Science.gov

Sample records for aeolian dust dynamics

  1. Aeolian dust emissions in Southern Africa: field measurements of dynamics and drivers

    NASA Astrophysics Data System (ADS)

    Wiggs, Giles; Thomas, David; Washington, Richard; King, James; Eckardt, Frank; Bryant, Robert; Nield, Joanna; Dansie, Andrew; Baddock, Matthew; Haustein, Karsten; Engelstaedter, Sebastian; von Holdt, Johannah; Hipondoka, Martin; Seely, Mary

    2016-04-01

    Airborne dust derived from the world's deserts is a critical component of Earth System behaviour, affecting atmospheric, oceanic, biological, and terrestrial processes as well as human health and activities. However, very few data have been collected on the factors that control dust emission from major source areas, or on the characteristics of the dust that is emitted. Such a paucity of data limits the ability of climate models to properly account for the radiative and dynamical impacts triggered by atmospheric dust. This paper presents field data from the DO4 Models (Dust Observations for Models) project that aims to understand the drivers of variability in dust emission processes from major source areas in southern Africa. Data are presented from three field campaigns undertaken between 2011 and 2015. We analysed remote sensing data to identify the key geomorphological units in southern Africa which are responsible for emission of atmospheric dust. These are the Makgadikgadi pans complex in northern Botswana, the ephemeral river valleys of western Namibia, and Etosha Pan in northern Namibia. Etosha Pan is widely recognised as perhaps the most significant source of atmospheric dust in the southern hemisphere. We deployed an array of field equipment within each source region to measure the variability in and dynamics of aeolian erosivity, as well as dust concentration and flux characteristics. This equipment included up to 11 meteorological stations measuring wind shear stress and other standard climatic parameters, Cimel sun photometers, a LiDAR, sediment transport detectors, high-frequency dust concentration monitors, and dust flux samplers. Further data were gathered at each site on the dynamics of surface characteristics and erodibility parameters that impact upon erosion thresholds. These data were augmented by use of a Pi-Swerl portable wind tunnel. Our data represent the first collected at source for these key dust emission areas and highlight the

  2. Aeolian Dust Dynamics and Synoptic Atmospheric Circulation Patterns in the Black Sea Region Since Marine Isotope Stage 15

    NASA Astrophysics Data System (ADS)

    Markley, C.; Machalett, B.; Oches, E. A.; Markovic, S.; Endlicher, W.

    2010-12-01

    The aeolian dust record of the loess sequences in the Dobrogea, Romania, provides a unique terrestrial climate archive in proximity to the Black Sea, enabling us to reconstruct glacial-interglacial climate variability and past atmospheric circulation patterns from marine oxygen-isotope stage (MIS) 15 to the last glacial period. During the Pleistocene aeolian mineral dust was mainly derived from the floodplain of the Danube and the (exposed) coastal shelf of the Black Sea, and got deposited on the pseudo-plain of the upheaval complex of the Dobrogea. Presently located at the interface between Mediterranean and continental climates of central and eastern Europe, the loess record of Dobrogea offers insight into long-term paleoenvironmental oscillations triggered by the reciprocity of Mediterranean and continental atmospheric circulation patterns across central and eastern Europe. The 35m thick loess sequence at Mircea Voda shows a well exposed sequence of loess-paleosol couplets that can be traced laterally across a few hundred meters, suggesting a semi-continuous paleoclimate record since MIS 15. In order to assess the loess record of aeolian dynamics and associated past-synoptic atmospheric circulation modes, high resolution particle size analyses have been carried out using a Beckman-Coulter LS 13320 laser analyzer. With support of amino acid geochronology data the highly resolved proxy record of the SE European loess sequences reveals clear shifts in the aeolian dust dynamics and a general paleoclimatic trend from subtropical (MIS 15) to more continental climates (MIS 1). In consideration of the modern synoptic atmospheric circulation patterns and aeolian dust transport across the Eurasian landmass, we propose that the observed long trends in the aeolian dust record and the general tendency of a progressive aridification since the Middle Pleistocene reflect a long term signal of seasonality, triggered by changes in duration and permanency of the seasonal shift of

  3. Aeolian dust dynamics and synoptic atmospheric circulation patterns in the Black Sea Region since marine isotope stage 15

    NASA Astrophysics Data System (ADS)

    Markley, C.; Machalett, B.; Oches, E. A.

    2011-12-01

    The aeolian dust record of the loess sequences in the Dobrogea, Romania, provides a unique terrestrial climate archive in proximity to the Black Sea, enabling us to reconstruct glacial-interglacial climate variability and past atmospheric circulation patterns from marine oxygen-isotope stage (MIS) 15 to the last glacial period. During the Pleistocene aeolian mineral dust was mainly derived from the floodplain of the Danube and the (exposed) coastal shelf of the Black Sea, and got deposited on the pseudo-plain of the upheaval complex of the Dobrogea. Presently located at the interface between Mediterranean and continental climates of central and eastern Europe, the loess record of Dobrogea offers insight into long-term paleoenvironmental oscillations triggered by the reciprocity of Mediterranean and continental atmospheric circulation patterns across central and eastern Europe. The 35m thick loess sequence at Mircea Voda shows a well exposed sequence of loess-paleosol couplets that can be traced laterally across a few hundred meters, suggesting a semi-continuous paleoclimate record since MIS 15. In order to assess the loess record of aeolian dynamics and associated past-synoptic atmospheric circulation modes, high resolution particle size analyses have been carried out using a Beckman-Coulter LS 13-320 laser analyzer. With support of amino acid geochronology data the highly resolved proxy record of the SE European loess sequences reveals clear shifts in the aeolian dust dynamics and a general paleoclimatic trend from subtropical (MIS 15) to more continental climates (MIS 1). In consideration of the modern synoptic atmospheric circulation patterns and aeolian dust transport across the Eurasian landmass, we propose that the observed long trends in the aeolian dust record and the general tendency of a progressive aridification since the Middle Pleistocene reflect a long term signal of seasonality, triggered by changes in duration and permanency of the seasonal shift of

  4. The Dynamics and Characteristics of Aeolian Dust in Dryland Central Asia: Possible Impacts on Respiratory Health in the Aral Sea Basin

    NASA Astrophysics Data System (ADS)

    Wiggs, G. F.; O'Hara, S.; Wegerdt, J.; van der Meer, J.; Small, I.; Hubbard, R.

    2003-12-01

    evidence of a dose-related impact of dust levels on lung function. These associations were statistically significant for all measures of dust exposure but were most marked for levels of winter dust exposure and level of PM2.5 exposure. The results from this study suggest that aeolian dust dynamics in the region are spatially and temporally highly variable and, counter to local and regional perceptions, the former bed of the Aral Sea does not appear to be the only significant source. Nevertheless, there is also evidence of a dose-related impact of airborne dust on the risk of having abnormally low lung function in children living in the Aral Sea Area.

  5. Changes in soil aggregation and dust emission potential in response to aeolian processes

    NASA Astrophysics Data System (ADS)

    swet, Nitzan; Katra, Itzhak

    2016-04-01

    Aeolian (wind) dust emission has high environmental and socioeconomic significances due to loss of natural soil and air pollution. Dust emission involves complex interactions between the airflow and the soil surface. The soil aggregates were dust particles are held determine the topsoil erodibility in aeolian erosion. Although the key role of soil aggregation in dust emission mechanisms, information on changes in soil aggregate size distribution (ASD) due to aeolian erosion is lucking. This study is focused on quantitative ASD analyses before and after aeolian processes (saltation). Aeolian experiments and soil analyses were conducted on semiarid loess topsoils with different initial conditions of aggregation. The results show that saltation rates and PM emissions depend on the initial ASD and shear velocity. In all initial soil conditions, the content of aggregates at saltator-sized 63-250 μm was increased by 10-34 % following erosion of macro-aggregates > 500 μm. It revealed that the aggregate-saltator production increases with the shear velocity (up to 0.61 m s-1) for soils with available macro-aggregates. The findings highlight the dynamics in soil aggregation in response to aeolian transport and therefore its significance for determining the mechanisms of dust emission from soil aggregates.

  6. Optical Properties of Aeolian Dusts Common to West Texas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Both recent models and historical events such as the Dust Bowl and volcanic eruptions have illustrated aerosols can play a significant role in climate change through direct and indirect optical effects. Soil dust aerosols generated by Aeolian processes represent a significant fraction of the total ...

  7. Mechanics of aeolian processes: Soil erosion and dust production

    NASA Technical Reports Server (NTRS)

    Mehrabadi, M. M.

    1989-01-01

    Aeolian (wind) processes occur as a result of atmosphere/land-surface system interactions. A thorough understanding of these processes and their physical/mechanical characterization on a global scale is essential to monitoring global change and, hence, is imperative to the fundamental goal of the Earth observing system (Eos) program. Soil erosion and dust production by wind are of consequence mainly in arid and semi arid regions which cover 36 percent of the Earth's land surface. Some recent models of dust production due to wind erosion of agricultural soils and the mechanics of wind erosion in deserts are reviewed and the difficulties of modeling the aeolian transport are discussed.

  8. Optical properties of Aeolian dusts common to West Texas

    NASA Astrophysics Data System (ADS)

    Ma, Lulu; Zobeck, Ted M.; Hsieh, Daniel H.; Holder, Dean; Morgan, Cristine L. S.; Thompson, Jonathan E.

    2011-11-01

    Both recent models and historical events such as the Dust Bowl and volcanic eruptions have illustrated aerosols can play a significant role in climate change through direct and indirect optical effects. Soil dust aerosols generated by Aeolian processes represent a significant fraction of the total mass burden of atmospheric particles. Central to a better understanding of the climate effects of dust aerosols is knowledge of their optical properties. This research study utilized a dust generator and several instruments to determine certain optical properties of Aeolian dust mimics created by the Amarillo and Pullman soil types native to the panhandle of Texas, USA. Values for the mass-extinction coefficient ranged between 1.74 and 2.97 m 2 g -1 at 522 nm depending on how mass concentration was determined. Single-scatter albedo (SSA) for both soil types ranged from 0.947 to 0.980 at visible wavelengths with SSA increasing at longer wavelengths. Angstrom absorption exponents were measured as 1.73 for Pullman and 2.17 for Amarillo soil. Observed Angstrom extinction exponents were 0.110 and 0.168 for the Pullman and Amarillo soil types. The optical properties reported may be of use for optical based estimates of soil erosion and aid in understanding how regional soil dusts may alter radiative transport presently and during historical events such as the Dust Bowl era.

  9. Identifying sources of aeolian mineral dust: Present and past

    USGS Publications Warehouse

    Muhs, Daniel R; Prospero, Joseph M; Baddock, Matthew C; Gill, Thomas E

    2014-01-01

    Aeolian mineral dust is an important component of the Earth’s environmental systems, playing roles in the planetary radiation balance, as a source of fertilizer for biota in both terrestrial and marine realms and as an archive for understanding atmospheric circulation and paleoclimate in the geologic past. Crucial to understanding all of these roles of dust is the identification of dust sources. Here we review the methods used to identify dust sources active at present and in the past. Contemporary dust sources, produced by both glaciogenic and non-glaciogenic processes, can be readily identified by the use of Earth-orbiting satellites. These data show that present dust sources are concentrated in a global dust belt that encompasses large topographic basins in low-latitude arid and semiarid regions. Geomorphic studies indicate that specific point sources for dust in this zone include dry or ephemeral lakes, intermittent stream courses, dune fields, and some bedrock surfaces. Back-trajectory analyses are also used to identify dust sources, through modeling of wind fields and the movement of air parcels over periods of several days. Identification of dust sources from the past requires novel approaches that are part of the geologic toolbox of provenance studies. Identification of most dust sources of the past requires the use of physical, mineralogical, geochemical, and isotopic analyses of dust deposits. Physical properties include systematic spatial changes in dust deposit thickness and particle size away from a source. Mineralogy and geochemistry can pinpoint dust sources by clay mineral ratios and Sc-Th-La abundances, respectively. The most commonly used isotopic methods utilize isotopes of Nd, Sr, and Pb and have been applied extensively in dust archives of deep-sea cores, ice cores, and loess. All these methods have shown that dust sources have changed over time, with far more abundant dust supplies existing during glacial periods. Greater dust supplies in

  10. Aeolian removal of dust from photovoltaic surfaces on Mars

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Perez-Davis, Marla E.; Marabito, Mark

    1990-01-01

    It is well documented that Mars is totally engulfed in huge dust storms nearly each Martian year. Dust elevated in these global dust storms, or in any of the numerous local dust storms could settle on photovoltaic surfaces and seriously hamper photovoltaic power system performance. Using a recently developed technique to uniformly dust simulated photovoltaic surfaces, samples were subjected to Martian-like winds in an attempt to determine whether natural aeolian processes on Mars would sweep off the settled dust. The effects of wind velocity, angle of attack, height off the Martian surface, and surface coating material were investigated. Principles which can help to guide the design of photovoltaic arrays bound for the Martian surface were uncovered. Most importantly, arrays mounted with an angle of attack approaching 45 deg show the most efficient clearing. Although the angular dependence is not sharp, horizontally mounted arrays required significantly higher wind velocities to clear off the dust. From the perspective of dust-clearing it appears that the arrays may be erected quite near the ground, but previous studies have suggested that saltation effects can be expected to cause such arrays to be covered by sand if they are set up less than about a meter from the ground. Providing that the surface chemistry of Martian dusts is comparable to our test dust, the materials used for protective coating may be optimized for other considerations such as transparency, and chemical or abrasion resistance. The static threshold velocity is low enough that there are regions on Mars which experience winds strong enough to clear off a photovoltaic array if it is properly oriented. Turbulence fences proved to be an ineffective strategy to keep dust cleared from the photovoltaic surfaces.

  11. Aeolian system dynamics derived from thermal infrared data

    NASA Astrophysics Data System (ADS)

    Scheidt, Stephen Paul

    Thermal infrared (TIR) remote-sensing and field-based observations were used to study aeolian systems, specifically sand transport pathways, dust emission sources and Saharan atmospheric dust. A method was developed for generating seamless and radiometrically accurate mosaics of thermal infrared data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument. Using a combination of high resolution thermal emission spectroscopy results of sand samples and mosaic satellite data, surface emissivity was derived to map surface composition, which led to improvement in the understanding of sand accumulation in the Gran Desierto of northern Sonora, Mexico. These methods were also used to map sand transport pathways in the Sahara Desert, where the interaction between sand saltation and dust emission sources was explored. The characteristics and dynamics of dust sources were studied at White Sands, NM and in the Sahara Desert. At White Sands, an application was developed for studying the response of dust sources to surface soil moisture based on the relationship between soil moisture, apparent thermal inertia and the erosion potential of dust sources. The dynamics of dust sources and the interaction with sand transport pathways were also studied, focusing on the Bodele Depression of Chad and large dust sources in Mali and Mauritania. A dust detection algorithm was developed using ASTER data, and the spectral emissivity of observed atmospheric dust was related to the dust source area in the Sahara. At the Atmospheric Observatory (IZO) in Tenerife, Spain where direct measurement of the Saharan Air Layer could be made, the cycle of dust events occurring in July 2009 were examined. From the observation tower at the IZO, measurements of emitted longwave atmospheric radiance in the TIR wavelength region were made using a Forward Looking Infrared Radiometer (FLIR) handheld camera. The use of the FLIR to study atmospheric dust from the Saharan is a

  12. Aeolian Removal of Dust Types from Photovoltaic Surfaces on Mars

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Perez-Davis, Marla E.

    1990-01-01

    Dust elevated in local or global dust storms on the Martian surface could settle on photovoltaic (PV) surfaces and seriously hamper their performance. Using a recently developed technique to apply a uniform dust layer, PV surface materials were subjected to simulated Martian winds in an attempt to determine whether natural aeolian processes on Mars would sweep off the settled dust. Three different types of dust were used. The effects of wind velocity, angle of attack, height above the Martian surface, and surface coating material were investigated. It was found that arrays mounted on an angle of attack approaching 45 deg show the most efficient clearing. Although the angular dependence is not sharp, horizontally mounted arrays required much higher wind velocities to clear off the dust. From this test it appears that the arrays may be erected quite near the ground, but previous studies have suggested that saltation effects can be expected to cause such arrays to be covered by soil if they are set up less than about a meter from the ground. Particle size effect appear to dominate over surface chemistry in these experiments, but additional tests are required to confirm this.

  13. Aeolian Dust and Forest Fire Smoke in Urban Air

    NASA Astrophysics Data System (ADS)

    Brimblecombe, P.

    2006-12-01

    Particles of aeolian dust and forest fire smoke are now regularly detected in urban air. Although dusts are common on the Asian Pacific Rim and forest fire smoke characteristic of South East Asia they also frequently detected elsewhere. In the past dust was treated as though it was fairly inert and reactions on the surface limited to the neutralizing ability of alkaline minerals. More recent work shows that that dust has a complex organic chemistry. Observations in China found fatty acids from urban areas (oleic acid and linoleic acid from cooking) on dust derived aerosols. The fatty acids and PAHs decreased sharply after dust storms, suggesting a role for dust in removal processes. When silica particles absorb unsaturated compounds they can react with ozone and release compounds such as formaldehyde. Particles from forest fires have a similarly complex chemistry and the acid-alkaline balance may vary depend on the balance of removal rates of alkaline materials (ammonia, potassium carbonate) and inorganic and organic acids. Airborne dust and forest fire soot can contain humic like substances (HULIS) either as primary material or as secondary oxidation products of the surface of soot. This paper will report on the role polluted air masses in the generation humic materials, particularly those that are surface active. These materials of high molecular weight oxygen rich organic compounds, which exhibit a range of properties of importance in aerosols: they can form complexes with metal ions and thus enhance their solubility, photosensitize the oxidation of organic compounds and lower the surface tension of aqueous aerosols. HULIS can be oxidized to form a range of simpler acids such as formic, acetic and oxalic acid. Dust and forest fire smoke particles have a different composition and size range to that of typical urban combustion particles, so it is likely that the health impacts will be different, yet current regulation often does not recognize any significant

  14. Aeolian Removal of Dust Types from Photovoltaic Surfaces on Mars

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Perez-Davis, Marla E.; Marabito, Mark

    1990-01-01

    Dust elevated in local or global dust storms on the Martian surface could settle on photovoltaic (PV) surfaces and seriously hamper their performance. Using a recently developed technique to apply a uniform dust layer, PV surface materials were subjected to simulated Martian winds in an attempt to determine whether natural Aeolian processes on Mars would sweep off the settled dust. Three different types of dust were used; an optical polishing powder, basaltic "trap rock", and iron (III) oxide crystals. The effects of wind velocity, angle of attack, height above the Martian surface, and surface coating material were investigated. It was found that arrays mounted with an angle of attack approaching 45 degrees show the most efficient clearing. Although the angular dependence is not sharp, horizontally mounted arrays required significantly higher wind velocities to clear off the dust. From this test it appears that the arrays may be erected quite near the ground, but previous studies have suggested that saltation effects can be expected to cause such arrays to be covered by soil if they are set up less than about a meter from the ground. Particle size effects appear to dominate over surface chemistry in these experiments, but additional tests are required to confirm this. Providing that the surface chemistry of Martian dusts is not drastically different from simulated dust and that gravity differences have only minor effects, the materials used for protective coatings for photovoltaic arrays may be optimized for other considerations such as transparency, and chemical or abrasion resistance. The static threshold velocity is low enough that there are regions on Mars which experience winds strong enough to clear off a photovoltaic array if it is properly oriented. Turbulence fences proved to be an ineffective strategy to keep dust cleared from the photovoltaic surfaces.

  15. Dust on Mars: An Aeolian Threat to Human Exploration?

    NASA Technical Reports Server (NTRS)

    Marshall, J.

    1999-01-01

    The NASA HEDS Program is duly concerned for human explorers regarding the potential hazard posed by the ubiquitous dust mantle on Mars. To evaluate properties of dust that could be hazardous to humans, the MPS 2001 Lander payload will include the Mars Environmental Compatibility Assessment (MECA) experiment. This includes optical and atomic-force microscopy to evaluate soil grains for shape and size, wet chemistry to evaluate toxic substances, electrometry to evaluate triboelectric charging, and test-material palets to evaluate electrostatic and magnetic adhesion, and the hardness/abrasiveness of soil grains; these experimental subcomponents are delivered samples by the camera-equipped robotic arm of the lander which will acquire material from depths of 0.5 to 1.0 m in the soil. Data returned by MECA will be of value to both the BEDS and planetary/astrobiology communities. Dust poses a threat to human exploration because the martian system does not hydrologically or chemically remove fine particles that are being continuously generated by thermal, aeolian, and colluvial weathering, and by volcanism and impact over billions of years. The dust is extremely fine-grained, in copious quantities, ubiquitous in distribution, continually mobile, and a source of poorly-grounded static charges -- a suite of characteristics posing a particulate and electrical threat to explorers and their equipment. Dust is mobilized on global and regional scales, but probably also unpredictably and violently at local scales by dust devils. The latter might be expected in great abundance owing to near surface atmospheric instability (dust devils were detected by Pathfinder during its brief lifetime). Preliminary laboratory experiments suggest that space-suit materials subjected to windblown dust may acquire a uniform, highly adhesive dust layer that is also highly cohesive laterally owing to electrostatic forces. This layer will obscure visibility through the helmet visor, penetrate joints

  16. Dust on Mars: An Aeolian Threat to Human Exploration?

    NASA Technical Reports Server (NTRS)

    Marshall, J.

    1999-01-01

    The NASA HEDS Program is duly concerned for human explorers regarding the potential hazard posed by the ubiquitous dust mantle on Mars. To evaluate properties of dust that could be hazardous to humans, the NMS 2001 Lander payload will include the Mars Environmental Compatibility Assessment (MECA) experiment. This includes optical and atomic-force microscopy to evaluate soil grains for shape and size, wet chemistry to evaluate toxic substances, electrometry to evaluate triboelectric charging, and test-material palets to evaluate electrostatic and magnetic adhesion, and the hardness/abrasiveness of soil grains; these experimental subcomponents are delivered samples by the camera-equipped robotic arm of the lander which will acquire material from depths of 0.5 to 1.0 m in the soil. Data returned by MECA will be of value to both the hEDS and planetary/astrobiology communities. Dust poses a threat to human exploration because the martian system does not hydrologically or chemically remove fine particles that are being continuously generated by thermal, aeolian, and colluvial weathering, and by volcanism and impact over billions of years. The dust is extremely fine-grained, in copious quantities, ubiquitous in distribution, continually mobile, and a source of poorly-grounded static charges -- a suite of characteristics posing a particulate and electrical threat to explorers and their equipment. Dust is mobilized on global and regional scales, but probably also unpredictably and violently at local scales by dust devils. The latter might be expected in great abundance owing to near surface atmospheric instability (dust devils were detected by Pathfinder during its brief lifetime). Preliminary laboratory experiments suggest that space-suit materials subjected to windblown dust may acquire a uniform, highly adhesive dust layer that is also highly cohesive laterally owing to electrostatic forces. This layer will obscure visibility through the helmet visor, penetrate joints

  17. Aeolian transport of biota with dust: A wind tunnel experiment

    NASA Astrophysics Data System (ADS)

    Rivas, J. A., Jr.; Gill, T. E.; Van Pelt, R. S.; Walsh, E.

    2015-12-01

    Ephemeral wetlands are ideal sources for dust emission, as well as repositories for dormant stages of aquatic invertebrates. An important component of invertebrate dispersal and colonization to new areas is the ability to be entrained into the atmosphere. Aquatic invertebrate eggs fall within the size of dust and sand grains (30-600μm), are less dense and aerodynamically shaped. We have shown previously that aquatic invertebrates can be dispersed long distances in dust storms but the extent of transport of taxa based on diapausing egg size/morphology has not been investigated. Here, we control the wind erosion process in a wind tunnel to test entrainment of diapausing stages of brine shrimp, clam shrimp, tadpole shrimp, fairy shrimp, Daphnia, and the rotifers Brachionus plicatilis and B. calyciflorus into the air by saltation. Diapausing eggs were mixed with sterilized wind-erodible soil. The soil/egg mixture was moistened with distilled water and air dried to form a crust. Dust was generated in a wind tunnel by releasing sand grains that act as saltator material similar to wind-entrained natural sands. Maximum wind velocity was 10m/s and entrained particles were sampled through an isokinetic horizontal intake opening. Aeolian sediment was collected from three points in the system; transfer section for coarse sediment, the pan subtending a settling chamber for finer saltation-sized sediment, and two paper filters for suspension-sized sediment. Samples were then passed through 250 and 350 μm sieves to remove abrader sand and rehydrated with various sterile media depending on the type of organism. We retrieved viable brine, fairy, and tadpole shrimp, ostracods, Daphnia, and diapausing eggs of the rotifers after hydration. This experiment demonstrates that resting stages of many invertebrates can be wind-eroded due to size and egg morphology and remain viable under controlled conditions mimicking dust emission.

  18. Granulometric profiling of aeolian dust deposits by automated image analysis

    NASA Astrophysics Data System (ADS)

    Varga, György; Újvári, Gábor; Kovács, János; Jakab, Gergely; Kiss, Klaudia; Szalai, Zoltán

    2016-04-01

    Determination of granulometric parameters is of growing interest in the Earth sciences. Particle size data of sedimentary deposits provide insights into the physicochemical environment of transport, accumulation and post-depositional alterations of sedimentary particles, and are important proxies applied in paleoclimatic reconstructions. It is especially true for aeolian dust deposits with a fairly narrow grain size range as a consequence of the extremely selective nature of wind sediment transport. Therefore, various aspects of aeolian sedimentation (wind strength, distance to source(s), possible secondary source regions and modes of sedimentation and transport) can be reconstructed only from precise grain size data. As terrestrial wind-blown deposits are among the most important archives of past environmental changes, proper explanation of the proxy data is a mandatory issue. Automated imaging provides a unique technique to gather direct information on granulometric characteristics of sedimentary particles. Granulometric data obtained from automatic image analysis of Malvern Morphologi G3-ID is a rarely applied new technique for particle size and shape analyses in sedimentary geology. Size and shape data of several hundred thousand (or even million) individual particles were automatically recorded in this study from 15 loess and paleosoil samples from the captured high-resolution images. Several size (e.g. circle-equivalent diameter, major axis, length, width, area) and shape parameters (e.g. elongation, circularity, convexity) were calculated by the instrument software. At the same time, the mean light intensity after transmission through each particle is automatically collected by the system as a proxy of optical properties of the material. Intensity values are dependent on chemical composition and/or thickness of the particles. The results of the automated imaging were compared to particle size data determined by three different laser diffraction instruments

  19. Aeolian dust in Colorado Plateau soils: Nutrient inputs and recent change in source

    USGS Publications Warehouse

    Reynolds, R.; Belnap, Jayne; Lamothe, Paul; Luiszer, Fred

    2001-01-01

    Aeolian dust (windblown silt and clay) is an important component in arid-land ecosystems because it may contribute to soil formation and furnish essential nutrients. Few geologic surfaces, however, have been characterized with respect to dust-accumulation history and resultant nutrient enrichment. We have developed a combination of methods to identify the presence of aeolian dust in arid regions and to evaluate the roles of this dust in ecosystem processes. Unconsolidated sandy sediment on isolated surfaces in the Canyonlands region of the Colorado Plateau differs greatly in mineralogical and chemical composition from associated bedrock, mainly aeolian sandstone. Detrital magnetite in the surficial deposits produces moderately high values of magnetic susceptibility, but magnetite is absent in nearby bedrock. A component of the surficial deposits must be aeolian to account for the abundance of magnetite, which formed originally in far-distant igneous rocks. Particle-size analysis suggests that the aeolian dust component is typically as much as 20a??30%. Dust inputs have enriched the sediments in many elements, including P, Mg, Na, K, and Mo, as well as Ca, at sites where bedrock lacks calcite cement. Soil-surface biologic crusts are effective dust traps that apparently record a change in dust sources over the past several decades. Some of the recently fallen dust may result from human disturbance of land surfaces that are far from the Canyonlands, such as the Mojave Desert. Some land-use practices in the study area have the potential to deplete soil fertility by means of wind-erosion removal of aeolian silt.

  20. Titanomagnetite-bearing Palagonitic Dust as an Analogue for Magnetic Aeolian Dust on Mars

    NASA Technical Reports Server (NTRS)

    Morris, Richard V.

    1999-01-01

    The Mars Pathfinder magnetic properties experiment included two Magnet Arrays (MAs) which consist of five permanent magnets that have different strengths. Each magnet is a cylindrical and ring magnet arranged in a "bulls-eye" pattern beneath a thin surface layer. The design of the MA permits estimation of magnetic properties (saturation magnetization and magnetic susceptibility) of adhering material, principally by the number of magnets that have adhering material and the extent each magnet is saturated. The two MAs passively sample aeolian dust. Additional information is contained in the original extended abstract.

  1. Compositional trends in aeolian dust along a transect across the southwestern United States

    USGS Publications Warehouse

    Goldstein, H.L.; Reynolds, R.L.; Reheis, M.C.; Yount, J.C.; Neff, J.C.

    2008-01-01

    Aeolian dust strongly influences ecology and landscape geochemistry over large areas that span several desert ecosystems of the southwestern United States. This study evaluates spatial and temporal variations and trends of the physical and chemical properties of dust in the southwestern United States by examining dust deposited in natural depressions on high isolated surfaces along a transect from the Mojave Desert to the central Colorado Plateau. Aeolian dust is recognized in these depressions on the basis of textural, chemical, isotopic, and mineralogical characteristics and comparisons of those characteristics to the underlying bedrock units. Spatial and temporal trends suggest that although local dust sources are important to the accumulated material in these depressions, Mojave Desert dust sources may also contribute. Depth trends in the depressions suggest that Mojave sources may have contributed more dust to the Colorado Plateau recently than in the past. These interpretations point to the important roles of far-traveled aeolian dust for landscape geochemistry and imply future changes to soil geochemistry under changing conditions in far-distant dust source areas. Copyright 2008 by the American Geophysical Union.

  2. Downwind changes in grain size of aeolian dust; examples from marine and terrestrial archives

    NASA Astrophysics Data System (ADS)

    Stuut, Jan-Berend; Prins, Maarten

    2013-04-01

    references Betzer, P.R., Carder, K.L., Duce, R.A., Merrill, J.T., Tindale, N.W., Uematsu, M., Costello, D.K., Young, R.W., Feely, R.A., Breland, J.A., Bernstein, R.E., Greco, A.M., 1988. Long-range transport of giant mineral aerosol particles. Nature 336, 568. Claquin, T., Roelandt, C., Kohfeld, K.E., Harrison, S.P., Tegen, I., C., P.I., Balkanski, Y., Bergametti, G., Hansson, M., Mahowald, N.M., Rodhe, H., Schulz, M., 2003. Radiative forcing of climate by ice-age atmospheric dust. Climate Dynamics 20, 193-202. Holz, C., Stuut, J.-B.W., Henrich, R., 2004. Terrigenous sedimentation processes along the continental margin off NW-Africa: implications from grain-size analyses of surface sediments. Sedimentology 51, 1145-1154. Otto, S., de Reus, M., Trautmann, T., Thomas, A., Wendisch, M., Borrmann, S., 2007. Atmospheric radiative effects of an in situ measured Saharan dust plume and the role of large particles. Atmos. Chem. Phys. 7, 4887-4903. Prins, M.A., Weltje, G.J., 1999. End-member modeling of siliciclastic grain-size distributions: the Late Quaternary record of eolian and fluvial sediment supply to the Arabian Sea and its paleoclimatic significance., in: Harbaugh, J., Watney, L., Rankey, G., Slingerland, R., Goldstein, R., Franseen, E. (Eds.), Numerical experiments in stratigraphy: Recent advances in stratigraphic and sedimentologic computer simulations. SEPM Special Publication 62. Society for Sedimentary Geology, pp. 91-111. Prins, M.A., Vriend, M., 2007, Glacial and interglacial eolian dust dispersal patterns across the Chinese Loess Plateau inferred from decomposed loess grain-size records. Geochemistry, Geophysics, Geosystems (G-cubed), 8, Q07Q05, doi:10.1029/2006GC001563. Prins, M.A., Vriend, M., Nugteren, G., Vandenberghe, J., Lu, H., Zheng, H., Jan Weltje, G., 2007. Late Quaternary aeolian dust input variability on the Chinese Loess Plateau: inferences from unmixing of loess grain-size records. Quaternary Science Reviews 26, 230-242. Prins, M.A., Zheng, H., Beets, K

  3. Sensitivity simulations with direct shortwave radiative forcing by aeolian dust during glacial cycles

    NASA Astrophysics Data System (ADS)

    Bauer, E.; Ganopolski, A.

    2014-07-01

    Possible feedback effects between aeolian dust, climate and ice sheets are studied for the first time with an Earth system model of intermediate complexity over the late Pleistocene period. Correlations between climate and dust deposition records suggest that aeolian dust potentially plays an important role for the evolution of glacial cycles. Here climatic effects from the dust direct radiative forcing (DRF) caused by absorption and scattering of solar radiation are investigated. Key elements controlling the dust DRF are the atmospheric dust distribution and the absorption-scattering efficiency of dust aerosols. Effective physical parameters in the description of these elements are varied within uncertainty ranges known from available data and detailed model studies. Although the parameters can be reasonably constrained, the simulated dust DRF spans a~wide uncertainty range related to the strong nonlinearity of the Earth system. In our simulations, the dust DRF is highly localized. Medium-range parameters result in negative DRF of several watts per square metre in regions close to major dust sources and negligible values elsewhere. In the case of high absorption efficiency, the local dust DRF can reach positive values and the global mean DRF can be insignificantly small. In the case of low absorption efficiency, the dust DRF can produce a significant global cooling in glacial periods, which leads to a doubling of the maximum glacial ice volume relative to the case with small dust DRF. DRF-induced temperature and precipitation changes can either be attenuated or amplified through a feedback loop involving the dust cycle. The sensitivity experiments suggest that depending on dust optical parameters, dust DRF has the potential to either damp or reinforce glacial-interglacial climate changes.

  4. Sensitivity simulations with direct radiative forcing by aeolian dust during glacial cycles

    NASA Astrophysics Data System (ADS)

    Bauer, E.; Ganopolski, A.

    2014-01-01

    Possible feedback effects between aeolian dust, climate and ice sheets are studied for the first time with an Earth system model of intermediate complexity over the late Pleistocene period. Correlations between climate variables and dust deposits suggest that aeolian dust potentially plays an important role for the evolution of glacial cycles. Here climatic effects from the dust direct radiative forcing (DRF) caused by absorption and scattering of solar radiation are investigated. Key factors controlling the dust DRF are the atmospheric dust distribution and the absorption-scattering efficiency of dust aerosols. Effective physical parameters in the description of these factors are varied within uncertainty ranges known from available data and detailed model studies. Although the parameters are reasonably constrained by use of these studies, the simulated dust DRF spans a wide uncertainty range related to nonlinear dependencies. In our simulations, the dust DRF is highly localized. Medium-range parameters result in negative DRF of several W m-2 in regions close to major dust sources and negligible values elsewhere. In case of high absorption efficiency, the local dust DRF can reach positive values and the global mean DRF can be insignificantly small. In case of low absorption efficiency, the dust DRF can produce a significant global cooling in glacial periods which leads to a doubling of the maximum glacial ice volume relative to the case with small dust DRF. DRF-induced temperature and precipitation changes can either be attenuated or amplified through a feedback loop involving the dust cycle. The sensitivity experiments suggest that depending on dust optical parameters the DRF has the potential to either damp or reinforce glacial-interglacial climate changes.

  5. Aeolian dust deposition rates in Northern French forests and inputs to their biogeochemical cycles

    NASA Astrophysics Data System (ADS)

    Lequy, Émeline; Legout, Arnaud; Conil, Sébastien; Turpault, Marie-Pierre

    2013-12-01

    This study describes the Aeolian dust deposition (ADD) in 4 sites of Northern France. Between December 2009 and March 2012, we sampled (i) Aeolian dust every four weeks, and (ii) 6 episodes of forecasted high atmospheric dust load mainly from the Saharan desert, the largest source of Aeolian dust in the world. These samples were treated with oxygen peroxide to remove organic matter so as to only compare the mineral fraction of the samples in the 4 sampling sites and to analyze their mineralogy. The solid samples contained the hardly soluble part of Aeolian dust (H-ADD). Its deposition was of 1.9 ± 0.3 g m-2 year-1 with a seasonal pattern of high deposition from spring to early autumn and a low deposition in winter. H-ADD deposition during the forecasted episodes of high atmospheric load did not systematically exceed the deposition rate during the rest of the sampling period. This indicates that such episodes little contributed to the annual H-ADD rate. The mineralogy revealed a heterogeneous set of minerals dominated by silicates with a common basis of major types (quartz, feldspars, mica, chlorite, kaolinite and interlayered clay minerals in every sample) with randomly trace minerals (Fe-oxides, sulfates, amphibole, talc, gibbsite and carbonates). The chemistry of H-ADD led to a dominant input of Si (up to 4.4 kg ha-1 year-1), while the nutrients inputs of Ca, K, Mg and P from ADD and the atmospheric organics (APD) in openfield were together of 1.5 ± 0.5 kg ha-1 year-1 with a high contribution of soluble minerals and organic matter of ca. 40% for Mg and K, and of ca. 80% for Ca and P. Nutrient inputs from APD are especially an interesting source of P for forests developed on acidic soils.

  6. Granulometry and geochemistry of aeolian dust during emission from Owens (dry) Lake, California

    NASA Astrophysics Data System (ADS)

    Rojo, A.; Gill, T. E.; Gillette, D. A.; Emmert, S. P.; Barnes, M. A.

    2005-12-01

    We utilize a variety of methods to correlate particle size distributions (PSD) with the geochemistry of aeolian dusts being generated at Owens (dry) Lake, California. Elemental analysis of dust samples was performed via proton-induced X-ray emission (PIXE) and inductively coupled plasma - atomic emission spectrometry (ICP-AES). PSD (submicron through coarse sand) of dust (in air and water, dispersed and undispersed) were determined via laser diffraction to evaluate dust grain sizes (percent volume) as a function of time, height above the playa surface, and distance downwind of the initiation point of dust emission, as well as the effect of precipitation and soluble salts on overall dust loading. Aeolian sediments were collected at up to six heights up to 1m above the playa surface at up to seven sites along a 1.5 km long upwind-downwind transect during the Lake Owens Dust Experiment (LODE) I in March 1993. The initial dust event on March 11, 1993 was characterized by the wind erosion of an efflorescent playa surface rich in sodium sulfates and other evaporites deposited by saline groundwater discharge during late winter and early spring. Dust from this event was rich in clays as well as evaporites. The proportion of the finest (respirable) and coarsest (saltating) airborne particles decreased with distance downwind, while the proportion of mid-sized grains (silt) increased downwind. The proportion of clay and silt sized particles consistently increased with height and sand (saltating particle) content decreased with height above the playa at each site during LODE I. Percent volume of sand peaked in the fine sand (100-250 micrometers) range. The proportion of particles in any given size fraction had no clear pattern from one dust storm to another. PIXE analyses revealed the presence of at least 20 elements; several additional trace elements were detected at ppm levels by ICP-AES. Na, Si, and Ca were present at the highest concentrations (tens of weight percent

  7. Aeolian removal of dust from radiator surfaces on Mars

    SciTech Connect

    Gaier, J.R.; Perez-Davis, M.E.; Rutledge, S.K.; Hotes, D.

    1994-09-01

    Simulated radiator surfaces made of arc-textured copper and niobium-one percent-zirconium, and ion beam textured graphite and carbon-carbon composite were fabricated and their integrated spectral emittance characterized from 300 to 3000 K. A thin layer of aluminum oxide, basalt, or iron (III) oxide dust was then deposited on them, and they were subjected to low pressure winds in the Martian Surface Wind Tunnel. It has been found that dust deposited on simulated radiator surfaces may or may not seriously lower their integrated spectral emittance, depending upon the characteristics of the dust. With Al{sub 2}O{sub 3} there is no appreciable degradation of emittance on a dusted sample, with basaltic dust there is a 10-20 percent degradation, and with Fe{sub 2}O{sub 3} a 20-40 percent degradation. It was also found that very high winds on dusted highly textured surfaces can result in their abrasion. Degradation in emittance due to abrasion was found to vary with radiator material. Arc-textured copper and Nb-1%Zr was found to be more susceptible to emittance degradation than graphite or carbon-carbon composite. The most abrasion occurred at low angles, peaking at the 22.5{degrees} test samples.

  8. Aeolian removal of dust from radiator surfaces on Mars

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Perez-Davis, Marla E.; Rutledge, Sharon K.; Hotes, Deborah

    1990-01-01

    Simulated radiator surfaces made of arc-textured Cu and Nb-1 percent-Zr and ion beam textured graphite and C-C composite were fabricated and their integrated spectral emittance characterized from 300 to 3000 K. A thin layer of aluminum oxide, basalt, or iron (III) oxide dust was then deposited on them, and they were subjected to low pressure winds in the Martian Surface Wind Tunnel. It was found that dust deposited on simulated radiator surfaces may or may not seriously lower their integrated spectral emittance, depending upon the characteristics of the dust. With Al2O3 there is no appreciable degradation of emittance on a dusted sample, with basaltic dust there is a 10 to 20 percent degradation, and with Fe2O3 a 20 to 40 percent degradation. It was also found that very high winds on dusted highly textured surfaces can result in their abrasion. Degradation in emittance due to abrasion was found to vary with radiator material. Arc-textured Cu and Nb-1 percent Zr was found to be more susceptible to emittance degradation than graphite or C-C composite. The most abrasion occurred at low angles, peaking at the 22.5 deg test samples.

  9. Asian Winter Monsoons in the Eocene: Evidence from the Aeolian Dust Series of the Xining Basin

    NASA Astrophysics Data System (ADS)

    Licht, A.; Adriens, R.; Pullen, A. T.; Kapp, P. A.; Abels, H.; van Cappelle, M.; Vandenberghe, J.; Dupont Nivet, G.

    2014-12-01

    The aeolian dust deposits of the Chinese Loess Plateau are attributed to spring and winter monsoonal storms sweeping clastic material from the deserts of the Asian interior into central China and are reported to begin 25-22 million years (Myr) ago. The beginning of aeolian dust sedimentation has been attributed to the onset of central Asia desertification and winter monsoonal circulation, and are commonly linked to development of high topographic relief associated with the Tibetan-Himalayan orogenic system. However, recent papers suggest that the core of the Tibetan Plateau may have reached significant elevation since the earliest phases of the India-Asia collision 55 Myr ago. Here, we extend the sedimentary record of the Chinese Loess Plateau at its western margin to include the late Eocene - late Oligocene deposits of the Xining Basin, which were deposited between 41 and 25 Myr ago based on detailed magnetostratigraphy. The particle size, shape, and surface microtexture of quartz grains in these deposits display textures indicative of prolonged aeolian transport; grain-size distributions show a bimodal distribution similar to Miocene through Quaternary deposits of the Chinese Loess Plateau. The clay mineralogy of the finer fraction and U/Pb zircon ages of the coarser fraction from Xining Loess sediments sampled along three sections spanning the whole studied interval are also similar to those observed in Quaternary and Neogene aeolian deposits of the Chinese Loess Plateau and thus suggest similar sources located in central China. However, slight differences in Eocene U/Pb zircon ages, such as the lack of Cenozoic ages or the scarcity of zircons older than 2000 Myr, suggest that the Tibetan Plateau may have contributed little to the aeolian dust deposition, in favor of sources located further north and west (Kunlun and Tian Shan Ranges). The Xining deposits are thus the first direct evidence that winter monsoonal winds were active 15 Myr earlier than previously

  10. Threshold wind velocity dynamics as a driver of aeolian sediment mas flux

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Horizontal (saltation) mass flux is a key driver of aeolian dust emission. Estimates of the horizontal mass flux underpin assessments of the global dust budget and influence our understanding of the dust cycle and its interactions. Current equations for predicting horizontal mass flux are based on l...

  11. Modern and Holocene aeolian dust variability from Talos Dome (Northern Victoria Land) to the interior of the Antarctic ice sheet

    NASA Astrophysics Data System (ADS)

    Delmonte, B.; Baroni, C.; Andersson, P. S.; Narcisi, B.; Salvatore, M. C.; Petit, J. R.; Scarchilli, C.; Frezzotti, M.; Albani, S.; Maggi, V.

    2013-03-01

    High-elevation sites from the inner part of the East Antarctic plateau sample windborne dust representative of large portions of the Southern hemisphere, and are sensitive to long-range atmospheric transport conditions to polar areas. On the periphery of the ice sheet, conversely, the aeolian transport of particles from high-elevation ice-free areas can locally represent a relatively important additional input of dust to the atmosphere, and the interplay of atmospheric dynamics, dust transport and deposition is strictly related to the regional atmospheric circulation behaviour both at present-day and in the past. The understanding of the spatial extent where local sources can influence the mineral dust budget on the ice sheet is fundamental for understanding the atmospheric dust cycle in Antarctica and for the interpretation of the dust history in marginal glaciological settings. In this work we investigate the spatial variability of dust flux and provenance during modern (pre-industrial) and Holocene times along a transect connecting Talos Dome to the internal sites of the Antarctic plateau and we extend the existing documentation of the isotopic (Sr-Nd) fingerprint of dust-sized sediments from Victoria Land source areas. Dust flux, grain size and isotopic composition show a marked variability between Talos Dome, Mid Point, D4 and Dome C/Vostok, suggesting that local sources play an important role on the periphery of the ice sheet. Microscope observations reveal that background mineral aerosol in the TALDICE core is composed by a mixture of dust, volcanic particles and micrometric-sized fragments of diatoms, these latter representing a small but pervasive component of Antarctic sediments. A set of samples from Victoria Land, mostly consisting of regolith and glacial deposits from high-elevation areas, was collected specially for this work and the isotopic composition of the dust-sized fraction of samples was analyzed. Results reveal a close relationship with the

  12. The Relationship of Land Cover to Aeolian Dust Production at the Jornada Basin, New Mexico, USA

    NASA Astrophysics Data System (ADS)

    Floyd, K. W.; Gill, T. E.; Gillette, D. A.

    2007-12-01

    Vegetation tends to reduce aeolian transport of surface sediments. However, not all vegetation types act in the same way to do so. In general, the more land cover the less erosion will occur; thus grasslands should experience less aeolian erosion than shrublands, which are characterized by patchy cover with open intershrub spaces. Five major ecosystem types are described at the Jornada Basin Long- Term Ecological Research site (Jornada LTER) in south-central New Mexico, USA: mesquite dunes, black grama grasslands, creosote bush shrublands, tarbush alluvial flats, and grass-dominated playas. Here we investigate the dry particle size distribution of material collected by BSNE aeolian particle samplers in 2006 in these five different vegetation types, allowing us to estimate dust production at sites with different land cover. As mesquite and creosote bush continue replacing historical grasslands at Jornada, understanding the characteristics of wind erosion will be important for future management plans. The mesquite sites had the greatest horizontal mass flux, although with substantial variation. M-NORT, a site with large sand dunes, had much greater mass flux than other mesquite sites. For most sites, the dry particle size distributions at 5, 10 and 20 cm heights above the land surface were very similar, dominated by sand, while the distributions for 50 and 100cm heights shifted towards a greater percentage of silt and clay (dust) particles. The playa site and one of three tarbush sites stand out as having the greatest percentages of dust particles, between 33- 52 % of total mass at all heights. After taking into account the differences in mass flux, the mesquite site with the larger dunes and the playa site had the greatest flux of dust-sized particles. These two sites demonstrate different mechanisms of producing dust at the Jornada LTER. The playa is a relatively major dust producer due to its high proportion of fine particles, whereas the mesquite site is a major

  13. Dust devils as aeolian transport mechanisms in southern Nevada and the Mars Pathfinder landing site

    NASA Astrophysics Data System (ADS)

    Metzger, Stephen M.

    Discovery of dust devils vortices in Mars Pathfinder images by this study is direct evidence of a dust entrainment mechanism at work on Mars. Dust devils on Earth can entrain fine material from crusted as well as unconsolidated surfaces, even when forced-convection wind speeds are below threshold. Terrestrial dust devils are commonly ``squat'' V-shaped vortices lasting several minutes. Well developed vortices consist of an outer cylinder of high rotation (<25 m/s), an Intermediate cylinder of moderate vertical lift (<13 m/s), and a inner cylindrical core of low pressure (<1.5% below ambient pressure) and elevated temperature (up to 20°C above ambient air temperature). Directly sampled dust devils on Earth were found to carry from 30 to over 2000 kg of soil. On average, the Eldorado Valley, NV, experienced 42 observable dust devils per summer day, each lofting over 200 kg for a daily total of 9 metric tonnes from this desert basin. Spectral differencing techniques have enhanced five localized dust plumes against the general haze in Mars Pathfinder images acquired near midday, which are determined to be dust devils. Given interpreted geographic locations relative to the lander, the dust devils are 14 to 79 m wide, 46 to over 350 m tall, and travel over ground at 0.5 to 4.6 m/s. Their dust loading was approximately 7 × 10-5 kg/m3, relative to the general haze of 9 × 10-8 kg/m3. With an estimated vertical dust flux of 0.5 g m-2 s-1, total particulate transport of these Martian dust devils may have ranged from 2.2 kg for a small dust devil lasting 35 s to over 700 kg for a large plume of 400 s duration. Observed characteristics of these plumes are consistent with expectations based on theory and the lessons of terrestrial field studies. The increasingly apparent role of dust devils in the dust aeolian transport cycle may largely explain the continued concentration of the general Martian dust haze and perhaps the Initiation mechanism for global dust storms.

  14. Dune-like dynamic of Martian Aeolian large ripples

    NASA Astrophysics Data System (ADS)

    Silvestro, S.; Vaz, D. A.; Yizhaq, H.; Esposito, F.

    2016-08-01

    Martian dunes are sculpted by meter-scale bed forms, which have been interpreted as wind ripples based on orbital data. Because aeolian ripples tend to orient and migrate transversely to the last sand-moving wind, they have been widely used as wind vanes on Earth and Mars. In this report we show that Martian large ripples are dynamically different from Earth's ripples. By remotely monitoring their evolution within the Mars Science Laboratory landing site, we show that these bed forms evolve longitudinally with minimal lateral migration in a time-span of ~ six terrestrial years. Our observations suggest that the large Martian ripples can record more than one wind direction and that in certain cases they are more similar to linear dunes from a dynamic point of view. Consequently, the assumption of the transverse nature of the large Martian ripples must be used with caution when using these features to derive wind directions.

  15. Increasing aeolian dust deposition to snowpacks in the Rocky Mountains inferred from snowpack, wet deposition, and aerosol chemistry

    NASA Astrophysics Data System (ADS)

    Clow, David W.; Williams, Mark W.; Schuster, Paul F.

    2016-12-01

    Mountain snowpacks are a vital natural resource for ∼1.5 billion people in the northern Hemisphere, helping to meet human and ecological demand for water in excess of that provided by summer rain. Springtime warming and aeolian dust deposition accelerate snowmelt, increasing the risk of water shortages during late summer, when demand is greatest. While climate networks provide data that can be used to evaluate the effect of warming on snowpack resources, there are no established regional networks for monitoring aeolian dust deposition to snow. In this study, we test the hypothesis that chemistry of snow, wet deposition, and aerosols can be used as a surrogate for dust deposition to snow. We then analyze spatial patterns and temporal trends in inferred springtime dust deposition to snow across the Rocky Mountains, USA, for 1993-2014. Geochemical evidence, including strong correlations (r2 ≥ 0.94) between Ca2+, alkalinity, and dust concentrations in snow deposited during dust events, indicate that carbonate minerals in dust impart a strong chemical signature that can be used to track dust deposition to snow. Spatial patterns in chemistry of snow, wet deposition, and aerosols indicate that dust deposition increases from north to south in the Rocky Mountains, and temporal trends indicate that winter/spring dust deposition increased by 81% in the southern Rockies during 1993-2014. Using a multivariate modeling approach, we determined that increases in dust deposition and decreases in springtime snowfall combined to accelerate snowmelt timing in the southern Rockies by approximately 7-18 days between 1993 and 2014. Previous studies have shown that aeolian dust emissions may have doubled globally during the 20th century, possibly due to drought and land-use change. Climate projections for increased aridity in the southwestern U.S., northern Africa, and other mid-latitude regions of the northern Hemisphere suggest that aeolian dust emissions may continue to increase

  16. Increasing aeolian dust deposition to snowpacks in the Rocky Mountains inferred from snowpack, wet deposition, and aerosol chemistry

    USGS Publications Warehouse

    Clow, David W.; Williams, Mark W.; Schuster, Paul F.

    2016-01-01

    Mountain snowpacks are a vital natural resource for ∼1.5 billion people in the northern Hemisphere, helping to meet human and ecological demand for water in excess of that provided by summer rain. Springtime warming and aeolian dust deposition accelerate snowmelt, increasing the risk of water shortages during late summer, when demand is greatest. While climate networks provide data that can be used to evaluate the effect of warming on snowpack resources, there are no established regional networks for monitoring aeolian dust deposition to snow. In this study, we test the hypothesis that chemistry of snow, wet deposition, and aerosols can be used as a surrogate for dust deposition to snow. We then analyze spatial patterns and temporal trends in inferred springtime dust deposition to snow across the Rocky Mountains, USA, for 1993–2014. Geochemical evidence, including strong correlations (r2 ≥ 0.94) between Ca2+, alkalinity, and dust concentrations in snow deposited during dust events, indicate that carbonate minerals in dust impart a strong chemical signature that can be used to track dust deposition to snow. Spatial patterns in chemistry of snow, wet deposition, and aerosols indicate that dust deposition increases from north to south in the Rocky Mountains, and temporal trends indicate that winter/spring dust deposition increased by 81% in the southern Rockies during 1993–2014. Using a multivariate modeling approach, we determined that increases in dust deposition and decreases in springtime snowfall combined to accelerate snowmelt timing in the southern Rockies by approximately 7–18 days between 1993 and 2014. Previous studies have shown that aeolian dust emissions may have doubled globally during the 20th century, possibly due to drought and land-use change. Climate projections for increased aridity in the southwestern U.S., northern Africa, and other mid-latitude regions of the northern Hemisphere suggest that aeolian dust emissions may continue to

  17. Dust particle dynamics in atmospheric dust devils

    NASA Astrophysics Data System (ADS)

    Izvekova, Yulia; Popel, Sergey

    2016-04-01

    Dust particle dynamics is modeled in the Dust Devils (DDs). DD is a strong, well-formed, and relatively long-lived whirlwind, ranging from small (half a meter wide and a few meters tall) to large (more than 100 meters wide and more than 1000 meters tall) in Earth's atmosphere. We develop methods for the description of dust particle charging in DDs, discuss the ionization processes in DDs, and model charged dust particle motion. Our conclusions are consistent with the fact that DD can lift a big amount of dust from the surface of a planet into its atmosphere. On the basis of the model we perform calculations and show that DDs are important mechanism for dust uplift in the atmospheres of Earth and Mars. Influence of DD electric field on dynamics of dust particles is investigated. It is shown that influence of the electric field on dust particles trajectories is significant near the ground. At some altitude (more then a quarter of the height of DD) influence of the electric field on dust particles trajectories is negligible. For the calculation of the dynamics of dust electric field can be approximated by effective dipole located at a half of the height of DD. This work was supported by the Russian Federation Presidential Program for State Support of Young Scientists (project no. MK-6935.2015.2).

  18. Dust Devil Dynamics

    NASA Astrophysics Data System (ADS)

    Horton, W.; Miura, H.

    2008-11-01

    A dust devil is a rotating updraft, with coherent structures ranging from small (H/D ˜ 5m/1m) to large (H/D ˜ 1000 m/10 m). Common in west Texas and Arizona, dust devils are formed unstable stratification of the air by solar heating over a sandy floor. Unstable gravity waves grow exponentially in the low density, hot air, rising into the upper layer of stably stratified atmosphere creating the large, 3D vortex. Dust devils are common on Mars. On Earth radio noise and electrical fields greater than 100kV/m are inferred [Kok J. F., N. O. Renno (2006), Geophys. Res. Lett., 33, L19S10]. Dust devils pick up small dirt and dust particles. The whirling charged dust particles (30 -50 microns) create a magnetic field that fluctuates between 3 and 30 times each second. The electric fields created assist the vortices in lifting materials off the ground and into the atmosphere. We use the theory and simulation tools of fusion plasma physics to describe dust devils. The Grad-Shafranov equation governs the vorticity dynamics and gives a solution for steady axisymmetric flows. The high core velocity is limited by the vortex model with viscous dissipation. The Reynolds number is not large, so these structures are well represented with super computers, in contrast to collisionless plasmas. 1mm Research supported by NIFS, Japan and the NSF through ATM-0638480 at UT Austin.

  19. Effects of particle optical properties on grain size measurements of aeolian dust deposits

    NASA Astrophysics Data System (ADS)

    Varga, György; Újvári, Gábor; Kovács, János; Szalai, Zoltán

    2015-04-01

    Particle size data are holding crucial information on the sedimentary environment at the time the aeolian dust deposits were accumulated. Various aspects of aeolian sedimentation (wind strength, distance to source(s), possible secondary source regions and modes of sedimentation and transport) can be reconstructed from proper grain size distribution data. Laser diffraction methods provide much more accurate and reliable information on the major granulometric properties of wind-blown sediments compared to the sieve and pipette methods. The Fraunhofer and Mie scattering theories are generally used for laser diffraction grain size measurements. () The two different approaches need different 'background' information on the medium measured. During measurements following the Fraunhofer theory, the basic assumption is that parcticles are relatively large (over 25-30 µm) and opaque. The Mie theory could offer more accurate data on smaller fractions (clay and fine silt), assuming that a proper, a'priori knowledge on refraction and absorption indices exists, which is rarely the case for polymineral samples. This study is aimed at determining the effects of different optical parameters on grain size distributions (e.g. clay-content, median, mode). Multiple samples collected from Hungarian red clay and loess-paleosol records have been analysed using a Malvern Mastersizer 3000 laser diffraction particle sizer (with a Hydro LV unit). Additional grain size measurements have been made on a Fritsch Analysette 22 Microtec and a Horiba Partica La-950 v2 instrument to investigate possible effects of the used laser sources with different wavelengths. XRF and XRD measurements have also been undertaken to gain insight into the geochemical/mineralogical compositions of the samples studied. Major findings include that measurements using the Mie theory provide more accurate data on the grain size distribution of aeolian dust deposits, when we use a proper optical setting. Significant

  20. Global connections between aeolian dust, climate and ocean biogeochemistry at the present day and at the last glacial maximum

    NASA Astrophysics Data System (ADS)

    Maher, B. A.; Prospero, J. M.; Mackie, D.; Gaiero, D.; Hesse, P. P.; Balkanski, Y.

    2010-04-01

    Palaeo-dust records in sediments and ice cores show that wind-borne mineral aerosol ('dust') is strongly linked with climate state. During glacial climate stages, for example, the world was much dustier, with dust fluxes two to five times greater than in interglacial stages. However, the influence of dust on climate remains a poorly quantified and actively changing element of the Earth's climate system. Dust can influence climate directly, by the scattering and absorption of solar and terrestrial radiation, and indirectly, by modifying cloud properties. Dust transported to the oceans can also affect climate via ocean fertilization in those regions of the world's oceans where macronutrients like nitrate are abundant but primary production and nitrogen fixation are limited by iron scarcity. Dust containing iron, as fine-grained iron oxides/oxyhydroxides and/or within clay minerals, and other essential micronutrients (e.g. silica) may modulate the uptake of carbon in marine ecosystems and, in turn, the atmospheric concentration of CO 2. Here, in order to critically examine past fluxes and possible climate impacts of dust in general and iron-bearing dust in particular, we consider present-day sources and properties of dust, synthesise available records of dust deposition at the last glacial maximum (LGM); evaluate the evidence for changes in ocean palaeo-productivity associated with, and possibly caused by, changes in aeolian flux to the oceans at the LGM; and consider the radiative forcing effects of increased LGM dust loadings.

  1. Dust devil dynamics

    NASA Astrophysics Data System (ADS)

    Horton, W.; Miura, H.; Onishchenko, O.; Couedel, L.; Arnas, C.; Escarguel, A.; Benkadda, S.; Fedun, V.

    2016-06-01

    A self-consistent hydrodynamic model for the solar heating-driven onset of a dust devil vortex is derived and analyzed. The toroidal flows and vertical velocity fields are driven by an instability that arises from the inversion of the mass density stratification produced by solar heating of the sandy surface soil. The nonlinear dynamics in the primary temperature gradient-driven vertical airflows drives a secondary toroidal vortex flow through a parametric interaction in the nonlinear structures. While an external tangential shear flow may initiate energy transfer to the toroidal vortex flow, the nonlinear interactions dominate the transfer of vertical-radial flows into a fast toroidal flow. This secondary flow has a vertical vorticity, while the primary thermal gradient-driven flow produces the toroidal vorticity. Simulations for the complex nonlinear structure are carried out with the passive convection of sand as test particles. Triboelectric charging modeling of the dust is used to estimate the charging of the sand particles. Parameters for a Dust Devil laboratory experiment are proposed considering various working gases and dust particle parameters. The nonlinear dynamics of the toroidal flow driven by the temperature gradient is of generic interest for both neutral gases and plasmas.

  2. Dust Devil Dynamics

    NASA Astrophysics Data System (ADS)

    Correa, C. E.; Escarguel, A.; Horton, W.; Arnas, C.; Couedel, L.; Benkadda, S.

    2013-12-01

    A self-consistent hydrodynamic model for the onset of a dust devil vortex is derived and analyzed. The horizontal toroidal flow and vertical velocity field are driven by the vertical temperature gradient instability of gravity waves. The critical temperature gradient is derived and the associated eigenmodes for simple models are given. The nonlinear dynamics in the vertical/horizontal flows drive the toroidal flow through a parametric decay process. Methods developed for triboelectric charging of dust are used to compute the electric polarization vector from the charging of the sand particles. Elementary comparisons are made with the data from dust devil observations and research and simulations by Farrell et al. 2004, 2006. The parameters for a proposed Dust Devil laboratory experiment at Aix-Marseille University are presented. Following R. L. Miller et al. JGR 2006 estimates are made of the overall contribution to the mid-latitude aerosol layer in the atmosphere that acts to moderate global climate temperature increases through a negative feedback loop. The problem has an analog in terms of the heating of the boron or beryllium coated steel vacuum vessel walls in tokamaks where the core plasma plays the role of the sun and has a temperature (~ 10keV ) that exceeds that of the core of the sun.

  3. Aeolian dust deposition during the Eocene-Oligocene in central to eastern Asia

    NASA Astrophysics Data System (ADS)

    Vandenberghe, Jef; Abels, Hemmo; van Cappelle, Marijn

    2015-04-01

    Aeolian dust deposition during the Eocene-Oligocene in central to eastern Asia Jef Vandenberghe1, Hemmo Abels2 and Marijn van Cappelle3 1Dept. of Earth Sciences, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands 2Dept. of Earth Sciences, Universiteit Utrecht, 3584 CD, Utrecht, The Netherlands 3Dept. of Earth Science and Engineering, Imperial College London, London, SW7 2AZ, U.K. The deposition of loess is generally attributed to a monsoonal climate system. Recently it has been shown that such a system existed already at the end of the Eocene on the northeastern Tibetan Plateau (Licht et al., 2014). One of the main arguments to prove the supply of loess by monsoonal winds is the use of grain size properties. The lower part of the Shuiwan section (Eocene) consists of metre-scale alternations of mudstone and gypsum beds; the upper part (Oligocene) is mainly mudstone (Dupont-Nivet et al., 2007; Abels et al., 2010). Sediments are categorized in six grain-size types based on the grain-size distribution and the mode of the silt grain sizes as measured using laser diffraction. Sediments of type 1, the only type with a unimodal grain-size distribution, consist exclusively of clay-sized particles (modal value of 2-2.5 µm). Types 2-6 have a multimodal composition. They contain an additional silt-sized fraction with a modal size of c. 16 µm in type 2; c. 26 µm in type 3 and c. 31 µm in type 4. Type 5 is a mixture of previous types, and type 6 contains in addition a slight amount of sand. Similar bimodal grain-size distributions occur in the Neogene Red Clay and in the Pleistocene loess of the Chinese Loess Plateau. All three silt fractions (with modal sizes 16, 26 and 31 µm) represent typical loess sediments, transported by dust storms in suspension at different altitudes. Their exact grain size depends on wind velocity, source material and transport distance. The 'clay component' may have settled from high suspension clouds in the air down to dry ground or to

  4. The contribution of aeolian sand and dust to iron fertilization of phytoplankton blooms in southwestern Ross Sea, Antarctica

    NASA Astrophysics Data System (ADS)

    Winton, V. H. L.; Dunbar, G. B.; Bertler, N. A. N.; Millet, M.-A.; Delmonte, B.; Atkins, C. B.; Chewings, J. M.; Andersson, P.

    2014-04-01

    Iron is a limiting micronutrient for primary production in the Ross Sea, Antarctica. Recent observations reveal low dissolved Fe (dFe) concentrations in the Ross Sea polynya following high initial rates of primary production in summer, after the dFe winter reserve has been consumed. Significant new sources of dFe are therefore required to further sustain phytoplankton blooms. Iron from aeolian sand and dust (ASD) released from melting sea ice is one potential source. To constrain aeolian Fe inputs, we determined ASD mass accumulation rates and the total and soluble Fe content of ASD on sea ice in McMurdo Sound, southwestern (SW) Ross Sea. The mean mass accumulation rate was ~1.5 g m-2 yr-1, total Fe content of this ASD was 4 ± 1 wt %, and the percentage of soluble Fe was 11 ± 1%. Our mean estimate of the bulk aeolian dFe flux of 122.1 µmol m-2 yr-1 for the McMurdo Sound region suggests that aeolian Fe can support between 9.0 × 109 and 4.1 × 1011 mol C yr-1 (0.1-4.9 Tg C yr-1) of new primary production. This equates to only ~15% of new primary production in the SW Ross Sea, suggesting that aeolian dFe is a minor component of seasonal Fe supply. The very high ASD accumulation on sea ice in McMurdo Sound compared to other regions of Antarctica suggests that our results represent the upper limit of dFe supply to the ocean from this source in the Ross Sea.

  5. Modelling aeolian sand transport using a dynamic mass balancing approach

    NASA Astrophysics Data System (ADS)

    Mayaud, Jerome R.; Bailey, Richard M.; Wiggs, Giles F. S.; Weaver, Corinne M.

    2017-03-01

    Knowledge of the changing rate of sediment flux in space and time is essential for quantifying surface erosion and deposition in desert landscapes. Whilst many aeolian studies have relied on time-averaged parameters such as wind velocity (U) and wind shear velocity (u*) to determine sediment flux, there is increasing field evidence that high-frequency turbulence is an important driving force behind the entrainment and transport of sand. At this scale of analysis, inertia in the saltation system causes changes in sediment transport to lag behind de/accelerations in flow. However, saltation inertia has yet to be incorporated into a functional sand transport model that can be used for predictive purposes. In this study, we present a new transport model that dynamically balances the sand mass being transported in the wind flow. The 'dynamic mass balance' (DMB) model we present accounts for high-frequency variations in the horizontal (u) component of wind flow, as saltation is most strongly associated with the positive u component of the wind. The performance of the DMB model is tested by fitting it to two field-derived (Namibia's Skeleton Coast) datasets of wind velocity and sediment transport: (i) a 10-min (10 Hz measurement resolution) dataset; (ii) a 2-h (1 Hz measurement resolution) dataset. The DMB model is shown to outperform two existing models that rely on time-averaged wind velocity data (e.g. Radok, 1977; Dong et al., 2003), when predicting sand transport over the two experiments. For all measurement averaging intervals presented in this study (10 Hz-10 min), the DMB model predicted total saltation count to within at least 0.48%, whereas the Radok and Dong models over- or underestimated total count by up to 5.50% and 20.53% respectively. The DMB model also produced more realistic (less 'peaky') time series of sand flux than the other two models, and a more accurate distribution of sand flux data. The best predictions of total sand transport are achieved using

  6. Atmospheric dust in modern soil on aeolian sandstone, Colorado Plateau (USA): Variation with landscape position and contribution to potential plant nutrients

    USGS Publications Warehouse

    Reynolds, R.; Neff, J.; Reheis, M.; Lamothe, P.

    2006-01-01

    Rock-derived nutrients in soils originate from both local bedrock and atmospheric dust, including dust from far-distant sources. Distinction between fine particles derived from local bedrock and from dust provides better understanding of the landscape-scale distribution and abundance of soil nutrients. Sandy surficial deposits over dominantly sandstone substrates, covering vast upland areas of the central Colorado Plateau, typically contain 5-40% silt plus clay, depending on geomorphic setting and slope (excluding drainages and depressions). Aeolian dust in these deposits is indicated by the presence of titanium-bearing magnetite grains that are absent in the sedimentary rocks of the region. Thus, contents of far-traveled aeolian dust can be estimated from magnetic properties that primarily reflect magnetite content, such as isothermal remanent magnetization (IRM). Isothermal remanent magnetization was measured on bulk sediment samples taken along two transects in surficial sediment down gentle slopes away from sandstone headwalls. One transect was in undisturbed surficial sediment, the other in a setting that was grazed by domestic livestock until 1974. Calculation of far-traveled dust contents of the surficial deposits is based on measurements of the magnetic properties of rock, surficial deposits, and modern dust using a binary mixing model. At the undisturbed site, IRM-based calculations show a systematic down-slope increase in aeolian dust (ranging from 2% to 18% of the surface soil mass), similar to the down-slope increase in total fines (18-39% of surface soil mass). A combination of winnowing by wind during the past and down-slope movement of sediment likely accounts for the modern distribution of aeolian dust and associated nutrients. At the previously grazed site, dust also increases down slope (5-11%) in sediment with corresponding abundances of 13-25% fines. Estimates of the contributions of aeolian dust to the total soil nutrients range widely

  7. Sand ripple dynamics in the case of out-of-equilibrium aeolian regimes.

    PubMed

    Misbah, C; Valance, A

    2003-12-01

    From a phenomenological hydrodynamical model, we analyze the aeolian sand ripple evolution in an out-of-equilibrium aeolian regime where erosion exceeds accretion (and vice versa). We find, in particular, that the ripple structure can be destroyed in favor of a flat sand bed. In the ripple regime we report on a new class of generic dynamics described by the Benney equation. This equation reveals either order or disorder depending on whether wave dispersion is strong or weak. In both cases, the average wavelength of the pattern is fixed in time. This markedly contrasts with the regime of equilibrium aeolian regime -reached when erosion balances deposition- where ripples undergo a coarsening process at long time (i.e., the wavelength increases indefinitely with time).

  8. Dynamics of aeolian desertification and its driving forces in the Horqin Sandy Land, Northern China.

    PubMed

    Duan, Han-chen; Wang, Tao; Xue, Xian; Liu, Shu-lin; Guo, Jian

    2014-10-01

    Aeolian desertification is one of the most serious environmental and socioeconomic problems in arid, semi-arid, and dry subhumid zones. Understanding desertification processes and causes is important to provide reasonable and effective control measures for preventing desertification. With satellite remote sensing images as data source to assess the temporal and spatial dynamics of desertification from 1975 to 2010 in the Horqin Sandy Land, dynamic changes of aeolian desertification were detected using the human-machine interactive interpretation method. The driving factors of local desertification were analyzed based on natural and socioeconomic data. The results show that aeolian desertified land in the study area covered 30,199 km(2) in 2010, accounting for 24.1% of the study area. The total area of aeolian desertified land obviously expanded from 30,884 km(2) in 1975 to 32,071 km(2) in 1990, and gradually decreased to 30,199 km(2) in 2010; aeolian desertified land represented an increasing trend firstly and then decreased. During the past 35 years, the gravity centers of desertified lands that are classified as extremely severe and severe generally migrated to the northeast, whereas those that are moderate and slight migrated to the northwest. The migration distance of severely desertified land was the largest, which indicated the southern desertified lands were improved during the last few decades. In addition, the climatic variation in the past 35 years has been favorable to desertification in the Horqin Sandy Land. Aeolian desertified land rapidly expanded from 1975 to 1990 under the combined effects of climate changes and unreasonable human activities. After the 1990s, the main driving factors responsible for the decrease in desertification were positive human activities, such as the series of antidesertification and ecological restoration projects.

  9. The dynamic monitoring of aeolian desertification land distribution and its response to climate change in northern China

    PubMed Central

    Feng, Lili; Jia, Zhiqing; Li, Qingxue

    2016-01-01

    Aeolian desertification is poorly understood despite its importance for indicating environment change. Here we exploit Gaofen-1(GF-1) and Moderate Resolution Imaging Spectroradiometer (MODIS) data to develop a quick and efficient method for large scale aeolian desertification dynamic monitoring in northern China. This method, which is based on Normalized Difference Desertification Index (NDDI) calculated by band1 & band2 of MODIS reflectance data (MODIS09A1). Then we analyze spatial-temporal change of aeolian desertification area and detect its possible influencing factors, such as precipitation, temperature, wind speed and population by Convergent Cross Mapping (CCM) model. It suggests that aeolian desertification area with population indicates feedback (bi-directional causality) between the two variables (P < 0.05), but forcing of aeolian desertification area by population is weak. Meanwhile, we find aeolian desertification area is significantly affected by temperature, as expected. However, there is no obvious forcing for the aeolian desertification area and precipitation. Aeolian desertification area with wind speed indicates feedback (bi-directional causality) between the two variables with significant signal (P < 0.01). We infer that aeolian desertification is greatly affected by natural factors compared with anthropogenic factors. For the desertification in China, we are greatly convinced that desertification prevention is better than control. PMID:28004798

  10. The dynamic monitoring of aeolian desertification land distribution and its response to climate change in northern China

    NASA Astrophysics Data System (ADS)

    Feng, Lili; Jia, Zhiqing; Li, Qingxue

    2016-12-01

    Aeolian desertification is poorly understood despite its importance for indicating environment change. Here we exploit Gaofen-1(GF-1) and Moderate Resolution Imaging Spectroradiometer (MODIS) data to develop a quick and efficient method for large scale aeolian desertification dynamic monitoring in northern China. This method, which is based on Normalized Difference Desertification Index (NDDI) calculated by band1 & band2 of MODIS reflectance data (MODIS09A1). Then we analyze spatial-temporal change of aeolian desertification area and detect its possible influencing factors, such as precipitation, temperature, wind speed and population by Convergent Cross Mapping (CCM) model. It suggests that aeolian desertification area with population indicates feedback (bi-directional causality) between the two variables (P < 0.05), but forcing of aeolian desertification area by population is weak. Meanwhile, we find aeolian desertification area is significantly affected by temperature, as expected. However, there is no obvious forcing for the aeolian desertification area and precipitation. Aeolian desertification area with wind speed indicates feedback (bi-directional causality) between the two variables with significant signal (P < 0.01). We infer that aeolian desertification is greatly affected by natural factors compared with anthropogenic factors. For the desertification in China, we are greatly convinced that desertification prevention is better than control.

  11. The dynamic monitoring of aeolian desertification land distribution and its response to climate change in northern China.

    PubMed

    Feng, Lili; Jia, Zhiqing; Li, Qingxue

    2016-12-22

    Aeolian desertification is poorly understood despite its importance for indicating environment change. Here we exploit Gaofen-1(GF-1) and Moderate Resolution Imaging Spectroradiometer (MODIS) data to develop a quick and efficient method for large scale aeolian desertification dynamic monitoring in northern China. This method, which is based on Normalized Difference Desertification Index (NDDI) calculated by band1 &band2 of MODIS reflectance data (MODIS09A1). Then we analyze spatial-temporal change of aeolian desertification area and detect its possible influencing factors, such as precipitation, temperature, wind speed and population by Convergent Cross Mapping (CCM) model. It suggests that aeolian desertification area with population indicates feedback (bi-directional causality) between the two variables (P < 0.05), but forcing of aeolian desertification area by population is weak. Meanwhile, we find aeolian desertification area is significantly affected by temperature, as expected. However, there is no obvious forcing for the aeolian desertification area and precipitation. Aeolian desertification area with wind speed indicates feedback (bi-directional causality) between the two variables with significant signal (P < 0.01). We infer that aeolian desertification is greatly affected by natural factors compared with anthropogenic factors. For the desertification in China, we are greatly convinced that desertification prevention is better than control.

  12. Aeolian geomorphology from the global perspective

    NASA Technical Reports Server (NTRS)

    Greeley, R.

    1985-01-01

    Any planet or satellite having a dynamic atmosphere and a solid surface has the potential for experiencing aeolian (wind) processes. A survey of the Solar System shows at least four planetary objects which potentially meet these criteria: Earth, Mars, Venus, and possibly Titan, the largest satellite of Saturn. While the basic process is the same among these four objects, the movement of particles by the atmosphere, the aeolian environment is drastically different. It ranges from the hot (730 K), dense atmosphere of Venus to the extremely cold desert (218 K) environment of Mars where the atmospheric surface pressure is only approximately 7.5 mb. In considering aeolian processes in the planetary perspective, all three terrestrial planets share some common areas of attention for research, especially in regard to wind erosion and dust storms. Relevant properties of planetary objects potentially subject to aeolian processes are given in tabular form.

  13. A review of Computational Fluid Dynamics (CFD) airflow modelling over aeolian landforms

    NASA Astrophysics Data System (ADS)

    Smyth, Thomas A. G.

    2016-09-01

    Aeolian landforms occur on all earths' continents as well as on Mars, Titan and Venus and are typically formed where sediment is eroded and/or deposited by near surface wind flow. As wind flow approaches an aeolian landform, secondary flow patterns are created that cause wind to deviate in both speed and direction, producing complex patterns of sediment erosion, deposition and transportation. Computational Fluid Dynamics (CFD) modelling of wind flow has become a common tool to predict and understand secondary wind flow and resulting sediment transport. Its use has progressed from simulating wind flow over simple two dimensional dune shapes, to calculating a multitude of flow parameters over a range of increasingly complex landforms. Analysis of 25 peer reviewed journal articles, found that CFD has been crucial to providing additional insight to flow dynamics on the stoss slope of dunes, the structure and nature of wind flow separation in the lee of landforms and information on localised wind flow variations in large-scale dune fields. The findings of this assay demonstrate that further research is required regarding the parameterisation and modelling of surface roughness, the incorporation of accurate sediment transport to wind flow models, and the prediction of topographic surface changes. CFD is anticipated to be increasingly utilised in aeolian geomorphology and this work aims to be a starting point for aeolian geomorphologists wishing to better understand and review the utilisation of the technique to date.

  14. Towards a phoenix phase in aeolian research: shifting geophysical perspectives from fluvial dominance

    SciTech Connect

    Whicker, Jeffrey J; Field, Jason P; Breshears, David D

    2008-01-01

    Aeolian processes are a fundamental driver of earth surface dynamics, yet the importance of aeolian processes in a broader geosciences context may be overshadowed by an unbalanced emphasis on fluvial processes. Here we wish to highlight that aeolian and fluvial processes need to be considered in concert relative to total erosion and to potential interactions, that relative dominance and sensitivity to disturbance vary with mean annual precipitation, and that there are important scale-dependencies associated with aeolian-fluvial interactions. We build on previous literature to present relevant conceptual syntheses highlighting these issues. We then highlight the relative investments that have been made in aeolian research on dust emission and management relative to that in fluvial research on sediment production. Literature searches highlight that aeolian processes are greatly understudied relative to fluvial processes when considering total erosion in different environmental settings. Notably, within the USA, aeolian research was triggered by the Dust Bowl catastrophe of the 1930s, but the resultant research agencies have shifted to almost completely focusing on fluvial processes, based on number of remaining research stations and on monetary investments in control measures. However, numerous research issues associated with intensification of land use and climate change impacts require a rapid ramping up in aeolian research that improves information about aeolian processes relative to fluvial processes, which could herald a post-Dust Bowl Phoenix phase in which aeolian processes are recognized as broadly critical to geo- and environmental sciences.

  15. A 37,000-year environmental magnetic record of aeolian dust deposition from Burial Lake, Arctic Alaska

    NASA Astrophysics Data System (ADS)

    Dorfman, J. M.; Stoner, J. S.; Finkenbinder, M. S.; Abbott, M. B.; Xuan, C.; St-Onge, G.

    2015-11-01

    Environmental magnetism and radiocarbon dating of Burial Lake sediments constrain the timing and magnitude of regional aeolian deposition for the Noatak region of western Arctic Alaska for the last ∼37,000 years. Burial Lake (68.43°N, 159.17°W, 21.5 m water depth) is optimally located to monitor regional dust deposition because it is perched above local drainage and isolated from glacial processes. Cores collected in the summer of 2010 were studied through the application of magnetizations and progressive alternating field (AF) demagnetization of u-channel samples, with additional data provided by computed tomography (CT) derived density, hysteresis measurements, isothermal remanent magnetization (IRM) acquisition experiments, organic carbon content, biogenic silica, physical grain size, radiocarbon dating of wood, seeds, and plant macrofossils, point source magnetic susceptibility, and X-ray fluorescence (XRF). With similar magnetic properties to regional Alaskan loess deposits, low coercivity, highly magnetic material deposited during the late-Pleistocene contrasts with a high coercivity, weakly magnetic component found throughout the record, consistent with locally-derived detritus. The relative proportion of low coercivity to high coercivity magnetic material, defined by the S-Ratios, is used to reconstruct the regional input of dust to the basin over time. A four-fold decrease in the low coercivity component through the deglacial transition is interpreted to reflect diminished dust input to the region. Comparisons with potential sources of dust show that the timing of deposition in Burial Lake is largely consistent with general aridity, lack of vegetative cover, and increased windiness, rather than glacial advances or retreats. The influence from subaerial exposure of continental shelves cannot be ruled out as a significant far-field source of dust to interior Alaska during the Last Glacial Maximum (LGM), but is unlikely to have been the sole source, or to

  16. Aeolian sedimentary processes at the Bagnold Dunes, Mars: Implications for modern dune dynamics and sedimentary structures in the aeolian stratigraphic record of Mars

    NASA Astrophysics Data System (ADS)

    Ewing, Ryan C.; Bridges, Nathan T.; Sullivan, Rob; Lapotre, Mathieu G. A.; Fischer, Woodward W.; Lamb, Mike P.; Rubin, David M.; Lewis, Kevin W.; Gupta, Sanjeev

    2016-04-01

    Wind-blown sand dunes are ubiquitous on the surface of Mars and are a recognized component of the martian stratigraphic record. Our current knowledge of the aeolian sedimentary processes that determine dune morphology, drive dune dynamics, and create aeolian cross-stratification are based upon orbital studies of ripple and dune morphodynamics, rover observations of stratification on Mars, Earth analogs, and experimental and theoretical studies of sand movement under Martian conditions. In-situ observations of sand dunes (informally called the Bagnold Dunes) by Curiosity Rover in Gale Crater, Mars provide the first opportunity to make observations of dunes from the grain-to-dune scale thereby filling the gap in knowledge between theory and orbital observations and refining our understanding of the martian aeolian stratigraphic record. We use the suite of cameras on Curiosity, including Navigation Camera (Navcam), Mast Camera (Mastcam) and Mars Hand Lens Imager (MAHLI), to make observations of the Bagnold Dunes. Measurements of sedimentary structures are made where stereo images are available. Observations indicate that structures generated by gravity-driven processes on the dune lee slopes, such as grainflow and grainfall, are similar to the suite of aeolian sedimentary structures observed on Earth and should be present and recognizable in Mars' aeolian stratigraphic record. Structures formed by traction-driven processes deviate significantly from those found on Earth. The dune hosts centimeter-scale wind ripples and large, meter-scale ripples, which are not found on Earth. The large ripples migrate across the depositional, lee slopes of the dune, which implies that these structures should be present in Mars' stratigraphic record and may appear similar to compound-dune stratification.The Mars Science Laboratory Curiosity Rover Team is acknowledged for their support of this work.

  17. Rates and environmental controls of aeolian dust accumulation, Athabasca River Valley, Canadian Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Hugenholtz, Chris H.; Wolfe, Stephen A.

    2010-09-01

    Despite an abundance of sedimentary archives of mineral dust (i.e. loess) accumulations from cold, humid environments, the absence of contemporary process investigations limits paleoenvironmental interpretations in these settings. Dust accumulations measured at Jasper Lake, a seasonally-filled reach of the glacially-fed Athabasca River in the Canadian Rocky Mountains, are some of the highest contemporary rates recorded to date. High deposition rates, including a maximum of 27,632 kg ha -1 month -1, occur during river low-flow periods, but even the lowest deposition rates, occurring during bankfull periods, exceed other contemporary rates of deposition. High rates of dust deposition may be attributed to geomorphic and climatic controls affecting sediment supply, availability and transport, and biologic factors affecting accumulation. Localized confinement of the Jasper River by tributary river alluvial fans has caused channel expansion upstream, and formation of the shallow depositional basin known as Jasper Lake. This localized sedimentary basin, coupled with large seasonal water level fluctuations and suitably high wind speeds, favors seasonal dust production. In addition, a dense source-proximal coniferous forest stand encourages high dust accumulation, via increased aerodynamic roughness and airflow deceleration. The forest stand also appears to act as an efficient dust filter, with the interception and storage of dust by the forest canopy playing a significant role with regards to secondary fallout and sediment accumulation. Overall, these results provide new insights on the environmental controls of dust entrainment and accumulation in cold, humid settings, and help clarify controls on the formation of Holocene river-sourced loess deposits.

  18. Mars Environmental Chamber for Dynamic Dust Deposition and Statics Analysis

    NASA Technical Reports Server (NTRS)

    Moeller, L. E.; Tuller, M.; Islam, M. R.; Baker, L.; Kuhlman, K.

    2004-01-01

    Recent observations of the 2001 dust storms encircling Mars confirm predictions of environmental challenges for exploration. Martian dust has been found to completely mantle the Martian surface over thousands of square kilometers and the opacity of airborne dust has been shown to be capable of modifying atmospheric temperature, radiative transfer and albedo. Planetary dust cycling dynamics are suggested to be a key factor in the evolution of the Martian surface. Long-term robotic and manned exploration of Mars will be confronted by dust deposition in periods of atmospheric calm and violent wind storms. Aeolian dust deposition recorded during the Mars Pathfinder mission was estimated to fall at rates of 20-45 microns per Earth year. Although many tools of exploration will be challenged by coating, adhesion, abrasion and possible chemical reaction of deposited, wind blown and actively disturbed Martian dust, solar cells are thought to be of primary concern. Recent modeling work of power output by gallium arsenide/germanium solar cells was validated by the Pathfinder Lander data and showed power output decreases of 0.1 to 0.5% per Martian day. A major determinant for the optimal positioning angle of solar panels employed in future missions is the angle of repose of the settling dust particles that is dependent on a variety of physical and chemical properties of the particles, the panel surface, and the environmental conditions on the Mars surface. While the effects of many of these factors are well understood qualitatively, quantitative analyses, especially under physical and chemical conditions prevailing on the Mars surface are lacking.

  19. Mineral composition of TALDICE aeolian ice core dust by means of synchrotron radiation XAS and XRF techniques

    NASA Astrophysics Data System (ADS)

    Marcelli, A.; Cibin, G.; Sala, M.; Hampai, D.; Maggi, V.; Marino, F.; Delmonte, B.

    2009-04-01

    In this work we present the first accurate non-destructive comparison of the mineral composition of atmospheric dusts contained in a deep ice core from Antarctica using synchrotron radiation. Different mineral assemblages reaching glaciated areas could be correlated to sources areas starting from the knowledge of the dust composition. In this investigation we demonstrate the possibility to characterize with SR the mineral composition of the dust in order to perform its geochemical characterization and to understand the pattern of the transport and the trajectories of the aerosol. This study has been focused on the elemental characterization and the identification of the iron oxidation state of aeolian Antarctic dust by means of synchrotron radiation X-Ray Fluorescence and X-Ray Absorption Spectroscopy. A set of twelve ice samples from the TALDICE (TD, 72˚ 46'S, 159˚ 04'E, 2316 m a.s.l., mean accumulation rate 80 kg*m-2*yr-1) ice core, corresponding to the warm climatic period, Holocene, and to the cold climatic period, Marine Isotopic Stage 3 (MIS 3) have been measured. To obtain both the elemental composition and the iron oxidation state of the mineral dust we performed experiments on specially prepared samples at the Stanford Synchrotron Radiation Lightsource (SSRL) laboratory in the framework of the Proposal N.3082B. Actually, melted ice samples were filtered and then mineral particles were deposited onto Nuclepore polycarbonate membranes in a 1000 class clean room under a 100 class laminar flow bench for both XRF and XAS experiments. A dedicated HV experimental chamber, that allows performing different type of experimental technique on very low absorber concentration samples was developed and tested in Italy. The original experimental setup, including an in-vacuum sample micromanipulator and a special alignment and docking sample system was installed at the beamline 10-2 at SSRL. For the x-ray detection a 7 mm2 high sensitive Silicon Drift Detector was

  20. Planktonic foraminiferal rare earth elements as a potential new aeolian dust proxy

    NASA Astrophysics Data System (ADS)

    Chou, C.; Liu, Y.; Lo, L.; Wei, K.; Shen, C.

    2012-12-01

    Characteristics of rare earth elements (REEs) have widely been used as important tracers in many fields of earth sciences, including lithosphere research, environmental change, ocean circulation and other natural carbonate materials. Foraminiferal test REE signatures have been suggested to reflect ambient seawater conditions and serve as valuable proxies in the fields of paleoceanography and paleoclimate. Here we present a 60-kyr planktonic foraminifera Globigerinoides ruber (white, 250-300 μm) REE record of a sediment core MD05-2925 (9°20.61'S, 151°27.61'E, water depth 1660 m) from the Solomon Sea. The REE diagram shows two dominant sources of local seawater and nearby terrestrial input. The variability of foraminiferal REE/Ca time series is different from Mg/Ca-inferred sea surface temperature and δ18O records during the past 60-kyr. This inconsistency suggests that planktonic foraminiferal REE content cannot result only from changes in ice volume and temperature. Synchroneity between high planktonic foraminiferal REE content and Antarctic ice core dust amount record implies the same dust sources, probably from Australia or mainland China. Our results suggest that foraminiferal REE can potentially be as a new dust proxy and record dry/humid conditions at the source area.

  1. Turbulent Flow and Sand Dune Dynamics: Identifying Controls on Aeolian Sediment Transport

    NASA Astrophysics Data System (ADS)

    Weaver, C. M.; Wiggs, G.

    2007-12-01

    Sediment transport models are founded on cubic power relationships between the transport rate and time averaged flow parameters. These models have achieved limited success and recent aeolian and fluvial research has focused on the modelling and measurement of sediment transport by temporally varying flow conditions. Studies have recognised turbulence as a driving force in sediment transport and have highlighted the importance of coherent flow structures in sediment transport systems. However, the exact mechanisms are still unclear. Furthermore, research in the fluvial environment has identified the significance of turbulent structures for bedform morphology and spacing. However, equivalent research in the aeolian domain is absent. This paper reports the findings of research carried out to characterise the importance of turbulent flow parameters in aeolian sediment transport and determine how turbulent energy and turbulent structures change in response to dune morphology. The relative importance of mean and turbulent wind parameters on aeolian sediment flux was examined in the Skeleton Coast, Namibia. Measurements of wind velocity (using sonic anemometers) and sand transport (using grain impact sensors) at a sampling frequency of 10 Hz were made across a flat surface and along transects on a 9 m high barchan dune. Mean wind parameters and mass sand flux were measured using cup anemometers and wedge-shaped sand traps respectively. Vertical profile data from the sonic anemometers were used to compute turbulence and turbulent stress (Reynolds stress; instantaneous horizontal and vertical fluctuations; coherent flow structures) and their relationship with respect to sand transport and evolving dune morphology. On the flat surface time-averaged parameters generally fail to characterise sand transport dynamics, particularly as the averaging interval is reduced. However, horizontal wind speed correlates well with sand transport even with short averaging times. Quadrant

  2. Regional aeolian dynamics and sand mixing in the Gran Desierto: Evidence from Landsat thematic mapper images

    SciTech Connect

    Blount, G.; Greeley, R.; Christensen, P.R. ); Smith, M.O.; Adams, J.B. )

    1990-09-10

    Spatial variations in sand composition were mapped on a regional scale in a terrestrial sand sea, the Gran Desierto of Sonora, Mexico. Mesoscale mapping on a satellite image base allowed quantitative interpretation of the dynamic development of sand sheets and dunes. The results were used to interpret the Quaternary geologic history of the tectonically active region at the mouth of the Colorado River. Landsat thematic mapper multispectral images were used to predict the abundance of different mineralogies of sand grains in a mixed aeolian terrain. A spectral mixing model separated the effects of vegetation and topographically induced shading and shadow from the effects produced by different mineral and rock types. Compositions determined remotely agreed well with samples from selected areas within the spectral limitations of the thematic mapper. A simple discrimination capability for active versus inactive sand surfaces is demonstrated based upon differences in the percentage of low-albedo accessory grains occurring on dormant aeolian surfaces. A technique for discriminating between low-albedo materials and macroscopic shade is implemented by combing thermal images with the results of the spectral mixing model. The image analysis revealed important compositional variations over large areas that were not readily apparent in the field.

  3. Regional aeolian dynamics and sand mixing in the Gran Desierto: Evidence from Landsat thematic mapper images

    NASA Astrophysics Data System (ADS)

    Blount, Grady; Smith, Milton O.; Adams, John B.; Greeley, Ronald; Christensen, Phillip R.

    1990-09-01

    Spatial variations in sand composition were mapped on a regional scale in a terrestrial sand sea, the Gran Desierto of Sonora, Mexico. Mesoscale mapping on a satellite image base allowed quantitative interpretation of the dynamic development of sand sheets and dunes. The results were used to interpret the Quaternary geologic history of the tectonically active region at the mouth of the Colorado River. Landsat thematic mapper multispectral images were used to predict the abundance of different mineralogies of sand grains in a mixed aeolian terrain. A spectral mixing model separated the effects of vegetation and topographically induced shading and shadow from the effects produced by different mineral and rock types. Compositions determined remotely agreed well with samples from selected areas within the spectral limitations of the thematic mapper. A simple discrimination capability for active versus inactive sand surfaces is demonstrated based upon differences in the percentage of low-albedo accessory grains occurring on dormant aeolian surfaces. A technique for discriminating between low-albedo materials and macroscopic shade is implemented by combining thermal images with the results of the spectral mixing model. The image analysis revealed important compositional variations over large areas that were not readily apparent in the field.

  4. Dust Cloud Dynamics in Complex Plasma Afterglow

    SciTech Connect

    Layden, B.; Samarian, A. A.; Vladimirov, S. V.; Coueedel, L.

    2008-09-07

    Experimental observations of dust cloud dynamics in a RF discharge afterglow are presented. Image analysis is used to extract information from videos taken of the plasma. Estimations of the mean confining electric field have been made for different experimental conditions using a model for the contraction of the dust cloud. Dust particle trajectories in the late afterglow evidence the co-existence of positively and negatively charged dust particles.

  5. Contemporary research in aeolian geomorphology

    NASA Astrophysics Data System (ADS)

    Bauer, B. O.

    2009-04-01

    The first International Conference on Aeolian Geomorphology (ICAR) was held in 1986, and every four years since then, aeolian geomorphologists from around the world have assembled to discuss their research and to showcase recent advancements in understanding and modeling of aeolian processes. A content analysis of the "Bibliography of Aeolian Research" [Stout, J.E., Warren, A., Gill, T.E., 2009. Publication trends in aeolian research: An analysis of the Bibliography of Aeolian Research. Geomorphology 105, 6-17 (this volume)] shows that the number of publications on aeolian topics has increased exponentially from the mid-20th Century with approximately 50 publications per year to about 500 publications per year when the first ICAR was held, to almost 1000 publications per year currently. Areas of focus have shifted historically from initial concerns with aeolian erosion and dust events as isolated phenomenon of localized curiosity or only regional importance, to comprehensive physically-based investigations and modeling of the mechanics of aeolian transport. Recently, more applied studies have been motivated by the recognition of the importance of aeolian processes to dust emissions into the atmosphere (with relevance for human health and for meteorological conditions and climate change) and within regional management contexts (especially on coasts where impending sea-level rise is of great concern and in arid and semi-arid environments given the dependence of sediment surface stability and remobilization on meteorological and ecological conditions). Aeolian geomorphology is a rapidly growing sub-discipline of Geomorphology that offers rich opportunities for interdisciplinary collaborations with colleagues from the Atmospheric Sciences, Climatology, Sedimentology, Quaternary Geology, Fluid Mechanics, Physics, Mathematics, Computer Science, Physical Geography, Ecology, and Agricultural Sciences, as well as our counterparts in fluvial, coastal, and arid

  6. Comet Gas and Dust Dynamics Modeling

    NASA Technical Reports Server (NTRS)

    Von Allmen, Paul A.; Lee, Seungwon

    2010-01-01

    This software models the gas and dust dynamics of comet coma (the head region of a comet) in order to support the Microwave Instrument for Rosetta Orbiter (MIRO) project. MIRO will study the evolution of the comet 67P/Churyumov-Gerasimenko's coma system. The instrument will measure surface temperature, gas-production rates and relative abundances, and velocity and excitation temperatures of each species along with their spatial temporal variability. This software will use these measurements to improve the understanding of coma dynamics. The modeling tool solves the equation of motion of a dust particle, the energy balance equation of the dust particle, the continuity equation for the dust and gas flow, and the dust and gas mixture energy equation. By solving these equations numerically, the software calculates the temperature and velocity of gas and dust as a function of time for a given initial gas and dust production rate, and a dust characteristic parameter that measures the ability of a dust particle to adjust its velocity to the local gas velocity. The software is written in a modular manner, thereby allowing the addition of more dynamics equations as needed. All of the numerical algorithms are added in-house and no third-party libraries are used.

  7. Aeolian bedforms, yardangs, and indurated surfaces in the Tharsis Montes as seen by the HiRISE Camera: Evidence for dust aggregates

    USGS Publications Warehouse

    Bridges, N.T.; Banks, M.E.; Beyer, R.A.; Chuang, F.C.; Noe Dobrea, E.Z.; Herkenhoff, K. E.; Keszthelyi, L.P.; Fishbaugh, K.E.; McEwen, A.S.; Michaels, T.I.; Thomson, B.J.; Wray, J.J.

    2010-01-01

    HiRISE images of Mars with ground sampling down to 25 cm/pixel show that the dust-rich mantle covering the surfaces of the Tharsis Montes is organized into ridges whose form and distribution are consistent with formation by aeolian saltation. Other dusty areas near the volcanoes and elsewhere on the planet exhibit a similar morphology. The material composing these "reticulate" bedforms is constrained by their remote sensing properties and the threshold curve combined with the saltation/suspension boundary, both of which vary as a function of elevation (atmospheric pressure), particle size, and particle composition. Considering all of these factors, dust aggregates are the most likely material composing these bedforms. We propose that airfall dust on and near the volcanoes aggregates in situ over time, maybe due to electrostatic charging followed by cementation by salts. The aggregates eventually reach a particle size at which saltation is possible. Aggregates on the flanks are transported downslope by katabatic winds and form linear and "accordion" morphologies. Materials within the calderas and other depressions remain trapped and are subjected to multidirectional winds, forming an interlinked "honeycomb" texture. In many places on and near the volcanoes, light-toned, low thermal inertia yardangs and indurated surfaces are present. These may represent "duststone" formed when aggregates reach a particle size below the threshold curve, such that they become stabilized and subsequently undergo cementation. ?? 2009 Elsevier Inc.

  8. The influence of dry lakebeds, degraded sandy grasslands and abandoned farmland in the arid inlands of northern China on the grain size distribution of East Asian aeolian dust

    NASA Astrophysics Data System (ADS)

    Yang, Li-Rong; Yue, Le-Ping; Li, Zhi-Pei

    2008-02-01

    Dry lakes, degraded sandy grasslands, abandoned farmland and mobile dunes which are widely distributed throughout the arid areas of northern China have been investigated in this work. Gain-size distribution of the surface sediments of Manas lake in Junggar basin, Juyan lake in the Alxa plateau, Zhuye lake in Minqin basin and most deserts (such as Mu Us desert, Otindag desert, Horqin desert and Hulun Buir desert) in China have been analyzed. The results show clay with particle sized <10 μm on the surface sediments of dry lakebed and sandy grassland developed from dry lakebed, respectively, account for >60% and ˜50% of the total mass. Since the tiny particles on the surface of abandoned farmland are blown away easily and rapidly, the content of clay particles in Minqin basin is <14%. The grain-size distribution of mobile dunes in northern China mainly consists of particles >63 μm and few particles <10 μm. Consequently, although sand/dust storms originate primarily in the western deserts, the gobi areas of the Alxa plateau, the north and east of Hexi Corridor and in central Mongolia, the widely distributed dry lakebeds, sandy grasslands and abandoned farmland adjacent to the deserts also contribute to aeolian dusts. Hence, the material sources for sand dust storm in East Asia include inland deserts, but also dry lakes, sandy grasslands and abandoned farmland, which are widely distributed throughout the arid inlands of northern China.

  9. A tribute to Michael R. Raupach for contributions to aeolian fluid dynamics

    NASA Astrophysics Data System (ADS)

    Shao, Yaping; Nickling, William; Bergametti, Gilles; Butler, Harry; Chappell, Adrian; Findlater, Paul; Gillies, John; Ishizuka, Masahide; Klose, Martina; Kok, Jasper F.; Leys, John; Lu, Hua; Marticorena, Beatrice; McTainsh, Grant; McKenna-Neuman, Cheryl; Okin, Gregory S.; Strong, Craig; Webb, Nicholas

    2015-12-01

    Since the pioneering work of Bagnold in the 1940s, aeolian research has grown to become an integral part of earth-system science. Many individuals have contributed to this development, and Dr. Michael R. Raupach (1950-2015) has played a pivotal role. Raupach worked intensively on wind erosion problems for about a decade (1985-1995), during which time he applied his deep knowledge of turbulence to aeolian research problems and made profound contributions with far-reaching impact. The beauty of Raupach's work lies in his clear conceptual thinking and his ability to reduce complex problems to their bare essentials. The results of his work are fundamentally important and have many practical applications. In this review we reflect on Raupach's contribution to a number of important aspects of aeolian research, summarise developments since his inspirational work and place Raupach's efforts in the context of aeolian science. We also demonstrate how Raupach's work provided a foundation for new developments in aeolian research. In this tribute, we concentrate on five areas of research: (1) drag partition theory; (2) saltation roughness length; (3) saltation bombardment; (4) threshold friction velocity and (5) the carbon cycle.

  10. Identification of Dust Source Regions at High-Resolution and Dynamics of Dust Source Mask over Southwest United States Using Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Sprigg, W. A.; Sahoo, S.; Prasad, A. K.; Venkatesh, A. S.; Vukovic, A.; Nickovic, S.

    2015-12-01

    Identification and evaluation of sources of aeolian mineral dust is a critical task in the simulation of dust. Recently, time series of space based multi-sensor satellite images have been used to identify and monitor changes in the land surface characteristics. Modeling of windblown dust requires precise delineation of mineral dust source and its strength that varies over a region as well as seasonal and inter-annual variability due to changes in land use and land cover. Southwest USA is one of the major dust emission prone zone in North American continent where dust is generated from low lying dried-up areas with bare ground surface and they may be scattered or appear as point sources on high resolution satellite images. In the current research, various satellite derived variables have been integrated to produce a high-resolution dust source mask, at grid size of 250 m, using data such as digital elevation model, surface reflectance, vegetation cover, land cover class, and surface wetness. Previous dust source models have been adopted to produce a multi-parameter dust source mask using data from satellites such as Terra (Moderate Resolution Imaging Spectroradiometer - MODIS), and Landsat. The dust source mask model captures the topographically low regions with bare soil surface, dried-up river plains, and lakes which form important source of dust in southwest USA. The study region is also one of the hottest regions of USA where surface dryness, land use (agricultural use), and vegetation cover changes significantly leading to major changes in the areal coverage of potential dust source regions. A dynamic high resolution dust source mask have been produced to address intra-annual change in the aerial extent of bare dry surfaces. Time series of satellite derived data have been used to create dynamic dust source masks. A new dust source mask at 16 day interval allows enhanced detection of potential dust source regions that can be employed in the dust emission and

  11. Structure And Dynamics Of Finite Dust Clouds

    SciTech Connect

    Block, D.; Kroll, M.; Arp, O.; Piel, A.; Kaeding, S.; Ivanov, Y.; Melzer, A.; Henning, C.; Baumgartner, H.; Bonitz, M.

    2008-09-07

    Two novel three-dimensional (3D) diagnostics, stereoscopic imaging and digital holography, enable us to provide a critical comparison of experimental results with simulations and theory and thus to gain a detailed insight into the structural and dynamical properties of strongly coupled dust clouds. Special attention is paid to the influence of screening and the role of metastable states in dust clouds containing just a very few particles.

  12. Magnetic characteristics of aeolian and fluvial sediments and onset of dust accumulation at Lake Yoa (northern Chad) during the Holocene

    NASA Astrophysics Data System (ADS)

    Just, Janna; Kröpelin, Stefan; Karls, Jens; Rethemeyer, Janet; Melles, Martin

    2014-05-01

    samples will be analyzed using a cryogenic magnetometer. The magnetic grain size will be used to identify the initiation of increased accumulation of aeolian material. By analyzing Isothermal Remanent Magnetization acquisition curves, fluvial and aeolian end-members will be characterized in terms of magnetic mineralogy. Furthermore, a possible climate-induced impact on the formation of pedogenetic magnetic minerals in the source area of fluvial and aeolian sediments will be evaluated by a comparison of the environmental magnetic with organic proxies.

  13. A tribute to Michael R. Raupach for contributions to aeolian fluid dynamics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since the early work of Bagnold in the 1940s, aeolian research has grown to become a major integral part of earth-system studies. Many individuals have contributed to this development, and Dr. Michael R. Raupach (MR2, 1950 – 2015) was one of the most outstanding. MR2 worked for about a decade (1985 ...

  14. Aeolian processes on Venus

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald

    1989-01-01

    This review assesses the potential aeolian regime on Venus as derived from spacecraft observations, laboratory simulations, and theoretical considerations. The two requirements for aeolian processes (a supply of small, loose particles and winds of sufficient strength to move them) appear to be met on Venus. Venera 9, 10, 13, and 14 images show particles considered to be sand and silt size on the surface. In addition, dust spurts (grains 5 to 50 microns in diameter) observed via lander images and inferred from the Pioneer-Venus nephalometer experiments suggest that the particles are loose and subject to movement. Although data on near surface winds are limited, measurements of 0.3 to 1.2 m/sec from the Venera lander and Pioneer-Venus probes appear to be well within the range required for sand and dust entrainment. Aeolian activity involves the interaction of the atmosphere, lithosphere, and loose particles. Thus, there is the potential for various physical and chemical weathering processes that can effect not only rates of erosion, but changes in the composition of all three components. The Venus Simulator is an apparatus used to simulate weathering under venusian conditions at full pressure (to 112 bars) and temperature (to 800 K). In one series of tests, the physical modifications of windblown particles and rock targets were assessed and it was shown that particles become abraded even when moved by gentle winds. However, little abrasion occurs on the target faces. Thus, compositional signatures for target rocks may be more indicative of the windblown particles than of the bedrock. From these and other considerations, aeolian modifications of the venusian surface may be expected to occur as weathering, erosion, transportation, and deposition of surficial materials. Depending upon global and local wind regimes, there may be distinctive sources and sinks of windblown materials. Radar imaging, especially as potentially supplied via the Magellan mission, may enable the

  15. A Dynamic Fountain Model for Lunar Dust

    NASA Technical Reports Server (NTRS)

    Stubbs, T. J.; Vondrak, R. R.; Farrell, W. M.

    2005-01-01

    During the Apollo era of exploration it was discovered that sunlight was scattered at the terminators giving rise to horizon glow and streamers above the lunar surface. This was observed from the dark side of the Moon during sunset and sunrise by both surface landers and astronauts in orbit. These observations were quite unexpected, as the Moon was thought to be a pristine environment with a negligible atmosphere or exosphere. Subsequent investigations have shown that the sunlight was most likely scattered by electrostatically charged dust grains originating from the surface. It has since been demonstrated that this dust population could have serious implications for astronomical observations from the lunar surface. The lunar surface is electrostatically charged by the Moon s large-scale interaction with the local plasma environment and the photoemission of electrons due to solar ultra-violet (UV) light and X-rays. The like-charged surface and dust grains then act to repel each other, such that under certain conditions the dust grains are lifted above the surface. We present a dynamic fountain model which can explain how sub-micron dust is able to reach altitudes of up to approximately 100 km above the lunar surface. Previous static dust levitation models are most applicable to the heavier micron-sized grains in close proximity proximity to the surface, but they cannot explain the presence of extremely light grains at high altitudes. If we relax the static constraint applied to previous models, and instead assume that the grains are in constant motion (under the action of dynamic forces), a new picture emerges for the behavior of sub-micron lunar dust.

  16. Dust particle dynamics in magnetized plasma sheath

    SciTech Connect

    Davoudabadi, M.; Mashayek, F.

    2005-07-15

    In this paper, the structure of a plasma sheath in the presence of an oblique magnetic field is investigated, and dynamics of a dust particle embedded in the sheath is elaborated. To simulate the sheath, a weakly collisional two-fluid model is implemented. For various magnitudes and directions of the magnetic field and chamber pressures, different plasma parameters including the electron and ion densities, ion flow velocity, and electric potential are calculated. A complete set of forces acting on the dust particle originating from the electric field in the sheath, the static magnetic field, gravity, and ion and neutral drags is taken into account. Through the trapping potential energy, the particle stable and unstable equilibria are studied while the particle is stationary inside the sheath. Other features such as the possibility of the dust levitation and trapping in the sheath, and the effect of the Lorentz force on the charged dust particle motion are also examined. An interesting feature is captured for the variation of the particle charge as a function of the magnetic field magnitude.

  17. Size-differentiated chemical characteristics of Asian paleo dust: records from aeolian deposition on Chinese Loess Plateau.

    PubMed

    Wu, Feng; Chow, Judith C; An, Zhisheng; Watson, John G; Cao, Junji

    2011-02-01

    The Chinese Loess Plateau (CLP) receives and potentially contributes to Asian dust storms that affect particulate matter (PM) concentrations, visibility, and climate. Loess on the CLP has experienced little weathering effect and is regarded as an ideal record to represent geochemical characteristics of Asian paleo dust. Samples were taken from 2-, 9-, and 15-m depths (representing deposition periods from approximately 12,000 to approximately 200,000 yr ago) in the Xi Feng loess profile on the CLP. The samples were resuspended and then sampled through total suspended particulates (TSP), PM10, PM2.5, and PM1 (PM with aerodynamic diameters < approximately 30, 10, 2.5, and 1 microm, respectively) inlets onto filters for mass, elemental, ionic, and carbon analyses using a Desert Research Institute resuspension chamber. The elements Si, Ca, Al, Fe, K, Mg, water-soluble Ca (Ca2+), organic carbon, and carbonate carbon are the major constituents (> 1%) in loess among the four PM fractions (i.e., TSP, PM10, PM2.5, and PM1). Much of Ca is water soluble and corresponds with measures of carbonate, indicating that most of the calcium is in the form of calcium carbonate rather than other calcium minerals. Most of the K is insoluble, indicating that loess can be separated from biomass burning contributions when K+ is measured. The loess has elemental abundances similar to those of the upper continental crust (UCC) for Mg, Fe, Ti, Mn, V, Cr, and Ni, but substantially different ratios for other elements such as Ca, Co, Cu, As, and Pb. These suggest that the use of UCC as a reference to represent pure or paleo Asian dust needs to be further evaluated. The aerosol samples from the source regions have similar ratios to loess for crustal elements, but substantially different ratios for species from anthropogenic sources (e.g., K, P, V, Cr, Cu, Zn, Ni, and Pb), indicating that the aerosol samples from the geological-source-dominated environment are not a "pure" soil product as compared

  18. Modeling aeolian transport in response to succession, disturbance and future climate: Dynamic long-term risk assessment for contaminant redistribution

    USGS Publications Warehouse

    Breshears, D.D.; Kirchner, T.B.; Whicker, J.J.; Field, J.P.; Allen, C.D.

    2012-01-01

    Aeolian sediment transport is a fundamental process redistributing sediment, nutrients, and contaminants in dryland ecosystems. Over time frames of centuries or longer, horizontal sediment fluxes and associated rates of contaminant transport are likely to be influenced by succession, disturbances, and changes in climate, yet models of horizontal sediment transport that account for these fundamental factors are lacking, precluding in large part accurate assessment of human health risks associated with persistent soil-bound contaminants. We present a simple model based on empirical measurements of horizontal sediment transport (predominantly saltation) to predict potential contaminant transport rates for recently disturbed sites such as a landfill cover. Omnidirectional transport is estimated within vegetation that changes using a simple Markov model that simulates successional trajectory and considers three types of short-term disturbances (surface fire, crown fire, and drought-induced plant mortality) under current and projected climates. The model results highlight that movement of contaminated soil is sensitive to vegetation dynamics and increases substantially (e.g., > fivefold) when disturbance and/or future climate are considered. The time-dependent responses in horizontal sediment fluxes and associated contaminant fluxes were sensitive to variability in the timing of disturbance, with longer intervals between disturbance allowing woody plants to become dominant and crown fire and drought abruptly reducing woody plant cover. Our results, which have direct implications for contaminant transport and landfill management in the specific context of our assessment, also have general relevance because they highlight the need to more fully account for vegetation dynamics, disturbance, and changing climate in aeolian process studies. ?? 2011.

  19. Dynamics and composition of particles from an aeolian input event to the Sargasso Sea

    NASA Technical Reports Server (NTRS)

    Carder, K. L.; Steward, R. G.; Betzer, P. R.; Johnson, D. L.; Prospero, J. M.

    1986-01-01

    The present paper is concerned with studies related to the capture of aeolian mineral particles in the Sargasso Sea region in late June 1980. Attention is given to measurement techniques, aerosol sampling, particle trap sampling, investigations utilizing scanning electron microscopy, and the obtained results. Conceivable sources for nonbiogenic particles measured in the water column are related to fallout from the Mount St. Helens eruption and soil materials transported by winds from the North American or African continents. It is found that present aerosol transport models are not adequaely addressing the transport of giant particles from the Sahara to the Sargasso Sea. Data regarding the variation of Sargasso Sea aerosol mass concentrations with time are presented in a table.

  20. Origins and Dynamics of Interplanetary Dust Particles

    NASA Technical Reports Server (NTRS)

    Dermott, Stanley F.

    2005-01-01

    This is a final report for research supported by the National Aeronautics and Space Administration issued through the Office of Space Science Planetary Geology and Geophysics Program, covering all relevant activities during its 3-year period of funding from 02/01/2002 through to 01/31/2005. The ongoing aim of the research supported through this grant, and now through a successor award, is to investigate the origin of interplanetary dust particles (IDPs) and their dynamical and collisional evolution, in order to: (1) understand the provenance of zodiacal cloud particles and their transport from their source regions to the inner solar system; (2) produce detailed models of the zodiacal cloud and its constituent components; (3) determine the origin of the dust particles accreted by the Earth; (4) ascertain the level of temporal variations in the dust environment of the inner solar system and the accretion rate of IDPs by the Earth, and evaluate potential effects on global climate; and to (5) exploit this research as a basis for interpreting the structure observed in exozodiacal clouds that may result from the collisional evolution of planetesimals and the presence of unseen planets.

  1. Studies in Martian Aeolian Geology

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald

    2001-01-01

    This report gives the results from the investigation through March 15, 1999 for the first two years of the three year investigation (year 3 runs from March 1, 1999 to February 27, 2000). The investigation included three tasks, all involving windblown dust (particles a few micrometers in diameter) to simulate the aeolian regime on Mars. Experiments were conducted primarily in the Mars Surface Wind Tunnel (MARSWIT) at NASA-Ames Research Center.

  2. Evaluation of aeolian desertification from 1975 to 2010 and its causes in northwest Shanxi Province, China

    NASA Astrophysics Data System (ADS)

    Xue, Zhanjin; Qin, Zuodong; Li, Hongjian; Ding, Guangwei; Meng, Xianwen

    2013-08-01

    Efforts to control aeolian desertification in China have focused on the arid and semiarid regions. However, the direct dust emission rates, sediment characteristics and local-scale controls, as well as the measures needed to combat desertification, remain poorly understood in northwest Shanxi Province. Aeolian desertification is regarded as an obstacle to local sustainable socioeconomic development. This paper investigated changes in aeolian desertification between 1975 and 2010 on the northwestern Shanxi Plateau. In this study, remote sensing images were used to classify land suffering from aeolian desertification into four categories: light, moderate, severe, and extremely severe. To evaluate the evolution and status of aeolian desertification as well as its causes, we interpreted and analyzed Landsat multi-spectral scanner (MSS) image (acquired in 1975) and Landsat Thematic Mapper (TM) images (acquired in 1991, 2000, 2006, and 2010) as well as meteorological and socioeconomic data. Results revealed 11,866 km2, 13,362 km2, 14,051 km2, 13,613 km2, and 12,318 km2 of aeolian desertified land (ADL) in the above 5 periods, respectively. The spatial dynamics and patterns showed two stages: expansion during 1975-2000 at a rate of 87.37 km2 a- 1, and spatial transfer of affected areas during 2000-2010 with a net decrease of 173.27 km2 a- 1. During the evolution of aeolian desertification, areas of moderate ADL had the greatest dynamic response (11.45%). The factors controlling ADL dynamics were analyzed from the perspectives of two groups of factors: natural factors and human activities. Our results indicated that the climate-dominated natural factors contribute greatly to the occurrence and development of ADL. However, they are not the fundamental causes of its development. The human factors are the primary and direct driving forces responsible for the increase in ADL area. More thorough quantitative analysis, with more frequent remotely sensed data is needed to assess

  3. Dynamics of the Uranian Dust Sheets

    NASA Astrophysics Data System (ADS)

    Lockwood, Alexandra; Hamilton, D. P.

    2007-07-01

    Showalter and Lissauer (2006) announced the discovery of two faint, outer rings of Uranus, which are believed to be composed of micron-sized dust particles. Currently the rings are edge-on as seen from Earth, a geometry that highlights faint rings and especially their vertical structure. We have undertaken a survey of the dynamics of the system including the host of non-gravitational forces - radiation pressure, electromagnetic forces, and various drag forces - that affect dust grains. Acting in combination, these forces can give particles eccentricities of up to e > 0.15 for particles within the inner dusty ring, and even larger, up to e > 0.5, in the outer ring. The radial range from pericenter to apocenter for such particles could help explain the observed widths of the dusty rings. Additionally, several Lorentz resonances are located within the rings and can trap particles and influence orbital evolution. Inclinations from trapped particles can reach a few degrees, giving vertical displacement to the rings of anywhere from a few hundred to a few thousand kilometers. The upper end of this range corresponds to a few pixels on HST instruments and therefore might be observable. Finally, we notice an interesting locking of the pericenter and longitude of the ascending node to ? degrees imposed by radiation pressure and the unique tilted geometry at Uranus.

  4. On the dynamics of dust during protostellar collapse

    NASA Astrophysics Data System (ADS)

    Bate, Matthew R.; Lorén-Aguilar, Pablo

    2017-02-01

    The dynamics of dust and gas can be quite different from each other when the dust is poorly coupled to the gas. In protoplanetary discs, it is well known that this decoupling of the dust and gas can lead to diverse spatial structures and dust-to-gas ratios. In this paper, we study the dynamics of dust and gas during the earlier phase of protostellar collapse, before a protoplanetary disc is formed. We find that for dust grains with sizes ≲ 10 μm, the dust is well coupled during the collapse of a rotating, pre-stellar core and there is little variation of the dust-to-gas ratio during the collapse. However, if larger grains are present, they may have trajectories that are very different from the gas during the collapse, leading to mid-plane settling and/or oscillations of the dust grains through the mid-plane. This may produce variations in the dust-to-gas ratio and very different distributions of large and small dust grains at the very earliest stages of star formation, if large grains are present in pre-stellar cores.

  5. The ecology of dust: local- to global-scale perspectives

    SciTech Connect

    Whicker, Jeffrey J; Field, Jason P; Belnap, Jayne; Breshears, David D; Neff, Jason; Okin, Gregory S; Painter, Thomas H; Ravi, Sujith; Reheis, Marith C; Reynolds, Richard L

    2009-01-01

    Emission and redistribution of dust due to wind erosion in drylands drives major biogeochemical dynamics and provides important aeolian environmental connectivity at scales from individual plants up to the global scale. Yet, perhaps because most relevant research on aeolian processes has been presented in a geosciences rather than ecological context, most ecological studies do not explicitly consider dust-driven processes. To bridge this disciplinary gap, we provide a general overview of the ecological importance of dust, examine complex interactions between wind erosion and ecosystem dynamics from the plant-interspace scale to regional and global scales, and highlight specific examples of how disturbance affects these interactions and their consequences. Changes in climate and intensification of land use will both likely lead to increased dust production. To address these challenges, environmental scientists, land managers and policy makers need to more explicitly consider dust in resource management decisions.

  6. Improving dust emission characterization in dust models using dynamic high-resolution geomorphic erodibility map

    NASA Astrophysics Data System (ADS)

    Parajuli, S. P.; Yang, Z.; Kocurek, G.

    2013-12-01

    Dust is known to affect the earth radiation budget, biogeochemical cycle, precipitation, human health and visibility. Despite the increased research effort, dust emission modeling remains challenging because dust emission is affected by complex geomorphological processes. Existing dust models overestimate dust emission and rely on tuning and a static erodibility factor in order to make simulated results comparable to remote sensing and ground-based observations. In most of current models, dust emission is expressed in terms of threshold friction speed, which ultimately depends mainly upon the percentage clay content and soil moisture. Unfortunately, due to the unavailability of accurate and high resolution input data of the clay content and soil moisture, estimated threshold friction speed commonly does not represent the variability in field condition. In this work, we attempt to improve dust emission characterization by developing a high resolution geomorphic map of the Middle East and North Africa (MENA), which is responsible for more than 50% of global dust emission. We develop this geomorphic map by visually examining high resolution satellite images obtained from Google Earth Pro and ESRI base map. Albeit subjective, our technique is more reliable compared to automatic image classification technique because we incorporate knowledge of geological/geographical setting in identifying dust sources. We hypothesize that the erodibility is unique for different geomorphic landforms and that it can be quantified by the correlation between observed wind speed and satellite retrieved aerosol optical depth (AOD). We classify the study area into several key geomorphological categories with respect to their dust emission potential. Then we quantify their dust emission potential using the correlation between observed wind speed and satellite retrieved AOD. The dynamic, high-resolution geomorphic erodibility map thus prepared will help to reduce the uncertainty in current

  7. Semiarid landscapes response to Aeolian processes during Holocene in Baikal Region

    NASA Astrophysics Data System (ADS)

    Dan'ko, Lidia; Opekunova, Marina

    2010-05-01

    Arid and semiarid landscapes play a significant role in global climate, biogeochemical, and hydrological processes. Regional analysis of the past aeolian processes is essential for improve our understanding of how various landscape and ecosystems responded to climate change in the past. Our investigation presents details on sand dunes and on loess-like sediments. The study areas are situated in the northern part of Baikal Region (Eastern Siberia). In its depressions, the so-called Barguzinskaya and Tunkinskaya Valley surrounded mountain ranges local dunefieds and loess-like sediments have developed. Present climate in the study areas is continental, characterized by low precipitation(mean annual 250-450 mm) and wide annual range of temperature. Field investigations indicate that the Holocene deposits of the Barguzinskaya and Tunkinskaya Valley are sealed the pedo-sedimentary interface. The analytical results suggest that one's represents a changeover from intensified soil formation to accelerated aeolian dust accumulation. The original content of calcium carbonate and gypsum at the base of some sections of loess-like sediments indicates the aeolian origin of these sediments. In whole, the soil horizons are a proof for humid phases. The change was forced by climatic aridity. Absolute dating of the organogenic components of soils (14C) indicate the age positions of the arid and humid climate phases. Our results indicate not only 1-4 long-time episodes of aeolian dust accumulation during the Holocene, but shot-time aeolian accumulation episodes, that were specific for Late Holocene. For example, in the Tunkinskaya Valley the Late Holocene soil formation replaced by aeolian deposit at 1700 - 1900, 800 and 200-250 years ago, in the Barguzinskaya Valley - about 3100 - 2900, 2300 and 600 years ago. It can be concluded that a periodical formation of the aeolian deposits in the semiarid landscapes during Holocene can be postulated. Aeolian and loess-like sediments of the

  8. Dynamic monitoring of the dust pickup efficiency of vacuum cleaners.

    PubMed

    Reponen, Tiina; Trakumas, Saulius; Willeke, Klaus; Grinshpun, Sergey A; Choe, Kyoo T; Friedman, Warren

    2002-01-01

    This study evaluated a new method that uses an optical aerosol photometer for dynamically monitoring dust pickup efficiency during vacuuming. In the first stage of this study the new method was compared with built-in dirt sensors installed by vacuum cleaner manufacturers. Through parallel testing it has been shown that the widely available built-in dirt sensors are not sensitive enough to register small (< 53 microm) dust particles. Therefore, only the optical photometer was used in the rest of the experiments of this study to monitor the dust pickup efficiency while the vacuum cleaner was operated with different nozzles on clean and soiled carpet and vinyl sheet flooring. This method also was used to monitor dust pickup efficiency when vacuuming carpets originating from lead-contaminated homes. The dust pickup efficiencies obtained with the optical aerosol photometer have been compared with the surface lead concentrations found during different stages of cleaning. Results indicate that the dust mass concentration registered with the optical aerosol photometer at the nozzle outlet correlates well with the dust mass collected in the vacuum cleaner filter bag and with the surface lead level. Therefore, dynamic dust pickup monitoring can provide valuable information about the efficiency of cleaning when a vacuum cleaner is used. This suggests that a small aerosol photometer similar to a light-scattering smoke detector would be beneficial in vacuum cleaners used for cleaning surfaces contaminated with leaded dust and biological particles (including allergens).

  9. Dynamics of dust in Jupiter's gossamer rings

    NASA Astrophysics Data System (ADS)

    Hamilton, D.; Burns, J.; Krueger, H.; Showalter, M.

    2003-04-01

    Over the past several years, the Galileo spacecraft has drastically improved our knowledge of Jupiter's faint rings. We now know the system to be composed of a main ring 7000km wide whose inner edge blossoms into a vertically-extended halo, and a pair of gossamer rings, each one extending inward from a small moon. These moonlets, Thebe and Amalthea, have large orbital tilts and resulting vertical excursions of 1150km and 4300km, respectively. The vertical thicknesses of the two Gossamer rings accurately match these values, providing compelling evidence that the two small satellites act as the dominant sources of ring material. Ring Material is born during high speed impacts onto the moonlet surfaces, after which the material evolves inward under the action of a dissipative force, either Poynting-Robertson Drag or Resonant Charge Variations. The basic framework for the origin and evolution of the Gossamer Rings is well understood, but there are a few loose ends that are not so easily explained: i) an outward extension of the Thebe Ring, ii) the nature of the dissipative force. In this talk I will report my latest dynamical modeling of the Gossamer rings associated with Thebe and Amalthea, and will discuss how in-situ impact data collected by the Galileo dust detector during the first ever ring "fly-through" may help to resolve some of these and other outstanding issues.

  10. Dust Dynamics in Kelvin-Helmholtz Instabilities

    NASA Astrophysics Data System (ADS)

    Hendrix, Tom; Keppens, Rony

    2013-04-01

    The Kelvin-Helmholtz instability (KHI) is a fluid instability which arises when two contacting flows have different tangential velocities. As shearing flows are very common in all sorts of (astro)physical fluid setups, the KHI is frequently encountered. In many astrophysical fluids the gas fluid in loaded with additional dust particles. Here we study the influence of these dust particles on the initiation of the KHI, as well as the effect the KHI has on the density distribution of dust species in a range of different particle sizes. This redistribution by the instability is of importance in the formation of dust structures in astrophysical fluids. To study the effect of dust on the linear and nonlinear phase of the KHI, we use the multi-fluid dust + gas module of the MPI-AMRVAC [1] code to perform 2D and 3D simulations of KHI in setups with physical quantities relevant to astrophysical fluids. A clear dependency on dust sizes is seen, with larger dust particles displaying significantly more clumping than smaller ones.

  11. Coupling Dynamical And Collisional Evolution Of Dust In Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Charnoz, Sebastien

    2010-10-01

    Gaseous circumstellar disks are rich in dust and are thought to be both accretionaly and dynamically active. Unfortunately large bodies that could be embedded in these disks are still difficult to observe and their putative properties are indirectly inferred from the observable small dust content. It is why constraining the size distribution coupled with dust-dynamics is so critical. Unfortunately, coupling effects such as a realistic time-dependant dynamics, fragmentation and coagulation, has been recognized as numerically challenging and almost no attempt really succeeded with a generic approach. In these disks, the dust dynamics is driven by a variety of processes (gravity, gas drag, radiation pressure..) inducing a size-dependant dynamics, and, at the same time collisional evolution changes the local size distributions. These two effects are intimately coupled because the local dynamics and size-distribution determines the local collision rates, that, in-turn, determines the size-distribution and modifies the particle's dynamics. Here we report on a new algorithm that overcomes these difficulties by using a hybrid approach extending the work of Charnoz & Morbidelli (Icarus, 2004, 2007). We will briefly present the method and focus on gaseous protoplanetary disks either laminar or turbulent (the time dependant transport and dust evolution will be shown) . We will show how the taking into account of a 3D dynamics helps to determine disantengle the dust size-distribution in the disk's photosphere and in the midplane and thus may provide observational signatures of accretion. We will show how the coupling of turbulence with fragmentation may significantly affect the dust/ratio for the smallest bodies. Finally, we will show that an accurate description of the time dependant dynamics of larger dusts (those with Stokes numbers >= 1) may provide a possible path to the formation of bodies larger than the accretion barrier, through accretion in a transitory regime.

  12. Dynamics of Dust near the Sun

    NASA Astrophysics Data System (ADS)

    Krivov, Alexander; Kimura, Hiroshi; Mann, Ingrid

    1998-08-01

    In an effort to shed some light on the main features of the innermost part of the zodiacal cloud, the solar F-corona region, for which both observational and theoretical studies still give controversial results, we model the dynamics and physical evolution of dust grains at several solar radii (R⊙) from the Sun. We take into account solar gravity, direct solar radiation pressure, Poynting-Robertson force, sublimation, and the Lorentz force. The latter is computed on the base of (i) the grain surface potentials derived from elaborate model calculations and shown to vary from +3 to +12 V; (ii) a multipole radial model of the actual solar magnetic field for the period 1976-1996. The dust particles are assumed to be porous and compact spherical grains, made of two types of material: dielectric (silicate) grains and absorbing (carbon) ones. Our main results can be summarized as follows. The decrease of grains' sizes and the dynamics of particles in the orbital plane are well described by taking into account solar gravity and radiative forces together with the sublimation process, being relatively insensitive to the electromagnetic force. The silicate grains typically move inward in near-circular spirals until intensive sublimation starts and they disappear at heliocentric distances from 2 to 3R⊙. The carbon grains intensively sublimate near 4R⊙. After several radial oscillations, they are eventually ejected out as β-meteoroids, when they approach a critical radius of ≈2.4 μm (for porous grains) or ≈0.5 μm (for solid spheres), which corresponds to the radiation pressure to solar gravity ratio β equal to unity. The orientation of the orbital planes of the particles is dictated by the Lorentz force. Both porous and compact carbon grains possess high β ratios and must be larger than respectively 2.4 and 0.5 μm to reach the near-solar region. For these sizes, the Lorentz force is relatively weak, comes basically from the dipole zonal component of the field

  13. Publication trends in aeolian research: An analysis of the Bibliography of Aeolian Research

    NASA Astrophysics Data System (ADS)

    Stout, John E.; Warren, Andrew; Gill, Thomas E.

    2009-04-01

    An analysis of the Bibliography of Aeolian Research has provided information regarding publication trends in aeolian research. Results suggest that there has been a significant increase in the number of publications per year since the first aeolian-research publication appeared in 1646. Rates of publication have increased from only three publications in the 17th Century to nearly three publications per day in the 21st Century. The temporal distribution of publications follows a complex pattern that is influenced by many factors. In the 17th and 18th Centuries, publications appear as isolated clusters indicating limited interest in aeolian research and limited opportunities for individuals to contribute to scientific literature. With time, many new scientific societies are formed and many new scientific journals are established, opening new opportunities for scientists to contribute to scientific discourse. Landmark publications open up new research areas and define new directions for aeolian research. General advances in science and technology provide new techniques for sampling blowing sand and dust. In addition, clear signs exist that publication rates respond to major environmental and climatic events, especially large-scale disasters that focus attention on wind erosion and blowing dust. The Sirocco dust events of 1901-1903, the North American Dust Bowl of the1930s, and the recent sand and dust storm problems in China have all led to significant increases in the number of publications in aeolian research. Rates of publication are negatively influenced by major political and social upheavals, especially global conflicts such as World Wars I and II. Sudden shifts in government structure and support can also influence publication rates. A good example is the increased publication rates in China following the end of the Cultural Revolution, a trend that continues today.

  14. Regional aeolian dynamics and sand mixing in the Gran Desierto - Evidence from Landsat Thematic Mapper images

    NASA Technical Reports Server (NTRS)

    Blount, Grady; Greeley, Ronald; Christensen, Phillip R.; Smith, Milton O.; Adams, John B.

    1990-01-01

    Mesoscale mapping of spatial variations in sand composition of the Gran Desierto (Sonora, Mexico) was carried out on multispectral Landsat TM images of this region, making it possible to examine the dynamic development of sand sheets and dunes. Compositions determined from remote imagery were found to agree well with samples from selected areas. The sand populations delineated were used to describe the sediment source areas, transport paths, and deposition sites. The image analysis revealed important compositional variations aver large areas that were not readily apparent in the field data.

  15. Dynamics of Dust Grains Near the Sun

    NASA Astrophysics Data System (ADS)

    Shestakova, L. I.; Tambovtseva, L. V.

    The orbital motion of interplanetary dust grains in sublimation zone near the Sun is revised in detail for grains of obsidian, basalt, astronomical silicate and graphite. Effects of gravity, radiation pressure for a spherical source with limb darkening, and solar wind pressure on dust grains were taken into account. The influence of sputtering, thermal velocity and tangential velocity component of the solar wind particles on lifetime of the grains moving on prograde and retrograde orbits is investigated. It is obtained that = radiation pressure/gravity is constant everywhere including the region close to the Sun. It is shown that the temperature of submicron dust grains does not exceed 1500 K for silicate grains and 2000 K for graphite ones anywhere in solar corona. Both the dust rings observed near 9r and the dust free zone near 6.5r can be explained by basalt-like grains. These dust rings and those observed earlier near 4r, formed by obsidian-like grains, were not found during the solar eclipse in 1991. This is possible if the bulk of the grains belong to population II (Le Sergeant D'Hendecourt and Lamy, 1980) (in this case small particles with radii s < 0.5 m do not form a region of high concentration) of if dust have a cometary origin. Dust grains with optical properties similar to astronomical silicate sublimating far from the Sun, go onto elliptic orbits and reach the Earth. These grains can be candidates for -meteoroids) ("apex" particles) with the mass 10-12 g which were observed in the inner Solar System during Helios ½ missions.

  16. The Impact of Urbanization on the Regional Aeolian Dynamics of an Arid Coastal Dunefield

    NASA Astrophysics Data System (ADS)

    Smith, Alexander; Jackson, Derek; Cooper, Andrew

    2016-04-01

    The anthropogenic impact on the geomorphology of many landscapes are inextricably connected but are often neglected due to the difficulty in making a direct link between the quasi natural and human processes that impact the environment. This research focuses on the Maspalomas dunefield, located on the southern coast of Gran Canaria, in the Canary Island Archipelago. The tourism industry in Maspalomas has led to intensive urbanization since the early 1960's over an elevated alluvial terrace that extends into the dunefield. Urbanization has had a substantial impact on both the regional airflow conditions and the geomorphological development of this transverse dune system. As a result airflow and sediment has been redirected in response to the large scale construction efforts. In situ data was collected during field campaigns using high resolution three-dimensional anemometry to identify the various modifications within the dunefield relative to incipient regional airflow conditions. The goal is to analyse the flow conditions near the urbanized terrace in relation to areas that are located away from the influence of the buildings and to verify numerical modelling results. Computational Fluid Dynamics (CFD) modelling is used in order to expand the areal extent of analysis by providing an understanding of relevant flow dynamics (e.g. flow velocity, directionality, turbulence, shear stresses, etc.) at the mesoscale. An integrative three dimensional model for CFD simulations was created to address the impact of both the urban area (i.e. hotels, commercial centers, and residential communities) as well as the dune terrain on regional flow conditions. Early modelling results show that there is significant flow modification around the urban terrace with streamline compression, acceleration, and deflection of flow on the windward side of the development. Consequently downwind of the terrace there is an area of highly turbulent flow conditions and well developed separation and

  17. Dynamics and Distribution of Interplanetary Dust

    NASA Astrophysics Data System (ADS)

    Ipatov, S. I.; Mather, J. C.

    2005-08-01

    We integrated the orbital evolution of 12,000 asteroidal, cometary, and trans-Neptunian dust particles, under the gravitational influence of planets, Poynting-Robertson drag, radiation pressure, and solar wind drag (Annals of the New York Academy of Sciences, v. 1017, 66-80, 2004; Advances in Space Research, in press, 2005). The orbital evolution of 30,000 Jupiter-family comets (JFCs) was also integrated (Annals of the New York Academy of Sciences, v. 1017, 46-65, 2004). For asteroidal and cometary particles, the values of the ratio β between the radiation pressure force and the gravitational force varied from <0.0004 to 0.4 (for silicates, such values correspond to particle diameters between >1000 and 1 microns). The considered cometary particles started from comets 2P, 10P, and 39P. The probability of a collision of an asteroidal or cometary dust particle with the Earth during a lifetime of the particle was maximum at diameter about 100 microns; this is in accordance with cratering records. Our different studies of migration of dust particles and small bodies testify that the fraction of cometary dust particles of the overall dust population inside Saturn's orbit is considerable and can be dominant: (1) Some JFCs can reach orbits entirely located inside Jupiter's orbit and remain in such orbits for millions of years. Such former comets could disintegrate during millions of years and produce a lot of mini-comets and dust. (2) The spatial density of migrating trans-Neptunian particles near Jupiter's orbit is smaller by a factor of several than that beyond Saturn's orbit. Only a small fraction of asteroidal particles can migrate outside Jupiter's orbit. Therefore cometary dust particles are needed to explain the observed constant spatial density of dust particles at 3-18 AU from the Sun. (3) Comparison of the velocities of zodiacal dust particles obtained in our runs with the observations of velocities of these particles made by Reynolds et al. (Ap.J., 2004, v. 612

  18. Late Pleistocene aeolian dust provenances and wind direction changes reconstructed by heavy mineral analysis of the sediments of the Dehner dry maar (Eifel Mountains, Germany)

    NASA Astrophysics Data System (ADS)

    Lehmkuhl, Frank; Römer, Wolfgang; Sirocko, Frank

    2016-04-01

    The study presents the results of a heavy mineral analysis from a 38 m long record of aeolian sediments from a core section of the Dehner dry maar (Eifel Mountains, Germany). The record encompasses the period from 30 to about 12.5 ka. Heavy-mineral analysis of the silt fraction has been performed at a sampling interval of 1 m. Statistical analyses enabled the distinction of local and regional source areas of aeolian material and revealed pronounced changes in the amounts of different heavy mineral species and corresponding changes in the grain size index (GSI). The results indicate that during the early stages of MIS 2 (40 to 30m depth) aeolian sediments were supplied mostly from local sources. This period is characterized by a low GSI ratio resulting from a reduced mobility of material due to a vegetation cover. The climax of the LGM is characterized by a higher supply of heavy minerals from regional and more distant sources. Changes in the provenance areas are indicated in inverse relationships between zircon, rutile, tourmaline (ZRT) and carbonate particles. Shifts in the wind direction are documented in pronounced peaks of carbonate particles indicating easterly winds that have crossed the limestone basins in the Eifeler North South Zone. ZRT-group minerals on the other hand suggest a westerly source area and a supply from areas consisting of Paleozoic clastic sedimentary rocks. In the periods following the LGM the analyses indicate an increasing degree of mixing of heavy minerals from various provinces. This suggests the existence of a presumably incomplete, thin cover of deflatable loessic sediments that has been repeatedly reworked on the elevated surfaces of the Eifel.

  19. Complex systems in aeolian geomorphology

    NASA Astrophysics Data System (ADS)

    Baas, Andreas C. W.

    2007-11-01

    Aeolian geomorphology provides a rich ground for investigating Earth surface processes and landforms as complex systems. Sand transport by wind is a classic dissipative process with non-linear dynamics, while dune field evolution is a prototypical self-organisation phenomenon. Both of these broad areas of aeolian geomorphology are discussed and analysed in the context of complexity and a systems approach. A feedback loop analysis of the aeolian boundary-layer-flow/sediment-transport/bedform interactions, based on contemporary physical models, reveals that the system is fundamentally unstable (or at most meta-stable) and likely to exhibit chaotic behaviour. Recent field-experimental research on aeolian streamers and spatio-temporal transport patterns, however, indicates that sand transport by wind may be wholly controlled by a self-similar turbulence cascade in the boundary layer flow, and that key aspects of transport event time-series can be fully reproduced from a combination of (self-organised) 1/ f forcing, motion threshold, and saltation inertia. The evolution of various types of bare-sand dunes and dune field patterns have been simulated successfully with self-organising cellular automata that incorporate only simplified physically-based interactions (rules). Because of their undefined physical scale, however, it not clear whether they in fact simulate ripples (bedforms) or dunes (landforms), raising fundamental cross-cutting questions regarding the difference between aeolian dunes, impact ripples, and subaqueous (current) ripples and dunes. An extended cellular automaton (CA) model, currently under development, incorporates the effects of vegetation in the aeolian environment and is capable of simulating the development of nebkhas, blow-outs, and parabolic coastal dunes. Preliminary results indicate the potential for establishing phase diagrams and attractor trajectories for vegetated aeolian dunescapes. Progress is limited, however, by a serious lack of

  20. Dynamics of sediment storage and release on aeolian dune slip faces: A field study in Jericoacoara, Brazil

    NASA Astrophysics Data System (ADS)

    Pelletier, Jon D.; Sherman, Douglas J.; Ellis, Jean T.; Farrell, Eugene J.; Jackson, Nancy L.; Li, Bailiang; Nordstrom, Karl F.; Maia, Luis Parente; Omidyeganeh, Mohammad

    2015-09-01

    Sediment transport on the lee sides of aeolian dunes involves a combination of grain-fall deposition on the upper portion of the slip face until a critical angle is exceeded, transport of a portion of those sediments down the slip face by grain flows and, finally, deposition at an angle of repose. We measured the mean critical and repose angles and the rate of slip-face avalanching using terrestrial laser scanning (TLS) on two barchans of different size in Jericoacoara, Brazil. Wind speeds and sand fluxes were measured simultaneously at the dune crests. We found that the mean critical decreased with increasing wind speed. We attribute this effect to turbulent shear stresses, the magnitude of which we quantified using 3-D large eddy simulation modeling, that randomly act down the slip face (i.e., in the direction of gravity) to trigger grain flows at lower angles than would be possible with gravity stresses alone. We developed and tested a new predictive model for the frequency of avalanching that depends on both the sediment flux delivered to the slip face and changes in the critical angle with time. In this model, increasing turbulent shear stresses drive avalanching even in the absence of sand flux delivered to the slip face if the critical angle decreases below the slope angle. We also document that the mean critical angle decreases slightly with increasing slip-face height. These results have important implications for aeolian dune evolution, interpretations of aeolian stratigraphy, and granular mechanics.

  1. Late Pleistocene aeolian dust provenances and wind direction changes reconstructed by heavy mineral analysis of the sediments of the Dehner dry maar (Eifel, Germany)

    NASA Astrophysics Data System (ADS)

    Römer, Wolfgang; Lehmkuhl, Frank; Sirocko, Frank

    2016-12-01

    The study presents the results of a heavy mineral analysis from a 38 m long record of lacustrine Eifel maar sediments from a core section of the Dehner dry maar. The record encompasses the period from 29,000 to about 12,500 b2k. Statistical analyses enabled the distinction of local and regional source areas of aeolian material and revealed pronounced changes in the amounts of different heavy mineral species and corresponding changes in the grain size Index (GSI and CSI). The results indicate that during the early stages of MIS2 (39 to 30 m depth) aeolian sediments were supplied mostly from local sources. This period is characterized by low GSI and CSI ratios resulting from a reduced mobility of material due to a vegetation cover. The period between 23,000 and 12,900 b2k is characterized by a higher supply of heavy minerals from regional and more distant sources. Changes in the provenance areas are indicated in inverse relationships between zircon, rutile, tourmaline (ZRT) and carbonate particles. Shifts in the wind direction are documented in pronounced peaks of carbonate particles indicating easterly winds that have crossed the limestone basins in the Eifeler North South Zone. ZRT-group minerals on the other hand suggest a westerly source area from Palaeozoic clastic sedimentary rocks. The heavy mineral assemblage of the LGM section at 23,000 to 15,000 b2k displays a close correspondence with the stratigraphic relationships that have been obtained for the Landscape Evolution Zone 4 of the ELSA-Vegetation Stack of Sirocko et al. (2016). From the Heinrich 2 event onwards the analyses indicate an increasing degree of mixing of heavy minerals from various provinces. This suggests the existence of a presumably incomplete, thin cover of deflated loess-like sediments that has been repeatedly reworked on the elevated surfaces of the Eifel.

  2. Dynamics of Cometary Dust Particles in Electromagnetic Radiation Fields

    NASA Astrophysics Data System (ADS)

    Herranen, Joonas; Markkanen, Johannes; Penttilä, Antti; Muinonen, Karri

    2016-10-01

    The formation of cometary dust tails and comae is based on solar radiation pressure. The pressure effects of electromagnetic radiation were originally conceptualized in Kepler's observations of the tails of comets and formulated mathematically by Maxwell in 1873. Today, the dynamics of cometary dust are known to be governed by gravity, electromagnetic forces, drag, solar wind, and solar radiation pressure.Solar radiation pressure has its roots in absorption, emission, and scattering of electromagnetic radiation. Due to modern advances in so-called integral equation methods in electromagnetics, a new approach of studying the effect of radiation pressure on cometary dust dynamics can be constructed. We solve the forces and torques due to radiation pressure for an arbitrarily shaped dust particle using volume integral equation methods.We then present a framework for solving the equations of motion of cometary dust particles due to radiative interactions. The solution is studied in a simplified cometary environment, where the radiative effects are studied at different orbits. The rotational and translational equations of motion are solved directly using a quaternion-based integrator. The rotational and translational equations of motion affect dust particle alignment and concentration. This is seen in the polarization of the coma. Thus, our direct dynamical approach can be used in modelling the observed imaging photo-polarimetry of the coma.In future studies, the integrator can be further extended to an exemplary comet environment, taking into account the drag, and the electric and magnetic fields. This enables us to study the dynamics of a single cometary dust particle based on fundamental physics.Acknowledgments. Research supported, in part, bythe European Research Council (ERC, grant Nr. 320773).

  3. Seawater dynamics and environmental settings after November 2002 gas eruption off Bottaro (Panarea, Aeolian Islands, Mediterranean Sea)

    NASA Astrophysics Data System (ADS)

    Aliani, Stefano; Bortoluzzi, Giovanni; Caramanna, Giorgio; Raffa, Francesco

    2010-07-01

    In November 2002 several gas bursts occurred at sea in the caldera within the islets eastward of Panarea (Aeolian Islands), with degassing of CO 2 lasting several months. In a depression close to Bottaro Islet (PEG1) the gas flowed violently from the depth of ˜14m to the surface producing a large plume of gas and fluids. The aims of this paper are to report on the morphological modifications, the water and gas fluxes, and the water dynamics and hydrological properties near the PEG1 site. Bathymetric surveys up to 2006 and divers' observations up to 2008 revealed that the sinkhole had been partially filled by sediments transported by currents or sliding from the rims. Depth reduced to ˜12m and the shape of the depression was becoming similar to the others in the area, suggesting that explosive gas eruptions may have occurred in the past. The gas outflow generated a bubble plume that locally affected the water circulation. Different patterns in the dynamics of the water column were described using rotor current meters, ADCP, ROV and divers' observations, and high-resolution bathymetry. A divergence about 1 m thick was generated by a surface vortex visible in December 2002 that was not found in September 2003 with reduced gas flow. A sub-surficial layer down to ˜1-2m above bottom showed varying speed and directions possibly correlated to tides. A bottom layer of water ˜1m thick flowed continuously toward the crater during both surveys. On the nearby sandy bottoms, sand dunes and 2/4 mm size volcanoclastic gravels rolling toward the emitting area were found. The fluxes of water entering at the seafloor were calculated by current velocities, height of the bottom layer, and area of the degassing vent. The input water fluxes were found to be 4.2 and 0.2×10 8 l/d, for December 2002 and September 2003. The total vertical output flux was also estimated; considering bubble sizes and voids, gas fluxes were 2.6 and 0.3×10 8 l/d. These values are similar to the fluxes

  4. Coastline orientation, aeolian sediment transport and foredune and dunefield dynamics of Moçambique Beach, Southern Brazil

    NASA Astrophysics Data System (ADS)

    Miot da Silva, Graziela; Hesp, Patrick

    2010-08-01

    This paper examines the role of coastline orientation on foredune and dunefield development at Moçambique Beach, Southern Brazil. The beach displays significant alongshore variations in exposure to the prevailing winds and waves, grain size, beach/surfzone morphodynamic type, foredune volume, and type and dimensions of the Holocene dune systems. Two wind analyses and calculation of aeolian drift potentials were carried out, one based on 1 year of wind record and another based on a record of 34 years. Monthly topographic surveys of beach and foredunes on 5 profiles along Moçambique beach were conducted over one year to obtain data on beach mobility and width, aeolian sediment transport and foredune development. Southerly winds dominate, and aeolian sediment supply is minimal in the south, moderate in the central portion and high in the northern portion of the embayment. The relationship between actual sediment supply, foredune building and potential sediment supply is relatively poor over one year due to factors such as beach type and mobility, beach moisture levels, rainfall, storm surge and wave scarping. The intermediate term (34 year) record indicates a strong relationship between foredune size and volume, winds and shoreline orientation: foredune volume is minimum in the southern part of the beach and greatest in the northern part of the beach. The Holocene barrier and dunefield development also reflects the long term control of shoreline orientation and increasing longshore gradient in exposure to southerly winds: for the last 6000-7000 years a small foredune developed in the southern portion, parabolics and small transgressive dunes in the central portion, and a large-scale transgressive dunefield in the northern portion.

  5. Robotic Measurement of Aeolian Processes

    NASA Astrophysics Data System (ADS)

    Roberts, S.; Duperret, J. M.; Jerolmack, D. J.; Lancaster, N.; Nikolich, G.; Shipley, T. F.; Van Pelt, R. S.; Zobeck, T. M.; Koditschek, D. E.

    2015-12-01

    Local and regional measurements of sand transport and dust emission in complex natural settings presently lack spatiotemporal resolution adequate to inform models relevant for land management, climate policy, and the basic science of geomorphology. Deployments of wind, sand and dust sensors sophisticated enough to begin unpacking the complex relations among wind turbulence, surface roughness, sand flux and dust emission remain largely stationary. Aerial observations from satellites, planes and even UAVs help fill in, but none of these modalities offer the hope of "capturing the action" by being at the right place at the right time relative to the highly localized nature of sediment transport during wind storms. We have been developing a legged robot capable of rapidly traversing desert terrain, and are now adapting it to serve as a platform for scientific instrumentation. We aim to field a semi-autonomous, reactive mobile sensory package suited to the needs of aeolian science that can address the limitations of existing alternatives. This presentation reports on early trials in the Jornada LTER and White Sands National Monument aimed at gathering measurements of airflow and rates of sand transport on a dune face, assessing the role of roughness elements such as vegetation in modifying the wind shear stresses incident on the surface, and estimating erosion susceptibility in a natural arid soil. We will solicit ideas from the audience about other potentially interesting and viable measurement targets. Future close collaboration between aeolian, cognitive and robotics scientists such as we hope to promote through this presentation may yield machines with scientifically relevant sensory suites possessing sufficient autonomy to operate in-situ at the most intense episodes of wind and sediment movement under conditions far too uncomfortable and hazardous for human presence.

  6. Spatial and temporal distribution of the dust deposition in Central Asia - results from a long term monitoring program

    NASA Astrophysics Data System (ADS)

    Groll, M.; Opp, Chr.; Aslanov, I.

    2013-06-01

    The aeolian transport of dust is an important process in Central Asia. Anthropogenic desertification and the desiccation of the Aral Sea have increased the overall dust emission and transport from this region and the local dust storm frequency during the last decades. Reliable ground data, however, are collected only sporadically, so the knowledge about the spatial and temporal distribution and dynamics of the dust deposition in the Aral Sea basin is fragmented and inconsistent at best. A long-term monitoring program was installed and sustained by three research projects. The results included in this article cover the dust deposition between 2003 and 2010 from 21 stations in Uzbekistan, Kazakhstan, and Turkmenistan. They confirm that the aeolian dust transport occurs mainly in the Southern direction. The highest average monthly deposition rate was registered in Uzbekistan (56.2 g m-2), while the percentage of months with a very intense (and potentially harmful) dust deposition flux was highest in Turkmenistan (36.4%). A majority of samples were collected during months with a dust deposition of less than 10.0 g m-2, while only 6% of all samples showed high monthly deposition intensities of more than 100 g m-2. The Kyzyl Kum, Kara Kum, and Aral Kum were identified as the main sources for aeolian dust in the Aral Sea basin. The impact of the Aral Kum as the dominant source of aeolian dust is limited to a region of approximately 500,000 km2 surrounding the former Aral Sea. The Kara Kum is characterized by a very high frequency of dust storms of a local and regional magnitude, and close to the Kyzyl Kum, monthly dust deposition rates of up to 9,600 g m-2 were registered. An analysis of the temporal distribution of the dust deposition showed a slight increase in the dust deposition activity and intensity between 2003 and 2010, with a strong inter-annual and seasonal dynamic. The highest average dust deposition was registered in June, and a second phase of intense dust

  7. Geochemical investigation of dry- and wet-deposited dust during the same dust-storm event in Harbin, China: Constraint on provenance and implications for formation of aeolian loess

    NASA Astrophysics Data System (ADS)

    Xie, Yuanyun; Chi, Yunping

    2016-04-01

    A strong dust-storm event occurred in Harbin, China on May 11, 2011. The dry- and wet-deposited dust depositions in this dust-storm event, together with the surface sediments from the potential sources, were collected to study grain size distributions, carbonate content and carbon isotopic composition of carbonate, major element, trace element and rare earth elements (REE), and Sr-Nd isotopic compositions. The results indicate as follows. The dry-deposited dusts are characterized by bimodal grain-size distributions with a fine mode at 3.6 μm and a coarse mode at 28 μm whereas the wet-deposited dusts are indicative of unimodal grain-size modes with a fine mode at 6 μm. The dust-storm depositions are influenced to a certain extent by sedimentary sorting and are of a derivation from the recycled sediments. Based on identifying the immobility of element pairs before constraining sources of dust-storm deposits using geochemical elements, in conjunction with REE and especially Sr-Nd isotopic compositions, the primary and strengthening sources for the dust-storm event were detected, respectively. The Hunsandake Sandy Land as the primary source and the Horqin Sandy Land as the strengthening source were together responsible for the derivation of dust depositions during dust-storm event. The Hunsandake Sandy Land, however, contributes less dust to the dust-storm event in Harbin compared to the Horqin Sandy Land, and the Hulun Buir Sandy Land is undoubtedly excluded from being one of the sources for dust-storm depositions in Harbin. There are not notable differences in geochemical (especially Sr-Nd isotopic) compositions between dry- and wet-deposited dusts, indicating that the wet-deposited dust is of identical derivation to the dry-deposited dust. Based on our observations, it is of interest to suggest that fine and coarse particles in the CLP (Chinese Loess Plateau) loess possibly have the same sources.

  8. Observed particle sizes and fluxes of Aeolian sediment in the near surface layer during sand-dust storms in the Taklamakan Desert

    NASA Astrophysics Data System (ADS)

    Huo, Wen; He, Qing; Yang, Fan; Yang, Xinghua; Yang, Qing; Zhang, Fuyin; Mamtimin, Ali; Liu, Xinchun; Wang, Mingzhong; Zhao, Yong; Zhi, Xiefei

    2016-08-01

    Monitoring, modeling and predicting the formation and movement of dust storms across the global deserts has drawn great attention in recent decades. Nevertheless, the scarcity of real-time observations of the wind-driven emission, transport and deposition of dusts has severely impeded progress in this area. In this study, we report an observational analysis of sand-dust storm samples collected at seven vertical levels from an 80-m-high flux tower located in the hinterland of the great Taklamakan Desert for ten sand-dust storm events that occurred during 2008-2010. We analyzed the vertical distribution of sandstorm particle grain sizes and horizontal sand-dust sediment fluxes from the near surface up to 80 m high in this extremely harsh but highly representative environment. The results showed that the average sandstorm grain size was in the range of 70 to 85 μm. With the natural presence of sand dunes and valleys, the horizontal dust flux appeared to increase with height within the lower surface layer, but was almost invariant above 32 m. The average flux values varied within the range of 8 to 14 kg m-2 and the vertical distribution was dominated by the wind speed in the boundary layer. The dominant dust particle size was PM100 and below, which on average accounted for 60-80 % of the samples collected, with 0.9-2.5 % for PM0-2.5, 3.5-7.0 % for PM0-10, 5.0-14.0 % for PM0-20 and 20.0-40.0 % for PM0-50. The observations suggested that on average the sand-dust vertical flux potential is about 0.29 kg m-2 from the top of the 80 m tower to the upper planetary boundary layer and free atmosphere through the transport of particles smaller than PM20. Some of our results differed from previous measurements from other desert surfaces and laboratory wind-dust experiments, and therefore provide valuable observations to support further improvement of modeling of sandstorms across different natural environmental conditions.

  9. Aeolian processes and the bioshpere: Interactions and feedback loops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aeolian processes affect landform evolution, biogeochemical cycles, regional climate, human health, and desertification. The entrainment, transport and deposition of aeolian sediments are recognized as major drivers in the dynamics of the earth system and there is a growing interest in the scientif...

  10. Studies in Aeolian geology

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald

    1988-01-01

    The objective of the research was to assess the significance of aeolian (windblown) processes in the evolution of planetary surfaces. The approach was to use wind tunnel simulations, field studies of possible analogs, and analyses of spacecraft data.

  11. MECA Worksop on Dust on Mars 2

    NASA Technical Reports Server (NTRS)

    Lee, Steven (Editor)

    1986-01-01

    Topics addressed include: sedimentary debris; mineralogy; Martian dust cycles; Mariner 9 mission; Viking observations; Mars Observer; atmospheric circulation; aeolian features; aerosols; and landslides.

  12. Aeolian Morphodynamics of Loess Landscapes

    NASA Astrophysics Data System (ADS)

    Mason, J. A.; Hanson, P. R.; Sweeney, M.; Loope, H. M.; Miao, X.; Lu, H.

    2012-12-01

    Striking aeolian landforms characterize loess landscapes of the Great Plains and Upper Mississippi Valley, USA, shaped in Late Pleistocene environments with many characteristics of modern deserts including large active dunefields. Similar aeolian morphodynamics are evident in northern China and the Columbia Basin, USA, and are clearly important for interpreting the paleoenvironmental record of loess. Four zones spanning the upwind margin of thick loess can be defined from landforms and surficial deposits. From upwind to downwind, they are: A) A largely loess-free landscape, with patchy to continuous aeolian sand mantling bedrock. B) Patchy loess deposits, often streamlined and potentially wind-aligned, intermingled with dunes and sand sheets; interbedding of loess and sand may be common. C) Thick, coarse loess with an abrupt upwind edge, with troughs, yardang-like ridges, and/or wind-aligned scarps recording large-scale wind erosion. D) Thinner, finer loess with little evidence of post-depositional wind erosion. The degree of development and spatial scale of these zones varies among the loess regions we studied. To explain this zonation we emphasize controls on re-entrainment of loess by the wind after initial deposition, across gradients of climate and vegetation. The role of saltating sand in dust entrainment through abrasion of fine materials is well known. Using the Portable In situ Wind Erosion Laboratory (PI-SWERL), we recently demonstrated that unvegetated Great Plains loess can also be directly entrained under wind conditions common in the region today (Sweeney et al., 2011, GSA Abstracts with Programs, Vol. 43, No. 5, p. 251). Rainfall-induced crusts largely prevent direct entrainment in fine loess, but appear less effective in coarse loess. We propose that in zone A, any loess deposited was both abraded by saltating sand and directly re-entrained, so none accumulated. Sparse vegetation in this zone was primarily an effect of climate, but the resulting

  13. Atmospheric Dynamics of Sub-Tropical Dust Storms

    NASA Astrophysics Data System (ADS)

    Pokharel, Ashok Kumar

    Meso-alpha/beta scale observational and meso-beta/gamma scale numerical model analyses were performed to study the atmospheric dynamics responsible for generating Harmattan, Saudi Arabian, and Bodele Depression dust storms. For each dust storm case study, MERRA reanalysis datasets, WRF simulated very high resolution datasets, MODIS/Aqua and Terra images, EUMETSAT images, NAAPS aerosol modelling plots, CALIPSO images, surface observations, and rawinsonde soundings were analyzed. The analysis of each dust storm carried out separately and an in-depth comparison of the events shows some similarities among the three case studies: (1) the presence of a well-organized baroclinic synoptic scale system, (2) small scale dust emission events which occurred prior to the formation of the primary large-scale dust storms, (3) cross mountain flows which produced a strong leeside inversion layer prior to the large scale dust storm, (4) the presence of thermal wind imbalance in the exit region of the mid-tropospheric jet streak in the lee of the mountains shortly after the time of the inversion formation, (5) major dust storm formation was accompanied by large magnitude ageostrophic isallobaric low-level winds as part of the meso-beta scale adjustment process, (6) substantial low-level turbulence kinetic energy (TKE), (7) formation in the lee of nearby mountains, and (8) the emission of the dust occurred initially in narrow meso-beta scale zones parallel to the mountains, and later reached the meso-alpha scale when suspended dust was transported away from the mountains. In addition to this there were additional meso-beta scale and meso-gamma scale adjustment processes resulting in Kelvin waves in the Harmattan and the Bodele Depression cases and the thermally-forced MPS circulation in all of these three cases. The Kelvin wave preceded a cold pool accompanying the air behind the large scale cold front instrumental in the major dust storm. The Kelvin wave organized the major dust

  14. Heterogeneous Chemical Transformation on Mineral Aerosol Surfaces during Long Range Transport and its Implications in Understanding Aeolian Dust Deposits in Antarctic Dry Valleys

    NASA Astrophysics Data System (ADS)

    Shaheen, R.; Bao, H.; Thiemens, M. H.

    2010-12-01

    Mineral dust aerosols comprise ~ 60% of aerosol dry mass and link the atmosphere, lithosphere and hydrosphere in complex ways. The µm sized mineral dust particles can be transported over long distances (> 1000 km) and have ample opportunity en-route to interact with trace gases such as O3, NOx, SOx, VOC’s , thus not only affecting gas phase chemistry by serving as chemical sink but also providing reactive surfaces for the formation of secondary compounds. Defining these pathways is important for understanding chemical budgets of trace gases and to assess the role of mineral aerosols on hydrological, biogeochemical cycle, and climate change through direct/ indirect radiative forcing. These processes are recognizably important but difficult to measure due to the lack of relevant analytical techniques to trace secondary transformation on aerosol surfaces. Here we show that stable isotopes of C and O in the carbonate fractions of secondary mineral dust aerosols can be used to fingerprint the heterogeneous chemical transformations and reaction mechanism at a molecular level. Soil samples were collected from McMurdo Dry Valleys, Antarctica. CO2 was obtained by phosphoric acid digestion from the carbonate fractions of mineral dust. Purified CO2 gas was analyzed for δ13C and subsequently fluorinated to produce O2 gas thus enabling the measurement of triple oxygen isotopic composition of the CO2. Data indicated significant variations in δ13C (+3 to -34 ‰) and δ18O (+2 to 26‰) of the carbonate fractions of the soil samples. Intriguingly, we found distinct 17O anomalies (Δ17O = δ17O - 0.524 δ18O) in some of the soils, ranging from +0.52 to +1.60‰. On the other hand, carbonate crusts formed underneath surface pebbles in Dry Valleys are significantly enriched in the δ13C(+11‰) but do not bear a 17O anomaly. To understand the origin and variation in the C and O isotopic composition of dust deposits in Antarctica, controlled laboratory experiments using various

  15. The role of water in the development of surface roughness and mineralogical variability on playa surface sediments: Implications for aeolian erodibility and dust emission

    NASA Astrophysics Data System (ADS)

    Tollerud, Heather J.

    Playas are significant sources for atmospheric mineral dust, but the evolution of their surface erodibility through time is not well established, leading to difficulties in modeling dust emission. Investigation of the spatial and temporal variability of surfaces within dust source regions has the potential to elucidate the processes that control erodibility and to improve model predictions of dust emission. In this dissertation the variability in time and space of surface mineralogical composition, particle size distribution, and surface roughness is measured in a playa (the Black Rock Desert, NV, USA). Water is found to be critical to the development of playa surfaces. Analysis of samples from the Black Rock playa demonstrates that the playa is mainly composed of quartz (˜30 wt%), clay (˜45 wt%), plagioclase (˜10 wt%), calcite (2-15 wt%), and halite (0-40 wt%). Composition varies between the center of the playa (more frequently inundated) and edge, with smaller particles, more clay, less plagioclase, and less calcite in the central areas. The surface roughness of the Black Rock playa is observed through time (2004-2010) using synthetic aperture radar (SAR) remote sensing data. Surface roughness is relatively constant during the dry summer months, but changes significantly from year to year, suggesting that water and inundation have more control on playa surfaces than anthropogenic activity or saltation abrasion. Roughness is low in years with heavy precipitation, but late drying areas of the playa are rough. Small scale lab experiments on a playa analog surface demonstrate that cycles of wetting/drying increase roughness, particularly for surfaces with added CaCO 3; a surface with added CaCO3 produced aggregates of a size appropriate for saltation (<100 microm) through wetting/drying cycles, while a surface with added NaCl remained relatively smooth. These observations suggest a conceptual framework for the development of surfaces in a playa: inundation smooths

  16. Mega-ripples in Iran: A new analog for transverse aeolian ridges on Mars

    NASA Astrophysics Data System (ADS)

    Foroutan, M.; Zimbelman, J. R.

    2016-08-01

    A new terrestrial analog site for transverse aeolian ridges (TARs) is described in this study. The Lut desert of Iran hosts large ripple-like aeolian bedforms, with the same horizontal length scales and patterns of TARs on Mars. Different classes of TARs and different types of other aeolian features such as sand dunes, zibars, dust devil tracks and yardangs can be found in this area, which signify an active aeolian region. This area represents a unique site to study the formation and evolution of these enigmatic features, with potential relevance toward a better understanding of TARs on Mars.

  17. Dust Particle Dynamics in The Presence of Highly Magnetized Plasmas

    NASA Astrophysics Data System (ADS)

    Lynch, Brian; Konopka, Uwe; Thomas, Edward; Merlino, Robert; Rosenberg, Marlene

    2016-10-01

    Complex plasmas are four component plasmas that contain, in addition to the usual electrons, ions, and neutral atoms, macroscopic electrically charged (nanometer to micrometer) sized ``dust'' particles. These macroscopic particles typically obtain a net negative charge due to the higher mobility of electrons compared to that of ions. Because the electrons, ions, and dust particles are charged, their dynamics may be significantly modified by the presence of electric and magnetic fields. Possible consequences of this modification may be the charging rate and the equilibrium charge. For example, in the presence of a strong horizontal magnetic field (B >1 Tesla), it may be possible to observe dust particle gx B deflection and, from that deflection, determine the dust grain charge. In this poster, we present recent data from performing multiple particle dropping experiments to characterize the g x B deflection in the Magnetized Dusty Plasma Experiment (MDPX). This work is supported by funding from the U. S. Department of Energy Grant Number DE - SC0010485 and the NASA/Jet Propulsion Laboratory, JPL-1543114.

  18. Investigation of bacterial effects of Asian dust events through comparison with seasonal variability in outdoor airborne bacterial community

    PubMed Central

    Park, Jonguk; Ichijo, Tomoaki; Nasu, Masao; Yamaguchi, Nobuyasu

    2016-01-01

    Atmospheric bacterial dispersion with aeolian dust has been reported to have a potential impact on public health and ecosystems. Asian dust is a major aeolian event that results in an estimated 4 million tons of Asian dust particles falling in Japan annually, 3,000–5,000 km away from their source regions. However, most studies have only investigated the effects of Asian dust during dust seasons. Therefore, in this study, outdoor bacterial abundance and community composition were determined by 16S rRNA quantitative PCR and amplicon sequencing, respectively, and compared on Asian and non-Asian dust days (2013–2015; 44 samples over four seasons). Seasonal variations in bacterial abundance of non-Asian dust days were not observed. Bacterial abundance of individual samples collected on non-Asian dust days changed dynamically relative to Asian dust days, with bacterial abundance occasionally reaching those of Asian dust days. The bacterial community composition on non-Asian dust days was rather stable seasonally, and did not differ from that on Asian dust days. These results indicate that bacteria in Asian dust does not immediately influence indigenous bacterial communities at the phylum/class level in distant downwind areas; accordingly, further studies of bacterial communities in downwind areas closer to the dust source are warranted. PMID:27761018

  19. Investigation of bacterial effects of Asian dust events through comparison with seasonal variability in outdoor airborne bacterial community

    NASA Astrophysics Data System (ADS)

    Park, Jonguk; Ichijo, Tomoaki; Nasu, Masao; Yamaguchi, Nobuyasu

    2016-10-01

    Atmospheric bacterial dispersion with aeolian dust has been reported to have a potential impact on public health and ecosystems. Asian dust is a major aeolian event that results in an estimated 4 million tons of Asian dust particles falling in Japan annually, 3,000–5,000 km away from their source regions. However, most studies have only investigated the effects of Asian dust during dust seasons. Therefore, in this study, outdoor bacterial abundance and community composition were determined by 16S rRNA quantitative PCR and amplicon sequencing, respectively, and compared on Asian and non-Asian dust days (2013–2015 44 samples over four seasons). Seasonal variations in bacterial abundance of non-Asian dust days were not observed. Bacterial abundance of individual samples collected on non-Asian dust days changed dynamically relative to Asian dust days, with bacterial abundance occasionally reaching those of Asian dust days. The bacterial community composition on non-Asian dust days was rather stable seasonally, and did not differ from that on Asian dust days. These results indicate that bacteria in Asian dust does not immediately influence indigenous bacterial communities at the phylum/class level in distant downwind areas; accordingly, further studies of bacterial communities in downwind areas closer to the dust source are warranted.

  20. High Latitude Dust in the Earth System

    NASA Technical Reports Server (NTRS)

    Bullard, Joanna E.; Baddock, Matthew; Bradwell, Tom; Crusius, John; Darlington, Eleanor; Gaiero, Diego; Gasso, Santiago; Gisladottir, Gudrun; Hodgkins, Richard; McCulloch, Robert; McKenna-Neuman, Cheryl; Mockford, Tom; Stewart, Helena; Thorsteinsson, Throstur

    2016-01-01

    Natural dust is often associated with hot, subtropical deserts, but significant dust events have been reported from cold, high latitudes. This review synthesizes current understanding of high-latitude (> or = 50degN and > or = 40degS) dust source geography and dynamics and provides a prospectus for future research on the topic. Although the fundamental processes controlling aeolian dust emissions in high latitudes are essentially the same as in temperate regions, there are additional processes specific to or enhanced in cold regions. These include low temperatures, humidity, strong winds, permafrost and niveo-aeolian processes all of which can affect the efficiency of dust emission and distribution of sediments. Dust deposition at high latitudes can provide nutrients to the marine system, specifically by contributing iron to high-nutrient, low-chlorophyll oceans; it also affects ice albedo and melt rates. There have been no attempts to quantify systematically the expanse, characteristics, or dynamics of high-latitude dust sources. To address this, we identify and compare the main sources and drivers of dust emissions in the Northern (Alaska, Canada, Greenland, and Iceland) and Southern (Antarctica, New Zealand, and Patagonia) Hemispheres. The scarcity of year-round observations and limitations of satellite remote sensing data at high latitudes are discussed. It is estimated that under contemporary conditions high-latitude sources cover >500,000 sq km and contribute at least 80-100 Tg/yr1 of dust to the Earth system (approx. 5% of the global dust budget); both are projected to increase under future climate change scenarios.

  1. The aeolian sedimentary system in the northern Qilian Shan and Hexi Corridor (N-China) - geomorphologic, sedimentologic and climatic drivers

    NASA Astrophysics Data System (ADS)

    Nottebaum, Veit; Lehmkuhl, Frank; Stauch, Georg

    2015-04-01

    The formation of aeolian deposits depends on the influence of climatic factors but also on non-climatic controls, such as local geomorphological setting and tectonic activity. Unravelling the environmental history needs a careful consideration of a set of sections to capture spatial variability and a detailed investigation of depositing processes and chronology. Along the northern margin of the Qilian Shan mountain range 22 OSL-dated loess and aeolian sand sections and additional surface samples reveal the interactions between climatic, geomorphologic and sedimentologic factors. Thin loess covers (~1-2 m) occur in elevations of 2000 to 3800 m asl, which were mainly accumulated during the Holocene. End-member modelling of loess grain size data exhibits three dominant aeolian transport pathways representing local transport from fluvial storages, dust storm contribution and background dust deposition. Their relative contributions show a clear dependence on geomorphological setting, and additionally, synchronous trends throughout the Holocene. Their relative changes allow conclusions about Holocene environmental conditions. Discontinuous archives (aeolian sand, lacustrine, and alluvial deposition) in the lower forelands of the Qilian Shan show a distinct spatial pattern contrasting western and eastern forelands. The comparison of OSL ages exhibits high sediment accumulation (~2 m/ka) in the drier western part during the Late Glacial, while the lack of Holocene ages indicates sediment discharge / deflation. In contrast, moister areas in the eastern foreland yield scattered Holocene ages. This indicates high sediment dynamics, benefiting from fluvial reworking and thus provided sediment availability. Fluvial sediment supply plays an important role in sediment recycling. Meanwhile, western forelands lack efficient sand sources and fluvial reworking agents. The study exemplifies the complex sedimentary systems acting along mountain to foreland transects which often host

  2. Aeolian processes on Venus

    NASA Technical Reports Server (NTRS)

    Greeley, R.

    1984-01-01

    Many of the questions regarding aeolian processes on Venus and the subsequent implications for surface history involve understanding the physics of particle motion in the venusian environment. The surface environment of Venus is simulated as closely as practicable using the Venus Wind Tunnel and to determine threshold wind speeds, particle flux, particle velocities, and the characteristics of various aeolian bedforms. Despite the relatively low wind speeds on Venus, the flux of windblown material on Venus is potentially high. A high fraction of material is transported as surface creep by rolling, estimates yield rates up to 100 kg per cm lane width per year depending upon the availability of material and wind frequency, suggesting that the formation of lowland plains by aeolian processes and the burial of various landforms such as impact craters could occur on short geological time-scales. Wind tunnel simulations demonstrate that aeolian processes may be very effective in modifying the surface through erosion and deposited and may have an important influence on the composition of the atmosphere.

  3. Stochastic Circumplanetary Dynamics of Rotating Non-Spherical Dust Particles

    NASA Astrophysics Data System (ADS)

    Makuch, Martin; Brilliantov, N. V.; Sremcevic, M.; Spahn, F.; Krivov, A. V.

    2006-12-01

    Influence of stochastically fluctuating radiation pressure on the dynamics of dust grains on circumplanetary orbits was studied. Stochasticity stems from the permanent change of the particle cross-section due to rotation of nonspherical grains, exposed to the solar radiation. We found that stochasticity depends on the characteristic angular velocity of particles which, according to our estimates, spins very fast on the time scale of the orbital motion. According to this we modelled the stochastic part of the radiation pressure by a Gaussian white noise. Gauss perturbation equations with the radiation pressure being a sum of the deterministic and stochastic component have been used. We observed monotonous increasing standard deviation of the orbital elements, that is, the diffusive-like behaviour of the ensemble, which results in a spatial spreading of initially confined set of particles. By linear approximation we obtained expression for the effective diffusion coefficients and estimate their dependence on the geometrical characteristics of particles and their spin. Teoretical results were compared with numerical simulations performed for the putative dust tori of Mars. Our theory agrees fairly well with simulations for the initial period of the system evolution. The agreement however deteriorates with increasing time where impact of the non-linear terms of the perturbation equations becomes important. Analysis shows that the theoretical results may estimate the low boundary of the time-dependent standard deviation of the orbital elements. In the case of dust ejected from Martian moon Deimos we observed a change of orbital elements up to 10% of their initial values during the first 1000 years of orbital evolution. Our results indicate that the stochastic modulation of the radiation pressure can play an important role in the circumplanetary dynamics of dust and may, together with further noise sources (shadow, planetary bowshock, charge fluctuations, etc

  4. Stochastic circumplanetary Dynamics of rotating non-spherical Dust Particles

    NASA Astrophysics Data System (ADS)

    Makuch, M.; Brilliantov, N. V.; Sremcevic, M.; Spahn, F.; Krivov, A. V.

    We investigate the influence of stochastically fluctuating radiation pressure on the dynamics of dust grains on circumplanetary orbits. The stochasticity stems from the permanent change of the particle cross-section exposed to the solar radiation due to rotation of nonspherical grains. Therefore, the stochastic properties of the radiation pressure are related to the ensemble-averaged characteristics of rotating particles, such as orientational time-correlation function of an individual grain. We evaluate this function and observe that it depends on the characteristic angular velocity of particles, which according to our estimates, spin very fast on the time scale of the orbital motion. This allows to model the stochastic part of the radiation pressure by a Gaussian white noise. The parameters of the noise are expressed in terms of the particle's geometric properties and their characteristic spin. In our analytical approach we use the Gauss perturbation equations with the radiation pressure being a sum of the deterministic and stochastic component and analyse the dynamics of a grains ensemble. We observe a steadily increasing standard deviation of the orbital elements, that is, the diffusive-like behaviour of the ensemble, which results in a spatial spreading of initially confined set of particles. In the linear approximation we obtain analytical expression for the effective diffusion coefficients and estimate their dependence on the geometrical characteristics of particles and their spin. The results of our analytical theory were compared with extensive numerical simulations performed for a specific dust complex, the putative dust tori of Mars. We found that our theory agrees fairly well with simulations for the initial period of the system evolution. The agreement however deteriorates at later time when the impact of the non-linear terms of the perturbation equations, neglected in our theory, becomes important. Nevertheless, the analysis shows that the theoretical

  5. A new modelling concept for aeolian sediment transport on beaches

    NASA Astrophysics Data System (ADS)

    de Vries, S.; Arens, S. M.; Stive, M. J. F.; Ranasinghe, R.

    2012-04-01

    This paper presents a new modelling concept for aeolian transport on beaches. Many research is invested in describing aeolian sediment transport for desert situations. Some of the principles of aeolian sediment transport in deserts are valid for application at the coastal zone but, where in deserts abundant sand is available for transport, in coastal situations sediment availability is limited. Sediment availability (or supply) is limited due to supply limiting factors such as moisture content of the bed, fetch effects and armouring of the surface. We propose a new sediment transport concept where we quantify aeolian sediment transport while quantifying the sediment availability rather than the more conventional (Bagnold, 1954) wind driven transport capacity. The concept is illustrated using field data. The field data is collected during a measurement campaign which has been designed to measure aeolian transport with special focus on sediment availability. Wind and sediment transport rates are measured on a beach for a period of 1 week. During this week onshore wind occurred allowing the analysis of aeolian transport across the beach towards the dunes. A total of 5 sediment transport gauges are dynamically placed over the cross section of the beach from locations in the intertidal zone (at low tide) until the dunefoot. The observations show that the amount of aeolian transport is very much dependent on the tidal phase. Low tides correspond to large aeolian transport and high tides to significantly lower aeolian transport across the beach. Wind conditions during the experiment were relatively constant implying that the specific variability in time of the measured aeolian transport is caused by variability with respect to the source rather than variability in wind conditions. Additional to this specific case, existing data of similar experiments (Arens, 1996) are analysed. Re-analysing this data, from experiments covering larger timespans, more evidence is found for

  6. Stochastic circumplanetary dynamics of rotating non-spherical dust particles

    NASA Astrophysics Data System (ADS)

    Makuch, Martin; Brilliantov, Nikolai V.; Sremčević, Miodrag; Spahn, Frank; Krivov, Alexander V.

    2006-08-01

    We develop a model of stochastic radiation pressure for rotating non-spherical particles and apply the model to circumplanetary dynamics of dust grains. The stochastic properties of the radiation pressure are related to the ensemble-averaged characteristics of the rotating particles, which are given in terms of the rotational time-correlation function of a grain. We investigate the model analytically and show that an ensemble of particle trajectories demonstrates a diffusion-like behaviour. The analytical results are compared with numerical simulations, performed for the motion of the dusty ejecta from Deimos in orbit around Mars. We find that the theoretical predictions are in a good agreement with the simulation results. The agreement however deteriorates at later time, when the impact of non-linear terms, neglected in the analytic approach, becomes significant. Our results indicate that the stochastic modulation of the radiation pressure can play an important role in the circumplanetary dynamics of dust and may in case of some dusty systems noticeably alter an optical depth.

  7. Monitoring aeolian desertification process in Hulunbir grassland during 1975-2006, Northern China.

    PubMed

    Guo, Jian; Wang, Tao; Xue, Xian; Ma, Shaoxiu; Peng, Fei

    2010-07-01

    The Hulunbir grassland experienced aeolian desertification expansion during 1975-2000, but local rehabilitation during 2000-2006. Northern China suffered severe aeolian desertification during the past 50 years. Hulunbir grassland, the best stockbreeding base in Northern China, was also affected by aeolian desertification. To evaluate the evolution and status of aeolian desertification, as well as its causes, satellite images (acquired in 1975, 1984, 2000, and 2006) and meteorological and socioeconomic data were interpreted and analyzed. The results show there was 2,345.7, 2,899.8, 4,053.9, and 3,859.6 km(2) of aeolian desertified land in 1975, 1984, 2000, and 2006, respectively. The spatial pattern dynamic had three stages: stability during 1975-1984, fast expansion during 1984-2000, and spatial transfer during 2000-2006. The dynamic degree of aeolian desertification is negatively related to its severity. Comprehensive analysis shows that the human factor is the primary cause of aeolian desertification in Hulunbir grassland. Although aeolian desertified land got partly rehabilitated, constant increase of extremely severe aeolian desertified land implied that current measures were not effective enough on aeolian desertification control. Alleviation of grassland pressure may be an effective method.

  8. Dynamic Dust Accumulation and Dust Removal Observed on the Mars Exploration Rover Magnets

    NASA Technical Reports Server (NTRS)

    Bertelsen, P.; Bell, J. F., III; Goetz, W.; Gunnlaugsson, H. P.; Herkenhoff, K. E.; Hviid, S. F.; Johnson, J. R.; Kinch, K. M.; Knudsen, J. M.; Madsen, M. B.

    2005-01-01

    The Mars Exploration Rovers each carry a set of Magnetic Properties Experiments designed to investigate the properties of the airborne dust in the Martian atmosphere. It is a preferred interpretation of previous experiments that the airborne dust in the Martian atmosphere is primarily composed by composite silicate particles containing one or more highly magnetic minerals as a minor constituent. The ultimate goal of the magnetic properties experiments on the Mars Exploration Rover mission is to provide some information/ constraints on whether the dust is formed by volcanic, meteoritic, aqueous, or other processes. The first problem is to identify the magnetic mineral(s) in the airborne dust on Mars. While the overall results of the magnetic properties experiments are presented in, this abstract will focus on dust deposition and dust removal on some of the magnets.

  9. The Icelandic volcanic aeolian environment: Processes and impacts - A review

    NASA Astrophysics Data System (ADS)

    Arnalds, Olafur; Dagsson-Waldhauserova, Pavla; Olafsson, Haraldur

    2016-03-01

    Iceland has the largest area of volcaniclastic sandy desert on Earth or 22,000 km2. The sand has been mostly produced by glacio-fluvial processes, leaving behind fine-grained unstable sediments which are later re-distributed by repeated aeolian events. Volcanic eruptions add to this pool of unstable sediments, often from subglacial eruptions. Icelandic desert surfaces are divided into sand fields, sandy lavas and sandy lag gravel, each with separate aeolian surface characteristics such as threshold velocities. Storms are frequent due to Iceland's location on the North Atlantic Storm track. Dry winds occur on the leeward sides of mountains and glaciers, in spite of the high moisture content of the Atlantic cyclones. Surface winds often move hundreds to more than 1000 kg m-1 per annum, and more than 10,000 kg m-1 have been measured in a single storm. Desertification occurs when aeolian processes push sand fronts and have thus destroyed many previously fully vegetated ecosystems since the time of the settlement of Iceland in the late ninth century. There are about 135 dust events per annum, ranging from minor storms to >300,000 t of dust emitted in single storms. Dust production is on the order of 30-40 million tons annually, some traveling over 1000 km and deposited on land and sea. Dust deposited on deserts tends to be re-suspended during subsequent storms. High PM10 concentrations occur during major dust storms. They are more frequent in the wake of volcanic eruptions, such as after the Eyjafjallajökull 2010 eruption. Airborne dust affects human health, with negative effects enhanced by the tubular morphology of the grains, and the basaltic composition with its high metal content. Dust deposition on snow and glaciers intensifies melting. Moreover, the dust production probably also influences atmospheric conditions and parameters that affect climate change.

  10. Dynamics of self-gravitating dust clouds in astrophysical plasmas

    SciTech Connect

    Eliasson, B.; Avinash, K.; Shukla, P. K.

    2008-09-07

    Due to the gravitational force, clouds of dust and gas in the interstellar medium can contract and form stars and planet systems. We here show that if the dust grains are electrically charged then the self-gravitation can be balanced by the ion pressure, and the collapse can be halted. In this case, the dust cloud may form soft dust planets, having the weight of a small moon or satellite, but a radius larger than of our Sun. There exist a critical mass beyond which the dust cloud collapses and forms a solid planet.

  11. High-latitude dust in the Earth system

    NASA Astrophysics Data System (ADS)

    Bullard, Joanna E.; Baddock, Matthew; Bradwell, Tom; Crusius, John; Darlington, Eleanor; Gaiero, Diego; Gassó, Santiago; Gisladottir, Gudrun; Hodgkins, Richard; McCulloch, Robert; McKenna-Neuman, Cheryl; Mockford, Tom; Stewart, Helena; Thorsteinsson, Throstur

    2016-06-01

    Natural dust is often associated with hot, subtropical deserts, but significant dust events have been reported from cold, high latitudes. This review synthesizes current understanding of high-latitude (≥50°N and ≥40°S) dust source geography and dynamics and provides a prospectus for future research on the topic. Although the fundamental processes controlling aeolian dust emissions in high latitudes are essentially the same as in temperate regions, there are additional processes specific to or enhanced in cold regions. These include low temperatures, humidity, strong winds, permafrost and niveo-aeolian processes all of which can affect the efficiency of dust emission and distribution of sediments. Dust deposition at high latitudes can provide nutrients to the marine system, specifically by contributing iron to high-nutrient, low-chlorophyll oceans; it also affects ice albedo and melt rates. There have been no attempts to quantify systematically the expanse, characteristics, or dynamics of high-latitude dust sources. To address this, we identify and compare the main sources and drivers of dust emissions in the Northern (Alaska, Canada, Greenland, and Iceland) and Southern (Antarctica, New Zealand, and Patagonia) Hemispheres. The scarcity of year-round observations and limitations of satellite remote sensing data at high latitudes are discussed. It is estimated that under contemporary conditions high-latitude sources cover >500,000 km2 and contribute at least 80-100 Tg yr-1 of dust to the Earth system (~5% of the global dust budget); both are projected to increase under future climate change scenarios.

  12. THE DYNAMICS OF DUST GRAINS IN THE OUTER SOLAR SYSTEM

    SciTech Connect

    Belyaev, Mikhail A.; Rafikov, Roman R. E-mail: rrr@astro.princeton.ed

    2010-11-10

    We study the dynamics of large dust grains {approx}>1 {mu}m with orbits outside of the heliosphere (beyond 250 AU). Motion of the solar system through the interstellar medium (ISM) at a velocity of 26 km s{sup -1} subjects these particles to gas and Coulomb drag (grains are expected to be photoelectrically charged) as well as the Lorentz force and the electric force caused by the induction electric field. We show that to zeroth order the combined effect of these forces can be well described in the framework of the classical Stark problem: particle motion in a Keplerian potential subject to an additional constant force. Based on this analogy, we elucidate the circumstances in which the motion becomes unbound, and show that under local ISM conditions dust grains smaller than {approx}100 {mu}m originating in the Oort Cloud (e.g., in collisions of comets) beyond 10{sup 4} AU are ejected from the solar system under the action of the electric force. Orbital motion of larger, bound grains is described analytically using the orbit-averaged Hamiltonian approach and consists of orbital plane precession at a fixed semimajor axis, accompanied by the periodic variations of the inclination and eccentricity (the latter may approach unity in some cases). A more detailed analysis of the combined effect of gas and Coulomb drag shows it is possible to reduce particle semimajor axes, but that the degree of orbital decay is limited (a factor of several at best) by passages through atomic and molecular clouds, which easily eject small particles.

  13. Dynamics and distribution of Jovian dust ejected from the Galilean satellites

    NASA Astrophysics Data System (ADS)

    Liu, Xiaodong; Sachse, Manuel; Spahn, Frank; Schmidt, Jürgen

    2016-07-01

    In this paper, the dynamical analysis of the Jovian dust originating from the four Galilean moons is presented. High-accuracy orbital integrations of dust particles are used to determine their dynamical evolution. A variety of forces are taken into account, including the Lorentz force, solar radiation pressure, Poynting-Robertson drag, solar gravity, the satellites' gravity, plasma drag, and gravitational effects due to nonsphericity of Jupiter. More than 20,000 dust particles from each source moon in the size range from 0.05 μm to 1 cm are simulated over 8000 (Earth) years until each dust grain hits a sink (moons, Jupiter, or escape from the system). Configurations of dust number density in the Jovicentric equatorial inertial frame are calculated and shown. In a Jovicentric frame rotating with the Sun the dust distributions are found to be asymmetric. For certain small particle sizes, the dust population is displaced towards the Sun, while for certain larger sizes, the dust population is displaced away from the Sun. The average lifetime as a function of particle size for ejecta from each source moon is derived, and two sharp jumps in the average lifetime are analyzed. Transport of dust between the Galilean moons and to Jupiter is investigated. Most of the orbits for dust particles from Galilean moons are prograde, while, surprisingly, a small fraction of orbits are found to become retrograde mainly due to solar radiation pressure and Lorentz force. The distribution of orbital elements is also analyzed.

  14. Dust dynamics in 2D gravito-turbulent discs

    NASA Astrophysics Data System (ADS)

    Shi, Ji-Ming; Zhu, Zhaohuan; Stone, James M.; Chiang, Eugene

    2016-06-01

    The dynamics of solid bodies in protoplanetary discs are subject to the properties of any underlying gas turbulence. Turbulence driven by disc self-gravity shows features distinct from those driven by the magnetorotational instability (MRI). We study the dynamics of solids in gravito-turbulent discs with two-dimensional (in the disc plane), hybrid (particle and gas) simulations. Gravito-turbulent discs can exhibit stronger gravitational stirring than MRI-active discs, resulting in greater radial diffusion and larger eccentricities and relative speeds for large particles (those with dimensionless stopping times tstopΩ > 1, where Ω is the orbital frequency). The agglomeration of large particles into planetesimals by pairwise collisions is therefore disfavoured in gravito-turbulent discs. However, the relative speeds of intermediate-size particles (tstopΩ ˜ 1) are significantly reduced as such particles are collected by gas drag and gas gravity into coherent filament-like structures with densities high enough to trigger gravitational collapse. First-generation planetesimals may form via gravitational instability of dust in marginally gravitationally unstable gas discs.

  15. Investigation of the dynamics of nanometer-size dust particles in the inner heliosphere

    NASA Astrophysics Data System (ADS)

    O'brien, L.

    2015-12-01

    The spatial and size distribution of submicron-sized interplanetary dust particles at 1 AU is highly variable due to the nature of its production and transport through the solar system. Nano-dust particles are thought to be produced by mutual collisions between interplanetary dust particles slowly spiraling toward the Sun and are accelerated outward to high velocities by interaction with the solar wind. The WAVES instruments on the two STEREO spacecraft reported the detection, strong temporal variation, and potentially high flux of these particles [Meyer-Vernet et al., 2009]. Simulations of nano-dust dynamics are performed to gain an understanding of their transport in the inner heliosphere and distribution near 1 AU where they can potentially be detected. Simulations show that the temporal variation in nano-dust detection, as suggested by the STEREO observations, can be described by the dust's interaction with the complex structure of the interplanetary magnetic field (IMF) [Juhasz and Horanyi, 2013]. The dust trajectories and their distribution near Earth's orbit is a function of the initial conditions of both nano-dust particles and the IMF. Le Chat et al. (2015) reported on the correlation between high nano-dust fluxes observed by STEREO and the observed Interplanetary Coronal Mass Ejections (ICMEs). We present the results from simulating nano-dust interaction with ICMEs that are modeled as magnetic clouds, and report that the dust trajectories and, thus, their distribution and velocities at 1 AU are significantly altered.

  16. Aeolian Slipface Processes on Earth and Mars

    NASA Astrophysics Data System (ADS)

    Cornwall, Carin; Jackson, Derek; Bourke, Mary; Cooper, Andrew

    2016-04-01

    The surface of Mars is dominated by aeolian features and many locations show ripple and dune migration over the past decade with some sediment fluxes comparable to terrestrial dunes. One of the leading goals in investigating aeolian processes on Mars is to explore the boundary conditions of sediment transport, accumulation, and dune mor-phology in relation to wind regime as well as to quantify migration rates and sediment flux. We combine terrestrial field observations, 3D computational fluid dynamics (CFD) modeling and remote sensing data to investigate com-plex, small scale wind patterns and grainflow processes on terrestrial and martian dunes. We aim to constrain grain flow magnitudes and frequencies that occur on slipface slopes of dunes in order to improve estimates of martian dune field migration and sediment flux related to wind velocity and flow patterns. A series of ground-based, high resolution laser scans have been collected in the Maspalomas dune field in Gran Canaria, Spain to investigate grainflow frequency, morphology and slipface advancement. Analysis of these laser scans and simultaneous video recordings have revealed a variety of slipface activity. We identify 6 different grain-flow morphologies including, hourglass shape (classic alcove formation with deposit fan below), superficial flow (thin lenses), narrow trough (vertical lines cm in width), sheet, column (vertical alcove walls), and complex (combi-nation of morphologies triggered simultaneously in the same location). Hourglass grainflow morphologies were the most common and occurred regularly. The superficial and narrow trough morphologies were the second most com-mon and frequently occurred in between large grain flows. Sheet grainflows were rare and unpredictable. These flows involved large portions of the slipface (metres across) and mobilized a substantial amount of sediment in one event. We have compared these grainflow morphologies from Maspalomas to those in martian dune fields and

  17. Dust dynamics and diagnostic applications in quasi-neutral plasmas and magnetic fusion

    NASA Astrophysics Data System (ADS)

    Wang, Zhehui; Ticos, Catalin M.; Si, Jiahe; Delzanno, Gian Luca; Lapenta, Gianni; Wurden, Glen

    2007-11-01

    Little is known about dust dynamics in highly ionized quasi-neutral plasmas with ca. 1.0 e+20 per cubic meter density and ion temperature at a few eV and above, including in magnetic fusion. For example, dust motion in fusion, better known as UFO's, has been observed since 1980's but not explained. Solid understanding of dust dynamics is also important to International Thermonuclear Experimental Reactor (ITER) because of concerns about safety and dust contamination of fusion core. Compared with well studied strongly-coupled dusty plasma regime, new physics may arise in the higher density quasi-neutral plasma regime because of at least four orders of magnitude higher density and two orders of magnitude hotter ion temperature. Our recent laboratory experiments showed that plasma-flow drag force dominates over other forces in a quasi-neutral flowing plasma. In contrast, delicate balance among different forces in dusty plasma has led to many unique phenomena, in particular, the formation of dust crystal. Based on our experiments, we argue that 1) dust crystal will not form in the highly ionized plasmas with flows; 2) the UFO's are moving dust dragged by plasma flows; 3) dust can be used to measure plasma flow. Two diagnostic applications using dust for laboratory quasi-neutral plasmas and magnetic fusion will also be presented.

  18. Dynamics of interplanetary dust in the F corona

    NASA Astrophysics Data System (ADS)

    Rusk, Edwin T.

    The dynamical mechanisms in interplanetary space and in the F corona were studied using numerical simulations. An expression for the radiation pressure force due to a rotating spherical source of radiation was derived. Also, expressions relating the variation in inclination and the longitude of the ascending node to the solar magnetic field were derived. The latter are based on the spherical source surface model of the solar magnetic field. Simulation of particles released during perihelion passages of comet Encke show that cometary particles have lifetimes shorter than the lifetime calculated by Wyatt and Whipple in 1950. These simulations also resulted in higher eccentricities and a definite alignment of the particles' aphelia toward a direction 20 deg. east of the vernal equinox. An expression relating the size of a planet's zone of influence to perturbations on particles in solar orbits based on the closest approach between the planet and the particle show that the expression for the size of a planet's zone of influence is not singular, but varies with the particular orbital element which is being studied. Simulations of the interaction of the Lorentz force in the F corona, based on observed solar magnetic field values, result in a spreading of the inclinations of particles in circumsolar orbits. This result, along with a reevaluation of recent observations of the F corona, leads to the conclusion that the shape of the circumsolar dust cloud cannot be a ring, but must be a wide band or a spherical shell.

  19. Dynamics of Finite Dust Clouds in a Magnetized Anodic Plasma

    SciTech Connect

    Piel, A.; Pilch, I.; Trottenberg, T.; Koepke, M. E.

    2008-09-07

    The response to an external modulation voltage of small dust clouds confined in an anodic plasma is studied. Dust density waves are excited when the cloud is larger than a wavelength, whereas a sloshing and stretching motion is found for smaller clouds. The wave dispersion shows similarities with waveguide modes.

  20. Radar-aeolian roughness project

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald; Dobrovolskis, A.; Gaddis, L.; Iversen, J. D.; Lancaster, N.; Leach, Rodman N.; Rasnussen, K.; Saunders, S.; Vanzyl, J.; Wall, S.

    1991-01-01

    The objective is to establish an empirical relationship between measurements of radar, aeolian, and surface roughness on a variety of natural surfaces and to understand the underlying physical causes. This relationship will form the basis for developing a predictive equation to derive aeolian roughness from radar backscatter. Results are given from investigations carried out in 1989 on the principal elements of the project, with separate sections on field studies, radar data analysis, laboratory simulations, and development of theory for planetary applications.

  1. Mars sampling strategy and aeolian processes

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald

    1988-01-01

    It is critical that the geological context of planetary samples (both in situ analyses and return samples) be well known and documented. Apollo experience showed that this goal is often difficult to achieve even for a planet on which surficial processes are relatively restricted. On Mars, the variety of present and past surface processes is much greater than on the Moon and establishing the geological context of samples will be much more difficult. In addition to impact hardening, Mars has been modified by running water, periglacial activity, wind, and other processes, all of which have the potential for profoundly affecting the geological integrity of potential samples. Aeolian, or wind, processes are ubiquitous on Mars. In the absence of liquid water on the surface, aeolian activity dominates the present surface as documented by frequent dust storms (both local and global), landforms such as dunes, and variable features, i.e., albedo patterns which change their size, shape, and position with time in response to the wind.

  2. Aeolian Processes at Meridiani Planum

    NASA Astrophysics Data System (ADS)

    Watters, W. A.; Fike, D. A.; Greeley, R.; Grotzinger, J. P.; Jerolmack, D. J.; Malin, M. C.; Soderblom, L.; Squyres, S.; Sullivan, R.; Thompson, S.

    2004-12-01

    The Opportunity Rover has observed a variety of aeolian features at Meridiani Planum. These features imply wind-related processes that operate on a range of time-scales, so that at least a relative time-scale of formation and modification can be assigned to many. (a) Features forming and changing in the shortest time include probable impact ripples (cm-scale) that occur in dark basalt sand on the floors of local depressions throughout the plains. Also in this category are deposits of bright airfall dust (in the form of streaks) that are not removed downwind of topographic features such as crater rims. Analysis of MOC imagery indicates that streaks change orientation after intense dust storms. The similar orientations of impact ripples and bright streaks are thought to indicate the prevailing direction of the most-recent vigorous wind regime. (b) Forming and changing on a longer, intermediate time-scale (and hence older) are deflationary ripples armored with well-sorted mm-sized hematitic grains that likely propagate by creep (i.e., pushed by the impacts of smaller saltating grains). The removal of dust from the plains during storms implies saltation of sand ( ˜ 100 μ m) which indicates shear velocities approaching what is required to roll the ˜ 1 mm hematitic grains. The ``plains ripples'' rarely occupy local depressions and cover the plains at Meridiani Planum ( ˜ 1 cm tall, ˜ 10 cm wide, up to ˜ 1 m long). Plains ripples indicate two prominent orientations: the orientation of individual bedforms as well as that of en-echelon ripple trains. As deflationary structures that form by the winnowing of small grains, these features require relatively long periods to form. The presence of multiple orientations indicates that, once formed, multiple episodes of vigorous winds may be required to change markedly the orientations of these features. (c) Requiring probably the longest formation times are tails of protected rock downwind of hematite spherules embedded in

  3. The linear and non-linear characterization of dust ion acoustic mode in complex plasma in presence of dynamical charging of dust

    SciTech Connect

    Bhattacharjee, Saurav Das, Nilakshi

    2015-10-15

    A systematic theoretical investigation has been carried out on the role of dust charging dynamics on the nature and stability of DIA (Dust Ion Acoustic) mode in complex plasma. The study has been made for both linear and non-linear scale regime of DIA mode. The observed results have been characterized in terms of background plasma responses towards dust surface responsible for dust charge fluctuation, invoking important dusty plasma parameters, especially the ion flow speed and dust size. The linear analyses confirm the nature of instability in DIA mode in presence of dust charge fluctuation. The instability shows a damping of DIA mode in subsonic flow regime followed by a gradual growth in instability in supersonic limit of ion flow. The strength of non-linearity and their existence domain is found to be driven by different dusty plasma parameters. As dust is ubiquitous in interstellar medium with plasma background, the study also addresses the possible effect of dust charging dynamics in gravito-electrostatic characterization and the stability of dust molecular clouds especially in proto-planetary disc. The observations are influential and interesting towards the understanding of dust settling mechanism and formation of dust environments in different regions in space.

  4. The effects of sorting by aeolian processes on the geochemical characteristics of surface materials: a wind tunnel experiment

    NASA Astrophysics Data System (ADS)

    Wang, Xunming; Lang, Lili; Hua, Ting; Zhang, Caixia; Li, Hui

    2017-03-01

    The geochemical characteristics of aeolian and surface materials in potential source areas of dust are frequently employed in environmental reconstructions as proxies of past climate and as source tracers of aeolian sediments deposited in downwind areas. However, variations in the geochemical characteristics of these aeolian deposits that result from near-surface winds are currently poorly understood. In this study, we collected surface samples from the Ala Shan Plateau (a major potential dust source area in Central Asia) to determine the influence of aeolian processes on the geochemical characteristics of aeolian transported materials. Correlation analyses show that compared with surface materials, the elements in transported materials (e.g., Cu, As, Pb, Mn, Zn, Al, Ca, Fe, Ga, K, Mg, P, Rb, Co, Cr, Na, Nb, Si, and Zr) were subjected to significant sorting by aeolian processes, and the sorting also varied among different particle size fractions and elements. Variations in wind velocity were significantly correlated with the contents of Cr, Ga, Sr, Ca, Y, Nd, Zr, Nb, Ba, and Al, and with the Zr/Al, Zr/Rb, K/Ca, Sr/Ca, Rb/Sr, and Ca/Al ratios. Given the great variation in the geochemical characteristics of materials transported under different aeolian processes relative to those of the source materials, these results indicate that considerable uncertainty may be introduced to analyses by using surface materials to trace the potential source areas of aeolian deposits that accumulate in downwind areas.

  5. The geologic records of dust in the Quaternary

    USGS Publications Warehouse

    Muhs, Daniel R.

    2013-01-01

    Study of geologic records of dust composition, sources and deposition rates is important for understanding the role of dust in the overall planetary radiation balance, fertilization of organisms in the world’s oceans, nutrient additions to the terrestrial biosphere and soils, and for paleoclimatic reconstructions. Both glacial and non-glacial processes produce fine-grained particles that can be transported by the wind. Geologic records of dust flux occur in a number of depositional archives for sediments: (1) loess deposits; (2) lake sediments; (3) soils; (4) deep-ocean basins; and (5) ice sheets and smaller glaciers. These archives have several characteristics that make them highly suitable for understanding the dynamics of dust entrainment, transport, and deposition. First, they are often distributed over wide geographic areas, which permits reconstruction of spatial variation of dust flux. Second, a number of dating methods can be applied to sediment archives, which allows identification of specific periods of greater or lesser dust flux. Third, aeolian sediment particle size and composition can be determined so that dust source areas can be ascertained and dust transport pathways can be reconstructed. Over much of the Earth’s surface, dust deposition rates were greater during the last glacial period than during the present interglacial period. A dustier Earth during glacial periods is likely due to increased source areas, greater aridity, less vegetation, lower soil moisture, possibly stronger winds, a decreased intensity of the hydrologic cycle, and greater production of dust-sized particles from expanded ice sheets and glaciers.

  6. Dust Successive Generations in Ar/SiH{sub 4} : Dust Cloud Dynamics

    SciTech Connect

    Cavarroc, M.; Mikikian, M.; Tessier, Y.; Boufendi, L.

    2008-09-07

    Silane-based plasmas are widely used to deposit nanostructured silicon thin films or to synthesize silicon nanoparticles. Dust particle formation in Ar/SiH{sub 4} plasmas is a continuous phenomenon: as long as silane precursors are provided, new dust generations are formed. Successive generations can be monitored thanks to various electrical (V{sub dc}/3H) and optical (OES, video imaging) diagnostics. Experiments presented in this paper have been performed in a capacitively-coupled radiofrequency discharge, at low pressure (12 Pa) in an Argon/Silane mixture (92:8)

  7. DUST DYNAMICS IN PROTOPLANETARY DISK WINDS DRIVEN BY MAGNETOROTATIONAL TURBULENCE: A MECHANISM FOR FLOATING DUST GRAINS WITH CHARACTERISTIC SIZES

    SciTech Connect

    Miyake, Tomoya; Suzuki, Takeru K.; Inutsuka, Shu-ichiro E-mail: stakeru@nagoya-u.jp

    2016-04-10

    We investigate the dynamics of dust grains of various sizes in protoplanetary disk winds driven by magnetorotational turbulence, by simulating the time evolution of the dust grain distribution in the vertical direction. Small dust grains, which are well-coupled to the gas, are dragged upward with the upflowing gas, while large grains remain near the midplane of a disk. Intermediate-size grains float near the sonic point of the disk wind located at several scale heights from the midplane, where the grains are loosely coupled to the background gas. For the minimum mass solar nebula at 1 au, dust grains with size of 25–45 μm float around 4 scale heights from the midplane. Considering the dependence on the distance from the central star, smaller-size grains remain only in an outer region of the disk, while larger-size grains are distributed in a broader region. We also discuss the implications of our result for observations of dusty material around young stellar objects.

  8. Dust formation and dynamic in magnetized and non-magnetized microwave discharge

    NASA Astrophysics Data System (ADS)

    Ouaras, Karim; Lombardi, Guillaume; Hassouni, Khaled

    2016-09-01

    Dusty plasmas studies are conducted for several decades to answer to various issues from microelectronic, nanotechnology, astrophysics and thermonuclear fusion devices. These studies are usually conducted in RF discharges at low pressure in which the major physics concerning dust formation mechanisms and dynamic is now well known. In our case, we focus on dust formation and dynamic in (i) microwave plasma under typical pressure conditions of RF discharges (50 Pa) and (ii) in magnetized (ECR: Electron Cyclotron Resonance) microwave plasma under very low pressure condition (0.1 to 1 Pa). The aim of this study is not only for fundamental purpose but also for respond to some issues concerning dust in fusion devices. Thus, we investigate the dust formation mechanisms and dynamic using laser extinction method and laser light scattering imaging coupling with SEM imaging in hydrocarbon plasma and with PVD system with using tungsten target (according to fusion device). We observed that dust formation occurs even if the very low pressure conditions are generally not suitable for nucleation growth in gas phase (the influence of the magnetic field will be discussed). We will also discuss about the particular dust dynamic behavior in microwave discharge in comparison with RF discharge.

  9. Dynamics of bounded self-organized dust flow in a complex plasma

    NASA Astrophysics Data System (ADS)

    Laishram, Modhuchandra; Sharma, Devendra; Kaw, P. K.

    2016-10-01

    Micron sized, highly charged, dust particles constitute a complex medium that exhibits fluid-like behavior when suspended in a quasineutral plasma either using electrostatic levitation or under the micro-gravity conditions. Although the dust particles interact strongly via a partially screened Coulomb force, when subjected to drivers like plasma drag, thermophoratic force or gradients of plasma parameters, the dust fluid is driven to non equilibrium states and develops self organized flows representable by the standard hydrodynamic model. The present analysis of self organized dust flow formations uses 2D fluid dynamics to recover the analytic dependence of the observables like flow shear at a curvilinear boundary and corresponding Reynolds number on the conventional dust transport coefficients for a bounded dust medium subjected to a volumetric drive. In the linear limit of the 2-dimensional Navier-Stokes flow regime of the medium, the effective boundary layer width is recovered to scale with the dust kinematic viscosity μ as δr μ 1/3, while the effective Reynolds number follows Re μ - 2 / 3. At relatively higher Reynolds number the dust flow structures show signatures of nonlinear effects requiring extension of the 2D fluid analysis to the nonlinear regime. Institute for Plasma Research, Bhat, Gandhinagar, India, 382428.

  10. Quantification of Asian Dust Plume Seasonal Dynamics and Regional Features

    NASA Technical Reports Server (NTRS)

    Goetz, Michael

    2011-01-01

    Dust is but one of many aerosols that are analyzed at the Jet Propulsion Laboratory in Pasadena. The purpose of this paper is to describe the process in analyzing and digitizing dust within a source region to better explain the work achieved by my internship. This paper will go over how to view collected data by Multi-angle Imaging SpectroRadiometer (MISR) [1] and the procedure of downloading data to be analyzed. With this data, one can digitize dust plumes using two methods called plume lines and plume polygons with the help of the software MISR INteractive eXplorer (MINX)[3]; thus, the theory of MINX's[3] algorithm and these methods are discussed in detail. Research was gathered from these techniques and emphasis is also focused on the obtained data and results.

  11. Dynamics of Charged Nano-Dust in the Jovian Rings

    NASA Astrophysics Data System (ADS)

    Ip, W.; Liu, C.; Liu, Y.

    2012-12-01

    The main ring of Jupiter with an outer edge at 1.806 RJ is maintained by the small satellite, Adrastea. After passing the orbit of Metis at 1,798 RJ a ring halo begins to take shape characterizied by extended vertical structure. According to Burns, Schaffer, Greenberg and Showalter (1985), this feature is related to the motion of the charged sub-micron dust grains under the influence of the Lorentz force. For charge-to-mass (q/m) ratio exceeds a certain value, the small dust grains could be injected into the Jovian atmosphere after following trajectories alighned with the magnetic field. This is likely the cause of the cutoff of the inner Jovian rings at the orbital position which coincident with the 2:1 Lorentz resonance. Because the JUNO spacecraft will move through the gap between the Jovian upper atmosphere and the 2:1 LR location, it is interesting to investigate to what extent would the charged nano-dust be able to from a three-dimensional cocoon/envelope surrounding Jupiter just providing an important opportunity to study the ring material by in-situ measurements. The same consideration can be applied to the nano-dust in the D-ring of Saturn which will be investigated intensively by the Cassini spacecraft in its Proximal Orbits Phase in 2017 before the end of the Cassini-Huygens mission.

  12. Collisional and dynamic evolution of dust from the asteroid belt

    NASA Astrophysics Data System (ADS)

    Gustafson, Bo A. S.; Gruen, Eberhard; Dermott, Stanley F.; Durda, Daniel D.

    1992-12-01

    The size and spatial distribution of collisional debris from main belt asteroids is modeled over a 10 million year period. The model dust and meteoroid particles spiral toward the Sun under the action of Poynting-Robertson drag and grind down as they collide with a static background of field particles.

  13. Collisional and dynamic evolution of dust from the asteroid belt

    NASA Technical Reports Server (NTRS)

    Gustafson, Bo A. S.; Gruen, Eberhard; Dermott, Stanley F.; Durda, Daniel D.

    1992-01-01

    The size and spatial distribution of collisional debris from main belt asteroids is modeled over a 10 million year period. The model dust and meteoroid particles spiral toward the Sun under the action of Poynting-Robertson drag and grind down as they collide with a static background of field particles.

  14. Aeolian Sand Transport by Boundary Layer Turbulence

    NASA Astrophysics Data System (ADS)

    Baas, A. C.

    2007-12-01

    The erratic and intermittent nature of wind-driven sand transport challenges our current transport models, which lack physical mechanisms for explaining and taking into account this spatio-temporal variability. This paper presents a collective overview of results from investigations into the nature of spatio-temporal variability in sand transport generally, and the formation and behaviour of aeolian streamers specifically. This includes three principal studies. First, the results of field investigations into the formation and behaviour of aeolian streamers in coastal and desert environments, where spatio-temporal transport variability and associated turbulence characteristics were assessed with an extensive instrument array. Streamers were measured with a transverse array of Safires, while the wind field and associated turbulent structures were monitored with cup-anemometry and a rake of hot-film probes. Second, these field data were used to assess the statistical trends in transport variability as a function of spanwise scale of measurement and the temporal scale of time-averaging transport rates. Third, spectral wavelet analysis of high-frequency collocated wind speed (hot- film probes) and transport flux (Safires) time-series revealed distinct forcing-response regimes at different temporal scales. The transitions between these regimes and their ranges compare favourably with physically meaningful scales, such as the minimum temporal scale of saltation response to wind speed fluctuations, and the integral time-scale of the observed internal boundary layer turbulence dynamics. The paper concludes with a tentative conceptual framework that attempts to integrate the results and insights from these studies towards an improved understanding of aeolian sediment transport processes.

  15. Modelling ripples in Orion with coupled dust dynamics and radiative transfer

    NASA Astrophysics Data System (ADS)

    Hendrix, T.; Keppens, R.; Camps, P.

    2015-03-01

    Aims: In light of the recent detection of direct evidence for the formation of Kelvin-Helmholtz instabilities in the Orion nebula, we expand upon previous modelling efforts by numerically simulating the shear-flow driven gas and dust dynamics in locations where the Hii region and the molecular cloud interact. We aim to directly confront the simulation results with the infrared observations. Methods: To numerically model the onset and full nonlinear development of the Kelvin-Helmholtz instability we take the setup proposed to interpret the observations, and adjust it to a full 3D hydrodynamical simulation that includes the dynamics of gas as well as dust. A dust grain distribution with sizes between 5-250 nm is used, exploiting the gas+dust module of the MPI-AMRVAC code, in which the dust species are represented by several pressureless dust fluids. The evolution of the model is followed well into the nonlinear phase. The output of these simulations is then used as input for the SKIRT dust radiative transfer code to obtain infrared images at several stages of the evolution, which can be compared to the observations. Results: We confirm that a 3D Kelvin-Helmholtz instability is able to develop in the proposed setup, and that the formation of the instability is not inhibited by the addition of dust. Kelvin-Helmholtz billows form at the end of the linear phase, and synthetic observations of the billows show striking similarities to the infrared observations. It is pointed out that the high density dust regions preferentially collect on the flanks of the billows. To get agreement with the observed Kelvin-Helmholtz ripples, the assumed geometry between the background radiation, the billows and the observer is seen to be of critical importance.

  16. Seasonal dynamics of threshold friction velocity and dust emission in Central Asia

    PubMed Central

    Xi, Xin; Sokolik, Irina N

    2015-01-01

    An improved model representation of mineral dust cycle is critical to reducing the uncertainty of dust-induced environmental and climatic impact. Here we present a mesoscale model study of the seasonal dust activity in the semiarid drylands of Central Asia, focusing on the effects of wind speed, soil moisture, surface roughness heterogeneity, and vegetation phenology on the threshold friction velocity (u*t) and dust emission during the dust season of 1 March to 31 October 2001. The dust model WRF-Chem-DuMo allows us to examine the uncertainties in seasonal dust emissions due to the selection of dust emission scheme and soil grain size distribution data. To account for the vegetation effects on the u*t, we use the Moderate Resolution Imaging Spectroradiometer monthly normalized difference vegetation index to derive the dynamic surface roughness parameters required by the physically based dust schemes of Marticorena and Bergametti (1995, hereinafter MB) and Shao et al. (1996, hereinafter Shao). We find the springtime u*t is strongly enhanced by the roughness effects of temperate steppe and desert ephemeral plants and, to less extent, the binding effects of increased soil moisture. The u*t decreases as the aboveground biomass dies back and soil moisture depletes during summer. The u*t dynamics determines the dust seasonality by causing more summer dust emission, despite a higher frequency of strong winds during spring. Due to the presence of more erodible materials in the saltation diameter range of 60–200 µm, the dry-sieved soil size distribution data lead to eight times more season-total dust emission than the soil texture data, but with minor differences in the temporal distribution. On the other hand, the Shao scheme produces almost the same amount of season-total dust emission as the MB scheme, but with a strong shift toward summer due to the strong sensitivity of the u*t to vegetation. By simply averaging the MB and Shao model experiments, we obtain a mean

  17. Aeolian Sand Transport with Collisional Suspension

    NASA Technical Reports Server (NTRS)

    Jenkins, James T.; Pasini, Jose Miguel; Valance, Alexandre

    2004-01-01

    Aeolian transport is an important mechanism for the transport of sand on Earth and on Mars. Dust and sand storms are common occurrences on Mars and windblown sand is responsible for many of the observed surface features, such as dune fields. A better understanding of Aeolian transport could also lead to improvements in pneumatic conveying of materials to be mined for life support on the surface of the Moon and Mars. The usual view of aeolian sand transport is that for mild winds, saltation is the dominant mechanism, with particles in the bed being dislodged by the impact of other saltating particles, but without in-flight collisions. As the wind becomes stronger, turbulent suspension keeps the particles in the air, allowing much longer trajectories, with the corresponding increase in transport rate. We show here that an important regime exists between these two extremes: for strong winds, but before turbulent suspension becomes dominant, there is a regime in which in-flight collisions dominate over turbulence as a suspension mechanism, yielding transport rates much higher than those for saltation. The theory presented is based on granular kinetic theory, and includes both turbulent suspension and particle-particle collisions. The wind strengths for which the calculated transport rates are relevant are beyond the published strengths of current wind tunnel experiments, so these theoretical results are an invitation to do experiments in the strong-wind regime. In order to make a connection between the regime of saltation and the regime of collisional suspension, it is necessary to better understand the interaction between the bed and the particles that collide with it. This interaction depends on the agitation of the particles of the bed. In mild winds, collisions with the bed are relatively infrequent and the local disturbance associated with a collision can relax before the next nearby collision. However, as the wind speed increases, collision become more frequent

  18. Ocean dynamics, not dust, have controlled equatorial Pacific productivity over the past 500,000 years

    PubMed Central

    Winckler, Gisela; Anderson, Robert F.; Jaccard, Samuel L.; Marcantonio, Franco

    2016-01-01

    Biological productivity in the equatorial Pacific is relatively high compared with other low-latitude regimes, especially east of the dateline, where divergence driven by the trade winds brings nutrient-rich waters of the Equatorial Undercurrent to the surface. The equatorial Pacific is one of the three principal high-nutrient low-chlorophyll ocean regimes where biological utilization of nitrate and phosphate is limited, in part, by the availability of iron. Throughout most of the equatorial Pacific, upwelling of water from the Equatorial Undercurrent supplies far more dissolved iron than is delivered by dust, by as much as two orders of magnitude. Nevertheless, recent studies have inferred that the greater supply of dust during ice ages stimulated greater utilization of nutrients within the region of upwelling on the equator, thereby contributing to the sequestration of carbon in the ocean interior. Here we present proxy records for dust and for biological productivity over the past 500 ky at three sites spanning the breadth of the equatorial Pacific Ocean to test the dust fertilization hypothesis. Dust supply peaked under glacial conditions, consistent with previous studies, whereas proxies of export production exhibit maxima during ice age terminations. Temporal decoupling between dust supply and biological productivity indicates that other factors, likely involving ocean dynamics, played a greater role than dust in regulating equatorial Pacific productivity. PMID:27185933

  19. Ocean dynamics, not dust, have controlled equatorial Pacific productivity over the past 500,000 years

    NASA Astrophysics Data System (ADS)

    Winckler, Gisela; Anderson, Robert F.; Jaccard, Samuel L.; Marcantonio, Franco

    2016-05-01

    Biological productivity in the equatorial Pacific is relatively high compared with other low-latitude regimes, especially east of the dateline, where divergence driven by the trade winds brings nutrient-rich waters of the Equatorial Undercurrent to the surface. The equatorial Pacific is one of the three principal high-nutrient low-chlorophyll ocean regimes where biological utilization of nitrate and phosphate is limited, in part, by the availability of iron. Throughout most of the equatorial Pacific, upwelling of water from the Equatorial Undercurrent supplies far more dissolved iron than is delivered by dust, by as much as two orders of magnitude. Nevertheless, recent studies have inferred that the greater supply of dust during ice ages stimulated greater utilization of nutrients within the region of upwelling on the equator, thereby contributing to the sequestration of carbon in the ocean interior. Here we present proxy records for dust and for biological productivity over the past 500 ky at three sites spanning the breadth of the equatorial Pacific Ocean to test the dust fertilization hypothesis. Dust supply peaked under glacial conditions, consistent with previous studies, whereas proxies of export production exhibit maxima during ice age terminations. Temporal decoupling between dust supply and biological productivity indicates that other factors, likely involving ocean dynamics, played a greater role than dust in regulating equatorial Pacific productivity.

  20. Ocean dynamics, not dust, have controlled equatorial Pacific productivity over the past 500,000 years.

    PubMed

    Winckler, Gisela; Anderson, Robert F; Jaccard, Samuel L; Marcantonio, Franco

    2016-05-31

    Biological productivity in the equatorial Pacific is relatively high compared with other low-latitude regimes, especially east of the dateline, where divergence driven by the trade winds brings nutrient-rich waters of the Equatorial Undercurrent to the surface. The equatorial Pacific is one of the three principal high-nutrient low-chlorophyll ocean regimes where biological utilization of nitrate and phosphate is limited, in part, by the availability of iron. Throughout most of the equatorial Pacific, upwelling of water from the Equatorial Undercurrent supplies far more dissolved iron than is delivered by dust, by as much as two orders of magnitude. Nevertheless, recent studies have inferred that the greater supply of dust during ice ages stimulated greater utilization of nutrients within the region of upwelling on the equator, thereby contributing to the sequestration of carbon in the ocean interior. Here we present proxy records for dust and for biological productivity over the past 500 ky at three sites spanning the breadth of the equatorial Pacific Ocean to test the dust fertilization hypothesis. Dust supply peaked under glacial conditions, consistent with previous studies, whereas proxies of export production exhibit maxima during ice age terminations. Temporal decoupling between dust supply and biological productivity indicates that other factors, likely involving ocean dynamics, played a greater role than dust in regulating equatorial Pacific productivity.

  1. Effects of radiofrequency on dust particle dynamics in a plasma reactor

    SciTech Connect

    Horn, C.; Shotorban, B.; Davoudabadi, M.

    2011-12-01

    A numerical solution is obtained for the electron and ion number densities, and electric field of an rf argon plasma in a low pressure reactor utilizing a one-dimensional model. These variables are used to solve the equations describing the dynamical behavior of a dust particle under the influence of the electrical, gravity, and ion and neutral drag forces. The effects of the rf oscillations of the plasma on the dust particle are investigated through comparisons made between two sets of results. The first set is generated by a model in which the rf-period-averaged plasma variables are used in the dust particle equations while the second set is generated using the instantaneous plasma variables, without rf-period averaging. These two sets of results including the positions and charges of, and the various forces acting on the dust particles with different sizes and densities, are compared and significant differences are found.

  2. Aeolian Sediment Transport Pathways and Aerodynamics at Troughs on Mars

    NASA Technical Reports Server (NTRS)

    Bourke, Mary C.; Bullard, Joanna E.; Barnouin-Jha, Olivier S.

    2004-01-01

    Interaction between wind regimes and topography can give rise to complex suites of aeolian landforms. This paper considers aeolian sediment associated wit11 troughs on Mars and identifies a wider range of deposit types than has previously been documented. These include wind streaks, falling dunes, "lateral" dunes, barchan dunes, linear dunes, transverse ridges, sand ramps, climbing dunes, sand streamers, and sand patches. The sediment incorporated into these deposits is supplied by wind streaks and ambient Planitia sources as well as originating within the trough itself, notably from the trough walls and floor. There is also transmission of sediment between dneTsh. e flow dynamics which account for the distribution of aeolian sediment have been modeled using two-dimensional computational fluid dynamics. The model predicts flow separation on the upwind side of the trough followed by reattachment and acceleration at the downwind margin. The inferred patterns of sediment transport compare well with the distribution of aeolian forms. Model data indicate an increase of wind velocity by approx. 30 % at the downwind trough margin. This suggests that the threshold wind speed necessary for sand mobilization on Mars will be more freqentmlye t in these inclined locations.

  3. Dynamic considerations of dust on the television camera mirror

    NASA Technical Reports Server (NTRS)

    Nickle, N. L.

    1972-01-01

    The mirror on the Surveyor 3 television camera was subjected to tests which modified its surface. Lunar dust was removed by rubbing, by acetate and metallic film stripping techniques, rinsing, scraping, and by inadvertently touching the surface. A second shadow line was revealed. Second and third generation peels were taken across the upper shadow line, and a study was made in order to define the source(s) or events(s) responsible for creating the two shadow lines occurring on the lower part of the mirror.

  4. Seasonal dynamics of threshold friction velocity and dust emission in Central Asia

    NASA Astrophysics Data System (ADS)

    Xi, Xin; Sokolik, Irina N.

    2015-02-01

    An improved model representation of mineral dust cycle is critical to reducing the uncertainty of dust-induced environmental and climatic impact. Here we present a mesoscale model study of the seasonal dust activity in the semiarid drylands of Central Asia, focusing on the effects of wind speed, soil moisture, surface roughness heterogeneity, and vegetation phenology on the threshold friction velocity (u*t) and dust emission during the dust season of 1 March to 31 October 2001. The dust model WRF-Chem-DuMo allows us to examine the uncertainties in seasonal dust emissions due to the selection of dust emission scheme and soil grain size distribution data. To account for the vegetation effects on the u*t, we use the Moderate Resolution Imaging Spectroradiometer monthly normalized difference vegetation index to derive the dynamic surface roughness parameters required by the physically based dust schemes of Marticorena and Bergametti (1995, hereinafter MB) and Shao et al. (1996, hereinafter Shao). We find the springtime u*t is strongly enhanced by the roughness effects of temperate steppe and desert ephemeral plants and, to less extent, the binding effects of increased soil moisture. The u*t decreases as the aboveground biomass dies back and soil moisture depletes during summer. The u*t dynamics determines the dust seasonality by causing more summer dust emission, despite a higher frequency of strong winds during spring. Due to the presence of more erodible materials in the saltation diameter range of 60-200 µm, the dry-sieved soil size distribution data lead to eight times more season-total dust emission than the soil texture data, but with minor differences in the temporal distribution. On the other hand, the Shao scheme produces almost the same amount of season-total dust emission as the MB scheme, but with a strong shift toward summer due to the strong sensitivity of the u*t to vegetation. By simply averaging the MB and Shao model experiments, we obtain a mean

  5. Seasonal dynamics of threshold friction velocity and dust emission in Central Asia.

    PubMed

    Xi, Xin; Sokolik, Irina N

    2015-02-27

    An improved model representation of mineral dust cycle is critical to reducing the uncertainty of dust-induced environmental and climatic impact. Here we present a mesoscale model study of the seasonal dust activity in the semiarid drylands of Central Asia, focusing on the effects of wind speed, soil moisture, surface roughness heterogeneity, and vegetation phenology on the threshold friction velocity (u*t ) and dust emission during the dust season of 1 March to 31 October 2001. The dust model WRF-Chem-DuMo allows us to examine the uncertainties in seasonal dust emissions due to the selection of dust emission scheme and soil grain size distribution data. To account for the vegetation effects on the u*t , we use the Moderate Resolution Imaging Spectroradiometer monthly normalized difference vegetation index to derive the dynamic surface roughness parameters required by the physically based dust schemes of Marticorena and Bergametti (1995, hereinafter MB) and Shao et al. (1996, hereinafter Shao). We find the springtime u*t is strongly enhanced by the roughness effects of temperate steppe and desert ephemeral plants and, to less extent, the binding effects of increased soil moisture. The u*t decreases as the aboveground biomass dies back and soil moisture depletes during summer. The u*t dynamics determines the dust seasonality by causing more summer dust emission, despite a higher frequency of strong winds during spring. Due to the presence of more erodible materials in the saltation diameter range of 60-200 µm, the dry-sieved soil size distribution data lead to eight times more season-total dust emission than the soil texture data, but with minor differences in the temporal distribution. On the other hand, the Shao scheme produces almost the same amount of season-total dust emission as the MB scheme, but with a strong shift toward summer due to the strong sensitivity of the u*t to vegetation. By simply averaging the MB and Shao model experiments, we obtain a mean

  6. Dynamics and Fate of Dust from the Irregular Satellites at Uranus and Neptune

    NASA Astrophysics Data System (ADS)

    Tamayo, Dan; Burns, J. A.; Hamilton, D. P.

    2011-04-01

    Spitzer has discovered a vast outer dust ring at Saturn (Verbiscer et al. 2009) apparently sourced from Saturn's largest irregular satellite Phoebe and likely coating Iapetus (Tamayo et al., 2011). This raises the question of whether similar rings might be detectable at Uranus and Neptune. We study the dynamics of dust arising off the irregular satellites in these systems, drawing comparisons to particle histories in the Saturn system. Particles are subject to radiation forces that cause the smallest particles to be lost onto heliocentric paths or strike the host planet. Most of the larger particles decay toward their central planet, and eventually strike the various inner regular-satellite surfaces. We undertake a numerical investigation to determine the final distribution of dust in these systems. We find that in the Uranian system, for a wide variety of plausible initial conditions, the majority of the dust strikes the outermost regular moon Oberon, with a small fraction reaching Titania. At Neptune, we find that Triton sweeps up nearly all the long-lived dust particles generated outside its orbit. Finally, we estimate the longitudinal reach of dust onto the satellites’ trailing sides as a result of particle-orbit eccentricities.

  7. Dust emission modelling around a stockpile by using computational fluid dynamics and discrete element method

    NASA Astrophysics Data System (ADS)

    Derakhshani, S. M.; Schott, D. L.; Lodewijks, G.

    2013-06-01

    Dust emissions can have significant effects on the human health, environment and industry equipment. Understanding the dust generation process helps to select a suitable dust preventing approach and also is useful to evaluate the environmental impact of dust emission. To describe these processes, numerical methods such as Computational Fluid Dynamics (CFD) are widely used, however nowadays particle based methods like Discrete Element Method (DEM) allow researchers to model interaction between particles and fluid flow. In this study, air flow over a stockpile, dust emission, erosion and surface deformation of granular material in the form of stockpile are studied by using DEM and CFD as a coupled method. Two and three dimensional simulations are respectively developed for CFD and DEM methods to minimize CPU time. The standard κ-ɛ turbulence model is used in a fully developed turbulent flow. The continuous gas phase and the discrete particle phase link to each other through gas-particle void fractions and momentum transfer. In addition to stockpile deformation, dust dispersion is studied and finally the accuracy of stockpile deformation results obtained by CFD-DEM modelling will be validated by the agreement with the existing experimental data.

  8. A Dynamical Model of a Still-Forming Zodiacal Dust Band, as Constrained by IRAS Data

    NASA Astrophysics Data System (ADS)

    Espy, Ashley J.; Dermott, S. F.; Kehoe, T. J. J.

    2009-05-01

    When an asteroid is disrupted, the larger pieces remain on similar orbits and constitute an asteroid family. The smaller products of the disruption (10 microns- a few cm) decay into the inner solar system under the effect of Poynting-Roberston drag. Before these particles encounter the secular and mean-motion resonances at the inner edge of the main belt, they retain their proper orbital elements and share common forced elements, allowing for the existence of the dust band structure discovered by IRAS (Low et al., 1984). There are currently known to be at least three dust band pairs associated with relatively young (≤ 107 yr old) asteroidal disruptions (Grogan et al., 2001; Dermott et al., 2002; Nesvorny et al., 2003; 2008). A method of coadding the IRAS data set, revealed the existence of an additional solar system dust band at 17 degrees inclination, likely a confirmation of the M/N pair originally suggested by Sykes (1988). We see this new dust band at some but not all ecliptic longitudes, providing strong evidence for a very young dust band in the process of formation. In order to determine the parent body of this band, we create a full dynamical model of the formation of this dust band to constrain the parameters of a source body capable of producing the structure. The model is based on the dynamical evolution of the 10-1000 micron diameter dust particles from the disruption event. Comparison of the model to our co-added IRAS observations allows us to put bounds on the parameters of the parent body, including the node location and dispersion, which gives an age to the disruption that produced the partial band. We also investigate the effects that varying the orbital parameters has on the timescale and formation of a band pair.

  9. Simulation of windblown dust transport from a mine tailings impoundment using a computational fluid dynamics model

    NASA Astrophysics Data System (ADS)

    Stovern, Michael; Felix, Omar; Csavina, Janae; Rine, Kyle P.; Russell, MacKenzie R.; Jones, Robert M.; King, Matt; Betterton, Eric A.; Sáez, A. Eduardo

    2014-09-01

    Mining operations are potential sources of airborne particulate metal and metalloid contaminants through both direct smelter emissions and wind erosion of mine tailings. The warmer, drier conditions predicted for the Southwestern US by climate models may make contaminated atmospheric dust and aerosols increasingly important, due to potential deleterious effects on human health and ecology. Dust emissions and dispersion of dust and aerosol from the Iron King Mine tailings in Dewey-Humboldt, Arizona, a Superfund site, are currently being investigated through in situ field measurements and computational fluid dynamics modeling. These tailings are heavily contaminated with lead and arsenic. Using a computational fluid dynamics model, we model dust transport from the mine tailings to the surrounding region. The model includes gaseous plume dispersion to simulate the transport of the fine aerosols, while individual particle transport is used to track the trajectories of larger particles and to monitor their deposition locations. In order to improve the accuracy of the dust transport simulations, both regional topographical features and local weather patterns have been incorporated into the model simulations. Results show that local topography and wind velocity profiles are the major factors that control deposition.

  10. Simulation of windblown dust transport from a mine tailings impoundment using a computational fluid dynamics model

    PubMed Central

    Stovern, Michael; Felix, Omar; Csavina, Janae; Rine, Kyle P.; Russell, MacKenzie R.; Jones, Robert M.; King, Matt; Betterton, Eric A.; Sáez, A. Eduardo

    2014-01-01

    Mining operations are potential sources of airborne particulate metal and metalloid contaminants through both direct smelter emissions and wind erosion of mine tailings. The warmer, drier conditions predicted for the Southwestern US by climate models may make contaminated atmospheric dust and aerosols increasingly important, due to potential deleterious effects on human health and ecology. Dust emissions and dispersion of dust and aerosol from the Iron King Mine tailings in Dewey-Humboldt, Arizona, a Superfund site, are currently being investigated through in situ field measurements and computational fluid dynamics modeling. These tailings are heavily contaminated with lead and arsenic. Using a computational fluid dynamics model, we model dust transport from the mine tailings to the surrounding region. The model includes gaseous plume dispersion to simulate the transport of the fine aerosols, while individual particle transport is used to track the trajectories of larger particles and to monitor their deposition locations. In order to improve the accuracy of the dust transport simulations, both regional topographical features and local weather patterns have been incorporated into the model simulations. Results show that local topography and wind velocity profiles are the major factors that control deposition. PMID:25621085

  11. Publication trends in Aeolian research: An analysis of the biblography of Aeolian research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An analysis of the Bibliography of Aeolian Research has provided information regarding publication trends in aeolian research. Overall, results suggest that there has been a significant increase in the number of publications per year since the first aeolian-research publication appeared in 1646. P...

  12. Effects of dust particles in plasma kinetics: Ion dynamics time scales

    SciTech Connect

    Angelis, U. de; Tolias, P.; Ratynskaia, S.

    2012-07-15

    The self-consistent kinetic theory of dusty plasmas [V. N. Tsytovich and U. de Angelis, Phys. Plasmas 6, 1093 (1999)] is extended to frequency regimes relevant for ion dynamics, accounting for both constant and fluctuating plasma sources. In contrast to earlier models, binary plasma collisions are no longer neglected with respect to collisions with dust; hence, the model developed here is also valid for low dust densities. Expressions are found for the system's permittivity, the ion collision integral, and the spectral densities of ion density fluctuations. The structure of the ion kinetic equation is analyzed, and applications of the model for both astrophysical and laboratory environments are discussed.

  13. The dynamics of submicron-sized dust particles lost from Phobos

    SciTech Connect

    Horanyi, M. ); Tatrallyay, M.; Juhasz, A. ); Luhmann, J.G. )

    1991-07-01

    The dynamics of submicron-sized dielectric particles lost from the Martian moon Phobos are studied in connection with the possible detection of dust by the Phobos 2 spacecraft. The motion of these small dust grains is influenced not only by gravity but also by solar radiation pressure and electromagnetic forces. The plasma environment of Mars is described by applying a hybrid gasdynamic-cometary model. Some of the submicron-sized grains ejected at speeds on the order of a few tens meters per second can stay in orbit around Mars for several months forming a nonuniform and time-dependent dust halo. The lifetime of the particles depends on their size, on the actual interplanetary parameters (constant or varying with a periodicity of 28 days) and also on the orbital position of Mars at the time of ejection since there is a 24 {degree} obliquity between the orbit of Phobos and that of Mars.

  14. Modeling the Dynamics of Comet Hale-Bopp's Dust at Large Heliocentric Distances

    NASA Astrophysics Data System (ADS)

    Kramer, Emily A.; Fernandez, Y. R.; Kelley, M. S.; Woodney, L. M.; Lisse, C. M.

    2010-10-01

    Comet Hale-Bopp has provided an unprecedented opportunity to observe a bright comet over a wide range of heliocentric distances. We present here Spitzer Space Telescope observations of Hale-Bopp from 2005 and 2008 that show a distinct coma and tail, which is uncommon given its heliocentric distance -- 21.6 AU and 27.2 AU, respectively. These 24 um images (obtained with MIPS, the Multiband Imaging Photometer for Spitzer) show thermal emission from the dust, and are being studied using dynamical models [1, 2] to explain the dust morphology and constrain the dust's properties. Preliminary work suggests that the motion of the dust cannot be solely due to the effects of gravity and radiation pressure. We investigate the role of other possible driving forces, including the so-called rocket force [3]. Our initial analysis also shows that: (1) there is no trail lying along the orbit plane, as Spitzer saw for many other comets [4]; (2) the position angle of the tail changed by about 50º between 2005 and 2008; (3) the faintness and shape of the tail in 2008 compared to 2005 cannot solely be due to the change in observing geometry. These points suggest that even though Hale-Bopp is far from the Sun its tail is made of relatively recently-released grains. Our science goals are to understand the comet's activity mechanism, constrain the age of the dust, find the size of the grains, and compare properties of the dust seen now to those of the dust seen in the 1990s. We acknowledge support from the NSF, NASA and the Spitzer Science Center for this work. References: [1] Kelley, M.S., et al.  2008, Icarus 193, 572, [2] Lisse, C.M., et al. 1998, ApJ 496, 971, [3] Reach, W.T., et al. 2009, Icarus 203, 571, [4] Reach, W.T., et al. 2007, Icarus 191, 298.

  15. Lunar and Planetary Science XXXV: Mars: Wind, Dust Sand, and Debris

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session "Mars: Wind, Dust Sand, and Debris" included: Mars Exploration Rovers: Laboratory Simulations of Aeolian Interactions; Thermal and Spectral Analysis of an Intracrater Dune Field in Amazonis Planitia; How High is that Dune? A Comparison of Methods Used to Constrain the Morphometry of Aeolian Bedforms on Mars; Dust Devils on Mars: Scaling of Dust Flux Based on Laboratory Simulations; A Close Encounter with a Terrestrial Dust Devil; Interpretation of Wind Direction from Eolian Features: Herschel Crater, Mars Erosion Rates at the Viking 2 Landing Site; Mars Dust: Characterization of Particle Size and Electrostatic Charge Distributions; Simple Non-fluvial Models of Planetary Surface Modification, with Application to Mars; Comparison of Geomorphically Determined Winds with a General Circulation Model: Herschel Crater, Mars; Analysis of Martian Debris Aprons in Eastern Hellas Using THEMIS; Origin of Martian Northern Hemisphere Mid-Latitude Lobate Debris Aprons; Debris Aprons in the Tempe/Mareotis Region of Mars;and Constraining Flow Dynamics of Mass Movements on Earth and Mars.

  16. Molecular Dynamics Simulations of the Interactions Between Tungsten Dust and Beryllium Plasma-Facing Material

    NASA Astrophysics Data System (ADS)

    Niu, Guojian; Li, Xiaochun; Xu, Qian; Yang, Zhongshi; Luo, Guangnan

    2015-12-01

    In the present research, molecular dynamics simulation is applied to study the interactions between tungsten dusts and a beryllium plasma-facing material surface. Calculation results show that it is quite difficult for nanometer-size dust particles to damage the plasma-facing material surface, which is different from the micrometer-size ones. The reason may be the size difference between dust and crystal grains. The depth of dust penetration into plasma-facing materials is closely related to the incident velocity, and the impacting angle also plays an important role. Dust and material surface damage is also investigated. Results show that both incident velocity and angle can significantly influence the damage. supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2013GB105001, 2013GB105002, and 2015GB109001), National Natural Science Foundation of China (Nos. 11205198, 11305213 and 11405201), as well as Technological Development Grant of Hefei Science Center of CAS (No. 2014TDG-HSC003)

  17. Aeolian processes in Proctor Crater on Mars: Mesoscale modeling of dune-forming winds

    NASA Astrophysics Data System (ADS)

    Fenton, Lori K.; Toigo, Anthony D.; Richardson, Mark I.

    2005-06-01

    Both atmospheric modeling and spacecraft imagery of Mars are now of sufficient quality that the two can be used in conjunction to acquire an understanding of regional- and local-scale aeolian processes on Mars. We apply a mesoscale atmospheric model adapted for use on Mars (the Mars MM5) to Proctor Crater, a 150 km diameter crater in the southern highlands. Proctor Crater contains numerous aeolian features that indicate wind direction, including a large dark dune field with reversing transverse and star dunes containing three different slipface orientations, small and older bright bedforms that are most likely transverse granule ripples, and seasonally erased dust devil tracks. Results from model runs spanning a Martian year, with a horizontal grid spacing of 10 km, predict winds aligned with two of the three dune slipfaces as well as spring and summer winds matching the dust devil track orientations. The primary (most prevalent) dune slipface orientation corresponds to a fall and winter westerly wind created by geostrophic forces. The tertiary dune slipface orientation is caused by spring and summer evening katabatic flows down the eastern rim of the crater, influencing only the eastern portion of the crater floor. The dunes are trapped in the crater because the tertiary winds, enhanced by topography, counter transport from the oppositely oriented primary winds, which may have originally carried sand into the crater. The dust devil tracks are caused by light spring and summer westerly winds during the early afternoon caused by planetary rotation. The secondary dune slipface orientation is not predicted by model results from either the Mars MM5 or the Geophysical Fluid Dynamics Laboratory Mars general circulation model. The reason for this is not clear, and the wind circulation pattern that creates this dune slipface is not well constrained. The Mars MM5 model runs do not predict stresses above the saltation threshold for dune sand of the appropriate size and

  18. Mineralogical controls on dust emissions in the Bodele Depression, Chad

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Surface mineralogy is critical in the understanding of aeolian processes, however its role in dust production is currently underestimated. Recent research indicates that discrepancies between predicted and observed dust loads by dust models may be attributed to inadequacies within their associated d...

  19. Aeolian Processes at the Mars Exploration Rover Opportunity Landing Site

    NASA Technical Reports Server (NTRS)

    Sullivan, R.; Bell, J. F., III; Calvin, W.; Fike, D.; Golombek, M.; Greeley, R.; Grotzinger, J.; Herkenhoff, K.; Jerolmack, D.; Malin, M.

    2005-01-01

    The traverse of the Mars Exploration Rover Opportunity across its Meridiani Planum landing site has shown that wind has affected regolith by creating drifts, dunes, and ubiquitous ripples, by sorting grains during aeolian transport, by forming bright wind streaks downwind from craters seen from orbit, and by eroding rock with abrading, wind-blown material. Pre-landing orbiter observations showed bright and dark streaks tapering away from craters on the Meridiani plains. Further analysis of orbiter images shows that major dust storms can cause bright streak orientations in the area to alternate between NW and SE, implying bright wind streak materials encountered by Opportunity are transient, potentially mobilized deposits. Opportunity performed the first in situ investigation of a martian wind streak, focusing on a bright patch of material just outside the rim of Eagle crater. Data from Pancam, the Miniature Thermal Emission Spectrometer (Mini-TES), the Alpha-Particle X-Ray Spectrometer (APXS), and the Mossbauer spectrometer either are consistent with or permit an air fall dust interpretation. We conclude that air fall dust, deposited in the partial wind shadow of Eagle crater, is responsible for the bright streak seen from orbit, consistent with models involving patchy, discontinuous deposits of air fall dust distributed behind obstacles during periods of atmospheric thermal stability during major dust storms.

  20. The birth and death of transverse aeolian ridges on Mars

    USGS Publications Warehouse

    Geissler, Paul E.

    2014-01-01

    Transverse aeolian ridges (TARs) are small bright windblown deposits found throughout the Martian tropics that stand a few meters tall and are spaced a few tens of meters apart. The origin of these features remains mysterious more than 20 years after their discovery on Mars. This paper presents a new hypothesis, that some of the TARs could be indurated dust deposits emplaced millions of years ago during periods of higher axial obliquity. It suggests that these TARs are primary depositional bed forms that accumulated in place from dust carried by the winds in suspension, perhaps in a manner comparable to antidunes on Earth, and were subsequently indurated and eroded to their current states by eons of sandblasting. It points out examples of modern dust drifts and dune-like features that appear to have been recently formed by dust accumulating directly onto the surface from atmospheric suspension. It shows how these pristine dust deposits could evolve to explain the range of morphologies of the TARs. Finally, it explains how the known properties of many TARs are consistent with this hypothesis, including their composition, thermal behavior, and distribution.

  1. Effect of Dust Coagulation Dynamics on the Geometry of Aggregates

    NASA Technical Reports Server (NTRS)

    Nakamura, R.

    1996-01-01

    Master equation gives a more fundamental description of stochastic coagulation processes rather than popular Smoluchowski's equation. In order to examine the effect of the dynamics on the geometry of resulting aggregates, we study Master equation with a rigorous Monte Carlo algorithm. It is found that Cluster-Cluster aggregation model is a good approximation of orderly growth and the aggregates have fluffy structures with a fractal dimension approx. 2. A scaling analysis of Smoluchowski's equation also supports this conclusion.

  2. Transfer learning used to analyze the dynamic evolution of the dust aerosol

    NASA Astrophysics Data System (ADS)

    Ma, Yingying; Gong, Wei; Mao, Feiyue

    2015-03-01

    To keep the advantage of Support Vector Machine (SVM) in analyzing the dynamic evolution of the dust aerosol, we introduce transfer learning as a new method because transfer learning can utilize knowledge from previously collected data and add dozens of new samples, which can significantly improve dust and cloud classification results. It can also reduce the time of sample collection and make learning efficient. In this paper, we receive significant improvement effect using SVM as the basic learner in TrAdaBoost during four consecutive dust storm days, and correct one error classification in PDF. As a result, dust aerosol in high altitude can even spread to stratosphere. Moreover, in the process of dust aerosol transportation, it is highly affected by anthropogenic aerosol, for example, the color ratio (CR) changes from 0.728 to 0.460 and finally reaches 0.466, while depolarization ratio (DR) changes from 0.308 to 0.081 and finally reaches 0.156. It is indicated that the big size and non-spherical aerosol particles reduce obviously after dust aerosol deposition, but small size and spherical anthropogenic aerosol also produce a certain effect, and on March 22, 2010 had a small recovery above the ocean following the reduction of DR and CR. Due to the MODIS resolution not meeting the observation requirement and layer identification being different between CALIPSO and CloudSat, a problem such as stratocumulus cloud in low altitude still exists in aerosol and cloud classification. Lack of ground-based auxiliary data is the main problem which hinders our validation and quantitative analysis. It is pressing for a solution in future.

  3. On the dynamics of propeller-like dust grain in plasma

    SciTech Connect

    Krasheninnikov, S. I.

    2013-11-15

    The equations of motion of a dust grain with non-spherical shape in plasma are generalized by incorporating the effects associated with propeller-like features of the grain's shape. For the grain shape close to rotationally symmetric, the stability of “stationary” (in terms of variables used in the grain dynamic equations) solutions are considered. It is found that propeller-like features of the grain's shape can crucially alter stability of such “stationary” states.

  4. Two-wavelength lidar characterization of optical, dynamical, and microphysical properties of Saharan dust layers over Sofia, Bulgaria

    NASA Astrophysics Data System (ADS)

    Peshev, Zahary Y.; Evgenieva, Tsvetina T.; Dreischuh, Tanja N.; Stoyanov, Dimitar V.

    2015-01-01

    In this work, we present results of two-wavelength lidar observations on Saharan dust layers over Sofia, Bulgaria, in two days of strong dust intrusion events in the fall and winter of the year 2010. Measurements are carried out at two wavelengths (1064 nm and 532 nm) by using two channels of an aerosol lidar based on a frequency-doubled Nd:YAG laser. Optical, dynamical, and microphysical properties of the dust layers are studied and analyzed, distinguishing specifics of coarse and fine aerosol fractions. The spatial-temporal evolution of atmospheric aerosol/dust density fluctuations is shown on height-time coordinate color-map plots for each of the two wavelengths. Time-averaged height profiles of the atmospheric backscattering coefficient at 1064 nm and 532 nm are presented, showing the dust and aerosol density distribution up to about 10 km AGL, with a range/height resolution of 15/8 m. Microphysical properties of dust and aerosol particles are characterized qualitatively by using backscatter-related Ǻngström exponents (BAE). Range-resolved time-averaged height profiles of BAE are shown, particularly for the dust layers, indicating the dominating particle size-modes. Obtained BAE values in the range 0.2-0.5 are typical for desert mineral dust, suggesting coarse particles in the over-micron size range. Frequency-count analysis of the obtained BAE arrays is performed for typical separate dust-containing layers, revealing distributions and changes of particle size modes in terms of BAE, as well as effects of dust mixing with finer urban and industrial aerosols. Some efforts are devoted and focused on characterizing the temporal dynamics of the range distribution and density of dust and aerosols. Peculiarities of spatial distribution, size composition, and temporal evolution of Saharan dust aerosols are revealed, analyzed, and discussed.

  5. Possible Aeolian megaripples on Mars

    NASA Technical Reports Server (NTRS)

    Williams, S. H.

    1990-01-01

    Viking orbiter image frames 442B01-10, at 8 m/pxl resolution show that valley floors are not smooth at all, but rather are covered with mounds of material interpreted as dunes. Striations oriented perpendicular to the valley axis can be seen in several locations. The striations are here interpreted to be aeolian megaripples formed from debris weathered from the yardangs. Terrestrial aeolian megaripples have wavelengths up to 25 m; it is not unreasonable that larger megaripples might form under favorable Martian conditions, given the wind speeds available and the lower Martian gravity. If the megaripple interpretation is correct, then by terrestrial analog the deposit in which they occur has a bimodal particle size distribution. One size will undergo saltation; the other, concentrated at the crests of the megaripples, is too large/and or too dense to be put into saltation. For Mars the former is sand-sized, the latter gravel-sized, provided the materials have typical densities.

  6. An Extensive Study on Dynamical aspects of Dust Storm over the United Arab Emirates during 18-20 March 2012

    NASA Astrophysics Data System (ADS)

    Basha, Ghouse; Phanikumar, Devulapalli V.; Ouarda, Taha B. M. J.

    2015-04-01

    On 18 March 2012, a super dust storm event occurred over Middle East (ME) and lasted for several hours. Following to this, another dust storm occurred on early morning of 20 March 2012 with almost higher intensity. Both these storms reduced the horizontal visibility to few hundreds of meters and represented as one of the most intense and long duration dust storms over United Arab Emirates (UAE) in recent times. These storms also reduced the air quality in most parts of the ME implying the shutdown of Airports, schools and hundreds of people were hospitalized with respirational problems. In the context of the above, we have made a detailed study on the dynamical processes leading to triggering of dust storm over UAE and neighboring regions. We have also analyzed its impact on surface, and vertical profiles of background parameters and aerosols during the dust storm period by using ground-based, space borne, dust forecasting model, and reanalysis data sets. The synoptic and dynamic conditions responsible for the occurrence of the dust storm are discussed extensively by using European Centre for Medium-Range Weather Forecasts (ECMWF) ERA interim reanalysis data sets. The Impact of dust storm on surface and upper air radiosonde measurements and aerosol optical properties are also investigated before, during and after the dust storm event. During the dust storm, surface temperature decreased by 15oC when compared to before and after the event. PM10 values significantly increased maximum of about 1600µg/m3. Spatial variation of Aerosol Optical Depth (AOD) from Moderate-resolution Imaging Spectroradiometer (MODIS) and Ozone Monitoring Instrument (OMI) aerosol index (AI) exhibited very high values during the event and source region can be identified of dust transport to our region with this figure. The total attenuated backscatter at 550nm from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite shows the vertical extent of dust up to 8km. The dynamics of this event is

  7. Effects of dust contamination on the transverse dynamics of a magnetized electron plasma

    SciTech Connect

    Romé, M.; Cavaliere, F.; Maero, G.; Cavenago, M.; Chen, S.

    2015-06-29

    Complex (dusty) plasmas are characterized by the presence of a fraction of micrometric or sub-micrometric particles which may collect a surface charge up to the order of a few thousand electron charges. The dusty plasmas studied in the experiments generally satisfy a global neutrality condition. By contrast, we present here the investigation of a magnetized nonneutral plasma, i.e., a plasma with a single sign of charge (e.g. electrons) confined in a Penning-Malmberg trap, contaminated by a dust population. We simulate the two-dimensional transverse dynamics of this multi-component plasma with a particle-in-cell code implementing a mass-less fluid (drift-Poisson) approximation for the electrons and a kinetic description for the dust component (including gravity). Simulations with different initial dust distributions and densities have been performed in order to investigate the influence of the dust on the development of the diocotron instability in the electron plasma. In particular, the early stage of the growth of the diocotron modes has been analyzed by Fourier decomposition.

  8. Holocene aeolian sediments on the NE Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Stauch, G.; Lehmkuhl, F.; Hilgers, A.; Zhao, H.

    2012-04-01

    The semiarid climate of the northeastern Tibetan Plateau supports the formation of different types of aeolian sediments and landforms during the Holocene. Aeolians silts and sands in the catchment of the Donggi Cona in an elevation above 4000m to 4800 m asl reflect variable climate conditions during that time as well as different sediment sources. Based on 51 OSL datings and catchment wide geomorphological mapping a complex pattern of long and short distance sediment transport has been reconstructed. Only few aeolian archives are preserved from the late Pleistocene in this mountain environment indicating cold and dry climate conditions which prevented a continuous accumulation. During the early Holocene a phase of increased aeolian sedimentation of sand at the slopes of the mountains has been reconstructed. The sand originated from a large alluvial fan which was highly active during the Pleistocene. In addition, a thin loess cover is preserved at a few sites in the neighboring mountains ranges. The sedimentation of the loess started around 2000 years later than the sedimentation of the sand at the foot slope. Both archives are related to an increase in precipitation at the northern margin of the Tibetan Plateau which was related to a strengthening of the Asian Monsoon during that time. The wetter climate conditions favored the development of a vegetation cover which leads to the trapping and fixation of the aeolian sediments. However, with a further strengthening of the Monsoon systems these archives subsequently eroded due to higher run off and accumulated as colluvial and fluvial deposits in the basins. These phase lasted until 6 ka. A second aeolian period started at around 3 ka with the formation new dunes in the basins. This period can be associated with dry and cold climate of the late Holocene supporting the reactivation of the sand in the area. This might be further enhanced by an increased human impact by grazing during the late Holocene and resulting

  9. Aeolian Coastal Landscapes in changes (a study from Tahkuna, Estonia)

    NASA Astrophysics Data System (ADS)

    Anderson, A.

    2012-04-01

    The openness of the coast to the winds and storm waves has an important part in changing aeolian coastal landscapes as well as anthropogenic factor. The aeolian coastal landscapes are probably the most dynamic areas. Occurrence of aeolian coastal landscapes in Estonia is limited. They consist of sandy beaches, sandy beach ridges and dunes. The coastal ecosystems are strongly affected by their topography, based on the character of deposits and moisture conditions. The majority of their ecosystems are quite close to the specific natural habitat. These ecosystems are represented in the list of the European Union Habitats (Natura 2000). In recent decades human influence has changed the landscape over time in different activities (recreation, trampling, off-road driving) and their intensities, which has led to destruction or degradation of various habitats. Previously coastal landscapes were used for forestry and pasture. Nowadays one of the most serious threats to open landscape is afforestation. This study examines the relationships between landscape components during last decades. Trying to find out how much aeolian coastal landscapes are influenced by natural processes or human activities. The results are based on cartographic analysis, fieldwork data. The method of landscape complex profile was used. The profiles show a cross-sections of landforms and interrelationships between landscape components, most frequently describing the relations between soils and vegetation. In each sample point the mechanical composition of sediments, vegetation cover and soil is determined. Results show that changes in landscapes are induced by their own development as well as changes in environmental factors and human activities. Larger changes are due to increase of coastal processes activity. These processes can be observed in sandy beaches, which are easily transformed by waves. Higher sea levels during storm surges are reaching older beach formation, causing erosion and creating

  10. Dynamics of interplanetary dust in the F corona

    SciTech Connect

    Rusk, E.T.

    1986-01-01

    Dynamical mechanisms in interplanetary space and in the F corona were studied by numerical simulations. An expression for the radiation pressure force due to a rotating spherical source of radiation was derived. Also, expressions relating the variation in inclination and the longitude of the ascending node to the solar magnetic field were derived. These expressions are based on the spherical source surface model of the solar magnetic field. Simulations of particles released during perihelion passages of comet Encke show that cometary particles have lifetimes shorter than the lifetime calculated by Wyatt and Whipple in 1950. These simulations also resulted in higher eccentricities and a definite alignment of the particles' aphelia toward a direction 20/sup 0/ east of the vernal equinox. An expression relating the size of a planet's zone of influence to perturbations on particles in solar orbits based on the closest approach between the planet and the particle show that the expression for the size of planet's zone of influence is not singular, but varies with the particular orbital element which is being studied.

  11. Laboratory studies of aeolian sediment transport processes on planetary surfaces

    NASA Astrophysics Data System (ADS)

    Rasmussen, Keld R.; Valance, Alexandre; Merrison, Jonathan

    2015-09-01

    , but not all, older or recent wind tunnel observations. Similarly some measurements performed with uniform sand samples having grain diameters of the order of 0.25-0.40 mm indicate that ripple spacing depends on friction velocity in a similar way as particle jump length. The observations are thus in agreement with a recent ripple model that link the typical jump length to ripple spacing. A possible explanation for contradictory observations in some experiments may be that long observation sequences are required in order to assure that equilibrium exists between ripple geometry and wind flow. Quantitative understanding of saltation characteristics on Mars still lacks important elements. Based upon image analysis and numerical predictions, aeolian ripples have been thought to consist of relatively large grains (diameter > 0.6 mm) and that saltation occurs at high wind speeds (> 26 m/s) involving trajectories that are significantly longer than those on Earth (by a factor of 10-100). However, this is not supported by recent observations from the surface of Mars, which shows that active ripples in their geometry and composition have characteristics compatible with those of terrestrial ripples (Sullivan et al., 2008). Also the highest average wind speeds on Mars have been measured to be < 20 m/s, with even turbulent gusts not exceeding 25 m/s. Electrification is seen as a dominant factor in the transport dynamics of dust on Mars, affecting the structure, adhesive properties and detachment/entrainment mechanisms specifically through the formation of aggregates (Merrison et al., 2012). Conversely for terrestrial conditions electric fields typically observed are not intense enough to significantly affect sand transport rates while little is known in the case of extra-terrestrial environments.

  12. Large Saharan dust storms: Implications for chlorophyll dynamics in the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Gallisai, Rachele; Volpe, Gianluca; Peters, Francesc

    2016-11-01

    We investigate the large (LDE) and very large (VLDE) Saharan dust deposition events that occurred between 2000 and 2007 and their short-term impact on the dynamics of marine phytoplankton in the Mediterranean Sea. A total of 153 LDE were identified unevenly distributed over the years. Events were more frequent during winter, in the eastern Mediterranean, and autumn, when they affected both the western and the central Mediterranean. Most of the 31 VLDE occurred during winter and autumn in the central Mediterranean. The dynamics of chlorophyll after VLDE were studied as a proxy for phytoplankton response to atmospheric dust. A significant response of chlorophyll to dust addition was evident; this appeared to be especially true for the western Mediterranean where a chlorophyll increase of up to 345% was recorded, whereas in the central Mediterranean it was up to 146% and in the eastern Mediterranean up to 121%. Chlorophyll response behavior was quite heterogeneous probably as a result of the uniqueness of each VLDE, the differences between Mediterranean areas, the community structure of phytoplankton, and the interaction between bacteria and phytoplankton for new resources. An eastward decreasing trend in chlorophyll response was observed, which is in accordance with the relative importance of bacterial activity with respect to phytoplankton. The increase in mineral aerosols with increased aridity in the region together with the decrease in the depth of the mixed layer of the oceans should boost the importance of aerosols fueling marine production.

  13. Bursts in discontinuous Aeolian saltation

    PubMed Central

    Carneiro, M. V.; Rasmussen, K. R.; Herrmann, H. J.

    2015-01-01

    Close to the onset of Aeolian particle transport through saltation we find in wind tunnel experiments a regime of discontinuous flux characterized by bursts of activity. Scaling laws are observed in the time delay between each burst and in the measurements of the wind fluctuations at the fluid threshold Shields number θc. The time delay between each burst decreases on average with the increase of the Shields number until sand flux becomes continuous. A numerical model for saltation including the wind-entrainment from the turbulent fluctuations can reproduce these observations and gives insight about their origin. We present here also for the first time measurements showing that with feeding it becomes possible to sustain discontinuous flux even below the fluid threshold. PMID:26073305

  14. A METHOD FOR COUPLING DYNAMICAL AND COLLISIONAL EVOLUTION OF DUST IN CIRCUMSTELLAR DISKS: THE EFFECT OF A DEAD ZONE

    SciTech Connect

    Charnoz, Sebastien; Taillifet, Esther

    2012-07-10

    Dust is a major component of protoplanetary and debris disks as it is the main observable signature of planetary formation. However, since dust dynamics are size-dependent (because of gas drag or radiation pressure) any attempt to understand the full dynamical evolution of circumstellar dusty disks that neglect the coupling of collisional evolution with dynamical evolution is thwarted because of the feedback between these two processes. Here, a new hybrid Lagrangian/Eulerian code is presented that overcomes some of these difficulties. The particles representing 'dust clouds' are tracked individually in a Lagrangian way. This system is then mapped on an Eulerian spatial grid, inside the cells of which the local collisional evolutions are computed. Finally, the system is remapped back in a collection of discrete Lagrangian particles, keeping their number constant. An application example of dust growth in a turbulent protoplanetary disk at 1 AU is presented. First, the growth of dust is considered in the absence of a dead zone and the vertical distribution of dust is self-consistently computed. It is found that the mass is rapidly dominated by particles about a fraction of a millimeter in size. Then the same case with an embedded dead zone is investigated and it is found that coagulation is much more efficient and produces, in a short timescale, 1-10 cm dust pebbles that dominate the mass. These pebbles may then be accumulated into embryo-sized objects inside large-scale turbulent structures as shown recently.

  15. Flood Induced Increases in Aeolian Transport Along the Missouri River

    NASA Astrophysics Data System (ADS)

    Benthem, A. J.; Strong, L.; Schenk, E.; Skalak, K.; Hupp, C. R.; Galloway, J.

    2014-12-01

    In 2011, heavy winter snow melt combined with extensive spring rains caused the Missouri River to experience the most extensive flooding since the river was dammed in the 1950s. Large sections of the river banks, islands, and floodplains experienced weeks of prolonged inundation, resulting in extensive sand deposition as up to1 km inland from the established channel. Though locally variable, deposits of up to 3m of loose sand were deposited on the floodplain and extensive areas of shrub, grasslands, and agricultural fields were completely buried or had vegetation washed away in the inundation zone. The flooding also created a number of new unvegetated islands which provide important habitat for endangered species including the Piping Plover (Charadrius melodus). These newly created sand surfaces are unconsolidated and have very little vegetation to prevent aeolian transport. Strong sustained regional winds of up to 20m/s (45mph) cause substantial sediment fluxes which modify landscape topography, shift river morphology, and increase regional dust levels. Our study monitors and quantifies the increase in aeolian transport that occurred following flooding along the Garrison Reach, a 110 km section of free flowing Missouri River in North Dakota. In 2012 and 2013 we measured sand transport and accumulation rates using Leatherman style sand traps and erosion pins to at 9 sites of varying vegetation densities. We apply these flux rates to a high resolution remote sensing vegetation map to estimate the total flux of sand for this segment of the river. We also quantify total available new sand for transport using repeat Light Detection and Ranging (LiDAR) coverage from before and after the flood and examine the relationship between sand deposition and the rate of reestablishment of vegetation. All of these results are used to estimate the scale of flood induced aeolian processes and predict where they may continue to influence the landscape.

  16. Reduction in soil aggregation in response to dust emission processes

    NASA Astrophysics Data System (ADS)

    Swet, Nitzan; Katra, Itzhak

    2016-09-01

    Dust emission by aeolian (wind) soil erosion depends on the topsoil properties of the source area, especially on the nature of the aggregates where most dust particles are held. Although the key role of soil aggregates in dust emission, the response of soil aggregation to aeolian processes and its implications for dust emission remain unknown. This study focuses on aggregate size distribution (ASD) analyses before and after in-situ aeolian experiments in semiarid loess soils that are associated with dust emission. Wind tunnel simulations show that particulate matter (PM) emission and saltation rates depend on the initial ASD and shear velocity. Under all initial ASD conditions, the content of saltator-sized aggregates (63-250 μm) increased by 10-34% due to erosion of macro-aggregates (> 500 μm), resulting in a higher size ratio (SR) between the saltators and macro-aggregates following the aeolian erosion. The results revealed that the saltator production increases significantly for soils that are subjected to short-term (anthropogenic) disturbance of the topsoil. The findings highlight a decrease in soil aggregation for all initial ASD's in response to aeolian erosion, and consequently its influence on the dust emission potential. Changes in ASD should be considered as a key parameter in dust emission models of complex surfaces.

  17. Pathways of high-latitude dust in the North Atlantic

    NASA Astrophysics Data System (ADS)

    Baddock, Matthew C.; Mockford, Tom; Bullard, Joanna E.; Thorsteinsson, Throstur

    2017-02-01

    The contribution of mineral dust from high-latitude sources has remained an under-examined feature of the global dust cycle. Dust events originating at high latitudes can provide inputs of aeolian sediment to regions lying well outside the subtropical dust belt. Constraining the seasonal variability and preferential pathways of dust from high-latitude sources is important for understanding the potential impacts that the dust may have on wider environmental systems, such as nearby marine or cryospheric domains. This study quantifies dust pathways from two areas exhibiting different emission dynamics in the north and south of Iceland, which is a prominent Northern Hemisphere dust source. The analysis uses air parcel trajectory modelling, and for the first time for high-latitude sources, explicitly links all trajectory simulations to time-specific (meteorological) observations of suspended dust. This approach maximises the potential for trajectories to represent dust, and illustrates that trajectory climatologies not limited to dust can grossly overestimate the potential for dust transport. Preferential pathways emerge that demonstrate the role of Iceland in supplying dust to the Northern Atlantic and sub-Arctic oceans. For dust emitted from northern sources, a dominant route exists to the northeast, into the Norwegian, Greenland and Barents Seas, although there is also potential for delivery to the North Atlantic in summer months. From the southern sources, the primary pathway extends into the North Atlantic, with a high density of trajectories extending as far south as 50°N, particularly in spring and summer. Common to both southern and northern sources is a pathway to the west-southwest of Iceland into the Denmark Strait and towards Greenland. For trajectories simulated at ≤500 m, the vertical development of dust plumes from Iceland is limited, likely due to the stable air masses of the region suppressing the potential for vertical motion. Trajectories rarely

  18. Quantifying surface moisture influences on aeolian transport (Invited)

    NASA Astrophysics Data System (ADS)

    Nield, J. M.; Wiggs, G. F.

    2010-12-01

    Surface moisture plays an important role in determining sediment availability and aeolian transport in beach systems but is heterogeneous both spatially and temporally. The development of rippled aeolian sand strips and protodunes are particularly influenced by surface moisture and are inherently transient and therefore difficult to quantify using traditional point based sampling methods. Furthermore, these structures are influenced by saltation cloud formation and mutual feedback associated with surface characteristics and transport dynamics. Here we utilise terrestrial laser scanning (ground-based LiDAR) to accurately decipher beach surface moisture during transport events, elucidating the switch between erosivity and erodibility as the surface dries and saltation intensity increases. This technology is particularly useful at identifying surface moisture within 0-10%, precisely the range over which the aeolian transport threshold is found. The resolution of the instrument allows millimeter accuracy of surface topography, percent accuracy of surface moisture with short (minutes) data collection periods, enabling the examination of multiple relationships at unprecedented detail. Surface roughness and saltation cloud height increase over moist areas, particularly as saltation intensity increases, whilst deposition on the wet/dry boundary is a function of feedback between the surface properties and aerodynamic attributes which ultimately contributes towards protodune formation. These observed feedback mechanisms are incorporated into a cellular automaton-based algorithm to examine sand strip development and surface moisture interaction. Simulations suggest the development of differing mobility between small-scale ripples and larger sand strip is a function of the response of the surface moisture to sediment deposition and erosion. Our findings highlight the inherent complexity of surface moisture and sediment transport interactions, and the need to incorporate their

  19. The potential scale of aeolian structures on Venus

    NASA Technical Reports Server (NTRS)

    Marshall, J. R.; Greeley, Ronald

    1991-01-01

    Simulations of the Venusian aeolian environment with the Venus Wind Tunnel have shown that microdunes are formed during the entrainment of sand-sized material. These structures are several tens of centimeters long (2-3 cm high) and combine the morphological and behavioral characteristics of both full-scale terrestrial dunes and current ripples formed in subaqueous environments. Their similarity to both reflects the fact that the Venusian atmosphere has a density intermediate between air and water. Although the development of microdunes in the wind tunnel experiments was limited by tunnel dimensions, it is possible to make some predictions about their potential size on Venus, and the potential size of related aeolian structures. Microdunes are fluid-filled structures (as are dunes and current ripples) and as such have no theoretical upper limit to their size from a fluid dynamics viewpoint. Limitations to size observed in subaqueous structures are set by, for example, water depth; limitations to the size of dunes are set by, for example, sand supply. It is therefore reasonable to suppose that the microdunes on Venus could evolve into much larger features than those observed in experiments. In addition, the researchers note that current ripples (which are closely related to microdunes) are often found in association with giant ripples that have dimensions similar to aeolian dunes. Thus, it may be reasonable to assume that analogous large scale structures occur on Venus. Both (terrestrial) aeolian and subaqueous environments generate structures in excess of one hundred meters in wavelength. Such dimensions may therefore be applicable to Venusian bedforms. Analysis of Magellan data may resolve the issue.

  20. Aspherical dust dynamics code for GIADA experiment in the coma of 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Ivanovski, Stavro; Zakharov, Vladimir; Della Corte, Vincenzo; Lucarelli, Francesca; Crifo, Jean-Francois; Rotundi, Alessandra; Fulle, Marco

    2014-05-01

    In 2014, the ESA ROSETTA probe is on its way to face its main scientific objectives by encountering and landing on comet 67P/Churyumov- Gerasimenko. One of the in-situ instrument on board ROSETTA is GIADA (Grain Impact Analyzer and Dust Accumulator)[1], which will measure individual dust grain mass, number density and velocity in the immediate vicinity of the cometary nucleus. Based on the state-of-the-art 3D+t dust coma model [3,4] we developed a 3D+t aspherical dust dynamical code Giaspheria (GIADA aspherical dust analyzer) which treats aspherical dust motion to support the scientific objectives of GIADA. We report the latest improvements in Giaspheria[5,6,7] and the distinctions in the dust dynamics of spherical and aspherical grains using gas solutions for a spherical nucleus not yet data-calibrated. We consider motion of homogeneous, isothermal polygonal convex bodies (close to ellipsoid of revolution with different aspect ratios of axes), moving under influence of three forces: aerodynamic , gravitational and torque. We use the gas distribution (density, velocity, temperature) for a spherical nucleus discussed in [4,8]. We estimate the aerodynamic force from expressions for free molecular interactions and postulate the distribution function of ejection velocity and the distribution function of initial orientation on the surface of the nucleus. We show the dust distribution of aspherical grains at three different heliocentric distances (3AU, 2AU and 1.3 AU) by means of GIPSI simulated GIADA measurements during these stages of the mission. As an input for GIPSI simulations we use the dust and velocity distributions prevised by Giaspheria computations. Acknowledgements: This research has been supported by the Italian Space Agency (ASI) (Ref: n. I/032/05/0) [1] Della Corte V. et al, (2014), Journal of Astronomical Instrumentation (in press). [2] Colangeli, L., et al., Space Science Reviews, Volume 128, Numbers 1-4, 803-821, 2007 [3] Zakharov, V.V., Rodionov A

  1. Mineral dust transport and deposition to Antarctica: a climate model perspective

    NASA Astrophysics Data System (ADS)

    Albani, S.; Mahowald, N. M.; Maggi, V.; Delmonte, B.

    2009-04-01

    Windblown mineral dust is a useful proxy for paleoclimates. Its life cycle is determined by climate conditions in the source areas, and following the hydrological cycle, and the intensity and dynamics of the atmospheric circulation. In addition aeolian dust itself is an active component of the climate system, influencing the radiative balance of the atmosphere through its interaction with incoming solar radiation and outgoing planetary radiation. The mineral aerosols also have indirect effects on climate, and are linked to interactions with cloud microphysics and atmospheric chemistry as well as to dust's role of carrier of iron and other elements that constitute limitating nutrients for phytoplancton to remote ocean areas. We use climate model (CCSM) simulations that include a scheme for dust mobilization, transport and deposition in order to describe the evolution of dust deposition in some Antarctic ice cores sites where mineral dust records are available. Our focus is to determine the source apportionment for dust deposited to Antarctica under current and Last Glacial Maximum climate conditions, as well as to give an insight in the spatial features of transport patterns. The understanding of spatial and temporal representativeness of an ice core record is crucial to determine its value as a proxy of past climates and a necessary step in order to produce a global picture of how the dust component of the climate system has changed through time.

  2. Evaluation of a new model of aeolian transport in the presence of vegetation

    USGS Publications Warehouse

    Li, Junran; Okin, Gregory S.; Herrick, Jeffrey E.; Belnap, Jayne; Miller, Mark E.; Vest, Kimberly; Draut, Amy E.

    2013-01-01

    Aeolian transport is an important characteristic of many arid and semiarid regions worldwide that affects dust emission and ecosystem processes. The purpose of this paper is to evaluate a recent model of aeolian transport in the presence of vegetation. This approach differs from previous models by accounting for how vegetation affects the distribution of shear velocity on the surface rather than merely calculating the average effect of vegetation on surface shear velocity or simply using empirical relationships. Vegetation, soil, and meteorological data at 65 field sites with measurements of horizontal aeolian flux were collected from the Western United States. Measured fluxes were tested against modeled values to evaluate model performance, to obtain a set of optimum model parameters, and to estimate the uncertainty in these parameters. The same field data were used to model horizontal aeolian flux using three other schemes. Our results show that the model can predict horizontal aeolian flux with an approximate relative error of 2.1 and that further empirical corrections can reduce the approximate relative error to 1.0. The level of error is within what would be expected given uncertainties in threshold shear velocity and wind speed at our sites. The model outperforms the alternative schemes both in terms of approximate relative error and the number of sites at which threshold shear velocity was exceeded. These results lend support to an understanding of the physics of aeolian transport in which (1) vegetation's impact on transport is dependent upon the distribution of vegetation rather than merely its average lateral cover and (2) vegetation impacts surface shear stress locally by depressing it in the immediate lee of plants rather than by changing the bulk surface's threshold shear velocity. Our results also suggest that threshold shear velocity is exceeded more than might be estimated by single measurements of threshold shear stress and roughness length

  3. Source-to-sink cycling of aeolian sediment in the north polar region of Mars

    NASA Astrophysics Data System (ADS)

    Ewing, R. C.; Kocurek, G.

    2012-12-01

    Aeolian sand dunes are prominent features on the landscapes of Earth, Mars, Venus and Titan and sedimentary deposits interpreted as aeolian in origin are found in the rock records of Earth and Mars. The widespread occurrence of aeolian dunes on the surface of these worlds and within their deep-time depositional records suggests that aeolian systems are and likely have been a default depositional environment for the Solar System. Within an aeolian source-to-sink context, we hypothesize that planet-specific boundary conditions strongly impact production, transport, accumulation and preservation of aeolian sediment, whereas dunes and dune-field patterns remain largely similar. This hypothesis is explored within the north polar region of Mars, which hosts the most extensive aeolian dune fields and aeolian sedimentary deposits yet recognized on Mars and appears to be a region of dynamic source-to-sink cycling of aeolian sediments. The Planum Boreum Cavi Unit rests beneath north polar ice cap of Mars and is composed of several hundred meters of niveo-aeolian dune cross-stratification. The overall architecture of the unit consists of sets of preserved dune topography with an upward increase in the abundance of ice. Dune sets are defined by stabilized, polygonally fractured bounding surfaces, erosional bounding surfaces and typical internal lee foresets made of sediment and ice. The accumulation of the Cavi Unit is interpreted as occurring through freezing and serves as an example of a cold temperature boundary condition on aeolian sediment accumulation. Preservation of the Cavi Unit arises because of deposition of the overlying ice cap and contrasts with preservation of aeolian sediment on Earth, which is largely driven by eustasy and tectonics. The Cavi Unit is thought to be one source of sediment for the north polar Olympia Undae Dune Field. The region of Olympia Undae near the Cavi Unit shows a reticulate dune field pattern composed of two sets of nearly orthogonal

  4. Dust storms on Mars: Considerations and simulations

    NASA Technical Reports Server (NTRS)

    Greeley, R.; White, B. R.; Pollack, J. B.; Iverson, J. D.; Leach, R. N.

    1977-01-01

    Aeolian processes are important in modifying the surface of Mars at present, and appear to have been significant in the geological past. Aeolian activity includes local and global dust storms, the formation of erosional features such as yardangs and depositional features such as sand dunes, and the erosion of rock and soil. As a means of understanding aeolian processes on Mars, an investigation is in progress that includes laboratory simulations, field studies of earth analogs, and interpretation of spacecraft data. This report describes the Martian Surface Wind Tunnel, an experimental facility established at NASA-Ames Research Center, and presents some results of the general investigation. Experiments dealing with wind speeds and other conditions required for the initiation of particle movement on Mars are described and considerations are given to the resulting effectiveness of aeolian erosion.

  5. Giant calcite concretions in aeolian dune sandstones; sedimentological and architectural controls on diagenetic heterogeneity, mid-Cretaceous Iberian Desert System, Spain

    NASA Astrophysics Data System (ADS)

    Arribas, Maria Eugenia; Rodríguez-López, Juan Pedro; Meléndez, Nieves; Soria, Ana Rosa; de Boer, Poppe L.

    2012-01-01

    Aeolian dune sandstones of the Iberian erg system (Cretaceous, Spain) host giant calcite concretions that constitute heterogeneities of diagenetic origin within a potential aeolian reservoir. The giant calcite concretions developed in large-scale aeolian dune foresets, at the transition between aeolian dune toeset and damp interdune elements, and in medium-scale superimposed aeolian dune sets. The chemical composition of the giant concretions is very homogeneous. They formed during early burial by low Mg-calcite precipitation from meteoric pore waters. Carbonate components with yellow/orange luminescence form the nuclei of the poikilotopic calcite cement. These cements postdate earlier diagenetic features, characterized by early mechanical compaction, Fe-oxide cements and clay rims around windblown quartz grains resulting from the redistribution of aeolian dust over the grain surfaces. The intergranular volume (IGV) in friable aeolian sandstone ranges from 7.3 to 15.3%, whereas in cemented aeolian sandstone it is 18.6 to 25.3%. The giant-calcite concretions developed during early diagenesis under the influence of meteoric waters associated with the groundwater flow of the desert basin, although local (e.g. activity of fluid flow through extensional faults) and/or other regional controls (e.g. variations of the phreatic level associated with a variable water influx to the erg system and varying sea level) could have favoured the local development of giant-calcite concretions. The spatial distribution pattern of carbonate grains and the main bounding surfaces determined the spatial distribution of the concretions. In particular, the geometry of the giant calcite concretions is closely associated with main bounding aeolian surfaces. Thus, interdune, superimposition and reactivation surfaces exerted a control on the concretion geometries ranging from flat and tabular ones (e.g. bounded by interdunes) to wedge-shaped concretions at the dune foresets (e.g. bounded by

  6. Surface-sediment dynamics in a dust source from thermal infrared remote sensing

    NASA Astrophysics Data System (ADS)

    Katra, I.; Lancaster, N.

    2007-12-01

    Characteristics of surface sediments are significant factors in modeling dust entrainment and wind erosion, and it is of interest to monitor them using remote sensing in source areas at high spatial and temporal resolution. A time-series of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data were acquired for Soda Playa (CA), a modern depositional environment associated with dust emission. Analysis of the multispectral thermal infrared (TIR) images indicates that the type and distribution of the surface sediments can be mapped by linear spectral unmixing techniques. Image-based spectral endmembers extracted from the ASTER five-band surface emissivity data were used to drive fraction images. The spectral-mixture analysis reveals that the mosaic-like pattern of the main sediment types - silica-rich, clay-rich, and salt-rich, changes in time as a consequence of interactions between hydrologic and geomorphic processes in the playa environment. The results highlight the dynamic response of the playa-surface to wind erosion, and suggest that this technique is useful for continuously detecting dust emission potential in sources characterized by a small extension and a complex surface.

  7. A fast and explicit algorithm for simulating the dynamics of small dust grains with smoothed particle hydrodynamics

    NASA Astrophysics Data System (ADS)

    Price, Daniel J.; Laibe, Guillaume

    2015-07-01

    We describe a simple method for simulating the dynamics of small grains in a dusty gas, relevant to micron-sized grains in the interstellar medium and grains of centimetre size and smaller in protoplanetary discs. The method involves solving one extra diffusion equation for the dust fraction in addition to the usual equations of hydrodynamics. This `diffusion approximation for dust' is valid when the dust stopping time is smaller than the computational timestep. We present a numerical implementation using smoothed particle hydrodynamics that is conservative, accurate and fast. It does not require any implicit timestepping and can be straightforwardly ported into existing 3D codes.

  8. Triton's streaks as windblown dust

    NASA Technical Reports Server (NTRS)

    Sagan, Carl; Chyba, Christopher

    1990-01-01

    Explanations for the surface streaks observed by Voyager 2 on Triton's southern hemisphere are discussed. It is shown that, despite Triton's tenuous atmosphere, low-cohesion dust trains with diameters of about 5 micron or less may be carried into suspension by aeolian surface shear stress, given expected geostrophic wind speeds of about 10 m/s. For geyser-like erupting dust plumes, it is shown that dust-settling time scales and expected wind velocities can produce streaks with length scales in good agreement with those of the streaks. Thus, both geyserlike eruptions or direct lifting by surface winds appear to be viable mechanisms for the origin of the streaks.

  9. Particle-Wave Micro-Dynamics in Nonlinear Self-Excited Dust Acoustic Waves

    SciTech Connect

    Tsai, C.-Y.; Teng, L.-W.; Liao, C.-T.; I Lin

    2008-09-07

    The large amplitude dust acoustic wave can be self-excited in a low-pressure dusty plasma. In the wave, the nonlinear wave-particle interaction determines particle motion, which in turn determines the waveform and wave propagation. In this work, the above behaviors are investigated by directly tracking particle motion through video-microscopy. A Lagrangian picture for the wave dynamics is constructed. The wave particle interaction associated with the transition from ordered to disordered particle oscillation, the wave crest trapping and wave heating are demonstrated and discussed.

  10. A theoretical note on aerodynamic lifting in dust devils

    NASA Astrophysics Data System (ADS)

    Wang, Zhen-Ting

    2016-02-01

    The stress distribution of a known rotating flow near the ground in fluid mechanics indicates that the horizontal aerodynamic entrainment of particles within dust devils is attributed to friction force rather than pressure force. The expression of dust emission rate on Earth was theoretically discussed based on simulated flow field and our current understanding of the physics of aeolian dust. It seems that transition flow is vital to dust devils on Mars.

  11. Avalanche grainflow on a simulated aeolian dune

    NASA Astrophysics Data System (ADS)

    Sutton, S. L. F.; McKenna Neuman, C.; Nickling, W.

    2013-09-01

    Avalanches maintain the slipface of aeolian dunes, which alters their airflow characteristics and sediment dynamics, and results in the development of grainflow cross-bedding. We report on a series of experiments in which avalanches were observed on a 1:1 replica of a small (1.2 m brink height) transverse dune in the Dune Simulation Wind Tunnel under wind velocities of 8-11 m s-1. Changes in slipface topography were observed photographically and measured utilizing a 3-D laser scanner with 1 mm2 spatial resolution. Avalanches in noncohesive sands were observed to progress through scarp recession from the point of initiation and continue until the slope angle is reduced. Changes in local slope confirm that the steep, pre-avalanche mean slope relaxes to a uniform value equal to the angle of repose of the test sand (32°) over all involved portions of the slipface. Avalanche volumes are measured, and demonstrate that avalanche magnitude is independent of wind speed over the range of velocities observed. This independence provides the potential to significantly simplify the modeling of grainflow as a function of only the total cross brink sediment transport.

  12. The physics of wind-blown sand and dust.

    PubMed

    Kok, Jasper F; Parteli, Eric J R; Michaels, Timothy I; Karam, Diana Bou

    2012-10-01

    The transport of sand and dust by wind is a potent erosional force, creates sand dunes and ripples, and loads the atmosphere with suspended dust aerosols. This paper presents an extensive review of the physics of wind-blown sand and dust on Earth and Mars. Specifically, we review the physics of aeolian saltation, the formation and development of sand dunes and ripples, the physics of dust aerosol emission, the weather phenomena that trigger dust storms, and the lifting of dust by dust devils and other small-scale vortices. We also discuss the physics of wind-blown sand and dune formation on Venus and Titan.

  13. The Origin of Transverse Aeolian Ridges on Mars

    NASA Astrophysics Data System (ADS)

    Geissler, P.

    2015-12-01

    Transverse aeolian ridges, or TARs, are found throughout the tropics of Mars and typically appear as rows of bright ripples that are several meters tall and spaced semi-regularly several tens of meters apart. The origin of these features remained mysterious for decades after their discovery in Viking and Mars Global Surveyor images. A new hypothesis (Geissler, 2014, 10.1002-2014JE004633) suggests that TARs might be deposits left behind by dusty turbidity currents in the Martian atmosphere. The hypothesis assumes that the micron-sized dust particles are transported in suspension in turbulent flows, driven both by the winds and by gravity. The dust is concentrated near the surface, much like turbidity currents on Earth. Because of the difference in density, however, the dust clouds behave as a fluid distinct from the clear sky above. In particular, waves can appear at the surface of the dense "fluid" when the flows encounter topographic obstacles along their paths. Such gravity waves travel at speeds that are determined by gravity and the thickness of the flow, much like waves in shallow water on Earth. When the wave propagation speed matches the speed of the flow, stationary waves are produced that persist in fixed locations. The bedforms deposited by such stationary waves are called "antidunes" (Gilbert, 1914, USGS Prof. Paper 86) because, unlike dunes, they can migrate upstream in a supercritical flow. Antidunes are commonly seen in shallow, high energy fluvial deposits on Earth. They are usually destroyed as quickly as they form, and are rarely preserved. The Martian TARs survive because the dust is sticky; TARs are deposited by currents that are much slower than the wind speeds needed to lift the dust again. Subaerial antidunes are much rarer on Earth and less well studied, and so the giant subaerial stationary antidunes of Mars, if that is what the TARs turn out to be, may teach us much about a geological process that is poorly known on our planet.

  14. STARDUST-U experiments on fluid-dynamic conditions affecting dust mobilization during LOVAs

    NASA Astrophysics Data System (ADS)

    Poggi, L. A.; Malizia, A.; Ciparisse, J. F.; Tieri, F.; Gelfusa, M.; Murari, A.; Del Papa, C.; Giovannangeli, I.; Gaudio, P.

    2016-07-01

    Since 2006 the Quantum Electronics and Plasma Physics (QEP) Research Group together with ENEA FusTech of Frascati have been working on dust re-suspension inside tokamaks and its potential capability to jeopardize the integrity of future fusion nuclear plants (i.e. ITER or DEMO) and to be a risk for the health of the operators. Actually, this team is working with the improved version of the "STARDUST" facility, i.e. "STARDUST-Upgrade". STARDUST-U facility has four new air inlet ports that allow the experimental replication of Loss of Vacuum Accidents (LOVAs). The experimental campaign to detect the different pressurization rates, local air velocity, temperature, have been carried out from all the ports in different accident conditions and the principal results will be analyzed and compared with the numerical simulations obtained through a CFD (Computational Fluid Dynamic) code. This preliminary thermo fluid-dynamic analysis of the accident is crucial for numerical model development and validation, and for the incoming experimental campaign of dust resuspension inside STARDUST-U due to well-defined accidents presented in this paper.

  15. Aeolian sands and buried soils in the Mecklenburg Lake District, NE Germany: Holocene land-use history and pedo-geomorphic response

    NASA Astrophysics Data System (ADS)

    Küster, Mathias; Fülling, Alexander; Kaiser, Knut; Ulrich, Jens

    2014-04-01

    The present study is a pedo-geomorphic approach to reconstructing Holocene aeolian sand dynamics in the Mecklenburg Lake District (NE Germany). Stratigraphical, sedimentological and soil research supplemented by morphogenetic interpretations of the genesis of dunes and aeolian sands are discussed. A complex Late Holocene aeolian stratigraphy within a drift sand area was developed at the shore of Lake Müritz. The results were confirmed using palynological records, archaeological data and regional history. Accelerated aeolian activity was triggered by the intensification of settlement and land-use activities during the 13th and in the 15th to 16th century AD. After a period of stability beginning with population decline during the ‘Thirty Years War' and continuing through the 18th century, a final aeolian phase due to the establishment of glassworks was identified during the 19th century AD. We assume a direct link between Holocene aeolian dynamics and human activities. Prehistoric Holocene drift sands on terrestrial sites have not been documented in the Mecklenburg Lake District so far. This might be explained either by erosion and incorporation of older aeolian sediments during younger aeolian phases and/or a lower regional land-use intensity in older periods of the Holocene. The investigated drift sands are stratigraphically and sedimentologically characterised by a high degree of heterogeneity, reflecting the spatial and temporal variability of Holocene human impact.

  16. A conceptual framework for dryland aeolian sediment transport along the grassland-forest continuum: Effects of woody plant canopy cover and disturbance

    NASA Astrophysics Data System (ADS)

    Breshears, David D.; Whicker, Jeffrey J.; Zou, Chris B.; Field, Jason P.; Allen, Craig D.

    2009-04-01

    range of rates in grasslands and associated systems with no woody plants (e.g., agricultural fields), an intermediate range in shrublands, and a relatively small range in woodlands and forests. These trends are consistent with previous observations relating large rates of wind erosion to intermediate values for spatial density of roughness elements. The framework for aeolian sediment transport, which is also relevant to dust fluxes, wind erosion, and related aeolian processes, is applicable to a diverse suite of environmental challenges, including land degradation and desertification, dust storms, contaminant transport, and alterations of the hydrological cycle.

  17. A conceptual framework for dryland aeolian sediment transport along the grassland-forest continuum: Effects of woody plant canopy cover and disturbance

    USGS Publications Warehouse

    Breshears, D.D.; Whicker, J.J.; Zou, C.B.; Field, J.P.; Allen, C.D.

    2009-01-01

    range of rates in grasslands and associated systems with no woody plants (e.g., agricultural fields), an intermediate range in shrublands, and a relatively small range in woodlands and forests. These trends are consistent with previous observations relating large rates of wind erosion to intermediate values for spatial density of roughness elements. The framework for aeolian sediment transport, which is also relevant to dust fluxes, wind erosion, and related aeolian processes, is applicable to a diverse suite of environmental challenges, including land degradation and desertification, dust storms, contaminant transport, and alterations of the hydrological cycle. ?? 2008 Elsevier B.V.

  18. Equation of state calculations for two-dimensional dust coulomb crystal at near zero temperature by molecular dynamics simulations

    SciTech Connect

    Djouder, M. Kermoun, F.; Mitiche, M. D.; Lamrous, O.

    2016-01-15

    Dust particles observed in universe as well as in laboratory and technological plasma devices are still under investigation. At low temperature, these particles are strongly negatively charged and are able to form a 2D or 3D coulomb crystal. In this work, our aim was to check the ideal gas law validity for a 2D single-layer dust crystal recently reported in the literature. For this purpose, we have simulated, using the molecular dynamics method, its thermodynamic properties for different values of dust particles number and confinement parameters. The obtained results have allowed us to invalidate the ideal gas behaviour and to propose an effective equation of state which assumes a near zero dust temperature. Furthermore, the value of the calculated sound velocity was found to be in a good agreement with experimental data published elsewhere.

  19. 10 years of aeolian geomorphology at the EGU: past achievements and future challenges

    NASA Astrophysics Data System (ADS)

    Baas, Andreas C. W.; Wiggs, Giles F. S.; Claudin, Philippe

    2016-04-01

    On this tenth anniversary of the Aeolian Processes & Landforms session at the EGU the original conveners review and reflect on the recent achievements and expansion in aeolian geomorphological research, focussing on advances in our understanding of sand transport processes, dune development and dynamics, and the mechanisms and scalings involved. This talk will highlight the variety and impact of the dramatic increase in the extent and interest of research on aeolian processes and landforms in the last ten years, including the increasingly strong community presence at international meetings, the diversity and extent of collaborations across subject boundaries, and the application of new measurement technologies and mathematical approaches. We conclude with a forward-looking prospectus of exciting future challenges and open research questions.

  20. Surface moisture feedback in modelled aeolian rippled sand strip and dune field patterns

    NASA Astrophysics Data System (ADS)

    Nield, J. M.

    2010-12-01

    Surface moisture plays a key role in controlling sediment availability and transport in aeolian systems which leads to the development of a diverse range of spatial patterns including transient sand strips on beaches with small temporal and spatial scales, and large-scale dune patterns dominated by wet interdune areas. By altering feedback response times between surface moisture and transport dynamics, these different patterns can be explored and modelled using a cellular automaton-based algorithm. This algorithm includes stochastic transport and mimics real-world behaviour, where surface moisture limits aeolian erosion, but a modest amount of moisture hardens the surface, increasing the elasticity of rebounding grains. Simulations allow for examination of different sediment availability scenarios which can be related to the developed internal stratigraphy of the modeled landscape. Results elucidate the controlling mechanism of surface moisture in sediment availability and highlight the importance of mutual feedback for developing diverse aeolian landscape patterns at different spatial and temporal scales.

  1. An integrated coastal model for aeolian and hydrodynamic sediment transport

    NASA Astrophysics Data System (ADS)

    Baart, F.; den Bieman, J.; van Koningsveld, M.; Luijendijk, A. P.; Parteli, E. J. R.; Plant, N. G.; Roelvink, J. A.; Storms, J. E. A.; de Vries, S.; van Thiel de Vries, J. S. M.; Ye, Q.

    2012-04-01

    Dunes are formed by aeolian and hydrodynamic processes. Over the last decades numerical models were developed that capture our knowledge of the hydrodynamic transport of sediment near the coast. At the same time others have worked on creating numerical models for aeolian-based transport. Here we show a coastal model that integrates three existing numerical models into one online-coupled system. The XBeach model simulates storm-induced erosion (Roelvink et al., 2009). The Delft3D model (Lesser et al., 2004) is used for long term morphology and the Dune model (Durán et al., 2010) is used to simulate the aeolian transport. These three models were adapted to be able to exchange bed updates in real time. The updated models were integrated using the ESMF framework (Hill et al., 2004), a system for composing coupled modeling systems. The goal of this integrated model is to capture the relevant coastal processes at different time and spatial scales. Aeolian transport can be relevant during storms when the strong winds are generating new dunes, but also under relative mild conditions when the dunes are strengthened by transporting sand from the intertidal area to the dunes. Hydrodynamic transport is also relevant during storms, when high water in combination with waves can cause dunes to avalanche and erode. While under normal conditions the hydrodynamic transport can result in an onshore transport of sediment up to the intertidal area. The exchange of sediment in the intertidal area is a dynamic interaction between the hydrodynamic transport and the aeolian transport. This dynamic interaction is particularly important for simulating dune evolution at timescales longer than individual storm events. The main contribution of the integrated model is that it simulates the dynamic exchange of sediment between aeolian and hydrodynamic models in the intertidal area. By integrating the numerical models, we hope to develop a model that has a broader scope and applicability than

  2. Wave-particle dynamics of wave breaking in the self-excited dust acoustic wave.

    PubMed

    Teng, Lee-Wen; Chang, Mei-Chu; Tseng, Yu-Ping; I, Lin

    2009-12-11

    The wave-particle microdynamics in the breaking of the self-excited dust acoustic wave growing in a dusty plasma liquid is investigated through directly tracking dust micromotion. It is found that the nonlinear wave growth and steepening stop as the mean oscillating amplitude of dust displacement reaches about 1/k (k is the wave number), where the vertical neighboring dust trajectories start to crossover and the resonant wave heating with uncertain crest trapping onsets. The dephased dust oscillations cause the abrupt dropping and broadening of the wave crest after breaking, accompanied by the transition from the liquid phase with coherent dust oscillation to the gas phase with chaotic dust oscillation. Corkscrew-shaped phase-space distributions measured at the fixed phases of the wave oscillation cycle clearly indicate how dusts move in and constitute the evolving waveform through dust-wave interaction.

  3. Abstracts for the Planetary Geology Field Conference on Aeolian Processes

    NASA Technical Reports Server (NTRS)

    Greeley, R. (Editor); Black, D. (Editor)

    1978-01-01

    The Planetary Geology Field Conference on Aeolian Processes was organized at the request of the Planetary Geology Program office of the National Aeronautics and Space Administration to bring together geologists working on aeolian problems on earth and planetologists concerned with similar problems on the planets. Abstracts of papers presented at the conference are arranged herein by alphabetical order of the senior author. Papers fall into three broad categories: (1) Viking Orbiter and Viking Lander results on aeolian processes and/or landforms on Mars, (2) laboratory results on studies of aeolian processes, and (3) photogeology and field studies of aeolian processes on Earth.

  4. Gravitational collapse of thin shells of dust in asymptotically flat shape dynamics

    NASA Astrophysics Data System (ADS)

    Mercati, Flavio; Gomes, Henrique; Koslowski, Tim; Napoletano, Andrea

    2017-02-01

    In a recent paper, one of us studied spherically symmetric, asymptotically flat solutions of shape dynamics, finding that the spatial metric has characteristics of a wormhole—two asymptotically flat ends and a minimal-area sphere, or "throat," in between. In this paper, we investigate whether that solution can emerge as a result of gravitational collapse of matter. With this goal, we study the simplest kind of spherically symmetric matter: an infinitely-thin shell of dust. Our system can be understood as a model of a star accreting a thin layer of matter. We solve the dynamics of the shell exactly and find that, indeed, as it collapses, the shell leaves in its wake the wormhole metric. In the maximal-slicing time we use for asymptotically flat solutions, the shell only approaches the throat asymptotically and does not cross it in a finite amount of time (as measured by a clock "at infinity"). This leaves open the possibility that a more realistic cosmological solution of shape dynamics might see this crossing happening in a finite amount of time (as measured by the change of relational or shape degrees of freedom).

  5. Detecting Interplanetary Dust Particles with Radars to Study the Dynamics at the Edge of the Space

    NASA Technical Reports Server (NTRS)

    Janches, Diego

    2015-01-01

    The Earth's mesosphere is the region of the atmosphere between approximately 60-120 km altitude, where the transition from hydrodynamic flow to molecular diffusion occurs. It is highly dynamic region where turbulence by wave braking is produced and energy is deposited from sources from both, below and above this altitude range. Because aircraft and nearly all balloons reach altitudes below approximately 50 km and orbital spacecrafts are well above approximately 400 km, the mesosphere has only been accessed through the use of sounding rockets or remote sensing techniques, and as a result, it is the most poorly understood part of the atmosphere. In addition, millions of Interplanetary Dust Particles (IDPs) enter the atmosphere. Within the mesosphere most of these IDPs melt or vaporize as a result of collisions with the air particles producing meteors that can be detected with radars. This provides a mean to study the dynamics of this region. In this lecture the basic principles of the utilization of meteor radars to study the dynamics of the mesosphere will be presented. A system overview of these systems will be provided as well as discuss the advantages/disadvantages of these systems, provide details of the data processing methodology and give a brief overview of the current status of the field as well as the vision for the next decade.

  6. Reconstructing transport pathways for late Quaternary dust from eastern Australia using the composition of trace elements of long traveled dusts

    NASA Astrophysics Data System (ADS)

    Petherick, Lynda M.; McGowan, Hamish A.; Kamber, Balz S.

    2009-04-01

    The southeast Australian dust transport corridor is the principal pathway through which continental emissions of dust from central and eastern Australia are carried to the oceans by the prevailing mid-latitude westerly circulation. The analysis of trace elements of aeolian dust, preserved in lake sediment on North Stradbroke Island, southeast Queensland, is used to reconstruct variation in the intensity and position of dust transport to the island over the past 25,000 yrs. Separation of local and long traveled dust content of lake sediments is achieved using a unique, four-element (Ga, Ni, Tl and Sc) separation method. The local and continental chronologies of aeolian deposition developed by this study show markedly different records, and indicate varied responses to climate variability on North Stradbroke Island (local aeolian sediment component) and in eastern and central Australia (long traveled dust component). The provenance of the continental component of the record to sub-geologic catchment scales was accomplished using a ternary mixing model in which the chemical identification of dusts extracted, from the lake sediments, was compared to potential chemical characteristics of surface dust from the source areas using 16 trace elements. The results indicate that the position and intensity of dust transport pathways during the late Quaternary varied considerably in response to changing atmospheric circulation patterns as well as to variations in sediment supply to dust source areas, which include the large anabranching river systems of the Lake Eyre and Murray-Darling Basins.

  7. Roughness configuration matters for aeolian sediment flux

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The parameterisation of surface roughness effects on aeolian sediment transport is a key source of uncertainty in wind erosion models. Roughness effects are typically represented by bulk drag-partitioning schemes that scale the threshold friction velocity (u*t) for soil entrainment by the ratio of s...

  8. Aeolian Simulations: A Comparison of Numerical and Experimental Results

    NASA Astrophysics Data System (ADS)

    Mathews, O.; Burr, D. M.; Bridges, N. T.; Lyne, J. E.; Marshall, J. R.; Greeley, R.; White, B. R.; Hills, J.; Smith, K.; Prissel, T. C.; Aliaga-Caro, J. F.

    2010-12-01

    Aeolian processes are a major geomorphic agent on solid planetary bodies with atmospheres (Earth, Mars, Venus, and Titan). This paper describes preliminary efforts to model aeolian saltation using computational fluid dynamics (CFD) and to compare the results with those obtained in wind tunnel testing conducted in the Planetary Aeolian Laboratory at NASA Ames Research Center at ambient pressure. The end goal of the project is to develop an experimentally validated CFD approach for modeling aeolian sediment transport on Titan and other planetary bodies. The MARSWIT open-circuit tunnel in this work was specifically designed for atmospheric boundary layer studies. It is a variable-speed, continuous flow tunnel with a test section 1.0 m by 1.2 m in size; the tunnel is able to operate at pressures from 10 millibar to one atmosphere. Flow trips near the tunnel inlet ensure a fully developed, turbulent boundary layer in the test section. Wind speed and axial velocity profiles can be measured with a traversing pitot tube. In this study, sieved walnut shell particles (Greeley et al. 1976) with a density of ~1.1 g/cm3 were used to correlate the low gravity conditions and low sediment density on a body of interest to that of Earth. This sediment was placed in the tunnel, and the freestream airspeed raised to 5.4 m/s. A Phantom v12 camera imaged the resulting particle motion at 1000 frames per second, which was analyzed with ImageJ open-source software (Fig. 1). Airflow in the tunnel was modeled with FLUENT, a commercial CFD program. The turbulent scheme used in FLUENT to obtain closed-form solutions to the Navier-Stokes equations was a 1st Order, k-epsilon model. These methods produced computational velocity profiles that agree with experimental data to within 5-10%. Once modeling of the flow field had been achieved, a Euler-Lagrangian scheme was employed, treating the particles as spheres and tracking each particle at its center. The particles are assumed to interact with

  9. Land surface memory effects on dust emission in a Mongolian temperate grassland

    NASA Astrophysics Data System (ADS)

    Nandintsetseg, Banzragch; Shinoda, Masato

    2015-03-01

    Aeolian processes in temperate grasslands are unique in that the plant growth-decay cycle, soil moisture/snowpack dynamics, and induced grazing interactively affect seasonal and interannual variations of dust emission. This study uses process-based ecosystem model DAYCENT and unique saltation flux measurements to (1) identify primary land surface factors that control dust emission with soil moisture and vegetation components (live grasses, standing dead grasses, and litter) in a Mongolian grassland and (2) test the dead-leaf hypothesis proposed by previous observational studies that correlates plant biomass in summer and dust events the following spring. In general, the DAYCENT model realistically simulates seasonal and interannual variations of the vegetation components and soil moisture that were captured by field observations during 2003-2010. Then, the land surface components are correlated with measured daily saltation flux in the springs of 2008-2009 and the frequency of monthly dusty days during March-June 2002-2010. Results show that dust emission had a similar amplitude of significant correlation with wind speed and a combination of all land surface components, which demonstrates a memory of the preceding year. The memory analysis reveals that vegetation and soil moisture anomalies during spring dust emission are significantly autocorrelated with the preceding year's (autumn) corresponding anomalies, which were controlled by rainfall during a given summer. Most importantly, of the vegetation components, the standing dead grasses had the strongest memory and simultaneous correlation with spring dust emission, suggesting the validity of the dead-leaf hypothesis.

  10. Intensity of African Humid Periods Estimated from Saharan Dust Fluxes

    PubMed Central

    Ehrmann, Werner; Schmiedl, Gerhard; Beuscher, Sarah; Krüger, Stefan

    2017-01-01

    North Africa experienced dramatic changes in hydrology and vegetation during the late Quaternary driven by insolation-induced shifts of the tropical rain belt and further modulated by millennial-scale droughts and vegetation-climate feedbacks. While most past proxy and modelling studies concentrated on the temporal and spatial dynamics of the last African humid period, little is known about the intensities and characteristics of pre-Holocene humid periods. Here we present a high-resolution record of fine-grained eastern Saharan dust from the Eastern Mediterranean Sea spanning the last 180 kyr, which is based on the clay mineral composition of the marine sediments, especially the kaolinite/chlorite ratio. Minimum aeolian kaolinite transport occurred during the African Humid Periods because kaolinite deflation was hampered by increased humidity and vegetation cover. Instead, kaolinite weathering from kaolinite-bearing Cenozoic rocks was stored in lake basins, river beds and soils during these periods. During the subsequent dry phases, fine-grained dust was mobilised from the desiccated lakes, rivers and soils resulting in maximum aeolian uptake and transport of kaolinite. The kaolinite transport decreased again when these sediment sources exhausted. We conclude that the amount of clay-sized dust blown out of the Sahara into the Eastern Mediterranean Sea is proportional to the intensity of the kaolinite weathering and accumulation in soils and lake sediments, and thus to the strength of the preceding humid period. These humid periods provided the windows for the migration of modern humans out of Africa, as postulated previously. The strongest humid period occurred during the Eemian and was followed by two weaker phases centred at ca. 100 ka and ca. 80 ka. PMID:28129378

  11. Intensity of African Humid Periods Estimated from Saharan Dust Fluxes.

    PubMed

    Ehrmann, Werner; Schmiedl, Gerhard; Beuscher, Sarah; Krüger, Stefan

    2017-01-01

    North Africa experienced dramatic changes in hydrology and vegetation during the late Quaternary driven by insolation-induced shifts of the tropical rain belt and further modulated by millennial-scale droughts and vegetation-climate feedbacks. While most past proxy and modelling studies concentrated on the temporal and spatial dynamics of the last African humid period, little is known about the intensities and characteristics of pre-Holocene humid periods. Here we present a high-resolution record of fine-grained eastern Saharan dust from the Eastern Mediterranean Sea spanning the last 180 kyr, which is based on the clay mineral composition of the marine sediments, especially the kaolinite/chlorite ratio. Minimum aeolian kaolinite transport occurred during the African Humid Periods because kaolinite deflation was hampered by increased humidity and vegetation cover. Instead, kaolinite weathering from kaolinite-bearing Cenozoic rocks was stored in lake basins, river beds and soils during these periods. During the subsequent dry phases, fine-grained dust was mobilised from the desiccated lakes, rivers and soils resulting in maximum aeolian uptake and transport of kaolinite. The kaolinite transport decreased again when these sediment sources exhausted. We conclude that the amount of clay-sized dust blown out of the Sahara into the Eastern Mediterranean Sea is proportional to the intensity of the kaolinite weathering and accumulation in soils and lake sediments, and thus to the strength of the preceding humid period. These humid periods provided the windows for the migration of modern humans out of Africa, as postulated previously. The strongest humid period occurred during the Eemian and was followed by two weaker phases centred at ca. 100 ka and ca. 80 ka.

  12. Dust Measurements in Tokamaks

    SciTech Connect

    Rudakov, D; Yu, J; Boedo, J; Hollmann, E; Krasheninnikov, S; Moyer, R; Muller, S; Yu, A; Rosenberg, M; Smirnov, R; West, W; Boivin, R; Bray, B; Brooks, N; Hyatt, A; Wong, C; Fenstermacher, M; Groth, M; Lasnier, C; McLean, A; Stangeby, P; Ratynskaia, S; Roquemore, A; Skinner, C; Solomon, W M

    2008-04-23

    Dust production and accumulation impose safety and operational concerns for ITER. Diagnostics to monitor dust levels in the plasma as well as in-vessel dust inventory are currently being tested in a few tokamaks. Dust accumulation in ITER is likely to occur in hidden areas, e.g. between tiles and under divertor baffles. A novel electrostatic dust detector for monitoring dust in these regions has been developed and tested at PPPL. In DIII-D tokamak dust diagnostics include Mie scattering from Nd:YAG lasers, visible imaging, and spectroscopy. Laser scattering resolves size of particles between 0.16-1.6 {micro}m in diameter; the total dust content in the edge plasmas and trends in the dust production rates within this size range have been established. Individual dust particles are observed by visible imaging using fast-framing cameras, detecting dust particles of a few microns in diameter and larger. Dust velocities and trajectories can be determined in 2D with a single camera or 3D using multiple cameras, but determination of particle size is problematic. In order to calibrate diagnostics and benchmark dust dynamics modeling, pre-characterized carbon dust has been injected into the lower divertor of DIII-D. Injected dust is seen by cameras, and spectroscopic diagnostics observe an increase of carbon atomic, C2 dimer, and thermal continuum emissions from the injected dust. The latter observation can be used in the design of novel dust survey diagnostics.

  13. Mid to late Holocene aeolian activity revealed by a multiproxy peat record in continental CE Europe (Northern Romania)

    NASA Astrophysics Data System (ADS)

    Panait, Andrei Marian; Feurdean, Angelica; Hutchinson, Simon Mark; Tanţǎu, Ioan

    2016-04-01

    Peat bogs, and especially ombrogenous mire, are increasingly used as continental archives of aeolian dust and sand deposition. Since ombrogenous peat is formed above ground water level all the inputs are atmospheric. Dust is more influenced by regional climatic patterns due to its small size, whereas sand tends to record local patterns in storm frequency and intensity reflecting its larger particle size. However, both size fractions are significantly underused proxies of past climate variability. Here, an ombrogenous peat profile from Tǎul Muced in the Rodnei Mountains (Northern Romanian Carpathians), located in a temperate continental climate, with Atlantic and Baltic influences, provides the very first record of mid to late Holocene aeolian activity from Romania highlighting the interplay between local and regional controls in a continental area of CE Europe. We use a multiproxy approach combining radiocarbon dating, the physical properties of the peat (loss-on-ignition, bulk density), mineral magnetic measurements (ARM, SIRM), geochemical (Ti and Zr) and particle size analysis (via both laser diffraction and the manual counting of sand particles under a steromicroscope) to determine changes in: i) atmospheric dust deposition and ii) wind velocities during the last 7800 years. We found that the aeolian particles are mainly silt (3.9-63 μm) (dust) and sand (63-1200 μm). The mineralogical composition of the aeolian sediment in peat is mainly quartz, more rarely calcite and very rarely other minerals such as feldspar, sulphur, mica (biotite and muscovite), magnetite and other melanocrate minerals. The roundness of the sand particles varies from well-rounded to sub-angular and angular, and suggests that the sand particles have different source areas. Results from this study show that over the last 7600 years the pattern of wind frequency changed several times: there are periods characterised by a low aeolian input around 6950-6550, 5000-3900, 3500-2900, 1650

  14. A Modification and Analysis of Lagrangian Trajectory Modeling and Granular Dynamics of Lunar Dust Particles

    NASA Technical Reports Server (NTRS)

    Long, Jason M.; Lane, John E.; Metzger, Philip T.

    2008-01-01

    A previously developed mathematical model is amended to more accurately incorporate the effects of lift and drag on single dust particles in order to predict their behavior in the wake of high velocity gas flow. The model utilizes output from a CFD or DSMC simulation of exhaust from a rocket nozzle hot gas jet. An extension of the Saffman equation for lift based on the research of McLaughlin (1991) and Mei (1992) is used, while an equation for the Magnus force modeled after the work of Oesterle (1994) and Tsuji et al (1985) is applied. A relationship for drag utilizing a particle shape factor (phi = 0.8) is taken from the work of Haider and Levenspiel (1989) for application to non-spherical particle dynamics. The drag equation is further adjusted to account for rarefaction and compressibility effects in rarefied and high Mach number flows according to the work of Davies (1945) and Loth (2007) respectively. Simulations using a more accurate model with the correction factor (Epsilon = 0.8 in a 20% particle concentration gas flow) given by Richardson and Zaki (1954) and Rowe (1961) show that particles have lower ejection angles than those that were previously calculated. This is more prevalent in smaller particles, which are shown through velocity and trajectory comparison to be more influenced by the flow of the surrounding gas. It is shown that particles are more affected by minor changes to drag forces than larger adjustments to lift forces, demanding a closer analysis of the shape and behavior of lunar dust particles and the composition of the surrounding gas flow.

  15. Effects of Saharan Mineral Dust Aerosols on the Dynamics of an Idealized African Easterly Jet-African Easterly Wave System over North Africa

    NASA Astrophysics Data System (ADS)

    Grogan, Dustin Francis Phillip

    The central objective of this work is to examine the direct radiative effects of Saharan mineral dust aerosols on the dynamics of African easterly waves (AEWs) and the African easterly jet (AEJ). Achieving this objective is built around two tasks that use the Weather Research and Forecasting (WRF) model coupled to an online dust model (WRF-dust model). The first task (Chapter 2) examines the linear dynamics of AEWs; the second task (Chapter 3) examines the nonlinear evolution of AEWs and their interactions with the AEJ. In Chapter 2, the direct radiative effects of dust on the linear dynamics of AEWs are examined analytically and numerically. The analytical analysis combines the thermodynamic equation with a dust continuity equation to form an expression for the generation of eddy available potential energy (APE) by the dust field. The generation of eddy APE is a function of the transmissivity and spatial gradients of the dust, which are modulated by the Doppler-shifted frequency. The expression predicts that for a fixed dust distribution, the wave response will be largest in regions where the dust gradients are maximized and the Doppler-shifted frequency vanishes. The numerical analysis calculates the linear dynamics of AEWs using zonally averaged basic states for wind, temperature and dust consistent with summertime conditions over North Africa. For the fastest growing AEW, the dust increases the growth rate from ~15% to 90% for aerosol optical depths ranging from tau=1.0 to tau=2.5. A local energetics analysis shows that for tau=1.0, the dust increases the maximum barotropic and baroclinic energy conversions by ~50% and ~100%, respectively. The maxima in the generation of APE and conversions of energy are co-located and occur where the meridional dust gradient is maximized near the critical layer, i.e., where the Doppler-shifted frequency is small, in agreement with the prediction from the analytical analysis. In Chapter 3, the direct radiative effects of dust

  16. Distinguishing aeolian signature from lacustrine sediments of the Qaidam Basin in northeastern Qinghai-Tibetan Plateau and its palaeoclimatic implications

    NASA Astrophysics Data System (ADS)

    An, FuYuan; Ma, HaiZhou; Wei, HaiCheng; Lai, ZhongPing

    2012-06-01

    Qarhan playa is located in the eastern-central Qaidam Basin in the northeastern Qinghai-Tibetan Plateau. As a lake-depocenter since the Pleistocene and surrounded by Gobi and yardang fields, it might have deposited abundant aeolian materials. Distinguishing its aeolian signature from lacustrine sediments is important for understanding the landform processes and environmental changes, which is the focus of the current study. Based on major-elements analysis, microtextures of quartz grains, and features of grain-size frequency curves and other grain-size parameters, we demonstrate the existence of aeolian component in the lacustrine sequences of a 102 m core (ISL1A). Grain-size distribution curve statistics on 60 samples from two extreme palaeoclimate environments (hyperarid and humid), as well as multi-proxies records comparison, indicate that the mode at about 40 μm represents the aeolian component and the 10-70 μm fraction of grain-size is a valid proxy of East Asian winter monsoon, and that the 70-650 μm fraction represents the intensity of dust storms. The erosive lacustrine sediments in the western Qaidam Basin and the alluvial/fluvial fans in nearby piedmont are probably important sources for these aeolian materials. The similarities of major-element data for samples from the Qaidam Basin (both lacustrine and loess), Qinghai Lake (loess), and the Chinese Loess Plateau (loess) indicate that the Qaidam Basin is a dust source for the loess in Qinghai Lake and the Chinese Loess Plateau.

  17. Dust Devil Steady-State Structure from a Fluid Dynamics Perspective

    NASA Astrophysics Data System (ADS)

    Kurgansky, Michael V.; Lorenz, Ralph D.; Renno, Nilton O.; Takemi, Tetsuya; Gu, Zhaolin; Wei, Wei

    2016-11-01

    Simple analytical models for the flow structure of dust devils in steady state, and a "thermophysical" scaling theory that explains how these flow structures are maintained are reviewed. Then, results from high-resolution numerical simulations are used to provide insights into the structure of dust-devil-like vortices and study the impact of surface roughness on them. The article concludes with an overview of the influence of lofted dust on the flow structure of dust devils and a discussion of open questions.

  18. The composition of Martian aeolian sands: Thermal emissivity from Viking IRTM observations

    NASA Technical Reports Server (NTRS)

    Edgett, Kenneth S.; Christensen, Philip R.

    1992-01-01

    Aeolian sands provide excellent surfaces for the remote determination of the mineralogic composition of Martian materials, because such deposits consist of relatively well-sorted, uniform particle sizes and might consist of chemically unaltered, primary mineral grains derived from bedrock. Dark features on the floors of Martian craters are controlled by aeolian processes and many consist largely of unconsolidated, windblown sand. Measurement of the thermal emissivity of geologic materials provides a way to identify mid-infrared absorption bands, the strength and positions of which vary with mineral structure and composition. The Viking Infrared Thermal Mapper (IRTM) had four surface-sensing mid-IR bands, three of which, the 7, 9, and 11 micron channels, correspond to absorption features characteristic of carbonates, sialic, and mafic minerals, respectively. In this study, the highest quality IRTM data were constrained so as to avoid the effects of atmospheric dust, clouds, surface frosts, and particle size variations (the latter using data obtained between 7 and 9 H, and they were selected for dark intracrater features such that only data taken directly from the dark feature were used, so as to avoid thermal contributions from adjacent but unrelated materials. Three-point emissivity spectra of Martian dart intracrater features were compared with laboratory emission spectra of minerals and terrestrial aeolian sands convolved using the IRTM response function to the four IRTM spectral channels.

  19. Aeolian processes at the Mars Exploration Rover Meridiani Planum landing site

    USGS Publications Warehouse

    Sullivan, R.; Banfield, D.; Bell, J.F.; Calvin, W.; Fike, D.; Golombek, M.; Greeley, R.; Grotzinger, J.; Herkenhoff, K.; Jerolmack, D.; Malin, M.; Ming, D.; Soderblom, L.A.; Squyres, S. W.; Thompson, S.; Watters, W.A.; Weitz, C.M.; Yen, A.

    2005-01-01

    The martian surface is a natural laboratory for testing our understanding of the physics of aeolian (wind-related) processes in an environment different from that of Earth. Martian surface markings and atmospheric opacity are time-variable, indicating that fine particles at the surface are mobilized regularly by wind. Regolith (unconsolidated surface material) at the Mars Exploration Rover Opportunity's landing site has been affected greatly by wind, which has created and reoriented bedforms, sorted grains, and eroded bedrock. Aeolian features here preserve a unique record of changing wind direction and wind strength. Here we present an in situ examination of a martian bright wind streak, which provides evidence consistent with a previously proposed formational model for such features. We also show that a widely used criterion for distinguishing between aeolian saltation- and suspension-dominated grain behaviour is different on Mars, and that estimated wind friction speeds between 2 and 3 m s-1, most recently from the northwest, are associated with recent global dust storms, providing ground truth for climate model predictions.

  20. Aeolian processes in Proctor Crater on Mars: Sedimentary history as analyzed from multiple data sets

    USGS Publications Warehouse

    Fenton, L.K.; Bandfield, J.L.; Ward, A.W.

    2003-01-01

    Proctor Crater is a 150 km diameter crater in Noachis Terra, within the southern highlands of Mars. The analysis leading to the sedimentary history incorporates several data sets including imagery, elevation, composition, and thermal inertia, mostly from the Mars Global Surveyor mission. The resulting stratigraphy reveals that the sedimentary history of Proctor Crater has involved a complex interaction of accumulating and eroding sedimentation. Aeolian features spanning much of the history of the crater interior dominate its surface, including large erosional pits, stratified beds of aeolian sediment, sand dunes, erosional and depositional streaks, dust devil tracks, and small bright bed forms that are probably granule ripples. Long ago, up to 450 m of layered sediment filled the crater basin, now exposed in eroded pits on the crater floor. These sediments are probably part of an ancient deposit of aeolian volcaniclastic material. Since then, some quantity of this material has been eroded from the top layers of the strata. Small, bright dune forms lie stratigraphically beneath the large dark dune field. Relative to the large dark dunes, the bright bed forms are immobile, although in places, their orientations are clearly influenced by the presence of the larger dunes. Their prevalence in the crater and their lack of compositional and thermal distinctiveness relative to the crater floor suggests that these features were produced locally from the eroding basin fill. Dust devil tracks form during the spring and summer, following a west-southwesterly wind. Early in the spring the dust devils are largely restricted to dark patches of sand. As the summer approaches, dust devil tracks become more plentiful and spread to the rest of the crater floor, indicating that the entire region acquires an annual deposit of dust that is revealed by seasonal dust devils. The dark dunes contain few dust devil tracks, suggesting that accumulated dust is swept away directly by saltation

  1. Aeolian processes in Proctor Crater on Mars: Sedimentary history as analyzed from multiple data sets

    NASA Astrophysics Data System (ADS)

    Fenton, Lori K.; Bandfield, Joshua L.; Ward, A. Wesley

    2003-12-01

    Proctor Crater is a 150 km diameter crater in Noachis Terra, within the southern highlands of Mars. The analysis leading to the sedimentary history incorporates several data sets including imagery, elevation, composition, and thermal inertia, mostly from the Mars Global Surveyor mission. The resulting stratigraphy reveals that the sedimentary history of Proctor Crater has involved a complex interaction of accumulating and eroding sedimentation. Aeolian features spanning much of the history of the crater interior dominate its surface, including large erosional pits, stratified beds of aeolian sediment, sand dunes, erosional and depositional streaks, dust devil tracks, and small bright bed forms that are probably granule ripples. Long ago, up to 450 m of layered sediment filled the crater basin, now exposed in eroded pits on the crater floor. These sediments are probably part of an ancient deposit of aeolian volcaniclastic material. Since then, some quantity of this material has been eroded from the top layers of the strata. Small, bright dune forms lie stratigraphically beneath the large dark dune field. Relative to the large dark dunes, the bright bed forms are immobile, although in places, their orientations are clearly influenced by the presence of the larger dunes. Their prevalence in the crater and their lack of compositional and thermal distinctiveness relative to the crater floor suggests that these features were produced locally from the eroding basin fill. Dust devil tracks form during the spring and summer, following a west-southwesterly wind. Early in the spring the dust devils are largely restricted to dark patches of sand. As the summer approaches, dust devil tracks become more plentiful and spread to the rest of the crater floor, indicating that the entire region acquires an annual deposit of dust that is revealed by seasonal dust devils. The dark dunes contain few dust devil tracks, suggesting that accumulated dust is swept away directly by saltation

  2. Measuring aeolian sand transport using acoustic sensors

    NASA Astrophysics Data System (ADS)

    Poortinga, Ate; van Rheenen, Hans; Ellis, Jean T.; Sherman, Douglas J.

    2015-03-01

    Acoustic sensors are frequently used to measure aeolian saltation. Different approaches are used to process the signals from these instruments. The goal of this paper is to describe and discuss a method to measure aeolian saltation with acoustic sensors. In a laboratory experiment, we measured the output from an advanced signal processing scheme on the circuit board of the saltiphone. We use a software implementation of this processing scheme to re-analyse data from four miniphones obtained during a field experiment. It is shown that a set of filters remove background noise outside the frequency spectrum of aeolian saltation (at 8 kHz), whereas signals within this frequency spectrum are amplified. The resulting analogue signal is a proxy of the energy. Using an AC pulse convertor, this signal can be converted into a digital and analogue count signal or an analogue energy signal, using a rectifier and integrator. Spatio-temporal correlation between field deployed miniphones increases by using longer integration times for signal processing. To quantify aeolian grain impact, it is suggested to use the analogue energy output, as this mode is able to detect changes in frequency and amplitude. The analogue and digital count signals are able to detect an increase in frequency, but are not able to detect an increase in signal amplitude. We propose a two-stage calibration scheme consisting of (1) a factory calibration, to set the frequency spectrum of the sensor and (2) a standardized drop-test conducted before and after the experiment to evaluate the response of the sensor.

  3. Of horseshoes and heliotropes: Dynamics of dust in the Encke Gap

    NASA Astrophysics Data System (ADS)

    Hedman, M. M.; Burns, J. A.; Hamilton, D. P.; Showalter, M. R.

    2013-03-01

    The Encke Gap is a 320-km-wide opening in Saturn’s outer A ring that contains the orbit of the small moon Pan and an array of dusty features composed of particles less than 100 μm across. In particular, there are three narrow ringlets in this region that are not longitudinally homogeneous, but instead contain series of bright clumps. Using images obtained by the Cassini spacecraft, we track the motions of these clumps and demonstrate that they do not follow the predicted trajectories of isolated ring particles moving under the influence of Saturn’s and Pan’s gravitational fields. We also examine the orbital properties of these ringlets by comparing images taken at different longitudes and times. We find evidence that the orbits of these particles have forced eccentricities induced by solar radiation pressure. In addition, the mean radial positions of the particles in these ringlets appear to vary with local co-rotating longitude, perhaps due to the combined action of drag forces, gravitational perturbations from Pan, and collisions among the ring particles. The dynamics of the dust within this gap therefore appears to be much more complex than previously appreciated.

  4. Higgs vacuum stability and inflationary dynamics after BICEP2 and PLANCK dust polarisation data

    SciTech Connect

    Bhattacharya, Kaushik; Chakrabortty, Joydeep; Das, Suratna; Mondal, Tanmoy E-mail: joydeep@iitk.ac.in E-mail: tanmoym@prl.res.in

    2014-12-01

    If the recent detection of B-mode polarization of the Cosmic Microwave Background by BICEP2 observations, withstand the test of time after the release of recent PLANCK dust polarisation data, then it would surprisingly put the inflationary scale near Grand Unification scale if one considers single-field inflationary models. On the other hand, Large Hadron Collider has observed the elusive Higgs particle whose presently observed mass can lead to electroweak vacuum instability at high scale (∼ O(10{sup 10}) GeV). In this article, we seek for a simple particle physics model which can simultaneously keep the vacuum of the theory stable and yield high-scale inflation successfully. To serve our purpose, we extend the Standard Model of particle physics with a U(1){sub B-L} gauged symmetry which spontaneously breaks down just above the inflationary scale. Such a scenario provides a constrained parameter space where both the issues of vacuum stability and high-scale inflation can be successfully accommodated. The threshold effect on the Higgs quartic coupling due to the presence of the heavy inflaton field plays an important role in keeping the electroweak vacuum stable. Furthermore, this scenario is also capable of reheating the universe at the end of inflation. Though the issues of Dark Matter and Dark Energy, which dominate the late-time evolution of our universe, cannot be addressed within this framework, this model successfully describes the early universe dynamics according to the Big Bang model.

  5. Dynamics of aspherical dust grains in a cometary atmosphere: I. axially symmetric grains in a spherically symmetric atmosphere

    NASA Astrophysics Data System (ADS)

    Ivanovski, S. L.; Zakharov, V. V.; Della Corte, V.; Crifo, J.-F.; Rotundi, A.; Fulle, M.

    2017-01-01

    In-situ measurements of individual dust grain parameters in the immediate vicinity of a cometary nucleus are being carried by the Rosetta spacecraft at comet 67P/Churyumov-Gerasimenko. For the interpretations of these observational data, a model of dust grain motion as realistic as possible is requested. In particular, the results of the Stardust mission and analysis of samples of interplanetary dust have shown that these particles are highly aspherical, which should be taken into account in any credible model. The aim of the present work is to study the dynamics of ellipsoidal shape particles with various aspect ratios introduced in a spherically symmetric expanding gas flow and to reveal the possible differences in dynamics between spherical and aspherical particles. Their translational and rotational motion under influence of the gravity and of the aerodynamic force and torque is numerically integrated in a wide range of physical parameters values including those of comet 67P/Churyumov-Gerasimenko. The main distinctions of the dynamics of spherical and ellipsoidal particles are discussed. The aerodynamic characteristics of the ellipsoidal particles, and examples of their translational and rotational motion in the postulated gas flow are presented.

  6. Estimating total horizontal aeolian flux within shrub-invaded groundwater-dependent meadows using empirical and mechanistic models

    NASA Astrophysics Data System (ADS)

    Vest, Kimberly R.; Elmore, Andrew J.; Kaste, James M.; Okin, Gregory S.; Li, Junran

    2013-06-01

    erosion is a significant environmental problem that removes soil resources from sensitive ecosystems and contributes to air pollution. In regions of shallow groundwater, friable (puffy) soils are maintained through capillary action, surface evaporation of solute-rich soil moisture, and protection from mobilization by groundwater-dependent grasses and shrubs. When a reduction in vegetation cover occurs through any disturbance process, there is potential for aeolian transport and dust emission. We find that as mean gap size between vegetation elements scaled by vegetation height increases, total horizontal aeolian sediment flux increases and explains 58% of the variation in total horizontal aeolian sediment flux. We also test a probabilistic model of wind erosion based on gap size between vegetation elements scaled by vegetation height (the Okin model), which predicts measured total horizontal aeolian sediment flux more closely than another commonly used model based on the average plant area observed in profile (Raupach model). The threshold shear velocity of bare soil appears to increase as gap size between vegetation elements scaled by vegetation height increases, reflecting either surface armoring or reduced interaction between the groundwater capillary zone and surface sediments. This work advances understanding of the importance of measuring gap size between vegetation elements scaled by vegetation height for empirically estimating Q and for structuring process-based models of desert wind erosion in groundwater-dependent vegetation.

  7. Exozodiacal dust

    NASA Astrophysics Data System (ADS)

    Kuchner, Marc Jason

    Besides the sun, the most luminous feature of the solar system is a cloud of "zodiacal" dust released by asteroids and comets that pervades the region interior to the asteroid belt. Similar clouds of dust around other stars---exozodiacal clouds---may be the best tracers of the habitable zones of extra-solar planetary systems. This thesis discusses three searches for exozodiacal dust: (1) We observed six nearby main-sequence stars with the Keck telescope at 11.6 microns, correcting for atmosphere-induced wavefront aberrations and deconvolving the point spread function via classical speckle analysis. We compare our data to a simple model of the zodiacal dust in our own system based on COBE DIRBE observations and place upper limits on the density of exozodiacal dust in these systems. (2) We observed Sirius, Altair, and Procyon with the NICMOS Coronagraph on the Hubble Space Telescope to look for scattered light from exozodiacal dust and faint companions within 10 AU from these stars. (3) The planned nulling capability of the Keck Interferometer should allow it to probe the region <200 milliarcsecond from a bright star and to suppress on-axis starlight by factors of 10 -3 to reveal faint circumstellar material. We model the response of the Keck Interferometer to hypothetical exozodiacal clouds to derive detection limits that account for the effects of stellar leakage, photon noise, noise from null depth fluctuations, and the fact that the cloud's shape is not known a priori. We also discuss the interaction of dust with planets. We used the COBE DIRBE Sky and Zodi Atlas and the IRAS Sky Survey Atlas to search for dynamical signatures of three different planets in the solar system dust complex: (1) We searched the COBE DIRBE Sky and Zodi Atlas for a wake of dust trailing Mars. We compare the DIRBE images to a model Mars wake based on the empirical model of the Earth's wake as seen by the DIRBE. (2) We searched the COBE DIRRE Sky and Zodi Atlas for Tiojan dust near

  8. Recent advances in research on the aeolian geomorphology of China's Kumtagh Sand Sea

    NASA Astrophysics Data System (ADS)

    Dong, Z.; Lv, P.

    2014-02-01

    The Kumtagh Sand Sea in the hyper-arid region of northwestern China remained largely unexplored until the last decade. It deserves study due to its significance in understanding the evolution of the arid environments in northwestern China, and even central Asia. Aeolian geomorphology in the sand sea has received unprecedented study in the last decade. Encouraging advances have been made in types of aeolian landforms, geological outlines, wind systems, the formation of aeolian landforms, several unique aeolian landforms, aeolian geomorphic regionalization, aeolian geomorphological heritages and tourism development, and aeolian sand hazards and their control. These advances expand our knowledge of aeolian geomorphology.

  9. Semidirect Dynamical and Radiative Impact of North African Dust Transport on Lower Tropospheric Clouds over the Subtropical North Atlantic in CESM 1.0

    SciTech Connect

    DeFlorio, Mike; Ghan, Steven J.; Singh, Balwinder; Miller, Arthur J.; Cayan, Dan; Russell, Lynn M.; Somerville, Richard C.

    2014-07-16

    This study uses a century length pre-industrial climate simulation by the Community Earth System Model (CESM 1.0) to explore statistical relationships between dust, clouds and atmospheric circulation, and to suggest a dynamical, rather than microphysical, mechanism linking subtropical North Atlantic lower tropospheric cloud cover with North African dust transport. The length of the run allows us to account for interannual variability of dust emissions and transport downstream of North Africa in the model. CESM’s mean climatology and probability distribution of aerosol optical depth in this region agrees well with available AERONET observations. In addition, CESM shows strong seasonal cycles of dust burden and lower tropospheric cloud fraction, with maximum values occurring during boreal summer, when a strong correlation between these two variables exists downstream of North Africa over the subtropical North Atlantic. Calculations of Estimated Inversion Strength (EIS) and composites of EIS on high and low downstream North Africa dust months during boreal summer reveal that dust is likely increasing inversion strength over this region due to both solar absorption and reflection. We find no evidence for a microphysical link between dust and lower tropospheric clouds in this region. These results yield new insight over an extensive period of time into the complex relationship between North African dust and lower tropospheric clouds over the open ocean, which has previously been hindered by spatiotemporal constraints of observations. Our findings lay a framework for future analyses using sub-monthly data over regions with different underlying dynamics.

  10. Charged dust in planetary magnetospheres: Hamiltonian dynamics and numerical simulations for highly charged grains

    NASA Astrophysics Data System (ADS)

    Schaffer, L.; Burns, J. A.

    1994-09-01

    We use a combination of analytical and numerical methods to investigate the dynamics of charged dust grains in planetary magnetospheres. Our emphasis is on obtaining results valid for particles that are not necessarily dominated either by gravitational or electromagnetic forces. A Hamiltonian formulation of the problem yields exact results, for all values of charge-to-mass ratio, when we introduce two constraints: particles remain in the equatorial plane and the magnetic field is taken as axially symmetric. In particular, we obtain locations of equilibrium points, the frequencies of stable periodic orbits, the topology of separatrices in phase space, and the rate of longitudinal drift. These results are significant for specific applications: motion in the nearly aligned dipolar field of Saturn, and the trajectories of arbitrarily charged particles in complex magnetic fields for limited periods of time after ejection from parent bodies. Since the model is restrictive, we also use numerical integrations of the full three-dimensional equations of motion and illustrate under what conditions the constrained problem yields reasonable results. We show that a large fraction of the intermediately charged and highly charged (gyrating) particles will always be lost to a planet's atmosphere within a few hundred hours, for motion through tilted-dipole magnetic fields. We find that grains must have a very high charge-to-mass ratio in order to be mirrored back to the ring plane. Thus, except perhaps at Saturn where the dipole tilt is very small, the likely inhabitants of the dusty ring systems are those particles that are either nearly Keplerian (weakly charged) grains or grains whose charges place them in the lower end of the intermediate charge zone. Finally, we demonstrate the effect of plasma drag on the orbits of gyrating particles to be a rapid decrease in gyroradius followed by a slow radial evolution of the guiding center.

  11. Dynamic of the Dust Structures under Magnetic Field Effect in DC Glow Discharges

    SciTech Connect

    Vasiliev, M. M.; D'yachkov, L. G.; Antipov, S. N.; Petrov, O. F.; Fortov, V. E.

    2008-09-07

    In this work, we investigate dust structures in the striation of DC glow discharges under magnetic field actions. The dependence of rotation frequency of dusty plasma structures as a function of the magnetic field was investigated. For various magnetic fields kinetic temperatures of the dust particles, diffusion coefficients, and effective coupling coefficient {gamma}* have been determined. Obtained results are analyzed and compared with theoretical predictions.

  12. Are the Formation and Abundances of Metal-poor Stars the Result of Dust Dynamics?

    NASA Astrophysics Data System (ADS)

    Hopkins, Philip F.; Conroy, Charlie

    2017-02-01

    Large dust grains can fluctuate dramatically in their local density, relative to the gas, in neutral turbulent disks. Small, high-redshift galaxies (before reionization) represent ideal environments for this process. We show via simple arguments and simulations that order-of-magnitude fluctuations are expected in local abundances of large grains (>100 Å) under these conditions. This can have important consequences for star formation and stellar metal abundances in extremely metal-poor stars. Low-mass stars can form in dust-enhanced regions almost immediately after some dust forms even if the galaxy-average metallicity is too low for fragmentation to occur. We argue that the metal abundances of these “promoted” stars may contain interesting signatures as the CNO abundances (concentrated in large carbonaceous grains and ices) and Mg and Si (in large silicate grains) can be enhanced and/or fluctuate almost independently. Remarkably, the otherwise puzzling abundance patterns of some metal-poor stars can be well fit by standard IMF-averaged core-collapse SNe yields if we allow for fluctuating local dust-to-gas ratios. We also show that the observed log-normal distribution of enhancements in these species agrees with our simulations. Moreover, we confirm that Mg and Si are correlated in these stars the abundance ratios are similar to those in local silicate grains. Meanwhile [Mg/Ca], predicted to be nearly invariant from pure SNe yields, shows very large enhancements and variations up to factors of ≳100 as expected in the dust-promoted model, preferentially in the [C/Fe]-enhanced metal-poor stars. Together, this suggests that (1) dust exists in second-generation star formation, (2) local dust-to-gas ratio fluctuations occur in protogalaxies and can be important for star formation, and (3) the light element abundances of these stars may be affected by the local chemistry of dust where they formed, rather than directly tracing nucleosynthesis from earlier

  13. Environmental history recorded in aeolian deposits under stone pavements, Mojave Desert, USA

    NASA Astrophysics Data System (ADS)

    Dietze, Michael; Dietze, Elisabeth; Lomax, Johanna; Fuchs, Markus; Kleber, Arno; Wells, Stephen G.

    2016-01-01

    Reconstructing the evolution of arid landscapes is challenged by limited availability of appropriate environmental archives. A widespread surface feature - stone pavement - traps aeolian fines and forms a special accretionary archive. Seven stone pavement-covered sections on basalt flows in the eastern Mojave Desert are condensed into a composite section, comprising five sedimentological units supported by an OSL-based chronology. Three of the units are of accretionary nature and each is covered by a stone pavement. They were deposited > 50.9-36.6 ka, < 36.6-14.2 ka and < 14.2 ka, and they are intimately coupled with the history of nearby Lake Mojave, which advances the current understanding of regional aeolian activity. End-member modeling analysis of grain-size distributions yielded seven sediment transport regimes. The accretionary system operates in two modes: A) episodic formation of a stone pavement by lateral processes once a vesicular horizon has formed on a barren surface; and B) accretion of dust and eventual burial of the clast layer. These findings improve current concepts about stone pavement evolution and their environmental proxy function in arid landscapes. Stone pavement-covered accretionary deposits are a new key archive that allows quantifying the relative importance of dust accretion, slope processes, soil formation and vegetation cover.

  14. A study of the role of convective stratification and rates of aeolian activity on arid landscapes

    NASA Astrophysics Data System (ADS)

    Jacob, Chinthaka; Stout, John; Anderson, William

    2016-11-01

    Aeolian activity - wind-driven mobilization of sediment and dust - is driven by aerodynamic surface stress. Existing models for aeolian activity scale mass flux on shear velocity to an exponent that exceeds unity, which demonstrates the role of turbulence in mobilizing sediment and dust. Large-eddy simulation (LES) was used to model neutrally stratified atmospheric boundary layer flows; a computational domain with very long streamwise extent was used to capture large- and very-large-scale motions. A time-series of local surface stress was used to generate a probability density function of stress, which was used to guide the selection of conditional-sampling thresholds. Results show that high stress events are caused by the passage of large scale inclined coherent structures composed of uniform momentum excesses, which are flanked on either side by low-stress regions (the opposite is true when conditioned on low stress events). Since surface heating during the daytime induces buoyancy fluxes that result in additional turbulence production (this is, in addition to production via mechanical shear), we have repeated the aforementioned simulations with convective heating. Parameters of LES cases are set to mimic flat, arid landscape with different heat flux forcing. The variation of structural inclination angle displays good general agreement with previously reported results, varying systematically with the Monin-Obukhov stability parameter under different stability conditions. National Science Foundation, Grant # AGS-1500224.

  15. Dynamics of 2D Dust Clusters with a Perpendicular Magnetic Field

    SciTech Connect

    Greiner, Franko; Carstensen, Jan; Hou Lujing; Piel, Alexander

    2008-09-07

    The physics of two-dimensional (2D) dust clusters in an unmagnetized plasma sheath has been understood in dept. However, introduction of a perpendicular magnetic field into the dusty plasma sheath leads to some new effects, such as rotation and compression of dust clusters, whose mechanism is still unclear. It is found that even for a magnetic field as low as the earth magnetic field ({approx_equal}40 {mu}T), clusters rotate as rigid about their centers. It was proposed [U. Konopka, PRE 61, 1890 (2000)] that the ExB-induced ion flow drives the dust clusters into rotation. Simulations [L.-J. Hou, PoP 12, 042104 (2005)] based on the same hypothesis also reproduced the rotation of 2D clusters in a qualitative manner. However, this model cannot fully explain the experimental observations. We present detailed experimental investigations, which show that the rotation of a dust cluster critically depends on the detailed discharge geometry. In particular, the co-rotation of the background neutral gas and its role in driving dust-cluster rotation is proposed as a mechanism to set the dust cluster in rotation.

  16. Aeolian Processes and Features on Venus

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald; Bender, Kelly C.; Saunders, Stephen; Schubert, Gerald; Weitz, Catherine M.

    1997-01-01

    Aeolian features on Venus include dune fields, eroded hills (yardangs), wind streaks, (miniature dunes of 10 to 30 cm wavelength). Although and possibly microdunes (in repetitive imaging by Magellan did show changes in the appearance of the surface, these changes are attributed to radar artifacts as a consequence of look direction rather than to physical changes of the surface. Nonetheless, measurements of wind speeds near the surface of Venus and wind tunnel simulations suggest that aeolian processes could be currently active on Venus. Study of radar images of terrestrial analogs shows that radar wavelength, polarization, and viewing geometry, including look direction and incidence angle, all influence the detection of dunes, yardangs, and wind streaks. For best detection, dune crests and yardangs should be oriented perpendicular to look direction. Longer wavelength systems can penetrate sand sheets a meter or more thick, rendering them invisible, especially in arid regions. For wind streaks to be visible, there must be a contrast in surface properties between the streak and the background on which it occurs. Nonetheless, more than 6000 aeolian features have been found on Magellan images of Venus, the most common of which are various wind streaks. Mapping wind streak orientations enables near-surface wind patterns to be inferred for the time of their formation. Type P streaks are associated with parabolic ejecta crater deposits and are considered to have formed in association with the impact event. Most Type P streaks are oriented westward, indicative of the upper altitude superrotation winds of Venus. Non Type P streaks have occurrences and orientations consistent with Hadley circulation. Some streaks in the southern hemisphere are oriented to the northeast, suggesting a Coriolis effect.

  17. Recent Aeolian Dune Change on Mars

    NASA Technical Reports Server (NTRS)

    Bourke, M. C.; Edgett, K. S.; Cantor, B. A.

    2007-01-01

    Previous comparisons of Martian aeolian dunes in satellite images have not detected any change in dune form or position. Here, we show dome dunes in the north polar region that shrank and then disappeared over a period of 3.04 Mars years (5.7 Earth years), while larger, neighboring dunes showed no erosion or movement. The removal of sand from these dunes indicates that not only is the threshold wind speed for saltation exceeded under present conditions on Mars, but that any sand that is available for transport is likely to be moved. Dunes that show no evidence of change could be crusted, indurated. or subject to infrequent episodes of movement.

  18. Abrasion resistance of muscovite in aeolian and subaqueous transport experiments

    NASA Astrophysics Data System (ADS)

    Anderson, Calvin J.; Struble, Alexander; Whitmore, John H.

    2017-02-01

    Complementary aeolian and subaqueous transport experiments showed a trend in muscovite abrasion that may be useful for identifying ancient sandstones as aeolian or subaqueous in origin. We found that our experimental aeolian processes pulverized the micas quickly, while our subaqueous processes did not. In a pair of abrasion resistance experiments conducted with micaceous quartz sand, it was found that large muscovite grains were (1) reduced by aeolian processes to less than 500 μm in just 4 days, and (2) preserved by subaqueous processes to 610 ± 90 μm even after 356 days. At 20 days of aeolian transport no loose micas could be found even under the microscope, but after a year of subaqueous transport loose muscovite grains could still be seen with the naked eye. Thus, the occurrence and character of micas in a sandstone, particularly muscovite, may be helpful in determining the ancient depositional process.

  19. The sensitivity of the southwest monsoon phytoplankton bloom to variations in aeolian iron deposition over the Arabian Sea

    NASA Astrophysics Data System (ADS)

    Wiggert, Jerry D.; Murtugudde, Raghu G.

    2007-05-01

    A coupled, 3-D biophysical ocean general circulation model is used to investigate how aeolian iron deposition affects the Arabian Sea ecosystem. Two separate aeolian iron deposition fields, derived from the GISS and GOCART atmospheric transport models, have been applied as surface boundary conditions. The model results exhibit widespread biogeochemical sensitivity to the choice of deposition field. With GOCART deposition, SW Monsoon phytoplankton blooms in the western and central Arabian Sea are enhanced and exhibit greater realism. The central Arabian Sea bloom is supported by supplemental input of horizontally advected iron from a pool that undergoes a yearlong progression that begins in the Gulf of Oman, where the difference in aeolian iron enrichment between the two deposition fields is most prevalent. The GOCART-enhanced blooms result in a more pronounced shift toward netplankton, an increase in euphotic zone export flux of up to a 20% during the SW Monsoon and an additional annual biogenic export of 3.5 TgC. The potential ramifications of regional N-cycle alteration through stimulation of N2-fixation that is promoted by significant aeolian mineral flux needs to be explored. The canonical thinking that the northern Arabian Sea is invariably iron replete is now being challenged by both our model results and recent observational studies. As well, our results indicate that Arabian Sea iron concentrations are strongly modulated by the specific nature of aeolian mineral deposition. Thus climate or land use influences on dust mobilization could exercise leading-order controls on regional biogeochemical variability, metabolic status and air-sea exchanges of CO2.

  20. Dust deposition on the decks of the Mars Exploration Rovers: 10 years of dust dynamics on the Panoramic Camera calibration targets

    PubMed Central

    Bell, James F.; Goetz, Walter; Johnson, Jeffrey R.; Joseph, Jonathan; Madsen, Morten Bo; Sohl‐Dickstein, Jascha

    2015-01-01

    Abstract The Panoramic Cameras on NASA's Mars Exploration Rovers have each returned more than 17,000 images of their calibration targets. In order to make optimal use of this data set for reflectance calibration, a correction must be made for the presence of air fall dust. Here we present an improved dust correction procedure based on a two‐layer scattering model, and we present a dust reflectance spectrum derived from long‐term trends in the data set. The dust on the calibration targets appears brighter than dusty areas of the Martian surface. We derive detailed histories of dust deposition and removal revealing two distinct environments: At the Spirit landing site, half the year is dominated by dust deposition, the other half by dust removal, usually in brief, sharp events. At the Opportunity landing site the Martian year has a semiannual dust cycle with dust removal happening gradually throughout two removal seasons each year. The highest observed optical depth of settled dust on the calibration target is 1.5 on Spirit and 1.1 on Opportunity (at 601 nm). We derive a general prediction for dust deposition rates of 0.004 ± 0.001 in units of surface optical depth deposited per sol (Martian solar day) per unit atmospheric optical depth. We expect this procedure to lead to improved reflectance‐calibration of the Panoramic Camera data set. In addition, it is easily adapted to similar data sets from other missions in order to deliver improved reflectance calibration as well as data on dust reflectance properties and deposition and removal history. PMID:27981072

  1. Dust deposition on the decks of the Mars Exploration Rovers: 10 years of dust dynamics on the Panoramic Camera calibration targets.

    PubMed

    Kinch, Kjartan M; Bell, James F; Goetz, Walter; Johnson, Jeffrey R; Joseph, Jonathan; Madsen, Morten Bo; Sohl-Dickstein, Jascha

    2015-05-01

    The Panoramic Cameras on NASA's Mars Exploration Rovers have each returned more than 17,000 images of their calibration targets. In order to make optimal use of this data set for reflectance calibration, a correction must be made for the presence of air fall dust. Here we present an improved dust correction procedure based on a two-layer scattering model, and we present a dust reflectance spectrum derived from long-term trends in the data set. The dust on the calibration targets appears brighter than dusty areas of the Martian surface. We derive detailed histories of dust deposition and removal revealing two distinct environments: At the Spirit landing site, half the year is dominated by dust deposition, the other half by dust removal, usually in brief, sharp events. At the Opportunity landing site the Martian year has a semiannual dust cycle with dust removal happening gradually throughout two removal seasons each year. The highest observed optical depth of settled dust on the calibration target is 1.5 on Spirit and 1.1 on Opportunity (at 601 nm). We derive a general prediction for dust deposition rates of 0.004 ± 0.001 in units of surface optical depth deposited per sol (Martian solar day) per unit atmospheric optical depth. We expect this procedure to lead to improved reflectance-calibration of the Panoramic Camera data set. In addition, it is easily adapted to similar data sets from other missions in order to deliver improved reflectance calibration as well as data on dust reflectance properties and deposition and removal history.

  2. A Fractal Model for the Capacitance of Lunar Dust and Lunar Dust Aggregates

    NASA Technical Reports Server (NTRS)

    Collier, Michael R.; Stubbs, Timothy J.; Keller, John W.; Farrell, William M.; Marshall, John; Richard, Denis Thomas

    2011-01-01

    Lunar dust grains and dust aggregates exhibit clumping, with an uneven mass distribution, as well as features that span many spatial scales. It has been observed that these aggregates display an almost fractal repetition of geometry with scale. Furthermore, lunar dust grains typically have sharp protrusions and jagged features that result from the lack of aeolian weathering (as opposed to space weathering) on the Moon. A perfectly spherical geometry, frequently used as a model for lunar dust grains, has none of these characteristics (although a sphere may be a reasonable proxy for the very smallest grains and some glasses). We present a fractal model for a lunar dust grain or aggregate of grains that reproduces (1) the irregular clumpy nature of lunar dust, (2) the presence of sharp points, and (3) dust features that span multiple scale lengths. We calculate the capacitance of the fractal lunar dust analytically assuming fixed dust mass (i.e. volume) for an arbitrary number of fractal levels and compare the capacitance to that of a non-fractal object with the same volume, surface area, and characteristic width. The fractal capacitance is larger than that of the equivalent non-fractal object suggesting that for a given potential, electrostatic forces on lunar dust grains and aggregates are greater than one might infer from assuming dust grains are sphericaL Consequently, electrostatic transport of lunar dust grains, for example lofting, appears more plausible than might be inferred by calculations based on less realistic assumptions about dust shape and associated capacitance.

  3. Use of radar to assess aeolian processes

    NASA Astrophysics Data System (ADS)

    Greeley, Ronald; Lancaster, N.; Gaddis, L.; Blumberg, D.; Debrovolskis, A.; Saunders, R. S.; Wall, S.; Iversen, J. D.; White, B.; Rasmussen, K. R.

    1991-06-01

    The interaction between wind and desert surfaces has important implications for sediment transport on Earth, Mars, and Venus, and for understanding the relationship between radar backscatter and aerodynamic roughness. Here, researchers report results from measurements of atmospheric boundary layer profiles, assessment of radar backscatter at P, L, and C wavelengths, and surface roughness in Death Valley, the Mojave Desert, and Lunar Lake, NV, and discuss the implications for aeolian process. The sites include playas, gravel and sand regs, alluvial fans, and lava flows. Boundary layer wind profiles were measured using anemometers at heights of 0.75, 1.25, 2.07, 3.44, 5.72, and 9.5 m; temperature sensors at heights of 1.3 and 9.6 m; and wind vanes at 9.7 and 1.5 m. Microtopographic measurements were made using a template and a laser-photo device to obtain RMS height. This study demonstrates that radar backscatter coefficients obtained from airborne and perhaps orbiting instruments could permit the derivation of aerodynamic roughness values for large areas. Such values, when combined with wind frequency data, could enable assessment of aeolian processes on a regional scale.

  4. Use of radar to assess aeolian processes

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald; Lancaster, N.; Gaddis, L.; Blumberg, D.; Debrovolskis, A.; Saunders, R. S.; Wall, S.; Iversen, J. D.; White, B.; Rasmussen, K. R.

    1991-01-01

    The interaction between wind and desert surfaces has important implications for sediment transport on Earth, Mars, and Venus, and for understanding the relationship between radar backscatter and aerodynamic roughness. Here, researchers report results from measurements of atmospheric boundary layer profiles, assessment of radar backscatter at P, L, and C wavelengths, and surface roughness in Death Valley, the Mojave Desert, and Lunar Lake, NV, and discuss the implications for aeolian process. The sites include playas, gravel and sand regs, alluvial fans, and lava flows. Boundary layer wind profiles were measured using anemometers at heights of 0.75, 1.25, 2.07, 3.44, 5.72, and 9.5 m; temperature sensors at heights of 1.3 and 9.6 m; and wind vanes at 9.7 and 1.5 m. Microtopographic measurements were made using a template and a laser-photo device to obtain RMS height. This study demonstrates that radar backscatter coefficients obtained from airborne and perhaps orbiting instruments could permit the derivation of aerodynamic roughness values for large areas. Such values, when combined with wind frequency data, could enable assessment of aeolian processes on a regional scale.

  5. More on the dynamics of dust generation: the effects of mixing and sanding chrysotile, calcium carbonate, and other components on the characteristics of joint-compound dusts.

    PubMed

    Berman, D Wayne; Brorby, Gregory P; Sheehan, Patrick J; Bogen, Kenneth T; Holm, Stewart E

    2012-08-01

    An ongoing research effort designed to reconstruct the character of historical exposures associated with use of chrysotile-containing joint compounds naturally raised questions concerning how the character (e.g. particle size distributions) of dusts generated from use of recreated materials compares to dusts from similar materials manufactured historically. This also provided an opportunity to further explore the relative degree that the characteristics of dusts generated from a bulk material are mediated by the properties of the bulk material versus the mechanical processes applied to the bulk material by which the dust is generated. In the current study, the characteristics of dusts generated from a recreated ready mix and recreated dry mix were compared to each other, to dusts from a historical dry mix, and to dusts from the commercial chrysotile fiber (JM 7RF3) used in the recreated materials. The effect of sanding on the character of dusts generated from these materials was also explored. Dusts from the dry materials studied were generated and captured for analysis in a dust generator-elutriator. The recreated and historical joint compounds were also prepared, applied to drywall, and sanded inside sealed bags so that the particles produced from sanding could be introduced into the elutriator and captured for analysis. Comparisons of fiber size distributions in dusts from these materials suggest that dust from commercial fiber is different from dusts generated from the joint compounds, which are mixtures, and the differences persist whether the materials are sanded or not. Differences were also observed between sanded recreated ready mix and either the recreated dry mix or a historical dry mix, again whether sanded or not. In all cases, however, such differences disappeared when variances obtained from surrogate data were used to better represent the 'irreducible variation' of these materials. Even using the smaller study-specific variances, no differences were

  6. Microbial food web dynamics in response to a Saharan dust event: results from a mesocosm study in the oligotrophic Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Pulido-Villena, E.; Baudoux, A.-C.; Obernosterer, I.; Landa, M.; Caparros, J.; Catala, P.; Georges, C.; Harmand, J.; Guieu, C.

    2014-01-01

    The significant impact of dust deposition on heterotrophic bacterial dynamics in the surface oligotrophic ocean has recently been evidenced. Considering the central role of bacteria in the microbial loop, it is likely that dust deposition also affects the structure and the functioning of the whole microbial food web. In the frame of the DUNE project, aiming to estimate the impact of dust deposition on the oligotrophic Mediterranean Sea through mesocosm experiments, the main goal of the present paper was to assess how two successive dust deposition events affect the dynamics of the microbial food web. The first dust seeding delivered new P and N to the amended mesocosms and resulted in a pronounced stimulation of bacterial respiration. It also induced pronounced, but transient, changes in the bacterial community composition. No significant effects were observed on the abundances of viruses and heterotrophic nanoflagellates. The second dust seeding also delivered new P and N to the amended mesocosms but the effect on the microbial food web was very different. Bacterial respiration remained constant and bacterial abundance decreased. Compositional changes following the second seeding were minor compared to the first one. The decrease in bacterial abundance coincided with an increase in virus abundance, resulting in higher virus: bacteria ratios throughout the second seeding period. Our study shows that dust deposition to the surface oligotrophic ocean may involve important modifications of the trophic links among the components of the microbial food web with presumed consequences on C and nutrient cycling.

  7. Microbial food web dynamics in response to a Saharan dust event: results from a mesocosm study in the oligotrophic Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Pulido-Villena, E.; Baudoux, A.-C.; Obernosterer, I.; Landa, M.; Caparros, J.; Catala, P.; Georges, C.; Harmand, J.; Guieu, C.

    2014-10-01

    The significant impact of dust deposition on heterotrophic bacterial dynamics in the surface oligotrophic ocean has recently been evidenced. Considering the central role of bacteria in the microbial loop, it is likely that dust deposition also affects the structure and the functioning of the whole microbial food web. In the frame of the DUNE project, aiming to estimate the impact of dust deposition on the oligotrophic Mediterranean Sea through mesocosm experiments, the main goal of the present paper was to assess how two successive dust deposition events affect the dynamics of the microbial food web. The first dust seeding delivered new P and N to the amended mesocosms and resulted in a pronounced stimulation of bacterial respiration. It also induced pronounced, but transient, changes in the bacterial community composition. No significant effects were observed on the abundances of viruses and heterotrophic nanoflagellates. The second dust seeding also delivered new P and N to the amended mesocosms, but the effect on the microbial food web was very different. Bacterial respiration remained constant and bacterial abundance decreased. Compositional changes following the second seeding were minor compared to the first one. The decrease in bacterial abundance coincided with an increase in virus abundance, resulting in higher virus:bacteria ratios throughout the second seeding period. Our study shows that dust deposition to the surface oligotrophic ocean may involve important modifications of the trophic links among the components of the microbial food web with presumed consequences on C and nutrient cycling.

  8. Aeolian sediment transport and landforms in managed coastal systems: A review

    NASA Astrophysics Data System (ADS)

    Jackson, Nancy L.; Nordstrom, Karl F.

    2011-11-01

    Humans modify beaches and dunes and aeolian transport potential by building structures, walking or driving, extracting resources, accommodating recreation, increasing levels of protection, removing storm deposits, or restoring landforms and habitats. The effects of human adjustments are reviewed here in terms of cross-shore zones because humans tend to compartmentalize landforms and habitats through their actions and regulations. Common human modifications in the beach zone include nourishing beaches, constructing shore protection structures and raking to remove litter. Modifications affecting the dune zone include altering the location, size and stability of dunes using sand-trapping fences, vegetation plantings and bulldozers or replacing dunes with shore-parallel structures. Modifications affecting the landward zone include buildings, roads, and parking lots. Landform and habitat resilience requires levels of dynamism and geomorphic complexity not often found in managed systems. Preserving or enhancing dynamism and complexity requires emphasis on innovative designs rooted in geomorphological and aeolian research. Future studies are suggested for: (1) quantifying the effect of small and large scale beach nourishment designs and sediment characteristics on dune initiation, development, and evolution; (2) quantifying the extent to which size and spacing of human structures and landform alterations inhibit sediment transfers alongshore or onshore; (3) identifying the advantages or disadvantages of "niche" dunes formed by structures; (4) providing quantitative data on the effects of raking or driving on the beach; (5) identifying the role of aeolian landforms on private properties; and (6) identifying alternative ways of employing sand fences and vegetation plantings to increase topographic and habitat diversity.

  9. Aerosol dynamics above the water area of the Peter the Great Bay during the dust storm in the Gobi desert

    NASA Astrophysics Data System (ADS)

    Bukin, O. A.; Pavlov, A. N.; Kulchin, J. N.; Shmirko, K. A.; Salyuk, P. A.; Stoluarchuk, S. Y.

    2006-11-01

    This article presents aerosol dynamic monitoring over the Peter the Great bay during dust storms in continental areas of the China and Mongolia. Both satellite and lidar data was analyzed. Vertical profiles of aerosol backscattering coefficient and aerosol optical thickness were calculated. Aerosol optical thickness in different layers were retrieved and compared with the satellite ones. Correlation coefficient between satellite and lidar data was calculated. Aerosol layer location was compared to Brent-Vaisal criterion of stability. Aerosol layer stratification during spring - summer (April - June 2006) period was analyzed.

  10. Asian dust transport during the last century recorded in Lake Suigetsu sediments

    NASA Astrophysics Data System (ADS)

    Nagashima, Kana; Suzuki, Yoshiaki; Irino, Tomohisa; Nakagawa, Takeshi; Tada, Ryuji; Hara, Yukari; Yamada, Kazuyoshi; Kurosaki, Yasunori

    2016-03-01

    Asian dust has a significant impact on the natural environment. Its variability on multiple timescales modulates the ocean biogeochemistry and climate. We demonstrate that temporal changes in the deposition flux of Aeolian dust recorded in sediments from Lake Suigetsu, central Japan, during the last century exhibit a continuous decreasing trend and a decadal-scale decrease in 1952-1974. The former decreasing trend can be explained by a decrease in the dust storm frequency at source regions due to the warming of Mongolia in the twentieth century, suggesting future decrease of Asian dust transport with further warming in Mongolia. Decadal-scale decrease of Aeolian dust is explained by weaker westerlies in lower latitudes in central Japan, reflecting a weaker Aleutian Low during the corresponding period. Decadal-scale westerly change probably causes north-south shifts of the dominant dust transport path, which affects subarctic northern Pacific Ocean biogeochemistry by changing the micronutrient iron supply.

  11. Earth and planetary aeolian streaks: A review

    NASA Astrophysics Data System (ADS)

    Cohen-Zada, Aviv Lee; Blumberg, Dan Gabriel; Maman, Shimrit

    2016-03-01

    Wind streaks are abundant aeolian features that have been observed on planetary surfaces by remote sensing means. They have been widely studied, particularly on Mars and Venus and to a much lesser extent on Earth. In imagery, these streaks appear as elongated features that are easily distinguishable from their surroundings. Geomorphologically, these streaks have, thus far, been interpreted as the presence or absence of small loose particles on the surface, deposited or eroded, respectively, by wind. However, the use of different (optical and radar) remote-sensing tools to study wind streaks has led to uncertain interpretations of these features and has hindered their geomorphological definition. Since wind streaks indicate the prevailing wind direction at the time of their formation, they may be used to map near-surface winds and to estimate atmospheric circulation patterns. The aim of this article is to review the main studies focusing on wind streaks and to present the most up-to-date knowledge on this topic. Moreover, a new perspective for wind streak research is suggested: As 'wind streak' is a collective term for a variety of aeolian features that when viewed from above appear as distinctive albedo surface patterns, we suggest that the term should not be used to refer to a geomorphological feature. Since the definition of wind streaks is constrained to remote sensing rather than to geomorphology and is affected by the inherent biases of remote sensing methods, we suggest that 'wind streaks' should be used as a collective term for aeolian surfaces that are discernable from above as bright and dark patterns due to alterations in the characteristics of the surface or to the presence of bedforms. To better understand the mechanisms, time-frames, climate compatibility of wind streaks and the influences of remote sensing on their appearance, we have compiled a new database containing more than 2,900 Earth wind streaks. A comprehensive study of these Earth wind

  12. Aeolian Abrasion, a Dominant Erosion Agent in the Martian Environment

    NASA Astrophysics Data System (ADS)

    Bridges, N.; Cooper, G.; Eddlemon, E.; Greeley, R.; Laity, J.; Phoreman, J.; Razdan, A.; van Note, S.; White, B.; Wilson, G.

    2004-12-01

    Aeolian abrasion is one of the predominant erosion mechanisms on Mars today. Martian ventifacts record the climate under which the rocks were modified (wind direction, wind speeds and particle flux) and therefore tie into the overall climatic regime of the planet. By better understanding the rates at which rocks abrade and the features diagnostic of specific climatic conditions, we can gain insight into past climates. Herein we report on numerical models, wind tunnel experiments, and field work to determine 1) Particle and kinetic fluxes on Earth and Mars, 2) the degree to which these parameters control abrasion, and 3) how, in detail, rocks of various shapes and compositions erode over time. Kinetic energy generally increases with height, whereas flux decreases, and impact angles, which affect energy transfer, and rebound effects are functions of the rock facet angle. This results in a non-linear relationship between abrasion potential and height that is a function of wind speed, planetary environment, and target geometry. We have computed the first three of these parameters numerically using a numerical saltation code, combined with published flux calculations These results have been compared to wind tunnel tests of flux vs. height, abrasion of erodible targets, and high speed video analysis under terrestrial and Martian pressures. We are also using high resolution laser scanning to characterize textures, shapes, and weathering changes for terrestrial and Martian rocks at the 100s of microns scale. We find that facet angle, texture, and rock heterogeneity are of critical importance in determining the rate and style of abrasion. Field and theoretical results demonstrate that high speed winds, not the integrated flux of lower speeds, and sand, not dust, produce most rock abrasion. On Mars, this requires sustained winds above 20-25 m/s at the near surface, a challenge in the current environment.

  13. Dust emissions from unpaved roads on the Colorado Plateau

    NASA Astrophysics Data System (ADS)

    Duniway, M.; Flagg, C.; Belnap, J.

    2013-12-01

    On the Colorado Plateau, elevated levels of aeolian dust have become a major land management and policy concern due to its influence on climate, weather, terrestrial ecosystem dynamics, landscape development and fertility, melting of snow and ice, air quality, and human health. Most desert soil surfaces are stabilized by plants, rocks, and/or physical or biological soil crusts, but once disturbed, sediment production from these surfaces can increase dramatically. Road development and use is a common surface disturbing activity in the region. The extent and density of roads and road networks is rapidly increasing due to continued energy exploration, infrastructure development, and off-highway recreation activities. Though it is well known that unpaved roads produce dust, the relative contribution of dust from existing roads or the implications of future road development to regional dust loading is unknown. To address this need, we have initiated a multifaceted research effort to evaluating dust emissions from unpaved roads regionally. At 34 sites arranged across various road surfaces and soil textures in southeastern Utah, we are: 1) monitoring dust emissions, local wind conditions, and vehicle traffic and 2) evaluating fugitive dust potential using a portable wind tunnel and measuring road characteristics that affect dust production. We will then 3) develop a GIS-based model that integrates results from 1 & 2 to estimate potential dust contributions from current and future scenarios of regional road development. Passive, horizontal sediment traps were installed at three distances downwind from the road edge. One control trap was placed upwind of the samplers to account for local, non-road dust emissions. An electronic vehicle counter and anemometer were also installed at monitoring sites. Dust samples were collected every three months at fixed heights, 15 cm up to 100 cm above the soil surface, from March 2010 to the present. Threshold friction velocities (TFV

  14. The effects of atmospheric dust on observations of Martian surface albedo

    NASA Technical Reports Server (NTRS)

    Lee, S. W.; Clancy, R. T.

    1991-01-01

    The Mariner 9 and Viking missions provided abundant evidence that aeolian processes are active over much of surface of Mars. A radiative transfer model was developed which allows the effects of atmospheric dust loading and variable surface albedo to be investigated. This model incorporated atmospheric dust opacity, the single scattering albedo, and particle phase function of atmospheric dust, the bidirectional; reflectance of the surface, and variable lighting and viewing geometry. The Cerberus albedo feature was examined in detail using this technique.

  15. A bedload trap for aeolian sand transport

    NASA Astrophysics Data System (ADS)

    Swann, C.; Sherman, D. J.

    2013-12-01

    This paper describes a bedload trap designed to separate bedload from saltation load in aeolian environments. The trap is installed below the sand surface and features a chimney that can be adjusted to the height of the surface. The chimney houses an internal wall to separate saltation load from bedload. Bedload particles are funneled to a piezo-electric sensor that converts grain impacts to voltages that can be sampled at very high frequencies (44,000 Hz in this example). Grains are then collected in a container that is easily retrieved so that sand samples can be obtained for weighing and subsequent grain size analysis. An algorithm to isolate single grain impacts is described. The version of the trap presented here is intended for the study of the initiation of grain motion.

  16. Abrasion by aeolian particles: Earth and Mars

    NASA Technical Reports Server (NTRS)

    Greeley, R.; Marshall, J. R.; White, B. R.; Pollack, J. B.; Marshall, J.; Krinsley, D.

    1984-01-01

    Estimation of the rate of aeolian abrasion of rocks on Mars requires knowledge of: (1) particle flux, (2) susceptibilities to abrasion of various rocks, and (3) wind frequencies on Mars. Fluxes and susceptibilities for a wide range of conditions were obtained in the laboratory and combined with wind data from the Viking meteorology experiment. Assuming an abundant supply of sand-sized particles, estimated rates range up to 2.1 x 10 to the minus 2 power cm of abrasion per year in the vicinity of Viking Lander 1. This rate is orders of magnitude too great to be in agreement with the inferred age of the surface based on models of impact crater flux. The discrepancy in the estimated rate of abrasion and the presumed old age of the surface cannot be explained easily by changes in climate or exhumation of ancient surfaces. The primary reason is thought to be related to the agents of abrasion. At least some sand-sized (approx. 100 micrometers) grains appear to be present, as inferred from both lander and orbiter observations. High rates of abrasion occur for all experimental cases involving sands of quartz, basalt, or ash. However, previous studies have shown that sand is quickly comminuted to silt- and clay-sized grains in the martian aeolian regime. Experiments also show that these fine grains are electrostatically charged and bond together as sand-sized aggregates. Laboratory simulations of wind abrasion involving aggregates show that at impact velocities capable of destroying sand, aggregates from a protective veneer on the target surface and can give rise to extremely low abrasion rates.

  17. A note on the stochastic nature of particle cohesive force and implications to threshold friction velocity for aerodynamic dust entrainment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is considerable interest to determine the threshold for aeolian dust emission on Earth and Mars. Existing schemes for threshold friction velocity are all deterministic in nature, but observations show that in the dust particle size range the threshold friction velocity scatters strongly due t...

  18. Dust Accumulation and Cleaning of the MER Opportunity Solar Array

    NASA Astrophysics Data System (ADS)

    Herman, J.

    2015-12-01

    The solar array of the NASA Mars Exploration Rover (MER) Opportunity was expected to accumulate a sufficient quantity of dust after ninety Martian days (sols) such that it could no longer provide enough energy to guarantee continued surface operations. Instead, due in part to low dust accumulation rates and numerous dust cleaning events, Opportunity continues to operate on the Martian surface for over 4000 sols (over six Mars years). During this time period, the rover experienced six Martian winters and several dust storms. Because the sources of solar energy loss are known, the solar array energy output offers a method to scientifically estimate the loading and aeolian removal of dust from the solar array each sol. We will discuss the accumulation of dust on the solar panels as a proxy for dust movement at Meridiani Planum over the course of the entire mission to date.

  19. Dust Accumulation and Cleaning of the MER Spirit Solar Array

    NASA Astrophysics Data System (ADS)

    Herman, J. A.; Lemmon, M. T.; Johnson, J. R.; Cantor, B. A.; Stella, P. M.; Chin, K. B.; Wood, E. G.

    2012-12-01

    The solar array of the NASA Mars Exploration Rover (MER) Spirit was expected to accumulate so much dust after ninety Martian days (sols) that it could no longer provide enough energy to guarantee continued surface operations. Instead, due in part to low dust accumulation rates and numerous dust cleaning events, Spirit carried out surface operations for over 2200 sols (over three Mars years). During this time period, the rover experienced four Martian winters and several dust storms. Because the sources of solar energy loss are known, the solar array energy output offers a tool to quantitatively estimate the loading and aeolian removal of dust from the solar array each sol. We will discuss the accumulation of dust on the solar panels as a proxy for dust movement at Gusev Crater over the course of the entire mission.

  20. Dust Devil Formation

    NASA Astrophysics Data System (ADS)

    Rafkin, S.; Jemmett-Smith, B.; Fenton, L.; Lorenz, R.; Takemi, T.; Ito, J.; Tyler, D.

    2016-11-01

    The essential dynamical characteristic of convective vortices, including dust devils, is a highly localized vorticity tube that extends into the vertical. This chapter is concerned with both the generation of vorticity and the subsequent focusing of that vorticity into a tight vortex, and with the environmental conditions that are conducive to the formation of convective vortices in general and dust devils in particular. A review of observations, theory, and modeling of dust devil formation is provided.

  1. Predator-prey dynamics stabilised by nonlinearity explain oscillations in dust-forming plasmas

    NASA Astrophysics Data System (ADS)

    Ross, A. E.; McKenzie, D. R.

    2016-04-01

    Dust-forming plasmas are ionised gases that generate particles from a precursor. In nature, dust-forming plasmas are found in flames, the interstellar medium and comet tails. In the laboratory, they are valuable in generating nanoparticles for medicine and electronics. Dust-forming plasmas exhibit a bizarre, even puzzling behaviour in which they oscillate with timescales of seconds to minutes. Here we show how the problem of understanding these oscillations may be cast as a predator-prey problem, with electrons as prey and particles as predators. The addition of a nonlinear loss term to the classic Lotka-Volterra equations used for describing the predator-prey problem in ecology not only stabilises the oscillations in the solutions for the populations of electrons and particles in the plasma but also explains the behaviour in more detail. The model explains the relative phase difference of the two populations, the way in which the frequency of the oscillations varies with the concentration of the precursor gas, and the oscillations of the light emission, determined by the populations of both species. Our results demonstrate the value of adopting an approach to a complex physical science problem that has been found successful in ecology, where complexity is always present.

  2. Predator-prey dynamics stabilised by nonlinearity explain oscillations in dust-forming plasmas

    PubMed Central

    Ross, A. E.; McKenzie, D. R.

    2016-01-01

    Dust-forming plasmas are ionised gases that generate particles from a precursor. In nature, dust-forming plasmas are found in flames, the interstellar medium and comet tails. In the laboratory, they are valuable in generating nanoparticles for medicine and electronics. Dust-forming plasmas exhibit a bizarre, even puzzling behaviour in which they oscillate with timescales of seconds to minutes. Here we show how the problem of understanding these oscillations may be cast as a predator-prey problem, with electrons as prey and particles as predators. The addition of a nonlinear loss term to the classic Lotka-Volterra equations used for describing the predator-prey problem in ecology not only stabilises the oscillations in the solutions for the populations of electrons and particles in the plasma but also explains the behaviour in more detail. The model explains the relative phase difference of the two populations, the way in which the frequency of the oscillations varies with the concentration of the precursor gas, and the oscillations of the light emission, determined by the populations of both species. Our results demonstrate the value of adopting an approach to a complex physical science problem that has been found successful in ecology, where complexity is always present. PMID:27046237

  3. Recent seasonal variations in arid landscape cover and aeolian sand mobility, Navajo Nation, southwestern U.S.

    USGS Publications Warehouse

    Draut, Amy E.; Redsteer, Margaret Hiza; Amoroso, Lee; Giosan, Liviu; Fuller, Dorian Q.; Nicoll, Kathleen; Flad, Rowan K.; Clift, Peter D.

    2013-01-01

    The socioeconomic impacts of climate change pose problems not only in devel- oping countries but also to residents of arid lands in the United States among marginalized societies with limited economic means. In the Navajo Nation, warming temperatures and recent drought have increased aeolian sediment mobility such that large, migrating sand dunes affect grazing lands, housing, and road access. Dust derived from this region also affects albedo and longevity of the Rocky Mountains snowpack, located downwind. We present initial results from a study that monitors sand transport and vegetation within a 0.2 km2 site in the Navajo lands, measuring the effects of drought on landscape stability since 2009. Sand mobility decreased substantially as 1 year with near-normal monsoon rainfall (2010) somewhat abated a decade-long drought, temporarily doubling vegetation cover. Vegetation that grew during 2010, with adequate rain, died off rapidly during dry conditions in 2011. Short-term increases in rainfall that promote annual, but not perennial, plant growth will not improve landscape stability in the long term. Climate projections suggest that a warmer, drier climate and potentially enhanced sediment supply from ephem- eral washes will further increase aeolian sand transport and dune activity, worsening the present challenges to people living in this region. Connections among climate, vegetation, and aeolian sediment erodibility in this region are highly relevant to other areas of the world with similar environmental problems.

  4. Glacial-interglacial Climate Variability in the Black Sea Region Since MIS 15: Record of Highly Resolved Particle-size Dynamics From the Loess Sequence Mircea Voda, Romania

    NASA Astrophysics Data System (ADS)

    Markley, C.; Machalett, B.; Hambach, U.; Oches, E. A.

    2008-12-01

    The aeolian dust record of the loess sequences in the Dobrogea region, Romania, provides one of the most complete terrestrial climate records in proximity to the Black Sea, enabling us to reconstruct glacial- interglacial climate variability and past atmospheric circulation patterns from marine oxygen-isotope stage (MIS) 15 to the last glacial period (MIS 2) . Presently located at the interface between Mediterranean and continental climates of central and eastern Europe, the loess record of Dobrogea offers insight into long-term paleoenvironmental oscillations triggered by the reciprocity of Mediterranean and continental atmospheric circulation patterns across central and eastern Europe. The 35m thick loess sequence at Mircea Voda shows a well exposed sequence of loess-paleosol couplets that can be traced laterally across a few hundred meters, suggesting a semi-continuous paleoclimate record since MIS 15. In order to assess the loess record of aeolian dynamics and associated past-synoptic atmospheric circulation modes, high resolution particle size analyses have been carried out using a Beckman-Coulter LS 13-320 laser analyzer. With support of amino acid geochronology data, as well as sedimentological features noted in the field, the highly resolved particle-size record of the Mircea Voda loess sequence reveals clear shifts in the aeolian dust record and a general paleoclimatic trend from subtropical (MIS 15) to more continental climates (MIS 1). The observed long trends in the aeolian dust transport record and the general tendency of a progressive aridification since the Middle Pleistocene may be related to interactions and/or shifts of the European polar front and the subtropical jet stream affecting the climate of the Black Sea region on seasonal as well as geological time scales. The data from the Mircea Voda loess profile offer the potential to link continental climate records of SE-Europe with paleoclimate archives of the Black Sea region in order to decipher

  5. Employing lidar to detail vegetation canopy architecture for prediction of aeolian transport

    USGS Publications Warehouse

    Sankey, Joel B.; Law, Darin J.; Breshears, David D.; Munson, Seth M.; Webb, Robert H.

    2013-01-01

    The diverse and fundamental effects that aeolian processes have on the biosphere and geosphere are commonly generated by horizontal sediment transport at the land surface. However, predicting horizontal sediment transport depends on vegetation architecture, which is difficult to quantify in a rapid but accurate manner. We demonstrate an approach to measure vegetation canopy architecture at high resolution using lidar along a gradient of dryland sites ranging from 2% to 73% woody plant canopy cover. Lidar-derived canopy height, distance (gaps) between vegetation elements (e.g., trunks, limbs, leaves), and the distribution of gaps scaled by vegetation height were correlated with canopy cover and highlight potentially improved horizontal dust flux estimation than with cover alone. Employing lidar to estimate detailed vegetation canopy architecture offers promise for improved predictions of horizontal sediment transport across heterogeneous plant assemblages.

  6. Meso-scale aeolian sediment input to coastal dunes: The nature of aeolian transport events

    NASA Astrophysics Data System (ADS)

    Delgado-Fernandez, Irene; Davidson-Arnott, Robin

    2011-03-01

    Observations of aeolian transport in coastal areas have focused on short-term experiments because of limitations imposed by instrumentation. This paper uses a case study at Greenwich Dunes, Prince Edward Island National Park, Canada, to analyze how sediment transport takes place at the beach over periods of weeks to months. A monitoring station provided hourly time series of vegetation cover, shoreline position, fetch distances, surficial moisture content, presence of ice and snow, wind speed and direction and transport processes over nine months. Analysis shows that high wind speeds may not generate any net transport into the dunes because of the limitations imposed by snow/ice cover, moisture, and short fetch distances. Despite extreme winds during intense storms, such events often lead to wave scarping rather than aeolian sediment input to the foredunes. When sediment was transported on the beach, the magnitude was regulated by a combination of factors including: angle of wind approach, fetch distance, moisture content, and duration of the wind event. In particular, angle of wind approach (and therefore fetch distance) may demote a high magnitude wind event with strong transport potential to one with no transport at all, which poses challenges for predicting the effects of individual storms over the course of several months. A significant proportion of sediment delivery to the foredunes was associated with wind events of low to medium magnitude. It is suggested here that large magnitude wind events have low probabilities of resulting in transport towards the foredune because factors such as wave inundation play an increasing role in preventing sediment movement across the beach. This has implications for modelling and management, and highlights differences between the magnitude and frequency of aeolian transport events in the coastal environment compared to those in deserts and to fluvial sediment transport.

  7. Probing Dynamical Processes in the Planet-forming Region with Dust Mineralogy

    NASA Astrophysics Data System (ADS)

    McClure, M. K.; Manoj, P.; Calvet, N.; Adame, L.; Espaillat, C.; Watson, D. M.; Sargent, B.; Forrest, W. J.; D'Alessio, P.

    2012-11-01

    We present Herschel Space Observatory PACS spectra of GQ Lup, a protoplanetary disk in the Lupus star-forming region. Through spectral energy distribution fitting from 0.3 μm to 1.3 mm, we construct a self-consistent model of this system's temperature and density structures, finding that although it is 3 Myr old, its dust has not settled to the midplane substantially. The disk has a radial gradient in both the silicate dust composition and grain size, with large amorphous grains in the upper layers of the inner disk and an enhancement of submicron, crystalline grains in the outer disk. We detect an excess of emission in the Herschel PACS B2A band near 63 μm and model it with a combination of ~15-70 μm crystalline water ice grains with a size distribution consistent with ice recondensation-enhanced grain growth and a mass fraction half of that of our solar system. The combination of crystalline water ice and silicates in the outer disk is suggestive of disk-wide heating events or planetesimal collisions. If confirmed, this would be the first detection of water ice by Herschel.

  8. Collisional dust production in extrasolar discs: a new dynamical and photometric model

    NASA Astrophysics Data System (ADS)

    Thebault, P.; Augereau, J.-C.

    2003-05-01

    In most extrasolar discs, the observed dust is believed to be produced by collisional cascades starting at (at least) kilometre-sized planetesimals. The numerical studies of Thebault et al. (A&A 2003) have shown on a peculiar example, the inner Beta-Pictoris disc, that the collisional size distribution from micron-sized grains to planetesimals might significantly depart from the classical dN α r-3.5dr power law. The main reason for this departure is the specific behaviour of the smallest grains, i.e. stellar radiation blow-out size limit and highly eccentric orbits, which indirectly affects the whole size distribution. We extend our approach to the more general case of any collisionaly produced dust disc. We consider mutualy interacting concentric annuli with a collisionaly evolving size distribution ranging from the blow-out size to 50 km objects. Realistic grain optical properties are taken into account in order to derive scattered light and thermal images. Complete S.E.D. profiles are also derived and compared to observational data. Preliminary results are presented for the β -Pic system and for other well known discs.

  9. X-ray Dust Halos Seen With Extreme Dynamic Range: What Do We Learn?

    NASA Astrophysics Data System (ADS)

    Smith, Randall

    2008-03-01

    The exquisite angular resolution available with Chandra should allow precision measurements of faint diffuse emission surrounding bright sources, such as the X-ray scattering halos created by interstellar dust. However, the ACIS CCDs suffer from pileup when observing bright sources, and this creates difficulties when trying to extract the scattered halo near the source. The initial study of the X-ray halo around GX13+1 using only the ACIS-I detector done by Smith, Edgar & Shafer (2002) suffered from a lack of sensitivity within 50'' of the source, limiting what conclusions could be drawn. To address this problem, observations of GX13+1 were obtained with the Chandra HRC-I and simultaneously with the RXTE PCA. Combined with the existing ACIS-I data, this allowed measurements of the X-ray halo between 2-1000''. After considering a range of dust models, each assumed to be smoothly distributed with or without a dense cloud along the line of sight, the results show that there is no evidence in this data for a dense cloud near the source, as suggested by Xiang et al. 2005. Finally, although no model leads to formally acceptable results, the Weingartner & Draine (2001) and nearly all of the composite grain models from Zubko, Dwek & Arendt (2004) give poor fits. I thank Dr. Michael Juda of the HRC-I team for providing significant assistance; this work was supported by Chandra Observing Grant GO56144X.

  10. Dust devils in the laboratory: Effect of surface roughness on vortex dynamics

    NASA Astrophysics Data System (ADS)

    Neakrase, Lynn D. V.; Greeley, Ronald

    2010-05-01

    Experiments simulating vortex interactions with rough surfaces were conducted at Earth ambient and Mars analog atmospheric conditions. Pressure profiles were obtained to assess the effect of nonerodible roughness elements on vortex structure at the surface. As roughness increased, vortex size increased and tangential velocity decreased. Particle threshold experimental results suggested that small increases in surface roughness enabled reduced threshold velocities to lift fine particles (<100μm) from the surface. This “optimal roughness” or the amount of roughness necessary for enhancing sediment transport from the surface, could allow weaker dust devils to lift more material from the surface than otherwise possible. Sediment flux was calculated for different sediment sizes and densities to determine how surface roughness affects the lifting potential by dust devils. Sediment fluxes were similar to previous studies with bulk averages ranging from 10-5 to 1 kg m-2 s-1, but they could be subdivided based on roughness. The results showed that for the low roughness case (λ ≈ 0.03), fluxes were at a maximum ranging from 10-3 to 1 kg m-2 s-1 compared to two rougher surfaces (λ ≈ 0.11 and 0.23). For the lowest roughness density the airflow around the elements is enhanced, whereas the higher roughness values showed more loss of energy to the surface, impeding sediment transport similar to boundary layer studies examining roughness effects on sediment transport.

  11. Interstellar dust at our doorstep

    NASA Astrophysics Data System (ADS)

    Sterken, V. J.

    2013-12-01

    Interstellar dust has long been researched by astronomical methods to learn about its size distribution, grain properties and composition. However, interstellar dust grains also move through the solar system. They were detected for the first time in-situ with the Ulysses dust detector in 1993. In addition, in 2006, the Stardust mission returned three interstellar dust grain candidates back to Earth after a collection period of 195 days. In this talk we elaborate on how the current in-situ ISD measurement methods are a valuable addition to the knowledge about interstellar dust inferred from classical astronomy. We also discuss the role of interstellar dust dynamics and simulations herein.

  12. A two-dimensional numerical investigation of the dynamics and microphysics of Saharan dust storms

    NASA Technical Reports Server (NTRS)

    Westphal, Douglas L.; Toon, Owen B.; Carlson, Toby N.

    1987-01-01

    Two-dimensional numerical simulations of the spatial and temporal distributions of Saharan dust size distributions over the desert and the eastern Atlantic Ocean are presented. The simulations show that during mobilization the soil size distribution is modified by either a size-dependent lifting mechanism or by mixing of local soil with aged aerosols or with aerosols originating from nearby soils which have different size distributions. When the source region is near the coast, as opposed to the central Sahara, the highest mass concentration achieved at Sal Island is more than doubled. However, in the two-dimensional simulations the central Saharan storms seem to be equally as important as coastal sources in terms of the optical properties of an outbreak.

  13. Dust environment and dynamical history of a sample of short-period comets . II. 81P/Wild 2 and 103P/Hartley 2

    NASA Astrophysics Data System (ADS)

    Pozuelos, F. J.; Moreno, F.; Aceituno, F.; Casanova, V.; Sota, A.; López-Moreno, J. J.; Castellano, J.; Reina, E.; Climent, A.; Fernández, A.; San Segundo, A.; Häusler, B.; González, C.; Rodriguez, D.; Bryssinck, E.; Cortés, E.; Rodriguez, F. A.; Baldris, F.; García, F.; Gómez, F.; Limón, F.; Tifner, F.; Muler, G.; Almendros, I.; de los Reyes, J. A.; Henríquez, J. A.; Moreno, J. A.; Báez, J.; Bel, J.; Camarasa, J.; Curto, J.; Hernández, J. F.; González, J. J.; Martín, J. J.; Salto, J. L.; Lopesino, J.; Bosch, J. M.; Ruiz, J. M.; Vidal, J. R.; Ruiz, J.; Sánchez, J.; Temprano, J.; Aymamí, J. M.; Lahuerta, L.; Montoro, L.; Campas, M.; García, M. A.; Canales, O.; Benavides, R.; Dymock, R.; García, R.; Ligustri, R.; Naves, R.; Lahuerta, S.; Pastor, S.

    2014-11-01

    Aims: This paper is a continuation of the first paper in this series, where we presented an extended study of the dust environment of a sample of short-period comets and their dynamical history. On this occasion, we focus on comets 81P/Wild 2 and 103P/Hartley 2, which are of special interest as targets of the spacecraft missions Stardust and EPOXI. Methods: As in the previous study, we used two sets of observational data: a set of images, acquired at Sierra Nevada and Lulin observatories, and the Afρ data as a function of the heliocentric distance provided by the amateur astronomical association Cometas-Obs. The dust environment of comets (dust loss rate, ejection velocities, and size distribution of the particles) was derived from our Monte Carlo dust tail code. To determine their dynamical history we used the numerical integrator Mercury 6.2 to ascertain the time spent by these objects in the Jupiter family Comet region. Results: From the dust analysis, we conclude that both 81P/Wild 2 and 103P/Hartley 2 are dusty comets, with an annual dust production rate of 2.8 × 109 kg yr-1 and (0.4-1.5) × 109 kg yr-1, respectively. From the dynamical analysis, we determined their time spent in the Jupiter family Comet region as ~40 yr in the case of 81P/Wild 2 and ~1000 yr for comet 103P/Hartley 2. These results imply that 81P/Wild 2 is the youngest and the most active comet of the eleven short-period comets studied so far, which tends to favor the correlation between the time spent in JFCs region and the comet activity previously discussed.

  14. THE HIGHLY DYNAMIC BEHAVIOR OF THE INNERMOST DUST AND GAS IN THE TRANSITION DISK VARIABLE LRLL 31

    SciTech Connect

    Flaherty, K. M.; Rieke, G.; Muzerolle, J.; Gutermuth, R.; Balog, Z.; Herbst, W.; Megeath, S. T.; Kun, M.

    2011-05-10

    We describe extensive synoptic multi-wavelength observations of the transition disk LRLL 31 in the young cluster IC 348. We combined 4 epochs of IRS spectra, 9 epochs of MIPS photometry, 7 epochs of cold-mission IRAC photometry, and 36 epochs of warm-mission IRAC photometry along with multi-epoch near-infrared spectra, optical spectra, and polarimetry to explore the nature of the rapid variability of this object. We find that the inner disk, as traced by the 2-5 {mu}m excess, stays at the dust sublimation radius while the strength of the excess changes by a factor of eight on weekly timescales, and the 3.6 and 4.5 {mu}m photometry show a drop of 0.35 mag in 1 week followed by a slow 0.5 mag increase over the next 3 weeks. The accretion rate, as measured by Pa{beta} and Br{gamma} emission lines, varies by a factor of five with evidence for a correlation between the accretion rate and the infrared excess. While the gas and dust in the inner disk are fluctuating, the central star stays relatively static. Our observations allow us to put constraints on the physical mechanism responsible for the variability. The variable accretion, and wind, are unlikely to be causes of the variability, but are both effects of the same physical process that disturbs the disk. The lack of periodicity in our infrared monitoring indicates that it is unlikely that there is a companion within {approx}0.4 AU that is perturbing the disk. The most likely explanation is either a companion beyond {approx}0.4 AU or a dynamic interface between the stellar magnetic field and the disk leading to a variable scale height and/or warping of the inner disk.

  15. Wave-particle dynamics of waveform and defect evolutions in undulated nonlinear self-excited dust acoustic waves

    SciTech Connect

    Tsai, Jun-Yi; Tsai, Ya-Yi; I, Lin

    2015-01-15

    The wave-particle dynamics for the evolutions of defects and surrounding pitchfork type waveforms of a weakly disordered self-excited dust acoustic wave is experimentally investigated in an rf dusty plasma system. Particle trajectories are tracked and correlated with waveform evolution to construct an Eulerian-Lagrangian wave-particle dynamical picture. It is found that the local accumulation and depletion of particles in the wave crest and rear, respectively, determines the local crest speed, and the growth and decay of the local crest height, which in turn determine the waveform evolution. The local crest height and the focusing and defocusing of particle trajectories due to the transverse force fields from the tilted wave crest and the non-uniform crest height along the wave crest are the key factors to determine the above particle accumulation and depletion. It explains the observations such as the lower speed of smaller crests, the straightening of the leading front of the pitchfork waveform associated with the transverse motion of defect to the open side, and the vertical defect gliding in the wave frame through the detachment of the strongly kinked pitchfork branch followed by its reconnection with the trailing crest.

  16. Investigation of stabilization/solidification for treatment of electric arc furnace dust: Dynamic leaching of monolithic specimens

    SciTech Connect

    Laforest, Guylaine Duchesne, Josee

    2007-12-15

    Diffusion-controlled leaching of heavy metals (Cr, Ni, Pb and Zn) from electric arc furnace dust treated with ground granulated blast furnace slag (GGBFS) and with ordinary Portland cement (OPC) was evaluated. Monolithic specimens were evaluated under dynamic leaching conditions for 84 days with periodic leachant renewal. The influence of leaching time, nature of the leachant, binder type and the water/solid ratio of the monoliths were investigated. Results obtained showed both binders can immobilize heavy metals in the monoliths under dynamic leaching conditions, with cumulative quantity of leached metal under 0.138 mg (Cr). Alkaline leachant increased metal release from specimens and reducing the water/solid ratio of the monolith allowed for a decrease in the cumulative mass of metals leached. Chemical and mineralogical characterizations indicated that the metals were evenly distributed throughout the specimens for both binders. Decalcification was observed on the OPC monolith border following leaching. This decrease in Ca corresponded to an altered zone (20 {mu}m), identified by scanning electron microscopy. The GGBFS sample did not show an altered zone.

  17. Plant and Microbial Dynamics Along Gradients in Soil Texture and Eolian Dust Accumulation in the Colorado Plateau.

    NASA Astrophysics Data System (ADS)

    Neff, J. C.; Reynolds, R.; Lamothe, P.; Belnap, J.

    2001-12-01

    The canyonlands region of Southwest Utah is made up of soils with a range of textures and chemistries. We have identified three transects of soils that range from high sand to high silt content in order to examine the effect of soil texture and chemistry on plant and microbial dynamics. We also take advantage of new techniques that allow separation of eolian-derived fine soil particles from in situ weathering and erosion products to evaluate the role that dust deposition plays in the chemistry of desert ecosystems. We present results from several studies along these transects including measurements of hydrologic fluxes and comparisons of soil and plant chemistry. We have also carried out experiments on microbial and plant processes along gradients with the aim of linking biological dynamics to variation in surficial chemistry and hydrology. Our initial results indicate that water holding capacity is substantially higher in silts vs. sandy soils but that increases in water availability in sands have a disproportionate effect on soil respiration rates with a more rapid and prolonged response to wetting in sands vs. silts. Comparisons of plant and soil chemistry suggest that plants and soils show similar increases in Mg and Mn concentrations along our textural transects. In addition, native bunch grasses growing in high eolian silt environments show elevated P content in their tissues and may reflect the input of P in eolian deposition. With these studies, we are beginning to build a mechanistic framework for understanding the relationship between eolian deposition and ecosystem response in arid environments.

  18. Investigation of boundary layer dynamics, dust and volcanic ash clouds with laser ceilometer

    NASA Astrophysics Data System (ADS)

    Münkel, Christoph; Schäfer, Klaus; Emeis, Stefan

    2013-10-01

    The main purpose of eye-safe laser ceilometers is regular reporting of cloud base height, vertical visibility, and cloud cover. These instruments operate unattended in harsh weather conditions. The application of state-of-the-art electronics increases the quality of backscatter profiles and thus qualifies modern ceilometers for applications beyond cloud base detection. The single lens optics of the ceilometers introduced in this paper results in a compact and robust design and enables their application in campaigns monitoring climate change effects. That is why three of the German Terrestrial Environmental Observatories (TERENO) run by the Karlsruhe Institute of Technology are equipped with a ceilometer. The Technical University of Denmark (DTU) utilizes such an instrument to study arctic cloud formation at Station Nord, Greenland. Recent applications include site assessment for solar energy applications in the Arabic Peninsula and monitoring of Sahara dust cloud and biomass burning plume events over Germany. Backward trajectory calculations with the HYSPLIT trajectory model provided by the NOAA Air Resources Laboratory have been carried out to investigate possible sources, including wood fires in southern France and eruptions of the Eyjafjallajökull and Puyehue- Cordón Caulle volcanoes.

  19. Laboratory Simulations of Martian and Venusian Aeolian Processes

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald

    1999-01-01

    With the flyby of the Neptune system by Voyager, the preliminary exploration of the Solar System was accomplished. Data have been returned for all major planets and satellites except the Pluto system. Results show that the surfaces of terrestrial planets and satellites have been subjected to a wide variety of geological processes. On solid- surface planetary objects having an atmosphere, aeolian processes are important in modifying their surfaces through the redistribution of fine-grained material by the wind. Bedrock may be eroded to produce particles and the particles transported by wind for deposition in other areas. This process operates on Earth today and is evident throughout the geological record. Aeolian processes also occur on Mars, Venus, and possibly Titan and Triton, both of which are outer planet satellites that have atmospheres. Mariner 9 and Viking results show abundant wind-related landforms on Mars, including dune fields and yardangs (wind-eroded hills). On Venus, measurements made by the Soviet Venera and Vega spacecraft and extrapolations from the Pioneer Venus atmospheric probes show that surface winds are capable of transporting particulate materials and suggest that aeolian processes may operate on that planet as well. Magellan radar images of Venus show abundant wind streaks in some areas, as well as dune fields and a zone of possible yardangs. The study of planetary aeolian processes must take into account diverse environments, from the cold, low-density atmosphere of Mars to the extremely hot, high- density Venusian atmosphere. Factors such as threshold wind speeds (minimum wind velocity needed to move particles), rates of erosion and deposition, trajectories of windblown particles, and aeolian flow fields over various landforms are all important aspects of the problem. In addition, study of aeolian terrains on Earth using data analogous to planetary data-collection systems is critical to the interpretation of spacecraft information and

  20. The photovoltaic-aeolian plant at Passo Mandrioli /Italy/

    NASA Astrophysics Data System (ADS)

    Calzolari, P. U.; Garulli, A.; Nobili, D.; Sardo, A.

    1980-12-01

    The use of aeolian-photovoltaic power generation to supply the needs of an isolated farm house in Northern Italy is presented, noting the experimental character of the project. Estimated energy consumption is 1650 kWh for lighting and various appliances. The system includes two power generators (aeolian and photovoltaic) connected in parallel, battery storage, regulation and control circuit, inverter, supplementary generator and a complete data acquisition subsystem. Design characteristics such as the tower height, electrical output and lightning protection are given, together with the parameters to be continuously monitored including meteorological data, wind speed and the angular speed of the propeller.

  1. Dust dynamics in off-road vehicle trails: Measurements on 16 arid soil types, Nevada, USA.

    PubMed

    Goossens, Dirk; Buck, Brenda

    2009-08-01

    Soil analyses and measurements with the Portable In Situ Wind Erosion Laboratory (PI-SWERL) were conducted on 16 soil types in an area heavily affected by off-road vehicle (ORV) driving. Measurements were performed in ORV trails as well as on undisturbed terrain to investigate how ORV driving affects the vulnerability of a soil to emit PM10 (particles<10microm), during the driving as well as during episodes of wind erosion. Particular attention is paid to how the creation of a new trail affects those properties of the topsoil that determine its capability to emit PM10. Also, recommendations are given for adequate management of ORV-designed areas. The type of surface (sand, silt, gravel, drainage) is a key factor with respect to dust emission in an ORV trail. Trails in sand, defined in this study as the grain size fraction 63-2000microm, show higher deflation thresholds (the critical wind condition at which wind erosion starts) than the surrounding undisturbed soil. Trails in silt (2-63microm) and in drainages, on the other hand, have lower deflation thresholds than undisturbed soil. The increase in PM10 emission resulting from the creation of a new ORV trail is much higher for surfaces with silt than for surfaces with sand. Also, the creation of a new trail in silt decreases the supply limitation in the top layer: the capacity of the reservoir of emission-available PM10 increases. For sand the situation is reversed: the supply limitation increases, and the capacity of the PM10 reservoir decreases. Finally, ORV trails are characterized by a progressive coarsening of the top layer with time, but the speed of coarsening is much lower in trails in silt than in trails in sand or in drainages. The results of this study suggest that, to minimize emissions of PM10, new ORV fields should preferably be designed on sandy terrain rather than in silt areas or in drainages.

  2. Relationship between Rock Varnish and Adjacent Mineral Dust Compositions Using Microanalytical Techniques

    NASA Astrophysics Data System (ADS)

    Macholdt, D.; Jochum, K. P.; Otter, L.; Stoll, B.; Weis, U.; Pöhlker, C.; Müller, M.; Kappl, M.; Weber, B.; Kilcoyne, A. L. D.; Weigand, M.; Al-Amri, A. M.; Andreae, M. O.

    2015-12-01

    Rock varnishes are up to 250 μm thick, Mn- and Fe-rich, dark black to brownish-orange lustrous rock coatings. Water and aeolian dust (60-70%), in combination with biological oxidation or inorganic precipitation processes, or even a combination of both, induce varnish growth rates of a few μm per 1000 a, indicating that element enrichment and aging processes are of major importance for the varnish formation. A combination of 200 nm-fs laser- and 213 nm-ns laser ablation- inductively coupled plasma-mass spectrometry (LA-ICP-MS), focused ion beam (FIB) slicing, and scanning transmission X-ray microscopy-near edge X-ray absorption fine structure spectroscopy (STXM-NEXAFS) was chosen for high-spatial-resolution analyses. The aim was to identify provenance, chemistry, and dynamics of the varnishes, and their formation over the millennia. To this end, mineral dust and adjacent varnishes were sampled in six arid to semi-arid deserts, in Israel, South Africa, California, and Saudi Arabia. Dust minerals incorporated in the varnishes were examined by STXM-NEXAFS spectroscopic and element mapping at the nm scale. Varnishes from different locations can be distinguished by element ratio plots of Pb/Ni vs. Mn/Ba. A comparison of dust element ratios of particles <50 μm to ratios of adjacent varnishes reveals much lower values for dust. However, the factors between the element ratios of dust and of varnish are similar for four of six regions (Mn/Ba: 6 ± 2; Pb/Ni: 4 ± 3). Two of the six regions diverge, which are South African (Mn/Ba: 20, Pb/Ni: 0.5) and Californian (Anza Borrego Desert: Mn/Ba: 4.5; Pb/Ni: 16.5) varnishes.The results indicate that the enrichment and degradation processes might be similar for most locations, and that Mn and Pb are preferably incorporated and immobilized in most varnishes compared to Ba and Ni. The Pb/Ni ratios of the South African varnishes are indicators for either a preferred incorporation of Ni compared to Pb from available dust, and

  3. Atmospheric Dust in the Upper Colorado River Basin: Integrated Analysis of Digital Imagery, Total Suspended Particulate, and Meteorological Data

    NASA Astrophysics Data System (ADS)

    Urban, F. E.; Reynolds, R. L.; Neff, J. C.; Fernandez, D. P.; Reheis, M. C.; Goldstein, H.; Grote, E.; Landry, C.

    2012-12-01

    Improved measurement and observation of dust emission and deposition in the American west would advance understanding of (1) landscape conditions that promote or suppress dust emission, (2) dynamics of dryland and montane ecosystems, (3) premature melting of snow cover that provides critical water supplies, and (4) possible effects of dust on human health. Such understanding can be applied to issues of land management, water-resource management, as well as the safety and well-being of urban and rural inhabitants. We have recently expanded the scope of particulate measurement in the Upper Colorado River basin through the establishment of total-suspended-particulate (TSP) measurement stations located in Utah and Colorado with bi-weekly data (filter) collection, along with protocols for characterizing dust-on-snow (DOS) layers in Colorado mountains. A sub-network of high-resolution digital cameras has been co-located with several of the TSP stations, as well as at other strategic locations. These real-time regional dust-event detection cameras are internet-based and collect digital imagery every 6-15 minutes. Measurements of meteorological conditions to support these collections and observations are provided partly by CLIM-MET stations, four of which were deployed in 1998 in the Canyonlands (Utah) region. These stations provide continuous, near real-time records of the complex interaction of wind, precipitation, vegetation, as well as dust emission and deposition, in different land-use settings. The complementary datasets of dust measurement and observation enable tracking of individual regional dust events. As an example, the first DOS event of water year 2012 (Nov 5, 2011), as documented at Senator Beck Basin, near Silverton, Colorado, was also recorded by the camera at Island-in-the-Sky (200 km to the northwest), as well as in aeolian activity and wind data from the Dugout Ranch CLIM-MET station (170 km to the west-northwest). At these sites, strong winds and the

  4. Dust evolution from comets

    NASA Technical Reports Server (NTRS)

    Sekanina, Z.

    1977-01-01

    The studies of the evolution of cometary debris are reviewed. The subject is divided into three major sections: (1) the developments in the immediate vicinity of the cometary nucleus, which is the source of the dust; (2) the formation of the dust tail; and (3) the blending of the debris with the dust component of interplanetary matter. The importance of the physical theory of comets is emphasized for the understanding of the early phase of the evolution of cometary dust. A physico-dynamical model designed to analyze the particle-emission mechanism from the distribution of light in the dust tails is described and the results are presented. Increased attention is paid to large particles because of their importance for the evolution of the zodiacal cloud. Finally, implications are discussed for the future in situ investigations of comets.

  5. The mathematical model of dynamics of dust plasma considering polydisperse structure of the condensed phase

    NASA Astrophysics Data System (ADS)

    Tukmakov, D. A.; Tukmakova, N. A.

    2017-01-01

    Work is devoted to studying of non-stationary processes in the complex plasma representing a suspension of solid particles in the uncharged gas. This model constitutes the closed system of the multiphase mediums dynamics equations in two-dimensional statement which involves the bearing medium and the condensed phase movement equations.

  6. Desert dust hazards: A global review

    NASA Astrophysics Data System (ADS)

    Middleton, N. J.

    2017-02-01

    Dust storms originate in many of the world's drylands and frequently present hazards to human society, both within the drylands themselves but also outside drylands due to long-range transport of aeolian sediments. Major sources of desert dust include the Sahara, the Middle East, central and eastern Asia, and parts of Australia, but dust-raising occurs all across the global drylands and, on occasion, beyond. Dust storms occur throughout the year and they vary in frequency and intensity over a number of timescales. Long-range transport of desert dust typically takes place along seasonal transport paths. Desert dust hazards are here reviewed according to the three phases of the wind erosion system: where dust is entrained, during the transport phase, and on deposition. This paper presents a synthesis of these hazards. It draws on empirical examples in physical geography, medical geology and geomorphology to discuss case studies from all over the world and in various fields. These include accelerated soil erosion in agricultural zones - where dust storms represent a severe form of accelerated soil erosion - the health effects of air pollution caused by desert aerosols via their physical, chemical and biological properties, transport accidents caused by poor visibility during desert dust events, and impacts on electricity generation and distribution. Given the importance of desert dust as a hazard to human societies, it is surprising to note that there have been relatively few attempts to assess their impact in economic terms. Existing studies in this regard are also reviewed, but the wide range of impacts discussed in this paper indicates that desert dust storms deserve more attention in this respect.

  7. Aeolian sedimentation in the middle buntsandstein in the eifel north-south depression zone: Summary of the variability of sedimentary processes in a buntsandstein erg as a base for evaluation of the mutual relationships between aeolian sand seas and fluvial river systems in the mid-european buntsandstein

    NASA Astrophysics Data System (ADS)

    Mader, Detlef

    representing residual sand not having been incorporated into larger dunes of the surrounding sand sea. Damp interdune deposits originate by trapping of loose sand that is blown across a moist playa surface as adhesion ripples and warts. The adhesion structures form both in aeolian sheet sand environments with increasing moisture of the substrate and on fluvial channel bars and stream bottoms with declining dampness during subaerial exposure. Wet interdune deposits originate by settling of suspension fines in periodic shallow lakes between the dunes following heavy ephemeral rainfall or forming by rising ground water table, and by aquatic redeposition of aeolian sand due to washout after atmospheric precipitation and alluvial invasion. Deflationary interdune deposits form by winnowing of the sandy matrix from fluvial sheet or bar conglomerates thereby leaving the dispersed gravel as more or less tightly-packed residual veneer on the degradation surface providing bed armour against further aeolian or aquatic erosion. Aeolian deposition is at the top of the Middle Buntsandstein rather rapidly terminated by fluvial inundation of the erg, erosion and partial resedimentation of dune sands and burial of the more or less degraded aeolian bedforms under a carpet of alluvial deposits. At the beginning of the Upper Buntsandstein, a change to semi-arid climate results in stabilization of emerging overbank plains and channels by palaeosol formation and plant growth thus completely inhibiting further accumulation of aeolian sands. The range of modes of origin of dune sands and interdune deposits, the spatial and temporal variability of their accumulation and preservation and the distribution of water-laid intercalations provide a base for independent evaluation of the dynamics of the aeolian system and its controls as well as for comparative assessment of the behaviour of the aeolian environment and the fluvial milieu in a system of intertonguing sand sea and river belt and of the

  8. Numerical study of turbulent flow over complex aeolian dune fields: the White Sands National Monument.

    PubMed

    Anderson, William; Chamecki, Marcelo

    2014-01-01

    The structure and dynamics of fully developed turbulent flows responding to aeolian dune fields are studied using large-eddy simulation with an immersed boundary method. An aspect of particular importance in these flows is the downwind migration of coherent motions associated with Kelvin-Helmholtz instabilities that originate at the dune crests. These instabilities are responsible for enhanced downward transport of high-momentum fluid via the so-called turbulent sweep mechanism. However, the presence of such structures and their role in determining the bulk characteristics of fully developed dune field sublayer aerodynamics have received relatively limited attention. Moreover, many existing studies address mostly symmetric or mildly asymmetric dune forms. The White Sands National Monument is a field of aeolian gypsum sand dunes located in the Tularosa Basin in southern New Mexico. Aeolian processes at the site result in a complex, anisotropic dune field. In the dune field sublayer, the flow statistics resemble a mixing layer: At approximately the dune crest height, vertical profiles of streamwise velocity exhibit an inflection and turbulent Reynolds stresses are maximum; below this, the streamwise and vertical velocity fluctuations are positively and negatively skewed, respectively. We evaluate the spatial structure of Kelvin-Helmholtz instabilities present in the dune field sublayer (shear length L(s) and vortex spacing Λ(x)) and show that Λ(x)=m(dune)L(s), where m(dune)≈7.2 in the different sections considered (for turbulent mixing layers, 7

  9. Feedbacks between aeolian processes and ecosystem change in a degraded desert grassland in the southwestern US

    NASA Astrophysics Data System (ADS)

    Li, Junran

    2015-04-01

    The desert grassland in the southwestern US has undergone dramatic vegetation changes with many areas of grassland becoming shrublands in the last 150 years. A principle manifestation of such a land degradation is the wide distribution of fertile islands in once-homogenous landscapes, which changed soil resource redistributions through the movement of resources from plant interspaces to the area beneath plant canopies. A great deal of work has examined the role of water in nutrient reduction and enforcement of islands of fertility in the semiarid landscapes. However, little is known on the role of wind in the removal or redistribution of soil resources, and further the feedbacks between wind and ecosystem change in this area. In spring 2004, a vegetation removal experiment was established in the northern Chihuahuan Desert, southern New Mexico, where vegetation cover on the experimental plots were manually reduced to various levels to study the entire suite of aeolian processes, including erosion, transport, and deposition in creating and enforcing patchy distribution of vegetation. This experiment has been continually maintained for more than ten years, with the sampling and observation of vegetation cover, soil nutrients, sediment flux, topography, and plant physiology. The experimental results highlighted that the aeolian processes in the Chihuahuan Desert are able to change soil properties and community composition in as short as 3 three years. Further, the removal of grasses by 75% may trigger a very substantial increase of wind erosion and the removal of grass by 50% could cause significant amount of C and N loss due to wind erosion. Last but not least, the change of the spatial distribution of soil C and the micro-topography both point to the fact that aeolian processes contribute substantially to the dynamics of fertile islands in this desert grassland.

  10. Whither Cometary Dust?

    NASA Astrophysics Data System (ADS)

    Lisse, Carey M.

    2010-10-01

    In this paper I will discuss recent findings that have important implications for our understanding of the formation and evolution of primitive solar system dust, including: - Nesvorny et al. (2010), following up on their dynamical analyses of the zodiacal dust bands as sourced by the breakup of the Karin (5Mya) and Veritas (8Mya) asteroid families, argue that over 90% of the interplanetary dust cloud at 1 AU comes from JFC comets with near-circularized, low inclination orbits. This implies that the noted IPD collections of anhydrous and hydrous dust particles are likely to be from Oort cloud and JFC comets, respectively, not from asteroids and comets as thought in the past. Hydrous dust particles from comets like 85P/Wild2 and 9P/Tempel 1 would be consistent with results from the STARDUST and Deep Impact experiments. - Estimates of the dust particle size distributions (PSDs) in the comae of 85P/Wild2 (Green et al. 2004, 2007) and 73P/SW-3 (Sitko et al. 2010, Vaubaillon & Reach 2010) and in the trails of comets (Reach et al. 2007) have broken power law structure, with a plateau enhancement of particles of 1 mm - 1 cm in size. This size is also the size of most chondritic inclusions, and the predicted size range of the "aggregational barrier", where collisions between dust particles become destructive. - Studies of the albedo and polarization properties of cometary dust (Kolokolova et al. 2007) suggest there are 2 major groupings, one with low scattering capability and one with high. While these families could possibly have been explained by systematics in the PSDs of the emitted dust, independent work by Lisse et al. (2008) on the mineralogy of a number of highly dusty comets has shown evidence for one family of comets with highly crystalline dust and another with highly amorphous dust.

  11. Lunar and Planetary Science XXXV: Martian Aeolian and Mass Wasting Processes: Blowing and Flowing

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session Martian Aeolian and Mass Wasting Processes: BLowing and Flowing included the following topics: 1) Three Decades of Martian Surface Changes; 2) Thermophysical Properties of Isidis Basin, Mars; 3) Intracrater Material in Eastern Arabia Terra: THEMIS, MOC, and MOLA Analysis of Wind-blown Deposits and Possible High-Inertia Source Material; 4) Thermal Properties of Sand from TES and THEMIS: Do Martian Dunes Make a Good Control for Thermal Inertia Calculations? 5) A Comparative Analysis of Barchan Dunes in the Intra-Crater Dune Fields and the North Polar Sand Sea; 6) Diluvial Dunes in Athabasca Valles, Mars: Morphology, Modeling and Implications; 7) Surface Profiling of Natural Dust Devils; 8) Martian Dust Devil Tracks: Inferred Directions of Movement; 9) Numerical Simulations of Anastomosing Slope Streaks on Mars; 10) Young Fans in an Equatorial Crater in Xanthe Terra, Mars; 11) Large Well-exposed Alluvual Fans in Deep Late-Noachian Craters; 12) New Evidence for the Formation of Large Landslides on Mars; and 13) What Can We Learn from the Ages of Valles Marineris Landslides on Martian Impact History?

  12. Impact of Lunar Dust on the Exploration Initiative

    NASA Technical Reports Server (NTRS)

    Stubbs, T. J.; Vondrak, R. R.; Farrell, W. M.

    2005-01-01

    From the Apollo era it is known that dust on the Moon can cause serious problems for exploration activities. Such problems include adhering to clothing and equipment, reducing external visibility on landings, and causing difficulty to breathing and vision within the spacecraft. An important step in dealing with dust-related problems is to understand how dust grains behave in the lunar environment. All astronauts who walked on the Moon reported difficulties with lunar dust. Eugene Cernan, commander of Apollo 17, stated that one of the most aggravating, restricting facets of lunar surface exploration is the dust and its adherence to everything no matter what kind of material, whether it be skin, suit material, metal, no matter what it be and it's restrictive friction-like action to everything it gets on. Dust has also been highlighted as a priority by the Mars Exploration Program Assessment Group (MEPAG): 1A. Characterize both aeolian dust and particulates that would be kicked up from the martian regolith by surface operations of a human mission with fidelity sufficient to establish credible engineering simulation labs and/or software codes on Earth. We shall briefly describe the properties of lunar dust and its impact on the Apollo astronauts, and then summarize three main problems areas for understanding its behavior: Dust Adhesion and Abrasion, Surface Electric Fields and Dust Transport. These issues are all inter-related and must be well understood in order to minimize the impact of dust on lunar surface exploration.

  13. Deflated rims along the Xiangshui River on the Xiliaohe Plain, Northeast China: A case of active fluvial-aeolian interactions

    NASA Astrophysics Data System (ADS)

    Han, Guang; Zhang, Guifang; You, Li; Wang, Yong; Yang, Lin; Yang, Ji; Zhou, Liang; Yuan, Minghuan; Zou, Xueyong; Cheng, Hong

    2016-03-01

    Riverine source-bordering sand dunes, as a result of active fluvial-aeolian interactions, are a pronounced feature on the semiarid Xiliaohe Plain, Northeast China. By means of satellite imagery analysis, and both field survey and observation, this paper presents a new type of riverine source-bordering sand dunes - deflated rims, on the downwind margins of the Xiangshui River. They largely result from the deflation of escarpments on the downwind side of valley by local prevailing winds of NW direction, not from the reworking of point bars on floodplain by wind. In general, a rim is primarily composed of three distinct zones: 1) the upwind frontal escarpment zone with variable plan-form shape, gradient and relief, which is formed by either active lateral erosion by river or significant erosion by wind and transient slope runoff; 2) the deflation zone with gentle slopes of 8-18° and small-scale aeolian bedforms, i.e. ripples of fine sand, ridges of coarse sand; and 3) the downwind dynamic deposition zone with distinctive bedforms with variable superficial texture and slip faces. The sand mass on rims derives overwhelmingly from underlying loose late Quaternary sediments, is sufficient and sustainable by successive retreats of the escarpment, and is gradually transported downwind by pulse motions of bedforms, coupled with high wind events. Essentially, deflated rims are a starting point and the incipient phase of mature riverine dunefields. The superimposed bedforms on rims are fundamentally governed by windflow dynamics, sand sediments and antecedent bedform, exhibiting in turn the manner and intensity of rim development. Consequently, the upwind river valley and downwind deflated rim can jointly stimulate marked wave-like motion of both windflow and aeolian bedforms at different scales, especially when high wind events occur. This study sheds some light on the understanding of the origin and development of riverine source-bordering dunefields, and offers new

  14. Using Quasi-Dynamic Land Cover to Investigate Hydrologic Disturbance from Beetle-kill and Dust in the Upper Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Livneh, B.; Deems, J. S.; Buma, B.; Barsugli, J. J.

    2013-12-01

    Since 2002, the headwaters of the Colorado River Basin have experienced changes in land cover, occurring at sub-annual timescales. Widespread tree mortality from bark beetle infestation has taken place across a range of forest types, elevation, and latitude. Extent and severity of forest structure alteration have been observed through a combination of aerial survey data, MODIS-derived leaf area index (LAI), and in situ measurements. Additional disturbance has resulted from deposition of dust from regional dryland sources on mountain snowpacks that strongly alter the snow surface albedo, driving earlier and faster snowmelt runoff. Severity of dust-on-snow events have been estimated via satellite, field, and in-situ observations. In this study, we explore the combined impacts of forest disturbance and dust on snow within a hydrologic modeling framework. We force the Distributed Hydrology and Vegetation Model (DHSVM) with observed meteorology, time-varying maps of forest properties to emulate bark beetle impacts, and variable parameterizations of snow albedo based on dust events. Preliminary results from beetle-killed canopy alteration suggest slightly greater snow accumulation as a result of less snow interception and reduced canopy sublimation, which outweigh increases in sub-canopy snow ablation fluxes. The primary hydrologic control of dust-on-snow events is on the rate of snowmelt, with more rapid melt rates associated with more extreme dust deposition. The use of a process-based model at relatively fine spatial scales (~100m) together with quasi-dynamic vegetation and snow properties is expected to provide new insights into the mechanisms driving disturbance related hydrologic impacts and better inform mitigation strategies.

  15. Dust in fusion plasmas: theory and modeling

    SciTech Connect

    Smirnov, R. D.; Pigarov, A. Yu.; Krasheninnikov, S. I.; Mendis, D. A.; Rosenberg, M.; Rudakov, D.; Tanaka, Y.; Rognlien, T. D.; Soboleva, T. K.; Shukla, P. K.; Bray, B. D.; West, W. P.; Roquemore, A. L.; Skinner, C. H.

    2008-09-07

    Dust may have a large impact on ITER-scale plasma experiments including both safety and performance issues. However, the physics of dust in fusion plasmas is very complex and multifaceted. Here, we discuss different aspects of dust dynamics including dust-plasma, and dust-surface interactions. We consider the models of dust charging, heating, evaporation/sublimation, dust collision with material walls, etc., which are suitable for the conditions of fusion plasmas. The physical models of all these processes have been incorporated into the DUST Transport (DUSTT) code. Numerical simulations demonstrate that dust particles are very mobile and accelerate to large velocities due to the ion drag force (cruise speed >100 m/s). Deep penetration of dust particles toward the plasma core is predicted. It is shown that DUSTT is capable of reproducing many features of recent dust-related experiments, but much more work is still needed.

  16. Comparing Herschel dust emission structures, magnetic fields observed by Planck, and dynamics: high-latitude star forming cloud L1642

    NASA Astrophysics Data System (ADS)

    Malinen, Johanna

    2016-01-01

    The nearby high-latitude cloud L1642 is one of only two known very high latitude (|b| > 30 deg) clouds actively forming stars. This cloud is a rare example of star formation in isolated conditions, and can reveal important details of star formation in general, e.g., of the effect of magnetic fields. We compare Herschel dust emission structures and magnetic field orientation revealed by Planck polarization maps in L1642, and also combine these with dynamic information from molecular line observations. The high-resolution Herschel data reveal a complex structure including a dense, compressed central blob with elongated extensions, low density striations, "fishbone" like structures with a spine and perpendicular striations, and a spiraling "tail". The Planck polarization data reveal an ordered magnetic field that pervades the cloud and is aligned with the surrounding low density striations. We show that there is a complex interplay between the cloud structure and large scale magnetic fields revealed by Planck polarization data at 10' resolution. This suggests that the magnetic field is closely linked to the formation and evolution of the cloud. We see a clear transition from aligned to perpendicular structures approximately at a column density of NH = 2x10^21 cm-2. We conclude that Planck polarization data revealing the large scale magnetic field orientation can be very useful even when comparing to the finest structures in higher resolution data, e.g. Herschel at ~18" resolution.

  17. Aeolian beach ridges and their significance for climate and sea level: Concept and insight from the Levant coast (East Mediterranean)

    NASA Astrophysics Data System (ADS)

    Mauz, B.; Hijma, M. P.; Amorosi, A.; Porat, N.; Galili, E.; Bloemendal, J.

    2013-06-01

    Relict beach ridges of aeolian origin and associated soils are often used for inferring relative sea level and climate with contrasting results. Most studies link the aeolian coastal deposits to regressive phases, some to high sea-level stands, and a few to intermediate relative sea-level positions. We interpret the apparent contradictions as indicating the lack of an over-arching concept and the inconsistent usage of sea level-related terms. In this paper we present an integrated morpho-sedimentological concept for a microtidal, mid-latitudinal coast and review existing data from the Levant (East Mediterranean) coast to evaluate the concept and to eliminate nomenclatural confusion. A coastal depositional environment in a semi-arid environment consists of shallow-marine, aeolian and alluvial facies which together form an aeolian beach-ridge complex as a package of strata which respond simultaneously to sea-level change. A transgressive complex forms through reworking or overstepping of the coastal foredune and a regressive complex forms by downstepping. Under transgression the aeolian beach ridge represents the highstand deposit and its adjacent shallow marine sediment is the transgressive deposit. Under regression the complex represents the falling stage and the associated downdip surface marks the lowstand. On the Levant coast we find chronologically well-constrained, offlapping aeolian beach ridges as parts of six downstepping beach ridge complexes formed between ~ 200 ka and 10 ka. The complexes represent the falling stage systems tract (FSST) of a short-lived (5th-order) depositional sequence when the shoreline shifted from a position close to the modern coastline to the shelf or below the shelf edge. Three of these FSSTs and their up dip and down dip super bounding surface together form the 4th order (~ 100 ka) sequence of the last interglacial/glacial cycle. The absence of transgressive, highstand and lowstand systems tract is explained by the poor

  18. Laboratory Simulations of Martian and Venusian Aeolian Processes

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald

    1999-01-01

    The objective of this work was to conduct research in the Planetary Aeolian Facility (PAF) at NASA-Ames Research Center as a laboratory for the planetary science community and to carry-out experiments on the physics and geology of particles moved by winds, and for the development of instruments and spacecraft components for planetary missions.

  19. Analysis of an optical gate device for measuring aeolian sand movement

    NASA Astrophysics Data System (ADS)

    Etyemezian, V.; Nikolich, G.; Nickling, W.; King, J. S.; Gillies, J. A.

    2017-02-01

    Movement of sand in response to wind is the most important feature of aeolian sediment transport on Earth and other planets. Through sand blasting during saltation, large amounts of dust are ejected into the atmosphere and transported long distances, impacting climate and human health. Despite continuing improvements, currently available devices for field measurement of sand movement have limitations. An optical gate device (OGD) for detecting the movement, size, and possibly speed of individual sand grains during aeolian sediment transport was analyzed. The approach uses the highly time resolved signal from these sensors, which consist of a light emitter and a photosensitive sensor. A specific OGD that is manufactured by Optek (Carrollton, Texas, USA) was tested in a sediment transport wind tunnel alongside trap-style devices. The OGD device provided particle counts and total signal response that were well correlated with sand trap data (R2 between 0.66 and 0.88). Inter-comparison among eight identical units of the OGD showed excellent repeatability (R2 > 0.98 for 7 of 8 units). Subsequent tests revealed that the response of the phototransistor (light sensor) can be linear when operated within certain workable limits. Practical implications of this are that there is potential for extracting size distribution information. Limits imposed by noise levels in the signal and interferences from extraneous light sources were also identified. Despite the results presented being specific to the OGD model tested, much of the approach outlined is applicable to any OGD-type device (including Wenglor®) if the signal of the photo detector can be accessed directly.

  20. A numerical study of turbulent flow over complex aeolian dune fields: the White Sands National Monument

    NASA Astrophysics Data System (ADS)

    Anderson, W. W.; Chamecki, M.; Kocurek, G.; Mohrig, D. C.

    2013-12-01

    The structure and dynamics of fully-developed turbulent flows responding to aeolian dune fields are studied using large-eddy simulation with an immersed boundary method. An aspect of particular importance in these flows is the downwind migration of coherent motions associated with Kelvin-Helmholtz instabilities which originate at the dune crests. These instabilities are responsible for enhanced downward transport of high momentum fluid via the so-called turbulent sweep mechanism. However, the presence of such structures and their role in determining the bulk characteristics of fully developed dune field sublayer aerodynamics has received relatively limited attention. Moreover, many existing studies address mostly symmetric or mildly asymmetric dune forms. The White Sands National Monument is a field of aeolian gypsum sand dunes located in the Tularosa Basin in southern New Mexico. Aeolian processes at the site result in a complex, anisotropic dune field. In the dune field sublayer, the flow statistics resemble a mixing layer: at approximately the dune crest height, vertical profiles of streamwise velocity exhibit an inflection and turbulent Reynolds stresses are maximum; below this, the streamwise and vertical velocity fluctuations are positively and negatively skewed, respectively. We evaluate the spatial structure of Kelvin-Helmholtz instabilities present in the dune field sublayer -- shear length, Ls, and vortex spacing, Lambda_x -- and show that Ls = m Lambda_x, where m is approximately 8 in the different sections considered (for turbulent mixing layers, 7 < m < 10, Rogers and Moser, 1994: Phys. Fluids A, 6, 903-922). These results guide discussion on the statistics of aerodynamic drag across the dunes; probability density functions of time-series of aerodynamic drag for the dunes are shown to exhibit skewness and variance much greater than values reported for turbulent boundary layer flow over an homogeneous roughness distribution. Thus, we propose that

  1. Cosmic dust

    NASA Technical Reports Server (NTRS)

    Brownlee, Donald E.; Sandford, Scott A.

    1992-01-01

    Dust is a ubiquitous component of our galaxy and the solar system. The collection and analysis of extraterrestrial dust particles is important to exobiology because it provides information about the sources of biogenically significant elements and compounds that accumulated in distant regions of the solar nebula and that were later accreted on the planets. The topics discussed include the following: general properties of interplanetary dust; the carbonaceous component of interplanetary dust particles; and the presence of an interstellar component.

  2. Of Horseshoes and Heliotropes: The Dynamics of Dust in the Encke Gap

    NASA Astrophysics Data System (ADS)

    Hedman, Matthew M.; Burns, J. A.; Tiscareno, M. S.

    2011-04-01

    The 320-km-wide Encke Gap in Saturn's outer A ring is held open by the small moon Pan. This gap contains three narrow ringlets: one near Pan's orbit at 133,585 km from Saturn's center, a central one at 133,485 km near the gap's inner edge and one at 133,720 km near the gap's outer edge. All three ringlets contain localized clumps of material that can be tracked over several years. These structures exhibit several unexpected dynamical properties. For example, the clumps in the central ringlet are always asymmetrically distributed with respect to Pan, and their motion is inconsistent with that expected for particles on simple horseshoe or tadpole orbits. Such anomalies probably occur because the Encke Gap ringlets are composed primarily of small grains 1-100 microns across, so the particles’ orbital properties are perturbed not only by close encounters with Pan, but also by various non-gravitational forces. Indeed, the ringlets exhibit significant forced eccentricities induced by solar radiation pressure. We will explore how the interplay between gravitational and non-gravitational processes shape the structure and dynamics of these dusty ringlets.

  3. Spatial differences of aeolian desertification responses to climate in arid Asia

    NASA Astrophysics Data System (ADS)

    Wang, Xunming; Hua, Ting; Lang, Lili; Ma, Wenyong

    2017-01-01

    Most areas of arid Asia are covered by aeolian dunes, sand sheets, gravels, and desert steppes, and may jeopardize nearly 350 million people if climate change increases aeolian desertification. Although the aeolian desertification is mainly triggered by climate changes are extensively acknowledged, the responses of aeolian desertification to various climate scenarios are poorly understood. Based on the tight combinations of dune activity index (DAI) trends and of aeolian desertification, here the spatial differences of aeolian desertification responses on various climate scenarios were reported. The analyzed results show that the variations in temperature, precipitation and wind regime have no significant contributions on aeolian desertification in the extremely arid Asia. From the early to blooming periods of vegetation growth, although temperature rise may benefit vegetation growths in some high latitudes and altitudes, the temperature rise may increase aeolian desertification in most arid Asia regions such as Mongolia, West and Central Asia. In arid Asia, although precipitation increases may benefit the rehabilitation, decreases in precipitation is not the key role on aeolian desertification occurrences in extremely arid regions. From the early to blooming periods of vegetation growths, spatial trends of the sensitivity of aeolian desertification to wind regime varied. Generally, at the regional scales there are relative high sensitivities for aeolian desertification to climate changes in the eastern and western regions of arid Asia, and the climate changes may not play important roles on aeolian desertification occurrence in the central regions. The spatial differences of aeolian desertification responses to climate changes indicate various strategies for aeolian desertification combating are needed in different regions of arid Asia.

  4. Character and provenance of aeolian sediments in northeast Thailand

    NASA Astrophysics Data System (ADS)

    Nichol, Janet E.; Nichol, Douglas W.

    2015-12-01

    Aeolian activity is not generally associated with the humid tropics, and although reports of loess-like soils in various locations in southeast Asia exist, these mainly lack the detailed analysis to set them in meaningful spatial or historical context. This paper examines the red and yellow sandy sediments of the Khorat Plateau in northeast Thailand which have been variously referred to as 'cover sands', 'loessial soils' or 'loess'. The sediments are referred to as having alluvial, biological as well as aeolian origin, and a date of 9-35 ka is reported. The study compares the Khorat sediments physically and geochemically with loess and aeolian sediments from other regions, as well as with other sites in southeast Asia which are reported here. The moderate degree of particle sorting and unimodal sizes of the sediments along with a sub-spherical sub-rounded form, supports previous diagnoses of an aeolian origin. Geochemical analysis of the Khorat sediments indicates severe depletion in both mobile and immobile elements, which are even more depleted than other southeast Asian loessic soils examined. This depletion, along with the only moderate particle sorting, suggests the source of the sediments to be the local weathered sandstones outcropping around the edge of the Khorat Plateau. The dissimilarity of the Khorat sediments from Upper Continental Crust (UCC) elemental values supports this, as homogenisation would occur if diverse source areas were involved. The study suggests that aeolian sediments of humid tropical regions warrant more attention as climate proxy markers, due to the dissimilarity between the present climate and conditions required for their formation.

  5. Mineral dust deposition in Western Mediterranean basin

    NASA Astrophysics Data System (ADS)

    Vincent, Julie; Laurent, Benoit; Bergmatti, Gilles; Losno, Rémi; Bon Nguyen, Elisabeth; Chevaillier, Servanne; Roulet, Pierre; Sauvage, Stéphane; Coddeville, Patrice; Ouboulmane, Noura; Siour, Guillaume; Tovar Sanchez, Antonio; Massanet, Ana; Morales Baquero, Rafael; Di Sarra, Giogio; Sferlazzo, Damiano; Dulac, François; Fornier, Michel; Coursier, Cyril

    2014-05-01

    North African deserts are the world's largest sources of atmospheric mineral dust produced by aeolian erosion. Saharan dust is frequently transported toward Europe over the Mediterranean basin. When deposited in oceanic areas, mineral dust can constitute a key input of nutrients bioavailable for the oceanic biosphere. For instance, Saharan dust deposited in the in the Mediterranean Sea can be a significant source of nutrient like Fe, P and N during summer and autumn. Our objective is to study the deposition Saharan mineral dust in the western Mediterranean basin and to improve how deposition processes are parameterized in 3D regional models. To quantify the deposition flux of Saharan dust in the western Mediterranean region a specific collector (CARAGA) to sample automatically the insoluble atmospheric particle deposition was developed (LISA-ICARE) and a network of CARAGA collectors have been set up. Since 2011, eight CARAGA are then deployed in Frioul, Casset, Montandon and Ersa in France, Mallorca and Granada in Spain, Lampedusa in Italia, and Medenine in Tunisia, along a South-North gradient of almost 2000km from the North African coast to the South of Europe. We observe 10 well identified dust Saharan deposition events at Lampedusa and 6 at Mallorca for a 1-yr sampling period. These dust events are sporadic and the South-North gradient of deposition intensity and frequency is observed (the highest dust mass sampled at the stations are : 2,66 g.m-2 at Lampedusa ; 0,54 g.m-2 at Majorque ; 0,33 g.m-2 at Frioul ; 0,16 g.m-2 at Casset). The ability of the CHIMERE model to reproduce the deposition measurements is tested. The mineral dust plumes simulated over the western Mediterranean basin are also compared to satellite observations (OMI, MODIS) and in-situ measurements performed during the ChArMEx campaign and in the AERONET stations.

  6. Aeolian flux of biotic and abiotic material in Taylor Valley, Antarctica

    NASA Astrophysics Data System (ADS)

    Šabacká, Marie; Priscu, John C.; Basagic, Hassan J.; Fountain, Andrew G.; Wall, Diana H.; Virginia, Ross A.; Greenwood, Mark C.

    2012-06-01

    We studied patterns and mechanisms controlling wind-driven flux of soils and associated organic matter in Taylor Valley, Antarctica over a 10-year period using passive aeolian traps and dynamic mass erosion particle counters. Deployment of the particle counters near meteorological stations allowed us to compare the magnitude of soil flux with data on prevailing wind. Particulate organic C, N and P measurements on transported sediment allowed us to examine connectivity of wind dispersed organic matter among landscape units. Most sediment entrainment occurred within 20 cm of the soil surface during "saltation bursts" that occupied < 3% of the total time within a year. These bursts corresponded to periods of strong föhn winds where wind velocities were ≥ 20 m s- 1. Sediment movement was highest in the up-valley reaches of Taylor Valley and transport was down-valley towards McMurdo Sound. The general paucity of biological organic matter production throughout the McMurdo Dry Valleys, in concert with low fluvial transport, makes aeolian distribution or organic C, N and P an important factor in the distribution of organic matter throughout this polar desert ecosystem and increases connectivity among the ecosystem components.

  7. Should precipitation influence dust emission in global dust models?

    NASA Astrophysics Data System (ADS)

    Okin, Gregory

    2016-04-01

    Soil moisture modulates the threshold shear stress required to initiate aeolian transport and dust emission. Most of the theoretical and laboratory work that has confirmed the impact of soil moisture has appropriately acknowledged that it is the soil moisture of a surface layer a few grain diameters thick that truly controls threshold shear velocity. Global and regional models of dust emission include the effect of soil moisture on transport threshold, but most ignore the fact that only the moisture of the very topmost "active layer" matters. The soil moisture in the active layer can differ greatly from that integrated through the top 2, 5, 10, or 100 cm (surface layers used by various global models) because the top 2 mm of heavy texture soils dries within ~1/2 day while sandy soils dry within less than 2 hours. Thus, in drylands where dust emission occurs, it is likely that this top layer is drier than the underlying soil in the days and weeks after rain. This paper explores, globally, the time between rain events in relation to the time for the active layer to dry and the timing of high wind events. This analysis is carried out using the same coarse reanalyses used in global dust models and is intended to inform the soil moisture controls in these models. The results of this analysis indicate that the timing between events is, in almost all dust-producing areas, significantly longer than the drying time of the active layer, even when considering soil texture differences. Further, the analysis shows that the probability of a high wind event during the period after a rain where the surface is wet is small. Therefore, in coarse global models, there is little reason to include rain-derived soil moisture in the modeling scheme.

  8. A note on the stochastic nature of particle cohesive force and implications to threshold friction velocity for aerodynamic dust entrainment

    NASA Astrophysics Data System (ADS)

    Shao, Yaping; Klose, Martina

    2016-09-01

    There is considerable interest to determine the threshold for aeolian dust emission on Earth and Mars. Existing schemes for threshold friction velocity are all deterministic in nature, but observations show that in the dust particle size range the threshold friction velocity scatters strongly due to stochastic inter-particle cohesion. In the real world, there always exists a certain amount of free dust which can be easily lifted from the surface by weak winds or even turbulence, as exemplified by dust devils. It has been proposed in the dust-devil research community, that the pressure drop at dust-devil center may be a major mechanism for dust-devil dust emission, known as the Δp effect. It is questioned here whether the Δp effect is substantial or whether the elevated dust concentration in dust devils is due to free dust emission. A simple analysis indicates that the Δp effect appears to be small and the dust in dust devils is probably due to free dust emission and dust convergence. To estimate free dust emission, it is useful to define a lower limit of dust-particle threshold friction velocity. A simple expression for this velocity is proposed by making assumptions to the median and variance of inter-particle cohesive force. The simple expression is fitted to the data of the Arizona State University Vortex Generator. While considerable uncertainty remains in the scheme, this note highlights the need for additional research on the stochastic nature of dust emission.

  9. Dust particles interaction with plasma jet

    SciTech Connect

    Ticos, C. M.; Jepu, I.; Lungu, C. P.; Chiru, P.; Zaroschi, V.

    2009-11-10

    The flow of plasma and particularly the flow of ions play an important role in dusty plasmas. Here we present some instances in laboratory experiments where the ion flow is essential in establishing dust dynamics in strongly or weakly coupled dust particles. The formation of ion wake potential and its effect on the dynamics of dust crystals, or the ion drag force exerted on micron size dust grains are some of the phenomena observed in the presented experiments.

  10. Circumstellar dust

    NASA Technical Reports Server (NTRS)

    Dwek, E.

    1986-01-01

    The presence of dust in the general interstellar medium is inferred from the extinction, polarization, and scattering of starlight; the presence of dark nebulae; interstellar depletions; the observed infrared emission around certain stars and various types of interstellar clouds. Interstellar grains are subject to various destruction mechanisms that reduce their size or even completely destroy them. A continuous source of newly formed dust must therefore be present for dust to exist in the various phases of the interstellar medium (ISM). The working group has the following goals: (1) review the evidences for the formation of dust in the various sources; (2) examine the clues to the nature and composition of the dust; (3) review the status of grain formation theories; (4) examine any evidence for the processing of the dust prior to its injection into the interstellar medium; and (5) estimate the relative contribution of the various sources to the interstellar dust population.

  11. NMMB/BSC-DUST: an online mineral dust atmospheric model from meso to global scales

    NASA Astrophysics Data System (ADS)

    Haustein, K.; Pérez, C.; Jorba, O.; Baldasano, J. M.; Janjic, Z.; Black, T.; Nickovic, S.

    2009-04-01

    While mineral dust distribution and effects are important at global scales, they strongly depend on dust emissions that are controlled on small spatial and temporal scales. Most global dust models use prescribed wind fields provided by meteorological centers (e.g., NCEP and ECMWF) and their spatial resolution is currently never better than about 1°×1°. Regional dust models offer substantially higher resolution (10-20 km) and are typically coupled with weather forecast models that simulate processes that GCMs either cannot resolve or can resolve only poorly. These include internal circulation features such as the low-level nocturnal jet which is a crucial feature for dust emission in several dust ‘hot spot' sources in North Africa. Based on our modeling experience with the BSC-DREAM regional forecast model (http://www.bsc.es/projects/earthscience/DREAM/) we are currently implementing an improved mineral dust model [Pérez et al., 2008] coupled online with the new global/regional NMMB atmospheric model under development in NOAA/NCEP/EMC [Janjic, 2005]. The NMMB is an evolution of the operational WRF-NMME extending from meso to global scales. The NMMB will become the next-generation NCEP model for operational weather forecast in 2010. The corresponding unified non-hydrostatic dynamical core ranges from meso to global scale allowing regional and global simulations. It has got an add-on non-hydrostatic module and it is based on the Arakawa B-grid and hybrid pressure-sigma vertical coordinates. NMMB is fully embedded into the Earth System Modeling Framework (ESMF), treating dynamics and physics separately and coupling them easily within the ESMF structure. Our main goal is to provide global dust forecasts up to 7 days at mesoscale resolutions. New features of the model include a physically-based dust emission scheme after White [1979], Iversen and White [1982] and Marticorena and Bergametti [1995] that takes the effects of saltation and sandblasting into account

  12. Temporal and spatial variations in provenance of Eastern Mediterranean Sea sediments: Implications for Aegean and Aeolian arc volcanism

    NASA Astrophysics Data System (ADS)

    Klaver, Martijn; Djuly, Thomas; de Graaf, Stefan; Sakes, Alex; Wijbrans, Jan; Davies, Gareth; Vroon, Pieter

    2015-03-01

    The Eastern Mediterranean Sea (EMS) is the last remnant of the Tethys Ocean that has been subducted to the north since the Jurassic. Subduction has led to the formation of multiple island arcs in the EMS region where the Aeolian and Aegean arcs are currently active. The EMS is surrounded by continents and receives a large sediment input, part of which is transported down with the subducting slab into the mantle and potentially contributes a major flux to the arc volcanism. An along-arc gradient in the composition of subducting sediment has been evoked to explain the distinct geochemical signature of the easternmost volcanic centre of the Aegean arc, but direct evidence for this proposal is lacking. We present a detailed study of the mineralogical, major-, trace elements and Sr-Nd-Hf-Pb isotope composition of 45 Neogene EMS sediment samples obtained from Deep Sea Drilling Project (DSDP) and Ocean Drilling Program (ODP) drill sites and box cores to characterise their geochemical composition, distinguish provenance components and investigate the temporal and spatial variation in provenance to evaluate the potential changing contribution of subducted EMS sediment to Aegean and Aeolian arc volcanism. Based on trace element characteristics of EMS sediments, we can distinguish four provenance components. Nile sediment and Sahara dust are the main components, but contributions from the Tethyan ophiolite belt and arc volcanic rocks in the north are also recognised. Pliocene and Quaternary EMS sediment records a strong geochemical gradient where Nile River sediment entering the EMS in the east is progressively diluted by Sahara Desert dust towards the west. Pre-Messinian samples, however, have a remarkably homogeneous composition with Nile sediment characteristics. We relate this rapid increase in Sahara dust contribution to a late Miocene climate shift leading to decreased Nile runoff and aridification of the Sahara region. EMS sediment has a restricted range in Pb isotopes

  13. Dynamics of Dust Particles Released from Oort Cloud Comets and Their Contribution to Radar Meteors

    NASA Technical Reports Server (NTRS)

    Nesvorny, David; Vokrouhlicky, David; Pokorny, Petr; Janches, Diego

    2012-01-01

    The Oort Cloud Comets (OCCs), exemplified by the Great Comet of 1997 (Hale-Bopp), are occasional visitors from the heatless periphery of the solar system. Previous works hypothesized that a great majority of OCCs must physically disrupt after one or two passages through the inner solar system, where strong thermal gradients can cause phase transitions or volatile pressure buildup. Here we study the fate of small debris particles produced by OCC disruptions to determine whether the imprints of a hypothetical population of OCC meteoroids can be found in the existing meteor radar data. We find that OCC particles with diameters D < or approx. 10 microns are blown out from the solar system by radiation pressure, while those with D > or approx. 1 mm have a very low Earth-impact probability. The intermediate particle sizes, D approx. 100 microns represent a sweet spot. About 1% of these particles orbitally evolve by Poynting-Robertson drag to reach orbits with semimajor axis a approx. 1 AU. They are expected to produce meteors with radiants near the apex of the Earth s orbital motion. We find that the model distributions of their impact speeds and orbits provide a good match to radar observations of apex meteors, except for the eccentricity distribution, which is more skewed toward e approx. 1 in our model. Finally, we propose an explanation for the long-standing problem in meteor science related to the relative strength of apex and helion/antihelion sources. As we show in detail, the observed trend, with the apex meteors being more prominent in observations of highly sensitive radars, can be related to orbital dynamics of particles released on the long-period orbits.

  14. DYNAMICS OF DUST PARTICLES RELEASED FROM OORT CLOUD COMETS AND THEIR CONTRIBUTION TO RADAR METEORS

    SciTech Connect

    Nesvorny, David; Vokrouhlicky, David; Pokorny, Petr; Janches, Diego

    2011-12-10

    The Oort Cloud Comets (OCCs), exemplified by the Great Comet of 1997 (Hale-Bopp), are occasional visitors from the heatless periphery of the solar system. Previous works hypothesized that a great majority of OCCs must physically disrupt after one or two passages through the inner solar system, where strong thermal gradients can cause phase transitions or volatile pressure buildup. Here we study the fate of small debris particles produced by OCC disruptions to determine whether the imprints of a hypothetical population of OCC meteoroids can be found in the existing meteor radar data. We find that OCC particles with diameters D {approx}< 10 {mu}m are blown out from the solar system by radiation pressure, while those with D {approx}> 1 mm have a very low Earth-impact probability. The intermediate particle sizes, D {approx} 100 {mu}m, represent a sweet spot. About 1% of these particles orbitally evolve by Poynting-Robertson drag to reach orbits with semimajor axis a {approx} 1 AU. They are expected to produce meteors with radiants near the apex of Earth's orbital motion. We find that the model distributions of their impact speeds and orbits provide a good match to radar observations of apex meteors, except for the eccentricity distribution, which is more skewed toward e {approx} 1 in our model. Finally, we propose an explanation for the long-standing problem in meteor science related to the relative strength of apex and helion/antihelion sources. As we show in detail, the observed trend, with the apex meteors being more prominent in observations of highly sensitive radars, can be related to orbital dynamics of particles released on the long-period orbits.

  15. Combined impacts of current and future dust deposition and regional warming on Colorado River Basin snow dynamics and hydrology

    USGS Publications Warehouse

    Deems, Jeffrey S.; Painter, Thomas H.; Barsugli, Joseph J.; Belnap, Jayne; Udall, Bradley

    2013-01-01

    The Colorado River provides water to 40 million people in seven western states and two countries and to 5.5 million irrigated acres. The river has long been overallocated. Climate models project runoff losses of 5–20% from the basin by mid-21st century due to human-induced climate change. Recent work has shown that decreased snow albedo from anthropogenic dust loading to the CO mountains shortens the duration of snow cover by several weeks relative to conditions prior to western expansion of the US in the mid-1800s, and advances peak runoff at Lees Ferry, Arizona, by an average of 3 weeks. Increases in evapotranspiration from earlier exposure of soils and germination of plants have been estimated to decrease annual runoff by more than 1.0 billion cubic meters, or ~5% of the annual average. This prior work was based on observed dust loadings during 2005–2008; however, 2009 and 2010 saw unprecedented levels of dust loading on snowpacks in the Upper Colorado River Basin (UCRB), being on the order of 5 times the 2005–2008 loading. Building on our prior work, we developed a new snow albedo decay parameterization based on observations in 2009/10 to mimic the radiative forcing of extreme dust deposition. We convolve low, moderate, and extreme dust/snow albedos with both historic climate forcing and two future climate scenarios via a delta method perturbation of historic records. Compared to moderate dust, extreme dust absorbs 2× to 4× the solar radiation, and shifts peak snowmelt an additional 3 weeks earlier to a total of 6 weeks earlier than pre-disturbance. The extreme dust scenario reduces annual flow volume an additional 1% (6% compared to pre-disturbance), a smaller difference than from low to moderate dust scenarios due to melt season shifting into a season of lower evaporative demand. The sensitivity of flow timing to dust radiative forcing of snow albedo is maintained under future climate scenarios, but the sensitivity of flow volume reductions decreases

  16. Combined impacts of current and future dust deposition and regional warming on Colorado River Basin snow dynamics and hydrology

    NASA Astrophysics Data System (ADS)

    Deems, J. S.; Painter, T. H.; Barsugli, J. J.; Belnap, J.; Udall, B.

    2013-11-01

    The Colorado River provides water to 40 million people in seven western states and two countries and to 5.5 million irrigated acres. The river has long been overallocated. Climate models project runoff losses of 5-20% from the basin by mid-21st century due to human-induced climate change. Recent work has shown that decreased snow albedo from anthropogenic dust loading to the CO mountains shortens the duration of snow cover by several weeks relative to conditions prior to western expansion of the US in the mid-1800s, and advances peak runoff at Lees Ferry, Arizona, by an average of 3 weeks. Increases in evapotranspiration from earlier exposure of soils and germination of plants have been estimated to decrease annual runoff by more than 1.0 billion cubic meters, or ~5% of the annual average. This prior work was based on observed dust loadings during 2005-2008; however, 2009 and 2010 saw unprecedented levels of dust loading on snowpacks in the Upper Colorado River Basin (UCRB), being on the order of 5 times the 2005-2008 loading. Building on our prior work, we developed a new snow albedo decay parameterization based on observations in 2009/10 to mimic the radiative forcing of extreme dust deposition. We convolve low, moderate, and extreme dust/snow albedos with both historic climate forcing and two future climate scenarios via a delta method perturbation of historic records. Compared to moderate dust, extreme dust absorbs 2× to 4× the solar radiation, and shifts peak snowmelt an additional 3 weeks earlier to a total of 6 weeks earlier than pre-disturbance. The extreme dust scenario reduces annual flow volume an additional 1% (6% compared to pre-disturbance), a smaller difference than from low to moderate dust scenarios due to melt season shifting into a season of lower evaporative demand. The sensitivity of flow timing to dust radiative forcing of snow albedo is maintained under future climate scenarios, but the sensitivity of flow volume reductions decreases with

  17. The Martian Dust Cycle: Observations and Modeling

    NASA Technical Reports Server (NTRS)

    Kahre, Melinda A.

    2013-01-01

    The dust cycle is critically important for Mars' current climate system. Suspended atmospheric dust affects the radiative balance of the atmosphere, and thus greatly influences the thermal and dynamical state of the atmosphere. Evidence for the presence of dust in the Martian atmosphere can be traced back to yellow clouds telescopically observed as early as the early 19th century. The Mariner 9 orbiter arrived at Mars in November of 1971 to find a planet completely enshrouded in airborne dust. Since that time, the exchange of dust between the planet's surface and atmosphere and the role of airborne dust on Mars' weather and climate has been studied using observations and numerical models. The goal of this talk is to give an overview of the observations and to discuss the successes and challenges associated with modeling the dust cycle. Dust raising events on Mars range in size from meters to hundreds of kilometers. During some years, regional storms merge to produce hemispheric or planet encircling dust clouds that obscure the surface and raise atmospheric temperatures by tens of kelvin. The interannual variability of planet encircling dust storms is poorly understood. Although the occurrence and season of large regional and global dust storms are highly variable from one year to the next, there are many features of the dust cycle that occur year after year. A low-level dust haze is maintained during northern spring and summer, while elevated levels of atmospheric dust occur during northern autumn and winter. During years without global-scale dust storms, two peaks in total dust loading are generally observed: one peak occurs before northern winter solstice and one peak occurs after northern winter solstice. Numerical modeling studies attempting to interactively simulate the Martian dust cycle with general circulation models (GCMs) include the lifting, transport, and sedimentation of radiatively active dust. Two dust lifting processes are commonly represented in

  18. Substantial dust loss of bioavailable phosphorus from agricultural soils

    PubMed Central

    Katra, Itzhak; Gross, Avner; Swet, Nitzan; Tanner, Smadar; Krasnov, Helena; Angert, Alon

    2016-01-01

    Phosphorus (P) is an essential element in terrestrial ecosystems. Knowledge on the role of dust in the biogeochemical cycling of phosphorus is very limited with no quantitative information on aeolian (by wind) P fluxes from soils. The aim of this study is to focus on P cycling via dust emissions under common land-use practices in an arid environment by integration of sample analyses and aeolian experiments. The experiments indicate significant P fluxes by PM10 dust due to agricultural land use. Even in a single wind-dust event at moderate velocity (7.0 m s−1), P flux in conventional agricultural fields can reach 1.83 kg km−2, that accumulates to a considerable amount per year at a regional scale. The results highlight a negative yearly balance in P content (up to hundreds kg km−2) in all agricultural soils, and thus more P nutrition is required to maintain efficient yield production. In grazing areas where no P nutrition is applied, the soil degradation process can lead to desertification. Emission of P from soil dust sources has significant implications for soil nutrient resources and management strategies in agricultural regions as well as for loading to the atmosphere and global biogeochemical cycles. PMID:27095629

  19. Substantial dust loss of bioavailable phosphorus from agricultural soils

    NASA Astrophysics Data System (ADS)

    Katra, Itzhak; Gross, Avner; Swet, Nitzan; Tanner, Smadar; Krasnov, Helena; Angert, Alon

    2016-04-01

    Phosphorus (P) is an essential element in terrestrial ecosystems. Knowledge on the role of dust in the biogeochemical cycling of phosphorus is very limited with no quantitative information on aeolian (by wind) P fluxes from soils. The aim of this study is to focus on P cycling via dust emissions under common land-use practices in an arid environment by integration of sample analyses and aeolian experiments. The experiments indicate significant P fluxes by PM10 dust due to agricultural land use. Even in a single wind-dust event at moderate velocity (7.0 m s‑1), P flux in conventional agricultural fields can reach 1.83 kg km‑2, that accumulates to a considerable amount per year at a regional scale. The results highlight a negative yearly balance in P content (up to hundreds kg km‑2) in all agricultural soils, and thus more P nutrition is required to maintain efficient yield production. In grazing areas where no P nutrition is applied, the soil degradation process can lead to desertification. Emission of P from soil dust sources has significant implications for soil nutrient resources and management strategies in agricultural regions as well as for loading to the atmosphere and global biogeochemical cycles.

  20. Dust evolution from comets

    NASA Technical Reports Server (NTRS)

    Sekanina, Z.

    1976-01-01

    The studies of the evolution of cometary debris are reviewed. The subject is divided into three major sections: (1) the developments in the immediate vicinity of the cometary nucleus, which is the source of the dust; (2) the formation of the dust tail; and (3) the blending of the debris with the dust component of interplanetary matter. The importance of the physical theory of comets is emphasized for the understanding of the early phase of evolution. A physico-dynamical model designed to analyze the particle-emission mechanism from the distribution of light in the dust tail is described and the results are presented. Increased attention is paid to large particles because of their importance for the evolution of the zodiacal cloud. Finally, implications are discussed for the future in situ investigations of comets.

  1. The National Wind Erosion Research Network: Building a standardized long-term data resource for aeolian research, modeling and land management

    NASA Astrophysics Data System (ADS)

    Webb, Nicholas P.; Herrick, Jeffrey E.; Van Zee, Justin W.; Courtright, Ericha M.; Hugenholtz, Christopher H.; Zobeck, Ted M.; Okin, Gregory S.; Barchyn, Thomas E.; Billings, Benjamin J.; Boyd, Robert; Clingan, Scott D.; Cooper, Brad F.; Duniway, Michael C.; Derner, Justin D.; Fox, Fred A.; Havstad, Kris M.; Heilman, Philip; LaPlante, Valerie; Ludwig, Noel A.; Metz, Loretta J.; Nearing, Mark A.; Norfleet, M. Lee; Pierson, Frederick B.; Sanderson, Matt A.; Sharratt, Brenton S.; Steiner, Jean L.; Tatarko, John; Tedela, Negussie H.; Toledo, David; Unnasch, Robert S.; Van Pelt, R. Scott; Wagner, Larry

    2016-09-01

    The National Wind Erosion Research Network was established in 2014 as a collaborative effort led by the United States Department of Agriculture's Agricultural Research Service and Natural Resources Conservation Service, and the United States Department of the Interior's Bureau of Land Management, to address the need for a long-term research program to meet critical challenges in wind erosion research and management in the United States. The Network has three aims: (1) provide data to support understanding of basic aeolian processes across land use types, land cover types, and management practices, (2) support development and application of models to assess wind erosion and dust emission and their impacts on human and environmental systems, and (3) encourage collaboration among the aeolian research community and resource managers for the transfer of wind erosion technologies. The Network currently consists of thirteen intensively instrumented sites providing measurements of aeolian sediment transport rates, meteorological conditions, and soil and vegetation properties that influence wind erosion. Network sites are located across rangelands, croplands, and deserts of the western US.

  2. Combined impacts of current and future dust deposition and regional warming on Colorado River Basin snow dynamics and hydrology

    NASA Astrophysics Data System (ADS)

    Deems, J. S.; Painter, T. H.; Barsugli, J. J.; Belnap, J.; Udall, B.

    2013-05-01

    The Colorado River provides water to 40 million people in seven states and two countries and to 5.5 million irrigated acres. The river has long been overallocated. Climate models project runoff losses of 5-20% from the basin by mid-21st century due to human-induced climate change. Recent work has shown that decreased snow albedo from anthropogenic dust loading to the CO mountains shortens the duration of snow cover by several weeks relative to conditions prior to white settlement of the western US, and advances peak runoff at Lees Ferry, Arizona by an average of 3 weeks. Increases in evapotranspiration from earlier exposure of soils and germination of plants have been estimated to decrease annual runoff by more than 1.0 billion cubic meters or ~ 5% of the annual average. This prior work was based on observed dust loadings during 2005-2008; however, 2009 and 2010 saw unprecedented levels of dust loading on snowpacks in the Upper Colorado River Basin (UCRB), being on the order of 5 times the 2005-2008 loading. Building on our prior work, we developed a new snow albedo decay parameterization based on observations in 2009/2010 to mimic the radiative forcing of extreme dust deposition. We convolve low, moderate, and extreme dust/snow albedos with both historic climate forcing and two future climate scenarios via a delta method perturbation of historic records. Compared to moderate dust, extreme dust absorbs 2 × to 4 × the solar radiation, and shifts peak snowmelt an additional 3 weeks earlier to a total of 6 weeks earlier than pre-disturbance. The extreme dust scenario reduces annual flow volume an additional 1% (6% compared to pre-disturbance), a smaller difference than from low to moderate due to melt season shifting into a season of lower evaporative demand. The sensitivity of flow timing to dust radiative forcing of snow albedo is maintained under future climate scenarios, but the sensitivity of flow volume reductions decreases with increased climate forcing

  3. Effects of aeolian erosion on microbial release from solids.

    NASA Technical Reports Server (NTRS)

    Gustan, E. A.; Olson, R. L.; Taylor, D. M.; Green, R. H.

    1972-01-01

    This study was initiated to determine the percentage of spores that would be expected to be released from the interior of solid materials by aeolian erosion on a planetary surface. Methyl methacrylate and Eccobond disks were fabricated so that each disk contained approximately 40,000 Bacillus subtilis var. niger spores. The disks were placed in a specially designed sandblasting device and eroded. Exposure periods of 0.5, 2 and 24 hours were investigated using filtered air to accelerate the sand. A series of tests was also conducted for a 0.5 hour period using carbon dioxide. Examination of the erosion products showed that less than 1% of the spores originally contained in the solids was released by aeolian erosion.

  4. Protoplanetary Dust

    NASA Astrophysics Data System (ADS)

    Apai, D.´niel; Lauretta, Dante S.

    2014-02-01

    Preface; 1. Planet formation and protoplanetary dust Daniel Apai and Dante Lauretta; 2. The origins of protoplanetary dust and the formation of accretion disks Hans-Peter Gail and Peter Hope; 3. Evolution of protoplanetary disk structures Fred Ciesla and Cornelius P. Dullemond; 4. Chemical and isotopic evolution of the solar nebula and protoplanetary disks Dmitry Semenov, Subrata Chakraborty and Mark Thiemens; 5. Laboratory studies of simple dust analogs in astrophysical environments John R. Brucato and Joseph A. Nuth III; 6. Dust composition in protoplanetaty dust Michiel Min and George Flynn; 7. Dust particle size evolution Klaus M. Pontoppidan and Adrian J. Brearly; 8. Thermal processing in protoplanetary nebulae Daniel Apai, Harold C. Connolly Jr. and Dante S. Lauretta; 9. The clearing of protoplanetary disks and of the protosolar nebula Ilaira Pascucci and Shogo Tachibana; 10. Accretion of planetesimals and the formation of rocky planets John E. Chambers, David O'Brien and Andrew M. Davis; Appendixes; Glossary; Index.

  5. Long-term variability of dust-storms in Iceland

    NASA Astrophysics Data System (ADS)

    Dagsson-Waldhauserová, Pavla; Ólafsson, Haraldur; Arnalds, Ólafur

    2013-04-01

    Iceland is a volcanic island in the North Atlantic Ocean with maritime climate. In spite of moist climate, large areas are with limited vegetation cover where >40% of Iceland is classified with considerable to very severe erosion and 21% of Iceland are volcanic sandy deserts. Natural emissions from these sources influenced by strong winds affect not only regional air quality in Iceland ("Reykjavik haze") but dust particles are transported over the Atlantic ocean and Arctic Ocean > 1000 km at times. The study places Icelandic dust production area into international perspective, present long term frequency of dust storm events in NE Iceland, and estimate dust aerosol concentrations during reported dust events. Meteorological observations with dust presence codes and related visibility were used to identify the frequency and the long-term changes in dust production in NE Iceland. There were annually 16.4 days on average with reported dust observations on weather stations within the NE erosion area, indicating extreme dust plume activity and erosion within the NE deserts, even though the area is covered with snow during the major part of winter. During the 2000s the highest occurrence of dust events in six decades was reported. We have measured saltation and aeolian transport during dust/volcanic ash storms in Iceland which give some of the most intense wind erosion events ever measured. Icelandic dust affects the ecosystems over much of Iceland and causes regional haze. It is likely to affect the ecosystems of the oceans around Iceland, and it brings dust that lowers the albedo of the Icelandic glaciers, increasing melt-off due to global warming. The study indicates that Icelandic dust is not only a substantial source for regional air pollution, but may be considered to contribute to the Arctic haze phenomena and Arctic air pollution.

  6. Quantifying the provenance of aeolian sediments using multiple composite fingerprints

    NASA Astrophysics Data System (ADS)

    Liu, Benli; Niu, Qinghe; Qu, Jianjun; Zu, Ruiping

    2016-09-01

    We introduce a new fingerprinting method that uses multiple composite fingerprints for studies of aeolian sediment provenance. We used this method to quantify the provenance of sediments on both sides of the Qinghai-Tibetan Railway (QTR) in the Cuona Lake section of the Tibetan Plateau (TP), in an environment characterized by aeolian and fluvial interactions. The method involves repeatedly solving a linear mixing model based on mass conservation; the model is not limited to spatial scale or transport types and uses all the tracer groups that passed the range check, Kruskal-Wallis H-test, and a strict analytical solution screening. The proportional estimates that result from using different composite fingerprints are highly variable; however, the average of these fingerprints has a greater accuracy and certainty than any single fingerprint. The results show that sand from the lake beach, hilly surface, and gullies contribute, respectively, 48%, 31% and 21% to the western railway sediments and 43%, 33% and 24% to the eastern railway sediments. The difference between contributions from various sources on either side of the railway, which may increase in the future, was clearly related to variations in local transport characteristics, a conclusion that is supported by grain size analysis. The construction of the QTR changed the local cycling of materials, and the difference in provenance between the sediments that are separated by the railway reflects the changed sedimentary conditions on either side of the railway. The effectiveness of this method suggests that it will be useful in other studies of aeolian sediments.

  7. Mineral dust transport in the Arctic modelled with FLEXPART

    NASA Astrophysics Data System (ADS)

    Groot Zwaaftink, Christine; Grythe, Henrik; Stohl, Andreas

    2016-04-01

    Aeolian transport of mineral dust is suggested to play an important role in many processes. For instance, mineral aerosols affect the radiation balance of the atmosphere, and mineral deposits influence ice sheet mass balances and terrestrial and ocean ecosystems. While many efforts have been done to model global dust transport, relatively little attention has been given to mineral dust in the Arctic. Even though this region is more remote from the world's major dust sources and dust concentrations may be lower than elsewhere, effects of mineral dust on for instance the radiation balance can be highly relevant. Furthermore, there are substantial local sources of dust in or close to the Arctic (e.g., in Iceland), whose impact on Arctic dust concentrations has not been studied in detail. We therefore aim to estimate contributions of different source regions to mineral dust in the Arctic. We have developed a dust mobilization routine in combination with the Lagrangian dispersion model FLEXPART to make such estimates. The lack of details on soil properties in many areas requires a simple routine for global simulations. However, we have paid special attention to the dust sources on Iceland. The mobilization routine does account for topography, snow cover and soil moisture effects, in addition to meteorological parameters. FLEXPART, driven with operational meteorological data from European Centre for Medium-Range Weather Forecasts, was used to do a three-year global dust simulation for the years 2010 to 2012. We assess the model performance in terms of surface concentration and deposition at several locations spread over the globe. We will discuss how deposition and dust load patterns in the Arctic change throughout seasons based on the source of the dust. Important source regions for mineral dust found in the Arctic are not only the major desert areas, such as the Sahara, but also local bare-soil regions. From our model results, it appears that total dust load in the

  8. The National Wind Erosion Research Network: Building a standardized long-term data resource for aeolian research, modeling and land management

    USGS Publications Warehouse

    Webb, Nicholas P.; Herrick, Jeffrey E.; Van Zee, Justin W; Courtright, Ericha M; Hugenholtz, Ted M; Zobeck, Ted M; Okin, Gregory S.; Barchyn, Thomas E; Billings, Benjamin J; Boyd, Robert A.; Clingan, Scott D; Cooper, Brad F; Duniway, Michael C.; Derner, Justin D; Fox, Fred A; Havstad, Kris M.; Heilman, Philip; LaPlante, Valerie; Ludwig, Noel A; Metz, Loretta J; Nearing, Mark A; Norfleet, M Lee; Pierson, Frederick B; Sanderson, Matt A; Sharrat, Brenton S; Steiner, Jean L; Tatarko, John; Tedela, Negussie H; Todelo, David; Unnasch, Robert S; Van Pelt, R Scott; Wagner, Larry

    2016-01-01

    The National Wind Erosion Research Network was established in 2014 as a collaborative effort led by the United States Department of Agriculture’s Agricultural Research Service and Natural Resources Conservation Service, and the United States Department of the Interior’s Bureau of Land Management, to address the need for a long-term research program to meet critical challenges in wind erosion research and management in the United States. The Network has three aims: (1) provide data to support understanding of basic aeolian processes across land use types, land cover types, and management practices, (2) support development and application of models to assess wind erosion and dust emission and their impacts on human and environmental systems, and (3) encourage collaboration among the aeolian research community and resource managers for the transfer of wind erosion technologies. The Network currently consists of thirteen intensively instrumented sites providing measurements of aeolian sediment transport rates, meteorological conditions, and soil and vegetation properties that influence wind erosion. Network sites are located across rangelands, croplands, and deserts of the western US. In support of Network activities, http://winderosionnetwork.org was developed as a portal for information about the Network, providing site descriptions, measurement protocols, and data visualization tools to facilitate collaboration with scientists and managers interested in the Network and accessing Network products. The Network provides a mechanism for engaging national and international partners in a wind erosion research program that addresses the need for improved understanding and prediction of aeolian processes across complex and diverse land use types and management practices.

  9. Recent advances in the model of aspherical dust dynamics for GIADA experiment in the coma of 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Ivanovski, Stavro; Zakharov, Vladimir; Crifo, Jean-Francois; Della Corte, Vincenzo; Fulle, Marco; Rotundi, Alessandra

    2013-04-01

    Introduction. We report the latest improvements of the model of aspherical dust grain dynamics [1] in the cometary atmosphere of 67P/Churyumov- Gerasimenko(67P/C-G). The model is aimed to support the scien- tific objectives of GIADA (Grain Impact Analyzer and Dust Accumulator) in-situ experiment [2] on board of the ESA ROSETTA spacecraft. The instrument will measure individual dust grain mass, number density and velocity in the immediate vicinity of the cometary nucleus. In this report we discuss the distinctions in the dy- namics of the aspherical dust in comparison with the spherical approximation developed in the currently used 3D+t spherical dust models [3,4]. Model. We assume that dust grains are homogeneous, isothermal polygonal convex bodies (close to ellipsoid of revolution with different aspect ratios of axes). The grains are moving under influence of three forces: aero- dynamic , gravitational and torque. The gas distribution (density, velocity, temperature) in the coma is taken from the Euler solution for spherical expansion. The aerodynamic force we estimate from expressions for free molecular interaction. On the comet surface we postulate the distribution function of ejection velocity and the distribution function of initial orientation of the grains. From the same origin on the surface we trace a number of grain trajectories with different initial conditions. Then we derive an average trajectory with mean parameters and the dispersion around it. We evaluate the goodness of spherical grain approximation through the deviation of the spherical grain trajectory from the averaged trajectory. Results. We have studied various distribution functions of initial orientation of aspherical rotating grains. The results of our simulations show that the dynamics of aspherical grains is very sensitive to the initial parameters (orientation and ejection velocity). Therefore, we see that the velocity along the trajectory of the identical aspherical grains could change

  10. Challenges in Measuring and Predicting Medium Term (Weeks to Annual) Aeolian Sediment Transport in Beach-Dune Systems

    NASA Astrophysics Data System (ADS)

    Delgado-Fernandez, I.

    2009-05-01

    Coastal dune budgets depend on sediment input by wind from the beach. Calculation of aeolian transport is thus a primary factor to understand coastal dune evolution and beach-dune coupled dynamics. However, measuring aeolian sediment transport in coastal areas presents fundamental technical and conceptual limitations that make numerical modeling difficult. Wind tunnel experiments isolate and reduce the number of variables to study, which is a necessary procedure to clearly manifest mechanistic relationships between cause and effect. But even with refinement and inclusion of new variables, traditional sediment transport formulas derived from wind tunnel experiments do not usually work well in natural areas. Short-term experiments may include precise instrumentation to obtain high frequency, detail time series of variables involved in aeolian transport, but inferring information at larger scales is problematic without knowledge of the timing and magnitude of particular transport events. There are two primary problems in attempting to predict sediment inputs to coastal dunes over periods of weeks, months or years: 1) to determine an appropriate set of predictive equations that incorporate complexities such as surface moisture content, beach width and the presence of vegetation; and 2) to provide quantitative data on these variables for input into the model at this time scale. Remote sensing techniques and the use of GIS software open the possibility to monitor key parameters regulating sediment transport dynamics at high spatial and temporal resolution over time scales beyond short-term experiments. These were applied at Greenwich Dunes, Prince Edward Island National Park (Canada), in an attempt to measure factors affecting aeolian sediment input to the foredune at a medium scale. Three digital cameras covering different sections of the beach and foredune provide time series on shoreline position, fetch distances, vegetation cover, ice/snow presence, or superficial

  11. Effects of river regulation on aeolian landscapes, Colorado River, southwestern USA

    NASA Astrophysics Data System (ADS)

    Draut, Amy E.

    2012-06-01

    Connectivity between fluvial and aeolian sedimentary systems plays an important role in the physical and biological environment of dryland regions. This study examines the coupling between fluvial sand deposits and aeolian dune fields in bedrock canyons of the arid to semiarid Colorado River corridor, southwestern USA. By quantifying significant differences between aeolian landscapes with and without modern fluvial sediment sources, this work demonstrates for the first time that the flow- and sediment-limiting effects of dam operations affect sedimentary processes and ecosystems in aeolian landscapes above the fluvial high water line. Dune fields decoupled from fluvial sand supply have more ground cover (biologic crust and vegetation) and less aeolian sand transport than do dune fields that remain coupled to modern fluvial sand supply. The proportion of active aeolian sand area also is substantially lower in a heavily regulated river reach (Marble-Grand Canyon, Arizona) than in a much less regulated reach with otherwise similar environmental conditions (Cataract Canyon, Utah). The interconnections shown here among river flow and sediment, aeolian sand transport, and biologic communities in aeolian dunes demonstrate a newly recognized means by which anthropogenic influence alters dryland environments. Because fluvial-aeolian coupling is common globally, it is likely that similar sediment-transport connectivity and interaction with upland ecosystems are important in other dryland regions to a greater degree than has been recognized previously.

  12. Effects of river regulation on aeolian landscapes, Colorado River, southwestern USA

    USGS Publications Warehouse

    Draut, Amy E.

    2012-01-01

    Connectivity between fluvial and aeolian sedimentary systems plays an important role in the physical and biological environment of dryland regions. This study examines the coupling between fluvial sand deposits and aeolian dune fields in bedrock canyons of the arid to semiarid Colorado River corridor, southwestern USA. By quantifying significant differences between aeolian landscapes with and without modern fluvial sediment sources, this work demonstrates for the first time that the flow- and sediment-limiting effects of dam operations affect sedimentary processes and ecosystems in aeolian landscapes above the fluvial high water line. Dune fields decoupled from fluvial sand supply have more ground cover (biologic crust and vegetation) and less aeolian sand transport than do dune fields that remain coupled to modern fluvial sand supply. The proportion of active aeolian sand area also is substantially lower in a heavily regulated river reach (Marble–Grand Canyon, Arizona) than in a much less regulated reach with otherwise similar environmental conditions (Cataract Canyon, Utah). The interconnections shown here among river flow and sediment, aeolian sand transport, and biologic communities in aeolian dunes demonstrate a newly recognized means by which anthropogenic influence alters dryland environments. Because fluvial–aeolian coupling is common globally, it is likely that similar sediment-transport connectivity and interaction with upland ecosystems are important in other dryland regions to a greater degree than has been recognized previously.

  13. Aeolian processes and dune morphology in the Gobi and Badain Jaran Desert using LandSat Imagery.

    NASA Astrophysics Data System (ADS)

    Cardinale, Marco; Cannito, Arturo; Marinangeli, Lucia

    2014-05-01

    The Gobi and Badain Jaran Deserts are parts of the vast sand sea of the Alashan Region, one of the greatest dunefield in China [1]. They lie between the southern Mongolia and the northern China (latitude 37° 06'N - 41°50'N; longitude 99°10'E - 107°09'E) [2]. The studied area is characterized by an arid climate with low average annual rainfall between 50-60mm, extreme fluctuation in temperature, very strong winds and by the occurrence of mega dunes and permanent lakes within the dunefield [3]. According to our morphological analysis, wind action has been one of the main factors that have shaped the surface features inside the investigated area. We produce a detailed geomorphological map of the desertic zone, highlighting the aeolian morphologies, in order to characterize aeolian deposits and processes. The LandSat ETM+ data [4], providing a continuous coverage of the dune fields with no gaps, were processed using ENVI software and then ingested in a GIS project. We also used DTMs (30m / pixel) from Aster data [5]. The dune morphology was classified using McKee criteria [6] and we interpreted the pattern of the complex ergs as the result of self - organization within complex systems [7]. Compound transverse mega dunes and barchanoid dunes developed under a variable wind regime, star dunes in the northern area near the mountain have been formed under a multi directional wind regime. The area covered by mega dunes suggests a complex evolution of these features dominated by the wind activity. Different episodes of deposition, erosion and motion, could explain the height of these dunes measured by the DTMs. The diverse aeolian features identified in the investigated area suggest that aeolian activity play a key role for the evolution of the surface morphologies of the Gobi Desert. To understand the local dynamics of aeolian processes, we are currently comparing these features with meteorological data from mesoscale wind models. References: [1] E. D.McKee. A Study of

  14. Transverse Aeolian Ridges on Mars: Sediment sources, volumes, and ages.

    NASA Astrophysics Data System (ADS)

    Berman, D. C.; Balme, M. R.

    2014-12-01

    Transverse Aeolian Ridges (TARs) are aeolian bedforms that are morphologically and dimensionally distinct from Large Dark Dune (LDD) fields, being generally brighter than, or of similar albedo to, the surrounding terrain. These features are significantly smaller than the LDDs, appear to form normal to local winds, and tend to have simple, transverse, ripple-like morphologies. Whether these small martian bedforms represent large granule ripples, small transverse dunes, or something else entirely is currently under debate. The spatial distribution of TARs provides important information about where on Mars aeolian sediments are concentrated, and determining their volume can help us constrain the sediment transport regime on Mars. Also, if we can determine if TARs were active only in the past, or whether TARs are mobile under today's wind conditions, then we can begin to assess when and where TARs are/were active over Mars' recent geological history. Thus TARs have the potential for being indicators/records of climate change on Mars. In this work we build on previous work [1,2] and focus on the local/regional scale. We have identified six regional study areas, each 5° by 5°, to investigate the behavior of TARs in detail; one in the northern hemisphere, three in the equatorial band, and two in the southern hemisphere. We have systematically mapped TAR and LDD deposits in each study area to constrain sediment transport pathways and identify sediment sources. In general, TAR sediments appear to be tied to local sources such as LDDs or layered terrains. HiRISE DTMs were utilized to measure TAR heights, widths, wavelengths, and lengths to calculate sediment volumes and estimate volumes over entire study areas based on mapping. Crater count analyses on contiguous TAR fields in the equatorial regions, where the bedforms appear more lithified, reveal ages of several million years. Mid-latitude TAR fields do not show any superposed craters, suggesting much younger deposits

  15. Investigating the Impact of Climate Change on Dust Storms Over Kuwait by the Middle of the Century Simulated by WRF Dynamical Downscaling

    NASA Astrophysics Data System (ADS)

    Alsarraf, Hussain

    The aim of this study is to examine the impact of climate change on future dust storms in Kuwait. Dust storms are more frequent in summertime in the Arabian Peninsula, and can be highly influential on the climate and the environment in the region. In this study, the influence of climate change in the Middle East and especially in Kuwait was investigated by high-resolution (48, 12, and 4 km grid spacing) dynamic downscaling using the WRF (Weather Research & Forecasting) model. The WRF dynamic downscaling was forced by reanalysis using the National Centers for Environment Prediction (NCEP) model for the years 1997, 2000, and 2008. The downscaling results were first validated by comparing NCEP model outputs with the observational data. The global climate change dynamic downscaling model was run using current WRF regional climate model (RCM) simulations (2006--2010) and WRF-RCM climate simulations of the future (2056--2060). They were used to compare results between the present and the middle of the century. In general, the dominant features from (NCEP) runs were consistent with each other, as well as with WRF-RCM results. The influence of climate change in the Middle East and Kuwait can be projected from the differences between the current and model future run. The average temperature showed a positive trend in the future, as in other studies. The temperature was predicted to increase by around 0.5-2.5 °C over the next 50 years. No significant change in mean sea level pressure patterns was projected. However, amongst other things, a change in the trend of the surface wind speeds was indicated during summertime. As a result, the increase in temperature and the decline in wind speed in the future indicate a reduction in dust storm days in Kuwait by the middle of the century.

  16. The Galileo Dust Detector

    NASA Technical Reports Server (NTRS)

    Gruen, Eberhard; Fechtig, Hugo; Hanner, Martha S.; Kissel, Jochen; Lindblad, Bertil-Anders; Linkert, Dietmar; Maas, Dieter; Morfill, Gregor E.; Zook, Herbert A.

    1992-01-01

    The Galileo Dust Detector is intended to provide direct observations of dust grains with masses between 10 exp -19 and 10 exp -9 kg in interplanetary space and in the Jovian system, to investigate their physical and dynamical properties as functions of the distances to the sun, to Jupiter and to its satellites, and to study its interaction with the Galilean satellites and the Jovian magnetosphere. The investigation is performed with an instrument that measures the mass, speed, flight direction and electric charge of individual dust particles. It is a multicoincidence detector with a mass sensitivity 1 000 000 times higher than that of previous in situ experiments which measured dust in the outer solar system. The instrument weighs 4.2 kg, consumes 2.4 W, and has a normal data transmission rate of 24 bits/s in nominal spacecraft tracking mode. On December 29, 1989 the instrument was switched-on. After the instrument had been configured to flight conditions cruise science data collection started immediately. In the period to May 18, 1990 at least 168 dust impacts have been recorded. For 81 of these dust grains masses and impact speeds have been determined. First flux values are given.

  17. Use of Rare Earth Elements in investigations of aeolian processes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The representation of the dust cycle in atmospheric circulation models hinges on an accurate parameterization of the vertical dust flux at emission. However, existing parameterizations of the vertical dust flux vary substantially in their scaling with wind friction velocity, require input parameters...

  18. Monte Carlo path sampling approach to modeling aeolian sediment transport

    NASA Astrophysics Data System (ADS)

    Hardin, E. J.; Mitasova, H.; Mitas, L.

    2011-12-01

    Coastal communities and vital infrastructure are subject to coastal hazards including storm surge and hurricanes. Coastal dunes offer protection by acting as natural barriers from waves and storm surge. During storms, these landforms and their protective function can erode; however, they can also erode even in the absence of storms due to daily wind and waves. Costly and often controversial beach nourishment and coastal construction projects are common erosion mitigation practices. With a more complete understanding of coastal morphology, the efficacy and consequences of anthropogenic activities could be better predicted. Currently, the research on coastal landscape evolution is focused on waves and storm surge, while only limited effort is devoted to understanding aeolian forces. Aeolian transport occurs when the wind supplies a shear stress that exceeds a critical value, consequently ejecting sand grains into the air. If the grains are too heavy to be suspended, they fall back to the grain bed where the collision ejects more grains. This is called saltation and is the salient process by which sand mass is transported. The shear stress required to dislodge grains is related to turbulent air speed. Subsequently, as sand mass is injected into the air, the wind loses speed along with its ability to eject more grains. In this way, the flux of saltating grains is itself influenced by the flux of saltating grains and aeolian transport becomes nonlinear. Aeolian sediment transport is difficult to study experimentally for reasons arising from the orders of magnitude difference between grain size and dune size. It is difficult to study theoretically because aeolian transport is highly nonlinear especially over complex landscapes. Current computational approaches have limitations as well; single grain models are mathematically simple but are computationally intractable even with modern computing power whereas cellular automota-based approaches are computationally efficient

  19. Meso-scale modelling of aeolian sediment input to coastal dunes

    NASA Astrophysics Data System (ADS)

    Delgado-Fernandez, Irene

    2011-07-01

    The collection of a time series coupling hourly wind data (speed and direction) with sand transport over months has provided new insights into the dynamics of transport events that input sediment to the foredune at Greenwich Dunes, Prince Edward Island National Park, Canada. This paper summarises the key aspects of aeolian sediment movement for a period of 9 months and presents a modelling approach for resolving aeolian transport to coastal dunes at the meso-scale. The main hypothesis of the modelling approach is that a small number of key factors control both the occurrence and the magnitude of transport events. Thresholds associated with these factors may be used to filter the time series and isolate potential transport periods over the year. The impacts of nearshore processes are included in the approach as part of the dynamics of coastal dunes, as are supply-limiting factors and trade-offs between fetch distances, angle of wind approach, and beach dimensions. A simple analytical procedure, based on previously published equations, is carried out to assess the general viability of the conceptual approach. Results show that the incorporation of moisture and fetch effects in the calculation of transport for isolated potential transport periods result in improved predictions of sediment input to the dune. Net changes, measured with three different techniques, suggest that survey data with coarse temporal resolution underestimates the amount of sand input to the dune, because sediment is often removed from the embryo dune and foredune by other processes such as wave scarping. Predictions obtained by the proposed modelling approach are of the same order of magnitude as measured deposition and much less than predicted by models based solely on wind speed and direction. Areas for improvement and alternative modelling approaches, such as probabilistic approaches similar to weather forecasting, are covered in the discussion.

  20. Gully annealing by aeolian sediment: field and remote-sensing investigation of aeolian-hillslope-fluvial interactions, Colorado River corridor, Arizona, USA

    NASA Astrophysics Data System (ADS)

    Sankey, Joel B.; Draut, Amy E.

    2014-09-01

    Processes contributing to development of ephemeral gully channels are of great importance to landscapes worldwide, and particularly in dryland regions where soil loss and land degradation from gully erosion pose long-term land-management problems. Whereas gully formation has been relatively well studied, much less is known of the processes that anneal gullies and impede their growth. This study of gully annealing by aeolian sediment, spanning 95 km along the Colorado River corridor in Glen, Marble, and Grand Canyon, Arizona, USA, employed field and remote sensing observations, including digital topographic modelling. Results indicate that aeolian sediment activity can be locally effective at counteracting gully erosion. Gullies are less prevalent in areas where surficial sediment undergoes active aeolian transport, and have a greater tendency to terminate in active aeolian sand. Although not common, examples exist in the record of historical imagery of gullies that underwent infilling by aeolian sediment in past decades and evidently were effectively annealed. We thus provide new evidence for a potentially important interaction of aeolian-hillslope-fluvial processes, which could affect dryland regions substantially in ways not widely recognized. Moreover, because the biologic soil crust plays an important role in determining aeolian sand activity, and so in turn the extent of gully development, this study highlights a critical role of geomorphic-ecologic interactions in determining arid-landscape evolution.

  1. China Dust

    Atmospheric Science Data Center

    2013-04-16

    ... SpectroRadiometer (MISR) nadir-camera images of eastern China compare a somewhat hazy summer view from July 9, 2000 (left) with a ... arid and sparsely vegetated surfaces of Mongolia and western China pick up large quantities of yellow dust. Airborne dust clouds from the ...

  2. Andromeda's dust

    SciTech Connect

    Draine, B. T.; Aniano, G.; Krause, Oliver; Groves, Brent; Sandstrom, Karin; Klaas, Ulrich; Linz, Hendrik; Rix, Hans-Walter; Schinnerer, Eva; Schmiedeke, Anika; Walter, Fabian; Braun, Robert; Leroy, Adam E-mail: ganiano@ias.u-psud.fr

    2014-01-10

    Spitzer Space Telescope and Herschel Space Observatory imaging of M31 is used, with a physical dust model, to construct maps of dust surface density, dust-to-gas ratio, starlight heating intensity, and polycyclic aromatic hydrocarbon (PAH) abundance, out to R ≈ 25 kpc. The global dust mass is M {sub d} = 5.4 × 10{sup 7} M {sub ☉}, the global dust/H mass ratio is M {sub d}/M {sub H} = 0.0081, and the global PAH abundance is (q {sub PAH}) = 0.039. The dust surface density has an inner ring at R = 5.6 kpc, a maximum at R = 11.2 kpc, and an outer ring at R ≈ 15.1 kpc. The dust/gas ratio varies from M {sub d}/M {sub H} ≈ 0.026 at the center to ∼0.0027 at R ≈ 25 kpc. From the dust/gas ratio, we estimate the interstellar medium metallicity to vary by a factor ∼10, from Z/Z {sub ☉} ≈ 3 at R = 0 to ∼0.3 at R = 25 kpc. The dust heating rate parameter (U) peaks at the center, with (U) ≈ 35, declining to (U) ≈ 0.25 at R = 20 kpc. Within the central kiloparsec, the starlight heating intensity inferred from the dust modeling is close to what is estimated from the stars in the bulge. The PAH abundance reaches a peak q {sub PAH} ≈ 0.045 at R ≈ 11.2 kpc. When allowance is made for the different spectrum of the bulge stars, q {sub PAH} for the dust in the central kiloparsec is similar to the overall value of q {sub PAH} in the disk. The silicate-graphite-PAH dust model used here is generally able to reproduce the observed dust spectral energy distribution across M31, but overpredicts 500 μm emission at R ≈ 2-6 kpc, suggesting that at R = 2-6 kpc, the dust opacity varies more steeply with frequency (with β ≈ 2.3 between 200 and 600 μm) than in the model.

  3. Evaluation of aeolian emissions from gold mine tailings on the Witwatersrand

    NASA Astrophysics Data System (ADS)

    Ojelede, M. E.; Annegarn, H. J.; Kneen, M. A.

    2012-01-01

    The Witwatersrand is known for the high frequency of aeolian dust storm episodes arising from gold mine tailings storage facilities (TSFs). Source and ambient atmosphere are poorly characterized from the point of view of particle size distribution and human health risk assessment. For years, routine monitoring was limited to sampling of dust fallout ⩾30 μm. Sampling and analyses of source and receptor material was conducted. Thirty-two bulk soils were collected from TSF along the east-west mining corridor, and size distribution analysis was performed in the range 0.05-900 μm using a Malvern® MS-14 Particle Size Analyser. Ambient aerosols in the range 0.25-32 μm were monitored at two separate locations using a Grimm® aerosol monitor, in the vicinity of three large currently active and a dormant TSF. Statistical analyses indicate that TSFs are rich in fine erodible materials, particularly active TSFs. Concentration of ⩽PM5 and ⩽PM10 components in source material was: recent slimes (14-24 vol.%; 22-38 vol.%), older slimes (6-17 vol.%; 11-26 vol.%) and sand (1-8 vol.%; 2-12 vol.%). Concentrations of airborne aerosols were below the South African Department of Environmental Affairs 24-h limit value of 120 μg m -3. With wind speeds exceeding 7 ms -1, ambient concentration reached 2160 μg m -3. This maximum is several times higher than the limit value. Erosion of tailings storage facilities is a strong driver influencing ambient particulate matter loading with adverse health implications for nearby residents.

  4. Holocene climatic change, aeolian sedimentation and the nomadic Anthropocene in Eastern Tibet

    NASA Astrophysics Data System (ADS)

    Lehmkuhl, F.; Schlütz, F.

    2009-04-01

    Geomorphological and palynological studies from the Nianbaoyeze Shan in Eastern Tibet provides detailed information on the Holocene landscape and vegetation development of a mountain system located on the westernmost boundary of the modern forest belt. In addition, detailed sedimentological work was done on a section south of the Anyemachin Shan further west. Our study provides detailed information on the late glacial landscape and vegetation development of eastern Tibet. Based on a suite of geomorphological and palynological proxy data from the Nianbaoyeze Shan on the eastern margin of the Tibetan Plateau (33°N/101°E, 3300-4500 m asl) we reconstruct recent landscape dynamics as a function of climate change and the longevity of human influence. Study results constrain several major phases of aeolian sedimentation between 50 - 15 ka and various glacier advances during the Late Pleistocene, the Holocene and the Little Ice Age (LIA). Increased aeolian deposition was primarily associated with periods of more extensive glacial ice extent. Fluvial and alluvial sediment pulses also document an increase of erosion starting at about 4000 cal yr B.P. coinciding with cooling (Neoglacial) and a growing anthropo-zoogenic influence. Evidence for periglacial mass movements indicate that the late Holocene cooling started at around 2000 cal yr B.P. demonstrating increased surface activity under the combined effects of human influence and climate deterioration (LIA). In a section south of the Anyemachin about 150 km further west Holocene silt and paleosols development match to these results but showing higher Holocene aeolian activity. The Holocene vegetation history started with an open landscape dominated by pioneer shrubs along braided rivers (<10,600 - 9800 cal yr B.P.), followed by the spreading of conifers (Picea, Juniperus, Abies) and Betula-trees accompanied by a successive closing of the vegetation cover by Poaceae, Cyperaceae and herbs (9800 - 8300 cal yr B.P.). First

  5. Post-disturbance dust emissions in dry lands: the role of anthropogenic and climatic factors

    NASA Astrophysics Data System (ADS)

    Ravi, S.; Zobeck, T. M.; Sankey, J. B.

    2012-12-01

    Disturbances, which cause a temporary reduction in vegetation cover, can greatly accelerate soil erosion by wind and subsequent dust emissions from desert grasslands and shrublands. These ecosystems worldwide are threatened by contemporary shifts in vegetation composition (e.g. encroachment by shrubs, invasion by exotic grasses) and climatic changes (e.g. increase in aridity, droughts), which alter the frequency and intensity of disturbances and dust emissions. Considering the deleterious impact of dust-borne contaminants on regional air quality and human health, accelerated post-disturbance aeolian transport is an increasingly serious concern for ecosystem management and risk assessment. Here, using extensive wind tunnel studies, field experiments (in grasslands and shrublands of North America) and modeling, we investigated the role of disturbances (fires, grazing) and changes in hydroclimatic factors (air humidity, soil moisture) in altering aeolian processes in desert grassland and shrublands. Our results indicate that the degree of post-disturbance aeolian transport and its attenuation with time was found to be strongly affected by the antecedent vegetation type and post-disturbance climatic conditions. The interactions among sediment transport processes, disturbances and hydroclimatic factors are explored from patch to landscape scales and their roles in dust emissions and land degradation are discussed.

  6. Estimation of high altitude Martian dust parameters

    NASA Astrophysics Data System (ADS)

    Pabari, Jayesh; Bhalodi, Pinali

    2016-07-01

    Dust devils are known to occur near the Martian surface mostly during the mid of Southern hemisphere summer and they play vital role in deciding background dust opacity in the atmosphere. The second source of high altitude Martian dust could be due to the secondary ejecta caused by impacts on Martian Moons, Phobos and Deimos. Also, the surfaces of the Moons are charged positively due to ultraviolet rays from the Sun and negatively due to space plasma currents. Such surface charging may cause fine grains to be levitated, which can easily escape the Moons. It is expected that the escaping dust form dust rings within the orbits of the Moons and therefore also around the Mars. One more possible source of high altitude Martian dust is interplanetary in nature. Due to continuous supply of the dust from various sources and also due to a kind of feedback mechanism existing between the ring or tori and the sources, the dust rings or tori can sustain over a period of time. Recently, very high altitude dust at about 1000 km has been found by MAVEN mission and it is expected that the dust may be concentrated at about 150 to 500 km. However, it is mystery how dust has reached to such high altitudes. Estimation of dust parameters before-hand is necessary to design an instrument for the detection of high altitude Martian dust from a future orbiter. In this work, we have studied the dust supply rate responsible primarily for the formation of dust ring or tori, the life time of dust particles around the Mars, the dust number density as well as the effect of solar radiation pressure and Martian oblateness on dust dynamics. The results presented in this paper may be useful to space scientists for understanding the scenario and designing an orbiter based instrument to measure the dust surrounding the Mars for solving the mystery. The further work is underway.

  7. A model to study the grain size components of the sediment deposited in aeolian-fluvial interplay erosion watershed

    NASA Astrophysics Data System (ADS)

    Zhang, Xiang; Li, Zhanbin; Li, Peng; Cheng, Shengdong; Zhang, Yang; Tang, Shanshan; Wang, Tian

    2015-12-01

    Aeolian-fluvial interplay erosion areas with complex dynamics and physical sources are the main suppliers of coarse sediment in the Yellow River. Understanding the composition, distribution, and sources of deposited sediments in such areas is of great importance for the control of sediment transport in rivers. In this paper, a typical aeolian-fluvial interplay erosion watershed - the Dongliu Gully - was studied and the frequency distribution curves of sediments deposited in the stream channel were fitted using the Weibull function. Sources of deposited sediment in the stream channel were analyzed based on the law of the conservation of matter. Results showed that the hilly zone accounted for 78% of deposited sediments, which were dominated by material with a median grain size (d50) of 0.093 mm, and the desert zone accounted for 22% of deposited sediments, which were dominated by material with a d50 of 0.01 mm. Wind erosion dynamics accounted for 72% of deposited sediments, while water erosion dynamics accounted for only 28%. This research provides a theoretical basis for the control and management of rivers with high sediment content.

  8. Physical and logistical considerations of using ultrasonic anemometers in aeolian sediment transport research

    NASA Astrophysics Data System (ADS)

    Walker, Ian J.

    2005-05-01

    Recently, ultrasonic anemometers (UAs) have become available for precise, high-frequency measurement of three-dimensional velocity and turbulence properties. Except for a few wind tunnel and computational fluid dynamics (CFD) simulations, advances in aeolian sediment transport and bedform research have been limited to field studies using instrumentation that is either incapable of measuring turbulence (e.g., cup anemometers) or unable to withstand sediment-laden airflow (e.g., hotfilms). In contrast, extensive progress has occurred in fluvial research where turbulence instrumentation has been available for some time. This paper provides a pragmatic discussion on using UAs in aeolian research. Recent advances using this technology are reviewed and key physical and logistical considerations for measuring airflow properties and near-surface shear stress using UAs over complex terrain are discussed. Physical considerations include limitations of applying boundary layer theory to flow over natural surfaces such as non-logarithmic velocity profiles resulting from roughness- and topographically induced effects and the inability of instrumentation to measure within the thin constant-stress region. These constraints hinder accurate shear velocity ( u*), shear stress and sand transport estimation. UAs allow measurement of turbulent Reynolds stress (RS) that, in theory, should equal profile-derived shear stress. Discrepancies often exist between these quantities however due to three-dimensional (spanwise) flow components and rapid distortion effects (i.e., unbalanced production and dissipation of turbulence) common in flow over complex terrain. While the RS approach yields information on turbulent contributions to near-surface stress generation, little evidence exists showing that RS is a better measure of forces responsible for sediment transport. Consequently, predictive equations for sediment transport using RS do not exist. There is also a need to identify the role of

  9. Transport of Alaskan Dust into the Gulf of Alaska and Comparison with Similar High-Latitude Dust Environments

    NASA Technical Reports Server (NTRS)

    Crusium, John; Levy, Rob; Wang, Jun; Campbell, Rob; Schroth, Andrew W.

    2012-01-01

    Transport of Alaskan dust into the Gulf of Alaska and comparison with similar high-latitude dust environments. An airborne flux of the micronutrient iron, derived from dust originating from coastal regions may be an important contributor of iron to the Gulf of Alaska's (GoA) oligotrophic waters. Dust blowing off glacier termini and dry riverbeds is a recurring phenomenon in Alaska, usually occurring in the autumn. Since previous studies assumed that dust originating in the deserts of Asia was the largest source of . airborne iron to the GoA, the budget of aeolian deposition of iron needs to be reassessed. Since late 20 I 0, our group has been monitoring dust activity using satellites over the Copper River Delta (CRD) where the most vigorous dust plumes have been observed. Since 2011, sample aerosol concentration and their composition are being collected at Middleton Island (100km off shore of CRD). This presentation will show a summary of the ongoing dust observations and compare with other similar environments (Patagonia, Iceland) by showing case studies. Common features will be highlighted

  10. The origin of transverse instability of aeolian megaripples

    NASA Astrophysics Data System (ADS)

    Yizhaq, Hezi; Katra, Itzhak; Schmerler, Erez; Silvestro, Simone

    2016-04-01

    Two different kinds of sand ripples, normal ripples and megaripples which differ in their sizes, grain-size compositions and morphology are observed in nature. While normal ripples form almost straight lines, megaripples have greater sinuosity due to their transverse instability, a property that causes small undulations to grow in time. The physical origin of this pronounced transverse instability has remained elusive. We studied ripple development in a series of wind tunnel experiments with different mixtures of sand. For unimodal fine sand, initial differences in height diminished in time leading to straight ripples. In contrast, for bimodal sand initial perturbations in height remained and even grew in time resulting in more wavy patterns. The results indicate that the differences in sinuosity between normal and megaripples are due to grain size segregation at three dimensions with a positive feedback between coarse grains and ripples height. The accumulations of coarse particles at the crest allow further growth of the ripples at these locations thus decreasing their migration rate. This in turn allows further accumulation of coarse grains. This mechanism leads to variations of the thickness of the armoring layer along the ripple crest which correlates with crest height. Field measurements of grain size distribution and sinuosity index along megaripple crests support the findings. In addition, the sinuosity of megaripples and TARs (Transverse Aeolian Ridges) on Mars at several locations was calculated from images taken from High Resolution Imaging Science Experiment (HiRISE). These images provide the capability of obtaining orbital images of Mars with a resolution down to 25 cm/pixel. The preliminary results show that due to their bimodal grain-size distribution megaripples are more undulated than TARs. This new look at aeolian bedforms on Mars can help in a better classification of them and improve the understanding of the aeolian processes involved in their

  11. Dust control for draglines

    SciTech Connect

    Grad, P.

    2009-09-15

    Monitoring dust levels inside draglines reveals room for improvement in how filtration systems are used and maintained. The Australian firm BMT conducted a field test program to measure airflow parameters, dust fallout rates and dust concentrations, inside and outside the machine house, on four draglines and one shovel. The study involved computational fluid dynamics (CFD) simulations. The article describes how the tests were made and gives results. It was not possible to say which of the two main filtration systems currently used on Australian draglines - Dynavane or Floseps - performs better. It would appear that more frequent maintenance and cleaning would increase the overall filtration performance and systems could be susceptible to repeat clogging in a short time. 2 figs., 1 photos.

  12. Stratigraphic Architecture of Aeolian Dune Interactions

    NASA Astrophysics Data System (ADS)

    Brothers, S. C.; Kocurek, G.

    2015-12-01

    Dune interactions, which consist of collisions and detachments, are a known driver of changing dune morphology and provide the dynamics for field-scale patterning. Although interactions are ubiquitous in modern dune fields, the stratigraphic record of interactions has not been explored. This raises the possibility that an entire class of signature architectures of bounding surfaces and cross-strata has gone misidentified or unrecognized. A unique data set for the crescentic dunes of the White Sands Dune Field, New Mexico, allows for the coupling of dune interactions with their resultant stratigraphic architecture. Dune interactions are documented by a decadal time-series of aerial photos and LiDAR-derived digital elevation models. Plan-view cross-strata in interdune areas provide a record tying past dune positions and morphologies to the current dunes. Three-dimensional stratigraphic architecture is revealed by imaging of dune interiors with ground-penetrating radar. The architecture of a dune defect merging with a target dune downwind consists of lateral truncation of the target dune set by an interaction bounding surface. Defect cross-strata tangentially approach and downlap onto the surface. Downwind, the interaction surface curves, and defect and adjacent target dune sets merge into a continuous set. Predictable angular relationships reflect field-scale patterns of dune migration direction and approach angle of migrating defects. The discovery of interaction architectures emphasizes that although dunes appear as continuous forms on the surface, they consist of discrete segments, each with a distinct morphodynamic history. Bedform interactions result in the morphologic recombination of dune bodies, which is manifested stratigraphically within the sets of cross-strata.

  13. Charged Dust Grain Dynamics Subject to Solar Wind, Poynting-Robertson Drag, and the Interplanetary Magnetic Field

    NASA Astrophysics Data System (ADS)

    Lhotka, Christoph; Bourdin, Philippe; Narita, Yasuhito

    2016-09-01

    We investigate the combined effect of solar wind, Poynting-Robertson drag, and the frozen-in interplanetary magnetic field on the motion of charged dust grains in our solar system. For this reason, we derive a secular theory of motion by the means of an averaging method and validate it with numerical simulations of the unaveraged equations of motions. The theory predicts that the secular motion of charged particles is mainly affected by the z-component of the solar magnetic axis, or the normal component of the interplanetary magnetic field. The normal component of the interplanetary magnetic field leads to an increase or decrease of semimajor axis depending on its functional form and sign of charge of the dust grain. It is generally accepted that the combined effects of solar wind and photon absorption and re-emmision (Poynting-Robertson drag) lead to a decrease in semimajor axis on secular timescales. On the contrary, we demonstrate that the interplanetary magnetic field may counteract these drag forces under certain circumstances. We derive a simple relation between the parameters of the magnetic field, the physical properties of the dust grain, as well as the shape and orientation of the orbital ellipse of the particle, which is a necessary conditions for the stabilization in semimajor axis.

  14. Responses of aeolian desertification to a range of climate scenarios in China

    NASA Astrophysics Data System (ADS)

    Wang, Xunming; Hua, Ting; Ma, Wenyong

    2016-06-01

    Aeolian desertification plays an important role in earth-system processes and ecosystems, and has the potential to greatly impact global food production. The occurrence of aeolian desertification has traditionally been attributed to increases in wind speed and temperature and decreases in rainfall. In this study, by integrating the aeolian desertification monitoring data and climate and vegetation indices, we found that although aeolian desertification is influenced by complex climate patterns and human activities, increases in rainfall and temperature and decreases in wind speed may not be the key factors of aeolian desertification controls in some regions of China. Our results show that, even when modern technical approaches are used, different approaches to desertification need to be applied to account for regional differences. These results have important implications for future policy decisions on how best to combat desertification.

  15. On the sources, composition, and climatic effects of mineral dust in the atmosphere

    NASA Astrophysics Data System (ADS)

    Koven, Charles Dunbar

    This dissertation is an exploration of several aspects of the global dust cycle. The first part is a comparison of climatological dust optical thickness over the Saharan region with analysis of the land surface topography. We find that high dust producing regions appear associated with extremely low-slope environments, and that they also appear to have roughness-to-slope ratios that are higher than typical. This indicates the importance of aeolian landforms such as sand dunes in contributing to dust emission, in addition to the more traditional view that dust arises mainly from closed topographic depressions. We extrapolate globally from these relationships, and suggest landscapes that could become dust sources in different climate or land-use regimes. The second part examines the optical properties of dust and shows an inversion calculation in which dust mineralogy is calculated based on wavelength dependent measurements of dust absorption and scattering. The results show significant geographic variation in the mineralogy of dust, and suggest that an external mixing model may be more accurate than internal mixing models in predicting dust optical properties as a function of mineralogy. The third part is a model experiment of the effects of dust on enhancing droughts in the US Great Plains that are initiated by sea surface temperature anomalies. The results indicate that dust does act to decrease precipitation and reduce soil moisture, thereby enhancing the drought. The experiment includes dust with three different single scattering albedo values, and the results show that the precipitation reduction is independent of the dust optical properties. Together, these chapters underscore the importance of the land surface in the global dust cycle, in terms of its effect on dust source areas, optical properties, and the relationship between the dust and hydrologic cycles.

  16. Gully annealing by aeolian sediment: field and remote-sensing investigation of aeolian-hillslope-fluvial interactions, Colorado River corridor, Arizona, USA

    USGS Publications Warehouse

    Sankey, Joel B.; Draut, Amy E.

    2014-01-01

    Processes contributing to development of ephemeral gully channels are of great importance to landscapes worldwide, and particularly in dryland regions where soil loss and land degradation from gully erosion pose long-term land-management problems. Whereas gully formation has been relatively well studied, much less is known of the processes that anneal gullies and impede their growth. This study of gully annealing by aeolian sediment, spanning 95 km along the Colorado River corridor in Glen, Marble, and Grand Canyon, Arizona, USA, employed field and remote sensing observations, including digital topographic modelling. Results indicate that aeolian sediment activity can be locally effective at counteracting gully erosion. Gullies are less prevalent in areas where surficial sediment undergoes active aeolian transport, and have a greater tendency to terminate in active aeolian sand. Although not common, examples exist in the record of historical imagery of gullies that underwent infilling by aeolian sediment in past decades and evidently were effectively annealed. We thus provide new evidence for a potentially important interaction of aeolian–hillslope–fluvial processes, which could affect dryland regions substantially in ways not widely recognized. Moreover, because the biologic soil crust plays an important role in determining aeolian sand activity, and so in turn the extent of gully development, this study highlights a critical role of geomorphic–ecologic interactions in determining arid-landscape evolution.

  17. Synthesis on Quaternary aeolian research in the unglaciated eastern United States

    NASA Astrophysics Data System (ADS)

    Markewich, Helaine W.; Litwin, Ronald J.; Wysocki, Douglas A.; Pavich, Milan J.

    2015-06-01

    Late-middle and late Pleistocene, and Holocene, inland aeolian sand and loess blanket >90,000 km2 of the unglaciated eastern United States of America (USA). Deposits are most extensive in the Lower Mississippi Valley (LMV) and Atlantic Coastal Plain (ACP), areas presently lacking significant aeolian activity. They provide evidence of paleoclimate intervals when wind erosion and deposition were dominant land-altering processes. This study synthesizes available data for aeolian sand deposits in the LMV, the Eastern Gulf Coastal Plain (EGCP) and the ACP, and loess deposits in the Middle Atlantic Coastal Plain (MACP). Data indicate: (a) the most recent major aeolian activity occurred in response to and coincident with growth and decay of the Laurentide Ice Sheet (LIS); (b) by ∼40 ka, aeolian processes greatly influenced landscape evolution in all three regions; (c) aeolian activity peaked in OIS2; (d) OIS3 and OIS2 aeolian records are in regional agreement with paleoecological records; and (e) limited aeolian activity occurred in the Holocene (EGCP and ACP). Paleoclimate and atmospheric-circulation models (PCMs/ACMs) for the last glacial maximum (LGM) show westerly winter winds for the unglaciated eastern USA, but do not resolve documented W and SW winds in the SEACP and WNW and N winds in the MACP. The minimum areal extent of aeolian deposits in the EGCP and ACP is ∼10,000 km2. For the LMV, it is >80,000 km2. Based on these estimates, published PCMs/ACMs likely underrepresent the areal extent of LGM aeolian activity, as well as the extent and complexity of climatic changes during this interval.

  18. Synthesis on Quaternary aeolian research in the unglaciated eastern United States

    USGS Publications Warehouse

    Markewich, Helaine Walsh; Litwin, Ronald J.; Wysocki, Douglas A.; Pavich, Milan J.

    2015-01-01

    Late-middle and late Pleistocene, and Holocene, inland aeolian sand and loess blanket >90,000 km2 of the unglaciated eastern United States of America (USA). Deposits are most extensive in the Lower Mississippi Valley (LMV) and Atlantic Coastal Plain (ACP), areas presently lacking significant aeolian activity. They provide evidence of paleoclimate intervals when wind erosion and deposition were dominant land-altering processes. This study synthesizes available data for aeolian sand deposits in the LMV, the Eastern Gulf Coastal Plain (EGCP) and the ACP, and loess deposits in the Middle Atlantic Coastal Plain (MACP). Data indicate: (a) the most recent major aeolian activity occurred in response to and coincident with growth and decay of the Laurentide Ice Sheet (LIS); (b) by ∼40 ka, aeolian processes greatly influenced landscape evolution in all three regions; (c) aeolian activity peaked in OIS2; (d) OIS3 and OIS2 aeolian records are in regional agreement with paleoecological records; and (e) limited aeolian activity occurred in the Holocene (EGCP and ACP). Paleoclimate and atmospheric-circulation models (PCMs/ACMs) for the last glacial maximum (LGM) show westerly winter winds for the unglaciated eastern USA, but do not resolve documented W and SW winds in the SEACP and WNW and N winds in the MACP. The minimum areal extent of aeolian deposits in the EGCP and ACP is ∼10,000 km2. For the LMV, it is >80,000 km2. Based on these estimates, published PCMs/ACMs likely underrepresent the areal extent of LGM aeolian activity, as well as the extent and complexity of climatic changes during this interval.

  19. Dynamic atmospheres and winds of cool luminous giants. I. Al2O3 and silicate dust in the close vicinity of M-type AGB stars

    NASA Astrophysics Data System (ADS)

    Höfner, S.; Bladh, S.; Aringer, B.; Ahuja, R.

    2016-10-01

    Context. In recent years, high spatial resolution techniques have given valuable insights into the complex atmospheres of AGB stars and their wind-forming regions. They make it possible to trace the dynamics of molecular layers and shock waves, to estimate dust condensation distances, and to obtain information on the chemical composition and size of dust grains close to the star. These are essential constraints for understanding the mass loss mechanism, which presumably involves a combination of atmospheric levitation by pulsation-induced shock waves and radiation pressure on dust, forming in the cool upper layers of the atmospheres. Aims: Spectro-interferometric observations indicate that Al2O3 condenses at distances of about 2 stellar radii or less, prior to the formation of silicates. Al2O3 grains are therefore prime candidates for producing the scattered light observed in the close vicinity of several M-type AGB stars, and they may be seed particles for the condensation of silicates at lower temperatures. The purpose of this paper is to study the necessary conditions for the formation of Al2O3 and the potential effects on mass loss, using detailed atmosphere and wind models. Methods: We have constructed a new generation of Dynamic Atmosphere and Radiation-driven Wind models based on Implicit Numerics (DARWIN), including a time-dependent treatment of grain growth and evaporation for both Al2O3 and Fe-free silicates (Mg2SiO4). The equations describing these dust species are solved in the framework of a frequency-dependent radiation-hydrodynamical model for the atmosphere and wind structure, taking pulsation-induced shock waves and periodic luminosity variations into account. Results: Condensation of Al2O3 at the close distances and in the high concentrations implied by observations requires high transparency of the grains in the visual and near-IR region to avoid destruction by radiative heating. We derive an upper limit for the imaginary part of the refractive

  20. Spatial and temporal patterns of dust emissions (2004-2012) in semi-arid landscapes, southeastern Utah, USA

    USGS Publications Warehouse

    Flagg, Cody B.; Neff, Jason C.; Reynolds, Richard L.; Belnap, Jayne

    2013-01-01

    Aeolian dust can influence nutrient availability, soil fertility, plant interactions, and water-holding capacity in both source and downwind environments. A network of 85 passive collectors for aeolian sediment spanning numerous plant communities, soil types, and land-use histories covering approximately 4000 square kilometers across southeastern Utah was used to sample horizontal emissions of aeolian sediment. The sample archive dates to 2004 and is currently the largest known record of field-scale dust emissions for the southwestern United States. Sediment flux peaked during the spring months in all plant communities (mean: 38.1 g m−2 d−1), related to higher, sustained wind speeds that begin in the early spring. Dust flux was lowest during the winter period (mean: 5 g m−2 d−1) when surface wind speeds are typically low. Sites dominated by blackbrush and sagebrush shrubs had higher sediment flux (mean: 19.4 g m−2 d−1) compared to grasslands (mean: 11.2 g m−2 d−1), saltbush shrublands (mean: 10.3 g m−2 d−1), and woodlands (mean: 8.1 g m−2 d−1). Contrary to other studies on dust emissions, antecedent precipitation during one, two, and three seasons prior to sample collection did not significantly influence emission rates. Physical site-scale factors controlling dust emissions were complex and varied from one vegetation type to another.

  1. "Dust Devils": Gardening Agents on the Surface of Mars, and Hidden Hazards to Human Exploration?

    NASA Technical Reports Server (NTRS)

    Marshall, J.; Smith, P.; White, B.; Farrell, W.

    1999-01-01

    Dust devils are familiar sites in the and regions of the world: they can produce quite spectacular displays of dust lofting when the vortices scavenge very loose dust from a dry lake bed or from recently disturbed agricultural fields. If one were to arrive at the center of an arid region, take one photograph, or even a series of photographs over a period of several days, then return the images for laboratory analysis, it would be most likely concluded that the region was inactive from an aeolian perspective. No images of general dust movement were obtained, nor were any dust devils "caught on camera" owing to their ephemeral and unpredictable appearance, and the fact that there was deceptively little residue of their actions. If, however, a camera were to take a 360 degree continuous recording over a period of a year, and the film were then to be shown at high speed over a period a several minutes, the impression might be that of a region ravaged by air vorticity and dust movement. Extrapolate this over geological time, and it is possible to visualize dust devils as prime aeolian agents, rather than insignificant vagaries of nature, On Mars, the thin atmosphere permits the surface of the planet to be heated but it does not itself retain heat with the capacity of the earth's atmosphere. This gives rise to greater thermal instability near the surface of Mars as "warm" air pockets diapiritically inject themselves into higher atmospheric layers. Resulting boundary-layer vorticity on Mars might therefore be expected to produce dust devils in abundance, if only seasonally. The spectacular images of dust devils obtained by Pathfinder within its brief functional period on the planet testify to the probability of highly frequent surface vorticity in light of the above reasoning about observational probability. Notably, the Pathfinder devils appeared to be at least a kilometer in height. There are several consequences for the geology of Mars, and for human exploration, if

  2. "Dust Devils": Gardening Agents on the Surface of Mars, and Hidden Hazards to Human Exploration?

    NASA Astrophysics Data System (ADS)

    Marshall, J.; Smith, P.; White, B.; Farrell, W.

    1999-09-01

    Dust devils are familiar sites in the and regions of the world: they can produce quite spectacular displays of dust lofting when the vortices scavenge very loose dust from a dry lake bed or from recently disturbed agricultural fields. If one were to arrive at the center of an arid region, take one photograph, or even a series of photographs over a period of several days, then return the images for laboratory analysis, it would be most likely concluded that the region was inactive from an aeolian perspective. No images of general dust movement were obtained, nor were any dust devils "caught on camera" owing to their ephemeral and unpredictable appearance, and the fact that there was deceptively little residue of their actions. If, however, a camera were to take a 360 degree continuous recording over a period of a year, and the film were then to be shown at high speed over a period a several minutes, the impression might be that of a region ravaged by air vorticity and dust movement. Extrapolate this over geological time, and it is possible to visualize dust devils as prime aeolian agents, rather than insignificant vagaries of nature, On Mars, the thin atmosphere permits the surface of the planet to be heated but it does not itself retain heat with the capacity of the earth's atmosphere. This gives rise to greater thermal instability near the surface of Mars as "warm" air pockets diapiritically inject themselves into higher atmospheric layers. Resulting boundary-layer vorticity on Mars might therefore be expected to produce dust devils in abundance, if only seasonally. The spectacular images of dust devils obtained by Pathfinder within its brief functional period on the planet testify to the probability of highly frequent surface vorticity in light of the above reasoning about observational probability. Notably, the Pathfinder devils appeared to be at least a kilometer in height. There are several consequences for the geology of Mars, and for human exploration, if

  3. Development of a dust deposition forecast model for a mine tailings impoundment

    NASA Astrophysics Data System (ADS)

    Stovern, Michael

    Wind erosion, transport and deposition of particulate matter can have significant impacts on the environment. It is observed that about 40% of the global land area and 30% of the earth's population lives in semiarid environments which are especially susceptible to wind erosion and airborne transport of contaminants. With the increased desertification caused by land use changes, anthropogenic activities and projected climate change impacts windblown dust will likely become more significant. An important anthropogenic source of windblown dust in this region is associated with mining operations including tailings impoundments. Tailings are especially susceptible to erosion due to their fine grain composition, lack of vegetative coverage and high height compared to the surrounding topography. This study is focused on emissions, dispersion and deposition of windblown dust from the Iron King mine tailings in Dewey-Humboldt, Arizona, a Superfund site. The tailings impoundment is heavily contaminated with lead and arsenic and is located directly adjacent to the town of Dewey-Humboldt. The study includes in situ field measurements, computational fluid dynamic modeling and the development of a windblown dust deposition forecasting model that predicts deposition patterns of dust originating from the tailings impoundment. Two instrumented eddy flux towers were setup on the tailings impoundment to monitor the aeolian and meteorological conditions. The in situ observations were used in conjunction with a computational fluid dynamic (CFD) model to simulate the transport of windblown dust from the mine tailings to the surrounding region. The CFD model simulations include gaseous plume dispersion to simulate the transport of the fine aerosols, while individual particle transport was used to track the trajectories of larger particles and to monitor their deposition locations. The CFD simulations were used to estimate deposition of tailings dust and identify topographic mechanisms

  4. Planetary Magnetosphere Probed by Charged Dust Particles

    NASA Astrophysics Data System (ADS)

    Sternovsky, Z.; Horanyi, M.; Gruen, E.; Srama, R.; Auer, S.; Kempf, S.; Krueger, H.

    2010-12-01

    In-situ and remote sensing observations combined with theoretical and numerical modeling greatly advanced our understanding planetary magnetospheres. Dust is an integral component of the Saturnian and Jovian magnetospheres where it can act as a source/sink of plasma particles (dust particles are an effective source for plasma species like O2, OH, etc. through sputtering of ice particles, for example); its distribution is shaped by electrodynamic forces coupled radiation pressure, plasma, and neutral drag, for example. The complex interaction can lead to unusual dust dynamics, including the transport, capture, and ejection of dust grains. The study of the temporal and spatial evolution of fine dust within or outside the magnetosphere thus provides a unique way to combine data from a large number of observations: plasma, plasma wave, dust, and magnetic field measurements. The dust detectors on board the Galileo and Cassini spacecrafts lead to major discoveries, including the jovian dust stream originating from Io or the in-situ sampling and analysis of the plumes of Enceladus. Recent advancement in dust detector technology enables accurate measurement of the dust trajectory and elemental composition that can greatly enhance the understanding of dust magnetorspheric interaction and indentify the source of the dust with high precision. The capabilities of a modern dust detector thus can provide support for the upcoming Europa Jupiter System Mission.

  5. Dust Astronomy: New venues in interplanetary and interstellar dust research

    NASA Astrophysics Data System (ADS)

    Grün, E.; Hahn, J.; Hamilton, D.; Harris, W.; Horanyi, Mihaly; Huestis, D. L.; Krivov, Alexander; Levasseur-Regourd, A. C.; Liou, J. C.; Lisse, C.; Kuchner, M.; Meisel, D.; Reach, W. T.; Snow, T. P.; Stansberry, J.; Sykes, M.; Yano, H.; Zolensky, M.

    2001-11-01

    Dust particles, like photons, are born at remote sites in space and time. From knowledge of the dust particles' birthplace, and the particles' bulk properties, we can learn about the remote environment out of which the particles were formed and how those particles have evolved physically and dynamically. Remote sensing and in-situ methods, combined with sample analysis and theory, allow us to make a global assessment of dust origin and production in our solar system and its context within the local interstellar environment. Born in the expanding atmospheres of high-luminosity stars or in supernova remnants, interstellar grains provide the seeds that grow in cool interstellar clouds by accretion of atoms and molecules and by agglomeration. Ultimately, interstellar grains can be incorporated in newly forming stars, or they can become part of planetary systems. Reborn from comets, asteroids, Kuiper belt objects and satellites, inter- and circumplanetary dust particles populate our own planetary system. Key issues addressed by space measurements are: - Determination of the total inventory of dust (size, composition, shape, spatial distribution, and temporal variations) in the Solar System. - Characterization and analysis of interstellar dust inside and outside the heliosphere. - Exploration of the dusty environments in the F-corona, near comets, in the asteroid belt and in the Kuiper belt. - Determination of sources, dynamics, and sinks of dust in planetary environs (from Mercury to Pluto). These issues will be supported by ground-based observations, theoretical modeling studies and laboratory measurements.

  6. Evolving flux of Asian dust in the North Pacific Ocean since the late Oligocene

    NASA Astrophysics Data System (ADS)

    Zhang, Wenfang; Chen, Jun; Ji, Junfeng; Li, Gaojun

    2016-12-01

    The aeolian deposits in the North Pacific Ocean (NPO) serve as important archives for the surface processes in the arid Asian interior. Aeolian flux, which is usually based on the 'operationally defined aeolian dust' (ODED) extracted from the pelagic sediments, is a widely used paleo-proxy that reflects aridity of the source regions. However, such reconstruction of aeolian flux is subject to large uncertainty associated with the age model due to the low sedimentation rate and lack of calcareous nannofossil of the pelagic sediments. Precipitation of authigenic minerals and contribution of volcanic ash also complicate interpretation of the reconstructed ODED flux. This work extracts ODED from the sediments recovered at Ocean Drilling Program (ODP) site 1208 on the Shatsky Rise in NPO. The high sedimentation rate at ODP site 1208 enables a high-resolution age model. The resulting ODED flux, which shows a progressive increasing trend over the past 25 Ma, is very different from the previous reconstructions. The study indicates that authigenic phillipsite contribute a significant portion to the sediment of 25-18 Ma, but the relative contribution of Asian dust to the ODED is roughly constant (60-80%) over the past 18 Ma. Thus, the progressive increasing trend of ODED flux at the ODP site 1208 is not contributed by authigenic phillipsite and volcanic ash but reflect the increasing flux of Asian dust. We propose that the increasing flux of Asian dust in NPO reflects the progressive aridification of Asian interior in response to global cooling and/or regional mountain building.

  7. Derivation of an observation-based map of North African dust emission

    SciTech Connect

    Evan, Amato T.; Fiedler, Stephanie; Zhao, Chun; Menut, Laurent; Schepanski, Kerstin; Flamant, C.; Doherty, Owen

    2015-03-01

    Changes in the emission, transport and deposition of aeolian dust have profound effects on regional climate, so that characterizing the lifecycle of dust in observations and improving the representation of dust in global climate models is necessary. A fundamental aspect of characterizing the dust cycle is quantifying surface dust fluxes, yet no spatially explicit estimates of this flux exist for the World’s major source regions. Here we present a novel technique for creating a map of the annual mean emitted dust flux for North Africa based on retrievals of dust storm frequency from the Meteosat Second Generation Spinning Enhanced Visible and InfraRed Imager (SEVIRI) and the relationship between dust storm frequency and emitted mass flux derived from the output of five models that simulate dust. Our results suggest that 64 (±16)% of all dust emitted from North Africa is from the Bodélé depression, and that 13 (±3)% of the North African dust flux is from a depression lying in the lee of the Aïr and Hoggar Mountains, making this area the second most important region of emission within North Africa.

  8. Saharan dust deposition in the Carpathian Basin and its possible effects on interglacial soil formation

    NASA Astrophysics Data System (ADS)

    Varga, György; Cserháti, Csaba; Kovács, János; Szalai, Zoltán

    2016-09-01

    Several hundred tons of windblown dust material are lifted into the atmosphere and are transported every year from Saharan dust source areas towards Europe having an important climatic and other environmental effect also on distant areas. According to the systematic observations of modern Saharan dust events, it can be stated that dust deflated from North African source areas is a significant constituent of the atmosphere of the Carpathian Basin and Saharan dust deposition events are identifiable several times in a year. Dust episodes are connected to distinct meteorological situations, which are also the determining factors of the different kinds of depositional mechanisms. By using the adjusted values of dust deposition simulations of numerical models, the annual Saharan dust flux can be set into the range of 3.2-5.4 g/m2/y. Based on the results of past mass accumulation rates calculated from stratigraphic and sedimentary data of loess-paleosol sequences, the relative contribution of Saharan dust to interglacial paleosol material was quantified. According to these calculations, North African exotic dust material can represent 20-30% of clay and fine silt-sized soil components of interglacial paleosols in the Carpathian Basin. The syngenetic contribution of external aeolian dust material is capable to modify physicochemical properties of soils and hereby the paleoclimatic interpretation of these pedogene stratigraphic units.

  9. Element geochemical analysis of the contribution of aeolian sand to suspended sediment in desert stream flash floods.

    PubMed

    Jia, Xiaopeng; Wang, Haibing

    2014-01-01

    The interaction of wind and water in semiarid and arid areas usually leads to low-frequency flash flood events in desert rivers, which have adverse effects on river systems and ecology. In arid zones, many aeolian dune-fields terminate in stream channels and deliver aeolian sand to the channels. Although aeolian processes are common to many desert rivers, whether the aeolian processes contribute to fluvial sediment loss is still unknown. Here, we identified the aeolian-fluvial cycling process responsible for the high rate of suspended sediment transport in the Sudalaer desert stream in the Ordos plateau of China. On the basis of element geochemistry data analysis, we found that aeolian sand was similar to suspended sediment in element composition, which suggests that aeolian sand contributes to suspended sediment in flash floods. Scatter plots of some elements further confirm that aeolian sand is the major source of the suspended sediment. Factor analysis and the relation between some elements and suspended sediment concentration prove that the greater the aeolian process, the higher the suspended sediment concentration and the greater the contribution of aeolian sand to suspended sediment yield. We conclude that aeolian sand is the greatest contributor to flash floods in the Sudalaer desert stream.

  10. Element Geochemical Analysis of the Contribution of Aeolian Sand to Suspended Sediment in Desert Stream Flash Floods

    PubMed Central

    Wang, Haibing

    2014-01-01

    The interaction of wind and water in semiarid and arid areas usually leads to low-frequency flash flood events in desert rivers, which have adverse effects on river systems and ecology. In arid zones, many aeolian dune-fields terminate in stream channels and deliver aeolian sand to the channels. Although aeolian processes are common to many desert rivers, whether the aeolian processes contribute to fluvial sediment loss is still unknown. Here, we identified the aeolian-fluvial cycling process responsible for the high rate of suspended sediment transport in the Sudalaer desert stream in the Ordos plateau of China. On the basis of element geochemistry data analysis, we found that aeolian sand was similar to suspended sediment in element composition, which suggests that aeolian sand contributes to suspended sediment in flash floods. Scatter plots of some elements further confirm that aeolian sand is the major source of the suspended sediment. Factor analysis and the relation between some elements and suspended sediment concentration prove that the greater the aeolian process, the higher the suspended sediment concentration and the greater the contribution of aeolian sand to suspended sediment yield. We conclude that aeolian sand is the greatest contributor to flash floods in the Sudalaer desert stream. PMID:25089295

  11. Particle-size fractionation of aeolian sand along a climatic and geomorphic gradient of the Sinai-Negev erg

    NASA Astrophysics Data System (ADS)

    Roskin, Joel; Katra, Itzhak; Blumberg, Dan G.

    2015-04-01

    This study examines changes in the aeolian sand fractions along the west-east aeolian transport path of the northern Sinai Peninsula - northwestern (NW) Negev erg of Egypt and Israel. This erg originates from the Nile Delta and is composed of currently active linear (seif) dunes in northern Sinai (its western part), and currently stabilized vegetated linear dunes (VLDs) in the NW Negev dunefield (its eastern part). Sand samples from the Nile Delta, northern Sinai and NW Negev were analyzed for particle-size distribution and sand grain morphology in accordance to their Eastern Mediterranean INQUA Dunes Atlas luminescence and radiocarbon chronologies. Linear seif dunes differ from VLDs in their vegetation cover, linearity, and dynamics. Although both are continuous landforms with similar orientations and sand-grain roundness values, the linear dunes of Sinai are coarser-grained than the Negev VLDs. The VLDs have a significantly higher proportion of very fine sand (125-50 μm) content and a varying but lower sand fining ratio defined as the ratio of fine sand percentage to very fine sand percentage. Very fine sands are suggested to have been winnowed by saltation and low suspension from source deposits and sand sheets. Detailed semi-quantitative examinations of sand grains by a SEM of a Negev VLD shows that most grains do not exhibit features that can be attributed to aeolian abrasion by sand grain-grain collisions. From these observations we infer that fractionation of sand was a major process leading to downwind fining along the studied aeolian transport path. We suggest that the very fine sand fraction of Nile Delta and Sinai sands has been transported downwind since the late middle Pleistocene. In the late Pleistocene, sand reached the NW Negev in the form of VLDs due to last-glacial period windiness of intensities unprecedented today and probably larger sediment supply. Generally current and inferred past decreasing wind velocities and increasing precipitation

  12. The electrodynamics of charged dust in the cometary environment

    NASA Technical Reports Server (NTRS)

    Horanyi, M.; Mendis, D. A.

    1991-01-01

    Dust in the plasma and radiative environment of a comet is necessarily electrically charged. This charging has both physical and dynamical effects on the dust, being particularly important on the smallest particles observed in the dust size spectrum. In this paper, these dynamical effects are reviewed and the pertinent observations are discussed.

  13. Characterizing subsurface complexity of aeolian morphotypes with georadar

    NASA Astrophysics Data System (ADS)

    Bentley, Andrew Phillip Keller

    Aeolian landforms are classified based on their plan morphology, which is a function of sediment transport volume, wind direction, and vegetation. In the case of compound landforms or two-dimensional exposures (outcrops), there is insufficient information for discriminating between 3D morphotypes (e.g., barchans vs. parabolic dunes). To characterize the dip-section architecture of near end-member morphologies (interacting barchans and sparsely vegetated parabolics), a series of axial transects were selected from >25 km of high-resolution (500 MHz) ground-penetrating radar (GPR) data from the gypsum dune field of White Sands National Monument, New Mexico. For dunes of comparable size (6-7 m high), a series of attributes were analyzed for unsaturated portions along the thickest (axial) radargram sections. Given the limitations in vertical resolution (7 cm in dry sand), the average measureable slipface thickness in barchans ranged between 10-22 cm, whereas parabolic slipfaces were thinner at 10-14 cm. High-amplitude diffractions produced by buried vegetation, semi-lithified pedestals, and bioturbation structures were rare within barchans (point-source diffraction density = 0.03/m2; hyperbolics per 1-m-wide cross-sectional area of the image), in contrast to a point-source density of 0.07/m2 in parabolics. An aeolian internal complexity threshold (pi) is proposed, which incorporates standardized scores of slipface thickness, point-source diffraction density, and continuity of major bounding surfaces at mesoscale range determined through semivariogram analysis. For the study region, these variables were sufficient for discriminating barchans (pi = -2.39 to -0.25; pib= -1.65) from parabolic (pi = 0.13 to 2.87; pip= 1.65) dunes. This threshold has the potential for differentiating dune morphotypes in areas where surface morphology is masked and for identifying compound landforms (e.g., a re-activated parabolic dune converted into a barchan in situ ). Ultimately

  14. Long-Term Observations of Dust Storms in Sandy Desert Environments

    NASA Astrophysics Data System (ADS)

    Yun, Hye-Won; Kim, Jung-Rack; Choi, Yun-Soo

    2015-04-01

    Mineral dust occupies the largest portion of atmospheric aerosol. Considering the numerous risks that dust poses for socioeconomic and anthropogenic activities, it is crucial to understand sandy desert environments, which frequently generate dust storms and act as a primary source of atmospheric aerosol. To identify mineral aerosol mechanisms, it is essential to monitor desert environmental factors involving dust storm generation in the long term. In this study, we focused on two major environmental factors: local surface roughness and soil moisture. Since installments of ground observation networks in sandy deserts are unfeasible, remote sensing techniques for mining desert environmental factors were employed. The test area was established within the Badain Jaran and Kubuqi Deserts in Inner Mongolia, China, where significant seasonal aeolian processes emit mineral dust that influences all of East Asia. To trace local surface roughness, we employed a multi-angle imaging spectroradiometer (MISR) image sequence to extract multi-angle viewing (MAV) topographic parameters such as normalized difference angular index, which represents characteristics of the target desert topography. The backscattering coefficient from various space-borne SAR and stereotopography were compared with MAV observations to determine calibrated local surface roughness. Soil moisture extraction techniques from InSAR-phase coherence stacks were developed and compiled with advanced scatterometer (ASCAT) soil moisture data. Combined with metrological information such as the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA interim, correlations between intensity of sand dune activity as a proxy of aeolian processes in desert environments, surface wind conditions, and surface soil moisture were traced. Overall, we have confirmed that tracking sandy desert aeolian environments for long-term observations is feasible with space-borne, multi-sensor observations when combined with

  15. A high-efficiency, low-cost aeolian sand trap

    NASA Astrophysics Data System (ADS)

    Sherman, D. J.; Swann, C.; Barron, J. D.

    2014-06-01

    We present a design for an aeolian sand trap that is based on the streamer trap concept used in sediment transport studies. The trap is inexpensive, has excellent trapping efficiency, is durable, and easy to use. It is fabricated from stainless steel that is cut and bent to form a frame to support a fine nylon mesh. Typical trap openings are 100 mm wide and 25, 50, or 100 mm high. Traps are 250 mm long, and are stackable to measure vertical characteristics of saltation. The nylon mesh has 64 μm openings that comprise 47% of the area of the material. Aerodynamic efficiency was tested in a wind tunnel, and sediment trapping efficiency evaluated in field deployments. Both evaluations support the use of this trap for short-term measurements.

  16. Aeolian abrasion on Venus: Preliminary results from the Venus simulator

    NASA Technical Reports Server (NTRS)

    Marshall, J. R.; Greeley, Ronald; Tucker, D. W.; Pollack, J. B.

    1987-01-01

    The role of atmospheric pressure on aeolian abrasion was examined in the Venus Simulator with a constant temperature of 737 K. Both the rock target and the impactor were fine-grained basalt. The impactor was a 3 mm diameter angular particle chosen to represent a size of material that is entrainable by the dense Venusian atmosphere and potentially abrasive by virtue of its mass. It was projected at the target 10 to the 5 power times at a velocity of 0.7 m/s. The impactor showed a weight loss of approximately 1.2 x 10 to the -9 power gm per impact with the attrition occurring only at the edges. Results from scanning electron microscope analysis, profilometry, and weight measurement are summarized. It is concluded that particles can incur abrasion at Venusian temperatures even with low impact velocities expected for Venus.

  17. Armoring and vertical sorting in aeolian dune fields

    NASA Astrophysics Data System (ADS)

    Gao, Xin; Narteau, Clément; Rozier, Olivier

    2016-04-01

    Unlike ripples, there are only few numerical studies on grain-size segregation at the scale of dunes in aeolian environments. Here we use a cellular automaton model to analyze vertical sorting in granular mixtures under steady unidirectional flow conditions. We investigate the feedbacks between dune growth and the segregation mechanisms by varying the size of coarse grains and their proportion within the bed. We systematically observe the development of a horizontal layer of coarse grains at the top of which sorted bed forms may grow by amalgamation. The formation of such an armor layer controls the overall sediment transport and availability. The emergence of dunes and the transition from barchan to transverse dune fields depend only on the grain size distribution of the initial sediment layer. As confirmed by observation, this result indicates that armor layers should be present in most arid deserts, where they are likely to control dune morphodynamics.

  18. Aeolian features and processes at the Mars Pathfinder landing site

    USGS Publications Warehouse

    Greeley, Ronald; Kraft, Michael; Sullivan, Robert; Wilson, Gregory; Bridges, Nathan; Herkenhoff, Ken; Kuzmin, Ruslan O.; Malin, Michael; Ward, Wes

    1999-01-01

    The Mars Pathfinder landing site contains abundant features attributed to aeolian, or wind, processes. These include wind tails, drift deposits, duneforms of various types, ripplelike features, and ventifacts (the first clearly seen on Mars). Many of these features are consistant with formation involving sand-size particles. Although some features, such as dunes, could develop from saltating sand-size aggregates of finer grains, the discovery of ventifact flutes cut in rocks strongly suggests that at least some of the grains are crystalline, rather than aggregates. Excluding the ventifacts, the orientations of the wind-related features correlate well with the orientations of bright wind steaks seen on Viking Orbiter images in the general area. They also correlate with wind direction predictions from the NASA-Ames General Circulation Model (GCM) which show that the strongest winds in the area occur in the northern hemisphere winter and are directed toward 209°. Copyright 1999 by the American Geophysical Union.

  19. 3D numerical simulation of the evolutionary process of aeolian downsized crescent-shaped dunes

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaosi; Zhang, Yang; Wang, Yuan; Li, Min

    2016-06-01

    A dune constitutive model was coupled with a large eddy simulation (LES) with the Smagorinsky subgrid-scale (SGS) model to accurately describe the evolutionary process of dunes from the macroscopic perspective of morphological dynamics. A 3D numerical simulation of the evolution of aeolian downsized crescent-shaped dunes was then performed. The evolution of the 3D structure of Gaussian-shaped dunes was simulated under the influence of gravity modulation, which was the same with the vertical oscillation of the sand bed to adjust the threshold of sand grain liftoff in wind tunnel experiments under the same wind speed. The influence of gravity modulation intensity on the characteristic scale parameter of the dune was discussed. Results indicated that the crescent shape of the dune was reproduced with the action of gravity during regulation of the saturation of wind-sand flow at specific times. The crescent shape was not dynamically maintained as time passed, and the dunes dwindled until they reached final decomposition because of wind erosion. The height of the dunes decreased over time, and the height-time curve converged as the intensity of modulation increased linearly. The results qualitatively agreed with those obtained from wind tunnel experiments.

  20. Downslope coarsening in aeolian grainflows of the Navajo Sandstone

    NASA Astrophysics Data System (ADS)

    Loope, David B.; Elder, James F.; Sweeney, Mark R.

    2012-07-01

    Downslope coarsening in grainflows has been observed on present-day dunes and generated in labs, but few previous studies have examined vertical sorting in ancient aeolian grainflows. We studied the grainflow strata of the Jurassic Navajo Sandstone in the southern Utah portion of its outcrop belt from Zion National Park (west) to Coyote Buttes and The Dive (east). At each study site, thick sets of grainflow-dominated cross-strata that were deposited by large transverse dunes comprise the bulk of the Navajo Sandstone. We studied three stratigraphic columns, one per site, composed almost exclusively of aeolian cross-strata. For each column, samples were obtained from one grainflow stratum in each consecutive set of the column, for a total of 139 samples from thirty-two sets of cross-strata. To investigate grading perpendicular to bedding within individual grainflows, we collected fourteen samples from four superimposed grainflow strata at The Dive. Samples were analyzed with a Malvern Mastersizer 2000 laser diffraction particle analyser. The median grain size of grainflow samples ranges from fine sand (164 μm) to coarse sand (617 μm). Using Folk and Ward criteria, samples are well-sorted to moderately-well-sorted. All but one of the twenty-eight sets showed at least slight downslope coarsening, but in general, downslope coarsening was not as well-developed or as consistent as that reported in laboratory subaqueous grainflows. Because coarse sand should be quickly sequestered within preserved cross-strata when bedforms climb, grain-size studies may help to test hypotheses for the stacking of sets of cross-strata.

  1. Magnetic fabric and remanent magnetization of pyroclastic surge deposits from Vulcano (Aeolian Islands, Italy)

    NASA Astrophysics Data System (ADS)

    Zanella, E.; De Astis, G.; Dellino, P.; Lanza, R.; La Volpe, L.

    1999-11-01

    Tufi di Grotte dei Rossi Inferiori are unwelded, fine-grained pyroclastic deposits of hydromagmatic origin emplaced between 21 and 11-8.6 ka at Vulcano (Aeolian Islands, Italy) by deposition through surges spreading laterally from inside the La Fossa caldera. In this study, the deposit's magnetic properties were investigated and interpreted in terms of eruptive and emplacement dynamics. Rock-magnetism data were supplemented by grain size and textural characteristic analyses as well as scanning electron microscope (SEM) investigations. Curie point measurements, isothermal remanent magnetization and microprobe analyses showed that magnetization is carried by low-Ti titanomagnetite. The size of the grains ranges from about 20 to 300 micrometres, their shape from equidimensional to highly elongated. The magnetic fabric is typical of fine-grained pyroclastics. Foliation is well developed and in most sites lineation is directed towards the source area of the La Fossa caldera. The remanent magnetization consists of two components whose blocking temperature spectra partially overlap. The direction of the low-temperature component is close to that of the axial dipole, and consistent with the palaeosecular variation curve for the Aeolian Islands. The high-temperature component is systematically shallowed and close to the direction of the magnetic lineation. The overall results suggest that the high-temperature component was acquired before, and the low-temperature component after, the actual deposition of grains. Immediately after eruption, the grains cooled and moved as free particles in the turbulent cloud during the expansion of the surge flows. Those particles with high blocking temperatures acquired a thermal remanence. They were then deposited and shear at the very base of the flow oriented them and imprinted the rock's fabric and high-temperature magnetization component. Volcanological and magnetic data suggest turbulent transportation and traction deposition of

  2. Source Characterization of African Dust Using CCSEM Analysis

    NASA Astrophysics Data System (ADS)

    Rogers, R.; Hunt, A.; Oldfield, F.

    2013-12-01

    A preliminary investigation is underway to determine whether African dust is developed through Pedogenic or Aeolian processes. 85 dust samples were taken from the Sahel and Saharan region of Africa and analyzed using computer controlled scanning electron microscopy (CCSEM). Optimized secondary electron detectors (SED) and back-scattered electron detectors (BSED) with adjustable quadrants was used with a light element Peltier-cooled energy dispersive x-ray spectrometer. A variable pressure system was utilized for the analysis of insulating materials, which eliminated the need for special specimen coating to dissipate charge and remove artifacts. Data from these samples are being used to address two primary questions: (1) Can CCSEM technology accurately describe elemental compounds derived from dust samples and therefore derive mineral content and (2) Are African dusts created through Pedogenic or Aeolian processes. The creation of a 19-point elemental classification system was used to separate and analyze each of the 4000 data points that were taken from 85 samples. Initial findings show large amounts of Fe, Si, and Al-rich minerals. The Al-Si-rich minerals show a close correlation in relative elemental amounts. This is to be expected from clay minerals of the pyroxene group. The Fe, Si-rich minerals trend towards an inverse relationship, which is also consistent with iron oxides of the spinel group that generally consist of magnetite. Other elemental constituents within the samples include varying amounts of Ti, Ca, and K. An initial run of samples, 6 Burkina Soils and 6 Burkina Laterites, show a similarity in chemical composition, leading to the hypothesis that the Burkina Soils originated from the Burkina Laterites. As the experiment progresses we expect to see similar Aeolian processes contributing to the mineral content of other surface dusts. Further research on the effects of these wind driven dusts is needed to assess the potential health impacts and

  3. The likelihood of observing dust-stimulated phytoplankton growth in waters proximal to the Australian continent

    NASA Astrophysics Data System (ADS)

    Cropp, R. A.; Gabric, A. J.; Levasseur, M.; McTainsh, G. H.; Bowie, A.; Hassler, C. S.; Law, C. S.; McGowan, H.; Tindale, N.; Viscarra Rossel, R.

    2013-05-01

    We develop a tool to assist in identifying a link between naturally occurring aeolian dust deposition and phytoplankton response in the ocean. Rather than examining a single, or small number of dust deposition events, we take a climatological approach to estimate the likelihood of observing a definitive link between dust deposition and a phytoplankton bloom for the oceans proximal to the Australian continent. We use a dust storm index (DSI) to determine dust entrainment in the Lake Eyre Basin (LEB) and an ensemble of modelled atmospheric trajectories of dust transport from the basin, the major dust source in Australia. Deposition into the ocean is computed as a function of distance from the LEB source and the local over-ocean precipitation. The upper ocean's receptivity to nutrients, including dust-borne iron, is defined in terms of time-dependent, monthly climatological fields for light, mixed layer depth and chlorophyll concentration relative to the climatological monthly maximum. The resultant likelihood of a dust-phytoplankton link being observed is then mapped as a function of space and time. Our results suggest that the Southern Ocean (north of 45°S), the North West Shelf, and Great Barrier Reef are ocean regions where a rapid biological response to dust inputs is most likely to be observed. Conversely, due to asynchrony between deposition and ocean receptivity, direct causal links appear unlikely to be observed in the Tasman Sea and Southern Ocean south of 45°S.

  4. Coupling Mars' Dust and Water Cycles: Effects on Dust Lifting Vigor, Spatial Extent and Seasonality

    NASA Technical Reports Server (NTRS)

    Kahre, M. A.; Hollingsworth, J. L.; Haberle, R. M.; Montmessin, F.

    2012-01-01

    The dust cycle is an important component of Mars' current climate system. Airborne dust affects the radiative balance of the atmosphere, thus greatly influencing the thermal and dynamical state of the atmosphere. Dust raising events on Mars occur at spatial scales ranging from meters to planet-wide. Although the occurrence and season of large regional and global dust storms are highly variable from one year to the next, there are many features of the dust cycle that occur year after year. Generally, a low-level dust haze is maintained during northern spring and summer, while elevated levels of atmospheric dust occur during northern autumn and winter. During years without global-scale dust storms, two peaks in total dust loading were observed by MGS/TES: one peak occurred before northern winter solstice at Ls 200-240, and one peak occurred after northern winter solstice at L(sub s) 305-340. These maxima in dust loading are thought to be associated with transient eddy activity in the northern hemisphere, which has been observed to maximize pre- and post-solstice. Interactive dust cycle studies with Mars General Circulation Models (MGCMs) have included the lifting, transport, and sedimentation of radiatively active dust. Although the predicted global dust loadings from these simulations capture some aspects of the observed dust cycle, there are marked differences between the simulated and observed dust cycles. Most notably, the maximum dust loading is robustly predicted by models to occur near northern winter solstice and is due to dust lifting associated with down slope flows on the flanks of the Hellas basin. Thus far, models have had difficulty simulating the observed pre- and post- solstice peaks in dust loading. Interactive dust cycle studies typically have not included the formation of water ice clouds or their radiative effects. Water ice clouds can influence the dust cycle by scavenging dust from atmosphere and by interacting with solar and infrared radiation

  5. Migration of tungsten dust in tokamaks: role of dust-wall collisions

    NASA Astrophysics Data System (ADS)

    Ratynskaia, S.; Vignitchouk, L.; Tolias, P.; Bykov, I.; Bergsåker, H.; Litnovsky, A.; den Harder, N.; Lazzaro, E.

    2013-12-01

    The modelling of a controlled tungsten dust injection experiment in TEXTOR by the dust dynamics code MIGRAINe is reported. The code, in addition to the standard dust-plasma interaction processes, also encompasses major mechanical aspects of dust-surface collisions. The use of analytical expressions for the restitution coefficients as functions of the dust radius and impact velocity allows us to account for the sticking and rebound phenomena that define which parts of the dust size distribution can migrate efficiently. The experiment provided unambiguous evidence of long-distance dust migration; artificially introduced tungsten dust particles were collected 120° toroidally away from the injection point, but also a selectivity in the permissible size of transported grains was observed. The main experimental results are reproduced by modelling.

  6. Dust and canopy effects on snowpack melt and ecosystem processes in a subalpine forest

    NASA Astrophysics Data System (ADS)

    Maurer, G. E.; Bowling, D. R.

    2013-12-01

    Dust deposition lowers the albedo of mountain snowpacks and can significantly impact the rate of spring snowpack melt. Recent research has shown that aeolian dust deposition may significantly advance the timing of snowmelt and spring runoff in the hydrologic basins of the western U.S. These studies have focused on alpine and subalpine snowpacks with little to no overstory vegetation cover. We conducted a manipulative experiment to assess the impacts of dust deposition on snowpack melt and ecosystem processes in a subalpine conifer forest. From mid-March to the snow all gone date in 2010-2012, we scattered dust in forested plots at weekly to bi-weekly frequency. This roughly doubled the ambient dust loading at the site. In control and dust-addition treatments we measured the springtime decline in snow water equivalent, continuous soil temperature and moisture, and litter mass loss (decomposition) and soil respiration below the snowpack and during the warm season. Xylem water potential in conifers was also measured during the warm season. We found that the effect of dust deposition on the melt rate was dependent on the openness of the canopy within our forest, as were differences in the timing and magnitude of soil moisture changes. Ecosystem processes were similar in dust-addition and control plots and were responsive to soil temperature and moisture variations below the snowpack and during the warm season. From this we conclude that the effect of aeolian dust deposition on snowpack energy balance, and associated ecohydrological processes, varies with canopy structure in subalpine forests.

  7. Interactive Soil Dust Aerosol Model in the GISS GCM. Part 1; Sensitivity of the Soil Dust Cycle to Radiative Properties of Soil Dust Aerosols

    NASA Technical Reports Server (NTRS)

    Perlwitz, Jan; Tegen, Ina; Miller, Ron L.

    2000-01-01

    The sensitivity of the soil dust aerosol cycle to the radiative forcing by soil dust aerosols is studied. Four experiments with the NASA/GISS atmospheric general circulation model, which includes a soil dust aerosol model, are compared, all using a prescribed climatological sea surface temperature as lower boundary condition. In one experiment, dust is included as dynamic tracer only (without interacting with radiation), whereas dust interacts with radiation in the other simulations. Although the single scattering albedo of dust particles is prescribed to be globally uniform in the experiments with radiatively active dust, a different single scattering albedo is used in those experiments to estimate whether regional variations in dust optical properties, corresponding to variations in mineralogical composition among different source regions, are important for the soil dust cycle and the climate state. On a global scale, the radiative forcing by dust generally causes a reduction in the atmospheric dust load corresponding to a decreased dust source flux. That is, there is a negative feedback in the climate system due to the radiative effect of dust. The dust source flux and its changes were analyzed in more detail for the main dust source regions. This analysis shows that the reduction varies both with the season and with the single scattering albedo of the dust particles. By examining the correlation with the surface wind, it was found that the dust emission from the Saharan/Sahelian source region and from the Arabian peninsula, along with the sensitivity of the emission to the single scattering albedo of dust particles, are related to large scale circulation patterns, in particular to the trade winds during Northern Hemisphere winter and to the Indian monsoon circulation during summer. In the other regions, such relations to the large scale circulation were not found. There, the dependence of dust deflation to radiative forcing by dust particles is probably

  8. POPULATION DYNAMICS OF THE HOUSE DUST MITES, DERMATOPHAGOIDES FARINAE, D. PTERONYSSINUS, AND EUROGLYPHUS MAYNEI (ACARI: PYROGLYPHIDAE), AT SPECIFIC RELATIVE HUMIDITIES

    EPA Science Inventory

    Experiments were conducted to determine the effects of relative humidity (RH) on the population dynamics of single and mixed species of Dermatophagoides farinae (Hughes), D. pteronyssinus (Trouessart), and Euroglyphus maynei (Cooreman) at specific RHs, , and unlimited food. Sin...

  9. ChemCam analysis of Martian fine dust

    NASA Astrophysics Data System (ADS)

    Lasue, Jeremie; Mangold, Nicolas; Cousin, Agnes; Meslin, Pierre-Yves; Wiens, Roger; Gasnault, Olivier; Rapin, William; Schroder, Susanne; Ollila, Ann; Fabre, Cécile; Berger, Gilles; Le Mouélic, Stéphane; Dehouck, Erwin; Forni, Olivier; Maurice, Sylvestre; Anderson, Ryan; Bridges, Nathan; Clark, Benton; Clegg, Samuel; d'Uston, Claude; Goetz, Walter; Johnson, Jeffrey R.; Lanza, Nina; Madsen, Morten; Melikechi, Noureddine; Newsom, Horton; Sautter, Violaine; Martin-Torres, Javier; Zorzano, Maria-Paz; MSL Science Team

    2016-10-01

    In this work, we examine the chemical composition of dust observed by the Chemistry Camera (ChemCam) instrument onboard the Mars Science Laboratory (MSL) rover at Gale Crater. The Laser Induced Breakdown Spectroscopy technique analyses samples without preparation, which allows detection of the elemental composition of surface deposits. Mars aeolian fine dust (<2-3 microns) composition is analyzed on the first shot of each Mars target. It is reproducible over time and present a composition characteristic of the global martian fine dust, which covers the entire planet and contributes to the local geology analyzed by MSL. Its composition can also be retrieved on the ChemCam Calibration Targets (CCCT) by subtraction of the well characterized CCCT spectra. The CCCT include eight glasses and ceramics that have been generated to simulate Martian rocks of interest and two targets of a single element (graphite for carbon and an alloy of titanium). ChemCam passive spectroscopy also indicates varying deposition of the dust cover on the CCCT.Major elements are quantified and shown to be very similar to the fine soils encountered at Gale crater. The composition is also similar to the soils and fine dust measured by APXS for the elements common to both instruments. The minor elements quantified by ChemCam (Ba, Sr, Rb, Li, Mn, Cr) are within the range of soil surveys, but we see a higher concentration of Li than in other types of remotely characterized targets. Sulfur is possibly detected at the ChemCam limit of detection. Hydrogen is clearly identified, indicating that this fine dust is a contributor to the H content of the martian soils, as also detected by the SAM and CheMin instruments, and provides constraints as to which fraction of the Martian surface is hydrated and altered. In conclusion, the finest fraction of dust particles on the surface of Mars contains hydrated components mixed intimately within the fine aeolian dust fraction, suggesting that this dust likely

  10. Terrestrial sensitivity to abrupt cooling recorded by aeolian activity in northwest Ohio, USA

    USGS Publications Warehouse

    Campbell, M.C.; Fisher, T.G.; Goble, R.J.

    2011-01-01

    Optically stimulated luminescence dated sand dunes and Pleistocene beach ridges in northwest Ohio are used to reconstruct landscape modification more than 5000. yr after deglaciation. Four of the OSL ages (13.3-11.1. ka) cluster around the Younger Dryas cold event, five ages (10.8-8.2. ka) cluster around the Preboreal, one young age (0.9-0.7. ka) records more recent aeolian activity, and one age of 15.1-13.1. ka dates a barrier spit in Lake Warren. In northwest Ohio, both landscape instability recorded by aeolian activity and a vegetation response recorded by pollen are coeval with the Younger Dryas. However, the climate conditions during the Preboreal resulting in aeolian activity are not recorded in the available pollen records. From this, we conclude that aeolian dunes and surfaces susceptible to deflation are sensitive to cooler, drier episodes of climate and can complement pollen data. Younger Dryas and Preboreal aged aeolian activity in northwestern Ohio coincides with aeolian records elsewhere in the Great Lakes region east of the prairie-forest ecotone. ?? 2011 University of Washington.

  11. Aeolian Sand Transport in the Planetary Context: Respective Roles of Aerodynamic and Bed-Dilatancy Thresholds

    NASA Technical Reports Server (NTRS)

    Marshall, J. R.; Borucki, J.; Bratton, C.

    1999-01-01

    The traditional view of aeolian sand transport generally estimates flux from the perspective of aerodynamic forces creating the airborne grain population, although it has been recognized that "reptation" causes a significant part of the total airborne flux; reptation involves both ballistic injection of grains into the air stream by the impact of saltating grains as well as the "nudging" of surface grains into a creeping motion. Whilst aerodynamic forces may initiate sand motion, it is proposed here that within a fully-matured grain cloud, flux is actually governed by two thresholds: an aerodynamic threshold, and a bed-dilatancy threshold. It is the latter which controls the reptation population, and its significance increases proportionally with transport energy. Because we only have experience with terrestrial sand transport, extrapolations of aeolian theory to Mars and Venus have adjusted only the aerodynamic factor, taking gravitational forces and atmospheric density as the prime variables in the aerodynamic equations, but neglecting reptation. The basis for our perspective on the importance of reptation and bed dilatancy is a set of experiments that were designed to simulate sand transport across the surface of a martian dune. Using a modified sporting crossbow in which a sand-impelling sabot replaced the bolt-firing mechanism, individual grains of sand were fired at loose sand targets with glancing angles typical of saltation impact; grains were projected at about 80 m/s to simulate velocities commensurate with those predicted for extreme martian aeolian conditions. The sabot impelling method permitted study of individual impacts without the masking effect of bed mobilization encountered in wind-tunnel studies. At these martian impact velocities, grains produced small craters formed by the ejection of several hundred grains from the bed. Unexpectedly, the craters were not elongated, despite glancing impact; the craters were very close to circular in planform

  12. Aeolian Sand Transport in the Planetary Context: Respective Roles of Aerodynamic and Bed-Dilatancy Thresholds

    NASA Astrophysics Data System (ADS)

    Marshall, J. R.; Borucki, J.; Bratton, C.

    1999-09-01

    The traditional view of aeolian sand transport generally estimates flux from the perspective of aerodynamic forces creating the airborne grain population, although it has been recognized that "reptation" causes a significant part of the total airborne flux; reptation involves both ballistic injection of grains into the air stream by the impact of saltating grains as well as the "nudging" of surface grains into a creeping motion. Whilst aerodynamic forces may initiate sand motion, it is proposed here that within a fully-matured grain cloud, flux is actually governed by two thresholds: an aerodynamic threshold, and a bed-dilatancy threshold. It is the latter which controls the reptation population, and its significance increases proportionally with transport energy. Because we only have experience with terrestrial sand transport, extrapolations of aeolian theory to Mars and Venus have adjusted only the aerodynamic factor, taking gravitational forces and atmospheric density as the prime variables in the aerodynamic equations, but neglecting reptation. The basis for our perspective on the importance of reptation and bed dilatancy is a set of experiments that were designed to simulate sand transport across the surface of a martian dune. Using a modified sporting crossbow in which a sand-impelling sabot replaced the bolt-firing mechanism, individual grains of sand were fired at loose sand targets with glancing angles typical of saltation impact; grains were projected at about 80 m/s to simulate velocities commensurate with those predicted for extreme martian aeolian conditions. The sabot impelling method permitted study of individual impacts without the masking effect of bed mobilization encountered in wind-tunnel studies. At these martian impact velocities, grains produced small craters formed by the ejection of several hundred grains from the bed. Unexpectedly, the craters were not elongated, despite glancing impact; the craters were very close to circular in planform

  13. Long-term dust aerosol production from natural sources in Iceland.

    PubMed

    Dagsson-Waldhauserova, Pavla; Arnalds, Olafur; Olafsson, Haraldur

    2017-02-01

    Iceland is a volcanic island in the North Atlantic Ocean with maritime climate. In spite of moist climate, large areas are with limited vegetation cover where >40% of Iceland is classified with considerable to very severe erosion and 21% of Iceland is volcanic sandy deserts. Not only do natural emissions from these sources influenced by strong winds affect regional air quality in Iceland ("Reykjavik haze"), but dust particles are transported over the Atlantic ocean and Arctic Ocean >1000 km at times. The aim of this paper is to place Icelandic dust production area into international perspective, present long-term frequency of dust storm events in northeast Iceland, and estimate dust aerosol concentrations during reported dust events. Meteorological observations with dust presence codes and related visibility were used to identify the frequency and the long-term changes in dust production in northeast Iceland. There were annually 16.4 days on average with reported dust observations on weather stations within the northeastern erosion area, indicating extreme dust plume activity and erosion within the northeastern deserts, even though the area is covered with snow during the major part of winter. During the 2000s the highest occurrence of dust events in six decades was reported. We have measured saltation and Aeolian transport during dust/volcanic ash storms in Iceland, which give some of the most intense wind erosion events ever measured. Icelandic dust affects the ecosystems over much of Iceland and causes regional haze. It is likely to affect the ecosystems of the oceans around Iceland, and it brings dust that lowers the albedo of the Icelandic glaciers, increasing melt-off due to global warming. The study indicates that Icelandic dust may contribute to the Arctic air pollution.

  14. Numerical Prediction of Dust. Chapter 10

    NASA Technical Reports Server (NTRS)

    Benedetti, Angela; Baldasano, J. M.; Basart, S.; Benincasa, F.; Boucher, O.; Brooks, M.; Chen, J. P.; Colarco, P. R.; Gong, S.; Huneeus, N.; Jones, L; Lu, S.; Menut, L.; Mulcahy, J.; Nickovic, S.; Morcrette, J.-J.; Perez, C.; Reid, J. S.; Sekiyama, T. T.; Tanaka, T.; Terradellas, E.; Westphal, D. L.; Zhang, X.-Y.; Zhou, C.-H.

    2013-01-01

    Covers the whole breadth of mineral dust research, from a scientific perspective Presents interdisciplinary work including results from field campaigns, satellite observations, laboratory studies, computer modelling and theoretical studies Explores the role of dust as a player and recorder of environmental change This volume presents state-of-the-art research about mineral dust, including results from field campaigns, satellite observations, laboratory studies, computer modelling and theoretical studies. Dust research is a new, dynamic and fast-growing area of science and due to its multiple roles in the Earth system, dust has become a fascinating topic for many scientific disciplines. Aspects of dust research covered in this book reach from timescales of minutes (as with dust devils, cloud processes, and radiation) to millennia (as with loess formation and oceanic sediments), making dust both a player and recorder of environmental change. The book is structured in four main parts that explore characteristics of dust, the global dust cycle, impacts of dust on the Earth system, and dust as a climate indicator. The chapters in these parts provide a comprehensive, detailed overview of this highly interdisciplinary subject. The contributions presented here cover dust from source to sink and describe all the processes dust particles undergo while travelling through the atmosphere. Chapters explore how dust is lifted and transported, how it affects radiation, clouds, regional circulations, precipitation and chemical processes in the atmosphere, and how it deteriorates air quality. The book explores how dust is removed from the atmosphere by gravitational settling, turbulence or precipitation, how iron contained in dust fertilizes terrestrial and marine ecosystems, and about the role that dust plays in human health. We learn how dust is observed, simulated using computer models and forecast. The book also details the role of dust deposits for climate reconstructions

  15. Distribution of Dust from Kuiper Belt Objects

    NASA Technical Reports Server (NTRS)

    Gorkavyi, Nick N.; Ozernoy, Leonid; Taidakova, Tanya; Mather, John C.; Fisher, Richard (Technical Monitor)

    2000-01-01

    Using an efficient computational approach, we have reconstructed the structure of the dust cloud in the Solar system between 0.5 and 100 AU produced by the Kuiper belt objects. Our simulations offer a 3-D physical model of the 'kuiperoidal' dust cloud based on the distribution of 280 dust particle trajectories produced by 100 known Kuiper belt objects; the resulting 3-D grid consists of 1.9 x 10' cells containing 1.2 x 10" particle positions. The following processes that influence the dust particle dynamics are taken into account: 1) gravitational scattering on the eight planets (neglecting Pluto); 2) planetary resonances; 3) radiation pressure; and 4) the Poynting-Robertson (P-R) and solar wind drags. We find the dust distribution highly non-uniform: there is a minimum in the kuiperoidal dust between Mars and Jupiter, after which both the column and number densities of kuiperoidal dust sharply increase with heliocentric distance between 5 and 10 AU, and then form a plateau between 10 and 50 AU. Between 25 and 45 AU, there is an appreciable concentration of kuiperoidal dust in the form of a broad belt of mostly resonant particles associated with Neptune. In fact, each giant planet possesses its own circumsolar dust belt consisting of both resonant and gravitationally scattered particles. As with the cometary belts simulated in our related papers, we reveal a rich and sophisticated resonant structure of the dust belts containing families of resonant peaks and gaps. An important result is that both the column and number dust density are more or less flat between 10 and 50 AU, which might explain the surprising data obtained by Pioneers 10 & 11 and Voyager that the dust number density remains approximately distance-independent in this region. The simulated kuiperoidal dust, in addition to asteroidal and cometary dust, might represent a third possible source of the zodiacal light in the Solar system.

  16. Effects of River Regulation on Aeolian Landscapes, Grand Canyon National Park, USA

    NASA Astrophysics Data System (ADS)

    Draut, A. E.

    2010-12-01

    Sediment deposits in the Colorado River corridor include fluvial sandbars and aeolian dune fields, and the fluvial deposits are the primary sediment source for sand in the aeolian dunes. This 7-year study examined the effects of river regulation at Glen Canyon Dam (alteration of flow regime, sediment-supply reduction, and consequent loss of fluvial sandbars) on aeolian landscapes downstream in Grand Canyon National Park. A comparative study was developed between aeolian landscapes in Grand Canyon, Arizona, and Cataract Canyon, Utah, upstream of Glen Canyon Dam and its reservoir (Lake Powell), where hydrology and sediment supply of the Colorado River are affected substantially less by artificial river regulation than occurs in Grand Canyon. Before closure of Glen Canyon Dam in 1963, sediment-rich floods (mean annual peak 2400 m3/s) formed sandbars from which wind moved sand inland to form aeolian dunes. After dam operations reduced the amplitude and frequency of high flows, and eliminated the mainstream fluvial sediment supply, Grand Canyon’s fluvial sandbars lost open sand area owing to erosion by river flows and the spread of riparian vegetation. Two types of aeolian landscapes now occur in Grand Canyon: (1) modern fluvial sourced, those downwind of post-dam sandbars; and (2) relict fluvial sourced, whose primary sediment source was deposits from pre-dam floods that were larger than any post-dam flows have been. Sediment supply has been reduced to type (1) dune fields because post-dam sandbars are smaller than in the pre-dam era; new sediment supply to type (2) dune fields essentially has been eliminated. Type 1 aeolian landscapes can receive new windblown sand from sandbars formed by controlled floods (1160 m3/s), which occurred in 1996, 2004, and 2008. Type 1 dune fields, being downwind and within 100 m of controlled-flood sandbars, have significantly higher aeolian sand-transport rates, more open sand, and less biologic soil crust than relict type 2 dune

  17. Rocket dust storms and detached dust layers in the Martian atmosphere

    NASA Astrophysics Data System (ADS)

    Spiga, Aymeric; Faure, Julien; Madeleine, Jean-Baptiste; Määttänen, Anni; Forget, François

    2013-04-01

    Airborne dust is the main climatic agent in the Martian environment. Local dust storms play a key role in the dust cycle; yet their life cycle is poorly known. Here we use mesoscale modeling that includes the transport of radiatively active dust to predict the evolution of a local dust storm monitored by OMEGA on board Mars Express. We show that the evolution of this dust storm is governed by deep convective motions. The supply of convective energy is provided by the absorption of incoming sunlight by dust particles, rather than by latent heating as in moist convection on Earth. We propose to use the terminology "rocket dust storm," or conio-cumulonimbus, to describe those storms in which rapid and efficient vertical transport takes place, injecting dust particles at high altitudes in the Martian troposphere (30-50 km). Combined to horizontal transport by large-scale winds, rocket dust storms produce detached layers of dust reminiscent of those observed with Mars Global Surveyor and Mars Reconnaissance Orbiter. Since nighttime sedimentation is less efficient than daytime convective transport, and the detached dust layers can convect during the daytime, these layers can be stable for several days. The peak activity of rocket dust storms is expected in low-latitude regions at clear seasons (late northern winter to late northern summer), which accounts for the high-altitude tropical dust maxima unveiled by Mars Climate Sounder. Dust-driven deep convection has strong implications for the Martian dust cycle, thermal structure, atmospheric dynamics, cloud microphysics, chemistry, and robotic and human exploration.

  18. Understanding early-stage dune development: morphodynamics of aeolian protodunes

    NASA Astrophysics Data System (ADS)

    Baddock, Matthew; Wiggs, Giles; Nield, Joanna

    2016-04-01

    For such a fundamental aspect of bedform development, the initiation and early-stage growth of sand dunes remain poorly understood. Protodunes are bedforms within the continuum of early-stage depositional aeolian features that exist between flat sand patches and small dunes. As transitory bedforms with the potential to develop into dunes, the detailed study of protodune morphodynamics can provide significant insights into nascent dune development. As part of a multi-annual study investigating bedform change through repeat morphological surveys of bedforms with differing maturity, measurements of near-surface airflow and sand transport were conducted over a protodune in a small Namibian barchan dune field. The protodune was approximately 85 m in length and 1 m high, and was without a slipface. Data show that over the course of a week, patterns of airflow and transport flux variation were linked with accretion at the crest, and erosion of the leeside edge showing an increase in protodune height, and providing evidence of the dune's vertical development. Surveys reveal the longer term evolution of the protodune, in the context of changes exhibited by nearby, fully developed barchan dunes, and long term monitoring of wind regime at the site.

  19. Natural gamma-radiation in the Aeolian volcanic arc.

    PubMed

    Chiozzi, P; Pasquale, V; Verdoya, M; Minato, S

    2001-11-01

    Pulse-height distributions of gamma-rays, obtained with a field NaI(Tl) scintillation spectrometer in numerous sites of the Lipari and Vulcano islands (Aeolian volcanic arc, Italy), were measured to determine the U, Th and K concentrations of the bedrock and the relative values of the air absorbed dose rate. U is spatially related to both Th and K and the Th/U ratio is on average 3.1-3.5. The magmatic evolution is reflected by the concentration of the three radioelements, as they are more abundant within the more felsic units of the volcanic series. The higher values of U (15.7-20.0 ppm) coincide with higher Th (48.3-65.9 ppm) and K (4.9-6.1%) concentrations associated with rhyolitic rocks of the third cycle (< 50 ky). The air absorbed dose rate varies from 20 to 470 nGy h(-1). The highest values (> 350 nGy h(-1)) are observed on outcrops of rhyolitic obsidian lava flows. The cosmic-ray contribution is also evaluated to estimate the total background radiation dose rate.

  20. Multi-elemental characterization of tunnel and road dusts in Houston, Texas using dynamic reaction cell-quadrupole-inductively coupled plasma-mass spectrometry: evidence for the release of platinum group and anthropogenic metals from motor vehicles.

    PubMed

    Spada, Nicholas; Bozlaker, Ayse; Chellam, Shankararaman

    2012-07-20

    Platinum group elements (PGEs) including Rh, Pd, and Pt are important tracers for vehicular emissions, though their measurement is often challenging and difficult to replicate in environmental campaigns. These challenges arise from sample preparation steps required for PGE quantitation, which often cause severe isobaric interferences and spectral overlaps from polyatomic species of other anthropogenically emitted metals. Consequently, most previous road dust studies have either only quantified PGEs or included a small number of anthropogenic elements. Therefore a novel analytical method was developed to simultaneously measure PGEs, lanthanoids, transition and main group elements to comprehensively characterize the elemental composition of urban road and tunnel dusts. Dust samples collected from the vicinity of high-traffic roadways and a busy underwater tunnel restricted to single-axle (predominantly gasoline-driven) vehicles in Houston, TX were analyzed for 45 metals with the newly developed method using dynamic reaction cell-quadrupole-inductively coupled plasma-mass spectrometry (DRC-q-ICP-MS). Average Rh, Pd and Pt concentrations were 152±52, 770±208 and 529±130 ng g(-1) respectively in tunnel dusts while they varied between 6 and 8 ng g(-1), 10 and 88 ng g(-1) and 35 and 131 ng g(-1) in surface road dusts. Elemental ratios and enrichment factors demonstrated that PGEs in dusts originated from autocatalyst attrition/abrasion. Strong evidence is also presented for mobile source emissions of Cu, Zn, Ga, As, Mo, Cd, Sn, Sb, Ba, W and Pb. However, all other elements including rare earths most likely arose from weathering, erosion and resuspension of crustal material. These are the first such detailed measurements in Houston, the largest city in TX and fourth largest in the United States. We posit that such investigations will assist in better understanding PGE concentrations in urban environments while providing elemental data necessary to better understand

  1. Abundances of Volatile - Bearing Species from Evolved Gas Analysis of Samples from the Rocknest Aeolian Bedform in Gale Crater

    NASA Technical Reports Server (NTRS)

    Archer, P. D., Jr.; Franc, H. B.; Sutter, B.; McAdam, A.; Ming, D. W.; Morris, R. V.; Mahaffy, P. R.

    2013-01-01

    The Sample Analysis at Mars (SAM) instrument suite on board the Mars Science Laboratory (MSL) recently ran four samples from an aeolian bedform named Rocknest. SAM detected the evolution of H2O, CO2, O2, and SO2, indicative of the presence of multiple volatile bearing species (Fig 1). The Rocknest bedform is a windblown deposit selected as representative of both the windblown material in Gale crater as well as the globally-distributed martian dust. Four samples of Rocknest material were analyzed by SAM, all from the fifth scoop taken at this location. The material delivered to SAM passed through a 150 m sieve and is assumed to have been well mixed during the sample acquisition/preparation/handoff process. SAM heated the Rocknest samples to approx.835 C at a ramp rate of 35 C/min with a He carrier gas flow rate of apprx.1.5 standard cubic centimeters per minute and at an oven pressure of 30 mbar [1]. Evolved gases were detected by a quadrupole mass spectrometer (QMS). This abstract presents the molar abundances of H2O, CO2, O2, and SO2 as well as their concentration in rocknest samples using an estimated sample mass.

  2. Nano-metric Dust Particles as a Hardly Detectable Component of the Interplanetary Dust Cloud

    NASA Astrophysics Data System (ADS)

    Simonia, I.; Nabiyev, Sh.

    2015-09-01

    The present work introduces the hypothesis of existence of a hardly detectable component of the interplanetary dust cloud and demonstrates that such a component is a dust formation consisting of the dust particles of nano-metric dimensions. This work describes the main physical properties of such a kind of nano-dust, and its possible chemical and mineralogical peculiarities proposes new explanations related to reddening of the dynamically cold transneptunian objects on account of scattering their light by nano-dust of the hardly detectable component of the interplanetary dust cloud. We propose the relation for the coefficient of absorption by the nano-dust and provide results of the statistical analysis of the TNO color index-orbital inclinations. We also present a critical assessment of the proposed hypothesis.

  3. Reuyl Crater Dust Avalanches

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 13 May 2002) The Science The rugged, arcuate rim of the 90 km crater Reuyl dominates this THEMIS image. Reuyl crater is at the southern edge of a region known to be blanketed in thick dust based on its high albedo (brightness) and low thermal inertia values. This thick mantle of dust creates the appearance of snow covered mountains in the image. Like snow accumulation on Earth, Martian dust can become so thick that it eventually slides down the face of steep slopes, creating runaway avalanches of dust. In the center of this image about 1/3 of the way down is evidence of this phenomenon. A few dozen dark streaks can be seen on the bright, sunlit slopes of the crater rim. The narrow streaks extend downslope following the local topography in a manner very similar to snow avalanches on Earth. But unlike their terrestrial counterparts, no accumulation occurs at the bottom. The dust particles are so small that they are easily launched into the thin atmosphere where they remain suspended and ultimately blow away. The apparent darkness of the avalanche scars is due to the presence of relatively dark underlying material that becomes exposed following the passage of the avalanche. Over time, new dust deposition occurs, brightening the scars until they fade into the background. Although dark slope streaks had been observed in Viking mission images, a clear understanding of this dynamic phenomenon wasn't possible until the much higher resolution images from the Mars Global Surveyor MOC camera revealed the details. MOC images also showed that new avalanches have occurred during the time MGS has been in orbit. THEMIS images will allow additional mapping of their distribution and frequency, contributing new insights about Martian dust avalanches. The Story The stiff peaks in this image might remind you of the Alps here on Earth, but they really outline the choppy edge of a large Martian crater over 50 miles wide (seen in the context image at right). While these aren

  4. Dust agglomeration

    NASA Technical Reports Server (NTRS)

    2000-01-01

    John Marshall, an investigator at Ames Research Center and a principal investigator in the microgravity fluid physics program, is studying the adhesion and cohesion of particles in order to shed light on how granular systems behave. These systems include everything from giant dust clouds that form planets to tiny compressed pellets, such as the ones you swallow as tablets. This knowledge should help us control the grains, dust, and powders that we encounter or use on a daily basis. Marshall investigated electrostatic charge in microgravity on the first and second U.S. Microgravity Laboratory shuttle missions to see how grains aggregate, or stick together. With gravity's effects eliminated on orbit, Marshall found that the grains of sand that behaved ever so freely on Earth now behaved like flour. They would just glom together in clumps and were quite difficult to disperse. That led to an understanding of the prevalence of the electrostatic forces. The granules wanted to aggregate as little chains, like little hairs, and stack end to end. Some of the chains had 20 or 30 grains. This phenomenon indicated that another force, what Marshall believes to be an electrostatic dipole, was at work.(The diagram on the right emphasizes the aggregating particles in the photo on the left, taken during the USML-2 mission in 1995.)

  5. Dust in Planetary Systems

    NASA Astrophysics Data System (ADS)

    Krueger, H.; Graps, A.

    2007-01-01

    , analysis of the Galileo data is still ongoing. Other space missions such as Ulysses experienced its 2nd flyby at Jupiter in 2004 and the New Horizons mission Jupiter flyby is coming up. The recent years saw significant improvements of dust detection techniques. Most notably, the development of large-area mass analyzers combined with trajectory sensors has been a major step forward towards dedicated dust astronomy missions. Moving outside our solar system, with over 200 detected extrasolar planets, the dusty debris disk research is a rapidly expanding field. Dusty debris disks can serve as detailed tracers of extrasolar planetary systems. Even though the planets are obscured, they are nevertheless dynamically imprinted in the surrounding dust to provide our best clue to study solar systems like our own. Is our system dustier or rockier than the average? Is the timing of our late heavy bombardment typical? Improvements in models comparing with improving observational data for extrasolar debris disks are reaching the point to answer these questions. Significant progress has also been made in the laboratory with investigations of 'dusty' processes and material analyses of collected samples. The Scientific Organizing Committee defined the scientific content and selected the invited reviews. These proceedings contain 6 invited papers and 39 contributed papers. The papers reflect the scientific content of the meeting, covering the areas of cosmic dust research described here. Each paper was peer-reviewed. After each review, each paper was modified by the authors, accordingly. The workshop was sponsored by National Aeronautics and Space Administration, European Space Agency, Lunar and Planetary Institute and the Hawaii Institute of Geophysics and Planetology, University of Hawaii at Manoa. It is a pleasure to thank Mary Cloud and all individuals who worked so hard behind the scenes to make this workshop a success. The generous help of all manuscript reviewers is gratefully

  6. Interstellar Dust: Contributed Papers

    NASA Technical Reports Server (NTRS)

    Tielens, Alexander G. G. M. (Editor); Allamandola, Louis J. (Editor)

    1989-01-01

    A coherent picture of the dust composition and its physical characteristics in the various phases of the interstellar medium was the central theme. Topics addressed included: dust in diffuse interstellar medium; overidentified infrared emission features; dust in dense clouds; dust in galaxies; optical properties of dust grains; interstellar dust models; interstellar dust and the solar system; dust formation and destruction; UV, visible, and IR observations of interstellar extinction; and quantum-statistical calculations of IR emission from highly vibrationally excited polycyclic aromatic hydrocarbon (PAH) molecules.

  7. Particle Distribution Of A Moon-Fed Dust Torus

    NASA Astrophysics Data System (ADS)

    Jamrath, E.; Makuch, M.; Spahn, F.

    2008-09-01

    Enceladus' south-polar gey- sers support a huge gas-dust plume towering the south pole of the moon. It is considered to be the main source Saturns E-ring, the largest dust complex of the solar system. Contrary to the spherically sym- metric impactor ejecta dust cre- ation, the dust plume provides a directed particle outflow from the moon. Using a simple probabilistic model, we study the effects of this asymmetric dust ejection on Enceladus' dust torus. Dust con- figurations are described by par- ticle distribution functions and the dynamical properties of the system are adressed through a set of transformations. The re- sulting distribution function of orbital elements describes the unperturbed dust torus. We showcase the differences in the resulting particle distributions between impactor ejecta pro- cesses and dust production by Enceladus plume, modeled by a directed point-sized source. The obtained orbital element distri- bution is compared to the results of numerical simulations of the problem.

  8. Aeolian and fluvial processes in dryland regions: the need for integrated studies

    USGS Publications Warehouse

    Belnap, Jayne; Munson, Seth M.; Field, Jason P.

    2011-01-01

    Aeolian and fluvial processes play a fundamental role in dryland regions of the world and have important environmental and ecological consequences from local to global scales. Although both processes operate over similar spatial and temporal scales and are likely strongly coupled in many dryland systems, aeolian and fluvial processes have traditionally been studied separately, making it difficult to assess their relative importance in drylands, as well as their potential for synergistic interaction. Land degradation by accelerated wind and water erosion is a major problem throughout the world's drylands, and although recent studies suggest that these processes likely interact across broad spatial and temporal scales to amplify the transport of soil resources from and within drylands, many researchers and land managers continue to view them as separate and unrelated processes. Here, we illustrate how aeolian and fluvial sediment transport is coupled at multiple spatial and temporal scales and highlight the need for these interrelated processes to be studied from a more integrated perspective that crosses traditional disciplinary boundaries. Special attention is given to how the growing threat of climate change and land-use disturbance will influence linkages between aeolian and fluvial processes in the future. We also present emerging directions for interdisciplinary needs within the aeolian and fluvial research communities that call for better integration across a broad range of traditional disciplines such as ecology, biogeochemistry, agronomy, and soil conservation.

  9. The Fate of Saharan Dust Across the Atlantic and Implications for a Central American Dust Barrier

    NASA Technical Reports Server (NTRS)

    Nowottnick, E.; Colarco, P.; da Silva, A.; Hlavka, D.; McGill, M.

    2011-01-01

    Saharan dust was observed over the Caribbean basin during the summer 2007 NASA Tropical Composition, Cloud, and Climate Coupling (TC4) field experiment. Airborne Cloud Physics Lidar (CPL) and satellite observations from MODIS suggest a barrier to dust transport across Central America into the eastern Pacific. We use the NASA GEOS-5 atmospheric transport model with online aerosol tracers to perform simulations of the TC4 time period in order to understand the nature of this barrier. Our simulations are driven by the Modem Era Retrospective-Analysis for Research and Applications (MERRA) meteorological analyses. We evaluate our baseline simulated dust distributions using MODIS and CALIOP satellite and ground-based AERONET sun photometer observations. GEOS-5 reproduces the observed location, magnitude, and timing of major dust events, but our baseline simulation does not develop as strong a barrier to dust transport across Central America as observations suggest. Analysis of the dust transport dynamics and lost processes suggest that while both mechanisms play a role in defining the dust transport barrier, loss processes by wet removal of dust are about twice as important as transport. Sensitivity analyses with our model showed that the dust barrier would not exist without convective scavenging over the Caribbean. The best agreement between our model and the observations was obtained when dust wet removal was parameterized to be more aggressive, treating the dust as we do hydrophilic aerosols.

  10. Iron mobilization in mineral dust: Can anthropogenic SO2 emissions affect ocean productivity?