has long been overallocated. Climate models project runoff losses of 5–20% from the basin by mid-21st century due to human-induced climate change. Recent work has shown that decreased snow albedo from anthropogenic dust loading to the CO mountains shortens the duration of snow cover by several weeks relative to conditions prior to western expansion of the US in the mid-1800s, and advances peak runoff at Lees Ferry, Arizona, by an average of 3 weeks. Increases in evapotranspiration from earlier exposure of soils and germination of plants have been estimated to decrease annual runoff by more than 1.0 billion cubic meters, or ~5% of the annual average. This prior work was based on observed dust loadings during 2005–2008; however, 2009 and 2010 saw unprecedented levels of dust loading on snowpacks in the Upper Colorado River Basin (UCRB), being on the order of 5 times the 2005–2008 loading. Building on our prior work, we developed a new snow albedo decay parameterization based on observations in 2009/10 to mimic the radiative forcing of extreme dust deposition. We convolve low, moderate, and extreme dust/snow albedos with both historic climate forcing and two future climate scenarios via a delta method perturbation of historic records. Compared to moderate dust, extreme dust absorbs 2× to 4× the solar radiation, and shifts peak snowmelt an additional 3 weeks earlier to a total of 6 weeks earlier than pre-disturbance. The extreme dust scenario reduces annual flow volume an additional 1% (6% compared to pre-disturbance), a smaller difference than from low to moderate dust scenarios due to melt season shifting into a season of lower evaporative demand. The sensitivity of flow timing to dust radiative forcing of snow albedo is maintained under future climate scenarios, but the sensitivity of flow volume reductions decreases

  18. Dust Deposition Events on Mt. Elbrus, Caucasus Mountains in the 21st Century Reconstructed from the Shallow Firn and Ice Cores (Invited)

    NASA Astrophysics Data System (ADS)

    Shahgedanova, M.; Kutuzov, S.; Mikhalenko, V.; Ginot, P.; Lavrentiev, I.

    2013-12-01

    This paper presents and discusses a record of dust deposition events reconstructed from the shallow firn and ice cores extracted on the Western Plateau, Mt. Elbrus, Caucasus Mountains, Russia. A combination of SEVIRI imagery, HYSPLIT trajectory model, meteorological and atmospheric optical depth data were used to establish timing of deposition events and source regions of dust with very high temporal (hours) and spatial (c. 50-100 km) resolution. The source regions of the desert dust transported to Mt. Elbrus were primarily located in the Middle East, in particular in eastern Syria and in the Syrian Desert at the border between Saudi Arabia, Iraq and Jordan. Northern Sahara, the foothills of the Djebel Akhdar Mountains in eastern Libya and the border region between Libya and Algeria were other important sources of desert dust. Dust sources in the Sahara were natural (e.g. palaeolakes and alluvial deposits in the foothills) while in the Middle East, dust entrainment occurred from both natural (e.g. dry river beds) and anthropogenic (e.g. agricultural fields) sources. The overall majority of dust deposition events occurred between March and June and, less frequently, dust deposition events occurred in February and October. In all cases, dust deposition was associated with depressions causing strong surface wind and dust uplift in the source areas, transportation of dust to the Caucasus with a strong south-westerly flow from the Sahara or southerly flow from the Middle East, merging of the dust clouds with precipitation-bearing weather fronts and precipitation over the Caucasus region. The Saharan depressions were vigorous and associated with stronger daily wind speeds of 20-30 m/s at the 700 hPa level; depressions forming over the Middle East and the associated wind speeds were weaker at 12-15 m/s. The Saharan depressions were less frequent than those carrying dust from the Middle East but higher dust loads were associated with the Saharan depressions. A higher

  19. Hydrological indications of aeolian salts in mid-latitude deserts of northwestern China

    NASA Astrophysics Data System (ADS)

    Zhu, Bing-Qi

    2016-06-01

    Large sandy deserts in middle latitude of northwestern China were studied on salt variations in modern and ancient aeolian sediments, aiming to explore their hydrological indications at the present and past. Globally, sulphate is rich in arid to semi-arid deserts, including the aeolian loess sediments in China and soils in low-latitude deserts, but is less common in the aeolian sediments from the mid-latitude deserts in this study. The compositional differences between aeolian salts and local natural waters is evident, indicating the chemistry of aeolian salts and the associated parent brines may be significantly different than that predicted for hydrologically closed systems. The formation of aeolian salts in the studied deserts is strongly controlled by earth surface processes in a large scale but not in a local scale. Vertical changes in facies and salinities are abrupt in the studied palaeo-aeolian sediment samples, which were interbedded by lacustrine/fluvial sediments with OSL and 14C ages ranging between 40 and 2 ka BP, reflecting rapid high-amplitude changes in hydrological settings during late Pleistocene to later Holocene in these ancient playa systems. A great difference in salt composition between aeolian and lacustrine sediments suggests that the inorganic salt is a latent geoproxy in revealing local hydrological variations and climate change in the desert areas. But the environmental indications could be amphibolous for the sedimentary sequences with dual/multiple depositional end-members; under this situation an increase in sequence salinity does not always represent an enhanced environmental aridity. Ancient playas are arid or humid at the same time based on several sporadic records is not a valid approach to correlation of salt deposits in adjacent saline playa basin in the studied areas. Effects of earth surface processes including erosion, deposition and other processes on sediment properties will bias the hydrological implications of sediment

  20. Attic Dust Analysis Approach for Evaluation of Heavy Metal Deposition on the El Paso Del Norte Region

    NASA Astrophysics Data System (ADS)

    Shekhter, E. G.; van Pelt, S.; Pannell, K.; Gill, T. E.; Barnes, M. A.

    2010-12-01

    than samples collected on adjacent surfaces that were present during the period of smelter operation. Based on the evidence provided by dust chemistry, we conclude that heavy metal contamination was predominantly from smelter stack emissions, was preferentially deposited on the near field, and generally followed the lower path provided by Rio Grande valley rather than mixing to heights that could result in movement over the Franklin Mountains and deposition on the east side of El Paso.

  1. Episodic upwelling and dust deposition as bloom triggers in low-nutrient, low-chlorophyll regions

    NASA Astrophysics Data System (ADS)

    Calil, Paulo H. R.; Doney, Scott C.; Yumimoto, Keiya; Eguchi, Kenta; Takemura, Toshihiko

    2011-06-01

    Summertime phytoplankton blooms in the oligotrophic North Pacific Ocean are supported by N2-fixing organisms that relieve the system of nitrate limitation. Phosphate and iron, however, limit their growth and need to be supplied for these organisms to thrive. We analyze two recent blooms in the region whose differences provide insight into their possible formation mechanisms. In 2008, a typical late summer bloom, with sporadic patches of higher-chlorophyll concentration, occurred near the island chain and the subtropical front. In 2010, an unusually large, contiguous bloom was observed in the western oligotrophic North Pacific, a region where blooms seldom, if ever, occur. Streaks of high chlorophyll in 2008 coincide with surface temperature fronts and regions of large horizontal stretching, as detected by Lagrangian diagnostics. Such regions are prone to the generation of vertical velocities via frontogenesis. Horizontal transport from upwelling regions or iron-rich island sediments is also important for the redistribution of nutrients. In the case of the 2010 bloom, we use a global aerosol transport model as well as space-borne lidar observations to argue that atmospheric dust deposition events prior to the bloom provided the necessary nutrient conditions for the growth of N2-fixing organisms. As sea surface temperature increased in the region, chlorophyll values increased significantly, showing that this bloom was likely a consequence of prior enrichment and that temperature is a key factor in bloom development in this important biome.

  2. Physical vapor deposition synthesis of amorphous silicate layers and nanostructures as cosmic dust analogs

    NASA Astrophysics Data System (ADS)

    De Sio, A.; Tozzetti, L.; Wu, Ziyu; Marcelli, A.; Cestelli Guidi, M.; Della Ventura, G.; Zhao, Haifeng; Pan, Zhiyun; Li, Wenjie; Guan, Yong; Pace, E.

    2016-05-01

    Cosmic dust grains (CD) are part of the evolution of stars and planetary systems and pervade the interstellar medium. Thus, their spectral signature may be used to deduce the physical features of the observed astronomical objects or to study many physical and chemical processes in the interstellar medium. However, CD samples are available only from sample-and-return space missions. Thus, they are rare and not sufficient to be used to perform laboratory experiments of astrophysical interest, such as to produce reference spectra. In this contribution, we describe a new physical vapor deposition (PVD) technique that allows the production of amorphous samples with controlled chemical and morphological characteristics. In particular, this technique was developed to grow uniform or microstructured layers of Mg-Fe amorphous silicates (olivine or pyroxene) that are materials of wide interest for laboratory experiments. We discuss the first results that were achieved by applying this new synthesis method. The layers were studied by combining infrared spectroscopy, scanning electron microscopy, and X-ray spectroscopy. The X-ray microscopy was used for the first time to characterize the internal structure of the grains in these synthetic samples. Finally, future improvements of the technique and foreseen applications are discussed.

  3. Lead and zinc dust depositions from ore trains characterised using lead isotopic compositions.

    PubMed

    Kristensen, L J; Taylor, M P; Morrison, A L

    2015-03-01

    This study investigates an unusual source of environmental lead contamination - the emission and deposition of lead and zinc concentrates along train lines into and out of Australia's oldest silver-lead-zinc mine at Broken Hill, Australia. Transport of lead and zinc ore concentrates from the Broken Hill mines has occurred for more than 125 years, during which time the majority was moved in uncovered rail wagons. A significant amount of ore was lost to the adjoining environments, resulting in soil immediately adjacent to train lines elevated with concentrations of lead (695 mg kg(-1)) and zinc (2230 mg kg(-1)). Concentrations of lead and zinc decreased away from the train line and also with depth shown in soil profiles. Lead isotopic compositions demonstrated the soil lead contained Broken Hill ore in increasing percentages closer to the train line, with up to 97% apportioned to the mined Broken Hill ore body. SEM examination showed ceiling dusts collected from houses along the train line were composed of unweathered galena particles, characteristic of the concentrate transported in the rail wagons. The loss of ore from the uncovered wagons has significantly extended the environmental footprint of contamination from local mining operations over an area extending hundreds of kilometres along each of the three train lines. PMID:25627173

  4. Description and Analytical Results for Deposited Dust Samples from a Two-Year Monitoring Program Near Deer Trail, Colorado, USA, 2006-2007

    USGS Publications Warehouse

    Reheis, Marith C.; Honke, Jeff; Lamothe, Paul; Fisher, Eric

    2009-01-01

    Biosolids reclaimed from municipal wastewater have been applied since 1993 on nonirrigated farmland and rangeland east of Deer Trail, Colo., by Metro Wastewater Reclamation District of Denver. The U.S. Geological Survey has monitored ground water at this site since 1993, and began monitoring the biosolids, soils, and stream sediments in 1999. To investigate the possible effects of airborne dust blowing from the application fields, passive dust samplers were deployed in 2006 and 2007. These samplers measured the quantity and composition of dust being deposited downwind of a farmed field where biosolids had been applied, compared to a farmed field upwind of the application area. The dust-deposition rates and dust compositions measured at the two study sites are consistent with rates and compositions measured elsewhere in Utah, Nevada, and California using the same methods and equipment. Higher deposition rates were measured at the biosolids site compared to the control site during 2006. Higher deposition rates at both sites appear to be associated with episodes of cultivation and harvest during dry periods. No consistent differences in elements likely to be associated with biosolids disposal were detected between the sites. However, the contents of copper, lead, and zinc in the dust samples are generally much higher than average values of these elements in crustal rocks and sediments. Such values for dust samples are consistent with measurements on modern dust samples from southern Nevada and California and probably reflect inputs from regional urban and manufacturing activities.

  5. Dust Deposition and Migration of the ITCZ through the Last Glacial Cycle in the Central Equatorial Pacific (Line Islands).

    NASA Astrophysics Data System (ADS)

    Reimi Sipala, M. A.; Marcantonio, F.

    2014-12-01

    Atmospheric dust can be used to record climate change in addition to itself playing a role in several key climate processes, such as affecting Earth's albedo, fomenting rain coalescence, encouraging biological productivity, and enhancing carbon export though particle sinks. Using deep sea sediments, it is possible to quantify and locate the sources and sinks of atmospheric dust. A key area of research is the shift in the inter-tropical converge zone (ITCZ), a thermally influenced area that shifts according to the northern and southern hemisphere temperature gradient. This ongoing project focuses on the changes of the ITCZ over the Central Equatorial Pacific (CEP) over the past ~25000 years. The research focuses on two cores taken from the Line Islands Ridge at 0° 29' N (ML1208-18GC), and 4° 41' N (ML1208-31BB). The main aim is to quantify the magnitude and provenance of windblown dust deposited in the CEP, and to address questions regarding the nature of the variations of dust through ice-age climate transitions. Radiogenic isotopes (Sr, Nd, Pb) have been successfully used to distinguish between different potential dust sources in the aluminosilicates fractions of Pacific Sediments. Our preliminary Pb isotope ratios suggest that, for modern deposition, the northern core's (31BB) detrital sediment fraction is likely sourced from Asian Loess (average ratios are 206Pb/204Pb = 18.88, 207Pb/204Pb = 15.69, 208Pb/204Pb = 39.06). The equatorial core's (18GC) detrital fraction has a less radiogenic Pb signature, which is consistent with South American dust sourcing (206Pb/204Pb = 18.62, 207Pb/204Pb = 15.63, 208Pb/204Pb = 38.62). This is indicative of a strong modern ITCZ that acts as an effective barrier for inter-hemispheric dust transport. Prior to Holocene time, the changes in Pb isotope ratios in both cores appear to be in anti-phase; the northern core becomes less radiogenic up to the LGM, while the southern core becomes more radiogenic. This is potentially due to a

  6. Earth and planetary aeolian streaks: A review

    NASA Astrophysics Data System (ADS)

    Cohen-Zada, Aviv Lee; Blumberg, Dan Gabriel; Maman, Shimrit

    2016-03-01

    Wind streaks are abundant aeolian features that have been observed on planetary surfaces by remote sensing means. They have been widely studied, particularly on Mars and Venus and to a much lesser extent on Earth. In imagery, these streaks appear as elongated features that are easily distinguishable from their surroundings. Geomorphologically, these streaks have, thus far, been interpreted as the presence or absence of small loose particles on the surface, deposited or eroded, respectively, by wind. However, the use of different (optical and radar) remote-sensing tools to study wind streaks has led to uncertain interpretations of these features and has hindered their geomorphological definition. Since wind streaks indicate the prevailing wind direction at the time of their formation, they may be used to map near-surface winds and to estimate atmospheric circulation patterns. The aim of this article is to review the main studies focusing on wind streaks and to present the most up-to-date knowledge on this topic. Moreover, a new perspective for wind streak research is suggested: As 'wind streak' is a collective term for a variety of aeolian features that when viewed from above appear as distinctive albedo surface patterns, we suggest that the term should not be used to refer to a geomorphological feature. Since the definition of wind streaks is constrained to remote sensing rather than to geomorphology and is affected by the inherent biases of remote sensing methods, we suggest that 'wind streaks' should be used as a collective term for aeolian surfaces that are discernable from above as bright and dark patterns due to alterations in the characteristics of the surface or to the presence of bedforms. To better understand the mechanisms, time-frames, climate compatibility of wind streaks and the influences of remote sensing on their appearance, we have compiled a new database containing more than 2,900 Earth wind streaks. A comprehensive study of these Earth wind

  7. Publication trends in Aeolian research: An analysis of the biblography of Aeolian research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An analysis of the Bibliography of Aeolian Research has provided information regarding publication trends in aeolian research. Overall, results suggest that there has been a significant increase in the number of publications per year since the first aeolian-research publication appeared in 1646. P...

  8. Bridging a High School Science Fair Experience with First Year Undergraduate Research: Using the E-SPART Analyzer to Determine Electrostatic Charge Properties of Compositionally Varied Rock Dust Particles as Terrestrial Analogues to Mars Materials

    NASA Technical Reports Server (NTRS)

    Scott, A. G.; Williams, W. J. W.; Mazumder, M. K.; Biris, A.; Srirama, P. K.

    2005-01-01

    NASA missions to Mars confirm presence of surficial particles, as well as dramatic periods of aeolian reworking. Dust deposition on, or infiltration into, exploration equipment such as spacecraft, robotic explorers, solar panel power supplies, and even spacesuits, can pose significant problems such as diminished power collection, short circuits / discharges, and added weight. We report results conducted initially as a science fair project and a study now part of a first year University undergraduate research experience.

  9. Source-to-sink cycling of aeolian sediment in the north polar region of Mars

    NASA Astrophysics Data System (ADS)

    Ewing, R. C.; Kocurek, G.

    2012-12-01

    Aeolian sand dunes are prominent features on the landscapes of Earth, Mars, Venus and Titan and sedimentary deposits interpreted as aeolian in origin are found in the rock records of Earth and Mars. The widespread occurrence of aeolian dunes on the surface of these worlds and within their deep-time depositional records suggests that aeolian systems are and likely have been a default depositional environment for the Solar System. Within an aeolian source-to-sink context, we hypothesize that planet-specific boundary conditions strongly impact production, transport, accumulation and preservation of aeolian sediment, whereas dunes and dune-field patterns remain largely similar. This hypothesis is explored within the north polar region of Mars, which hosts the most extensive aeolian dune fields and aeolian sedimentary deposits yet recognized on Mars and appears to be a region of dynamic source-to-sink cycling of aeolian sediments. The Planum Boreum Cavi Unit rests beneath north polar ice cap of Mars and is composed of several hundred meters of niveo-aeolian dune cross-stratification. The overall architecture of the unit consists of sets of preserved dune topography with an upward increase in the abundance of ice. Dune sets are defined by stabilized, polygonally fractured bounding surfaces, erosional bounding surfaces and typical internal lee foresets made of sediment and ice. The accumulation of the Cavi Unit is interpreted as occurring through freezing and serves as an example of a cold temperature boundary condition on aeolian sediment accumulation. Preservation of the Cavi Unit arises because of deposition of the overlying ice cap and contrasts with preservation of aeolian sediment on Earth, which is largely driven by eustasy and tectonics. The Cavi Unit is thought to be one source of sediment for the north polar Olympia Undae Dune Field. The region of Olympia Undae near the Cavi Unit shows a reticulate dune field pattern composed of two sets of nearly orthogonal

  10. Impact of desert dust on the biogeochemistry of phosphorus in terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    Okin, Gregory S.; Mahowald, Natalie; Chadwick, Oliver A.; Artaxo, Paulo

    2004-06-01

    Leaching, biomass removal, and partitioning of phosphorus (P) into reservoirs not available to plants can limit the long-term productivity of terrestrial ecosystems. We evaluate the importance of atmospheric P inputs to the world's soils by estimating the total soil P turnover time with respect to dustborne P additions. Estimated turnover times range from ˜104 to ˜107 years. Our estimates provide a unique perspective on the importance and patterns of aeolian deposition to terrestrial landscapes. Dust source regions are areas of intense soil P cycling on large scales, but are too water-limited for this rapid cycling to have a major influence on ecosystem dynamics. By contrast, semiarid desert margins receive significant aeolian P from neighboring deserts and are likely influenced by dustborne P additions for the long-term maintenance of productivity. This is particularly true for the semiarid steppes of Africa and Eurasia. The prevalence of large dust sources in Africa and Eurasia indicates that these areas may generally be more influenced by dustborne P additions than soils in the Americas. Significant western hemisphere exceptions to this pattern occur on very old landscapes, such as the forests of the southeastern United States and the Amazon Basin. The Amazon Basin is highly dependent on aeolian deposition for the maintenance of long-term productivity. Dust deposition to terrestrial environments has not been constant with time. Variability in past P deposition related to geologically recent climate change may provide the strongest controls on present and future soil P in the Amazon and elsewhere.

  11. Mercury contamination in deposited dust and its bioaccumulation patterns throughout Pakistan.

    PubMed

    Eqani, Syed Ali Musstjab Akber Shah; Bhowmik, Avit Kumar; Qamar, Sehrish; Shah, Syed Tahir Abbas; Sohail, Muhammad; Mulla, Sikandar I; Fasola, Mauro; Shen, Heqing

    2016-11-01

    Mercury (Hg) contamination of environment is a major threat to human health in developing countries like Pakistan. Human populations, particularly children, are continuously exposed to Hg contamination via dust particles due to the arid and semi-arid climate. However, a country wide Hg contamination data for dust particles is lacking for Pakistan and hence, human populations potentially at risk is largely unknown. We provide the first baseline data for total mercury (THg) contamination into dust particles and its bioaccumulation trends, using scalp human hair samples as biomarker, at 22 sites across five altitudinal zones of Pakistan. The human health risk of THg exposure via dust particles as well as the proportion of human population that are potentially at risk from Hg contamination were calculated. Our results indicated higher concentration of THg in dust particles and its bioaccumulation in the lower Indus-plain agricultural and industrial areas than the other areas of Pakistan. The highest THg contamination of dust particles (3000ppb) and its bioaccumulation (2480ppb) were observed for the Lahore district, while the highest proportion (>40%) of human population was identified to be potentially at risk from Hg contamination from these areas. In general, children were at higher risk of Hg exposure via dust particles than adults. Regression analysis identified the anthropogenic activities, such as industrial and hospital discharges, as the major source of Hg contamination of dust particles. Our results inform environmental management for Hg control and remediation as well as the disease mitigation on potential hotspots. PMID:27372253

  12. Influence of the Latitudinal Temperature Gradient on Soil Dust Concentration and Deposition in Greenland

    NASA Technical Reports Server (NTRS)

    Tegen, Ina; Rind, David

    2000-01-01

    To investigate the effects of changes in the latitudinal temperature gradient and the global mean temperature on dust concentration in the Northern Hemisphere, experiments with the Goddard Institute for Space Studies General Circulation Model (GISS GCM) are performed. The dust concentration over Greenland is calculated from sources in central and eastern Asia, which are integrated on-line in the model. The results show that an increase in the latitudinal temperature gradient increases both the Asian dust source strength and the concentration over Greenland. The source increase is the result of increased surface winds, and to a minor extent, the increase in Greenland dust is also associated with increased northward transport. Cooling the climate in addition to this increased gradient leads to a decrease in precipitation scavenging, which helps produce a further (slight) increase in Greenland dust in this experiment. Reducing the latitudinal gradient reduces the surface wind and hence the dust source, with a subsequent reduction in Greenland dust concentrations. Warming the climate in addition to this reduced gradient leads to a further reduction in Greenland dust due to enhanced precipitation scavenging. These results can be used to evaluate the relationship of Greenland ice core temperature changes to changes in the latitudinal and global temperatures.

  13. Influence of the Latitudinal Temperature Gradient on Soil Dust Concentration and Deposition in Greenland

    NASA Technical Reports Server (NTRS)

    Tegen, Ina; Rind, David

    2000-01-01

    To investigate the effects of changes in the latitudinal temperature gradient and the global mean temperature on dust concentration in the Northern Hemisphere, experiments with the GISS GCM (Goddard Institute for Space Studies General Circulation Model) are performed. The dust concentration over Greenland is calculated from sources in central and eastern Asia, which are integrated on-line in the model. The results show that an increase in the latitudinal temperature gradient increases both the Asian dust source strength and the concentration over Greenland. The source increase is the result of increased surface winds, and to a minor extent, the increase in Greenland dust is also associated with increased northward transport. Cooling the climate in addition to this increased gradient leads to a decrease in precipitation scavenging, which helps produce a further (slight) increase in Greenland dust in this experiment. Reducing the latitudinal gradient reduces the surface wind and hence the dust source, with a subsequent reduction in Greenland dust concentrations. Warming the climate in addition to this reduced gradient leads to a further reduction in Greenland dust due to enhanced precipitation scavenging. These results can be used to evaluate the relationship of Greenland ice core temperature changes to changes in the latitudinal and global temperatures.

  14. In Search of Patagonian Dust: Atmospheric Deposition of Micronutrients to the Southern Atlantic

    NASA Astrophysics Data System (ADS)

    Chance, R.; Baker, A. R.; Jickells, T. D.

    2012-12-01

    Atmospheric inputs constitute a low but variable source of micronutrients to the south Atlantic and Southern Ocean, the magnitude and spatial distribution of which remains poorly constrained. In particular, dust arising from the arid parts of southern South America has been identified as a potentially significant source of micronutrients. Ice core records indicate large fluctuations in Patagonian dust supply over glacial-interglacial timescales, but little is known about modern day fluxes. As part of the UK-GEOTRACES program, atmospheric aerosol was simultaneously sampled in the eastern and western basins of the southern Atlantic downwind of Patagonia. Specifically, a new time-series station for monitoring atmospheric aerosol in the western south Atlantic was established at Carcass Island (51o15' S, 60o35' W) in the Falkland Islands, in September 2010, and shipboard aerosol and rain samples were collected in the region between Cape Town, South Africa, and 40oS, 5oW in November and December 2010 (cruise D357). Sampling at Carcass Island continued during the austral summer of 2011-2012, and in January 2012 a second shipboard transect across the Atlantic at 40oS was completed (cruise JC068). Here we compare atmospheric concentrations and wet and dry deposition fluxes for trace metals and major nutrients in the two basins are compared, and use principal component analysis to investigate qualitative differences in the overall composition of aerosol from different sources. Concentrations of aerosol nitrogen were higher at Carcass Island than in the eastern Atlantic. During cruise D357, median concentrations of 1.7 nmol m-3 nitrate and 2.0 nmol m-3 ammonium were observed, consistent with remote south Atlantic air, while on Carcass Island corresponding concentrations were 2.3 and 6.3 nmol m-3 during the first year of sampling. Differences in the isotopic composition of aerosol nitrate from the two campaigns are discussed. "Soluble" trace metals were operationally defined

  15. Characterizing the instability of aeolian environments using analytical reasoning

    NASA Astrophysics Data System (ADS)

    Houser, C.; Bishop, M. P.; Dobreva, I. D.; Barrineau, C. P.; Weymer, B. A.

    2013-12-01

    Characterization of aeolian systems is complicated by rapidly changing surface-process regimes, spatio-temporal scale dependencies, and subjective interpretation of imagery and spatial data. Stability and instability of the South Texas sand sheet is addressed using an artificial intelligence approach that integrates spatial information and analytical reasoning. Specifically, the purpose of this study is to determine if landscape evolutionary sequences could be mapped and characterized based on simple conceptual relationships amongst biophysical variables including topography, vegetation, surface moisture, wind speed, and surface erosion and deposition. A digital elevation model was derived from airborne LiDAR data and combined with moisture and vegetation indices computed using Spectral feature extraction from Landsat Thematic Mapper data. Our analysis reveals unique scale dependent spatial patterns and the use of fuzzy cognitive maps provides an analytical reasoning approach to address the complexity of aeolian environments in response to changes in climate forcing. The application to other Holocene aeolian deposits and the potential for this approach to model landscape evolution are also discussed.

  16. Dust Emissions, Transport, and Deposition Simulated with the NASA Finite-Volume General Circulation Model

    NASA Technical Reports Server (NTRS)

    Colarco, Peter; daSilva, Arlindo; Ginoux, Paul; Chin, Mian; Lin, S.-J.

    2003-01-01

    Mineral dust aerosols have radiative impacts on Earth's atmosphere, have been implicated in local and regional air quality issues, and have been identified as vectors for transporting disease pathogens and bringing mineral nutrients to terrestrial and oceanic ecosystems. We present for the first time dust simulations using online transport and meteorological analysis in the NASA Finite-Volume General Circulation Model (FVGCM). Our dust formulation follows the formulation in the offline Georgia Institute of Technology-Goddard Global Ozone Chemistry Aerosol Radiation and Transport Model (GOCART) using a topographical source for dust emissions. We compare results of the FVGCM simulations with GOCART, as well as with in situ and remotely sensed observations. Additionally, we estimate budgets of dust emission and transport into various regions.

  17. Composition of dust deposited to snow cover in the Wasatch Range (Utah, USA): Controls on radiative properties of snow cover and comparison to some dust-source sediments

    NASA Astrophysics Data System (ADS)

    Reynolds, Richard L.; Goldstein, Harland L.; Moskowitz, Bruce M.; Bryant, Ann C.; Skiles, S. McKenzie; Kokaly, Raymond F.; Flagg, Cody B.; Yauk, Kimberly; Berquó, Thelma; Breit, George; Ketterer, Michael; Fernandez, Daniel; Miller, Mark E.; Painter, Thomas H.

    2014-12-01

    Dust layers deposited to snow cover of the Wasatch Range (northern Utah) in 2009 and 2010 provide rare samples to determine the relations between their compositions and radiative properties. These studies are required to comprehend and model how such dust-on-snow (DOS) layers affect rates of snow melt through changes in the albedo of snow surfaces. We evaluated several constituents as potential contributors to the absorption of solar radiation indicated by values of absolute reflectance determined from bi-conical reflectance spectroscopy. Ferric oxide minerals and carbonaceous matter appear to be the primary influences on lowering snow-cover albedo. Techniques of reflectance and Mössbauer spectroscopy as well as rock magnetism provide information about the types, amounts, and grain sizes of ferric oxide minerals. Relatively high amounts of ferric oxide, indicated by hard isothermal remanent magnetization (HIRM), are associated with relatively low average reflectance (<0.25) across the visible wavelengths of the electromagnetic spectrum. Mössbauer spectroscopy indicates roughly equal amounts of hematite and goethite, representing about 35% of the total Fe-bearing phases. Nevertheless, goethite (α-FeOOH) is the dominant ferric oxide found by reflectance spectroscopy and thus appears to be the main iron oxide control on absorption of solar radiation. At least some goethite occurs as nano-phase grain coatings less than about 50 nm thick. Relatively high amounts of organic carbon, indicating as much as about 10% organic matter, are also associated with lower reflectance values. The organic matter, although not fully characterized by type, correlates strongly with metals (e.g., Cu, Pb, As, Cd, Mo, Zn) derived from distal urban and industrial settings, probably including mining and smelting sites. This relation suggests anthropogenic sources for at least some of the carbonaceous matter, such as emissions from transportation and industrial activities. The composition of

  18. Ice formation via deposition nucleation on mineral dust and organics: dependence of onset relative humidity on total particulate surface area

    NASA Astrophysics Data System (ADS)

    Kanji, Zamin A.; Florea, Octavian; Abbatt, Jonathan P. D.

    2008-04-01

    We present ice nucleation results for Arizona test dust, kaolinite, montmorillonite, silica, silica coated with a hydrophobic octyl chain, oxalic acid dihydrate, Gascoyne leonardite (a humic material), and Aldrich humic acid (sodium salt). The focus was on deposition mode nucleation below water saturation at 233 K. Particles were deposited onto a hydrophobic cold stage by atomization of a slurry/solution and exposed to a constant partial pressure of water vapor. By lowering the temperature of the stage, the relative humidity with respect to ice (RHi) was gradually increased until ice nucleation was observed using digital photography. Different numbers of particles were deposited onto the cold stage by varying the atomization solution concentration and deposition time. For the same total particulate surface area, mineral dust particles nucleated ice at lower supersaturations than all other materials. The most hydrophobic materials, i.e. Gascoyne leonardite and octyl silica, were the least active. For our limit of detection of one ice crystal, the ice onset RHi values were dependent on the total surface area of the particulates, indicating that no unique threshold RHi for ice nucleation prevails.

  19. Laboratory dust generation and size-dependent characterization of metal and metalloid-contaminated mine tailings deposits.

    PubMed

    Gonzales, Patricia; Felix, Omar; Alexander, Caitlin; Lutz, Eric; Ela, Wendell; Eduardo Sáez, A

    2014-09-15

    The particle size distribution of mine tailings material has a major impact on the atmospheric transport of metal and metalloid contaminants by dust. Implications to human health should be assessed through a holistic size-resolved characterization involving multidisciplinary research, which requires large uniform samples of dust that are difficult to collect using conventional atmospheric sampling instruments. To address this limitation, we designed a laboratory dust generation and fractionation system capable of producing several grams of dust from bulk materials. The equipment was utilized in the characterization of tailings deposits from the arsenic and lead-contaminated Iron King Superfund site in Dewey-Humboldt, Arizona. Results show that metal and metalloid contaminants are more concentrated in particles of < 10 μm aerodynamic diameter, which are likely to affect surrounding communities and ecosystems. In addition, we traced the transport of contaminated particles from the tailings to surrounding soils by identifying Pb and Sr isotopic signatures in soil samples. The equipment and methods developed for this assessment ensure uniform samples for further multidisciplinary studies, thus providing a tool for comprehensive representation of emission sources and associated risks of exposure. PMID:25222928

  20. Deposition Uniformity of Coal Dust on Filters and Its Effect on the Accuracy of FTIR Analyses for Silica

    PubMed Central

    Miller, Arthur L.; Drake, Pamela L.; Murphy, Nathaniel C.; Cauda, Emanuele G.; LeBouf, Ryan F.; Markevicius, Gediminas

    2015-01-01

    Miners are exposed to silica-bearing dust which can lead to silicosis, a potentially fatal lung disease. Currently, airborne silica is measured by collecting filter samples and sending them to a laboratory for analysis. Since this may take weeks, a field method is needed to inform decisions aimed at reducing exposures. This study investigates a field-portable Fourier transform infrared (FTIR) method for end-of-shift (EOS) measurement of silica on filter samples. Since the method entails localized analyses, spatial uniformity of dust deposition can affect accuracy and repeatability. The study, therefore, assesses the influence of radial deposition uniformity on the accuracy of the method. Using laboratory-generated Minusil and coal dusts and three different types of sampling systems, multiple sets of filter samples were prepared. All samples were collected in pairs to create parallel sets for training and validation. Silica was measured by FTIR at nine locations across the face of each filter and the data analyzed using a multiple regression analysis technique that compared various models for predicting silica mass on the filters using different numbers of “analysis shots.” It was shown that deposition uniformity is independent of particle type (kaolin vs. silica), which suggests the role of aerodynamic separation is negligible. Results also reflected the correlation between the location and number of shots versus the predictive accuracy of the models. The coefficient of variation (CV) for the models when predicting mass of validation samples was 4%–51% depending on the number of points analyzed and the type of sampler used, which affected the uniformity of radial deposition on the filters. It was shown that using a single shot at the center of the filter yielded predictivity adequate for a field method, (93% return, CV approximately 15%) for samples collected with 3-piece cassettes. PMID:26719603

  1. Comparing modeled and observed changes in mineral dust transport and deposition to Antarctica between the Last Glacial Maximum and current climates

    NASA Astrophysics Data System (ADS)

    Albani, Samuel; Mahowald, Natalie M.; Delmonte, Barbara; Maggi, Valter; Winckler, Gisela

    2012-05-01

    Mineral dust aerosols represent an active component of the Earth's climate system, by interacting with radiation directly, and by modifying clouds and biogeochemistry. Mineral dust from polar ice cores over the last million years can be used as paleoclimate proxy, and provide unique information about climate variability, as changes in dust deposition at the core sites can be due to changes in sources, transport and/or deposition locally. Here we present results from a study based on climate model simulations using the Community Climate System Model. The focus of this work is to analyze simulated differences in the dust concentration, size distribution and sources in current climate conditions and during the Last Glacial Maximum at specific ice core locations in Antarctica, and compare with available paleodata. Model results suggest that South America is the most important source for dust deposited in Antarctica in current climate, but Australia is also a major contributor and there is spatial variability in the relative importance of the major dust sources. During the Last Glacial Maximum the dominant source in the model was South America, because of the increased activity of glaciogenic dust sources in Southern Patagonia-Tierra del Fuego and the Southernmost Pampas regions, as well as an increase in transport efficiency southward. Dust emitted from the Southern Hemisphere dust source areas usually follow zonal patterns, but southward flow towards Antarctica is located in specific areas characterized by southward displacement of air masses. Observations and model results consistently suggest a spatially variable shift in dust particle sizes. This is due to a combination of relatively reduced en route wet removal favouring a generalized shift towards smaller particles, and on the other hand to an enhanced relative contribution of dry coarse particle deposition in the Last Glacial Maximum.

  2. Evaluation of aeolian desertification from 1975 to 2010 and its causes in northwest Shanxi Province, China

    NASA Astrophysics Data System (ADS)

    Xue, Zhanjin; Qin, Zuodong; Li, Hongjian; Ding, Guangwei; Meng, Xianwen

    2013-08-01

    Efforts to control aeolian desertification in China have focused on the arid and semiarid regions. However, the direct dust emission rates, sediment characteristics and local-scale controls, as well as the measures needed to combat desertification, remain poorly understood in northwest Shanxi Province. Aeolian desertification is regarded as an obstacle to local sustainable socioeconomic development. This paper investigated changes in aeolian desertification between 1975 and 2010 on the northwestern Shanxi Plateau. In this study, remote sensing images were used to classify land suffering from aeolian desertification into four categories: light, moderate, severe, and extremely severe. To evaluate the evolution and status of aeolian desertification as well as its causes, we interpreted and analyzed Landsat multi-spectral scanner (MSS) image (acquired in 1975) and Landsat Thematic Mapper (TM) images (acquired in 1991, 2000, 2006, and 2010) as well as meteorological and socioeconomic data. Results revealed 11,866 km2, 13,362 km2, 14,051 km2, 13,613 km2, and 12,318 km2 of aeolian desertified land (ADL) in the above 5 periods, respectively. The spatial dynamics and patterns showed two stages: expansion during 1975-2000 at a rate of 87.37 km2 a- 1, and spatial transfer of affected areas during 2000-2010 with a net decrease of 173.27 km2 a- 1. During the evolution of aeolian desertification, areas of moderate ADL had the greatest dynamic response (11.45%). The factors controlling ADL dynamics were analyzed from the perspectives of two groups of factors: natural factors and human activities. Our results indicated that the climate-dominated natural factors contribute greatly to the occurrence and development of ADL. However, they are not the fundamental causes of its development. The human factors are the primary and direct driving forces responsible for the increase in ADL area. More thorough quantitative analysis, with more frequent remotely sensed data is needed to assess

  3. Dust-climate couplings over the past 800,000 years from the EPICA Dome C ice core.

    PubMed

    Lambert, F; Delmonte, B; Petit, J R; Bigler, M; Kaufmann, P R; Hutterli, M A; Stocker, T F; Ruth, U; Steffensen, J P; Maggi, V

    2008-04-01

    Dust can affect the radiative balance of the atmosphere by absorbing or reflecting incoming solar radiation; it can also be a source of micronutrients, such as iron, to the ocean. It has been suggested that production, transport and deposition of dust is influenced by climatic changes on glacial-interglacial timescales. Here we present a high-resolution record of aeolian dust from the EPICA Dome C ice core in East Antarctica, which provides an undisturbed climate sequence over the past eight climatic cycles. We find that there is a significant correlation between dust flux and temperature records during glacial periods that is absent during interglacial periods. Our data suggest that dust flux is increasingly correlated with Antarctic temperature as the climate becomes colder. We interpret this as progressive coupling of the climates of Antarctic and lower latitudes. Limited changes in glacial-interglacial atmospheric transport time suggest that the sources and lifetime of dust are the main factors controlling the high glacial dust input. We propose that the observed approximately 25-fold increase in glacial dust flux over all eight glacial periods can be attributed to a strengthening of South American dust sources, together with a longer lifetime for atmospheric dust particles in the upper troposphere resulting from a reduced hydrological cycle during the ice ages. PMID:18385736

  4. Aeolian Coastal Landscapes in changes (a study from Tahkuna, Estonia)

    NASA Astrophysics Data System (ADS)

    Anderson, A.

    2012-04-01

    The openness of the coast to the winds and storm waves has an important part in changing aeolian coastal landscapes as well as anthropogenic factor. The aeolian coastal landscapes are probably the most dynamic areas. Occurrence of aeolian coastal landscapes in Estonia is limited. They consist of sandy beaches, sandy beach ridges and dunes. The coastal ecosystems are strongly affected by their topography, based on the character of deposits and moisture conditions. The majority of their ecosystems are quite close to the specific natural habitat. These ecosystems are represented in the list of the European Union Habitats (Natura 2000). In recent decades human influence has changed the landscape over time in different activities (recreation, trampling, off-road driving) and their intensities, which has led to destruction or degradation of various habitats. Previously coastal landscapes were used for forestry and pasture. Nowadays one of the most serious threats to open landscape is afforestation. This study examines the relationships between landscape components during last decades. Trying to find out how much aeolian coastal landscapes are influenced by natural processes or human activities. The results are based on cartographic analysis, fieldwork data. The method of landscape complex profile was used. The profiles show a cross-sections of landforms and interrelationships between landscape components, most frequently describing the relations between soils and vegetation. In each sample point the mechanical composition of sediments, vegetation cover and soil is determined. Results show that changes in landscapes are induced by their own development as well as changes in environmental factors and human activities. Larger changes are due to increase of coastal processes activity. These processes can be observed in sandy beaches, which are easily transformed by waves. Higher sea levels during storm surges are reaching older beach formation, causing erosion and creating

  5. Holocene aeolian sediments on the NE Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Stauch, G.; Lehmkuhl, F.; Hilgers, A.; Zhao, H.

    2012-04-01

    The semiarid climate of the northeastern Tibetan Plateau supports the formation of different types of aeolian sediments and landforms during the Holocene. Aeolians silts and sands in the catchment of the Donggi Cona in an elevation above 4000m to 4800 m asl reflect variable climate conditions during that time as well as different sediment sources. Based on 51 OSL datings and catchment wide geomorphological mapping a complex pattern of long and short distance sediment transport has been reconstructed. Only few aeolian archives are preserved from the late Pleistocene in this mountain environment indicating cold and dry climate conditions which prevented a continuous accumulation. During the early Holocene a phase of increased aeolian sedimentation of sand at the slopes of the mountains has been reconstructed. The sand originated from a large alluvial fan which was highly active during the Pleistocene. In addition, a thin loess cover is preserved at a few sites in the neighboring mountains ranges. The sedimentation of the loess started around 2000 years later than the sedimentation of the sand at the foot slope. Both archives are related to an increase in precipitation at the northern margin of the Tibetan Plateau which was related to a strengthening of the Asian Monsoon during that time. The wetter climate conditions favored the development of a vegetation cover which leads to the trapping and fixation of the aeolian sediments. However, with a further strengthening of the Monsoon systems these archives subsequently eroded due to higher run off and accumulated as colluvial and fluvial deposits in the basins. These phase lasted until 6 ka. A second aeolian period started at around 3 ka with the formation new dunes in the basins. This period can be associated with dry and cold climate of the late Holocene supporting the reactivation of the sand in the area. This might be further enhanced by an increased human impact by grazing during the late Holocene and resulting

  6. Mineralogical controls on dust emissions in the Bodele Depression, Chad

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Surface mineralogy is critical in the understanding of aeolian processes, however its role in dust production is currently underestimated. Recent research indicates that discrepancies between predicted and observed dust loads by dust models may be attributed to inadequacies within their associated d...

  7. Effects of River Regulation on Aeolian Landscapes, Grand Canyon National Park, USA

    NASA Astrophysics Data System (ADS)

    Draut, A. E.

    2010-12-01

    Sediment deposits in the Colorado River corridor include fluvial sandbars and aeolian dune fields, and the fluvial deposits are the primary sediment source for sand in the aeolian dunes. This 7-year study examined the effects of river regulation at Glen Canyon Dam (alteration of flow regime, sediment-supply reduction, and consequent loss of fluvial sandbars) on aeolian landscapes downstream in Grand Canyon National Park. A comparative study was developed between aeolian landscapes in Grand Canyon, Arizona, and Cataract Canyon, Utah, upstream of Glen Canyon Dam and its reservoir (Lake Powell), where hydrology and sediment supply of the Colorado River are affected substantially less by artificial river regulation than occurs in Grand Canyon. Before closure of Glen Canyon Dam in 1963, sediment-rich floods (mean annual peak 2400 m3/s) formed sandbars from which wind moved sand inland to form aeolian dunes. After dam operations reduced the amplitude and frequency of high flows, and eliminated the mainstream fluvial sediment supply, Grand Canyon’s fluvial sandbars lost open sand area owing to erosion by river flows and the spread of riparian vegetation. Two types of aeolian landscapes now occur in Grand Canyon: (1) modern fluvial sourced, those downwind of post-dam sandbars; and (2) relict fluvial sourced, whose primary sediment source was deposits from pre-dam floods that were larger than any post-dam flows have been. Sediment supply has been reduced to type (1) dune fields because post-dam sandbars are smaller than in the pre-dam era; new sediment supply to type (2) dune fields essentially has been eliminated. Type 1 aeolian landscapes can receive new windblown sand from sandbars formed by controlled floods (1160 m3/s), which occurred in 1996, 2004, and 2008. Type 1 dune fields, being downwind and within 100 m of controlled-flood sandbars, have significantly higher aeolian sand-transport rates, more open sand, and less biologic soil crust than relict type 2 dune

  8. Surface Dust Redistribution on Mars as Observed by the Mars Global Surveyor

    NASA Technical Reports Server (NTRS)

    Szwast, M. A.; Richardson, M. I.; Vasavada, A. R.

    2005-01-01

    The global redistribution of dust by the atmosphere is geologically and climatologically important. Dust deposition and removal at the surface represents ongoing sedimentary geology: a vestige of aeolian processes responsible for the concentration of vast dustsheets and potentially for ancient layered units at various locations on Mars. The varying amount of dust on the surface has also long been hypothesized as a factor in determining whether regional or global dust storms occur in a given year. Indeed, the atmosphere has a very short, sub-seasonal time-scale (or memory) and as such, any inter-annual variability in the climate system that is not simply ascribable to stochastic processes, must involve changing conditions on the surface. An excellent, multi-year dataset is provided by the Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) and the Mars Orbiter Camera Wide Angle imager (MOC-WA). This dataset allows investigation into the degree to which surface dust deposits on Mars really change: over decadal time scales, over the course of the annual cycle, and as a result of global and regional dust storms. The MGS mapping orbit data set extends over almost 3 Martian years at the time of writing. These data sets include one global dust storm and smaller regional storms (one in the first TES mapping year and two in the third).

  9. Transverse Aeolian Ridges on Mars: Sediment sources, volumes, and ages.

    NASA Astrophysics Data System (ADS)

    Berman, D. C.; Balme, M. R.

    2014-12-01

    Transverse Aeolian Ridges (TARs) are aeolian bedforms that are morphologically and dimensionally distinct from Large Dark Dune (LDD) fields, being generally brighter than, or of similar albedo to, the surrounding terrain. These features are significantly smaller than the LDDs, appear to form normal to local winds, and tend to have simple, transverse, ripple-like morphologies. Whether these small martian bedforms represent large granule ripples, small transverse dunes, or something else entirely is currently under debate. The spatial distribution of TARs provides important information about where on Mars aeolian sediments are concentrated, and determining their volume can help us constrain the sediment transport regime on Mars. Also, if we can determine if TARs were active only in the past, or whether TARs are mobile under today's wind conditions, then we can begin to assess when and where TARs are/were active over Mars' recent geological history. Thus TARs have the potential for being indicators/records of climate change on Mars. In this work we build on previous work [1,2] and focus on the local/regional scale. We have identified six regional study areas, each 5° by 5°, to investigate the behavior of TARs in detail; one in the northern hemisphere, three in the equatorial band, and two in the southern hemisphere. We have systematically mapped TAR and LDD deposits in each study area to constrain sediment transport pathways and identify sediment sources. In general, TAR sediments appear to be tied to local sources such as LDDs or layered terrains. HiRISE DTMs were utilized to measure TAR heights, widths, wavelengths, and lengths to calculate sediment volumes and estimate volumes over entire study areas based on mapping. Crater count analyses on contiguous TAR fields in the equatorial regions, where the bedforms appear more lithified, reveal ages of several million years. Mid-latitude TAR fields do not show any superposed craters, suggesting much younger deposits

  10. Atmospheric mineral dust in dryland ecosystems: Applications of environmental magnetism

    NASA Astrophysics Data System (ADS)

    Reynolds, Richard L.; Goldstein, Harland L.; Miller, Mark E.

    2010-07-01

    Magnetic properties of shallow (<10-cm depth), fine-grained surficial sediments contrast greatly with those of immediately underlying bedrock across much of the dry American Southwest. At 26 study sites in fine-grained (<63 μm) surficial sediments isolated from alluvial inputs, isothermal remanent magnetization (IRM; mean of 67 samples = 6.72 × 10-3 Am2 kg-1) is more than two orders of magnitude greater than that for underlying Paleozoic and Mesozoic sedimentary rocks. This contrast is mainly caused by the presence of silt-size, titanium-bearing magnetite particles in the surficial deposits and their absence in bedrock. Because of their size, composition, and isolated location, the magnetite particles represent a component of atmospheric dust likely deposited over the past few centuries. The positive correlation of sediment-IRM values with amounts of potential plant nutrients reveals the importance of atmospheric dust to soil fertility over much of the American Southwest. Subsequent disturbance of landscapes, by domestic livestock grazing as an example, commonly results in wind erosion, which then depletes exposed surfaces of original aeolian magnetite and associated fine-grained sediment. Declines in soil fertility and water-holding capacity in these settings can be estimated in some field settings via decreases in magnetic susceptibility, relative to nearby undisturbed areas. Along gentle hillslope gradients of the Colorado Plateau, field measures for aeolian magnetite demonstrate that the redistribution of deposited atmospheric dust influences landscape-level patterns in the distribution of invasive exotic plant species. Our results indicate that environmental magnetism has high potential for assessing the development and degradation of dry landscapes elsewhere.

  11. Source Characterization of African Dust Using CCSEM Analysis

    NASA Astrophysics Data System (ADS)

    Rogers, R.; Hunt, A.; Oldfield, F.

    2013-12-01

    A preliminary investigation is underway to determine whether African dust is developed through Pedogenic or Aeolian processes. 85 dust samples were taken from the Sahel and Saharan region of Africa and analyzed using computer controlled scanning electron microscopy (CCSEM). Optimized secondary electron detectors (SED) and back-scattered electron detectors (BSED) with adjustable quadrants was used with a light element Peltier-cooled energy dispersive x-ray spectrometer. A variable pressure system was utilized for the analysis of insulating materials, which eliminated the need for special specimen coating to dissipate charge and remove artifacts. Data from these samples are being used to address two primary questions: (1) Can CCSEM technology accurately describe elemental compounds derived from dust samples and therefore derive mineral content and (2) Are African dusts created through Pedogenic or Aeolian processes. The creation of a 19-point elemental classification system was used to separate and analyze each of the 4000 data points that were taken from 85 samples. Initial findings show large amounts of Fe, Si, and Al-rich minerals. The Al-Si-rich minerals show a close correlation in relative elemental amounts. This is to be expected from clay minerals of the pyroxene group. The Fe, Si-rich minerals trend towards an inverse relationship, which is also consistent with iron oxides of the spinel group that generally consist of magnetite. Other elemental constituents within the samples include varying amounts of Ti, Ca, and K. An initial run of samples, 6 Burkina Soils and 6 Burkina Laterites, show a similarity in chemical composition, leading to the hypothesis that the Burkina Soils originated from the Burkina Laterites. As the experiment progresses we expect to see similar Aeolian processes contributing to the mineral content of other surface dusts. Further research on the effects of these wind driven dusts is needed to assess the potential health impacts and

  12. Iron-light colimitation in a global ocean biogeochemical model and the sensitivity of oceanic CO2 uptake to dust deposition

    NASA Astrophysics Data System (ADS)

    Nickelsen, L.; Oschlies, A.

    2012-12-01

    The iron hypothesis of glacial-interglacial cycles states that glacial increases in the deposition of dust enhanced the concentrations of the micronutrient iron in the ocean where it triggered phytoplankton growth and thus CO2 uptake. Indeed, iron fertilization experiments find that phytoplankton needs iron in particular for nitrate uptake, light harvesting, synthesis of chlorophyll and in the electron transport chain of photosynthesis. Previous global biogeochemical models used to extrapolate results from local culture and field experiments have suggested that the sensitivity of ocean biogeochemistry to changes in dust deposition is too low to account for the observed glacial-interglacial changes of atmospheric CO2 concentrations. Here we show that this sensitivity is increased significantly when iron-light colimitation, i.e. the impact of iron on light harvesting capabilities and chlorophyll synthesis, is explicitly considered in a global biogeochemical ocean model. Iron-light colimitation increases the shift of export production to higher latitudes at high dust deposition and amplifies iron limitation at low dust deposition. Our results suggest that iron fertilization by increased dust deposition may explain a substantially larger portion of the observed past CO2 variability than thought previously. Our results emphasize the role of iron as a key limiting nutrient for phytoplankton in the ocean, with a high potential for changes in oceanic iron supply affecting the global carbon cycle and climate.

  13. Assessment of the solubility and bioaccessibility of barium and aluminum in soils affected by mine dust deposition.

    PubMed

    Shock, S S; Bessinger, B A; Lowney, Y W; Clark, J L

    2007-07-01

    Barium is a heavy metal to which human and animal receptors may be exposed in various settings--for example, in mineral extraction industries where the mining and milling of ores occurs. Aluminum is also an element abundant in soil and dust to which human and animal receptors may be exposed in association with such industries. This study investigated the solubility and bioaccessibility of barium and aluminum in simulated gastric fluids using an in vitro test method previously validated for lead. Soil samples were collected from the vicinity of a mine and transport road that generated fugitive dust containing barium as barite (BaSO4). It was found that barium bioaccessibility in different tundra soil and fugitive dust source materials varied greatly, between 0.07 and 66.0%, depending on sample location, grain size, solid-to-fluid ratio used in the in vitro experiments, and the analytical method selected for determining total barium concentrations in the sample substrates. For X-ray fluorescence spectrometry (XRF) analytical methods and a solid-to-fluid ratio of 1:100, barium bioaccessibility from the barite-rich mine waste rock and gyro crusher ore dust source materials was very low (0.07-0.36%). By contrast, the bioaccessibility of barium in tundra soil samples affected by fugitive dust deposition ranged from 3.8 to 19.5%. The relative solubility of barium measured in the simulated gastric fluids of this study is consistent with time-dependent dissolution of barite in mine waste rock and ore dust, and the presence of more soluble chemical forms in tundra soil. Laboratory XRF analysis was the only analytical method used in this study that accurately characterized total barium concentrations for all sample substrates. Aluminum bioaccessibility was distinguished from barium bioaccessibility by its generally lower values and smaller dependence on grain size and solid-to-fluid ratios. The range of aluminum bioaccessibility values (0.31-4.0%) is consistent with the

  14. Monitoring Saharan dust from source to sink: from Iwik [Mauritania] to Statia [Caribbean

    NASA Astrophysics Data System (ADS)

    van Hateren, Hans; van der Does, Michelle; Friese, Carmen; Korte, Laura; Munday, Chris; Stuut, Jan-Berend

    2015-04-01

    The particle-size distribution and composition of mineral dust is often used as a tool to reconstruct palaeo-environmental conditions in the source(s) of the dust. In on-land (loess), lacustrine, and marine archives, the size of dust deposits is considered a proxy for paleo-wind intensity. However, next to wind strength, the particle size of aeolian deposits is also influenced by various other parameters such as source-to-sink distance, altitude at which the particles have been transported, and various environmental conditions in the sources of the dust. To verify if we can quantify a relationship between the size and composition of mineral dust particles and prevailing environmental conditions, we study "modern" dust. Within three ongoing projects, funded by the Dutch NWO, German DFG, and the ERC, we are studying dust collected on land in Mauritania (Iwik, in the Parc National de Banc d'Arguin, sampling on a monthly resolution) with an array of marine sediment-traps (five moorings at 12°N across the Atlantic Ocean with two sediment traps each between 23° and 57°W, sampling on a 2-weekly resolution) as well as automated mineral-dust collection at sea (on dust-collecting buoys at 12°N/38°W and 12°N/49°W, sampling on a 2-weekly resolution), and finally with a high-volume dust collector on St Eustatius (17°N/63°W, sampling on a 2-weekly resolution). Here we compare initial results of the particle-size distributions of the "minimally-disturbed" fraction of the on-land dust collectors with the terrigenous sediment fraction from the sediment traps, and discuss temporal and spatial trends.

  15. Bacterial profiling of Saharan dust deposition in the Atlantic Ocean using sediment trap moorings – year one results

    NASA Astrophysics Data System (ADS)

    Munday, Chris; Brummer, Geert-Jan; van der Does, Michelle; Korte, Laura; Stuut, Jan-Berend

    2015-04-01

    Large quantities of dust are transported from the Sahara Desert across the Atlantic Ocean towards the Caribbean each year, with a large portion of it deposited in the ocean. This dust brings an array of minerals, nutrients and organic matter, both living and dead. This input potentially fertilizes phytoplankton growth, with resulting knock-on effects throughout the food chain. The input of terrestrial microbial life may also have an impact on the marine microbial community. The current multi-year project consists of a transect of floating dust collectors and sub-surface sediment traps placed at 12°N across the Atlantic Ocean. Sediment traps are located 1200m and 3500m below the sea surface and all are synchronized to collect samples for a period of two weeks. The aim is to understand the links between dust input and the bacterial community and how this relates to ocean productivity and the carbon cycle. The first set of sediment trap samples were recovered using the RV Pelagia in November 2013 with promising results. Results from 7 sediment traps (three at 1200m and four at 3500m) were obtained. In general, the total mass flux decreased as distance from the source increased and the upper traps generally held more material than those at 3500m. Denaturing Gradient Gel Electrophoresis (DGGE) was used as a screening technique, revealing highly varied profiles, with the upper (1200m) traps generally showing more variation throughout the year. Several samples have been submitted for high throughput DNA sequencing which will identify the variations in these samples.

  16. Modeling the emission, transport and deposition of contaminated dust from a mine tailing site.

    PubMed

    Stovern, Michael; Betterton, Eric A; Sáez, A Eduardo; Villar, Omar Ignacio Felix; Rine, Kyle P; Russell, Mackenzie R; King, Matt

    2014-01-01

    Mining operations are potential sources of airborne particulate metal and metalloid contaminants through both direct smelter emissions and wind erosion of mine tailings. The warmer, drier conditions predicted for the Southwestern US by climate models may make contaminated atmospheric dust and aerosols increasingly important, due to potential deleterious effects on human health and ecology. Dust emissions and dispersion of contaminants from the Iron King Mine tailings in Dewey-Humboldt, Arizona, a Superfund site, are currently being investigated through in situ field measurements and computational fluid dynamics modeling. These tailings are significantly contaminated with lead and arsenic with an average soil concentration of 1616 and 1420 ppm, respectively. Similar levels of these contaminants have also been measured in soil samples taken from the area surrounding the mine tailings. Using a computational fluid dynamics model, we have been able to model dust transport from the mine tailings to the surrounding region. The model includes a distributed Eulerian model to simulate fine aerosol transport and a Lagrangian approach to model fate and transport of larger particles. In order to improve the accuracy of the dust transport simulations both regional topographical features and local weather patterns have been incorporated into the model simulations. PMID:24552963

  17. Bursts in discontinuous Aeolian saltation.

    PubMed

    Carneiro, M V; Rasmussen, K R; Herrmann, H J

    2015-01-01

    Close to the onset of Aeolian particle transport through saltation we find in wind tunnel experiments a regime of discontinuous flux characterized by bursts of activity. Scaling laws are observed in the time delay between each burst and in the measurements of the wind fluctuations at the fluid threshold Shields number θc. The time delay between each burst decreases on average with the increase of the Shields number until sand flux becomes continuous. A numerical model for saltation including the wind-entrainment from the turbulent fluctuations can reproduce these observations and gives insight about their origin. We present here also for the first time measurements showing that with feeding it becomes possible to sustain discontinuous flux even below the fluid threshold. PMID:26073305

  18. Bursts in discontinuous Aeolian saltation

    PubMed Central

    Carneiro, M. V.; Rasmussen, K. R.; Herrmann, H. J.

    2015-01-01

    Close to the onset of Aeolian particle transport through saltation we find in wind tunnel experiments a regime of discontinuous flux characterized by bursts of activity. Scaling laws are observed in the time delay between each burst and in the measurements of the wind fluctuations at the fluid threshold Shields number θc. The time delay between each burst decreases on average with the increase of the Shields number until sand flux becomes continuous. A numerical model for saltation including the wind-entrainment from the turbulent fluctuations can reproduce these observations and gives insight about their origin. We present here also for the first time measurements showing that with feeding it becomes possible to sustain discontinuous flux even below the fluid threshold. PMID:26073305

  19. Direct numerical simulations of aeolian sand ripples

    PubMed Central

    Durán, Orencio; Claudin, Philippe; Andreotti, Bruno

    2014-01-01

    Aeolian sand beds exhibit regular patterns of ripples resulting from the interaction between topography and sediment transport. Their characteristics have been so far related to reptation transport caused by the impacts on the ground of grains entrained by the wind into saltation. By means of direct numerical simulations of grains interacting with a wind flow, we show that the instability turns out to be driven by resonant grain trajectories, whose length is close to a ripple wavelength and whose splash leads to a mass displacement toward the ripple crests. The pattern selection results from a compromise between this destabilizing mechanism and a diffusive downslope transport which stabilizes small wavelengths. The initial wavelength is set by the ratio of the sediment flux and the erosion/deposition rate, a ratio which increases linearly with the wind velocity. We show that this scaling law, in agreement with experiments, originates from an interfacial layer separating the saltation zone from the static sand bed, where momentum transfers are dominated by midair collisions. Finally, we provide quantitative support for the use of the propagation of these ripples as a proxy for remote measurements of sediment transport. PMID:25331873

  20. Direct numerical simulations of aeolian sand ripples.

    PubMed

    Durán, Orencio; Claudin, Philippe; Andreotti, Bruno

    2014-11-01

    Aeolian sand beds exhibit regular patterns of ripples resulting from the interaction between topography and sediment transport. Their characteristics have been so far related to reptation transport caused by the impacts on the ground of grains entrained by the wind into saltation. By means of direct numerical simulations of grains interacting with a wind flow, we show that the instability turns out to be driven by resonant grain trajectories, whose length is close to a ripple wavelength and whose splash leads to a mass displacement toward the ripple crests. The pattern selection results from a compromise between this destabilizing mechanism and a diffusive downslope transport which stabilizes small wavelengths. The initial wavelength is set by the ratio of the sediment flux and the erosion/deposition rate, a ratio which increases linearly with the wind velocity. We show that this scaling law, in agreement with experiments, originates from an interfacial layer separating the saltation zone from the static sand bed, where momentum transfers are dominated by midair collisions. Finally, we provide quantitative support for the use of the propagation of these ripples as a proxy for remote measurements of sediment transport. PMID:25331873

  1. Holocene dust records from the West African Sahel and their implications for changes in climate and land surface conditions

    NASA Astrophysics Data System (ADS)

    Cockerton, Helen E.; Holmes, Jonathan A.; Street-Perrott, F. Alayne; Ficken, Katherine J.

    2014-07-01

    We reconstructed aeolian dust accumulation during the Holocene from two radiocarbon-dated lake-sediment sequences from the Manga Grasslands in northeastern Nigeria in order to investigate long-term changes in the Harmattan dust system over West Africa and evaluate their possible causes. Flux values were low in the early Holocene, decreasing further to a minimum at around 6.2 kyr B.P. after which time they increased, steadily until around 2 kyr B.P. and then more sharply after this time. The long-term variations in dust flux agree broadly with changes in the exposed area of the Lake Chad Basin to the northeast of the study sites, which vary inversely with the volume of Paleolake Megachad. More proximal sources of dust, including the fine fraction of local dune sand and floodplains of nearby rivers, have also made a contribution to the total dust load during times of enhanced dune and fluvial activity. Sharp rises in dust flux over the past century may be related to human activity. Broad patterns of change in dust flux during the Holocene agree with other reconstructions over the same period. However, we see no evidence for a stepped rise during the middle Holocene, as seen at some sites from the northeastern tropical Atlantic, suggesting that controls on the Harmattan dust system have differed from those affecting dust deposition elsewhere across northern Africa.

  2. Video monitoring of meso-scale aeolian activity on a narrow beach

    NASA Astrophysics Data System (ADS)

    Hage, Pam; Ruessink, Gerben

    2014-05-01

    The morphologic evolution of coastal dunes is inextricably linked to the neighbouring beach through the incessant exchange of sand. Intense storm-wave processes erode the foredune within a few hours and transport its sand sand seaward, while aeolian processes return the eroded sand from the beach into the dune system, although at a much lower pace (months to years, or meso scale). Here we use an 8-year long data set of half-hourly snapshot video images, collected from an ≡ 50 m high tower on Egmond Beach (The Netherlands), and a concurrent meteorological and water level data set, to examine which factors affect aeolian sand delivery into the dunes. Egmond is a north-south oriented, micro- to meso-tidal, wave-dominated site that faces the North Sea. Its beach is relatively narrow ( ~ 100 m at spring low tide) and mildly sloping (~ 1 : 30), and consists of quartz sand with a median diameter of about 300 μm. Aeolian activity is clearly visible on the images as sand streamers and, in particular, sand strips, defined as low-amplitude, large-wavelength and slipfaceless deposits that migrate slowly in the wind direction and, depending on wind direction, can have orientations from almost shore-parallel to shore-normal. Beach width in combination with wind direction appeared to be the dominant factors in controlling aeolian activity. Many high wind (>≡ 13 m/s) events, especially from the west and northwest, were associated with a storm surge that inundated almost the entire beach with, accordingly, no possibility for aeolian transport. In contrast, sand-strip fields covered the entire beach during medium wind (≡ 12 - 13 m/s) events, especially when the wind was nearly shore-parallel. Many sand-strip events were observed to be regulated by the tide. Prominent sand-strip fields on the intertidal and upper beach were largely limited to low-tide situations with a wide beach, with a rising tide obviously destroying the intertidal sand strips and sometimes also negatively

  3. Physical and Chemical Characteristics of Desert Dust Deposited on Mt. Elbrus, Caucasus as Documented in Snow Pit and Shallow Core Records

    NASA Astrophysics Data System (ADS)

    Kutuzov, S.; Shahgedanova, M.; Mikhalenko, V.; Ginot, P.; Lavrentiev, I.; Popov, G.

    2013-12-01

    We present a study of dust deposition events and its physical and chemical characteristics in Caucasus Mountains as documented by snow and firn pack at Mt Elbrus. Dust samples were collected from the shallow ice cores and snow pits in 2009-2013 at the western Elbrus plateau (5150 m a.s.l.). Particle size distribution and chemical analysis (major ions, trace elements) were completed for each sample using Coulter Counter Multisizer III, scanning electron microscopy (SEM), IC and ICPMS analysis. It was shown that desert dust deposition occurred in Caucasus 4-8 times a year and originates from the Northern Sahara and the deserts of the Middle East. Analysis of volumetric particle size distributions showed that the modal values ranged between 2 μm and 4 μm although most samples were characterised by modal values of 2.0-2.8 μm with an average of 2.6 μm. These values are lower than those obtained from the ice cores in central and southern Asia following the deposition of long-travelled dust and are closer to those reported for the European Alps and the polar ice cores. All samples containing dust have a single mode which is usually interpreted as a single source region. They do not reveal any significant differences between the Saharan and the Middle Eastern sources. The annual average dust mass concentrations were 10-15 mg kg-1 which is higher than the average concentrations reported for other mountain regions and this was strongly affected by dust deposition events. The deposition of dust resulted in elevated concentrations of most ions, especially Ca2+, Mg2+, K+, and sulphates. Dust originated from multiple sources in the Middle East including Mesopotamia or passing over the Middle East was characterised by the elevated concentrations of nitrates and ammonia which is related to a high atmospheric loads of ammonium emitted by agricultural sources and high concentrations of ammonium in dust originating from this region. By contrast, samples of the Saharan dust showed

  4. Modelling of mineral dust for interglacial and glacial climate conditions with a focus on Antarctica

    DOE PAGESBeta

    Sudarchikova, Natalia; Mikolajewicz, Uwe; Timmreck, C.; O'Donnell, D.; Schurgers, G.; Sein, Dmitry; Zhang, Kai

    2015-05-19

    The mineral dust cycle responds to climate variations and plays an important role in the climate system by affecting the radiative balance of the atmosphere and modifying biogeochemistry. Polar ice cores provide unique information about deposition of aeolian dust particles transported over long distances. These cores are a palaeoclimate proxy archive of climate variability thousands of years ago. The current study is a first attempt to simulate past interglacial dust cycles with a global aerosol–climate model ECHAM5-HAM. The results are used to explain the dust deposition changes in Antarctica in terms of quantitative contribution of different processes, such as emission,more » atmospheric transport and precipitation, which will help to interpret palaeodata from Antarctic ice cores. The investigated periods include four interglacial time slices: the pre-industrial control (CTRL), mid-Holocene (6000 yr BP; hereafter referred to as \\"6 kyr\\"), last glacial inception (115 000 yr BP; hereafter \\"115 kyr\\") and Eemian (126 000 yr BP; hereafter \\"126 kyr\\"). One glacial time interval, the Last Glacial Maximum (LGM) (21 000 yr BP; hereafter \\"21 kyr\\"), was simulated as well to be a reference test for the model. Results suggest an increase in mineral dust deposition globally, and in Antarctica, in the past interglacial periods relative to the pre-industrial CTRL simulation. Approximately two-thirds of the increase in the mid-Holocene and Eemian is attributed to enhanced Southern Hemisphere dust emissions. Slightly strengthened transport efficiency causes the remaining one-third of the increase in dust deposition. The moderate change in dust deposition in Antarctica in the last glacial inception period is caused by the slightly stronger poleward atmospheric transport efficiency compared to the pre-industrial. Maximum dust deposition in Antarctica was simulated for the glacial period. LGM dust deposition in Antarctica is substantially increased due to 2.6 times

  5. Modelling of mineral dust for interglacial and glacial climate conditions with a focus on Antarctica

    SciTech Connect

    Sudarchikova, Natalia; Mikolajewicz, Uwe; Timmreck, C.; O'Donnell, D.; Schurgers, G.; Sein, Dmitry; Zhang, Kai

    2015-05-19

    The mineral dust cycle responds to climate variations and plays an important role in the climate system by affecting the radiative balance of the atmosphere and modifying biogeochemistry. Polar ice cores provide unique information about deposition of aeolian dust particles transported over long distances. These cores are a palaeoclimate proxy archive of climate variability thousands of years ago. The current study is a first attempt to simulate past interglacial dust cycles with a global aerosol–climate model ECHAM5-HAM. The results are used to explain the dust deposition changes in Antarctica in terms of quantitative contribution of different processes, such as emission, atmospheric transport and precipitation, which will help to interpret palaeodata from Antarctic ice cores. The investigated periods include four interglacial time slices: the pre-industrial control (CTRL), mid-Holocene (6000 yr BP; hereafter referred to as \\"6 kyr\\"), last glacial inception (115 000 yr BP; hereafter \\"115 kyr\\") and Eemian (126 000 yr BP; hereafter \\"126 kyr\\"). One glacial time interval, the Last Glacial Maximum (LGM) (21 000 yr BP; hereafter \\"21 kyr\\"), was simulated as well to be a reference test for the model. Results suggest an increase in mineral dust deposition globally, and in Antarctica, in the past interglacial periods relative to the pre-industrial CTRL simulation. Approximately two-thirds of the increase in the mid-Holocene and Eemian is attributed to enhanced Southern Hemisphere dust emissions. Slightly strengthened transport efficiency causes the remaining one-third of the increase in dust deposition. The moderate change in dust deposition in Antarctica in the last glacial inception period is caused by the slightly stronger poleward atmospheric transport efficiency compared to the pre-industrial. Maximum dust deposition in Antarctica was simulated for the glacial period. LGM dust deposition in Antarctica is substantially increased due to 2.6 times higher

  6. Evaluation of a new model of aeolian transport in the presence of vegetation

    USGS Publications Warehouse

    Li, Junran; Okin, Gregory S.; Herrick, Jeffrey E.; Belnap, Jayne; Miller, Mark E.; Vest, Kimberly; Draut, Amy E.

    2013-01-01

    Aeolian transport is an important characteristic of many arid and semiarid regions worldwide that affects dust emission and ecosystem processes. The purpose of this paper is to evaluate a recent model of aeolian transport in the presence of vegetation. This approach differs from previous models by accounting for how vegetation affects the distribution of shear velocity on the surface rather than merely calculating the average effect of vegetation on surface shear velocity or simply using empirical relationships. Vegetation, soil, and meteorological data at 65 field sites with measurements of horizontal aeolian flux were collected from the Western United States. Measured fluxes were tested against modeled values to evaluate model performance, to obtain a set of optimum model parameters, and to estimate the uncertainty in these parameters. The same field data were used to model horizontal aeolian flux using three other schemes. Our results show that the model can predict horizontal aeolian flux with an approximate relative error of 2.1 and that further empirical corrections can reduce the approximate relative error to 1.0. The level of error is within what would be expected given uncertainties in threshold shear velocity and wind speed at our sites. The model outperforms the alternative schemes both in terms of approximate relative error and the number of sites at which threshold shear velocity was exceeded. These results lend support to an understanding of the physics of aeolian transport in which (1) vegetation's impact on transport is dependent upon the distribution of vegetation rather than merely its average lateral cover and (2) vegetation impacts surface shear stress locally by depressing it in the immediate lee of plants rather than by changing the bulk surface's threshold shear velocity. Our results also suggest that threshold shear velocity is exceeded more than might be estimated by single measurements of threshold shear stress and roughness length

  7. Evaluation of a new model of aeolian transport in the presence of vegetation

    NASA Astrophysics Data System (ADS)

    Li, Junran; Okin, Gregory S.; Herrick, Jeffrey E.; Belnap, Jayne; Miller, Mark E.; Vest, Kimberly; Draut, Amy E.

    2013-03-01

    Aeolian transport is an important characteristic of many arid and semiarid regions worldwide that affects dust emission and ecosystem processes. The purpose of this paper is to evaluate a recent model of aeolian transport in the presence of vegetation. This approach differs from previous models by accounting for how vegetation affects the distribution of shear velocity on the surface rather than merely calculating the average effect of vegetation on surface shear velocity or simply using empirical relationships. Vegetation, soil, and meteorological data at 65 field sites with measurements of horizontal aeolian flux were collected from the Western United States. Measured fluxes were tested against modeled values to evaluate model performance, to obtain a set of optimum model parameters, and to estimate the uncertainty in these parameters. The same field data were used to model horizontal aeolian flux using three other schemes. Our results show that the model can predict horizontal aeolian flux with an approximate relative error of 2.1 and that further empirical corrections can reduce the approximate relative error to 1.0. The level of error is within what would be expected given uncertainties in threshold shear velocity and wind speed at our sites. The model outperforms the alternative schemes both in terms of approximate relative error and the number of sites at which threshold shear velocity was exceeded. These results lend support to an understanding of the physics of aeolian transport in which (1) vegetation's impact on transport is dependent upon the distribution of vegetation rather than merely its average lateral cover and (2) vegetation impacts surface shear stress locally by depressing it in the immediate lee of plants rather than by changing the bulk surface's threshold shear velocity. Our results also suggest that threshold shear velocity is exceeded more than might be estimated by single measurements of threshold shear stress and roughness length

  8. Evaluation of the deposition, translocation and pathological response of brake dust with and without added chrysotile in comparison to crocidolite asbestos following short-term inhalation: Interim results

    SciTech Connect

    Bernstein, David M.; Rogers, Rick; Sepulveda, Rosalina; Kunzendorf, Peter; Bellmann, Bernd; Ernst, Heinrich; Phillips, James I.

    2014-04-01

    Chrysotile has been frequently used in the past in manufacturing brakes and continues to be used in brakes in many countries. This study was designed to provide an understanding of the biokinetics and potential toxicology following inhalation of brake dust following short term exposure in rats. The deposition, translocation and pathological response of brake dust derived from brake pads manufactured with chrysotile were evaluated in comparison to the amphibole, crocidolite asbestos. Rats were exposed by inhalation 6 h/day for 5 days to either brake dust obtained by sanding of brake-drums manufactured with chrysotile, a mixture of chrysotile and the brake dust or crocidolite asbestos. No significant pathological response was observed at any time point in either the brake dust or chrysotile/brake dust exposure groups. The long chrysotile fibers (> 20 μm) cleared quickly with T{sub 1/2} estimated as 30 and 33 days, respectively in the brake dust and the chrysotile/brake dust exposure groups. In contrast, the long crocidolite fibers had a T{sub 1/2} > 1000 days and initiated a rapid inflammatory response in the lung following exposure resulting in a 5-fold increase in fibrotic response within 91 days. These results provide support that brake dust derived from chrysotile containing brake drums would not initiate a pathological response in the lung following short term inhalation. - Highlights: • We evaluated brake dust w/wo added chrysotile in comparison to crocidolite asbestos. • Persistence, translocation, pathological response in the lung and pleural cavity. • Chrysotile cleared rapidly from the lung while the crocidolite asbestos persisted. • No significant pathology observed at any time point in the brake-dust groups. • Crocidolite produced pathological response - Wagner 4 interstitial fibrosis by 32d.

  9. Reduction in soil aggregation in response to dust emission processes

    NASA Astrophysics Data System (ADS)

    Swet, Nitzan; Katra, Itzhak

    2016-09-01

    Dust emission by aeolian (wind) soil erosion depends on the topsoil properties of the source area, especially on the nature of the aggregates where most dust particles are held. Although the key role of soil aggregates in dust emission, the response of soil aggregation to aeolian processes and its implications for dust emission remain unknown. This study focuses on aggregate size distribution (ASD) analyses before and after in-situ aeolian experiments in semiarid loess soils that are associated with dust emission. Wind tunnel simulations show that particulate matter (PM) emission and saltation rates depend on the initial ASD and shear velocity. Under all initial ASD conditions, the content of saltator-sized aggregates (63-250 μm) increased by 10-34% due to erosion of macro-aggregates (> 500 μm), resulting in a higher size ratio (SR) between the saltators and macro-aggregates following the aeolian erosion. The results revealed that the saltator production increases significantly for soils that are subjected to short-term (anthropogenic) disturbance of the topsoil. The findings highlight a decrease in soil aggregation for all initial ASD's in response to aeolian erosion, and consequently its influence on the dust emission potential. Changes in ASD should be considered as a key parameter in dust emission models of complex surfaces.

  10. Size and elemental composition of dry-deposited particles during a severe dust storm at a coastal site of Eastern China.

    PubMed

    Niu, Hongya; Zhang, Daizhou; Hu, Wei; Shi, Jinhui; Li, Ruipeng; Gao, Huiwang; Pian, Wei; Hu, Min

    2016-02-01

    Dry-deposited particles were collected during the passage of an extremely strong dust storm in March, 2010 at a coastal site in Qingdao (36.15 °N, 120.49 °E), a city located in Eastern China. The size, morphology, and elemental composition of the particles were quantified with a scanning electron microscope equipped with an energy dispersive X-ray instrument (SEM-EDX). The particles appeared in various shapes, and their size mainly varied from 0.4 to 10 μm, with the mean diameters of 0.5, 1.5, and 1.0 μm before, during, and after the dust storm, respectively. The critical size of the mineral particles settling on the surface in the current case was about 0.3-0.4 μm before the dust storm and about 0.5-0.7 μm during the dust storm. Particles that appeared in high concentration but were smaller than the critical size deposited onto the surface at a small number flux. The elements Al, Si and Mg were frequently detected in all samples, indicating the dominance of mineral particles. The frequency of Al in particles collected before the dust storm was significantly lower than for those collected during and after the dust storm. The frequencies of Cl and Fe did not show obvious changes, while those of S, K and Ca decreased after the dust arrival. These results indicate that the dust particles deposited onto the surface were less influenced by anthropogenic pollutants in terms of particle number. PMID:26969556

  11. Vegetation and substrate properties of aeolian dune fields in the Colorado River corridor, Grand Canyon, Arizona

    USGS Publications Warehouse

    Draut, Amy E.

    2011-01-01

    This report summarizes vegetation and substrate properties of aeolian landscapes in the Colorado River corridor through Grand Canyon, Arizona, in Grand Canyon National Park. Characterizing these parameters provides a basis from which to assess future changes in this ecosystem, including the spread of nonnative plant species. Differences are apparent between aeolian dune fields that are downwind of where modern controlled flooding deposits new sandbars (modern-fluvial-sourced dune fields) and those that have received little or no new windblown sand since river regulation began in the 1960s (relict-fluvial-sourced dune fields). The most substantial difference between modern- and relict-fluvial-sourced aeolian dune fields is the greater abundance of biologic soil crust in relict dune fields. These findings can be used with similar investigations in other geomorphic settings in Grand Canyon and elsewhere in the Colorado River corridor to evaluate the health of the Colorado River ecosystem over time.

  12. Sand ripple dynamics in the case of out-of-equilibrium aeolian regimes.

    PubMed

    Misbah, C; Valance, A

    2003-12-01

    From a phenomenological hydrodynamical model, we analyze the aeolian sand ripple evolution in an out-of-equilibrium aeolian regime where erosion exceeds accretion (and vice versa). We find, in particular, that the ripple structure can be destroyed in favor of a flat sand bed. In the ripple regime we report on a new class of generic dynamics described by the Benney equation. This equation reveals either order or disorder depending on whether wave dispersion is strong or weak. In both cases, the average wavelength of the pattern is fixed in time. This markedly contrasts with the regime of equilibrium aeolian regime -reached when erosion balances deposition- where ripples undergo a coarsening process at long time (i.e., the wavelength increases indefinitely with time). PMID:15007749

  13. "Dust Devils": Gardening Agents on the Surface of Mars, and Hidden Hazards to Human Exploration?

    NASA Technical Reports Server (NTRS)

    Marshall, J.; Smith, P.; White, B.; Farrell, W.

    1999-01-01

    dust devils are to be expected in reasonable abundance. First, from a geological perspective, the vortices will act as "gardening" agents for the top few centimeters of entrainable material. Over time (hundreds of millions, or billions of years being available), they will cover the surface with scouring paths, and the grain sizes that can be lofted by a vortex probably extends over the whole sand to dust range. The depositional paths are, of course, much larger, so that vortex-induced deposition is more widespread than vortex-induced erosion, and will without doubt, affect the whole region in which the dust devils occur (this might explain why rocks at the Viking site seemed oddly capped with dust in a region apparently subject to general aeolian scouring). On Mars, the lift forces in dust devils might be less than on earth owing to the much thinner atmosphere, but this may be counterbalanced by lower gravity and greater vortex velocities. Certainly, when active, other aeolian phenomena on Mars --sand motion and dust storms, seem no less energetic and no less capable of lofting sediments than equivalent terrestrial aeolian phenomena. Every several years, within the current climatic regime, the surface of Mars is subject to light dust fall from global dust storms. Over time, this should develop a very uniform surface layer, with commensurate uniformity in grain size, mineralogy, albedo, color, and general spectroscopic properties. Dust devils will disturb this situation by continually mixing the surface dust with underlying layers, perhaps composed of silt and sand. This size mixing will also involve compositional mixing. After some years, the thin layer of dust that may be difficult to entrain alone, becomes progressively mixed with coarser materials that could reduce the general aeolian threshold of the soil. Certainly the continual disturbance by vorticity will prevent surface stabilization that may bind or indurate grains (caused by slow cementation or ice welding

  14. Plagioclase sub-species in Chinese loess deposits: Implications for dust source migration and past climate change

    NASA Astrophysics Data System (ADS)

    He, Tong; Liu, Lianwen; Chen, Yang; Sheng, Xuefen; Ji, Junfeng

    2016-01-01

    Plagioclase mineral sub-species in the Lingtai Section in central Chinese Loess Plateau are examined using Mineral Liberation Analyzer techniques, showing that loess and paleosol samples exhibit similar patterns in terms of plagioclase feldspar sub-species content. This suggests that both loess and paleosol units have preserved their primary Ca-bearing plagioclase compositions of loess source regions. Weighted average CaO (%) in Ca-bearing plagioclase lies within a narrow range and is equivalent to the average plagioclase composition for upper continental crust. This fact supports the hypothesis that Chinese loess deposits are the result of a thorough mixing of dust sources. The sum of Ca-bearing plagioclase content exhibits a general increasing trend superimposed by glacial-interglacial oscillations. In combination with observed plagioclase data in the deserts, the variations of Ca-bearing plagioclase minerals might be used as a proxy for dust source migration and climate changes in the loess source regions. Furthermore, linear relationship between lithogenic magnetic susceptibility (MS) component input and contents of Ca-bearing plagioclase in loess units revises a MS proxy for reconstructing paleo-monsoon precipitation history. The revised MS and plagioclase sub-species records help in understanding the mechanism of glaciation across northern Tibetan Plateau.

  15. Impact of dust deposition on Fe biogeochemistry at the Tropical Eastern North Atlantic Time-series Observatory site

    NASA Astrophysics Data System (ADS)

    Ye, Y.; Völker, C.; Wolf-Gladrow, D. A.

    2009-04-01

    A one-dimensional model of iron speciation and biogeochemistry, coupled with the General Ocean Turbulence Model (GOTM) and a NPZD-type ecosystem model, is applied for the Tropical Eastern North Atlantic Time-series Observatory (TENATSO) site. Aimed at investigating the role of organic complexation and dust particles in Fe speciation and bioavailability, the model is extended in this study by a more complex description of the origin and fate of organic ligands and of particle aggregation and sinking. Model results show that the profile of dissolved iron is strongly influenced by the abundance of organic ligands. Modelled processes controlling the source and fate of ligands can well explain the abundance of strong ligands. However, a restoring of total weak ligands towards a constant value is required for reproducing the observed nutrient-like profile of weak ligands, indicating that decay time of weak ligands might be too long for a 1d-model. High dust deposition brings not only considerable input of iron into surface waters but also fine inorganic particles for particle aggregation and Fe scavenging. Simulated profiles of dissolved iron show high sensitivity to re-dissolution of colloidal and particulate iron. The colloidal to soluble iron ratio is underestimated assuming that colloidal iron is mainly composed of inorganic colloids. That strongly argues for introducing organic colloids into the model in future work.

  16. Persistent aeolian activity at Endeavour crater, Meridiani Planum, Mars; new observations from orbit and the surface

    NASA Astrophysics Data System (ADS)

    Chojnacki, Matthew; Johnson, Jeffrey R.; Moersch, Jeffrey E.; Fenton, Lori K.; Michaels, Timothy I.; Bell, James F., III

    2015-05-01

    Aeolian-driven bedform activity is now known to occur in many regions of Mars, based on surface and orbital observation of contemporary martian ripple and dune mobility events. Many of these sites have only been monitored with sufficient resolution data for the last few Mars years, when the High Resolution Imaging Science Experiment (HiRISE) began acquiring images of Mars. One exception is the well-monitored Endeavour crater in Meridiani Planum, which was one of the first known sites of unambiguous dune activity (migration and deflation). However, those early detections used lower resolution images over longer temporal baselines (versus the HIRISE data now available), leaving some measurements poorly constrained. New orbital and surface observations of Endeavour show multiple spatial (cm, m, km) and temporal (seasons, Mars year) scales of aeolian-driven surface change, which confirms earlier reports. Dome dunes in the eastern portion of the crater persistently deflate, disseminating dark sand across lighter-toned regolith and/or eroded bright dust, and likely contribute to the crater interior's episodic decreases in orbital albedo measurements. Other dome dunes are detected with the highest migration rates (4-12 m per Mars year) and volumetric sand fluxes reported yet for Mars. Estimated dune construction times or "turnover times" here and elsewhere on Mars are significantly shorter than martian obliquity cycles, implying that it is not necessary to invoke paleoclimate wind regimes to explain current dune morphologies. Located on the crater rim, the Opportunity rover detected evidence for near- and far-field aeolian-driven activity, with observations of spherules/sand movement in the rover workspace, bedform albedo alteration, and dust-lifting events. Observations of intracrater dunes show periodic shifting dark streaks that significantly constrain local wind regimes (directionality and seasonality). Constraints on wind directions from surface and orbital images

  17. Mineral dust transport to the Sierra Nevada, California: Loading rates and potential source areas

    NASA Astrophysics Data System (ADS)

    Vicars, William C.; Sickman, James O.

    2011-03-01

    The transport and deposition of aeolian dust represents an important material input pathway for many marine and terrestrial ecosystems and may be an ecologically significant source of exogenous phosphorus (P) to alpine lakes. In order to assess the abundance and elemental composition of atmospheric mineral dust over the Sierra Nevada of California, we collected size-fractionated atmospheric particulate matter (PM) samples during July 2008 to March 2009 at a mixed conifer site located in Sequoia National Park. PM concentrations were at their highest levels during the dry season, averaging 8.8 ± 3.7 and 11.1 ± 7.5 μg m-3 for the coarse (1 μm < Da < 15 μm) and fine (Da < 1 μm) fractions, respectively, while winter months were characterized by low (<1 μg m-3) PM concentrations in both size fractions. Using Al as a diagnostic tracer for mineral aerosol, we observed a significant and uniform contribution (50-80%) from aeolian dust to the total coarse PM load, whereas submicron particles contained comparatively little crustal material (7-33%). The mass concentrations of elements (Fe, Ca, Mg, P, and V) in the coarse PM fraction were significantly correlated with Al throughout the study, and coarse PM exhibited elemental signatures that were temporally consistent and distinguishable from those of other sites. Conversely, higher elemental enrichments were observed in the fine PM fraction for Fe, V, and P, indicating a greater contribution from anthropogenic emissions to the fine particle load. Fe/Al and Fe/Ca ratios suggest a mixture of mineral dust from regional agricultural activities and long-range transport of mineral dust from Asia. Asian sources comprised 40-90% of mineral dust in July 2008 and then declined to between 10 and 30% in August and early September.

  18. Triton's streaks as windblown dust

    NASA Technical Reports Server (NTRS)

    Sagan, Carl; Chyba, Christopher

    1990-01-01

    Explanations for the surface streaks observed by Voyager 2 on Triton's southern hemisphere are discussed. It is shown that, despite Triton's tenuous atmosphere, low-cohesion dust trains with diameters of about 5 micron or less may be carried into suspension by aeolian surface shear stress, given expected geostrophic wind speeds of about 10 m/s. For geyser-like erupting dust plumes, it is shown that dust-settling time scales and expected wind velocities can produce streaks with length scales in good agreement with those of the streaks. Thus, both geyserlike eruptions or direct lifting by surface winds appear to be viable mechanisms for the origin of the streaks.

  19. A theoretical note on aerodynamic lifting in dust devils

    NASA Astrophysics Data System (ADS)

    Wang, Zhen-Ting

    2016-02-01

    The stress distribution of a known rotating flow near the ground in fluid mechanics indicates that the horizontal aerodynamic entrainment of particles within dust devils is attributed to friction force rather than pressure force. The expression of dust emission rate on Earth was theoretically discussed based on simulated flow field and our current understanding of the physics of aeolian dust. It seems that transition flow is vital to dust devils on Mars.

  20. A conceptual framework for dryland aeolian sediment transport along the grassland-forest continuum: Effects of woody plant canopy cover and disturbance

    USGS Publications Warehouse

    Breshears, D.D.; Whicker, J.J.; Zou, C.B.; Field, J.P.; Allen, C.D.

    2009-01-01

    range of rates in grasslands and associated systems with no woody plants (e.g., agricultural fields), an intermediate range in shrublands, and a relatively small range in woodlands and forests. These trends are consistent with previous observations relating large rates of wind erosion to intermediate values for spatial density of roughness elements. The framework for aeolian sediment transport, which is also relevant to dust fluxes, wind erosion, and related aeolian processes, is applicable to a diverse suite of environmental challenges, including land degradation and desertification, dust storms, contaminant transport, and alterations of the hydrological cycle. ?? 2008 Elsevier B.V.

  1. Impairment of soil health due to fly ash-fugitive dust deposition from coal-fired thermal power plants.

    PubMed

    Raja, R; Nayak, A K; Shukla, A K; Rao, K S; Gautam, Priyanka; Lal, B; Tripathi, R; Shahid, M; Panda, B B; Kumar, A; Bhattacharyya, P; Bardhan, G; Gupta, S; Patra, D K

    2015-11-01

    Thermal power stations apart from being source of energy supply are causing soil pollution leading to its degradation in fertility and contamination. Fine particle and trace element emissions from energy production in coal-fired thermal power plants are associated with significant adverse effects on human, animal, and soil health. Contamination of soil with cadmium, nickel, copper, lead, arsenic, chromium, and zinc can be a primary route of human exposure to these potentially toxic elements. The environmental evaluation of surrounding soil of thermal power plants in Odisha may serve a model study to get the insight into hazards they are causing. The study investigates the impact of fly ash-fugitive dust (FAFD) deposition from coal-fired thermal power plant emissions on soil properties including trace element concentration, pH, and soil enzymatic activities. Higher FAFD deposition was found in the close proximity of power plants, which led to high pH and greater accumulation of heavy metals. Among the three power plants, in the vicinity of NALCO, higher concentrations of soil organic carbon and nitrogen was observed whereas, higher phosphorus content was recorded in the proximity of NTPC. Multivariate statistical analysis of different variables and their association indicated that FAFD deposition and soil properties were influenced by the source of emissions and distance from source of emission. Pollution in soil profiles and high risk areas were detected and visualized using surface maps based on Kriging interpolation. The concentrations of chromium and arsenic were higher in the soil where FAFD deposition was more. Observance of relatively high concentration of heavy metals like cadmium, lead, nickel, and arsenic and a low concentration of enzymatic activity in proximity to the emission source indicated a possible link with anthropogenic emissions. PMID:26450689

  2. The Correlation Between Atmospheric Dust Deposition to the Surface Ocean and SeaWiFS Ocean Color: A Global Satellite-Based Analysis

    NASA Technical Reports Server (NTRS)

    Erickson, D. J., III; Hernandez, J.; Ginoux, P.; Gregg, W.; Kawa, R.; Behrenfeld, M.; Esaias, W.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Since the atmospheric deposition of iron has been linked to primary productivity in various oceanic regions, we have conducted an objective study of the correlation of dust deposition and satellite remotely sensed surface ocean chlorophyll concentrations. We present a global analysis of the correlation between atmospheric dust deposition derived from a satellite-based 3-D atmospheric transport model and SeaWiFs estimates of ocean color. We use the monthly mean dust deposition fields of Ginoux et al. which are based on a global model of dust generation and transport. This model is driven by atmospheric circulation from the Data Assimilation Office (DAO) for the period 1995-1998. This global dust model is constrained by several satellite estimates of standard circulation characteristics. We then perform an analysis of the correlation between the dust deposition and the 1998 SeaWIFS ocean color data for each 2.0 deg x 2.5 deg lat/long grid point, for each month of the year. The results are surprisingly robust. The region between 40 S and 60 S has correlation coefficients from 0.6 to 0.95, statistically significant at the 0.05 level. There are swaths of high correlation at the edges of some major ocean current systems. We interpret these correlations as reflecting areas that have shear related turbulence bringing nitrogen and phosphorus from depth into the surface ocean, and the atmospheric supply of iron provides the limiting nutrient and the correlation between iron deposition and surface ocean chlorophyll is high. There is a region in the western North Pacific with high correlation, reflecting the input of Asian dust to that region. The southern hemisphere has an average correlation coefficient of 0.72 compared that in the northern hemisphere of 0.42 consistent with present conceptual models of where atmospheric iron deposition may play a role in surface ocean biogeochemical cycles. The spatial structure of the correlation fields will be discussed within the context

  3. The physics of wind-blown sand and dust.

    PubMed

    Kok, Jasper F; Parteli, Eric J R; Michaels, Timothy I; Karam, Diana Bou

    2012-10-01

    The transport of sand and dust by wind is a potent erosional force, creates sand dunes and ripples, and loads the atmosphere with suspended dust aerosols. This paper presents an extensive review of the physics of wind-blown sand and dust on Earth and Mars. Specifically, we review the physics of aeolian saltation, the formation and development of sand dunes and ripples, the physics of dust aerosol emission, the weather phenomena that trigger dust storms, and the lifting of dust by dust devils and other small-scale vortices. We also discuss the physics of wind-blown sand and dune formation on Venus and Titan. PMID:22982806

  4. Alluvial Fans on Dunes in Kaiser Crater Suggest Niveo-Aeolian and Denivation Processes on Mars

    NASA Technical Reports Server (NTRS)

    Bourke, M. C.

    2005-01-01

    On Earth, cold region sand dunes often contain inter-bedded sand, snow, and ice. These mixed deposits of wind-driven snow, sand, silt, vegetal debris, or other detritus have been termed Niveo-aeolian deposits. These deposits are often coupled with features that are due to melting or sublimation of snow, called denivation features. Snow and ice may be incorporated into dunes on Mars in three ways. Diffusion of water vapour into pore spaces is the widely accepted mechanism for the accretion of premafrost ice. Additional mechanisms may include the burial by sand of snow that has fallen on the dune surface or the synchronous transportation and deposition of snow, sand and ice. Both of these mechanisms have been reported for polar dunes on Earth. Niveo-aeolian deposits in polar deserts on Earth have unique morphologies and sedimentary structures that are generally not found in warm desert dunes. Recent analysis of MOC-scale data have found evidence for potential niveo-aeolian and denivation deposits in sand dunes on Mars.

  5. A model of the atmospheric metal deposition by cosmic dust particles

    NASA Astrophysics Data System (ADS)

    McNeil, W. J.

    1993-11-01

    We have developed a model of the deposition of meteoric metals in Earth's atmosphere. The model takes as input the total mass influx of material to the Earth and calculates the deposition rate at all altitudes through solution of the drag and subliminal equations in a Monte Carlo-type computation. The diffusion equation is then solved to give steady state concentration of complexes of specific metal species and kinetics are added to calculate the concentration of individual complexes. Concentrating on sodium, we calculate the Na(D) nightglow predicted by the model, and by introduction of seasonal variations in lower tropospheric ozone based on experimental results, we are able to duplicate the seasonal variation of mid-latitude nightglow data.

  6. The most unusual dust event cases from Iceland

    NASA Astrophysics Data System (ADS)

    Dagsson Waldhauserova, Pavla; Arnalds, Olafur; Olafsson, Haraldur; Meinander, Outi; Gritsevich, Maria

    2016-04-01

    Iceland has the largest area of volcaniclastic sandy desert on Earth where dust is originating from volcanic, but also glaciogenic sediments. Total Icelandic desert areas cover over 44,000 km2 suggesting Iceland being the largest Arctic as well as European desert. Satelite MODIS pictures have revealed dust plumes traveling over 1000 km at times. The mean frequency of days with dust suspension was to 135 dust days annually in 1949-2011. The annual dust deposition was calculated as 31 - 40.1 million tons yr-1 affecting the area of > 500,000 km2, which places Iceland among the most active dust sources on Earth. Volcanic dust is distributed over local glaciers (about 4.5 million t annually) and surrounding oceans (6 - 14 million t annually). Mean dust emissions were calculated for minor, medium and major dust events as 0.1, 0.3 and 1 million tons per event, respectively. Three unusual dust events were observed and measured: The first, an extreme wind erosion event of the fresh Eyjafjallajokull 2010 volcanic ash, the second, a Snow-Dust Storm in 2013, and the third, a suspended dust during moist and low wind conditions. Frequent volcanic eruptions in Iceland (new eruption each 3-4 years on average) represent important inputs to dust variability. Freshly deposited ash prolongs impacts of volcanic eruptions as we observed after the 2010 Eyjafjallajokull eruption. In September 2010, an extreme storm was recorded with the maximum wind speed of 38.7 ms-1. The maximum saltation was 6825 pulses per minute while the aeolian transport over one m wide transect and 150 cm height reached 11,800 kg m-1. The largest previously measured amount in Iceland in one storm was about 4,200 kg m-1. This storm is among the most extreme wind erosion events recorded on Earth. Dust events in South Iceland often take place in winter or at sub-zero temperatures. The Snow-Dust Storm occurred in March 6-7th 2013 when snow was nearly black with several mm thick dark layer of dust deposited on snow

  7. Effects of African dust deposition on phytoplankton in the western tropical Atlantic Ocean off Barbados

    NASA Astrophysics Data System (ADS)

    Chien, Chia-Te; Mackey, Katherine R. M.; Dutkiewicz, Stephanie; Mahowald, Natalie M.; Prospero, Joseph M.; Paytan, Adina

    2016-05-01

    Bioassay incubation experiments conducted with nutrients and local atmospheric aerosol amendments indicate that phosphorus (P) availability limited phytoplankton growth in the low-nutrient low-chlorophyll (LNLC) ocean off Barbados. Atmospheric deposition provides a relatively large influx of new nutrients and trace metals to the surface ocean in this region in comparison to other nutrient sources. However, the impact on native phytoplankton is muted due to the high ratio of nitrogen (N) to P (NO3:SRP > 40) and the low P solubility of these aerosols. Atmospheric deposition induces P limitation in this LNLC region by adding more N and iron (Fe) relative to P. This favors the growth of Prochlorococcus, a genus characterized by low P requirements and highly efficient P acquisition mechanisms. A global three-dimensional marine ecosystem model that includes species-specific phytoplankton elemental quotas/stoichiometry and the atmospheric deposition of N, P, and Fe supports this conclusion. Future increases in aerosol N loading may therefore influence phytoplankton community structure in other LNLC areas, thereby affecting the biological pump and associated carbon sequestration.

  8. Aeolian sedimentary processes at the Bagnold Dunes, Mars: Implications for modern dune dynamics and sedimentary structures in the aeolian stratigraphic record of Mars

    NASA Astrophysics Data System (ADS)

    Ewing, Ryan C.; Bridges, Nathan T.; Sullivan, Rob; Lapotre, Mathieu G. A.; Fischer, Woodward W.; Lamb, Mike P.; Rubin, David M.; Lewis, Kevin W.; Gupta, Sanjeev

    2016-04-01

    Wind-blown sand dunes are ubiquitous on the surface of Mars and are a recognized component of the martian stratigraphic record. Our current knowledge of the aeolian sedimentary processes that determine dune morphology, drive dune dynamics, and create aeolian cross-stratification are based upon orbital studies of ripple and dune morphodynamics, rover observations of stratification on Mars, Earth analogs, and experimental and theoretical studies of sand movement under Martian conditions. In-situ observations of sand dunes (informally called the Bagnold Dunes) by Curiosity Rover in Gale Crater, Mars provide the first opportunity to make observations of dunes from the grain-to-dune scale thereby filling the gap in knowledge between theory and orbital observations and refining our understanding of the martian aeolian stratigraphic record. We use the suite of cameras on Curiosity, including Navigation Camera (Navcam), Mast Camera (Mastcam) and Mars Hand Lens Imager (MAHLI), to make observations of the Bagnold Dunes. Measurements of sedimentary structures are made where stereo images are available. Observations indicate that structures generated by gravity-driven processes on the dune lee slopes, such as grainflow and grainfall, are similar to the suite of aeolian sedimentary structures observed on Earth and should be present and recognizable in Mars' aeolian stratigraphic record. Structures formed by traction-driven processes deviate significantly from those found on Earth. The dune hosts centimeter-scale wind ripples and large, meter-scale ripples, which are not found on Earth. The large ripples migrate across the depositional, lee slopes of the dune, which implies that these structures should be present in Mars' stratigraphic record and may appear similar to compound-dune stratification.The Mars Science Laboratory Curiosity Rover Team is acknowledged for their support of this work.

  9. Geochemical and microbiological fingerprinting of airborne dust that fell in Canberra, Australia, in October 2002

    NASA Astrophysics Data System (ADS)

    de Deckker, Patrick; Abed, Raeid M. M.; de Beer, Dirk; Hinrichs, Kai-Uwe; O'Loingsigh, Tadhg; Schefuß, Enno; Stuut, Jan-Berend W.; Tapper, Nigel J.; van der Kaars, Sander

    2008-12-01

    During the night of 22-23 October 2002, a large amount of airborne dust fell with rain over Canberra, located some 200 km from Australia's east coast, and at an average altitude of 650 m. It is estimated that during that night about 6 g m-2 of aeolian dust fell. We have conducted a vast number of analyses to "fingerprint" some of the dust and used the following techniques: grain size analysis; scanning electron microscope imagery; major, trace, and rare earth elemental, plus Sr and Nd isotopic analyses; organic compound analyses with respective compound-specific isotope analyses; pollen extraction to identify the vegetation sources; and molecular cloning of 16S rRNA genes in order to identify dust bacterial composition. DNA analyses show that most obtained 16S rRNA sequences belong mainly to three groups: Proteobacteria (25%), Bacteriodetes (23%), and gram-positive bacteria (23%). In addition, we investigated the meteorological conditions that led to the dust mobilization and transport using model and satellite data. Grain sizes of the mineral dust show a bimodal distribution typical of proximal dust, rather than what is found over oceans, and the bimodal aspect of size distribution confirms wet deposition by rain droplets. The inorganic geochemistry points to a source along/near the Darling River in NW New South Wales, a region that is characteristically semiarid, and both the organic chemistry and palynoflora of the dust confirm the location of this source area. Meteorological reconstructions of the event again clearly identify the area near Bourke-Cobar as being the source of the dust. This study paves the way for determining the export of Australian airborne dust both in the oceans and other continents.

  10. Aeolian Transport of Ferrous Minerals in the North Polar Region of Mars

    NASA Astrophysics Data System (ADS)

    Horgan, Briony H.; Bell, J. F., III; Noe Dobrea, E. Z.

    2008-09-01

    The north polar region of Mars contains two areally extensive, dark aeolian deposits: (1) the north polar sand seas that encircle the polar cap, and (2) the north polar veneers that drape over the polar cap itself. Both deposits have been previously identified as containing hydrated minerals, and exhibit spectral features consistent with gypsum, a hydrated calcium sulfate. However, it remains unclear whether or not the deposits have exchanged material in the past, and whether any portion of either deposit is active today. In this study, we are investigating the distribution of ferrous minerals in the north polar region using near-infrared spectral data from the Mars Express OMEGA imaging spectrometer. Ferrous minerals, such as olivine and pyroxene, are most readily identified by the presence of a wide absorption band around 1 micron. Observations of changes in the position, depth, and shape of the 1 micron absorption band may be used to track changes in composition. We have identified the presence of a strong 1 micron band in the veneers, the sand sea, and the surrounding plains. Initial results from study regions in Chasma Boreale and Olympia Planum suggest that the position, depth, and shape of the band do vary within the veneers and sand seas. These spectral differences may reflect: (1) compositional variations between the sources of the deposits, (2) the degree of modern activity of the deposits, or (3) changes in mineralogy due to breakdown of softer minerals during aeolian transport over long distances. By extending our observations of these spectral changes to the entire north polar region, we may be able to help identify sources of aeolian material, transport pathways, and the most active regions of modern aeolian activity.

  11. Development of a remote coal dust deposition rate monitor. Open file report, 15 September 1978-31 August 1983

    SciTech Connect

    Runstadler, P.W.; Dutta, P.K.; Hatfield, R.W.; Tenenbaum, R.

    1983-12-01

    The report describes the design, development, and manufacture of a monitoring system to continuously monitor the buildup of float coal dust and rock-dusting materials in coal-mine workings. Ten dust sensors and two readout and switch-station units were built, performance tested, and calibrated.

  12. Saharan dust and Florida red tides: The cyanophyte connection

    NASA Astrophysics Data System (ADS)

    Walsh, John J.; Steidinger, Karen A.

    2001-06-01

    Prediction of the consequences of harmful algal blooms for humans and other vertebrates is constrained by an inadequate understanding of the factors that promote their initiation. A simple exponential growth model of net production is used for analysis of four time series at different sampling intervals over ˜40 years of red tide strandings, associated fish kills, and concomitant dust loadings on the West Florida shelf. At least large summer blooms of a toxic dinoflagellate Gymnodinium breve appear to be primed regularly by an aeolian supply of nutrients. Wet deposition of Saharan mineral aerosols may alleviate iron limitation of diazotrophic cyanophytes, which in turn fuel the nitrogen economy of red tides in the eastern Gulf of Mexico. Vagaries of the wind-induced circulation and of selective grazing pressure on phytoplankton competitors within phosphorus replete coastal waters then determine each year the residence times for exposure of G. breve-mediated neurotoxins to fish, manatees, and humans along the southeastern United States.

  13. Postdam evolution of aeolian landscapes in the Colorado River corridor through Grand Canyon National Park, Arizona, USA

    NASA Astrophysics Data System (ADS)

    Draut, A. E.; Collins, B. D.; Fairley, H. C.; Rubin, D. M.

    2009-12-01

    Sediment deposits within the Colorado River corridor in Grand Canyon, USA, include fluvial sandbars and aeolian dune fields; fluvial deposits are the primary sediment source for the dune fields. We present a conceptual model describing evolution of aeolian landscapes in Grand Canyon, based upon field measurements of wind and sand transport and on surveys of vegetation and substrate properties. The data indicate that Glen Canyon Dam operations can affect geomorphic evolution above the elevation reached by river flows because of the link between fluvial deposition and aeolian transport of sediment. Evolution of aeolian landscapes, in turn, can affect the stability and preservation of archaeological material that occurs in numerous dune fields. Before closure of Glen Canyon Dam on the Colorado River in 1963, sediment-rich floods (mean annual flood 2400 m3/s) formed sandbars from which wind moved sand inland to form aeolian dunes. After dam operations reduced the amplitude and frequency of high flows, and eliminated the mainstream fluvial sediment supply, fluvial sandbars lost open sand area owing to erosion by river flows and the spread of riparian vegetation. Two types of aeolian landscapes now occur: (1) modern fluvial sourced, those downwind of postdam sandbars; and (2) relict fluvial sourced, which are not downwind of postdam sandbars and whose primary sediment source was deposits from predam floods that were larger than any postdam flows have been. Sediment supply has been reduced to type (1) dune fields because postdam sandbars are smaller than in the predam era; new sediment supply to type (2) dune fields has been essentially eliminated. Decreased aeolian sediment supply leads to increased vegetation and biologic soil crust in dune fields, and can result in greater susceptibility to gully formation during rainfall due to lack of infilling aeolian sand. Modern-fluvial-sourced dunes can receive new windblown sand from sandbars formed by controlled

  14. Reconciling historical and contemporary evidence of aeolian-based, gully annealing processes in Glen, Marble, and Grand Canyon, USA

    NASA Astrophysics Data System (ADS)

    Sankey, J. B.; Draut, A. E.

    2013-12-01

    In the absence of large Colorado River floods in Glen, Marble, and Grand Canyons since the completion of Glen Canyon Dam, the geomorphic process most able to counteract the effects of gully incision on terraces and slopes above the contemporary active Colorado River channel is aeolian sand transport that can partially or entirely fill (anneal) small gullies. Whereas gully-formation processes have been much studied, relatively little is known about processes of gully annealing. Aeolian-based annealing has been observed in several instances in the modern Colorado River corridor operating on time scales of months. However, individual, short-term occurrences of aeolian deposition that counteract gully erosion have not yet been expanded into a landscape-scale evaluation of the prevalence of gully-annealing processes over longer time scales (years-decades) along the post-dam corridor. The extent that aeolian or other annealing processes might slow, or temporarily reverse, gully incision and erosion is important in this system because of the propensity for erosion damage to locations of cultural significance that are extensive on terraces and slopes above the contemporary active Colorado River channel. Moreover, the reduction of mainstem fluvial sediment inputs to the system since completion of Glen Canyon Dam might impact the potential of aeolian redistribution of Colorado River-derived sediment as an effective gully annealing mechanism on upper slopes and terraces. We present an investigation of the extent that observations of (i) historical annealing and (ii) contemporary annealing potential, reconcile with (iii) literature and/or model-based estimates of relative rates of gully formation and aeolian deposition in this system. The central question of this work is whether these complimentary lines of evidence support aeolian infilling as a viable mechanism for annealing gullies in Glen, Marble, and Grand Canyons, and analogous systems. We examine the evidence for

  15. Abstracts for the Planetary Geology Field Conference on Aeolian Processes

    NASA Technical Reports Server (NTRS)

    Greeley, R. (Editor); Black, D. (Editor)

    1978-01-01

    The Planetary Geology Field Conference on Aeolian Processes was organized at the request of the Planetary Geology Program office of the National Aeronautics and Space Administration to bring together geologists working on aeolian problems on earth and planetologists concerned with similar problems on the planets. Abstracts of papers presented at the conference are arranged herein by alphabetical order of the senior author. Papers fall into three broad categories: (1) Viking Orbiter and Viking Lander results on aeolian processes and/or landforms on Mars, (2) laboratory results on studies of aeolian processes, and (3) photogeology and field studies of aeolian processes on Earth.

  16. The Disastrous Effects of Salt Dust Deposition on Cotton Leaf Photosynthesis and the Cell Physiological Properties in the Ebinur Basin in Northwest China

    PubMed Central

    Abuduwaili, Jilili; Zhaoyong, Zhang; Feng qing, Jiang; Dong wei, Liu

    2015-01-01

    Salt dust in rump lake areas in arid regions has long been considered an extreme stressor for both native plants and crops. In recent years, research on the harmful effects of salt dust on native plants has been published by many scholars, but the effect on crops has been little studied. In this work, in order to determine the impact of salt dust storms on cotton, we simulated salt dust exposure of cotton leaves in Ebinur Basin in Northwest China, and measured the particle sizes and salt ions in the dust, and the photosynthesis, the structure and the cell physiological properties of the cotton leaves. (1) Analysis found that the salt ions and particle sizes in the salt dust used in the experiments were consistent with the natural salt dust and modeled the salt dust deposition on cotton leaves in this region. (2) The main salt cations on the surface and inside the cotton leaves were Na+, Ca2+, Cl- and SO42-, while the amounts of CO3- and HCO3- were low. From the analysis, we can order the quantity of the salt cations and anions ions present on the surface and inside the cotton leaves as Na+>Ca2+>Mg2+>K+ and Cl->SO42->HCO3->CO3-, respectively. Furthermore, the five salt dust treatment groups in terms of the total salt ions on both the surface and inside the cotton leaves were A(500g.m-2)>B(400g.m-2)>C(300g.m-2)>D(200g.m-2)>E(100g.m-2)>F(0g.m-2). (3)The salt dust that landed on the surface of the cotton leaves can significantly influence the photosynthetic traits of Pn, PE, Ci, Ti, Gs, Tr, WUE, Ls, φ, Amax, k and Rady of the cotton leaves. (4)Salt dust can significantly damage the physiological functions of the cotton leaves, resulting in a decrease in leaf chlorophyll and carotenoid content, and increasing cytoplasmic membrane permeability and malondialdehyde (MDA) content by increasing the soluble sugar and proline to adjust for the loss of the cell cytosol. This increases the activity of antioxidant enzymes to eliminate harmful materials, such as the intracellular

  17. Dust emission from different sol types and geomorphic units in the Sahara - implications for modeling dust emission and transport

    NASA Astrophysics Data System (ADS)

    Crouvi, Onn; Schepanski, Kerstin; Amit, Rivka; Gillespie, Alan; Enzel, Yehouda

    2014-05-01

    Mineral dust plays multiple roles in mediating physical and biogeochemical exchanges among the atmosphere, land and ocean, and thus is an active component of the global climate system. To estimate the past, current, and future impacts of dust on climate, sources of dust and their erodibility should be identified. The Sahara is the major source of dust on Earth. Based on qualitative analysis of remotely sensed data with low temporal resolution, the main sources of dust that have been identified are topographic depressions comprised of dry lake and playa deposits in hyprarid regions. Yet, recent studies cast doubts on these as the major sources and call for a search for others. Moreover, the susceptibility of soils to aeolian erosion (wind land erodibility) in the Sahara is still poorly known. In this study we identify and determine the soil types and geomorphic units most important as Saharan dust sources by correlating between the number of days with dust storms (NDS), derived from remote-sensing data of high temporal resolution, with the distribution of the soil types/geomorphic units. During 2006-8 the source of over 90% of the NDS was sand dunes, leptosols, calcisols, arenosols, and rock debris. Few dust storms originated from dry lake beds and playas. Land erodibility by wind for each soil type/geomorphic unit was estimated by a regression of the NDS and the number of days with high-speed wind events; the regression is relatively high for sand dunes and gypsisols. We use these regressions to differentiate between sources of dust that are supply-limited to those that are transport-limited. We propose that the fracturing of saltating sand and the removal of clay coatings from sand grains through eolian abrasion is the dominant dust-emission mechanism for the sand-rich areas covering large portion of the Sahara. Our results also explain the increased dustiness during the last glacial period, when sand dunes activity has been more common than during the Holocene

  18. Roughness configuration matters for aeolian sediment flux

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The parameterisation of surface roughness effects on aeolian sediment transport is a key source of uncertainty in wind erosion models. Roughness effects are typically represented by bulk drag-partitioning schemes that scale the threshold friction velocity (u*t) for soil entrainment by the ratio of s...

  19. The MECA Payload as a Dust Analysis Laboratory on the MSP 2001 Lander

    NASA Technical Reports Server (NTRS)

    Marshall, J.; Anderson, M.; Buehler, M.; Frant, M.; Fuerstenau, S.; Hecht, M.; Keller, U.; Markiewicz, W.; Meloy, T.; Pike, T.

    1999-01-01

    planetology perspective, there are many enigmatic issues relating to dust and the aeolian regime in general. MECA will be able to address many questions in this area. For example, if MECA determines a particular particle size distribution (size and sorting values), it will be possible to make inferences about the origin of the dust - - is it all aeolian, or a more primitive residue of weathering, volcanic emissions, and meteoritic gardening? Trenching with the Lander/MECA robot arm will enable local stratigraphy to be determined in terms of depositional rates, amounts and cyclicity in dust storms and/or local aeolian transport. Grain shape will betray the origin of the dust fragments as being the product of recent or ancient weathering, or the comminution products of aeolian transport --the dust-silt ratio might be a measure of aeolian comminution energy. Additional information is contained in the original.

  20. The MECA Payload as a Dust Analysis Laboratory on the MSP 2001 Lander

    NASA Astrophysics Data System (ADS)

    Marshall, J.; Anderson, M.; Buehler, M.; Frant, M.; Fuerstenau, S.; Hecht, M.; Keller, U.; Markiewicz, W.; Meloy, T.; Pike, T.

    1999-09-01

    planetology perspective, there are many enigmatic issues relating to dust and the aeolian regime in general. MECA will be able to address many questions in this area. For example, if MECA determines a particular particle size distribution (size and sorting values), it will be possible to make inferences about the origin of the dust - - is it all aeolian, or a more primitive residue of weathering, volcanic emissions, and meteoritic gardening? Trenching with the Lander/MECA robot arm will enable local stratigraphy to be determined in terms of depositional rates, amounts and cyclicity in dust storms and/or local aeolian transport. Grain shape will betray the origin of the dust fragments as being the product of recent or ancient weathering, or the comminution products of aeolian transport --the dust-silt ratio might be a measure of aeolian comminution energy. Additional information is contained in the original.

  1. High-resolution provenance of desert dust deposited on Mt. Elbrus, Caucasus in 2009-2012 using snow pit and firn core records

    NASA Astrophysics Data System (ADS)

    Kutuzov, S.; Shahgedanova, M.; Mikhalenko, V.; Ginot, P.; Lavrentiev, I.; Kemp, S.

    2013-09-01

    The first record of dust deposition events on Mt. Elbrus, Caucasus Mountains derived from a snow pit and a shallow firn core is presented for the 2009-2012 period. A combination of isotopic analysis, SEVIRI red-green-blue composite imagery, MODIS atmospheric optical depth fields derived using the Deep Blue algorithm, air mass trajectories derived using the HYSPLIT model and analyses of meteorological data enabled identification of dust source regions with high temporal (hours) and spatial (ca. 20-100 km) resolution. Seventeen dust deposition events were detected; fourteen occurred in March-June, one in February and two in October. Four events originated in the Sahara, predominantly in northeastern Libya and eastern Algeria. Thirteen events originated in the Middle East, in the Syrian Desert and northern Mesopotamia, from a mixture of natural and anthropogenic sources. Dust transportation from Sahara was associated with vigorous Saharan depressions, strong surface winds in the source region and mid-tropospheric southwesterly flow with daily winds speeds of 20-30 m s-1 at 700 hPa level. Although these events were less frequent than those originating in the Middle East, they resulted in higher dust concentrations in snow. Dust transportation from the Middle East was associated with weaker depressions forming over the source region, high pressure centred over or extending towards the Caspian Sea and a weaker southerly or southeasterly flow towards the Caucasus Mountains with daily wind speeds of 12-18 m s-1 at 700 hPa level. Higher concentrations of nitrates and ammonium characterised dust from the Middle East deposited on Mt. Elbrus in 2009 indicating contribution of anthropogenic sources. The modal values of particle size distributions ranged between 1.98 μm and 4.16 μm. Most samples were characterised by modal values of 2.0-2.8 μm with an average of 2.6 μm and there was no significant difference between dust from the Sahara and the Middle East.

  2. Abundances of Volatile - Bearing Species from Evolved Gas Analysis of Samples from the Rocknest Aeolian Bedform in Gale Crater

    NASA Technical Reports Server (NTRS)

    Archer, P. D., Jr.; Franc, H. B.; Sutter, B.; McAdam, A.; Ming, D. W.; Morris, R. V.; Mahaffy, P. R.

    2013-01-01

    The Sample Analysis at Mars (SAM) instrument suite on board the Mars Science Laboratory (MSL) recently ran four samples from an aeolian bedform named Rocknest. SAM detected the evolution of H2O, CO2, O2, and SO2, indicative of the presence of multiple volatile bearing species (Fig 1). The Rocknest bedform is a windblown deposit selected as representative of both the windblown material in Gale crater as well as the globally-distributed martian dust. Four samples of Rocknest material were analyzed by SAM, all from the fifth scoop taken at this location. The material delivered to SAM passed through a 150 m sieve and is assumed to have been well mixed during the sample acquisition/preparation/handoff process. SAM heated the Rocknest samples to approx.835 C at a ramp rate of 35 C/min with a He carrier gas flow rate of apprx.1.5 standard cubic centimeters per minute and at an oven pressure of 30 mbar [1]. Evolved gases were detected by a quadrupole mass spectrometer (QMS). This abstract presents the molar abundances of H2O, CO2, O2, and SO2 as well as their concentration in rocknest samples using an estimated sample mass.

  3. Loess-like deposits in the Pearl River delta area, southeast China

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Chen, Guoneng; Peng, Zhuolun; Grapes, Rodney

    2015-12-01

    A layer of yellow silt is widely distributed in the late Quaternary succession of the Pearl River delta, southeast China. A representative section at Xi Lingang was analyzed using particle size analysis, scanning electron microscope observation, geochemical analysis and OSL dating to determine the characteristics and genesis of the yellow silt. Grain size composition of the yellow silt is homogeneous and comparable to typical north China loess (10-50 μm as "basic grain size group", <5 μm as "secondary grain size group"). Grain size parameters and frequency distribution curves of the yellow silt also indicate an aeolian origin. Aeolian micro-textures with subangular-subrounded grains characterized by dished surface collision pits during wind transportation. Homogeneous major element composition of the yellow silt suggests that the dust has been well mixed and sorted prior to deposition, a typical feature of aeolian origin, but Chemical Index of Alteration values indicate that the yellow silt has suffered intense weathering after deposition. Five OSL dates obtained in this study and other geochronological data indicate that the yellow silt has a Last Glacial Maximum age. The grain size of loess across China becomes finer from northwest to southeast because of increasing transportation distance, and implies that the loess component of the yellow silt in the Pearl River delta area is also derived from a northwest China provenance.

  4. Optical and adhesive properties of dust deposits on solar mirrors and their effects on specular reflectivity and electrodynamic cleaning for mitigating energy-yield loss

    NASA Astrophysics Data System (ADS)

    Mazumder, Malay; Yellowhair, Julius; Stark, Jeremy; Heiling, Calvin; Hudelson, John; Hao, Fang; Gibson, Hannah; Horenstein, Mark

    2014-10-01

    Large-scale solar plants are mostly installed in semi-arid and desert areas. In those areas, dust layer buildup on solar collectors becomes a major cause for energy yield loss. Development of transparent electrodynamic screens (EDS) and their applications for self-cleaning operation of solar mirrors are presented with a primary focus on the removal dust particles smaller than 30 µm in diameter while maintaining specular reflection efficiency < 90%. An EDS consists of thin rectangular array of parallel transparent conducting electrodes deposited on a transparent dielectric surface. The electrodes are insulated from each other and are embedded within a thin transparent dielectric film. The electrodes are activated using three-phase high-voltage pulses at low current (< 1 mA/m2 ). The three-phase electric field charges the deposited particles, lifts them form the substrate by electrostatic forces and propels the dust layer off of the collector's surface by a traveling wave. The cleaning process takes less than 2 minutes; needs energy less than 1 Wh/m2 without requiring any water or manual labor. The reflection efficiency can be restored > 95% of the original clean-mirror efficiency. We briefly present (1) loss of specular reflection efficiency as a function of particle size distribution of deposited dust, and (2) the effects of the electrode design and materials used for minimizing initial loss of specular reflectivity in producing EDS-integrated solar mirrors. Optimization of EDS by using a figure of merit defined by the ratio of dust removal efficiency to the initial loss of specular reflection efficiency is discussed.

  5. Aeolian features and processes at the Mars Pathfinder landing site

    USGS Publications Warehouse

    Greeley, Ronald; Kraft, Michael; Sullivan, Robert; Wilson, Gregory; Bridges, Nathan; Herkenhoff, Ken; Kuzmin, Ruslan O.; Malin, Michael; Ward, Wes

    1999-01-01

    The Mars Pathfinder landing site contains abundant features attributed to aeolian, or wind, processes. These include wind tails, drift deposits, duneforms of various types, ripplelike features, and ventifacts (the first clearly seen on Mars). Many of these features are consistant with formation involving sand-size particles. Although some features, such as dunes, could develop from saltating sand-size aggregates of finer grains, the discovery of ventifact flutes cut in rocks strongly suggests that at least some of the grains are crystalline, rather than aggregates. Excluding the ventifacts, the orientations of the wind-related features correlate well with the orientations of bright wind steaks seen on Viking Orbiter images in the general area. They also correlate with wind direction predictions from the NASA-Ames General Circulation Model (GCM) which show that the strongest winds in the area occur in the northern hemisphere winter and are directed toward 209°. Copyright 1999 by the American Geophysical Union.

  6. Microdunes and other aeolian bedforms on Venus - Wind Tunnel simulations

    NASA Astrophysics Data System (ADS)

    Greeley, R.; Marshall, J. R.; Leach, R. N.

    1984-10-01

    The development of aeolian bedforms in the simulated Venusian environment has been experimentally studied in the Venus Wind Tunnel. It is found that the development of specific bedforms, including ripples, dunes, and 'waves', as well as their geometry, are controlled by a combination of factors including particle size, wind speed, and atmospheric density. Microdunes are formed which are analogous to full-size terrestrial dunes and are characterized by the development of slip faces, internal cross-bedding, a low ratio of saltation path length to dune length, and a lack of particle-size sorting. They begin to develop at wind speeds just above saltation threshold and evolve into waves at higher velocities. At wind speeds of about 1.5 m/sec and higher, the bed is flat and featureless. This evolution is explained by a model based on the interaction of alternating zones of erosion and deposition and particle saltation distances.

  7. Microdunes and Other Aeolian Bedforms on Venus: Wind Tunnel Simulations

    NASA Technical Reports Server (NTRS)

    Greeley, R.; Marshall, J. R.; Leach, R. N.

    1985-01-01

    The development of aeolian bedforms in the simulated Venusian environment has been experimentally studied in the Venus Wind tunnel. It is found that the development of specific bedforms, including ripples, dunes, and waves, as well as their geometry, are controlled by a combination of factors including particle size, wind speed, and atmospheric density. Microdunes are formed which are analogous to full-size terrestrial dunes and are characterized by the development of slip faces, internal cross-bedding, a low ratio of saltation path length to dune length, and a lack of particle-size sorting. They begin to develop at wind speeds just above saltation threshold and evolve into waves at higher velocities. At wind speeds of about 1.5 m/sec and higher, the bed is flat and featureless. This evolution is explained by a model based on the interaction of alternating zones of erosion and deposition and particle saltation distances.

  8. Microdunes and other aeolian bedforms on Venus - Wind Tunnel simulations

    NASA Technical Reports Server (NTRS)

    Greeley, R.; Marshall, J. R.; Leach, R. N.

    1984-01-01

    The development of aeolian bedforms in the simulated Venusian environment has been experimentally studied in the Venus Wind Tunnel. It is found that the development of specific bedforms, including ripples, dunes, and 'waves', as well as their geometry, are controlled by a combination of factors including particle size, wind speed, and atmospheric density. Microdunes are formed which are analogous to full-size terrestrial dunes and are characterized by the development of slip faces, internal cross-bedding, a low ratio of saltation path length to dune length, and a lack of particle-size sorting. They begin to develop at wind speeds just above saltation threshold and evolve into waves at higher velocities. At wind speeds of about 1.5 m/sec and higher, the bed is flat and featureless. This evolution is explained by a model based on the interaction of alternating zones of erosion and deposition and particle saltation distances.

  9. Boundary Conditions for Aeolian Activity in North American Dune Fields

    NASA Astrophysics Data System (ADS)

    Halfen, A. F.; Lancaster, N.; Wolfe, S.

    2014-12-01

    Geomorphic and chronological data for dune fields are evaluated for three contrasting areas of North America: 1) the Prairie-Parkland-Boreal ecozones of the northern Great Plains in Canada; 2) the Central Great Plains of the USA; and 3) the deserts of southwestern USA and northern Mexico. Luminescence and radiocarbon ages for periods of dune accumulation and stability are compared with palaeoenvironment proxies to provide an assessment of the boundary conditions of dune system response to changes in sediment supply, availability, and mobility. Dune fields in the northern Great Plains were formed from sediment originating from glaciofluvial or glaciolacustrine sediments deposited during deglaciation 16-11 ka. Subsequent aeolian deposition occurred in Parkland and Prairie dune fields as a result of mid-Holocene (8-5 ka) and late-Holocene (< 3.5 ka) activity related to drought conditions that reworked pre-existing aeolian sands. In the Central Great Plains, dune fields are closely linked to fluvial sediment sources. Sediment supply was high during deglaciation of the Rocky Mountains and resulted in widespread dune construction 16-10 ka. Multiple periods of Holocene reactivation are recorded and reflect increased sediment availability during drought episodes. Dune fields in the southwestern deserts experienced periods of construction as a result of enhanced supply of sediment from fluvial and lacustrine sources during the period 11.8-8 ka and at multiple intervals during the late Holocene. Despite spatial and temporal gaps in chronometric data as a result of sampling biases, the record from North American dune fields indicates the strong influence of sediment supply on dune construction, with changes in sediment availability as a result of drought episodes resulting in dune field reactivation and reworking of pre-existing sediment.

  10. Mars aeolian sand: Regional variations among dark-hued crater floor features

    NASA Astrophysics Data System (ADS)

    Edgett, K. S.; Christensen, P. R.

    1994-01-01

    Different regions on Mars appear to have low-albedo intracrater deposits that have distinct regional thermophysical and/or aeolian dune characteristics. Thermal inertia derived from a carefully selected set of Viking infrared thermal mapper observations of the dark features obtained in 1977-1978 supports this conclusion. The observed similarities and differences among dark intracrater features on Mars is probably a function of the combined influences of sand availability and regional wind conditions.

  11. Aeolian processes at the Mars Exploration Rover Meridiani Planum landing site.

    PubMed

    Sullivan, R; Banfield, D; Bell, J F; Calvin, W; Fike, D; Golombek, M; Greeley, R; Grotzinger, J; Herkenhoff, K; Jerolmack, D; Malin, M; Ming, D; Soderblom, L A; Squyres, S W; Thompson, S; Watters, W A; Weitz, C M; Yen, A

    2005-07-01

    The martian surface is a natural laboratory for testing our understanding of the physics of aeolian (wind-related) processes in an environment different from that of Earth. Martian surface markings and atmospheric opacity are time-variable, indicating that fine particles at the surface are mobilized regularly by wind. Regolith (unconsolidated surface material) at the Mars Exploration Rover Opportunity's landing site has been affected greatly by wind, which has created and reoriented bedforms, sorted grains, and eroded bedrock. Aeolian features here preserve a unique record of changing wind direction and wind strength. Here we present an in situ examination of a martian bright wind streak, which provides evidence consistent with a previously proposed formational model for such features. We also show that a widely used criterion for distinguishing between aeolian saltation- and suspension-dominated grain behaviour is different on Mars, and that estimated wind friction speeds between 2 and 3 m s(-1), most recently from the northwest, are associated with recent global dust storms, providing ground truth for climate model predictions. PMID:16001061

  12. Aeolian processes at the Mars Exploration Rover Meridiani Planum landing site

    USGS Publications Warehouse

    Sullivan, R.; Banfield, D.; Bell, J.F., III; Calvin, W.; Fike, D.; Golombek, M.; Greeley, R.; Grotzinger, J.; Herkenhoff, K.; Jerolmack, D.; Malin, M.; Ming, D.; Soderblom, L.A.; Squyres, S. W.; Thompson, S.; Watters, W.A.; Weitz, C.M.; Yen, A.

    2005-01-01

    The martian surface is a natural laboratory for testing our understanding of the physics of aeolian (wind-related) processes in an environment different from that of Earth. Martian surface markings and atmospheric opacity are time-variable, indicating that fine particles at the surface are mobilized regularly by wind. Regolith (unconsolidated surface material) at the Mars Exploration Rover Opportunity's landing site has been affected greatly by wind, which has created and reoriented bedforms, sorted grains, and eroded bedrock. Aeolian features here preserve a unique record of changing wind direction and wind strength. Here we present an in situ examination of a martian bright wind streak, which provides evidence consistent with a previously proposed formational model for such features. We also show that a widely used criterion for distinguishing between aeolian saltation- and suspension-dominated grain behaviour is different on Mars, and that estimated wind friction speeds between 2 and 3 m s-1, most recently from the northwest, are associated with recent global dust storms, providing ground truth for climate model predictions.

  13. Attic dust analysis approach for evaluation of heavy metal deposition in the El Paso Del Norte Region

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During the 90 years from 1887 to 1977, a large smelter in the El Paso Del Norte region of North America smelted many ores including copper, lead, and zinc. In order to identify the patterns of heavy metal dispersion from the smelter, we sampled attic dust and dust from undisturbed surfaces in 15 bu...

  14. Measuring aeolian sand transport using acoustic sensors

    NASA Astrophysics Data System (ADS)

    Poortinga, Ate; van Rheenen, Hans; Ellis, Jean T.; Sherman, Douglas J.

    2015-03-01

    Acoustic sensors are frequently used to measure aeolian saltation. Different approaches are used to process the signals from these instruments. The goal of this paper is to describe and discuss a method to measure aeolian saltation with acoustic sensors. In a laboratory experiment, we measured the output from an advanced signal processing scheme on the circuit board of the saltiphone. We use a software implementation of this processing scheme to re-analyse data from four miniphones obtained during a field experiment. It is shown that a set of filters remove background noise outside the frequency spectrum of aeolian saltation (at 8 kHz), whereas signals within this frequency spectrum are amplified. The resulting analogue signal is a proxy of the energy. Using an AC pulse convertor, this signal can be converted into a digital and analogue count signal or an analogue energy signal, using a rectifier and integrator. Spatio-temporal correlation between field deployed miniphones increases by using longer integration times for signal processing. To quantify aeolian grain impact, it is suggested to use the analogue energy output, as this mode is able to detect changes in frequency and amplitude. The analogue and digital count signals are able to detect an increase in frequency, but are not able to detect an increase in signal amplitude. We propose a two-stage calibration scheme consisting of (1) a factory calibration, to set the frequency spectrum of the sensor and (2) a standardized drop-test conducted before and after the experiment to evaluate the response of the sensor.

  15. Formation of aeolian ripples and sand sorting.

    PubMed

    Manukyan, Edgar; Prigozhin, Leonid

    2009-03-01

    We present a continuous model capable of demonstrating some salient features of aeolian sand ripples: the realistic asymmetric ripple shape, coarsening of the ripple field at the nonlinear stage of ripple growth, saturation of ripple growth for homogeneous sand, typical size segregation of sand, and formation of armoring layers of coarse particles on ripple crests and windward slopes if the sand is inhomogeneous. PMID:19391931

  16. Accelerated glacier melt on Snow Dome, Mount Olympus, Washington, USA, due to deposition of black carbon and mineral dust from wildfire

    NASA Astrophysics Data System (ADS)

    Kaspari, Susan; McKenzie Skiles, S.; Delaney, Ian; Dixon, Daniel; Painter, Thomas H.

    2015-04-01

    Assessing the potential for black carbon (BC) and dust deposition to reduce albedo and accelerate glacier melt is of interest in Washington because snow and glacier melt are an important source of water resources, and glaciers are retreating. In August 2012 on Snow Dome, Mount Olympus, Washington, we measured snow surface spectral albedo and collected surface snow samples and a 7 m ice core. The snow and ice samples were analyzed for iron (Fe, used as a dust proxy) via inductively coupled plasma sector field mass spectrometry, total impurity content gravimetrically, BC using a single-particle soot photometer (SP2), and charcoal through microscopy. In the 2012 summer surface snow, BC (54 ± 50 µg/L), Fe (367±236 µg/L) and gravimetric impurity (35 ± 18 mg/L) concentrations were spatially variable, and measured broadband albedo varied between 0.67-0.74. BC and dust concentrations in the ice core 2011 summer horizon were a magnitude higher (BC = 3120 µg/L, Fe = 22000 µg/L, and gravimetric impurity = 1870 mg/L), corresponding to a modeled broadband albedo of 0.45 based on the measured BC and gravimetric impurity concentrations. The Big Hump forest fire is the likely source for the higher concentrations. Modeling constrained by measurements indicates that the all-sky 12 h daily mean radiative forcings in summer 2012 and 2011 range between 37-53 W m-2 and 112-149 W m-2, respectively, with the greater forcings in 2011 corresponding to a 29-38 mm/d enhancement in snowmelt. The timing of the forest fire impurity deposition is coincident with an increase in observed discharge in the Hoh River, highlighting the potential for BC and dust deposition on glaciers from forest fires to accelerate melt.

  17. Study of dust re-suspension at low pressure in a dedicated wind-tunnel

    NASA Astrophysics Data System (ADS)

    Rondeau, Anthony; Sabroux, Jean-Christophe; Chassefière, Eric

    2015-04-01

    The atmosphere of several telluric planets or satellites are dusty. Such is the case of Earth, Venus, Mars and Titan, each bearing different aeolian processes linked principally to the kinematic viscosity of the near-surface atmosphere. Studies of the Martian atmosphere are particularly relevant for the understanding of the dust re-suspension phenomena at low pressure (7 mbar). It turns out that operation of fusion reactors of the tokamak design produces significant amount of dust through the erosion of plasma-facing components. Such dust is a key issue, both regarding the performance and the safety of a fusion reactor such as ITER, under construction in Cadarache, France. Indeed, to evaluate the explosion risk in the ITER fusion reactor, it is essential to quantify the re-suspended dust fraction as a function of the dust inventory that can be potentially mobilized during a loss of vacuum accident (LOVA), with air or water vapour ingress. A complete accident sequence will encompass dust re-suspension from near-vacuum up to atmospheric pressure. Here, we present experimental results of particles re-suspension fractions measured at 1000, 600 and 300 mbar in the IRSN BISE (BlowIng facility for airborne releaSE) wind tunnel. Both dust monolayer deposits and multilayer deposits were investigated. In order to obtain experimental re-suspension data of dust monolayer deposits, we used an optical microscope allowing to measure the re-suspended particles fraction by size intervals of 1 µm. The deposits were made up of tungsten particles on a tungsten surface (an ubiquitous plasma facing component) and alumina particles on a glass plate, as a surrogate. A comparison of the results with the so-called Rock'nRoll dust re-suspension model (Reeks and Hall, 2001) is presented and discussed. The multilayer deposits were made in a vacuum sedimentation chamber allowing to obtain uniform deposits in terms of thickness. The re-suspension experimental data of such deposits were obtained

  18. Aeolian particle flux profiles and transport unsteadiness

    NASA Astrophysics Data System (ADS)

    Bauer, Bernard O.; Davidson-Arnott, Robin G. D.

    2014-07-01

    Vertical profiles of aeolian sediment flux are commonly modeled as an exponential decay of particle (mass) transport with height above the surface. Data from field and wind-tunnel studies provide empirical support for this parameterization, although a large degree of variation in the precise shape of the vertical flux profile has been reported. This paper explores the potential influence of wind unsteadiness and time-varying intensity of transport on the geometry (slope, curvature) of aeolian particle flux profiles. Field evidence from a complex foredune environment demonstrates that (i) the time series of wind and sediment particle flux are often extremely variable with periods of intense transport (referred to herein as sediment "flurries") separated by periods of weak or no transport; (ii) sediment flurries contribute the majority of transport in a minority of the time; (iii) the structure of a flurry includes a "ramp-up" phase lasting a few seconds, a "core" phase lasting a few seconds to many tens of seconds, and a "ramp-down" phase lasting a few seconds during which the system relaxes to a background, low-intensity transport state; and (iv) conditional averaging of flux profiles for flurry and nonflurry periods reveals differences between the geometry of the mean profiles and hence the transport states that produce them. These results caution against the indiscriminate reliance on regression statistics derived from time-averaged sediment flux profiles, especially those with significant flurry and nonflurry periods, when calibrating or assessing the validity of steady state models of aeolian saltation.

  19. Late Pleistocene and Holocene aeolian sedimentation in Gonghe Basin, northeastern Qinghai-Tibetan Plateau: Variability, processes, and climatic implications

    NASA Astrophysics Data System (ADS)

    Qiang, Mingrui; Jin, Yanxiang; Liu, Xingxing; Song, Lei; Li, Hao; Li, Fengshan; Chen, Fahu

    2016-01-01

    Although stratigraphic sequences of aeolian deposits in dryland areas have long been recognized as providing information about past environments, the exact nature of the environmental processes they reflect remains unclear. Here, we report the results of a detailed investigation of eight outcrop sections in the Gonghe Basin, northeastern Qinghai-Tibetan Plateau. Measurements of sediment grain-size and chemical composition indicate that the deposits are primarily of aeolian origin, consisting of interbedded, well-sorted sand, silty sand, loess and/or palaeosol; however, their occurrence varies from site to site. Fossil dune sands mainly occur in or close to the currently stabilized or semi-stabilized dune fields, whereas loess is distributed along the downwind marginal areas. This pattern of basin-scale differentiation was controlled mainly by spatial variability of sediment supply due to the antecedent sedimentary patterns within the basin. Together with previously-published optically stimulated luminescence (OSL) ages, 24 new OSL dates are used to elucidate the history of aeolian activity and its relationship to climatic changes. There is no apparent relationship between past dune activity and downwind loess deposits. Deposition of silty sand probably occurred during past phases of windy, dry and cold climate in the Late Pleistocene. However, climatic factors alone cannot explain the occurrence of silty sand deposition. This is because the deposition of silty sand was always preceded by episodes of fluvial deposition prior to river incision, thereby indicating the importance of an 'activated' sediment supply associated with fluvial processes. Deposition of well-sorted sand occurred episodically, not only during the Late Pleistocene, but also during the early- to mid-Holocene. Vegetation conditions, controlled either by the occurrence of intervals of moisture deficit during the Late Pleistocene or by changes in the balance between precipitation and

  20. Introducing a New International Society of Aeolian Research

    NASA Astrophysics Data System (ADS)

    Zobeck, T. M.; Lee, J.; Lancaster, N.; Bullard, J. E.

    2008-12-01

    Aeolian research is a long-standing and rapidly growing area of geological study where scientists of many disciplines meet to investigate the effects of wind on the surface of the Earth and other planetary bodies such as Mars and Titan. Fields of study in aeolian research cover a broad spectrum ranging from developing a basic scientific understanding of the fundamental physical processes of grain motion to the effects of soil erosion on landscape health and environmental sustainability. Aeolian research also includes studies of the effects of aeolian particles on global climate, air quality, and human health, coastal sand transport processes, land degradation, dune migration, the formation of sand seas, and much more. A growing number of international conferences have been organized to focus specifically on aeolian phenomena and a vast number of scholarly publications have been produced to support the science. One popular bibliography includes over 30,000 citations and hundreds of peer-reviewed papers are published each year. Until very recently, no scientific society specifically dealing with aeolian research has been available. The new International Society of Aeolian Research (ISAR) that has been organized to bring together aeolian scientists from around the world. The new society was created to promote contacts among researchers in aeolian processes and related subjects for discussion and comparison of research, to initiate conferences (such as the International Conference on Aeolian Research), to organize excursions, and support the publication of a peer-reviewed scientific journal. The International Society of Aeolian Research sponsors the new Elsevier journal Aeolian Research in support of these activities. This paper will provide further details about the new society and the journal. Please see www.aeolianresearch.org for details.

  1. Aeolian transport pathways along the transition from Tibetan highlands towards northwestern Chinese deserts

    NASA Astrophysics Data System (ADS)

    Nottebaum, Veit; Lehmkuhl, Frank; Stauch, Georg

    2014-05-01

    The identification and semi-quantification of aeolian transport pathways enhances the understanding of aeolian sediment archive formation and thus supports reliability and explanatory power concerning palaeoenvironmental reconstructions. Grain size analysis of 279 surface sediment samples from the transition of Tibetan highlands (Qilian Shan) towards northwestern Chinese deserts allows the differentiation of contributing pathways among three types of aeolian sediments: silty loess, sandy loess, and aeolian sands. The study area exhibits a high diversity of geomorphological surfaces due to varieties in relief, elevation and climatic conditions. Therefore, it provides the opportunity to investigate the characteristics of sediments in different geomorphological settings. Using the peaks of grain size frequency's standard deviation of primary loess allows identification of the most sensitive fractions to varying accumulation conditions. mU/fS-ratio (7 - 13 μm / 58 - 84 μm) of primary silty loess relates the far-travelled dust proportion to the locally transported fine sand component. In vicinity to fluvial channels in the foreland mU/fS-values are significantly decreased, whereas mU/fS-values increase with altitude (r2 = 0.74). This indicates higher contribution of long distance transport compared to lower regions. A prominent increase of mU/fS-values above 3000 m asl likely indicates an increasing contribution of fine and medium silt particles transported by Westerlies in higher altitudes. In contrast, lower areas seem to be more strongly influenced by low altitude monsoon currents (NW-Winter- / SE-summer monsoon). The difference in grain size properties is additionally enhanced by the contrasting geomorphologic settings along the mountain declivity: Plain foreland alluvial fans support fine sand supply and availability whereas steep high mountain topography provides only limited potential for fine sand deflation. Similarly, the relatively low relief in intramontane

  2. Valorization of GaN based metal-organic chemical vapor deposition dust a semiconductor power device industry waste through mechanochemical oxidation and leaching: A sustainable green process.

    PubMed

    Swain, Basudev; Mishra, Chinmayee; Lee, Chan Gi; Park, Kyung-Soo; Lee, Kun-Jae

    2015-07-01

    Dust generated during metal organic vapor deposition (MOCVD) process of GaN based semiconductor power device industry contains significant amounts of gallium and indium. These semiconductor power device industry wastes contain gallium as GaN and Ga0.97N0.9O0.09 is a concern for the environment which can add value through recycling. In the present study, this waste is recycled through mechanochemical oxidation and leaching. For quantitative recovery of gallium, two different mechanochemical oxidation leaching process flow sheets are proposed. In one process, first the Ga0.97N0.9O0.09 of the MOCVD dust is leached at the optimum condition. Subsequently, the leach residue is mechanochemically treated, followed by oxidative annealing and finally re-leached. In the second process, the MOCVD waste dust is mechanochemically treated, followed by oxidative annealing and finally leached. Both of these treatment processes are competitive with each other, appropriate for gallium leaching and treatment of the waste MOCVD dust. Without mechanochemical oxidation, 40.11 and 1.86 w/w% of gallium and Indium are leached using 4M HCl, 100°C and pulp density of 100 kg/m(3,) respectively. After mechanochemical oxidation, both these processes achieved 90 w/w% of gallium and 1.86 w/w% of indium leaching at their optimum condition. PMID:26094059

  3. The ecology of dust: local- to global-scale perspectives

    SciTech Connect

    Whicker, Jeffrey J; Field, Jason P; Belnap, Jayne; Breshears, David D; Neff, Jason; Okin, Gregory S; Painter, Thomas H; Ravi, Sujith; Reheis, Marith C; Reynolds, Richard L

    2009-01-01

    Emission and redistribution of dust due to wind erosion in drylands drives major biogeochemical dynamics and provides important aeolian environmental connectivity at scales from individual plants up to the global scale. Yet, perhaps because most relevant research on aeolian processes has been presented in a geosciences rather than ecological context, most ecological studies do not explicitly consider dust-driven processes. To bridge this disciplinary gap, we provide a general overview of the ecological importance of dust, examine complex interactions between wind erosion and ecosystem dynamics from the plant-interspace scale to regional and global scales, and highlight specific examples of how disturbance affects these interactions and their consequences. Changes in climate and intensification of land use will both likely lead to increased dust production. To address these challenges, environmental scientists, land managers and policy makers need to more explicitly consider dust in resource management decisions.

  4. Anatomy and controlling factors of a Late Cretaceous Aeolian sand sheet: The Marília and the Adamantina formations, NW Bauru Basin, Brazil

    NASA Astrophysics Data System (ADS)

    Basilici, Giorgio; Führ Dal'Bó, Patrick Francisco

    2010-04-01

    Few previous studies have given significant consideration to the palaeosols in aeolian sand sheet sedimentary successions and, mainly, to their palaeoenvironmental and stratigraphic meaning in interaction with the deposits. These themes are considered in this study that deals with the depositional architecture and the factors controlling the construction, accumulation and preservation of an ancient aeolian sand sheet, that forms part of the Adamantina and Marília formations, in the Bauru Basin (Late Cretaceous, Brazil). In the NW portion of the Bauru Basin, these two units, ca 220 m thick, consist of sandstone, and secondarily of sandy conglomerate and mudstone, and are characterised by vertically alternated palaeosols and deposits. Facies analyses of the deposits and macroscopic characterisation of the palaeosols in 45 outcrops were integrated with laboratory analyses that consisted in descriptions of slabs of rock samples, petrographic analyses, clay mineralogy determination, geochemical analyses of the major oxides, and micromorphological characterisation of the palaeosols. Three architectural elements were recognised: palaeosols, wind-ripple-dominated aeolian sand sheet deposits, and ephemeral river deposits. The palaeosols constitute 66% of the entire sedimentary succession, and consist principally of Aridisols and, subordinately, of Alfisols, Vertisols, and Entisols. The wind-ripple-dominated aeolian sand sheet deposits (25%) are composed of sandstone, organised in translatent climbing wind-ripple strata, and secondarily of sandstone and mudstone deposited by infrequent floods. The ephemeral river deposits (9%) consist of sandy conglomerates 4 m thick and ca 2 km wide. Wind-ripple-dominated aeolian sand sheet deposits formed during relatively dry climate period on an unstable topographic surface of an aeolian sand sheet, where aeolian deposition or erosion prevailed. Palaeosols and ephemeral river deposits formed in a more humid climate period on a stable

  5. Downslope coarsening in aeolian grainflows of the Navajo Sandstone

    NASA Astrophysics Data System (ADS)

    Loope, David B.; Elder, James F.; Sweeney, Mark R.

    2012-07-01

    Downslope coarsening in grainflows has been observed on present-day dunes and generated in labs, but few previous studies have examined vertical sorting in ancient aeolian grainflows. We studied the grainflow strata of the Jurassic Navajo Sandstone in the southern Utah portion of its outcrop belt from Zion National Park (west) to Coyote Buttes and The Dive (east). At each study site, thick sets of grainflow-dominated cross-strata that were deposited by large transverse dunes comprise the bulk of the Navajo Sandstone. We studied three stratigraphic columns, one per site, composed almost exclusively of aeolian cross-strata. For each column, samples were obtained from one grainflow stratum in each consecutive set of the column, for a total of 139 samples from thirty-two sets of cross-strata. To investigate grading perpendicular to bedding within individual grainflows, we collected fourteen samples from four superimposed grainflow strata at The Dive. Samples were analyzed with a Malvern Mastersizer 2000 laser diffraction particle analyser. The median grain size of grainflow samples ranges from fine sand (164 μm) to coarse sand (617 μm). Using Folk and Ward criteria, samples are well-sorted to moderately-well-sorted. All but one of the twenty-eight sets showed at least slight downslope coarsening, but in general, downslope coarsening was not as well-developed or as consistent as that reported in laboratory subaqueous grainflows. Because coarse sand should be quickly sequestered within preserved cross-strata when bedforms climb, grain-size studies may help to test hypotheses for the stacking of sets of cross-strata.

  6. Iron Oxide Minerals in Atmospheric Dust and Source Sediments-Studies of Types and Properties to Assess Environmental Effects

    NASA Astrophysics Data System (ADS)

    Reynolds, R. L.; Goldstein, H. L.; Moskowitz, B. M.; Till, J. L.; Flagg, C.; Kokaly, R. F.; Munson, S.; Landry, C.; Lawrence, C. R.; Hiza, M. M.; D'Odorico, P.; Painter, T. H.

    2011-12-01

    Ferric oxide minerals in atmospheric dust can influence atmospheric temperatures, accelerate melting of snow and ice, stimulate marine phytoplankton productivity, and impact human health. Such effects vary depending on iron mineral type, size, surface area, and solubility. Generally, the presence of ferric oxides in dust is seen in the red, orange, or yellow hues of plumes that originate in North Africa, central and southwest Asia, South America, western North America, and Australia. Despite their global importance, these minerals in source sediments, atmospheric dust, and downwind aeolian deposits remain poorly described with respect to specific mineralogy, particle size and surface area, or presence in far-traveled aerosol compounds. The types and properties of iron minerals in atmospheric dust can be better understood using techniques of rock magnetism (measurements at 5-300 K), Mössbauer and high-resolution visible and near-infrared reflectance spectroscopy; chemical reactivity of iron oxide phases; and electron microscopy for observing directly the ferric oxide coatings and particles. These studies can elucidate the diverse environmental effects of iron oxides in dust and can help to identify dust-source areas. Dust-source sediments from the North American Great Basin and Colorado Plateau deserts and the Kalahari Desert, southern Africa, were used to compare average reflectance values with a magnetic parameter (hard isothermal remanent magnetization, HIRM) for ferric oxide abundance. Lower reflectance values correspond strongly with higher HIRM values, indicating that ferric oxides (hematite or goethite, or both) contribute to absorption of solar radiation in these sediments. Dust deposited to snow cover of the San Juan Mountains (Colorado) and Wasatch Mountains (Utah) was used to characterize dust composition compared with properties of sediments exposed in source-areas identified from satellite retrievals. Results from multiple methods indicate that

  7. Introducing a New International Society of Aeolian Research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aeolian research is long-standing and rapidly growing area of study where scientists of many disciplines meet to investigate the effects of wind on the surface of the Earth and other planetary bodies, such as Mars and Titan. Fields of study in aeolian research cover a broad spectrum ranging from dev...

  8. Recent Aeolian Dune Change on Mars

    NASA Technical Reports Server (NTRS)

    Bourke, M. C.; Edgett, K. S.; Cantor, B. A.

    2007-01-01

    Previous comparisons of Martian aeolian dunes in satellite images have not detected any change in dune form or position. Here, we show dome dunes in the north polar region that shrank and then disappeared over a period of 3.04 Mars years (5.7 Earth years), while larger, neighboring dunes showed no erosion or movement. The removal of sand from these dunes indicates that not only is the threshold wind speed for saltation exceeded under present conditions on Mars, but that any sand that is available for transport is likely to be moved. Dunes that show no evidence of change could be crusted, indurated. or subject to infrequent episodes of movement.

  9. Development of a Global Tropospheric Aerosol Chemical Transport Model MASINGAR and its Application to the Dust Storm Forecasting

    NASA Astrophysics Data System (ADS)

    Tanaka, T. Y.

    2002-12-01

    We are developing a new three-dimensional aerosol chemical transport model coupled with the MRI/JMA98 GCM, named Model of Aerosol Species IN the Global AtmospheRe (MASINGAR), for the study of atmospheric aerosols and related trace species. MASINGAR treats four major aerosol species that include nss-sulfate, carbonaceous, mineral dust, and sea-salt aerosols. The model accounts for large-scale advective transport, subgrid-scale eddy diffusive and convective transport, surface emission and deposition, wet deposition, as well as chemical reactions. The advective transport is calculated using the semi-Lagrangian transport scheme. Parameterization of convective transport is based on the convective mass flux by Arakawa-Schubert scheme. The space and time resolution of the model are variable, with a standard resolution of T42 (2.8ox2.8o) and 30 levels (up to 0.8hPa). In addition, the model has a built-in four-dimensional data assimilation with assimilated meteorological field, which enables the model to perform a realistic simulation on a specific period and short-period forecast of aerosols. The model was applied to the numerical forecasting of dust storm in spring, 2002, when the first intensive observational period of Aeolian Dust Experiment on the Climatic impact (ADEC) project was conducted. The model simulation of mineral dust aerosol suggests that the synoptic scale aerosol events can be simulated by MASINGAR.

  10. Monitoring fugitive dust emissions from off-highway vehicles traveling on unpaved roads and trails using passive samplers.

    PubMed

    Padgett, Pamela E; Meadows, Dexter; Eubanks, Ellen; Ryan, William E

    2008-09-01

    Vehicles traveling on dry, unpaved roads generate copious quantities fugitive dust that contributes to soil erosion, and potentially threatens human health and ecosystems. The purpose of this study was to develop a low-cost technique for monitoring road dust that would enable land managers to estimate soil loss. The "sticky-trap" collectors developed were evaluated at the Turkey Bay off-highway vehicle (OHV) riding area on the Land Between the Lakes National Recreation Area, in western Kentucky. The results showed that the dust plume created by vehicle traffic was heterogeneous: larger particles were in the lower part of the plume and deposited closer to the source, smaller particles were carried higher in the plume and traveled at least 100 m away from the source. Collection of particles parallel to the source was also heterogeneous, suggesting that measurements taken at a single point may not be appropriate for estimating erosion losses. Measurements taken along two trails indicate that when large numbers of riders are present, dust concentrations may reach unhealthful conditions for riders, but that it is unlikely that fugitive dust is harming native vegetation, given frequent rainfall. The study demonstrated that OHV traffic contributes to substantial erosion of roadbeds because of aeolian transport. PMID:17902032

  11. Use of radar to assess aeolian processes

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald; Lancaster, N.; Gaddis, L.; Blumberg, D.; Debrovolskis, A.; Saunders, R. S.; Wall, S.; Iversen, J. D.; White, B.; Rasmussen, K. R.

    1991-01-01

    The interaction between wind and desert surfaces has important implications for sediment transport on Earth, Mars, and Venus, and for understanding the relationship between radar backscatter and aerodynamic roughness. Here, researchers report results from measurements of atmospheric boundary layer profiles, assessment of radar backscatter at P, L, and C wavelengths, and surface roughness in Death Valley, the Mojave Desert, and Lunar Lake, NV, and discuss the implications for aeolian process. The sites include playas, gravel and sand regs, alluvial fans, and lava flows. Boundary layer wind profiles were measured using anemometers at heights of 0.75, 1.25, 2.07, 3.44, 5.72, and 9.5 m; temperature sensors at heights of 1.3 and 9.6 m; and wind vanes at 9.7 and 1.5 m. Microtopographic measurements were made using a template and a laser-photo device to obtain RMS height. This study demonstrates that radar backscatter coefficients obtained from airborne and perhaps orbiting instruments could permit the derivation of aerodynamic roughness values for large areas. Such values, when combined with wind frequency data, could enable assessment of aeolian processes on a regional scale.

  12. Valorization of GaN based metal-organic chemical vapor deposition dust a semiconductor power device industry waste through mechanochemical oxidation and leaching: A sustainable green process

    SciTech Connect

    Swain, Basudev; Mishra, Chinmayee; Lee, Chan Gi; Park, Kyung-Soo; Lee, Kun-Jae

    2015-07-15

    Dust generated during metal organic vapor deposition (MOCVD) process of GaN based semiconductor power device industry contains significant amounts of gallium and indium. These semiconductor power device industry wastes contain gallium as GaN and Ga{sub 0.97}N{sub 0.9}O{sub 0.09} is a concern for the environment which can add value through recycling. In the present study, this waste is recycled through mechanochemical oxidation and leaching. For quantitative recovery of gallium, two different mechanochemical oxidation leaching process flow sheets are proposed. In one process, first the Ga{sub 0.97}N{sub 0.9}O{sub 0.09} of the MOCVD dust is leached at the optimum condition. Subsequently, the leach residue is mechanochemically treated, followed by oxidative annealing and finally re-leached. In the second process, the MOCVD waste dust is mechanochemically treated, followed by oxidative annealing and finally leached. Both of these treatment processes are competitive with each other, appropriate for gallium leaching and treatment of the waste MOCVD dust. Without mechanochemical oxidation, 40.11 and 1.86 w/w% of gallium and Indium are leached using 4 M HCl, 100 °C and pulp density of 100 kg/m{sup 3,} respectively. After mechanochemical oxidation, both these processes achieved 90 w/w% of gallium and 1.86 w/w% of indium leaching at their optimum condition. - Highlights: • Waste MOCVD dust is treated through mechanochemical leaching. • GaN is hardly leached, and converted to NaGaO{sub 2} through ball milling and annealing. • Process for gallium recovery from waste MOCVD dust has been developed. • Thermal analysis and phase properties of GaN to Ga{sub 2}O{sub 3} and GaN to NaGaO{sub 2} is revealed. • Solid-state chemistry involved in this process is reported.

  13. Aeolian sediment transport and landforms in managed coastal systems: A review

    NASA Astrophysics Data System (ADS)

    Jackson, Nancy L.; Nordstrom, Karl F.

    2011-11-01

    Humans modify beaches and dunes and aeolian transport potential by building structures, walking or driving, extracting resources, accommodating recreation, increasing levels of protection, removing storm deposits, or restoring landforms and habitats. The effects of human adjustments are reviewed here in terms of cross-shore zones because humans tend to compartmentalize landforms and habitats through their actions and regulations. Common human modifications in the beach zone include nourishing beaches, constructing shore protection structures and raking to remove litter. Modifications affecting the dune zone include altering the location, size and stability of dunes using sand-trapping fences, vegetation plantings and bulldozers or replacing dunes with shore-parallel structures. Modifications affecting the landward zone include buildings, roads, and parking lots. Landform and habitat resilience requires levels of dynamism and geomorphic complexity not often found in managed systems. Preserving or enhancing dynamism and complexity requires emphasis on innovative designs rooted in geomorphological and aeolian research. Future studies are suggested for: (1) quantifying the effect of small and large scale beach nourishment designs and sediment characteristics on dune initiation, development, and evolution; (2) quantifying the extent to which size and spacing of human structures and landform alterations inhibit sediment transfers alongshore or onshore; (3) identifying the advantages or disadvantages of "niche" dunes formed by structures; (4) providing quantitative data on the effects of raking or driving on the beach; (5) identifying the role of aeolian landforms on private properties; and (6) identifying alternative ways of employing sand fences and vegetation plantings to increase topographic and habitat diversity.

  14. Polycyclic aromatic hydrocarbons in urban tunnels of Guanajuato city (Mexico) measured in deposited dust particles and in transplanted lichen Xanthoparmelia mexicana (Gyeln.) Hale.

    PubMed

    Puy-Alquiza, María Jesús; Reyes, Veridiana; Wrobel, Katarzyna; Wrobel, Kazimierz; Torres Elguera, Julio César; Miranda-Aviles, Raúl

    2016-06-01

    Sixteen priority PAHs were determined in five urban tunnels of Guanajuato city, through which about 4 % of population walks and about 25,000 vehicles pass daily. Xanthoparmelia mexicana (Gyeln.) Hale, highly abundant lichen in this region, was exposed during 6 months and then the samples were collected together with the wall dust; both materials were analyzed by gas chromatography-mass spectrometry. Total PAH concentrations in dust and in lichen samples were in the range 1392-7961 ng g(-1) (average per tunnel 4637 ng g(-1)) and 522-3571 ng g(-1) (average 2587 ng g(-1)), respectively. In dust, the highest concentrations corresponded to PYR, FLA, BaA, CHR, BaP, and PHE, whereas in lichens the most abundant were DahA, IcdP, BghiP, and PYR. The obtained results suggested passive deposition of PAHs on lipophilic lichen surface rather than phenomena associated with metabolic activity of the exposed organisms. Application of seven different molecular diagnostic ratios pointed to gasoline-operated cars as the principal source of PAHs. Based on the obtained results and their comparison with data reported for other geographical regions, Guanajuato tunnels were considered moderately contaminated with PAHs; however toxic BaP equivalent concentrations integrated for seven carcinogenic compounds presented relatively high values in four tunnels: 567-1051 ngBaPeq g(-1) as evaluated for dust samples. Since up to 7000 persons walk daily through tunnels, the obtained data call for more detailed study evaluating PAHs toxicity in Guanajuato population. PMID:26961526

  15. Paleoclimatic implications of late Pleistocene and Holocene aeolian sediments in lake catchments on the northeastern part of the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Lehmkuhl, F.; Stauch, G.; IJmker, J.; Poetsch, S.; Hilgers, A.; Hui, Z.; Diekmann, B.; Hartmann, K.; Wuennemann, B.

    2011-12-01

    On the northeastern part of the Tibetan Plateau aeolian sediments, such as loess, loess-like sediments, dunes and sand sheets, have been investigated. Such archives provide additional information for paleoclimate and environmental change in the catchments of lakes. We present a detailed analysis of aeolian sediments from the Donggi Cona catchment and a loess section from the Aynemachin Mts. on the north-eastern part of the Tibetan Plateau. In the Donggi Cona catchment long and short distance transport leads to a complex pattern in the aeolian sediments. Based on the largest dataset of luminescence dating (n = 51) from a single catchment so far different periods of enhanced sediment transport have been discriminated. Enhanced aeolian deposition in this environment in elevations of more than 4000m a.s.l. started in the early Holocene with the accumulation of sands from around 12 to 7.5ka. Loess have been preserved from a period from 10.5 to 7.5ka. However, further to the east on the southern slopes of the Aynemachin Mts. the sedimentation period of loess lasted longer and was interrupted by two paleosols around 10-9 and 5 ka. Both archives, sand and loess, are related to the strengthening of the East-Asian summer monsoon with wetter and warmer climate conditions. This climate leads to the trapping of aeolian sediments, in the moisture region of the Aynemachin including the development of initial paleosols. In addition, in some parts of the Donggi Cona catchment the enhanced summer monsoon from around 10 ka onwards lead to fluvial erosion of the aeolian archives and the formation of colluvial sediments until 6 ka. A reactivation of dune sands from 3 ka to the present can be associated to dryer and cooler climate conditions in combination with an enhanced human impact on the landscape. Aeolian sediments on the Tibetan Plateau therefore indicate two different climatic modes. During the early Holocene wetter conditions were favourable to retain aeolian sediments while

  16. Study of correlation of deuterium content in a-C:D dust induced by laser irradiation from the co-deposited surface with the grain size and velocity

    NASA Astrophysics Data System (ADS)

    Alegre, Daniel; Bergsåker, Henric; Bykov, Igor; Gąsior, Paweł; Kubkowska, Monika; Kowalska-Strzęciwilk, Ewa; Petersson, Per; Tabares, Francisco L.

    2014-05-01

    In the study described here, the laser ablation method was applied to clean thick (40-60 μm) a-C:D co-deposits on the ALT-II limiter blade from the TEXTOR tokamak, and at the same time to characterize the ejected particles formed during ablation and measure the amount of fuel carried by them. Ablation was accomplished by ˜ 3.5 ns, 0.5 J Nd:YAG laser pulses in either vacuum or an O2 atmosphere at different pressures. Fast camera tracking of the process provided an estimate of the population and velocity of up to 100 m s-1 for larger dust particles. In the same experiment, the dust particles were caught using ultra-light Si aerogel collectors placed in front of the ablation target. SEM analysis of aerogel surfaces verified the speed estimate, providing the trapped particles’ size distribution and particle yield during ablation. The D/C atomic concentration ratio was measured with the 3HE ion beam nuclear reaction analysis method in deposited layers before ablation and with a micro-ion beam in individual particles on aerogel collectors. This indicated that most of the D was thermally released during ablation, leaving no more than 5% of its original amount in the particles. The effect of ablation conditions on the acceleration of ejected particles, their population, composition and D content is the main subject of this paper.

  17. Aeolian beach ridges and their significance for climate and sea level: Concept and insight from the Levant coast (East Mediterranean)

    NASA Astrophysics Data System (ADS)

    Mauz, B.; Hijma, M. P.; Amorosi, A.; Porat, N.; Galili, E.; Bloemendal, J.

    2013-06-01

    Relict beach ridges of aeolian origin and associated soils are often used for inferring relative sea level and climate with contrasting results. Most studies link the aeolian coastal deposits to regressive phases, some to high sea-level stands, and a few to intermediate relative sea-level positions. We interpret the apparent contradictions as indicating the lack of an over-arching concept and the inconsistent usage of sea level-related terms. In this paper we present an integrated morpho-sedimentological concept for a microtidal, mid-latitudinal coast and review existing data from the Levant (East Mediterranean) coast to evaluate the concept and to eliminate nomenclatural confusion. A coastal depositional environment in a semi-arid environment consists of shallow-marine, aeolian and alluvial facies which together form an aeolian beach-ridge complex as a package of strata which respond simultaneously to sea-level change. A transgressive complex forms through reworking or overstepping of the coastal foredune and a regressive complex forms by downstepping. Under transgression the aeolian beach ridge represents the highstand deposit and its adjacent shallow marine sediment is the transgressive deposit. Under regression the complex represents the falling stage and the associated downdip surface marks the lowstand. On the Levant coast we find chronologically well-constrained, offlapping aeolian beach ridges as parts of six downstepping beach ridge complexes formed between ~ 200 ka and 10 ka. The complexes represent the falling stage systems tract (FSST) of a short-lived (5th-order) depositional sequence when the shoreline shifted from a position close to the modern coastline to the shelf or below the shelf edge. Three of these FSSTs and their up dip and down dip super bounding surface together form the 4th order (~ 100 ka) sequence of the last interglacial/glacial cycle. The absence of transgressive, highstand and lowstand systems tract is explained by the poor

  18. A Fractal Model for the Capacitance of Lunar Dust and Lunar Dust Aggregates

    NASA Technical Reports Server (NTRS)

    Collier, Michael R.; Stubbs, Timothy J.; Keller, John W.; Farrell, William M.; Marshall, John; Richard, Denis Thomas

    2011-01-01

    Lunar dust grains and dust aggregates exhibit clumping, with an uneven mass distribution, as well as features that span many spatial scales. It has been observed that these aggregates display an almost fractal repetition of geometry with scale. Furthermore, lunar dust grains typically have sharp protrusions and jagged features that result from the lack of aeolian weathering (as opposed to space weathering) on the Moon. A perfectly spherical geometry, frequently used as a model for lunar dust grains, has none of these characteristics (although a sphere may be a reasonable proxy for the very smallest grains and some glasses). We present a fractal model for a lunar dust grain or aggregate of grains that reproduces (1) the irregular clumpy nature of lunar dust, (2) the presence of sharp points, and (3) dust features that span multiple scale lengths. We calculate the capacitance of the fractal lunar dust analytically assuming fixed dust mass (i.e. volume) for an arbitrary number of fractal levels and compare the capacitance to that of a non-fractal object with the same volume, surface area, and characteristic width. The fractal capacitance is larger than that of the equivalent non-fractal object suggesting that for a given potential, electrostatic forces on lunar dust grains and aggregates are greater than one might infer from assuming dust grains are sphericaL Consequently, electrostatic transport of lunar dust grains, for example lofting, appears more plausible than might be inferred by calculations based on less realistic assumptions about dust shape and associated capacitance.

  19. Aeolian Abrasion, a Dominant Erosion Agent in the Martian Environment

    NASA Astrophysics Data System (ADS)

    Bridges, N.; Cooper, G.; Eddlemon, E.; Greeley, R.; Laity, J.; Phoreman, J.; Razdan, A.; van Note, S.; White, B.; Wilson, G.

    2004-12-01

    Aeolian abrasion is one of the predominant erosion mechanisms on Mars today. Martian ventifacts record the climate under which the rocks were modified (wind direction, wind speeds and particle flux) and therefore tie into the overall climatic regime of the planet. By better understanding the rates at which rocks abrade and the features diagnostic of specific climatic conditions, we can gain insight into past climates. Herein we report on numerical models, wind tunnel experiments, and field work to determine 1) Particle and kinetic fluxes on Earth and Mars, 2) the degree to which these parameters control abrasion, and 3) how, in detail, rocks of various shapes and compositions erode over time. Kinetic energy generally increases with height, whereas flux decreases, and impact angles, which affect energy transfer, and rebound effects are functions of the rock facet angle. This results in a non-linear relationship between abrasion potential and height that is a function of wind speed, planetary environment, and target geometry. We have computed the first three of these parameters numerically using a numerical saltation code, combined with published flux calculations These results have been compared to wind tunnel tests of flux vs. height, abrasion of erodible targets, and high speed video analysis under terrestrial and Martian pressures. We are also using high resolution laser scanning to characterize textures, shapes, and weathering changes for terrestrial and Martian rocks at the 100s of microns scale. We find that facet angle, texture, and rock heterogeneity are of critical importance in determining the rate and style of abrasion. Field and theoretical results demonstrate that high speed winds, not the integrated flux of lower speeds, and sand, not dust, produce most rock abrasion. On Mars, this requires sustained winds above 20-25 m/s at the near surface, a challenge in the current environment.

  20. Volcanic ash particulate matter from the 2010 Eyjafjallajökull eruption in dust deposition at Prague, central Europe

    NASA Astrophysics Data System (ADS)

    Navrátil, Tomáš; Hladil, Jindřich; Strnad, Ladislav; Koptíková, Leona; Skála, Roman

    2013-06-01

    Particles originating from the last major Eyjafjallajökull volcano eruption in April 2010 were subsequently found in settled dust samples collected in a suburban area of Prague, Czech Republic. These dust samples contained predominantly non-volcanic particulate matter of super-regional but mainly local origin. The highest proportion of the Eyjafjallajökull material recorded in the Prague daily dust samples reached 12% of the total lithic component mass. Volcanogenic particles, mostly glasses, were concentrated in particle size classes from 2.5 to 25 μm, but rare fragments of volcanic glasses up to 50 μm in diameter were also found. The most effective method for detection and identification of the volcanic ash particles were morpho-textural observations combined with energy dispersive and wavelength dispersive analysis of individual grains and X-ray powder diffraction. Because of the low percentage of volcanic ash particles in the total samples, the geochemical signal was rather weak although detectable in terms of selected trace elements and REE distributions. The mineralogy, particle size distributions, and geochemical compositions of the Prague samples were compared with reference materials sampled near the Eyjafjallajökull volcano.

  1. Threshold wind velocity dynamics as a driver of aeolian sediment mass flux

    NASA Astrophysics Data System (ADS)

    Webb, Nicholas P.; Galloza, Magda S.; Zobeck, Ted M.; Herrick, Jeffrey E.

    2016-03-01

    Horizontal (saltation) mass flux is a key driver of aeolian dust emission. Estimates of the horizontal mass flux underpin assessments of the global dust budget and influence our understanding of the dust cycle and its interactions. Current equations for predicting horizontal mass flux are based on limited field data and are constrained to representing transport-limited equilibrium saltation, driven by the wind momentum flux in excess of an entrainment threshold. This can result in large overestimation of the sediment mass flux. Here we compare measurements of the soil entrainment threshold, horizontal mass flux, and their temporal variability for five undisturbed dryland soils to explore the role of threshold in controlling the magnitude of mass flux. Average and median entrainment threshold showed relatively small variability among sites and relatively small variability between seasons, despite significant differences in soil surface conditions. Physical and biological soil crusts had little effect on the threshold value, and threshold appeared to play a minor role in determining the magnitude of sediment transport. Our results suggest that horizontal mass flux was controlled more by the supply limitation and abrasion efficiency of saltators present as loose erodible material or originating from neighboring soil sources. The omission of sediment supply and explicit representation of saltation bombardment from horizontal flux equations is inconsistent with the process representation in dust emission schemes and contributes to uncertainty in model predictions. This uncertainty can be reduced by developing greater process fidelity in models to predict horizontal mass flux under both supply- and transport-limited conditions.

  2. The transition on North America from the warm humid Pliocene to the glaciated Quaternary traced by eolian dust deposition at a benchmark North Atlantic Ocean drill site

    NASA Astrophysics Data System (ADS)

    Lang, David C.; Bailey, Ian; Wilson, Paul A.; Beer, Christopher J.; Bolton, Clara T.; Friedrich, Oliver; Newsam, Cherry; Spencer, Megan R.; Gutjahr, Marcus; Foster, Gavin L.; Cooper, Matthew J.; Milton, J. Andrew

    2014-06-01

    We present Plio-Pleistocene records of sediment color, %CaCO3, foraminifer fragmentation, benthic carbon isotopes (δ13C) and radiogenic isotopes (Sr, Nd, Pb) of the terrigenous component from IODP Site U1313, a reoccupation of benchmark subtropical North Atlantic Ocean DSDP Site 607. We show that (inter)glacial cycles in sediment color and %CaCO3 pre-date major northern hemisphere glaciation and are unambiguously and consistently correlated to benthic oxygen isotopes back to 3.3 million years ago (Ma) and intermittently so probably back to the Miocene/Pliocene boundary. We show these lithological cycles to be driven by enhanced glacial fluxes of terrigenous material (eolian dust), not carbonate dissolution (the classic interpretation). Our radiogenic isotope data indicate a North American source for this dust (˜3.3-2.4 Ma) in keeping with the interpreted source of terrestrial plant wax-derived biomarkers deposited at Site U1313. Yet our data indicate a mid latitude provenance regardless of (inter)glacial state, a finding that is inconsistent with the biomarker-inferred importance of glaciogenic mechanisms of dust production and transport. Moreover, we find that the relation between the biomarker and lithogenic components of dust accumulation is distinctly non-linear. Both records show a jump in glacial rates of accumulation from Marine Isotope Stage, MIS, G6 (2.72 Ma) onwards but the amplitude of this signal is about 3-8 times greater for biomarkers than for dust and particularly extreme during MIS 100 (2.52 Ma). We conclude that North America shifted abruptly to a distinctly more arid glacial regime from MIS G6, but major shifts in glacial North American vegetation biomes and regional wind fields (exacerbated by the growth of a large Laurentide Ice Sheet during MIS 100) likely explain amplification of this signal in the biomarker records. Our findings are consistent with wetter-than-modern reconstructions of North American continental climate under the warm high

  3. The Southern Ocean biological response to aeolian iron deposition.

    PubMed

    Cassar, Nicolas; Bender, Michael L; Barnett, Bruce A; Fan, Songmiao; Moxim, Walter J; Levy, Hiram; Tilbrook, Bronte

    2007-08-24

    Biogeochemical rate processes in the Southern Ocean have an important impact on the global environment. Here, we summarize an extensive set of published and new data that establishes the pattern of gross primary production and net community production over large areas of the Southern Ocean. We compare these rates with model estimates of dissolved iron that is added to surface waters by aerosols. This comparison shows that net community production, which is comparable to export production, is proportional to modeled input of soluble iron in aerosols. Our results strengthen the evidence that the addition of aerosol iron fertilizes export production in the Southern Ocean. The data also show that aerosol iron input particularly enhances gross primary production over the large area of the Southern Ocean downwind of dry continental areas. PMID:17717181

  4. Understanding early-stage dune development: morphodynamics of aeolian protodunes

    NASA Astrophysics Data System (ADS)

    Baddock, Matthew; Wiggs, Giles; Nield, Joanna

    2016-04-01

    For such a fundamental aspect of bedform development, the initiation and early-stage growth of sand dunes remain poorly understood. Protodunes are bedforms within the continuum of early-stage depositional aeolian features that exist between flat sand patches and small dunes. As transitory bedforms with the potential to develop into dunes, the detailed study of protodune morphodynamics can provide significant insights into nascent dune development. As part of a multi-annual study investigating bedform change through repeat morphological surveys of bedforms with differing maturity, measurements of near-surface airflow and sand transport were conducted over a protodune in a small Namibian barchan dune field. The protodune was approximately 85 m in length and 1 m high, and was without a slipface. Data show that over the course of a week, patterns of airflow and transport flux variation were linked with accretion at the crest, and erosion of the leeside edge showing an increase in protodune height, and providing evidence of the dune's vertical development. Surveys reveal the longer term evolution of the protodune, in the context of changes exhibited by nearby, fully developed barchan dunes, and long term monitoring of wind regime at the site.

  5. Shallow Submarine Hydrothermal Systems in the Aeolian Volcanic Arc, Italy

    NASA Astrophysics Data System (ADS)

    Monecke, Thomas; Petersen, Sven; Lackschewitz, Klas; Hügler, Michael; Hannington, Mark D.; Gemmell, J. Bruce

    2009-03-01

    The majority of known high-temperature hydrothermal vents occur at mid-ocean ridges and back-arc spreading centers, typically at water depths from 2000 to 4000 meters. Compared with 30 years of hydrothermal research along spreading centers in the deep parts of the ocean, exploration of the approximately 700 submarine arc volcanoes is relatively recent [de Ronde et al., 2003]. At these submarine arc volcanoes, active hydrothermal vents are located at unexpectedly shallow water depth (95% at <1600-meter depth), which has important consequences for the style of venting, the nature of associated mineral deposits, and the local biological communities. As part of an ongoing multinational research effort to study shallow submarine volcanic arcs, two hydrothermal systems in the submerged part of the Aeolian arc have been investigated in detail during research cruises by R/V Poseidon (July 2006) and R/V Meteor (August 2007). Comprehensive seafloor video surveys were conducted using a remotely operated vehicle, and drilling to a depth of 5 meters was carried out using a lander-type submersible drill. This research has resulted in the first detailed, three-dimensional documentation of shallow submarine hydrothermal systems on arc volcanoes.

  6. Abrasion by aeolian particles: Earth and Mars

    NASA Technical Reports Server (NTRS)

    Greeley, R.; Marshall, J. R.; White, B. R.; Pollack, J. B.; Marshall, J.; Krinsley, D.

    1984-01-01

    Estimation of the rate of aeolian abrasion of rocks on Mars requires knowledge of: (1) particle flux, (2) susceptibilities to abrasion of various rocks, and (3) wind frequencies on Mars. Fluxes and susceptibilities for a wide range of conditions were obtained in the laboratory and combined with wind data from the Viking meteorology experiment. Assuming an abundant supply of sand-sized particles, estimated rates range up to 2.1 x 10 to the minus 2 power cm of abrasion per year in the vicinity of Viking Lander 1. This rate is orders of magnitude too great to be in agreement with the inferred age of the surface based on models of impact crater flux. The discrepancy in the estimated rate of abrasion and the presumed old age of the surface cannot be explained easily by changes in climate or exhumation of ancient surfaces. The primary reason is thought to be related to the agents of abrasion. At least some sand-sized (approx. 100 micrometers) grains appear to be present, as inferred from both lander and orbiter observations. High rates of abrasion occur for all experimental cases involving sands of quartz, basalt, or ash. However, previous studies have shown that sand is quickly comminuted to silt- and clay-sized grains in the martian aeolian regime. Experiments also show that these fine grains are electrostatically charged and bond together as sand-sized aggregates. Laboratory simulations of wind abrasion involving aggregates show that at impact velocities capable of destroying sand, aggregates from a protective veneer on the target surface and can give rise to extremely low abrasion rates.

  7. An Isotopic Map of Dust Source Areas in the McMurdo Sound Sector of Antarctica

    NASA Astrophysics Data System (ADS)

    Blakowski, M. A.; Aciego, S.; Delmonte, B.; Baroni, C.; Salvatore, M. C.

    2014-12-01

    The McMurdo Sound sector of Antarctica features a unique, polar desert ecosystem characterized by low temperatures, hyper-aridity, and high-speed winds. These climatic conditions result in limited water sources, sparse vegetation, underdeveloped soils, and abundant unconsolidated sediment easily influenced by wind-driven transport. Radiogenic isotopes (87Sr/86Sr, 143Nd/144Nd) provide constant signatures of dust from source- to sink-areas. Accordingly, aeolian dust derived from arid regions has been recognized in many studies as an important tracer of atmospheric circulation, as well as a tool for deciphering past climatic conditions in dust source regions. However, while major global dust sources (e.g. from South America, Africa, and Asia) are well studied and easily identifiable via distinct isotopic signatures when encountered in different depositional environments (e.g. Antarctic ice cores), local material from sources in and around the ice-free Dry Valleys and surrounding areas have remained in need of further documentation. We analyzed 40 samples of silt, sand, glacial drift, and weathered regolith material in both fine (<5μm) and coarse fractions collected from Victoria Land and the McMurdo Sound sector, including Cape Royds, Cape Bird, and the McMurdo Ice Shelf. Here we present an ArcGIS-generated, high-precision geochemical map of Antarctic PSAs synthesized from our data and combined with geomorphological and stratigraphic information on the studied sites. We believe that our expanded isotopic catalogue and map can be used to enhance and/or prompt regional studies in a variety of disciplines, such as by providing greater constraints on models of regional dust variability and transport pathways and of the melting history of the Antarctic ice sheet, and by determining the provenance of dust archived in ice cores, lake sediment, soil records, and impurities in Antarctic sea-ice.

  8. Wind Transport of Radionuclide- Bearing Dust, Peña Blanca, Chihuahua, Mexico

    NASA Astrophysics Data System (ADS)

    Velarde, R.; Goodell, P. C.; Gill, T. E.; Arimoto, R.

    2007-05-01

    This investigation evaluates radionuclide fractionation during wind erosion of high-grade uranium ore storage piles at Peña Blanca (50km north of Chihuahua City), Chihuahua, Mexico. The aridity of the local environment promotes dust resuspension by high winds. Although active operations ceased in 1983, the Peña Blanca mining district is one of Mexico`s most important uranium ore reserves. The study site contains piles of high grade ore, left loose on the surface, and separated by the specific deposits from which they were derived (Margaritas, Nopal I, and Puerto I). Similar locations do not exist in the United States, since uranium mining sites in the USA have been reclaimed. The Peña Blanca site serves as an analog for the Yucca Mountain project. Dust deposition is collected at Peña Blanca with BSNE sediment catchers (Fryrear, 1986) and marble dust traps (Reheis, 1999). These devices capture windblown sediment; subsequently, the sample data will help quantify potentially radioactive short term field sediment loss from the repository surface and determine sediment flux. Aerosols and surface materials will be analyzed and radioactivity levels established utilizing techniques such as gamma spectroscopy. As a result, we will be able to estimate how much radionuclide contaminated dust is being transported or attached geochemically to fine grain soils or minerals (e.g., clays or iron oxides). The high-grade uranium-bearing material is at secular equilibrium, thus the entire decay series is present. Of resulting interest is not only the aeolian transport of uranium, but also of the other daughter products. These studies will improve our understanding of geochemical cycling of radionuclides with respect to sources, transport, and deposition. The results may also have important implications for the geosciences and homeland security, and potential applications to public health. Funding for this project is provided in part via a NSF grant to Arimoto.

  9. Spatial and temporal variations of dust particle deposition at three "urban/suburban" areas in Sfax city (Tunisia).

    PubMed

    Dammak, Rim; Bahloul, Moez; Chabbi, Iness; Azri, Chafai

    2016-06-01

    Particle deposition in three selected "urban/suburban" sites in Sfax city, southern Tunisia, was studied through biweekly monitoring particulate deposits from April 12 to November 26, 2014. Two sites (S1 and S2) were located at the proximity of well-exposed cross-roads; however, the third (S3) was located at a street canyon. A very high fluctuation in those particle fluxes, ranging from 0.1 and 17.9 g/m(2), was clearly observed. Spatiotemporal distribution of the deposited particulate fluxes proved the concomitant effects of multiple (local and synoptic) sources. The industrial contribution rate in terms of particulate deposits was demonstrated to be negligible, and as for that of traffic, it was confirmed to be more significant. The highest particulate deposition seemed to be associated with the sirocco wind phenomenon. Humidity appeared as a main parameter reinforcing the particle deposition (by gathering process); however, the rain was considered as an important factor in terms of atmosphere washing. The intersite distribution was also threatened by local wind movements, shown as a non-negligible factor in terms of deposition, especially in the street canyon. PMID:27156731

  10. Depositional behaviors of plutonium and thorium isotopes at Tsukuba and Mt. Haruna in Japan indicate the sources of atmospheric dust.

    PubMed

    Hirose, K; Igarashi, Y; Aoyama, M; Inomata, Y

    2010-02-01

    Monthly plutonium and thorium depositions at Tsukuba (28m asl) and Mt. Haruna (1370m asl) were measured during 2006 and 2007 (Jan 2006-Dec 2007 at Tsukuba, Nov 2006-Dec 2007 at Mt. Haruna). The monthly (239,240)Pu depositions ranged from 0.044 to 2.67mBq m(-2) at Tsukuba and from 0.05 to 0.9mBq m(-2) at Mt. Haruna during the measurement periods. Monthly (239,240)Pu deposition did not differ markedly between the two sites except in April 2007. Seasonal pattern of monthly (239,240)Pu depositions at both sites showed high in spring and low in summer, and typical of seasonal variations in northeastern Asia. Thorium deposition at Tsukuba was higher than that at Mt. Haruna except in May and June 2007. (230)Th/(232)Th activity ratios were used to partition deposition samples into locally and remotely derived fractions. The results revealed that a major proportion of total (239,240)Pu and Th deposits are derived from remote sources, especially in spring. PMID:19804923

  11. Concentration, size-distribution and deposition of mineral aerosol over Chinese desert regions

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao Y.; Arimoto, R.; Zhu, G. H.; Chen, T.; Zhang, G. Y.

    1998-09-01

    The mass-particle size distributions (MSDs) of 9 elements in ground-based aerosol samples from dust storm (DS) and non-dust storm (N-DS) periods were determined for 12 sites in 9 major desert regions in northern China. The masses of the 9 elements (Al, Fe, K, Mg, Mn, Sc, Si, Sr and Ti) in the atmosphere were dominated by local mineral dust that averaged 270μg m-3, and the MSDs for the elements were approximately log-normal. On the basis of Al data, the<10μm particles account for ~84% of the total dust mass over the deserts. Model-calculated ("100-step" method) dry deposition velocities (Vd) for the 9 dust-derived elements during N-DS periods ranged from 4.4 to 6.8cms-1, with a median value of 5.6cms-1. On the basis of a statistical relationship between D99% (the dust particle diameter corresponding to the uppermost 1% of the cumulative mass distribution) and Vd, one can also predict dry velocities, especially when D99% ranges from 30 to 70μm. This provides a simple way to reconstruct Vd for dust deposits (like aeolian loess sediments in the Loess Plateau). The estimated daily dry deposition fluxes were higher during DS vs. N-DS periods, but in most cases, the monthly averaged fluxes were mainly attributable to N-DS dust. Two regions with high dust loading and fluxes are identified: the "Western High-Dust Desert" and the "Northern High-Dust Desert", with Taklimakan Desert and Badain Juran Desert as their respective centers. These are energetic regions in which desert-air is actively exchanged, and these apparently are the major source areas for Asian dust.

  12. Omissions about the sources of contaminant emissions and depositions - A reply to comments on Taylor, M.P., Davies, P.J., Kristensen, L.J., Csavina, J., 2014. Licenced to pollute but not to poison: The ineffectiveness of regulatory authorities at protecting public health from atmospheric arsenic, lead and other contaminants resulting from mining and smelting operations. Aeolian Research, 14, 35-52

    NASA Astrophysics Data System (ADS)

    Taylor, M. P.; Kristensen, L. J.; Davies, P. J.; Csavina, J.; Mackay, A. K.; Munksgaard, N. C.; Hudson-Edwards, K. A.

    2015-06-01

    We would like to thank Dr Wilson for increasing the interest in our 2014 Aeolian Research study along with our other articles that he referred to in his letter to the journal. Before we tackle the specifics of his letter, we would like to inform the readers that our response is inclusive of several other authors whose Mount Isa research was referred to in Dr Wilson's letter.

  13. Photosynthesis and oxidative stress in the restinga plant species Eugenia uniflora L. exposed to simulated acid rain and iron ore dust deposition: potential use in environmental risk assessment.

    PubMed

    Neves, Natália Rust; Oliva, Marco Antonio; da Cruz Centeno, Danilo; Costa, Alan Carlos; Ribas, Rogério Ferreira; Pereira, Eduardo Gusmão

    2009-06-01

    The Brazilian sandy coastal plain named restinga is frequently subjected to particulate and gaseous emissions from iron ore factories. These gases may come into contact with atmospheric moisture and produce acid rain. The effects of the acid rain on vegetation, combined with iron excess in the soil, can lead to the disappearance of sensitive species and decrease restinga biodiversity. The effects of iron ore dust deposition and simulated acid rain on photosynthesis and on antioxidant enzymes were investigated in Eugenia uniflora, a representative shrub species of the restinga. This study aimed to determine the possible utility of this species in environmental risk assessment. After the application of iron ore dust as iron solid particulate matter (SPM(Fe)) and simulated acid rain (pH 3.1), the 18-month old plants displayed brown spots and necrosis, typical symptoms of iron toxicity and injuries caused by acid rain, respectively. The acidity of the rain intensified leaf iron accumulation, which reached phytotoxic levels, mainly in plants exposed to iron ore dust. These plants showed the lowest values for net photosynthesis, stomatal conductance, transpiration, chlorophyll a content and electron transport rate through photosystem II (PSII). Catalase and superoxide dismutase activities were decreased by simulated acid rain. Peroxidase activity and membrane injury increased following exposure to acid rain and simultaneous SPM(Fe) application. Eugenia uniflora exhibited impaired photosynthetic and antioxidative metabolism in response to combined iron and acid rain stresses. This species could become a valuable tool in environmental risk assessment in restinga areas near iron ore pelletizing factories. Non-invasive evaluations of visual injuries, photosynthesis and chlorophyll a fluorescence, as well as invasive biochemical analysis could be used as markers. PMID:19321190

  14. On the link between biomagnetic monitoring and leaf-deposited dust load of urban trees: relationships and spatial variability of different particle size fractions.

    PubMed

    Hofman, Jelle; Wuyts, Karen; Van Wittenberghe, Shari; Brackx, Melanka; Samson, Roeland

    2014-06-01

    Biomagnetic monitoring of urban tree leaves has proven to be a good estimator of ambient particulate matter. We evaluated its relevancy by determining leaf area normalised weight (mg m(-2)) and SIRM (A) of leaf-deposited particles within three different size fractions (>10 μm, 3-10 μm and 0.2-3 μm) and the SIRM of the leaf-encapsulated particles. Results showed that throughout the in-leaf season, the trees accumulated on average 747 mg m(-2) of dust on their leaves, of which 74 mg m(-2) was within the 0.2-10 μm (∼PM10) size range and 40 mg m(-2) within the 0.2-3 μm (∼PM3) size range. A significant correlation between the SIRM and weight of the surface-deposited particles confirms the potential of biomagnetic monitoring as a proxy for the amount of leaf-deposited particles. Spatial variation of both SIRM and weight throughout the street canyon suggests traffic and wind as key factors for respectively the source and distribution of urban particulates. PMID:24631974

  15. Reprint of On the link between biomagnetic monitoring and leaf-deposited dust load of urban trees: relationships and spatial variability of different particle size fractions.

    PubMed

    Hofman, Jelle; Wuyts, Karen; Van Wittenberghe, Shari; Brackx, Melanka; Samson, Roeland

    2014-09-01

    Biomagnetic monitoring of urban tree leaves has proven to be a good estimator of ambient particulate matter. We evaluated its relevancy by determining leaf area normalised weight (mg m(-2)) and SIRM (A) of leaf-deposited particles within three different size fractions (>10 μm, 3-10 μm and 0.2-3 μm) and the SIRM of the leaf-encapsulated particles. Results showed that throughout the in-leaf season, the trees accumulated on average 747 mg m(-2) of dust on their leaves, of which 74 mg m(-2) was within the 0.2-10 μm (∼PM10) size range and 40 mg m(-2) within the 0.2-3 μm (∼PM3) size range. A significant correlation between the SIRM and weight of the surface-deposited particles confirms the potential of biomagnetic monitoring as a proxy for the amount of leaf-deposited particles. Spatial variation of both SIRM and weight throughout the street canyon suggests traffic and wind as key factors for respectively the source and distribution of urban particulates. PMID:24890181

  16. Pulmonary response to impaired lung clearance in rats following excessive TiO/sub 2/ dust deposition

    SciTech Connect

    Lee, K.P.; Henry, N.W. III; Trochimowicz, H.J.; Reinhardt, C.F.

    1986-10-01

    Rats were exposed to TiO/sub 2/ by the inhalation route at concentrations of 0, 10, 50, or 250 mg/m/sup 3/ for 6 hr/day, 5 days/week for 2 years. Lung weights of rats at 10 mg/m/sup 2/ were within normal limits after 2 years exposure. Lung weights increased significantly after 6 months at 50 mg/m/sup 3/ and after 3 months at 250 mg/m/sup 3/. After 2 years exposure, TiO/sub 2/ retention in dried lung was 3.1% at 10 mg/m/sup 3/, 16.9% at 50 mg/m/sup 3/, 28% at 250 mg/m/sup 3/. Lung clearance mechanisms appeared to be overloaded at 250 mg/m/sup 3/. Dust particles were retained in the lung in a dose-related fashion, but there was no significant difference in lung clearance rate between 10 and 50 mg/m/sup 3/. Lung response at 10 mg/m/sup 3/ satisfied the biological criteria for a nuisance dust, while adverse effects resulting from gradually accumulated particles (8.1%, 67.7 mg per lung) were found after 1 year of exposure to 50 mg/m/sup 3/. Cholesterol granulomas were developed with degenerative foamy dust cells at 50 and 250 mg/m/sup 3/ after 1 year or exposure. After 2 years exposure at 250 mg/m/sup 3/, bronchioloalveolar adenomas occurred in the alveoli showing type II pneumocyte hyperplasia, while cystic keratinizing squamous carcinomas were developed from squamous metaplasia of alveoli showing bronchiolarization in the alveolar duct region.

  17. A note on the stochastic nature of particle cohesive force and implications to threshold friction velocity for aerodynamic dust entrainment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is considerable interest to determine the threshold for aeolian dust emission on Earth and Mars. Existing schemes for threshold friction velocity are all deterministic in nature, but observations show that in the dust particle size range the threshold friction velocity scatters strongly due t...