Science.gov

Sample records for aeolian dust record

  1. A 37,000-year environmental magnetic record of aeolian dust deposition from Burial Lake, Arctic Alaska

    NASA Astrophysics Data System (ADS)

    Dorfman, J. M.; Stoner, J. S.; Finkenbinder, M. S.; Abbott, M. B.; Xuan, C.; St-Onge, G.

    2015-11-01

    Environmental magnetism and radiocarbon dating of Burial Lake sediments constrain the timing and magnitude of regional aeolian deposition for the Noatak region of western Arctic Alaska for the last ˜37,000 years. Burial Lake (68.43°N, 159.17°W, 21.5 m water depth) is optimally located to monitor regional dust deposition because it is perched above local drainage and isolated from glacial processes. Cores collected in the summer of 2010 were studied through the application of magnetizations and progressive alternating field (AF) demagnetization of u-channel samples, with additional data provided by computed tomography (CT) derived density, hysteresis measurements, isothermal remanent magnetization (IRM) acquisition experiments, organic carbon content, biogenic silica, physical grain size, radiocarbon dating of wood, seeds, and plant macrofossils, point source magnetic susceptibility, and X-ray fluorescence (XRF). With similar magnetic properties to regional Alaskan loess deposits, low coercivity, highly magnetic material deposited during the late-Pleistocene contrasts with a high coercivity, weakly magnetic component found throughout the record, consistent with locally-derived detritus. The relative proportion of low coercivity to high coercivity magnetic material, defined by the S-Ratios, is used to reconstruct the regional input of dust to the basin over time. A four-fold decrease in the low coercivity component through the deglacial transition is interpreted to reflect diminished dust input to the region. Comparisons with potential sources of dust show that the timing of deposition in Burial Lake is largely consistent with general aridity, lack of vegetative cover, and increased windiness, rather than glacial advances or retreats. The influence from subaerial exposure of continental shelves cannot be ruled out as a significant far-field source of dust to interior Alaska during the Last Glacial Maximum (LGM), but is unlikely to have been the sole source, or to

  2. Aeolian dust as a transport hazard

    NASA Astrophysics Data System (ADS)

    Baddock, M. C.; Strong, C. L.; Murray, P. S.; McTainsh, G. H.

    2013-06-01

    The effects of blowing dust on transport operations are often mentioned as one of the significant impacts of aeolian processes on human welfare. However, few studies have been presented to demonstrate this impact. This research examined official air traffic incident reports in Australia for inclusively 1969-2010 to characterise the hazard of blowing dust to aviation in the country, the first such study of its kind. For the 42 year record, 61 incidents were identified (mean 1.4 per annum), with the large majority occurring in the first half of the 1970s. Only 20% of incidents occurred from 1984 onwards. Australian dust activity has not decreased over time, and the reduction in incidents is partly explained by improvements in aviation technology. The centralisation of Air Traffic Control operations to major coastal cities may however have reduced pilot reporting of dust-induced aviation incidents. By type of dust activity, dust storms were associated with nearly half of the reported incidents and dust hazes produced around a quarter. Only 5% of incidents resulted in any physical damage to aircraft and only one case involving personal injury was reported. The majority of the adverse effects on aviation due to dust (nearly 60% of reported incidents) were related to difficulties for navigation and completion of scheduled journey. Since aircraft damage and bodily harm were rare, the impact of dust in Australia is mostly that of inconvenience and associated raised economic costs. From 1990, the temporal pattern of incidents does not show any significant increase despite several intensely dusty years associated with recent droughts. This suggests that Australian aviation safety may be relatively resistant to the adverse effects of atmospheric dust as a hazard.

  3. The nature and formation of aeolian mineral dust material

    NASA Astrophysics Data System (ADS)

    Smalley, Ian; O'hara-Dhand, Ken; McLaren, Sue

    2013-04-01

    Aeolian dust affects climate and records past climates. It has become a much studied material but there has been a certain lack of emphasis on the actual nature of the dust, and an even greater neglect of actual production mechanisms for dust particles. Huge amounts of dust may be raised from the Bodele depression and other parts of North Africa, and much of it may be carried across the North Atlantic to aid in soil formation in Brazil. But what does it consist of? We know that much of the Bodele dust is diatoms from old Lake Chad, but what of the lithological inorganic mineral content? A very crude division of aeolian dust into large dust(say around 20-50um) and small dust (2-5um)has been proposed. Much of the study of loess has been confused by the failure to make this distinction, and similar problems may arise in the study of the finer fractions of aeolian dust. Much aeolian material is clay-mineral based- formed from clay mineral aggregates(CMA), from lake bottom sediments. This can form large dust particles, as in parna in Australia, but also contributes largely to small long travel aerosolic dust. Another major contributor is the quartz fragment. The large dust for classic loess deposits is mostly quartz silt- and there is considerable discussion about the controls that affect quartz silt. There are some interesting modalities in the world of quartz particle sedimentology which need to be examined. Quartz sand (say 200-500um) is the key initiating material and the formation processes for quartz sand have a down-the-line effect on the formation of smaller particles. The central observation is the action of two processes- a eutectic-like reaction in the proto-rock granite which defines the essential nature of sand particles, and the high-low displacive crystallographic transformation which introduces tensile stresses into the quartz particle systems. The limited range of eutectic particle size means a limited range of tensile stresses. A neat combination of

  4. Size-differentiated chemical characteristics of Asian paleo dust: records from aeolian deposition on Chinese Loess Plateau.

    PubMed

    Wu, Feng; Chow, Judith C; An, Zhisheng; Watson, John G; Cao, Junji

    2011-02-01

    The Chinese Loess Plateau (CLP) receives and potentially contributes to Asian dust storms that affect particulate matter (PM) concentrations, visibility, and climate. Loess on the CLP has experienced little weathering effect and is regarded as an ideal record to represent geochemical characteristics of Asian paleo dust. Samples were taken from 2-, 9-, and 15-m depths (representing deposition periods from approximately 12,000 to approximately 200,000 yr ago) in the Xi Feng loess profile on the CLP. The samples were resuspended and then sampled through total suspended particulates (TSP), PM10, PM2.5, and PM1 (PM with aerodynamic diameters < approximately 30, 10, 2.5, and 1 microm, respectively) inlets onto filters for mass, elemental, ionic, and carbon analyses using a Desert Research Institute resuspension chamber. The elements Si, Ca, Al, Fe, K, Mg, water-soluble Ca (Ca2+), organic carbon, and carbonate carbon are the major constituents (> 1%) in loess among the four PM fractions (i.e., TSP, PM10, PM2.5, and PM1). Much of Ca is water soluble and corresponds with measures of carbonate, indicating that most of the calcium is in the form of calcium carbonate rather than other calcium minerals. Most of the K is insoluble, indicating that loess can be separated from biomass burning contributions when K+ is measured. The loess has elemental abundances similar to those of the upper continental crust (UCC) for Mg, Fe, Ti, Mn, V, Cr, and Ni, but substantially different ratios for other elements such as Ca, Co, Cu, As, and Pb. These suggest that the use of UCC as a reference to represent pure or paleo Asian dust needs to be further evaluated. The aerosol samples from the source regions have similar ratios to loess for crustal elements, but substantially different ratios for species from anthropogenic sources (e.g., K, P, V, Cr, Cu, Zn, Ni, and Pb), indicating that the aerosol samples from the geological-source-dominated environment are not a "pure" soil product as compared

  5. Aeolian dust in Colorado Plateau soils: Nutrient inputs and recent change in source

    PubMed Central

    Reynolds, Richard; Belnap, Jayne; Reheis, Marith; Lamothe, Paul; Luiszer, Fred

    2001-01-01

    Aeolian dust (windblown silt and clay) is an important component in arid-land ecosystems because it may contribute to soil formation and furnish essential nutrients. Few geologic surfaces, however, have been characterized with respect to dust-accumulation history and resultant nutrient enrichment. We have developed a combination of methods to identify the presence of aeolian dust in arid regions and to evaluate the roles of this dust in ecosystem processes. Unconsolidated sandy sediment on isolated surfaces in the Canyonlands region of the Colorado Plateau differs greatly in mineralogical and chemical composition from associated bedrock, mainly aeolian sandstone. Detrital magnetite in the surficial deposits produces moderately high values of magnetic susceptibility, but magnetite is absent in nearby bedrock. A component of the surficial deposits must be aeolian to account for the abundance of magnetite, which formed originally in far-distant igneous rocks. Particle-size analysis suggests that the aeolian dust component is typically as much as 20–30%. Dust inputs have enriched the sediments in many elements, including P, Mg, Na, K, and Mo, as well as Ca, at sites where bedrock lacks calcite cement. Soil-surface biologic crusts are effective dust traps that apparently record a change in dust sources over the past several decades. Some of the recently fallen dust may result from human disturbance of land surfaces that are far from the Canyonlands, such as the Mojave Desert. Some land-use practices in the study area have the potential to deplete soil fertility by means of wind-erosion removal of aeolian silt. PMID:11390965

  6. Aeolian dust in Colorado Plateau soils: Nutrient inputs and recent change in source

    USGS Publications Warehouse

    Reynolds, R.; Belnap, Jayne; Lamothe, Paul; Luiszer, Fred

    2001-01-01

    Aeolian dust (windblown silt and clay) is an important component in arid-land ecosystems because it may contribute to soil formation and furnish essential nutrients. Few geologic surfaces, however, have been characterized with respect to dust-accumulation history and resultant nutrient enrichment. We have developed a combination of methods to identify the presence of aeolian dust in arid regions and to evaluate the roles of this dust in ecosystem processes. Unconsolidated sandy sediment on isolated surfaces in the Canyonlands region of the Colorado Plateau differs greatly in mineralogical and chemical composition from associated bedrock, mainly aeolian sandstone. Detrital magnetite in the surficial deposits produces moderately high values of magnetic susceptibility, but magnetite is absent in nearby bedrock. A component of the surficial deposits must be aeolian to account for the abundance of magnetite, which formed originally in far-distant igneous rocks. Particle-size analysis suggests that the aeolian dust component is typically as much as 20a??30%. Dust inputs have enriched the sediments in many elements, including P, Mg, Na, K, and Mo, as well as Ca, at sites where bedrock lacks calcite cement. Soil-surface biologic crusts are effective dust traps that apparently record a change in dust sources over the past several decades. Some of the recently fallen dust may result from human disturbance of land surfaces that are far from the Canyonlands, such as the Mojave Desert. Some land-use practices in the study area have the potential to deplete soil fertility by means of wind-erosion removal of aeolian silt.

  7. Optical Properties of Aeolian Dusts Common to West Texas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Both recent models and historical events such as the Dust Bowl and volcanic eruptions have illustrated aerosols can play a significant role in climate change through direct and indirect optical effects. Soil dust aerosols generated by Aeolian processes represent a significant fraction of the total ...

  8. Mechanics of aeolian processes: Soil erosion and dust production

    NASA Technical Reports Server (NTRS)

    Mehrabadi, M. M.

    1989-01-01

    Aeolian (wind) processes occur as a result of atmosphere/land-surface system interactions. A thorough understanding of these processes and their physical/mechanical characterization on a global scale is essential to monitoring global change and, hence, is imperative to the fundamental goal of the Earth observing system (Eos) program. Soil erosion and dust production by wind are of consequence mainly in arid and semi arid regions which cover 36 percent of the Earth's land surface. Some recent models of dust production due to wind erosion of agricultural soils and the mechanics of wind erosion in deserts are reviewed and the difficulties of modeling the aeolian transport are discussed.

  9. Lidar measurements of Aeolian dust: Mars and Earth

    NASA Astrophysics Data System (ADS)

    Dickinson, C. S.; Davy, R.; Komguem, L.; Junkermann, W.; Whiteway, J. A.

    2009-12-01

    The Phoenix Lidar system was operated in 2008, beginning in Martian northern spring (L_s = 78) through mid summer (L_s = 147). During this period, nighttime observations of dust indicate both persistent background dust up to heights of approximately 15 km, and enhanced dust loading in the Boundary Layer up to heights of approximately 4 km. The magnitude of the optical extinction was observed to decrease within the Boundary Layer with time following summer solstice. This situation is similar to that observed in the Australian desert: a persistent dust layer up to heights of 6 km, with a daytime Convective Boundary Layer increasing up to heights of 4 km during local dust storm activity, and then decreasing during night. A comparative study was undertaken, with the results being augmented by both in situ measurements of the Australian desert dust, as made by over-flying aircraft, and modeled results of Aeolian dust in both environments.

  10. Optical properties of Aeolian dusts common to West Texas

    NASA Astrophysics Data System (ADS)

    Ma, Lulu; Zobeck, Ted M.; Hsieh, Daniel H.; Holder, Dean; Morgan, Cristine L. S.; Thompson, Jonathan E.

    2011-11-01

    Both recent models and historical events such as the Dust Bowl and volcanic eruptions have illustrated aerosols can play a significant role in climate change through direct and indirect optical effects. Soil dust aerosols generated by Aeolian processes represent a significant fraction of the total mass burden of atmospheric particles. Central to a better understanding of the climate effects of dust aerosols is knowledge of their optical properties. This research study utilized a dust generator and several instruments to determine certain optical properties of Aeolian dust mimics created by the Amarillo and Pullman soil types native to the panhandle of Texas, USA. Values for the mass-extinction coefficient ranged between 1.74 and 2.97 m 2 g -1 at 522 nm depending on how mass concentration was determined. Single-scatter albedo (SSA) for both soil types ranged from 0.947 to 0.980 at visible wavelengths with SSA increasing at longer wavelengths. Angstrom absorption exponents were measured as 1.73 for Pullman and 2.17 for Amarillo soil. Observed Angstrom extinction exponents were 0.110 and 0.168 for the Pullman and Amarillo soil types. The optical properties reported may be of use for optical based estimates of soil erosion and aid in understanding how regional soil dusts may alter radiative transport presently and during historical events such as the Dust Bowl era.

  11. Sensitivity simulations with direct shortwave radiative forcing by aeolian dust during glacial cycles

    NASA Astrophysics Data System (ADS)

    Bauer, E.; Ganopolski, A.

    2014-07-01

    Possible feedback effects between aeolian dust, climate and ice sheets are studied for the first time with an Earth system model of intermediate complexity over the late Pleistocene period. Correlations between climate and dust deposition records suggest that aeolian dust potentially plays an important role for the evolution of glacial cycles. Here climatic effects from the dust direct radiative forcing (DRF) caused by absorption and scattering of solar radiation are investigated. Key elements controlling the dust DRF are the atmospheric dust distribution and the absorption-scattering efficiency of dust aerosols. Effective physical parameters in the description of these elements are varied within uncertainty ranges known from available data and detailed model studies. Although the parameters can be reasonably constrained, the simulated dust DRF spans a~wide uncertainty range related to the strong nonlinearity of the Earth system. In our simulations, the dust DRF is highly localized. Medium-range parameters result in negative DRF of several watts per square metre in regions close to major dust sources and negligible values elsewhere. In the case of high absorption efficiency, the local dust DRF can reach positive values and the global mean DRF can be insignificantly small. In the case of low absorption efficiency, the dust DRF can produce a significant global cooling in glacial periods, which leads to a doubling of the maximum glacial ice volume relative to the case with small dust DRF. DRF-induced temperature and precipitation changes can either be attenuated or amplified through a feedback loop involving the dust cycle. The sensitivity experiments suggest that depending on dust optical parameters, dust DRF has the potential to either damp or reinforce glacial-interglacial climate changes.

  12. Identifying sources of aeolian mineral dust: Present and past

    USGS Publications Warehouse

    Muhs, Daniel R; Prospero, Joseph M; Baddock, Matthew C; Gill, Thomas E

    2014-01-01

    Aeolian mineral dust is an important component of the Earth’s environmental systems, playing roles in the planetary radiation balance, as a source of fertilizer for biota in both terrestrial and marine realms and as an archive for understanding atmospheric circulation and paleoclimate in the geologic past. Crucial to understanding all of these roles of dust is the identification of dust sources. Here we review the methods used to identify dust sources active at present and in the past. Contemporary dust sources, produced by both glaciogenic and non-glaciogenic processes, can be readily identified by the use of Earth-orbiting satellites. These data show that present dust sources are concentrated in a global dust belt that encompasses large topographic basins in low-latitude arid and semiarid regions. Geomorphic studies indicate that specific point sources for dust in this zone include dry or ephemeral lakes, intermittent stream courses, dune fields, and some bedrock surfaces. Back-trajectory analyses are also used to identify dust sources, through modeling of wind fields and the movement of air parcels over periods of several days. Identification of dust sources from the past requires novel approaches that are part of the geologic toolbox of provenance studies. Identification of most dust sources of the past requires the use of physical, mineralogical, geochemical, and isotopic analyses of dust deposits. Physical properties include systematic spatial changes in dust deposit thickness and particle size away from a source. Mineralogy and geochemistry can pinpoint dust sources by clay mineral ratios and Sc-Th-La abundances, respectively. The most commonly used isotopic methods utilize isotopes of Nd, Sr, and Pb and have been applied extensively in dust archives of deep-sea cores, ice cores, and loess. All these methods have shown that dust sources have changed over time, with far more abundant dust supplies existing during glacial periods. Greater dust supplies in

  13. Granulometric profiling of aeolian dust deposits by automated image analysis

    NASA Astrophysics Data System (ADS)

    Varga, György; Újvári, Gábor; Kovács, János; Jakab, Gergely; Kiss, Klaudia; Szalai, Zoltán

    2016-04-01

    Determination of granulometric parameters is of growing interest in the Earth sciences. Particle size data of sedimentary deposits provide insights into the physicochemical environment of transport, accumulation and post-depositional alterations of sedimentary particles, and are important proxies applied in paleoclimatic reconstructions. It is especially true for aeolian dust deposits with a fairly narrow grain size range as a consequence of the extremely selective nature of wind sediment transport. Therefore, various aspects of aeolian sedimentation (wind strength, distance to source(s), possible secondary source regions and modes of sedimentation and transport) can be reconstructed only from precise grain size data. As terrestrial wind-blown deposits are among the most important archives of past environmental changes, proper explanation of the proxy data is a mandatory issue. Automated imaging provides a unique technique to gather direct information on granulometric characteristics of sedimentary particles. Granulometric data obtained from automatic image analysis of Malvern Morphologi G3-ID is a rarely applied new technique for particle size and shape analyses in sedimentary geology. Size and shape data of several hundred thousand (or even million) individual particles were automatically recorded in this study from 15 loess and paleosoil samples from the captured high-resolution images. Several size (e.g. circle-equivalent diameter, major axis, length, width, area) and shape parameters (e.g. elongation, circularity, convexity) were calculated by the instrument software. At the same time, the mean light intensity after transmission through each particle is automatically collected by the system as a proxy of optical properties of the material. Intensity values are dependent on chemical composition and/or thickness of the particles. The results of the automated imaging were compared to particle size data determined by three different laser diffraction instruments

  14. Variation in aeolian environments recorded by the particle size distribution of lacustrine sediments in Ebinur Lake, northwest China.

    PubMed

    Ma, Long; Wu, Jinglu; Abuduwaili, Jilili

    2016-01-01

    Particle size analysis of lacustrine core sediments and atmospheric natural dust were conducted in the drainage area of Ebinur Lake in arid northwest China. Using a combination of (137)Cs and (210)Pb dating, a continuous record of aeolian transportation to the lake sediments and related factors over about the past 150 years was analyzed. Factor analysis revealed the particle-size distributions of riverine and aeolian sediments composed of the terrigenous materials of the lake deposits. Compared with the grain-size distributions of natural dust samples, the results showed that the coarser particle size fraction of lake sediments was mainly derived from the sediments that had experienced aeolian transport to the drainage surface, and the finer sediments came from hydraulic inputs. Then, the method of variations in particle-size standard deviation was used to extract the grain size intervals with the highest variability along a sedimentary sequence. The coarser grain-size populations dominated the variation patterns of the sedimentary sequence. During the last 150 years, strong intensity aeolian transportation occurred during three periods, 1915-1935, 1965-1975 and since the beginning of the 2000s. The climate was dry around 1910s-1930s in this region associated with the appropriate dynamic condition, which provided the enhanced source materials and wind power for the aeolian dust transport. Since 1950s, the climate controlled the foundation of aeolian dust transport, and the aeolian dust transport won't be increased under the humid climate. PMID:27217996

  15. Aeolian removal of dust from photovoltaic surfaces on Mars

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Perez-Davis, Marla E.; Marabito, Mark

    1990-01-01

    It is well documented that Mars is totally engulfed in huge dust storms nearly each Martian year. Dust elevated in these global dust storms, or in any of the numerous local dust storms could settle on photovoltaic surfaces and seriously hamper photovoltaic power system performance. Using a recently developed technique to uniformly dust simulated photovoltaic surfaces, samples were subjected to Martian-like winds in an attempt to determine whether natural aeolian processes on Mars would sweep off the settled dust. The effects of wind velocity, angle of attack, height off the Martian surface, and surface coating material were investigated. Principles which can help to guide the design of photovoltaic arrays bound for the Martian surface were uncovered. Most importantly, arrays mounted with an angle of attack approaching 45 deg show the most efficient clearing. Although the angular dependence is not sharp, horizontally mounted arrays required significantly higher wind velocities to clear off the dust. From the perspective of dust-clearing it appears that the arrays may be erected quite near the ground, but previous studies have suggested that saltation effects can be expected to cause such arrays to be covered by sand if they are set up less than about a meter from the ground. Providing that the surface chemistry of Martian dusts is comparable to our test dust, the materials used for protective coating may be optimized for other considerations such as transparency, and chemical or abrasion resistance. The static threshold velocity is low enough that there are regions on Mars which experience winds strong enough to clear off a photovoltaic array if it is properly oriented. Turbulence fences proved to be an ineffective strategy to keep dust cleared from the photovoltaic surfaces.

  16. Geochemical provenance of soils in Kerman urban areas, Iran: Implications for the influx of aeolian dust

    NASA Astrophysics Data System (ADS)

    Dehbandi, Reza; Aftabi, Alijan

    2016-06-01

    The investigation of the interaction of aeolian dust with residual soils has not been fully explored in the Kerman urban areas, Iran. To assess the geochemical influence of aeolian dust on the residual soils of the Kerman urban areas of Iran, 27 samples were studied petrogeochemically. The arid-semi-arid climate of the area together with the southwest-northeast prevailing wind, have deposited aeolian sands over the residual soils. Residual soils reflect similar mineral compositions to that of the underlying bedrock and include mostly calcite and quartz. However, the minor occurrences of pyroxene, amphibole, olivine, plagioclase and volcanic clasts in urban soils and aeolian dust are attributed to volcanogenic inputs transported by aeolian dust. Urban soils and aeolian dust show different geochemical signatures from the local carbonate rocks. All samples contain trace element concentrations that are higher than the carbonate bedrock. Discrimination diagrams indicate that immobile trace elements have geochemical affinity to the detrital ferromagnesian dust inputs and are different from the local carbonate bedrock. Based on the elemental bivariate and ternary diagrams, the soils and aeolian dust are derived from the interaction of carbonate and volcanic rocks. This highlights that the urban soils in the Kerman urban areas have been formed by interactions of the aeolian dust with the primitive residual soils.

  17. Aeolian Removal of Dust Types from Photovoltaic Surfaces on Mars

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Perez-Davis, Marla E.

    1990-01-01

    Dust elevated in local or global dust storms on the Martian surface could settle on photovoltaic (PV) surfaces and seriously hamper their performance. Using a recently developed technique to apply a uniform dust layer, PV surface materials were subjected to simulated Martian winds in an attempt to determine whether natural aeolian processes on Mars would sweep off the settled dust. Three different types of dust were used. The effects of wind velocity, angle of attack, height above the Martian surface, and surface coating material were investigated. It was found that arrays mounted on an angle of attack approaching 45 deg show the most efficient clearing. Although the angular dependence is not sharp, horizontally mounted arrays required much higher wind velocities to clear off the dust. From this test it appears that the arrays may be erected quite near the ground, but previous studies have suggested that saltation effects can be expected to cause such arrays to be covered by soil if they are set up less than about a meter from the ground. Particle size effect appear to dominate over surface chemistry in these experiments, but additional tests are required to confirm this.

  18. Aeolian Removal of Dust Types from Photovoltaic Surfaces on Mars

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Perez-Davis, Marla E.; Marabito, Mark

    1990-01-01

    Dust elevated in local or global dust storms on the Martian surface could settle on photovoltaic (PV) surfaces and seriously hamper their performance. Using a recently developed technique to apply a uniform dust layer, PV surface materials were subjected to simulated Martian winds in an attempt to determine whether natural Aeolian processes on Mars would sweep off the settled dust. Three different types of dust were used; an optical polishing powder, basaltic "trap rock", and iron (III) oxide crystals. The effects of wind velocity, angle of attack, height above the Martian surface, and surface coating material were investigated. It was found that arrays mounted with an angle of attack approaching 45 degrees show the most efficient clearing. Although the angular dependence is not sharp, horizontally mounted arrays required significantly higher wind velocities to clear off the dust. From this test it appears that the arrays may be erected quite near the ground, but previous studies have suggested that saltation effects can be expected to cause such arrays to be covered by soil if they are set up less than about a meter from the ground. Particle size effects appear to dominate over surface chemistry in these experiments, but additional tests are required to confirm this. Providing that the surface chemistry of Martian dusts is not drastically different from simulated dust and that gravity differences have only minor effects, the materials used for protective coatings for photovoltaic arrays may be optimized for other considerations such as transparency, and chemical or abrasion resistance. The static threshold velocity is low enough that there are regions on Mars which experience winds strong enough to clear off a photovoltaic array if it is properly oriented. Turbulence fences proved to be an ineffective strategy to keep dust cleared from the photovoltaic surfaces.

  19. Dust on Mars: An Aeolian Threat to Human Exploration?

    NASA Technical Reports Server (NTRS)

    Marshall, J.

    1999-01-01

    The NASA HEDS Program is duly concerned for human explorers regarding the potential hazard posed by the ubiquitous dust mantle on Mars. To evaluate properties of dust that could be hazardous to humans, the NMS 2001 Lander payload will include the Mars Environmental Compatibility Assessment (MECA) experiment. This includes optical and atomic-force microscopy to evaluate soil grains for shape and size, wet chemistry to evaluate toxic substances, electrometry to evaluate triboelectric charging, and test-material palets to evaluate electrostatic and magnetic adhesion, and the hardness/abrasiveness of soil grains; these experimental subcomponents are delivered samples by the camera-equipped robotic arm of the lander which will acquire material from depths of 0.5 to 1.0 m in the soil. Data returned by MECA will be of value to both the hEDS and planetary/astrobiology communities. Dust poses a threat to human exploration because the martian system does not hydrologically or chemically remove fine particles that are being continuously generated by thermal, aeolian, and colluvial weathering, and by volcanism and impact over billions of years. The dust is extremely fine-grained, in copious quantities, ubiquitous in distribution, continually mobile, and a source of poorly-grounded static charges -- a suite of characteristics posing a particulate and electrical threat to explorers and their equipment. Dust is mobilized on global and regional scales, but probably also unpredictably and violently at local scales by dust devils. The latter might be expected in great abundance owing to near surface atmospheric instability (dust devils were detected by Pathfinder during its brief lifetime). Preliminary laboratory experiments suggest that space-suit materials subjected to windblown dust may acquire a uniform, highly adhesive dust layer that is also highly cohesive laterally owing to electrostatic forces. This layer will obscure visibility through the helmet visor, penetrate joints

  20. Dust on Mars: An Aeolian Threat to Human Exploration?

    NASA Technical Reports Server (NTRS)

    Marshall, J.

    1999-01-01

    The NASA HEDS Program is duly concerned for human explorers regarding the potential hazard posed by the ubiquitous dust mantle on Mars. To evaluate properties of dust that could be hazardous to humans, the MPS 2001 Lander payload will include the Mars Environmental Compatibility Assessment (MECA) experiment. This includes optical and atomic-force microscopy to evaluate soil grains for shape and size, wet chemistry to evaluate toxic substances, electrometry to evaluate triboelectric charging, and test-material palets to evaluate electrostatic and magnetic adhesion, and the hardness/abrasiveness of soil grains; these experimental subcomponents are delivered samples by the camera-equipped robotic arm of the lander which will acquire material from depths of 0.5 to 1.0 m in the soil. Data returned by MECA will be of value to both the BEDS and planetary/astrobiology communities. Dust poses a threat to human exploration because the martian system does not hydrologically or chemically remove fine particles that are being continuously generated by thermal, aeolian, and colluvial weathering, and by volcanism and impact over billions of years. The dust is extremely fine-grained, in copious quantities, ubiquitous in distribution, continually mobile, and a source of poorly-grounded static charges -- a suite of characteristics posing a particulate and electrical threat to explorers and their equipment. Dust is mobilized on global and regional scales, but probably also unpredictably and violently at local scales by dust devils. The latter might be expected in great abundance owing to near surface atmospheric instability (dust devils were detected by Pathfinder during its brief lifetime). Preliminary laboratory experiments suggest that space-suit materials subjected to windblown dust may acquire a uniform, highly adhesive dust layer that is also highly cohesive laterally owing to electrostatic forces. This layer will obscure visibility through the helmet visor, penetrate joints

  1. Aeolian transport of biota with dust: A wind tunnel experiment

    NASA Astrophysics Data System (ADS)

    Rivas, J. A., Jr.; Gill, T. E.; Van Pelt, R. S.; Walsh, E.

    2015-12-01

    Ephemeral wetlands are ideal sources for dust emission, as well as repositories for dormant stages of aquatic invertebrates. An important component of invertebrate dispersal and colonization to new areas is the ability to be entrained into the atmosphere. Aquatic invertebrate eggs fall within the size of dust and sand grains (30-600μm), are less dense and aerodynamically shaped. We have shown previously that aquatic invertebrates can be dispersed long distances in dust storms but the extent of transport of taxa based on diapausing egg size/morphology has not been investigated. Here, we control the wind erosion process in a wind tunnel to test entrainment of diapausing stages of brine shrimp, clam shrimp, tadpole shrimp, fairy shrimp, Daphnia, and the rotifers Brachionus plicatilis and B. calyciflorus into the air by saltation. Diapausing eggs were mixed with sterilized wind-erodible soil. The soil/egg mixture was moistened with distilled water and air dried to form a crust. Dust was generated in a wind tunnel by releasing sand grains that act as saltator material similar to wind-entrained natural sands. Maximum wind velocity was 10m/s and entrained particles were sampled through an isokinetic horizontal intake opening. Aeolian sediment was collected from three points in the system; transfer section for coarse sediment, the pan subtending a settling chamber for finer saltation-sized sediment, and two paper filters for suspension-sized sediment. Samples were then passed through 250 and 350 μm sieves to remove abrader sand and rehydrated with various sterile media depending on the type of organism. We retrieved viable brine, fairy, and tadpole shrimp, ostracods, Daphnia, and diapausing eggs of the rotifers after hydration. This experiment demonstrates that resting stages of many invertebrates can be wind-eroded due to size and egg morphology and remain viable under controlled conditions mimicking dust emission.

  2. Asian Winter Monsoons in the Eocene: Evidence from the Aeolian Dust Series of the Xining Basin

    NASA Astrophysics Data System (ADS)

    Licht, A.; Adriens, R.; Pullen, A. T.; Kapp, P. A.; Abels, H.; van Cappelle, M.; Vandenberghe, J.; Dupont Nivet, G.

    2014-12-01

    The aeolian dust deposits of the Chinese Loess Plateau are attributed to spring and winter monsoonal storms sweeping clastic material from the deserts of the Asian interior into central China and are reported to begin 25-22 million years (Myr) ago. The beginning of aeolian dust sedimentation has been attributed to the onset of central Asia desertification and winter monsoonal circulation, and are commonly linked to development of high topographic relief associated with the Tibetan-Himalayan orogenic system. However, recent papers suggest that the core of the Tibetan Plateau may have reached significant elevation since the earliest phases of the India-Asia collision 55 Myr ago. Here, we extend the sedimentary record of the Chinese Loess Plateau at its western margin to include the late Eocene - late Oligocene deposits of the Xining Basin, which were deposited between 41 and 25 Myr ago based on detailed magnetostratigraphy. The particle size, shape, and surface microtexture of quartz grains in these deposits display textures indicative of prolonged aeolian transport; grain-size distributions show a bimodal distribution similar to Miocene through Quaternary deposits of the Chinese Loess Plateau. The clay mineralogy of the finer fraction and U/Pb zircon ages of the coarser fraction from Xining Loess sediments sampled along three sections spanning the whole studied interval are also similar to those observed in Quaternary and Neogene aeolian deposits of the Chinese Loess Plateau and thus suggest similar sources located in central China. However, slight differences in Eocene U/Pb zircon ages, such as the lack of Cenozoic ages or the scarcity of zircons older than 2000 Myr, suggest that the Tibetan Plateau may have contributed little to the aeolian dust deposition, in favor of sources located further north and west (Kunlun and Tian Shan Ranges). The Xining deposits are thus the first direct evidence that winter monsoonal winds were active 15 Myr earlier than previously

  3. Changes in soil aggregation and dust emission potential in response to aeolian processes

    NASA Astrophysics Data System (ADS)

    swet, Nitzan; Katra, Itzhak

    2016-04-01

    Aeolian (wind) dust emission has high environmental and socioeconomic significances due to loss of natural soil and air pollution. Dust emission involves complex interactions between the airflow and the soil surface. The soil aggregates were dust particles are held determine the topsoil erodibility in aeolian erosion. Although the key role of soil aggregation in dust emission mechanisms, information on changes in soil aggregate size distribution (ASD) due to aeolian erosion is lucking. This study is focused on quantitative ASD analyses before and after aeolian processes (saltation). Aeolian experiments and soil analyses were conducted on semiarid loess topsoils with different initial conditions of aggregation. The results show that saltation rates and PM emissions depend on the initial ASD and shear velocity. In all initial soil conditions, the content of aggregates at saltator-sized 63-250 μm was increased by 10-34 % following erosion of macro-aggregates > 500 μm. It revealed that the aggregate-saltator production increases with the shear velocity (up to 0.61 m s-1) for soils with available macro-aggregates. The findings highlight the dynamics in soil aggregation in response to aeolian transport and therefore its significance for determining the mechanisms of dust emission from soil aggregates.

  4. Global connections between aeolian dust, climate and ocean biogeochemistry at the present day and at the last glacial maximum

    NASA Astrophysics Data System (ADS)

    Maher, B. A.; Prospero, J. M.; Mackie, D.; Gaiero, D.; Hesse, P. P.; Balkanski, Y.

    2010-04-01

    Palaeo-dust records in sediments and ice cores show that wind-borne mineral aerosol ('dust') is strongly linked with climate state. During glacial climate stages, for example, the world was much dustier, with dust fluxes two to five times greater than in interglacial stages. However, the influence of dust on climate remains a poorly quantified and actively changing element of the Earth's climate system. Dust can influence climate directly, by the scattering and absorption of solar and terrestrial radiation, and indirectly, by modifying cloud properties. Dust transported to the oceans can also affect climate via ocean fertilization in those regions of the world's oceans where macronutrients like nitrate are abundant but primary production and nitrogen fixation are limited by iron scarcity. Dust containing iron, as fine-grained iron oxides/oxyhydroxides and/or within clay minerals, and other essential micronutrients (e.g. silica) may modulate the uptake of carbon in marine ecosystems and, in turn, the atmospheric concentration of CO 2. Here, in order to critically examine past fluxes and possible climate impacts of dust in general and iron-bearing dust in particular, we consider present-day sources and properties of dust, synthesise available records of dust deposition at the last glacial maximum (LGM); evaluate the evidence for changes in ocean palaeo-productivity associated with, and possibly caused by, changes in aeolian flux to the oceans at the LGM; and consider the radiative forcing effects of increased LGM dust loadings.

  5. Compositional trends in aeolian dust along a transect across the southwestern United States

    USGS Publications Warehouse

    Goldstein, H.L.; Reynolds, R.L.; Reheis, M.C.; Yount, J.C.; Neff, J.C.

    2008-01-01

    Aeolian dust strongly influences ecology and landscape geochemistry over large areas that span several desert ecosystems of the southwestern United States. This study evaluates spatial and temporal variations and trends of the physical and chemical properties of dust in the southwestern United States by examining dust deposited in natural depressions on high isolated surfaces along a transect from the Mojave Desert to the central Colorado Plateau. Aeolian dust is recognized in these depressions on the basis of textural, chemical, isotopic, and mineralogical characteristics and comparisons of those characteristics to the underlying bedrock units. Spatial and temporal trends suggest that although local dust sources are important to the accumulated material in these depressions, Mojave Desert dust sources may also contribute. Depth trends in the depressions suggest that Mojave sources may have contributed more dust to the Colorado Plateau recently than in the past. These interpretations point to the important roles of far-traveled aeolian dust for landscape geochemistry and imply future changes to soil geochemistry under changing conditions in far-distant dust source areas. Copyright 2008 by the American Geophysical Union.

  6. Downwind changes in grain size of aeolian dust; examples from marine and terrestrial archives

    NASA Astrophysics Data System (ADS)

    Stuut, Jan-Berend; Prins, Maarten

    2013-04-01

    references Betzer, P.R., Carder, K.L., Duce, R.A., Merrill, J.T., Tindale, N.W., Uematsu, M., Costello, D.K., Young, R.W., Feely, R.A., Breland, J.A., Bernstein, R.E., Greco, A.M., 1988. Long-range transport of giant mineral aerosol particles. Nature 336, 568. Claquin, T., Roelandt, C., Kohfeld, K.E., Harrison, S.P., Tegen, I., C., P.I., Balkanski, Y., Bergametti, G., Hansson, M., Mahowald, N.M., Rodhe, H., Schulz, M., 2003. Radiative forcing of climate by ice-age atmospheric dust. Climate Dynamics 20, 193-202. Holz, C., Stuut, J.-B.W., Henrich, R., 2004. Terrigenous sedimentation processes along the continental margin off NW-Africa: implications from grain-size analyses of surface sediments. Sedimentology 51, 1145-1154. Otto, S., de Reus, M., Trautmann, T., Thomas, A., Wendisch, M., Borrmann, S., 2007. Atmospheric radiative effects of an in situ measured Saharan dust plume and the role of large particles. Atmos. Chem. Phys. 7, 4887-4903. Prins, M.A., Weltje, G.J., 1999. End-member modeling of siliciclastic grain-size distributions: the Late Quaternary record of eolian and fluvial sediment supply to the Arabian Sea and its paleoclimatic significance., in: Harbaugh, J., Watney, L., Rankey, G., Slingerland, R., Goldstein, R., Franseen, E. (Eds.), Numerical experiments in stratigraphy: Recent advances in stratigraphic and sedimentologic computer simulations. SEPM Special Publication 62. Society for Sedimentary Geology, pp. 91-111. Prins, M.A., Vriend, M., 2007, Glacial and interglacial eolian dust dispersal patterns across the Chinese Loess Plateau inferred from decomposed loess grain-size records. Geochemistry, Geophysics, Geosystems (G-cubed), 8, Q07Q05, doi:10.1029/2006GC001563. Prins, M.A., Vriend, M., Nugteren, G., Vandenberghe, J., Lu, H., Zheng, H., Jan Weltje, G., 2007. Late Quaternary aeolian dust input variability on the Chinese Loess Plateau: inferences from unmixing of loess grain-size records. Quaternary Science Reviews 26, 230-242. Prins, M.A., Zheng, H., Beets, K

  7. Sensitivity simulations with direct radiative forcing by aeolian dust during glacial cycles

    NASA Astrophysics Data System (ADS)

    Bauer, E.; Ganopolski, A.

    2014-01-01

    Possible feedback effects between aeolian dust, climate and ice sheets are studied for the first time with an Earth system model of intermediate complexity over the late Pleistocene period. Correlations between climate variables and dust deposits suggest that aeolian dust potentially plays an important role for the evolution of glacial cycles. Here climatic effects from the dust direct radiative forcing (DRF) caused by absorption and scattering of solar radiation are investigated. Key factors controlling the dust DRF are the atmospheric dust distribution and the absorption-scattering efficiency of dust aerosols. Effective physical parameters in the description of these factors are varied within uncertainty ranges known from available data and detailed model studies. Although the parameters are reasonably constrained by use of these studies, the simulated dust DRF spans a wide uncertainty range related to nonlinear dependencies. In our simulations, the dust DRF is highly localized. Medium-range parameters result in negative DRF of several W m-2 in regions close to major dust sources and negligible values elsewhere. In case of high absorption efficiency, the local dust DRF can reach positive values and the global mean DRF can be insignificantly small. In case of low absorption efficiency, the dust DRF can produce a significant global cooling in glacial periods which leads to a doubling of the maximum glacial ice volume relative to the case with small dust DRF. DRF-induced temperature and precipitation changes can either be attenuated or amplified through a feedback loop involving the dust cycle. The sensitivity experiments suggest that depending on dust optical parameters the DRF has the potential to either damp or reinforce glacial-interglacial climate changes.

  8. Effects of particle optical properties on grain size measurements of aeolian dust deposits

    NASA Astrophysics Data System (ADS)

    Varga, György; Újvári, Gábor; Kovács, János; Szalai, Zoltán

    2015-04-01

    Particle size data are holding crucial information on the sedimentary environment at the time the aeolian dust deposits were accumulated. Various aspects of aeolian sedimentation (wind strength, distance to source(s), possible secondary source regions and modes of sedimentation and transport) can be reconstructed from proper grain size distribution data. Laser diffraction methods provide much more accurate and reliable information on the major granulometric properties of wind-blown sediments compared to the sieve and pipette methods. The Fraunhofer and Mie scattering theories are generally used for laser diffraction grain size measurements. () The two different approaches need different 'background' information on the medium measured. During measurements following the Fraunhofer theory, the basic assumption is that parcticles are relatively large (over 25-30 µm) and opaque. The Mie theory could offer more accurate data on smaller fractions (clay and fine silt), assuming that a proper, a'priori knowledge on refraction and absorption indices exists, which is rarely the case for polymineral samples. This study is aimed at determining the effects of different optical parameters on grain size distributions (e.g. clay-content, median, mode). Multiple samples collected from Hungarian red clay and loess-paleosol records have been analysed using a Malvern Mastersizer 3000 laser diffraction particle sizer (with a Hydro LV unit). Additional grain size measurements have been made on a Fritsch Analysette 22 Microtec and a Horiba Partica La-950 v2 instrument to investigate possible effects of the used laser sources with different wavelengths. XRF and XRD measurements have also been undertaken to gain insight into the geochemical/mineralogical compositions of the samples studied. Major findings include that measurements using the Mie theory provide more accurate data on the grain size distribution of aeolian dust deposits, when we use a proper optical setting. Significant

  9. A Japan-Sino joint project, ADEC - Aeolian Dust Experiment on Climate Impact

    NASA Astrophysics Data System (ADS)

    Mikami, M.

    2004-05-01

    In recent years, aeolian dust has been thought to be an important factor of the climate system on the earth by the radiative forcing effect in the atmosphere and by the influence on the carbon dioxide cycle because deposited dust supplies nutrient salts for the phytoplankton on the ocean surface. Among them, radiative forcing direct and/or indirect effects are important factors of the global warming. Nevertheless, the reliability of the evaluation regarding the radiative forcing impact of aeolian dust is very low. [IPCC, 2001]. This is because the understanding and the model representations of dust entrainment, spatial and temporal distribution of dust, and optical properties of dust particles are not so accurate. Based on this background, Aeolian Dust Experiment on Climate Impact (ADEC) was started in April 2000 as a Japan-Sino Joint Project. The goal of this project is to evaluate the global dust supply to the atmosphere and its radiative forcing direct effect. For this purpose, we have made: 1) in situ observations at desert areas in China for wind erosion processes, 2) network observations from China to Japan, ranging from 80 to 140 East, for understanding spatial-size distribution, chemical, and optical properties of dust particles, and 3) numerical simulation by GCM dust model for evaluation of dust impact on the global climate over the past 50 years. This was planned as a five-year project and two intensive observations, IOP-1, April 12-25 2002, and IOP-2, March 15-26 2003, were put into practice. Intensive observations were made at 6 sites in China (Qira, Aksu, Dunhuang, Shapotou, Beijing, and Qingdao) and 4 sites in Japan (Naha, Fukuoka, Nagoya, and Tsukuba). Preliminary results show that 1) saltation flux at a gobi desert monitored by a newly developed sand particle counter was around 10 times larger than that of a sand dune, which will be caused by the difference of the parent soil size distribution of each ground condition, 2) the background of KOSA

  10. Aeolian dust deposition rates in Northern French forests and inputs to their biogeochemical cycles

    NASA Astrophysics Data System (ADS)

    Lequy, Émeline; Legout, Arnaud; Conil, Sébastien; Turpault, Marie-Pierre

    2013-12-01

    This study describes the Aeolian dust deposition (ADD) in 4 sites of Northern France. Between December 2009 and March 2012, we sampled (i) Aeolian dust every four weeks, and (ii) 6 episodes of forecasted high atmospheric dust load mainly from the Saharan desert, the largest source of Aeolian dust in the world. These samples were treated with oxygen peroxide to remove organic matter so as to only compare the mineral fraction of the samples in the 4 sampling sites and to analyze their mineralogy. The solid samples contained the hardly soluble part of Aeolian dust (H-ADD). Its deposition was of 1.9 ± 0.3 g m-2 year-1 with a seasonal pattern of high deposition from spring to early autumn and a low deposition in winter. H-ADD deposition during the forecasted episodes of high atmospheric load did not systematically exceed the deposition rate during the rest of the sampling period. This indicates that such episodes little contributed to the annual H-ADD rate. The mineralogy revealed a heterogeneous set of minerals dominated by silicates with a common basis of major types (quartz, feldspars, mica, chlorite, kaolinite and interlayered clay minerals in every sample) with randomly trace minerals (Fe-oxides, sulfates, amphibole, talc, gibbsite and carbonates). The chemistry of H-ADD led to a dominant input of Si (up to 4.4 kg ha-1 year-1), while the nutrients inputs of Ca, K, Mg and P from ADD and the atmospheric organics (APD) in openfield were together of 1.5 ± 0.5 kg ha-1 year-1 with a high contribution of soluble minerals and organic matter of ca. 40% for Mg and K, and of ca. 80% for Ca and P. Nutrient inputs from APD are especially an interesting source of P for forests developed on acidic soils.

  11. Aeolian removal of dust from radiator surfaces on Mars

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Perez-Davis, Marla E.; Rutledge, Sharon K.; Hotes, Deborah

    1990-01-01

    Simulated radiator surfaces made of arc-textured Cu and Nb-1 percent-Zr and ion beam textured graphite and C-C composite were fabricated and their integrated spectral emittance characterized from 300 to 3000 K. A thin layer of aluminum oxide, basalt, or iron (III) oxide dust was then deposited on them, and they were subjected to low pressure winds in the Martian Surface Wind Tunnel. It was found that dust deposited on simulated radiator surfaces may or may not seriously lower their integrated spectral emittance, depending upon the characteristics of the dust. With Al2O3 there is no appreciable degradation of emittance on a dusted sample, with basaltic dust there is a 10 to 20 percent degradation, and with Fe2O3 a 20 to 40 percent degradation. It was also found that very high winds on dusted highly textured surfaces can result in their abrasion. Degradation in emittance due to abrasion was found to vary with radiator material. Arc-textured Cu and Nb-1 percent Zr was found to be more susceptible to emittance degradation than graphite or C-C composite. The most abrasion occurred at low angles, peaking at the 22.5 deg test samples.

  12. Aeolian removal of dust from radiator surfaces on Mars

    SciTech Connect

    Gaier, J.R.; Perez-Davis, M.E.; Rutledge, S.K.; Hotes, D.

    1994-09-01

    Simulated radiator surfaces made of arc-textured copper and niobium-one percent-zirconium, and ion beam textured graphite and carbon-carbon composite were fabricated and their integrated spectral emittance characterized from 300 to 3000 K. A thin layer of aluminum oxide, basalt, or iron (III) oxide dust was then deposited on them, and they were subjected to low pressure winds in the Martian Surface Wind Tunnel. It has been found that dust deposited on simulated radiator surfaces may or may not seriously lower their integrated spectral emittance, depending upon the characteristics of the dust. With Al{sub 2}O{sub 3} there is no appreciable degradation of emittance on a dusted sample, with basaltic dust there is a 10-20 percent degradation, and with Fe{sub 2}O{sub 3} a 20-40 percent degradation. It was also found that very high winds on dusted highly textured surfaces can result in their abrasion. Degradation in emittance due to abrasion was found to vary with radiator material. Arc-textured copper and Nb-1%Zr was found to be more susceptible to emittance degradation than graphite or carbon-carbon composite. The most abrasion occurred at low angles, peaking at the 22.5{degrees} test samples.

  13. Mid to late Holocene aeolian activity revealed by a multiproxy peat record in continental CE Europe (Northern Romania)

    NASA Astrophysics Data System (ADS)

    Panait, Andrei Marian; Feurdean, Angelica; Hutchinson, Simon Mark; Tanţǎu, Ioan

    2016-04-01

    Peat bogs, and especially ombrogenous mire, are increasingly used as continental archives of aeolian dust and sand deposition. Since ombrogenous peat is formed above ground water level all the inputs are atmospheric. Dust is more influenced by regional climatic patterns due to its small size, whereas sand tends to record local patterns in storm frequency and intensity reflecting its larger particle size. However, both size fractions are significantly underused proxies of past climate variability. Here, an ombrogenous peat profile from Tǎul Muced in the Rodnei Mountains (Northern Romanian Carpathians), located in a temperate continental climate, with Atlantic and Baltic influences, provides the very first record of mid to late Holocene aeolian activity from Romania highlighting the interplay between local and regional controls in a continental area of CE Europe. We use a multiproxy approach combining radiocarbon dating, the physical properties of the peat (loss-on-ignition, bulk density), mineral magnetic measurements (ARM, SIRM), geochemical (Ti and Zr) and particle size analysis (via both laser diffraction and the manual counting of sand particles under a steromicroscope) to determine changes in: i) atmospheric dust deposition and ii) wind velocities during the last 7800 years. We found that the aeolian particles are mainly silt (3.9-63 μm) (dust) and sand (63-1200 μm). The mineralogical composition of the aeolian sediment in peat is mainly quartz, more rarely calcite and very rarely other minerals such as feldspar, sulphur, mica (biotite and muscovite), magnetite and other melanocrate minerals. The roundness of the sand particles varies from well-rounded to sub-angular and angular, and suggests that the sand particles have different source areas. Results from this study show that over the last 7600 years the pattern of wind frequency changed several times: there are periods characterised by a low aeolian input around 6950-6550, 5000-3900, 3500-2900, 1650

  14. A study of the management strategies for river aeolian dust inhibition at the estuary of Zhuo-shui River

    NASA Astrophysics Data System (ADS)

    Tsai, S. F.; Lin, C. Y.

    2014-12-01

    With the characteristics of humidity in summer and drought in winter, there existing lots of bare lands due to the decline of water level cause large amounts of aeolian dust and environmental deterioration during the monsoon seasons in central Taiwan. How to adopt effective measures to inhibit the damage of dust is an essential issue. This study selected the serious dust-affected section of Zhuo-shui river (bridge Zi-qiang to Xi-bin) to delineate the areas of potential aeolian dust occurrence, explore the relationship between elevation and water level determined from return period analysis, submit the countermeasures for dust inhibition at the bare lands and/or cultivated areas, and address the responsibilities of related authority offices for dust prevention by means of literature review. The return period of inundation for the areas of potential aeolian dust occurrence is 1.1 years. Engineering of dust prevention with highly unit price are not recommended due to could be destroyed annually. The deposition sites of a river are usually located at the convex bank, which with silt texture and high salinity are not suitable for cultivation, are delineated as the areas of potential aeolian dust occurrence. Besides technology consideration in dust prevention, this study also examined the related articles of river management to integrate a comprehensive vision for better riverside environment and air quality.

  15. The accretion of aeolian dust in soils of the San Juan Mountains, Colorado, USA

    NASA Astrophysics Data System (ADS)

    Lawrence, Corey R.; Neff, Jason C.; Farmer, G. Lang

    2011-06-01

    Recent observations suggest a contemporary aeolian dust flux of at least 5-10 g m-2 yr-1 to high-elevation ecosystems of the San Juan Mountains of southwestern Colorado. To better quantify the influence of dust on San Juan soil geochemistry, we used Sr and Nd isotopic mixing models to estimate the total mass of accreted dust in soils of two alpine basins underlain by bedrocks of different geochemical composition. In order to minimize the potentially confounding effects caused by transient soil pools of Sr and Nd, we implemented a sequential leaching procedure that isolates the residual mineral fraction of soils and their putative parent materials, including local saprolite and exogenous dust inputs. Using this approach, we calculated masses of accreted dust in soils, which were similar across the two isotopic tracers and differing local geologies. Long-term rates of dust accretion were estimated to be slightly higher than contemporary rates of dust deposition. We conclude that dust inputs comprise from 10% to 40% of the total soil mass in these ecosystems. Our observations suggest that dust inputs have exerted a primary control on soil development in the San Juan Mountains and have likely influenced the physical and chemical characteristics of soils in this region.

  16. Aeolian dust experiment on climate impact: An overview of Japan China joint project ADEC

    NASA Astrophysics Data System (ADS)

    Mikami, M.; Shi, G. Y.; Uno, I.; Yabuki, S.; Iwasaka, Y.; Yasui, M.; Aoki, T.; Tanaka, T. Y.; Kurosaki, Y.; Masuda, K.; Uchiyama, A.; Matsuki, A.; Sakai, T.; Takemi, T.; Nakawo, M.; Seino, N.; Ishizuka, M.; Satake, S.; Fujita, K.; Hara, Y.; Kai, K.; Kanayama, S.; Hayashi, M.; Du, M.; Kanai, Y.; Yamada, Y.; Zhang, X. Y.; Shen, Z.; Zhou, H.; Abe, O.; Nagai, T.; Tsutsumi, Y.; Chiba, M.; Suzuki, J.

    2006-07-01

    The Aeolian Dust Experiment on Climate Impact (ADEC) was initiated in April 2000 as a joint five-year Japan-China project. The goal was to understand the impact of aeolian dust on climate via radiative forcing (RF). Field experiments and numerical simulations were conducted from the source regions in northwestern China to the downwind region in Japan in order to understand wind erosion processes temporal and spatial distribution of dust during their long-range transportation chemical, physical, and optical properties of dust and the direct effect of radiative forcing due to dust. For this, three intensive observation periods (IOP) were conducted from April 2002 to April 2004. The in situ and network observation results are summarized as follows: (1) In situ observations of the wind erosion process revealed that the vertical profile of moving sand has a clear size dependency with height and saltation flux and that threshold wind velocity is dependent on soil moisture. Results also demonstrated that saltation flux is strongly dependent on the parent soil size distribution of the desert surface. (2) Both lidar observations and model simulations revealed a multiple dust layer in East Asia. A numerical simulation of a chemical transport model, CFORS, illustrated the elevated dust layer from the Taklimakan Desert and the lower dust layer from the Gobi Desert. The global-scale dust model, MASINGAR, also simulated the dust layer in the middle to upper free troposphere in East Asia, which originated from North Africa and the Middle East during a dust storm in March 2003. Raman lidar observations at Tsukuba, Japan, found the ice cloud associated with the dust layer at an altitude of 6 to 9 km. Analysis from lidar and the radio-sonde observation suggested that the Asian dust acted as ice nuclei at the ice-saturated region. These results suggest the importance of dust's climate impact via the indirect effect of radiative forcing due to the activation of dust into ice nuclei

  17. Aeolian dust emissions in Southern Africa: field measurements of dynamics and drivers

    NASA Astrophysics Data System (ADS)

    Wiggs, Giles; Thomas, David; Washington, Richard; King, James; Eckardt, Frank; Bryant, Robert; Nield, Joanna; Dansie, Andrew; Baddock, Matthew; Haustein, Karsten; Engelstaedter, Sebastian; von Holdt, Johannah; Hipondoka, Martin; Seely, Mary

    2016-04-01

    Airborne dust derived from the world's deserts is a critical component of Earth System behaviour, affecting atmospheric, oceanic, biological, and terrestrial processes as well as human health and activities. However, very few data have been collected on the factors that control dust emission from major source areas, or on the characteristics of the dust that is emitted. Such a paucity of data limits the ability of climate models to properly account for the radiative and dynamical impacts triggered by atmospheric dust. This paper presents field data from the DO4 Models (Dust Observations for Models) project that aims to understand the drivers of variability in dust emission processes from major source areas in southern Africa. Data are presented from three field campaigns undertaken between 2011 and 2015. We analysed remote sensing data to identify the key geomorphological units in southern Africa which are responsible for emission of atmospheric dust. These are the Makgadikgadi pans complex in northern Botswana, the ephemeral river valleys of western Namibia, and Etosha Pan in northern Namibia. Etosha Pan is widely recognised as perhaps the most significant source of atmospheric dust in the southern hemisphere. We deployed an array of field equipment within each source region to measure the variability in and dynamics of aeolian erosivity, as well as dust concentration and flux characteristics. This equipment included up to 11 meteorological stations measuring wind shear stress and other standard climatic parameters, Cimel sun photometers, a LiDAR, sediment transport detectors, high-frequency dust concentration monitors, and dust flux samplers. Further data were gathered at each site on the dynamics of surface characteristics and erodibility parameters that impact upon erosion thresholds. These data were augmented by use of a Pi-Swerl portable wind tunnel. Our data represent the first collected at source for these key dust emission areas and highlight the

  18. Australian dust deposits: modern processes and the Quaternary record

    NASA Astrophysics Data System (ADS)

    Hesse, Paul P.; McTainsh, Grant H.

    2003-09-01

    Dust raising and transport are common and important processes in Australia today. The aridity of the Australian continent and high climatic variability result in widespread dust raising in the arid and semi-arid areas and transport to the humid margins and surrounding oceans. The supply of erodible particles appears to be the greatest limitation on total flux of transported dust. Dust raising is greatest in the Lake Eyre Basin, including the Simpson Desert, and Murray-Darling Basin where internal drainage renews supplies of fine particles to the arid zone. In the west and northwest dust entrainment is low, despite considerable aridity. The marine record of dust flux shows at least a threefold increase in dust flux, compared with the Holocene, in the last glacial maximum in both tropical and temperate Australia, driven by weakened Australian monsoon rains and drier westerly circulation, respectively. Despite the widespread confirmation of aeolian dust deposits in southeastern and southwestern Australia, dated or quantified records are extremely rare. The dominant model of Australian dust deposits, the clay-rich 'parna', is shown to be poorly substantiated while modern and ancient dust deposits examined in detail are shown to bear a strong similarity to conventional definitions of loess.

  19. Asian dust transport during the last century recorded in Lake Suigetsu sediments

    NASA Astrophysics Data System (ADS)

    Nagashima, Kana; Suzuki, Yoshiaki; Irino, Tomohisa; Nakagawa, Takeshi; Tada, Ryuji; Hara, Yukari; Yamada, Kazuyoshi; Kurosaki, Yasunori

    2016-03-01

    Asian dust has a significant impact on the natural environment. Its variability on multiple timescales modulates the ocean biogeochemistry and climate. We demonstrate that temporal changes in the deposition flux of Aeolian dust recorded in sediments from Lake Suigetsu, central Japan, during the last century exhibit a continuous decreasing trend and a decadal-scale decrease in 1952-1974. The former decreasing trend can be explained by a decrease in the dust storm frequency at source regions due to the warming of Mongolia in the twentieth century, suggesting future decrease of Asian dust transport with further warming in Mongolia. Decadal-scale decrease of Aeolian dust is explained by weaker westerlies in lower latitudes in central Japan, reflecting a weaker Aleutian Low during the corresponding period. Decadal-scale westerly change probably causes north-south shifts of the dominant dust transport path, which affects subarctic northern Pacific Ocean biogeochemistry by changing the micronutrient iron supply.

  20. 26Al/10Be dating of an aeolian dust mantle soil in western New South Wales, Australia

    NASA Astrophysics Data System (ADS)

    Fisher, Adrian; Fink, David; Chappell, John; Melville, Michael

    2014-08-01

    Aeolian dust mantle soils are an important element of many landscapes in south-eastern Australia, though the age of these aeolian deposits has not been radiometrically determined. At Fowlers Gap in western New South Wales, surface cobbles of silcrete and quartz overlie a stone-free, aeolian dust mantle soil, which has a thickness of about 1.6 m. The clay-rich aeolian dust deposit in turn lies upon a buried silcrete and quartz stone layer. Modelling in-situ cosmogenic 26Al and 10Be concentrations measured in both the surface quartz stones and in the buried quartz layer of rocks, reveals that each has experienced a complex exposure-burial history. Due to the absence of quartz stones or sand at intermediate depths, our cosmogenic 26Al and 10Be modelling was not able to determine a definitive mechanism of stone pavement formation and stone burial. Various scenarios of stone formation, transport, burial and exhumation were tested that constrain the age of the deposit to range from 0.9 ± 0.2 Ma to 1.8 ± 0.2 Ma, based largely on different assumptions taken for the time-dependency of the net sedimentation rate. This corresponds with the initiation of the Simpson Desert dune fields and the deflation of lakes in central Australia, which probably responded to the shift to longer-wavelength, larger-amplitude Quaternary glacial cycles at around 1 Ma. Sensitivity analyses were carried out to identify those parameters which better constrained model outputs. Within model errors, which largely are the result of analytical errors in measured 26Al and 10Be concentrations, all three competing theories of colluvial wash, upward displacement of stones, and cumulic pedogenesis are possible mechanisms for the formation of the surface stone pavement.

  1. Aeolian sedimentary processes at the Bagnold Dunes, Mars: Implications for modern dune dynamics and sedimentary structures in the aeolian stratigraphic record of Mars

    NASA Astrophysics Data System (ADS)

    Ewing, Ryan C.; Bridges, Nathan T.; Sullivan, Rob; Lapotre, Mathieu G. A.; Fischer, Woodward W.; Lamb, Mike P.; Rubin, David M.; Lewis, Kevin W.; Gupta, Sanjeev

    2016-04-01

    Wind-blown sand dunes are ubiquitous on the surface of Mars and are a recognized component of the martian stratigraphic record. Our current knowledge of the aeolian sedimentary processes that determine dune morphology, drive dune dynamics, and create aeolian cross-stratification are based upon orbital studies of ripple and dune morphodynamics, rover observations of stratification on Mars, Earth analogs, and experimental and theoretical studies of sand movement under Martian conditions. In-situ observations of sand dunes (informally called the Bagnold Dunes) by Curiosity Rover in Gale Crater, Mars provide the first opportunity to make observations of dunes from the grain-to-dune scale thereby filling the gap in knowledge between theory and orbital observations and refining our understanding of the martian aeolian stratigraphic record. We use the suite of cameras on Curiosity, including Navigation Camera (Navcam), Mast Camera (Mastcam) and Mars Hand Lens Imager (MAHLI), to make observations of the Bagnold Dunes. Measurements of sedimentary structures are made where stereo images are available. Observations indicate that structures generated by gravity-driven processes on the dune lee slopes, such as grainflow and grainfall, are similar to the suite of aeolian sedimentary structures observed on Earth and should be present and recognizable in Mars' aeolian stratigraphic record. Structures formed by traction-driven processes deviate significantly from those found on Earth. The dune hosts centimeter-scale wind ripples and large, meter-scale ripples, which are not found on Earth. The large ripples migrate across the depositional, lee slopes of the dune, which implies that these structures should be present in Mars' stratigraphic record and may appear similar to compound-dune stratification.The Mars Science Laboratory Curiosity Rover Team is acknowledged for their support of this work.

  2. Aeolian dust deposition during the Eocene-Oligocene in central to eastern Asia

    NASA Astrophysics Data System (ADS)

    Vandenberghe, Jef; Abels, Hemmo; van Cappelle, Marijn

    2015-04-01

    Aeolian dust deposition during the Eocene-Oligocene in central to eastern Asia Jef Vandenberghe1, Hemmo Abels2 and Marijn van Cappelle3 1Dept. of Earth Sciences, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands 2Dept. of Earth Sciences, Universiteit Utrecht, 3584 CD, Utrecht, The Netherlands 3Dept. of Earth Science and Engineering, Imperial College London, London, SW7 2AZ, U.K. The deposition of loess is generally attributed to a monsoonal climate system. Recently it has been shown that such a system existed already at the end of the Eocene on the northeastern Tibetan Plateau (Licht et al., 2014). One of the main arguments to prove the supply of loess by monsoonal winds is the use of grain size properties. The lower part of the Shuiwan section (Eocene) consists of metre-scale alternations of mudstone and gypsum beds; the upper part (Oligocene) is mainly mudstone (Dupont-Nivet et al., 2007; Abels et al., 2010). Sediments are categorized in six grain-size types based on the grain-size distribution and the mode of the silt grain sizes as measured using laser diffraction. Sediments of type 1, the only type with a unimodal grain-size distribution, consist exclusively of clay-sized particles (modal value of 2-2.5 µm). Types 2-6 have a multimodal composition. They contain an additional silt-sized fraction with a modal size of c. 16 µm in type 2; c. 26 µm in type 3 and c. 31 µm in type 4. Type 5 is a mixture of previous types, and type 6 contains in addition a slight amount of sand. Similar bimodal grain-size distributions occur in the Neogene Red Clay and in the Pleistocene loess of the Chinese Loess Plateau. All three silt fractions (with modal sizes 16, 26 and 31 µm) represent typical loess sediments, transported by dust storms in suspension at different altitudes. Their exact grain size depends on wind velocity, source material and transport distance. The 'clay component' may have settled from high suspension clouds in the air down to dry ground or to

  3. Rates and environmental controls of aeolian dust accumulation, Athabasca River Valley, Canadian Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Hugenholtz, Chris H.; Wolfe, Stephen A.

    2010-09-01

    Despite an abundance of sedimentary archives of mineral dust (i.e. loess) accumulations from cold, humid environments, the absence of contemporary process investigations limits paleoenvironmental interpretations in these settings. Dust accumulations measured at Jasper Lake, a seasonally-filled reach of the glacially-fed Athabasca River in the Canadian Rocky Mountains, are some of the highest contemporary rates recorded to date. High deposition rates, including a maximum of 27,632 kg ha -1 month -1, occur during river low-flow periods, but even the lowest deposition rates, occurring during bankfull periods, exceed other contemporary rates of deposition. High rates of dust deposition may be attributed to geomorphic and climatic controls affecting sediment supply, availability and transport, and biologic factors affecting accumulation. Localized confinement of the Jasper River by tributary river alluvial fans has caused channel expansion upstream, and formation of the shallow depositional basin known as Jasper Lake. This localized sedimentary basin, coupled with large seasonal water level fluctuations and suitably high wind speeds, favors seasonal dust production. In addition, a dense source-proximal coniferous forest stand encourages high dust accumulation, via increased aerodynamic roughness and airflow deceleration. The forest stand also appears to act as an efficient dust filter, with the interception and storage of dust by the forest canopy playing a significant role with regards to secondary fallout and sediment accumulation. Overall, these results provide new insights on the environmental controls of dust entrainment and accumulation in cold, humid settings, and help clarify controls on the formation of Holocene river-sourced loess deposits.

  4. Environmental history recorded in aeolian deposits under stone pavements, Mojave Desert, USA

    NASA Astrophysics Data System (ADS)

    Dietze, Michael; Dietze, Elisabeth; Lomax, Johanna; Fuchs, Markus; Kleber, Arno; Wells, Stephen G.

    2016-01-01

    Reconstructing the evolution of arid landscapes is challenged by limited availability of appropriate environmental archives. A widespread surface feature - stone pavement - traps aeolian fines and forms a special accretionary archive. Seven stone pavement-covered sections on basalt flows in the eastern Mojave Desert are condensed into a composite section, comprising five sedimentological units supported by an OSL-based chronology. Three of the units are of accretionary nature and each is covered by a stone pavement. They were deposited > 50.9-36.6 ka, < 36.6-14.2 ka and < 14.2 ka, and they are intimately coupled with the history of nearby Lake Mojave, which advances the current understanding of regional aeolian activity. End-member modeling analysis of grain-size distributions yielded seven sediment transport regimes. The accretionary system operates in two modes: A) episodic formation of a stone pavement by lateral processes once a vesicular horizon has formed on a barren surface; and B) accretion of dust and eventual burial of the clast layer. These findings improve current concepts about stone pavement evolution and their environmental proxy function in arid landscapes. Stone pavement-covered accretionary deposits are a new key archive that allows quantifying the relative importance of dust accretion, slope processes, soil formation and vegetation cover.

  5. Planktonic foraminiferal rare earth elements as a potential new aeolian dust proxy

    NASA Astrophysics Data System (ADS)

    Chou, C.; Liu, Y.; Lo, L.; Wei, K.; Shen, C.

    2012-12-01

    Characteristics of rare earth elements (REEs) have widely been used as important tracers in many fields of earth sciences, including lithosphere research, environmental change, ocean circulation and other natural carbonate materials. Foraminiferal test REE signatures have been suggested to reflect ambient seawater conditions and serve as valuable proxies in the fields of paleoceanography and paleoclimate. Here we present a 60-kyr planktonic foraminifera Globigerinoides ruber (white, 250-300 μm) REE record of a sediment core MD05-2925 (9°20.61'S, 151°27.61'E, water depth 1660 m) from the Solomon Sea. The REE diagram shows two dominant sources of local seawater and nearby terrestrial input. The variability of foraminiferal REE/Ca time series is different from Mg/Ca-inferred sea surface temperature and δ18O records during the past 60-kyr. This inconsistency suggests that planktonic foraminiferal REE content cannot result only from changes in ice volume and temperature. Synchroneity between high planktonic foraminiferal REE content and Antarctic ice core dust amount record implies the same dust sources, probably from Australia or mainland China. Our results suggest that foraminiferal REE can potentially be as a new dust proxy and record dry/humid conditions at the source area.

  6. Lower tropospheric aerosol loadings over South Africa: The relative contribution of aeolian dust, industrial emissions, and biomass burning

    NASA Astrophysics Data System (ADS)

    Piketh, S. J.; Annegarn, H. J.; Tyson, P. D.

    1999-01-01

    The southern African haze layer is a ubiquitous subcontinental-scale feature of the lower atmosphere that extends to a depth of ˜5 km(˜500 hPa level) on non rain days, particularly in winter. Aerosols derived from biomass burning are commonly thought to contribute substantially to the total background aerosol loading within the layer. It is shown that in both summer and winter this supposition is without foundation over South Africa. Summer and winter aerosol loadings are derived from gravimetric analysis of stacked filter units and from proton-induced X ray emission (PIXE) analysis of one to four hourly resolved streaker samples. From concentrations of eleven inorganic elements, apportionment into four primary sources, biomass burning particulates, aeolian dust, industrial sulphur aerosols, and marine aerosols, has been effected. It is shown that the background biomass burning component of the total aerosol loading over South Africa in general, and within the plume of material being recirculated over South Africa and from there exported from the subcontinent south of 22°S to the Indian Ocean in particular, is minimal in both summer and winter. Except over coastal and adjacent inland areas, marine aerosols likewise make up a small fraction of the total loading. This is particularly so over the inland plateau areas. Crustally-derived aeolian dust and industrially-produced sulphur aerosols are demonstrated to be the major summer and winter constituents of the haze layer over South Africa and the particulate material being transported to the Indian Ocean region. Sulphur is transported within the aerosol plume exiting southern Africa to the Indian Ocean as agglomerates on aeolian dust nuclei.

  7. Atmospheric dust in modern soil on aeolian sandstone, Colorado Plateau (USA): Variation with landscape position and contribution to potential plant nutrients

    USGS Publications Warehouse

    Reynolds, R.; Neff, J.; Reheis, M.; Lamothe, P.

    2006-01-01

    Rock-derived nutrients in soils originate from both local bedrock and atmospheric dust, including dust from far-distant sources. Distinction between fine particles derived from local bedrock and from dust provides better understanding of the landscape-scale distribution and abundance of soil nutrients. Sandy surficial deposits over dominantly sandstone substrates, covering vast upland areas of the central Colorado Plateau, typically contain 5-40% silt plus clay, depending on geomorphic setting and slope (excluding drainages and depressions). Aeolian dust in these deposits is indicated by the presence of titanium-bearing magnetite grains that are absent in the sedimentary rocks of the region. Thus, contents of far-traveled aeolian dust can be estimated from magnetic properties that primarily reflect magnetite content, such as isothermal remanent magnetization (IRM). Isothermal remanent magnetization was measured on bulk sediment samples taken along two transects in surficial sediment down gentle slopes away from sandstone headwalls. One transect was in undisturbed surficial sediment, the other in a setting that was grazed by domestic livestock until 1974. Calculation of far-traveled dust contents of the surficial deposits is based on measurements of the magnetic properties of rock, surficial deposits, and modern dust using a binary mixing model. At the undisturbed site, IRM-based calculations show a systematic down-slope increase in aeolian dust (ranging from 2% to 18% of the surface soil mass), similar to the down-slope increase in total fines (18-39% of surface soil mass). A combination of winnowing by wind during the past and down-slope movement of sediment likely accounts for the modern distribution of aeolian dust and associated nutrients. At the previously grazed site, dust also increases down slope (5-11%) in sediment with corresponding abundances of 13-25% fines. Estimates of the contributions of aeolian dust to the total soil nutrients range widely

  8. A 1400-year terrigenous dust record on a coral island in South China Sea

    PubMed Central

    Liu, Yi; Sun, Liguang; Zhou, Xin; Luo, Yuhan; Huang, Wen; Yang, Chengyun; Wang, Yuhong; Huang, Tao

    2014-01-01

    We present analyses of a lacustrine sediment core (DY6) on Dongdao Island, which provides high-resolution paleoclimate records for the South China Sea (SCS). Results of element analyses indicate that the concentrations of Ti and Al in DY6 are much higher than the background on the island. Morphological characteristics of acidic insoluble particles are similar to aeolian in East China. Sr and Nd isotope compositions in these particles are consistent with those in Asian aeolian dust. We inferred that dust in DY6 may have been transported by East Asian Winter Monsoon (EAWM) from inland Asia. The continuous dust records for the past 1400 years in North SCS were presented based on the measured Ti flux, which revealed an opposite trend to the variations in the EAWM for the past 50 years. A comparison of wind fields between cold and warm years shows that north surface wind in southeast China was stronger in cold years. However, 850 hPa wind vector along the east coast of China, the key level of wind for long-distance dust transmission, weakened in cold years. We conclude that differences in the EAWM records can be attributed to the 850 hPa wind pattern in different areas. PMID:24845372

  9. Contemporary geochemical composition and flux of aeolian dust to the San Juan Mountains, Colorado, United States

    NASA Astrophysics Data System (ADS)

    Lawrence, Corey R.; Painter, T. H.; Landry, C. C.; Neff, J. C.

    2010-09-01

    Dust deposition in the Rocky Mountains may be an important biogeochemical flux from upwind ecosystems. Seasonal (winter/spring) dust mass fluxes to the San Juan Mountains during the period from 2004 to 2008 ranged from 5 to 10 g m-2, with individual deposition events reaching as high as 2 g m-2. Dust deposited in the San Juan Mountains was primarily composed of silt- and clay-sized particles, indicating a regional source area. The concentrations of most major and minor elements in this dust were similar to or less than average upper continental crustal concentrations, whereas trace element concentrations were often enriched. In particular, dust collected from the San Juan Mountain snowpack was characterized by enrichments of heavy metals including As, Cu, Cd, Mo, Pb, and Zn. The mineral composition of dust partially explained dust geochemistry; however, based on results of a sequential leaching procedure it appeared that trace element enrichments were associated with the organic-, and not the mineral-, fraction of dust. Our observations show that the dust-derived fluxes of several nutrients and trace metals are substantial and, because many elements are deposited in a mobile form, could be important controls of vegetation, soil, or surface water chemistry. The flux measurements reported here are useful benchmarks for the characterization of ecosystem biogeochemical cycling in the Rocky Mountains.

  10. Peat bog Records of Atmospheric Dust fluxes - Holocene palaeoenvironmental and paleoclimatic implications for South America

    NASA Astrophysics Data System (ADS)

    De Vleeschouwer, François; Vanneste, Heleen; Bertrand, Sébastien; Coronata, Andrea; Gaiero, Diego; Le Roux, Gael

    2013-04-01

    Little attention has been given to pre-anthropogenic signals recorded in peat bogs, especially in the Southern Hemisphere. Yet they are important to 1/ better understand the different particle sources during the Holocene and 2/ to tackle the linkage between atmospheric dust loads and climate change and 3/ to better understand the impact of dust on Holocene palaeoclimate and palaeoenvironments in a critical area for ocean productivity. In the PARAD project, we will explore the use of a broad range of trace elements and radiogenic isotopes (Pb, Nd, Hf) as dust proxies. Coupling these findings with biological proxies (plant macrofossils, pollen) and detailed age-depth modelling, we expect not only to identify and interpret new links between atmospheric dust chemistry and climate change. In this contribution, we will present the preliminary results on two peat records of natural atmospheric dust using the elemental and isotopic signature in Tierra del Fuego. Preliminary results on two peat sections covering the Holocene (Karukinka Bog, Chile, 8kyrs and Harberton bog, Argentina, 14kyrs) will be discussed. This encompasses density, ash content, elemental and isotopic geochemistry, macrofossil determination and radiocarbon dating. More specifically, Karukinka bog display several mineral peaks, which possible origin (soil particles, volcanism, cosmogenic dusts, marine aerosols…) will be discussed here as well as in Vanneste et al. (this conference, session Aeolian dust: Initiator, Player, and Recorder of Environmental Change).

  11. Geochemical variations in aeolian mineral particles from the Sahara-Sahel Dust Corridor.

    PubMed

    Moreno, Teresa; Querol, Xavier; Castillo, Sonia; Alastuey, Andrés; Cuevas, Emilio; Herrmann, Ludger; Mounkaila, Mohammed; Elvira, Josep; Gibbons, Wes

    2006-10-01

    The Sahara-Sahel Dust Corridor runs from Chad to Mauritania and expels huge amounts of mineral aerosols into the Atlantic Ocean. Data on samples collected from Algeria, Chad, Niger, and Western Sahara illustrate how corridor dust mineralogy and chemistry relate to geological source and weathering/transport history. Dusts sourced directly from igneous and metamorphic massifs are geochemically immature, retaining soluble cations (e.g., K, Na, Rb, Sr) and accessory minerals containing HFSE (e.g., Zr, Hf, U, Th) and REE. In contrast, silicate dust chemistry in desert basins (e.g., Bodélé Depression) is influenced by a longer history of transport, physical winnowing (e.g., loss of Zr, Hf, Th), chemical leaching (e.g., loss of Na, K, Rb), and mixing with intrabasinal materials such as diatoms and evaporitic salts. Mineral aerosols blown along the corridor by the winter Harmattan winds mix these basinal and basement materials. Dusts blown into the corridor from sub-Saharan Africa during the summer monsoon source from deeply chemically weathered terrains and are therefore likely to be more kaolinitic and stripped of mobile elements (e.g., Na, K, Mg, Ca, LILE), but retain immobile and resistant elements (e.g., Zr, Hf, REE). Finally, dusts blown southwestwards into the corridor from along the Atlantic Coastal Basin will be enriched in carbonate from Mesozoic-Cenozoic marine limestones, depleted in Th, Nb, and Ta, and locally contaminated by uranium-bearing phosphate deposits. PMID:16600327

  12. Magnetic characteristics of aeolian and fluvial sediments and onset of dust accumulation at Lake Yoa (northern Chad) during the Holocene

    NASA Astrophysics Data System (ADS)

    Just, Janna; Kröpelin, Stefan; Karls, Jens; Rethemeyer, Janet; Melles, Martin

    2014-05-01

    The Holocene is a period of fundamental climatic change in North Africa. Humid conditions during the Holocene Humid Period have favored the formation of big lake systems (e.g. Lake Megachad) and are evident in terrestrial and marine archives. Only very few of these lakes persist until today. One of them is Lake Yoa (19°03'N/20°31'E) in the Ounianga Basin, Chad, which maintains its water level by ground water inflow. Here we present the magnetic characteristics of a continuous 16 m long sediment record (Co1240) from Lake Yoa, retrieved in 2010 within the framework of the Collaborative Research Centre 806 - Our Way to Europe (Deutsche Forschungsgemeinschaft). The sedimentary section covers the past 11,000 years. In an earlier core (Kröpelin et al. 2008), a humid climate during the Mid-Holocene is indicated by fresh-water conditions in the lake. At about 4,000 cal. years BP, a fresh-to-saline transition is reflected in the record. However, a major rise in magnetic susceptibility, interpreted as an increase in the accumulation of wind-blown material, is only visible after 3,000 cal. years BP. Beyond using the concentration of magnetic minerals (susceptibility), environmental magnetic proxies, e.g. magnetic grain size and the composition of the magnetic mineral fabric, are often used as paleoenvironmental indicators. The underlying assumption is that the formation of magnetic minerals during pedogenesis is catalyzed by precipitation and soil-temperature. The application of magnetic proxies as reliable climofunctions has, however, recently been challenged. Possible problems are that soil formation might not reach an equilibrium state if climate perturbations are too short (e.g. hundreds of years) or that other variables such as soil organic carbon and vegetation have varied. In this study, we will focus on the variability of magnetic parameters in Lake Yoa sediments and its implication for the regional environmental development throughout Holocene times. 400 discrete

  13. Physicochemical Characterization of Aeolian Mine Tailings Dust in the Southwest USA

    NASA Astrophysics Data System (ADS)

    Betterton, E. A.; Barbaris, B.; Conant, W.; Csavina, J.; Gao, S.; Lund, L.; Rheinheimer, P.; Saez, E.; Wonaschutz, A.

    2008-12-01

    Census data reveal that the Southwest is the fastest growing region of the USA, while NOAA GFDL coupled- model results suggest that precipitation is expected to decline in the same region over the coming decades. Besides the obvious impact on water resources, the drier conditions will most likely also result in increased atmospheric dust loads that could impact the health of a rapidly increasing population. This year the US EPA began site assessment and remediation at two mine tailings piles in Arizona contaminated with arsenic, lead, chromium and cadmium. The first is located in the twin towns of Hayden and Winkleman, and the second at the Iron King mine near Humbolt. At a concentration of approximately 0.1 microgram per cubic meter, the level of arsenic in PM10 collected at Hayden/Winkelman sometimes exceeds the Arizona ambient hazardous air pollutant standard (HAPS) by several orders of magnitude. Lead, cadmium and chromium are also sometimes orders of magnitude higher than the HAPS. A top priority is to determine the physicochemical speciation of wind-blown dust as a function of particle diameter because this information can a) help with source apportionment of airborne pollutants (e.g., smelter emissions vs. tailings dust), and b) help to assess the potential health impacts of contaminated dust, since deposition efficiency in human lungs is a strong function of particle diameter. We will present the chemical and physical characteristics of mine tailings dust collected with 10-stage multiple orifice uniform deposit impactors (MOUDI) located at Hayden/Winkleman and Iron King. We will also present scanning mobility particle spectrometer (SMPS) data obtained from the same sites. The MOUDI yields particle composition by size fraction (0.056-18 micrometer aerodynamic diameter) while the SMPS yields particle number by size fraction (0.0025 to 1.0 micrometer diameter). Size selective characteristics such as these have never been previously reported for mine tailings

  14. Mineral composition of TALDICE aeolian ice core dust by means of synchrotron radiation XAS and XRF techniques

    NASA Astrophysics Data System (ADS)

    Marcelli, A.; Cibin, G.; Sala, M.; Hampai, D.; Maggi, V.; Marino, F.; Delmonte, B.

    2009-04-01

    In this work we present the first accurate non-destructive comparison of the mineral composition of atmospheric dusts contained in a deep ice core from Antarctica using synchrotron radiation. Different mineral assemblages reaching glaciated areas could be correlated to sources areas starting from the knowledge of the dust composition. In this investigation we demonstrate the possibility to characterize with SR the mineral composition of the dust in order to perform its geochemical characterization and to understand the pattern of the transport and the trajectories of the aerosol. This study has been focused on the elemental characterization and the identification of the iron oxidation state of aeolian Antarctic dust by means of synchrotron radiation X-Ray Fluorescence and X-Ray Absorption Spectroscopy. A set of twelve ice samples from the TALDICE (TD, 72˚ 46'S, 159˚ 04'E, 2316 m a.s.l., mean accumulation rate 80 kg*m-2*yr-1) ice core, corresponding to the warm climatic period, Holocene, and to the cold climatic period, Marine Isotopic Stage 3 (MIS 3) have been measured. To obtain both the elemental composition and the iron oxidation state of the mineral dust we performed experiments on specially prepared samples at the Stanford Synchrotron Radiation Lightsource (SSRL) laboratory in the framework of the Proposal N.3082B. Actually, melted ice samples were filtered and then mineral particles were deposited onto Nuclepore polycarbonate membranes in a 1000 class clean room under a 100 class laminar flow bench for both XRF and XAS experiments. A dedicated HV experimental chamber, that allows performing different type of experimental technique on very low absorber concentration samples was developed and tested in Italy. The original experimental setup, including an in-vacuum sample micromanipulator and a special alignment and docking sample system was installed at the beamline 10-2 at SSRL. For the x-ray detection a 7 mm2 high sensitive Silicon Drift Detector was

  15. Temporal Dynamics of Sodic Playa Salt Crust Patterns: Implications for Aeolian Dust Emission Potential

    NASA Astrophysics Data System (ADS)

    Nield, J. M.; King, J.; Bryant, R. G.; Wiggs, G.; Eckardt, F. D.; Thomas, D. S.; Washington, R.

    2013-12-01

    Salt pans (or playas) are common in arid environments and can be major sources of windblown mineral dust, but there are uncertainties associated with their dust emission potential. These landforms typically form crusts which modify both their erosivity and erodibility by limiting sediment availability, modifying surface and aerodynamic roughness and limiting evaporation rates and sediment production. Here we show the relationship between seasonal surface moisture change and crust pattern development based on both remote-sensing and field surface and atmospheric measurements. We use high resolution (sub-cm) terrestrial laser scanning (TLS; ground-based lidar) surveys over weekly, monthly and annual timescales to accurately characterise crustal ridge thrusting and collapse. This can be as much as 2 mm/day on fresh pan areas that have recently been reset by flooding. Over a two month period, this ridge growth can change aerodynamic roughness length values by 6.5 mm. At the same time, crack densities across the surface increase and this raises the availability of erodible fluffy, low density dust source sediment stored below the crust layer. Ridge spaces are defined in the early stages of crust development, as identified by Fourier Transform analysis, but wider wavelengths become more pronounced over time. We present a conceptual model accounting for the driving forces (subsurface, surface and atmospheric moisture) and feedbacks between these and surface shape that lead to crust pattern trajectories between highly emissive degraded surfaces and less emissive ridged or continuous crusts. These findings improve our understanding of temporal changes in dust availability and supply from playa source regions.

  16. The Dynamics and Characteristics of Aeolian Dust in Dryland Central Asia: Possible Impacts on Respiratory Health in the Aral Sea Basin

    NASA Astrophysics Data System (ADS)

    Wiggs, G. F.; O'Hara, S.; Wegerdt, J.; van der Meer, J.; Small, I.; Hubbard, R.

    2003-12-01

    Over the last 40 years over 36,000 km2 of the former Aral Sea bed have been exposed creating a potentially significant aeolian dust source. It is widely believed, but little researched, that increased dust storm activity in the region has had a major impact on human health. In this paper we report the findings of a study into the link between dust exposure and respiratory health amongst children in the Autonomous Republic of Karakalpakstan, located on the southern shore of the Aral Sea. Data were collected over a 12 month period at 16 sites located within a broad transect running north to south through Karakalpakstan. At each site monthly measurements of dust deposition were undertaken linked with daily meteorological data at 6 stations. At 3 sites weekly measurements of PM10 were also carried out. Approximately 100 children (aged 7-10 years) were randomly selected within 5 km of each dust trap site and data were collected on their respiratory health and environmental exposures. Lung function data were also collected using a handheld spirometer. A linear regression model was used to predict lung function for the children incorporating variables for Forced Expiratory Volume in one second (FEV1), age, gender, height and weight and we estimated the impact of dust deposition rates on the odds of having abnormal lung function using logistic regression. The findings indicate that dust deposition rates across the region are high with sites located near the former shore of the sea being the worst affected. For these northerly regions the former Aral Sea bed is the most likely source of dust. The situation for the rest of the country seems to be far more complex. In these regions it appears that local sources (agricultural fields, abandoned irrigation grounds, overgrazed dunes, and unpaved roads) and more distant sources to the south and south-west represent significant sediment providers, particularly in the early summer when agricultural fields are ploughed. We found some

  17. Aeolian sediment and dust fluxes during predominant “background” wind conditions for unburned and burned semiarid grassland: Interplay between particle size and temporal scale

    NASA Astrophysics Data System (ADS)

    Merino-Martín, Luis; Field, Jason P.; Villegas, Juan Camilo; Whicker, Jeffrey J.; Breshears, David D.; Law, Darin J.; Urgeghe, Anna M.

    2014-09-01

    Monitoring of aeolian transport is needed for assessment and management of human health risks as well as for soil resources. Human health risks are assessed based on duration of exposure as well as concentration. Many aeolian studies focus on periods of high wind speed when concentrations are greatest but few studies focus on “background” conditions when concentrations are likely lower but which represent the most prevalent conditions. Such “background” conditions might be especially important at sites with recent disturbance such as fire. Exposure assessments also require improved understanding relating longer-term (days to weeks) measurements of saltation of larger particles to shorter-term (minutes to hours) measurements of smaller inhalable dust particles. To address these issues, we employed three commonly used instruments for measuring dust emissions for unburned and recently-burned sites: Big Springs Number Eight (BSNE) samplers for larger saltating soil particles (>50 μm) with weekly to monthly sampling resolution, DustTraks for suspended particles (diameters <10 μm) with 1-s sampling resolution, and Total Suspended Particulate (TSP) filter samplers for measuring with hourly to daily sampling resolution. Significant differences in concentrations between burned and unburned sites were detectable in either short (1-s maximum) interval DustTrak PM10 measurements, or in longer term (weekly) BSNE horizontal sediment flux measurements, but not in intermediate-term (daily 5-h means) for either DustTrak PM10 or TSP measurements. The results highlight ongoing dust emissions during less windy periods and provide insight into the complex interplay among particle-size dependent measures and typical time scales measured.

  18. Composition of aeolian dust in natural traps on isolated surfaces of the central Mojave Desert - Insights to mixing, sources, and nutrient inputs

    USGS Publications Warehouse

    Reynolds, R.L.; Reheis, M.; Yount, J.; Lamothe, P.

    2006-01-01

    The recognition and characterization of aeolian dust in soil contribute to a better understanding of landscape and ecosystem dynamics of drylands. Results of this study show that recently deposited dust, sampled in isolated, mostly high-ground settings, is chemically and mineralogically similar on varied geologic substrates over a large area (15 000 km2) in the Mojave Desert. The silt-plus-clay fraction (fines) on these isolated surfaces is closely alike in magnetic-mineral composition, in contrast to greatly dissimilar magnetic compositions of rock surfaces of vastly different lithologies, on which the fines have accumulated. The fines, thus, are predominantly deposited dust. The amounts of potential nutrients in the sampled dust are much more uniform than might be provided by direct, local weathering of bedrock or by dust locally derived from nearby weathered products. The compositional similarity of the dust on these surfaces is interpreted to result from mixing of fines in the atmosphere as well as in fluvial, alluvial, and lacustrine depositional settings prior to dust emission.

  19. Contemporary research in aeolian geomorphology

    NASA Astrophysics Data System (ADS)

    Bauer, B. O.

    2009-04-01

    The first International Conference on Aeolian Geomorphology (ICAR) was held in 1986, and every four years since then, aeolian geomorphologists from around the world have assembled to discuss their research and to showcase recent advancements in understanding and modeling of aeolian processes. A content analysis of the "Bibliography of Aeolian Research" [Stout, J.E., Warren, A., Gill, T.E., 2009. Publication trends in aeolian research: An analysis of the Bibliography of Aeolian Research. Geomorphology 105, 6-17 (this volume)] shows that the number of publications on aeolian topics has increased exponentially from the mid-20th Century with approximately 50 publications per year to about 500 publications per year when the first ICAR was held, to almost 1000 publications per year currently. Areas of focus have shifted historically from initial concerns with aeolian erosion and dust events as isolated phenomenon of localized curiosity or only regional importance, to comprehensive physically-based investigations and modeling of the mechanics of aeolian transport. Recently, more applied studies have been motivated by the recognition of the importance of aeolian processes to dust emissions into the atmosphere (with relevance for human health and for meteorological conditions and climate change) and within regional management contexts (especially on coasts where impending sea-level rise is of great concern and in arid and semi-arid environments given the dependence of sediment surface stability and remobilization on meteorological and ecological conditions). Aeolian geomorphology is a rapidly growing sub-discipline of Geomorphology that offers rich opportunities for interdisciplinary collaborations with colleagues from the Atmospheric Sciences, Climatology, Sedimentology, Quaternary Geology, Fluid Mechanics, Physics, Mathematics, Computer Science, Physical Geography, Ecology, and Agricultural Sciences, as well as our counterparts in fluvial, coastal, and arid

  20. Martian aeolian processes, sediments, and features

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald; Lancaster, Nicholas; Lee, Steven; Thomas, Peter

    1992-01-01

    In this review of the aeolian regime on Mars, consideration is given to the sources and characteristics of the particles that are involved in aeolian processes and the winds that are required to set grains into motion. Dust storms are reviewed and previous observations and the mechanisms of dust-storm generation are assessed. Various aeolian features, including dunes and albedo features, as well as windblown mantle deposits are discussed. In planning for future missions to Mars, aeolian processes must be taken into account. Surface modifications by the wind and windblown deposits can influence remote-sensing observations, affect sampling strategies, and have detrimental effects on manned and unmanned spacecraft on the surface.

  1. Aeolian Transport of Invertebrates

    NASA Astrophysics Data System (ADS)

    Gill, T. E.; Walsh, E. J.; Wallace, R. L.; Rojo, L.; Rivas, J. A.

    2012-12-01

    Playas and other ephemeral desert wetlands are preferential terrestrial landforms for dust emission. These sites also are habitat for a diverse assemblage of minute invertebrates. When wetlands desiccate, these invertebrates survive as resting stages (propagules). Thus, playas serve as isolated, ephemeral, biogeographical islands for aquatic invertebrates, but it is unclear how propagules disperse across distances as far as hundreds of kilometers to colonize hydrologically disconnected basins. Aeolian transport (anemochory) may provide the mechanism, especially since many invertebrate propagules are long-lived, aerodynamically shaped, possess low-density, and their size (30-600 μm) falls within the same texture as aeolian dust and sand grains. We are collecting and culturing wind-transported sediment to document its ability to serve in the dispersal of aridland invertebrate propagules. Deposited aeolian sediment was collected from marble-type traps placed on the roof of the Biological Sciences Building at the University of Texas, El Paso, during 19 individual regional-scale Chihuahuan Desert blowing dust/sand events between April 2010 and May 2012. Known source areas for these dust events include playas and ephemeral streams ~40- 150 km upwind. The mean dry grain size of the deposited sediment for each event ranged from 66 to 141 μm. Clean-water rinses of material from each event or standard rehydrations for culturing invertebrates were monitored microscopically for the appearance of organisms. Invertebrates hatched from the sediment of 13 events. Ciliates were detected in each of those samples: gastrotrichs appeared in three samples, nematodes and bdelloid rotifers in two samples, and clam shrimp in one. We have also rehydrated aeolian sediments, collected in standard dust traps, from many dust-emitting playas in Southwest North America and hatched viable organisms including all those previously mentioned as well as branchiopods, fairy shrimp, copepods

  2. Late Holocene interdecadal climate variability in the Sahel: inferences from a marine dust record offshore Senegal

    NASA Astrophysics Data System (ADS)

    Meyer, I.; Stuut, J.-B.; Mollenhauer, G.; Mulitza, S.; Zabel, M.

    2009-04-01

    Present-day climate in northwestern Africa strongly depends on the avaiability of water. At least since the Pliocene the Saharan Desert and the semiarid Sahel belt (tropical North Afrika) have been frequently affected by sudden shifts to more arid climate. The rate of change from arid to humid conditions is presently under heavy debate (e.g., deMenocal et al., 2001, Kröpelin et al., 2008). A recent example of abrupt droughts occurred in the early 70's and 80's of the last century. In this study we compare different high-resolution marine sediment records of Sahel climate variability from the Senegal mud belt, northwest Africa. Marine sediment cores show the variations of terrigenous input (both aeolian dust and fluvial matter) from the African continent. Due to their different distinctive grain-size distributions, aeolian dust and fluvial mud can be recognised and quantified in marine sediments (e.g., Stuut et al., 2002). Based on these variations in the grain-size distributions of the terrigenous sediment fraction, deconvolved with an end-member modelling algorithm (Weltje, 1997), are used to reconstruct rainfall variability and dust production on land for the last 4,000 years. References P. B. deMenocal, et al. (2001). Late Holocene Cultural Responses to Climate Change During the Holocene. Science 292, 667 S. Kröpelin, et al. (2008) Response to Comment on "Climate-Driven Ecosystem Succession in the Sahara: The Past 6000 Years" Science 322, 1326c G. J. Weltje (1997) End-member modeling of compositional data: Numerical-statistical algorithms for solving the explicit mixing problem. Mathematical Geology 9, 4

  3. Aeolian bedforms, yardangs, and indurated surfaces in the Tharsis Montes as seen by the HiRISE Camera: Evidence for dust aggregates

    NASA Astrophysics Data System (ADS)

    Bridges, N. T.; Banks, M. E.; Beyer, R. A.; Chuang, F. C.; Noe Dobrea, E. Z.; Herkenhoff, K. E.; Keszthelyi, L. P.; Fishbaugh, K. E.; McEwen, A. S.; Michaels, T. I.; Thomson, B. J.; Wray, J. J.

    2010-01-01

    HiRISE images of Mars with ground sampling down to 25 cm/pixel show that the dust-rich mantle covering the surfaces of the Tharsis Montes is organized into ridges whose form and distribution are consistent with formation by aeolian saltation. Other dusty areas near the volcanoes and elsewhere on the planet exhibit a similar morphology. The material composing these "reticulate" bedforms is constrained by their remote sensing properties and the threshold curve combined with the saltation/suspension boundary, both of which vary as a function of elevation (atmospheric pressure), particle size, and particle composition. Considering all of these factors, dust aggregates are the most likely material composing these bedforms. We propose that airfall dust on and near the volcanoes aggregates in situ over time, maybe due to electrostatic charging followed by cementation by salts. The aggregates eventually reach a particle size at which saltation is possible. Aggregates on the flanks are transported downslope by katabatic winds and form linear and "accordion" morphologies. Materials within the calderas and other depressions remain trapped and are subjected to multidirectional winds, forming an interlinked "honeycomb" texture. In many places on and near the volcanoes, light-toned, low thermal inertia yardangs and indurated surfaces are present. These may represent "duststone" formed when aggregates reach a particle size below the threshold curve, such that they become stabilized and subsequently undergo cementation.

  4. Aeolian bedforms, yardangs, and indurated surfaces in the Tharsis Montes as seen by the HiRISE Camera: Evidence for dust aggregates

    USGS Publications Warehouse

    Bridges, N.T.; Banks, M.E.; Beyer, R.A.; Chuang, F.C.; Noe Dobrea, E.Z.; Herkenhoff, K. E.; Keszthelyi, L.P.; Fishbaugh, K.E.; McEwen, A.S.; Michaels, T.I.; Thomson, B.J.; Wray, J.J.

    2010-01-01

    HiRISE images of Mars with ground sampling down to 25 cm/pixel show that the dust-rich mantle covering the surfaces of the Tharsis Montes is organized into ridges whose form and distribution are consistent with formation by aeolian saltation. Other dusty areas near the volcanoes and elsewhere on the planet exhibit a similar morphology. The material composing these "reticulate" bedforms is constrained by their remote sensing properties and the threshold curve combined with the saltation/suspension boundary, both of which vary as a function of elevation (atmospheric pressure), particle size, and particle composition. Considering all of these factors, dust aggregates are the most likely material composing these bedforms. We propose that airfall dust on and near the volcanoes aggregates in situ over time, maybe due to electrostatic charging followed by cementation by salts. The aggregates eventually reach a particle size at which saltation is possible. Aggregates on the flanks are transported downslope by katabatic winds and form linear and "accordion" morphologies. Materials within the calderas and other depressions remain trapped and are subjected to multidirectional winds, forming an interlinked "honeycomb" texture. In many places on and near the volcanoes, light-toned, low thermal inertia yardangs and indurated surfaces are present. These may represent "duststone" formed when aggregates reach a particle size below the threshold curve, such that they become stabilized and subsequently undergo cementation. ?? 2009 Elsevier Inc.

  5. Late Pleistocene aeolian dust provenances and wind direction changes reconstructed by heavy mineral analysis of the sediments of the Dehner dry maar (Eifel Mountains, Germany)

    NASA Astrophysics Data System (ADS)

    Lehmkuhl, Frank; Römer, Wolfgang; Sirocko, Frank

    2016-04-01

    The study presents the results of a heavy mineral analysis from a 38 m long record of aeolian sediments from a core section of the Dehner dry maar (Eifel Mountains, Germany). The record encompasses the period from 30 to about 12.5 ka. Heavy-mineral analysis of the silt fraction has been performed at a sampling interval of 1 m. Statistical analyses enabled the distinction of local and regional source areas of aeolian material and revealed pronounced changes in the amounts of different heavy mineral species and corresponding changes in the grain size index (GSI). The results indicate that during the early stages of MIS 2 (40 to 30m depth) aeolian sediments were supplied mostly from local sources. This period is characterized by a low GSI ratio resulting from a reduced mobility of material due to a vegetation cover. The climax of the LGM is characterized by a higher supply of heavy minerals from regional and more distant sources. Changes in the provenance areas are indicated in inverse relationships between zircon, rutile, tourmaline (ZRT) and carbonate particles. Shifts in the wind direction are documented in pronounced peaks of carbonate particles indicating easterly winds that have crossed the limestone basins in the Eifeler North South Zone. ZRT-group minerals on the other hand suggest a westerly source area and a supply from areas consisting of Paleozoic clastic sedimentary rocks. In the periods following the LGM the analyses indicate an increasing degree of mixing of heavy minerals from various provinces. This suggests the existence of a presumably incomplete, thin cover of deflatable loessic sediments that has been repeatedly reworked on the elevated surfaces of the Eifel.

  6. A late Pleistocene record of aeolian sedimentation in Blanche Cave, Naracoorte, South Australia

    NASA Astrophysics Data System (ADS)

    Darrénougué, Nicolas; De Deckker, Patrick; Fitzsimmons, Kathryn E.; Norman, Marc D.; Reed, Liz; van der Kaars, Sander; Fallon, Stewart

    2009-12-01

    We provide geochemical analyses and grain size data for a clearly layered, 80 cm thick sedimentary deposit close to a roof collapse in Blanche Cave near Naracoorte in SE South Australia. This deposit contains aeolian material deposited between ˜40 ka and 14 ka cal BP and which yields airborne sediments spanning the Last Glacial Maximum, a period of time with little information for the Australian continent. The deposit also contains abundant vertebrate fossil material derived from owl pellets, accumulation and pitfall entrapment. Below the studied profile, large vertebrate remains are found but are not discussed here. No Holocene sedimentation occurred at the site examined in the cave, and the top of the sequence is capped with a layer that has been anthropologically disturbed and contains exotic Pinus pollen. Chronologies of the deposit were obtained using two dating techniques: single stage accelerator mass spectrometer (SSAMS) 14C analysis of 23 charcoal samples and optically stimulated luminescence (OSL) dating of quartz from 6 sediment samples. The 14C chronology is preferred to describe the history of the deposits since the OSL chronology, which consistently overestimates the associated radiocarbon dates, may be inaccurate due to complexities in calculating dose rates, and may in addition represent the timing of sediment deposition through the cave opening rather than sediment transport to the deposit site. Morphological analysis of single quartz grains and grain size analysis indicate different provenance that is confirmed through the geochemical analyses of bulk sediment. Major elements were measured by X-ray Fluorescence (XRF), trace and rare earth elements by Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA ICP-MS), and Neodymium isotopic ratios were obtained using a Thermal Ionisation Mass Spectrometer (TIMS). Our results indicate that the aeolian material deposited in Blanche Cave over the 40-14 ka cal BP period originated from different

  7. Aeolian Morphodynamics of Loess Landscapes

    NASA Astrophysics Data System (ADS)

    Mason, J. A.; Hanson, P. R.; Sweeney, M.; Loope, H. M.; Miao, X.; Lu, H.

    2012-12-01

    Striking aeolian landforms characterize loess landscapes of the Great Plains and Upper Mississippi Valley, USA, shaped in Late Pleistocene environments with many characteristics of modern deserts including large active dunefields. Similar aeolian morphodynamics are evident in northern China and the Columbia Basin, USA, and are clearly important for interpreting the paleoenvironmental record of loess. Four zones spanning the upwind margin of thick loess can be defined from landforms and surficial deposits. From upwind to downwind, they are: A) A largely loess-free landscape, with patchy to continuous aeolian sand mantling bedrock. B) Patchy loess deposits, often streamlined and potentially wind-aligned, intermingled with dunes and sand sheets; interbedding of loess and sand may be common. C) Thick, coarse loess with an abrupt upwind edge, with troughs, yardang-like ridges, and/or wind-aligned scarps recording large-scale wind erosion. D) Thinner, finer loess with little evidence of post-depositional wind erosion. The degree of development and spatial scale of these zones varies among the loess regions we studied. To explain this zonation we emphasize controls on re-entrainment of loess by the wind after initial deposition, across gradients of climate and vegetation. The role of saltating sand in dust entrainment through abrasion of fine materials is well known. Using the Portable In situ Wind Erosion Laboratory (PI-SWERL), we recently demonstrated that unvegetated Great Plains loess can also be directly entrained under wind conditions common in the region today (Sweeney et al., 2011, GSA Abstracts with Programs, Vol. 43, No. 5, p. 251). Rainfall-induced crusts largely prevent direct entrainment in fine loess, but appear less effective in coarse loess. We propose that in zone A, any loess deposited was both abraded by saltating sand and directly re-entrained, so none accumulated. Sparse vegetation in this zone was primarily an effect of climate, but the resulting

  8. Aeolian processes on Venus

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald

    1989-01-01

    This review assesses the potential aeolian regime on Venus as derived from spacecraft observations, laboratory simulations, and theoretical considerations. The two requirements for aeolian processes (a supply of small, loose particles and winds of sufficient strength to move them) appear to be met on Venus. Venera 9, 10, 13, and 14 images show particles considered to be sand and silt size on the surface. In addition, dust spurts (grains 5 to 50 microns in diameter) observed via lander images and inferred from the Pioneer-Venus nephalometer experiments suggest that the particles are loose and subject to movement. Although data on near surface winds are limited, measurements of 0.3 to 1.2 m/sec from the Venera lander and Pioneer-Venus probes appear to be well within the range required for sand and dust entrainment. Aeolian activity involves the interaction of the atmosphere, lithosphere, and loose particles. Thus, there is the potential for various physical and chemical weathering processes that can effect not only rates of erosion, but changes in the composition of all three components. The Venus Simulator is an apparatus used to simulate weathering under venusian conditions at full pressure (to 112 bars) and temperature (to 800 K). In one series of tests, the physical modifications of windblown particles and rock targets were assessed and it was shown that particles become abraded even when moved by gentle winds. However, little abrasion occurs on the target faces. Thus, compositional signatures for target rocks may be more indicative of the windblown particles than of the bedrock. From these and other considerations, aeolian modifications of the venusian surface may be expected to occur as weathering, erosion, transportation, and deposition of surficial materials. Depending upon global and local wind regimes, there may be distinctive sources and sinks of windblown materials. Radar imaging, especially as potentially supplied via the Magellan mission, may enable the

  9. The thermal structure of the atmospheric surface boundary layer on Mars as modified by the radiative effect of aeolian dust

    NASA Technical Reports Server (NTRS)

    Pallmann, A. J.

    1983-01-01

    A computational simulation, based on Mariner 9 data, was performed for the thermal characteristics of the Martian atmospheric surface boundary layer in clear and dust-filled conditions. A radiative transfer model consisting of the atmospheric enthalpy rate equation, the radiative flux integrated over the 0.2-50 microns, the solid angle interval, and 0.50 km altitudes, broken into 52 levels. Mariner 9 IR data for CO2 absorption lines were included in the form of a temperture-dependent equation, while the line-widths were interpreted in terms of the pressure dependene as well as temperature. The lines covered the regions from 1-50 microns and varying conditions of dust content in the atmosphere. Attention was given to the thermal coupling between the ground and the atmosphere. It was found that convective heat exchange develops quickly due to radiative heating of the Martian desert surface, but does not cool the surface because of the attenuated atmosphere. The model predictd the 100 K temperature variations in the dusty atmosphere, as observed by the Viking thermal mapper. It is suggested that radiative flux convergence is as important as convection at equivalent efficiencies.

  10. Dust flux estimates for the Last Glacial Period in East Central Europe based on terrestrial records of loess deposits: a review

    NASA Astrophysics Data System (ADS)

    Újvári, Gábor; Kovács, János; Varga, György; Raucsik, Béla; Marković, Slobodan B.

    2010-11-01

    Loess-paleosol sequences are significant records of the mineral dust cycle of glacial-interglacial periods. As dust particles give rise to direct and indirect radiative forcing, obtaining a reliable picture of the global and regional patterns of mineral dust fluxes during glacial periods can lead to a better understanding of the contribution of mineral dust to past climate changes. Recent progress in absolute dating of loess deposits in the Carpathian Basin in East Central Europe made it possible to provide correct aeolian flux estimates for the Last Glacial period, marine isotope stage (MIS) 2. Mass accumulation rates (MARs) from chronological data of 33 loess sites exhibited a wide range of values, from 150 to 1422 g m -2 a -1, centered around median and mean values of 338 and 417 g m -2 a -1. MAR and MAR estimates have been also calculated using grain size measurements of many loess samples and loess MARs in order to facilitate comparison with models, and since particles larger than 10 μm have a negligible radiative effect. Here we show that some previous model simulations of the dust cycle at the Last Glacial Maximum (LGM) significantly underestimated the real aeolian flux (ranges of our estimates: MAR=34-324 and MAR=9.3-88.2 g m a) in East Central Europe. For this reason, some simulations of dust-induced direct radiative forcing of the LGM climate failed to yield reliable results for this mid-latitude region as they have been based on three-dimensional dust field models that are not capable of estimating the real aeolian fluxes in Central Europe. A recent global model of top of the atmosphere (TOA) radiative forcing by mineral aerosols at the LGM that has been based on more realistic parameterization of dust sources, transport, and deposition revealed zonally averaged surface cooling of -2 °C for the latitudes of our study area. This surface cooling and TOA radiative forcing (-2 to -3 W m -2) are greater than recognized in other models and draws our

  11. First X-Ray absorption spectroscopy results on Aeolian dust archived in Antarctica and Alpine firn cores

    NASA Astrophysics Data System (ADS)

    Marcelli, A.; Maggi, V.; Cibin, G.; Sala, M.; Marino, F.; Delmonte, B.

    2006-12-01

    We present the first x-ray absorption spectroscopy (XAS) data at the Fe K-edge collected on insoluble mineral dust from Talos Dome firn core (TDC, 159°04'E, 72°46'S, 2316 m a.s.l., mean accumulation rate 8 g cm-2 yr- 1), drilled in the framework of the International Trans Antarctic Scientific Expedition (ITASE), and from a Colle del Lys 2003 firn core (CDL03, 45°92'N, 7°86'E, 4248m a.s.l., mean accumulation rate 134 g cm-2 yr-1, Lys Glacier, Mt. Rosa, Italy). The low concentration of mineral particles, obtained by filtering each firn core melted samples on Nuclepore membranes in a 1000 class clean room, required a specific procedure to prepare the samples necessary to the successful collection of the XAS data. The firn samples were decontaminated in clean room under laminar flow bench by means of a ceramic knife and discarding the external part of the cores. Analyses of the insoluble particle content were performed by particle counter Beckman CounterãMultisizer III in order to defined concentration and size distribution of particles in each samples. A dedicated HV experimental chamber, devoted to the realization of XAS experiments on very low absorber concentration samples, was developed and realized in the framework of the CryoAlp collaboration at IMONT, the Italian National Institute for Mountains. The original experimental setup, thanks to the presence of an in-vacuum sample micromanipulator and special sample alignment and docking system installed for these experiments at the Stanford Synchrotron Radiation Laboratory at the beamline 6-2, allows both normal-incidence X-ray Fluorescence detection using a Ketek SDD detector having an energy resolution of about 150 eV and extremely low energy detection limit, and Total X-ray Reflection Fluorescence and Absorption Spectroscopy measurements. The high quality of the XANES experiments performed, using both normal incidence and Total Reflection XAS measurements, allowed recognizing iron-inclusion mineral fractions

  12. 1.2 million years of aeolian activity in northwestern Western Australian recorded in a deep-sea core in the eastern Indian Ocean

    NASA Astrophysics Data System (ADS)

    Temmesfeld, Felix; Stuut, Jan-Berend; Bassinot, Franck; Heslop, David; De Deckker, Patrick

    2015-04-01

    There is no continuous record of aridity from the Australian continent and we are presenting here, for the first time, a record of aeolian activity for northwestern Western Australia. Our data are based on a 32m long deep-sea core taken offshore North West Cape, the northwestern tip of Western Australia. Our data rely on 2 adjacent studies: (a) a complete XRF scan of the core which provide elemental ratios which are translated into an aeolian component as well as a fluvial discharge-to-sea component. The first one relates to periods of aridity inland Australia, whereas the second one is interpreted as river discharge during periods of monsoonal activity; (b) a close examination of grain size analyses and observations of wind-blown quartz grains found in close to 600 samples taken from the core. Our results clearly show a cyclic record of alternating dry and wet periods spanning the last 1.2 million years. Our findings also indicate that monsoonal activity as well as desertification were already in place in northern Australia so long ago, and this has clear implications for the evolution of the arid zone biota, associated fire activities and geomorphological features in northern Australia.

  13. Studies in Martian Aeolian Geology

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald

    2001-01-01

    This report gives the results from the investigation through March 15, 1999 for the first two years of the three year investigation (year 3 runs from March 1, 1999 to February 27, 2000). The investigation included three tasks, all involving windblown dust (particles a few micrometers in diameter) to simulate the aeolian regime on Mars. Experiments were conducted primarily in the Mars Surface Wind Tunnel (MARSWIT) at NASA-Ames Research Center.

  14. Dust and Ice Deposition in the Martian Geologic Record

    USGS Publications Warehouse

    Tanaka, K.L.

    2000-01-01

    The polar layered deposits of Mars demonstrate that thick accumulations of dust and ice deposits can develop on the planet if environmental conditions are favorable. These deposits appear to be hundreds of millions of years old, and other deposits of similar size but of greater age in nonpolar regions may have formed by similar processes. Possible relict dust deposits include, from oldest to youngest: Noachian intercrater materials, including Arabia mantle deposits, Noachian to Early Hesperian south polar pitted deposits, Early Hesperian Hellas and Argyre basin deposits, Late Hesperian Electris deposits, and the Amazonian Medusae Fossae Formation. These deposits typically are hundreds of meters to a couple kilometers thick and cover upward of a million or more square kilometers. The apparent persistence of dust sedimentation at the south pole back to the Early Hesperian or earlier and the early growth of Tharsis during the Late Noachian and perhaps earlier indicates that extensive polar wandering is unlikely following the Middle Noachian. A scenario for the overall history of dust and perhaps ice deposition on Mars includes widespread, voluminous accumulations perhaps planetwide during the Noachian as impacts, volcanism, and surface processes generated large amounts of dust; the Arabia deposits may have formed as ice availability and dust accumulation waned. During the Early Hesperian, thick dust sedimentation became restricted to the south pole and the deep Hellas and Argyre basins; the north polar sedimentary record prior to the Amazonian is largely obscured. Deposits at Electris and Medusae Fossae may have resulted from local sources of fine-grained material - perhaps volcanic eruptions.

  15. Aeolian geomorphology from the global perspective

    NASA Technical Reports Server (NTRS)

    Greeley, R.

    1985-01-01

    Any planet or satellite having a dynamic atmosphere and a solid surface has the potential for experiencing aeolian (wind) processes. A survey of the Solar System shows at least four planetary objects which potentially meet these criteria: Earth, Mars, Venus, and possibly Titan, the largest satellite of Saturn. While the basic process is the same among these four objects, the movement of particles by the atmosphere, the aeolian environment is drastically different. It ranges from the hot (730 K), dense atmosphere of Venus to the extremely cold desert (218 K) environment of Mars where the atmospheric surface pressure is only approximately 7.5 mb. In considering aeolian processes in the planetary perspective, all three terrestrial planets share some common areas of attention for research, especially in regard to wind erosion and dust storms. Relevant properties of planetary objects potentially subject to aeolian processes are given in tabular form.

  16. Reconstructing transport pathways for late Quaternary dust from eastern Australia using the composition of trace elements of long traveled dusts

    NASA Astrophysics Data System (ADS)

    Petherick, Lynda M.; McGowan, Hamish A.; Kamber, Balz S.

    2009-04-01

    The southeast Australian dust transport corridor is the principal pathway through which continental emissions of dust from central and eastern Australia are carried to the oceans by the prevailing mid-latitude westerly circulation. The analysis of trace elements of aeolian dust, preserved in lake sediment on North Stradbroke Island, southeast Queensland, is used to reconstruct variation in the intensity and position of dust transport to the island over the past 25,000 yrs. Separation of local and long traveled dust content of lake sediments is achieved using a unique, four-element (Ga, Ni, Tl and Sc) separation method. The local and continental chronologies of aeolian deposition developed by this study show markedly different records, and indicate varied responses to climate variability on North Stradbroke Island (local aeolian sediment component) and in eastern and central Australia (long traveled dust component). The provenance of the continental component of the record to sub-geologic catchment scales was accomplished using a ternary mixing model in which the chemical identification of dusts extracted, from the lake sediments, was compared to potential chemical characteristics of surface dust from the source areas using 16 trace elements. The results indicate that the position and intensity of dust transport pathways during the late Quaternary varied considerably in response to changing atmospheric circulation patterns as well as to variations in sediment supply to dust source areas, which include the large anabranching river systems of the Lake Eyre and Murray-Darling Basins.

  17. Holocene aeolian sedimentation and episodic mass-wasting events recorded in lacustrine sediments on Langøya in Vesterålen, northern Norway

    NASA Astrophysics Data System (ADS)

    Nielsen, Pål Ringkjøb; Dahl, Svein Olaf; Jansen, Henrik Løseth; Støren, Eivind N.

    2016-09-01

    In this study, the frequency of mass-wasting events and past storminess has been reconstructed throughout the Holocene (11,500 cal yr BP to present) from lacustrine sediments in lake Trehynnvatnet (33 m a.s.l.), which is located in a glacially carved valley at Nykvåg on the outmost coast of western Langøya, Vesterålen, northern Norway. Sediment cores (∼2-5 m long) have been examined by use of high-resolution magnetic susceptibility and XRF-scanning as well as grain size and loss-on-ignition analysis. In total 35 episodic event layers have been identified throughout the Holocene. The majority of these events are characterized as discrete coarse-grained sediment layers followed by normal grading, and are related to past mass-wasting activity within the catchment. Periods with high mass-wasting activity are dated to 11,000-10,500, 5500-4500, 4000-3500, 3000-2500, 2000-1000 and 500-0 cal yr BP. The continuous input of sand grains (>250 μm) has been systematically investigated throughout the sediment cores. The sand grains are related to catchment samples from the sandy beach deposits in Sandvikbukta c. 750 m away in SW direction, and are suggested to indicate (niveo-) aeolian influx to the lake. The content of sand grains varies greatly throughout the record, although there is a clear increase in influx of sand during the last 2800 years. Periods with high aeolian influx are proposed to indicate increased storminess, which occurred between 1600 and 1550 (350-400 CE), 1400-1300 (450-550 CE), 750-550 (1200-1400 CE) and 250-20 cal yr BP (1700-1930 CE), which to some degree coincides with periods of increased storminess and winter precipitation recorded in other studies around the North Eastern Atlantic region.

  18. Persistent Aeolian Activity at Endeavour Crater, Mars

    NASA Astrophysics Data System (ADS)

    Chojnacki, M.; Michaels, T. I.; Fenton, L. K.

    2013-12-01

    Long-term monitoring of sites that are known to have active dunes and ripples is generally limited to 3 Mars-Years (MY). Here, we discuss new results of dune activity and albedo change in Endeavour crater (EC), Meridiani Planum (MP) that record eight MY of aeolian activity. MP dune fields often show large yearly variations in albedo; EC darkened by ~12% in TES albedo between MY 24 and 26 (from 0.14 to 0.12). THEMIS VIS albedo of dunes did not change significantly from MY 26 to 29, but did decrease notably (~15 %) in MY 30. These darkening events are most likely related to aeolian-driven dust cleaning (e.g., removal by saltating sand, dust devils). For example, the Opportunity rover (poised on the western rim of EC) observed evidence for a MY 31 dune field dust-clearing event. HiRISE monitoring of MP has shown it be one of the most active regions outside of north polar latitudes. Paired images of western EC taken 3 MY apart show clear evidence for dune modification that include: ripple migration, change in dune perimeters, exposure of previously buried light-toned rock, and/or burial of rock by sand (Fig. 1a-1b). Dune slip face movement is evident for most dunes, where crests and aprons advanced (2-7 m) in the downwind direction (to the SSE) at rates of 0.7-2.3 m per MY. Small dome dunes in the eastern EC were found to have a large degree of aeolian activity (e.g., deflation and/or translation) by an earlier study that used MGS-MRO images (MY 24-30). New MY 31 images validate earlier observations, showing clear evidence for bedform deflation where dunes often occupy less area (~50%) than in earlier MY 29 images (Fig. 1c-1d). Areal removal rates are on par with earlier estimates. Bedform modification and sand streamer orientation appear to be caused by a NNW wind regime, consistent with earlier observations, mesoscale modeling, and the transport direction of barchans to the west. Dunes in EC are now known to be periodically (consistently?) active from over a decade

  19. Publication trends in aeolian research: An analysis of the Bibliography of Aeolian Research

    NASA Astrophysics Data System (ADS)

    Stout, John E.; Warren, Andrew; Gill, Thomas E.

    2009-04-01

    An analysis of the Bibliography of Aeolian Research has provided information regarding publication trends in aeolian research. Results suggest that there has been a significant increase in the number of publications per year since the first aeolian-research publication appeared in 1646. Rates of publication have increased from only three publications in the 17th Century to nearly three publications per day in the 21st Century. The temporal distribution of publications follows a complex pattern that is influenced by many factors. In the 17th and 18th Centuries, publications appear as isolated clusters indicating limited interest in aeolian research and limited opportunities for individuals to contribute to scientific literature. With time, many new scientific societies are formed and many new scientific journals are established, opening new opportunities for scientists to contribute to scientific discourse. Landmark publications open up new research areas and define new directions for aeolian research. General advances in science and technology provide new techniques for sampling blowing sand and dust. In addition, clear signs exist that publication rates respond to major environmental and climatic events, especially large-scale disasters that focus attention on wind erosion and blowing dust. The Sirocco dust events of 1901-1903, the North American Dust Bowl of the1930s, and the recent sand and dust storm problems in China have all led to significant increases in the number of publications in aeolian research. Rates of publication are negatively influenced by major political and social upheavals, especially global conflicts such as World Wars I and II. Sudden shifts in government structure and support can also influence publication rates. A good example is the increased publication rates in China following the end of the Cultural Revolution, a trend that continues today.

  20. A 3-Myr Mineral Magnetic Record of Saharan Dust Input Into the Eastern Mediterranean: Linking Magnetic Data With Climate Variability Over Northern Africa

    NASA Astrophysics Data System (ADS)

    Larrasoana, J.; Roberts, A. P.; Rohling, E. J.; Winklhofer, M.; Wehausen, R.

    2003-12-01

    We have produced a high resolution, 3-million-year mineral magnetic record for eastern Mediterranean sediments from Ocean Drilling Program Site 967. Rock magnetic analyses indicate that hematite dominates the high coercivity fraction of the sediments. We have developed a proxy (IRM0.9T@AF120mT) for the concentration of hematite by AF demagnetizing the IRM0.9T at 120 mT. A comparison of this proxy with Ti/Al data and other geochemical data indicates that variations in the concentration of hematite are related to the input of aeolian Saharan dust, regardless of non-steady-state diagenetic processes associated with organic-rich (sapropel) layers. We deduce that the eolian hematite in eastern Mediterranean sediments derives from the northern Sahara and relate dust production in this area with penetration of the African summer monsoon front to the north of the central Saharan watershed. Long-term variations in the penetration of the monsoon front would have led to changes in soil humidity and vegetation cover, and hence in the amount of dust production. Spectral analyses of our dust record reveal strong power at the precession, obliquity and eccentricity bands, which indicates that the northward penetration of the African monsoon, and thus northern African climate, is driven by a combination of low and high latitude mechanisms. We also observe a marked increase in dust supply and sub-Milankovitch variability around the mid-Pleistocene transition (~0.95 Ma), which suggests a link between millennial-scale climate variability, including monsoon dynamics, and the size of northern hemisphere ice sheets.

  1. Towards a phoenix phase in aeolian research: shifting geophysical perspectives from fluvial dominance

    SciTech Connect

    Whicker, Jeffrey J; Field, Jason P; Breshears, David D

    2008-01-01

    Aeolian processes are a fundamental driver of earth surface dynamics, yet the importance of aeolian processes in a broader geosciences context may be overshadowed by an unbalanced emphasis on fluvial processes. Here we wish to highlight that aeolian and fluvial processes need to be considered in concert relative to total erosion and to potential interactions, that relative dominance and sensitivity to disturbance vary with mean annual precipitation, and that there are important scale-dependencies associated with aeolian-fluvial interactions. We build on previous literature to present relevant conceptual syntheses highlighting these issues. We then highlight the relative investments that have been made in aeolian research on dust emission and management relative to that in fluvial research on sediment production. Literature searches highlight that aeolian processes are greatly understudied relative to fluvial processes when considering total erosion in different environmental settings. Notably, within the USA, aeolian research was triggered by the Dust Bowl catastrophe of the 1930s, but the resultant research agencies have shifted to almost completely focusing on fluvial processes, based on number of remaining research stations and on monetary investments in control measures. However, numerous research issues associated with intensification of land use and climate change impacts require a rapid ramping up in aeolian research that improves information about aeolian processes relative to fluvial processes, which could herald a post-Dust Bowl Phoenix phase in which aeolian processes are recognized as broadly critical to geo- and environmental sciences.

  2. Robotic Measurement of Aeolian Processes

    NASA Astrophysics Data System (ADS)

    Roberts, S.; Duperret, J. M.; Jerolmack, D. J.; Lancaster, N.; Nikolich, G.; Shipley, T. F.; Van Pelt, R. S.; Zobeck, T. M.; Koditschek, D. E.

    2015-12-01

    Local and regional measurements of sand transport and dust emission in complex natural settings presently lack spatiotemporal resolution adequate to inform models relevant for land management, climate policy, and the basic science of geomorphology. Deployments of wind, sand and dust sensors sophisticated enough to begin unpacking the complex relations among wind turbulence, surface roughness, sand flux and dust emission remain largely stationary. Aerial observations from satellites, planes and even UAVs help fill in, but none of these modalities offer the hope of "capturing the action" by being at the right place at the right time relative to the highly localized nature of sediment transport during wind storms. We have been developing a legged robot capable of rapidly traversing desert terrain, and are now adapting it to serve as a platform for scientific instrumentation. We aim to field a semi-autonomous, reactive mobile sensory package suited to the needs of aeolian science that can address the limitations of existing alternatives. This presentation reports on early trials in the Jornada LTER and White Sands National Monument aimed at gathering measurements of airflow and rates of sand transport on a dune face, assessing the role of roughness elements such as vegetation in modifying the wind shear stresses incident on the surface, and estimating erosion susceptibility in a natural arid soil. We will solicit ideas from the audience about other potentially interesting and viable measurement targets. Future close collaboration between aeolian, cognitive and robotics scientists such as we hope to promote through this presentation may yield machines with scientifically relevant sensory suites possessing sufficient autonomy to operate in-situ at the most intense episodes of wind and sediment movement under conditions far too uncomfortable and hazardous for human presence.

  3. The north-eastern aeolian 'European Sand Belt' as potential record of environmental changes: A case study from Eastern Latvia and Southern Estonia

    NASA Astrophysics Data System (ADS)

    Kalińska-Nartiša, Edyta; Thiel, Christine; Nartišs, Māris; Buylaert, Jan-Pieter; Murray, Andrew S.

    2016-09-01

    The Latvian and Estonian inland dunes belong to the north-eastern part of the 'European Sand Belt' (ESB). These dunes are widely distributed over broad glaciolacustrine plains and Late Glacial alluvial deltas, considered to be potential sources for the aeolian material. Little is known about these aeolian sediments and their substratum; here we present a detailed sedimentary structural and textural characterisation together with a luminescence-based chronology. Through a comparison between grain-size, rounding of quartz grains and surface characteristics in medium/coarse (0.5-0.8 mm) sand, and the light mineral content, we found an alternation of aeolian and periglacial components. Further, short-lasting aeolian abrasion and/or transportation periods, and a significant contribution of a nearby sediment source are suggested. Luminescence dating points to aeolian sand accumulation and dune formation between ∼16 ka and ∼9 ka. However, we also observed some presumably watertable controlled environmental conditions at ∼13 ka; this corresponds with the occurrence of an ice-dammed/proglacial lake.

  4. Studies in Aeolian geology

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald

    1988-01-01

    The objective of the research was to assess the significance of aeolian (windblown) processes in the evolution of planetary surfaces. The approach was to use wind tunnel simulations, field studies of possible analogs, and analyses of spacecraft data.

  5. Geochemical investigation of dry- and wet-deposited dust during the same dust-storm event in Harbin, China: Constraint on provenance and implications for formation of aeolian loess

    NASA Astrophysics Data System (ADS)

    Xie, Yuanyun; Chi, Yunping

    2016-04-01

    A strong dust-storm event occurred in Harbin, China on May 11, 2011. The dry- and wet-deposited dust depositions in this dust-storm event, together with the surface sediments from the potential sources, were collected to study grain size distributions, carbonate content and carbon isotopic composition of carbonate, major element, trace element and rare earth elements (REE), and Sr-Nd isotopic compositions. The results indicate as follows. The dry-deposited dusts are characterized by bimodal grain-size distributions with a fine mode at 3.6 μm and a coarse mode at 28 μm whereas the wet-deposited dusts are indicative of unimodal grain-size modes with a fine mode at 6 μm. The dust-storm depositions are influenced to a certain extent by sedimentary sorting and are of a derivation from the recycled sediments. Based on identifying the immobility of element pairs before constraining sources of dust-storm deposits using geochemical elements, in conjunction with REE and especially Sr-Nd isotopic compositions, the primary and strengthening sources for the dust-storm event were detected, respectively. The Hunsandake Sandy Land as the primary source and the Horqin Sandy Land as the strengthening source were together responsible for the derivation of dust depositions during dust-storm event. The Hunsandake Sandy Land, however, contributes less dust to the dust-storm event in Harbin compared to the Horqin Sandy Land, and the Hulun Buir Sandy Land is undoubtedly excluded from being one of the sources for dust-storm depositions in Harbin. There are not notable differences in geochemical (especially Sr-Nd isotopic) compositions between dry- and wet-deposited dusts, indicating that the wet-deposited dust is of identical derivation to the dry-deposited dust. Based on our observations, it is of interest to suggest that fine and coarse particles in the CLP (Chinese Loess Plateau) loess possibly have the same sources.

  6. Holocene dust records from the West African Sahel and their implications for changes in climate and land surface conditions

    NASA Astrophysics Data System (ADS)

    Cockerton, Helen E.; Holmes, Jonathan A.; Street-Perrott, F. Alayne; Ficken, Katherine J.

    2014-07-01

    We reconstructed aeolian dust accumulation during the Holocene from two radiocarbon-dated lake-sediment sequences from the Manga Grasslands in northeastern Nigeria in order to investigate long-term changes in the Harmattan dust system over West Africa and evaluate their possible causes. Flux values were low in the early Holocene, decreasing further to a minimum at around 6.2 kyr B.P. after which time they increased, steadily until around 2 kyr B.P. and then more sharply after this time. The long-term variations in dust flux agree broadly with changes in the exposed area of the Lake Chad Basin to the northeast of the study sites, which vary inversely with the volume of Paleolake Megachad. More proximal sources of dust, including the fine fraction of local dune sand and floodplains of nearby rivers, have also made a contribution to the total dust load during times of enhanced dune and fluvial activity. Sharp rises in dust flux over the past century may be related to human activity. Broad patterns of change in dust flux during the Holocene agree with other reconstructions over the same period. However, we see no evidence for a stepped rise during the middle Holocene, as seen at some sites from the northeastern tropical Atlantic, suggesting that controls on the Harmattan dust system have differed from those affecting dust deposition elsewhere across northern Africa.

  7. A 2007-2015 record of global atmospheric dust seen from space

    NASA Astrophysics Data System (ADS)

    Clarisse, Lieven; Coheur, Pierre-François; Hadji-Lazaro, Juliette; Clerbaux, Cathy

    2016-04-01

    Satellite sounders are ideal for measuring the highly variable global atmospheric aerosol distributions, as they provide daily global coverage. Aeolian dust can particularly well be measured by infrared satellite instruments which can differentiate dust from other aerosol and can measure both during day and night, over land and over ocean. They also have an enhanced sensitivity to coarse mode particles. We start this talk with an overview of the state of the art of satellite measurements of aerosols before moving on to measurements of the advanced hyperspectral infrared sounder IASI. We present an IASI-derived dust product, first through examples, then through global distributions and monthly and seasonal climatologies. A preliminary validation of the measurements is presented, comparing them with collocated Aeronet observations. The measurements are then used to evaluate the state of the art ECMWF-MACC model. In the final part of the talk the 8 year IASI dataset is presented and analysed using timeseries over selected regions, with a focus on seasonal and multi-year trends.

  8. MECA Worksop on Dust on Mars 2

    NASA Technical Reports Server (NTRS)

    Lee, Steven (Editor)

    1986-01-01

    Topics addressed include: sedimentary debris; mineralogy; Martian dust cycles; Mariner 9 mission; Viking observations; Mars Observer; atmospheric circulation; aeolian features; aerosols; and landslides.

  9. Evaluation of a new model of aeolian transport in the presence of vegetation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aeolian transport is an important characteristic of many arid and semiarid regions worldwide that affects dust emission and ecosystem processes. The purpose of this paper is to evaluate a recent model of aeolian transport in the presence of vegetation [Okin, 2008]. This approach differs from previou...

  10. The aeolian wind tunnel

    NASA Technical Reports Server (NTRS)

    Iversen, J. D.

    1991-01-01

    The aeolian wind tunnel is a special case of a larger subset of the wind tunnel family which is designed to simulate the atmospheric surface layer winds to small scale (a member of this larger subset is usually called an atmospheric boundary layer wind tunnel or environmental wind tunnel). The atmospheric boundary layer wind tunnel is designed to simulate, as closely as possible, the mean velocity and turbulence that occur naturally in the atmospheric boundary layer (defined as the lowest portion of the atmosphere, of the order of 500 m, in which the winds are most greatly affected by surface roughness and topography). The aeolian wind tunnel is used for two purposes: to simulate the physics of the saltation process and to model at small scale the erosional and depositional processes associated with topographic surface features. For purposes of studying aeolian effects on the surface of Mars and Venus as well as on Earth, the aeolian wind tunnel continues to prove to be a useful tool for estimating wind speeds necessary to move small particles on the three planets as well as to determine the effects of topography on the evolution of aeolian features such as wind streaks and dune patterns.

  11. Mega-ripples in Iran: A new analog for transverse aeolian ridges on Mars

    NASA Astrophysics Data System (ADS)

    Foroutan, M.; Zimbelman, J. R.

    2016-08-01

    A new terrestrial analog site for transverse aeolian ridges (TARs) is described in this study. The Lut desert of Iran hosts large ripple-like aeolian bedforms, with the same horizontal length scales and patterns of TARs on Mars. Different classes of TARs and different types of other aeolian features such as sand dunes, zibars, dust devil tracks and yardangs can be found in this area, which signify an active aeolian region. This area represents a unique site to study the formation and evolution of these enigmatic features, with potential relevance toward a better understanding of TARs on Mars.

  12. Aeolian processes at the Mars Exploration Rover Meridiani Planum landing site.

    PubMed

    Sullivan, R; Banfield, D; Bell, J F; Calvin, W; Fike, D; Golombek, M; Greeley, R; Grotzinger, J; Herkenhoff, K; Jerolmack, D; Malin, M; Ming, D; Soderblom, L A; Squyres, S W; Thompson, S; Watters, W A; Weitz, C M; Yen, A

    2005-07-01

    The martian surface is a natural laboratory for testing our understanding of the physics of aeolian (wind-related) processes in an environment different from that of Earth. Martian surface markings and atmospheric opacity are time-variable, indicating that fine particles at the surface are mobilized regularly by wind. Regolith (unconsolidated surface material) at the Mars Exploration Rover Opportunity's landing site has been affected greatly by wind, which has created and reoriented bedforms, sorted grains, and eroded bedrock. Aeolian features here preserve a unique record of changing wind direction and wind strength. Here we present an in situ examination of a martian bright wind streak, which provides evidence consistent with a previously proposed formational model for such features. We also show that a widely used criterion for distinguishing between aeolian saltation- and suspension-dominated grain behaviour is different on Mars, and that estimated wind friction speeds between 2 and 3 m s(-1), most recently from the northwest, are associated with recent global dust storms, providing ground truth for climate model predictions. PMID:16001061

  13. Aeolian processes at the Mars Exploration Rover Meridiani Planum landing site

    USGS Publications Warehouse

    Sullivan, R.; Banfield, D.; Bell, J.F., III; Calvin, W.; Fike, D.; Golombek, M.; Greeley, R.; Grotzinger, J.; Herkenhoff, K.; Jerolmack, D.; Malin, M.; Ming, D.; Soderblom, L.A.; Squyres, S. W.; Thompson, S.; Watters, W.A.; Weitz, C.M.; Yen, A.

    2005-01-01

    The martian surface is a natural laboratory for testing our understanding of the physics of aeolian (wind-related) processes in an environment different from that of Earth. Martian surface markings and atmospheric opacity are time-variable, indicating that fine particles at the surface are mobilized regularly by wind. Regolith (unconsolidated surface material) at the Mars Exploration Rover Opportunity's landing site has been affected greatly by wind, which has created and reoriented bedforms, sorted grains, and eroded bedrock. Aeolian features here preserve a unique record of changing wind direction and wind strength. Here we present an in situ examination of a martian bright wind streak, which provides evidence consistent with a previously proposed formational model for such features. We also show that a widely used criterion for distinguishing between aeolian saltation- and suspension-dominated grain behaviour is different on Mars, and that estimated wind friction speeds between 2 and 3 m s-1, most recently from the northwest, are associated with recent global dust storms, providing ground truth for climate model predictions.

  14. Records of human occupation from Pleistocene river terrace and aeolian sediments in the Arneiro depression (Lower Tejo River, central eastern Portugal)

    NASA Astrophysics Data System (ADS)

    Cunha, Pedro P.; Almeida, Nelson A. C.; Aubry, Thierry; Martins, António A.; Murray, Andrew S.; Buylaert, Jan-Pieter; Sohbati, Reza; Raposo, Luis; Rocha, Leonor

    2012-09-01

    In the uppermost reach of the Lower Tejo River (eastern central Portugal), where the river crosses two quartzite ridges that separate the Ródão (upstream) and Arneiro (downstream) depressions, Palaeolithic artefacts have been recovered from three lower river terrace levels and a cover unit of aeolian sands. This paper presents data on the discovery of archaeological artefacts from the terrace levels and the aeolian sands that can be linked to Middle and Upper Palaeolithic industries from new field sites at Tapada do Montinho and Castelejo. The archaeological data when placed in a geomorphological, sedimentary and chronological framework, contribute new information on the understanding of human occupation in western Iberia during cold-climate episodes of the last 62 to 12 ka; and especially during the cooler and driest conditions that occurred between 32 and 12 ka, when the climate favoured aeolian sediment transport. In the Lower Tejo River, the integration of absolute age datasets with archaeological, geomorphological and sedimentary data indicate that in westernmost Iberia the first appearance of artefacts in river terrace sediments suggests that the earliest marker for human occupation dates from the lower Acheulian (Lower Palaeolithic), probably corresponding to an age of ~ 340 ka. Data also suggest, for the first time, that Acheulian lithic industries were replaced by Middle Palaeolithic ones (namely the Levallois stone knapping technique) by ~ 160 ka (~ MIS6). Middle Palaeolithic industries were later replaced by Upper Palaeolithic industries at 32 ka. The post 32 ka period, dominated by aeolian sediment transport, is related to the onset of cold-dry climate conditions which resulted in low river flow discharges, floodplain exposure and reworking by NW winds. This cold-dry period is coeval with the disappearance of Megafauna and associated Neanderthal communities, and the replacement of the Middle Palaeolithic industries by Upper Palaeolithic ones in this

  15. A 16-year record of eolian dust in Southern Nevada and California, USA: Controls on dust generation and accumulation

    USGS Publications Warehouse

    Reheis, M.C.

    2006-01-01

    An ongoing project monitors modern dust accumulation in the arid southwestern United States to (1) determine the rate and composition of dust inputs to soils and (2) relate dust accumulation to weather patterns to help predict the effects of climate change on dust production and accumulation. The 16-year records of 35 dust-trap sites in the eastern Mojave Desert and southern Great Basin reveal how generation and accumulation of dust, including the silt-clay, carbonate, and soluble-salt fractions, is affected by the amount and seasonal distribution of rainfall and the behavior of different source types (alluvium, dry playas, and wet playas). Accumulation rates (fluxes) of the silt-clay fraction of dust, including carbonates, range from about 2-20 g/m2/yr. Average rates are higher in the southern part of the study area (south of latitude 36.5??N) and annually fluctuate over a larger range than rates in the northern part of the area. Sites throughout the study area show peaks in dust flux in the 1984-1985 sampling period and again in 1997-1999; northern sites also show increased flux in 1987-1988 and southern sites in 1989-1991. These peaks of dust flux correspond with both La Nina (dry) conditions and with strong El Nino (wet) periods. The accumulation rates of different components of mineral dusts fluctuate differently. For example, soluble-salt flux increases in 1987-1988, coincident with a moderate El Nino event, and increases very strongly in 1997-1999, overlapping with a strong El Nino event. Both of these high-rainfall winters were preceded and accompanied by strong summer rains. In contrast, little or no change in soluble-salt flux occurred during other periods of high winter rainfall but little summer rain, e.g. 1992-1995. The differences between northern vs. southern sites and between sites with playa dust sources vs. alluvial dust sources indicate that regional differences in the response of precipitation and vegetation growth to ENSO influence and

  16. Threshold wind velocity dynamics as a driver of aeolian sediment mas flux

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Horizontal (saltation) mass flux is a key driver of aeolian dust emission. Estimates of the horizontal mass flux underpin assessments of the global dust budget and influence our understanding of the dust cycle and its interactions. Current equations for predicting horizontal mass flux are based on l...

  17. Sorting during Migration of Aeolian Megaripples

    NASA Astrophysics Data System (ADS)

    Sullivan, R. J., Jr.; Zimbelman, J. R.

    2014-12-01

    Aeolian sediments commonly are well sorted. However, aeolian megaripples (aka coarse-grained ripples or granule ripples) have bimodal grain size-frequencies. Distinguishing aeolian megaripple deposits from mixed grain size fluvial deposits is important, particularly for martian sedimentary rocks where implications for flowing water in the martian past (if revealed by legitimate fluvial deposits) are important mission drivers for rovers and landers. Aeolian megaripples are relatively minor components of terrestrial aeolian settings (e.g., as interdune features), but on Mars, megaripples have been encountered in many locations by landers and rovers, are durable due to indurated, armoring surface layers of very coarse sand, and therefore are likely candidates for preservation in the martian sedimentary rock record. Unfortunately, megaripple deposits preserved in martian sedimentary rocks must be recognized with much less data or context than obtained typically during terrestrial fieldwork. We have undertaken wind tunnel experiments and fieldwork to assist interpretations distinguishing aeolian megaripple deposits from mixed grain fluvial materials. Lags of coarse or very coarse sand from ancient aeolian environments within the White Rim Sandstone, Canyonlands NP, UT, and at some localities along the J2 Unconformity at Buckhorn Wash, UT, are well sorted, with a sharply defined maximum grain size in each case. We conducted wind tunnel experiments to explore whether the well-sorted, sharp cutoff in maximum grain size of the coarse fraction in these deposits could be diagnostic of aeolian megaripple formation and migration. Wind tunnel experiments involved 250 μm sand saltating against 600-2800 μm grains. For a given wind tunnel speed, only a narrow grain size range appeared on megaripple surfaces as these bedforms developed spontaneously from the bed; somewhat finer grains migrated rapidly downwind, while slightly coarser grains remained immobile. The physics of

  18. The link between marine sediment records and changes in Holocene Saharan landscape: simulating the dust cycle

    NASA Astrophysics Data System (ADS)

    Egerer, Sabine; Claussen, Martin; Reick, Christian; Stanelle, Tanja

    2016-04-01

    Marine sediment records reveal an abrupt and strong increase in dust deposition in the North Atlantic at the end of the African Humid Period about 4.9 to 5.5 ka ago. The change in dust flux has been attributed to varying Saharan land surface cover. Alternatively, the enhanced dust accumulation is linked to enhanced surface winds and a consequent intensification of coastal upwelling. Here we demonstrate for the first time the direct link between dust accumulation in marine cores and changes in Saharan land surface. We simulate the mid-Holocene (6 ka BP) and pre-industrial (1850 AD) dust cycle as a function of Saharan land surface cover and atmosphere-ocean conditions using the coupled atmosphere-aerosol model ECHAM6.1-HAM2.1. Mid-Holocene surface characteristics, including vegetation cover and lake surface area, are derived from proxy data and simulations. In agreement with data from marine sediment cores, our simulations show that mid-Holocene dust deposition fluxes in the North Atlantic were two to three times lower compared with pre-industrial fluxes. We identify Saharan land surface characteristics to be the main control on dust transport from North Africa to the North Atlantic. We conclude that the increase in dust accumulation in marine cores is directly linked to a transition of the Saharan landscape during the Holocene and not due to changes in atmospheric or ocean conditions alone.

  19. Comparing dust flux records from the Subarctic North Pacific and Greenland: Implications for atmospheric transport to Greenland and for the application of dust as a chronostratigraphic tool

    NASA Astrophysics Data System (ADS)

    Serno, Sascha; Winckler, Gisela; Anderson, Robert F.; Maier, Edith; Ren, Haojia; Gersonde, Rainer; Haug, Gerald H.

    2015-06-01

    We present a new record of eolian dust flux to the western Subarctic North Pacific (SNP) covering the past 27,000 years based on a core from the Detroit Seamount. Comparing the SNP dust record to the North Greenland Ice Core Project (NGRIP) ice core record shows significant differences in the amplitude of dust changes to the two regions during the last deglaciation, while the timing of abrupt changes is synchronous. If dust deposition in the SNP faithfully records its mobilization in East Asian source regions, then the difference in the relative amplitude must reflect climate-related changes in atmospheric dust transport to Greenland. Based on the synchronicity in the timing of dust changes in the SNP and Greenland, we tie abrupt deglacial transitions in the 230Th-normalized 4He flux record to corresponding transitions in the well-dated NGRIP dust flux record to provide a new chronostratigraphic technique for marine sediments from the SNP. Results from this technique are complemented by radiocarbon dating, which allows us to independently constrain radiocarbon paleoreservoir ages. We find paleoreservoir ages of 745 ± 140 years at 11,653 year B.P., 680 ± 228 years at 14,630 year B.P., and 790 ± 498 years at 23,290 year B.P. Our reconstructed paleoreservoir ages are consistent with modern surface water reservoir ages in the western SNP. Good temporal synchronicity between eolian dust records from the Subantarctic Atlantic and equatorial Pacific and the ice core record from Antarctica supports the reliability of the proposed dust tuning method to be used more widely in other global ocean regions.

  20. Strengthening of North American dust sources during the late Pliocene (2.7 Ma)

    NASA Astrophysics Data System (ADS)

    Naafs, B. David A.; Hefter, Jens; Acton, Gary; Haug, Gerald H.; Martínez-Garcia, Alfredo; Pancost, Richard; Stein, Ruediger

    2012-02-01

    Here we present orbitally-resolved records of terrestrial higher plant leaf wax input to the North Atlantic over the last 3.5 Ma, based on the accumulation of long-chain n-alkanes and n-alkanl-1-ols at IODP Site U1313. These lipids are a major component of dust, even in remote ocean areas, and have a predominantly aeolian origin in distal marine sediments. Our results demonstrate that around 2.7 million years ago (Ma), coinciding with the intensification of the Northern Hemisphere glaciation (NHG), the aeolian input of terrestrial material to the North Atlantic increased drastically. Since then, during every glacial the aeolian input of higher plant material was up to 30 times higher than during interglacials. The close correspondence between aeolian input to the North Atlantic and other dust records indicates a globally uniform response of dust sources to Quaternary climate variability, although the amplitude of variation differs among areas. We argue that the increased aeolian input at Site U1313 during glacials is predominantly related to the episodic appearance of continental ice sheets in North America and the associated strengthening of glaciogenic dust sources. Evolutional spectral analyses of the n-alkane records were therefore used to determine the dominant astronomical forcing in North American ice sheet advances. These results demonstrate that during the early Pleistocene North American ice sheet dynamics responded predominantly to variations in obliquity (41 ka), which argues against previous suggestions of precession-related variations in Northern Hemisphere ice sheets during the early Pleistocene.

  1. A 200,000-year record of late Quaternary Aeolian sedimentation on the Southern High Plains and nearby Pecos River Valley, USA

    NASA Astrophysics Data System (ADS)

    Rich, J.; Stokes, S.

    2011-03-01

    Presently stabilized Southern High Plains (SHP) dune systems have been repeatedly re-activated during the past 200,000 years, providing an archive of environmental and related climatic change for the late Quaternary. Our data set of 38 optically dated samples from four different localities identifies eolian activity from late-middle Pleistocene to the historic period. Oldest eolian sediments are from the Blackwater Draw Formation and indicate accretion during late-middle to late Pleistocene. Younger sediments dating from the later Pleistocene through the Holocene are found in the Muleshoe, Lea-Yoakum, Mescalero, and Monahans dunes that overlie the Blackwater Draw Formation. Muleshoe dunes accreted during the Late Pleistocene between 31 ± 3 and 27 ± 2 ka, while Holocene deposition transpired 7.5 ± 0.4, 4.0 ± 0.7 ka through 3.6 ± 0.4 ka, and between 1.3 ± 0.2 and 1.1 ± 0.1 ka. A period of dune building for Lea-Yoakum dune sediments occurred during the late Pleistocene (48 ± 5 ka), and the later Holocene (3.6 ± 0.4 ka). Mescalero and Monahans dunes were accreting during the later Pleistocene between 29 ± 3 and 22 ± 2 ka followed by a sequence of eolian sand deposited ca. 15 ka. Holocene eolian sedimentation for the Mescalero and Monahans dunes occurred 7.5 ± 0.8, 5.1 ± 0.5, 4.3 ± 0.4, and 2.0 ± 0.3 ka. Historic eolian deposition is identifiable in the dune chronology with multiple optical age estimates overlapping established drought events recorded ca. 1890, 1910, 1920, and during the 1930's when the North American "Dust Bowl" transpired. These Quaternary eolian deposits mantling the Southern High Plains are an important component of the surficial material of the region and provide a rich archive of past climatic change.

  2. The Icelandic volcanic aeolian environment: Processes and impacts - A review

    NASA Astrophysics Data System (ADS)

    Arnalds, Olafur; Dagsson-Waldhauserova, Pavla; Olafsson, Haraldur

    2016-03-01

    Iceland has the largest area of volcaniclastic sandy desert on Earth or 22,000 km2. The sand has been mostly produced by glacio-fluvial processes, leaving behind fine-grained unstable sediments which are later re-distributed by repeated aeolian events. Volcanic eruptions add to this pool of unstable sediments, often from subglacial eruptions. Icelandic desert surfaces are divided into sand fields, sandy lavas and sandy lag gravel, each with separate aeolian surface characteristics such as threshold velocities. Storms are frequent due to Iceland's location on the North Atlantic Storm track. Dry winds occur on the leeward sides of mountains and glaciers, in spite of the high moisture content of the Atlantic cyclones. Surface winds often move hundreds to more than 1000 kg m-1 per annum, and more than 10,000 kg m-1 have been measured in a single storm. Desertification occurs when aeolian processes push sand fronts and have thus destroyed many previously fully vegetated ecosystems since the time of the settlement of Iceland in the late ninth century. There are about 135 dust events per annum, ranging from minor storms to >300,000 t of dust emitted in single storms. Dust production is on the order of 30-40 million tons annually, some traveling over 1000 km and deposited on land and sea. Dust deposited on deserts tends to be re-suspended during subsequent storms. High PM10 concentrations occur during major dust storms. They are more frequent in the wake of volcanic eruptions, such as after the Eyjafjallajökull 2010 eruption. Airborne dust affects human health, with negative effects enhanced by the tubular morphology of the grains, and the basaltic composition with its high metal content. Dust deposition on snow and glaciers intensifies melting. Moreover, the dust production probably also influences atmospheric conditions and parameters that affect climate change.

  3. Holocene aeolian activities in the southeastern Mu Us Desert, China

    NASA Astrophysics Data System (ADS)

    Jia, Feifei; Lu, Ruijie; Gao, Shangyu; Li, Jinfeng; Liu, Xiaokang

    2015-12-01

    Aeolian deposits from three sites in the Mu Us Desert were used to reconstruct the history of aeolian activities during the Holocene. The results of the lithologies, chronologies and proxy indicators showed that aeolian activities occurred at ∼9.96 cal ka BP, 7.9-6.9 ka BP, 6.4 ka BP and 3.8 cal ka BP∼. The cold event that occurred around 6.4 ka BP interrupted the Holocene Optimum period, which is largely consistent with the findings from sediments in adjacent regions and the monsoon areas of China. Combined with punished OSL and 14C ages of aeolian deposits samples in this region, the environmental changes in the Mu Us Desert were divided into four stages. Active sand dunes dominated before 11 ka BP. Aeolian activities occurred regionally from 11 to 8.5 ka BP and typical sandy paleosol widely developed with episodic aeolian activities between 8.5 and 4 ka BP. Dunes have reactivated and active sand dunes have gradually increased since 4 ka BP. Comparisons with the other paleoclimatic records indicated that the evolution of the Mu Us Desert was closely related to the East Asian monsoon. Paleosol development depended more on the precipitation brought by the East Asian summer monsoon (EASM). The stronger East Asian winter monsoon (EAMW) and higher isolation resulted in the aeolian activities in the early Holocene, while during the mid-Holocene the fluctuating EAWM played a more important role in inducing episodic aeolian activities. The environmental deterioration during the late Holocene can be related to weakened EASM or to increased anthropogenic influence.

  4. Dust devil signatures in infrasound records of the International Monitoring System

    NASA Astrophysics Data System (ADS)

    Lorenz, Ralph D.; Christie, Douglas

    2015-03-01

    We explore whether dust devils have a recognizable signature in infrasound array records, since several Comprehensive Nuclear-Test-Ban Treaty verification stations conducting continuous measurements with microbarometers are in desert areas which see dust devils. The passage of dust devils (and other boundary layer vortices, whether dust laden or not) causes a local temporary drop in pressure: the high-pass time domain filtering in microbarometers results in a "heartbeat" signature, which we observe at the Warramunga station in Australia. We also observe a ~50 min pseudoperiodicity in the occurrence of these signatures and some higher-frequency infrasound. Dust devils do not significantly degrade the treaty verification capability. The pipe arrays for spatial averaging used in infrasound monitoring degrade the detection efficiency of small devils, but the long observation time may allow a useful census of large vortices, and thus, the high-sensitivity infrasonic array data from the monitoring network can be useful in studying columnar vortices in the lower atmosphere.

  5. Aeolian Slipface Processes on Earth and Mars

    NASA Astrophysics Data System (ADS)

    Cornwall, Carin; Jackson, Derek; Bourke, Mary; Cooper, Andrew

    2016-04-01

    The surface of Mars is dominated by aeolian features and many locations show ripple and dune migration over the past decade with some sediment fluxes comparable to terrestrial dunes. One of the leading goals in investigating aeolian processes on Mars is to explore the boundary conditions of sediment transport, accumulation, and dune mor-phology in relation to wind regime as well as to quantify migration rates and sediment flux. We combine terrestrial field observations, 3D computational fluid dynamics (CFD) modeling and remote sensing data to investigate com-plex, small scale wind patterns and grainflow processes on terrestrial and martian dunes. We aim to constrain grain flow magnitudes and frequencies that occur on slipface slopes of dunes in order to improve estimates of martian dune field migration and sediment flux related to wind velocity and flow patterns. A series of ground-based, high resolution laser scans have been collected in the Maspalomas dune field in Gran Canaria, Spain to investigate grainflow frequency, morphology and slipface advancement. Analysis of these laser scans and simultaneous video recordings have revealed a variety of slipface activity. We identify 6 different grain-flow morphologies including, hourglass shape (classic alcove formation with deposit fan below), superficial flow (thin lenses), narrow trough (vertical lines cm in width), sheet, column (vertical alcove walls), and complex (combi-nation of morphologies triggered simultaneously in the same location). Hourglass grainflow morphologies were the most common and occurred regularly. The superficial and narrow trough morphologies were the second most com-mon and frequently occurred in between large grain flows. Sheet grainflows were rare and unpredictable. These flows involved large portions of the slipface (metres across) and mobilized a substantial amount of sediment in one event. We have compared these grainflow morphologies from Maspalomas to those in martian dune fields and

  6. High-resolution mineral dust and sea ice proxy records from the Talos Dome ice core

    NASA Astrophysics Data System (ADS)

    Schüpbach, S.; Federer, U.; Kaufmann, P. R.; Albani, S.; Barbante, C.; Stocker, T. F.; Fischer, H.

    2013-12-01

    In this study we report on new non-sea salt calcium (nssCa2+, mineral dust proxy) and sea salt sodium (ssNa+, sea ice proxy) records along the East Antarctic Talos Dome deep ice core in centennial resolution reaching back 150 thousand years (ka) before present. During glacial conditions nssCa2+ fluxes in Talos Dome are strongly related to temperature as has been observed before in other deep Antarctic ice core records, and has been associated with synchronous changes in the main source region (southern South America) during climate variations in the last glacial. However, during warmer climate conditions Talos Dome mineral dust input is clearly elevated compared to other records mainly due to the contribution of additional local dust sources in the Ross Sea area. Based on a simple transport model, we compare nssCa2+ fluxes of different East Antarctic ice cores. From this multi-site comparison we conclude that changes in transport efficiency or atmospheric lifetime of dust particles do have a minor effect compared to source strength changes on the large-scale concentration changes observed in Antarctic ice cores during climate variations of the past 150 ka. Our transport model applied on ice core data is further validated by climate model data. The availability of multiple East Antarctic nssCa2+ records also allows for a revision of a former estimate on the atmospheric CO2 sensitivity to reduced dust induced iron fertilisation in the Southern Ocean during the transition from the Last Glacial Maximum to the Holocene (T1). While a former estimate based on the EPICA Dome C (EDC) record only suggested 20 ppm, we find that reduced dust induced iron fertilisation in the Southern Ocean may be responsible for up to 40 ppm of the total atmospheric CO2 increase during T1. During the last interglacial, ssNa+ levels of EDC and EPICA Dronning Maud Land (EDML) are only half of the Holocene levels, in line with higher temperatures during that period, indicating much reduced sea

  7. The Dust Storm Index (DSI): A method for monitoring broadscale wind erosion using meteorological records

    NASA Astrophysics Data System (ADS)

    O'Loingsigh, T.; McTainsh, G. H.; Tews, E. K.; Strong, C. L.; Leys, J. F.; Shinkfield, P.; Tapper, N. J.

    2014-03-01

    Wind erosion of soils is a natural process that has shaped the semi-arid and arid landscapes for millennia. This paper describes the Dust Storm Index (DSI); a methodology for monitoring wind erosion using Australian Bureau of Meteorology (ABM) meteorological observational data since the mid-1960s (long-term), at continental scale. While the 46 year length of the DSI record is its greatest strength from a wind erosion monitoring perspective, there are a number of technical challenges to its use because when the World Meteorological Organisation (WMO) recording protocols were established the use of the data for wind erosion monitoring was never intended. Data recording and storage protocols are examined, including the effects of changes to the definition of how observers should interpret and record dust events. A method is described for selecting the 180 long-term ABM stations used in this study and the limitations of variable observation frequencies between stations are in part resolved. The rationale behind the DSI equation is explained and the examples of temporal and spatial data visualisation products presented include; a long term national wind erosion record (1965-2011), continental DSI maps, and maps of the erosion event types that are factored into the DSI equation. The DSI is tested against dust concentration data and found to provide an accurate representation of wind erosion activity. As the ABM observational records used here were collected according to WMO protocols, the DSI methodology could be used in all countries with WMO-compatible meteorological observation and recording systems.

  8. Small-Scale Dust Structures in Halley's Coma: Evidence from the Vega-2 Electric Field Records

    NASA Astrophysics Data System (ADS)

    Oberc, P.

    1999-07-01

    Owing to simultaneous dust and plasma wave observations onboard the Vega mission to Comet Halley, previous studies have found that the two double probe antennas, short (of APV-N experiment) and long (APV-V), (i) responded to plasma clouds induced by impacts of relatively large particles, (ii) the target area was comparable to the whole spacecraft projection, and (iii) the mass thresholds depended on the ambient plasma conditions. Subsequently, the response mechanisms have been identified, and it was shown that if impacts became continuous, the sensitivity of the antennas to individual plasma clouds was reduced or even cancelled. In the present paper, about 30 short-time events of continuous impact (CIEs), recognized in the Vega-2 records from the two experiments mostly near the closest approach to (at ∼104 km from) the nucleus, are investigated. The high-resolution APV-N waveforms reveal that the respective dust formations were structured. A few types of structure, all belonging to one family, have been distinguished. The basic structure, as seen along the Vega-2 pass, is a sequence of particle clouds. CIEs have time scales shorter than or comparable to the time resolution of the dust experiments (spatial scale less than 200 km) and do not correlate with the SP-1 observations (m≤10-10 g) nor with the published SP-2 fluxes (m≤5.8×10-8 g). But, these dust data, combined with an integral criterion for continuous impact, provide a constraint which implies that the particles responsible were bigger than 10-9-10-8 g. The data from the DUCMA V-detector confirm positively this inference for about 1/3 (∼10) of CIEs and indicate that particles (much) bigger than 10-7 g were decisive in generating several other events. Using an argument from the dusty gas dynamics, it is shown that the small-scale dust structures were not jets but have originated from the disintegration of particle aggregates. An estimate of the total mass contained within a dust structure leads to

  9. A Lacustrine Record of Postglacial Dust Deposition from the Uinta Mountains, Utah, USA

    NASA Astrophysics Data System (ADS)

    Munroe, Jeffrey

    2015-04-01

    Samplers deployed in 2011 reveal a modern dust flux to the alpine zone (>3000 m asl) of the Uinta Mountains (Utah, USA) of ~4 gm/m2/yr. A notably uniform layer of silt, ~20 cm thick, in soil profiles from throughout the alpine zone, along with the presence in soils and modern dust of minerals not found in the bedrock, indicates that dust deposition has been an important long-term process in this environment. To evaluate how dust flux and properties have changed over the postglacial period a 190 cm-long lacustrine sediment core was analyzed. The core was collected with a percussion corer from a small lake (8 ha) at an elevation of 3043 m asl in 10.6 m of water. Six AMS 14C analyses on conifer needles, wood fragments, and bulk sediment support a depth-age model extending back to 12.7 ka BP. Loose near-surface sediment was not recovered, so the top of the core is truncated at 1.36 ka BP. Geochemical composition was evaluated at 2-cm intervals using ICP-AES after fluxing of ignited samples with LiBO2. The abundance of rare earth elements was determined for a subset of 16 samples using ICP-MS. Mineralogy was investigated at 2-cm intervals using XRD. Grain size distribution, organic matter content, and C:N ratio were determined at 1-cm intervals using laser scattering, loss-on-ignition, and an elemental analyzer, respectively. Results indicate that the flux and properties of dust arriving in the Uinta Mountains have varied over time, with the most significant variations occurring between 6.5 and 4.5 ka BP. During that time ratios of Zr/Al, Ti/Al and (Ca+Mg)/Fe rise to record-high values, and the abundance of Illite+Chlorite increases relative to feldspar. Prominent shifts occur in the abundances of some trace elements, such as Sc, along with changes in median grain size. The ratio La/Lu, as well as the magnitude of the Eu anomaly, also change. Collectively these fluctuations are consistent with a greater flux of dust to the Uinta Mountains, as well as a possible change

  10. African Dust Fertilizing the Amazon Rainforest: An Assessment with Seven-year Record of CALIOP Measurements

    NASA Astrophysics Data System (ADS)

    Yu, H.; Chin, M.; Yuan, T.; Bian, H.; Prospero, J. M.; Omar, A. H.; Remer, L. A.; Winker, D. M.; Yang, Y.; Zhang, Y.; Zhang, Z.

    2014-12-01

    The productivity of Amazon rainforest is constrained by the availability of nutrients, in particular phosphorus (P). Deposition of transported African dust in boreal winter and spring is considered an important nutrient input for the Amazon Basin, though its magnitude is not well qunatified. This study provides a remote sensing observation-based estimate of dust deposition in the Amazon Basin using a 7-year (2007-2013) record of three dimensional (3D) distributions of aerosol in both cloud-free and above-cloud conditions from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP). It is estimated that the 7-year average of dust deposition into the Amazon Basin amounts to 15.1 ~ 32.1 Tg a-1 (Tg = 1012 g). This imported dust could provide 0.012 ~ 0.025 Tg P a-1 or equivalent to 12 ~ 26 g P ha-1 a-1 to fertilize the Amazon rainforest, which largely compensates the hydrological loss of P. The CLAIOP-based estimate agrees better with estimates from in-situ measurements and model simulations than what has been reported in literature. The closer agreement benefits from a more realistic geographic definition of the Amazon Basin and inclusion of meridional dust transport calculation in addition to the 3D nature of CALIOP aerosol measurements. The trans-Atlantic transport and deposition of dust shows strong interannual variations that are found to correlate with the North Atlantic Oscillation index in the winter season and anticorrelate with the prior-year Sahel Precipitation Index on an annual basis. Uncertainties associated with the estimate will also be discussed.

  11. Aeolian sand ripples around plants.

    PubMed

    Zhang, Qian-Hua; Miao, Tian-De

    2003-05-01

    Plants in the desert may locally change the aeolian process, and hence the pattern of sand ripples traveling nearby. The effect of plants on ripples is investigated using a coupled map lattice model with nonuniform coupling coefficients. PMID:12786143

  12. Radar-aeolian roughness project

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald; Dobrovolskis, A.; Gaddis, L.; Iversen, J. D.; Lancaster, N.; Leach, Rodman N.; Rasnussen, K.; Saunders, S.; Vanzyl, J.; Wall, S.

    1991-01-01

    The objective is to establish an empirical relationship between measurements of radar, aeolian, and surface roughness on a variety of natural surfaces and to understand the underlying physical causes. This relationship will form the basis for developing a predictive equation to derive aeolian roughness from radar backscatter. Results are given from investigations carried out in 1989 on the principal elements of the project, with separate sections on field studies, radar data analysis, laboratory simulations, and development of theory for planetary applications.

  13. Mars sampling strategy and aeolian processes

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald

    1988-01-01

    It is critical that the geological context of planetary samples (both in situ analyses and return samples) be well known and documented. Apollo experience showed that this goal is often difficult to achieve even for a planet on which surficial processes are relatively restricted. On Mars, the variety of present and past surface processes is much greater than on the Moon and establishing the geological context of samples will be much more difficult. In addition to impact hardening, Mars has been modified by running water, periglacial activity, wind, and other processes, all of which have the potential for profoundly affecting the geological integrity of potential samples. Aeolian, or wind, processes are ubiquitous on Mars. In the absence of liquid water on the surface, aeolian activity dominates the present surface as documented by frequent dust storms (both local and global), landforms such as dunes, and variable features, i.e., albedo patterns which change their size, shape, and position with time in response to the wind.

  14. Dust aerosol, clouds, and the atmospheric optical depth record over 5 Mars years of the Mars Exploration Rover mission

    NASA Astrophysics Data System (ADS)

    Lemmon, Mark T.; Wolff, Michael J.; Bell, James F., III; Smith, Michael D.; Cantor, Bruce A.; Smith, Peter H.

    2015-05-01

    Dust aerosol plays a fundamental role in the behavior and evolution of the martian atmosphere. The first five Mars years of Mars Exploration Rover data provide an unprecedented record of the dust load at two sites. This record is useful for characterization of the atmosphere at the sites and as ground truth for orbital observations. Atmospheric extinction optical depths have been derived from solar images after calibration and correction for time-varying dust that has accumulated on the camera windows. The record includes local, regional, and globally extensive dust storms. Comparison with contemporaneous thermal infrared data suggests significant variation in the size of the dust aerosols, with a 1 μm effective radius during northern summer and a 2 μm effective radius at the onset of a dust lifting event. The solar longitude (LS) 20-136° period is also characterized by the presence of cirriform clouds at the Opportunity site, especially near LS = 50° and 115°. In addition to water ice clouds, a water ice haze may also be present, and carbon dioxide clouds may be present early in the season. Variations in dust opacity are important to the energy balance of each site, and work with seasonal variations in insolation to control dust devil frequency at the Spirit site.

  15. Dust Aerosol, Clouds, and the Atmospheric Optical Depth Record over 5 Mars Years of the Mars Exploration Rover Mission

    NASA Technical Reports Server (NTRS)

    Lemmon, Mark T.; Wolff, Michael J.; Bell, James F., III; Smith, Michael D.; Cantor, Bruce A.; Smith, Peter H.

    2014-01-01

    Dust aerosol plays a fundamental role in the behavior and evolution of the Martian atmosphere. The first five Mars years of Mars Exploration Rover data provide an unprecedented record of the dust load at two sites. This record is useful for characterization of the atmosphere at the sites and as ground truth for orbital observations. Atmospheric extinction optical depths have been derived from solar images after calibration and correction for time-varying dust that has accumulated on the camera windows. The record includes local, regional, and globally extensive dust storms. Comparison with contemporaneous thermal infrared data suggests significant variation in the size of the dust aerosols, with a 1 micrometer effective radius during northern summer and a 2 micrometer effective radius at the onset of a dust lifting event. The solar longitude (L (sub s)) 20-136 degrees period is also characterized by the presence of cirriform clouds at the Opportunity site, especially near LS = 50 and 115 degrees. In addition to water ice clouds, a water ice haze may also be present, and carbon dioxide clouds may be present early in the season. Variations in dust opacity are important to the energy balance of each site, and work with seasonal variations in insolation to control dust devil frequency at the Spirit site.

  16. Model validation of untethered, ultrasonic neural dust motes for cortical recording.

    PubMed

    Seo, Dongjin; Carmena, Jose M; Rabaey, Jan M; Maharbiz, Michel M; Alon, Elad

    2015-04-15

    A major hurdle in brain-machine interfaces (BMI) is the lack of an implantable neural interface system that remains viable for a substantial fraction of the user's lifetime. Recently, sub-mm implantable, wireless electromagnetic (EM) neural interfaces have been demonstrated in an effort to extend system longevity. However, EM systems do not scale down in size well due to the severe inefficiency of coupling radio-waves at those scales within tissue. This paper explores fundamental system design trade-offs as well as size, power, and bandwidth scaling limits of neural recording systems built from low-power electronics coupled with ultrasonic power delivery and backscatter communication. Such systems will require two fundamental technology innovations: (1) 10-100 μm scale, free-floating, independent sensor nodes, or neural dust, that detect and report local extracellular electrophysiological data via ultrasonic backscattering and (2) a sub-cranial ultrasonic interrogator that establishes power and communication links with the neural dust. We provide experimental verification that the predicted scaling effects follow theory; (127 μm)(3) neural dust motes immersed in water 3 cm from the interrogator couple with 0.002064% power transfer efficiency and 0.04246 ppm backscatter, resulting in a maximum received power of ∼0.5 μW with ∼1 nW of change in backscatter power with neural activity. The high efficiency of ultrasonic transmission can enable the scaling of the sensing nodes down to 10s of micrometer. We conclude with a brief discussion of the application of neural dust for both central and peripheral nervous system recordings, and perspectives on future research directions. PMID:25109901

  17. Dust emissions from eastern Australia during the mid to late Holocene record changing hydro-climatic conditions and landuse.

    NASA Astrophysics Data System (ADS)

    Marx, S. K.; McGowan, H. A.; Kamber, B. S.

    2014-12-01

    assumed to be associated with increased advection of moisture into the MDB during enhanced westerly circulation inhibiting dust entrainment. The records presented here imply that variability in hydro-climatology and landuse in Australia's arid-lands have driven changes in dust output of up to ~20 times during the late Holocene.

  18. The origin of bimodal grain-size distribution for aeolian deposits

    NASA Astrophysics Data System (ADS)

    Lin, Yongchong; Mu, Guijin; Xu, Lishuai; Zhao, Xue

    2016-03-01

    Atmospheric dust deposition is a common phenomenon in arid and semi-arid regions. Bimodal grain size distribution (BGSD) (including the fine component and coarse component) of aeolian deposits has been widely reported. But the origin of this pattern is still debated. Here, we focused on the sedimentary process of modern dust deposition, and analyzed the grain size distribution of modern dust deposition, foliar dust, and aggregation of the aeolian dust collected in Cele Oasis, southern margin of Tarim Basin. The results show that BGSD also appear in a dust deposition. The content of fine components (<20 μm size fraction) change with temporal and spatial variation. Fine component from dust storm is significant less than that from subsequent floating dust. Fine component also varies with altitude. These indicate that modern dust deposition have experienced changing aerodynamic environment and be reworked during transportation and deposition, which is likely the main cause for BGSD. The dusts from different sources once being well-mixed in airflow are hard to form multiple peaks respectively corresponding with different sources. In addition, the dust deposition would appear BGSD whether aggregation or not. Modern dust deposition is the continuation of ancient dust deposition. They both may have the same cause of formation. Therefore, the origin of BGSD should provide a theoretical thinking for reconstructing the palaeo-environmental changes with the indicator of grain size.

  19. The linkage between marine sediment records and changes in Holocene Saharan landscape: simulating the dust cycle

    NASA Astrophysics Data System (ADS)

    Egerer, Sabine; Claussen, Martin; Reick, Christian; Stanelle, Tanja

    2016-04-01

    Marine sediment records reveal an abrupt and strong increase in dust deposition in the North Atlantic at the end of the African Humid Period about 4.9 ka to 5.5 ka ago (deMenocal et al., 2000; McGee et al., 2013). The change in dust flux has been attributed to varying Saharan land surface cover. Alternatively, the enhanced dust accumulation is linked to enhanced surface winds and a consequent intensification of coastal upwelling. We present simulation results from a recent sensitivity study, where we demonstrate for the first time the direct link between dust accumulation in marine cores and changes in Saharan land surface during the Holocene. We have simulated timeslices of he mid-Holocene (6 ka BP) and pre-industrial (1850 AD) dust cycle as a function of Saharan land surface cover and atmosphere-ocean conditions using the coupled atmosphere-aerosol model ECHAM6.1-HAM2.1. We prescribe mid-Holocene vegetation cover based on a vegetation reconstruction from pollen data (Hoelzmann et al., 1998) and mid-Holocene lake surface area is determined using a water routing and storage model (Tegen et al., 2002). In agreement with data from marine sediment cores, our simulations show that mid-Holocene dust deposition fluxes in the North Atlantic were two to three times lower compared with pre-industrial fluxes. We identify Saharan land surface characteristics to be the main control on dust transport from North Africa to the North Atlantic. We conclude that the variation in dust accumulation in marine cores is likely related to a transition of the Saharan landscape during the Holocene and not due to changes in atmospheric or ocean conditions alone. Reference: deMenocal, P., Ortiz, J., Guilderson, T., Adkins, J., Sarnthein, M., Baker, L., and Yarusinsky, M.: Abrupt onset and termination of the African Humid Period:: rapid climate responses to gradual insolation forcing, Quaternary Science Reviews, 19, 347-361, 2000. Hoelzmann, P., Jolly, D., Harrison, S. P., Laarif, F

  20. Synthesis on Quaternary aeolian research in the unglaciated eastern United States

    NASA Astrophysics Data System (ADS)

    Markewich, Helaine W.; Litwin, Ronald J.; Wysocki, Douglas A.; Pavich, Milan J.

    2015-06-01

    Late-middle and late Pleistocene, and Holocene, inland aeolian sand and loess blanket >90,000 km2 of the unglaciated eastern United States of America (USA). Deposits are most extensive in the Lower Mississippi Valley (LMV) and Atlantic Coastal Plain (ACP), areas presently lacking significant aeolian activity. They provide evidence of paleoclimate intervals when wind erosion and deposition were dominant land-altering processes. This study synthesizes available data for aeolian sand deposits in the LMV, the Eastern Gulf Coastal Plain (EGCP) and the ACP, and loess deposits in the Middle Atlantic Coastal Plain (MACP). Data indicate: (a) the most recent major aeolian activity occurred in response to and coincident with growth and decay of the Laurentide Ice Sheet (LIS); (b) by ∼40 ka, aeolian processes greatly influenced landscape evolution in all three regions; (c) aeolian activity peaked in OIS2; (d) OIS3 and OIS2 aeolian records are in regional agreement with paleoecological records; and (e) limited aeolian activity occurred in the Holocene (EGCP and ACP). Paleoclimate and atmospheric-circulation models (PCMs/ACMs) for the last glacial maximum (LGM) show westerly winter winds for the unglaciated eastern USA, but do not resolve documented W and SW winds in the SEACP and WNW and N winds in the MACP. The minimum areal extent of aeolian deposits in the EGCP and ACP is ∼10,000 km2. For the LMV, it is >80,000 km2. Based on these estimates, published PCMs/ACMs likely underrepresent the areal extent of LGM aeolian activity, as well as the extent and complexity of climatic changes during this interval.

  1. Detecting Patterns of Aeolian Transport Direction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The magnitude and direction of aeolian transport are of direct interest to those engaged in the study of aeolian processes. Although the magnitude of sediment transport has been studied extensively, the study of aeolian transport direction has garnered less attention. This paper describes the deve...

  2. Gully annealing by aeolian sediment: field and remote-sensing investigation of aeolian-hillslope-fluvial interactions, Colorado River corridor, Arizona, USA

    NASA Astrophysics Data System (ADS)

    Sankey, Joel B.; Draut, Amy E.

    2014-09-01

    Processes contributing to development of ephemeral gully channels are of great importance to landscapes worldwide, and particularly in dryland regions where soil loss and land degradation from gully erosion pose long-term land-management problems. Whereas gully formation has been relatively well studied, much less is known of the processes that anneal gullies and impede their growth. This study of gully annealing by aeolian sediment, spanning 95 km along the Colorado River corridor in Glen, Marble, and Grand Canyon, Arizona, USA, employed field and remote sensing observations, including digital topographic modelling. Results indicate that aeolian sediment activity can be locally effective at counteracting gully erosion. Gullies are less prevalent in areas where surficial sediment undergoes active aeolian transport, and have a greater tendency to terminate in active aeolian sand. Although not common, examples exist in the record of historical imagery of gullies that underwent infilling by aeolian sediment in past decades and evidently were effectively annealed. We thus provide new evidence for a potentially important interaction of aeolian-hillslope-fluvial processes, which could affect dryland regions substantially in ways not widely recognized. Moreover, because the biologic soil crust plays an important role in determining aeolian sand activity, and so in turn the extent of gully development, this study highlights a critical role of geomorphic-ecologic interactions in determining arid-landscape evolution.

  3. Laboratory Simulations of Martian and Venusian Aeolian Processes

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald

    1999-01-01

    With the flyby of the Neptune system by Voyager, the preliminary exploration of the Solar System was accomplished. Data have been returned for all major planets and satellites except the Pluto system. Results show that the surfaces of terrestrial planets and satellites have been subjected to a wide variety of geological processes. On solid- surface planetary objects having an atmosphere, aeolian processes are important in modifying their surfaces through the redistribution of fine-grained material by the wind. Bedrock may be eroded to produce particles and the particles transported by wind for deposition in other areas. This process operates on Earth today and is evident throughout the geological record. Aeolian processes also occur on Mars, Venus, and possibly Titan and Triton, both of which are outer planet satellites that have atmospheres. Mariner 9 and Viking results show abundant wind-related landforms on Mars, including dune fields and yardangs (wind-eroded hills). On Venus, measurements made by the Soviet Venera and Vega spacecraft and extrapolations from the Pioneer Venus atmospheric probes show that surface winds are capable of transporting particulate materials and suggest that aeolian processes may operate on that planet as well. Magellan radar images of Venus show abundant wind streaks in some areas, as well as dune fields and a zone of possible yardangs. The study of planetary aeolian processes must take into account diverse environments, from the cold, low-density atmosphere of Mars to the extremely hot, high- density Venusian atmosphere. Factors such as threshold wind speeds (minimum wind velocity needed to move particles), rates of erosion and deposition, trajectories of windblown particles, and aeolian flow fields over various landforms are all important aspects of the problem. In addition, study of aeolian terrains on Earth using data analogous to planetary data-collection systems is critical to the interpretation of spacecraft information and

  4. Aeolian Sand Transport with Collisional Suspension

    NASA Technical Reports Server (NTRS)

    Jenkins, James T.; Pasini, Jose Miguel; Valance, Alexandre

    2004-01-01

    Aeolian transport is an important mechanism for the transport of sand on Earth and on Mars. Dust and sand storms are common occurrences on Mars and windblown sand is responsible for many of the observed surface features, such as dune fields. A better understanding of Aeolian transport could also lead to improvements in pneumatic conveying of materials to be mined for life support on the surface of the Moon and Mars. The usual view of aeolian sand transport is that for mild winds, saltation is the dominant mechanism, with particles in the bed being dislodged by the impact of other saltating particles, but without in-flight collisions. As the wind becomes stronger, turbulent suspension keeps the particles in the air, allowing much longer trajectories, with the corresponding increase in transport rate. We show here that an important regime exists between these two extremes: for strong winds, but before turbulent suspension becomes dominant, there is a regime in which in-flight collisions dominate over turbulence as a suspension mechanism, yielding transport rates much higher than those for saltation. The theory presented is based on granular kinetic theory, and includes both turbulent suspension and particle-particle collisions. The wind strengths for which the calculated transport rates are relevant are beyond the published strengths of current wind tunnel experiments, so these theoretical results are an invitation to do experiments in the strong-wind regime. In order to make a connection between the regime of saltation and the regime of collisional suspension, it is necessary to better understand the interaction between the bed and the particles that collide with it. This interaction depends on the agitation of the particles of the bed. In mild winds, collisions with the bed are relatively infrequent and the local disturbance associated with a collision can relax before the next nearby collision. However, as the wind speed increases, collision become more frequent

  5. A Threshold Continuum for Aeolian Sand Transport

    NASA Astrophysics Data System (ADS)

    Swann, C.; Ewing, R. C.; Sherman, D. J.

    2015-12-01

    The threshold of motion for aeolian sand transport marks the initial entrainment of sand particles by the force of the wind. This is typically defined and modeled as a singular wind speed for a given grain size and is based on field and laboratory experimental data. However, the definition of threshold varies significantly between these empirical models, largely because the definition is based on visual-observations of initial grain movement. For example, in his seminal experiments, Bagnold defined threshold of motion when he observed that 100% of the bed was in motion. Others have used 50% and lesser values. Differences in threshold models, in turn, result is large errors in predicting the fluxes associated with sand and dust transport. Here we use a wind tunnel and novel sediment trap to capture the fractions of sand in creep, reptation and saltation at Earth and Mars pressures and show that the threshold of motion for aeolian sand transport is best defined as a continuum in which grains progress through stages defined by the proportion of grains in creep and saltation. We propose the use of scale dependent thresholds modeled by distinct probability distribution functions that differentiate the threshold based on micro to macro scale applications. For example, a geologic timescale application corresponds to a threshold when 100% of the bed in motion whereas a sub-second application corresponds to a threshold when a single particle is set in motion. We provide quantitative measurements (number and mode of particle movement) corresponding to visual observations, percent of bed in motion and degrees of transport intermittency for Earth and Mars. Understanding transport as a continuum provides a basis for revaluating sand transport thresholds on Earth, Mars and Titan.

  6. Dust accretion under stone pavements: A complementary environmental archive in arid environments

    NASA Astrophysics Data System (ADS)

    Dietze, Michael; Fuchs, Markus; Kleber, Arno

    2014-05-01

    Stone pavements are widespread surface covers in arid environments. They form predominantly by the trapping of aeolian dust, which trickles below the surficial clast layer, where it forms a continuous layer of fine-grained material with a prominent foamy structure: the vesicular horizon (Av). Successive accretion of dust leads to a thickening of the aeolian mantle and detaches clasts from bedrock. Since this process is dependent on environmental conditions, stone pavement-covered accretionary sections can be used as palaeoenvironmental archive. In the eastern Mojave Desert, correlation of six sediment sections on a 560 ka old basalt flow yield a standard section, comprising at least three distinct units of pulsed aeolian sediment input, interrupted by phases of stone pavement formation, their burial and subsequent pedogenetic alteration. Formation and subsequent burial of stone pavements requires lateral re-formation processes. Two such processes - clast drag by unconcentrated overland flow and clast creep by air release from the soil - are presented, along with their environmental boundary conditions. The different sedimentary units under stone pavements in the eastern Mojave Desert must be interpreted in the light of both, the prominent climatic changes during the Pleistocene/Holocene and the young drainage system in this region. Accretionary dust sections under stone pavements receive their sediment predominantly from modern playas. However, they typically start trapping sediment and thus environmental information when the lake level drops and the lacustrine archive deceases. Hence, they appear to be complementary archives with a the potential to fill the stratigraphic gaps in lacustrine records.

  7. Aeolian Abrasion, a Dominant Erosion Agent in the Martian Environment

    NASA Astrophysics Data System (ADS)

    Bridges, N.; Cooper, G.; Eddlemon, E.; Greeley, R.; Laity, J.; Phoreman, J.; Razdan, A.; van Note, S.; White, B.; Wilson, G.

    2004-12-01

    Aeolian abrasion is one of the predominant erosion mechanisms on Mars today. Martian ventifacts record the climate under which the rocks were modified (wind direction, wind speeds and particle flux) and therefore tie into the overall climatic regime of the planet. By better understanding the rates at which rocks abrade and the features diagnostic of specific climatic conditions, we can gain insight into past climates. Herein we report on numerical models, wind tunnel experiments, and field work to determine 1) Particle and kinetic fluxes on Earth and Mars, 2) the degree to which these parameters control abrasion, and 3) how, in detail, rocks of various shapes and compositions erode over time. Kinetic energy generally increases with height, whereas flux decreases, and impact angles, which affect energy transfer, and rebound effects are functions of the rock facet angle. This results in a non-linear relationship between abrasion potential and height that is a function of wind speed, planetary environment, and target geometry. We have computed the first three of these parameters numerically using a numerical saltation code, combined with published flux calculations These results have been compared to wind tunnel tests of flux vs. height, abrasion of erodible targets, and high speed video analysis under terrestrial and Martian pressures. We are also using high resolution laser scanning to characterize textures, shapes, and weathering changes for terrestrial and Martian rocks at the 100s of microns scale. We find that facet angle, texture, and rock heterogeneity are of critical importance in determining the rate and style of abrasion. Field and theoretical results demonstrate that high speed winds, not the integrated flux of lower speeds, and sand, not dust, produce most rock abrasion. On Mars, this requires sustained winds above 20-25 m/s at the near surface, a challenge in the current environment.

  8. Gully annealing by aeolian sediment: field and remote-sensing investigation of aeolian-hillslope-fluvial interactions, Colorado River corridor, Arizona, USA

    USGS Publications Warehouse

    Sankey, Joel B.; Draut, Amy E.

    2014-01-01

    Processes contributing to development of ephemeral gully channels are of great importance to landscapes worldwide, and particularly in dryland regions where soil loss and land degradation from gully erosion pose long-term land-management problems. Whereas gully formation has been relatively well studied, much less is known of the processes that anneal gullies and impede their growth. This study of gully annealing by aeolian sediment, spanning 95 km along the Colorado River corridor in Glen, Marble, and Grand Canyon, Arizona, USA, employed field and remote sensing observations, including digital topographic modelling. Results indicate that aeolian sediment activity can be locally effective at counteracting gully erosion. Gullies are less prevalent in areas where surficial sediment undergoes active aeolian transport, and have a greater tendency to terminate in active aeolian sand. Although not common, examples exist in the record of historical imagery of gullies that underwent infilling by aeolian sediment in past decades and evidently were effectively annealed. We thus provide new evidence for a potentially important interaction of aeolian–hillslope–fluvial processes, which could affect dryland regions substantially in ways not widely recognized. Moreover, because the biologic soil crust plays an important role in determining aeolian sand activity, and so in turn the extent of gully development, this study highlights a critical role of geomorphic–ecologic interactions in determining arid-landscape evolution.

  9. Wireless Recording in the Peripheral Nervous System with Ultrasonic Neural Dust.

    PubMed

    Seo, Dongjin; Neely, Ryan M; Shen, Konlin; Singhal, Utkarsh; Alon, Elad; Rabaey, Jan M; Carmena, Jose M; Maharbiz, Michel M

    2016-08-01

    The emerging field of bioelectronic medicine seeks methods for deciphering and modulating electrophysiological activity in the body to attain therapeutic effects at target organs. Current approaches to interfacing with peripheral nerves and muscles rely heavily on wires, creating problems for chronic use, while emerging wireless approaches lack the size scalability necessary to interrogate small-diameter nerves. Furthermore, conventional electrode-based technologies lack the capability to record from nerves with high spatial resolution or to record independently from many discrete sites within a nerve bundle. Here, we demonstrate neural dust, a wireless and scalable ultrasonic backscatter system for powering and communicating with implanted bioelectronics. We show that ultrasound is effective at delivering power to mm-scale devices in tissue; likewise, passive, battery-less communication using backscatter enables high-fidelity transmission of electromyogram (EMG) and electroneurogram (ENG) signals from anesthetized rats. These results highlight the potential for an ultrasound-based neural interface system for advancing future bioelectronics-based therapies. PMID:27497221

  10. Publication trends in Aeolian research: An analysis of the biblography of Aeolian research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An analysis of the Bibliography of Aeolian Research has provided information regarding publication trends in aeolian research. Overall, results suggest that there has been a significant increase in the number of publications per year since the first aeolian-research publication appeared in 1646. P...

  11. Using the significant dust deposition event on the glaciers of Mt.~Elbrus, Caucasus Mountains, Russia on 5 May 2009 to develop a method for dating and "provenancing" of desert dust events recorded in snow pack

    NASA Astrophysics Data System (ADS)

    Shahgedanova, M.; Kutuzov, S.; White, K. H.; Nosenko, G.

    2013-02-01

    A significant desert dust deposition event occurred on Mt. Elbrus, Caucasus Mountains, Russia on 5 May 2009, where the deposited dust later appeared as a brown layer in the snow pack. An examination of dust transportation history and analysis of chemical and physical properties of the deposited dust were used to develop a new approach for high-resolution "provenancing" of dust deposition events recorded in snow pack using multiple independent techniques. A combination of SEVIRI red-green-blue composite imagery, MODIS atmospheric optical depth fields derived using the Deep Blue algorithm, air mass trajectories derived with HYSPLIT model and analysis of meteorological data enabled identification of dust source regions with high temporal (hours) and spatial (ca. 100 km) resolution. Dust, deposited on 5 May 2009, originated in the foothills of the Djebel Akhdar in eastern Libya where dust sources were activated by the intrusion of cold air from the Mediterranean Sea and Saharan low pressure system and transported to the Caucasus along the eastern Mediterranean coast, Syria and Turkey. Particles with an average diameter below 8 μm accounted for 90% of the measured particles in the sample with a mean of 3.58 μm, median 2.48 μm. The chemical signature of this long-travelled dust was significantly different from the locally-produced dust and close to that of soils collected in a palaeolake in the source region, in concentrations of hematite. Potential addition of dust from a secondary source in northern Mesopotamia introduced uncertainty in the "provenancing" of dust from this event. Nevertheless, the approach adopted here enables other dust horizons in the snowpack to be linked to specific dust transport events recorded in remote sensing and meteorological data archives.

  12. Using the significant dust deposition event on the glaciers of Mt. Elbrus, Caucasus Mountains, Russia on 5 May 2009 to develop a method for dating and provenancing of desert dust events recorded in snow pack

    NASA Astrophysics Data System (ADS)

    Shahgedanova, M.; Kutuzov, S.; White, K.; Nosenko, G.

    2012-09-01

    A significant desert dust deposition event occurred on Mt. Elbrus, Caucasus Mountains, Russia on 5 May 2009, where the deposited dust later appeared as a brown layer in the snow pack. An examination of dust transportation history and analysis of chemical and physical properties of the deposited dust were used to develop a new approach for high-resolution provenancing of dust deposition events recorded in snow pack using multiple independent techniques. A combination of SEVIRI red-green-blue composite imagery, MODIS atmospheric optical depth fields derived using the Deep Blue algorithm, air mass trajectories derived with HYSPLIT model and analysis of meteorological data enabled identification of dust source regions with high temporal (hours) and spatial (ca. 100 km) resolution. Dust, deposited on 5 May 2009, originated in the foothills of the Djebel Akhdar in eastern Libya where dust sources were activated by the intrusion of cold air from the Mediterranean Sea and Saharan low pressure system and transported to the Caucasus along the eastern Mediterranean coast, Syria and Turkey. Particles with an average diameter below 8 μm accounted for 90% of the measured particles in the sample with a mean of 3.58 μm, median 2.48 μm and the dominant mode of 0.60 μm. The chemical signature of this long-travelled dust was significantly different from the locally-produced dust and close to that of soils collected in a palaeolake in the source region, in concentrations of hematite and oxides of aluminium, manganese, and magnesium. Potential addition of dust from a secondary source in northern Mesopotamia introduced uncertainty in the provenancing of dust from this event. Nevertheless, the approach adopted here enables other dust horizons in the snowpack to be linked to specific dust transport events recorded in remote sensing and meteorological data archives.

  13. Temporal and spatial variations in provenance of Eastern Mediterranean Sea sediments: Implications for Aegean and Aeolian arc volcanism

    NASA Astrophysics Data System (ADS)

    Klaver, Martijn; Djuly, Thomas; de Graaf, Stefan; Sakes, Alex; Wijbrans, Jan; Davies, Gareth; Vroon, Pieter

    2015-03-01

    The Eastern Mediterranean Sea (EMS) is the last remnant of the Tethys Ocean that has been subducted to the north since the Jurassic. Subduction has led to the formation of multiple island arcs in the EMS region where the Aeolian and Aegean arcs are currently active. The EMS is surrounded by continents and receives a large sediment input, part of which is transported down with the subducting slab into the mantle and potentially contributes a major flux to the arc volcanism. An along-arc gradient in the composition of subducting sediment has been evoked to explain the distinct geochemical signature of the easternmost volcanic centre of the Aegean arc, but direct evidence for this proposal is lacking. We present a detailed study of the mineralogical, major-, trace elements and Sr-Nd-Hf-Pb isotope composition of 45 Neogene EMS sediment samples obtained from Deep Sea Drilling Project (DSDP) and Ocean Drilling Program (ODP) drill sites and box cores to characterise their geochemical composition, distinguish provenance components and investigate the temporal and spatial variation in provenance to evaluate the potential changing contribution of subducted EMS sediment to Aegean and Aeolian arc volcanism. Based on trace element characteristics of EMS sediments, we can distinguish four provenance components. Nile sediment and Sahara dust are the main components, but contributions from the Tethyan ophiolite belt and arc volcanic rocks in the north are also recognised. Pliocene and Quaternary EMS sediment records a strong geochemical gradient where Nile River sediment entering the EMS in the east is progressively diluted by Sahara Desert dust towards the west. Pre-Messinian samples, however, have a remarkably homogeneous composition with Nile sediment characteristics. We relate this rapid increase in Sahara dust contribution to a late Miocene climate shift leading to decreased Nile runoff and aridification of the Sahara region. EMS sediment has a restricted range in Pb isotopes

  14. "Dust Devils": Gardening Agents on the Surface of Mars, and Hidden Hazards to Human Exploration?

    NASA Technical Reports Server (NTRS)

    Marshall, J.; Smith, P.; White, B.; Farrell, W.

    1999-01-01

    Dust devils are familiar sites in the and regions of the world: they can produce quite spectacular displays of dust lofting when the vortices scavenge very loose dust from a dry lake bed or from recently disturbed agricultural fields. If one were to arrive at the center of an arid region, take one photograph, or even a series of photographs over a period of several days, then return the images for laboratory analysis, it would be most likely concluded that the region was inactive from an aeolian perspective. No images of general dust movement were obtained, nor were any dust devils "caught on camera" owing to their ephemeral and unpredictable appearance, and the fact that there was deceptively little residue of their actions. If, however, a camera were to take a 360 degree continuous recording over a period of a year, and the film were then to be shown at high speed over a period a several minutes, the impression might be that of a region ravaged by air vorticity and dust movement. Extrapolate this over geological time, and it is possible to visualize dust devils as prime aeolian agents, rather than insignificant vagaries of nature, On Mars, the thin atmosphere permits the surface of the planet to be heated but it does not itself retain heat with the capacity of the earth's atmosphere. This gives rise to greater thermal instability near the surface of Mars as "warm" air pockets diapiritically inject themselves into higher atmospheric layers. Resulting boundary-layer vorticity on Mars might therefore be expected to produce dust devils in abundance, if only seasonally. The spectacular images of dust devils obtained by Pathfinder within its brief functional period on the planet testify to the probability of highly frequent surface vorticity in light of the above reasoning about observational probability. Notably, the Pathfinder devils appeared to be at least a kilometer in height. There are several consequences for the geology of Mars, and for human exploration, if

  15. "Dust Devils": Gardening Agents on the Surface of Mars, and Hidden Hazards to Human Exploration?

    NASA Astrophysics Data System (ADS)

    Marshall, J.; Smith, P.; White, B.; Farrell, W.

    1999-09-01

    Dust devils are familiar sites in the and regions of the world: they can produce quite spectacular displays of dust lofting when the vortices scavenge very loose dust from a dry lake bed or from recently disturbed agricultural fields. If one were to arrive at the center of an arid region, take one photograph, or even a series of photographs over a period of several days, then return the images for laboratory analysis, it would be most likely concluded that the region was inactive from an aeolian perspective. No images of general dust movement were obtained, nor were any dust devils "caught on camera" owing to their ephemeral and unpredictable appearance, and the fact that there was deceptively little residue of their actions. If, however, a camera were to take a 360 degree continuous recording over a period of a year, and the film were then to be shown at high speed over a period a several minutes, the impression might be that of a region ravaged by air vorticity and dust movement. Extrapolate this over geological time, and it is possible to visualize dust devils as prime aeolian agents, rather than insignificant vagaries of nature, On Mars, the thin atmosphere permits the surface of the planet to be heated but it does not itself retain heat with the capacity of the earth's atmosphere. This gives rise to greater thermal instability near the surface of Mars as "warm" air pockets diapiritically inject themselves into higher atmospheric layers. Resulting boundary-layer vorticity on Mars might therefore be expected to produce dust devils in abundance, if only seasonally. The spectacular images of dust devils obtained by Pathfinder within its brief functional period on the planet testify to the probability of highly frequent surface vorticity in light of the above reasoning about observational probability. Notably, the Pathfinder devils appeared to be at least a kilometer in height. There are several consequences for the geology of Mars, and for human exploration, if

  16. Dust-climate couplings over the past 800,000 years from the EPICA Dome C ice core.

    PubMed

    Lambert, F; Delmonte, B; Petit, J R; Bigler, M; Kaufmann, P R; Hutterli, M A; Stocker, T F; Ruth, U; Steffensen, J P; Maggi, V

    2008-04-01

    Dust can affect the radiative balance of the atmosphere by absorbing or reflecting incoming solar radiation; it can also be a source of micronutrients, such as iron, to the ocean. It has been suggested that production, transport and deposition of dust is influenced by climatic changes on glacial-interglacial timescales. Here we present a high-resolution record of aeolian dust from the EPICA Dome C ice core in East Antarctica, which provides an undisturbed climate sequence over the past eight climatic cycles. We find that there is a significant correlation between dust flux and temperature records during glacial periods that is absent during interglacial periods. Our data suggest that dust flux is increasingly correlated with Antarctic temperature as the climate becomes colder. We interpret this as progressive coupling of the climates of Antarctic and lower latitudes. Limited changes in glacial-interglacial atmospheric transport time suggest that the sources and lifetime of dust are the main factors controlling the high glacial dust input. We propose that the observed approximately 25-fold increase in glacial dust flux over all eight glacial periods can be attributed to a strengthening of South American dust sources, together with a longer lifetime for atmospheric dust particles in the upper troposphere resulting from a reduced hydrological cycle during the ice ages. PMID:18385736

  17. Abrupt Late Holocene Shift in Atmospheric Circulation Recorded by Mineral Dust in the Siple Dome Ice Core, Antarctica

    NASA Astrophysics Data System (ADS)

    Koffman, B. G.; Goldstein, S. L.; Kaplan, M. R.; Winckler, G.; Bory, A. J. M.; Biscaye, P.

    2015-12-01

    Atmospheric dust directly influences Earth's climate by altering the radiative balance and by depositing micronutrients in the surface ocean, affecting global biogeochemical cycling. In addition, mineral dust particles provide observational evidence constraining past atmospheric circulation patterns. Because dust can originate from both local and distant terrestrial sources, knowledge of dust provenance can substantially inform our understanding of past climate history, atmospheric transport pathways, and differences in aerosol characteristics between glacial and interglacial climate states. Dust provenance information from Antarctic ice cores has until now been limited to sites in East Antarctica. Here we present some of the first provenance data from West Antarctica. We use Sr-Nd isotopes to characterize dust extracted from late Holocene ice (~1000-1800 C.E.) from the Siple Dome ice core. The data form a tight array in Sr-Nd isotope space, with 87Sr/86Sr ranging between ~0.7087 and 0.7102, and ɛNd ranging between ~ -7 and -16. This combination is unique for Antarctica, with low Nd and low Sr isotope ratios compared to high-elevation East Antarctic sites, requiring a dust source from ancient (Archean to early Proterozoic) and unweathered continental crust, which mixes with young volcanic material. Both components are likely sourced from Antarctica. We also observe significant, systematic variability in Sr and Nd isotopic signatures through time, reflecting changes in the mixing ratio of these sources, and hypothesize that these changes are driven by shifts in circulation patterns. A large change occurs over about 10 years at ca. 1125 C.E. (ΔɛNd = +3 and Δ87Sr/86Sr = -0.0014). This shift coincides with changes in climate proxies in Southern Hemisphere paleoclimate records reflecting variability in the Westerlies. We therefore interpret the shift in dust provenance at Siple Dome to be related to larger-scale circulation changes. In general, the observed shifts

  18. Evaluation of aeolian desertification from 1975 to 2010 and its causes in northwest Shanxi Province, China

    NASA Astrophysics Data System (ADS)

    Xue, Zhanjin; Qin, Zuodong; Li, Hongjian; Ding, Guangwei; Meng, Xianwen

    2013-08-01

    Efforts to control aeolian desertification in China have focused on the arid and semiarid regions. However, the direct dust emission rates, sediment characteristics and local-scale controls, as well as the measures needed to combat desertification, remain poorly understood in northwest Shanxi Province. Aeolian desertification is regarded as an obstacle to local sustainable socioeconomic development. This paper investigated changes in aeolian desertification between 1975 and 2010 on the northwestern Shanxi Plateau. In this study, remote sensing images were used to classify land suffering from aeolian desertification into four categories: light, moderate, severe, and extremely severe. To evaluate the evolution and status of aeolian desertification as well as its causes, we interpreted and analyzed Landsat multi-spectral scanner (MSS) image (acquired in 1975) and Landsat Thematic Mapper (TM) images (acquired in 1991, 2000, 2006, and 2010) as well as meteorological and socioeconomic data. Results revealed 11,866 km2, 13,362 km2, 14,051 km2, 13,613 km2, and 12,318 km2 of aeolian desertified land (ADL) in the above 5 periods, respectively. The spatial dynamics and patterns showed two stages: expansion during 1975-2000 at a rate of 87.37 km2 a- 1, and spatial transfer of affected areas during 2000-2010 with a net decrease of 173.27 km2 a- 1. During the evolution of aeolian desertification, areas of moderate ADL had the greatest dynamic response (11.45%). The factors controlling ADL dynamics were analyzed from the perspectives of two groups of factors: natural factors and human activities. Our results indicated that the climate-dominated natural factors contribute greatly to the occurrence and development of ADL. However, they are not the fundamental causes of its development. The human factors are the primary and direct driving forces responsible for the increase in ADL area. More thorough quantitative analysis, with more frequent remotely sensed data is needed to assess

  19. Aeolian Processes at the Mars Exploration Rover Opportunity Landing Site

    NASA Technical Reports Server (NTRS)

    Sullivan, R.; Bell, J. F., III; Calvin, W.; Fike, D.; Golombek, M.; Greeley, R.; Grotzinger, J.; Herkenhoff, K.; Jerolmack, D.; Malin, M.

    2005-01-01

    The traverse of the Mars Exploration Rover Opportunity across its Meridiani Planum landing site has shown that wind has affected regolith by creating drifts, dunes, and ubiquitous ripples, by sorting grains during aeolian transport, by forming bright wind streaks downwind from craters seen from orbit, and by eroding rock with abrading, wind-blown material. Pre-landing orbiter observations showed bright and dark streaks tapering away from craters on the Meridiani plains. Further analysis of orbiter images shows that major dust storms can cause bright streak orientations in the area to alternate between NW and SE, implying bright wind streak materials encountered by Opportunity are transient, potentially mobilized deposits. Opportunity performed the first in situ investigation of a martian wind streak, focusing on a bright patch of material just outside the rim of Eagle crater. Data from Pancam, the Miniature Thermal Emission Spectrometer (Mini-TES), the Alpha-Particle X-Ray Spectrometer (APXS), and the Mossbauer spectrometer either are consistent with or permit an air fall dust interpretation. We conclude that air fall dust, deposited in the partial wind shadow of Eagle crater, is responsible for the bright streak seen from orbit, consistent with models involving patchy, discontinuous deposits of air fall dust distributed behind obstacles during periods of atmospheric thermal stability during major dust storms.

  20. The birth and death of transverse aeolian ridges on Mars

    USGS Publications Warehouse

    Geissler, Paul E.

    2014-01-01

    Transverse aeolian ridges (TARs) are small bright windblown deposits found throughout the Martian tropics that stand a few meters tall and are spaced a few tens of meters apart. The origin of these features remains mysterious more than 20 years after their discovery on Mars. This paper presents a new hypothesis, that some of the TARs could be indurated dust deposits emplaced millions of years ago during periods of higher axial obliquity. It suggests that these TARs are primary depositional bed forms that accumulated in place from dust carried by the winds in suspension, perhaps in a manner comparable to antidunes on Earth, and were subsequently indurated and eroded to their current states by eons of sandblasting. It points out examples of modern dust drifts and dune-like features that appear to have been recently formed by dust accumulating directly onto the surface from atmospheric suspension. It shows how these pristine dust deposits could evolve to explain the range of morphologies of the TARs. Finally, it explains how the known properties of many TARs are consistent with this hypothesis, including their composition, thermal behavior, and distribution.

  1. Mineralogical controls on dust emissions in the Bodele Depression, Chad

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Surface mineralogy is critical in the understanding of aeolian processes, however its role in dust production is currently underestimated. Recent research indicates that discrepancies between predicted and observed dust loads by dust models may be attributed to inadequacies within their associated d...

  2. Hydrological indications of aeolian salts in mid-latitude deserts of northwestern China

    NASA Astrophysics Data System (ADS)

    Zhu, Bing-Qi

    2016-06-01

    Large sandy deserts in middle latitude of northwestern China were studied on salt variations in modern and ancient aeolian sediments, aiming to explore their hydrological indications at the present and past. Globally, sulphate is rich in arid to semi-arid deserts, including the aeolian loess sediments in China and soils in low-latitude deserts, but is less common in the aeolian sediments from the mid-latitude deserts in this study. The compositional differences between aeolian salts and local natural waters is evident, indicating the chemistry of aeolian salts and the associated parent brines may be significantly different than that predicted for hydrologically closed systems. The formation of aeolian salts in the studied deserts is strongly controlled by earth surface processes in a large scale but not in a local scale. Vertical changes in facies and salinities are abrupt in the studied palaeo-aeolian sediment samples, which were interbedded by lacustrine/fluvial sediments with OSL and 14C ages ranging between 40 and 2 ka BP, reflecting rapid high-amplitude changes in hydrological settings during late Pleistocene to later Holocene in these ancient playa systems. A great difference in salt composition between aeolian and lacustrine sediments suggests that the inorganic salt is a latent geoproxy in revealing local hydrological variations and climate change in the desert areas. But the environmental indications could be amphibolous for the sedimentary sequences with dual/multiple depositional end-members; under this situation an increase in sequence salinity does not always represent an enhanced environmental aridity. Ancient playas are arid or humid at the same time based on several sporadic records is not a valid approach to correlation of salt deposits in adjacent saline playa basin in the studied areas. Effects of earth surface processes including erosion, deposition and other processes on sediment properties will bias the hydrological implications of sediment

  3. Aeolian sand preserved in Silver Lake: a new signal of Holocene high stands of Lake Michigan

    USGS Publications Warehouse

    Fisher, Timothy G.; Loope, Walter L.

    2005-01-01

    Aeolian sand within lake sediment from Silver Lake, Michigan can be used as a proxy for the timing of high lake levels of Lake Michigan.We demonstrate that the sand record from Silver Lake plotted as percent weight is in-phase with the elevation curve of Lake Michigan since the mid-Holocene Nipissing Phase. Because fluctuations in Lake Michigan's lake level are recorded in beach ridges, and are a response to climate change, the aeolian sand record within Silver Lake is also a proxy for climate change. It appears that increases in dune activity and lake sand are controlled by similar climatic shifts that drive fluctuations in lake level of Lake Michigan. High lake levels destabilize coastal bluffs that drive dune sand instability, and along with greater wintertime storminess, increase niveo-aeolian transport of sand across lake ice. The sand is introduced into the lake each spring as the ice cover melts.

  4. Laboratory studies of aeolian sediment transport processes on planetary surfaces

    NASA Astrophysics Data System (ADS)

    Rasmussen, Keld R.; Valance, Alexandre; Merrison, Jonathan

    2015-09-01

    We review selected experimental saltation studies performed in laboratory wind tunnels and collision experiments performed in (splash-) laboratory facilities that allow detailed observations between impinging particles on a stationary bed. We also discuss progress in understanding aeolian transport in nonterrestrial environments. Saltation studies in terrestrial wind tunnels can be divided into two groups. The first group comprises studies using a short test bed, typically 1-4 m long, and focuses on the transitional behavior near the upwind roughness discontinuity where saltation starts. The other group focuses on studies using long test beds - typically 6 m or more - where the saturated saltation takes place under equilibrium conditions between wind flow and the underlying rough bed. Splash studies using upscaled model experiments allow collision simulations with large spherical particles to be recorded with a high speed video camera. The findings indicate that the number of ejected particles per impact scales linearly with the impact velocity of the saltating particles. Studies of saturated saltation in several facilities using predominantly Particle Tracking Velocimetry or Laser Doppler Velocimetry indicate that the velocity of the (few) particles having high trajectories increases with increasing friction velocity. However, the speed of the majority of particles that do not reach much higher than Bagnold's focal point is virtually independent of Shields parameter - at least for low or intermediate u*-values. In this case mass flux depends on friction velocity squared and not cubed as originally suggested by Bagnold. Over short beds particle velocity shows stronger dependence on friction velocity and profiles of particle velocity deviate from those obtained over long beds. Measurements using horizontally segmented traps give average saltation jump-lengths near 60-70 mm and appear to be only weakly dependent on friction velocity, which is in agreement with some

  5. Source-to-sink cycling of aeolian sediment in the north polar region of Mars

    NASA Astrophysics Data System (ADS)

    Ewing, R. C.; Kocurek, G.

    2012-12-01

    Aeolian sand dunes are prominent features on the landscapes of Earth, Mars, Venus and Titan and sedimentary deposits interpreted as aeolian in origin are found in the rock records of Earth and Mars. The widespread occurrence of aeolian dunes on the surface of these worlds and within their deep-time depositional records suggests that aeolian systems are and likely have been a default depositional environment for the Solar System. Within an aeolian source-to-sink context, we hypothesize that planet-specific boundary conditions strongly impact production, transport, accumulation and preservation of aeolian sediment, whereas dunes and dune-field patterns remain largely similar. This hypothesis is explored within the north polar region of Mars, which hosts the most extensive aeolian dune fields and aeolian sedimentary deposits yet recognized on Mars and appears to be a region of dynamic source-to-sink cycling of aeolian sediments. The Planum Boreum Cavi Unit rests beneath north polar ice cap of Mars and is composed of several hundred meters of niveo-aeolian dune cross-stratification. The overall architecture of the unit consists of sets of preserved dune topography with an upward increase in the abundance of ice. Dune sets are defined by stabilized, polygonally fractured bounding surfaces, erosional bounding surfaces and typical internal lee foresets made of sediment and ice. The accumulation of the Cavi Unit is interpreted as occurring through freezing and serves as an example of a cold temperature boundary condition on aeolian sediment accumulation. Preservation of the Cavi Unit arises because of deposition of the overlying ice cap and contrasts with preservation of aeolian sediment on Earth, which is largely driven by eustasy and tectonics. The Cavi Unit is thought to be one source of sediment for the north polar Olympia Undae Dune Field. The region of Olympia Undae near the Cavi Unit shows a reticulate dune field pattern composed of two sets of nearly orthogonal

  6. Semiarid landscapes response to Aeolian processes during Holocene in Baikal Region

    NASA Astrophysics Data System (ADS)

    Dan'ko, Lidia; Opekunova, Marina

    2010-05-01

    Arid and semiarid landscapes play a significant role in global climate, biogeochemical, and hydrological processes. Regional analysis of the past aeolian processes is essential for improve our understanding of how various landscape and ecosystems responded to climate change in the past. Our investigation presents details on sand dunes and on loess-like sediments. The study areas are situated in the northern part of Baikal Region (Eastern Siberia). In its depressions, the so-called Barguzinskaya and Tunkinskaya Valley surrounded mountain ranges local dunefieds and loess-like sediments have developed. Present climate in the study areas is continental, characterized by low precipitation(mean annual 250-450 mm) and wide annual range of temperature. Field investigations indicate that the Holocene deposits of the Barguzinskaya and Tunkinskaya Valley are sealed the pedo-sedimentary interface. The analytical results suggest that one's represents a changeover from intensified soil formation to accelerated aeolian dust accumulation. The original content of calcium carbonate and gypsum at the base of some sections of loess-like sediments indicates the aeolian origin of these sediments. In whole, the soil horizons are a proof for humid phases. The change was forced by climatic aridity. Absolute dating of the organogenic components of soils (14C) indicate the age positions of the arid and humid climate phases. Our results indicate not only 1-4 long-time episodes of aeolian dust accumulation during the Holocene, but shot-time aeolian accumulation episodes, that were specific for Late Holocene. For example, in the Tunkinskaya Valley the Late Holocene soil formation replaced by aeolian deposit at 1700 - 1900, 800 and 200-250 years ago, in the Barguzinskaya Valley - about 3100 - 2900, 2300 and 600 years ago. It can be concluded that a periodical formation of the aeolian deposits in the semiarid landscapes during Holocene can be postulated. Aeolian and loess-like sediments of the

  7. North African dust and its relation to paleoclimate recorded in a sediment core from Northwest Providence Channel, Bahamas

    SciTech Connect

    Eaton, M.R.; Boardman, M.R.

    1985-01-01

    Studies of the vertical distribution of insoluble residue in an 11.7 meter core recovered from 665m water depth within Northwest Providence Channel, Bahamas demonstrate cyclic fluctuations in the content and mineralogy of the insoluble residue. The insoluble residue consists of chlorite, montmorillonite, illite and kaolinite with alternating layers enriched in chlorite or montmorillonite. These fluctuations in the character of insoluble residue correspond to fluctuations of the record of oxygen isotopes and foraminiferal assemblages (paleoclimate) and of carbonate mineralogy (sea level). During glacial periods, insoluble residue concentration is high, dolomite is present and quartz, plagioclase and chlorite concentrations increase. During interglacial periods, insoluble residue concentration is low, dolomite is absent and quartz, plagioclase and chlorite concentration decreases while montmorillonite concentration increases. The source of the insoluble residue is dust derived from North Africa and transported by the Saharan Air Layer coupled with the Northeast Trades. During glacial periods, the source of the dust is the dolomite-rich southern North Africa region. This shift of the dust source suggests that the trade winds transporting the dust during glacial periods also shifted southward or expanded or both.

  8. Bursts in discontinuous Aeolian saltation.

    PubMed

    Carneiro, M V; Rasmussen, K R; Herrmann, H J

    2015-01-01

    Close to the onset of Aeolian particle transport through saltation we find in wind tunnel experiments a regime of discontinuous flux characterized by bursts of activity. Scaling laws are observed in the time delay between each burst and in the measurements of the wind fluctuations at the fluid threshold Shields number θc. The time delay between each burst decreases on average with the increase of the Shields number until sand flux becomes continuous. A numerical model for saltation including the wind-entrainment from the turbulent fluctuations can reproduce these observations and gives insight about their origin. We present here also for the first time measurements showing that with feeding it becomes possible to sustain discontinuous flux even below the fluid threshold. PMID:26073305

  9. Bursts in discontinuous Aeolian saltation

    PubMed Central

    Carneiro, M. V.; Rasmussen, K. R.; Herrmann, H. J.

    2015-01-01

    Close to the onset of Aeolian particle transport through saltation we find in wind tunnel experiments a regime of discontinuous flux characterized by bursts of activity. Scaling laws are observed in the time delay between each burst and in the measurements of the wind fluctuations at the fluid threshold Shields number θc. The time delay between each burst decreases on average with the increase of the Shields number until sand flux becomes continuous. A numerical model for saltation including the wind-entrainment from the turbulent fluctuations can reproduce these observations and gives insight about their origin. We present here also for the first time measurements showing that with feeding it becomes possible to sustain discontinuous flux even below the fluid threshold. PMID:26073305

  10. A Long-term Record of Saharan Dust Aerosol Properties from TOMS Observations: Optical Depth and Single Scattering Albedo

    NASA Technical Reports Server (NTRS)

    Torres, Omar; Bhartia, P. K.; Herman, J. R.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The interaction between the strong Rayleigh scattering in the near UV spectral region (330-380 nm) and the processes of aerosol absorption and scattering, produce a clear spectral signal in the upwelling radiance at the top of the atmosphere. This interaction is the basis of the TOMS (Total Ozone Mapping Spectrometer) aerosol retrieval technique that can be used for their characterization and to differentiate non-absorbing sulfates from strongly UV-absorbing aerosols such as mineral dust. For absorbing aerosols, the characterization is in terms of the optical depth and single scattering albedo with assumptions about the aerosol plume height. The results for non-absorbing aerosols are not dependent on plume height. Although iron compounds represent only between 5% to 8% of desert dust aerosol mass, hematite (Fe2O3) accounts for most of the near UV absorption. Because of the large ultraviolet absorption characteristic of hematite, the near UV method of aerosol sensing is especially suited for the detection and characterization of desert dust aerosols. Using the combined record of near UV measurements by the Nimbus7 (1978-1992) and Earth Probe (1996-present) TOMS instruments, a global longterm climatology of near UV optical depth and single scattering albedo has been produced. The multi-year long record of mineral aerosol properties over the area of influence of the Saharan desert, will be discussed.

  11. Flood Induced Increases in Aeolian Transport Along the Missouri River

    NASA Astrophysics Data System (ADS)

    Benthem, A. J.; Strong, L.; Schenk, E.; Skalak, K.; Hupp, C. R.; Galloway, J.

    2014-12-01

    In 2011, heavy winter snow melt combined with extensive spring rains caused the Missouri River to experience the most extensive flooding since the river was dammed in the 1950s. Large sections of the river banks, islands, and floodplains experienced weeks of prolonged inundation, resulting in extensive sand deposition as up to1 km inland from the established channel. Though locally variable, deposits of up to 3m of loose sand were deposited on the floodplain and extensive areas of shrub, grasslands, and agricultural fields were completely buried or had vegetation washed away in the inundation zone. The flooding also created a number of new unvegetated islands which provide important habitat for endangered species including the Piping Plover (Charadrius melodus). These newly created sand surfaces are unconsolidated and have very little vegetation to prevent aeolian transport. Strong sustained regional winds of up to 20m/s (45mph) cause substantial sediment fluxes which modify landscape topography, shift river morphology, and increase regional dust levels. Our study monitors and quantifies the increase in aeolian transport that occurred following flooding along the Garrison Reach, a 110 km section of free flowing Missouri River in North Dakota. In 2012 and 2013 we measured sand transport and accumulation rates using Leatherman style sand traps and erosion pins to at 9 sites of varying vegetation densities. We apply these flux rates to a high resolution remote sensing vegetation map to estimate the total flux of sand for this segment of the river. We also quantify total available new sand for transport using repeat Light Detection and Ranging (LiDAR) coverage from before and after the flood and examine the relationship between sand deposition and the rate of reestablishment of vegetation. All of these results are used to estimate the scale of flood induced aeolian processes and predict where they may continue to influence the landscape.

  12. Evaluation of a new model of aeolian transport in the presence of vegetation

    USGS Publications Warehouse

    Li, Junran; Okin, Gregory S.; Herrick, Jeffrey E.; Belnap, Jayne; Miller, Mark E.; Vest, Kimberly; Draut, Amy E.

    2013-01-01

    Aeolian transport is an important characteristic of many arid and semiarid regions worldwide that affects dust emission and ecosystem processes. The purpose of this paper is to evaluate a recent model of aeolian transport in the presence of vegetation. This approach differs from previous models by accounting for how vegetation affects the distribution of shear velocity on the surface rather than merely calculating the average effect of vegetation on surface shear velocity or simply using empirical relationships. Vegetation, soil, and meteorological data at 65 field sites with measurements of horizontal aeolian flux were collected from the Western United States. Measured fluxes were tested against modeled values to evaluate model performance, to obtain a set of optimum model parameters, and to estimate the uncertainty in these parameters. The same field data were used to model horizontal aeolian flux using three other schemes. Our results show that the model can predict horizontal aeolian flux with an approximate relative error of 2.1 and that further empirical corrections can reduce the approximate relative error to 1.0. The level of error is within what would be expected given uncertainties in threshold shear velocity and wind speed at our sites. The model outperforms the alternative schemes both in terms of approximate relative error and the number of sites at which threshold shear velocity was exceeded. These results lend support to an understanding of the physics of aeolian transport in which (1) vegetation's impact on transport is dependent upon the distribution of vegetation rather than merely its average lateral cover and (2) vegetation impacts surface shear stress locally by depressing it in the immediate lee of plants rather than by changing the bulk surface's threshold shear velocity. Our results also suggest that threshold shear velocity is exceeded more than might be estimated by single measurements of threshold shear stress and roughness length

  13. Evaluation of a new model of aeolian transport in the presence of vegetation

    NASA Astrophysics Data System (ADS)

    Li, Junran; Okin, Gregory S.; Herrick, Jeffrey E.; Belnap, Jayne; Miller, Mark E.; Vest, Kimberly; Draut, Amy E.

    2013-03-01

    Aeolian transport is an important characteristic of many arid and semiarid regions worldwide that affects dust emission and ecosystem processes. The purpose of this paper is to evaluate a recent model of aeolian transport in the presence of vegetation. This approach differs from previous models by accounting for how vegetation affects the distribution of shear velocity on the surface rather than merely calculating the average effect of vegetation on surface shear velocity or simply using empirical relationships. Vegetation, soil, and meteorological data at 65 field sites with measurements of horizontal aeolian flux were collected from the Western United States. Measured fluxes were tested against modeled values to evaluate model performance, to obtain a set of optimum model parameters, and to estimate the uncertainty in these parameters. The same field data were used to model horizontal aeolian flux using three other schemes. Our results show that the model can predict horizontal aeolian flux with an approximate relative error of 2.1 and that further empirical corrections can reduce the approximate relative error to 1.0. The level of error is within what would be expected given uncertainties in threshold shear velocity and wind speed at our sites. The model outperforms the alternative schemes both in terms of approximate relative error and the number of sites at which threshold shear velocity was exceeded. These results lend support to an understanding of the physics of aeolian transport in which (1) vegetation's impact on transport is dependent upon the distribution of vegetation rather than merely its average lateral cover and (2) vegetation impacts surface shear stress locally by depressing it in the immediate lee of plants rather than by changing the bulk surface's threshold shear velocity. Our results also suggest that threshold shear velocity is exceeded more than might be estimated by single measurements of threshold shear stress and roughness length

  14. Reduction in soil aggregation in response to dust emission processes

    NASA Astrophysics Data System (ADS)

    Swet, Nitzan; Katra, Itzhak

    2016-09-01

    Dust emission by aeolian (wind) soil erosion depends on the topsoil properties of the source area, especially on the nature of the aggregates where most dust particles are held. Although the key role of soil aggregates in dust emission, the response of soil aggregation to aeolian processes and its implications for dust emission remain unknown. This study focuses on aggregate size distribution (ASD) analyses before and after in-situ aeolian experiments in semiarid loess soils that are associated with dust emission. Wind tunnel simulations show that particulate matter (PM) emission and saltation rates depend on the initial ASD and shear velocity. Under all initial ASD conditions, the content of saltator-sized aggregates (63-250 μm) increased by 10-34% due to erosion of macro-aggregates (> 500 μm), resulting in a higher size ratio (SR) between the saltators and macro-aggregates following the aeolian erosion. The results revealed that the saltator production increases significantly for soils that are subjected to short-term (anthropogenic) disturbance of the topsoil. The findings highlight a decrease in soil aggregation for all initial ASD's in response to aeolian erosion, and consequently its influence on the dust emission potential. Changes in ASD should be considered as a key parameter in dust emission models of complex surfaces.

  15. Aeolian Sediments on the northeastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Stauch, G.; Lehmkuhl, F.

    2013-12-01

    The timing and spatial distribution of aeolian sediments on the northeastern Tibetan Plateau have gained increasing interest during the last decades. The formation of the aeolian deposits is often related to cold and dry climate conditions. However, further important parameters are the local geomorphological setting and sediment availability in the source areas of the sediments. Aeolian sediments including loess, sandy loess and sands are widespread in the catchment of the Donggi Cona on the northeastern Tibetan Plateau at around 4000 m asl. Detailed geomorphological mapping of the deposits and geochemical analyses of the sediments revealed varying sources throughout the Holocene. The timing of the sediment deposition is based on 43 OSL (optical stimulated luminescence) ages. Several phases of enhanced aeolian deposition took place during the Holocene. The accumulation of aeolian sands lasted from 10.5 until 7 ka. The main source area of these sands was a large alluvial fan. Parallel to the formation of the dunes loess was deposited on the adjacent slopes from 10.5 until 7.5 ka. These sediments most probably originate in the nearby Qaidam Basin. In contrast to the general linkage of aeolian sediments to dryer climate conditions formation of these aeolian deposits is related to wetter conditions due to a strengthening of the Asian Summer Monsoons. The wetter climate enhanced the trapping and continuous fixation of the aeolian sediments by vegetation. With the further strengthening of the Monsoon fluvial processes eroded the aeolian deposits at least until 6 ka. From about 3 ka to the present a reactivation of aeolian sands and the formation of new dunes took place. This reactivation is related to drier conditions on the north-eastern Tibetan Plateau. Additionally, an increased human influence might have enhanced the aeolian activity. Similar phases of enhanced aeolian activity have been documented in more than 170 available OSL ages from loess and aeolian sands in

  16. Transverse Aeolian Ridges on Mars: Sediment sources, volumes, and ages.

    NASA Astrophysics Data System (ADS)

    Berman, D. C.; Balme, M. R.

    2014-12-01

    Transverse Aeolian Ridges (TARs) are aeolian bedforms that are morphologically and dimensionally distinct from Large Dark Dune (LDD) fields, being generally brighter than, or of similar albedo to, the surrounding terrain. These features are significantly smaller than the LDDs, appear to form normal to local winds, and tend to have simple, transverse, ripple-like morphologies. Whether these small martian bedforms represent large granule ripples, small transverse dunes, or something else entirely is currently under debate. The spatial distribution of TARs provides important information about where on Mars aeolian sediments are concentrated, and determining their volume can help us constrain the sediment transport regime on Mars. Also, if we can determine if TARs were active only in the past, or whether TARs are mobile under today's wind conditions, then we can begin to assess when and where TARs are/were active over Mars' recent geological history. Thus TARs have the potential for being indicators/records of climate change on Mars. In this work we build on previous work [1,2] and focus on the local/regional scale. We have identified six regional study areas, each 5° by 5°, to investigate the behavior of TARs in detail; one in the northern hemisphere, three in the equatorial band, and two in the southern hemisphere. We have systematically mapped TAR and LDD deposits in each study area to constrain sediment transport pathways and identify sediment sources. In general, TAR sediments appear to be tied to local sources such as LDDs or layered terrains. HiRISE DTMs were utilized to measure TAR heights, widths, wavelengths, and lengths to calculate sediment volumes and estimate volumes over entire study areas based on mapping. Crater count analyses on contiguous TAR fields in the equatorial regions, where the bedforms appear more lithified, reveal ages of several million years. Mid-latitude TAR fields do not show any superposed craters, suggesting much younger deposits

  17. Aeolian cliff-top deposits and buried soils in the White River Badlands, South Dakota, USA

    USGS Publications Warehouse

    Rawling, J. E., III; Fredlund, G.G.; Mahan, S.

    2003-01-01

    Aeolian deposits in the North American Great Plains are important sources of Holocene palaeo-environmental records. Although there are extensive studies on loess and dune records in the region, little is known about records in aeolian cliff-top deposits. These are common on table (mesa) edges in the White River Badlands. These sediments typically have loam and sandy-loam textures with dominantly very fine sand, 0.5-1% organic carbon and 0.5-5% CaCO3. Some of these aeolian deposits are atypically coarse and contain granules and fine pebbles. Buried soils within these deposits are weakly developed with A-C and A-AC-C profiles. Beneath these are buried soils with varying degrees of pedogenic development formed in fluvial, aeolian or colluvial deposits. Thickness and number of buried soils vary. However, late-Holocene soils from several localities have ages of approximately 1300, 2500 and 3700 14C yrs BP. The 1300 14C yr BP soil is cumulic, with a thicker and lighter A horizon. Soils beneath the cliff-top deposits are early-Holocene (typically 7900 but as old as 10000 14C yrs BP) at higher elevation (???950 m) tables, and late-Holocene (2900 14C yrs BP) at lower (???830 m) tables. These age estimates are based on total organic matter 14C ages from the top 5 cm of buried soils, and agreement is good between an infrared stimulated luminescence age and bracketing 14C ages. Our studies show that cliff-top aeolian deposits have a history similar to that of other aeolian deposits on the Great Plains, and they are another source of palaeoenvironmental data.

  18. The bioavailable iron in NEEM ice core related to Asian dust records over the past 110 kyr

    NASA Astrophysics Data System (ADS)

    Xiao, Cunde

    2016-04-01

    The mineral dust can indirectly affect climate by supplying iron and other essential bioavailable elements into ocean. In this study, we present dissolved iron (DFe) and total dissolved iron (TDFe) concentrations in NEEM ice core over the past 110 kyr B.P. The concentrations of bioavailable reactive element Fe have good positive correlation with the concentrations of dust and Ca2+ in NEEM ice core, while show significantly negative relationship with δ18O and CO2 concentration. The ratios of DFe/TDFe are higher in warm periods (Holocene and last interglacial) than in cold period (LGM), indicating the iron-biological pump effect is more significant in warm periods than that in cold periods, this result may provide a new insight for reevaluating the iron hypothesis over glacial/interglacial periods. Our study also shows that the iron flux changes between NEEM ice core and Asian loess records are good consistent with the northern Hemisphere summer insolation. These results emphasize that the variability of Fe flux is most likely driven by solar radiation and dust in northern hemisphere.

  19. Dust storms on Mars: Considerations and simulations

    NASA Technical Reports Server (NTRS)

    Greeley, R.; White, B. R.; Pollack, J. B.; Iverson, J. D.; Leach, R. N.

    1977-01-01

    Aeolian processes are important in modifying the surface of Mars at present, and appear to have been significant in the geological past. Aeolian activity includes local and global dust storms, the formation of erosional features such as yardangs and depositional features such as sand dunes, and the erosion of rock and soil. As a means of understanding aeolian processes on Mars, an investigation is in progress that includes laboratory simulations, field studies of earth analogs, and interpretation of spacecraft data. This report describes the Martian Surface Wind Tunnel, an experimental facility established at NASA-Ames Research Center, and presents some results of the general investigation. Experiments dealing with wind speeds and other conditions required for the initiation of particle movement on Mars are described and considerations are given to the resulting effectiveness of aeolian erosion.

  20. Historic records of organic compounds from a high Alpine glacier: influences of biomass burning, anthropogenic emissions, and dust transport

    NASA Astrophysics Data System (ADS)

    Müller-Tautges, C.; Eichler, A.; Schwikowski, M.; Pezzatti, G. B.; Conedera, M.; Hoffmann, T.

    2016-01-01

    Historic records of α-dicarbonyls (glyoxal, methylglyoxal), carboxylic acids (C6-C12 dicarboxylic acids, pinic acid, p-hydroxybenzoic acid, phthalic acid, 4-methylphthalic acid), and ions (oxalate, formate, calcium) were determined with annual resolution in an ice core from Grenzgletscher in the southern Swiss Alps, covering the time period from 1942 to 1993. Chemical analysis of the organic compounds was conducted using ultra-high-performance liquid chromatography (UHPLC) coupled to electrospray ionization high-resolution mass spectrometry (ESI-HRMS) for dicarbonyls and long-chain carboxylic acids and ion chromatography for short-chain carboxylates. Long-term records of the carboxylic acids and dicarbonyls, as well as their source apportionment, are reported for western Europe. This is the first study comprising long-term trends of dicarbonyls and long-chain dicarboxylic acids (C6-C12) in Alpine precipitation. Source assignment of the organic species present in the ice core was performed using principal component analysis. Our results suggest biomass burning, anthropogenic emissions, and transport of mineral dust to be the main parameters influencing the concentration of organic compounds. Ice core records of several highly correlated compounds (e.g., p-hydroxybenzoic acid, pinic acid, pimelic, and suberic acids) can be related to the forest fire history in southern Switzerland. P-hydroxybenzoic acid was found to be the best organic fire tracer in the study area, revealing the highest correlation with the burned area from fires. Historical records of methylglyoxal, phthalic acid, and dicarboxylic acids adipic acid, sebacic acid, and dodecanedioic acid are comparable with that of anthropogenic emissions of volatile organic compounds (VOCs). The small organic acids, oxalic acid and formic acid, are both highly correlated with calcium, suggesting their records to be affected by changing mineral dust transport to the drilling site.

  1. Persistent aeolian activity at Endeavour crater, Meridiani Planum, Mars; new observations from orbit and the surface

    NASA Astrophysics Data System (ADS)

    Chojnacki, Matthew; Johnson, Jeffrey R.; Moersch, Jeffrey E.; Fenton, Lori K.; Michaels, Timothy I.; Bell, James F., III

    2015-05-01

    Aeolian-driven bedform activity is now known to occur in many regions of Mars, based on surface and orbital observation of contemporary martian ripple and dune mobility events. Many of these sites have only been monitored with sufficient resolution data for the last few Mars years, when the High Resolution Imaging Science Experiment (HiRISE) began acquiring images of Mars. One exception is the well-monitored Endeavour crater in Meridiani Planum, which was one of the first known sites of unambiguous dune activity (migration and deflation). However, those early detections used lower resolution images over longer temporal baselines (versus the HIRISE data now available), leaving some measurements poorly constrained. New orbital and surface observations of Endeavour show multiple spatial (cm, m, km) and temporal (seasons, Mars year) scales of aeolian-driven surface change, which confirms earlier reports. Dome dunes in the eastern portion of the crater persistently deflate, disseminating dark sand across lighter-toned regolith and/or eroded bright dust, and likely contribute to the crater interior's episodic decreases in orbital albedo measurements. Other dome dunes are detected with the highest migration rates (4-12 m per Mars year) and volumetric sand fluxes reported yet for Mars. Estimated dune construction times or "turnover times" here and elsewhere on Mars are significantly shorter than martian obliquity cycles, implying that it is not necessary to invoke paleoclimate wind regimes to explain current dune morphologies. Located on the crater rim, the Opportunity rover detected evidence for near- and far-field aeolian-driven activity, with observations of spherules/sand movement in the rover workspace, bedform albedo alteration, and dust-lifting events. Observations of intracrater dunes show periodic shifting dark streaks that significantly constrain local wind regimes (directionality and seasonality). Constraints on wind directions from surface and orbital images

  2. Triton's streaks as windblown dust

    NASA Technical Reports Server (NTRS)

    Sagan, Carl; Chyba, Christopher

    1990-01-01

    Explanations for the surface streaks observed by Voyager 2 on Triton's southern hemisphere are discussed. It is shown that, despite Triton's tenuous atmosphere, low-cohesion dust trains with diameters of about 5 micron or less may be carried into suspension by aeolian surface shear stress, given expected geostrophic wind speeds of about 10 m/s. For geyser-like erupting dust plumes, it is shown that dust-settling time scales and expected wind velocities can produce streaks with length scales in good agreement with those of the streaks. Thus, both geyserlike eruptions or direct lifting by surface winds appear to be viable mechanisms for the origin of the streaks.

  3. A theoretical note on aerodynamic lifting in dust devils

    NASA Astrophysics Data System (ADS)

    Wang, Zhen-Ting

    2016-02-01

    The stress distribution of a known rotating flow near the ground in fluid mechanics indicates that the horizontal aerodynamic entrainment of particles within dust devils is attributed to friction force rather than pressure force. The expression of dust emission rate on Earth was theoretically discussed based on simulated flow field and our current understanding of the physics of aeolian dust. It seems that transition flow is vital to dust devils on Mars.

  4. The Origin of Transverse Aeolian Ridges on Mars

    NASA Astrophysics Data System (ADS)

    Geissler, P.

    2015-12-01

    Transverse aeolian ridges, or TARs, are found throughout the tropics of Mars and typically appear as rows of bright ripples that are several meters tall and spaced semi-regularly several tens of meters apart. The origin of these features remained mysterious for decades after their discovery in Viking and Mars Global Surveyor images. A new hypothesis (Geissler, 2014, 10.1002-2014JE004633) suggests that TARs might be deposits left behind by dusty turbidity currents in the Martian atmosphere. The hypothesis assumes that the micron-sized dust particles are transported in suspension in turbulent flows, driven both by the winds and by gravity. The dust is concentrated near the surface, much like turbidity currents on Earth. Because of the difference in density, however, the dust clouds behave as a fluid distinct from the clear sky above. In particular, waves can appear at the surface of the dense "fluid" when the flows encounter topographic obstacles along their paths. Such gravity waves travel at speeds that are determined by gravity and the thickness of the flow, much like waves in shallow water on Earth. When the wave propagation speed matches the speed of the flow, stationary waves are produced that persist in fixed locations. The bedforms deposited by such stationary waves are called "antidunes" (Gilbert, 1914, USGS Prof. Paper 86) because, unlike dunes, they can migrate upstream in a supercritical flow. Antidunes are commonly seen in shallow, high energy fluvial deposits on Earth. They are usually destroyed as quickly as they form, and are rarely preserved. The Martian TARs survive because the dust is sticky; TARs are deposited by currents that are much slower than the wind speeds needed to lift the dust again. Subaerial antidunes are much rarer on Earth and less well studied, and so the giant subaerial stationary antidunes of Mars, if that is what the TARs turn out to be, may teach us much about a geological process that is poorly known on our planet.

  5. A conceptual framework for dryland aeolian sediment transport along the grassland-forest continuum: Effects of woody plant canopy cover and disturbance

    USGS Publications Warehouse

    Breshears, D.D.; Whicker, J.J.; Zou, C.B.; Field, J.P.; Allen, C.D.

    2009-01-01

    range of rates in grasslands and associated systems with no woody plants (e.g., agricultural fields), an intermediate range in shrublands, and a relatively small range in woodlands and forests. These trends are consistent with previous observations relating large rates of wind erosion to intermediate values for spatial density of roughness elements. The framework for aeolian sediment transport, which is also relevant to dust fluxes, wind erosion, and related aeolian processes, is applicable to a diverse suite of environmental challenges, including land degradation and desertification, dust storms, contaminant transport, and alterations of the hydrological cycle. ?? 2008 Elsevier B.V.

  6. Accretion of Interplanetary Dust: A New Record from He-3 In Polar Ice Cores

    NASA Technical Reports Server (NTRS)

    Brook, Edward

    2002-01-01

    This grant funded measurements of extraterrestrial He-3 in particles extracted from polar ice samples. The overall objective was to develop measurements of He-3 as tracers of the flux of interplanetary dust particles (IDP's) to the earth. To our knowledge these are the first such measurements, apart from our earlier work. The project also funded an EPO activity - a climate and global change workshop for high school science teachers.

  7. The physics of wind-blown sand and dust.

    PubMed

    Kok, Jasper F; Parteli, Eric J R; Michaels, Timothy I; Karam, Diana Bou

    2012-10-01

    The transport of sand and dust by wind is a potent erosional force, creates sand dunes and ripples, and loads the atmosphere with suspended dust aerosols. This paper presents an extensive review of the physics of wind-blown sand and dust on Earth and Mars. Specifically, we review the physics of aeolian saltation, the formation and development of sand dunes and ripples, the physics of dust aerosol emission, the weather phenomena that trigger dust storms, and the lifting of dust by dust devils and other small-scale vortices. We also discuss the physics of wind-blown sand and dune formation on Venus and Titan. PMID:22982806

  8. Mars Environmental Chamber for Dynamic Dust Deposition and Statics Analysis

    NASA Technical Reports Server (NTRS)

    Moeller, L. E.; Tuller, M.; Islam, M. R.; Baker, L.; Kuhlman, K.

    2004-01-01

    Recent observations of the 2001 dust storms encircling Mars confirm predictions of environmental challenges for exploration. Martian dust has been found to completely mantle the Martian surface over thousands of square kilometers and the opacity of airborne dust has been shown to be capable of modifying atmospheric temperature, radiative transfer and albedo. Planetary dust cycling dynamics are suggested to be a key factor in the evolution of the Martian surface. Long-term robotic and manned exploration of Mars will be confronted by dust deposition in periods of atmospheric calm and violent wind storms. Aeolian dust deposition recorded during the Mars Pathfinder mission was estimated to fall at rates of 20-45 microns per Earth year. Although many tools of exploration will be challenged by coating, adhesion, abrasion and possible chemical reaction of deposited, wind blown and actively disturbed Martian dust, solar cells are thought to be of primary concern. Recent modeling work of power output by gallium arsenide/germanium solar cells was validated by the Pathfinder Lander data and showed power output decreases of 0.1 to 0.5% per Martian day. A major determinant for the optimal positioning angle of solar panels employed in future missions is the angle of repose of the settling dust particles that is dependent on a variety of physical and chemical properties of the particles, the panel surface, and the environmental conditions on the Mars surface. While the effects of many of these factors are well understood qualitatively, quantitative analyses, especially under physical and chemical conditions prevailing on the Mars surface are lacking.

  9. Aeolian sands and buried soils in the Mecklenburg Lake District, NE Germany: Holocene land-use history and pedo-geomorphic response

    NASA Astrophysics Data System (ADS)

    Küster, Mathias; Fülling, Alexander; Kaiser, Knut; Ulrich, Jens

    2014-04-01

    The present study is a pedo-geomorphic approach to reconstructing Holocene aeolian sand dynamics in the Mecklenburg Lake District (NE Germany). Stratigraphical, sedimentological and soil research supplemented by morphogenetic interpretations of the genesis of dunes and aeolian sands are discussed. A complex Late Holocene aeolian stratigraphy within a drift sand area was developed at the shore of Lake Müritz. The results were confirmed using palynological records, archaeological data and regional history. Accelerated aeolian activity was triggered by the intensification of settlement and land-use activities during the 13th and in the 15th to 16th century AD. After a period of stability beginning with population decline during the ‘Thirty Years War' and continuing through the 18th century, a final aeolian phase due to the establishment of glassworks was identified during the 19th century AD. We assume a direct link between Holocene aeolian dynamics and human activities. Prehistoric Holocene drift sands on terrestrial sites have not been documented in the Mecklenburg Lake District so far. This might be explained either by erosion and incorporation of older aeolian sediments during younger aeolian phases and/or a lower regional land-use intensity in older periods of the Holocene. The investigated drift sands are stratigraphically and sedimentologically characterised by a high degree of heterogeneity, reflecting the spatial and temporal variability of Holocene human impact.

  10. Trickle-down boundary conditions in aeolian dune-field pattern formation

    NASA Astrophysics Data System (ADS)

    Ewing, R. C.; Kocurek, G.

    2015-12-01

    One the one hand, wind-blown dune-field patterns emerge within the overarching boundary conditions of climate, tectonics and eustasy implying the presence of these signals in the aeolian geomorphic and stratigraphic record. On the other hand, dune-field patterns are a poster-child of self-organization, in which autogenic processes give rise to patterned landscapes despite remarkable differences in the geologic setting (i.e., Earth, Mars and Titan). How important are climate, tectonics and eustasy in aeolian dune field pattern formation? Here we develop the hypothesis that, in terms of pattern development, dune fields evolve largely independent of the direct influence of 'system-scale' boundary conditions, such as climate, tectonics and eustasy. Rather, these boundary conditions set the stage for smaller-scale, faster-evolving 'event-scale' boundary conditions. This 'trickle-down' effect, in which system-scale boundary conditions indirectly influence the event scale boundary conditions provides the uniqueness and richness of dune-field patterned landscapes. The trickle-down effect means that the architecture of the stratigraphic record of dune-field pattern formation archives boundary conditions, which are spatially and temporally removed from the overarching geologic setting. In contrast, the presence of an aeolian stratigraphic record itself, reflects changes in system-scale boundary conditions that drive accumulation and preservation of aeolian strata.

  11. "Dust Devils": Gardening Agents on the Surface of Mars, and Hidden Hazards to Human Exploration?

    NASA Technical Reports Server (NTRS)

    Marshall, J.; Smith, P.; White, B.; Farrell, W.

    1999-01-01

    Dust devils are familiar sites in the and regions of the world: they can produce quite spectacular displays of dust lofting when the vortices scavenge very loose dust from a dry lake bed or from recently disturbed agricultural fields. If one were to arrive at the center of an arid region, take one photograph, or even a series of photographs over a period of several days, then return the images for laboratory analysis, it would be most likely concluded that the region was inactive from an aeolian perspective. No images of general dust movement were obtained, nor were any dust devils "caught on camera" owing to their ephemeral and unpredictable appearance, and the fact that there was deceptively little residue of their actions. If, however, a camera were to take a 360 degree continuous recording over a period of a year, and the film were then to be shown at high speed over a period a several minutes, the impression might be that of a region ravaged by air vorticity and dust movement. Extrapolate this over geological time, and it is possible to visualize dust devils as prime aeolian agents, rather than insignificant vagaries of nature, On Mars, the thin atmosphere permits the surface of the planet to be heated but it does not itself retain heat with the capacity of the earth's atmosphere. This gives rise to greater thermal instability near the surface of Mars as "warm" air pockets diapiritically inject themselves into higher atmospheric layers. Resulting boundary-layer vorticity on Mars might therefore be expected to produce dust devils in abundance, if only seasonally. The spectacular images of dust devils obtained by Pathfinder within its brief functional period on the planet testify to the probability of highly frequent surface vorticity in light of the above reasoning about observational probability. Notably, the Pathfinder devils appeared to be at least a kilometer in height. There are several consequences for the geology of Mars, and for human exploration, if

  12. The developmental trend and influencing factors of aeolian desertification in the Zoige Basin, eastern Qinghai-Tibet Plateau

    NASA Astrophysics Data System (ADS)

    Hu, Guangyin; Dong, Zhibao; Lu, Junfeng; Yan, Changzhen

    2015-12-01

    The Zoige Basin is located in the northeastern region of the Qinghai-Tibet Plateau and covers an area of 19,400 km2. At a mean altitude of 3500 m, the basin is highly sensitive to global environmental change and human disturbance due to its high elevation and fragile cold environment. The process of aeolian desertification in the basin can be clearly recognized in Landsat images that show the development of sand sheets and dunes over time. To monitor the spatial and temporal changes of aeolian desertification in the Zoige Basin, we analyzed Landsat images recorded in 1975, 1990, 2000, 2005, and 2010. Results showed that aeolian desertification increased rapidly from 1975 to 1990, was stable from 1990 to 2000, decreased slightly from 2000 to 2005, and decreased sharply from 2005 to 2010. Increasing temperature, overgrazing, rodent damage, and drainage of wetlands were considered the key driving factors of the expansion of aeolian desertification. A number of political measures were initiated in the 1990s to slow desertification, but the countermeasures of grazing prohibition, enclosures, and paving straw checkerboard barriers were not implemented until around 2005. These measures resulted in a dramatic recovery of aeolian desertified land between 2005 and 2010. Based on the cause analysis, anthropogenic factors were identified as the dominant driving force for both development and recovery of aeolian desertified land.

  13. Abstracts for the Planetary Geology Field Conference on Aeolian Processes

    NASA Technical Reports Server (NTRS)

    Greeley, R. (Editor); Black, D. (Editor)

    1978-01-01

    The Planetary Geology Field Conference on Aeolian Processes was organized at the request of the Planetary Geology Program office of the National Aeronautics and Space Administration to bring together geologists working on aeolian problems on earth and planetologists concerned with similar problems on the planets. Abstracts of papers presented at the conference are arranged herein by alphabetical order of the senior author. Papers fall into three broad categories: (1) Viking Orbiter and Viking Lander results on aeolian processes and/or landforms on Mars, (2) laboratory results on studies of aeolian processes, and (3) photogeology and field studies of aeolian processes on Earth.

  14. Roughness configuration matters for aeolian sediment flux

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The parameterisation of surface roughness effects on aeolian sediment transport is a key source of uncertainty in wind erosion models. Roughness effects are typically represented by bulk drag-partitioning schemes that scale the threshold friction velocity (u*t) for soil entrainment by the ratio of s...

  15. Fluid-induced organic synthesis in the solar nebula recorded in extraterrestrial dust from meteorites.

    PubMed

    Vollmer, Christian; Kepaptsoglou, Demie; Leitner, Jan; Busemann, Henner; Spring, Nicole H; Ramasse, Quentin M; Hoppe, Peter; Nittler, Larry R

    2014-10-28

    Isotopically anomalous carbonaceous grains in extraterrestrial samples represent the most pristine organics that were delivered to the early Earth. Here we report on gentle aberration-corrected scanning transmission electron microscopy investigations of eight (15)N-rich or D-rich organic grains within two carbonaceous Renazzo-type (CR) chondrites and two interplanetary dust particles (IDPs) originating from comets. Organic matter in the IDP samples is less aromatic than that in the CR chondrites, and its functional group chemistry is mainly characterized by C-O bonding and aliphatic C. Organic grains in CR chondrites are associated with carbonates and elemental Ca, which originate either from aqueous fluids or possibly an indigenous organic source. One distinct grain from the CR chondrite NWA 852 exhibits a rim structure only visible in chemical maps. The outer part is nanoglobular in shape, highly aromatic, and enriched in anomalous nitrogen. Functional group chemistry of the inner part is similar to spectra from IDP organic grains and less aromatic with nitrogen below the detection limit. The boundary between these two areas is very sharp. The direct association of both IDP-like organic matter with dominant C-O bonding environments and nanoglobular organics with dominant aromatic and C-N functionality within one unique grain provides for the first time to our knowledge strong evidence for organic synthesis in the early solar system activated by an anomalous nitrogen-containing parent body fluid. PMID:25288736

  16. Fluid-induced organic synthesis in the solar nebula recorded in extraterrestrial dust from meteorites

    PubMed Central

    Vollmer, Christian; Kepaptsoglou, Demie; Leitner, Jan; Busemann, Henner; Spring, Nicole H.; Ramasse, Quentin M.; Hoppe, Peter; Nittler, Larry R.

    2014-01-01

    Isotopically anomalous carbonaceous grains in extraterrestrial samples represent the most pristine organics that were delivered to the early Earth. Here we report on gentle aberration-corrected scanning transmission electron microscopy investigations of eight 15N-rich or D-rich organic grains within two carbonaceous Renazzo-type (CR) chondrites and two interplanetary dust particles (IDPs) originating from comets. Organic matter in the IDP samples is less aromatic than that in the CR chondrites, and its functional group chemistry is mainly characterized by C–O bonding and aliphatic C. Organic grains in CR chondrites are associated with carbonates and elemental Ca, which originate either from aqueous fluids or possibly an indigenous organic source. One distinct grain from the CR chondrite NWA 852 exhibits a rim structure only visible in chemical maps. The outer part is nanoglobular in shape, highly aromatic, and enriched in anomalous nitrogen. Functional group chemistry of the inner part is similar to spectra from IDP organic grains and less aromatic with nitrogen below the detection limit. The boundary between these two areas is very sharp. The direct association of both IDP-like organic matter with dominant C–O bonding environments and nanoglobular organics with dominant aromatic and C–N functionality within one unique grain provides for the first time to our knowledge strong evidence for organic synthesis in the early solar system activated by an anomalous nitrogen-containing parent body fluid. PMID:25288736

  17. Characterization of Saharan mineral dust transported to the Colle Gnifetti glacier (Southern Alps, Switzerland) during the last centuries.

    NASA Astrophysics Data System (ADS)

    Thevenon, Florian; Poté, John; Adatte, Thierry; Chiaradia, Massimo; Hueglin, Christoph; Collaud Coen, Martine

    2010-05-01

    The Southern Alps act as a barrier to the southwesterly dust-laden winds from the Sahara, and the Colle Gnifetti saddle (45°55'N, 7°52'E, 4455 m asl in the Monte Rosa Massif) satisfactory conserves the history of climatic conditions over the last millennium (Thevenon et al., 2009). Therefore, the Colle Gnifetti glacier is a suitable site for i) studying the composition of past Saharan aeolian dust emissions, and for ii) comparing modern dust emissions with preindustrial emissions. The mineral aerosols entrapped in the ice core have been analyzed for their physical (grain-size by image analysis), mineralogical (by X-ray diffraction), and chemical composition (by ICPMS and by mass spectrometry for Sr and Nd isotopic ratios). The mineral dust characteristics are then compared with present day Saharan dust samples collected at the high altitude research station Jungfraujoch (46°55'N, 7°98E, 3580 asl) and with documented potential dust sources. Results show that i) the increases in atmospheric dustiness correlate with larger mean grain size, and that ii) the dust emissions increase after the industrial revolution, probably as a large-scale atmospheric circulation response to anthropogenic climate forcing (Shindell et al., 2001; Thevenon et al., 2009). However, geochemical variations in aeolian mineral particles also indicate that the source areas of the dust, which are now situated in northern and north-western part of the Saharan desert (Collaud Coen et al., 2004), did not change significantly throughout the past. Therefore, the mineralogy (e.g. illite, kaolinite, chlorite, palygorskite) and the geochemistry of the paleo-dust particles transported to Europe, are relevant to assess past African dust sources. REFERENCES: - Thevenon, F., F. S. Anselmetti, S. M. Bernasconi, and M. Schwikowski (2009). Mineral dust and elemental black carbon records from an Alpine ice core (Colle Gnifetti glacier) over the last millennium. J. Geophys. Res., 114, D17102, doi:10

  18. Dust flux in peripheral East Antarctica: preliminary results from GV7 ice core and extension of the TALDICE dust record to the sub-micron range

    NASA Astrophysics Data System (ADS)

    Delmonte, Barbara; Giovanni, Baccolo; Fausto, Marasci; Iizuka, Yoshinori; Valter, Maggi

    2015-04-01

    Improved understanding of climate variability over the last two millennia - that is a critical time period for investigating natural and anthropogenic climate change - is one of the key priorities of the International Partnership in Ice Core Sciences (IPICS). The Italian contribution to this concerted international effort is represented by the project IPICS-2kyr-Italy supported by PNRA. In this context, a novel intermediate core (about 250 m deep) was drilled during the 2013/14 field season at the peripheral site of GV7 in East Antarctica (70°41'S, 158°52'E; elevation 1950 m), where snow accumulation is very high (about 3 times Talos Dome, 10 times EPICA Dome C). After the ice core processing campaign at EuroCold (UNIMIB) carried out in synergy between Italy and Korea teams, measurements of dust concentration and size distribution are now in progress. A novel Coulter Counter apparatus has been set up in order to extend dust size spectra down to 600 nm. Samples are analyzed immediately after melting and also 24h later under identical conditions, for a quantitative assessment of the contribution of water-soluble microparticles (salts). Seasonal variability and trends of insoluble dust, metastable salts and size distribution of these compounds is under study. The possibility to extended the size range of dust measurements has allowed refining estimates of dust flux at Talos Dome and an adjustment of published data.

  19. The most unusual dust event cases from Iceland

    NASA Astrophysics Data System (ADS)

    Dagsson Waldhauserova, Pavla; Arnalds, Olafur; Olafsson, Haraldur; Meinander, Outi; Gritsevich, Maria

    2016-04-01

    Iceland has the largest area of volcaniclastic sandy desert on Earth where dust is originating from volcanic, but also glaciogenic sediments. Total Icelandic desert areas cover over 44,000 km2 suggesting Iceland being the largest Arctic as well as European desert. Satelite MODIS pictures have revealed dust plumes traveling over 1000 km at times. The mean frequency of days with dust suspension was to 135 dust days annually in 1949-2011. The annual dust deposition was calculated as 31 - 40.1 million tons yr-1 affecting the area of > 500,000 km2, which places Iceland among the most active dust sources on Earth. Volcanic dust is distributed over local glaciers (about 4.5 million t annually) and surrounding oceans (6 - 14 million t annually). Mean dust emissions were calculated for minor, medium and major dust events as 0.1, 0.3 and 1 million tons per event, respectively. Three unusual dust events were observed and measured: The first, an extreme wind erosion event of the fresh Eyjafjallajokull 2010 volcanic ash, the second, a Snow-Dust Storm in 2013, and the third, a suspended dust during moist and low wind conditions. Frequent volcanic eruptions in Iceland (new eruption each 3-4 years on average) represent important inputs to dust variability. Freshly deposited ash prolongs impacts of volcanic eruptions as we observed after the 2010 Eyjafjallajokull eruption. In September 2010, an extreme storm was recorded with the maximum wind speed of 38.7 ms-1. The maximum saltation was 6825 pulses per minute while the aeolian transport over one m wide transect and 150 cm height reached 11,800 kg m-1. The largest previously measured amount in Iceland in one storm was about 4,200 kg m-1. This storm is among the most extreme wind erosion events recorded on Earth. Dust events in South Iceland often take place in winter or at sub-zero temperatures. The Snow-Dust Storm occurred in March 6-7th 2013 when snow was nearly black with several mm thick dark layer of dust deposited on snow

  20. The composition of Martian aeolian sands: Thermal emissivity from Viking IRTM observations

    NASA Technical Reports Server (NTRS)

    Edgett, Kenneth S.; Christensen, Philip R.

    1992-01-01

    Aeolian sands provide excellent surfaces for the remote determination of the mineralogic composition of Martian materials, because such deposits consist of relatively well-sorted, uniform particle sizes and might consist of chemically unaltered, primary mineral grains derived from bedrock. Dark features on the floors of Martian craters are controlled by aeolian processes and many consist largely of unconsolidated, windblown sand. Measurement of the thermal emissivity of geologic materials provides a way to identify mid-infrared absorption bands, the strength and positions of which vary with mineral structure and composition. The Viking Infrared Thermal Mapper (IRTM) had four surface-sensing mid-IR bands, three of which, the 7, 9, and 11 micron channels, correspond to absorption features characteristic of carbonates, sialic, and mafic minerals, respectively. In this study, the highest quality IRTM data were constrained so as to avoid the effects of atmospheric dust, clouds, surface frosts, and particle size variations (the latter using data obtained between 7 and 9 H, and they were selected for dark intracrater features such that only data taken directly from the dark feature were used, so as to avoid thermal contributions from adjacent but unrelated materials. Three-point emissivity spectra of Martian dart intracrater features were compared with laboratory emission spectra of minerals and terrestrial aeolian sands convolved using the IRTM response function to the four IRTM spectral channels.

  1. Measuring aeolian sand transport using acoustic sensors

    NASA Astrophysics Data System (ADS)

    Poortinga, Ate; van Rheenen, Hans; Ellis, Jean T.; Sherman, Douglas J.

    2015-03-01

    Acoustic sensors are frequently used to measure aeolian saltation. Different approaches are used to process the signals from these instruments. The goal of this paper is to describe and discuss a method to measure aeolian saltation with acoustic sensors. In a laboratory experiment, we measured the output from an advanced signal processing scheme on the circuit board of the saltiphone. We use a software implementation of this processing scheme to re-analyse data from four miniphones obtained during a field experiment. It is shown that a set of filters remove background noise outside the frequency spectrum of aeolian saltation (at 8 kHz), whereas signals within this frequency spectrum are amplified. The resulting analogue signal is a proxy of the energy. Using an AC pulse convertor, this signal can be converted into a digital and analogue count signal or an analogue energy signal, using a rectifier and integrator. Spatio-temporal correlation between field deployed miniphones increases by using longer integration times for signal processing. To quantify aeolian grain impact, it is suggested to use the analogue energy output, as this mode is able to detect changes in frequency and amplitude. The analogue and digital count signals are able to detect an increase in frequency, but are not able to detect an increase in signal amplitude. We propose a two-stage calibration scheme consisting of (1) a factory calibration, to set the frequency spectrum of the sensor and (2) a standardized drop-test conducted before and after the experiment to evaluate the response of the sensor.

  2. Formation of aeolian ripples and sand sorting.

    PubMed

    Manukyan, Edgar; Prigozhin, Leonid

    2009-03-01

    We present a continuous model capable of demonstrating some salient features of aeolian sand ripples: the realistic asymmetric ripple shape, coarsening of the ripple field at the nonlinear stage of ripple growth, saturation of ripple growth for homogeneous sand, typical size segregation of sand, and formation of armoring layers of coarse particles on ripple crests and windward slopes if the sand is inhomogeneous. PMID:19391931

  3. Astronomic timescale for the Pliocene Atlantic δ18O and dust flux records of Ocean Drilling Program Site 659

    NASA Astrophysics Data System (ADS)

    Tiedemann, Ralf; Sarnthein, Michael; Shackleton, Nicholas J.

    1994-08-01

    High-resolution benthic oxygen isotope and dust flux records from Ocean Drilling Program site 659 have been analyzed to extend the astronomically calibrated isotope timescale for the Atlantic from 2.85 Ma back to 5 Ma. Spectral analysis of the δ18O record indicates that the 41-kyr period of Earth's orbital obliquity dominates the Pliocene record. This is shown to be true regardless of fundamental changes in the Earth's climate during the Pliocene. However, the cycles of Sahelian aridity fluctuations indicate a shift in spectral character near 3 Ma. From the early Pliocene to 3 Ma, the periodicities were dominantly precessional (19 and 23 kyr) and remained strong until 1.5 Ma. Subsequent to 3 Ma, the variance at the obliquity period (41 kyr) increased. The timescale tuned to precession suggests that the Pliocene was longer than previously estimated by more than 0.5 m.y. The tuned ages for the magnetic boundaries Gauss/Gilbert and Top Cochiti are about 6-8% older than the ages of the conventional timescale. A major phase of Pliocene northern hemisphere ice growth occurred between 3.15 Ma and 2.5 Ma. This was marked by a gradual increase in glacial Atlantic δ18O values of 1‰ and an increase in amplitude variations by up to 1.5‰, much larger than in the Pacific deepwater record (site 846). The first maxima occured in cold stages G6-96 between 2.7 Ma and 2.45 Ma. Prior to 3 Ma, the isotope record is characterized by predominantly low amplitude fluctuations (< 0.7‰.). When obliquity forcing was at its minimum between 4.15 and 3.6 Ma and during the Kaena interval, δ18O amplitude fluctuations were minimal. From 4.9 to 4.3 Ma, the δ18O values decreased by about 0.5‰, reaching a long-term minimum at 4.15 Ma, suggesting higher deepwater temperatures or a deglaciation. Deepwater cooling and/or an increase in ice volume is indicated by a series of short-term δ18O fluctuations between 3.8 and 3.6 Ma.

  4. Boundary Conditions for Aeolian Activity in North American Dune Fields

    NASA Astrophysics Data System (ADS)

    Halfen, A. F.; Lancaster, N.; Wolfe, S.

    2014-12-01

    Geomorphic and chronological data for dune fields are evaluated for three contrasting areas of North America: 1) the Prairie-Parkland-Boreal ecozones of the northern Great Plains in Canada; 2) the Central Great Plains of the USA; and 3) the deserts of southwestern USA and northern Mexico. Luminescence and radiocarbon ages for periods of dune accumulation and stability are compared with palaeoenvironment proxies to provide an assessment of the boundary conditions of dune system response to changes in sediment supply, availability, and mobility. Dune fields in the northern Great Plains were formed from sediment originating from glaciofluvial or glaciolacustrine sediments deposited during deglaciation 16-11 ka. Subsequent aeolian deposition occurred in Parkland and Prairie dune fields as a result of mid-Holocene (8-5 ka) and late-Holocene (< 3.5 ka) activity related to drought conditions that reworked pre-existing aeolian sands. In the Central Great Plains, dune fields are closely linked to fluvial sediment sources. Sediment supply was high during deglaciation of the Rocky Mountains and resulted in widespread dune construction 16-10 ka. Multiple periods of Holocene reactivation are recorded and reflect increased sediment availability during drought episodes. Dune fields in the southwestern deserts experienced periods of construction as a result of enhanced supply of sediment from fluvial and lacustrine sources during the period 11.8-8 ka and at multiple intervals during the late Holocene. Despite spatial and temporal gaps in chronometric data as a result of sampling biases, the record from North American dune fields indicates the strong influence of sediment supply on dune construction, with changes in sediment availability as a result of drought episodes resulting in dune field reactivation and reworking of pre-existing sediment.

  5. Aeolian particle flux profiles and transport unsteadiness

    NASA Astrophysics Data System (ADS)

    Bauer, Bernard O.; Davidson-Arnott, Robin G. D.

    2014-07-01

    Vertical profiles of aeolian sediment flux are commonly modeled as an exponential decay of particle (mass) transport with height above the surface. Data from field and wind-tunnel studies provide empirical support for this parameterization, although a large degree of variation in the precise shape of the vertical flux profile has been reported. This paper explores the potential influence of wind unsteadiness and time-varying intensity of transport on the geometry (slope, curvature) of aeolian particle flux profiles. Field evidence from a complex foredune environment demonstrates that (i) the time series of wind and sediment particle flux are often extremely variable with periods of intense transport (referred to herein as sediment "flurries") separated by periods of weak or no transport; (ii) sediment flurries contribute the majority of transport in a minority of the time; (iii) the structure of a flurry includes a "ramp-up" phase lasting a few seconds, a "core" phase lasting a few seconds to many tens of seconds, and a "ramp-down" phase lasting a few seconds during which the system relaxes to a background, low-intensity transport state; and (iv) conditional averaging of flux profiles for flurry and nonflurry periods reveals differences between the geometry of the mean profiles and hence the transport states that produce them. These results caution against the indiscriminate reliance on regression statistics derived from time-averaged sediment flux profiles, especially those with significant flurry and nonflurry periods, when calibrating or assessing the validity of steady state models of aeolian saltation.

  6. Aeolian processes in Proctor Crater on Mars: Sedimentary history as analyzed from multiple data sets

    USGS Publications Warehouse

    Fenton, L.K.; Bandfield, J.L.; Ward, A.W.

    2003-01-01

    Proctor Crater is a 150 km diameter crater in Noachis Terra, within the southern highlands of Mars. The analysis leading to the sedimentary history incorporates several data sets including imagery, elevation, composition, and thermal inertia, mostly from the Mars Global Surveyor mission. The resulting stratigraphy reveals that the sedimentary history of Proctor Crater has involved a complex interaction of accumulating and eroding sedimentation. Aeolian features spanning much of the history of the crater interior dominate its surface, including large erosional pits, stratified beds of aeolian sediment, sand dunes, erosional and depositional streaks, dust devil tracks, and small bright bed forms that are probably granule ripples. Long ago, up to 450 m of layered sediment filled the crater basin, now exposed in eroded pits on the crater floor. These sediments are probably part of an ancient deposit of aeolian volcaniclastic material. Since then, some quantity of this material has been eroded from the top layers of the strata. Small, bright dune forms lie stratigraphically beneath the large dark dune field. Relative to the large dark dunes, the bright bed forms are immobile, although in places, their orientations are clearly influenced by the presence of the larger dunes. Their prevalence in the crater and their lack of compositional and thermal distinctiveness relative to the crater floor suggests that these features were produced locally from the eroding basin fill. Dust devil tracks form during the spring and summer, following a west-southwesterly wind. Early in the spring the dust devils are largely restricted to dark patches of sand. As the summer approaches, dust devil tracks become more plentiful and spread to the rest of the crater floor, indicating that the entire region acquires an annual deposit of dust that is revealed by seasonal dust devils. The dark dunes contain few dust devil tracks, suggesting that accumulated dust is swept away directly by saltation

  7. Introducing a New International Society of Aeolian Research

    NASA Astrophysics Data System (ADS)

    Zobeck, T. M.; Lee, J.; Lancaster, N.; Bullard, J. E.

    2008-12-01

    Aeolian research is a long-standing and rapidly growing area of geological study where scientists of many disciplines meet to investigate the effects of wind on the surface of the Earth and other planetary bodies such as Mars and Titan. Fields of study in aeolian research cover a broad spectrum ranging from developing a basic scientific understanding of the fundamental physical processes of grain motion to the effects of soil erosion on landscape health and environmental sustainability. Aeolian research also includes studies of the effects of aeolian particles on global climate, air quality, and human health, coastal sand transport processes, land degradation, dune migration, the formation of sand seas, and much more. A growing number of international conferences have been organized to focus specifically on aeolian phenomena and a vast number of scholarly publications have been produced to support the science. One popular bibliography includes over 30,000 citations and hundreds of peer-reviewed papers are published each year. Until very recently, no scientific society specifically dealing with aeolian research has been available. The new International Society of Aeolian Research (ISAR) that has been organized to bring together aeolian scientists from around the world. The new society was created to promote contacts among researchers in aeolian processes and related subjects for discussion and comparison of research, to initiate conferences (such as the International Conference on Aeolian Research), to organize excursions, and support the publication of a peer-reviewed scientific journal. The International Society of Aeolian Research sponsors the new Elsevier journal Aeolian Research in support of these activities. This paper will provide further details about the new society and the journal. Please see www.aeolianresearch.org for details.

  8. Aeolian transport pathways along the transition from Tibetan highlands towards northwestern Chinese deserts

    NASA Astrophysics Data System (ADS)

    Nottebaum, Veit; Lehmkuhl, Frank; Stauch, Georg

    2014-05-01

    The identification and semi-quantification of aeolian transport pathways enhances the understanding of aeolian sediment archive formation and thus supports reliability and explanatory power concerning palaeoenvironmental reconstructions. Grain size analysis of 279 surface sediment samples from the transition of Tibetan highlands (Qilian Shan) towards northwestern Chinese deserts allows the differentiation of contributing pathways among three types of aeolian sediments: silty loess, sandy loess, and aeolian sands. The study area exhibits a high diversity of geomorphological surfaces due to varieties in relief, elevation and climatic conditions. Therefore, it provides the opportunity to investigate the characteristics of sediments in different geomorphological settings. Using the peaks of grain size frequency's standard deviation of primary loess allows identification of the most sensitive fractions to varying accumulation conditions. mU/fS-ratio (7 - 13 μm / 58 - 84 μm) of primary silty loess relates the far-travelled dust proportion to the locally transported fine sand component. In vicinity to fluvial channels in the foreland mU/fS-values are significantly decreased, whereas mU/fS-values increase with altitude (r2 = 0.74). This indicates higher contribution of long distance transport compared to lower regions. A prominent increase of mU/fS-values above 3000 m asl likely indicates an increasing contribution of fine and medium silt particles transported by Westerlies in higher altitudes. In contrast, lower areas seem to be more strongly influenced by low altitude monsoon currents (NW-Winter- / SE-summer monsoon). The difference in grain size properties is additionally enhanced by the contrasting geomorphologic settings along the mountain declivity: Plain foreland alluvial fans support fine sand supply and availability whereas steep high mountain topography provides only limited potential for fine sand deflation. Similarly, the relatively low relief in intramontane

  9. The aeolian sedimentary system in the northern Qilian Shan and Hexi Corridor (N-China) - geomorphologic, sedimentologic and climatic drivers

    NASA Astrophysics Data System (ADS)

    Nottebaum, Veit; Lehmkuhl, Frank; Stauch, Georg

    2015-04-01

    The formation of aeolian deposits depends on the influence of climatic factors but also on non-climatic controls, such as local geomorphological setting and tectonic activity. Unravelling the environmental history needs a careful consideration of a set of sections to capture spatial variability and a detailed investigation of depositing processes and chronology. Along the northern margin of the Qilian Shan mountain range 22 OSL-dated loess and aeolian sand sections and additional surface samples reveal the interactions between climatic, geomorphologic and sedimentologic factors. Thin loess covers (~1-2 m) occur in elevations of 2000 to 3800 m asl, which were mainly accumulated during the Holocene. End-member modelling of loess grain size data exhibits three dominant aeolian transport pathways representing local transport from fluvial storages, dust storm contribution and background dust deposition. Their relative contributions show a clear dependence on geomorphological setting, and additionally, synchronous trends throughout the Holocene. Their relative changes allow conclusions about Holocene environmental conditions. Discontinuous archives (aeolian sand, lacustrine, and alluvial deposition) in the lower forelands of the Qilian Shan show a distinct spatial pattern contrasting western and eastern forelands. The comparison of OSL ages exhibits high sediment accumulation (~2 m/ka) in the drier western part during the Late Glacial, while the lack of Holocene ages indicates sediment discharge / deflation. In contrast, moister areas in the eastern foreland yield scattered Holocene ages. This indicates high sediment dynamics, benefiting from fluvial reworking and thus provided sediment availability. Fluvial sediment supply plays an important role in sediment recycling. Meanwhile, western forelands lack efficient sand sources and fluvial reworking agents. The study exemplifies the complex sedimentary systems acting along mountain to foreland transects which often host

  10. Modeling of particulate matter transport in atmospheric boundary layer following dust emission from source areas

    NASA Astrophysics Data System (ADS)

    Katra, Itzhak; Elperin, Tov; Fominykh, Andrew; Krasovitov, Boris; Yizhaq, Hezi

    2016-03-01

    A two-dimensional model for particulate matter (PM) dispersion due to dust emission from soils is presented. Field experiments were performed at a dust source site (Negev loess soil) with a portable boundary layer wind tunnel to determine the emitted PM fluxes for different wind speeds and varying soil conditions. The numerical model is formulated using parameterizations based on the aeolian experiments. The wind velocity profiles used in the simulations were fitted from data obtained in field measurements. Size distribution of the emitted dust particles in the numerical simulations was taken into account using a Monte Carlo method. The PM concentration distributions at a distance of several kilometers from the dust source under specific shear velocities and PM fluxes from the soil were determined numerically by solving advection-diffusion equation. The obtained PM10 concentrations under typical wind and soil conditions are supported by PM data recorded over time in a standard environmental monitoring station. The model enhances our capacity of quantification of dust processes to support climate models as well as health risk assessment.

  11. The ecology of dust: local- to global-scale perspectives

    SciTech Connect

    Whicker, Jeffrey J; Field, Jason P; Belnap, Jayne; Breshears, David D; Neff, Jason; Okin, Gregory S; Painter, Thomas H; Ravi, Sujith; Reheis, Marith C; Reynolds, Richard L

    2009-01-01

    Emission and redistribution of dust due to wind erosion in drylands drives major biogeochemical dynamics and provides important aeolian environmental connectivity at scales from individual plants up to the global scale. Yet, perhaps because most relevant research on aeolian processes has been presented in a geosciences rather than ecological context, most ecological studies do not explicitly consider dust-driven processes. To bridge this disciplinary gap, we provide a general overview of the ecological importance of dust, examine complex interactions between wind erosion and ecosystem dynamics from the plant-interspace scale to regional and global scales, and highlight specific examples of how disturbance affects these interactions and their consequences. Changes in climate and intensification of land use will both likely lead to increased dust production. To address these challenges, environmental scientists, land managers and policy makers need to more explicitly consider dust in resource management decisions.

  12. Deciphering human-climate interactions in ombrotrophic peat record : REE, Nd and Pb isotope signatures of dust supplies over the last 2500 years (Misten bog, Belgium)

    NASA Astrophysics Data System (ADS)

    Fagel, Nathalie; Allan, Mohamed; Le Roux, Gael; Mattielli, Nadine; Piotrowska, Natalia; Sikorski, Jarek

    2013-04-01

    A core of 173 cm of ombrotrophic Misten peat bog from the Hautes-Fagnes Plateau in Eastern Belgium provides a record of Rare Earth Elements (REE) deposition allowing to trace dust fluxes in West Europe during the historical record (last 2500 years). REE and lithogenic element analyses, as well as the Nd isotopes, were performed by HR-ICP-MS and MC-ICP-MS, respectively in peat layers dated by 210Pb and 14C. The parallel variations of REE concentration with lithogenic conservative elements confirms that REE are immobile in the studied peat bog and can be used as tracers of dust deposition. Dust fluxes show pronounced increase at BC300, AD600, 1000AD, 1200AD and from 1700AD, recording either influence of human activities (regional erosion due to forest clearing and soil cultivation activities) or local and regional climate changes. Using Nd isotope allows to decipher between local and distal causes. The ENd variability (-13 to -9) is interpreted by a mixing between dust sources from local soils and desert particles. Three periods characterised by dominant-distal sources (at 320AD, 1000 AD and 1700AD) are consistent with local wetter intervals as indicated by lower humification degree. Local erosion prevails durier drier (higher humification) intervals (-100AD, 600AD). On a global scale more distal supplies are driven during colder periods, in particular Oort and Maunder minima. Combining geochemical elementary content and isotope data in ombrotrophic peat allows to decipher between dust flux changes related to human and climate forcing.

  13. Seismicity pattern changes before the M = 4.8 Aeolian Archipelago (Italy) earthquake of August 16, 2010.

    PubMed

    Gambino, Salvatore; Laudani, Antonino; Mangiagli, Salvatore

    2014-01-01

    We investigated the seismicity patterns associated with an M = 4.8 earthquake recorded in the Aeolian Archipelago on 16, August, 2010, by means of the region-time-length (RTL) algorithm. This earthquake triggered landslides at Lipari; a rock fall on the flanks of the Vulcano, Lipari, and Salina islands, and some damages to the village of Lipari. The RTL algorithm is widely used for investigating precursory seismicity changes before large and moderate earthquakes. We examined both the spatial and temporal characteristics of seismicity changes in the Aeolian Archipelago region before the M = 4.8 earthquake. The results obtained reveal 6-7 months of seismic quiescence which started about 15 months before the earthquake. The spatial distribution shows an extensive area characterized by seismic quiescence that suggests a relationship between quiescence and the Aeolian Archipelago regional tectonics. PMID:24511288

  14. Seismicity Pattern Changes before the M = 4.8 Aeolian Archipelago (Italy) Earthquake of August 16, 2010

    PubMed Central

    2014-01-01

    We investigated the seismicity patterns associated with an M = 4.8 earthquake recorded in the Aeolian Archipelago on 16, August, 2010, by means of the region-time-length (RTL) algorithm. This earthquake triggered landslides at Lipari; a rock fall on the flanks of the Vulcano, Lipari, and Salina islands, and some damages to the village of Lipari. The RTL algorithm is widely used for investigating precursory seismicity changes before large and moderate earthquakes. We examined both the spatial and temporal characteristics of seismicity changes in the Aeolian Archipelago region before the M = 4.8 earthquake. The results obtained reveal 6-7 months of seismic quiescence which started about 15 months before the earthquake. The spatial distribution shows an extensive area characterized by seismic quiescence that suggests a relationship between quiescence and the Aeolian Archipelago regional tectonics. PMID:24511288

  15. Aeolian deposition change in the Peruvian central continental shelf during the last millennium and its relationship with atmospheric conditions

    NASA Astrophysics Data System (ADS)

    Briceño, F. J., Sr.; Sifeddine, A.

    2015-12-01

    We present a record of laminated sediment cores retrieved in the Pisco region (14 °S) characterized by local aeolian inputs. This record covers the Medieval Climate Anomaly (MCA) to Little Ice Age (LIA) and the Current Warm Period (CWP) at centennial to sub-decadal resolution. The aim of the study is to reconstruct the patterns of aeolian sedimentation as well as the most important processes that control the input of this material to understand how these components reflect atmospheric climate variability during the last millennium. Assuming that the mineral fraction of the sediment is composed of several lognormally distributed particle populations, we applied an iterative least-square fitting routine to determine the number and the characteristics of the individual particles populations. This allows inferring the spatial and temporal variation of particles populations and thus transport mechanisms involved. Two components with grain size modes at 54±11 μm and 90±11 μm related with local aeolian erosion over the Pisco region were found. Our results showed active aeolian erosion during the second half of the MCA and rapid decrease from the MCA to the LIA. During the LIA the aeolian deposition exhibited a decreasing activity. During the CWP the aeolian deposition increased progressively. Comparison with others South American records indicates that those changes are linked to change in the meridional position of the Intertropical convergence zone (ITCZ) and South Pacific Subtropical High (SPSH) at the centennial time resolution. Finally the CWP period showed an increase in the aeolian deposition and thus in the wind intensity over the past two centuries. This likely represents the result of the modern position of the ITCZ-SPSH system and the associated intensification of the local and regional winds. Nevertheless, the aeolian deposition and in consequence the wind intensity and variability of the last 100 yr are stronger than during the second sequence of the MCA

  16. Atmosphere aerosol/dust composition over central Asia and western Siberia derived from snow/ice core records and calibrated with NASA remote sensing data

    NASA Astrophysics Data System (ADS)

    Aizen, V. B.; Aizen, E. M.; Joswiak, D. R.; Surazakov, A. B.; Takeuchi, N.

    2007-12-01

    The vast arid and semi-arid regions of central Asia, Mongolia, and Northern China are the world's second largest source of atmospheric mineral dust. In recent years, severe dust storms in Asia have intensified in frequency, duration, and areal coverage. However, limited spatial and temporal extent of aerosol measurements precludes definitive statements to be made regarding relationship between the Asian aerosol generation and climate. It has been well known that glaciers are the natural archives of environmental records related to past climate and aerosol generation. In our research, we utilized central Asian and western Siberia shallow ice-core records recovered from Altai, Tien Shan and Pamir mountain glaciers. Despite the fact that ice-core data may extend climate/aerosol records back in time, their sparse coverage is inadequate to document aerosol spatial distribution. The NASA products from Aura, Terra and Aqua satellite missions address this gap identifying aerosol sources, transport pathways, and area of deposition. The main objective of our research is to evaluate an affect of climate variability on dynamics of Asian aerosol loading to atmosphere and changes in aerosol transport pathways. Dust particle, major and rare earth element analysis from dust aerosols deposited and accumulated in Altai, Tien Shan and Pamir glaciers suggests that loess from Tajikistan, Afghanistan and north-western China are main sources of aerosol loading into the upper troposphere over the central Asia and western Siberia. At the same time, the soluble ionic component of the ice-cores, related to aerosol generated from evaporate deposits, demonstrated both anthropogenic and natural impacts on atmospheric chemistry over these regions. Large perturbations of Ca2+ derived from CaCO3- rich dust transported from Goby Desert to Altai and Tien Shan. Origin and pathway of the ice-core aerosol depositions for the last 10-years were identified through calibrating ice-core records with dust

  17. Aeolian Processes and Features on Venus

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald; Bender, Kelly C.; Saunders, Stephen; Schubert, Gerald; Weitz, Catherine M.

    1997-01-01

    Aeolian features on Venus include dune fields, eroded hills (yardangs), wind streaks, (miniature dunes of 10 to 30 cm wavelength). Although and possibly microdunes (in repetitive imaging by Magellan did show changes in the appearance of the surface, these changes are attributed to radar artifacts as a consequence of look direction rather than to physical changes of the surface. Nonetheless, measurements of wind speeds near the surface of Venus and wind tunnel simulations suggest that aeolian processes could be currently active on Venus. Study of radar images of terrestrial analogs shows that radar wavelength, polarization, and viewing geometry, including look direction and incidence angle, all influence the detection of dunes, yardangs, and wind streaks. For best detection, dune crests and yardangs should be oriented perpendicular to look direction. Longer wavelength systems can penetrate sand sheets a meter or more thick, rendering them invisible, especially in arid regions. For wind streaks to be visible, there must be a contrast in surface properties between the streak and the background on which it occurs. Nonetheless, more than 6000 aeolian features have been found on Magellan images of Venus, the most common of which are various wind streaks. Mapping wind streak orientations enables near-surface wind patterns to be inferred for the time of their formation. Type P streaks are associated with parabolic ejecta crater deposits and are considered to have formed in association with the impact event. Most Type P streaks are oriented westward, indicative of the upper altitude superrotation winds of Venus. Non Type P streaks have occurrences and orientations consistent with Hadley circulation. Some streaks in the southern hemisphere are oriented to the northeast, suggesting a Coriolis effect.

  18. Aeolian processes and the bioshpere: Interactions and feedback loops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aeolian processes affect landform evolution, biogeochemical cycles, regional climate, human health, and desertification. The entrainment, transport and deposition of aeolian sediments are recognized as major drivers in the dynamics of the earth system and there is a growing interest in the scientif...

  19. Introducing a New International Society of Aeolian Research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aeolian research is long-standing and rapidly growing area of study where scientists of many disciplines meet to investigate the effects of wind on the surface of the Earth and other planetary bodies, such as Mars and Titan. Fields of study in aeolian research cover a broad spectrum ranging from dev...

  20. Recent Aeolian Dune Change on Mars

    NASA Technical Reports Server (NTRS)

    Bourke, M. C.; Edgett, K. S.; Cantor, B. A.

    2007-01-01

    Previous comparisons of Martian aeolian dunes in satellite images have not detected any change in dune form or position. Here, we show dome dunes in the north polar region that shrank and then disappeared over a period of 3.04 Mars years (5.7 Earth years), while larger, neighboring dunes showed no erosion or movement. The removal of sand from these dunes indicates that not only is the threshold wind speed for saltation exceeded under present conditions on Mars, but that any sand that is available for transport is likely to be moved. Dunes that show no evidence of change could be crusted, indurated. or subject to infrequent episodes of movement.

  1. Preliminary Results of the Lithospheric Structure Beneath the Aeolian Archipelago (Italy) Inferred from Teleseismic Receiver Functions

    NASA Astrophysics Data System (ADS)

    Musumeci, C.; Martinez-Arevalo, C.; de Lis Mancilla3, F.; Patanè, D.

    2009-12-01

    The Aeolian archipelago (Italy) represents an approximately one-million-year-old volcanic arc related to the subduction of the Ionian oceanic plate beneath the Calabrian continental crust. The objective of this work is to develop a better understanding of the regional structure of the whole archipelago. The crustal structure under each station was obtained applying P-receiver function technique to the teleseismic P-coda data recorded by the broadband seismic network (10 stations) installed by the Istituto Nazionale di Geofisica e Volcanologia (INGV-CT). Receiver functions were computed by using the Extended-Time Multitaper Frequency Domain Cross-Correlation Receiver Function (ET-MTRF) method. The preliminary results suggest a very similar listhospheric structure below all the islands of the Aeolian archipelago, with the exception of Stromboli. The boundary between the subducting ocean crust of the Ionian plate and the Thyrrenian mantle is clearly observed below all the stations.

  2. Reconstructing pathways of aeolian pollen transport to the marine sediments along the coastline of SW Africa

    NASA Astrophysics Data System (ADS)

    Dupont, Lydie M.; Wyputta, Ulrike

    2003-02-01

    The distribution of pollen in marine sediments is used to reconstruct pathways of terrigenous input to the oceans and provides a record of vegetation change on adjacent continents. The wind transport routes of aeolian pollen is comprehensively illustrated by clusters of trajectories. Isobaric, 4-day backward trajectories are calculated using the modelled wind-field of ECHAM3, and are clustered on a seasonal basis to estimate the main pathways of aeolian particles to sites of marine cores in the south-eastern Atlantic. Trajectories and clusters based on the modelled wind-field of the Last Glacial Maximum hardly differ from those of the present-day. Trajectory clusters show three regional, and two seasonal patterns, determining the pathways of aeolian pollen transport into the south-eastern Atlantic ocean. Mainly, transport out of the continent occurs during austral fall and winter, when easterly and south-easterly winds prevail. South of 25°S, winds blow mostly from the west and southwest, and aeolian terrestrial input is very low. Generally, a good latitudinal correspondence exists between the distribution patterns of pollen in marine surface sediments and the occurrence of the source plants on the adjacent continent. The northern Angola Basin receives pollen and spores from the Congolian and Zambezian forests mainly through river discharge. The Zambezian vegetation zone is the main source area for wind-blown pollen in sediments of the Angola Basin, while the semi-desert and desert areas are the main sources for pollen in sediments of the Walvis Basin and on the Walvis Ridge. A transect of six marine pollen records along the south-western African coast indicates considerable changes in the vegetation of southern Africa between glacial and interglacial periods. Important changes in the vegetation are the decline of forests in equatorial Africa and the north of southern Africa and a northward shift of winter rain vegetation along the western escarpment.

  3. High-resolution provenance of desert dust deposited on Mt. Elbrus, Caucasus in 2009-2012 using snow pit and firn core records

    NASA Astrophysics Data System (ADS)

    Kutuzov, S.; Shahgedanova, M.; Mikhalenko, V.; Ginot, P.; Lavrentiev, I.; Kemp, S.

    2013-09-01

    The first record of dust deposition events on Mt. Elbrus, Caucasus Mountains derived from a snow pit and a shallow firn core is presented for the 2009-2012 period. A combination of isotopic analysis, SEVIRI red-green-blue composite imagery, MODIS atmospheric optical depth fields derived using the Deep Blue algorithm, air mass trajectories derived using the HYSPLIT model and analyses of meteorological data enabled identification of dust source regions with high temporal (hours) and spatial (ca. 20-100 km) resolution. Seventeen dust deposition events were detected; fourteen occurred in March-June, one in February and two in October. Four events originated in the Sahara, predominantly in northeastern Libya and eastern Algeria. Thirteen events originated in the Middle East, in the Syrian Desert and northern Mesopotamia, from a mixture of natural and anthropogenic sources. Dust transportation from Sahara was associated with vigorous Saharan depressions, strong surface winds in the source region and mid-tropospheric southwesterly flow with daily winds speeds of 20-30 m s-1 at 700 hPa level. Although these events were less frequent than those originating in the Middle East, they resulted in higher dust concentrations in snow. Dust transportation from the Middle East was associated with weaker depressions forming over the source region, high pressure centred over or extending towards the Caspian Sea and a weaker southerly or southeasterly flow towards the Caucasus Mountains with daily wind speeds of 12-18 m s-1 at 700 hPa level. Higher concentrations of nitrates and ammonium characterised dust from the Middle East deposited on Mt. Elbrus in 2009 indicating contribution of anthropogenic sources. The modal values of particle size distributions ranged between 1.98 μm and 4.16 μm. Most samples were characterised by modal values of 2.0-2.8 μm with an average of 2.6 μm and there was no significant difference between dust from the Sahara and the Middle East.

  4. Use of radar to assess aeolian processes

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald; Lancaster, N.; Gaddis, L.; Blumberg, D.; Debrovolskis, A.; Saunders, R. S.; Wall, S.; Iversen, J. D.; White, B.; Rasmussen, K. R.

    1991-01-01

    The interaction between wind and desert surfaces has important implications for sediment transport on Earth, Mars, and Venus, and for understanding the relationship between radar backscatter and aerodynamic roughness. Here, researchers report results from measurements of atmospheric boundary layer profiles, assessment of radar backscatter at P, L, and C wavelengths, and surface roughness in Death Valley, the Mojave Desert, and Lunar Lake, NV, and discuss the implications for aeolian process. The sites include playas, gravel and sand regs, alluvial fans, and lava flows. Boundary layer wind profiles were measured using anemometers at heights of 0.75, 1.25, 2.07, 3.44, 5.72, and 9.5 m; temperature sensors at heights of 1.3 and 9.6 m; and wind vanes at 9.7 and 1.5 m. Microtopographic measurements were made using a template and a laser-photo device to obtain RMS height. This study demonstrates that radar backscatter coefficients obtained from airborne and perhaps orbiting instruments could permit the derivation of aerodynamic roughness values for large areas. Such values, when combined with wind frequency data, could enable assessment of aeolian processes on a regional scale.

  5. A Fractal Model for the Capacitance of Lunar Dust and Lunar Dust Aggregates

    NASA Technical Reports Server (NTRS)

    Collier, Michael R.; Stubbs, Timothy J.; Keller, John W.; Farrell, William M.; Marshall, John; Richard, Denis Thomas

    2011-01-01

    Lunar dust grains and dust aggregates exhibit clumping, with an uneven mass distribution, as well as features that span many spatial scales. It has been observed that these aggregates display an almost fractal repetition of geometry with scale. Furthermore, lunar dust grains typically have sharp protrusions and jagged features that result from the lack of aeolian weathering (as opposed to space weathering) on the Moon. A perfectly spherical geometry, frequently used as a model for lunar dust grains, has none of these characteristics (although a sphere may be a reasonable proxy for the very smallest grains and some glasses). We present a fractal model for a lunar dust grain or aggregate of grains that reproduces (1) the irregular clumpy nature of lunar dust, (2) the presence of sharp points, and (3) dust features that span multiple scale lengths. We calculate the capacitance of the fractal lunar dust analytically assuming fixed dust mass (i.e. volume) for an arbitrary number of fractal levels and compare the capacitance to that of a non-fractal object with the same volume, surface area, and characteristic width. The fractal capacitance is larger than that of the equivalent non-fractal object suggesting that for a given potential, electrostatic forces on lunar dust grains and aggregates are greater than one might infer from assuming dust grains are sphericaL Consequently, electrostatic transport of lunar dust grains, for example lofting, appears more plausible than might be inferred by calculations based on less realistic assumptions about dust shape and associated capacitance.

  6. A 10 year record of black carbon and dust from a Mera Peak ice core (Nepal): variability and potential impact on melting of Himalayan glaciers

    NASA Astrophysics Data System (ADS)

    Ginot, P.; Dumont, M.; Lim, S.; Patris, N.; Taupin, J.-D.; Wagnon, P.; Gilbert, A.; Arnaud, Y.; Marinoni, A.; Bonasoni, P.; Laj, P.

    2014-08-01

    A shallow ice core was extracted at the summit of Mera Peak at 6376 m a.s.l. in the southern flank of the Nepalese Himalaya range. From this core, we reconstructed the seasonal deposition fluxes of dust and refractory black carbon (rBC) since 1999. This archive presents well preserved seasonal cycles based on a monsoonal precipitation pattern. According to the seasonal precipitation regime in which 80% of annual precipitation falls between June and September, we estimated changes in the concentrations of these aerosols in surface snow. The analyses revealed that mass fluxes are a few orders of magnitude higher for dust (10.4 ± 2.8 g m-2 yr-1 than for rBC (7.9 ± 2.8 mg m-2 yr-1). The relative lack of seasonality in the dust record may reflect a high background level of dust inputs, whether from local or regional sources. Over the 10-year record, no deposition flux trends were detected for any of the species of interest. The data were then used to simulate changes in the surface snow albedo over time and the potential melting caused by these impurities. Mean potential melting caused by dust and rBC combined was 713 kg m-2 yr-1, and for rBC alone, 342 kg m-2 yr-1 for rBC under certain assumptions. Compared to the melting rate measured using the mass and energy balance at 5360 m a.s.l. on Mera Glacier between November 2009 and October 2010, i.e. 3000 kg m-2 yr-1 and 3690 kg m-2 yr-1 respectively, the impact of rBC represents less than 16% of annual potential melting while the contribution of dust and rBC combined to surface melting represents a maximum of 26%. Over the 10-year period, rBC variability in the ice core signal primarily reflected variability of the monsoon signal rather than variations in the intensity of emissions.

  7. Late Quaternary geoarchaeology and geochronology of stratified aeolian deposits, Tar River, North Carolina

    NASA Astrophysics Data System (ADS)

    Moore, Christopher R.

    Recent geoarchaeological work on relict aeolian deposits in the North Carolina Coastal Plain has shown the potential for understanding prehistoric hunter-gatherer adaptations to changing environmental conditions likely related to Holocene climate change. Archaeological surveys and testing along the Tar River has revealed numerous sites with stratified Early Archaic through Woodland occupations. Geophysical, archeostratigraphic and sedimentological analysis along with chronometric dating (OSL and 14C) of source-bordering aeolian sediments along the Tar River in North Carolina indicate dune drapes (˜1 meter thick) accreted throughout much of the Holocene. Aeolian burial events along the Tar River appear to reflect Holocene millennial-scale climatic cyclicity (e.g., Bond Events) and its related effects on the fluvial system. These events likely influenced both hunter-gatherer adaptation and site preservation along the Tar River. Combined radiocarbon and OSL ages from lower paleo-braidplain sites, indicate incision of the lower paleo-braidplain and initiation of dune deposition just before or during the Younger Dryas stadial. The presence of stratified archaeological remains in these sediments preserves a record of both prehistoric human adaptations to local conditions and changes in depositional processes marking large-scale climatic change in the southeastern United States.

  8. Earth and planetary aeolian streaks: A review

    NASA Astrophysics Data System (ADS)

    Cohen-Zada, Aviv Lee; Blumberg, Dan Gabriel; Maman, Shimrit

    2016-03-01

    Wind streaks are abundant aeolian features that have been observed on planetary surfaces by remote sensing means. They have been widely studied, particularly on Mars and Venus and to a much lesser extent on Earth. In imagery, these streaks appear as elongated features that are easily distinguishable from their surroundings. Geomorphologically, these streaks have, thus far, been interpreted as the presence or absence of small loose particles on the surface, deposited or eroded, respectively, by wind. However, the use of different (optical and radar) remote-sensing tools to study wind streaks has led to uncertain interpretations of these features and has hindered their geomorphological definition. Since wind streaks indicate the prevailing wind direction at the time of their formation, they may be used to map near-surface winds and to estimate atmospheric circulation patterns. The aim of this article is to review the main studies focusing on wind streaks and to present the most up-to-date knowledge on this topic. Moreover, a new perspective for wind streak research is suggested: As 'wind streak' is a collective term for a variety of aeolian features that when viewed from above appear as distinctive albedo surface patterns, we suggest that the term should not be used to refer to a geomorphological feature. Since the definition of wind streaks is constrained to remote sensing rather than to geomorphology and is affected by the inherent biases of remote sensing methods, we suggest that 'wind streaks' should be used as a collective term for aeolian surfaces that are discernable from above as bright and dark patterns due to alterations in the characteristics of the surface or to the presence of bedforms. To better understand the mechanisms, time-frames, climate compatibility of wind streaks and the influences of remote sensing on their appearance, we have compiled a new database containing more than 2,900 Earth wind streaks. A comprehensive study of these Earth wind

  9. Atmospheric Dust in the Upper Colorado River Basin: Integrated Analysis of Digital Imagery, Total Suspended Particulate, and Meteorological Data

    NASA Astrophysics Data System (ADS)

    Urban, F. E.; Reynolds, R. L.; Neff, J. C.; Fernandez, D. P.; Reheis, M. C.; Goldstein, H.; Grote, E.; Landry, C.

    2012-12-01

    Improved measurement and observation of dust emission and deposition in the American west would advance understanding of (1) landscape conditions that promote or suppress dust emission, (2) dynamics of dryland and montane ecosystems, (3) premature melting of snow cover that provides critical water supplies, and (4) possible effects of dust on human health. Such understanding can be applied to issues of land management, water-resource management, as well as the safety and well-being of urban and rural inhabitants. We have recently expanded the scope of particulate measurement in the Upper Colorado River basin through the establishment of total-suspended-particulate (TSP) measurement stations located in Utah and Colorado with bi-weekly data (filter) collection, along with protocols for characterizing dust-on-snow (DOS) layers in Colorado mountains. A sub-network of high-resolution digital cameras has been co-located with several of the TSP stations, as well as at other strategic locations. These real-time regional dust-event detection cameras are internet-based and collect digital imagery every 6-15 minutes. Measurements of meteorological conditions to support these collections and observations are provided partly by CLIM-MET stations, four of which were deployed in 1998 in the Canyonlands (Utah) region. These stations provide continuous, near real-time records of the complex interaction of wind, precipitation, vegetation, as well as dust emission and deposition, in different land-use settings. The complementary datasets of dust measurement and observation enable tracking of individual regional dust events. As an example, the first DOS event of water year 2012 (Nov 5, 2011), as documented at Senator Beck Basin, near Silverton, Colorado, was also recorded by the camera at Island-in-the-Sky (200 km to the northwest), as well as in aeolian activity and wind data from the Dugout Ranch CLIM-MET station (170 km to the west-northwest). At these sites, strong winds and the

  10. Peat bog records of dust deposition over the last 2000 years in the Dolomites (NE Italian Alps)

    NASA Astrophysics Data System (ADS)

    Poto, Luisa; Segnana, Michela; Gabrieli, Jacopo; Zaccone, Claudio; Barbante, Carlo

    2016-04-01

    The reconstruction of dust composition and fluxes is crucial to help to understand climate variability and climate changes. Dust fluctuations, linked to changes in dry and wet depositions, can indicate more humid or arid conditions, changes in temperature, vegetation cover and wind regimes. Peatlands are unique terrestrial archives that can capture changes in atmospheric deposition over time. Among them, ombrotrophic environments are hydrologically isolated from the surrounding landscapes receiving all the nutrients from precipitation and wind, with no influence from streams and groundwater. In recent decades biological and chemical proxies from peat bogs were extensively used to trace past climate changes, and rare earth elements (REE) in particular have been developed as inorganic geochemical proxies of mineral dust input in the atmosphere that plays an important role in the marine and terrestrial biogeochemical cycle as source for both major and trace elements. Dust deposition in the Italian Alps during the last 2000 years is estimated from the geochemical signature of two ombrotrophic peatlands. The first bog is located in Danta di Cadore (Belluno province, 1400 m a.s.l.), the second one in Coltrondo (Belluno province, 1800 m a.s.l.): they both allow us to have new insights into climate variability in the Eastern sector of the Italian Alps. The REE and the lithogenic elements concentration, as well as the lead isotopic composition were determined by CRC-ICP-QMS along the first meter of each core. For both the archives chronology is based upon independent 14C and 210Pb measurements. Changes in REE concentration through the bogs were related with those of lithogenic elements in order to test the immobility of the REE. Moreover peat humification degree was used to evaluate the hydroclimatic conditions of the bogs and Pb isotopic signature were used to trace dust deposited at Danta di Cadore and Coltrondo bogs and to discriminate natural from anthropogenic source

  11. Threshold wind velocity dynamics as a driver of aeolian sediment mass flux

    NASA Astrophysics Data System (ADS)

    Webb, Nicholas P.; Galloza, Magda S.; Zobeck, Ted M.; Herrick, Jeffrey E.

    2016-03-01

    Horizontal (saltation) mass flux is a key driver of aeolian dust emission. Estimates of the horizontal mass flux underpin assessments of the global dust budget and influence our understanding of the dust cycle and its interactions. Current equations for predicting horizontal mass flux are based on limited field data and are constrained to representing transport-limited equilibrium saltation, driven by the wind momentum flux in excess of an entrainment threshold. This can result in large overestimation of the sediment mass flux. Here we compare measurements of the soil entrainment threshold, horizontal mass flux, and their temporal variability for five undisturbed dryland soils to explore the role of threshold in controlling the magnitude of mass flux. Average and median entrainment threshold showed relatively small variability among sites and relatively small variability between seasons, despite significant differences in soil surface conditions. Physical and biological soil crusts had little effect on the threshold value, and threshold appeared to play a minor role in determining the magnitude of sediment transport. Our results suggest that horizontal mass flux was controlled more by the supply limitation and abrasion efficiency of saltators present as loose erodible material or originating from neighboring soil sources. The omission of sediment supply and explicit representation of saltation bombardment from horizontal flux equations is inconsistent with the process representation in dust emission schemes and contributes to uncertainty in model predictions. This uncertainty can be reduced by developing greater process fidelity in models to predict horizontal mass flux under both supply- and transport-limited conditions.

  12. High Latitude Dust in the Earth System

    NASA Technical Reports Server (NTRS)

    Bullard, Joanna E.; Baddock, Matthew; Bradwell, Tom; Crusius, John; Darlington, Eleanor; Gaiero, Diego; Gasso, Santiago; Gisladottir, Gudrun; Hodgkins, Richard; McCulloch, Robert; McKenna-Neuman, Cheryl; Mockford, Tom; Stewart, Helena; Thorsteinsson, Throstur

    2016-01-01

    Natural dust is often associated with hot, subtropical deserts, but significant dust events have been reported from cold, high latitudes. This review synthesizes current understanding of high-latitude (> or = 50degN and > or = 40degS) dust source geography and dynamics and provides a prospectus for future research on the topic. Although the fundamental processes controlling aeolian dust emissions in high latitudes are essentially the same as in temperate regions, there are additional processes specific to or enhanced in cold regions. These include low temperatures, humidity, strong winds, permafrost and niveo-aeolian processes all of which can affect the efficiency of dust emission and distribution of sediments. Dust deposition at high latitudes can provide nutrients to the marine system, specifically by contributing iron to high-nutrient, low-chlorophyll oceans; it also affects ice albedo and melt rates. There have been no attempts to quantify systematically the expanse, characteristics, or dynamics of high-latitude dust sources. To address this, we identify and compare the main sources and drivers of dust emissions in the Northern (Alaska, Canada, Greenland, and Iceland) and Southern (Antarctica, New Zealand, and Patagonia) Hemispheres. The scarcity of year-round observations and limitations of satellite remote sensing data at high latitudes are discussed. It is estimated that under contemporary conditions high-latitude sources cover >500,000 sq km and contribute at least 80-100 Tg/yr1 of dust to the Earth system (approx. 5% of the global dust budget); both are projected to increase under future climate change scenarios.

  13. Abrasion by aeolian particles: Earth and Mars

    NASA Technical Reports Server (NTRS)

    Greeley, R.; Marshall, J. R.; White, B. R.; Pollack, J. B.; Marshall, J.; Krinsley, D.

    1984-01-01

    Estimation of the rate of aeolian abrasion of rocks on Mars requires knowledge of: (1) particle flux, (2) susceptibilities to abrasion of various rocks, and (3) wind frequencies on Mars. Fluxes and susceptibilities for a wide range of conditions were obtained in the laboratory and combined with wind data from the Viking meteorology experiment. Assuming an abundant supply of sand-sized particles, estimated rates range up to 2.1 x 10 to the minus 2 power cm of abrasion per year in the vicinity of Viking Lander 1. This rate is orders of magnitude too great to be in agreement with the inferred age of the surface based on models of impact crater flux. The discrepancy in the estimated rate of abrasion and the presumed old age of the surface cannot be explained easily by changes in climate or exhumation of ancient surfaces. The primary reason is thought to be related to the agents of abrasion. At least some sand-sized (approx. 100 micrometers) grains appear to be present, as inferred from both lander and orbiter observations. High rates of abrasion occur for all experimental cases involving sands of quartz, basalt, or ash. However, previous studies have shown that sand is quickly comminuted to silt- and clay-sized grains in the martian aeolian regime. Experiments also show that these fine grains are electrostatically charged and bond together as sand-sized aggregates. Laboratory simulations of wind abrasion involving aggregates show that at impact velocities capable of destroying sand, aggregates from a protective veneer on the target surface and can give rise to extremely low abrasion rates.

  14. Multi-spatial analysis of aeolian dune-field patterns

    NASA Astrophysics Data System (ADS)

    Ewing, Ryan C.; McDonald, George D.; Hayes, Alex G.

    2015-07-01

    Aeolian dune-fields are composed of different spatial scales of bedform patterns that respond to changes in environmental boundary conditions over a wide range of time scales. This study examines how variations in spatial scales of dune and ripple patterns found within dune fields are used in environmental reconstructions on Earth, Mars and Titan. Within a single bedform type, different spatial scales of bedforms emerge as a pattern evolves from an initial state into a well-organized pattern, such as with the transition from protodunes to dunes. Additionally, different types of bedforms, such as ripples, coarse-grained ripples and dunes, coexist at different spatial scales within a dune-field. Analysis of dune-field patterns at the intersection of different scales and types of bedforms at different stages of development provides a more comprehensive record of sediment supply and wind regime than analysis of a single scale and type of bedform. Interpretations of environmental conditions from any scale of bedform, however, are limited to environmental signals associated with the response time of that bedform. Large-scale dune-field patterns integrate signals over long-term climate cycles and reveal little about short-term variations in wind or sediment supply. Wind ripples respond instantly to changing conditions, but reveal little about longer-term variations in wind or sediment supply. Recognizing the response time scales across different spatial scales of bedforms maximizes environmental interpretations from dune-field patterns.

  15. A note on the stochastic nature of particle cohesive force and implications to threshold friction velocity for aerodynamic dust entrainment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is considerable interest to determine the threshold for aeolian dust emission on Earth and Mars. Existing schemes for threshold friction velocity are all deterministic in nature, but observations show that in the dust particle size range the threshold friction velocity scatters strongly due t...

  16. Change in dust and fluvial deposition variability in the Peruvian central continental coast during the last millennium: Response of the ocean atmospheric systems.

    NASA Astrophysics Data System (ADS)

    Sifeddine, A.; Briceño, F. J., Sr.; Caquineau, S.; Velazco, F.; Salvatecci, R.; Ortlieb, L.; Gutierrez, D.; Cardich, J.; Almeida, C.

    2014-12-01

    The particles from aeolian or fluvial origin are a useful proxy for the reconstruction of atmospheric condition patterns in the past. Changes in continental aridity and the atmospheric condition determine the composition and amount of lithogenic material and the way of transport from the continent. Here we present a record of laminated sediments (core B040506) retrieved in the continental shelf off Peru. Wind long-term suspension (regional) and local aeolian transport during the last millennium (transition from Medieval Climate Anomaly (MCA) to Little Ice Age (LIA) and the current warm period (CWP)) at centennial to decadal resolution are characterized. The particle provenance and grain size components are discussed using a mathematical model of fractionation. This model assumes that lithological composition of the sediment is an assemblage of several log-normally distributed particle populations. In this way, an interactive least square fitting routine is used to fit the particle grain size collected with the mathematical expression. This allows inferring the spatial and temporal variation of particle populations and thus the transport mechanisms involved. Our results showed a decrease in aeolian transport from the MCA - LIA transition and during the LIA with except of the local aeolian transport that shows peaks during the LIA. This decrease during LIA is accompanied by an enhanced fluvial transport. During the CWP the aeolian transport (Paracas dust storm and wind long-term suspension) display a high variability and tendency to increase in detriment of runoff. Comparison with other South American records indicates that those changes are linked to change in the shift of the ITCZ and Pacific high at the centennial time resolution. Finally the great increase of the fluvial transport within the transition of the LIA to the CWP is synchronous to severe drought period recorded in the Indo-Pacific region indicating higher frequency of El Niño events. Hence these

  17. Late Quaternary aeolian sand deposition sustained by fluvial reworking and sediment supply in the Hexi Corridor - An example from northern Chinese drylands

    NASA Astrophysics Data System (ADS)

    Nottebaum, Veit; Lehmkuhl, Frank; Stauch, Georg; Lu, Huayu; Yi, Shuangwen

    2015-12-01

    Aeolian deposits are frequently used for palaeoenvironmental change studies. Their formation depends on an array of requirements: the supply of material suitable for aeolian transport and favorable conditions of sediment availability and wind strength. In order to infer palaeoenvironmental information from aeolian sand deposits these factors need to be carefully evaluated. We present a study from northern Chinese Hexi Corridor, based on 11 optically stimulated luminescence (OSL) dated sediment sections. These represent interchanging aeolian and alluvial deposits under gravel surfaces and aeolian sand in dune fields interrupted by interdunal flood deposits. Investigations in two subareas reveal contrasting geomorphologic and sedimentary histories: (1) sediment deposition during the Pleistocene-Holocene transition (~ 12 ka) followed by deflation during the Holocene and (2) frequent sediment recycling revealed by a wide spectrum of ages throughout the Holocene. The late glacial sediment pulse recorded in the western Hexi Corridor is attributed to high sediment supply, generated by efficient (peri-)glacial sediment production during glacial times in the adjacent Qilian Shan (< 5700 m asl) and a moisture increase inducing the reworking of those (glacio-)fluvial deposits during the Pleistocene-Holocene transition. The absence of a powerful reworking agent preserved these late glacial deposits in the western Hexi Corridor in contrast to moister eastern parts where Holocene sediment reworking prevailed. Geomorphological and hydrological preconditions of the subareas are discussed and reveal the controlling influence of fluvial processes on sand supply for the aeolian system. While a perennial drainage is missing in the drier western part, the Hei River drainage is fed by higher monsoonal precipitation in the central Hexi Corridor. It maintains a sediment recycling system and has ensured a sufficient sediment supply throughout the Holocene. The study promotes closer

  18. An Isotopic Map of Dust Source Areas in the McMurdo Sound Sector of Antarctica

    NASA Astrophysics Data System (ADS)

    Blakowski, M. A.; Aciego, S.; Delmonte, B.; Baroni, C.; Salvatore, M. C.

    2014-12-01

    The McMurdo Sound sector of Antarctica features a unique, polar desert ecosystem characterized by low temperatures, hyper-aridity, and high-speed winds. These climatic conditions result in limited water sources, sparse vegetation, underdeveloped soils, and abundant unconsolidated sediment easily influenced by wind-driven transport. Radiogenic isotopes (87Sr/86Sr, 143Nd/144Nd) provide constant signatures of dust from source- to sink-areas. Accordingly, aeolian dust derived from arid regions has been recognized in many studies as an important tracer of atmospheric circulation, as well as a tool for deciphering past climatic conditions in dust source regions. However, while major global dust sources (e.g. from South America, Africa, and Asia) are well studied and easily identifiable via distinct isotopic signatures when encountered in different depositional environments (e.g. Antarctic ice cores), local material from sources in and around the ice-free Dry Valleys and surrounding areas have remained in need of further documentation. We analyzed 40 samples of silt, sand, glacial drift, and weathered regolith material in both fine (<5μm) and coarse fractions collected from Victoria Land and the McMurdo Sound sector, including Cape Royds, Cape Bird, and the McMurdo Ice Shelf. Here we present an ArcGIS-generated, high-precision geochemical map of Antarctic PSAs synthesized from our data and combined with geomorphological and stratigraphic information on the studied sites. We believe that our expanded isotopic catalogue and map can be used to enhance and/or prompt regional studies in a variety of disciplines, such as by providing greater constraints on models of regional dust variability and transport pathways and of the melting history of the Antarctic ice sheet, and by determining the provenance of dust archived in ice cores, lake sediment, soil records, and impurities in Antarctic sea-ice.

  19. Employing lidar to detail vegetation canopy architecture for prediction of aeolian transport

    USGS Publications Warehouse

    Sankey, Joel B.; Law, Darin J.; Breshears, David D.; Munson, Seth M.; Webb, Robert H.

    2013-01-01

    The diverse and fundamental effects that aeolian processes have on the biosphere and geosphere are commonly generated by horizontal sediment transport at the land surface. However, predicting horizontal sediment transport depends on vegetation architecture, which is difficult to quantify in a rapid but accurate manner. We demonstrate an approach to measure vegetation canopy architecture at high resolution using lidar along a gradient of dryland sites ranging from 2% to 73% woody plant canopy cover. Lidar-derived canopy height, distance (gaps) between vegetation elements (e.g., trunks, limbs, leaves), and the distribution of gaps scaled by vegetation height were correlated with canopy cover and highlight potentially improved horizontal dust flux estimation than with cover alone. Employing lidar to estimate detailed vegetation canopy architecture offers promise for improved predictions of horizontal sediment transport across heterogeneous plant assemblages.

  20. Quantifying the Impact of Mineral Dust and Dissolved Iron Deposition on Marine Biological Activity

    NASA Astrophysics Data System (ADS)

    Johnson, M. S.; Meskhidze, N.; Gassó, S.; Solmon, F.

    2009-12-01

    Aeolian dust deposition has proven to be a critical source of iron (Fe) to remote oceanic regions where it can play an important role in regulating marine ecosystem productivity. Increases in marine biological activity have been suggested to reduce atmospheric carbon dioxide (CO2) and enhance oceanic emissions of marine primary organic aerosols and biologically produced trace gases leading to secondary aerosol formation. These mechanisms can affect climate directly by enhancing carbon sequestration rates, and through organic aerosols influencing incoming solar radiation or modulating shallow marine cloud properties. Due to dust emissions and transport also being dependent upon climatic conditions, the relationship between aeolian dust deposition and oceanic emissions (e.g., primary organic matter, dimethylsulphide, halocarbons, and several types of non-methane hydrocarbons) presents a possible ocean-atmosphere feedback cycle. The Southern Ocean (SO) is characterized as being the largest oceanic region with marine primary productivity that is limited by the micronutrient Fe. Despite the potentially important role of dust laden-Fe in this region, few studies exist that can help to constrain the impact of dust-laden Fe fluxes on biological productivity in the Atlantic sector of the SO. Patagonia has been estimated to supply the majority of aeolian-Fe deposited to the South Atlantic Ocean (SAO). Thus, the focus of this study is to quantify the influence of Patagonian dust storms on marine primary productivity in the SAO and assess the potential climatic effect of variability in aeolian dust deposition. In this work we use the global chemistry transport model GEOS-Chem, implemented with a prognostic Fe dissolution scheme (GEOS-Chem/DFeS), to evaluate the deposition of Patagonian dust and associated dissolved iron (DFe) fluxes to the SAO. Model predicted fluxes of DFe were then used to quantify the impact of Patagonian dust on marine primary productivity in the surface

  1. Dust deposition during the Early Holocene on the loess plateaus of the Vojvodina region in Northern Serbia

    NASA Astrophysics Data System (ADS)

    Markovic, Slobodan; Timar-Gabor, Alida; Stevens, Thomas; Guo, Zhengtang; Hao, Qingzhen; Song, Yang; Hambach, Ulrich; Lehmkuhl, Frank; Peric, Zoran; Obreht, Igor; Zeeden, Christian; Veres, Daniel; Gavrilov, Milivoj

    2015-04-01

    The Northern Serbian province of Vojvodina is a lowland area encompassing the confluence of the Danube, Sava, Tisa (Tisza), Drava, Morava and Tamiš (Temes, Timiş) rivers, which separate several remnant loess plateaus. Loess sediments in the Vojvodina region are among the oldest and most complete loess-paleosol formations in Europe. These thick sequences contain a detailed paleoclimatic record since the Early Pleistocene. The better preservation of Serbian loess-paleosol sequences compared to other European loess records is most likely related to the persistence of much drier conditions in the region, coupled with "plateau-like" dust accumulation style. Recently and through detailed luminescence-based chronological investigations of accumulation derived from several loess sections we aimed at addressing the timing of the onset of Holocene soil (S0) formation in the wider region. So far, the chronological results demonstrate a lack of intensive pedogenesis coeval with the postulated Holocene onset (ie., 11.7 ka BP), and continuation of Aeolian dust deposition during the Early Holocene in some of the investigated sections. Lake sediment and speleothem records from the wider area also suggest that, at least regionally, the hydroclimatic characteristics of the Early Holocene differed markedly. This evidence leads to an important question about the validity of previously generalized direct stratigraphic correlations between regional terrestrial environmental archives and global marine and ice core records (direct synchronization of records vs. acknowledging leads/lags), that employ the Late Pleistocene/Holocene boundary at 11.7 as an absolute tie point.

  2. Aeolian dunes as ground truth for atmospheric modeling on Mars

    USGS Publications Warehouse

    Hayward, R.K.; Titus, T.N.; Michaels, T.I.; Fenton, L.K.; Colaprete, A.; Christensen, P.R.

    2009-01-01

    Martian aeolian dunes preserve a record of atmosphere/surface interaction on a variety of scales, serving as ground truth for both Global Climate Models (GCMs) and mesoscale climate models, such as the Mars Regional Atmospheric Modeling System (MRAMS). We hypothesize that the location of dune fields, expressed globally by geographic distribution and locally by dune centroid azimuth (DCA), may record the long-term integration of atmospheric activity across a broad area, preserving GCM-scale atmospheric trends. In contrast, individual dune morphology, as expressed in slipface orientation (SF), may be more sensitive to localized variations in circulation, preserving topographically controlled mesoscale trends. We test this hypothesis by comparing the geographic distribution, DCA, and SF of dunes with output from the Ames Mars GCM and, at a local study site, with output from MRAMS. When compared to the GCM: 1) dunes generally lie adjacent to areas with strongest winds, 2) DCA agrees fairly well with GCM modeled wind directions in smooth-floored craters, and 3) SF does not agree well with GCM modeled wind directions. When compared to MRAMS modeled winds at our study site: 1) DCA generally coincides with the part of the crater where modeled mean winds are weak, and 2) SFs are consistent with some weak, topographically influenced modeled winds. We conclude that: 1) geographic distribution may be valuable as ground truth for GCMs, 2) DCA may be useful as ground truth for both GCM and mesoscale models, and 3) SF may be useful as ground truth for mesoscale models. Copyright 2009 by the American Geophysical Union.

  3. Potential source regions of dust accumulated in northern Africa

    NASA Astrophysics Data System (ADS)

    Wasowska, S.; Woronko, B.

    2012-04-01

    Sahara is the largest source of the dust in the world. The material sampled from dust storms in Tunisia (Nefta Oasis, El Kantoui Harbor), north Egypt (Alexandria) and Morocco (Mhamid Oasis) (March 2001, March and April 2009) was taken to identify the potential sources of dust accumulation and transport paths in North Africa. The samples were analyzed on grain size, micromorphology of silt grain surfaces in Scanning Electron Microscope (SEM), elemental composition of grains and their surface crusts, loss on ignition, mineralogical composition of samples and carbonate content. Additionally the meteorological situation was analyzed during the dust storm occurrences and preceding periods. The results of grain size analyses show that all studied sediments belong to the small dust type, and dust accumulated in Mhamid is the clay mineral agglomerated (CMA) dust. The source of the CMA are the old dry lake beds. Dust particles are mobilized as aggregates of clay minerals, what is controlled by structure (particle packing) of the original lake sediment, and accumulation is dry and wet as well. The results of the analysis of the quartz grain surface micromorphology, the elemental composition and loss on ignition indicate that dust accumulated in Morocco originated from a relatively homogenous sediment source and, on the other hand, dust found in Alexandria comes from a diversified source. Dust sampled in Tunisia is characterized by the highest content of carbonates and organic matter which suggests the intensive dispelling acting on the weathered material from carbonate rocks and local Mediterranean soil covers rich in CaCO3. The analyses of meteorological conditions during the dust storms and the analyses of the textural characteristics of deposits show that it is highly probable that analysed aeolian dust was transported both for shorter and longer distances. Hypothetic source areas of dust accumulated in Mhamid could be the old ergs, some located 300-500 km away like

  4. Modeling aeolian erosion in presence of vegetation

    NASA Astrophysics Data System (ADS)

    Dupont, S.; Bergametti, G.; Simoëns, S.

    2014-02-01

    Semiarid landscapes are characterized by vegetated surfaces. Understanding the impact of vegetation on aeolian soil erosion is important for reducing soil erosion or limiting crop damage through abrasion or burial. In the present study, a saltation model fully coupled with a large-eddy simulation airflow model is extended to vegetated landscapes. From this model, the sensitivity of sand erosion to different arrangements and type of plants (shrub versus tree) representative of semiarid landscapes is investigated and the wind erosion reduction induced by plants is quantified. We show that saltation processes over vegetated surfaces have a limited impact on the mean wind statistics, the momentum extracted from the flow by saltating particles being negligible compared to that extracted by plants. Simulated sand erosion patterns resulting from plant distribution, i.e., accumulation and erosion areas, appear qualitatively consistent with previous observations. It is shown that sand erosion reduction depends not only on vegetation cover but also on plant morphology and plant distribution relative to the mean wind direction. A simple shear stress partitioning approach applied in shrub cases gives similar trends of sand erosion reduction as the present model following wind direction and vegetation cover. However, the magnitude of the reduction appears significantly different from one approach to another. Although shrubs trap saltating particles, trees appear more efficient than shrubs to reduce sand erosion. This is explained by the large-scale sheltering effect of trees compared to the local shrub one.

  5. Direct numerical simulations of aeolian sand ripples

    PubMed Central

    Durán, Orencio; Claudin, Philippe; Andreotti, Bruno

    2014-01-01

    Aeolian sand beds exhibit regular patterns of ripples resulting from the interaction between topography and sediment transport. Their characteristics have been so far related to reptation transport caused by the impacts on the ground of grains entrained by the wind into saltation. By means of direct numerical simulations of grains interacting with a wind flow, we show that the instability turns out to be driven by resonant grain trajectories, whose length is close to a ripple wavelength and whose splash leads to a mass displacement toward the ripple crests. The pattern selection results from a compromise between this destabilizing mechanism and a diffusive downslope transport which stabilizes small wavelengths. The initial wavelength is set by the ratio of the sediment flux and the erosion/deposition rate, a ratio which increases linearly with the wind velocity. We show that this scaling law, in agreement with experiments, originates from an interfacial layer separating the saltation zone from the static sand bed, where momentum transfers are dominated by midair collisions. Finally, we provide quantitative support for the use of the propagation of these ripples as a proxy for remote measurements of sediment transport. PMID:25331873

  6. Direct numerical simulations of aeolian sand ripples.

    PubMed

    Durán, Orencio; Claudin, Philippe; Andreotti, Bruno

    2014-11-01

    Aeolian sand beds exhibit regular patterns of ripples resulting from the interaction between topography and sediment transport. Their characteristics have been so far related to reptation transport caused by the impacts on the ground of grains entrained by the wind into saltation. By means of direct numerical simulations of grains interacting with a wind flow, we show that the instability turns out to be driven by resonant grain trajectories, whose length is close to a ripple wavelength and whose splash leads to a mass displacement toward the ripple crests. The pattern selection results from a compromise between this destabilizing mechanism and a diffusive downslope transport which stabilizes small wavelengths. The initial wavelength is set by the ratio of the sediment flux and the erosion/deposition rate, a ratio which increases linearly with the wind velocity. We show that this scaling law, in agreement with experiments, originates from an interfacial layer separating the saltation zone from the static sand bed, where momentum transfers are dominated by midair collisions. Finally, we provide quantitative support for the use of the propagation of these ripples as a proxy for remote measurements of sediment transport. PMID:25331873

  7. Avalanche grainflow on a simulated aeolian dune

    NASA Astrophysics Data System (ADS)

    Sutton, S. L. F.; McKenna Neuman, C.; Nickling, W.

    2013-09-01

    Avalanches maintain the slipface of aeolian dunes, which alters their airflow characteristics and sediment dynamics, and results in the development of grainflow cross-bedding. We report on a series of experiments in which avalanches were observed on a 1:1 replica of a small (1.2 m brink height) transverse dune in the Dune Simulation Wind Tunnel under wind velocities of 8-11 m s-1. Changes in slipface topography were observed photographically and measured utilizing a 3-D laser scanner with 1 mm2 spatial resolution. Avalanches in noncohesive sands were observed to progress through scarp recession from the point of initiation and continue until the slope angle is reduced. Changes in local slope confirm that the steep, pre-avalanche mean slope relaxes to a uniform value equal to the angle of repose of the test sand (32°) over all involved portions of the slipface. Avalanche volumes are measured, and demonstrate that avalanche magnitude is independent of wind speed over the range of velocities observed. This independence provides the potential to significantly simplify the modeling of grainflow as a function of only the total cross brink sediment transport.

  8. Potential dust emissions from the southern Kalahari's dunelands

    NASA Astrophysics Data System (ADS)

    Bhattachan, Abinash; D'Odorico, Paolo; Okin, Gregory S.; Dintwe, Kebonyethata

    2013-03-01

    The Southern Hemisphere shows relatively low levels of atmospheric dust concentrations. Dust concentrations could, however, increase as a result of losses of vegetation cover in the southern Kalahari. There is some evidence of an ongoing remobilization of stabilized dunefields in the southern Kalahari where dune crests with sparse vegetation cover are reactivated during dry and windy periods, a phenomenon that is predicted to intensify with increased land degradation, overgrazing, and droughts. Despite the potentially important climatic and biogeochemical implications of dust emissions from the Kalahari, it is still unclear whether the predicted remobilization of the Kalahari dunes could be associated with increased dust emissions from this region. The dependence of sediment fluxes and dust emissions on vegetation cover in the Kalahari dunelands remains poorly understood, which prevents a quantitative assessment of possible changes in aeolian activity in this region under different land use and land cover scenarios. In this study, we report the results of an aeolian sediment sampling campaign over a variety of land covers in the southern Kalahari. We use these results to quantify the potential rate of dust emissions and its dependence on vegetation cover and to make an estimate of dust fluxes from a portion of the southern Kalahari. The results show that the loss of vegetation could lead to substantial increases in dust emission and nutrient loss.

  9. Mars Dust Threshold Under Heated Surface Conditions

    NASA Astrophysics Data System (ADS)

    Coquilla, R. V.; White, B. R.

    2002-12-01

    A wind tunnel was used to study the effects of a heated surface, thereby creating an unstable near-surface atmosphere, on the threshold of aeolian-blown (windblown) dust-size particles (1-2 mm) under Mars-simulated pressure. Unstable conditions on Mars typically arise during the mid to late afternoon hours due to the accumulation of daytime solar-radiation. When the surface is warmer than the atmosphere just above it, vertical turbulence is increased. Thus, loose dust particles can be more easily lofted and mixed at a threshold wind speed lower than that known under neutral atmospheric conditions. For this wind-tunnel study, unstable (heated) surface conditions were simulated based on the negative temperature gradients and surface bulk Richardson numbers estimated from the Mars Pathfinder Lander (MPL) mission data during the mid-afternoon to early evening Mars period. According to other missions, evidence of highly active dust suspension during this part of the Mars daytime hours was recorded, including the presence of "dust devils". Experiments were performed in the Martian Surface Wind Tunnel (MARSWIT) located at NASA Ames Research Center, Moffett Field, California. Based on data acquired from the MPL site, the mean surface pressure was found to be 6.75 mb. Thus, simulations in MARSWIT were conducted at 10-mb atmospheric pressure using air, which agrees with a dynamically similar environment of 6.5 mb on Mars. In order to attain the necessary vertical temperature gradients that would develop an unstable layer, a test bed was heated by sub-surface heaters. Three surface roughness conditions were simulated, over which not only dust threshold was measured but also velocity and temperature profiles were acquired under various heating levels. Boundary layer measurements and analysis conducted under neutral conditions were used to estimate roughness height, zo, and the friction speed, u*, for all stability conditions. Dust threshold tests were conducted using a

  10. From Desert to Dessert: Why Australian Dust Matters.

    NASA Astrophysics Data System (ADS)

    Hunter, K. A.; Mackie, D. S.; Boyd, P. W.; McTainsh, G. H.

    2006-12-01

    The growth of some types of phytoplankton in several parts of the world ocean, including much of the Southern Ocean, is limited by the supply of iron. Large Australian dust storms uplift, transport and abrade soils, to produce aeolian dust that is a significant source iron to the Southern Ocean. Atmospheric processes that enhance the dissolution of iron from aeolian dusts are of interest and have been studied for material from major dust producing regions like the Sahara, Gobi and Australian deserts; the reported solubility of iron from aeolian dusts ranges from <0.01% to 80%. The characteristic red soils, sands and dusts from Australia are generally believed to consist of quartz grains with a coating of fine grains and crystals of iron oxides, primarily hematite and goethite. The precise mineralogy of soil and dust grain coatings is poorly understood and it also not well known how the coatings are altered during uplift and transport to the ocean. Current models to understand the processes operating during the transport and atmospheric processing of dust include some generalisations and simplifications that are not always warranted and our work has shown the overlooked complexity of the system. Models for aeolian-iron dissolution based on Northern Hemisphere data commonly include the pollutants SOx and NOx. The modern Southern Hemisphere is less polluted and thus resembles past environmental systems. The dissolution of iron from soils of the Saharan, Gobi and Australian deserts in the presence of protons only (i.e. without SOx and NOx) occurs in two phases. The first, faster phase, representing up to 20% of total iron is via a surface-controlled mechanism. The rate determining variable is the exposed surface area of the iron oxides and not the size of the underlying quartz grain. The second, slower, phase of dissolution occurs via the transport-controlled formation of a leached layer. During the simulated aeolian abrasion of Australian soils from dust producing

  11. Mass-height profile and total mass transport of wind eroded aeolian sediments from rangelands of the Indian Thar Desert

    NASA Astrophysics Data System (ADS)

    Mertia, R. S.; Santra, Priyabrata; Kandpal, B. K.; Prasad, R.

    2010-11-01

    Wind erosion is an active land degradation process in the Indian Thar Desert and severe dust storm events during hot summer months in the region are very common. Assessment of soil loss due to dust storm events from major land use systems of the Indian Thar Desert is highly essential for proper environmental planning. Characterization of the mass-height profile of wind eroded aeolian sediment is an important step to compute soil loss/mass transport but was not previously studied in the region. In the present study, aeolian mass fluxes (kg m -2) at different heights from soil surface were measured at two major rangelands in the Indian Thar Desert: Overgrazing rangeland at Jaisalmer (26°55'N and 70°57'E), and controlled grazing rangeland at Chandan (27°01'N and 71°01'E). Evaluation of several mass-height profile models revealed that a power decay function [ q( z) = az-b, where q( z) is the measured mass flux at an height of z (m) from soil surface; a and b are parameters of the equation] was best to characterize the mass-height relationship of aeolian sediments from the Indian Thar Desert. The average mass transport rate (kg m -1 day -1) or the total soil loss during hot summer months was significantly higher at the overgrazed rangeland site than at the controlled grazing rangeland site. Therefore, protection of existing rangelands, which comprise about 80% geographical area of the Indian Thar Desert may check the land degradation process due to wind erosion.

  12. Linking the10Be continental record of Lake Baikal to marine and ice archives of the last 50 ka: Implication for the global dust-aerosol input

    USGS Publications Warehouse

    Aldahan, A.; Possnert, G.; Peck, J.; King, J.; Colman, S.

    1999-01-01

    We present here a 10Be profile from the continental sediments of Lake Baikal (the world's largest fresh water lake), which, for the first time, shows the ??? 40 ka 10Be enhancement and a pattern that strongly matches those from the marine and ice records for the last 50 ka. This finding provides a new horizon for global and regional correlation of continental archives. Additionally, our VADM-predicted 10Be production confirms and further strengthens a common global cause (geomagnetic field intensity) for the change in atmospheric 10Be over the last 50 ka. We also show that most of the 10Be inventory to the lake has been provided by riverine input, but with a significant addition from direct precipitation and dust-aerosol fallout. We estimate a higher dust-aerosol contribution of 10Be during the Holocene and interstadial stage 3 (22-50 ka) as compared with the glacial period (12-22 ka). Copyright 1999 by the American Geophysical Union.

  13. Sedimentology of coastal chevron deposits - tsunamigenic versus aeolian origin

    NASA Astrophysics Data System (ADS)

    Garcia Garcia, A.; Spiske, M.; Tsukamoto, S.; Schmidt, V.

    2012-12-01

    The genesis of v-shaped coastal chevrons is currently controversially discussed. So far, chevrons are only described regarding their morphology, but not in terms of their origin. Two possible origins of chevrons are proposed: both aeolian transport and tsunami inundation are discussed as depositing processes. We present initial results of a detailed sedimentological survey of Holocene coastal chevrons from the American and Australian west coasts. The chevrons were measured and levelled using a differential GPS system. Large scale internal structures were recorded by ground penetrating radar imaging. Trenches were dug for sampling and analyzing small scale internal structures. The sediment samples were used for the analysis of grain-size distributions, mineral composition and content of marine microorganisms. Additional samples were taken for optically stimulated luminescence (OSL) and radiocarbon dating. Furthermore, we took reference samples from beaches, cliffs and rivers, which could act as potential sediment sources for the surveyed chevrons. Tsunami deposits are commonly polymodal, exhibit a grain-size decrease and tend to show better sorting in landward direction. Such trends are not present in the surveyed chevrons. Most samples are well to moderately well sorted and unimodal. The OSL ages decrease in transport direction and indicate a long term generation process, such as dune migration, rather than a short term event like a tsunami. This fact is additionally underlined by land snails found in different stratigraphic levels within the Australian chevrons. Furthermore, the occurrence of intercalated soil horizons implies a change of stable and active migration phases. The initial results of this study point out to an aoelian origin of coastal chevrons and do not support the previously supposed thesis of a tsunamigenic origin.

  14. Holocene environment changes around the Sara Us River, northern China, revealed by optical dating of lacustrine-aeolian sediments

    NASA Astrophysics Data System (ADS)

    Zhao, Hui; Sheng, Yongwei; Li, Bo; Fan, Yuxin

    2016-04-01

    The Sara Us River is located along the boundary of the Mu Us Desert and the Chinese Loess Plateau in northern China. The river has cut down through Quaternary sediments creating 70-80 m deep valleys with thick lacustrine/aeolian sequences exposed. We applied optical stimulated luminescence on sediments from a Holocene section of aeolian sand/lacustrine deposits in the top of the river valley. The dating results show that a humid period existed from 7.1 to 2.0 ka ago as evidenced by two layers of peat and lacustrine sediments. However, compared to other published Holocene sections in the Sara Us River valleys close to the section under studying, the local environment experienced very complicated changes during the Holocene. All of the sections recorded a period with drought and/or cold before the Holocene at around 13 ka, and an episode of aridity after about 2 ka ago as evidenced by the layers of aeolian sand. However, the ages of the lacustrine and peat layers in these sections are substantially different. Geomorphological analysis by digital elevation models does not support the existence of a mega lake covering the study area at 2 ka. The intricate environmental changes may have been caused by the meandering of the Sara Us River. Environmental changes also strongly affected human migration in this area, which is documented by Chinese historical records.

  15. Dust climatology of the western United States

    SciTech Connect

    Changery, M.J.

    1983-04-01

    Beginning and ending times of dust-caused visibility values were extracted from original records for approximately 180 stations in the western US for the general period of record 1948 to 1977. Maps are presented depicting the annual total number of hours with visibility below specified values, annual number of dust episodes, dust episode durations, season of occurrence, and probability of thunderstorm-inducement.

  16. Late Pleistocene and Holocene aeolian sedimentation in Gonghe Basin, northeastern Qinghai-Tibetan Plateau: Variability, processes, and climatic implications

    NASA Astrophysics Data System (ADS)

    Qiang, Mingrui; Jin, Yanxiang; Liu, Xingxing; Song, Lei; Li, Hao; Li, Fengshan; Chen, Fahu

    2016-01-01

    evapotranspiration at a local scale, played an important role in sand mobility and deposition. The effect of vegetation on sand mobility is also suggested by independent evidence of aeolian activity from Genggahai Lake in the Gonghe Basin. Here, the deposition of aeolian sand in the basin during the early- to mid-Holocene indicates a low level of effective moisture caused by high evaporation induced by higher summer insolation, despite the coeval increased regional precipitation recorded by lacustrine sediments. In contrast, late Holocene palaeosols represent a high level of effective moisture, and their formation did not necessarily require increased regional precipitation. Overall, our results suggest that the relationship between aeolian activity and regional climate change is complex, and that sand accumulations do not represent the consistent action of surface processes that are related to climatic changes.

  17. Lunar and Planetary Science XXXV: Martian Aeolian and Mass Wasting Processes: Blowing and Flowing

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session Martian Aeolian and Mass Wasting Processes: BLowing and Flowing included the following topics: 1) Three Decades of Martian Surface Changes; 2) Thermophysical Properties of Isidis Basin, Mars; 3) Intracrater Material in Eastern Arabia Terra: THEMIS, MOC, and MOLA Analysis of Wind-blown Deposits and Possible High-Inertia Source Material; 4) Thermal Properties of Sand from TES and THEMIS: Do Martian Dunes Make a Good Control for Thermal Inertia Calculations? 5) A Comparative Analysis of Barchan Dunes in the Intra-Crater Dune Fields and the North Polar Sand Sea; 6) Diluvial Dunes in Athabasca Valles, Mars: Morphology, Modeling and Implications; 7) Surface Profiling of Natural Dust Devils; 8) Martian Dust Devil Tracks: Inferred Directions of Movement; 9) Numerical Simulations of Anastomosing Slope Streaks on Mars; 10) Young Fans in an Equatorial Crater in Xanthe Terra, Mars; 11) Large Well-exposed Alluvual Fans in Deep Late-Noachian Craters; 12) New Evidence for the Formation of Large Landslides on Mars; and 13) What Can We Learn from the Ages of Valles Marineris Landslides on Martian Impact History?

  18. Aeolian desertification from the mid-1970s to 2005 in Otindag Sandy Land, Northern China

    NASA Astrophysics Data System (ADS)

    Liu, Shulin; Wang, Tao

    2007-01-01

    Aeolian desertification in Otindag Sandy Land has expanded dramatically during the past 50 years. This research explored processes and causes of aeolian desertification in the study area. The results showed that aeolian desertification development in Zhenglan Qi of typical region located at the center in the study area can be divided into three stages including rapid occurrence before 1987, parts of rehabilitation and most of deterioration from 1987 to 2000 and little rapid rehabilitation occurrence from 2000 to 2005, according to remote sensing images and field investigations. Gradually declining MI indicated that climate change was not the major cause of aeolian desertification development during the last 40 years, while increasing population should be the underlying cause of local aeolian desertification. Irrational human activities mainly including unsuitable reclamation in the 1960s and lasting over-grazing after 1980 are direct causes contributing to local aeolian desertification, especially over-grazing, while climate change often played a revealer of irrational human activities mainly through drought events. Over-grazing and undesirable climate have different functions during the whole aeolian desertification process. Over-grazing gradually changed grasslands to slight aeolian desertified lands at the initial stage, while climate with windy days or droughts often accelerated formation of serious aeolian desertified lands. Aeolian desertification in the study area both possesses occurrence possibility and great rehabilitative potential. At present, more integrated countermeasures combating local aeolian desertification still are expected.

  19. Aeolian Sediment Transport Pathways and Aerodynamics at Troughs on Mars

    NASA Technical Reports Server (NTRS)

    Bourke, Mary C.; Bullard, Joanna E.; Barnouin-Jha, Olivier S.

    2004-01-01

    Interaction between wind regimes and topography can give rise to complex suites of aeolian landforms. This paper considers aeolian sediment associated wit11 troughs on Mars and identifies a wider range of deposit types than has previously been documented. These include wind streaks, falling dunes, "lateral" dunes, barchan dunes, linear dunes, transverse ridges, sand ramps, climbing dunes, sand streamers, and sand patches. The sediment incorporated into these deposits is supplied by wind streaks and ambient Planitia sources as well as originating within the trough itself, notably from the trough walls and floor. There is also transmission of sediment between dneTsh. e flow dynamics which account for the distribution of aeolian sediment have been modeled using two-dimensional computational fluid dynamics. The model predicts flow separation on the upwind side of the trough followed by reattachment and acceleration at the downwind margin. The inferred patterns of sediment transport compare well with the distribution of aeolian forms. Model data indicate an increase of wind velocity by approx. 30 % at the downwind trough margin. This suggests that the threshold wind speed necessary for sand mobilization on Mars will be more freqentmlye t in these inclined locations.

  20. Agriculture as a source of Aeolian sediment affecting air quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aeolian processes on agricultural lands have been examined for the past several decades on nearly every continent and has led to a better understanding of detachment, entrainment, transport, and deposition. Relatively little is known concerning the effect of these processes on air quality. In fact, ...

  1. Laboratory Simulations of Martian and Venusian Aeolian Processes

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald

    1999-01-01

    The objective of this work was to conduct research in the Planetary Aeolian Facility (PAF) at NASA-Ames Research Center as a laboratory for the planetary science community and to carry-out experiments on the physics and geology of particles moved by winds, and for the development of instruments and spacecraft components for planetary missions.

  2. An experimental application of aeroacoustic time-reversal to the Aeolian tone.

    PubMed

    Mimani, A; Prime, Z; Moreau, D J; Doolan, C J

    2016-02-01

    This paper presents an experimental application of the aeroacoustic time-reversal (TR) source localization technique for studying flow-induced noise problems and compares the TR results with those obtained using conventional beamforming (CB). Experiments were conducted in an anechoic wind tunnel for the benchmark test-case of a full-span circular cylinder located in subsonic cross-flow wherein the far-field acoustic pressure was sampled using two line arrays (LAs) of microphones located above and below the cylinder. The source map obtained using the signals recorded at the two LAs without modeling the reflective surfaces of the contraction-outlet and cylinder during TR simulations revealed the lift-dipole nature of aeroacoustic source generated at the Aeolian tone; however, it indicates an error of 3/20 of Aeolian tone wavelength in the predicted location. Modeling the reflective contraction-outlet during TR was shown to improve the focal-resolution of the source and reduce side-lobe levels, especially in the low-frequency range. The experimental TR results were shown to be comparable to (a) the simulation results of an idealized dipole at the cylinder location in wind-tunnel flow and (b) that obtained by monopole and dipole CB, thereby demonstrating the suitability of TR method as a diagnostic tool to analyze flow-induced noise generation mechanism. PMID:26936557

  3. Loess records

    USGS Publications Warehouse

    Muhs, Daniel R.; Cattle, Stephen R.; Crouvi, Onn; Rousseau, Denis-Didier; Sun, Jiimin; Zárate, Marcelo A.

    2014-01-01

    Loess is aeolian sediment, dominated by silt-sized particles, that is identifiable in the field as a distinct sedimentary body. It covers a significant portion of the land surface of the Earth and as such constitutes one of the most important archives of long-term dust deposition. Large tracts of loess cover Europe, Asia, South America, and North America, and smaller loess bodies are found covering parts of Africa, the Middle East, New Zealand, and Australia. Loess thickness, particle size, and carbonate content decrease downwind from sources, trends that are powerful tools for reconstructing paleowinds. Many loess sections consist of relatively thick deposits of mostly unaltered sediment with intercalated paleosols. Paleosols represent periods of landscape stability when loess deposition ceased or at least slowed significantly. Studies from several continents show that loess in most regions was deposited during glacial periods and paleosols formed during interglacial and interstadial periods.

  4. Spatial and Temporal Variability of Fugitive Dust Flux from Colorado Plateau Landscapes

    NASA Astrophysics Data System (ADS)

    Flagg, C.; Neff, J.; Reynolds, R. L.; Belnap, J.

    2011-12-01

    C. Flagg, J.C. Neff, R.L. Reynolds, J. Belnap Aeolian dust can influence nutrient availability, soil fertility, plant interactions, and water-holding capacity. Vegetation, ground cover, land-use, and climate patterns affect dust flux in different ways. Measuring dust emission and deposition can reveal spatial and temporal patterns of dust flux, informing geologic, atmospheric, and ecological models, as well as elucidating important controls over dust emission. Previous studies have documented the effects of these characteristics on dust flux in several arid and semi-arid areas, but, to date, few have focused on Colorado Plateau landscapes. We have developed a network of 108 horizontal dust collectors spanning numerous types of ecosystems, soil types, land-use histories, and geologic bedrock and settings covering about 4400 square km across southeastern Utah. The sample archive dates to early 2008 and is currently the largest known record of fugitive dust emission for the southwestern United States. Every 3-4 months, samples were collected from the sediment traps at heights of 15 cm to one meter. Line transects were established at each collection site to measure vegetation cover, collect soil samples, and estimate surface-soil stability. Dust-flux patterns were calculated on total sediment collected over the sampling period, normalized to the size of the sediment trap and number of days in a sampling period (reported as grams m-2 day-1). Dust flux peaked during the spring months in all plant-community types, likely due to higher surface wind speeds typical of this season. Pinyon-Juniper woodland, perennial grassland, Artemisia tridentata shrubland, Coleogyne ramosissima shrubland, and Atriplex spp. shrubland averaged 6, 6.4, 11.1, 101.4, 138.1 g m-2 d-1 respectively during the spring. Dust flux was lowest during the winter period when surface wind speeds are commonly low, and snow periodically covers the soil. Pinyon-Juniper woodland, perennial grassland, Artemisia

  5. Character and provenance of aeolian sediments in northeast Thailand

    NASA Astrophysics Data System (ADS)

    Nichol, Janet E.; Nichol, Douglas W.

    2015-12-01

    Aeolian activity is not generally associated with the humid tropics, and although reports of loess-like soils in various locations in southeast Asia exist, these mainly lack the detailed analysis to set them in meaningful spatial or historical context. This paper examines the red and yellow sandy sediments of the Khorat Plateau in northeast Thailand which have been variously referred to as 'cover sands', 'loessial soils' or 'loess'. The sediments are referred to as having alluvial, biological as well as aeolian origin, and a date of 9-35 ka is reported. The study compares the Khorat sediments physically and geochemically with loess and aeolian sediments from other regions, as well as with other sites in southeast Asia which are reported here. The moderate degree of particle sorting and unimodal sizes of the sediments along with a sub-spherical sub-rounded form, supports previous diagnoses of an aeolian origin. Geochemical analysis of the Khorat sediments indicates severe depletion in both mobile and immobile elements, which are even more depleted than other southeast Asian loessic soils examined. This depletion, along with the only moderate particle sorting, suggests the source of the sediments to be the local weathered sandstones outcropping around the edge of the Khorat Plateau. The dissimilarity of the Khorat sediments from Upper Continental Crust (UCC) elemental values supports this, as homogenisation would occur if diverse source areas were involved. The study suggests that aeolian sediments of humid tropical regions warrant more attention as climate proxy markers, due to the dissimilarity between the present climate and conditions required for their formation.

  6. Impact of Lunar Dust on the Exploration Initiative

    NASA Technical Reports Server (NTRS)

    Stubbs, T. J.; Vondrak, R. R.; Farrell, W. M.

    2005-01-01

    From the Apollo era it is known that dust on the Moon can cause serious problems for exploration activities. Such problems include adhering to clothing and equipment, reducing external visibility on landings, and causing difficulty to breathing and vision within the spacecraft. An important step in dealing with dust-related problems is to understand how dust grains behave in the lunar environment. All astronauts who walked on the Moon reported difficulties with lunar dust. Eugene Cernan, commander of Apollo 17, stated that one of the most aggravating, restricting facets of lunar surface exploration is the dust and its adherence to everything no matter what kind of material, whether it be skin, suit material, metal, no matter what it be and it's restrictive friction-like action to everything it gets on. Dust has also been highlighted as a priority by the Mars Exploration Program Assessment Group (MEPAG): 1A. Characterize both aeolian dust and particulates that would be kicked up from the martian regolith by surface operations of a human mission with fidelity sufficient to establish credible engineering simulation labs and/or software codes on Earth. We shall briefly describe the properties of lunar dust and its impact on the Apollo astronauts, and then summarize three main problems areas for understanding its behavior: Dust Adhesion and Abrasion, Surface Electric Fields and Dust Transport. These issues are all inter-related and must be well understood in order to minimize the impact of dust on lunar surface exploration.

  7. Dust Detector

    NASA Technical Reports Server (NTRS)

    Kelley, M. C.

    2001-01-01

    We discuss a recent sounding rocket experiment which found charged dust in the Earth's tropical mesosphere. The dust detector was designed to measure small (5000 - 10000 amu.) charged dust particles, most likely of meteoric origin. A 5 km thick layer of positively charged dust was found at an altitude of 90 km, in the vicinity of an observed sporadic sodium layer and sporadic E layer. The observed dust was positively charged in the bulk of the dust layer, but was negatively charged near the bottom.

  8. Rare earth element and Nd isotope geochemistry of an ombrotrophic peat bog at Karukinka (Chile, 53.9° S): a palaeo-record of Holocene dust deposition in Tierra del Fuego.

    NASA Astrophysics Data System (ADS)

    Vanneste, Heleen; De Vleeschouwer, François; Vanderstraeten, Aubry; Mattielli, Nadine; Triquet, Delphine; Piotrowska, Natalia; Le Roux, Gael

    2013-04-01

    The value of ombrotrophic peat bogs as past atmospheric dust records, has been increasingly recognized over the past 10 years. Their high accumulation rates provide high resolution archives of natural atmospheric dust deposition since the Late Glacial, often missing in marine, lake and ice core records. Consequently, peat deposits can be used as a proxy for atmospheric circulation patterns and thus palaeoclimate. In the Southern Hemisphere, the climate is considered to be driven by the Southern Westerly Wind belt (SSW), as it significantly affects the Antarctic Circumpolar Current and hence atmospheric CO2 levels. Palaeo SSW belt migrations have been observed in palaeoclimate records but, reconstructions of SSW shifts and associated climatic changes are incoherent, in particular for the Holocene. As peatlands thrive in southwest Tierra del Fuego due to its high annual precipitation, a remote ombrotrophic peat bog at Karukinka (southwest on the Isla Grande de Tierra del Fuego) was sampled, to investigate the Holocene palaeoclimate in southern South America based on dust deposition records. A 4,5 m long Russian D-core was recovered and subsequently subsampled for elemental and isotope geochemistry in addition to density and radiocarbon dating measurements. Initial results show a number of layers enriched in scandium, indicating the presence of lithogenic material, i.e. dust. Rare earth element patterns indicate at least 2 different sources. The most significant dust peak occurs at the base of the core at ~7300 Cal years B.P and has a neodymium isotopic composition of 2.2, suggesting a volcanic origin.

  9. Rock-magnetic proxies of wind intensity and dust since 51,200 cal BP from lacustrine sediments of Laguna Potrok Aike, southeastern Patagonia

    NASA Astrophysics Data System (ADS)

    Lisé-Pronovost, Agathe; St-Onge, Guillaume; Gogorza, Claudia; Haberzettl, Torsten; Jouve, Guillaume; Francus, Pierre; Ohlendorf, Christian; Gebhardt, Catalina; Zolitschka, Bernd

    2015-02-01

    The sedimentary archive from Laguna Potrok Aike is the only continuous record reaching back to the last Glacial period in continental southeastern Patagonia. Located in the path of the Southern Hemisphere westerly winds and in the source region of dust deposited in Antarctica during Glacial periods, southern Patagonia is a vantage point to reconstruct past changes in aeolian activity. Here we use high-resolution rock-magnetic and physical grain size data from site 2 of the International Continental scientific Drilling Program (ICDP) Potrok Aike maar lake Sediment Archive Drilling prOject (PASADO) in order to develop magnetic proxies of dust and wind intensity at 52°S since 51,200 cal BP. Rock-magnetic analysis indicates the magnetic mineral assemblage is dominated by detrital magnetite. Based on the estimated flux of magnetite to the lake and comparison with distal dust records from the Southern Ocean and Antarctica, kLF is interpreted as a dust indicator in the dust source of southern Patagonia at the millennial time scale, when ferrimagnetic grain size and coercivity influence are minimal. Comparison to physical grain-size data indicates that the median destructive field of isothermal remanent magnetization (MDFIRM) mostly reflects medium to coarse magnetite bearing silts typically transported by winds for short-term suspension. Comparison with wind-intensity proxies from the Southern Hemisphere during the last Glacial period and with regional records from Patagonia since the last deglaciation including marine, lacustrine and peat bog sediments as well as speleothems reveals similar variability with MDFIRM up to the centennial time scale. MDFIRM is interpreted as a wind-intensity proxy independent of moisture changes for southeastern Patagonia, with stronger winds capable of transporting coarser magnetite bearing silts to the lake.

  10. High-latitude dust in the Earth system

    NASA Astrophysics Data System (ADS)

    Bullard, Joanna E.; Baddock, Matthew; Bradwell, Tom; Crusius, John; Darlington, Eleanor; Gaiero, Diego; Gassó, Santiago; Gisladottir, Gudrun; Hodgkins, Richard; McCulloch, Robert; McKenna-Neuman, Cheryl; Mockford, Tom; Stewart, Helena; Thorsteinsson, Throstur

    2016-06-01

    Natural dust is often associated with hot, subtropical deserts, but significant dust events have been reported from cold, high latitudes. This review synthesizes current understanding of high-latitude (≥50°N and ≥40°S) dust source geography and dynamics and provides a prospectus for future research on the topic. Although the fundamental processes controlling aeolian dust emissions in high latitudes are essentially the same as in temperate regions, there are additional processes specific to or enhanced in cold regions. These include low temperatures, humidity, strong winds, permafrost and niveo-aeolian processes all of which can affect the efficiency of dust emission and distribution of sediments. Dust deposition at high latitudes can provide nutrients to the marine system, specifically by contributing iron to high-nutrient, low-chlorophyll oceans; it also affects ice albedo and melt rates. There have been no attempts to quantify systematically the expanse, characteristics, or dynamics of high-latitude dust sources. To address this, we identify and compare the main sources and drivers of dust emissions in the Northern (Alaska, Canada, Greenland, and Iceland) and Southern (Antarctica, New Zealand, and Patagonia) Hemispheres. The scarcity of year-round observations and limitations of satellite remote sensing data at high latitudes are discussed. It is estimated that under contemporary conditions high-latitude sources cover >500,000 km2 and contribute at least 80-100 Tg yr-1 of dust to the Earth system (~5% of the global dust budget); both are projected to increase under future climate change scenarios.

  11. Cosmic dust

    NASA Technical Reports Server (NTRS)

    Brownlee, Donald E.; Sandford, Scott A.

    1992-01-01

    Dust is a ubiquitous component of our galaxy and the solar system. The collection and analysis of extraterrestrial dust particles is important to exobiology because it provides information about the sources of biogenically significant elements and compounds that accumulated in distant regions of the solar nebula and that were later accreted on the planets. The topics discussed include the following: general properties of interplanetary dust; the carbonaceous component of interplanetary dust particles; and the presence of an interstellar component.

  12. Mineral dust deposition in Western Mediterranean basin

    NASA Astrophysics Data System (ADS)

    Vincent, Julie; Laurent, Benoit; Bergmatti, Gilles; Losno, Rémi; Bon Nguyen, Elisabeth; Chevaillier, Servanne; Roulet, Pierre; Sauvage, Stéphane; Coddeville, Patrice; Ouboulmane, Noura; Siour, Guillaume; Tovar Sanchez, Antonio; Massanet, Ana; Morales Baquero, Rafael; Di Sarra, Giogio; Sferlazzo, Damiano; Dulac, François; Fornier, Michel; Coursier, Cyril

    2014-05-01

    North African deserts are the world's largest sources of atmospheric mineral dust produced by aeolian erosion. Saharan dust is frequently transported toward Europe over the Mediterranean basin. When deposited in oceanic areas, mineral dust can constitute a key input of nutrients bioavailable for the oceanic biosphere. For instance, Saharan dust deposited in the in the Mediterranean Sea can be a significant source of nutrient like Fe, P and N during summer and autumn. Our objective is to study the deposition Saharan mineral dust in the western Mediterranean basin and to improve how deposition processes are parameterized in 3D regional models. To quantify the deposition flux of Saharan dust in the western Mediterranean region a specific collector (CARAGA) to sample automatically the insoluble atmospheric particle deposition was developed (LISA-ICARE) and a network of CARAGA collectors have been set up. Since 2011, eight CARAGA are then deployed in Frioul, Casset, Montandon and Ersa in France, Mallorca and Granada in Spain, Lampedusa in Italia, and Medenine in Tunisia, along a South-North gradient of almost 2000km from the North African coast to the South of Europe. We observe 10 well identified dust Saharan deposition events at Lampedusa and 6 at Mallorca for a 1-yr sampling period. These dust events are sporadic and the South-North gradient of deposition intensity and frequency is observed (the highest dust mass sampled at the stations are : 2,66 g.m-2 at Lampedusa ; 0,54 g.m-2 at Majorque ; 0,33 g.m-2 at Frioul ; 0,16 g.m-2 at Casset). The ability of the CHIMERE model to reproduce the deposition measurements is tested. The mineral dust plumes simulated over the western Mediterranean basin are also compared to satellite observations (OMI, MODIS) and in-situ measurements performed during the ChArMEx campaign and in the AERONET stations.

  13. Aeolian Coastal Landscapes in changes (a study from Tahkuna, Estonia)

    NASA Astrophysics Data System (ADS)

    Anderson, A.

    2012-04-01

    The openness of the coast to the winds and storm waves has an important part in changing aeolian coastal landscapes as well as anthropogenic factor. The aeolian coastal landscapes are probably the most dynamic areas. Occurrence of aeolian coastal landscapes in Estonia is limited. They consist of sandy beaches, sandy beach ridges and dunes. The coastal ecosystems are strongly affected by their topography, based on the character of deposits and moisture conditions. The majority of their ecosystems are quite close to the specific natural habitat. These ecosystems are represented in the list of the European Union Habitats (Natura 2000). In recent decades human influence has changed the landscape over time in different activities (recreation, trampling, off-road driving) and their intensities, which has led to destruction or degradation of various habitats. Previously coastal landscapes were used for forestry and pasture. Nowadays one of the most serious threats to open landscape is afforestation. This study examines the relationships between landscape components during last decades. Trying to find out how much aeolian coastal landscapes are influenced by natural processes or human activities. The results are based on cartographic analysis, fieldwork data. The method of landscape complex profile was used. The profiles show a cross-sections of landforms and interrelationships between landscape components, most frequently describing the relations between soils and vegetation. In each sample point the mechanical composition of sediments, vegetation cover and soil is determined. Results show that changes in landscapes are induced by their own development as well as changes in environmental factors and human activities. Larger changes are due to increase of coastal processes activity. These processes can be observed in sandy beaches, which are easily transformed by waves. Higher sea levels during storm surges are reaching older beach formation, causing erosion and creating

  14. Holocene aeolian sediments on the NE Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Stauch, G.; Lehmkuhl, F.; Hilgers, A.; Zhao, H.

    2012-04-01

    The semiarid climate of the northeastern Tibetan Plateau supports the formation of different types of aeolian sediments and landforms during the Holocene. Aeolians silts and sands in the catchment of the Donggi Cona in an elevation above 4000m to 4800 m asl reflect variable climate conditions during that time as well as different sediment sources. Based on 51 OSL datings and catchment wide geomorphological mapping a complex pattern of long and short distance sediment transport has been reconstructed. Only few aeolian archives are preserved from the late Pleistocene in this mountain environment indicating cold and dry climate conditions which prevented a continuous accumulation. During the early Holocene a phase of increased aeolian sedimentation of sand at the slopes of the mountains has been reconstructed. The sand originated from a large alluvial fan which was highly active during the Pleistocene. In addition, a thin loess cover is preserved at a few sites in the neighboring mountains ranges. The sedimentation of the loess started around 2000 years later than the sedimentation of the sand at the foot slope. Both archives are related to an increase in precipitation at the northern margin of the Tibetan Plateau which was related to a strengthening of the Asian Monsoon during that time. The wetter climate conditions favored the development of a vegetation cover which leads to the trapping and fixation of the aeolian sediments. However, with a further strengthening of the Monsoon systems these archives subsequently eroded due to higher run off and accumulated as colluvial and fluvial deposits in the basins. These phase lasted until 6 ka. A second aeolian period started at around 3 ka with the formation new dunes in the basins. This period can be associated with dry and cold climate of the late Holocene supporting the reactivation of the sand in the area. This might be further enhanced by an increased human impact by grazing during the late Holocene and resulting

  15. Dust Storm

    Atmospheric Science Data Center

    2013-04-16

    article title:  Massive Dust Storm over Australia     View ... at JPL September 22, 2009 - Massive dust storm over Australia. project:  MISR category:  ... Sep 22, 2009 Images:  Dust Storm location:  Australia and New Zealand ...

  16. Sahara Dust

    Atmospheric Science Data Center

    2013-04-15

    article title:  Casting Light and Shadows on a Saharan Dust Storm     ... (nadir) camera. High-altitude cirrus clouds cast shadows on the underlying ocean and dust layer, which are visible in shades of ... was unable to retrieve elevation data. However, the edges of shadows cast by the cirrus clouds onto the dust (indicated by blue and cyan ...

  17. Saharan dust storms: nature and consequences

    NASA Astrophysics Data System (ADS)

    Goudie, A. S.; Middleton, N. J.

    2001-12-01

    This paper reviews recent work on the role of Saharan dust in environmental change, the location and strength of source areas, the transport paths of material away from the desert, the rates of Saharan dust deposition, the nature of that material (including PeriSaharan loess) and the changing rates of dust activity in response to long and short-term climatic changes. The Sahara produces more aeolian soil dust than any other world desert, and Saharan dust has an important impact on climatic processes, nutrient cycles, soil formation and sediment cycles. These influences spread far beyond Africa, thanks to the great distances over which Saharan dust is transported. The precise locations of Saharan dust source areas are not well known, but data from the Total Ozone Mapping Spectrometer (TOMS) suggest two major source areas: the Bodélé depression and an area covering eastern Mauritania, western Mali and southern Algeria. Trajectories of long-distance transport are relatively well documented, but the links between source areas and seasonal Saharan dust pathways are not. However, it is possible that Harmattan dust from the Bodélé depression may not be the source of the prominent winter plume over the tropical North Atlantic, as is often suggested in the literature. Few of the data on particle size characteristics of Saharan dust are derived from major source areas or from Africa itself. Saharan dusts sampled from the Harmattan plume and over Europe are dominated by SiO 2 and Al 2O 3, a characteristic they share with North American and Chinese dusts. The concentrations of these two major elements are similar to those found in world rocks. PeriSaharan loess is conspicuous by its relative absence, considering the Sahara's dominance of the global desert dust cycle both in the contemporary era and through the geological past. In recent decades, the frequency of Saharan dust events has varied markedly in response to climatic factors such as drought and anthropogenic

  18. Analysis of topsoil aggregation with linkage to dust emission potential

    NASA Astrophysics Data System (ADS)

    Swet, Nitzan; Katra, Itzhak

    2015-04-01

    Dust emission by soil erosion has environmental and socioeconomic significances due to loss of a natural resource and air pollution. Topsoil resistance to erosion depends on its physicochemical properties, especially on the soil aggregation. Aggregate size distribution of soil samples is commonly used for the assessment of soil stability and fertility. It is suggested that aggregates larger than 840 µm in their effective diameter are stable to aeolian (wind) soil erosion. However the physicochemical properties of aggregates should be considered in determining the dust emission potential from soils. This study focuses on quantitative analyses of physical and chemical properties of aggregates in order to develop a soil stability index for dust emission. The study integrates laboratory analyses of soil samples and aeolian experiments of dust emission. Soil samples were taken from different land uses in a semi-arid loess soil that is subjected to aeolian erosion and dust emission. Laboratory tests include particle size distribution (PSD), soil organic carbon (SOC), inorganic carbon (CaCO3), water content (WC), and elemental composition by XRF technique. The size analysis shows significant differences in aggregation between natural-soil plots (N) and grazing-soil plots (G). The MWD index was higher in N (1204 µm) than that of G (400 µm). Basic aeolain experiments with a boundary layer wind tunnel showed dust emission of particulate matter (PM10) from both soils, although the concentrations were significantly lower in N plots. Aggregates at specific size fractions are characterized by different content of cementing agents. The content of fine particles (< 20 µm) and SOM were higher in macro-aggregates (500-2000 µm), while the CaCO3 content was higher in aggregate fraction of 63-250 µm. WC values were highest in micro-aggregates (< 63 µm). However the lowest content of these cementing agents were mostly found in the aggregate size fraction of 1000 µm. Differences

  19. Should precipitation influence dust emission in global dust models?

    NASA Astrophysics Data System (ADS)

    Okin, Gregory

    2016-04-01

    Soil moisture modulates the threshold shear stress required to initiate aeolian transport and dust emission. Most of the theoretical and laboratory work that has confirmed the impact of soil moisture has appropriately acknowledged that it is the soil moisture of a surface layer a few grain diameters thick that truly controls threshold shear velocity. Global and regional models of dust emission include the effect of soil moisture on transport threshold, but most ignore the fact that only the moisture of the very topmost "active layer" matters. The soil moisture in the active layer can differ greatly from that integrated through the top 2, 5, 10, or 100 cm (surface layers used by various global models) because the top 2 mm of heavy texture soils dries within ~1/2 day while sandy soils dry within less than 2 hours. Thus, in drylands where dust emission occurs, it is likely that this top layer is drier than the underlying soil in the days and weeks after rain. This paper explores, globally, the time between rain events in relation to the time for the active layer to dry and the timing of high wind events. This analysis is carried out using the same coarse reanalyses used in global dust models and is intended to inform the soil moisture controls in these models. The results of this analysis indicate that the timing between events is, in almost all dust-producing areas, significantly longer than the drying time of the active layer, even when considering soil texture differences. Further, the analysis shows that the probability of a high wind event during the period after a rain where the surface is wet is small. Therefore, in coarse global models, there is little reason to include rain-derived soil moisture in the modeling scheme.

  20. A Mars Dust Model with Interactive Dynamics, Radiation, and Microphysics

    NASA Astrophysics Data System (ADS)

    Hartwick, Victoria; Toon, O. Brian

    2014-11-01

    Variability of the present day Martian climate is dominated by globally enveloping dust storms that recur with a frequency of approximately three years. Small-scale aeolian processes predictably generate local seasonal storms. However, factors that enhance local storm strength and grow local phenomenon to global scales are poorly understood. Research with Martian general circulation models (GCM) has recently demonstrated a strong correlation between dust storm generation, strength and long-term stability and the global distribution of dust reservoirs and their temporal permanence. Here we present results from the NCAR Mars Community Atmosphere Model (CAM) coupled with a fully interactive dust microphysics scheme. Dust devil lifting and saltation wind driven lifting are parameterized in the emission scheme. Mass is distributed into 20 size bins with a radius range of 0.1 to 8 microns. The initial radial size distribution is log-normal with a sigma value of 1.5. Dust is allowed to advect horizontally and is removed from the atmosphere by dry deposition. Dust also impacts the radiative heating rate, as do water clouds.The large number of dust bins allows for the opportunity to track the size distribution of dust deposits and investigate the long term stability of dust source regions as a function of particle size.

  1. A Mars Dust Model with Interactive Dynamics, Radiation, and Microphysics

    NASA Astrophysics Data System (ADS)

    Hartwick, V.; Toon, B.

    2014-12-01

    Variability of the present day Martian climate is dominated by globally enveloping dust storms that recur with a frequency of approximately three years. Small-scale aeolian processes predictably generate local seasonal storms. However, factors that enhance local storm strength and grow local phenomenon to global scales are poorly understood. Research with Martian general circulation models (GCM) has recently demonstrated a strong correlation between dust storm generation, strength and long-term stability and the global distribution of dust reservoirs and their temporal permanence. Here we present results from the NCAR Mars Community Atmosphere Model (CAM) coupled with a fully interactive dust microphysics scheme. Dust devil lifting and saltation wind driven lifting are parameterized in the emission scheme. Mass is distributed into 20 size bins with a radius range of 0.1 to 8 microns. The initial radial size distribution is log-normal with a sigma value of 1.5. Dust is allowed to advect horizontally and is removed from the atmosphere by dry deposition. Dust also impacts the radiative heating rate, as do water clouds.The large number of dust bins allows for the opportunity to track the size distribution of dust deposits and investigate the long term stability of dust source regions as a function of particle size.

  2. The National Wind Erosion Research Network: Building a standardized long-term data resource for aeolian research, modeling and land management

    NASA Astrophysics Data System (ADS)

    Webb, Nicholas P.; Herrick, Jeffrey E.; Van Zee, Justin W.; Courtright, Ericha M.; Hugenholtz, Christopher H.; Zobeck, Ted M.; Okin, Gregory S.; Barchyn, Thomas E.; Billings, Benjamin J.; Boyd, Robert; Clingan, Scott D.; Cooper, Brad F.; Duniway, Michael C.; Derner, Justin D.; Fox, Fred A.; Havstad, Kris M.; Heilman, Philip; LaPlante, Valerie; Ludwig, Noel A.; Metz, Loretta J.; Nearing, Mark A.; Norfleet, M. Lee; Pierson, Frederick B.; Sanderson, Matt A.; Sharratt, Brenton S.; Steiner, Jean L.; Tatarko, John; Tedela, Negussie H.; Toledo, David; Unnasch, Robert S.; Van Pelt, R. Scott; Wagner, Larry

    2016-09-01

    The National Wind Erosion Research Network was established in 2014 as a collaborative effort led by the United States Department of Agriculture's Agricultural Research Service and Natural Resources Conservation Service, and the United States Department of the Interior's Bureau of Land Management, to address the need for a long-term research program to meet critical challenges in wind erosion research and management in the United States. The Network has three aims: (1) provide data to support understanding of basic aeolian processes across land use types, land cover types, and management practices, (2) support development and application of models to assess wind erosion and dust emission and their impacts on human and environmental systems, and (3) encourage collaboration among the aeolian research community and resource managers for the transfer of wind erosion technologies. The Network currently consists of thirteen intensively instrumented sites providing measurements of aeolian sediment transport rates, meteorological conditions, and soil and vegetation properties that influence wind erosion. Network sites are located across rangelands, croplands, and deserts of the western US.

  3. Building of tropical beach ridges, northeastern Queensland, Australia: Cyclone inundation and aeolian decoration

    NASA Astrophysics Data System (ADS)

    Tamura, Toru; Nicholas, William; Brooke, Brendan; Oliver, Thomas

    2016-04-01

    Processes associated with tropical cyclones are thought responsible for building coarse sand beach ridges along the northeastern Queensland coast, Australia. While these ridges are expected to be geological records of the past cyclone, they question the general consensus of the aeolian genesis of sandy beach ridges. To explore the ridge-forming process, we carried out the GPR survey, auger drilling, pit excavation, grain-size analysis, and OSL dating for coarse sand beach ridges at the Cowley Beach, northeastern Queensland. The Cowley Beach is a mesotidal beach characterized by a low-tide terrace and steep beach face. Ten beach ridges are recognized along the survey transect that extends 700 m inland from the shore. 37 OSL ages are younger seawards, indicating the seaward accretion of the ridge sequence over the last 2700 years. The highest ridge is +5.1 m high above AHD (Australian Height Datum). Two GPR units are bounded by a groundwater surface at c. +1.5 m AHD. The upper unit is characterized by horizontal to hummocky reflectors punctuated by seaward dipping truncation surfaces. These reflectors in places form dome-like structure that appears to be the nucleus of a beach ridge. The shape and level (+2.5 m AHD) of the dome are similar to those of the present swash berm. The lower unit shows a sequence of reflectors that dip at an angle of present beach face. The sequence is dissected by truncation surfaces, some of which are continuous to those in the upper unit. Coarse sand mainly forms beach ridge deposits below +4.0 m AHD, while a few higher ridges have an upward fining layer composed of medium sand above +4.0 m, which is finer than aeolian ripples found on the backshore during the survey. In addition, pumice gravel horizons underlie the examined ridge crests. The sequence of seaward dipping reflectors indicates that the Cowley Beach, like other many sandy beaches, has prograded during onshore sand accretion by fairweather waves and has been eroded by storms

  4. Effects of aeolian erosion on microbial release from solids.

    NASA Technical Reports Server (NTRS)

    Gustan, E. A.; Olson, R. L.; Taylor, D. M.; Green, R. H.

    1972-01-01

    This study was initiated to determine the percentage of spores that would be expected to be released from the interior of solid materials by aeolian erosion on a planetary surface. Methyl methacrylate and Eccobond disks were fabricated so that each disk contained approximately 40,000 Bacillus subtilis var. niger spores. The disks were placed in a specially designed sandblasting device and eroded. Exposure periods of 0.5, 2 and 24 hours were investigated using filtered air to accelerate the sand. A series of tests was also conducted for a 0.5 hour period using carbon dioxide. Examination of the erosion products showed that less than 1% of the spores originally contained in the solids was released by aeolian erosion.

  5. Soil Response to Aeolian Disturbance in West Greenland

    NASA Astrophysics Data System (ADS)

    Heindel, R. C.; Culler, L. E.; Chipman, J. W.; Virginia, R. A.

    2015-12-01

    Arctic soils are a critical ecological resource, yet are increasingly vulnerable to global change. In the Kangerlussuaq region of West Greenland, aeolian disturbance is the greatest threat to soil stability, with strong katabatic winds eroding vegetation and soil down to the underlying glacial till or bedrock. Little is known about what controls the distribution and rate of the aeolian erosion, which initially results in a state change from tundra to a deflated and nearly unvegetated ground. It is unclear if vegetation can eventually reestablish after erosion occurs, potentially aided by the biological soil crust (BSC) that develops within the eroded areas, or if this soil loss is an irreversible change in vegetation and soil carbon (C) and nitrogen (N) cycling. Our analysis of high-resolution satellite imagery shows that across the entire study region, deflated ground covers 22% of the terrestrial landscape. Aeolian erosion occurs more frequently closer to the Greenland Ice Sheet and on S-facing slopes. Using lichenometry, we estimate that erosional fronts move across the landscape at rates of 2.5 cm yr-1, leaving unproductive ground in their wake. The onset of widespread aeolian erosion occurred roughly 700-1000 years ago, pointing toward regional cooling and aridity as the drivers behind erosion. Finally, we consider whether the BSCs can improve soil quality enough to allow for full vegetation regrowth. Preliminary results show that while the BSCs fix atmospheric N and increase C storage, the rate of soil quality recovery is extremely slow. Understanding the thresholds between vegetated tundra and eroded ground is critical for predicting how the Kangerlussuaq landscape will respond to anticipated changes in climate and ice sheet dynamics.

  6. The potential scale of aeolian structures on Venus

    NASA Technical Reports Server (NTRS)

    Marshall, J. R.; Greeley, Ronald

    1991-01-01

    Simulations of the Venusian aeolian environment with the Venus Wind Tunnel have shown that microdunes are formed during the entrainment of sand-sized material. These structures are several tens of centimeters long (2-3 cm high) and combine the morphological and behavioral characteristics of both full-scale terrestrial dunes and current ripples formed in subaqueous environments. Their similarity to both reflects the fact that the Venusian atmosphere has a density intermediate between air and water. Although the development of microdunes in the wind tunnel experiments was limited by tunnel dimensions, it is possible to make some predictions about their potential size on Venus, and the potential size of related aeolian structures. Microdunes are fluid-filled structures (as are dunes and current ripples) and as such have no theoretical upper limit to their size from a fluid dynamics viewpoint. Limitations to size observed in subaqueous structures are set by, for example, water depth; limitations to the size of dunes are set by, for example, sand supply. It is therefore reasonable to suppose that the microdunes on Venus could evolve into much larger features than those observed in experiments. In addition, the researchers note that current ripples (which are closely related to microdunes) are often found in association with giant ripples that have dimensions similar to aeolian dunes. Thus, it may be reasonable to assume that analogous large scale structures occur on Venus. Both (terrestrial) aeolian and subaqueous environments generate structures in excess of one hundred meters in wavelength. Such dimensions may therefore be applicable to Venusian bedforms. Analysis of Magellan data may resolve the issue.

  7. Circumstellar dust

    NASA Technical Reports Server (NTRS)

    Dwek, E.

    1986-01-01

    The presence of dust in the general interstellar medium is inferred from the extinction, polarization, and scattering of starlight; the presence of dark nebulae; interstellar depletions; the observed infrared emission around certain stars and various types of interstellar clouds. Interstellar grains are subject to various destruction mechanisms that reduce their size or even completely destroy them. A continuous source of newly formed dust must therefore be present for dust to exist in the various phases of the interstellar medium (ISM). The working group has the following goals: (1) review the evidences for the formation of dust in the various sources; (2) examine the clues to the nature and composition of the dust; (3) review the status of grain formation theories; (4) examine any evidence for the processing of the dust prior to its injection into the interstellar medium; and (5) estimate the relative contribution of the various sources to the interstellar dust population.

  8. Coeval dust accumulation minima in Greenland and East Central Europe over 31-23 ka

    NASA Astrophysics Data System (ADS)

    Újvári, Gábor; Stevens, Thomas; Varga, György; Kovács, János; Molnár, Mihály

    2016-04-01

    , together with the bulk loess median grain size (D50bulk) that is considered an integrated proxy of wind strength, dust source distance, aridity and vegetation cover. While an increase of dust flux and D50bulk with time is apparent, such a trend cannot be seen in the quartz grain size measures (D50quartz). This observation may imply that wind speeds were relatively constant in the studied time interval, while the turbulence of the flow may have been extremely varying (i.e. strong/rapid changes in the frequency/magnitude of dust storm events). A striking feature of the MAR record is that accumulation minima in the Dunaszekcsö record are synchronous with the Greenland Interstadials (GI-5.1 to GI-3). Subsequent Ca2+ minima in the NGRIP record at 26.22 and 25.02 ka (b2k) are also coeval with the MAR minima in the studied loess sequence. At the same time, these patterns are barely visible in the bulk and quartz grain size records. We speculate that the synchronous changes in the NGRIP Ca2+ and the Dunaszekcsö MAR records are results of millennial scale variations in the activity of Northern Hemisphere dust emitting regions shown in two archives from different environments. The very similar timing of MAR minima (and also some of the maxima) suggest a rapid aeolian system response in East Central Europe to abrupt climatic changes in the North Atlantic. Although such a synchronicity does not prove a Central European dust source to Greenland, it is consistent with this possibility. This study was supported by the OTKA PD-108639 grant and the Bolyai János Research Fellowship (both to GÚ). [1] Dansgaard, W., et al. (1993). Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364, 218-220. [2] Johnsen, S.J., et al. (1992). Irregular glacial interstadials recorded in a new Greenland ice core. Nature 359, 311-313. [3] Rasmussen, S.O., et al. (2014). A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three

  9. Substantial dust loss of bioavailable phosphorus from agricultural soils

    PubMed Central

    Katra, Itzhak; Gross, Avner; Swet, Nitzan; Tanner, Smadar; Krasnov, Helena; Angert, Alon

    2016-01-01

    Phosphorus (P) is an essential element in terrestrial ecosystems. Knowledge on the role of dust in the biogeochemical cycling of phosphorus is very limited with no quantitative information on aeolian (by wind) P fluxes from soils. The aim of this study is to focus on P cycling via dust emissions under common land-use practices in an arid environment by integration of sample analyses and aeolian experiments. The experiments indicate significant P fluxes by PM10 dust due to agricultural land use. Even in a single wind-dust event at moderate velocity (7.0 m s−1), P flux in conventional agricultural fields can reach 1.83 kg km−2, that accumulates to a considerable amount per year at a regional scale. The results highlight a negative yearly balance in P content (up to hundreds kg km−2) in all agricultural soils, and thus more P nutrition is required to maintain efficient yield production. In grazing areas where no P nutrition is applied, the soil degradation process can lead to desertification. Emission of P from soil dust sources has significant implications for soil nutrient resources and management strategies in agricultural regions as well as for loading to the atmosphere and global biogeochemical cycles. PMID:27095629

  10. Substantial dust loss of bioavailable phosphorus from agricultural soils

    NASA Astrophysics Data System (ADS)

    Katra, Itzhak; Gross, Avner; Swet, Nitzan; Tanner, Smadar; Krasnov, Helena; Angert, Alon

    2016-04-01

    Phosphorus (P) is an essential element in terrestrial ecosystems. Knowledge on the role of dust in the biogeochemical cycling of phosphorus is very limited with no quantitative information on aeolian (by wind) P fluxes from soils. The aim of this study is to focus on P cycling via dust emissions under common land-use practices in an arid environment by integration of sample analyses and aeolian experiments. The experiments indicate significant P fluxes by PM10 dust due to agricultural land use. Even in a single wind-dust event at moderate velocity (7.0 m s‑1), P flux in conventional agricultural fields can reach 1.83 kg km‑2, that accumulates to a considerable amount per year at a regional scale. The results highlight a negative yearly balance in P content (up to hundreds kg km‑2) in all agricultural soils, and thus more P nutrition is required to maintain efficient yield production. In grazing areas where no P nutrition is applied, the soil degradation process can lead to desertification. Emission of P from soil dust sources has significant implications for soil nutrient resources and management strategies in agricultural regions as well as for loading to the atmosphere and global biogeochemical cycles.

  11. Substantial dust loss of bioavailable phosphorus from agricultural soils.

    PubMed

    Katra, Itzhak; Gross, Avner; Swet, Nitzan; Tanner, Smadar; Krasnov, Helena; Angert, Alon

    2016-01-01

    Phosphorus (P) is an essential element in terrestrial ecosystems. Knowledge on the role of dust in the biogeochemical cycling of phosphorus is very limited with no quantitative information on aeolian (by wind) P fluxes from soils. The aim of this study is to focus on P cycling via dust emissions under common land-use practices in an arid environment by integration of sample analyses and aeolian experiments. The experiments indicate significant P fluxes by PM10 dust due to agricultural land use. Even in a single wind-dust event at moderate velocity (7.0 m s(-1)), P flux in conventional agricultural fields can reach 1.83 kg km(-2), that accumulates to a considerable amount per year at a regional scale. The results highlight a negative yearly balance in P content (up to hundreds kg km(-2)) in all agricultural soils, and thus more P nutrition is required to maintain efficient yield production. In grazing areas where no P nutrition is applied, the soil degradation process can lead to desertification. Emission of P from soil dust sources has significant implications for soil nutrient resources and management strategies in agricultural regions as well as for loading to the atmosphere and global biogeochemical cycles. PMID:27095629

  12. Optically stimulated luminescence dating of aeolian sand in the otindag dune field and holocene climate change

    USGS Publications Warehouse

    Zhou, Y.L.; Lu, H.Y.; Mason, J.; Miao, X.D.; Swinehart, J.; Goble, R.

    2008-01-01

    The dune system in Otindag sand field of northern China is sensitive to climate change, where effective moisture and related vegetation cover play a controlling role for dune activity and stability. Therefore, aeolian deposits may be an archive of past environmental changes, possibly at the millennial scale, but previous studies on this topic have rarely been reported. In this study, thirty-five optically stimulated luminescence (OSL) ages of ten representative sand-paleosol profiles in Otindag sand field are obtained, and these ages provide a relatively complete and well-dated chronology for wet and dry variations in Holocene. The results indicate that widespread dune mobilization occurred from 9.9 to 8.2 ka, suggesting a dry early Holocene climate. The dunes were mainly stabilized between 8.0 and 2.7 ka, implying a relatively wet climate, although there were short-term penetrations of dune activity during this wet period. After ???2.3 ka, the region became dry again, as inferred from widespread dune activity. The "8.2 ka" cold event and the Little Ice Age climatic deterioration are detected on the basis of the dune records and OSL ages. During the Medieval Warm Period and the Sui-Tang Warm Period (570-770 AD), climate in Otindag sand field was relatively humid and the vegetation was denser, and the sand dunes were stabilized again. These aeolian records may indicate climate changes at millennial time scale during Holocene, and these climatic changes may be the teleconnection to the climate changes elsewhere in the world. ?? Science in China Press and Springer-Verlag GmbH 2008.

  13. Niveo-aeolian and Denivation Deposits on Mars

    NASA Astrophysics Data System (ADS)

    Bourke, M. C.

    2004-12-01

    Hydrogen abundance data from the Gamma Ray Spectrometer on board the Mars Odyssey platform indicate that large areas of the North Polar Sand Sea have high concentrations (40-60% weight) of hydrogen molecules in the surface deposits. On Earth, cold region sand dunes often contain inter-bedded sand, snow and ice. These niveo-aeolian deposits have unique morphologies and sedimentary structures that are generally not found in warm desert dunes. An atlas of dune niveo-aeolian and denivation features was compiled from published studies of polar deserts on Earth. Features occur at a range of scales and signatures are both morphologic and stratigraphic. The atlas is used to identify similar features on Mars. Examination of high resolution Mars Orbiter Camera images of the North Polar Sand Sea and Southern Crater dune fields have identified several potential signatures of niveo-aeolian and denivation processes on Mars. These include: over steepened lee slopes, cornices, rounded slipface and/or crest, protruding ice cemented beds, alluvial meltwater channels and fans and sublimation avalanches. Other smaller-scale forms probably occur but are not detectable with current resolution data. While these findings have implications for our understanding of martian dune geomorphology, mobility and the geological evolution of the sand seas, they also highlight the potential for a significant volatile reservoir and biological habitat in sand dunes on Mars.

  14. Quantifying the provenance of aeolian sediments using multiple composite fingerprints

    NASA Astrophysics Data System (ADS)

    Liu, Benli; Niu, Qinghe; Qu, Jianjun; Zu, Ruiping

    2016-09-01

    We introduce a new fingerprinting method that uses multiple composite fingerprints for studies of aeolian sediment provenance. We used this method to quantify the provenance of sediments on both sides of the Qinghai-Tibetan Railway (QTR) in the Cuona Lake section of the Tibetan Plateau (TP), in an environment characterized by aeolian and fluvial interactions. The method involves repeatedly solving a linear mixing model based on mass conservation; the model is not limited to spatial scale or transport types and uses all the tracer groups that passed the range check, Kruskal-Wallis H-test, and a strict analytical solution screening. The proportional estimates that result from using different composite fingerprints are highly variable; however, the average of these fingerprints has a greater accuracy and certainty than any single fingerprint. The results show that sand from the lake beach, hilly surface, and gullies contribute, respectively, 48%, 31% and 21% to the western railway sediments and 43%, 33% and 24% to the eastern railway sediments. The difference between contributions from various sources on either side of the railway, which may increase in the future, was clearly related to variations in local transport characteristics, a conclusion that is supported by grain size analysis. The construction of the QTR changed the local cycling of materials, and the difference in provenance between the sediments that are separated by the railway reflects the changed sedimentary conditions on either side of the railway. The effectiveness of this method suggests that it will be useful in other studies of aeolian sediments.

  15. Characterizing the instability of aeolian environments using analytical reasoning

    NASA Astrophysics Data System (ADS)

    Houser, C.; Bishop, M. P.; Dobreva, I. D.; Barrineau, C. P.; Weymer, B. A.

    2013-12-01

    Characterization of aeolian systems is complicated by rapidly changing surface-process regimes, spatio-temporal scale dependencies, and subjective interpretation of imagery and spatial data. Stability and instability of the South Texas sand sheet is addressed using an artificial intelligence approach that integrates spatial information and analytical reasoning. Specifically, the purpose of this study is to determine if landscape evolutionary sequences could be mapped and characterized based on simple conceptual relationships amongst biophysical variables including topography, vegetation, surface moisture, wind speed, and surface erosion and deposition. A digital elevation model was derived from airborne LiDAR data and combined with moisture and vegetation indices computed using Spectral feature extraction from Landsat Thematic Mapper data. Our analysis reveals unique scale dependent spatial patterns and the use of fuzzy cognitive maps provides an analytical reasoning approach to address the complexity of aeolian environments in response to changes in climate forcing. The application to other Holocene aeolian deposits and the potential for this approach to model landscape evolution are also discussed.

  16. Aeolian Induced Erosion and Particle Entrainment

    NASA Technical Reports Server (NTRS)

    Saint, Brandon

    2007-01-01

    The Granular Physics Department at The Kennedy Space Center is addressing the problem of erosion on the lunar surface. The early stages of research required an instrument that would produce erosion at a specific rate with a specific sample variation. This paper focuses on the development and experimental procedures to measure and record erosion rates. This was done with the construction of an open air wind tunnel, and examining the relationship between airflow and particle motion.

  17. The National Wind Erosion Research Network: Building a standardized long-term data resource for aeolian research, modeling and land management

    USGS Publications Warehouse

    Webb, Nicholas P.; Herrick, Jeffrey E.; Van Zee, Justin W; Courtright, Ericha M; Hugenholtz, Ted M; Zobeck, Ted M; Okin, Gregory S.; Barchyn, Thomas E; Billings, Benjamin J; Boyd, Robert A.; Clingan, Scott D; Cooper, Brad F; Duniway, Michael C.; Derner, Justin D; Fox, Fred A; Havstad, Kris M.; Heilman, Philip; LaPlante, Valerie; Ludwig, Noel A; Metz, Loretta J; Nearing, Mark A; Norfleet, M Lee; Pierson, Frederick B; Sanderson, Matt A; Sharrat, Brenton S; Steiner, Jean L; Tatarko, John; Tedela, Negussie H; Todelo, David; Unnasch, Robert S; Van Pelt, R Scott; Wagner, Larry

    2016-01-01

    The National Wind Erosion Research Network was established in 2014 as a collaborative effort led by the United States Department of Agriculture’s Agricultural Research Service and Natural Resources Conservation Service, and the United States Department of the Interior’s Bureau of Land Management, to address the need for a long-term research program to meet critical challenges in wind erosion research and management in the United States. The Network has three aims: (1) provide data to support understanding of basic aeolian processes across land use types, land cover types, and management practices, (2) support development and application of models to assess wind erosion and dust emission and their impacts on human and environmental systems, and (3) encourage collaboration among the aeolian research community and resource managers for the transfer of wind erosion technologies. The Network currently consists of thirteen intensively instrumented sites providing measurements of aeolian sediment transport rates, meteorological conditions, and soil and vegetation properties that influence wind erosion. Network sites are located across rangelands, croplands, and deserts of the western US. In support of Network activities, http://winderosionnetwork.org was developed as a portal for information about the Network, providing site descriptions, measurement protocols, and data visualization tools to facilitate collaboration with scientists and managers interested in the Network and accessing Network products. The Network provides a mechanism for engaging national and international partners in a wind erosion research program that addresses the need for improved understanding and prediction of aeolian processes across complex and diverse land use types and management practices.

  18. Atmospheric significance of aeolian salts in the sandy deserts of northwestern China

    NASA Astrophysics Data System (ADS)

    Zhu, B.-Q.

    2015-12-01

    Large sandy deserts in the middle latitudes of northwestern China were investigated for soluble salt variations in modern and ancient aeolian sediments, aiming to explore the environmental significance of "aeolian salts". Results revealed that aeolian salt variations have a clear relationship with the changing meridional and zonal gradients of the desert locations and the aeolian differentiation effect, but are weakly linked to local geological conditions. It suggests that the natural system of aeolian salts is hydrologically open and the chemistry of the parent brines are different from that predicted for hydrologically closed systems. Atmospheric depositions of water-soluble chemical species are an important process/source contributing to aeolian salt. Sequential variations of soluble salts in sedimentary profiles interbedded with aeolian and non-aeolian deposits and their palaeoenvironmental implications in the hinterland areas of these deserts were further evaluated, based on the constraints of OSL dating and radiocarbon dating data. The results indicate that the inorganic salts may be a latent geoproxy in revealing regional palaeoclimatic changes in desert areas for the sediments deposited under onefold depositional environment, but the interpretation should be more careful for the sediments deposited under diverse depositional conditions. This study presents the evidence of atmospheric origin of aeolian salt in sandy deserts, with limited climatic significance in palaeoenvironmental reconstruction.

  19. Effects of river regulation on aeolian landscapes, Colorado River, southwestern USA

    USGS Publications Warehouse

    Draut, Amy E.

    2012-01-01

    Connectivity between fluvial and aeolian sedimentary systems plays an important role in the physical and biological environment of dryland regions. This study examines the coupling between fluvial sand deposits and aeolian dune fields in bedrock canyons of the arid to semiarid Colorado River corridor, southwestern USA. By quantifying significant differences between aeolian landscapes with and without modern fluvial sediment sources, this work demonstrates for the first time that the flow- and sediment-limiting effects of dam operations affect sedimentary processes and ecosystems in aeolian landscapes above the fluvial high water line. Dune fields decoupled from fluvial sand supply have more ground cover (biologic crust and vegetation) and less aeolian sand transport than do dune fields that remain coupled to modern fluvial sand supply. The proportion of active aeolian sand area also is substantially lower in a heavily regulated river reach (Marble–Grand Canyon, Arizona) than in a much less regulated reach with otherwise similar environmental conditions (Cataract Canyon, Utah). The interconnections shown here among river flow and sediment, aeolian sand transport, and biologic communities in aeolian dunes demonstrate a newly recognized means by which anthropogenic influence alters dryland environments. Because fluvial–aeolian coupling is common globally, it is likely that similar sediment-transport connectivity and interaction with upland ecosystems are important in other dryland regions to a greater degree than has been recognized previously.

  20. Effects of river regulation on aeolian landscapes, Colorado River, southwestern USA

    NASA Astrophysics Data System (ADS)

    Draut, Amy E.

    2012-06-01

    Connectivity between fluvial and aeolian sedimentary systems plays an important role in the physical and biological environment of dryland regions. This study examines the coupling between fluvial sand deposits and aeolian dune fields in bedrock canyons of the arid to semiarid Colorado River corridor, southwestern USA. By quantifying significant differences between aeolian landscapes with and without modern fluvial sediment sources, this work demonstrates for the first time that the flow- and sediment-limiting effects of dam operations affect sedimentary processes and ecosystems in aeolian landscapes above the fluvial high water line. Dune fields decoupled from fluvial sand supply have more ground cover (biologic crust and vegetation) and less aeolian sand transport than do dune fields that remain coupled to modern fluvial sand supply. The proportion of active aeolian sand area also is substantially lower in a heavily regulated river reach (Marble-Grand Canyon, Arizona) than in a much less regulated reach with otherwise similar environmental conditions (Cataract Canyon, Utah). The interconnections shown here among river flow and sediment, aeolian sand transport, and biologic communities in aeolian dunes demonstrate a newly recognized means by which anthropogenic influence alters dryland environments. Because fluvial-aeolian coupling is common globally, it is likely that similar sediment-transport connectivity and interaction with upland ecosystems are important in other dryland regions to a greater degree than has been recognized previously.

  1. Abrupt climate variability since the last deglaciation based on a high-resolution, multi-proxy peat record from NW Iran: The hand that rocked the Cradle of Civilization?

    NASA Astrophysics Data System (ADS)

    Sharifi, Arash; Pourmand, Ali; Canuel, Elizabeth A.; Ferer-Tyler, Erin; Peterson, Larry C.; Aichner, Bernhard; Feakins, Sarah J.; Daryaee, Touraj; Djamali, Morteza; Beni, Abdolmajid Naderi; Lahijani, Hamid A. K.; Swart, Peter K.

    2015-09-01

    We present a high-resolution (sub-decadal to centennial), multi-proxy reconstruction of aeolian input and changes in palaeohydrological conditions based on a 13000 Yr record from Neor Lake's peripheral peat in NW Iran. Variations in relative abundances of refractory (Al, Zr, Ti, and Si), redox sensitive (Fe) and mobile (K and Rb) elements, total organic carbon (TOC), δ13CTOC, compound-specific leaf wax hydrogen isotopes (δD), carbon accumulation rates and dust fluxes presented here fill a large gap in the existing terrestrial paleoclimate records from the interior of West Asia. Our results suggest that a transition occurred from dry and dusty conditions during the Younger Dryas (YD) to a relatively wetter period with higher carbon accumulation rates and low aeolian input during the early Holocene (9000-6000 Yr BP). This period was followed by relatively drier and dustier conditions during middle to late Holocene, which is consistent with orbital changes in insolation that affected much of the northern hemisphere. Numerous episodes of high aeolian input spanning a few decades to millennia are prevalent during the middle to late Holocene. Wavelet analysis of variations in Ti abundances as a proxy for aeolian input revealed notable periodicities at 230, 320, and 470 years with significant periodicities centered around 820, 1550, and 3110 years over the last 13000 years. Comparison with palaeoclimate archives from West Asia, the North Atlantic and African lakes point to a teleconnection between North Atlantic climate and the interior of West Asia during the last glacial termination and the Holocene epoch. We further assess the potential role of abrupt climate change on early human societies by comparing our record of palaeoclimate variability with historical, geological and archaeological archives from this region. The terrestrial record from this study confirms previous evidence from marine sediments of the Arabian Sea that suggested climate change influenced the

  2. Protoplanetary Dust

    NASA Astrophysics Data System (ADS)

    Apai, Dániel; Lauretta, Dante S.

    2010-01-01

    Preface; 1. Planet formation and protoplanetary dust Daniel Apai and Dante Lauretta; 2. The origins of protoplanetary dust and the formation of accretion disks Hans-Peter Gail and Peter Hope; 3. Evolution of protoplanetary disk structures Fred Ciesla and Cornelius P. Dullemond; 4. Chemical and isotopic evolution of the solar nebula and protoplanetary disks Dmitry Semenov, Subrata Chakraborty and Mark Thiemens; 5. Laboratory studies of simple dust analogs in astrophysical environments John R. Brucato and Joseph A. Nuth III; 6. Dust composition in protoplanetaty dust Michiel Min and George Flynn; 7. Dust particle size evolution Klaus M. Pontoppidan and Adrian J. Brearly; 8. Thermal processing in protoplanetary nebulae Daniel Apai, Harold C. Connolly Jr. and Dante S. Lauretta; 9. The clearing of protoplanetary disks and of the protosolar nebula Ilaira Pascucci and Shogo Tachibana; 10. Accretion of planetesimals and the formation of rocky planets John E. Chambers, David O'Brien and Andrew M. Davis; Appendixes; Glossary; Index.

  3. Protoplanetary Dust

    NASA Astrophysics Data System (ADS)

    Apai, D.´niel; Lauretta, Dante S.

    2014-02-01

    Preface; 1. Planet formation and protoplanetary dust Daniel Apai and Dante Lauretta; 2. The origins of protoplanetary dust and the formation of accretion disks Hans-Peter Gail and Peter Hope; 3. Evolution of protoplanetary disk structures Fred Ciesla and Cornelius P. Dullemond; 4. Chemical and isotopic evolution of the solar nebula and protoplanetary disks Dmitry Semenov, Subrata Chakraborty and Mark Thiemens; 5. Laboratory studies of simple dust analogs in astrophysical environments John R. Brucato and Joseph A. Nuth III; 6. Dust composition in protoplanetaty dust Michiel Min and George Flynn; 7. Dust particle size evolution Klaus M. Pontoppidan and Adrian J. Brearly; 8. Thermal processing in protoplanetary nebulae Daniel Apai, Harold C. Connolly Jr. and Dante S. Lauretta; 9. The clearing of protoplanetary disks and of the protosolar nebula Ilaira Pascucci and Shogo Tachibana; 10. Accretion of planetesimals and the formation of rocky planets John E. Chambers, David O'Brien and Andrew M. Davis; Appendixes; Glossary; Index.

  4. Use of Rare Earth Elements in investigations of aeolian processes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The representation of the dust cycle in atmospheric circulation models hinges on an accurate parameterization of the vertical dust flux at emission. However, existing parameterizations of the vertical dust flux vary substantially in their scaling with wind friction velocity, require input parameters...

  5. Large Aperture Electrostatic Dust Detector

    SciTech Connect

    C.H. Skinner, R. Hensley, and A.L Roquemore

    2007-10-09

    Diagnosis and management of dust inventories generated in next-step magnetic fusion devices is necessary for their safe operation. A novel electrostatic dust detector, based on a fine grid of interlocking circuit traces biased to 30 or 50 ν has been developed for the detection of dust particles on remote surfaces in air and vacuum environments. Impinging dust particles create a temporary short circuit and the resulting current pulse is recorded by counting electronics. Up to 90% of the particles are ejected from the grid or vaporized suggesting the device may be useful for controlling dust inventories. We report measurements of the sensitivity of a large area (5x5 cm) detector to microgram quantities of dust particles and review its applications to contemporary tokamaks and ITER.

  6. Mineral dust transport in the Arctic modelled with FLEXPART

    NASA Astrophysics Data System (ADS)

    Groot Zwaaftink, Christine; Grythe, Henrik; Stohl, Andreas

    2016-04-01

    Aeolian transport of mineral dust is suggested to play an important role in many processes. For instance, mineral aerosols affect the radiation balance of the atmosphere, and mineral deposits influence ice sheet mass balances and terrestrial and ocean ecosystems. While many efforts have been done to model global dust transport, relatively little attention has been given to mineral dust in the Arctic. Even though this region is more remote from the world's major dust sources and dust concentrations may be lower than elsewhere, effects of mineral dust on for instance the radiation balance can be highly relevant. Furthermore, there are substantial local sources of dust in or close to the Arctic (e.g., in Iceland), whose impact on Arctic dust concentrations has not been studied in detail. We therefore aim to estimate contributions of different source regions to mineral dust in the Arctic. We have developed a dust mobilization routine in combination with the Lagrangian dispersion model FLEXPART to make such estimates. The lack of details on soil properties in many areas requires a simple routine for global simulations. However, we have paid special attention to the dust sources on Iceland. The mobilization routine does account for topography, snow cover and soil moisture effects, in addition to meteorological parameters. FLEXPART, driven with operational meteorological data from European Centre for Medium-Range Weather Forecasts, was used to do a three-year global dust simulation for the years 2010 to 2012. We assess the model performance in terms of surface concentration and deposition at several locations spread over the globe. We will discuss how deposition and dust load patterns in the Arctic change throughout seasons based on the source of the dust. Important source regions for mineral dust found in the Arctic are not only the major desert areas, such as the Sahara, but also local bare-soil regions. From our model results, it appears that total dust load in the

  7. Stratigraphic Architecture of Aeolian Dune Interactions

    NASA Astrophysics Data System (ADS)

    Brothers, S. C.; Kocurek, G.

    2015-12-01

    Dune interactions, which consist of collisions and detachments, are a known driver of changing dune morphology and provide the dynamics for field-scale patterning. Although interactions are ubiquitous in modern dune fields, the stratigraphic record of interactions has not been explored. This raises the possibility that an entire class of signature architectures of bounding surfaces and cross-strata has gone misidentified or unrecognized. A unique data set for the crescentic dunes of the White Sands Dune Field, New Mexico, allows for the coupling of dune interactions with their resultant stratigraphic architecture. Dune interactions are documented by a decadal time-series of aerial photos and LiDAR-derived digital elevation models. Plan-view cross-strata in interdune areas provide a record tying past dune positions and morphologies to the current dunes. Three-dimensional stratigraphic architecture is revealed by imaging of dune interiors with ground-penetrating radar. The architecture of a dune defect merging with a target dune downwind consists of lateral truncation of the target dune set by an interaction bounding surface. Defect cross-strata tangentially approach and downlap onto the surface. Downwind, the interaction surface curves, and defect and adjacent target dune sets merge into a continuous set. Predictable angular relationships reflect field-scale patterns of dune migration direction and approach angle of migrating defects. The discovery of interaction architectures emphasizes that although dunes appear as continuous forms on the surface, they consist of discrete segments, each with a distinct morphodynamic history. Bedform interactions result in the morphologic recombination of dune bodies, which is manifested stratigraphically within the sets of cross-strata.

  8. Evaluation of aeolian emissions from gold mine tailings on the Witwatersrand

    NASA Astrophysics Data System (ADS)

    Ojelede, M. E.; Annegarn, H. J.; Kneen, M. A.

    2012-01-01

    The Witwatersrand is known for the high frequency of aeolian dust storm episodes arising from gold mine tailings storage facilities (TSFs). Source and ambient atmosphere are poorly characterized from the point of view of particle size distribution and human health risk assessment. For years, routine monitoring was limited to sampling of dust fallout ⩾30 μm. Sampling and analyses of source and receptor material was conducted. Thirty-two bulk soils were collected from TSF along the east-west mining corridor, and size distribution analysis was performed in the range 0.05-900 μm using a Malvern® MS-14 Particle Size Analyser. Ambient aerosols in the range 0.25-32 μm were monitored at two separate locations using a Grimm® aerosol monitor, in the vicinity of three large currently active and a dormant TSF. Statistical analyses indicate that TSFs are rich in fine erodible materials, particularly active TSFs. Concentration of ⩽PM5 and ⩽PM10 components in source material was: recent slimes (14-24 vol.%; 22-38 vol.%), older slimes (6-17 vol.%; 11-26 vol.%) and sand (1-8 vol.%; 2-12 vol.%). Concentrations of airborne aerosols were below the South African Department of Environmental Affairs 24-h limit value of 120 μg m -3. With wind speeds exceeding 7 ms -1, ambient concentration reached 2160 μg m -3. This maximum is several times higher than the limit value. Erosion of tailings storage facilities is a strong driver influencing ambient particulate matter loading with adverse health implications for nearby residents.

  9. Desert dust deposition on Mt. Elbrus, Caucasus Mountains, Russia in 2009-2012 as recorded in snow and shallow ice core: high-resolution "provenancing", transport patterns, physical properties and soluble ionic composition

    NASA Astrophysics Data System (ADS)

    Kutuzov, S.; Shahgedanova, M.; Mikhalenko, V.; Lavrentiev, I.; Kemp, S.

    2013-04-01

    A record of dust deposition events between 2009 and 2012 on Mt. Elbrus, Caucasus Mountains derived from a snow pit and a shallow ice core is presented for the first time for this region. A combination of isotopic analysis, SEVIRI red-green-blue composite imagery, MODIS atmospheric optical depth fields derived using the Deep Blue algorithm, air mass trajectories derived using the HYSPLIT model and analysis of meteorological data enabled identification of dust source regions with high temporal (hours) and spatial (cf. 20-100 km) resolution. Seventeen dust deposition events were detected; fourteen occurred in March-June, one in February and two in October. Four events originated in the Sahara, predominantly in north-eastern Libya and eastern Algeria. Thirteen events originated in the Middle East, in the Syrian Desert and northern Mesopotamia, from a mixture of natural and anthropogenic sources. Dust transportation from Sahara was associated with vigorous Saharan depressions, strong surface winds in the source region and mid-tropospheric south-westerly flow with daily winds speeds of 20-30 m s-1 at 700 hPa level and, although these events were less frequent, they resulted in higher dust concentrations in snow. Dust transportation from the Middle East was associated with weaker depressions forming over the source region, high pressure centered over or extending towards the Caspian Sea and a weaker southerly or south-easterly flow towards the Caucasus Mountains with daily wind speeds of 12-18 m s-1 at 700 hPa level. Higher concentrations of nitrates and ammonium characterise dust from the Middle East deposited on Mt. Elbrus in 2009 indicating contribution of anthropogenic sources. The modal values of particle size distributions ranged between 1.98 μm and 4.16 μm. Most samples were characterised by modal values of 2.0-2.8 μm with an average of 2.6 μm and there was no significant difference between dust from the Sahara and the Middle East.

  10. Physical and Chemical Characteristics of Desert Dust Deposited on Mt. Elbrus, Caucasus as Documented in Snow Pit and Shallow Core Records

    NASA Astrophysics Data System (ADS)

    Kutuzov, S.; Shahgedanova, M.; Mikhalenko, V.; Ginot, P.; Lavrentiev, I.; Popov, G.

    2013-12-01

    We present a study of dust deposition events and its physical and chemical characteristics in Caucasus Mountains as documented by snow and firn pack at Mt Elbrus. Dust samples were collected from the shallow ice cores and snow pits in 2009-2013 at the western Elbrus plateau (5150 m a.s.l.). Particle size distribution and chemical analysis (major ions, trace elements) were completed for each sample using Coulter Counter Multisizer III, scanning electron microscopy (SEM), IC and ICPMS analysis. It was shown that desert dust deposition occurred in Caucasus 4-8 times a year and originates from the Northern Sahara and the deserts of the Middle East. Analysis of volumetric particle size distributions showed that the modal values ranged between 2 μm and 4 μm although most samples were characterised by modal values of 2.0-2.8 μm with an average of 2.6 μm. These values are lower than those obtained from the ice cores in central and southern Asia following the deposition of long-travelled dust and are closer to those reported for the European Alps and the polar ice cores. All samples containing dust have a single mode which is usually interpreted as a single source region. They do not reveal any significant differences between the Saharan and the Middle Eastern sources. The annual average dust mass concentrations were 10-15 mg kg-1 which is higher than the average concentrations reported for other mountain regions and this was strongly affected by dust deposition events. The deposition of dust resulted in elevated concentrations of most ions, especially Ca2+, Mg2+, K+, and sulphates. Dust originated from multiple sources in the Middle East including Mesopotamia or passing over the Middle East was characterised by the elevated concentrations of nitrates and ammonia which is related to a high atmospheric loads of ammonium emitted by agricultural sources and high concentrations of ammonium in dust originating from this region. By contrast, samples of the Saharan dust showed

  11. Ulysses dust measurements near Jupiter.

    PubMed

    Grün, E; Zook, H A; Baguhl, M; Fechtig, H; Hanner, M S; Kissel, J; Lindblad, B A; Linkert, D; Linkert, G; Mann, I B

    1992-09-11

    Submicrometer- to micrometer-sized particles were recorded by the Ulysses dust detector within 40 days of the Jupiter flyby. Nine impacts were recorded within 50 Jupiter radii with most of them recorded after closest approach. Three of these impacts are consistent with particles on prograde orbits around Jupiter and the rest are believed to have resulted from gravitationally focused interplanetary dust. From the ratio of the impact rate before the Jupiter flyby to the impact rate after the Jupiter flyby it is concluded that interplanetary dust particles at the distance of Jupiter move on mostly retrograde orbits. On 10 March 1992, Ulysses passed through an intense dust stream. The dust detector recorded 126 impacts within 26 hours. The stream particles were moving on highly inclined and apparently hyperbolic orbits with perihelion distances of >5 astronomical units. Interplanetary dust is lost rather quickly from the solar system through collisions and other mechanisms and must be almost continuously replenished to maintain observed abundances. Dust flux measurements, therefore, give evidence of the recent rates of production from sources such as comets, asteroids, and moons, as well as the possible presence of interstellar grains. PMID:11538054

  12. The Galileo dust detector

    NASA Technical Reports Server (NTRS)

    Gruen, E.; Fechtig, H.; Hanner, M. S.; Kissel, J.; Lindblad, B. A.; Linkert, D.; Maas, D.; Morfill, G. E.; Zook, H. A.

    1990-01-01

    The Galileo Dust Detector is intended to provide direct observations of dust grains with masses between 10(sup -19) kg and 10(sup -9) kg in interplanetary space and in the Jovian system, to investigate their physical and dynamical properties as functions of the distances to the Sun, to Jupiter and to its satellites, to study its interaction with the Galilean satellites and the Jovian magnetosphere. Surface phenomena of the satellites (like albedo variations), which might be effects of meteoroid impacts will be compared with the dust environment. Electric charges of particulate matter in the magnetosphere and its consequences will be studied; e.g. the effects of the magnetic field on the trajectories of dust particles and fragmentation of particles due to electrostatic disruption. The investigation is performed with an instrument that measures the mass, speed, flight direction and electric charge of individual dust particles. It is a multi-coincidence detector with a mass sensitivity 10(sup 6) times higher than that of previous in-situ experiments which measured dust in the outer solar system. The instrument weighs 4.2 kg, consumes 2.4 W, and has a normal data transmission rate of 24 bits/s in nominal spacecraft tracking mode. On December 29, 1989 the instrument was switched-on. After the instrument had been configured to flight conditions cruise science data collection started immediately. In the period to May 18, 1990 at least 168 dust impacts have been recorded. For 81 of these dust grains, masses and impact speeds have been determined. First flux values are also given.

  13. Long-range transport of giant particles in Asian dust identified by physical, mineralogical, and meteorological analysis

    NASA Astrophysics Data System (ADS)

    Jeong, G. Y.; Kim, J. Y.; Seo, J.; Kim, G. M.; Jin, H. C.; Chun, Y.

    2014-01-01

    Giant particles transported over long distances are generally of limited concern in atmospheric studies due to their low number concentrations in mineral dust and possible local origin. However, they can play an important role in regional circulation of earth materials due to their enormous volume concentration. Asian dust laden with giant particles was observed in Korea on 31 March 2012, after a migration of about 2000 km across the Yellow Sea from the Gobi Desert. Scanning electron microscopy (SEM) revealed that 20% of the particles exceeded 10 μm in equivalent sphere diameter, with a maximum of 60 μm. The median diameter from the number distribution was 5.7 μm, which was larger than the diameters recorded of 2.5 and 2.9 μm in Asian dust storms in 2010 and 2011, respectively, and was consistent with independent optical particle counter data. Giant particles (>10 μm) contributed about 89% of the volume of the dust in the 2012 storm. Illite-smectite series clay minerals were the major mineral group followed by quartz, plagioclase, K-feldspar, and calcite. The total phyllosilicate content was ~52%. The direct long-range transport of giant particles was confirmed by calcite nanofibers closely associated with clays in a submicron scale identified by high-resolution SEM and transmission electron microscopy. Since giant particles consisted of clay agglomerates and clay-coated quartz, feldspars, and micas, the mineral composition varied little throughout the fine (<5 μm), coarse (5-10 μm), giant-S (10-20 μm), and giant-L (>20 μm) size bins. Analysis of the synoptic conditions of the 2012 dust event and its migration indicated that the mid-tropospheric strong wind belt directly stretching to Korea induced rapid transport of the dust, delivering giant particles. Giant dust particles with high settling velocity would be the major input into the terrestrial and marine sedimentary and ecological systems of East Asia and the western Pacific. Analysis of ancient

  14. Long-range transport of giant particles in Asian dust identified by physical, mineralogical, and meteorological analysis

    NASA Astrophysics Data System (ADS)

    Jeong, G. Y.; Kim, J. Y.; Seo, J.; Kim, G. M.; Jin, H. C.; Chun, Y.

    2013-08-01

    Giant particles transported over long distances are generally of limited concern in atmospheric studies due to their low number concentrations in mineral dust and possible local origin. However, they can play an important role in regional circulation of earth materials due to their enormous volume concentration. Asian dust laden with giant particles was observed in Korea on 31 March 2012, after a migration of about 2000 km across the Yellow Sea from the Gobi Desert. Scanning electron microscopy (SEM) revealed that 20% of the particles exceeded 10 μm in equivalent sphere diameter, with a maximum of 60 μm. The median diameter from the number distribution was 5.7 μm, which was larger than the diameters recorded of 2.5 and 2.9 μm in Asian dust storms in 2010 and 2011, respectively, and was consistent with independent optical particle counter data. Giant particles (> 10 μm) contributed about 89% of the volume of the dust in the 2012 storm. Illite-smectite series clay minerals were the major mineral group followed by quartz, plagioclase, K-feldspar, and calcite. The total phyllosilicate content was ~ 52%. The direct long-range transport of giant particles was confirmed by calcite nanofibers closely associated with clays in a submicron scale identified by high-resolution SEM and transmission electron microscopy. Since giant particles consisted of clay agglomerates and clay-coated quartz, feldspars, and micas, the mineral composition varied little throughout the fine (< 5 μm), coarse (5-10 μm), giant-S (10-20 μm), and giant-L (> 20 μm) size bins. Analysis of the synoptic conditions of the 2012 dust event and its migration indicated that the mid-tropospheric strong wind belt directly stretching to Korea induced rapid transport of the dust, delivering giant particles. Giant dust particles with high settling velocity would be the major input into the terrestrial and marine sedimentary and ecological systems of East Asia and the western Pacific. Analysis of ancient

  15. An integrated coastal model for aeolian and hydrodynamic sediment transport

    NASA Astrophysics Data System (ADS)

    Baart, F.; den Bieman, J.; van Koningsveld, M.; Luijendijk, A. P.; Parteli, E. J. R.; Plant, N. G.; Roelvink, J. A.; Storms, J. E. A.; de Vries, S.; van Thiel de Vries, J. S. M.; Ye, Q.

    2012-04-01

    Dunes are formed by aeolian and hydrodynamic processes. Over the last decades numerical models were developed that capture our knowledge of the hydrodynamic transport of sediment near the coast. At the same time others have worked on creating numerical models for aeolian-based transport. Here we show a coastal model that integrates three existing numerical models into one online-coupled system. The XBeach model simulates storm-induced erosion (Roelvink et al., 2009). The Delft3D model (Lesser et al., 2004) is used for long term morphology and the Dune model (Durán et al., 2010) is used to simulate the aeolian transport. These three models were adapted to be able to exchange bed updates in real time. The updated models were integrated using the ESMF framework (Hill et al., 2004), a system for composing coupled modeling systems. The goal of this integrated model is to capture the relevant coastal processes at different time and spatial scales. Aeolian transport can be relevant during storms when the strong winds are generating new dunes, but also under relative mild conditions when the dunes are strengthened by transporting sand from the intertidal area to the dunes. Hydrodynamic transport is also relevant during storms, when high water in combination with waves can cause dunes to avalanche and erode. While under normal conditions the hydrodynamic transport can result in an onshore transport of sediment up to the intertidal area. The exchange of sediment in the intertidal area is a dynamic interaction between the hydrodynamic transport and the aeolian transport. This dynamic interaction is particularly important for simulating dune evolution at timescales longer than individual storm events. The main contribution of the integrated model is that it simulates the dynamic exchange of sediment between aeolian and hydrodynamic models in the intertidal area. By integrating the numerical models, we hope to develop a model that has a broader scope and applicability than

  16. A seven year record of Saharan dust outbreaks over the Central Mediterranean Sea:chemical characterization, size distribution and optical properties

    NASA Astrophysics Data System (ADS)

    Becagli, Silvia; Marconi, Miriam; Sferlazzo, Damiano; Bommarito, Carlo; Calzolai, Giulia; Chiari, Massimo; di Sarra, Alcide; Gomez-Amo, Jose Louis; Lucarelli, Franco; Meloni, Daniela; Pace, Giandomenico; Traversi, Rita; Severi, Mirko; Udisti, Roberto

    2013-04-01

    Saharan dust largely affects air pollution and climate. This study aims at determining the mineral contribution to PM10 in the Central Mediterranean Sea based on 7 years of PM10 chemical composition measurements at the island of Lampedusa (35.5°N, 12.6° E). Total content and soluble fractions of selected elements and metals are used to characterize the dust events. The soluble + insoluble contribution is determined by PIXE, (Particles Induced X-ray Emission), while the composition of the soluble fraction by ICP-AES, (Inductively coupled plasma - atomic emission spectroscopy) after extraction with HNO3 at pH1.5. The solubility of each element and its size distribution are analyzed with the aim of obtaining information on their sources, mixing processes, and availability for the environment. The Saharan dust contribution to the total PM was estimated by considering Al, Si, Ca, non-sea-salt Na, K and Fe oxides. During strong Saharan dust events PM10 is often higher than 50μg m-3, and the dust contribution is about 50%. The crustal aerosol amount and contribution to PM10 shows a very small seasonal dependence; conversely, the dust optical depth displays an evident annual cycle, with a strong summer maximum (monthly average aerosol optical depth at 500 nm as large as 0.28 in June-August). We found that only 49% of the events identified from optical properties over the air column display a high dust content at the ground level, demonstrating that Saharan dust transport frequently occurs above the marine boundary layer, with negligible or small impact on the surface aerosol properties. The average size distribution obtained by Optical Particle Counter during the days with high mineral content comprises three modes, whose median radii are at about 0.29 um, 2.2 um, and 7.2 um, respectively. Solubility of each elements present a large variability in the condition of extraction, but usually in Saharan dust events the solubility is lower than in non-Saharan dust events

  17. Distribution of Atmospheric Mineral Dust across Dryland Ecosystems (Invited)

    NASA Astrophysics Data System (ADS)

    Reynolds, R. L.; Goldstein, H.; Miller, M. E.; Neff, J. C.; Fernandez, D.; Reheis, M. C.

    2010-12-01

    Deposited atmospheric dust in surface sediments of dry landscapes can be identified using geochemical, isotopic, mineralogical, and textural methods that provide compositional contrasts between surficial sediment and local bedrock. In some settings, detrital minerals that are present in surficial sediment but absent in nearby bedrock can be used as proxies for concentration of far-traveled dust. For example, silt-sized, titanium-bearing magnetite is found in silty sediment on high, isolated landforms underlain by Mesozoic and Paleozoic sandstone, which lack such magnetite, from the Mojave Desert eastward across the Colorado Plateau. Magnetite amounts within the top 10 cm of these sediments correlate (r2= 0.54) with amounts of potential plant nutrients, revealing the importance of mineral dust to fertility across ecosystems. Systematic eastward declines in magnetite (determined using magnetic susceptibility or isothermal remanent magnetization, IRM) and Ti indicate dominant dust sources from igneous terrain in the west. Variations in lead isotopes imply that most anthropogenic dust contributions are sourced from the west, consistent with the regional distribution of urban sources. Similar relations are found across gently sloping, dominantly sandy grassland surfaces that have undergone sediment sorting by aeolian and slope-wash processes. In undisturbed settings, fertility indicators and dust amounts (derived from IRM) correlate tightly (r2 as high as 0.96 between IRM and plant nutrients), and the dust amounts are significantly greater than for settings currently grazed by domestic livestock and even those at which grazing ceased 35 years ago. These results, complemented by other field and compositional studies, reveal that disturbance of dry, upland landscapes commonly promotes wind erosion, which then depletes surfaces of originally deposited dust, including aeolian magnetite. Declines in soil fertility, soil fines, and water-holding capacity in these settings can

  18. Dust Storm

    Atmospheric Science Data Center

    2013-04-16

    ... contrast strongly with the dust storm that swept across Iraq and Saudi Arabia on May 13, 2004 (bottom panels). These data products from ... as yellowish ripples that obscure a large part of southern Iraq. The dust is easy to discern over the dark waters of the teardrop-shaped ...

  19. Mars Atmospheric Chemistry in Electrified Dust Devils and Storms

    NASA Technical Reports Server (NTRS)

    Farrell, W. M.; Delory, G. T.; Atreya, S. K.; Wong, A.-S.; Renno, N. O.; Sentmann, D. D.; Marshall, J. G.; Cummer, S. A.; Rafkin, S.; Catling, D.

    2005-01-01

    Laboratory studies, simulations and desert field tests all indicate that aeolian mixing dust can generate electricity via contact electrification or "triboelectricity". In convective structures like dust devils or storms, grain stratification (or charge separation) occurs giving rise to an overall electric dipole moment to the aeolian feature, similar in nature to the dipolar electric field generated in terrestrial thunderstorms. Previous simulation studies [1] indicate that this storm electric field on Mars can approach atmospheric breakdown field strength of 20 kV/m. In terrestrial dust devils, coherent dipolar electric fields exceeding 20 kV/m have been measured directly via electric field instrumentation. Given the expected electrostatic fields in Martian dust devils and storms, electrons in the low pressure CO2 gas can be energized via the electric field to values exceeding the electron dissociative attachment energy of both CO2 and H2O, resulting in the formation of new chemical products CO and O- and OH and H- within the storm. Using a collisional plasma physics model we present a calculation of the CO/O- and OH/H- reaction and production rates. We demonstrate that these rates vary geometrically with ambient electric field, with substantial production of dissociative products when fields approach breakdown levels of 20-30 kV/m.

  20. Coeval dust accumulation minima in Greenland and East Central Europe over 31-23 ka

    NASA Astrophysics Data System (ADS)

    Újvári, Gábor; Stevens, Thomas; Varga, György; Kovács, János; Molnár, Mihály

    2016-04-01

    , together with the bulk loess median grain size (D50bulk) that is considered an integrated proxy of wind strength, dust source distance, aridity and vegetation cover. While an increase of dust flux and D50bulk with time is apparent, such a trend cannot be seen in the quartz grain size measures (D50quartz). This observation may imply that wind speeds were relatively constant in the studied time interval, while the turbulence of the flow may have been extremely varying (i.e. strong/rapid changes in the frequency/magnitude of dust storm events). A striking feature of the MAR record is that accumulation minima in the Dunaszekcsö record are synchronous with the Greenland Interstadials (GI-5.1 to GI-3). Subsequent Ca2+ minima in the NGRIP record at 26.22 and 25.02 ka (b2k) are also coeval with the MAR minima in the studied loess sequence. At the same time, these patterns are barely visible in the bulk and quartz grain size records. We speculate that the synchronous changes in the NGRIP Ca2+ and the Dunaszekcsö MAR records are results of millennial scale variations in the activity of Northern Hemisphere dust emitting regions shown in two archives from different environments. The very similar timing of MAR minima (and also some of the maxima) suggest a rapid aeolian system response in East Central Europe to abrupt climatic changes in the North Atlantic. Although such a synchronicity does not prove a Central European dust source to Greenland, it is consistent with this possibility. This study was supported by the OTKA PD-108639 grant and the Bolyai János Research Fellowship (both to GÚ). [1] Dansgaard, W., et al. (1993). Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364, 218-220. [2] Johnsen, S.J., et al. (1992). Irregular glacial interstadials recorded in a new Greenland ice core. Nature 359, 311-313. [3] Rasmussen, S.O., et al. (2014). A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three

  1. Atmospheric significance of aeolian salts in the sandy deserts of northwestern China

    NASA Astrophysics Data System (ADS)

    Zhu, B.-Q.

    2016-02-01

    Large sandy deserts in the middle latitudes of northwestern China were investigated for soluble salt variations in modern and ancient aeolian sediments, aiming to explore the environmental significance of "aeolian salts". Results revealed that aeolian salt variations have a clear relationship with the changing meridional and zonal gradients of the desert locations and the aeolian differentiation effect, but are weakly linked to local geological conditions. Atmospheric depositions of water-soluble chemical species are an important process/source contributing to aeolian salt. Sequential variations of soluble salts in sedimentary profiles interbedded with aeolian and non-aeolian deposits and their palaeoenvironmental implications in the hinterland areas of these deserts were further evaluated, based on the constraints of OSL dating and radiocarbon dating data. The results indicate that inorganic salts may be a latent geoproxy in revealing regional palaeoclimatic changes in desert areas for sediments deposited under a single depositional environment, but the interpretation should be more cautious for sediments deposited under diverse depositional conditions. This study presents evidence of the atmospheric origin of aeolian salt in sandy deserts, with limited climatic significance in palaeoenvironmental reconstruction.

  2. Andromeda's dust

    SciTech Connect

    Draine, B. T.; Aniano, G.; Krause, Oliver; Groves, Brent; Sandstrom, Karin; Klaas, Ulrich; Linz, Hendrik; Rix, Hans-Walter; Schinnerer, Eva; Schmiedeke, Anika; Walter, Fabian; Braun, Robert; Leroy, Adam E-mail: ganiano@ias.u-psud.fr

    2014-01-10

    Spitzer Space Telescope and Herschel Space Observatory imaging of M31 is used, with a physical dust model, to construct maps of dust surface density, dust-to-gas ratio, starlight heating intensity, and polycyclic aromatic hydrocarbon (PAH) abundance, out to R ≈ 25 kpc. The global dust mass is M {sub d} = 5.4 × 10{sup 7} M {sub ☉}, the global dust/H mass ratio is M {sub d}/M {sub H} = 0.0081, and the global PAH abundance is (q {sub PAH}) = 0.039. The dust surface density has an inner ring at R = 5.6 kpc, a maximum at R = 11.2 kpc, and an outer ring at R ≈ 15.1 kpc. The dust/gas ratio varies from M {sub d}/M {sub H} ≈ 0.026 at the center to ∼0.0027 at R ≈ 25 kpc. From the dust/gas ratio, we estimate the interstellar medium metallicity to vary by a factor ∼10, from Z/Z {sub ☉} ≈ 3 at R = 0 to ∼0.3 at R = 25 kpc. The dust heating rate parameter (U) peaks at the center, with (U) ≈ 35, declining to (U) ≈ 0.25 at R = 20 kpc. Within the central kiloparsec, the starlight heating intensity inferred from the dust modeling is close to what is estimated from the stars in the bulge. The PAH abundance reaches a peak q {sub PAH} ≈ 0.045 at R ≈ 11.2 kpc. When allowance is made for the different spectrum of the bulge stars, q {sub PAH} for the dust in the central kiloparsec is similar to the overall value of q {sub PAH} in the disk. The silicate-graphite-PAH dust model used here is generally able to reproduce the observed dust spectral energy distribution across M31, but overpredicts 500 μm emission at R ≈ 2-6 kpc, suggesting that at R = 2-6 kpc, the dust opacity varies more steeply with frequency (with β ≈ 2.3 between 200 and 600 μm) than in the model.

  3. Temperature and humidity measurements within desert barchan sand dunes, relation to dune aeolian mobility and microbial growth

    NASA Astrophysics Data System (ADS)

    Louge, Michel; Hay, Anthony; Richer, Renee; Valance, Alexandre; Ould el Moctar, Ahmed; Xu, Jin; Abdul-Majid, Sara

    2013-04-01

    We present diurnal variations of temperature and humidity profiles below the surface of hyper-arid aeolian crescent-shaped "barchan" dunes in Qatar and Mauritania, measured using a thermal probe and a new ultra-sensitive capacitance instrument that we developed for this purpose. We also report long-term measurements from a probe sunk on the downwind avalanche face of a mobile Qatar barchan, recording temperature and humidity until it emerged on the upwind slope 15 months later. We interpret the data by modeling heat and moisture transfer at the surface in terms of measured net surface radiation, wind, and atmospheric conditions. We demonstrate the presence of microbes on sand grains within these mobile dunes using microscopic observations, fluorescence counts, metagenomic sequencing, and C12/C13 isotope analysis of carbon dioxide sampled below the surface. By determining how water activity grows with moisture adsorbed on these sands, we delimit regions within the dune where our instruments recorded humidity conducive to microbial growth. Finally, we compare the mobility of two adjacent Mauritania barchans having distinct surface grain size, shape, and depth humidity profiles. Armored by large grains on its surface, the smaller dune was more oblong. As a result, it lacked flow recirculation in its wake, trapped less aeolian sand downwind, and was much less mobile than its smaller size would suggest. This slower mobility led to greater humidity and cohesion at depth than the larger dune exposed to the same atmospheric and wind conditions.

  4. Coastal chevron deposits - sedimentology, methods and aeolian versus tsunamigenic origin

    NASA Astrophysics Data System (ADS)

    Spiske, Michaela; Garcia Garcia, Anna-Marietta; Tsukamoto, Sumiko; Schmidt, Volkmar

    2013-04-01

    The origin of v-shaped sediment bodies, so-called "chevrons", is currently controversially discussed. The term "chevron" is presently only defined in terms of the morphology of the sediment body, but not in terms of its genesis. Both an aeolian and an impact-tsunami origin are discussed. In this study, the sedimentology and origin of chevrons is investigated, examining deposits from the US west coast and the coast of Western Australia. We use internal structures obtained in trenches or by ground penetrating radar surveys, trenches, ages gained by radiocarbon and optically stimulated luminescence dating, grain size analysis and the general sediment composition. If the chevrons were deposited by a tsunami, all chevrons along one coastline should possess the same depositional ages, the grain-size distribution should be polymodal indicating various sediment sources and internal structures should be restricted mainly to normal grading. In case of an aeolian origin, the ages of the individual chevrons may vary and internal ages will reflect the migration of the sediment body. Furthermore, cross bedding should be present throughout the sediment body and soil horizons may represent inactive phases. Preliminary results indicate the presence of internal cross bedding and an unimodal grain-size distribution of the surveyed chevrons. Ages decrease in landward transport direction and to the top within vertical successions. At some locations soil layers intercalate between well sorted sands. The mean grain size of the chevron sands is 0.11-0.25 mm. A comparison of the chevron components with the mineral content of possible sediment sources (e.g., rivers, beaches, cliffs) shows that the chevrons are composed of the fine grain size fraction of the respective sources. Sediments of this grain size can easily be transported by aeolian forces under the local prevailing wind conditions. Terrestrial gastropods found within the chevrons give evidence of a long term development of these

  5. Aeolian sand ripples: experimental study of fully developed states.

    PubMed

    Andreotti, Bruno; Claudin, Philippe; Pouliquen, Olivier

    2006-01-20

    We report an experimental investigation of aeolian sand ripples, performed both in a wind tunnel and on stoss slopes of dunes. Starting from a flat bed, we can identify three regimes: appearance of an initial wavelength, coarsening of the pattern, and finally saturation of the ripples. We show that both initial and final wavelengths, as well as the propagative speed of the ripples, are linear functions of the wind velocity. Investigating the evolution of an initially corrugated bed, we exhibit nonlinear stable solutions for a finite range of wavelengths, which demonstrates the existence of a saturation in amplitude. These results contradict most of the models. PMID:16486644

  6. Dynamics of Late Quaternary North African humid periods documented in the clay mineral record of central Aegean Sea sediments

    NASA Astrophysics Data System (ADS)

    Ehrmann, Werner; Seidel, Martin; Schmiedl, Gerhard

    2013-08-01

    The ratio between the clay minerals kaolinite and chlorite has been investigated in high resolution in a late Quaternary sediment core from the central Aegean Sea. The record spans the last ca. 105 ka. The kaolinite/chlorite ratio was used to reconstruct the fine-grained aeolian dust influx from the North African deserts, mainly derived from desiccated lake depressions. It therewith can be used as a proxy for wind activity, aridity and vegetation cover in the source area. The data document three major humid phases in North Africa bracketing the formation of sapropel layers S4, S3 and S1. They occur at > 105-95 ka, 83.5-72 ka and 14-2 ka. The first two phases are characterised by relatively abrupt lower and upper boundaries suggesting a non-linear response of vegetation to precipitation, with critical hydrological thresholds. In contrast, the onset and termination of the last humid period were more gradual. Highest kaolinite/chlorite ratios indicating strongest aeolian transport and aridity occur during Marine Isotope Stage (MIS) 5b, at ca. 95-84 ka. The long-term decrease in kaolinite/chlorite ratios during the last glacial period indicates a gradual decline of deflatable lake sediments in the source areas.

  7. Responses of aeolian desertification to a range of climate scenarios in China

    NASA Astrophysics Data System (ADS)

    Wang, Xunming; Hua, Ting; Ma, Wenyong

    2016-06-01

    Aeolian desertification plays an important role in earth-system processes and ecosystems, and has the potential to greatly impact global food production. The occurrence of aeolian desertification has traditionally been attributed to increases in wind speed and temperature and decreases in rainfall. In this study, by integrating the aeolian desertification monitoring data and climate and vegetation indices, we found that although aeolian desertification is influenced by complex climate patterns and human activities, increases in rainfall and temperature and decreases in wind speed may not be the key factors of aeolian desertification controls in some regions of China. Our results show that, even when modern technical approaches are used, different approaches to desertification need to be applied to account for regional differences. These results have important implications for future policy decisions on how best to combat desertification.

  8. Post-disturbance dust emissions in dry lands: the role of anthropogenic and climatic factors

    NASA Astrophysics Data System (ADS)

    Ravi, S.; Zobeck, T. M.; Sankey, J. B.

    2012-12-01

    Disturbances, which cause a temporary reduction in vegetation cover, can greatly accelerate soil erosion by wind and subsequent dust emissions from desert grasslands and shrublands. These ecosystems worldwide are threatened by contemporary shifts in vegetation composition (e.g. encroachment by shrubs, invasion by exotic grasses) and climatic changes (e.g. increase in aridity, droughts), which alter the frequency and intensity of disturbances and dust emissions. Considering the deleterious impact of dust-borne contaminants on regional air quality and human health, accelerated post-disturbance aeolian transport is an increasingly serious concern for ecosystem management and risk assessment. Here, using extensive wind tunnel studies, field experiments (in grasslands and shrublands of North America) and modeling, we investigated the role of disturbances (fires, grazing) and changes in hydroclimatic factors (air humidity, soil moisture) in altering aeolian processes in desert grassland and shrublands. Our results indicate that the degree of post-disturbance aeolian transport and its attenuation with time was found to be strongly affected by the antecedent vegetation type and post-disturbance climatic conditions. The interactions among sediment transport processes, disturbances and hydroclimatic factors are explored from patch to landscape scales and their roles in dust emissions and land degradation are discussed.

  9. Climatology of the Middle East dust events

    NASA Astrophysics Data System (ADS)

    Rezazadeh, M.; Irannejad, P.; Shao, Y.

    2013-09-01

    Major sources of dust in the Middle East have been identified by analyzing the surface meteorological records from weather stations for the period 1998-2003. The geographical distribution, possible sources, and the wind patterns favoring the occurrence of four different types of dust events, i.e. dust-in-suspension, blowing dust, dust storm and severe dust storm, are examined. Four major regions of dust events are found in the study domain. These regions cover Sudan, parts of Saudi Arabia and Iraq, Pakistan, and parts of Iran and Afghanistan. The highest frequency of dust events occurs in Sudan, where the number of dust-in-suspension and severe dust storm is maximum. These events generally occur when north-easterly and north-westerly winds of less than 8 ms-1 prevail. The maximum numbers of blowing dust and dust storm are observed over Iran and Afghanistan as a result of strong north-westerlies, known as Sistan's 120-day winds. The highest values of mean dust concentration, estimated based on visibility, are found in Pakistan. The region of Saudi Arabia and Iraq are associated with relatively strong wind speeds during dust events that may carry dust particles from the sources. Because the synoptic features responsible for dust emission are different, the peak of the seasonal cycle of dust events occurs in different months of the year in different dust source regions. The major sources of dust are seen in the western parts of the domain during the winter months and shift to the east progressing towards the summer.

  10. Biodiversity impact of the aeolian periglacial geomorphologic evolution of the Fontainebleau Massif (France)

    NASA Astrophysics Data System (ADS)

    Thiry, M.; Liron, M. N.

    2009-04-01

    Landscape features The geomorphology of the Fontainebleau Massif is noteworthy for its spectacular narrow ridges, up to 10 km long and 0.5 km wide, armored by tightly cemented sandstone lenses and which overhang sandy depressions of about 50m. Denudation of the sandstone pans lead to a highly contrasted landscape, with sandstone ridges ("platières") towering sandy depressions ("vallées") and limestone plateaus ("monts"). This forms the geological frame of the spectacular sceneries of the Fontainebleau Massif (Thiry & Liron, 2007). Nevertheless, there is little know about the erosive processes that have built-up these landscapes. Periglacial processes, and among them aeolian ones, appear significant in the development of the Fontainebleau Massif physiography. The periglacial aeolian geomorphology Dunes and dune fields are known since long and cover about 15% to 25% of the Fontainebleau Massif. The aeolian dunes developed as well on the higher parts of the landscape, as well as in the lower parts of the landscape. The dunes are especially well developed in the whole eastern part of the massif, whereas the western part of the massif is almost devoid of dunes. Nevertheless, detailed mapping shows that dunes can locally be found in the western district, they are of limited extension, restricted to the east facing backslope of outliers. Loamy-sand covers the limestone plateaus of the "monts". The loam cover is of variable thickness: schematically thicker in the central part of the plateaus, where it my reach 3 m; elsewhere it may thin down to 0,20-0,30 m, especially at the plateau edges. Blowout hollows are "negative" morphologies from where the sand has been withdrawed. Often these blowouts are decametric sized and well-delimited structures. Others, more complex structures, are made up of several elongated hectometric hollows relaying each other from and which outline deflation corridor more than 1 km long. A characteristic feature of these blowout hollows is the

  11. Factors controlling magnetism of reddish brown soil profiles from calcarenites in Southern Spain: Dust input or in-situ pedogenesis?

    NASA Astrophysics Data System (ADS)

    Liu, Qingsong; Zhang, Chunxia; Torrent, José; Barrón, Vidal; Hu, Pengxiang; Jiang, Zhaoxia; Duan, Zongqi

    2016-05-01

    Under aerobic conditions, the A and B horizons of soils are magnetically enhanced due to neoformation of ferrimagnets through pedogenesis. This study systematically investigated soils developed on calcarenites of Neogene age in southern Spain to determine the dominant factors controlling the soil magnetism. Geochemical and clay mineral analyses indicate that aeolian dust significantly contribute to the A and B horizon material of the Spanish soil. Nevertheless, the magnetic enhancement of soils can be simply attributed to the pedogenically produced ferrimagnets in-situ. Therefore, the magnetism of Spanish soils is still linked to paleoclimatic variations regardless of the complexities of aeolian inputs from the Northwestern Africa.

  12. Transport of Alaskan Dust into the Gulf of Alaska and Comparison with Similar High-Latitude Dust Environments

    NASA Technical Reports Server (NTRS)

    Crusium, John; Levy, Rob; Wang, Jun; Campbell, Rob; Schroth, Andrew W.

    2012-01-01

    Transport of Alaskan dust into the Gulf of Alaska and comparison with similar high-latitude dust environments. An airborne flux of the micronutrient iron, derived from dust originating from coastal regions may be an important contributor of iron to the Gulf of Alaska's (GoA) oligotrophic waters. Dust blowing off glacier termini and dry riverbeds is a recurring phenomenon in Alaska, usually occurring in the autumn. Since previous studies assumed that dust originating in the deserts of Asia was the largest source of . airborne iron to the GoA, the budget of aeolian deposition of iron needs to be reassessed. Since late 20 I 0, our group has been monitoring dust activity using satellites over the Copper River Delta (CRD) where the most vigorous dust plumes have been observed. Since 2011, sample aerosol concentration and their composition are being collected at Middleton Island (100km off shore of CRD). This presentation will show a summary of the ongoing dust observations and compare with other similar environments (Patagonia, Iceland) by showing case studies. Common features will be highlighted

  13. Aeolian n-alkane isotopic evidence from North Pacific for a Late Miocene decline of C4 plant in the arid Asian interior

    NASA Astrophysics Data System (ADS)

    Jia, Guodong; Li, Zhiyang; Peng, Ping'an; Zhou, Liping

    2012-03-01

    Aeolian deposition in the central North Pacific has been well recognized to originate from arid Asian interior. While there is no doubt about the transport of organic matters along with the mineral dust from the source region, little is known about the nature and changes of the terrestrial organic compounds preserved in the deep sea sediments. In this study, higher plant leaf wax n-alkanes from ODP Site 1208 and Site 886 in the North Pacific since the middle Miocene were analyzed to explore long-term changes in vegetation and climate in the source region. Accumulation rates of leaf wax n-alkanes show an increasing trend, consistent with the documented climatic drying of the Asian interior since the late Miocene. The records of carbon isotopic enrichment factors of C29n-alkane relative to atmospheric CO2 (ɛC29-CO2) show a prominent decrease from ~ 12 to ~ 8 Ma. The average ɛC29-CO2 value prior to ~ 8 Ma is 0.8‰ heavier than after ~ 8 Ma. Although almost all values of ɛC29-CO2 (- 25.3 to - 21.3‰) are well within the range of C3 plants, adjustment of isotope discrimination by C3 plants is not considered as the main cause of the observed variations. Instead, changes in relative abundance of C3 vs. C4 plants are invoked to interpret the ɛC29-CO2 records. Higher C4 contribution (17.7 ± 5.3%) to the local vegetation is inferred for the period prior to ~ 8 Ma, implying a slightly warmer climate in the source region. A marked decline in C4 plants from ~ 12 to ~ 8 Ma, interpreted as a result of regional temperature drop, coincides with the prominent growth of northern Tibetan Plateau around 8 Ma, along with the global cooling climate. Our results therefore point to apparently close links among plateau uplift, development of drying and cooling climates, and vegetation changes in the Asian interior.

  14. Dust and Sand Mixing

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Released 10 November 2003

    The bright and dark tones observed in this THEMIS image of part of an unnamed impact crater (85 km in diameter) near the larger impact crater Schiaparelli are due to variable amounts of bright dust and dark sand covering the surface. Wind Shadows observed around small impact craters at the top of the image and small grooves and ripple-like marks observed throughout the scene illustrate dynamic and continued aeolian processes on Mars.

    Image information: VIS instrument. Latitude -1.4, Longitude 10.9 East (349.1 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  15. The Ulysses dust experiment

    NASA Technical Reports Server (NTRS)

    Gruen, E.; Fechtig, H.; Giese, R. H.; Kissel, J.; Maas, D.; McDonnell, A. M.; Morfill, G.; Schwehm, G.; Zook, H. A.

    1992-01-01

    The Ulysses dust experiment is intended to provide direct observations of dust grains with masses between 10(exp -16) g and 10(exp -6) g in interplanetary space, to investigate their physical and dynamical properties as functions of heliocentric distance and ecliptic latitude. Of special interest is the question of what portion is provided by comets, asteroids and interstellar particles. The investigation is performed with an instrument that measures the mass, speed, flight direction, and electric charge of individual dust particles. It is a multicoincidence detector with a mass sensitivity 10(exp 6) times higher than that of previous in-situ experiments which measured dust in the outer solar system. The instrument weighs 3.8 kg, consumes 2.2 W, and has a normal data transmission rate of 8 bits/s in nominal spacecraft tracking mode. On 27 Oct. 1990 the instrument was switched on. The instrument was configured to flight conditions, and science data collection started immediately. At least 44 dust impacts had been recorded by 13 Jan. 1991. Flux values are given covering the heliocentric distance range from 1.04 to 1.7 AU.

  16. Exozodiacal dust

    NASA Astrophysics Data System (ADS)

    Kuchner, Marc Jason

    Besides the sun, the most luminous feature of the solar system is a cloud of "zodiacal" dust released by asteroids and comets that pervades the region interior to the asteroid belt. Similar clouds of dust around other stars---exozodiacal clouds---may be the best tracers of the habitable zones of extra-solar planetary systems. This thesis discusses three searches for exozodiacal dust: (1) We observed six nearby main-sequence stars with the Keck telescope at 11.6 microns, correcting for atmosphere-induced wavefront aberrations and deconvolving the point spread function via classical speckle analysis. We compare our data to a simple model of the zodiacal dust in our own system based on COBE DIRBE observations and place upper limits on the density of exozodiacal dust in these systems. (2) We observed Sirius, Altair, and Procyon with the NICMOS Coronagraph on the Hubble Space Telescope to look for scattered light from exozodiacal dust and faint companions within 10 AU from these stars. (3) The planned nulling capability of the Keck Interferometer should allow it to probe the region <200 milliarcsecond from a bright star and to suppress on-axis starlight by factors of 10 -3 to reveal faint circumstellar material. We model the response of the Keck Interferometer to hypothetical exozodiacal clouds to derive detection limits that account for the effects of stellar leakage, photon noise, noise from null depth fluctuations, and the fact that the cloud's shape is not known a priori. We also discuss the interaction of dust with planets. We used the COBE DIRBE Sky and Zodi Atlas and the IRAS Sky Survey Atlas to search for dynamical signatures of three different planets in the solar system dust complex: (1) We searched the COBE DIRBE Sky and Zodi Atlas for a wake of dust trailing Mars. We compare the DIRBE images to a model Mars wake based on the empirical model of the Earth's wake as seen by the DIRBE. (2) We searched the COBE DIRRE Sky and Zodi Atlas for Tiojan dust near

  17. Element geochemical analysis of the contribution of aeolian sand to suspended sediment in desert stream flash floods.

    PubMed

    Jia, Xiaopeng; Wang, Haibing

    2014-01-01

    The interaction of wind and water in semiarid and arid areas usually leads to low-frequency flash flood events in desert rivers, which have adverse effects on river systems and ecology. In arid zones, many aeolian dune-fields terminate in stream channels and deliver aeolian sand to the channels. Although aeolian processes are common to many desert rivers, whether the aeolian processes contribute to fluvial sediment loss is still unknown. Here, we identified the aeolian-fluvial cycling process responsible for the high rate of suspended sediment transport in the Sudalaer desert stream in the Ordos plateau of China. On the basis of element geochemistry data analysis, we found that aeolian sand was similar to suspended sediment in element composition, which suggests that aeolian sand contributes to suspended sediment in flash floods. Scatter plots of some elements further confirm that aeolian sand is the major source of the suspended sediment. Factor analysis and the relation between some elements and suspended sediment concentration prove that the greater the aeolian process, the higher the suspended sediment concentration and the greater the contribution of aeolian sand to suspended sediment yield. We conclude that aeolian sand is the greatest contributor to flash floods in the Sudalaer desert stream. PMID:25089295

  18. Element Geochemical Analysis of the Contribution of Aeolian Sand to Suspended Sediment in Desert Stream Flash Floods

    PubMed Central

    Wang, Haibing

    2014-01-01

    The interaction of wind and water in semiarid and arid areas usually leads to low-frequency flash flood events in desert rivers, which have adverse effects on river systems and ecology. In arid zones, many aeolian dune-fields terminate in stream channels and deliver aeolian sand to the channels. Although aeolian processes are common to many desert rivers, whether the aeolian processes contribute to fluvial sediment loss is still unknown. Here, we identified the aeolian-fluvial cycling process responsible for the high rate of suspended sediment transport in the Sudalaer desert stream in the Ordos plateau of China. On the basis of element geochemistry data analysis, we found that aeolian sand was similar to suspended sediment in element composition, which suggests that aeolian sand contributes to suspended sediment in flash floods. Scatter plots of some elements further confirm that aeolian sand is the major source of the suspended sediment. Factor analysis and the relation between some elements and suspended sediment concentration prove that the greater the aeolian process, the higher the suspended sediment concentration and the greater the contribution of aeolian sand to suspended sediment yield. We conclude that aeolian sand is the greatest contributor to flash floods in the Sudalaer desert stream. PMID:25089295

  19. Microphytobenthic community composition and primary production at gas and thermal vents in the Aeolian Islands (Tyrrhenian Sea, Italy).

    PubMed

    Rogelja, Manja; Cibic, Tamara; Pennesi, Chiara; De Vittor, Cinzia

    2016-07-01

    Sediment samplings were performed to investigate the microphytobenthic community and photosynthetic activity adaptations to gas emissions and higher temperature in the Aeolian Islands during a three-year period (2012-2014). Higher microphytobenthic densities were recorded at the vent stations and values were even more pronounced in relation with high temperature. The gross primary production estimates strongly depended on microphytobenthic abundance values reaching up to 45.79 ± 6.14 mgC m(-2) h(-1). High abundances were coupled with low community richness and diversity. Motile diatom living forms were predominant at all stations and the greatest differences among vent and reference stations were detected on the account of the tychopelagic forms. Morphological deformities and heavily silicified diatom frustules were also observed. A significant influence of the gas emission and high temperature on the phototrophic community was highlighted suggesting the Aeolian Islands as a good natural laboratory for studies on high CO2 and global warming effects. PMID:27155353

  20. Clearing the Martian air - The troubled history of dust storms

    NASA Astrophysics Data System (ADS)

    Martin, L. J.

    1984-03-01

    This note is an attempt to resolve some misconceptions regarding the historical record of the Martian atmospheric phenomena referred to as 'dust storms,' but often called yellow storms, yellow clouds, planetwide dust storms, global dust storms, great dust storms, etc. The known frequency of planet-encircling storms will be specifically addressed. Better knowledge of the sizes, frequencies, and locations of Martian dust storms is needed for atmospheric modeling and for future mission planning.

  1. Relocation and focal mechanisms of earthquakes in the south-central sector of the Aeolian Archipelago: New structural and volcanological insights

    NASA Astrophysics Data System (ADS)

    Gambino, Salvatore; Milluzzo, Vincenzo; Scaltrito, Antonio; Scarfì, Luciano

    2012-02-01

    To recognize possible spatial clusters and identify active seismogenic zones and structures in the Aeolian Archipelago, in the south of Italy, we analyzed the spatial pattern of seismicity between 1993 and 2010 in a selected area comprising Vulcano, Lipari, Salina and Filicudi and calculated 22 fault plane solutions (FPSs) for shocks with magnitude greater than 2.7. First, we computed a 1-D velocity model for this area including information from recorded earthquakes by a joint hypocenter-velocity inversion (Kissling et al., 1994). Successively, we applied the double-difference approach of Waldhauser and Ellsworth (2000), finding that a certain part of the scattered epicenter locations collapse in roughly linear features. Relocated seismicity evidenced three main alignments, oriented NNW-SSE and NE-SW at different depths that concur well with the known tectonic lineaments and focal mechanisms. A detailed discussion is focused on a seismogenetic structure, NE-SW oriented, 3-8 km deep, located in the northern area of Vulcano island. This recognized element could represent a link between magma accumulation zones, thus representing a possible preferential pathway along which magma may intrude. Two earthquake clusters, located south-west and east of Vulcano, with their focal mechanisms, highlight the Aeolian-Tindari-Letojanni Fault System seismic activity and the existence of a transitional zone going from the N-S compressive domain that dominates the Aeolian Islands to the NW-SE extensional domain characterizing the south-eastern Tyrrhenian.

  2. Aeolian Abrasion at the Curiosity Landing Site: Clues to the Role of Wind in Landscape Modification

    NASA Astrophysics Data System (ADS)

    Bridges, N. T.; Le Mouélic, S.; Hallet, B.; Newman, C. E.; Rice, M. S.; Blaney, D. L.; Calef, F. J.; Herkenhoff, K. E.; Langevin, Y.; Lewis, K. W.; Maurice, S.; Pinet, P. C.; Wiens, R. C.; de Pablo, M.; Renno, N. O.

    2013-12-01

    The broad scale geomorphology of Gale Crater reflects diverse aeolian processes, from airfall settling that likely deposited much of the upper and some of the lower units of Mt. Sharp, to evidence of extensive wind exhumation and removal of material exterior to the mound, to active dunes on the crater floor. The integrated effect of aeolian sand transport can also be examined on a much smaller scale by the study of ventifacts, rocks that have been abraded by windborne particles. A diversity of ventifacts are found along Curiosity's traverse through the upper 'hummocky' (HY) geomorphic unit and the lower Yellowknife Bay (YKB) sedimentary rocks. The textures are analogous to abrasion features found on Earth and include cm-scale facets, keels, elongated pits, grooves, flutes, and basal sills. High-resolution images from ChemCam's Remote Micro-Imager also show mm-scale lineations. Evidence of differential erosion is common, with HY conglomerates (e.g., Hottah, Link) and the YKB Sheepbed mudstone unit containing distinct wind tails in the lee of resistant pebbles, and bedding features within Rocknest 3, the YKB Shaler sandstone unit, and other layered rocks displaying prominent ridge-groove topography. ChemCam LIBS depth profile data so far show no strong evidence for chemical differences in the elemental composition between abraded and non-abraded surfaces (as determined from qualitative assessment), as might be expected if there were rock coatings or weathering rinds undergoing active abrasion. Preliminary measurements of ventifact texture and wind tail orientations indicate sandblasting in HY and YKB from predominantly southwesterly and northerly directions, respectively. Based on meso-scale models of current winds and REMS results, SW flow is uncommon whereas N winds are frequent. Compositional and textural information from the suite of MSL instruments indicate that HY rocks are dominated by various types of basalt (either as whole rocks or the resistant clasts in

  3. Characterizing subsurface complexity of aeolian morphotypes with georadar

    NASA Astrophysics Data System (ADS)

    Bentley, Andrew Phillip Keller

    Aeolian landforms are classified based on their plan morphology, which is a function of sediment transport volume, wind direction, and vegetation. In the case of compound landforms or two-dimensional exposures (outcrops), there is insufficient information for discriminating between 3D morphotypes (e.g., barchans vs. parabolic dunes). To characterize the dip-section architecture of near end-member morphologies (interacting barchans and sparsely vegetated parabolics), a series of axial transects were selected from >25 km of high-resolution (500 MHz) ground-penetrating radar (GPR) data from the gypsum dune field of White Sands National Monument, New Mexico. For dunes of comparable size (6-7 m high), a series of attributes were analyzed for unsaturated portions along the thickest (axial) radargram sections. Given the limitations in vertical resolution (7 cm in dry sand), the average measureable slipface thickness in barchans ranged between 10-22 cm, whereas parabolic slipfaces were thinner at 10-14 cm. High-amplitude diffractions produced by buried vegetation, semi-lithified pedestals, and bioturbation structures were rare within barchans (point-source diffraction density = 0.03/m2; hyperbolics per 1-m-wide cross-sectional area of the image), in contrast to a point-source density of 0.07/m2 in parabolics. An aeolian internal complexity threshold (pi) is proposed, which incorporates standardized scores of slipface thickness, point-source diffraction density, and continuity of major bounding surfaces at mesoscale range determined through semivariogram analysis. For the study region, these variables were sufficient for discriminating barchans (pi = -2.39 to -0.25; pib= -1.65) from parabolic (pi = 0.13 to 2.87; pip= 1.65) dunes. This threshold has the potential for differentiating dune morphotypes in areas where surface morphology is masked and for identifying compound landforms (e.g., a re-activated parabolic dune converted into a barchan in situ ). Ultimately

  4. Theoretical analysis of particle number density in steady aeolian saltation

    NASA Astrophysics Data System (ADS)

    Kang, Liqiang; Zou, Xueyong

    2014-01-01

    Particle number density or particle concentration in aeolian saltation is one important input parameter to calculate the sand flux, kinetic energy and mid-air collision probability in the aeolian saltation and particle concentration is also related to the wind erosion capacity, hence, in the present paper, the vertical distribution of particle number density in steady aeolian saltation is analyzed based on two different types of probability density functions of vertical lift-off velocity of saltating particles: one is the PDF (probability density function) of vertical velocity of lift-off particles in the three-dimensional space defined as a type-A PDF which considers the number of particles in various velocity bins per unit volume; and the other is the PDF of vertical velocity of lift-off particles ejected from the sand bed surface in a period of time as a type-B PDF which considers the number flux of particles in various velocity bins per unit surface area. These two types of PDFs are from two different perspectives (i.e., volume- and surface-based perspectives, respectively), and can be deduced from each other. The half-normal and exponential distributions are recommended for the type-A PDF, and the corresponding type-B PDF is expressed by Rayleigh and Gamma(2) distributions. The PDF distribution pattern of vertical velocity of lift-off particles has an important influence on the vertical profile of particle number density. If the type-A PDF of vertical velocity of ejected particles is a half-normal distribution, the particle number density decays exponentially with height. If the type-A PDF is an exponential distribution, the particle number density also decreases with height. If the type-A PDF is Gamma(3) and Rayleigh distributions, the particle number density first increases, then decreases with height. The type-A and type-B height parameters, which are calculated according to the mean vertical lift-off velocity from the type-A and type-B PDFs, respectively

  5. 2-DUST: Dust radiative transfer code

    NASA Astrophysics Data System (ADS)

    Ueta, Toshiya; Meixner, Margaret

    2016-04-01

    2-DUST is a general-purpose dust radiative transfer code for an axisymmetric system that reveals the global energetics of dust grains in the shell and the 2-D projected morphologies of the shell that are strongly dependent on the mixed effects of the axisymmetric dust distribution and inclination angle. It can be used to model a variety of axisymmetric astronomical dust systems.

  6. Oxidant enhancement in martian dust devils and storms: storm electric fields and electron dissociative attachment.

    PubMed

    Delory, Gregory T; Farrell, William M; Atreya, Sushil K; Renno, Nilton O; Wong, Ah-San; Cummer, Steven A; Sentman, Davis D; Marshall, John R; Rafkin, Scot C R; Catling, David C

    2006-06-01

    Laboratory studies, numerical simulations, and desert field tests indicate that aeolian dust transport can generate atmospheric electricity via contact electrification or "triboelectricity." In convective structures such as dust devils and dust storms, grain stratification leads to macroscopic charge separations and gives rise to an overall electric dipole moment in the aeolian feature, similar in nature to the dipolar electric field generated in terrestrial thunderstorms. Previous numerical simulations indicate that these storm electric fields on Mars can approach the ambient breakdown field strength of approximately 25 kV/m. In terrestrial dust phenomena, potentials ranging from approximately 20 to 160 kV/m have been directly measured. The large electrostatic fields predicted in martian dust devils and storms can energize electrons in the low pressure martian atmosphere to values exceeding the electron dissociative attachment energy of both CO2 and H2O, which results in the formation of the new chemical products CO/O- and OH/H-, respectively. Using a collisional plasma physics model, we present calculations of the CO/O- and OH/H- reaction and production rates. We demonstrate that these rates vary geometrically with the ambient electric field, with substantial production of dissociative products when fields approach the breakdown value of approximately 25 kV/m. The dissociation of H2O into OH/H- provides a key ingredient for the generation of oxidants; thus electrically charged dust may significantly impact the habitability of Mars. PMID:16805701

  7. Multiple dust sources in the Sahara Desert: The importance of sand dunes

    NASA Astrophysics Data System (ADS)

    Crouvi, Onn; Schepanski, Kerstin; Amit, Rivka; Gillespie, Alan R.; Enzel, Yehouda

    2012-07-01

    We determine the current sources of dust in the Sahara Desert using quantitative correlation between the number of days with dust storms (NDS), derived from remote-sensing data of high temporal resolution, with the distribution of the soil types and geomorphic units. During 2006-8 the source of over 90% of the NDS was found to be sand dunes, leptosols, calcisols, arenosols, and rock debris. In contrast to previous studies, only few dust storms originated from playas and dry lake beds. Land erodibility was estimated by regressing the NDS to the number of days with high-speed wind events, and was found to be high for sand dunes. Clay and fine-silt grains and aggregates are scarce in sand dunes, which most likely produce dust particles through aeolian abrasion of sand grains. Thus, saltating sand grains impacting clay aggregates on playa surfaces cannot be the sole process for generating dust in the Sahara.

  8. Derivation of an observation-based map of North African dust emission

    NASA Astrophysics Data System (ADS)

    Evan, Amato T.; Fiedler, Stephanie; Zhao, Chun; Menut, Laurent; Schepanski, Kerstin; Flamant, Cyrille; Doherty, Owen

    2015-03-01

    Changes in the emission, transport and deposition of aeolian dust have profound effects on regional climate, so that characterizing the lifecycle of dust in observations and improving the representation of dust in global climate models is necessary. A fundamental aspect of characterizing the dust cycle is quantifying surface dust fluxes, yet no spatially explicit estimates of this flux exist for the World's major source regions. Here we present a novel technique for creating a map of the annual mean emitted dust flux for North Africa based on retrievals of dust storm frequency from the Meteosat Second Generation Spinning Enhanced Visible and InfraRed Imager (SEVIRI) and the relationship between dust storm frequency and emitted mass flux derived from the output of five models that simulate dust. Our results suggest that 64 (±16)% of all dust emitted from North Africa is from the Bodélé depression, and that 13 (±3)% of the North African dust flux is from a depression lying in the lee of the Aïr and Hoggar Mountains, making this area the second most important region of emission within North Africa.

  9. Derivation of an observation-based map of North African dust emission

    SciTech Connect

    Evan, Amato T.; Fiedler, Stephanie; Zhao, Chun; Menut, Laurent; Schepanski, Kerstin; Flamant, C.; Doherty, Owen

    2015-03-01

    Changes in the emission, transport and deposition of aeolian dust have profound effects on regional climate, so that characterizing the lifecycle of dust in observations and improving the representation of dust in global climate models is necessary. A fundamental aspect of characterizing the dust cycle is quantifying surface dust fluxes, yet no spatially explicit estimates of this flux exist for the World’s major source regions. Here we present a novel technique for creating a map of the annual mean emitted dust flux for North Africa based on retrievals of dust storm frequency from the Meteosat Second Generation Spinning Enhanced Visible and InfraRed Imager (SEVIRI) and the relationship between dust storm frequency and emitted mass flux derived from the output of five models that simulate dust. Our results suggest that 64 (±16)% of all dust emitted from North Africa is from the Bodélé depression, and that 13 (±3)% of the North African dust flux is from a depression lying in the lee of the Aïr and Hoggar Mountains, making this area the second most important region of emission within North Africa.

  10. Saharan dust deposition in the Carpathian Basin and its possible effects on interglacial soil formation

    NASA Astrophysics Data System (ADS)

    Varga, György; Cserháti, Csaba; Kovács, János; Szalai, Zoltán

    2016-09-01

    Several hundred tons of windblown dust material are lifted into the atmosphere and are transported every year from Saharan dust source areas towards Europe having an important climatic and other environmental effect also on distant areas. According to the systematic observations of modern Saharan dust events, it can be stated that dust deflated from North African source areas is a significant constituent of the atmosphere of the Carpathian Basin and Saharan dust deposition events are identifiable several times in a year. Dust episodes are connected to distinct meteorological situations, which are also the determining factors of the different kinds of depositional mechanisms. By using the adjusted values of dust deposition simulations of numerical models, the annual Saharan dust flux can be set into the range of 3.2-5.4 g/m2/y. Based on the results of past mass accumulation rates calculated from stratigraphic and sedimentary data of loess-paleosol sequences, the relative contribution of Saharan dust to interglacial paleosol material was quantified. According to these calculations, North African exotic dust material can represent 20-30% of clay and fine silt-sized soil components of interglacial paleosols in the Carpathian Basin. The syngenetic contribution of external aeolian dust material is capable to modify physicochemical properties of soils and hereby the paleoclimatic interpretation of these pedogene stratigraphic units.

  11. Aeolian features and processes at the Mars Pathfinder landing site

    USGS Publications Warehouse

    Greeley, Ronald; Kraft, Michael; Sullivan, Robert; Wilson, Gregory; Bridges, Nathan; Herkenhoff, Ken; Kuzmin, Ruslan O.; Malin, Michael; Ward, Wes

    1999-01-01

    The Mars Pathfinder landing site contains abundant features attributed to aeolian, or wind, processes. These include wind tails, drift deposits, duneforms of various types, ripplelike features, and ventifacts (the first clearly seen on Mars). Many of these features are consistant with formation involving sand-size particles. Although some features, such as dunes, could develop from saltating sand-size aggregates of finer grains, the discovery of ventifact flutes cut in rocks strongly suggests that at least some of the grains are crystalline, rather than aggregates. Excluding the ventifacts, the orientations of the wind-related features correlate well with the orientations of bright wind steaks seen on Viking Orbiter images in the general area. They also correlate with wind direction predictions from the NASA-Ames General Circulation Model (GCM) which show that the strongest winds in the area occur in the northern hemisphere winter and are directed toward 209°. Copyright 1999 by the American Geophysical Union.

  12. Microdunes and other aeolian bedforms on Venus - Wind Tunnel simulations

    NASA Astrophysics Data System (ADS)

    Greeley, R.; Marshall, J. R.; Leach, R. N.

    1984-10-01

    The development of aeolian bedforms in the simulated Venusian environment has been experimentally studied in the Venus Wind Tunnel. It is found that the development of specific bedforms, including ripples, dunes, and 'waves', as well as their geometry, are controlled by a combination of factors including particle size, wind speed, and atmospheric density. Microdunes are formed which are analogous to full-size terrestrial dunes and are characterized by the development of slip faces, internal cross-bedding, a low ratio of saltation path length to dune length, and a lack of particle-size sorting. They begin to develop at wind speeds just above saltation threshold and evolve into waves at higher velocities. At wind speeds of about 1.5 m/sec and higher, the bed is flat and featureless. This evolution is explained by a model based on the interaction of alternating zones of erosion and deposition and particle saltation distances.

  13. Microdunes and Other Aeolian Bedforms on Venus: Wind Tunnel Simulations

    NASA Technical Reports Server (NTRS)

    Greeley, R.; Marshall, J. R.; Leach, R. N.

    1985-01-01

    The development of aeolian bedforms in the simulated Venusian environment has been experimentally studied in the Venus Wind tunnel. It is found that the development of specific bedforms, including ripples, dunes, and waves, as well as their geometry, are controlled by a combination of factors including particle size, wind speed, and atmospheric density. Microdunes are formed which are analogous to full-size terrestrial dunes and are characterized by the development of slip faces, internal cross-bedding, a low ratio of saltation path length to dune length, and a lack of particle-size sorting. They begin to develop at wind speeds just above saltation threshold and evolve into waves at higher velocities. At wind speeds of about 1.5 m/sec and higher, the bed is flat and featureless. This evolution is explained by a model based on the interaction of alternating zones of erosion and deposition and particle saltation distances.

  14. Microdunes and other aeolian bedforms on Venus - Wind Tunnel simulations

    NASA Technical Reports Server (NTRS)

    Greeley, R.; Marshall, J. R.; Leach, R. N.

    1984-01-01

    The development of aeolian bedforms in the simulated Venusian environment has been experimentally studied in the Venus Wind Tunnel. It is found that the development of specific bedforms, including ripples, dunes, and 'waves', as well as their geometry, are controlled by a combination of factors including particle size, wind speed, and atmospheric density. Microdunes are formed which are analogous to full-size terrestrial dunes and are characterized by the development of slip faces, internal cross-bedding, a low ratio of saltation path length to dune length, and a lack of particle-size sorting. They begin to develop at wind speeds just above saltation threshold and evolve into waves at higher velocities. At wind speeds of about 1.5 m/sec and higher, the bed is flat and featureless. This evolution is explained by a model based on the interaction of alternating zones of erosion and deposition and particle saltation distances.

  15. Downslope coarsening in aeolian grainflows of the Navajo Sandstone

    NASA Astrophysics Data System (ADS)

    Loope, David B.; Elder, James F.; Sweeney, Mark R.

    2012-07-01

    Downslope coarsening in grainflows has been observed on present-day dunes and generated in labs, but few previous studies have examined vertical sorting in ancient aeolian grainflows. We studied the grainflow strata of the Jurassic Navajo Sandstone in the southern Utah portion of its outcrop belt from Zion National Park (west) to Coyote Buttes and The Dive (east). At each study site, thick sets of grainflow-dominated cross-strata that were deposited by large transverse dunes comprise the bulk of the Navajo Sandstone. We studied three stratigraphic columns, one per site, composed almost exclusively of aeolian cross-strata. For each column, samples were obtained from one grainflow stratum in each consecutive set of the column, for a total of 139 samples from thirty-two sets of cross-strata. To investigate grading perpendicular to bedding within individual grainflows, we collected fourteen samples from four superimposed grainflow strata at The Dive. Samples were analyzed with a Malvern Mastersizer 2000 laser diffraction particle analyser. The median grain size of grainflow samples ranges from fine sand (164 μm) to coarse sand (617 μm). Using Folk and Ward criteria, samples are well-sorted to moderately-well-sorted. All but one of the twenty-eight sets showed at least slight downslope coarsening, but in general, downslope coarsening was not as well-developed or as consistent as that reported in laboratory subaqueous grainflows. Because coarse sand should be quickly sequestered within preserved cross-strata when bedforms climb, grain-size studies may help to test hypotheses for the stacking of sets of cross-strata.

  16. Mean flow and Reynolds stress structure over aeolian ripples

    NASA Astrophysics Data System (ADS)

    Li, Bailiang; McKenna Neuman, Cheryl; Bédard, Otto; O'Brien, Patrick

    2015-04-01

    Mean flow and turbulence structure on transverse ripples have been well documented in hydrodynamic literature. However, very few studies have described the flow characteristics over aeolian ripples. This study adopted laser Doppler anemometry (LDA) to measure the wind field above granular ripples with different bimodal particle size distributions in a wind tunnel. Multiple runs were conducted to examine the vertical profiles of time-averaged horizontal and vertical velocities and Reynolds stress above four different locations: crest, lee slope, trough, and stoss slope. The rippled sand bed has a fine beige fraction with grain size smaller than 0.542 mm concentrated in the troughs and a coarse fraction dyed in red with grain size greater than 0.542 mm concentrated in the crests. The magnitude of the ripples at equilibrium is controlled by both wind velocity and the ratio of beige sand to red sand. Freestream velocity has a range between 8-11 m/s (above the saltation threshold of beige sand and below the threshold of red sand) and the percentage coarse by mass varies from 5.2% to 27.5% with median grain size from 0.289 mm to 0.399 mm. Experimental results indicate that the ripples have the wave length ranged between 20 mm and 140 mm with a characteristic ripple index (wave length/wave height) of 15. Flow streamlines are generally parallel to the bed surface, which is inconsistent with previous hydrodynamic observations that a return flow is usually found at the lee side of the ripples. Reynolds stress has demonstrated a strong spatial differentiation near the sand surface: greatest at crests and smallest at the troughs, however, this difference diminishes with elevation. This is an exploratory study on the turbulence characteristics of air flow above aeolian ripples, and we believe the finding of this research will enhance the understanding the interaction mechanisms between the air and bed morphology.

  17. Changes in the Airborne Bacterial Community in Outdoor Environments following Asian Dust Events

    PubMed Central

    Yamaguchi, Nobuyasu; Park, Jonguk; Kodama, Makiko; Ichijo, Tomoaki; Baba, Takashi; Nasu, Masao

    2014-01-01

    Bacterial abundance and community compositions have been examined in aeolian dust in order to clarify their possible impacts on public health and ecosystems. The influence of transcontinentally transported bacterial cells on microbial communities in the outdoor environments of downwind areas should be determined because the rapid influx of a large amount of bacterial cells can disturb indigenous microbial ecosystems. In the present study, we analyzed bacteria in air samples (approximately 100 m3 d−1) that were collected on both Asian dust days and non-Asian dust days over 2 years (between November 2010 and July 2012). Changes in bacterial abundance and community composition were investigated based on their 16S rRNA gene amount and sequence diversity. Seasonal monitoring revealed that airborne bacterial abundance was more than 10-fold higher on severe dust days, while moderate dust events did not affect airborne bacterial abundance. A comparison of bacterial community compositions revealed that bacteria in Asian dust did not immediately disturb the airborne microbial community in areas 3,000–5,000 km downwind of dust source regions, even when a large amount of bacterial cells were transported by the atmospheric event. However, microbes in aeolian dust may have a greater impact on indigenous microbial communities in downwind areas near the dust source. Continuous temporal and spatial analyses from dust source regions to downwind regions (e.g., from the Gobi desert to China, Korea, Japan, and North America) will assist in estimating the impact of atmospherically transported bacteria on indigenous microbial ecosystems in downwind areas. PMID:24553107

  18. Allergies, asthma, and dust

    MedlinePlus

    Allergic rhinitis - dust ... make allergies or asthma worse are called triggers. Dust is a common trigger. When your asthma or allergies become worse due to dust, you are said to have a dust allergy. ...

  19. Long-Term Observations of Dust Storms in Sandy Desert Environments

    NASA Astrophysics Data System (ADS)

    Yun, Hye-Won; Kim, Jung-Rack; Choi, Yun-Soo

    2015-04-01

    Mineral dust occupies the largest portion of atmospheric aerosol. Considering the numerous risks that dust poses for socioeconomic and anthropogenic activities, it is crucial to understand sandy desert environments, which frequently generate dust storms and act as a primary source of atmospheric aerosol. To identify mineral aerosol mechanisms, it is essential to monitor desert environmental factors involving dust storm generation in the long term. In this study, we focused on two major environmental factors: local surface roughness and soil moisture. Since installments of ground observation networks in sandy deserts are unfeasible, remote sensing techniques for mining desert environmental factors were employed. The test area was established within the Badain Jaran and Kubuqi Deserts in Inner Mongolia, China, where significant seasonal aeolian processes emit mineral dust that influences all of East Asia. To trace local surface roughness, we employed a multi-angle imaging spectroradiometer (MISR) image sequence to extract multi-angle viewing (MAV) topographic parameters such as normalized difference angular index, which represents characteristics of the target desert topography. The backscattering coefficient from various space-borne SAR and stereotopography were compared with MAV observations to determine calibrated local surface roughness. Soil moisture extraction techniques from InSAR-phase coherence stacks were developed and compiled with advanced scatterometer (ASCAT) soil moisture data. Combined with metrological information such as the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA interim, correlations between intensity of sand dune activity as a proxy of aeolian processes in desert environments, surface wind conditions, and surface soil moisture were traced. Overall, we have confirmed that tracking sandy desert aeolian environments for long-term observations is feasible with space-borne, multi-sensor observations when combined with

  20. Time series analysis of high temperature fumaroles monitored on the island of Vulcano (Aeolian Archipelago, Italy)

    NASA Astrophysics Data System (ADS)

    Diliberto, Iole Serena

    2013-08-01

    The exhalation activity at the La Fossa cone (Vulcano Island, Aeolian Archipelago, Italy) has been ongoing for more than 1 century. Many of the monitored geochemical and geophysical parameters have showed transient variations of energy release. The time-series analyses of fumarole temperatures presented in this paper enabled the sequence of observations to be defined and information from different monitoring stations to be integrated. The motion of fluids feeding the fumaroles of the La Fossa cone is driven by the thermal and kinetic energies that balance the seismic and volcanic forces active in the region, and the temperatures of the fumaroles reflect the local response of the hydrothermal system to these forces. During a 14-year period of observation, from 1998 to 2012, fumarole temperatures showed various trends but also cyclic variations characterized by sharp increases. The repetition of these variations during periods with different trends indicates that no physical variation occurred from the hydrothermal source to the surface during the analyzed period, and after each periodic geochemical crisis the previous thermal conditions were restored. Although the continuous monitoring of high-temperature fumaroles was limited to only a few sites, the observed trends characterized the most important fumaroles in the area of Vulcano Island. An evaluation of thermal-energy release based on these spatially discrete measurements would be a speculative exercise in thermodynamics, but the analyses of the recorded data represent a step forward in interpreting the signals from ongoing volcanic activity and in assessing the seismic risk.

  1. Evidence for different episodes of aeolian construction and a new type of wind streak in the 2016 ExoMars landing ellipse in Meridiani Planum, Mars

    NASA Astrophysics Data System (ADS)

    Silvestro, S.; Vaz, D. A.; Di Achille, G.; Popa, I. C.; Esposito, F.

    2015-04-01

    We present evidence for a complex, multigenerational bed form pattern and a new type of wind streak (the ripple streak) in the landing site ellipse of the 2016 ExoMars Entry descent and landing Demonstrator Module (EDM) in Meridiani Planum (Mars). We identified three main groups of bright-toned bed forms. Population 3, represented by NE-SW trending bed forms located inside craters, was emplaced by winds coming from the NW or the SE. Population 2, emplaced by strong easterlies, formed by intracrater transverse aeolian ridges (TARs) and N-S trending megaripples (plains ripples). Population 1 consists of a relict bed form pattern emplaced by winds coming from the north or south. Alternatively, population 1 can represent a sand ribbon pattern that formed together with the plain ripples. We also report the presence of a new type of wind streak, the ripple streak, which is formed by the population 2 bed forms clustered in the wake zone of impact craters. Based on the results of this work, we now know the EDM module is set to land in a complex aeolian environment. Data from the Dust Characterization, Risk Assessment, and Environment Analyser on the Martian Surface onboard the EDM can help to better decipher the wind regime in Meridiani Planum.

  2. Source Characterization of African Dust Using CCSEM Analysis

    NASA Astrophysics Data System (ADS)

    Rogers, R.; Hunt, A.; Oldfield, F.

    2013-12-01

    A preliminary investigation is underway to determine whether African dust is developed through Pedogenic or Aeolian processes. 85 dust samples were taken from the Sahel and Saharan region of Africa and analyzed using computer controlled scanning electron microscopy (CCSEM). Optimized secondary electron detectors (SED) and back-scattered electron detectors (BSED) with adjustable quadrants was used with a light element Peltier-cooled energy dispersive x-ray spectrometer. A variable pressure system was utilized for the analysis of insulating materials, which eliminated the need for special specimen coating to dissipate charge and remove artifacts. Data from these samples are being used to address two primary questions: (1) Can CCSEM technology accurately describe elemental compounds derived from dust samples and therefore derive mineral content and (2) Are African dusts created through Pedogenic or Aeolian processes. The creation of a 19-point elemental classification system was used to separate and analyze each of the 4000 data points that were taken from 85 samples. Initial findings show large amounts of Fe, Si, and Al-rich minerals. The Al-Si-rich minerals show a close correlation in relative elemental amounts. This is to be expected from clay minerals of the pyroxene group. The Fe, Si-rich minerals trend towards an inverse relationship, which is also consistent with iron oxides of the spinel group that generally consist of magnetite. Other elemental constituents within the samples include varying amounts of Ti, Ca, and K. An initial run of samples, 6 Burkina Soils and 6 Burkina Laterites, show a similarity in chemical composition, leading to the hypothesis that the Burkina Soils originated from the Burkina Laterites. As the experiment progresses we expect to see similar Aeolian processes contributing to the mineral content of other surface dusts. Further research on the effects of these wind driven dusts is needed to assess the potential health impacts and

  3. Identification of a late Quaternary alluvial-aeolian sedimentary sequence in the Sichuan Basin, China

    NASA Astrophysics Data System (ADS)

    Feng, Jin-Liang; Ju, Jian-Ting; Chen, Feng; Hu, Zhao-Guo; Zhao, Xiang; Gao, Shao-Peng

    2016-03-01

    The late Quaternary sedimentary sequence in the northwestern part of the Sichuan Basin consists of five lithological units and with increasing depth include the: Chengdu Clay; Brown Clay; Red Clay; Sandy Silt; and basal Muddy Gravel. The genesis, provenance and age of the sediments, as well as the possible presence of hiatuses within this sequence are debated. Measurements of grain-size, magnetic susceptibility, quartz content, quartz δ18O values, element composition, and Sr-Nd isotopic concentrations of samples from a typical sedimentary sequence in the area provides new insights into the genesis and history of the sequence. The new data confirm that the sediments in study site are alluvial-aeolian in origin, with basal alluvial deposits overlain by aeolian deposits. Like the uppermost Chengdu Clay, the underlying Brown Clay and Red Clay are aeolian in origin. In contrast, the Silty Sand, like the basal Muddy Gravel, is an alluvial deposit and not an aeolian deposit as previously thought. Moreover, the succession of the aeolian deposits very likely contains two significant sedimentary hiatuses. Sedimentological analysis demonstrates that the source materials for the aeolian deposits in the northwestern part of the Sichuan Basin and those on the eastern Tibetan Plateau are different. Furthermore, the loess deposits on the eastern Tibetan Plateau are derived from heterogeneous local sources.

  4. Numerical Prediction of Dust. Chapter 10

    NASA Technical Reports Server (NTRS)

    Benedetti, Angela; Baldasano, J. M.; Basart, S.; Benincasa, F.; Boucher, O.; Brooks, M.; Chen, J. P.; Colarco, P. R.; Gong, S.; Huneeus, N.; Jones, L; Lu, S.; Menut, L.; Mulcahy, J.; Nickovic, S.; Morcrette, J.-J.; Perez, C.; Reid, J. S.; Sekiyama, T. T.; Tanaka, T.; Terradellas, E.; Westphal, D. L.; Zhang, X.-Y.; Zhou, C.-H.

    2013-01-01

    Covers the whole breadth of mineral dust research, from a scientific perspective Presents interdisciplinary work including results from field campaigns, satellite observations, laboratory studies, computer modelling and theoretical studies Explores the role of dust as a player and recorder of environmental change This volume presents state-of-the-art research about mineral dust, including results from field campaigns, satellite observations, laboratory studies, computer modelling and theoretical studies. Dust research is a new, dynamic and fast-growing area of science and due to its multiple roles in the Earth system, dust has become a fascinating topic for many scientific disciplines. Aspects of dust research covered in this book reach from timescales of minutes (as with dust devils, cloud processes, and radiation) to millennia (as with loess formation and oceanic sediments), making dust both a player and recorder of environmental change. The book is structured in four main parts that explore characteristics of dust, the global dust cycle, impacts of dust on the Earth system, and dust as a climate indicator. The chapters in these parts provide a comprehensive, detailed overview of this highly interdisciplinary subject. The contributions presented here cover dust from source to sink and describe all the processes dust particles undergo while travelling through the atmosphere. Chapters explore how dust is lifted and transported, how it affects radiation, clouds, regional circulations, precipitation and chemical processes in the atmosphere, and how it deteriorates air quality. The book explores how dust is removed from the atmosphere by gravitational settling, turbulence or precipitation, how iron contained in dust fertilizes terrestrial and marine ecosystems, and about the role that dust plays in human health. We learn how dust is observed, simulated using computer models and forecast. The book also details the role of dust deposits for climate reconstructions

  5. Distinguishing and characterising point-source mining dust and diffuse-source dust deposits in a semi-arid district of eastern Australia

    NASA Astrophysics Data System (ADS)

    Cattle, Stephen R.; Hemi, Karl; Pearson, Garry L.; Sanderson, Todd

    The routine monitoring of dust deposition around mines does not typically distinguish between allochthonous and locally-sourced dust. In this paper, contemporary aeolian dust deposition within a semi-arid part of eastern Australia is examined to determine the contribution of an open-pit gold mine to local dust dynamics. Over a 2.5 year period, monthly deposited dust samples were obtained from 12 sites located around the Cowal Gold Mine (CGM), and analysed for inorganic and organic proportions and granulometric properties. Although there was considerable variation in deposition between the gauges and sampling periods, there was a moderate and statistically significant seasonal trend, with mineral dust deposition lowest in winter. Imprinted over this seasonal pattern was a distinct spatial pattern of dust deposition, with gauges downwind of the CGM receiving significantly more dust than those gauges upwind (20 t/km2/yr). This effect was most pronounced adjacent to the mine (dust deposition of 60 t/km2/yr), where coarse-grained particles comprised a large proportion of the deposited dust, and diminished with distance east of the mine. Such a spatial trend is typical of a point source of dust. Average dust deposition at gauges located 8 km downwind of the mine was only slightly greater than that of gauges upwind of the mine. The 'background' dust populations captured at the upwind locations were dominated by fine particles, with modal particle diameters of 3-5 and 13-16 μm common. The macro-organic component of dust deposits also tended to vary seasonally, but the spatial distribution of this material was quite erratic.

  6. News and Views: Betelgeuse bubbles up dust; Hydrothermal activity on early asteroids; Is this a record? Galaxy evolution in 3D; LOFAR looks farther; IOPD makes plans

    NASA Astrophysics Data System (ADS)

    2011-08-01

    Red supergiant star Betelgeuse is surrounded by a vast halo of silicate and aluminium dust, visible in false colour in this infrared image from the European Southern Observatory's Very Large Telescope. This material may eventually form planets around a new star. Biochemical analysis of the Tagish Lake meteorites, some of the most pristine samples of carbonaceous chondrites known, suggests that much of the variation in organic matter between different meteorite samples can be ascribed to hydrothermal activity on meteorite parent bodies. European Southern Observatory astronomers have discovered the most distant quasar yet - and reckon it is one of the brightest objects in the early universe.

  7. Iron Speciation in Urban Dust

    SciTech Connect

    E Elzinga; Y Gao; J Fitts; R Tappero

    2011-12-31

    An improved understanding of anthropogenic impacts on ocean fertility requires knowledge of anthropogenic dust mineralogy and associated Fe speciation as a critical step toward developing Fe solubility models constrained by mineralogical composition. This study explored the utility of micro-focused X-ray absorption spectroscopy ({mu}-XAS) in characterizing the speciation of Fe in urban dust samples. A micro-focused beam of 10 x 7 {micro}m made possible the measurement of the Fe K edge XAS spectra of individual dust particles in the PM5.6 size fraction collected in Newark, New Jersey, USA. Spectral analysis indicated the presence of mixtures of Fe-containing minerals within individual dust particles; we observed significant magnetite content along with other Fe(III)-(hydr)oxide minerals which could not be conclusively identified. Our data indicate that detailed quantitative determination of Fe speciation requires extended energy scans to constrain the types and relative abundance of Fe species present. We observe heterogeneity in Fe speciation at the dust particle level, which underscores the importance of analyzing a statistically adequate number of particles within each dust sample. Where possible, {mu}-XAS measurements should be complemented with additional characterization techniques such as {mu}-XRD and bulk XAS to obtain a comprehensive picture of the Fe speciation in dust materials. X-ray microprobes should be used to complement bulk methods used to determine particle composition, methods that fail to record particle heterogeneity.

  8. The likelihood of observing dust-stimulated phytoplankton growth in waters proximal to the Australian continent

    NASA Astrophysics Data System (ADS)

    Cropp, R. A.; Gabric, A. J.; Levasseur, M.; McTainsh, G. H.; Bowie, A.; Hassler, C. S.; Law, C. S.; McGowan, H.; Tindale, N.; Viscarra Rossel, R.

    2013-05-01

    We develop a tool to assist in identifying a link between naturally occurring aeolian dust deposition and phytoplankton response in the ocean. Rather than examining a single, or small number of dust deposition events, we take a climatological approach to estimate the likelihood of observing a definitive link between dust deposition and a phytoplankton bloom for the oceans proximal to the Australian continent. We use a dust storm index (DSI) to determine dust entrainment in the Lake Eyre Basin (LEB) and an ensemble of modelled atmospheric trajectories of dust transport from the basin, the major dust source in Australia. Deposition into the ocean is computed as a function of distance from the LEB source and the local over-ocean precipitation. The upper ocean's receptivity to nutrients, including dust-borne iron, is defined in terms of time-dependent, monthly climatological fields for light, mixed layer depth and chlorophyll concentration relative to the climatological monthly maximum. The resultant likelihood of a dust-phytoplankton link being observed is then mapped as a function of space and time. Our results suggest that the Southern Ocean (north of 45°S), the North West Shelf, and Great Barrier Reef are ocean regions where a rapid biological response to dust inputs is most likely to be observed. Conversely, due to asynchrony between deposition and ocean receptivity, direct causal links appear unlikely to be observed in the Tasman Sea and Southern Ocean south of 45°S.

  9. Dust Storm, Aral Sea

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Aral Sea has shrunk to less than half its size since 1985. The Aral Sea receives little water (sometimes no water) from the two major rivers that empty into it-the Syr Darya and Amu Darya. Instead, the river water is diverted to support irrigation for the region's extensive cotton fields. Recently, water scarcity has increased due to a prolonged drought in Central Asia. As the Aral Sea recedes, its former sea bed is exposed. The Aral's sea bed is composed of fine sediments-including fertilizers and other agricultural chemicals-that are easily picked up by the region's strong winds, creating thick dust storms. The International Space Station crew observed and recorded a large dust storm blowing eastward from the Aral Sea in late June 2001. This image illustrates the strong coupling between human activities (water diversions and irrigation), and rapidly changing land, sea and atmospheric processes-the winds blow across the

  10. Lunar and Planetary Science XXXV: Mars: Wind, Dust Sand, and Debris

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session "Mars: Wind, Dust Sand, and Debris" included: Mars Exploration Rovers: Laboratory Simulations of Aeolian Interactions; Thermal and Spectral Analysis of an Intracrater Dune Field in Amazonis Planitia; How High is that Dune? A Comparison of Methods Used to Constrain the Morphometry of Aeolian Bedforms on Mars; Dust Devils on Mars: Scaling of Dust Flux Based on Laboratory Simulations; A Close Encounter with a Terrestrial Dust Devil; Interpretation of Wind Direction from Eolian Features: Herschel Crater, Mars Erosion Rates at the Viking 2 Landing Site; Mars Dust: Characterization of Particle Size and Electrostatic Charge Distributions; Simple Non-fluvial Models of Planetary Surface Modification, with Application to Mars; Comparison of Geomorphically Determined Winds with a General Circulation Model: Herschel Crater, Mars; Analysis of Martian Debris Aprons in Eastern Hellas Using THEMIS; Origin of Martian Northern Hemisphere Mid-Latitude Lobate Debris Aprons; Debris Aprons in the Tempe/Mareotis Region of Mars;and Constraining Flow Dynamics of Mass Movements on Earth and Mars.

  11. Video monitoring of meso-scale aeolian activity on a narrow beach

    NASA Astrophysics Data System (ADS)

    Hage, Pam; Ruessink, Gerben

    2014-05-01

    The morphologic evolution of coastal dunes is inextricably linked to the neighbouring beach through the incessant exchange of sand. Intense storm-wave processes erode the foredune within a few hours and transport its sand sand seaward, while aeolian processes return the eroded sand from the beach into the dune system, although at a much lower pace (months to years, or meso scale). Here we use an 8-year long data set of half-hourly snapshot video images, collected from an ≡ 50 m high tower on Egmond Beach (The Netherlands), and a concurrent meteorological and water level data set, to examine which factors affect aeolian sand delivery into the dunes. Egmond is a north-south oriented, micro- to meso-tidal, wave-dominated site that faces the North Sea. Its beach is relatively narrow ( ~ 100 m at spring low tide) and mildly sloping (~ 1 : 30), and consists of quartz sand with a median diameter of about 300 μm. Aeolian activity is clearly visible on the images as sand streamers and, in particular, sand strips, defined as low-amplitude, large-wavelength and slipfaceless deposits that migrate slowly in the wind direction and, depending on wind direction, can have orientations from almost shore-parallel to shore-normal. Beach width in combination with wind direction appeared to be the dominant factors in controlling aeolian activity. Many high wind (>≡ 13 m/s) events, especially from the west and northwest, were associated with a storm surge that inundated almost the entire beach with, accordingly, no possibility for aeolian transport. In contrast, sand-strip fields covered the entire beach during medium wind (≡ 12 - 13 m/s) events, especially when the wind was nearly shore-parallel. Many sand-strip events were observed to be regulated by the tide. Prominent sand-strip fields on the intertidal and upper beach were largely limited to low-tide situations with a wide beach, with a rising tide obviously destroying the intertidal sand strips and sometimes also negatively

  12. Effects of River Regulation on Aeolian Landscapes, Grand Canyon National Park, USA

    NASA Astrophysics Data System (ADS)

    Draut, A. E.

    2010-12-01

    Sediment deposits in the Colorado River corridor include fluvial sandbars and aeolian dune fields, and the fluvial deposits are the primary sediment source for sand in the aeolian dunes. This 7-year study examined the effects of river regulation at Glen Canyon Dam (alteration of flow regime, sediment-supply reduction, and consequent loss of fluvial sandbars) on aeolian landscapes downstream in Grand Canyon National Park. A comparative study was developed between aeolian landscapes in Grand Canyon, Arizona, and Cataract Canyon, Utah, upstream of Glen Canyon Dam and its reservoir (Lake Powell), where hydrology and sediment supply of the Colorado River are affected substantially less by artificial river regulation than occurs in Grand Canyon. Before closure of Glen Canyon Dam in 1963, sediment-rich floods (mean annual peak 2400 m3/s) formed sandbars from which wind moved sand inland to form aeolian dunes. After dam operations reduced the amplitude and frequency of high flows, and eliminated the mainstream fluvial sediment supply, Grand Canyon’s fluvial sandbars lost open sand area owing to erosion by river flows and the spread of riparian vegetation. Two types of aeolian landscapes now occur in Grand Canyon: (1) modern fluvial sourced, those downwind of post-dam sandbars; and (2) relict fluvial sourced, whose primary sediment source was deposits from pre-dam floods that were larger than any post-dam flows have been. Sediment supply has been reduced to type (1) dune fields because post-dam sandbars are smaller than in the pre-dam era; new sediment supply to type (2) dune fields essentially has been eliminated. Type 1 aeolian landscapes can receive new windblown sand from sandbars formed by controlled floods (1160 m3/s), which occurred in 1996, 2004, and 2008. Type 1 dune fields, being downwind and within 100 m of controlled-flood sandbars, have significantly higher aeolian sand-transport rates, more open sand, and less biologic soil crust than relict type 2 dune

  13. Aeolian process-induced hyper-concentrated flow in a desert watershed

    NASA Astrophysics Data System (ADS)

    Ta, Wanquan; Wang, Haibin; Jia, Xiaopeng

    2014-04-01

    Ephemeral desert channels are characterized by very high rates of sediment transport during infrequent flood events. Here we show that aeolian process-induced hyper-concentrated (AHC) flows occur in the Sudalaer desert watershed in the Ordos Plateau of China, which primarily transport 0.08-0.25 mm non-cohesive aeolian sand and have a peak suspended sediment concentration of 1.1-1.4 × 106 mg l-3. Aeolian sand supply and storage in the channel play a crucial role in causing hyper-concentrated flow. Our results indicate that non-cohesive aeolian sand can be entrained from the bed and suspended in the turbulent flow when the channel bed slope exceeds a critical threshold (0.0003). We also show that if the frequency ratio of wind-blown sandstorms to rainstorms Tw/Tp exceeds β(γ - γ0)/α (P/V3) (A/L) (where α is the wind-blown sand transport coefficient, β is the runoff coefficient, γ - γ0 is the increase in suspension concentration caused by addition of aeolian sands, P is the density of rainstorms, V is the wind speed of sandstorms, A is the runoff-generating area, L is the aeolian sand-filled channel length), an AHC flow occurs during the passage of a flood in a desert channel. Since high-frequency aeolian processes provide an adequate quantity of transportable sediment and promote AHC flow, most of the infrequent rainfall-induced floods occurring in arid zones can develop as AHC flows.

  14. Natural gamma-radiation in the Aeolian volcanic arc.

    PubMed

    Chiozzi, P; Pasquale, V; Verdoya, M; Minato, S

    2001-11-01

    Pulse-height distributions of gamma-rays, obtained with a field NaI(Tl) scintillation spectrometer in numerous sites of the Lipari and Vulcano islands (Aeolian volcanic arc, Italy), were measured to determine the U, Th and K concentrations of the bedrock and the relative values of the air absorbed dose rate. U is spatially related to both Th and K and the Th/U ratio is on average 3.1-3.5. The magmatic evolution is reflected by the concentration of the three radioelements, as they are more abundant within the more felsic units of the volcanic series. The higher values of U (15.7-20.0 ppm) coincide with higher Th (48.3-65.9 ppm) and K (4.9-6.1%) concentrations associated with rhyolitic rocks of the third cycle (< 50 ky). The air absorbed dose rate varies from 20 to 470 nGy h(-1). The highest values (> 350 nGy h(-1)) are observed on outcrops of rhyolitic obsidian lava flows. The cosmic-ray contribution is also evaluated to estimate the total background radiation dose rate. PMID:11573810

  15. Understanding early-stage dune development: morphodynamics of aeolian protodunes

    NASA Astrophysics Data System (ADS)

    Baddock, Matthew; Wiggs, Giles; Nield, Joanna

    2016-04-01

    For such a fundamental aspect of bedform development, the initiation and early-stage growth of sand dunes remain poorly understood. Protodunes are bedforms within the continuum of early-stage depositional aeolian features that exist between flat sand patches and small dunes. As transitory bedforms with the potential to develop into dunes, the detailed study of protodune morphodynamics can provide significant insights into nascent dune development. As part of a multi-annual study investigating bedform change through repeat morphological surveys of bedforms with differing maturity, measurements of near-surface airflow and sand transport were conducted over a protodune in a small Namibian barchan dune field. The protodune was approximately 85 m in length and 1 m high, and was without a slipface. Data show that over the course of a week, patterns of airflow and transport flux variation were linked with accretion at the crest, and erosion of the leeside edge showing an increase in protodune height, and providing evidence of the dune's vertical development. Surveys reveal the longer term evolution of the protodune, in the context of changes exhibited by nearby, fully developed barchan dunes, and long term monitoring of wind regime at the site.

  16. Energy regimes for aeolian sand grain surface textures

    NASA Astrophysics Data System (ADS)

    Marshall, J. R.; Bull, P. A.; Morgan, R. M.

    2012-05-01

    An experimental study of aeolian sand grain surface texture development was undertaken with an air-driven grain-recirculating desktop apparatus. Scanning electron microscope analysis of resulting textures indicated that different texture types can be associated with distinct zones in a grain-shape/grain speed matrix. In particular, for subrounded and rounded grains, low and high energy transport can be unequivocally distinguished by the occurrence of upturned plates and Hertzian frustra respectively. Textural development does not have a simple relationship to grain velocity, but appears to relate to the energy expended per unit area within the contact zone generated by elastic deformation during impact. Hertzian theory was adapted to irregular sand grain shapes and close agreement was found between experimental results and theoretical predictions for textural development. Results of this study improve our ability to reconstruct palaeoaeolian environments and therefore our ability to determine grain provenance; in particular, the latter is shown to have direct relevance to forensic inquiries and terrorism investigations.

  17. Predicting aeolian sand transport rates: A reevaluation of models

    NASA Astrophysics Data System (ADS)

    Sherman, Douglas J.; Li, Bailiang

    2012-01-01

    Eight aeolian sand-transport models are evaluated using a field data set and a new approach to estimating shear velocity. The models are those of Bagnold (1937), Kawamura (1951), Zingg (1953), Owen (1964), Kadib (1965), Hsu (1971), Lettau and Lettau (1978) and Sørensen (2004). All of these models predict transport as a function of shear velocity to the third power. Shear velocities are estimated using wind profile data (log-linear slope) with the von Kármán constant and with the apparent von Kármán parameter and the results of the different approaches are evaluated based on comparison of regression statistics and RMS error. The models were not adjusted to account for sediment moisture content or local surface slope effects. All of the models have about the same statistical explanatory power, so evaluations were made by comparing slopes and intercepts of best fit (least-squares) lines and RMSE. From this basis, we conclude that predictions made with the Bagnold (1937) model best match our observations, with the models of Kadib (1965) and Hsu (1971) performing nearly as well. The Lettau and Lettau (1978) and Kawamura (1951) model predictions match observations least.

  18. Shallow Submarine Hydrothermal Systems in the Aeolian Volcanic Arc, Italy

    NASA Astrophysics Data System (ADS)

    Monecke, Thomas; Petersen, Sven; Lackschewitz, Klas; Hügler, Michael; Hannington, Mark D.; Gemmell, J. Bruce

    2009-03-01

    The majority of known high-temperature hydrothermal vents occur at mid-ocean ridges and back-arc spreading centers, typically at water depths from 2000 to 4000 meters. Compared with 30 years of hydrothermal research along spreading centers in the deep parts of the ocean, exploration of the approximately 700 submarine arc volcanoes is relatively recent [de Ronde et al., 2003]. At these submarine arc volcanoes, active hydrothermal vents are located at unexpectedly shallow water depth (95% at <1600-meter depth), which has important consequences for the style of venting, the nature of associated mineral deposits, and the local biological communities. As part of an ongoing multinational research effort to study shallow submarine volcanic arcs, two hydrothermal systems in the submerged part of the Aeolian arc have been investigated in detail during research cruises by R/V Poseidon (July 2006) and R/V Meteor (August 2007). Comprehensive seafloor video surveys were conducted using a remotely operated vehicle, and drilling to a depth of 5 meters was carried out using a lander-type submersible drill. This research has resulted in the first detailed, three-dimensional documentation of shallow submarine hydrothermal systems on arc volcanoes.

  19. Dust Complex onboard the ExoMars-2018 lander for investigations of Martian dust dynamics

    NASA Astrophysics Data System (ADS)

    Zakharov, Alexander; Horanyi, Mihaly; Afonin, Valeri; Esposito, Francesca; Seran, Elena; Gotlib, Vladimir; Koepke, Mark; Kuznetsov, Ilya; Lyash, Andrey; Dolnikov, Gennady

    The load of suspended dust in the Martian atmosphere varies dramatically but never drops entirely to zero. Effects of airborne dust contribute to the dynamic and thermodynamic evolution of the atmosphere and its large-scale circulation processes on diurnal, seasonal and annual time-scales. Suspended dust plays a key role in determining the present climate of Mars and probably influenced the past climatic conditions and surface evolution. Atmosphere dust and windblown dust are responsible for erosion, redistribution of dust on the surface, and surface weathering. The mechanisms for dust entrainment in the atmosphere are not completely understood, as the current data available so far do not allow us to identify the efficiency of the various processes. Dust-grain transport on the surface of Mars has never been directly measured despite great interest in and high scientific and technological ramifications of the associated phenomena. This paper describes planned, future investigations of the Martian dust environment made possible by the proposed scientific payload “Dust Complex” (DC) of the ExoMars-2018 mission’s landing platform. DC is a suite of four sensors devoted to the study of Aeolian processes on Mars with a primary aim of monitoring the diurnal, seasonal, and annual dust-environment cycles by Martian-ground-based measurements of dust flux in situ, i.e., in the near-surface atmosphere of Mars. This suite includes 1) an Impact Sensor, for the measurement of the sand-grain dynamics and electrostatics, 2) a particle-counter sensor, MicroMED, for the measurement of airborne dust size distribution and number density, 3) an Electric Probe, for the measurement of the ambient electric field, and 4) a radiofrequency antenna. Besides outlining design details of DC and the characterisation of its capabilities, this presentation reviews various dust effects and dust phenomena that are anticipated to occur in the near-surface environment on Mars and that are possible

  20. Abundances of Volatile - Bearing Species from Evolved Gas Analysis of Samples from the Rocknest Aeolian Bedform in Gale Crater

    NASA Technical Reports Server (NTRS)

    Archer, P. D., Jr.; Franc, H. B.; Sutter, B.; McAdam, A.; Ming, D. W.; Morris, R. V.; Mahaffy, P. R.

    2013-01-01

    The Sample Analysis at Mars (SAM) instrument suite on board the Mars Science Laboratory (MSL) recently ran four samples from an aeolian bedform named Rocknest. SAM detected the evolution of H2O, CO2, O2, and SO2, indicative of the presence of multiple volatile bearing species (Fig 1). The Rocknest bedform is a windblown deposit selected as representative of both the windblown material in Gale crater as well as the globally-distributed martian dust. Four samples of Rocknest material were analyzed by SAM, all from the fifth scoop taken at this location. The material delivered to SAM passed through a 150 m sieve and is assumed to have been well mixed during the sample acquisition/preparation/handoff process. SAM heated the Rocknest samples to approx.835 C at a ramp rate of 35 C/min with a He carrier gas flow rate of apprx.1.5 standard cubic centimeters per minute and at an oven pressure of 30 mbar [1]. Evolved gases were detected by a quadrupole mass spectrometer (QMS). This abstract presents the molar abundances of H2O, CO2, O2, and SO2 as well as their concentration in rocknest samples using an estimated sample mass.

  1. Simulating Dust Cycling during the Late Paleozoic Ice Age

    NASA Astrophysics Data System (ADS)

    Heavens, N. G.; Mahowald, N. M.; Soreghan, G. S.; Soreghan, M. J.; Shields, C. A.; Albani, S.

    2012-12-01

    Upper Carboniferous and Lower Permian strata preserve evidence for significant deposition of mineral dust, an aerosol with strong potential influence on the climate. Some equatorial marine carbonate records from this interval appear to record massive influxes of fine dust (diameter < 10 μm) after rapid sea level fall, suggesting that the pacing of dust deposition was connected to the expansion and contraction of ice sheets during the important icehouse climate interval of Carboniferous and Permian time. Nearby continental strata record high accumulations of coarse dust (loess) during periods of increasing aridity (apparent glacial intervals) and of fine dust (paleosols) during periods of increasing humidity (apparent interglacial intervals), though the pacing of this deposition may be more strongly associated with orbital forcing than ice sheet dynamics. Significant dust deposition continued in many of these areas during the emergence of the Earth's climate from icehouse conditions during Middle Permian time. Understanding the dynamics of dust cycling during the depths of the icehouse is the first step to investigating dust records from the most recent icehouse termination of Earth's history. Here, we attempt to reconstruct the cycling and some of the potential climate impacts of mineral dust during this interval, using version 3 of the Community Climate System Model (CCSM3) and the best available records of dust deposition. Modeled sensitivity simulations suggest that climatic controls on dust cycling that act on relatively short timescales (primarily meteorological and vegetation-related) cannot explain the large variability in dust deposition rates inferred from marine carbonate records. Processes acting on longer timescales, particularly those that control the availability of wind-erodible sediment, likely are more important. We also consider whether exposure of sedimentary basins during sea level fall and glaciogenic dust production could modulate dust

  2. Aeolian sediment transport on a beach with a varying sediment supply

    NASA Astrophysics Data System (ADS)

    de Vries, S.; Arens, S. M.; de Schipper, M. A.; Ranasinghe, R.

    2014-12-01

    Variability in aeolian sediment transport rates have traditionally been explain by variability in wind speed. Although it is recognised in literature that limitations in sediment supply can influence sediment transport significantly, most models that predict aeolian sediment transport attribute a dominant role to the magnitude of the wind speed. In this paper it is proposed that spatio-temporal variability of aeolian sediment transport on beaches can be dominated by variations in sediment supply rather than variations in wind speed. A new dataset containing wind speed, direction and sediment transport is collected during a 3 day field campaign at Vlugtenburg beach, The Netherlands. During the measurement campaign, aeolian sediment transport varied in time with the tide while wind speed remained constant. During low tide, measured transport was significantly larger than during high tide. Measured spatial gradients in sediment transport at the lower and upper beaches during fairly constant wind conditions suggest that aeolian sediment transport on beaches may be partly governed by the spatial variability in sediment supply, with relatively large supply in the intertidal zone when exposed and small supply on the upper beach due to sorting processes. The measurements support earlier findings that the intertidal zone can be significant source of sediment for sediment transport on beaches. Both a traditional cubic model (with respect to the wind speed) and a newly proposed linear model are fitted to the field data. The fit quality of both types of models are found to be similar.

  3. A tribute to Michael R. Raupach for contributions to aeolian fluid dynamics

    NASA Astrophysics Data System (ADS)

    Shao, Yaping; Nickling, William; Bergametti, Gilles; Butler, Harry; Chappell, Adrian; Findlater, Paul; Gillies, John; Ishizuka, Masahide; Klose, Martina; Kok, Jasper F.; Leys, John; Lu, Hua; Marticorena, Beatrice; McTainsh, Grant; McKenna-Neuman, Cheryl; Okin, Gregory S.; Strong, Craig; Webb, Nicholas

    2015-12-01

    Since the pioneering work of Bagnold in the 1940s, aeolian research has grown to become an integral part of earth-system science. Many individuals have contributed to this development, and Dr. Michael R. Raupach (1950-2015) has played a pivotal role. Raupach worked intensively on wind erosion problems for about a decade (1985-1995), during which time he applied his deep knowledge of turbulence to aeolian research problems and made profound contributions with far-reaching impact. The beauty of Raupach's work lies in his clear conceptual thinking and his ability to reduce complex problems to their bare essentials. The results of his work are fundamentally important and have many practical applications. In this review we reflect on Raupach's contribution to a number of important aspects of aeolian research, summarise developments since his inspirational work and place Raupach's efforts in the context of aeolian science. We also demonstrate how Raupach's work provided a foundation for new developments in aeolian research. In this tribute, we concentrate on five areas of research: (1) drag partition theory; (2) saltation roughness length; (3) saltation bombardment; (4) threshold friction velocity and (5) the carbon cycle.

  4. Aeolian and fluvial processes in dryland regions: the need for integrated studies

    USGS Publications Warehouse

    Belnap, Jayne; Munson, Seth M.; Field, Jason P.

    2011-01-01

    Aeolian and fluvial processes play a fundamental role in dryland regions of the world and have important environmental and ecological consequences from local to global scales. Although both processes operate over similar spatial and temporal scales and are likely strongly coupled in many dryland systems, aeolian and fluvial processes have traditionally been studied separately, making it difficult to assess their relative importance in drylands, as well as their potential for synergistic interaction. Land degradation by accelerated wind and water erosion is a major problem throughout the world's drylands, and although recent studies suggest that these processes likely interact across broad spatial and temporal scales to amplify the transport of soil resources from and within drylands, many researchers and land managers continue to view them as separate and unrelated processes. Here, we illustrate how aeolian and fluvial sediment transport is coupled at multiple spatial and temporal scales and highlight the need for these interrelated processes to be studied from a more integrated perspective that crosses traditional disciplinary boundaries. Special attention is given to how the growing threat of climate change and land-use disturbance will influence linkages between aeolian and fluvial processes in the future. We also present emerging directions for interdisciplinary needs within the aeolian and fluvial research communities that call for better integration across a broad range of traditional disciplines such as ecology, biogeochemistry, agronomy, and soil conservation.

  5. Sand transport by wind, erosion and deposition and the origin of aeolian bedforms

    NASA Astrophysics Data System (ADS)

    Duran Vinent, Orencio

    2014-05-01

    Aeolian processes involve the wind action on a sedimentary substrate, namely erosion, sand transport and deposition. They are responsible for the emergence of aeolian dunes and ripples. Here, we discuss the physics of aeolian sediment transport from a physical point of view. Relevant time and length scales associated to turbulent wind fluctuations are summarized using aerodynamic theory. At the microscopic scale, the main forces acting on the grains are detailed. Sand transport is then studied using two phase numerical simulations based on a discrete element method for particles coupled to a continuum Reynolds averaged description of hydrodynamics. We then introduce the concepts - e.g. saturated flux, saturation length - and the relevant framework for the development of a continuum (macroscopic) quantitative description of transport at the core of our current understanding of aeolian dunes formation. At smaller scales, aeolian ripples arise from the interaction of sediment transport and topography. At larger scales, the nonlinear nature of the interaction between dunes leads to the formation of dune fields.

  6. Mars Orbiter Camera climatology of textured dust storms

    NASA Astrophysics Data System (ADS)

    Guzewich, Scott D.; Toigo, Anthony D.; Kulowski, Laura; Wang, Huiqun

    2015-09-01

    We report the climatology of "textured dust storms", those dust storms that have visible structure on their cloud tops that are indicative of active dust lifting, as observed in Mars Daily Global Maps produced from Mars Orbiter Camera wide-angle images. Textured dust storms predominantly occur in the equinox seasons while both solstice periods experience a planet-wide "pause" in textured dust storm activity. These pauses correspond to concurrent decreases in global atmospheric dust opacity. Textured dust storms most frequently occur in Acidalia Planitia, Chryse Planitia, Arcadia Planitia, and Hellas basin. To examine the nature of the link between textured dust storms and atmospheric dust opacity, we compare the textured dust storm climatology with a record of atmospheric dust opacity and find a peak global correlation coefficient of approximately 0.5 with a lag of 20-40° in solar longitude in the opacity compared to the solar climatology. This implies that textured dust storms observed at 1400 local time by MOC are responsible for a large fraction of atmospheric dust opacity and that other mechanisms (e.g., dust devil lifting or storm-scale lifting not observed in this study) may supply a comparable amount of dust.

  7. Landscape-Scale Interpretation of the Loess Record

    NASA Astrophysics Data System (ADS)

    Mason, J. A.

    2008-12-01

    Intensive OSL dating and a growing array of paleoecological and paleoclimatic proxies hold great promise for extracting new insights from the loess record, but are by necessity applied to a limited number of sections. These well-studied sections need to be placed within the broader context of the complex, landscape-scale geomorphic, ecological, and pedological processes that interact to produce the loess record. Source- proximal locations where loess accumulation can be exceptionally rapid potentially offer high-resolution paleoenvironmental records; however, observations in the Great Plains, the Upper Mississippi Valley, and the Chinese Loess Plateau demonstrate that geomorphic complexity is also greatest in these proximal settings. Large variations in loess thickness over short distances, together with streamlined hills and fluted landscapes, are most plausibly interpreted as the result of spatially variable remobilization of loess by aeolian as well as hillslope processes. An intriguing hypothesis is that some striking wind-aligned landforms result from catastrophic wind erosion of coarse noncohesive proximal loess. Remobilization by any means can clearly lead to incomplete records, but less easily detected effects could also be important. Loess grain size and deposition rate decrease rapidly with distance from the proximal edge of the loess deposit. If that edge shifts over time through large-scale wind erosion or stabilization of loess in previously unstable areas, nearby locations could experience large changes in grain size or accumulation rate not directly linked to regional climate. These changes could in turn affect proxies that respond to local vegetation or to the effectiveness of pedogenic processes. For example, the stable carbon isotope composition of organic matter records a shift toward greater C3 plant abundance at some sites in the central Great Plains, during Holocene episodes of accelerated dust influx from nearby active dunefields, possibly

  8. Erupted cumulate fragments in rhyolites from Lipari (Aeolian Islands)

    NASA Astrophysics Data System (ADS)

    Forni, Francesca; Ellis, Ben S.; Bachmann, Olivier; Lucchi, Federico; Tranne, Claudio A.; Agostini, Samuele; Dallai, Luigi

    2015-12-01

    Over the last ~267 ky, the island of Lipari has erupted magmas ranging in compositions from basaltic andesites to rhyolites, with a notable compositional gap in the dacite field. Bulk geochemical and isotopic compositions of the volcanic succession, in conjunction with major and trace elemental compositions of minerals, indicate that the rhyolites were dominantly generated via crystal fractionation processes, with subordinate assimilation. Radiogenic (Sr, Nd, and Pb) and stable (O) isotopes independently suggest ≤30 % of crustal contamination with the majority of it occurring in mafic compositions, likely relatively deep in the system. Within the rhyolites, crystal-rich, K2O-rich enclaves are common. In contrast to previous interpretations, we suggest that these enclaves represent partial melting, remobilization and eruption of cumulate fragments left-over from rhyolite melt extraction. Cumulate melting and remobilization is supported by the presence of (1) resorbed, low-temperature minerals (biotite and sanidine), providing the potassic signature to these clasts, (2) reacted Fo-rich olivine, marking the presence of mafic recharge, (3) An38-21 plagioclase, filling the gap in feldspar composition between the andesites and the rhyolites and (4) strong enrichment in Sr and Ba in plagioclase and sanidine, suggesting crystallization from a locally enriched melt. Based on Sr-melt partitioning, the high-Sr plagioclase would require ~2300 ppm Sr in the melt, a value far in excess of Sr contents in Lipari and Vulcano magmas (50-1532 ppm) but consistent with melting of a feldspar-rich cumulate. Due to the presence of similar crystal-rich enclaves within the rhyolites from Vulcano, we propose that the eruption of remobilized cumulates associated with high-SiO2 rhyolites may be a common process at the Aeolian volcanoes, as already attested for a variety of volcanic systems around the world.

  9. Dust agglomeration

    NASA Technical Reports Server (NTRS)

    2000-01-01

    John Marshall, an investigator at Ames Research Center and a principal investigator in the microgravity fluid physics program, is studying the adhesion and cohesion of particles in order to shed light on how granular systems behave. These systems include everything from giant dust clouds that form planets to tiny compressed pellets, such as the ones you swallow as tablets. This knowledge should help us control the grains, dust, and powders that we encounter or use on a daily basis. Marshall investigated electrostatic charge in microgravity on the first and second U.S. Microgravity Laboratory shuttle missions to see how grains aggregate, or stick together. With gravity's effects eliminated on orbit, Marshall found that the grains of sand that behaved ever so freely on Earth now behaved like flour. They would just glom together in clumps and were quite difficult to disperse. That led to an understanding of the prevalence of the electrostatic forces. The granules wanted to aggregate as little chains, like little hairs, and stack end to end. Some of the chains had 20 or 30 grains. This phenomenon indicated that another force, what Marshall believes to be an electrostatic dipole, was at work.(The diagram on the right emphasizes the aggregating particles in the photo on the left, taken during the USML-2 mission in 1995.)

  10. Canyon Dust

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA03682 Canyon Dust

    These dust slides are located on the wall of Thithonium Chasma.

    Image information: VIS instrument. Latitude -4.1N, Longitude 275.7E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  11. Dust Slides

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA03677 Linear Clouds

    Dust slides are common in the dust covered region called Lycus Sulci. A large fracture is also visible in this image.

    Image information: VIS instrument. Latitude 28.1N, Longitude 226.3E. 18 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  12. Dust collector

    SciTech Connect

    Nelson, R.T.

    1986-10-21

    This patent describes a dust collector comprising: (a) a housing having inlet means for receiving air to be cleaned; (b) a plurality of filter units within the housing; (c) a first centrifugal fan arranged for drawing air through the units for removing dust from the air; (d) a plurality of ducts each connected to a corresponding one of the units at one end and to the first fan at the other end to provide passages for air from the units to the first fan, the ducts through a portion of their length being arranged in side-by-side relationship; (e) a second centrifugal fan for providing reverse flow of air through the ducts to the units, the second fan providing a high volume of air at low pressure; (f) a transverse duct connected to the second fan and extending transversely of the portion of the plurality of ducts and adjacent thereto: (g) a plurality of openings providing communication between the transverse duct and each of the plurality of ducts; (i) rotatable means engaging the vanes for sequentially moving the vanes between the first and second positions.

  13. Vegetation and substrate properties of aeolian dune fields in the Colorado River corridor, Grand Canyon, Arizona

    USGS Publications Warehouse

    Draut, Amy E.

    2011-01-01

    This report summarizes vegetation and substrate properties of aeolian landscapes in the Colorado River corridor through Grand Canyon, Arizona, in Grand Canyon National Park. Characterizing these parameters provides a basis from which to assess future changes in this ecosystem, including the spread of nonnative plant species. Differences are apparent between aeolian dune fields that are downwind of where modern controlled flooding deposits new sandbars (modern-fluvial-sourced dune fields) and those that have received little or no new windblown sand since river regulation began in the 1960s (relict-fluvial-sourced dune fields). The most substantial difference between modern- and relict-fluvial-sourced aeolian dune fields is the greater abundance of biologic soil crust in relict dune fields. These findings can be used with similar investigations in other geomorphic settings in Grand Canyon and elsewhere in the Colorado River corridor to evaluate the health of the Colorado River ecosystem over time.

  14. 10 years of aeolian geomorphology at the EGU: past achievements and future challenges

    NASA Astrophysics Data System (ADS)

    Baas, Andreas C. W.; Wiggs, Giles F. S.; Claudin, Philippe

    2016-04-01

    On this tenth anniversary of the Aeolian Processes & Landforms session at the EGU the original conveners review and reflect on the recent achievements and expansion in aeolian geomorphological research, focussing on advances in our understanding of sand transport processes, dune development and dynamics, and the mechanisms and scalings involved. This talk will highlight the variety and impact of the dramatic increase in the extent and interest of research on aeolian processes and landforms in the last ten years, including the increasingly strong community presence at international meetings, the diversity and extent of collaborations across subject boundaries, and the application of new measurement technologies and mathematical approaches. We conclude with a forward-looking prospectus of exciting future challenges and open research questions.

  15. Sand ripple dynamics in the case of out-of-equilibrium aeolian regimes.

    PubMed

    Misbah, C; Valance, A

    2003-12-01

    From a phenomenological hydrodynamical model, we analyze the aeolian sand ripple evolution in an out-of-equilibrium aeolian regime where erosion exceeds accretion (and vice versa). We find, in particular, that the ripple structure can be destroyed in favor of a flat sand bed. In the ripple regime we report on a new class of generic dynamics described by the Benney equation. This equation reveals either order or disorder depending on whether wave dispersion is strong or weak. In both cases, the average wavelength of the pattern is fixed in time. This markedly contrasts with the regime of equilibrium aeolian regime -reached when erosion balances deposition- where ripples undergo a coarsening process at long time (i.e., the wavelength increases indefinitely with time). PMID:15007749

  16. Perchlorate in dust fall and indoor dust in Malta: An effect of fireworks.

    PubMed

    Vella, Alfred J; Chircop, Cynthia; Micallef, Tamara; Pace, Colette

    2015-07-15

    We report on the presence of perchlorate in the settleable dust of Malta, a small central Mediterranean island. Both dust fall collected directly as it precipitated from atmosphere over a period of one month and deposited indoor dust from domestic residences were studied. Perchlorate was determined by ion chromatography of water extracts of the collected dusts. Dust fall was collected from 43 towns during 2011 to 2013 and indoor dust was sampled from homes in the same localities. Perchlorate was detected in 108 of 153 samples of dust fall (71%) and in 28 of 37 indoor dust samples (76%). Detectable perchlorate in dust fall ranged from 0.52μgg(-1) to 561μgg(-1) with a median value of 6.2μgg(-1); in indoor dust, levels were from 0.79μgg(-1) to 53μgg(-1) with a median value of 7.8μgg(-1), the highest recorded anywhere to date. Statistical analysis suggested that there was no significant difference in perchlorate content of indoor dust and dust fall. Perchlorate levels in dust fall escalate during the summer in response to numerous religious feasts celebrated with fireworks and perchlorate persists at low μgg(-1) concentrations for several months beyond the summer festive period. In Malta, perchlorate derives exclusively from KClO4, imported for fireworks manufacture. Its residue in dust presents an exposure risk to the population, especially via ingestion by hand to mouth transfer. Our results suggest that wherever intensive burning of fireworks takes place, the environmental impact may be much longer lived than realised, mainly due to re-suspension and deposition of contaminated settled dust in the urban environment. PMID:25828411

  17. Dust emissions and dune mobilization in the southern Kalahari: possible effects on biotic-abiotic interactions in the Earth system (Invited)

    NASA Astrophysics Data System (ADS)

    D'Odorico, P.; Bhattachan, A.; Zobeck, T. M.; Baddock, M.; Dintwe, K.; Okin, G. S.

    2010-12-01

    Dust emissions from terrestrial landscapes affect global biogeochemical cycles, climate, and human health. Most sources of atmospheric dust are located in the northern hemisphere, while the southern hemisphere remains relatively dust free. The activation of new sources of dust emission is typically associated either with losses/reductions in vegetation cover or with the drying of lakes and rivers. Here we show how, by mobilizing ancient aeolian deposits at the southern and south-western edges of the Kalahari’s sand sea, the loss of vegetation cover resulting from overgrazing and rangeland degradation may activate important new dust sources in the southern hemisphere. We investigate the implications of these dust emissions on local soil nutrient availability, the stability and resilience of the stabilizing vegetation, and the fertilization of the Southern Ocean.

  18. Interstellar Dust: Contributed Papers

    NASA Technical Reports Server (NTRS)

    Tielens, Alexander G. G. M. (Editor); Allamandola, Louis J. (Editor)

    1989-01-01

    A coherent picture of the dust composition and its physical characteristics in the various phases of the interstellar medium was the central theme. Topics addressed included: dust in diffuse interstellar medium; overidentified infrared emission features; dust in dense clouds; dust in galaxies; optical properties of dust grains; interstellar dust models; interstellar dust and the solar system; dust formation and destruction; UV, visible, and IR observations of interstellar extinction; and quantum-statistical calculations of IR emission from highly vibrationally excited polycyclic aromatic hydrocarbon (PAH) molecules.

  19. Response to “Comment on 'The transition on North America from the warm humid Pliocene to the glaciated Quaternary traced by eolian dust deposition at a benchmark North Atlantic Ocean drill site', by David Lang et al.”

    NASA Astrophysics Data System (ADS)

    Lang, David C.; Bailey, Ian; Wilson, Paul A.; Foster, Gavin L.; Bolton, Clara T.; Friedrich, Oliver; Gutjahr, Marcus

    2014-11-01

    In volume 93 of Quaternary Science Reviews we published a new record of terrigenous inputs to Integrated Ocean Drilling Program (IODP) Site U1313 that tracks the history of aeolian dust deposition in the North Atlantic Ocean and aridity on North America during the late Pliocene-earliest Pleistocene intensification of northern hemisphere glaciation (iNHG, 3.3 to 2.4 Ma). Naafs et al. (2014) are generally supportive but question one of our conclusions, specifically our argument that "glacial grinding and transport of fine grained sediments to mid latitude outwash plains is not the fundamental mechanism controlling the magnitude of the flux of higher plant leaf waxes from North America to Site U1313 during iNHG." They suggest that our argument is predominantly based on our observation that the relationship between sediment lightness (L*)-based terrigenous inputs and dust-derived biomarkers, which is observed to be linear elsewhere (Martínez-Garcia et al., 2011), is non-linear at Site U1313.

  20. Active aeolian processes on Mars: A regional study in Arabia and Meridiani Terrae

    USGS Publications Warehouse

    Silvestro, S.; Vaz, D.A.; Fenton, L.K.; Geissler, P.E.

    2011-01-01

    We present evidence of widespread aeolian activity in the Arabia Terra/Meridiani region (Mars), where different kinds of aeolian modifications have been detected and classified. Passing from the regional to the local scale, we describe one particular dune field in Meridiani Planum, where two ripple populations are distinguished by means of different migration rates. Moreover, a consistent change in the ripple pattern is accompanied by significant dune advancement (between 0.4-1 meter in one Martian year) that is locally triggered by large avalanche features. This suggests that dune advancement may be common throughout the Martian tropics. ?? 2011 by the American Geophysical Union.

  1. Dust Measurements in Tokamaks

    SciTech Connect

    Rudakov, D; Yu, J; Boedo, J; Hollmann, E; Krasheninnikov, S; Moyer, R; Muller, S; Yu, A; Rosenberg, M; Smirnov, R; West, W; Boivin, R; Bray, B; Brooks, N; Hyatt, A; Wong, C; Fenstermacher, M; Groth, M; Lasnier, C; McLean, A; Stangeby, P; Ratynskaia, S; Roquemore, A; Skinner, C; Solomon, W M

    2008-04-23

    Dust production and accumulation impose safety and operational concerns for ITER. Diagnostics to monitor dust levels in the plasma as well as in-vessel dust inventory are currently being tested in a few tokamaks. Dust accumulation in ITER is likely to occur in hidden areas, e.g. between tiles and under divertor baffles. A novel electrostatic dust detector for monitoring dust in these regions has been developed and tested at PPPL. In DIII-D tokamak dust diagnostics include Mie scattering from Nd:YAG lasers, visible imaging, and spectroscopy. Laser scattering resolves size of particles between 0.16-1.6 {micro}m in diameter; the total dust content in the edge plasmas and trends in the dust production rates within this size range have been established. Individual dust particles are observed by visible imaging using fast-framing cameras, detecting dust particles of a few microns in diameter and larger. Dust velocities and trajectories can be determined in 2D with a single camera or 3D using multiple cameras, but determination of particle size is problematic. In order to calibrate diagnostics and benchmark dust dynamics modeling, pre-characterized carbon dust has been injected into the lower divertor of DIII-D. Injected dust is seen by cameras, and spectroscopic diagnostics observe an increase of carbon atomic, C2 dimer, and thermal continuum emissions from the injected dust. The latter observation can be used in the design of novel dust survey diagnostics.

  2. Dust Storm Hits Canary Islands

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A thick pall of sand and dust blew out from the Sahara Desert over the Atlantic Ocean yesterday (January 6, 2002), engulfing the Canary Islands in what has become one of the worst sand storms ever recorded there. In this scene, notice how the dust appears particularly thick in the downwind wake of Tenerife, the largest of the Canary Islands. Perhaps the turbulence generated by the air currents flowing past the island's volcanic peaks is churning the dust back up into the atmosphere, rather than allowing it to settle toward the surface. This true-color image was captured by the Moderate-resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra satellite, on January 7, 2002. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC

  3. Dust Devil Populations and Statistics

    NASA Astrophysics Data System (ADS)

    Lorenz, Ralph D.; Jackson, Brian K.

    2016-08-01

    The highly-skewed diameter and pressure drop distributions of dust devils on Earth and Mars are noted, and challenges of presenting and comparing different types of observations are discussed. The widely-held view that Martian dust devils are larger than Earth's is critically assessed: the question is confounded somewhat by different observation techniques, but some indication of a {˜} 3x larger population on Mars is determined. The largest and most intense (in a relative pressure sense) devils recorded are on Mars, although the largest reported number density is on Earth. The difficulties of concepts used in the literature of `average' diameter, pressure cross section, and area fraction are noted in the context of estimating population-integral effects such as dust lifting.

  4. Gully annealing by fluvially-sourced Aeolian sand: remote sensing investigations of connectivity along the Fluvial-Aeolian-hillslope continuum on the Colorado River

    USGS Publications Warehouse

    Sankey, Joel B.; East, Amy E.; Collins, Brian D.; Caster, Joshua

    2015-01-01

    Processes contributing to development of ephemeral gully channels are of great importance to landscapes worldwide, and particularly in dryland regions where soil loss and land degradation from gully erosion pose long-term, land-management problems. Whereas gully formation has been relatively well studied, much less is known of the processes that anneal gullies and impede their growth. This work investigates gully annealing by aeolian sediment, along the Colorado River downstream of Glen Canyon Dam in Glen, Marble, and Grand Canyons, Arizona, USA (Figure 1). In this segment of the Colorado River, gully erosion potentially affects the stability and preservation of archaeological sites that are located within valley margins. Gully erosion occurs as a function of ephemeral, rainfall-induced overland flow associated with intense episodes of seasonal precipitation. Measurements of sediment transport and topographic change have demonstrated that fluvial sand in some locations is transported inland and upslope by aeolian processes to areas affected by gully erosion, and aeolian sediment activity can be locally effective at counteracting gully erosion (Draut, 2012; Collins and others, 2009, 2012; Sankey and Draut, 2014). The degree to which specific locations are affected by upslope wind redistribution of sand from active channel sandbars to higher elevation valley margins is termed “connectivity”. Connectivity is controlled spatially throughout the river by (1) the presence of upwind sources of fluvial sand within the contemporary active river channel (e.g., sandbars), and (2) bio-physical barriers that include vegetation and topography that might impede aeolian sediment transport. The primary hypothesis of this work is that high degrees of connectivity lead to less gullying potential.

  5. Microtopography-Induced Lag Formation on Bedforms and Biogenic Structures in Aeolian Settings

    NASA Astrophysics Data System (ADS)

    Buynevich, I. V.

    2010-12-01

    In a variety of sand-dominated depositional settings, high-energy events typically culminate with the formation of a lag deposit, expressed as an increase in coarse fraction, accumulation of shell fragments, or a concentration of heavy minerals (density >2.9) beyond their background values. In aeolian settings, grain impact plays a greater role in sediment transport than under subaqueous conditions, but there is a similar segregation of minerals by size and density due to different threshold entrainment and fall velocities of sand grains. For fine-to-medium sand transition, near-surface wind velocities increase from 4.5 m/s for quartz to 6.5 m/s for magnetite, which has twice the density. Most heavy minerals occur in a finer fraction of the surface sediment layer, which further increases their entrainment threshold due to high pivot angles and sheltering by the lighter minerals. Prolonged periods of increased wind activity generate heavy-mineral-enriched horizons ranging in thickness from a few grain diameters to more than 10-20 cm, producing distinct marker horizons and placers of economic importance. However, even under relatively low wind regime, localized density lag may form due to minor variations in topography and bed roughness. This process was exemplified along Revere Beach (Massachusetts, USA), where a series of 15-cm-high steps were installed at the base of a low seawall to prevent the formation of aeolian ramp that facilitated frequent overtopping. During the following months, a clear trend was established where the heavy-mineral fraction (primarily almandine garnet) progressively increased in a landward direction, toward higher substrate elevations. In natural settings with even a small background fraction of heavy minerals (2-5%), microtopographic highs of less than 1 cm are sufficient for the formation of a density lag. In a backshore area of Assateague Island (Maryland, USA), a clear increase in heavy-mineral content (mostly magnetite) was observed

  6. Overview of Dust Model Inter-comparison (DMIP) in East Asia

    NASA Astrophysics Data System (ADS)

    Uno, I.

    2004-12-01

    Dust transport modeling plays an important role in understanding the recent increase of Asian Dust episodes and its impact to the regional climate system. Several dust models have been developed in several research institutes and government agencies independently since 1990s. Their numerical results either look very similar or different. Those disagreements are caused by difference in dust modules (concepts and basic mechanisms) and atmospheric models (meteorological and transport models). Therefore common understanding of performance and uncertainty of dust erosion and transport models in the Asian region becomes very important. To have a better understanding of dust model application, we proposed the dust model intercomparison under the international cooperation networks as a part of activity of ADEC (Aeolian Dust Experiment on Climate Impact) project research. Current participants are Kyusyu Univ. (Japan), Meteorological Research Institute (Japan), Hong-Kong City Univ. (China), Korean Meteorological Agency METRI (Korea), US Naval Research Laboratory (USA), Chinese Meteorological Agency (China), Institute of Atmospheric Physics (China), Insular Coastal Dynamics (Malta) and Meteorological Service of Canada (Canada). As a case study episode, we set two huge dust storms occurred in March and April 2002. Results from the dust transport model from all the participants are compiled on the same methods and examined the model characteristics against the ground and airborne measurement data. We will also examine the dust model results from the horizontal distribution at specified levels, vertical profiles, concentration at special check point and emission flux at source region, and show the important parameters for dust modeling. In this paper, we will introduce the general overview of this DMIP activity and several important conclusions from this activity.

  7. Dust deposition on the Mars Exploration Rover Panoramic Camera (Pancam) calibration targets

    USGS Publications Warehouse

    Kinch, K.M.; Sohl-Dickstein, J.; Bell, J.F., III; Johnson, J. R.; Goetz, W.; Landis, G.A.

    2007-01-01

    The Panoramic Camera (Pancam) on the Mars Exploration Rover mission has acquired in excess of 20,000 images of the Pancam calibration targets on the rovers. Analysis of this data set allows estimates of the rate of deposition and removal of aeolian dust on both rovers. During the first 150-170 sols there was gradual dust accumulation on the rovers but no evidence for dust removal. After that time there is ample evidence for both dust removal and dust deposition on both rover decks. We analyze data from early in both rover missions using a diffusive reflectance mixing model. Assuming a dust settling rate proportional to the atmospheric optical depth, we derive spectra of optically thick layers of airfall dust that are consistent with spectra from dusty regions on the Martian surface. Airfall dust reflectance at the Opportunity site appears greater than at the Spirit site, consistent with other observations. We estimate the optical depth of dust deposited on the Spirit calibration target by sol 150 to be 0.44 ?? 0.13. For Opportunity the value was 0.39 ?? 0.12. Assuming 80% pore space, we estimate that the dust layer grew at a rate of one grain diameter per ???100 sols on the Spirit calibration target. On Opportunity the rate was one grain diameter per ???125 sols. These numbers are consistent with dust deposition rates observed by Mars Pathfinder taking into account the lower atmospheric dust optical depth during the Mars Pathfinder mission. Copyright 2007 by the American Geophysical Union.

  8. Dust feed mechanism

    DOEpatents

    Milliman, Edward M.

    1984-01-01

    The invention is a dust feed device for delivery of a uniform supply of dust for long periods of time to an aerosolizing means for production of a dust suspension. The device utilizes at least two tandem containers having spiral brushes within the containers which transport the dust from a supply to the aerosolizer means.

  9. Dust emission from different sol types and geomorphic units in the Sahara - implications for modeling dust emission and transport

    NASA Astrophysics Data System (ADS)

    Crouvi, Onn; Schepanski, Kerstin; Amit, Rivka; Gillespie, Alan; Enzel, Yehouda

    2014-05-01

    Mineral dust plays multiple roles in mediating physical and biogeochemical exchanges among the atmosphere, land and ocean, and thus is an active component of the global climate system. To estimate the past, current, and future impacts of dust on climate, sources of dust and their erodibility should be identified. The Sahara is the major source of dust on Earth. Based on qualitative analysis of remotely sensed data with low temporal resolution, the main sources of dust that have been identified are topographic depressions comprised of dry lake and playa deposits in hyprarid regions. Yet, recent studies cast doubts on these as the major sources and call for a search for others. Moreover, the susceptibility of soils to aeolian erosion (wind land erodibility) in the Sahara is still poorly known. In this study we identify and determine the soil types and geomorphic units most important as Saharan dust sources by correlating between the number of days with dust storms (NDS), derived from remote-sensing data of high temporal resolution, with the distribution of the soil types/geomorphic units. During 2006-8 the source of over 90% of the NDS was sand dunes, leptosols, calcisols, arenosols, and rock debris. Few dust storms originated from dry lake beds and playas. Land erodibility by wind for each soil type/geomorphic unit was estimated by a regression of the NDS and the number of days with high-speed wind events; the regression is relatively high for sand dunes and gypsisols. We use these regressions to differentiate between sources of dust that are supply-limited to those that are transport-limited. We propose that the fracturing of saltating sand and the removal of clay coatings from sand grains through eolian abrasion is the dominant dust-emission mechanism for the sand-rich areas covering large portion of the Sahara. Our results also explain the increased dustiness during the last glacial period, when sand dunes activity has been more common than during the Holocene

  10. Atmospheric mineral dust in dryland ecosystems: Applications of environmental magnetism

    NASA Astrophysics Data System (ADS)

    Reynolds, Richard L.; Goldstein, Harland L.; Miller, Mark E.

    2010-07-01

    Magnetic properties of shallow (<10-cm depth), fine-grained surficial sediments contrast greatly with those of immediately underlying bedrock across much of the dry American Southwest. At 26 study sites in fine-grained (<63 μm) surficial sediments isolated from alluvial inputs, isothermal remanent magnetization (IRM; mean of 67 samples = 6.72 × 10-3 Am2 kg-1) is more than two orders of magnitude greater than that for underlying Paleozoic and Mesozoic sedimentary rocks. This contrast is mainly caused by the presence of silt-size, titanium-bearing magnetite particles in the surficial deposits and their absence in bedrock. Because of their size, composition, and isolated location, the magnetite particles represent a component of atmospheric dust likely deposited over the past few centuries. The positive correlation of sediment-IRM values with amounts of potential plant nutrients reveals the importance of atmospheric dust to soil fertility over much of the American Southwest. Subsequent disturbance of landscapes, by domestic livestock grazing as an example, commonly results in wind erosion, which then depletes exposed surfaces of original aeolian magnetite and associated fine-grained sediment. Declines in soil fertility and water-holding capacity in these settings can be estimated in some field settings via decreases in magnetic susceptibility, relative to nearby undisturbed areas. Along gentle hillslope gradients of the Colorado Plateau, field measures for aeolian magnetite demonstrate that the redistribution of deposited atmospheric dust influences landscape-level patterns in the distribution of invasive exotic plant species. Our results indicate that environmental magnetism has high potential for assessing the development and degradation of dry landscapes elsewhere.

  11. Electric Dust Devils and Dust Storms

    NASA Astrophysics Data System (ADS)

    Renno, N. O.; Yana, C.

    2004-12-01

    Electrical fields measurements in terrestrial dust devils show that they maintain tremendous charge separation and that their electric fields exceeds the breakdown potential (~10 kV/m) of the Martian atmosphere (Farrell et al., 2002, 2003; Krauss et al., 2002; Renno et al., 2004). Typical Martian dust devils are be up to 100 times larger and much stronger than the small terrestrial analogues. Martian dust devils have higher dust content and may produce even stronger electrical fields. Indeed, the dust devils observed in the Pathfinder images have about 700 times the dust content of the local background atmosphere (Metzger et al., 1999). Thus, strong charge separations and electric-field breakdown are likely to occur on Martian dust devils and dust storms. Our theory (Renno et al., 2004) and laboratory experiments in a Mars chamber shows that collisions between sand and dust particles produce non-thermal microwave radiation. The non-thermal microwave emission allows not only the indirect detection of electric activity but also the determination of the physical properties of Martian sand and dust by remote sensing. Besides being geologically important, electrically charged Martian dust devils and dust storms are potential hazards to Landers and will be dangerous to future astronauts exploring its surface. Indeed, the design of adequate mechanical and electrical systems for these Landers cannot progress effectively without a better understanding of Martian dust devils and dust storms. Moreover, ancillary phenomena associated with electrically charged vortices can ionize atmospheric gases and might have important implications for atmosphere chemistry and even habitability.

  12. Detection and Preliminary Assessment of Source Areas of the 15 December 2003 Dust Storm in the Chihuahuan Desert, Southwestern North America

    NASA Astrophysics Data System (ADS)

    Rivera Rivera, N. I.; Gill, T. E.; Bleiweiss, M. P.; Hand, J. L.; Dominguez A., M.; Ruiz, A.; Perez, A. E.; Emmert, S. P.; Lee, J. A.; Mulligan, K. R.

    2005-12-01

    Dust storms can disperse large quantities of fine aeolian sediment regionally and even globally. These extreme aerosol events frequently originate with multiple dust plumes developing simultaneously over a large region. Dust outbreaks originating in the southwestern USA and northern Mexico seasonally transport aerosols long distances across continental North America. However, dust sources in this region are not well characterized. Remote sensing data can be used to assess the frequency and magnitude of these dust events for potential impacts on climate, visibility and health-related air quality issues. We applied a technique that consists of examining visible spectral bands, as well as difference "split-window" images for far-infrared (far-IR) channels using a variety of satellite imagery (NOAA/GOES/GVAR/Imager, NOAA/POES/AVHRR and NASA/TERRA/MODIS). This technique was used to locate the origin of multiple dust plumes in the Chihuahuan Desert region of the southwestern United States and northwestern Mexico during a significant dust event that occurred on December 15, 2003. After dust sources were identified, we superimposed their locations on Landsat-7 images to assess surface features of these aeolian "hotspots," and visited many of these sites to determine the geomorphology, soil/sediment properties, and land use associated with these dust sources. Dust plumes in the Chihuahuan Desert on 15 December 2003 emanated from several land types, including saline playas, bare desert soils, disturbed/abandoned lands, and agricultural areas. In Mexico, sources included several sites along the edges of pluvial Lake Palomas near the contacts between sand sheets and lacustrine sediments, small dry lake beds (lagunas secas) and several sites in the Casas Grandes river basin in Chihuahua. In the United States, dust emission hotspots included dry, unvegetated saline playas (the White Sands near the E and SE edges of Lake Lucero, New Mexico, and the northern Salt Basin west of the

  13. Observed high aerosol loading during dust events in Delhi

    NASA Astrophysics Data System (ADS)

    Singh, Khem; Aggarwal, Shankar G.; Jha, Arvind K.; Singh, Nahar; Soni, Daya; Gupta, Prabhat K.

    2012-07-01

    The present study reports aerosol mass loadings and their chemical property during integrated campaign for aerosol and radiation budget (ICARB) in the month of March to May 2006, at NPL, New Delhi. The Thar Desert in Rajasthan is located on the western end of India and south-west of Delhi is hot and arid region with intense aeolian activity and transport of aerosol by the prevailing southwest-west summer wind. Several dust episodes were observed in Delhi during summer 2006. The dust storm peaked on 29th April, 1 ^{st} and 8 ^{th} May 2006, with very high suspended particulate matter (SPM) concentrations 1986μg/m ^{3}, 1735μg/m ^{3} and 1511μg/m ^{3}, respectively. The average concentration of SPM in the month of March, April and May 2006 was 338 μg/m ^{3}, 698 μg/m ^{3} and 732 μg/m ^{3}, respectively. The SPM filter samples were analysed for water-soluble major cations (Na ^{+}, Ca ^{2+}, K ^{+}, and Mg ^{2+}) by atomic absorption spectrophotometry (AAS). Na ^{+} and Ca ^{2+} contribute about 54% and 20%, respectively of the total identified cation mass, indicating that they were most abundant cations. Strong correlations between Na ^{+}, Ca ^{2+}, K ^{+}, and Mg ^{2+} suggest their soil and dust origin. Such a high particle concentration observed during dust events may also be useful for study the effect of these aerosols on communication medium.

  14. Atmospheric stability and diurnal patterns of aeolian saltation on the Llano Estacado

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aeolian transport is driven by aerodynamic surface stress imposed by turbulent winds in the Earth’s atmospheric boundary layer (ABL). ABL regime is influenced by stratification, which can either enhance or suppress production of turbulence by shear associated with the vertical gradient of streamwise...

  15. A modeling study of aeolian erosion enhanced by surface wind confluences over Mexico City

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using erosion and air quality models, a study on the effect of PM10 episodes in Mexico City is presented. The important contribution of Aeolian erosion on urban air quality, its genesis, morphology, location and regional implications such as the role played by surface confluences, the dry Lake of T...

  16. Aeolian nutrient fluxes following wildfire in sagebrush steppe: Implications for soil carbon storage

    USGS Publications Warehouse

    Hasselquist, N.J.; Germino, M.J.; Sankey, J.B.; Ingram, L.J.; Glenn, N.F.

    2011-01-01

    Pulses of aeolian transport following fire can profoundly affect the biogeochemical cycling of nutrients in semi-arid and arid ecosystems. Our objective was to determine horizontal nutrient fluxes during an episodic pulse of aeolian transport that occurred following a wildfire in a semi-arid sagebrush steppe ecosystem in southern Idaho, USA. We also examined how temporal trends in nutrient fluxes were affected by changes in particle sizes of eroded mass as well as nutrient concentrations associated with different particle size classes. In the burned area, total carbon (C) and nitrogen (N) fluxes were as high as 235 g C m????'1 d????'1 and 19 g N m????'1 d????'1 during the first few months following fire, whereas C and N fluxes were negligible in an adjacent unburned area throughout the study. Temporal variation in C and N fluxes following fire was largely attributable to the redistribution of saltation-sized particles. Total N and organic C concentrations in the soil surface were significantly lower in the burned relative to the unburned area one year after fire. Our results show how an episodic pulse of aeolian transport following fire can affect the spatial distribution of soil C and N, which, in turn, can have important implications for soil C storage. These findings demonstrate how an ecological disturbance can exacerbate a geomorphic process and highlight the need for further research to better understand the role aeolian transport plays in the biogeochemical cycling of C and N in recently burned landscapes. ?? 2011 Author(s).

  17. Feedbacks between aeolian processes, vegetation productivity, and nutrient flux in deserts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wind is a key abiotic factor that influences the dynamics of arid and semiarid systems. A series of experiments and models will be presented that show the important feedbacks that exist between Aeolian processes and biotic process in deserts. Wind impacts vegetation by both changing the composition ...

  18. A tribute to Michael R. Raupach for contributions to aeolian fluid dynamics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since the early work of Bagnold in the 1940s, aeolian research has grown to become a major integral part of earth-system studies. Many individuals have contributed to this development, and Dr. Michael R. Raupach (MR2, 1950 – 2015) was one of the most outstanding. MR2 worked for about a decade (1985 ...

  19. Atmospheric stability and diurnal patterns of aeolian saltation on the Llano Estacado

    NASA Astrophysics Data System (ADS)

    Lanigan, David; Stout, John; Anderson, William

    2016-06-01

    Aeolian transport is driven by aerodynamic surface stress imposed by turbulent winds in the Earth's atmospheric boundary layer (ABL). ABL regime is influenced by stratification, which can either enhance or suppress production of turbulence by shear associated with the vertical gradient of streamwise velocity. During the day and night, surface heat fluxes induce a negative (unstable) and positive (stable) vertical gradient of potential temperature, respectively, which modifies the role of buoyancy in turbulence production. During the brief morning and evening transition periods, the vertical gradient of potential temperature vanishes (neutral stratification). The Monin-Obukhov similarity theory describes how the vertical gradient of streamwise velocity varies with stratification. Simultaneous field measurement of wind speed and aeolian activity were obtained over a 218-day period on a bare, sandy surface on the high plains of the Llano Estacado region of west Texas. Wind speed was measured at a height of 2 m with a propeller-type anemometer and aeolian activity was measured at the surface with a piezoelectric saltation sensor. We have used the wind speed measurements within the framework of the Monin-Obukhov similarity theory to estimate "typical" shear velocity, u∗ , of the ABL as stratification is varied (characterized with the stability parameter). This approach results in a color flood contour of u∗ against time of day and stability parameter: the procedure demonstrates that aeolian activity is most likely to occur during the day, when buoyancy acts in conjunction with mechanical shear to increase u∗ .

  20. A Fuzzy Cognitive Model of aeolian instability across the South Texas Sandsheet

    NASA Astrophysics Data System (ADS)

    Houser, C.; Bishop, M. P.; Barrineau, C. P.

    2014-12-01

    Characterization of aeolian systems is complicated by rapidly changing surface-process regimes, spatio-temporal scale dependencies, and subjective interpretation of imagery and spatial data. This paper describes the development and application of analytical reasoning to quantify instability of an aeolian environment using scale-dependent information coupled with conceptual knowledge of process and feedback mechanisms. Specifically, a simple Fuzzy Cognitive Model (FCM) for aeolian landscape instability was developed that represents conceptual knowledge of key biophysical processes and feedbacks. Model inputs include satellite-derived surface biophysical and geomorphometric parameters. FCMs are a knowledge-based Artificial Intelligence (AI) technique that merges fuzzy logic and neural computing in which knowledge or concepts are structured as a web of relationships that is similar to both human reasoning and the human decision-making process. Given simple process-form relationships, the analytical reasoning model is able to map the influence of land management practices and the geomorphology of the inherited surface on aeolian instability within the South Texas Sandsheet. Results suggest that FCMs can be used to formalize process-form relationships and information integration analogous to human cognition with future iterations accounting for the spatial interactions and temporal lags across the sand sheets.

  1. Geochemical characterization of a Holocene aeolian profile in the Zhongba area (southern Tibet, China) and its paleoclimatic implications

    NASA Astrophysics Data System (ADS)

    Li, Tuoyu; Wu, Yongqiu; Du, Shisong; Huang, Wenmin; Hao, Chengzhi; Guo, Chao; Zhang, Mei; Fu, Tianyang

    2016-03-01

    The Zhongba area lies in the valley of the Maquan River in southern Tibet, where there are both strong modern aeolian activities and ancient aeolian sand sediments. A Holocene aeolian sand and paleosol profile in the Zhongba area was selected for study and termed (Zhuzhu (ZZ) profile). The chronology of the ZZ profile was established by optically stimulated luminescence (OSL) and accelerator mass spectrometry (AMS) 14C dating. Based on the grain size and geochemical elements of the ZZ profile, the geochemical characterization was analyzed, the Holocene aeolian activity processes were reconstructed in the study area, and the paleoclimatic implications were discussed. The major elements and the chemical indicators are highly correlated with different grain-sizes in the ZZ profile. The evolutionary sequence of the aeolian activities and the paleoclimate in Holocene reveal four stages: before 7.3 ka BP, the climate was warm and wet with weak winds when the sand paleosol developed; at 7.3-3.8 ka BP, the climate turned dry, with strong aeolian activities; at 3.8-0.7 ka BP, the climate became wetter and the winds weakened when the silt paleosol developed; and since 0.7 ka BP, it was cold and dry with strong aeolian activities.

  2. Aeolian processes over gravel beds: Field wind tunnel simulation and its application atop the Mogao Grottoes, China

    NASA Astrophysics Data System (ADS)

    Zhang, Weimin; Tan, Lihai; Zhang, Guobin; Qiu, Fei; Zhan, Hongtao

    2014-12-01

    The aeolian processes of erosion, transport and deposition are threatening the Mogao Grottoes, a world culture heritage site. A field wind tunnel experiment was conducted atop the Mogao Grottoes using weighing sensors to quantify aeolian processes over protective gravel beds. Results reveal that aeolian erosion and deposition over gravel beds are basically influenced by gravel coverage and wind speed. Erosion is a main aeolian process over gravel beds and its strength level is mainly determined by gravel coverage: strong (<30%), medium (30-50%) and slight (>50%). Aeolian deposition only occurs when gravel coverage is equal to or greater than 30% and wind speeds are between 8 and 12 m s-1, and this process continues until the occurrence of the equilibrium coverage. In addition, the change in conditions of external sand supply affects the transition between aeolian deposition and erosion over gravel beds, and the quantity of sand transport at the height of 0-24 mm is an important indicator of aeolian deposition and erosion over gravel beds. Our results also demonstrate that making the best use of wind regime atop the Mogao Grottoes and constructing an artificial gobi surface in staggered arrays, with 30% coverage and 30-mm-high gravels and in 40 mm spacing can trap westerly invading sand flow and enable the stronger easterly wind to return the deposited sand on the gravel surface back to the Mingsha Mountain so as to minimize the damage of the blown sand flux to the Mogao Grottoes.

  3. Selective deposition response to aeolian-fluvial sediment supply in the desert braided channel of the upper Yellow River, China

    NASA Astrophysics Data System (ADS)

    Wang, H.; Jia, X.; Li, Y.; Peng, W.

    2015-09-01

    Rivers flow across aeolian dunes and develop braided stream channels. Both aeolian and fluvial sediment supplies regulate sediment transport and deposition in such cross-dune braided rivers. Here we show a significant selective deposition in response to both aeolian and fluvial sediment supplies in the Ulan Buh desert braided channel. The Ulan Buh desert is the main coarse sediment source for this desert braided channel, and the mean percentage of the coarser (> 0.08 mm) grains on the aeolian dunes surface is 95.34 %. The lateral selective deposition process is developed by the interaction between the flows and the aeolian-fluvial sediment supplies, causing the coarser sediments (> 0.08 mm) from aeolian sand supply and bank erosion to accumulate in the channel centre and the finer fluvial sediments (< 0.08 mm) to be deposited on the bar and floodplain surfaces, forming a coarser-grained thalweg bed bounded by finer-grained floodplain surfaces. This lateral selective deposition reduces the downstream sediment transport and is a primary reason for the formation of an "above-ground" river in the braided reach of the upper Yellow River in response to aeolian and fluvial sediment supplies.

  4. Dust Avalanches

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Crater wall dust avalanches in southern Arabia Terra.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

    Image information: VIS instrument. Latitude 10.3, Longitude 24.5 East (335.5 West). 19 meter/pixel resolution.

  5. Solar wind magnetic field bending of Jovian dust trajectories.

    PubMed

    Zook, H A; Grün, E; Baguhl, M; Hamilton, D P; Linkert, G; Liou, J; Forsyth, R; Phillips, J L

    1996-11-29

    From September 1991 to October 1992, the cosmic dust detector on the Ulysses spacecraft recorded 11 short bursts, or streams, of dust. These dust grains emanated from the jovian system, and their trajectories were strongly affected by solar wind magnetic field forces. Analyses of the on-board measurements of these fields, and of stream approach directions, show that stream-associated dust grain masses are of the order of 10(-18) gram and dust grain velocities exceed 200 kilometers per second. These masses and velocities are, respectively, about 10(3) times less massive and 5 to 10 times faster than earlier reported. PMID:8929405

  6. Dust particle dynamics in atmospheric dust devils

    NASA Astrophysics Data System (ADS)

    Izvekova, Yulia; Popel, Sergey

    2016-04-01

    Dust particle dynamics is modeled in the Dust Devils (DDs). DD is a strong, well-formed, and relatively long-lived whirlwind, ranging from small (half a meter wide and a few meters tall) to large (more than 100 meters wide and more than 1000 meters tall) in Earth's atmosphere. We develop methods for the description of dust particle charging in DDs, discuss the ionization processes in DDs, and model charged dust particle motion. Our conclusions are consistent with the fact that DD can lift a big amount of dust from the surface of a planet into its atmosphere. On the basis of the model we perform calculations and show that DDs are important mechanism for dust uplift in the atmospheres of Earth and Mars. Influence of DD electric field on dynamics of dust particles is investigated. It is shown that influence of the electric field on dust particles trajectories is significant near the ground. At some altitude (more then a quarter of the height of DD) influence of the electric field on dust particles trajectories is negligible. For the calculation of the dynamics of dust electric field can be approximated by effective dipole located at a half of the height of DD. This work was supported by the Russian Federation Presidential Program for State Support of Young Scientists (project no. MK-6935.2015.2).

  7. 2008 Weather and Aeolian Sand-Transport Data from the Colorado River Corridor, Grand Canyon, Arizona

    USGS Publications Warehouse

    Draut, Amy E.; Sondossi, Hoda A.; Hazel, Joseph E., Jr.; Andrews, Timothy; Fairley, Helen C.; Brown, Christopher R.; Vanaman, Karen M.

    2009-01-01

    This report presents measurements of weather parameters and aeolian (windblown) sand transport made in 2008 near selected archaeological sites in the Colorado River corridor through Grand Canyon, Ariz. The quantitative methods and data discussed here form a basis for monitoring ecosystem processes that affect archeological-site stability. Combined with forthcoming work to evaluate landscape evolution at nearby archaeological sites, these data can be used to document the relationship between physical processes, including weather and aeolian sand transport, and their effects on the physical integrity of archaeological sites. Data collected in 2008 reveal event- and seasonal-scale variations in rainfall, wind, temperature, humidity, and barometric pressure. Broad seasonal changes in aeolian sediment flux are also apparent at most study sites. The continuation of monitoring that began in 2007, and installation of equipment at several new sites in early 2008, allowed evaluation of the effects of the March 2008 high-flow experiment (HFE) on aeolian sand transport. At two of the nine sites studied, spring and summer winds reworked 2008 HFE sandbars to form new aeolian dunes, at which sand moved inland toward larger, well-established dune fields. At the other seven study sites, neither dune formation nor enhanced sand transport after the HFE were observed. At several of those sites, dominant wind directions in spring 2008 were not oriented such that much HFE sand would have moved inland; at other sites, lack of increased inland sand flux is attributable to lack of sandbar enlargement near the study sites or to inhibition of sand movement by vegetation or local topography.

  8. The MECA Payload as a Dust Analysis Laboratory on the MSP 2001 Lander

    NASA Technical Reports Server (NTRS)

    Marshall, J.; Anderson, M.; Buehler, M.; Frant, M.; Fuerstenau, S.; Hecht, M.; Keller, U.; Markiewicz, W.; Meloy, T.; Pike, T.

    1999-01-01

    planetology perspective, there are many enigmatic issues relating to dust and the aeolian regime in general. MECA will be able to address many questions in this area. For example, if MECA determines a particular particle size distribution (size and sorting values), it will be possible to make inferences about the origin of the dust - - is it all aeolian, or a more primitive residue of weathering, volcanic emissions, and meteoritic gardening? Trenching with the Lander/MECA robot arm will enable local stratigraphy to be determined in terms of depositional rates, amounts and cyclicity in dust storms and/or local aeolian transport. Grain shape will betray the origin of the dust fragments as being the product of recent or ancient weathering, or the comminution products of aeolian transport --the dust-silt ratio might be a measure of aeolian comminution energy. Additional information is contained in the original.

  9. The MECA Payload as a Dust Analysis Laboratory on the MSP 2001 Lander

    NASA Astrophysics Data System (ADS)

    Marshall, J.; Anderson, M.; Buehler, M.; Frant, M.; Fuerstenau, S.; Hecht, M.; Keller, U.; Markiewicz, W.; Meloy, T.; Pike, T.

    1999-09-01

    planetology perspective, there are many enigmatic issues relating to dust and the aeolian regime in general. MECA will be able to address many questions in this area. For example, if MECA determines a particular particle size distribution (size and sorting values), it will be possible to make inferences about the origin of the dust - - is it all aeolian, or a more primitive residue of weathering, volcanic emissions, and meteoritic gardening? Trenching with the Lander/MECA robot arm will enable local stratigraphy to be determined in terms of depositional rates, amounts and cyclicity in dust storms and/or local aeolian transport. Grain shape will betray the origin of the dust fragments as being the product of recent or ancient weathering, or the comminution products of aeolian transport --the dust-silt ratio might be a measure of aeolian comminution energy. Additional information is contained in the original.

  10. Mixing relationships in the Martian regolith and the composition of globally homogeneous dust

    NASA Astrophysics Data System (ADS)

    McSween, Harry Y.; Keil, Klaus

    2000-06-01

    Comparison of the chemical compositions of Martian soils reveals distinct mixing trends, resulting from admixture of variable amounts of sulfate/chloride cement at Viking landing sites and of the local andesitic rock fragments at the Mars Pathfinder site. These trends, most easily visualized in plots of oxides versus SO 3, intersect approximately at a common composition, thought to represent a global dust that has been homogenized by pervasive aeolian activity. The source rocks that were weathered to produce the global dust are inferred to have been basalts rather than felsic rocks, based on the observation that the dust lies along well-established chemical weathering trends for terrestrial basalts. The basaltic protolith was chemically similar (e.g., high Fe/Mg, low Al 2O 3) to basaltic shergottite meteorites. Chemical changes during the weathering of Martian basaltic rocks are apparently not as drastic as in terrestrial weathering, perhaps because of evaporation of hydrous fluids that leave soluble components behind in the residue. Comparison with chemical trends for previously proposed Martian soil-formation mechanisms suggests that palagonitization of basalts more readily explains the dust composition than do hydrothermal alteration at higher temperatures or reactions of rocks with an acid fog produced by volcanic exhalations. Local or temporal processing of dust into soil involves not only cementation by salts and mixing with rock fragments, but also chemical fractionations of Fe 2O 3/TiO 2 presumably resulting from aeolian sorting by grain size and density. If the global dust represents a broad average of the Martian surficial or upper crustal composition, the planet's surface geology is dominated by basaltic volcanic rocks and evaporitic salts.

  11. Mineral dust transport to the Sierra Nevada, California: Loading rates and potential source areas

    NASA Astrophysics Data System (ADS)

    Vicars, William C.; Sickman, James O.

    2011-03-01

    The transport and deposition of aeolian dust represents an important material input pathway for many marine and terrestrial ecosystems and may be an ecologically significant source of exogenous phosphorus (P) to alpine lakes. In order to assess the abundance and elemental composition of atmospheric mineral dust over the Sierra Nevada of California, we collected size-fractionated atmospheric particulate matter (PM) samples during July 2008 to March 2009 at a mixed conifer site located in Sequoia National Park. PM concentrations were at their highest levels during the dry season, averaging 8.8 ± 3.7 and 11.1 ± 7.5 μg m-3 for the coarse (1 μm < Da < 15 μm) and fine (Da < 1 μm) fractions, respectively, while winter months were characterized by low (<1 μg m-3) PM concentrations in both size fractions. Using Al as a diagnostic tracer for mineral aerosol, we observed a significant and uniform contribution (50-80%) from aeolian dust to the total coarse PM load, whereas submicron particles contained comparatively little crustal material (7-33%). The mass concentrations of elements (Fe, Ca, Mg, P, and V) in the coarse PM fraction were significantly correlated with Al throughout the study, and coarse PM exhibited elemental signatures that were temporally consistent and distinguishable from those of other sites. Conversely, higher elemental enrichments were observed in the fine PM fraction for Fe, V, and P, indicating a greater contribution from anthropogenic emissions to the fine particle load. Fe/Al and Fe/Ca ratios suggest a mixture of mineral dust from regional agricultural activities and long-range transport of mineral dust from Asia. Asian sources comprised 40-90% of mineral dust in July 2008 and then declined to between 10 and 30% in August and early September.

  12. Surface Dust Redistribution on Mars as Observed by the Mars Global Surveyor

    NASA Technical Reports Server (NTRS)

    Szwast, M. A.; Richardson, M. I.; Vasavada, A. R.

    2005-01-01

    The global redistribution of dust by the atmosphere is geologically and climatologically important. Dust deposition and removal at the surface represents ongoing sedimentary geology: a vestige of aeolian processes responsible for the concentration of vast dustsheets and potentially for ancient layered units at various locations on Mars. The varying amount of dust on the surface has also long been hypothesized as a factor in determining whether regional or global dust storms occur in a given year. Indeed, the atmosphere has a very short, sub-seasonal time-scale (or memory) and as such, any inter-annual variability in the climate system that is not simply ascribable to stochastic processes, must involve changing conditions on the surface. An excellent, multi-year dataset is provided by the Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) and the Mars Orbiter Camera Wide Angle imager (MOC-WA). This dataset allows investigation into the degree to which surface dust deposits on Mars really change: over decadal time scales, over the course of the annual cycle, and as a result of global and regional dust storms. The MGS mapping orbit data set extends over almost 3 Martian years at the time of writing. These data sets include one global dust storm and smaller regional storms (one in the first TES mapping year and two in the third).

  13. An improvement on the dust emission scheme in the global aerosol-climate model ECHAM5-HAM

    NASA Astrophysics Data System (ADS)

    Cheng, T.; Peng, Y.; Feichter, J.; Tegen, I.

    2007-09-01

    Formulation of the dust emission scheme in the global aerosol-climate modeling system ECHAM5-HAM has been improved. Modifications on the surface aerodynamic roughness length, soil moisture and East-Asian soil properties are included in the parameterization, which result in a large impact on the threshold wind friction velocity for aeolian erosion and thus influence the simulated dust emission amount. The annual global mean of dust emission in the year 2000 is reduced by 76.5% and 2.2%, respectively, due to changes in the aerodynamic roughness length and the soil moisture. An inclusion of detailed East-Asian soil properties leads to an increase of 16.6% in the annual global mean of dust emission, which exhibits mainly in the arid and semi-arid areas of northern China and southern Mongolia. Reasonable values of annual global mean of dust emission, dust burden and total aerosol optical thickness can be obtained in the improved model. In addition, measurements of the surface dust concentrations are collected in dust source regions of East Asia, and verify a more realistic spatial distribution of dust emission in the improved model.

  14. Monitoring Saharan dust from source to sink: from Iwik [Mauritania] to Statia [Caribbean

    NASA Astrophysics Data System (ADS)

    van Hateren, Hans; van der Does, Michelle; Friese, Carmen; Korte, Laura; Munday, Chris; Stuut, Jan-Berend

    2015-04-01

    The particle-size distribution and composition of mineral dust is often used as a tool to reconstruct palaeo-environmental conditions in the source(s) of the dust. In on-land (loess), lacustrine, and marine archives, the size of dust deposits is considered a proxy for paleo-wind intensity. However, next to wind strength, the particle size of aeolian deposits is also influenced by various other parameters such as source-to-sink distance, altitude at which the particles have been transported, and various environmental conditions in the sources of the dust. To verify if we can quantify a relationship between the size and composition of mineral dust particles and prevailing environmental conditions, we study "modern" dust. Within three ongoing projects, funded by the Dutch NWO, German DFG, and the ERC, we are studying dust collected on land in Mauritania (Iwik, in the Parc National de Banc d'Arguin, sampling on a monthly resolution) with an array of marine sediment-traps (five moorings at 12°N across the Atlantic Ocean with two sediment traps each between 23° and 57°W, sampling on a 2-weekly resolution) as well as automated mineral-dust collection at sea (on dust-collecting buoys at 12°N/38°W and 12°N/49°W, sampling on a 2-weekly resolution), and finally with a high-volume dust collector on St Eustatius (17°N/63°W, sampling on a 2-weekly resolution). Here we compare initial results of the particle-size distributions of the "minimally-disturbed" fraction of the on-land dust collectors with the terrigenous sediment fraction from the sediment traps, and discuss temporal and spatial trends.

  15. Hazards of explosives dusts

    NASA Astrophysics Data System (ADS)

    The Bureau of Mines has investigated the hazards of military explosives dispersed as dust clouds in a 20-L test chamber. For purposes of personnel safety, the spark ignitability of the explosives in the form of unconfined dust layers was also studied. The 20-L data show that most of the explosive dusts were capable of sustaining explosions as dust clouds dispersed in air and some dusts were even capable of sustaining explosions when dispersed in nitrogen. The finest sizes of explosive dusts were less reactive than the larger sizes; this is opposite to the particle size effect observed previously for the pure fuel dusts. The data for the explosive dusts were compared to those for pure fuel dusts.

  16. Soil heterogeneity of an East and West facing ridge above timberline due to differences in snow and aeolian deposition

    NASA Astrophysics Data System (ADS)

    Traver, E.

    2015-12-01

    Hans Jenny's soil forming factors—time, parent material, climate, topography, and organisms—represent the major components of his system to describe and quantify soil development. In almost all situations, it is difficult to hold even one of these factors constant while focusing on another factor; however, in our study site—the East and West side of a narrow North-South running ridge, above timberline in SE Wyoming—we can hold three factors nearly constant (time, parent material, and climate) and focus on how topography, in particular, has influenced the soil differences on the two sides. The East side is the leeside of prevailing and strong westerly winds and receives a large snow pack while the West is consistently snow-free during winter creating a very different moisture and soil temperature regime. The East receives aeolian dust deposition while the West loses surface material from wind scour. A standard chemical and physical analysis found that while the two sides are nearly identical textually, with a similar pH and low electrical conductivity, the East side is richer in minerals. During the short growing season, soil moisture results show that the West side is holding more water than the East side; however, the East side has a higher percentage of organic matter and is more shrub and forb rich. An isotope analysis shows that the C:N ratios are very similar on the two sides. Microbial biomass and functional groups will be analyzed in the soil samples as well as a seismic study conducted to quantity depth of soil to bedrock. Using all these results will help quantify the differences on the two sides of this narrow ridge and add to our understanding of fine-scale soil heterogeneity and its relationship to watershed hydrology.

  17. Effects of non-erodible particles on aeolian erosion: Wind-tunnel simulations of a sand oblong storage pile

    NASA Astrophysics Data System (ADS)

    Furieri, B.; Russeil, S.; Santos, J. M.; Harion, J. L.

    2013-11-01

    Non-erodible particles have strong influence on the aeolian erosion phenomena. An oblong stockpile model of sand (bimodal granulometry) was implemented to perform wind-tunnel experiments as similar literature works have only carried out experimental investigations on a flat bed of particles. Thus, the influence of the fluid flow structures around the complex obstacle will be analysed. The tested configurations consisted of two different values of non-erodible particles cover rate (10% and 20%), and three free stream velocities (6, 7 and 8 m s-1). Good repeatability was found. The results showed that the largest amount of particles emitted was for the highest wind velocity and the smallest cover rate. The temporal decreasing of emitted mass flux was found steeper for larger amount of non-erodible particles and higher velocity. The mass flux of particles decreases very strongly in the first four minutes of measurements and the cover rate influences this downward sloping. The same analysis applies for the effects of the free stream velocity. The qualitative analysis (high quality photographic system) of the stockpile surface gradual change has shown that non-erodible particles aggregation induces a pavement effect on some areas of the pile. This analysis indicated typical wind erosion zones: high wall friction on the crest line and lateral sides; low wall friction on the windward wall near the ground and on the recirculation downstream the leeward wall. The results and discussions presented here allows for the understanding of the impact of non-erodible particle on dust emissions.

  18. Spatial variations of the aerosols in river-dust episodes in central Taiwan.

    PubMed

    Kuo, Chung-Yih; Lin, Chao-Yuan; Huang, Long-Ming; Wang, Shizoom; Shieh, Ping-Fei; Lin, Yan-Ruei; Wang, Jing-Ya

    2010-07-15

    Daily and hourly average data of PM(10) from 17 air-quality monitoring stations distributed throughout four counties and along four rivers (the Ta-an River, the Tachia River, the Wu River and the Choshui River) in central Taiwan were collected from November 15 to 21, 2008. During this period, the wind speed and daily PM(10) concentrations increased drastically from the 17th to the 19th, and reached a maximum level on the 19th. Six air-quality monitoring stations (Dajia, Wurih, Siansi, Dungnan, Lunbei and Taisi) in the central Taiwan were selected for sampling fine (PM(2.5)) and coarse (PM(10-2.5)) aerosols samples during and after the river-dust episode. Most of the ratios of [crustal elements (Fe or Al)/reference elements (Cd or Mo)] for the samples obtained during episode are higher than those obtained after episode. The values of Fe(10-2.5)/Cd(10-2.5) and Fe(10-2.5)/Mo(10-2.5) were very high in Lubei, Taisi, and Dungnan stations where heavy aeolian river dust occurred. These data suggest that the ratios of Fe(10-2.5)/Cd(10-2.5) and Fe(10-2.5)/Mo(10-2.5) can be successfully used as indexes to evaluate the comparative degree of effect of aeolian river dust on the atmosphere of multiple stations. PMID:20456865

  19. Ocean biogeochemistry exhibits contrasting responses to a large scale reduction in dust deposition

    NASA Astrophysics Data System (ADS)

    Tagliabue, A.; Bopp, L.; Aumont, O.

    2008-01-01

    Dust deposition of iron is thought to be an important control on ocean biogeochemistry and air-sea CO2 exchange. In this study, we examine the impact of a large scale, yet climatically realistic, reduction in the aeolian Fe input during a 240 year transient simulation. In contrast to previous studies, we find that the ocean biogeochemical cycles of carbon and nitrogen are relatively insensitive (globally) to a 60% reduction in Fe input from dust. Net primary productivity (NPP) is reduced in the Fe limited regions, but the excess macronutrients that result are able to fuel additional NPP elsewhere. Overall, NPP and air-sea CO2 exchange are only reduced by around 3% between 1860 and 2100. While the nitrogen cycle is perturbed more significantly (by ~15%), reduced N2 fixation is balanced by a concomitant decline in denitrification. Feedbacks between N2 fixation and denitrification are controlled by variability in surface utilization of inorganic nitrogen and subsurface oxygen consumption, as well as the direct influence of Fe on N2 fixation. Overall, there is relatively little impact of reduced aeolian Fe input (<4%) on cumulative CO2 fluxes over 240 years. The lower sensitivity of our model to changes in dust input is primarily due to the more detailed representation of the continental shelf Fe, which was absent in previous models.

  20. Ocean biogeochemistry exhibits contrasting responses to a large scale reduction in dust deposition

    NASA Astrophysics Data System (ADS)

    Tagliabue, A.; Bopp, L.; Aumont, O.

    2007-08-01

    Dust deposition of iron is thought to be an important control on ocean biogeochemistry and air-sea CO2 exchange. In this study, we examine the impact of a large scale, yet climatically realistic, reduction in the aeolian Fe input during a 240 year transient simulation. In contrast to previous studies, we find that the ocean biogeochemical cycles of carbon and nitrogen are relatively insensitive to a 60% reduction in Fe input from dust. Net primary productivity (NPP) is reduced in the Fe limited regions, but the excess macronutrients that result are able to fuel additional NPP elsewhere. Overall, NPP and air-sea CO2 exchange are only reduced by around 3% between 1860 and 2100. While the nitrogen cycle is perturbed more significantly (by ~15%), reduced N2 fixation is balanced by a concomitant decline in denitrification. Feedbacks between N2 fixation and denitrification are controlled by variability in surface utilization of inorganic nitrogen and subsurface oxygen consumption, as well as the direct influence of Fe on N2 fixation. Overall, there is relatively little impact of reduced aeolian Fe input (<4%) on cumulative CO2 fluxes over 240 years. The lower sensitivity of our model to changes in dust input is primarily due to the more detailed representation of the continental shelf Fe, which was absent in previous models.

  1. Impact of desert dust on the biogeochemistry of phosphorus in terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    Okin, Gregory S.; Mahowald, Natalie; Chadwick, Oliver A.; Artaxo, Paulo

    2004-06-01

    Leaching, biomass removal, and partitioning of phosphorus (P) into reservoirs not available to plants can limit the long-term productivity of terrestrial ecosystems. We evaluate the importance of atmospheric P inputs to the world's soils by estimating the total soil P turnover time with respect to dustborne P additions. Estimated turnover times range from ˜104 to ˜107 years. Our estimates provide a unique perspective on the importance and patterns of aeolian deposition to terrestrial landscapes. Dust source regions are areas of intense soil P cycling on large scales, but are too water-limited for this rapid cycling to have a major influence on ecosystem dynamics. By contrast, semiarid desert margins receive significant aeolian P from neighboring deserts and are likely influenced by dustborne P additions for the long-term maintenance of productivity. This is particularly true for the semiarid steppes of Africa and Eurasia. The prevalence of large dust sources in Africa and Eurasia indicates that these areas may generally be more influenced by dustborne P additions than soils in the Americas. Significant western hemisphere exceptions to this pattern occur on very old landscapes, such as the forests of the southeastern United States and the Amazon Basin. The Amazon Basin is highly dependent on aeolian deposition for the maintenance of long-term productivity. Dust deposition to terrestrial environments has not been constant with time. Variability in past P deposition related to geologically recent climate change may provide the strongest controls on present and future soil P in the Amazon and elsewhere.

  2. Twelve thousand years of dust: the Holocene global dust cycle constrained by natural archives

    NASA Astrophysics Data System (ADS)

    Albani, S.; Mahowald, N. M.; Winckler, G.; Anderson, R. F.; Bradtmiller, L. I.; Delmonte, B.; François, R.; Goman, M.; Heavens, N. G.; Hesse, P. P.; Hovan, S. A.; Kang, S. G.; Kohfeld, K. E.; Lu, H.; Maggi, V.; Mason, J. A.; Mayewski, P. A.; McGee, D.; Miao, X.; Otto-Bliesner, B. L.; Perry, A. T.; Pourmand, A.; Roberts, H. M.; Rosenbloom, N.; Stevens, T.; Sun, J.

    2015-06-01

    Mineral dust plays an important role in the climate system by interacting with radiation, clouds, and biogeochemical cycles. In addition, natural archives show that the dust cycle experienced variability in the past in response to global and local climate change. The compilation of the DIRTMAP (Dust Indicators and Records from Terrestrial and MArine Palaeoenvironments) paleodust data sets in the last 2 decades provided a benchmark for paleoclimate models that include the dust cycle, following a time slice approach. We propose an innovative framework to organize a paleodust data set that builds on the positive experience of DIRTMAP and takes into account new scientific challenges by providing a concise and accessible data set of temporally resolved records of dust mass accumulation rates and particle grain size distributions. We consider data from ice cores, marine sediments, loess-paleosol sequences, lake sediments, and peat bogs for this compilation, with a temporal focus on the Holocene period. This global compilation allows the investigation of the potential, uncertainties, and confidence level of dust mass accumulation rate reconstructions and highlights the importance of dust particle size information for accurate and quantitative reconstructions of the dust cycle. After applying criteria that help to establish that the data considered represent changes in dust deposition, 45 paleodust records have been identified, with the highest density of dust deposition data occurring in the North Atlantic region. Although the temporal evolution of dust in the North Atlantic appears consistent across several cores and suggests that minimum dust fluxes are likely observed during the early to mid-Holocene period (6000-8000 years ago), the magnitude of dust fluxes in these observations is not fully consistent, suggesting that more work needs to be done to synthesize data sets for the Holocene. Based on the data compilation, we used the Community Earth System Model to

  3. Fluid transport on earth and aeolian transport on Mars

    NASA Technical Reports Server (NTRS)

    Sagan, C.; Bagnold, R. A.

    1975-01-01

    Experimental data on cohesion-free particle transport in fluid beds are applied, via a universal scaling relation, to atmospheric transport of fine grains on Mars. It may be that cohesion due to impact vitrification, vacuum sintering, and adsorbed thin films of water are absent on Mars - in which case the curve of threshold velocity versus grain size may show no turnup to small particle size, and one micron diameter grains may be injected directly by saltation into the Martian atmosphere more readily than 100 micron diameter grains. Curves for threshold and terminal velocities are presented for the full range of Martian pressures and temperatures. Suspension of fine grains is significantly easier at low temperatures and high pressures; late afternoon brightenings of many areas of Mars, and the generation of dust storms in such deep basins as Hellas, may be due to this effect.

  4. Long-term dust climatology in the western United States

    NASA Astrophysics Data System (ADS)

    Tong, D.; Lei, H.; Wang, J. X.; Lee, P.

    2013-12-01

    Dust activity is an important indicator to regional climate change. The Dust Bowl in the 1930s was the largest natural catastrophe in the North America history, caused by extended drought and poor land management. Although the severity and duration of the 1930s drought was exceptional, reconstructed paleo-climatic records show that the central U.S. plains have experienced severe droughts about once or twice a century over the past 400 years. Dust record is hence an integral component of the national climate assessment (NCA). This work presents our recent efforts to develop a climate-quality indicator of local windblown dust storms in the U.S. For the arid and semi-arid regions of the western United States, we have developed a novel approach to identify local windblown dust events through routine ambient aerosol monitoring (Tong et al., 2012). This work uses the dust identification algorithm to develop a dust storm dataset (dust indicator), and rely on satellite dust detection and model dust prediction as independent data sources to test, cross-check and validate the dust indicator. This work will extend our research capabilities to contribute developing new climate indicators that are especially aimed at needs of local environmental managers in the Southwestern communities.

  5. Long-term dust climatology in the western United States

    NASA Astrophysics Data System (ADS)

    Tong, D.; Lee, P.; Lei, H.; Wang, J. X. L.

    2014-12-01

    Dust activity is an important indicator to regional climate change. The Dust Bowl in the 1930s was the largest natural catastrophe in the North America history, caused by extended drought and poor land management. Although the severity and duration of the 1930s drought was exceptional, reconstructed paleo-climatic records show that the central U.S. plains have experienced severe droughts about once or twice a century over the past 400 years. Dust record is hence an integral component of the national climate assessment (NCA). This work presents our recent efforts to develop a climate-quality indicator of local windblown dust storms in the U.S. For the arid and semi-arid regions of the western United States, we have developed a novel approach to identify local windblown dust events through routine ambient aerosol monitoring (Tong et al., 2012). This work uses the dust identification algorithm to develop a dust storm dataset (dust indicator), and rely on satellite dust detection and model dust prediction as independent data sources to test, cross-check and validate the dust indicator. This work will extend our research capabilities to contribute developing new climate indicators that are especially aimed at needs of local environmental managers in the Southwestern communities.

  6. Temporal variations of mineral dust, biogenic tracers, and anthropogenic species during the past two centuries from Belukha ice core, Siberian Altai - article no. D05309

    SciTech Connect

    Olivier, S.; Blaser, C.; Brutsch, S.; Frolova, N.; Gaggeler, H.W.; Henderson, K.A.; Palmer, A.S.; Papina, T.; Schwikowski, M.

    2006-03-07

    In July 2001, a 140 m long ice core was recovered from the Belukha glacier (49 degrees 48'26''N, 86 degrees 34'43''E, 4062 m a.s.l.) in the Siberian Altai. The ion chemistry of the upper 86 m, covering the last two centuries, is characterized by biogenic emissions (ammonium and formate), aeolian dust (calcium, magnesium, chloride, and sodium) and anthropogenic species (sulfate, nitrate, and ammonium). Particularly high ammonium and formate concentrations indicate pronounced emissions from Siberian forests. The inferred fire frequency does not show a long-term trend but distinct periods of enhanced activity. Sulfate has the highest industrial to preindustrial ratio and an anthropogenic contribution of more than 80%. Variations in this record reflect sulfur dioxide emissions in Siberia and Kazakhstan. Sulfate concentrations remained low until 1950, then sharply increased and peaked in the 1970s. The decrease in the 1980s is attributed to the economic, political, and social crises and to the replacement of coal with gas. Rising nitrate concentrations since 1960 reflect traffic growth and enhanced fertilizer application. Increasing ammonium concentrations since the 1950s are attributable to population inflow in southern Siberia with the associated enhancement of agricultural activity. A nitrate peak of short duration in 1908 is thought to be the atmospheric signature from the Tunguska event on 30 June 1908.

  7. The Significant Roles of Landscape Pattern and Spatial Scale in Assessing Aeolian Desertification

    NASA Astrophysics Data System (ADS)

    Kang, W.; Kang, S.

    2015-12-01

    One of research focus in combating desertification is monitoring and assessing aeolian desertification by temporal satellite remote sensing imageries. Landscape heterogeneity hampers robust interpretation from the satellite imagery on the status and process of aoelian desertification in arid regions, for which scale effect on satellite-imagery interpretation must be investigated. In this study, area and degree of aeolian desertification were assessed at different spatial scales from 30m to 1km by using TM and Landsat8 imageries, respectively. Then, landscape pattern index was utilized to explain effect of spatial resolution on the satellite-based assessment of aeolian desertification in the middle of Mu Us and the west of Otindag Sandy Lands in Inner Mongolia of China. Our results indicate: (1) The middle of Mu Us was rehabilitated from 2000 to 2014 by reduction of desertified area from 12,861 km2 to 11,700 km2. Whereas, the desertified area of the west of Otindag fluctuated but rebounded during the last five years; (2) scale effects on the area and degree of desertified land were not significant, along the spatial resolution, the desertified area fluctuated from12,962km2 to 12,861km2 for Mu Us hinterland and from 7,752km2to 7,700km2 for Otindag west, which corresponds 0.78% and 0.67 % of relative variations, respectively. The aeolian desertification degree index(ADI) fluctuated from 0.36 to 0.35 for Mu Us hinterland and from 0.17 to 0.16 for Otindag west, which corresponds 2.78% and 5.88 % of relative variations, respectively. (3) scale effects on landscape pattern indices were significant, particular in landscape fragment; the correlation of spatial resolution and landscape fragment are positive(RMu Us2=0.76-0.77, ROtindag2=0.73-0.78). It was found substantial uncertainty in satellite-based assessment on aeolian desertification in Mu Us and Otindag Sandy Lands and the relevance of the uncertainty with the landscape pattern indices. Our study proposes more

  8. 2009 weather and aeolian sand-transport data from the Colorado River corridor, Grand Canyon, Arizona

    USGS Publications Warehouse

    Draut, Amy E.; Sondossi, Hoda A.; Dealy, Timothy P.; Hazel, Joseph E., Jr.; Fairley, Helen C.; Brown, Christopher R.

    2010-01-01

    This report presents measurements of weather parameters and aeolian sand transport made in 2009 near selected archeological sites in the Colorado River corridor through Grand Canyon, Ariz. The quantitative methods and data discussed here form a basis for monitoring ecosystem processes that affect archeological-site stability. Combined with forthcoming work to evaluate landscape evolution at nearby archeological sites, these data can be used to document the relation between physical processes, including weather and aeolian sand transport, and their effects on the physical integrity of archeological sites. Data collected in 2009 reveal event- and seasonal-scale variations in rainfall, wind, temperature, humidity, and barometric pressure. Broad seasonal changes in aeolian sediment flux are also apparent at most study sites. Differences in weather patterns between 2008 and 2009 included an earlier spring windy season, greater spring precipitation even though 2009 annual rainfall totals were in general substantially lower than in 2008, and earlier onset of the reduced diurnal barometric-pressure fluctuations commonly associated with summer monsoon conditions. Weather patterns in middle to late 2009 were apparently affected by a transition of the ENSO cycle from a neutral phase to the El Ni?o phase. The continuation of monitoring that began in 2007, and installation of additional equipment at several new sites in early 2008, allowed evaluation of the effects of the March 2008 high-flow experiment (HFE) on aeolian sand transport. As reported earlier, at 2 of the 9 sites studied, spring and summer winds in 2008 reworked the HFE sandbars to form new aeolian dunes, where sand moved inland toward larger, well-established dune fields. Observations in 2009 showed that farther inland migration of the dune at one of those two sites is likely inhibited by vegetation. At the other location, the new aeolian dune form was found to have moved 10 m inland toward older, well

  9. Braidplain, floodplain and playa lake, alluvial-fan, aeolian and palaeosol facies composing a diversified lithogenetical sequence in the permian and triassic of South Devon (England)

    NASA Astrophysics Data System (ADS)

    Mader, Detlef

    The Permian and Triassic of South Devon (England) are a continental red bed sequence of very diversified lithogenetical composition. Within the thick series, the distribution of the main depositional environments being fluvial braidplain, fluvial floodplain and playa lake, alluvial fan, aeolian dune and calcrete palaeosol changes repeatedly in both horizontal and vertical direction. Significant sedimentary milieus such as aeolian dunes and calcrete palaeosols occur repeatedly within the succession, but are also lacking in several parts of the sequence. Fluvial braidplain deposits comprise conglomerates, sandstones, intraformational reworking horizons and mudstones and originate in channels and overbank plains of a braided river system. Conglomerates and sandstones are formed by migration of bars and spreading out of sheets during infilling of streams and aggradation of flats. Gravel is often enriched as lag pockets or veneers within steeper scour holes and kolk pots or on the plane floor of the watercourse. Finer-grained sandstones and mudstones are laid down by suspension settling in stagnant water bodies such as small lakes in the overbank area and residual pools in interbar depressions during low-stage or waning-flow in active channels or in abandoned streams. Spectacular bioturbation features in some sandstones with both horizontal tubes and vertical burrows testify to the colonization of the sediments at the bottom of the rivers with declining discharge and transport capacity. Intraformational reworking horizons with ghost-like remnants of degraded sandstones, mudstones and pedogenic carbonates document partially severe condensation of the sequence by removal of some facies elements from the depositional record. The occasionally occurring gravel-bearing mudstones or silty-clayey sandstones represent products of high-energy water surges overspilling the channel banks and transporting sandy and gravelly bed-load in limited amounts beyond the levee wall. The

  10. Development of a Technique to Relate Aeolian Roughness to Radar Backscatter using Multiparameter SIR-C Data

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald; Blumberg, Dan; Dobrovolskis, A.; Iverson, James; Lancaster, Nicholas; White, Bruce; Rasmussen, Keld; Saunders, Stephen; vanZyl, Jakob; Wall, Stephen; Zebker, Howard

    1996-01-01

    Progress and future plans for the following objectives are presented: (1) To develop a technique to obtain values of aeolian roughness for geologic surfaces from values of surface roughness determined from calibrated L- and C-band, like- and cross-polarized, multiple incidence angle radar data from SIR-C; (2) To define the optimal combination of radar parameters from which aeolian roughness can be derived; and (3) To gain an understanding of the physical processes behind the empirical relationship.

  11. Dust Plume off Mauritania

    NASA Technical Reports Server (NTRS)

    2007-01-01

    A thick plume of dust blew off the coast of Mauritania in western Africa on October 2, 2007. The Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Aqua satellite observed the dust plume as it headed toward the southwest over the Atlantic Ocean. In this image, the dust varies in color from nearly white to medium tan. The dust plume is easier to see over the dark background of the ocean, but the plume stretches across the land surface to the east, as well. The dust plume's structure is clearest along the coastline, where relatively clear air pockets separate distinct puffs of dust. West of that, individual pillows of dust push together to form a more homogeneous plume. Near its southwest tip, the plume takes on yet another shape, with stripes of pale dust fanning out toward the northwest. Occasional tiny white clouds dot the sky overhead, but skies are otherwise clear.

  12. The National Aeolian Detritus Project, A Student-controlled, Standards-based Research Opportunity for Middle and Hight School Students

    NASA Astrophysics Data System (ADS)

    Sammons, J. I.; Murray, D. D.; Reid, J. B.

    2001-12-01

    Schools across the United States are adopting Standards-based philosophies and practices at a quickening pace. Two of the biggest challenges in this transition are the integration of concepts and the development of meaningful evaluation of student progress. The National Aeolian Detritus Project is a collaboration among Jamestown School, the University of Rhode Island, Hampshire College, the Rhode Island Space Grant Consortium at Brown University and the Rhode Island Nuclear Science Center. This Project provides students with an opportunity to integrate and enhance previous elements of instruction and allows them decision-making control over the direction of an extended research investigation. This project also provides opportunities for undergraduate community service development through University - Local School collaboration and mentoring. Students first collect Aeolian Detritus, that is, randomly deposited airborne particulate matter (APM) by deploying flat sheet collectors. Retained APM is removed from the collectors with repulpable tape and concentrated by vacuum filtration. APM is initially identified by simple light microscopy, solubility, density, and magnetic response. More advanced identification includes ICP and Neutron Activation. With assistance from collaborating universities, students craft research questions based on these initial samples and develop investigation designs. Sample research questions include: 1) Can insect infestations or possible defoliation events be predicted by identification of insect bodies, parts, and excrement? 2) What information can we collect about micrometeorites when typed, analyzed, and compared to NASA comet track data? 3) Can the distribution of flora be confirmed or modified based on pollen grain collection and mapping? 4) Can the distribution of mineral particulate matter be mapped by collection and comparison with wind patterns over known geologic features? Schools correlate collection data with National Weather

  13. Saharan dust and Florida red tides: The cyanophyte connection

    NASA Astrophysics Data System (ADS)

    Walsh, John J.; Steidinger, Karen A.

    2001-06-01

    Prediction of the consequences of harmful algal blooms for humans and other vertebrates is constrained by an inadequate understanding of the factors that promote their initiation. A simple exponential growth model of net production is used for analysis of four time series at different sampling intervals over ˜40 years of red tide strandings, associated fish kills, and concomitant dust loadings on the West Florida shelf. At least large summer blooms of a toxic dinoflagellate Gymnodinium breve appear to be primed regularly by an aeolian supply of nutrients. Wet deposition of Saharan mineral aerosols may alleviate iron limitation of diazotrophic cyanophytes, which in turn fuel the nitrogen economy of red tides in the eastern Gulf of Mexico. Vagaries of the wind-induced circulation and of selective grazing pressure on phytoplankton competitors within phosphorus replete coastal waters then determine each year the residence times for exposure of G. breve-mediated neurotoxins to fish, manatees, and humans along the southeastern United States.

  14. House-Dust Allergy

    PubMed Central

    Johnson, C. A.

    1982-01-01

    House-dust allergy is a common cause of perennial allergic rhinitis and extrinsic asthma. Symptoms tend to be worse when the patient is in bed. A positive skin test properly performed and interpreted confirms the diagnosis. The house-dust mite is the most important antigenic component of house-dust. Treatment consists of environmental control directed at reducing the mite content of bedroom dust, plus control of symptoms with drugs. Immunotherapy is controversial. ImagesFig. 1 PMID:21286201

  15. Geochemical and microbiological fingerprinting of airborne dust that fell in Canberra, Australia, in October 2002

    NASA Astrophysics Data System (ADS)

    de Deckker, Patrick; Abed, Raeid M. M.; de Beer, Dirk; Hinrichs, Kai-Uwe; O'Loingsigh, Tadhg; Schefuß, Enno; Stuut, Jan-Berend W.; Tapper, Nigel J.; van der Kaars, Sander

    2008-12-01

    During the night of 22-23 October 2002, a large amount of airborne dust fell with rain over Canberra, located some 200 km from Australia's east coast, and at an average altitude of 650 m. It is estimated that during that night about 6 g m-2 of aeolian dust fell. We have conducted a vast number of analyses to "fingerprint" some of the dust and used the following techniques: grain size analysis; scanning electron microscope imagery; major, trace, and rare earth elemental, plus Sr and Nd isotopic analyses; organic compound analyses with respective compound-specific isotope analyses; pollen extraction to identify the vegetation sources; and molecular cloning of 16S rRNA genes in order to identify dust bacterial composition. DNA analyses show that most obtained 16S rRNA sequences belong mainly to three groups: Proteobacteria (25%), Bacteriodetes (23%), and gram-positive bacteria (23%). In addition, we investigated the meteorological conditions that led to the dust mobilization and transport using model and satellite data. Grain sizes of the mineral dust show a bimodal distribution typical of proximal dust, rather than what is found over oceans, and the bimodal aspect of size distribution confirms wet deposition by rain droplets. The inorganic geochemistry points to a source along/near the Darling River in NW New South Wales, a region that is characteristically semiarid, and both the organic chemistry and palynoflora of the dust confirm the location of this source area. Meteorological reconstructions of the event again clearly identify the area near Bourke-Cobar as being the source of the dust. This study paves the way for determining the export of Australian airborne dust both in the oceans and other continents.

  16. China Dust and Sand

    Atmospheric Science Data Center

    2013-04-16

    ... article title:  Dust and Sand Sweep Over Northeast China     View Larger Image ... these views of the dust and sand that swept over northeast China on March 10, 2004. Information on the height of the dust and an ...

  17. Middle East Dust

    Atmospheric Science Data Center

    2013-04-16

    ... only some of the dust over eastern Syria and southeastern Turkey can be discerned. The dust is much more obvious in the center panel, ... 18, 2002 - A large dust plume extends across Syria and Turkey. project:  MISR category:  gallery ...

  18. Dust in the Universe

    ERIC Educational Resources Information Center

    Hemenway, Mary Kay; Armosky, Brad J.

    2004-01-01

    Space is seeming less and less like empty space as new discoveries and reexaminations fill in the gaps. And, ingenuity and technology, like the Spitzer Space Telescope, is allowing examination of the far reaches of the Milky Way and beyond. Even dust is getting its due, but not the dust everyone is familiar with. People seldom consider the dust in…

  19. Niamey Dust Observations

    DOE Data Explorer

    Flynn, Connor

    2008-10-01

    Niamey aerosol are composed of two main components: dust due to the proximity of the Sahara Desert, and soot from local and regional biomass burning. The purpose of this data product is to identify when the local conditions are dominated by the dust component so that the properties of the dust events can be further studied.

  20. Late Amazonian aeolian features, gradation, wind regimes, and Sediment State in the Vicinity of the Mars Exploration Rover Opportunity, Meridiani Planum, Mars

    NASA Astrophysics Data System (ADS)

    Fenton, Lori K.; Michaels, Timothy I.; Chojnacki, Matthew

    2015-03-01

    LDD morphology and migration dominated by a northwesterly wind. This apparent inconsistency may be caused by spatial topographic variations at a local scale and temporal variations in atmospheric conditions (e.g., static stability and wind velocity), such that aeolian transport in larger craters (>15 km) responds differently to a regionally-uniform wind than that in smaller craters (<3 km). The preserved surface record from the Late Amazonian consists of four periods of bedform construction. (1) The oldest wind corresponds to putative east-west oriented bedforms on the plains, from which little information may be recovered. (2) Prior to ∼200 ka, an easterly wind created TARs, plains ripples, plains-like ripples on crater floors, and ripple streaks. (3) At some point between ∼50 and ∼200 ka, smaller bedforms with northeast-southwest oriented crestlines partially reworked both plains ripples and TARs, and small similarly-oriented bedforms accumulated in the floors of craters. (4) Finally, the present-day crestline orientations of LDDs and dark sand streaks are inconsistent with each of the older bedforms. Excluding the first wind regime, the remaining bedforms can be represented by an easterly wind gradually giving way to a relative strengthening of northwesterly and southeasterly winds. Based on observations, one possible scenario describing the sediment state of the plains alternated between transport-limited contemporaneous and lagged sediment influx (CLITL), during which bedforms are constructed, and relatively long periods (including the present-day) of availability-limited contemporaneous sediment influx (CIAL).

  1. Long-Term Simulation of Dust Distribution with the GOCART Model: Correlation with the North Atlantic Oscillation

    NASA Technical Reports Server (NTRS)

    Ginoux, P.; Prospero, J.; Torres, O.; Chin, M.

    2002-01-01

    Global distribution of aeolian dust is simulated from 1981 to 1996 with the Goddard Ozone Chemistry Aerosol Radiation and Transport (GOCART) model. The results are assessed with in-situ measurements and the Total Ozone Mapping Spectrometer (TOMS) aerosol products. The annual budget over the different continents and oceans are analyzed. It is found that there is a maximum of 25% difference of global annual emission from the minimum in 1996 to the maximum in 1988. There is a downward trend of dust emission over Africa and East Asia, of 6 and 2 Tg/yr, respectively. The inter-annual variability of dust distribution is analyzed over the North Atlantic and Africa. It is found that in winter most of the North Atlantic and Africa dust loading is correlated with the North Atlantic Oscillation. The GOCART model indicates that a controlling factor of such correlation can be attributed to dust emission from the Sahel. The Bodele depression is the major dust source in winter and its inter-annual variability is highly correlated with the NAO. However, it is not possible to conclude without further analysis that the North Atlantic Oscillation is forcing the inter-annual variability of dust emission and in-turn dust concentration over the North Atlantic.

  2. Evidence of global-scale aeolian dispersal and endemism in isolated geothermal microbial communities of Antarctica.

    PubMed

    Herbold, Craig W; Lee, Charles K; McDonald, Ian R; Cary, S Craig

    2014-01-01

    New evidence in aerobiology challenges the assumption that geographical isolation is an effective barrier to microbial transport. However, given the uncertainty with which aerobiological organisms are recruited into existing communities, the ultimate impact of microbial dispersal is difficult to assess. Here we use molecular genetic approaches to examine microbial communities inhabiting fumarolic soils on Mount Erebus, the southernmost geothermal site on Earth, to evaluate the ecological significance of global-scale microbial dispersal. There, hot, fumarolic soils provide an effective environmental filter to test the viability of organisms that have been distributed via aeolian transport over geological time. We find that cosmopolitan thermophiles dominate the surface, whereas endemic Archaea and members of poorly understood Bacterial candidate divisions dominate the immediate subsurface. These results imply that aeolian processes readily disperse viable organisms globally, where they are incorporated into pre-existing complex communities of endemic and cosmopolitan taxa. PMID:24846491

  3. New Method for Estimation of Aeolian Sand Transport Rate Using Ceramic Sand Flux Sensor (UD-101)

    PubMed Central

    Udo, Keiko

    2009-01-01

    In this study, a new method for the estimation of aeolian sand transport rate was developed; the method employs a ceramic sand flux sensor (UD-101). UD-101 detects wind-blown sand impacting on its surface. The method was devised by considering the results of wind tunnel experiments that were performed using a vertical sediment trap and the UD-101. Field measurements to evaluate the estimation accuracy during the prevalence of unsteady winds were performed on a flat backshore. The results showed that aeolian sand transport rates estimated using the developed method were of the same order as those estimated using the existing method for high transport rates, i.e., for transport rates greater than 0.01 kg m−1 s−1. PMID:22291553

  4. Vegetation and substrate on aeolian landscapes in the Colorado River corridor, Cataract Canyon, Utah

    USGS Publications Warehouse

    Draut, Amy E.; Gillette, Elizabeth R.

    2010-01-01

    Vegetation and substrate data presented in this report characterize ground cover on aeolian landscapes of the Colorado River corridor through Cataract Canyon, Utah, in Canyonlands National Park. The 27-km-long Cataract Canyon reach has undergone less anthropogenic alteration than other reaches of the mainstem Colorado River. Characterizing ecosystem parameters there provides a basis against which to evaluate future changes, such as those that could result from the further spread of nonnative plant species or increased visitor use. Upstream dams have less effect on the hydrology and sediment supply in Cataract Canyon compared with downstream reaches in Grand Canyon National Park. For this reason, comparison of these vegetation and substrate measurements with similar data from aeolian landscapes of Grand Canyon will help to resolve the effects of Glen Canyon Dam operations on the Colorado River corridor ecosystem.

  5. Explaining the surprisingly poor correlation between turbulent surface wind and aeolian sand flux

    NASA Astrophysics Data System (ADS)

    Martin, R. L.; Barchyn, T. E.; Hugenholtz, C.; Jerolmack, D. J.; Kok, J. F.

    2012-12-01

    Existing models of aeolian sand transport, derived theoretically and from wind-tunnel experiments, often disagree substantially with field observations. Despite advancements in anemometry and sediment flux detection technologies, even very high-resolution observations of aeolian sand transport show only weak correlation with concurrent surface wind speeds and model predictions. Unlike in experiments and numerical models, winds in natural environments exhibit turbulent fluctuations over a broad range of length scales extending from individual grains to the top of the atmospheric boundary layer and over a similarly large range of time scales. Here, we present simultaneous high-resolution (10 Hz) measurements of surface wind and saltation sand transport over a ~5 m tall barchan dune (median grain diameter = 0.35 mm) collected at White Sands Dune Field, New Mexico, USA. Studying aeolian transport in the field offered a natural experiment for understanding how the rate of aeolian saltation responds to turbulent changes in wind and frequent crossings of the threshold for particle motion. In agreement with past observations, our data indicate that: (1) saltation flux lags wind fluctuations by about 1 second, (2) the threshold for initiation of particle motion ("entrainment") exceeds the threshold for cessation ("distrainment") by about 20%, (3) concurrent instantaneous wind and sediment flux measurements are poorly correlated. Based on our data, we show how lagged transport and threshold hysteresis are related to inertia in the transport system arising from ballistic particle trajectories and non-instantaneous momentum transfers among grains and wind. We argue that this nonlinear and lagged response of saltation to turbulent wind fluctuations accounts for the poor correlation between wind and transport as well as the poor performance of existing saltation models.

  6. Aeolian Transport of Ferrous Minerals in the North Polar Region of Mars

    NASA Astrophysics Data System (ADS)

    Horgan, Briony H.; Bell, J. F., III; Noe Dobrea, E. Z.

    2008-09-01

    The north polar region of Mars contains two areally extensive, dark aeolian deposits: (1) the north polar sand seas that encircle the polar cap, and (2) the north polar veneers that drape over the polar cap itself. Both deposits have been previously identified as containing hydrated minerals, and exhibit spectral features consistent with gypsum, a hydrated calcium sulfate. However, it remains unclear whether or not the deposits have exchanged material in the past, and whether any portion of either deposit is active today. In this study, we are investigating the distribution of ferrous minerals in the north polar region using near-infrared spectral data from the Mars Express OMEGA imaging spectrometer. Ferrous minerals, such as olivine and pyroxene, are most readily identified by the presence of a wide absorption band around 1 micron. Observations of changes in the position, depth, and shape of the 1 micron absorption band may be used to track changes in composition. We have identified the presence of a strong 1 micron band in the veneers, the sand sea, and the surrounding plains. Initial results from study regions in Chasma Boreale and Olympia Planum suggest that the position, depth, and shape of the band do vary within the veneers and sand seas. These spectral differences may reflect: (1) compositional variations between the sources of the deposits, (2) the degree of modern activity of the deposits, or (3) changes in mineralogy due to breakdown of softer minerals during aeolian transport over long distances. By extending our observations of these spectral changes to the entire north polar region, we may be able to help identify sources of aeolian material, transport pathways, and the most active regions of modern aeolian activity.

  7. Aeolian nutrient fluxes following wildfire in sagebrush steppe: Implications for soil carbon storage

    USGS Publications Warehouse

    Hasselquist, N.J.; Germino, M.J.; Sankey, J.B.; Ingram, L.J.; Glenn, N.F.

    2011-01-01

    Pulses of aeolian transport following fire can profoundly affect the biogeochemical cycling of nutrients in semi-arid and arid ecosystems. Our objective was to determine horizontal nutrient fluxes occurring in the saltation zone during an episodic pulse of aeolian transport that occurred following a wildfire in a semi-arid sagebrush steppe ecosystem in southern Idaho, USA. We also examined how temporal trends in nutrient flu