Science.gov

Sample records for aeolian quartz sand

  1. Oxygen isotopic compositions of quartz in the sand seas and sandy lands of northern China and their implications for understanding the provenances of aeolian sands

    NASA Astrophysics Data System (ADS)

    Yang, Xiaoping; Zhang, Feng; Fu, Xudong; Wang, Xiaoming

    2008-12-01

    A better understanding of aeolian sand provenance in deserts would be useful for studying interactions between various Earth surface processes occurring in arid and semiarid regions. In this study we examined oxygen isotopic compositions of quartz in sand samples taken from Taklamakan and Badain Jaran deserts of northwestern China and from the Hunshandake and Hulunbeier sandy lands in northeastern China. Typical fractions of grain sizes were chosen for examination. Sample preparation followed the chemical principals described in geochemistry and final measurements were performed with mass spectrometers. In the sands from the Badain Jaran Desert the δ18O value is generally low, with a mean of 12.1‰ in the coarse fraction (0.200-0.250 mm) and a mean of 13.2‰ in the fine fraction (0.125-0.154 mm). The sands of the Taklamakan Desert show a mean δ18O value of 15.4‰ in the main grain size fraction 0.064-0.150 mm. In contrast, the mean δ18O values in all grain size fractions of sand samples from the Hunshandake Sandy Land and from the Hulunbeier Sandy Land are much lower, varying between 6.8‰ and 9.9‰. The outcome established a preliminary database about δ18O distributions in quartz sands throughout China's large deserts and sandy lands. The results show regional differences between each of the sand seas and sandy lands, indicating different provenances of the aeolian sands. Further detailed comparison of the δ18O values between the deserts and loess stratigraphy in the Loess Plateau would provide information about changes in areas of loess sources and evidence of palaeocirculation.

  2. Aeolian sand ripples around plants

    NASA Astrophysics Data System (ADS)

    Zhang, Qian-Hua; Miao, Tian-De

    2003-05-01

    Plants in the desert may locally change the aeolian process, and hence the pattern of sand ripples traveling nearby. The effect of plants on ripples is investigated using a coupled map lattice model with nonuniform coupling coefficients.

  3. Luminescence dating of Holocene aeolian sand movement, Thy, Denmark

    NASA Astrophysics Data System (ADS)

    Murray, A. S.; Clemmensen, L. B.

    2001-12-01

    We report on the application of optically stimulated luminescence dating to an investigation of the frequency of periods of aeolian sand movement and dune formation. On the coast of Thy, Holocene aeolian sediments, interleaved with peaty palaeosols, form some of the most complete successions known in western Denmark. Samples were taken from a coastal exposure, and an inland archaeological site. Dosimetry was based on laboratory gamma spectrometry, and quartz luminescence measurements used the single-aliquot regenerative-dose protocol, and 470±30 nm stimulation. The sand samples cover an age ranging from about 100 years to 4500 years; the youngest dates give us confidence that the material was well bleached at deposition. Good agreement was obtained with the radiocarbon palaeosol ages. We identify three main periods of aeolian sand movement, starting at about 4200, 2700 and 900 years ago; at least during the latter two periods significant aeolian sand movement occurred. All three phases of aeolian activity were separated by long periods of stability and soil formation. A more recent episode of dune formation, restricted to the coast and beginning less than 200 years ago, may have been triggered by modern coastal erosion.

  4. Non-aeolian sand ripples

    NASA Astrophysics Data System (ADS)

    Boudet, J. F.; Amarouchene, Y.; Bonnier, B.; Kellay, H.

    2005-02-01

    By examining the initial stages of the impact of a granular jet on a flat horizontal solid surface we evidenced the existence of oscillatory sand fronts. These oscillations give rise to a novel mechanism for the formation of ripples on sand surfaces. We here show that as the front advances, its slope changes periodically in time, leaving behind a succession of surface elevations and depressions. A key feature of these oscillations is the interplay between the deposition of mobile sand and the avalanching of the static parts giving rise to a remarkable self-regulating system. These features come out naturally from a simplified version of recently proposed models for the dynamics of sand piles.

  5. Periodic Trajectories in Aeolian Sand Transport

    NASA Astrophysics Data System (ADS)

    Valance, A.; Jenkins, J. T.

    2014-12-01

    Saltation is the primary mode of aeolian sand transport and refers to the hoping motion of grains over the bed [1]. We develop a simple model for steady, uniform transport in aeolian saltation over a horizontal bed that is based on the computation of periodic particle trajectories in a turbulent shearing flow [2]. The wind and the particles interact through drag, and the particles collide with the bed. We consider collisions with a rigid, bumpy bed, from which the particles rebound, and an erodible particle bed, for which a collision involves both rebound and particle ejection. The difference in the nature of the collisions results in qualitative differences in the nature of the solutions for the periodic trajectories and, in particular, to differences in the dependence of the particle flow rate on the strength of the turbulent shearing. We also discuss the pertinence of this model to describe bedload transport in water. References:[1] R. A. Bagnold, « The physics of blown sand and desert dunes » , Methuen, New York (1941).[2] J.T Jenkins and A. Valance. Periodic trajectories in Aeolian saltation transport. Physics of Fluids, 2014, 26, pp. 073301

  6. A Threshold Continuum for Aeolian Sand Transport

    NASA Astrophysics Data System (ADS)

    Swann, C.; Ewing, R. C.; Sherman, D. J.

    2015-12-01

    The threshold of motion for aeolian sand transport marks the initial entrainment of sand particles by the force of the wind. This is typically defined and modeled as a singular wind speed for a given grain size and is based on field and laboratory experimental data. However, the definition of threshold varies significantly between these empirical models, largely because the definition is based on visual-observations of initial grain movement. For example, in his seminal experiments, Bagnold defined threshold of motion when he observed that 100% of the bed was in motion. Others have used 50% and lesser values. Differences in threshold models, in turn, result is large errors in predicting the fluxes associated with sand and dust transport. Here we use a wind tunnel and novel sediment trap to capture the fractions of sand in creep, reptation and saltation at Earth and Mars pressures and show that the threshold of motion for aeolian sand transport is best defined as a continuum in which grains progress through stages defined by the proportion of grains in creep and saltation. We propose the use of scale dependent thresholds modeled by distinct probability distribution functions that differentiate the threshold based on micro to macro scale applications. For example, a geologic timescale application corresponds to a threshold when 100% of the bed in motion whereas a sub-second application corresponds to a threshold when a single particle is set in motion. We provide quantitative measurements (number and mode of particle movement) corresponding to visual observations, percent of bed in motion and degrees of transport intermittency for Earth and Mars. Understanding transport as a continuum provides a basis for revaluating sand transport thresholds on Earth, Mars and Titan.

  7. Aeolian Sand Transport with Collisional Suspension

    NASA Technical Reports Server (NTRS)

    Jenkins, James T.; Pasini, Jose Miguel; Valance, Alexandre

    2004-01-01

    Aeolian transport is an important mechanism for the transport of sand on Earth and on Mars. Dust and sand storms are common occurrences on Mars and windblown sand is responsible for many of the observed surface features, such as dune fields. A better understanding of Aeolian transport could also lead to improvements in pneumatic conveying of materials to be mined for life support on the surface of the Moon and Mars. The usual view of aeolian sand transport is that for mild winds, saltation is the dominant mechanism, with particles in the bed being dislodged by the impact of other saltating particles, but without in-flight collisions. As the wind becomes stronger, turbulent suspension keeps the particles in the air, allowing much longer trajectories, with the corresponding increase in transport rate. We show here that an important regime exists between these two extremes: for strong winds, but before turbulent suspension becomes dominant, there is a regime in which in-flight collisions dominate over turbulence as a suspension mechanism, yielding transport rates much higher than those for saltation. The theory presented is based on granular kinetic theory, and includes both turbulent suspension and particle-particle collisions. The wind strengths for which the calculated transport rates are relevant are beyond the published strengths of current wind tunnel experiments, so these theoretical results are an invitation to do experiments in the strong-wind regime. In order to make a connection between the regime of saltation and the regime of collisional suspension, it is necessary to better understand the interaction between the bed and the particles that collide with it. This interaction depends on the agitation of the particles of the bed. In mild winds, collisions with the bed are relatively infrequent and the local disturbance associated with a collision can relax before the next nearby collision. However, as the wind speed increases, collision become more frequent

  8. Minimal model for aeolian sand dunes.

    PubMed

    Kroy, Klaus; Sauermann, Gerd; Herrmann, Hans J

    2002-09-01

    We present a minimal model for the formation and migration of aeolian sand dunes in unidirectional winds. It combines a perturbative description of the turbulent wind velocity field above the dune with a continuum saltation model that allows for saturation transients in the sand flux. The latter are shown to provide a characteristic length scale, called saturation length, which is distinct from the saltation length of the grains. The model admits two different classes of solutions for the steady-state profile along the wind direction: smooth heaps and dunes with slip face. We clarify the origin of the characteristic properties of these solutions and analyze their scaling behavior. We also investigate in some detail the dynamic evolution of heaps and dunes, including the steady-state migration velocity and transient shape relaxation. Although the minimal model employs nonlocal expressions for the wind shear stress as well as for the sand flux, it is simple enough to serve as a very efficient tool for analytical and numerical investigations and opens up the way to simulations of large scale desert topographies. PMID:12366107

  9. Multi-Technique Study of a Martian Aeolian Sand Analog

    NASA Technical Reports Server (NTRS)

    Kuhlman, K.; Marshall, J.; Evans, N. D.; Luttge, A.

    2001-01-01

    Potential scientific returns from technological advances in various forms of microscopy and benchmarking of currently available in-situ measurements using an aeolian red dune sand from the central Australian desert. Additional information is contained in the original extended abstract.

  10. Multi-Technique Study of a Martian Aeolian Sand Analog

    NASA Astrophysics Data System (ADS)

    Kuhlman, K. R.; Marshall, J.; Evans, N. D.; Luttge, A.

    2001-03-01

    Potential scientific returns from technological advances in various forms of microscopy and benchmarking of currently available in-situ measurements using an aeolian red dune sand from the central Australian desert.

  11. Model for surface packing and aeolian transport on sand ripples

    NASA Astrophysics Data System (ADS)

    Louge, M. Y.; Valance, A.; el-Moctar, A. Ould; Ahmedou, D. Ould; Dupont, P.

    2009-06-01

    Measurements indicate that the solid volume fraction on a sand ripple varies from random jammed packing at troughs to the minimum stable packing at crests. By relating variations of the solid volume fraction to those of the surface turbulent shear stress, a collisional model of reptation suggests a qualitative origin for these observations. Although the model overestimates the critical shear velocity at which reptation arises, it predicts the rate of aeolian transport on Earth and Mars.

  12. Luminescence dating of aeolian sands from archaeological sites in Northern Britain: a preliminary study

    NASA Astrophysics Data System (ADS)

    Sommerville, A. A.; Sanderson, D. C. W.; Hansom, J. D.; Housley, R. A.

    2001-12-01

    Luminescence dating of aeolian sands from archaeological sites has potential to contribute to regional chronologies for sediment deposition and to provide a greater understanding of climatic influences on early communities. The Northern and Western Isles of Scotland provide important opportunities for sampling archaeologically intercalated sands for these purposes, and to provide constrained samples for method validation. A wide range of modern beaches have been sampled in the Western and Orkney Isles of Scotland to examine regional variations in luminescence sensitivity, residuals and ease of bleaching. These modern sands have negligible residuals for infra-red stimulated luminescence (IRSL), small optically stimulated luminescence (OSL) residuals and significant thermoluminescence residuals. The relationship between these signals and laboratory bleaching results may indicate the initial depositional environment, and hence lead to a means of identifying well-bleached dating samples. Both sensitivities and residuals show regional differences, reflecting local geology. Preliminary ages obtained from aeolian sands associated with archaeological sites at Amble (Northumbria) and Tofts Ness (Sanday, Orkney) using regenerative blue OSL techniques on extracted quartz are broadly consistent with external age controls from the first and third millennium BC.

  13. New Method for Estimation of Aeolian Sand Transport Rate Using Ceramic Sand Flux Sensor (UD-101)

    PubMed Central

    Udo, Keiko

    2009-01-01

    In this study, a new method for the estimation of aeolian sand transport rate was developed; the method employs a ceramic sand flux sensor (UD-101). UD-101 detects wind-blown sand impacting on its surface. The method was devised by considering the results of wind tunnel experiments that were performed using a vertical sediment trap and the UD-101. Field measurements to evaluate the estimation accuracy during the prevalence of unsteady winds were performed on a flat backshore. The results showed that aeolian sand transport rates estimated using the developed method were of the same order as those estimated using the existing method for high transport rates, i.e., for transport rates greater than 0.01 kg m−1 s−1. PMID:22291553

  14. Design and initial testing of a piezoelectric sensor to quantify aeolian sand transport

    NASA Astrophysics Data System (ADS)

    Raygosa-Barahona, Ruben; Ruiz-Martinez, Gabriel; Mariño-Tapia, Ismael; Heyser-Ojeda, Emilio

    2016-09-01

    This paper describes a sensor for measuring the mass flux of aeolian sand transport based on a low-cost piezo-electric transducer. The device is able to measure time series of aeolian sand transport. Maximum fluxes of 27 mg per second can be achieved. The design includes a sand trap, an electronic amplifier circuit and an embedded system for data collection. A field test was performed, where the basis for signal interpretation and the corresponding measurements of aeolian sand transport are presented. The sensor successfully measures fluxes driven by sea breezes of 10 ms-1, showing the importance of this process for dune-building in the region.

  15. Aeolian sand preserved in Silver Lake: a new signal of Holocene high stands of Lake Michigan

    USGS Publications Warehouse

    Fisher, Timothy G.; Loope, Walter L.

    2005-01-01

    Aeolian sand within lake sediment from Silver Lake, Michigan can be used as a proxy for the timing of high lake levels of Lake Michigan.We demonstrate that the sand record from Silver Lake plotted as percent weight is in-phase with the elevation curve of Lake Michigan since the mid-Holocene Nipissing Phase. Because fluctuations in Lake Michigan's lake level are recorded in beach ridges, and are a response to climate change, the aeolian sand record within Silver Lake is also a proxy for climate change. It appears that increases in dune activity and lake sand are controlled by similar climatic shifts that drive fluctuations in lake level of Lake Michigan. High lake levels destabilize coastal bluffs that drive dune sand instability, and along with greater wintertime storminess, increase niveo-aeolian transport of sand across lake ice. The sand is introduced into the lake each spring as the ice cover melts.

  16. Energy regimes for aeolian sand grain surface textures

    NASA Astrophysics Data System (ADS)

    Marshall, J. R.; Bull, P. A.; Morgan, R. M.

    2012-05-01

    An experimental study of aeolian sand grain surface texture development was undertaken with an air-driven grain-recirculating desktop apparatus. Scanning electron microscope analysis of resulting textures indicated that different texture types can be associated with distinct zones in a grain-shape/grain speed matrix. In particular, for subrounded and rounded grains, low and high energy transport can be unequivocally distinguished by the occurrence of upturned plates and Hertzian frustra respectively. Textural development does not have a simple relationship to grain velocity, but appears to relate to the energy expended per unit area within the contact zone generated by elastic deformation during impact. Hertzian theory was adapted to irregular sand grain shapes and close agreement was found between experimental results and theoretical predictions for textural development. Results of this study improve our ability to reconstruct palaeoaeolian environments and therefore our ability to determine grain provenance; in particular, the latter is shown to have direct relevance to forensic inquiries and terrorism investigations.

  17. Element geochemical analysis of the contribution of aeolian sand to suspended sediment in desert stream flash floods.

    PubMed

    Jia, Xiaopeng; Wang, Haibing

    2014-01-01

    The interaction of wind and water in semiarid and arid areas usually leads to low-frequency flash flood events in desert rivers, which have adverse effects on river systems and ecology. In arid zones, many aeolian dune-fields terminate in stream channels and deliver aeolian sand to the channels. Although aeolian processes are common to many desert rivers, whether the aeolian processes contribute to fluvial sediment loss is still unknown. Here, we identified the aeolian-fluvial cycling process responsible for the high rate of suspended sediment transport in the Sudalaer desert stream in the Ordos plateau of China. On the basis of element geochemistry data analysis, we found that aeolian sand was similar to suspended sediment in element composition, which suggests that aeolian sand contributes to suspended sediment in flash floods. Scatter plots of some elements further confirm that aeolian sand is the major source of the suspended sediment. Factor analysis and the relation between some elements and suspended sediment concentration prove that the greater the aeolian process, the higher the suspended sediment concentration and the greater the contribution of aeolian sand to suspended sediment yield. We conclude that aeolian sand is the greatest contributor to flash floods in the Sudalaer desert stream.

  18. Element Geochemical Analysis of the Contribution of Aeolian Sand to Suspended Sediment in Desert Stream Flash Floods

    PubMed Central

    Wang, Haibing

    2014-01-01

    The interaction of wind and water in semiarid and arid areas usually leads to low-frequency flash flood events in desert rivers, which have adverse effects on river systems and ecology. In arid zones, many aeolian dune-fields terminate in stream channels and deliver aeolian sand to the channels. Although aeolian processes are common to many desert rivers, whether the aeolian processes contribute to fluvial sediment loss is still unknown. Here, we identified the aeolian-fluvial cycling process responsible for the high rate of suspended sediment transport in the Sudalaer desert stream in the Ordos plateau of China. On the basis of element geochemistry data analysis, we found that aeolian sand was similar to suspended sediment in element composition, which suggests that aeolian sand contributes to suspended sediment in flash floods. Scatter plots of some elements further confirm that aeolian sand is the major source of the suspended sediment. Factor analysis and the relation between some elements and suspended sediment concentration prove that the greater the aeolian process, the higher the suspended sediment concentration and the greater the contribution of aeolian sand to suspended sediment yield. We conclude that aeolian sand is the greatest contributor to flash floods in the Sudalaer desert stream. PMID:25089295

  19. The north-eastern aeolian 'European Sand Belt' as potential record of environmental changes: A case study from Eastern Latvia and Southern Estonia

    NASA Astrophysics Data System (ADS)

    Kalińska-Nartiša, Edyta; Thiel, Christine; Nartišs, Māris; Buylaert, Jan-Pieter; Murray, Andrew S.

    2016-09-01

    The Latvian and Estonian inland dunes belong to the north-eastern part of the 'European Sand Belt' (ESB). These dunes are widely distributed over broad glaciolacustrine plains and Late Glacial alluvial deltas, considered to be potential sources for the aeolian material. Little is known about these aeolian sediments and their substratum; here we present a detailed sedimentary structural and textural characterisation together with a luminescence-based chronology. Through a comparison between grain-size, rounding of quartz grains and surface characteristics in medium/coarse (0.5-0.8 mm) sand, and the light mineral content, we found an alternation of aeolian and periglacial components. Further, short-lasting aeolian abrasion and/or transportation periods, and a significant contribution of a nearby sediment source are suggested. Luminescence dating points to aeolian sand accumulation and dune formation between ∼16 ka and ∼9 ka. However, we also observed some presumably watertable controlled environmental conditions at ∼13 ka; this corresponds with the occurrence of an ice-dammed/proglacial lake.

  20. The Holocene evolution of the beach and inland aeolian sand of the north-central Mediterranean coast of Israel

    NASA Astrophysics Data System (ADS)

    Roskin, Joel; Sivan, Dorit; Bookman, Revital; Shteinberg, Gilad

    2015-04-01

    Israel's coastal geomorphology, situated within a Mediterranean climate zone, is characterized by parallel Pleistocene aeolianite ridges, coastal cliffs of aeolianite, and sandy beaches. Lobe-like fields of predominantly stable transverse and parabolic quartz sand dunes protrude 2-7 km inland from the current Mediterranean Sea coastline. However, their migration and accumulation history is still not well-defined. This study focuses on the Holocene appearance, chronology and drivers of beach sand deposition and inland aeolian sand transport along the Caesarea-Hadera dunefield in the north-central coastal plain of Israel. In order to achieve these goals, a detailed field survey and sampling campaign was carried out along a west-east and southwest-northeast transect, loyal to the advancement orientations of the currently stable dunes and directions of dominant sand transporting winds. Beach sand, a foredune, a linear dune, and interdunes of parabolic and transverse dunes were sampled down to their aeolianite or red loam (locally named hamra) palaeosol substrate by drilling and analyzing exposed sections. The sampled sediments were sedimentologically analyzed and twenty-five were dated by optically stimulated luminescence (OSL). The results indicate that beach sand started to accumulate rapidly around 6 ka probably in response to global sea level stabilization. Until around 4 ka, thin sand sheets encroached 2-3 km inland. Sand ages in the range of 1.2-1.1 ka (8th-9th century CE -- Early Moslem period) were found throughout the study area, suggesting a major mobilization of sand, followed by stabilization around 0.6 ka and pedogenesis. By 1.2 ka, the sands had reached their current extent of 5-7 km inland, suggesting transport in a southwest-northeast orientation similar to the advancement orientation of the current transverse and parabolic dunes. The particle-size distributions of the fine to medium-sized aeolian sand showed minor variation linked to inland transport

  1. Interaction Between Graphene Oxide Nanoparticles and Quartz Sand.

    PubMed

    Sotirelis, Nikolaos P; Chrysikopoulos, Constantinos V

    2015-11-17

    In this study, the influence of pH, ionic strength (IS), and temperature on graphene oxide (GO) nanoparticles attachment onto quartz sand were investigated. Batch experiments were conducted at three controlled temperatures (4, 12, and 25 °C) in solutions with different pH values (pH 4, 7, and 10), and ionic strengths (IS = 1.4, 6.4, and 21.4 mM), under static and dynamic conditions. The surface properties of GO nanoparticles and quartz sand were evaluated by electrophoretic mobility measurements. Derjaguin-Landau-Verwey-Overbeek (DLVO) potential energy profiles were constructed for the experimental conditions, using measured zeta potentials. The experimental results showed that GO nanoparticles were very stable under the experimental conditions. Both temperature and pH did not play a significant role in the attachment of GO nanoparticles onto quartz sand. In contrast, IS was shown to influence attachment. The attachment of GO particles onto quartz sand increased significantly with increasing IS. The experimental data were fitted nicely with a Freundlich isotherm, and the attachment kinetics were satisfactorily described with a pseudo-second-order model, which implies that the quartz sand exhibited substantial surface heterogeneity and that GO retention was governed by chemisorption. Furthermore, thermodynamic analysis revealed that the attachment process was nonspontaneous and endothermic, which may be associated with structural changes of the sand surfaces due to chemisorption. Therefore, secondary minimum interaction may not be the dominant mechanism for GO attachment onto the quartz sand under the experimental conditions.

  2. 2008 Weather and Aeolian Sand-Transport Data from the Colorado River Corridor, Grand Canyon, Arizona

    USGS Publications Warehouse

    Draut, Amy E.; Sondossi, Hoda A.; Hazel, Joseph E.; Andrews, Timothy; Fairley, Helen C.; Brown, Christopher R.; Vanaman, Karen M.

    2009-01-01

    This report presents measurements of weather parameters and aeolian (windblown) sand transport made in 2008 near selected archaeological sites in the Colorado River corridor through Grand Canyon, Ariz. The quantitative methods and data discussed here form a basis for monitoring ecosystem processes that affect archeological-site stability. Combined with forthcoming work to evaluate landscape evolution at nearby archaeological sites, these data can be used to document the relationship between physical processes, including weather and aeolian sand transport, and their effects on the physical integrity of archaeological sites. Data collected in 2008 reveal event- and seasonal-scale variations in rainfall, wind, temperature, humidity, and barometric pressure. Broad seasonal changes in aeolian sediment flux are also apparent at most study sites. The continuation of monitoring that began in 2007, and installation of equipment at several new sites in early 2008, allowed evaluation of the effects of the March 2008 high-flow experiment (HFE) on aeolian sand transport. At two of the nine sites studied, spring and summer winds reworked 2008 HFE sandbars to form new aeolian dunes, at which sand moved inland toward larger, well-established dune fields. At the other seven study sites, neither dune formation nor enhanced sand transport after the HFE were observed. At several of those sites, dominant wind directions in spring 2008 were not oriented such that much HFE sand would have moved inland; at other sites, lack of increased inland sand flux is attributable to lack of sandbar enlargement near the study sites or to inhibition of sand movement by vegetation or local topography.

  3. Automated texture recognition of quartz sand grains for forensic applications.

    PubMed

    Newell, Andrew J; Morgan, Ruth M; Griffin, Lewis D; Bull, Peter A; Marshall, John R; Graham, Giles

    2012-09-01

    Quartz sand surface texture analysis has been automated for the first time for forensic application. The derived Basic Image Features (BIFs) provide computer-generated texture recognition from preexisting data sets. The technique was applied to two distinct classification problems; first, the ability of the system to discriminate between (quartz) sand grains with upturned plate features (indicative of eolian, global sand sea environments) and grains that do not exhibit these features. A success rate of grain classification of 98.8% was achieved. Second, to test the ability of the computer recognition system to identify specific energy levels of formation of the upturned plate surface texture features. Such recognition ability has to date been beyond manual geological interpretation. The discrimination performance was enhanced to an exact classification success rate of 81%. The enhanced potential for routine forensic investigation of the provenance of common quartz sand is indicated.

  4. Interaction Between Graphene Oxide Nanoparticles and Quartz Sand.

    PubMed

    Sotirelis, Nikolaos P; Chrysikopoulos, Constantinos V

    2015-11-17

    In this study, the influence of pH, ionic strength (IS), and temperature on graphene oxide (GO) nanoparticles attachment onto quartz sand were investigated. Batch experiments were conducted at three controlled temperatures (4, 12, and 25 °C) in solutions with different pH values (pH 4, 7, and 10), and ionic strengths (IS = 1.4, 6.4, and 21.4 mM), under static and dynamic conditions. The surface properties of GO nanoparticles and quartz sand were evaluated by electrophoretic mobility measurements. Derjaguin-Landau-Verwey-Overbeek (DLVO) potential energy profiles were constructed for the experimental conditions, using measured zeta potentials. The experimental results showed that GO nanoparticles were very stable under the experimental conditions. Both temperature and pH did not play a significant role in the attachment of GO nanoparticles onto quartz sand. In contrast, IS was shown to influence attachment. The attachment of GO particles onto quartz sand increased significantly with increasing IS. The experimental data were fitted nicely with a Freundlich isotherm, and the attachment kinetics were satisfactorily described with a pseudo-second-order model, which implies that the quartz sand exhibited substantial surface heterogeneity and that GO retention was governed by chemisorption. Furthermore, thermodynamic analysis revealed that the attachment process was nonspontaneous and endothermic, which may be associated with structural changes of the sand surfaces due to chemisorption. Therefore, secondary minimum interaction may not be the dominant mechanism for GO attachment onto the quartz sand under the experimental conditions. PMID:26465676

  5. Simulation of aeolian sand saltation with rotational motion

    NASA Astrophysics Data System (ADS)

    Huang, Ning; Wang, Cong; Pan, Xiying

    2010-11-01

    In this work, we propose a theoretical model based on the distribution functions of initial liftoff velocity and angular velocity of sand grains to describe a sand saltation process in which both wind field-sand grain coupling and the Magnus force experienced by saltating sand grains have been incorporated. The computation results showed that the Magnus force had significant effects on sand grain saltation. In particular, when the Magnus force was incorporated, the calculated sand transport fluxes and sand transport rate per unit width were closer to the experimental value than when this force was excluded. The sand transport flux is enhanced because the Magnus force owing to particle rotation causes the particles to have higher and longer trajectories, so the particles can get more speed and energy from the wind, which leads to a larger sand transport flux. In addition, it was found that when taking the Magnus force into account, the probability density of the impact velocity and angular velocity of saltating sand grains followed an exponential distribution and a unimodal asymmetric distribution, respectively. Moreover, the sand energy flux increased with the height above the sand surface until the energy flux reached its maximum and then decreased. Furthermore, the energy flux near the ground surface decreased as the grain diameter increased, but beyond a specific height the energy flux increased with the grain diameter. Finally, for the same sand grain diameter, the energy flux increased with the friction velocity.

  6. 2007 Weather and Aeolian Sand-Transport Data from the Colorado River Corridor, Grand Canyon, Arizona

    USGS Publications Warehouse

    Draut, Amy E.; Andrews, Timothy; Fairley, Helen C.; Brown, Christopher R.

    2009-01-01

    Weather data constitute an integral part of ecosystem monitoring in the Colorado River corridor and are particularly valuable for understanding processes of landscape change that contribute to the stability of archeological sites. Data collected in 2007 are reported from nine weather stations in the Colorado River corridor through Grand Canyon, Ariz. The stations were deployed in February and March 2007 to measure wind speed and direction, rainfall, air temperature, relative humidity, and barometric pressure. Sand traps near each weather station collect windblown sand, from which daily aeolian sand-transport rates are calculated. The data reported here were collected as part of an ongoing study to test and evaluate methods for quantifying processes that affect the physical integrity of archeological sites along the river corridor; as such, these data can be used to identify rainfall events capable of causing gully incision and to predict likely transport pathways for aeolian sand, two landscape processes integral to the preservation of archeological sites. Weather data also have widespread applications to other studies of physical, cultural, and biological resources in Grand Canyon. Aeolian sand-transport data reported here, collected in the year before the March 2008 High-Flow Experiment (HFE) at Glen Canyon Dam, represent baseline data against which the effects of the 2008 HFE on windblown sand will be compared in future reports.

  7. Sand transport by wind, erosion and deposition and the origin of aeolian bedforms

    NASA Astrophysics Data System (ADS)

    Duran Vinent, Orencio

    2014-05-01

    Aeolian processes involve the wind action on a sedimentary substrate, namely erosion, sand transport and deposition. They are responsible for the emergence of aeolian dunes and ripples. Here, we discuss the physics of aeolian sediment transport from a physical point of view. Relevant time and length scales associated to turbulent wind fluctuations are summarized using aerodynamic theory. At the microscopic scale, the main forces acting on the grains are detailed. Sand transport is then studied using two phase numerical simulations based on a discrete element method for particles coupled to a continuum Reynolds averaged description of hydrodynamics. We then introduce the concepts - e.g. saturated flux, saturation length - and the relevant framework for the development of a continuum (macroscopic) quantitative description of transport at the core of our current understanding of aeolian dunes formation. At smaller scales, aeolian ripples arise from the interaction of sediment transport and topography. At larger scales, the nonlinear nature of the interaction between dunes leads to the formation of dune fields.

  8. Interaction between graphene oxide nanoparticles and quartz sand

    NASA Astrophysics Data System (ADS)

    Sotirelis, Nikolaos P.; Chrysikopoulos, Constantinos V.

    2015-04-01

    In this study, the influence of pH, ionic strength (IS), and temperature on graphene oxide (GO) nanoparticles adsorption onto quartz sand were investigated. Batch experiments were conducted at three controlled temperatures (4, 12, and 25 °C) in solutions with different pH values (pH=4, 7, and 10), and ionic strengths (IS=1.4, 6.4, and 21.4 mM), under static and dynamic conditions. The surface properties of GO nanoparticles and quartz sand were evaluated by electrophoretic mobility measurements. Derjaguin-Landau-Verwey-Overbeek (DLVO), and extended-DLVO (XDLVO) potential energy profiles were constructed for the experimental conditions, using measured zeta potentials. The experimental results shown that GO nanoparticles were very stable under the experimental conditions. Both temperature and pH did not play a significant role in the adsorption of GO nanoparticles onto quartz sand. In contrast, IS was shown to influence adsorption. Increasing the IS, dramatically increased. The adsorption of GO particles onto quartz sand increased dramatically with increasing IS, mainly due to secondary-minimum deposition, as indicated by the XDLVO interaction energy profiles. Furthermore, the experimental data were fitted nicely with a Langmuir type sorption isotherm, and the adsorption kinetics were satisfactorily described with a pseudo-second-order model.

  9. Aeolian environments and sand damage along the Qinghai-Tibet Railway, China

    NASA Astrophysics Data System (ADS)

    Zhang, Kecun; Qu, Jiaunjun; Han, Qingjie; An, Zhishan

    2016-04-01

    The Qinghai-Tibet Railway (QTR), with a total length of 1956 km, is the word's longest high-altitude railway. Located in the Tibet Plateau, the QTR is frequently damaged by windblown sand because of strong winds and abundant sand. Based on the detailed wind data, in situ observation of wind blown sand and field wind tunnel simulations along the QTR, the aeolian sand environment, involving sand-laden wind, drift potential, sand transport and their spatial variation were investigated. Sand-laden wind presents unidirectional characteristics along the QTR and its prevailing direction is westerly. The annual drift potential along the QTR reaches 970.54 Vector Units (VU), which belongs to a high-energy wind environment. In cold-high environments, sand transport rate increases with increasing wind velocity, but decreases exponentially with increasing height in the wind stream. As the altitude increases, the threshold velocity for sand movement linearly increases with altitude, and the sand transport per unit width decreases gradually. The results can be used to guide the design of sand-control structures both in the study area and in other areas that experience threats from windblown sand.

  10. 2009 weather and aeolian sand-transport data from the Colorado River corridor, Grand Canyon, Arizona

    USGS Publications Warehouse

    Draut, Amy E.; Sondossi, Hoda A.; Dealy, Timothy P.; Hazel, Joseph E.; Fairley, Helen C.; Brown, Christopher R.

    2010-01-01

    This report presents measurements of weather parameters and aeolian sand transport made in 2009 near selected archeological sites in the Colorado River corridor through Grand Canyon, Ariz. The quantitative methods and data discussed here form a basis for monitoring ecosystem processes that affect archeological-site stability. Combined with forthcoming work to evaluate landscape evolution at nearby archeological sites, these data can be used to document the relation between physical processes, including weather and aeolian sand transport, and their effects on the physical integrity of archeological sites. Data collected in 2009 reveal event- and seasonal-scale variations in rainfall, wind, temperature, humidity, and barometric pressure. Broad seasonal changes in aeolian sediment flux are also apparent at most study sites. Differences in weather patterns between 2008 and 2009 included an earlier spring windy season, greater spring precipitation even though 2009 annual rainfall totals were in general substantially lower than in 2008, and earlier onset of the reduced diurnal barometric-pressure fluctuations commonly associated with summer monsoon conditions. Weather patterns in middle to late 2009 were apparently affected by a transition of the ENSO cycle from a neutral phase to the El Ni?o phase. The continuation of monitoring that began in 2007, and installation of additional equipment at several new sites in early 2008, allowed evaluation of the effects of the March 2008 high-flow experiment (HFE) on aeolian sand transport. As reported earlier, at 2 of the 9 sites studied, spring and summer winds in 2008 reworked the HFE sandbars to form new aeolian dunes, where sand moved inland toward larger, well-established dune fields. Observations in 2009 showed that farther inland migration of the dune at one of those two sites is likely inhibited by vegetation. At the other location, the new aeolian dune form was found to have moved 10 m inland toward older, well

  11. Discrete Element Method simulations of the saturation of aeolian sand transport

    NASA Astrophysics Data System (ADS)

    Pähtz, Thomas; Omeradžić, Amir; Carneiro, Marcus V.; Araújo, Nuno A. M.; Herrmann, Hans J.

    2015-03-01

    The saturation length of aeolian sand transport (Ls), characterizing the distance needed by wind-blown sand to adapt to changes in the wind shear, is essential for accurate modeling of the morphodynamics of Earth's sandy landscapes and for explaining the formation and shape of sand dunes. In the last decade, it has become a widely accepted hypothesis that Ls is proportional to the characteristic distance needed by transported particles to reach the wind speed (the "drag length"). Here we challenge this hypothesis. From extensive numerical Discrete Element Method simulations, we find that, for medium and strong winds, Ls∝Vs2/g, where Vs is the saturated value of the average speed of sand particles traveling above the surface and g is the gravitational constant. We show that this proportionality is consistent with a recent analytical model, in which the drag length is just one of four similarly important length scales relevant for sand transport saturation.

  12. The composition of Martian aeolian sands: Thermal emissivity from Viking IRTM observations

    NASA Technical Reports Server (NTRS)

    Edgett, Kenneth S.; Christensen, Philip R.

    1992-01-01

    Aeolian sands provide excellent surfaces for the remote determination of the mineralogic composition of Martian materials, because such deposits consist of relatively well-sorted, uniform particle sizes and might consist of chemically unaltered, primary mineral grains derived from bedrock. Dark features on the floors of Martian craters are controlled by aeolian processes and many consist largely of unconsolidated, windblown sand. Measurement of the thermal emissivity of geologic materials provides a way to identify mid-infrared absorption bands, the strength and positions of which vary with mineral structure and composition. The Viking Infrared Thermal Mapper (IRTM) had four surface-sensing mid-IR bands, three of which, the 7, 9, and 11 micron channels, correspond to absorption features characteristic of carbonates, sialic, and mafic minerals, respectively. In this study, the highest quality IRTM data were constrained so as to avoid the effects of atmospheric dust, clouds, surface frosts, and particle size variations (the latter using data obtained between 7 and 9 H, and they were selected for dark intracrater features such that only data taken directly from the dark feature were used, so as to avoid thermal contributions from adjacent but unrelated materials. Three-point emissivity spectra of Martian dart intracrater features were compared with laboratory emission spectra of minerals and terrestrial aeolian sands convolved using the IRTM response function to the four IRTM spectral channels.

  13. Aeolian erosion and sand transport over the Mejillones Pampa in the coastal Atacama Desert of northern Chile

    NASA Astrophysics Data System (ADS)

    Flores-Aqueveque, Valentina; Alfaro, Stéphane; Muñoz, Ricardo; Rutllant, José A.; Caquineau, Sandrine; Le Roux, Jacobus P.; Vargas, Gabriel

    2010-08-01

    The Mejillones Peninsula in the coastal Atacama Desert of northern Chile is a region in which ocean-atmosphere-land interactions are particularly strong, resulting in enhanced alongshore winds that erode the surface and transport sand particles to the sea. Because the aeolian particles in the laminated sediments at the bottom of Mejillones Bay record long-term changes in the intensity of prevailing southerly winds, it is fundamental to understand aeolian processes such as wind erosion and sand transport to improve paleoceanographic reconstructions. The aim of the present study is to characterize the wind erosion process over the flat geomorphology of the northern portion of the Mejillones Peninsula, the Mejillones Pampa, including the influence of wind erosion on the initial particle size distribution and the associated fractionation processes of the mineralogical composition of moving particles, through field measurements. In addition, we test the ability of an existing saltation model (MB95) to reproduce the variability of the erosion process during the field experiment. Soil samples from 17 locations on this flat surface contain significant amounts of highly erodible particles with diameters in the 200-300 µm and 100-150 µm size ranges. Aeolian particles collected in BSNE sand traps located at different heights near the surface, exhibit a bimodal size distribution similar to that of the erodible fraction of the soils; the abundance of the fine class increasing with height. Small stones that have a spatially variable distribution can locally reduce the intensity of wind erosion. The mineralogical composition of moving particles is similar to that of the soils, with quartz, feldspar and calcite as the most important minerals, followed by clay minerals, gypsum and amphibole. A value of u*t is calculated for each soil particle size class. Subsequently, the elementary contribution of each size class to the horizontal flux is calculated using White (1979)'s equation

  14. Optically stimulated luminescence dating of aeolian sand in the otindag dune field and holocene climate change

    USGS Publications Warehouse

    Zhou, Y.L.; Lu, H.Y.; Mason, J.; Miao, X.D.; Swinehart, J.; Goble, R.

    2008-01-01

    The dune system in Otindag sand field of northern China is sensitive to climate change, where effective moisture and related vegetation cover play a controlling role for dune activity and stability. Therefore, aeolian deposits may be an archive of past environmental changes, possibly at the millennial scale, but previous studies on this topic have rarely been reported. In this study, thirty-five optically stimulated luminescence (OSL) ages of ten representative sand-paleosol profiles in Otindag sand field are obtained, and these ages provide a relatively complete and well-dated chronology for wet and dry variations in Holocene. The results indicate that widespread dune mobilization occurred from 9.9 to 8.2 ka, suggesting a dry early Holocene climate. The dunes were mainly stabilized between 8.0 and 2.7 ka, implying a relatively wet climate, although there were short-term penetrations of dune activity during this wet period. After ???2.3 ka, the region became dry again, as inferred from widespread dune activity. The "8.2 ka" cold event and the Little Ice Age climatic deterioration are detected on the basis of the dune records and OSL ages. During the Medieval Warm Period and the Sui-Tang Warm Period (570-770 AD), climate in Otindag sand field was relatively humid and the vegetation was denser, and the sand dunes were stabilized again. These aeolian records may indicate climate changes at millennial time scale during Holocene, and these climatic changes may be the teleconnection to the climate changes elsewhere in the world. ?? Science in China Press and Springer-Verlag GmbH 2008.

  15. Influence of silicate on the transport of bacteria in quartz sand and iron mineral-coated sand.

    PubMed

    Dong, Zhe; Yang, Haiyan; Wu, Dan; Ni, Jinren; Kim, Hyunjung; Tong, Meiping

    2014-11-01

    The influence of silicate on the transport and deposition of bacteria (Escherichia coli) in packed porous media were examined at a constant 20 mM ionic strength with different silicate concentrations (from 0 to 1 mM) at pH 7. Transport experiments were performed in two types of representative porous media, both bare quartz sand and iron mineral-coated quartz sand. In bare quartz sand, the breakthrough plateaus in the presence of silicate in suspensions were lower and the corresponding retained profiles were higher than those without silicate ions, indicating that the presence of silicate in suspensions decreased cell transport in bare quartz sand. Moreover, the decrease of bacteria transport in quartz sand induced by silicate was more pronounced with increasing silicate concentrations from 0 to 1 mM. However, when EPS was removed from cell surfaces, the presence of silicate in cell suspensions (with different concentrations) did not affect the transport behavior of bacteria in quartz sand. The interaction of silicate with EPS on cell surfaces negatively decreased the zeta potentials of bacteria, resulting in the decreased cell transport in bare quartz sand when silicate was copresent in bacteria suspensions. In contrast, the presence of silicate in suspensions increased cell transport in iron mineral-coated sand. Silicate ions competed with bacteria for the adsorption sites on mineral-coated sand, contributing to the increased cell transport in mineral-coated sand with silicate present in cell suspensions.

  16. Adsorption of pathogenic prion protein to quartz sand.

    PubMed

    Ma, Xin; Benson, Craig H; McKenzie, Debbie; Aiken, Judd M; Pedersen, Joel A

    2007-04-01

    Management responses to prion diseases of cattle, deer, and elk create a significant need for safe and effective disposal of infected carcasses and other materials. Furthermore, soil may contribute to the horizontal transmission of sheep scrapie and cervid chronic wasting disease by serving as an environmental reservoirforthe infectious agent. As an initial step toward understanding prion mobility in porous materials such as soil and landfilled waste, the influence of pH and ionic strength (l) on pathogenic prion protein (PrPsc) properties (viz. aggregation state and zeta-potential) and adsorption to quartz sand was investigated. The apparent average isoelectric point of PrPsc aggregates was 4.6. PrPsc aggregate size was largest between pH 4 and 6, and increased with increasing l at pH 7. Adsorption to quartz sand was maximal near the apparent isoelectric point of PrPsc aggregates and decreased as pH either declined or increased. PrPsc adsorption increased as suspension l increased, and reached an apparent plateau at l approximately 0.1 M. While trends with pH and l in PrPsc attachment to quartz surfaces were consistent with predictions based on Born-DLVO theory, non-DLVO forces appeared to contribute to adsorption at pH 7 and 9 (l = 10 mM). Our findings suggest that disposal strategies that elevate pH (e.g., burial in lime or fly ash), may increase PrPsc mobility. Similarly, PrPsc mobility may increase as a landfill ages, due to increases in pH and decreases in l of the leachate. PMID:17438782

  17. Adsorption of pathogenic prion protein to quartz sand.

    PubMed

    Ma, Xin; Benson, Craig H; McKenzie, Debbie; Aiken, Judd M; Pedersen, Joel A

    2007-04-01

    Management responses to prion diseases of cattle, deer, and elk create a significant need for safe and effective disposal of infected carcasses and other materials. Furthermore, soil may contribute to the horizontal transmission of sheep scrapie and cervid chronic wasting disease by serving as an environmental reservoirforthe infectious agent. As an initial step toward understanding prion mobility in porous materials such as soil and landfilled waste, the influence of pH and ionic strength (l) on pathogenic prion protein (PrPsc) properties (viz. aggregation state and zeta-potential) and adsorption to quartz sand was investigated. The apparent average isoelectric point of PrPsc aggregates was 4.6. PrPsc aggregate size was largest between pH 4 and 6, and increased with increasing l at pH 7. Adsorption to quartz sand was maximal near the apparent isoelectric point of PrPsc aggregates and decreased as pH either declined or increased. PrPsc adsorption increased as suspension l increased, and reached an apparent plateau at l approximately 0.1 M. While trends with pH and l in PrPsc attachment to quartz surfaces were consistent with predictions based on Born-DLVO theory, non-DLVO forces appeared to contribute to adsorption at pH 7 and 9 (l = 10 mM). Our findings suggest that disposal strategies that elevate pH (e.g., burial in lime or fly ash), may increase PrPsc mobility. Similarly, PrPsc mobility may increase as a landfill ages, due to increases in pH and decreases in l of the leachate.

  18. Particle-size fractionation of aeolian sand along a climatic and geomorphic gradient of the Sinai-Negev erg

    NASA Astrophysics Data System (ADS)

    Roskin, Joel; Katra, Itzhak; Blumberg, Dan G.

    2015-04-01

    This study examines changes in the aeolian sand fractions along the west-east aeolian transport path of the northern Sinai Peninsula - northwestern (NW) Negev erg of Egypt and Israel. This erg originates from the Nile Delta and is composed of currently active linear (seif) dunes in northern Sinai (its western part), and currently stabilized vegetated linear dunes (VLDs) in the NW Negev dunefield (its eastern part). Sand samples from the Nile Delta, northern Sinai and NW Negev were analyzed for particle-size distribution and sand grain morphology in accordance to their Eastern Mediterranean INQUA Dunes Atlas luminescence and radiocarbon chronologies. Linear seif dunes differ from VLDs in their vegetation cover, linearity, and dynamics. Although both are continuous landforms with similar orientations and sand-grain roundness values, the linear dunes of Sinai are coarser-grained than the Negev VLDs. The VLDs have a significantly higher proportion of very fine sand (125-50 μm) content and a varying but lower sand fining ratio defined as the ratio of fine sand percentage to very fine sand percentage. Very fine sands are suggested to have been winnowed by saltation and low suspension from source deposits and sand sheets. Detailed semi-quantitative examinations of sand grains by a SEM of a Negev VLD shows that most grains do not exhibit features that can be attributed to aeolian abrasion by sand grain-grain collisions. From these observations we infer that fractionation of sand was a major process leading to downwind fining along the studied aeolian transport path. We suggest that the very fine sand fraction of Nile Delta and Sinai sands has been transported downwind since the late middle Pleistocene. In the late Pleistocene, sand reached the NW Negev in the form of VLDs due to last-glacial period windiness of intensities unprecedented today and probably larger sediment supply. Generally current and inferred past decreasing wind velocities and increasing precipitation

  19. Gully annealing by fluvially-sourced Aeolian sand: remote sensing investigations of connectivity along the Fluvial-Aeolian-hillslope continuum on the Colorado River

    USGS Publications Warehouse

    Sankey, Joel B.; East, Amy E.; Collins, Brian D.; Caster, Joshua

    2015-01-01

    Processes contributing to development of ephemeral gully channels are of great importance to landscapes worldwide, and particularly in dryland regions where soil loss and land degradation from gully erosion pose long-term, land-management problems. Whereas gully formation has been relatively well studied, much less is known of the processes that anneal gullies and impede their growth. This work investigates gully annealing by aeolian sediment, along the Colorado River downstream of Glen Canyon Dam in Glen, Marble, and Grand Canyons, Arizona, USA (Figure 1). In this segment of the Colorado River, gully erosion potentially affects the stability and preservation of archaeological sites that are located within valley margins. Gully erosion occurs as a function of ephemeral, rainfall-induced overland flow associated with intense episodes of seasonal precipitation. Measurements of sediment transport and topographic change have demonstrated that fluvial sand in some locations is transported inland and upslope by aeolian processes to areas affected by gully erosion, and aeolian sediment activity can be locally effective at counteracting gully erosion (Draut, 2012; Collins and others, 2009, 2012; Sankey and Draut, 2014). The degree to which specific locations are affected by upslope wind redistribution of sand from active channel sandbars to higher elevation valley margins is termed “connectivity”. Connectivity is controlled spatially throughout the river by (1) the presence of upwind sources of fluvial sand within the contemporary active river channel (e.g., sandbars), and (2) bio-physical barriers that include vegetation and topography that might impede aeolian sediment transport. The primary hypothesis of this work is that high degrees of connectivity lead to less gullying potential.

  20. A numerical study of turbulent flow over complex aeolian dune fields: the White Sands National Monument

    NASA Astrophysics Data System (ADS)

    Anderson, W. W.; Chamecki, M.; Kocurek, G.; Mohrig, D. C.

    2013-12-01

    The structure and dynamics of fully-developed turbulent flows responding to aeolian dune fields are studied using large-eddy simulation with an immersed boundary method. An aspect of particular importance in these flows is the downwind migration of coherent motions associated with Kelvin-Helmholtz instabilities which originate at the dune crests. These instabilities are responsible for enhanced downward transport of high momentum fluid via the so-called turbulent sweep mechanism. However, the presence of such structures and their role in determining the bulk characteristics of fully developed dune field sublayer aerodynamics has received relatively limited attention. Moreover, many existing studies address mostly symmetric or mildly asymmetric dune forms. The White Sands National Monument is a field of aeolian gypsum sand dunes located in the Tularosa Basin in southern New Mexico. Aeolian processes at the site result in a complex, anisotropic dune field. In the dune field sublayer, the flow statistics resemble a mixing layer: at approximately the dune crest height, vertical profiles of streamwise velocity exhibit an inflection and turbulent Reynolds stresses are maximum; below this, the streamwise and vertical velocity fluctuations are positively and negatively skewed, respectively. We evaluate the spatial structure of Kelvin-Helmholtz instabilities present in the dune field sublayer -- shear length, Ls, and vortex spacing, Lambda_x -- and show that Ls = m Lambda_x, where m is approximately 8 in the different sections considered (for turbulent mixing layers, 7 < m < 10, Rogers and Moser, 1994: Phys. Fluids A, 6, 903-922). These results guide discussion on the statistics of aerodynamic drag across the dunes; probability density functions of time-series of aerodynamic drag for the dunes are shown to exhibit skewness and variance much greater than values reported for turbulent boundary layer flow over an homogeneous roughness distribution. Thus, we propose that

  1. 2010 weather and aeolian sand-transport data from the Colorado River corridor, Grand Canyon, Arizona

    USGS Publications Warehouse

    Dealy, Timothy P.; East, Amy E.; Fairley, Helen C.

    2014-01-01

    Measurements of weather parameters and aeolian sand transport were made in 2010 near selected archeological sites in the Colorado River corridor through Grand Canyon, Arizona. Data collected in 2010 indicate event- and seasonal-scale variations in rainfall, wind, temperature, humidity, and barometric pressure. Differences in weather patterns between 2009 and 2010 included a slightly later spring windy season, greater spring precipitation and annual rainfall totals, and a later onset and length of the reduced diurnal barometric-pressure fluctuations commonly associated with summer monsoon conditions. The increase in spring precipitation was consistent with the 2010 spring El Niño conditions compared to the 2009 spring La Niña conditions, whereas the subsequent transition to an El Niño-Southern Oscillation neutral phase appeared to delay the reduction in diurnal barometric fluctuations.

  2. Aeolian sands and buried soils in the Mecklenburg Lake District, NE Germany: Holocene land-use history and pedo-geomorphic response

    NASA Astrophysics Data System (ADS)

    Küster, Mathias; Fülling, Alexander; Kaiser, Knut; Ulrich, Jens

    2014-04-01

    The present study is a pedo-geomorphic approach to reconstructing Holocene aeolian sand dynamics in the Mecklenburg Lake District (NE Germany). Stratigraphical, sedimentological and soil research supplemented by morphogenetic interpretations of the genesis of dunes and aeolian sands are discussed. A complex Late Holocene aeolian stratigraphy within a drift sand area was developed at the shore of Lake Müritz. The results were confirmed using palynological records, archaeological data and regional history. Accelerated aeolian activity was triggered by the intensification of settlement and land-use activities during the 13th and in the 15th to 16th century AD. After a period of stability beginning with population decline during the ‘Thirty Years War' and continuing through the 18th century, a final aeolian phase due to the establishment of glassworks was identified during the 19th century AD. We assume a direct link between Holocene aeolian dynamics and human activities. Prehistoric Holocene drift sands on terrestrial sites have not been documented in the Mecklenburg Lake District so far. This might be explained either by erosion and incorporation of older aeolian sediments during younger aeolian phases and/or a lower regional land-use intensity in older periods of the Holocene. The investigated drift sands are stratigraphically and sedimentologically characterised by a high degree of heterogeneity, reflecting the spatial and temporal variability of Holocene human impact.

  3. Aeolian Sand Transport in the Planetary Context: Respective Roles of Aerodynamic and Bed-Dilatancy Thresholds

    NASA Astrophysics Data System (ADS)

    Marshall, J. R.; Borucki, J.; Bratton, C.

    1999-09-01

    The traditional view of aeolian sand transport generally estimates flux from the perspective of aerodynamic forces creating the airborne grain population, although it has been recognized that "reptation" causes a significant part of the total airborne flux; reptation involves both ballistic injection of grains into the air stream by the impact of saltating grains as well as the "nudging" of surface grains into a creeping motion. Whilst aerodynamic forces may initiate sand motion, it is proposed here that within a fully-matured grain cloud, flux is actually governed by two thresholds: an aerodynamic threshold, and a bed-dilatancy threshold. It is the latter which controls the reptation population, and its significance increases proportionally with transport energy. Because we only have experience with terrestrial sand transport, extrapolations of aeolian theory to Mars and Venus have adjusted only the aerodynamic factor, taking gravitational forces and atmospheric density as the prime variables in the aerodynamic equations, but neglecting reptation. The basis for our perspective on the importance of reptation and bed dilatancy is a set of experiments that were designed to simulate sand transport across the surface of a martian dune. Using a modified sporting crossbow in which a sand-impelling sabot replaced the bolt-firing mechanism, individual grains of sand were fired at loose sand targets with glancing angles typical of saltation impact; grains were projected at about 80 m/s to simulate velocities commensurate with those predicted for extreme martian aeolian conditions. The sabot impelling method permitted study of individual impacts without the masking effect of bed mobilization encountered in wind-tunnel studies. At these martian impact velocities, grains produced small craters formed by the ejection of several hundred grains from the bed. Unexpectedly, the craters were not elongated, despite glancing impact; the craters were very close to circular in planform

  4. Aeolian Sand Transport in the Planetary Context: Respective Roles of Aerodynamic and Bed-Dilatancy Thresholds

    NASA Technical Reports Server (NTRS)

    Marshall, J. R.; Borucki, J.; Bratton, C.

    1999-01-01

    The traditional view of aeolian sand transport generally estimates flux from the perspective of aerodynamic forces creating the airborne grain population, although it has been recognized that "reptation" causes a significant part of the total airborne flux; reptation involves both ballistic injection of grains into the air stream by the impact of saltating grains as well as the "nudging" of surface grains into a creeping motion. Whilst aerodynamic forces may initiate sand motion, it is proposed here that within a fully-matured grain cloud, flux is actually governed by two thresholds: an aerodynamic threshold, and a bed-dilatancy threshold. It is the latter which controls the reptation population, and its significance increases proportionally with transport energy. Because we only have experience with terrestrial sand transport, extrapolations of aeolian theory to Mars and Venus have adjusted only the aerodynamic factor, taking gravitational forces and atmospheric density as the prime variables in the aerodynamic equations, but neglecting reptation. The basis for our perspective on the importance of reptation and bed dilatancy is a set of experiments that were designed to simulate sand transport across the surface of a martian dune. Using a modified sporting crossbow in which a sand-impelling sabot replaced the bolt-firing mechanism, individual grains of sand were fired at loose sand targets with glancing angles typical of saltation impact; grains were projected at about 80 m/s to simulate velocities commensurate with those predicted for extreme martian aeolian conditions. The sabot impelling method permitted study of individual impacts without the masking effect of bed mobilization encountered in wind-tunnel studies. At these martian impact velocities, grains produced small craters formed by the ejection of several hundred grains from the bed. Unexpectedly, the craters were not elongated, despite glancing impact; the craters were very close to circular in planform

  5. Recent seasonal variations in arid landscape cover and aeolian sand mobility, Navajo Nation, southwestern U.S.

    USGS Publications Warehouse

    Draut, Amy E.; Redsteer, Margaret Hiza; Amoroso, Lee; Giosan, Liviu; Fuller, Dorian Q.; Nicoll, Kathleen; Flad, Rowan K.; Clift, Peter D.

    2013-01-01

    The socioeconomic impacts of climate change pose problems not only in devel- oping countries but also to residents of arid lands in the United States among marginalized societies with limited economic means. In the Navajo Nation, warming temperatures and recent drought have increased aeolian sediment mobility such that large, migrating sand dunes affect grazing lands, housing, and road access. Dust derived from this region also affects albedo and longevity of the Rocky Mountains snowpack, located downwind. We present initial results from a study that monitors sand transport and vegetation within a 0.2 km2 site in the Navajo lands, measuring the effects of drought on landscape stability since 2009. Sand mobility decreased substantially as 1 year with near-normal monsoon rainfall (2010) somewhat abated a decade-long drought, temporarily doubling vegetation cover. Vegetation that grew during 2010, with adequate rain, died off rapidly during dry conditions in 2011. Short-term increases in rainfall that promote annual, but not perennial, plant growth will not improve landscape stability in the long term. Climate projections suggest that a warmer, drier climate and potentially enhanced sediment supply from ephem- eral washes will further increase aeolian sand transport and dune activity, worsening the present challenges to people living in this region. Connections among climate, vegetation, and aeolian sediment erodibility in this region are highly relevant to other areas of the world with similar environmental problems.

  6. Comparative Petrographic Maturity of River and Beach Sand, and Origin of Quartz Arenites.

    ERIC Educational Resources Information Center

    Ferree, Rob A.; And Others

    1988-01-01

    Describes a deterministic computer model that incorporates: (1) initial framework composition; (2) abrasion factors for quartz, feldspar, and rock fragments; and (3) a fragmentation ratio for rock fragments to simulate the recycling of coastal sands by rivers and beaches. (TW)

  7. Selective silicification of fossils by syntaxial overgrowths on quartz sand, Oriskany Sandstone (Lower Devonian), New York

    NASA Astrophysics Data System (ADS)

    Maliva, Robert G.

    1992-07-01

    Some fossil fragments in the Oriskany Sandstone (Lower Devonian) of New York were partially replaced by syntaxial quartz overgrowths. These replacive overgrowths are significant in that they provide insights into the mechanism and controls of quartz replacement of calcite. The susceptibility of the different calcite types of quartz replacement was governed by their microstructural complexity. Fossil fragments with finely crystalline microstructures, such as brachiopods, ostracods, and bryozoans, were partially replaced by quartz, whereas echinoderm ossicles, which consist of single large calcite crystals, were not replaced. Calcite cement was also immune to replacement. Brachiopod, bryozoan, and ostracod bioclasts (with minor exceptions) underwent partial replacement by quartz (with its concomitant shell calcite dissolution) only where the shell fragments were in contact with detrital quartz grains. Proximity to authigenic crystal nucleation sites (i.e., quartz sand grains) was thus the prime control over whether host mineral dissolution occurred, which is a situation unique to the force of crystallization-driven replacement mechanism.

  8. Sand Flux Results for Aeolian Dunes at Current and Candidate Landing Sites on Mars

    NASA Astrophysics Data System (ADS)

    Chojnacki, M.; Urso, A.; Yingling, W.

    2015-12-01

    It is now known unambiguously that wind-driven bedform activity is occurring on Mars today. It has also been demonstrated the rapid aeolian abrasion of sedimentary deposits that potentially host ancient habitable environments may provide the best mechanism for exposing samples containing relatively undegraded organics (Farley et al. 2014). Thus, current processes operating on the surface of Mars are highly relevant to our understanding of the past. Here, we discuss new sand flux results of active dune across Mars, including several current and candidate landing sites with Meridiani Planum, Gale crater, Valles Marineris, and Mawrth Vallis. For this task, we have utilized multi-temporal images acquired annually by the HiRISE camera (25 cm/pixel) along with co-located HiRISE Digital Terrain Models. Falling dunes in Coprates Chasma (Mars 2020 candidate landing site) measuring 6-10 meters in height were detected migrating on average 0.5 m per Earth year, yielding crest fluxes of 3.1 m3 m-1 yr-1 (units hereafter assumed). Barchans near the MSL rover at Gale crater have slightly lower fluxes of 1.2, while earlier work in Endeavour crater, the current site of the Opportunity Rover, showed dome dunes with fluxes as high as 13 (average of 6.8; Chojnacki et al. 2015). New results of Mawrth Vallis (Mars 2020 candidate) dunes suggest these high rates are not uncommon, as barchans there possess average fluxes of 11.5. Assuming ripple reptation rates are 1/10th that of crest fluxes, total flux (saltation plus reptation) would range 3.2 to 12.7 m3 m-1 yr-1 for all sites studied herein. Active dunes and the abrasion susceptibility (Sa) of local rocks are relevant to assess how sand fluxes modify the landscape. Using the methodology and assumptions (Sa for basalt, mean trajectory height etc.) described in Bridges et al. (2012), we estimated abrasion rates of local basaltic bedrock. For example, sand blasting at Mawrth Vallis is estimated to produce 2-8 μm/yr for flat ground and 15

  9. Additive surface complexation modeling of uranium(VI) adsorption onto quartz-sand dominated sediments.

    PubMed

    Dong, Wenming; Wan, Jiamin

    2014-06-17

    Many aquifers contaminated by U(VI)-containing acidic plumes are composed predominantly of quartz-sand sediments. The F-Area of the Savannah River Site (SRS) in South Carolina (USA) is an example. To predict U(VI) mobility and natural attenuation, we conducted U(VI) adsorption experiments using the F-Area plume sediments and reference quartz, goethite, and kaolinite. The sediments are composed of ∼96% quartz-sand and 3-4% fine fractions of kaolinite and goethite. We developed a new humic acid adsorption method for determining the relative surface area abundances of goethite and kaolinite in the fine fractions. This method is expected to be applicable to many other binary mineral pairs, and allows successful application of the component additivity (CA) approach based surface complexation modeling (SCM) at the SRS F-Area and other similar aquifers. Our experimental results indicate that quartz has stronger U(VI) adsorption ability per unit surface area than goethite and kaolinite at pH ≤ 4.0. Our modeling results indicate that the binary (goethite/kaolinite) CA-SCM under-predicts U(VI) adsorption to the quartz-sand dominated sediments at pH ≤ 4.0. The new ternary (quartz/goethite/kaolinite) CA-SCM provides excellent predictions. The contributions of quartz-sand, kaolinite, and goethite to U(VI) adsorption and the potential influences of dissolved Al, Si, and Fe are also discussed.

  10. Natural and human controls of the Holocene evolution of the beach, aeolian sand and dunes of Caesarea (Israel)

    NASA Astrophysics Data System (ADS)

    Roskin, J.; Sivan, D.; Shtienberg, G.; Roskin, E.; Porat, N.; Bookman, R.

    2015-12-01

    The study focuses on the Holocene appearance, chronology and drivers of beach sand deposition and inland aeolian sand transport around the Roman-Byzantine ruins of Caesarea, Israel. Beach sand, sand sheets, nebkha, linear and transverse dunes as well as parabolic and transverse interdunes along two transects were sampled in the current study down to their substrate. Sixteen new optically stimulated luminescence ages cluster at ∼5.9-3.3 ka, ∼1.2-1.1 ka (800-900 AD) and ∼190-120 years ago (1825-1895 AD) indicating times of middle and late Holocene sand sheet depositions and historical dune stabilization. The first age cluster indicates that beach sand accumulated when rates of global sea level rise declined around 6-5 ka. Until ∼4 ka sand sheets encroached up to 2.5 km inland. Historical and archaeological evidence points to sand mobilization since the first century AD. Sand sheets dating to 1.2-1.1 ka, coevally found throughout the dunefield represent sand stabilization due to vegetation reestablishment attributed to gradual and fluctuating decline in human activity from the middle Early Islamic period until the 10th century. Historical and chronological evidence of the existence of transverse and coppice dunes from the 19th century suggest that dunes only formed in the last few centuries. The study illustrates the initial role of natural processes, in this case decline in global sea level rise and the primary and later role of fluctuating human activity upon coastal sand mobility. The study distinguishes between sand sheets and dunes and portrays them as sensors of environmental changes.

  11. Aeolian Dune Deformation in a Multi-Directional Wind Regime, White Sands Dune Field, New Mexico

    NASA Astrophysics Data System (ADS)

    Pedersen, A.; Kocurek, G.

    2013-12-01

    Aeolian dunes commonly exist in a multi-directional wind regime. With each constructive wind event, dunes both migrate and deform as a function of the incidence angle of the primary wind to the local brinkline orientation. Can dune shape after many wind events be predicted from the resultant of these wind events? This question was addressed for sinuous crescentic dunes at the White Sands Dune Field, New Mexico, using: (1) a record of wind events from nearby Holloman AFB, and (2) a time-series of LiDAR-derived digital elevation models (DEMs) in which changes in dune shape can be accurately measured. From June 2007 to June 2010, 1,590 wind events occurred in which wind velocity was above the threshold of 18.66 m/s. Based upon the sand-transporting capacity of each wind event, the rose diagram for the overall wind regime shows three modes: (1) a dominant mode from the SW that occurred throughout the year but was most common during the spring, (2) a secondary mode from the N-NE during winter during the passage of frontal weather systems during the summer, and (3) a tertiary mode from the S-SE that occurred primarily during the summer months. From brinkline tracing and difference maps made from DEMs for June 2007, June 2008, January 2009, September 2009, and June 2010, the impact of each component of the wind regime upon dune morphology is evident. Winds from the SW cause dune migration to the NE, and dune crestlines are oriented nearly perpendicular to this wind direction. N-NE winds cause along-crest crabbing of dune sinuosity, accompanied by scour along the northern flank of convex-downwind lee-face segments. S-SE winds cause local crestal reversal and scour of the lee face. Idealized dune cross-strata can be constructed based upon the impact of each wind event. However, beginning with an initial dune shape, subsequent dune shapes in the DEM time-series cannot be predicted using the resultant for the period and its incidence angle with the initial brinkline

  12. Modeling grain size variations of aeolian gypsum deposits at White Sands, New Mexico, using AVIRIS imagery

    USGS Publications Warehouse

    Ghrefat, H.A.; Goodell, P.C.; Hubbard, B.E.; Langford, R.P.; Aldouri, R.E.

    2007-01-01

    Visible and Near-Infrared (VNIR) through Short Wavelength Infrared (SWIR) (0.4-2.5????m) AVIRIS data, along with laboratory spectral measurements and analyses of field samples, were used to characterize grain size variations in aeolian gypsum deposits across barchan-transverse, parabolic, and barchan dunes at White Sands, New Mexico, USA. All field samples contained a mineralogy of ?????100% gypsum. In order to document grain size variations at White Sands, surficial gypsum samples were collected along three Transects parallel to the prevailing downwind direction. Grain size analyses were carried out on the samples by sieving them into seven size fractions ranging from 45 to 621????m, which were subjected to spectral measurements. Absorption band depths of the size fractions were determined after applying an automated continuum-removal procedure to each spectrum. Then, the relationship between absorption band depth and gypsum size fraction was established using a linear regression. Three software processing steps were carried out to measure the grain size variations of gypsum in the Dune Area using AVIRIS data. AVIRIS mapping results, field work and laboratory analysis all show that the interdune areas have lower absorption band depth values and consist of finer grained gypsum deposits. In contrast, the dune crest areas have higher absorption band depth values and consist of coarser grained gypsum deposits. Based on laboratory estimates, a representative barchan-transverse dune (Transect 1) has a mean grain size of 1.16 ??{symbol} (449????m). The error bar results show that the error ranges from - 50 to + 50????m. Mean grain size for a representative parabolic dune (Transect 2) is 1.51 ??{symbol} (352????m), and 1.52 ??{symbol} (347????m) for a representative barchan dune (Transect 3). T-test results confirm that there are differences in the grain size distributions between barchan and parabolic dunes and between interdune and dune crest areas. The t-test results

  13. Vertical structure of aeolian turbulence in a boundary layer with sand transport

    NASA Astrophysics Data System (ADS)

    Lee, Zoe S.; Baas, Andreas C. W.

    2016-04-01

    originating from the top of the boundary layer, indicating a downwards direction of eddy motion. While directionality of turbulence cannot be definitively determined, our results indicate that the top-down turbulence model is a suitable explanation, further supported by the presence of 'incomplete' eddies which originate at higher elevations but fail to extend to the surface. This provides the first evidence in support of a top down turbulence model as observed in aeolian geomorphology, and we present preliminary findings on its relationship to sand transport activity. Lee, Z.S., Baas, A.C.W. (2016) Variable and conflicting shear stress estimates inside a boundary layer with sediment transport. Earth Surface Processes and Landforms; DOI: 10.1002/esp.3829

  14. Effects of grain size and temperature on virus attachment onto quartz sand

    NASA Astrophysics Data System (ADS)

    Aravantinou, Andriana F.; Chrysikopoulos, Constantinos V.

    2014-05-01

    Virus transport in groundwater is controlled mainly by attachment onto the solid matrix and inactivation. Therefore, understanding how the various parameters affect virus attachment can lead to improved virus transport predictions and better health risk evaluations. This study is focused on the attachment of viruses onto quartz sand under batch experimental conditions. The bacteriophages ΦX174 and MS2 were used as model viruses. Three different sand grain sizes were employed for the static and dynamic experiments. The batch sorption experiments were performed under static conditions at 4°C and 20°C and dynamic conditions at 4°C. The experimental data were adequately described by the Freudlich isotherm. It was shown that temperature significantly affects virus attachment under static conditions. The attachment of both MS2 and ΦX174 onto quartz sand was greater at 20°C than 4°C. Higher virus attachment was observed under dynamic than static conditions, and in all cases, the affinity of MS2 for quartz sand was greater than that of ΦX174. Furthermore, in most of the cases considered, bacteriophage attachment was shown to decrease with increasing quartz sand size.

  15. Measurements of wind, aeolian sand transport, and precipitation in the Colorado River corridor, Grand Canyon, Arizona; January 2005 to January 2006

    USGS Publications Warehouse

    Draut, Amy E.; Rubin, David M.

    2006-01-01

    This report presents measurements of aeolian sediment-transport rates, wind speed and direction, and precipitation records from six locations that contain aeolian deposits in the Colorado River corridor through Grand Canyon, Grand Canyon National Park, Arizona. Aeolian deposits, many of which contain and preserve archaeological material, are an important part of the Grand Canyon ecosystem. This report contains data collected between January 2005 and January 2006, and is the second in a series; the first contained data that were collected between November 2003 and December 2004 (Draut and Rubin, 2005; http://pubs.usgs.gov/of/2005/1309/). Analysis of data collected in 2005 shows great spatial and seasonal variation in wind and precipitation patterns. Total annual rainfall can vary by more than a factor of two over distances ~ 10 km. Western Grand Canyon received substantially more precipitation than the eastern canyon during the abnormally wet winter of 2005. Great spatial variability in precipitation indicates that future sedimentary and geomorphic studies would benefit substantially from continued or expanded data collection at multiple locations along the river corridor, because rainfall records collected by NPS at Phantom Ranch (near river-mile 88) cannot be assumed to apply to other areas of the canyon. Wind velocities and sand transport in 2005 were greatest during May and June, with maximum winds locally as high as ~25 m s-1, and transport rates locally >100 g cm-1 d-1. This represents a later peak in seasonal aeolian sand transport compared to the previous year, in which transport rates were greatest in April and May 2004. Dominant wind direction varies with location, but during the spring windy season the greatest transport potential was directed upstream in Marble Canyon (eastern Grand Canyon). At all locations, rates of sand transport during the spring windy season were 5–15 times higher than at other times of year. This information has been used to

  16. Late Quaternary aeolian sand deposition sustained by fluvial reworking and sediment supply in the Hexi Corridor - An example from northern Chinese drylands

    NASA Astrophysics Data System (ADS)

    Nottebaum, Veit; Lehmkuhl, Frank; Stauch, Georg; Lu, Huayu; Yi, Shuangwen

    2015-12-01

    Aeolian deposits are frequently used for palaeoenvironmental change studies. Their formation depends on an array of requirements: the supply of material suitable for aeolian transport and favorable conditions of sediment availability and wind strength. In order to infer palaeoenvironmental information from aeolian sand deposits these factors need to be carefully evaluated. We present a study from northern Chinese Hexi Corridor, based on 11 optically stimulated luminescence (OSL) dated sediment sections. These represent interchanging aeolian and alluvial deposits under gravel surfaces and aeolian sand in dune fields interrupted by interdunal flood deposits. Investigations in two subareas reveal contrasting geomorphologic and sedimentary histories: (1) sediment deposition during the Pleistocene-Holocene transition (~ 12 ka) followed by deflation during the Holocene and (2) frequent sediment recycling revealed by a wide spectrum of ages throughout the Holocene. The late glacial sediment pulse recorded in the western Hexi Corridor is attributed to high sediment supply, generated by efficient (peri-)glacial sediment production during glacial times in the adjacent Qilian Shan (< 5700 m asl) and a moisture increase inducing the reworking of those (glacio-)fluvial deposits during the Pleistocene-Holocene transition. The absence of a powerful reworking agent preserved these late glacial deposits in the western Hexi Corridor in contrast to moister eastern parts where Holocene sediment reworking prevailed. Geomorphological and hydrological preconditions of the subareas are discussed and reveal the controlling influence of fluvial processes on sand supply for the aeolian system. While a perennial drainage is missing in the drier western part, the Hei River drainage is fed by higher monsoonal precipitation in the central Hexi Corridor. It maintains a sediment recycling system and has ensured a sufficient sediment supply throughout the Holocene. The study promotes closer

  17. Influence of Perfluorooctanoic Acid on the Transport and Deposition Behaviors of Bacteria in Quartz Sand.

    PubMed

    Wu, Dan; Tong, Meiping; Kim, Hyunjung

    2016-03-01

    The significance of perfluorooctanoic acid (PFOA) on the transport and deposition behaviors of bacteria (Gram-negative Escherichia coli and Gram-positive Bacillus subtilis) in quartz sand is examined in both NaCl and CaCl2 solutions at pH 5.6 by comparing both breakthrough curves and retained profiles with PFOA in solutions versus those without PFOA. All test conditions are found to be highly unfavorable for cell deposition regardless of the presence of PFOA; however, 7%-46% cell deposition is observed depending on the conditions. The cell deposition may be attributed to micro- or nanoscale roughness and/or to chemical heterogeneity of the sand surface. The results show that, under all examined conditions, PFOA in suspensions increases cell transport and decreases cell deposition in porous media regardless of cell type, presence or absence of extracellular polymeric substances, ionic strength, and ion valence. We find that the additional repulsion between bacteria and quartz sand caused by both acid-base interaction and steric repulsion as well as the competition for deposition sites on quartz sand surfaces by PFOA are responsible for the enhanced transport and decreased deposition of bacteria with PFOA in solutions.

  18. Aeolian Processes and Landforms in River Valleys of Central Russian Plain in MIS 2

    NASA Astrophysics Data System (ADS)

    Matlakhova, Ekaterina

    2015-04-01

    Late Pleistocene terraces in river valleys of Central Russian Plain were subject to aeolian reworking after the alluvial sedimentation had finished. Severe natural conditions of LGM (cold and dry climate, scarce vegetation) contributed activation of aeolian processes. Ground water lowering because of deep pre-LGM incision of rivers made deep aeolian reworking possible at low hypsometric levels of valley bottom. We studied lithological structure of terraces in river valleys of Central Russian Plain. The key sites were located in Seim (the middle Dnieper catchment) and Khoper (the middle Don catchment) river valleys. Field data was combined with quartz grains morphoscopy technique (study of texture of sediment particles using scanning electron microscope). Wide participation of aeolian sediments in terrace deposits was detected. During this study a new technique of the distinguishing of short-term aeolian reworking of alluvial deposits using quartz grains morphoscopy technique was developed. The main problem of interpretation the results of quartz grains morphoscopy is that aeolian signals are sometimes not clear due to short duration of wind action over alluvial sands. However, detailed studies of the quartz grains surfaces under scanning electron microscope helped to solve this problem. We used scanning electron microscope JEOL JSM-661 LV and worked with magnification from ×160 to ×400 for whole grains and up to ×1800 for some parts of grains. Deep aeolian reworking of Late Pleistocene terrace alluvium in river valleys of Central Russian Plain during LGM led to the formation of aeolian covers on the terrace surfaces. Also there are many relict dunes on Late Pleistocene river terrace surfaces. Sometimes the development of aeolian processes could led to more significant changes in the shape of the valley and formation of aeolian aprons. The thickness of aeolian covers can reach 3-5 m or more. Due to this reason morphology and topography of river terraces could

  19. Chemical modeling of backfill composed of quartz sand, lime and an Fe-phase

    SciTech Connect

    Meike, A.; Glassley, W.E.

    1997-01-01

    The area adjacent to the waste package is an important component of the engineered barrier system in a high level radioactive waste repository. The combination of lime, quartz sand, and a phase containing reduced iron is investigated whether it can achieve reduction of oxygen in the waste emplacement drift (thereby reducin corrosion rates) and increase the pH. The simulations conducted to date have examined the following backfill options: Fe metal only, Fe metal and lime, and iron metal/lime/quartz sand in equal volume ratios. Each option was simulated under two environments: limited and unlimited air exchange with the atmosphere. Results suggest that the most important variable during the process of chemical conditioning is the amount of air exchange that occurs in the emplacement drift. The desired chemical conditioing (both oxidation potential and pH) will be far less effective in an emplacement that experiences an unlimited exchange of air with the atmosphere.

  20. Carbon dioxide adsorption on amine-impregnated mesoporous materials prepared from spent quartz sand.

    PubMed

    Su, Yiteng; Peng, Lihong; Shiue, Angus; Hong, Gui-Bing; Qian, Zhang; Chang, Chang-Tang

    2014-07-01

    Mesoporous MCM-41 was synthesized using cetyltrimethyl ammonium bromide (CTAB) as a cationic surfactant and spent quartz sand as the silica source. Modification of the mesoporous structure to create an absorbent was then completed using 3-aminopropyltrimethoxysilane. Amine-Quartz-MCM (The A-Q-MCM) adsorbents were then characterized by N2 adsorption/desorption, elemental analysis (EA), X-ray fluorescence (XRF), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), as well as the carbon dioxide (CO2) adsorption/desorption performance. In this study, spent quartz sand was utilized to synthesize Quartz-MCM (Q-MCM) and the amine functionalized material, A-Q-MCM, which exhibited a higher uptake of CO2 at room temperature compared with the nongrafted material. The results showed that Q-MCM is similar to MCM-41 synthesized using commercial methods. The surface area, pore volume, and pore diameter were found to be as high as 1028 m2/g, 0.907 cm3/g, and 3.04 nm, respectively. Under the condition of CO2 concentration of 5000 ppm, retention time of 50 cc/min, and the dosage of 1 g/cm3, the mean adsorption capacity of CO2 onto A-Q-MCM was about 89 mg/g, and the nitrogen content of A-Q-MCM was 2.74%. The adsorption equilibrium was modeled well using a Freundlich isotherm. Implications: In this study, spent quartz sand was utilized to synthesize Q-MCM. The amine functionalized material exhibited a higher uptake of CO2 at room temperature compared with the nongrafted material. The results showed that Q-MCM is similar to MCM-41 synthesized using commercial methods. The adsorption equilibrium was modeled well using a Freundlich isotherm.

  1. Mineral Dissolution and Secondary Precipitation on Quartz Sand in Simulated Hanford Tank Solutions Affecting Subsurface Porosity

    SciTech Connect

    Wang, Guohui; Um, Wooyong

    2012-11-23

    Highly alkaline nuclear waste solutions have been released from underground nuclear waste storage tanks and pipelines into the vadose zone at the U.S. Department of Energy’s Hanford Site in Washington, causing mineral dissolution and re-precipitation upon contact with subsurface sediments. High pH caustic NaNO3 solutions with and without dissolved Al were reacted with quartz sand through flow-through columns stepwise at 45, 51, and 89°C to simulate possible reactions between leaked nuclear waste solution and primary subsurface mineral. Upon reaction, Si was released from the dissolution of quartz sand, and nitrate-cancrinite [Na8Si6Al6O24(NO3)2] precipitated on the quartz surface as a secondary mineral phase. Both steady-state dissolution and precipitation kinetics were quantified, and quartz dissolution apparent activation energy was determined. Mineral alteration through dissolution and precipitation processes results in pore volume and structure changes in the subsurface porous media. In this study, the column porosity increased up to 40.3% in the pure dissolution column when no dissolved Al was present in the leachate, whereas up to a 26.5% porosity decrease was found in columns where both dissolution and precipitation were observed because of the presence of Al in the input solution. The porosity change was also confirmed by calculation using the dissolution and precipitation rates and mineral volume changes.

  2. Effect of quartz sand on compressive strength of the solid waste composite

    NASA Astrophysics Data System (ADS)

    Masturi, Marwoto, Putut; Sunarno, Rustad, Supriadi

    2016-02-01

    A solid waste composite was successfully made. Preliminary, the composite was synthesized using polyurethane (PU) as binder mixed with the solid waste using simple mixing method and then hot-pressed at at pressure of 4 metric-tons and temperature of 80°C for 20 minutes. To enhance its strength, quartz sand partilces with varied content then were added into the PU-solid waste mixture. From the compressive strength test, it was obtained that PU/solid waste composite with PU fraction (w/w) of 0.43 has optimum compressive strength of 38.91 MPa. Having been added quartz sand having average particles size of 0.94 μm, its compressive strength attains maximum at 40.47 MPa for quartz sand fraction (w/w) of 4.27 × 10-3. The strength is comparable to that of clay brick, slate stone, sandstone, limestone, alder wood, aspen wood, black cherry and pine woods. Therefore, this composite is very adequate to compete the building materials such as the bricks, stones and woods.

  3. Transport of selected bacterial pathogens in agricultural soil and quartz sand.

    PubMed

    Schinner, Tim; Letzner, Adrian; Liedtke, Stefan; Castro, Felipe D; Eydelnant, Irwin A; Tufenkji, Nathalie

    2010-02-01

    The protection of groundwater supplies from microbial contamination necessitates a solid understanding of the key factors controlling the migration and retention of pathogenic organisms through the subsurface environment. The transport behavior of five waterborne pathogens was examined using laboratory-scale columns packed with clean quartz at two solution ionic strengths (10 mM and 30 mM). Escherichia coli O157:H7 and Yersinia enterocolitica were selected as representative Gram-negative pathogens, Enterococcus faecalis was selected as a representative Gram-positive organism, and two cyanobacteria (Microcystis aeruginosa and Anabaena flos-aquae) were also studied. The five organisms exhibit differing attachment efficiencies to the quartz sand. The surface (zeta) potential of the microorganisms was characterized over a broad range of pH values (2-8) at two ionic strengths (10 mM and 30 mM). These measurements are used to evaluate the observed attachment behavior within the context of the DLVO theory of colloidal stability. To better understand the possible link between bacterial transport in model quartz sand systems and natural soil matrices, additional experiments were conducted with two of the selected organisms using columns packed with loamy sand obtained from an agricultural field. This investigation highlights the need for further characterization of waterborne pathogen surface properties and transport behavior over a broader range of environmentally relevant conditions.

  4. Regional aeolian dynamics and sand mixing in the Gran Desierto - Evidence from Landsat Thematic Mapper images

    NASA Technical Reports Server (NTRS)

    Blount, Grady; Greeley, Ronald; Christensen, Phillip R.; Smith, Milton O.; Adams, John B.

    1990-01-01

    Mesoscale mapping of spatial variations in sand composition of the Gran Desierto (Sonora, Mexico) was carried out on multispectral Landsat TM images of this region, making it possible to examine the dynamic development of sand sheets and dunes. Compositions determined from remote imagery were found to agree well with samples from selected areas. The sand populations delineated were used to describe the sediment source areas, transport paths, and deposition sites. The image analysis revealed important compositional variations aver large areas that were not readily apparent in the field data.

  5. Quantifying the effects of European beach grass on aeolian sand transport over the last century: Bodega Marine Reserve, California

    NASA Astrophysics Data System (ADS)

    Cesmat, R.; Werner, S.; Smith, M. E.; Riedel, T.; Best, R.; Olyarnik, S.

    2012-12-01

    Introduction of European beach grass (Ammophila arenaria) to coastal dune systems of western North America induced significant changes to the transport and storage of sediment, and consequently the nesting habitat of the western snowy plover (Charadrius alexandrinus nivosus). At the Bodega Marine Reserve and Sonoma Coast State Park, Ammophila was introduced within the ~0.5 km2 dune area in the 1920's to limit the flux of sand through Bodega Harbor and agricultural land. To assess the potential impact of restoration efforts (Ammophila removal) on aeolian sediment flux, we measured sediment flux as a function of wind speeds and ground cover, and used these measurements to parameterize a spatial model for historical sand deposition Fine- to coarse-grained lithic to sub-lithic sand is delivered to the Bodega dune system from Salmon Creek beach, the down-shore terminus of a littoral system fed by the 3846 km2 Russian River catchment, several small (<100 km2) coastal catchments, and seacliff erosion. Littoral sediment traverses the 1.8 km wide dune system from NW to SE via aeolian transport. Ammophila colonization occurred initially adjacent to the shoreface, inducing deposition of a ~10 meter-high foredune and has subsequently encroached the ~0.5 km2 region between the foredune and Bodega Harbor. Comparison of historical topographic maps via raster subtraction indicates rapid construction of both the foredune and a ~15 meter-high transverse dune (Gaffney ridge) at the edge of the planted region. An average accumulation rate of ~4,000 m3/yr is indicated within the study swath by the preserved sediment volumes. Within the modern dune system, unvegetated areas exhibit 2-3 meter wavelength, ~1/2 meter amplitude mega-ripples, and the uppermost 2-10 cm consists of coarse-sand to granule-sized armor layer. In contrast, grain-sizes in vegetated areas are largely vertically homogenous. Open areas are typically 2-8 meters lower than adjacent vegetated areas, and show evidence for

  6. The contribution of micrometeorites to the iron stocks of buried podzols, developed in Late-glacial aeolian sand deposits (Brabant, The Netherlands)

    NASA Astrophysics Data System (ADS)

    van Mourik, Jan; de Vet, Sebastiaan

    2015-04-01

    The surface geology of an extensive part of NW-Europe is dominated by coversands (Late-glacial chemical poor aeolian sand deposits). The geomorphology of coversand landscapes is dominated by ridges and planes. Podzolation is the dominant soil forming process in coversands under moderate humid climatic conditions. Umbric Podzols developed on the ridges under Quercetum-mixtum, Gleyic and Histic Podzols developed in the planes under Alnetum. Even in chemical poor coversands, iron will be released by hydrolysis from iron containing silicate minerals (such as feldspars). It is well known that the vertical iron distribution in Podzols is effected by translocation of active iron from eluvial to illuvial horizons and that iron is leaching to the aquifer. Iron stocks of Podzols, in contrasts, have not been widely studied for comparison purposes of individual soil horizons or between soils. We determined the stocks of active and immobile iron in the horizons of buried xeromorphic Podzols (soils that developed without any contact with groundwater). The results show that the total amount of iron exceeds the potential amount which can be released by hydrolysis from the parent material. Furthermore, to amount of iron that leached to the groundwater is unknown. It is evident that we must find an additional source to explain the total iron stocks in buried Podzols. It is known from analysis of ice cores that the earth atmosphere is subjected to a continuous influx of (iron rich) micrometeorites. The precipitation of micrometeorites (and other aerosols) on the earth surface is concentrated in humid climatic zones with (intensive) rain fall. We analyzed minerals, extracted from the ectorganic horizon of the Initial Podzols, developed in driftsand that stabilized around 1900 AD, overlying Palaeopodzols, buried around 1200 AD. Among blown in quartz grains, we could determine also micrometeorites, embedded in the organic skeleton of the fermentation horizon of the Initial Podzol

  7. Aeolian sand as a tool for understanding Mars: Thermal infrared remote sensing of volcaniclastic Mars-analog sand dunes in Christmas Lake Valley, Oregon, U.S.A.

    NASA Astrophysics Data System (ADS)

    Edgett, Kenneth S.

    1996-10-01

    INTRODUCTION: On Earth, aeolian sand dunes are used as tools of scientific inquiry. Holocene and Pleistocene dunes preserve clues about Quaternary climate variations and human activities ranging from Ice Age hunting practices to Twentieth Century warfare. Modern dunes contain the sedimentary textures and structures necessary for interpreting ancient sandstones, and they provide natural laboratories for investigation of aeolian physics and desertification processes. The dunes of Mars can likewise be used as scientific tools. Dunes provide relatively dust-free surfaces. From a remote sensing perspective, martian dunes have much potential for providing clues about surface mineralogy and the interaction between the surface and atmosphere. Such information can in turn provide insights regarding crust composition, volcanic evolution, present and past climate events, and perhaps weathering rates. The Mars Global Surveyor Thermal Emission Spectrometer (TES) is expected to reach the planet in September 1997. TES will provide 6 to 50 micrometer spectra of the martian surface at ground resolutions of 3 to 9 km. Sandy aeolian environments on Mars might provide key information about bedrock composition. To prepare for the TES investigation, I have been examining a thermal infrared image of a Mars-composition analog dune field in Christmas Lake Valley, Oregon. COMPOSITION AND GEOLOGIC SETTING: The "Shifting Sand Dunes" dune field is located at the eastern end of Christmas Lake Valley, in what was once the Pleistocene Fort Rock Lake [1]. Much of the sand that makes up the Shifting Sand Dunes dune field is reworked Mt. Mazama airfall from its terminal eruption 6,800 years ago, plus material deflated from the lake bed [1, 2]. The main constituents of the dunes are volcanic glass and devitrified glass fragments, plagioclase crystals, basalt lithic fragments, aggregates of silt and clay-size volcanic ash, pyroxenes, opaque oxide minerals (mostly magnetite), and trace occurrences of

  8. Quartz sand as "blank" compound in rehabilitation experience of industrial barren

    NASA Astrophysics Data System (ADS)

    Gorbacheva, T. T.; Ivanova, L. A.; Kikuchi, R.; Gerardo, R.

    2010-05-01

    During 2008 the field test was performed near the smelter complex Monchegorsk (67°51'N, 32°48'E) to estimate suitability of innovate method for site remediation in severe conditions such as in industrial barren. The method is based on cultivation of perennial grasses using hydroponics with thermally inflated vermiculite from local deposit (Kovdor) followed by rolled lawn placement on very contaminated sites near Monchegorsk. Growing in very contaminated ground resulted in 50% rolled lawn surface loss during first year but with biodiversity maintenance. Field experiment was carried out in three variants (1- mineral ground - flat site; 2- mineral ground- slope sites; 3- organogenic ground - flat site in depression in five replicates. More comprehensive results were received for mineral ground due to better natural washing compared to organogenic ground. In all variants we observed secondary roots formation. It seems obvious that plant roots choose the best zones of soils to grow, and that they avoided toxic zones. Observations continued during 2009 to follow freezing influence and nutrient loss rate. We observed grass survival of about 20-30% during second year of field test but grass roots proliferated very slowly in contaminated ground. Affinity to the ground is one of most important estimate of rolled lawn efficiency for grass cover creation. One of possible measure to improve rolled lawn affinity is to establish additional permeable barrier for grass roots isolation from toxic ground. Simultaneously with rolled lawn placement litterbag experiment was carried out with quartz sand as filling. Quartz was chosen as blank compound and as possible material for permeable barrier creation. Original quartz have some initial nutritional status: pH 6.87, available forms of K 1.9 mg g-1, Ca 9.5 mg g-1, Mg 2.8 mg g-1, P 0.4 mg g-1. There was both increasing and decreasing of quartz nutritional status during 2008-2009 period. Besides quartz is recognized to be some barrier

  9. Frost weathering versus glacial grinding in the micromorphology of quartz sand grains: Processes and geological implications

    NASA Astrophysics Data System (ADS)

    Woronko, Barbara

    2016-04-01

    Micromorphology of quartz sand grains is used to reconstruct processes occurring in the glacial environment and to distinguish the latter from other environments. Two processes dominate in the glacial environment, i.e., crushing and abrasion, or a combination thereof. Their effect is a wide range of microstructures on the surface of quartz grains, e.g., chattermarks, conchoidal fractures and multiple grooves. However, the periglacial environment also effectively modifies the surface of quartz grains. The active layer of permafrost is considered to have a significantly higher contribution to the formation of crushed grains and the number of microstructures resulting from mechanical destruction (e.g., breakage blocks or conchoidal fractures), as compared to deposits which are not affected by freeze-thaw cycles. However, only a few microstructures are found in both environments. At the same time, there are several processes in subglacial environments related to freeze-thaw cycles, e.g., regelation, congelation, basal adfreezing, and glaciohydraulic supercooling. Most likely, therefore, the role of the glacial environment in the destruction of quartz grains has been misinterpreted, and consequently the conclusions regarding environmental processes drawn on the basis of the number of crushed grains and edge-to-edge contacts are erroneous.

  10. Chemical aspects of iron colloid plugging in quartz sands and implications for formation damage

    SciTech Connect

    Potter, J.M.; Dibble, W.E.

    1985-09-01

    A research direction having great potential for better understanding of formation damage is the influence of colloid plugging on fluid flow behavior in porous media. Using flow through experimental equipment, we have explored the dependence of the degree of ferric oxyhydroxide colloid plugging of quartz sand packs on the solution pH and anion type at a constant temperature of 208/sup 0/F (97.7/sup 0/C). At a pH of 5, permeability reductions were greatest in the order PO/sup 3//sub 4/-, SO/sup 2//sub 4/-, and Cl-. This order was reversed at a pH of 9. The results suggest that plugging occurs by two fundamentally different mechanisms. First, flocculation/coagulation of the ferric hydroxide leads to formation of filter cake in the low-pH case. Second, colloid/quartz surface interaction produces a more uniform accumulation of colloid throughout the core at higher pH's.

  11. The Permian Weissliegend of NW Europe: The partial deformation of aeolian dune sands caused by the Zechstein transgression

    NASA Astrophysics Data System (ADS)

    Glennie, K. W.; Buller, A. T.

    1983-05-01

    The Weissliegend is a European sandstone unit of largely late Early Permian age. It is underlain by the Early Permian Rotliegend red desert sandstones and is overlain by the conventionally accepted basal bed of the Zechstein-the bituminous marine shales of the Kupferschiefer. The Weissliegend sandstones are characteristically white or grey in colour and have been recognised beneath the North Sea, in Germany and in Poland. Equivalents, which are red or yellow in colour, occur in NE England and at the southern edge of the Moray Firth Basin in Scotland. From an examination of cliff and quarry exposures in Britain, and of drill cores from southern North Sea gas wells, it is now believed that the bulk of the Weissliegend sandstones (and their equivalents) were originally deposited as aeolian dunes. These dune sands, however, were later modified by a widespread event, the Zechstein transgression, which caused their partial homogenisation, the creation of large-scale soft-sediment deformation structures, and the local and minor reworking of some of the dune flanks. The preferred mechanism of deformation is interpreted as: (1) entrapment of large pockets of air within the bodies of the dunes by flanking and overlying wetted dune sands; (2) venting of the air pockets when the rising internal air pressures overcame the weight of the hydrostatic head of water and the capillary (cohesive) strength of the overlying wetted sands; (3) the rapid replacement of air by water, which caused liquidisation of the original dune laminae; and (4) the associated collapse and final consolidation of the sands into a tigher packing configuration. Deformations seem to be more developed in former transverse dunes than in seif dunes. The reason may be that the relatively tightly packed low-angle accretion bedding common on the flanks of seif dunes is more resistant to deformation than the looser avalanche sands that form a major part of transverse dunes. Limited reworking of former dune sands was

  12. Optical dating of tufa via in situ aeolian sand grains: A case example from the Southern High Plains, USA

    USGS Publications Warehouse

    Rich, J.; Stokes, S.; Wood, W.; Bailey, R.

    2003-01-01

    Precipitated carbonates (commonly termed tufas or travertines) maybe of considerable utility for palaeoenvironmental reconstruction. Their potential, however, for such reconstruction is commonly limited by difficulties associated with their absolute age control. Attempts to date such deposits via uranium series techniques have been complicated by their chemically open behaviour. Here we describe an alternative approach to date tufa deposits associated with ephemeral saline lake basins from the Southern High Plains, USA. We have optically dated sand grains of a mixed aeolian/fluvial (spring fed) origin as the integrating dosimeter. We assume that the grains are fully resetting prior to their incorporation into the tufa deposits and employ a time-dependent disequilibrium dosimetric model to account for the build-up of uranium series daughter products. The approach was applied to a set of four samples with known stratigraphic association. We obtained stratigraphically sensible optical ages ranging from 78??8 to 56??4ka. These data are consistent with existing palaeoenvironmental models of regional recharge. ?? 2003 Elsevier Science Ltd. All rights reserved.

  13. Arbuscular mycorrhizal fungal community divergence within a common host plant in two different soils in a subarctic Aeolian sand area.

    PubMed

    Francini, Gaia; Männistö, Minna; Alaoja, Vilhelmiina; Kytöviita, Minna-Maarit

    2014-10-01

    There is rising awareness that different arbuscular mycorrhizal (AM) fungi have different autoecology and occupy different soil niches and that the benefits they provide to the host plant are dependent on plant-AM fungus combination. However, the role and community composition of AM fungi in succession are not well known and the northern latitudes remain poorly investigated ecosystems. We studied AM fungal communities in the roots of the grass Deschampsia flexuosa in two different, closely located, successional stages in a northern Aeolian sand area. The AM fungal taxa richness in planta was estimated by cloning and sequencing small subunit ribosomal RNA genes. AM colonization, shoot δ (13)C signature, and %N and %C were measured. Soil microbial community structure and AM fungal mycelium abundance were estimated using phospholipid (PLFA) and neutral lipid (NLFA) analyses. The two successional stages were characterized by distinct plant, microbial, and fungal communities. AM fungal species richness was very low in both the early and late successional stages. AM frequency in D. flexuosa roots was higher in the early successional stage than in the late one. The AM fungal taxa retrieved belonged to the genera generally adapted to Arctic or extreme environments. AM fungi seemed to be important in the early stage of the succession, suggesting that AM fungi may help plants to better cope with the harsh environmental conditions, especially in an early successional stage with more extreme environmental fluctuations.

  14. Arbuscular mycorrhizal fungal community divergence within a common host plant in two different soils in a subarctic Aeolian sand area.

    PubMed

    Francini, Gaia; Männistö, Minna; Alaoja, Vilhelmiina; Kytöviita, Minna-Maarit

    2014-10-01

    There is rising awareness that different arbuscular mycorrhizal (AM) fungi have different autoecology and occupy different soil niches and that the benefits they provide to the host plant are dependent on plant-AM fungus combination. However, the role and community composition of AM fungi in succession are not well known and the northern latitudes remain poorly investigated ecosystems. We studied AM fungal communities in the roots of the grass Deschampsia flexuosa in two different, closely located, successional stages in a northern Aeolian sand area. The AM fungal taxa richness in planta was estimated by cloning and sequencing small subunit ribosomal RNA genes. AM colonization, shoot δ (13)C signature, and %N and %C were measured. Soil microbial community structure and AM fungal mycelium abundance were estimated using phospholipid (PLFA) and neutral lipid (NLFA) analyses. The two successional stages were characterized by distinct plant, microbial, and fungal communities. AM fungal species richness was very low in both the early and late successional stages. AM frequency in D. flexuosa roots was higher in the early successional stage than in the late one. The AM fungal taxa retrieved belonged to the genera generally adapted to Arctic or extreme environments. AM fungi seemed to be important in the early stage of the succession, suggesting that AM fungi may help plants to better cope with the harsh environmental conditions, especially in an early successional stage with more extreme environmental fluctuations. PMID:24687606

  15. Raman spectroscopic investigation on high refractive index glasses prepared from local quartz sand

    NASA Astrophysics Data System (ADS)

    Dararutana, P.; Pongkrapan, S.; Sirikulrat, N.; Thawornmongkolkij, M.; Wathanakul, P.

    2009-08-01

    High refractive index (RI) glasses prepared from local quartz sand and compounds of heavy elements, such as, barium carbonate, lead oxide, and bismuth oxide as major ingredients were investigated using Raman spectroscopy. The results showed changes in glass structures of different doping elements, namely, Ba, Pb, and Bi. Refractive indices, densities, and UV-vis-NIR spectra of the glass samples were also measured. The Raman spectroscopy can be used to investigate and/or identify heavy glasses, local ancient glasses as well as glass jewelry.

  16. Influence of enterococcal surface protein (esp) on the transport of Enterococcus faecium within saturated quartz sands.

    PubMed

    Johanson, Jennifer J; Feriancikova, Lucia; Xu, Shangping

    2012-02-01

    Enterococcus was selected by US EPA as a Gram-positive indicator microorganism for groundwater fecal contamination. It was recently reported that enterococcal surface protein (esp) was more prevalent in Enterococcus from human sources than in Enterococcus from nonhuman sources and esp could potentially be used as a source tracking tool for fecal contamination (Scott et al., 2005). In this research, we performed laboratory column transport experiments to investigate the transport of Enterococcus faecium within saturated quartz sands. Particularly, we used a wild type strain (E1162) and a mutant (E1162Δesp) to examine the influence of esp on the transport behavior of E. faecium. Our results showed that esp could significantly enhance the attachment of E. faecium cells onto the surface of silica sands and thus lower the mobility of E. faecium within sand packs. Cell surface properties (e.g., zeta potential) were determined and the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory was applied to explain the effects of esp on the retention of E. faecium. Overall, our results suggested that E. faecium strains with esp could display lower mobility within saturated sand packs than E. faecium strains without esp. The disparity in the transport behavior of E. faecium with and without esp could limit the effectiveness of esp as a source tracking tool within the groundwater system.

  17. Experimental hypervelocity impact into quartz sand - Distribution and shock metamorphism of ejecta

    NASA Technical Reports Server (NTRS)

    Stoeffler, D.; Gault, D. E.; Wedekind, J.; Polkowski, G.

    1975-01-01

    Results are presented for vertical impacts of 0.3-g cylindrical plastic projectiles into noncohesive quartz sand in which vertical and horizontal reference strate were employed by using layers of colored sand. The impacts were performed at velocities of 5.9-6.9 km/sec with a vertical gun ballistic range. The craters, 30-33 cm in diameter, reveal a radial decay of the ejecta mass per unit area with a power of -2.8 to -3.5. Material displaced from the upper 15% of the crater depth d is represented within the whole ejecta blanked, material from deeper than 28% of d is deposited inside 2 crater radii, and no material from deeper than 33% of d was ejected beyond the crater rim. Shock-metamorphosed particles (glassy agglutinates, cataclastic breccias, and comminuted quartz) amount to some 4% of the total displaced mass and indicate progressive zones of decay of shock intensity from a peak pressure of 300 kbar. The shock-metamorphosed particles and the shock-induced change in the grain size distribution of ejected samples have close analogies to the basic characteristics of the lunar regolith. Possible applications to regolith formation and to ejecta formations of large-scale impact craters are discussed.

  18. Retention of tannic acid and condensed tannin by Fe-oxide-coated quartz sand.

    PubMed

    Kaal, J; Nierop, K G J; Verstraten, J M

    2005-07-01

    This paper intends to shed light on the interactions between tannin and mineral soil particles. For that purpose, aqueous solution of condensed tannin (CT) (derived from Black pine (Pinus nigra var. maritima)) and commercially available tannic acid (TA) were added to purified quartz (Qtz) sand and quartz sand coated with either goethite (Gt) or ferrihydrite (Fh). After solvent removal by evaporation the samples were extracted by water. The extracts were analysed for organic carbon, total phenolics and CT. The extractability of the two tannins was small and increased in the order Qtz-Fh < Qtz-Gt < Qtz. For all mineral samples, TA was more extractable than CT. Bonding of tannins to the mineral samples and the partial peptisation of the Fe oxide coatings upon the binding resulted in complex tannin release curves. Our results suggest that the inextractability of tannins from natural soils and the absence of tannins in soil leachates might be caused by strong adsorption on soil minerals such as Qtz and Fe (oxy)(hydr)oxides. The results of competition experiments with mixtures of both tannins demonstrate that the CTs, and TA in particular, can release large amounts of Fe (oxides), suggesting that the tannins are excellent metal-mobilising agents. We therefore suggest that the fate of tannins in the mineral soil environment is highly dependent on the abundance of weakly bonded secondary oxides.

  19. Retention of tannic acid and condensed tannin by Fe-oxide-coated quartz sand.

    PubMed

    Kaal, J; Nierop, K G J; Verstraten, J M

    2005-07-01

    This paper intends to shed light on the interactions between tannin and mineral soil particles. For that purpose, aqueous solution of condensed tannin (CT) (derived from Black pine (Pinus nigra var. maritima)) and commercially available tannic acid (TA) were added to purified quartz (Qtz) sand and quartz sand coated with either goethite (Gt) or ferrihydrite (Fh). After solvent removal by evaporation the samples were extracted by water. The extracts were analysed for organic carbon, total phenolics and CT. The extractability of the two tannins was small and increased in the order Qtz-Fh < Qtz-Gt < Qtz. For all mineral samples, TA was more extractable than CT. Bonding of tannins to the mineral samples and the partial peptisation of the Fe oxide coatings upon the binding resulted in complex tannin release curves. Our results suggest that the inextractability of tannins from natural soils and the absence of tannins in soil leachates might be caused by strong adsorption on soil minerals such as Qtz and Fe (oxy)(hydr)oxides. The results of competition experiments with mixtures of both tannins demonstrate that the CTs, and TA in particular, can release large amounts of Fe (oxides), suggesting that the tannins are excellent metal-mobilising agents. We therefore suggest that the fate of tannins in the mineral soil environment is highly dependent on the abundance of weakly bonded secondary oxides. PMID:15914150

  20. Application of ultrasound and quartz sand for the removal of disinfection byproducts from drinking water.

    PubMed

    Yang, Wu; Dong, Lili; Luo, Zhen; Cui, Xiaochun; Liu, Jiancong; Liu, Zhongmou; Huo, Mingxin

    2014-04-01

    To the best of our knowledge, little information is available on the combined use of ultrasound (US) and quartz sand (QS) in the removal of disinfection byproducts (DBPs) from drinking water. This study investigates the removal efficiency for 12 DBPs from drinking water by 20 kHz sonolytic treatment, QS adsorption, and their combination. Results indicate that DBPs with logKow≤1.12 could not be sonolysized; for logKow≥1.97, more than 20% removal efficiency was observed, but the removal efficiency was unrelated to logKow. DBPs containing a nitro group are more sensitive to US than those that comprise nitrile, hydrogen, and hydroxyl groups. Among the 12 investigated DBPs, 9 could be adsorbed by QS adsorption. The adsorption efficiency ranged from 12% for 1,1-dichloro-2-propanone to 80% for trichloroacetonitrile. A synergistic effect was found between the US and QS on DBPs removal, and all the 12 DBPs could be effectively removed by the combined use of US and QS. In the presence of US, part of the QS particles were corroded into small particles which play a role in increasing the number of cavitation bubbles and reducing cavitation bubble size and then improve the removal efficiency of DBPs. On the other hand, the presence of US enhances the DBP mass transfer rate to cavitation bubbles and quartz sand. In addition, sonolytic treatment led to a slight decrease of pH, and TOC values decreased under all the three treatment processes.

  1. Thermal conductivity measurements in Porous mixtures of methane hydrate and quartz sand

    USGS Publications Warehouse

    Waite, W.F.; deMartin, B.J.; Kirby, S.H.; Pinkston, J.; Ruppel, C.D.

    2002-01-01

    Using von Herzen and Maxwell's needle probe method, we measured thermal conductivity in four porous mixtures of quartz sand and methane gas hydrate, with hydrate composing 0, 33, 67 and 100% of the solid volume. Thermal conductivities were measured at a constant methane pore pressure of 24.8 MPa between -20 and +15??C, and at a constant temperature of -10??C between 3.5 and 27.6 MPa methane pore pressure. Thermal conductivity decreased with increasing temperature and increased with increasing methane pore pressure. Both dependencies weakened with increasing hydrate content. Despite the high thermal conductivity of quartz relative to methane hydrate, the largest thermal conductivity was measured in the mixture containing 33% hydrate rather than in hydrate-free sand. This suggests gas hydrate enhanced grain-to-grain heat transfer, perhaps due to intergranular contact growth during hydrate synthesis. These results for gas-filled porous mixtures can help constrain thermal conductivity estimates in porous, gas hydrate-bearing systems.

  2. Frequency-dependent streaming potential of porous media: Experimental measurement of Ottawa sand, Lochaline sand and quartz glass beads

    NASA Astrophysics Data System (ADS)

    Glover, Paul; Walker, Emilie; Ruel, Jean; Yagout, Fuad

    2013-04-01

    High quality frequency-dependent streaming potential coefficient measurements have been made upon Ottawa sand, Lochaline sand and glass bead packs using a new apparatus that is based on an electro-magnetic drive. The apparatus operates in the range 1 Hz to 1 kHz with samples of 25.4mm diameter up to 150 mm long. The results have been analysed using theoretical models that are either (i) based upon vibrational mechanics, (ii) treat the geological material as a bundle of capillary tubes, or (iii) treat the material as a porous medium. In each case we have considered the real and imaginary parts of the complex streaming potential coefficient as well as its magnitude. It is clear from the results that the complex streaming potential coefficient does not follow a Debye-type behaviour, differing from the Debye-type behaviour most markedly for frequencies above the transition frequency. The best fit to all the data was provided by the Pride (1994) model and its simplification by Walker and Glover (2010), which is satisfying as this model was conceived for porous media rather than capillary tube bundles. Theory predicts that the transition frequency is related to the inverse square of the effective pore radius. Values for the transition frequency were derived from each of the models for each sample and were found to be in good agreement with those expected from the independently measured effective pore radius of each material. The fit to the Pride model for all four samples was also found to be consistent with the independently measured steady-state permeability, while the value of the streaming potential coefficient in the low-frequency limit was found to be in good agreement with steady-state streaming potential coefficient data measured using a steady-state streaming potential rig as well as the corpus of steady-state determinations for quartz-based samples existing in the literature.

  3. Petroleum resins adsorption onto quartz sand: near infrared (NIR) spectroscopy study.

    PubMed

    Balabin, Roman M; Syunyaev, Rustem Z

    2008-02-15

    In this paper we have tried to evaluate adsorption parameters of petroleum resins. Near infrared (NIR) spectroscopy is applied for resins bulk concentration evaluation during adsorption process. NIR experimental scheme and parameters are provided. NIR spectra range of 9000-13,000 cm(-1) is chosen. Quartz sand (0.2-0.8 mm fraction) is used as adsorbent; benzene is used as solvent. Different approaches of "NIR spectra-resins concentration" calibration model building are discussed. Partial least squares (PLS) regression method is used. Langmuir model is chosen for experimental data fitting. Combined usage of kinetic and isothermic data gives us ability to evaluate the maximal adsorbed mass density, the equilibrium constant of adsorption, and the rate constants of adsorption (and desorption). The rate constants of resins adsorption and desorption are found to be concentration independent.

  4. Influence of clay particles on the transport and retention of titanium dioxide nanoparticles in quartz sand.

    PubMed

    Cai, Li; Tong, Meiping; Wang, Xueting; Kim, Hyunjung

    2014-07-01

    This study investigated the influence of two representative suspended clay particles, bentonite and kaolinite, on the transport of titanium dioxide nanoparticles (nTiO2) in saturated quartz sand in both NaCl (1 and 10 mM ionic strength) and CaCl2 solutions (0.1 and 1 mM ionic strength) at pH 7. The breakthrough curves of nTiO2 with bentonite or kaolinite were higher than those without the presence of clay particles in NaCl solutions, indicating that both types of clay particles increased nTiO2 transport in NaCl solutions. Moreover, the enhancement of nTiO2 transport was more significant when bentonite was present in nTiO2 suspensions relative to kaolinite. Similar to NaCl solutions, in CaCl2 solutions, the breakthrough curves of nTiO2 with bentonite were also higher than those without clay particles, while the breakthrough curves of nTiO2 with kaolinite were lower than those without clay particles. Clearly, in CaCl2 solutions, the presence of bentonite in suspensions increased nTiO2 transport, whereas, kaolinite decreased nTiO2 transport in quartz sand. The attachment of nTiO2 onto clay particles (both bentonite and kaolinite) were observed under all experimental conditions. The increased transport of nTiO2 in most experimental conditions (except for kaolinite in CaCl2 solutions) was attributed mainly to the clay-facilitated nTiO2 transport. The straining of larger nTiO2-kaolinite clusters yet contributed to the decreased transport (enhanced retention) of nTiO2 in divalent CaCl2 solutions when kaolinite particles were copresent in suspensions.

  5. Influence of clay particles on the transport and retention of titanium dioxide nanoparticles in quartz sand.

    PubMed

    Cai, Li; Tong, Meiping; Wang, Xueting; Kim, Hyunjung

    2014-07-01

    This study investigated the influence of two representative suspended clay particles, bentonite and kaolinite, on the transport of titanium dioxide nanoparticles (nTiO2) in saturated quartz sand in both NaCl (1 and 10 mM ionic strength) and CaCl2 solutions (0.1 and 1 mM ionic strength) at pH 7. The breakthrough curves of nTiO2 with bentonite or kaolinite were higher than those without the presence of clay particles in NaCl solutions, indicating that both types of clay particles increased nTiO2 transport in NaCl solutions. Moreover, the enhancement of nTiO2 transport was more significant when bentonite was present in nTiO2 suspensions relative to kaolinite. Similar to NaCl solutions, in CaCl2 solutions, the breakthrough curves of nTiO2 with bentonite were also higher than those without clay particles, while the breakthrough curves of nTiO2 with kaolinite were lower than those without clay particles. Clearly, in CaCl2 solutions, the presence of bentonite in suspensions increased nTiO2 transport, whereas, kaolinite decreased nTiO2 transport in quartz sand. The attachment of nTiO2 onto clay particles (both bentonite and kaolinite) were observed under all experimental conditions. The increased transport of nTiO2 in most experimental conditions (except for kaolinite in CaCl2 solutions) was attributed mainly to the clay-facilitated nTiO2 transport. The straining of larger nTiO2-kaolinite clusters yet contributed to the decreased transport (enhanced retention) of nTiO2 in divalent CaCl2 solutions when kaolinite particles were copresent in suspensions. PMID:24911544

  6. Influence of sulfate on the transport of bacteria in quartz sand.

    PubMed

    Shen, Xiufang; Han, Peng; Yang, Haiyan; Kim, Hyunjung; Tong, Meiping

    2013-10-01

    The influence of sulfate on the transport of bacteria in packed quartz sand was examined at a constant 25mM ionic strength with the sulfate concentration progressively increased from 0 to 20mM at pH 6.0. Two representative cell types, Escherichia coli BL21 (Gram-negative) and Bacillus subtilis (Gram-positive), were used to determine the effect of sulfate on cell transport behavior. For both examined cell types, the breakthrough plateaus in the presence of sulfate in suspensions were higher and the corresponding retained profiles were lower than those without sulfate ions, indicating that the presence of sulfate in suspensions increased cell transport in packed quartz sand regardless of the examined cell types (Gram-positive or Gram-negative). Moreover, the enhancement of bacteria transport induced by the presence of sulfate was more pronounced with increasing sulfate concentration from 5 to 20mM. In contrast with the results for EPS-present bacteria, the presence of sulfate in solutions did not change the transport behavior for EPS-removed cells. The zeta potentials of EPS-present cells with sulfate were found to be more negative relative to those without sulfate in suspensions, whereas, the zeta potentials for EPS-removed cells in the presence of sulfate were similar as those without sulfate. We proposed that sulfate could interact with EPS on cell surfaces and thus negatively increased the zeta potentials of bacteria, contributing to the increased transport in the presence of sulfate in suspensions.

  7. Granular encapsulation of light hydrophobic liquids (LHL) in LHL-salt water systems: Particle induced densification with quartz sand.

    PubMed

    Boglaienko, Daria; Tansel, Berrin; Sukop, Michael C

    2016-02-01

    Addition of granular materials to floating crude oil slicks can be effective in capturing and densifying the floating hydrophobic phase, which settles by gravity. Interaction of light hydrophobic liquids (LHL) with quartz sand was investigated in LHL-salt water systems. The LHLs studied were decane, tetradecane, hexadecane, benzene, toluene, ethylbenzene, m-xylene, and 2-cholorotoluene. Experiments were conducted with fine quartz sand (passing sieve No. 40 with openings 0.425 mm). Each LHL was dyed with few crystals of Sudan IV dye for ease of visual observation. A volume of 0.5 mL of each LHL was added to 100 mL salt water (34 g/L). Addition of one gram of quartz sand to the floating hydrophobic liquid layer resulted in formation of sand-encapsulated globules, which settled due to increased density. All LHLs (except for a few globules of decane) formed globules covered with fine sand particles that were heavy enough to settle by gravity. The encapsulated globules were stable and retained their shape upon settling. Polarity of hydrophobic liquids as the main factor of aggregation with minerals was found to be insufficient to explain LHL aggregation with sand. Contact angle measurements were made by submerging a large quartz crystal with the LHL drop on its surface into salt water. A positive correlation was observed between the wetting angle of LHL and the LHL volume captured (r = 0.75). The dependence of the globule density on globule radius was analyzed in relation to the coverage (%) of globule surface (LHL-salt water interface) by fine quartz particles. PMID:26490430

  8. Granular encapsulation of light hydrophobic liquids (LHL) in LHL-salt water systems: Particle induced densification with quartz sand.

    PubMed

    Boglaienko, Daria; Tansel, Berrin; Sukop, Michael C

    2016-02-01

    Addition of granular materials to floating crude oil slicks can be effective in capturing and densifying the floating hydrophobic phase, which settles by gravity. Interaction of light hydrophobic liquids (LHL) with quartz sand was investigated in LHL-salt water systems. The LHLs studied were decane, tetradecane, hexadecane, benzene, toluene, ethylbenzene, m-xylene, and 2-cholorotoluene. Experiments were conducted with fine quartz sand (passing sieve No. 40 with openings 0.425 mm). Each LHL was dyed with few crystals of Sudan IV dye for ease of visual observation. A volume of 0.5 mL of each LHL was added to 100 mL salt water (34 g/L). Addition of one gram of quartz sand to the floating hydrophobic liquid layer resulted in formation of sand-encapsulated globules, which settled due to increased density. All LHLs (except for a few globules of decane) formed globules covered with fine sand particles that were heavy enough to settle by gravity. The encapsulated globules were stable and retained their shape upon settling. Polarity of hydrophobic liquids as the main factor of aggregation with minerals was found to be insufficient to explain LHL aggregation with sand. Contact angle measurements were made by submerging a large quartz crystal with the LHL drop on its surface into salt water. A positive correlation was observed between the wetting angle of LHL and the LHL volume captured (r = 0.75). The dependence of the globule density on globule radius was analyzed in relation to the coverage (%) of globule surface (LHL-salt water interface) by fine quartz particles.

  9. Geochemical provenance of soils in Kerman urban areas, Iran: Implications for the influx of aeolian dust

    NASA Astrophysics Data System (ADS)

    Dehbandi, Reza; Aftabi, Alijan

    2016-06-01

    The investigation of the interaction of aeolian dust with residual soils has not been fully explored in the Kerman urban areas, Iran. To assess the geochemical influence of aeolian dust on the residual soils of the Kerman urban areas of Iran, 27 samples were studied petrogeochemically. The arid-semi-arid climate of the area together with the southwest-northeast prevailing wind, have deposited aeolian sands over the residual soils. Residual soils reflect similar mineral compositions to that of the underlying bedrock and include mostly calcite and quartz. However, the minor occurrences of pyroxene, amphibole, olivine, plagioclase and volcanic clasts in urban soils and aeolian dust are attributed to volcanogenic inputs transported by aeolian dust. Urban soils and aeolian dust show different geochemical signatures from the local carbonate rocks. All samples contain trace element concentrations that are higher than the carbonate bedrock. Discrimination diagrams indicate that immobile trace elements have geochemical affinity to the detrital ferromagnesian dust inputs and are different from the local carbonate bedrock. Based on the elemental bivariate and ternary diagrams, the soils and aeolian dust are derived from the interaction of carbonate and volcanic rocks. This highlights that the urban soils in the Kerman urban areas have been formed by interactions of the aeolian dust with the primitive residual soils.

  10. Comparison of quartz sand, anthracite, shale and biological ceramsite for adsorptive removal of phosphorus from aqueous solution.

    PubMed

    Jiang, Cheng; Jia, Liyue; Zhang, Bo; He, Yiliang; Kirumba, George

    2014-02-01

    The choice of substrates with high phosphorus adsorption capacity is vital for sustainable phosphorus removal from waste water in constructed wetlands. In this study, four substrates were used: quartz sand, anthracite, shale and biological ceramsite. These substrate samples were characterized by Xray diffractometry and scanning electron microscopy studies for their mineral components (chemical components) and surface characteristics. The dynamic experimental results revealed the following ranking order for total phosphorus (TP) removal efficiency: anthracite > biological ceramsite > shale > quartz sand. The adsorptive removal capacities for TP using anthracite, biological ceramsite, shale and quartz sand were 85.87, 81.44, 59.65, and 55.98 mg/kg, respectively. Phosphorus desorption was also studied to analyze the substrates' adsorption efficiency in wastewater treatment as well as the substrates' ability to be reused for treatment. It was noted that the removal performance for the different forms of phosphorus was dependent on the nature of the substrate and the adsorption mechanism. A comparative analysis showed that the removal of particulate phosphorus was much easier using shale. Whereas anthracite had the highest soluble reactive phosphorus (SRP) adsorptive capacity, biological ceramsite had the highest dissolved organic phosphorus (DOP) removal capacity. Phosphorus removal by shale and biological ceramsite was mainly through chemical adsorption, precipitation or biological adsorption. On the other hand, phosphorus removal through physical adsorption (electrostatic attraction or ion exchange) was dominant in anthracite and quartz sand.

  11. Dynamic High-Pressure Behavior of Quartz Silica Sand of Two Different Particle Sizes

    NASA Astrophysics Data System (ADS)

    Kennedy, Gregory; Thadhani, Naresh

    2015-06-01

    The dynamic high-pressure behavior of customized high purity quartz silica sand is presented. The silica was chosen to have rounded grains and controlled size, size distribution, and water content. The customized sand was selected with two narrow size ranges, approximately 100 μm and 500 μm, to provide a range of responses to compare with meso-scale simulations. The materials were pressed into a copper capsule ring connected to a copper driver plate and backed by a PMMA window. Experiments were performed in plate impact light gas gun and powder gun, using VISAR and PDV velocity measurement techniques, and PVDF piezoelectric pressure gauges. The compaction wave velocity was calculated from transit times measured by PVDF gauges placed on either side of the silica samples. Interface particle velocity profiles were recorded by VISAR and PDV at the rear surface of the sample in contact with a PMMA window. Analysis of the details of the shapes of the rise and plateaus in the VISAR and PDV measured velocities reveal a dependence on the size of the particles.

  12. Transport of Sulfide-Reduced Graphene Oxide in Saturated Quartz Sand: Cation-Dependent Retention Mechanisms.

    PubMed

    Xia, Tianjiao; Fortner, John D; Zhu, Dongqiang; Qi, Zhichong; Chen, Wei

    2015-10-01

    We describe how the reduction of graphene oxide (GO) via environmentally relevant pathways affects its transport behavior in porous media. A pair of sulfide-reduced GOs (RGOs), prepared by reducing 10 mg/L GO with 0.1 mM Na2S for 3 and 5 days, respectively, exhibited lower mobility than did parent GO in saturated quartz sand. Interestingly, decreased mobility cannot simply be attributed to the increased hydrophobicity and aggregation upon GO reduction because the retention mechanisms of RGOs were highly cation-dependent. In the presence of Na(+) (a representative monovalent cation), the main retention mechanism was deposition in the secondary energy minimum. However, in the presence of Ca(2+) (a model divalent cation), cation bridging between RGO and sand grains became the most predominant retention mechanism; this was because sulfide reduction markedly increased the amount of hydroxyl groups (a strong metal-complexing moiety) on GO. When Na(+) was the background cation, increasing pH (which increased the accumulation of large hydrated Na(+) ions on grain surface) and the presence of Suwannee River humic acid (SRHA) significantly enhanced the transport of RGO, mainly due to steric hindrance. However, pH and SRHA had little effect when Ca(2+) was the background cation because neither affected the extent of cation bridging that controlled particle retention. These findings highlight the significance of abiotic transformations on the fate and transport of GO in aqueous systems.

  13. Copper distribution in water-dispersible colloids of swine manure and its transport through quartz sand.

    PubMed

    Bao, Qibei; Lin, Qi; Tian, Guangming; Wang, Guihao; Yu, Jian; Peng, Guiqun

    2011-02-28

    To demonstrate the potential risks associated with the application of solid agricultural wastes, we investigated Cu distribution in water-dispersible colloids derived from swine manure and its transport through quartz sand. Samples were sequentially centrifuged to obtain five colloid suspensions (<10, <1, <0.45, <0.2, and <0.02 μm) and four colloid subsamples (1-10, 0.45-1, 0.2-0.45, and 0.02-0.2 μm). We observed that 2% of Cu in the swine manure was found in the 0.02-10 μm colloid fractions, while 18% was observed in the <0.02 μm colloid suspension. The highest accumulation of Cu was found in the 0.02-0.2 μm fraction of colloids, in which organic carbon was the major component. The Cu in the 1-10 μm colloid fraction existed in both inorganic compounds and organic associations, whereas it mainly existed as organic complexes in colloids <1 μm (<0.53 μm, specifically). Furthermore, large colloids (1-10 μm) of swine manure were partially filtered out as they passed through the sand particles, and fine colloids facilitated the transport of Cu. The formation of organic complexes was hypothesized to enhance the mobility of Cu. Further research is needed to incorporate our experimental findings into a realistic model of particle mobilization and transport through soil or groundwater aquifers.

  14. Mobility of nanosized cerium dioxide and polymeric capsules in quartz and loamy sands saturated with model and natural groundwaters.

    PubMed

    Petosa, Adamo Riccardo; Ohl, Carolin; Rajput, Faraz; Tufenkji, Nathalie

    2013-10-01

    The environmental and health risks posed by emerging engineered nanoparticles (ENPs) released into aquatic environments are largely dependent on their aggregation, transport, and deposition behavior. Herein, laboratory-scale columns were used to examine the mobility of polyacrylic acid (PAA)-coated cerium dioxide nanoparticles (nCeO2) and an analogous nanosized polymeric capsule (nCAP) in water saturated quartz sand or loamy sand. The influence of solution ionic strength (IS) and cation type (Na(+), Ca(2+), or Mg(2+)) on the transport potential of these ENPs was examined in both granular matrices and results were also compared to measurements obtained using a natural groundwater. ENP suspensions were characterized using dynamic light scattering and nanoparticle tracking analysis to establish aggregate size, and laser Doppler electrophoresis to determine ENP electrophoretic mobility. Regardless of IS, virtually all nCeO2 particles suspended in NaNO3 eluted from the quartz sand-packed columns. In contrast, heightened nCeO2 and nCAP particle retention and dynamic (time-dependent) transport behavior was observed with increasing concentrations of the divalent salts and in the presence of natural groundwater. Enhanced particle retention was also observed in loamy sand in comparison to the quartz sand, emphasizing the need to consider the nature of the aqueous matrix and granular medium in evaluating contamination risks associated with the release of ENPs in natural and engineered aquatic environments.

  15. Identification of a late Quaternary alluvial-aeolian sedimentary sequence in the Sichuan Basin, China

    NASA Astrophysics Data System (ADS)

    Feng, Jin-Liang; Ju, Jian-Ting; Chen, Feng; Hu, Zhao-Guo; Zhao, Xiang; Gao, Shao-Peng

    2016-03-01

    The late Quaternary sedimentary sequence in the northwestern part of the Sichuan Basin consists of five lithological units and with increasing depth include the: Chengdu Clay; Brown Clay; Red Clay; Sandy Silt; and basal Muddy Gravel. The genesis, provenance and age of the sediments, as well as the possible presence of hiatuses within this sequence are debated. Measurements of grain-size, magnetic susceptibility, quartz content, quartz δ18O values, element composition, and Sr-Nd isotopic concentrations of samples from a typical sedimentary sequence in the area provides new insights into the genesis and history of the sequence. The new data confirm that the sediments in study site are alluvial-aeolian in origin, with basal alluvial deposits overlain by aeolian deposits. Like the uppermost Chengdu Clay, the underlying Brown Clay and Red Clay are aeolian in origin. In contrast, the Silty Sand, like the basal Muddy Gravel, is an alluvial deposit and not an aeolian deposit as previously thought. Moreover, the succession of the aeolian deposits very likely contains two significant sedimentary hiatuses. Sedimentological analysis demonstrates that the source materials for the aeolian deposits in the northwestern part of the Sichuan Basin and those on the eastern Tibetan Plateau are different. Furthermore, the loess deposits on the eastern Tibetan Plateau are derived from heterogeneous local sources.

  16. Influence of gravity on transport and retention of representative engineered nanoparticles in quartz sand.

    PubMed

    Cai, Li; Zhu, Jinghan; Hou, Yanglong; Tong, Meiping; Kim, Hyunjung

    2015-10-01

    Four types of NPs: carbon nanotubes and graphene oxide (carbon-based NPs), titanium dioxide and zinc oxide metal-oxide NPs, were utilized to systematically determine the influence of gravity on the transport of NPs in porous media. Packed column experiments for two types of carbon-based NPs were performed under unfavorable conditions in both up-flow (gravity-negative) and down-flow (gravity-positive) orientations, while for two types of metal-oxide NPs, experiments were performed under both unfavorable and favorable conditions in both up-flow and down-flow orientations. Both breakthrough curves and retained profiles of two types of carbon-based NPs in up-flow orientation were equivalent to those in down-flow orientation, indicating that gravity had negligible effect on the transport and retention of carbon-based NPs under unfavorable conditions. In contrast, under both unfavorable and favorable conditions, the breakthrough curves for two types of metal-oxide NPs in down-flow orientation were lower relative to those in up-flow orientation, indicating that gravity could decrease the transport of metal-oxide NPs in porous media. The distinct effect of gravity on the transport and retention of carbon-based and metal-oxide NPs was mainly attributed to the contribution of gravity to the force balance on the NPs in quartz sand. The contribution of gravity was determined by the interplay of the density and sizes of NP aggregates under examined solution conditions.

  17. Microstructural Imaging of Shock-Recovered Berea Sandstone and Quartz Sand Using Scanning Electron Microscopy

    SciTech Connect

    Hiltl, M.; Hagelberg, C.R.; Swift, R.P.; Nellis, W.J.

    2000-02-03

    A number of shock-recovery experiments have been performed on Berea sandstone for different conditions: dry, water-saturated, hydrostatically water-pressurized and Helium gas-pressurized. The authors also conducted experiments with purified quartz sand in dry and water-saturated conditions with a grain size between 212 to 250 {micro}m and 250 to 300 {micro}m to compare with damaged Berea sandstone. The shock stresses in the range between 1.2 to 9.8 GPa were achieved by impacting projectiles accelerated by a single-stage light-gas gun. Different flyer plate thicknesses were used to produce different shock pulse durations. The water-pressurized sandstone targets were hydrostatically pressurized between 7.58-7.79 MPa, whereas the gas-pressure samples were pressurized to 27.5 MPa using helium gas. The microstructural damage of all specimens is being investigated by using scanning electron microscopy (SEM) in order to determine differences for these conditions. In this report they will present the results of the systematic SEM investigations for each experiment. The scientific results and discussions including X-ray computed micro tomography and statistical analysis are presented elsewhere. Overall, they collected around 1600 SEM pictures, which are available in electronic form on Compact Disks (CDs). They also provide the results of the laser particle analysis on the CDs.

  18. Mineralogy, morphology, and textural relationships in coatings on quartz grains in sediments in a quartz-sand aquifer

    USGS Publications Warehouse

    Zhang, Shouliang; Kent, Douglas B.; Elbert, David C.; Shi, Zhi; Davis, James A.; Veblen, David R.

    2011-01-01

    Mineralogical studies of coatings on quartz grains and bulk sediments from an aquifer on Western Cape Cod, Massachusetts, USA were carried out using a variety of transmission electron microscopy (TEM) techniques. Previous studies demonstrated that coatings on quartz grains control the adsorption properties of these sediments. Samples for TEM characterization were made by a gentle mechanical grinding method and focused ion beam (FIB) milling. The former method can make abundant electron-transparent coating assemblages for comprehensive and quantitative X-ray analysis and the latter technique protects the coating texture from being destroyed. Characterization of the samples from both a pristine area and an area heavily impacted by wastewater discharge shows similar coating textures and chemical compositions. Major constituents of the coating include Al-substituted goethite and illite/chlorite clays. Goethite is aggregated into well-crystallized domains through oriented attachment resulting in increased porosity. Illite/chlorite clays with various chemical compositions were observed to be mixed with goethite aggregates and aligned sub-parallel to the associated quartz surface. The uniform spatial distribution of wastewater-derived phosphorus throughout the coating from the wastewater-contaminated site suggests that all of the coating constituents, including those adjacent to the quartz surface, are accessible to groundwater solutes. Both TEM characterization and chemical extraction results indicate there is a significantly greater amount of amorphous iron oxide in samples from wastewater discharge area compared to those from the pristine region, which might reflect the impact of redox cycling of iron under the wastewater-discharge area. Coating compositions are consistent with the moderate metal and oxy-metalloid adsorption capacities, low but significant cation exchange capacities, and control of iron(III) solubility by goethite observed in reactive transport

  19. Mineralogy, morphology, and textural relationships in coatings on quartz grains in sediments in a quartz-sand aquifer.

    PubMed

    Zhang, Shouliang; Kent, Douglas B; Elbert, David C; Shi, Zhi; Davis, James A; Veblen, David R

    2011-06-01

    Mineralogical studies of coatings on quartz grains and bulk sediments from an aquifer on Western Cape Cod, Massachusetts, USA were carried out using a variety of transmission electron microscopy (TEM) techniques. Previous studies demonstrated that coatings on quartz grains control the adsorption properties of these sediments. Samples for TEM characterization were made by a gentle mechanical grinding method and focused ion beam (FIB) milling. The former method can make abundant electron-transparent coating assemblages for comprehensive and quantitative X-ray analysis and the latter technique protects the coating texture from being destroyed. Characterization of the samples from both a pristine area and an area heavily impacted by wastewater discharge shows similar coating textures and chemical compositions. Major constituents of the coating include Al-substituted goethite and illite/chlorite clays. Goethite is aggregated into well-crystallized domains through oriented attachment resulting in increased porosity. Illite/chlorite clays with various chemical compositions were observed to be mixed with goethite aggregates and aligned sub-parallel to the associated quartz surface. The uniform spatial distribution of wastewater-derived phosphorus throughout the coating from the wastewater-contaminated site suggests that all of the coating constituents, including those adjacent to the quartz surface, are accessible to groundwater solutes. Both TEM characterization and chemical extraction results indicate there is a significantly greater amount of amorphous iron oxide in samples from wastewater discharge area compared to those from the pristine region, which might reflect the impact of redox cycling of iron under the wastewater-discharge area. Coating compositions are consistent with the moderate metal and oxy-metalloid adsorption capacities, low but significant cation exchange capacities, and control of iron(III) solubility by goethite observed in reactive transport

  20. Effect of solution ionic strength and iron coatings on mineral grains on the sorption of bacterial cells to quartz sand.

    PubMed

    Mills, A L; Herman, J S; Hornberger, G M; Dejesús, T H

    1994-09-01

    Understanding the interaction between bacterial cells and solid surfaces is essential to our attempts to quantify and predict the transport of microbes in groundwater aquifers, whether from the point of view of contamination or from that of bioremediation. The sorption of bacterial cells suspended in groundwater to porous medium grains was examined in batch studies. Bacterial sorption to clean quartz sand yielded equilibrium, linear, adsorption isotherms that varied with the bacterial strain used and the ionic strength of the aqueous solution. Values of K(d) (the slope of the linear sorption isotherm) ranged from 0.55 to 6.11 ml g, with the greatest sorption observed for the highest groundwater ionic strength. These findings are consistent with the interpretation that an increasingly compressed electrical double layer results in stronger adsorption between the like-charged mineral surface and the bacterial cells. When iron-oxyhydroxide-coated sand was used, however, all of the added bacteria were adsorbed up to a threshold of 6.93 x 10 cells g of coated sand, beyond which no further adsorption occurred. The irreversible, threshold adsorption is the result of a strong electrostatic attraction between the sesquioxide coating and the bacterial cells. Experimental results of adsorption in mixtures of quartz and Fe(III)-coated sand were successfully predicted by a simple additive model for sorption by the two substrate phases. Even small amounts of Fe(III)-coated sand in a mixture influenced the extent of adsorption of bacterial cells. A quantitative description of adsorption in the mixtures can be realized by using a linear isotherm for reversible adsorption to the quartz grains with a y intercept that represents the number of cells irreversibly adsorbed to the Fe(III)-coated sand.

  1. Bioremediation of strontium (Sr) contaminated aquifer quartz sand based on carbonate precipitation induced by Sr resistant Halomonas sp.

    PubMed

    Achal, Varenyam; Pan, Xiangliang; Zhang, Daoyong

    2012-10-01

    Contamination of aquifers or sediments by radioactive strontium ((90)Sr) is a significant environmental problem. In the present study, microbially induced calcite precipitation (MICP) was evaluated for its potential to remediate strontium from aquifer quartz sand. A Sr resistant urease producing Halomonas sp. was characterized for its potential role in bioremediation. The bacterial strain removed 80% of Sr from soluble-exchangeable fraction of aquifer quartz sand. X-ray diffraction detected calcite, vaterite and aragonite along with calcite-strontianite (SrCO(3)) solid solution in bioremediated sample with indications that Sr was incorporated into the calcite. Scanning electron micrography coupled with energy-dispersive X-ray further confirmed MICP process in remediation. The study showed that MICP sequesters soluble strontium as biominerals and could play an important role in strontium bioremediation from both ecological and greener point of view.

  2. Quantitative analysis on areal displacement efficiency in a scCO2-water-quartz sands system

    NASA Astrophysics Data System (ADS)

    Wang, Sookyun; Lee, Minhee; Park, Bokyung

    2016-04-01

    Geological CO2 sequestration is one of the most important technologies to mitigate greenhouse gas emission into the atmosphere by isolating great volumes of CO2 in deep geological formations. This novel storage option for CO2 involves injecting supercritical CO2 into porous formations saturated with pore fluid such as brine and initiate CO2 flooding with immiscible displacement. Despite of significant effects on macroscopic migration and distribution of injected CO2, however, only a limited information is available on wettability in microscopic scCO2-brine-mineral systems. In this study, a micromodel had been developed to improve our understanding of how CO2 flooding and residual characteristics of pore water are affected by the wettability in scCO2-water-quartz sands systems. The micromodel (a transparent pore structure made of quartz sands between two glass plates) in a pressurized chamber provided the opportunity to visualize spread of supercritical CO2 and displacement of pore water in high pressure and high temperature conditions. CO2 flooding followed by fingering migration and dewatering followed by formation of residual water were observed through an imaging system with a microscope. Measurement of areal displacement of porewater by scCO2 in a micromodel under various conditions such as pressure, temperature, salinity, flow rate, etc. were conducted to estimate displacement sweep efficiency in a scCO2-water-quartz sands system. The measurement revealed that the porewater (deionized water or NaCl solutions) is a wetting fluid and the surface of quartz sand is water-wet. It is also found that the areal displacement efficiency at equilibrium decreases as the salinity increases, whereas it increases as the pressure and temperature increases. The experimental observation results could provide important fundamental information on capillary characteristics of reservoirs and improve our understanding of CO2 sequestration process.

  3. Abrasion by aeolian particles: Earth and Mars

    NASA Technical Reports Server (NTRS)

    Greeley, R.; Marshall, J. R.; White, B. R.; Pollack, J. B.; Marshall, J.; Krinsley, D.

    1984-01-01

    Estimation of the rate of aeolian abrasion of rocks on Mars requires knowledge of: (1) particle flux, (2) susceptibilities to abrasion of various rocks, and (3) wind frequencies on Mars. Fluxes and susceptibilities for a wide range of conditions were obtained in the laboratory and combined with wind data from the Viking meteorology experiment. Assuming an abundant supply of sand-sized particles, estimated rates range up to 2.1 x 10 to the minus 2 power cm of abrasion per year in the vicinity of Viking Lander 1. This rate is orders of magnitude too great to be in agreement with the inferred age of the surface based on models of impact crater flux. The discrepancy in the estimated rate of abrasion and the presumed old age of the surface cannot be explained easily by changes in climate or exhumation of ancient surfaces. The primary reason is thought to be related to the agents of abrasion. At least some sand-sized (approx. 100 micrometers) grains appear to be present, as inferred from both lander and orbiter observations. High rates of abrasion occur for all experimental cases involving sands of quartz, basalt, or ash. However, previous studies have shown that sand is quickly comminuted to silt- and clay-sized grains in the martian aeolian regime. Experiments also show that these fine grains are electrostatically charged and bond together as sand-sized aggregates. Laboratory simulations of wind abrasion involving aggregates show that at impact velocities capable of destroying sand, aggregates from a protective veneer on the target surface and can give rise to extremely low abrasion rates.

  4. Effect of different-sized colloids on the transport and deposition of titanium dioxide nanoparticles in quartz sand.

    PubMed

    Cai, Li; Peng, Shengnan; Wu, Dan; Tong, Meiping

    2016-01-01

    Colloids (non-biological and biological) with different sizes are ubiquitous in natural environment. The investigations regarding the influence of different-sized colloids on the transport and deposition behaviors of engineered-nanoparticles in porous media yet are still largely lacking. This study investigated the effects of different-sized non-biological and biological colloids on the transport of titanium dioxide nanoparticles (nTiO2) in quartz sand under both electrostatically favorable and unfavorable conditions. Fluorescent carboxylate-modified polystyrene latex microspheres (CML) with sizes of 0.2-2 μm were utilized as model non-biological colloids, while Gram-negative Escherichia coli (∼ 1 μm) and Gram-positive Bacillus subtilis (∼ 2 μm) were employed as model biological colloids. Under the examined solution conditions, both breakthrough curves and retained profiles of nTiO2 with different-sized CML particles/bacteria were similar as those without colloids under favorable conditions, indicating that the copresence of model colloids in suspensions had negligible effects on the transport and deposition of nTiO2 under favorable conditions. In contrast, higher breakthrough curves and lower retained profiles of nTiO2 with CML particles/bacteria relative to those without copresent colloids were observed under unfavorable conditions. Clearly, the copresence of model colloids increased the transport and decreased the deposition of nTiO2 in quartz sand under unfavorable conditions (solution conditions examined in present study). Both competition of deposition sites on quartz sand surfaces and the enhanced stability/dispersion of nTiO2 induced by copresent colloids were found to be responsible for the increased nTiO2 transport with colloids under unfavorable conditions. Moreover, the smallest colloids had the highest coverage on sand surface and most significant dispersion effect on nTiO2, resulting in the greatest nTiO2 transport. PMID:26561451

  5. Effect of different-sized colloids on the transport and deposition of titanium dioxide nanoparticles in quartz sand.

    PubMed

    Cai, Li; Peng, Shengnan; Wu, Dan; Tong, Meiping

    2016-01-01

    Colloids (non-biological and biological) with different sizes are ubiquitous in natural environment. The investigations regarding the influence of different-sized colloids on the transport and deposition behaviors of engineered-nanoparticles in porous media yet are still largely lacking. This study investigated the effects of different-sized non-biological and biological colloids on the transport of titanium dioxide nanoparticles (nTiO2) in quartz sand under both electrostatically favorable and unfavorable conditions. Fluorescent carboxylate-modified polystyrene latex microspheres (CML) with sizes of 0.2-2 μm were utilized as model non-biological colloids, while Gram-negative Escherichia coli (∼ 1 μm) and Gram-positive Bacillus subtilis (∼ 2 μm) were employed as model biological colloids. Under the examined solution conditions, both breakthrough curves and retained profiles of nTiO2 with different-sized CML particles/bacteria were similar as those without colloids under favorable conditions, indicating that the copresence of model colloids in suspensions had negligible effects on the transport and deposition of nTiO2 under favorable conditions. In contrast, higher breakthrough curves and lower retained profiles of nTiO2 with CML particles/bacteria relative to those without copresent colloids were observed under unfavorable conditions. Clearly, the copresence of model colloids increased the transport and decreased the deposition of nTiO2 in quartz sand under unfavorable conditions (solution conditions examined in present study). Both competition of deposition sites on quartz sand surfaces and the enhanced stability/dispersion of nTiO2 induced by copresent colloids were found to be responsible for the increased nTiO2 transport with colloids under unfavorable conditions. Moreover, the smallest colloids had the highest coverage on sand surface and most significant dispersion effect on nTiO2, resulting in the greatest nTiO2 transport.

  6. Experimental study on impact-induced seismic wave propagating through quartz sand simulating asteroid regolith

    NASA Astrophysics Data System (ADS)

    Matsue, Kazuma; Arakawa, Masahiko; Yasui, Minami; Matsumoto, Rie; Tsujido, Sayaka; Takano, Shota; Hasegawa, Sunao

    2015-08-01

    Introduction: Recent spacecraft surveys clarified that asteroid surfaces were covered with regolith made of boulders and pebbles such as that found on the asteroid Itokawa. It was also found that surface morphologies of asteroids formed on the regolith layer were modified. For example, the high-resolution images of the asteroid Eros revealed the evidence of the downslope movement of the regolith layer, then it could cause the degradation and the erasure of small impact crater. One possible process to explain these observations is the regolith layer collapse caused by seismic vibration after projectile impacts. The impact-induced seismic wave might be an important physical process affecting the morphology change of regolith layer on asteroid surfaces. Therefore, it is significant for us to know the relationship between the impact energy and the impact-induced seismic wave. So in this study, we carried out impact cratering experiments in order to observe the seismic wave propagating through the target far from the impact crater.Experimental method: Impact cratering experiments were conducted by using a single stage vertical gas gun set at Kobe Univ and a two-stage vertical gas gun set at ISAS. We used quartz sands with the particle diameter of 500μm, and the bulk density of 1.48g/cm3. The projectile was a ball made of polycarbonate with the diameter of 4.75mm and aluminum, titan, zirconia, stainless steel, cupper, tungsten carbide projectile with the diameter of 2mm. These projectiles were launched at the impact velocity from 0.2 to 7km/s. The target was set in a vacuum chamber evacuated below 10 Pa. We measured the seismic wave by using a piezoelectric uniaxial accelerometer.Result: The impact-induced seismic wave was measured to show a large single peak and found to attenuate with the propagation distance. The maximum acceleration of the seismic wave was recognized to have a good relationship with the normalized distance x/R, where x is the propagation distance

  7. Concentration and grain-size distribution of aeolian sands in peat bogs as an indicator of past storminess in coastal areas of Estonia

    NASA Astrophysics Data System (ADS)

    Vandel, Egert; Vaasma, Tiit; Tõnisson, Hannes; Sugita, Shinya; Vilumaa, Kadri; Anderson, Agnes; Terasmaa, Jaanus; Kangur, Mihkel; Pensa, Margus; Küttim, Martin; Umbleja, Liisa; Puusepp, Liisa

    2016-04-01

    Storminess in the Baltic Sea region has significantly increased over the last 50 years. As we do not have meteorological data beyond 20th century, therefore the long-term changes in storminess (e.g., frequency and magnitude of the storms) and its impact on the coastal evolution are mostly unknown. This study aims to reconstruct the extreme storm events along the coast of Estonia in late Holocene, inferred from changes in grain-size distribution and concentration of aeolian sands preserved in peat deposits. Four cores in total were collected from bogs of coastal Estonia; three from west Estonian archipelago (Hiiumaa Island and Saaremaa Island); one from the northern coast of the mainland (Juminda Peninsula). Core from Saaremaa (166 cm) covers the last 2700 years, cores from Hiiumaa (171 cm and 330 cm) cover ca 4000 years, and core from Juminda (465 cm) covers ca 8500 years. All AMS dates (77) are converted to cal yrs BP. Analyses of LOI and grain size are carried out at every centimetre in order to obtain data for mineral matter content and concentration of sand particles. The Juminda core shows a consistently low content of mineral matter (LOI < 2%) without clear peaks over the last 8000 years. The LOI results at both Hiiumaa sites show that mineral matter content gradually decreases from 4000 to 1500 cal yrs BP and then becomes the lowest in the period of 1500-1000 cal yrs BP; since then, it becomes higher (up to 10%) with fluctuations and has a clear peak around 700 cal yrs BP. At Saaremaa, the overall trend of mineral matter content is similar to that at the Hiiumaa sites: gradual decline from 2700 to 1500 cal yrs BP, lowest in 1500-1000 cal yrs BP, and relatively high over the last millennium. Concentration of mineral particles reveal clear peaks of aeolian sands at each site. At northern Hiiumaa, concentration has peaks around 3500, 3000 and 2500 cal yrs BP and is relatively high over the last 700 years. At Saaremaa, concentration has peaked at 2100, 1600 and

  8. The nature and formation of aeolian mineral dust material

    NASA Astrophysics Data System (ADS)

    Smalley, Ian; O'hara-Dhand, Ken; McLaren, Sue

    2013-04-01

    Aeolian dust affects climate and records past climates. It has become a much studied material but there has been a certain lack of emphasis on the actual nature of the dust, and an even greater neglect of actual production mechanisms for dust particles. Huge amounts of dust may be raised from the Bodele depression and other parts of North Africa, and much of it may be carried across the North Atlantic to aid in soil formation in Brazil. But what does it consist of? We know that much of the Bodele dust is diatoms from old Lake Chad, but what of the lithological inorganic mineral content? A very crude division of aeolian dust into large dust(say around 20-50um) and small dust (2-5um)has been proposed. Much of the study of loess has been confused by the failure to make this distinction, and similar problems may arise in the study of the finer fractions of aeolian dust. Much aeolian material is clay-mineral based- formed from clay mineral aggregates(CMA), from lake bottom sediments. This can form large dust particles, as in parna in Australia, but also contributes largely to small long travel aerosolic dust. Another major contributor is the quartz fragment. The large dust for classic loess deposits is mostly quartz silt- and there is considerable discussion about the controls that affect quartz silt. There are some interesting modalities in the world of quartz particle sedimentology which need to be examined. Quartz sand (say 200-500um) is the key initiating material and the formation processes for quartz sand have a down-the-line effect on the formation of smaller particles. The central observation is the action of two processes- a eutectic-like reaction in the proto-rock granite which defines the essential nature of sand particles, and the high-low displacive crystallographic transformation which introduces tensile stresses into the quartz particle systems. The limited range of eutectic particle size means a limited range of tensile stresses. A neat combination of

  9. Cold test with a benchtop set-up for fluidized bed reactor using quartz sand to simulate gasification of coal cokes by concentrated solar radiation

    NASA Astrophysics Data System (ADS)

    Gokon, Nobuyuki; Tanabe, Tomoaki; Shimizu, Tadaaki; Kodama, Tatsuya

    2016-05-01

    The impacts of internal circulation of a mixture of coal-coke particles and quartz sand on the fluidization state in a fluidized bed reactor are investigated by a cold test with a benchtop set-up in order to design 10-30 kWth scale prototype windowed fluidized-bed reactor. Firstly, a basic relationship between pressure loss of inlet gas and gas velocity was experimentally examined using quartz sand with different particle sizes by a small-scale quartz tube with a distributor at ambient pressure and temperature. Based on the results, an appropriate particle range of quartz sand and layer height/layer diameter ratio (L/D ratio) was determined for a design of the fluidized bed reactor. Secondly, a windowed reactor mock-up was designed and fabricated for solar coke gasification using quartz sand as a bed material. The pressure loss between the inlet and outlet gases was examined, and descending cokes and sand particles on the sidewall of the reactor was observed in the reactor mock-up. The moving velocity and distance of descending particles/sands from the top to bottom of fluidized bed were measured by the visual observation of the colored tracer particles on outside wall of the reactor.

  10. The effects of surfactants and solution chemistry on the transport of multiwalled carbon nanotubes in quartz sand-packed columns.

    PubMed

    Lu, Yinying; Xu, Xiaopan; Yang, Kun; Lin, Daohui

    2013-11-01

    The effect of different surfactants on the transport of multiwalled carbon nanotubes (MWCNTs) in quartz sand-packed columns was firstly investigated under various conditions. The stable plateau values (C(max)) of the breakthrough curves (BTCs), critical PVs (the number of pore volumes of infusions needed to reach the C(max)), maximum transport distances (L(max)), deposition rate coefficients (kd) and retention rates were calculated to compare the transport and retention of MWCNTs under various conditions. Stability of the MWCNT suspensions as a function of the influencing factors was examined to reveal the underlying mechanism of the MWCNT retention. Results showed that MWCNTs suspended by different surfactants presented different BTCs; the MWCNT transport increased with increasing sand size and MWCNT concentration; high flow velocity was favorable for the MWCNT transport, while high Ca(2+) concentration and low pH were unfavorable for the transport; hetero-aggregation, straining and site blocking occurred during the transport.

  11. Water quality impacts of hydraulic-fracturing chemicals observed in a permeable, quartz-sand aquifer

    NASA Astrophysics Data System (ADS)

    Kent, D. B.; LeBlanc, D. R.; Smith, R. L.

    2012-12-01

    A pilot scale experiment was conducted on western Cape Cod, Massachusetts to test the use of hydraulic fracturing (HF) for emplacing permeable reactive barriers (PRB) where the water table is too far below land surface to use standard excavation methods. Two PRB were emplaced 24 to 36 meters below land surface in a plume with low concentrations of perchloroethylene in oxic, mildly acidic groundwater with low concentrations of dissolved salts. The granular aquifer sediments consist of permeable sands and gravels. Quartz comprises greater than 90% by weight of the aquifer sediments but chemical reactivity of the sediments is controlled by micrometer-scale chlorite and illite and nanometer-scale aluminum-substituted goethite. HF fluids contained guar gum (gelling agent), cellulose enzyme and acetic acid (breakers), sodium borate (cross-linker), potassium (K) carbonate (pH adjustor), and sodium (Na) chloride (tracer). Water-quality impacts within about 20 meters of the PRB were monitored over a 1.7-year period following HF. Arrival of HF-chemicals was marked by an increase in boron (B) from ambient concentrations of 6 uM to >800 uM. B concentrations rose for approximately 50 days, much longer than the 22-day period over which HF was conducted. B concentrations subsequently decreased but remained 2-3 times above background concentrations for almost one year. Elevated Na and K concentrations in the HF fluids drove sorption (including ion exchange) reactions resulting in transient increases in naturally occurring major, minor, and trace cations up to 20 to 50 times background concentrations. Increases in dissolved organic carbon (DOC) and decreases in dissolved oxygen (DO) concentrations were observed as B concentrations increased. DOC concentration subsequently decreased but remained significantly above background. DO concentrations remained below detection. Dissolved iron (Fe) and manganese (Mn) concentrations increased as DO concentrations decreased below detection and

  12. Physico-chemical properties of quartz from industrial manufacturing and its cytotoxic effects on alveolar macrophages: The case of green sand mould casting for iron production.

    PubMed

    Di Benedetto, Francesco; Gazzano, Elena; Tomatis, Maura; Turci, Francesco; Pardi, Luca A; Bronco, Simona; Fornaciai, Gabriele; Innocenti, Massimo; Montegrossi, Giordano; Muniz Miranda, Maurizio; Zoleo, Alfonso; Capacci, Fabio; Fubini, Bice; Ghigo, Dario; Romanelli, Maurizio

    2016-07-15

    Industrial processing of materials containing quartz induces physico-chemical modifications that contribute to the variability of quartz hazard in different plants. Here, modifications affecting a quartz-rich sand during cast iron production, have been investigated. Composition, morphology, presence of radicals associated to quartz and reactivity in free radical generation were studied on a raw sand and on a dust recovered after mould dismantling. Additionally, cytotoxicity of the processed dust and ROS and NO generation were evaluated on MH-S macrophages. Particle morphology and size were marginally affected by casting processing, which caused only a slight increase of the amount of respirable fraction. The raw sand was able to catalyze OH and CO2(-) generation in cell-free test, even if in a lesser extent than the reference quartz (Min-U-Sil), and shows hAl radicals, conventionally found in any quartz-bearing raw materials. Enrichment in iron and extensive coverage with amorphous carbon were observed during processing. They likely contributed, respectively, to increasing the ability of processed dust to release CO2- and to suppressing OH generation respect to the raw sand. Carbon coverage and repeated thermal treatments during industrial processing also caused annealing of radiogenic hAl defects. Finally, no cellular responses were observed with the respirable fraction of the processed powder. PMID:27015375

  13. Physico-chemical properties of quartz from industrial manufacturing and its cytotoxic effects on alveolar macrophages: The case of green sand mould casting for iron production.

    PubMed

    Di Benedetto, Francesco; Gazzano, Elena; Tomatis, Maura; Turci, Francesco; Pardi, Luca A; Bronco, Simona; Fornaciai, Gabriele; Innocenti, Massimo; Montegrossi, Giordano; Muniz Miranda, Maurizio; Zoleo, Alfonso; Capacci, Fabio; Fubini, Bice; Ghigo, Dario; Romanelli, Maurizio

    2016-07-15

    Industrial processing of materials containing quartz induces physico-chemical modifications that contribute to the variability of quartz hazard in different plants. Here, modifications affecting a quartz-rich sand during cast iron production, have been investigated. Composition, morphology, presence of radicals associated to quartz and reactivity in free radical generation were studied on a raw sand and on a dust recovered after mould dismantling. Additionally, cytotoxicity of the processed dust and ROS and NO generation were evaluated on MH-S macrophages. Particle morphology and size were marginally affected by casting processing, which caused only a slight increase of the amount of respirable fraction. The raw sand was able to catalyze OH and CO2(-) generation in cell-free test, even if in a lesser extent than the reference quartz (Min-U-Sil), and shows hAl radicals, conventionally found in any quartz-bearing raw materials. Enrichment in iron and extensive coverage with amorphous carbon were observed during processing. They likely contributed, respectively, to increasing the ability of processed dust to release CO2- and to suppressing OH generation respect to the raw sand. Carbon coverage and repeated thermal treatments during industrial processing also caused annealing of radiogenic hAl defects. Finally, no cellular responses were observed with the respirable fraction of the processed powder.

  14. Novel iron metal matrix composite reinforced by quartz sand for the effective dechlorination of aqueous 2-chlorophenol.

    PubMed

    Zhang, Yunfei; Yang, Bo; Han, Yanni; Jiang, Chaojin; Wu, Deli; Fan, Jinhong; Ma, Luming

    2016-03-01

    In this work, we tested a novel iron metal matrix composite (MMC) synthesized by mechanically introducing quartz sand (SiO2) into an iron matrix (denoted as SiO2-Fe MMC). The pseudo-first-order reaction rate constant of the SiO2-Fe MMC (initial pH 5.0) for 20 mg/L of 2-chlorophenol (2-CP) was 0.051 × 10(-3) L/m(2)/min, which was even higher than that of some reported Pd/Fe bimetals. This extraordinary high activity was promoted by the quick iron dissolution rate, which was caused by the formation of Fe-C internal electrolysis from carbonization of process control agent (PCA) and the active reinforcement/metal interfaces during the milling process. In addition, pH has slight effect on the dechlorination rate. The SiO2-Fe MMC retained relatively stable activity, still achieving 71% removal efficiency for 2-CP after six consecutive cycles. The decrease in dechlorination efficiency can be attributed to the rapid consumption of Fe(0). A dechlorination mechanism using the SiO2-Fe MMC was proposed by a direct electron transfer from Fe(0) to 2-CP at the quartz sand/iron interface.

  15. Clear cutting (10-13th century) and deep stable economy (18-19th century) as responsible interventions for sand drifting and plaggic deposition in cultural landscapes on aeolian sands (SE-Netherlands).

    NASA Astrophysics Data System (ADS)

    van Mourik, Jan; Vera, Hein; Wallinga, Jakob

    2013-04-01

    The landscape in extensive areas in SE-Netherlands is underlain by coversand, deposited during the Late Glacial of the Weichselian. In the Preboreal, aeolian processes reduced soil formation. From the Preboreal to the Atlantic a deciduous climax forest developed. The geomorphology was a coversand landscape, composed of ridges (umbric podzols), coversand plains (gleyic podzols), coversand depressions (histic podzols) and small valleys (gleysols). The area was used by hunting people during the Late Paleolithic and Mesolithic. During the Bronze and Iron Ages the area was populated by people, living from forest grazing, shifting cultivation and trade. The natural deciduous forest gradually degraded into Calluna heath. The deforestation accelerated the soil acidification and affected the hydrology, which is reflected in drying out of ridges and wetting of depressions, promoting the development of histic podzols and even histosols. Aeolian erosion was during this period restricted to local, small scale sand drifting, related to natural hazards as forest fires and hurricanes and shifting cultivation. Sustainable crop productivity on chemically poor sandy substrates required application of organic fertilizers, composed of a mixture of organic litter and animal manure with a very low mineral compound, produced in shallow stables. At least since 1000 AD, heath management was regulated by a series of rules that aimed to protect the valuable heat lands against degradation. During the 11th, 12th and 13th centuries there was an increasing demand for wood and clear cutting transformed the majority of the forests in driftsand landscapes. The most important market was formed by the very wealthy Flemish cities. The exposed soil surface was subjected to wind erosion and sand drifting which endangered the Calluna heath, arable land and even farmhouses. As a consequence, umbric podzols, the natural climax soil under deciduous forests on coversand, degraded into larger scale driftsand

  16. Visualization and modeling of the colonization dynamics of a bioluminscent bacterium in variably saturated, translucent quartz sand.

    SciTech Connect

    Rockhold, M. L.; Yarwood, R. R.; Niemet, M. R.; Bottomley, Peter J.; Brockman, Fred J.; Selker, John S.

    2007-06-01

    An experimental and numerical investigation was conducted to study the colonization dynamics of a bioluminescent bacterium, Pseudomonas fluorescens HK44, during growth in a porous medium under steady, variably saturated flow conditions. Experiments were conducted in a thin-slab light transmission chamber filled with uniform, translucent quartz sand. Steady, variably saturated flow conditions were established using drip emitters mounted on the top of the chamber, with glucose applied through a central dripper located directly above an inoculated region of the chamber. Periodic pulses of salicylate and a dye tracer were applied to induce bioluminescence of the bacterium to monitor colony expansion and to track changes in the hydraulic and transport properties of the sand. Changes in the apparent water saturation of the sand were quantified by monitoring light transmission through the chamber with a CCD camera. The colonized region expanded laterally by about 15 cm, and upward against the flow by 7-8 cm during the 6-day experiment while apparent saturations in the colonized region decreased by 7-9% and the capillary fringe dropped by ~5 cm. The observed data were reproduced approximately using a numerical model that accounted for the processes of water flow, solute and bacterial transport, cell growth and accumulation, glucose and oxygen consumption, and gas diffusion and exchange. The results of this study illustrate some of the complexities associated with coupled flow, reactive transport, and biological processes in variably saturated porous media, which are not readily observable using other experimental techniques.

  17. Spatial and temporal patterns of aeolian sediment transport on an inland parabolic dune, Bigstick Sand Hills, Saskatchewan, Canada

    NASA Astrophysics Data System (ADS)

    Hugenholtz, C. H.; Wolfe, S. A.; Walker, I. J.; Moorman, B. J.

    2009-04-01

    Topographic changes from erosion pins and on-site meteorological data document the spatial and temporal patterns of aeolian sediment transport at monthly to annual timescales across an active parabolic dune within a vegetation-stabilized inland, prairie dune field. Over two years, the sediment budget, calculated from digital elevation models, shows that the total volume of erosion (9890 m 3) is greater than the amount of deposition (6990 m 3), indicating a net loss of 2900 m 3 of sediment (or ˜ 29% of eroded sediment) from the dune. Sediment erosion occurred mainly on the stoss slope (3600 m 3; ˜ 36% of eroded sediment), but also on the south (2100 m 3; ˜ 21%) and north sides of the dune head (1700 m 3; ˜ 17%), the blowouts along the arms (1740 m 3, ˜ 18%) and the crest (650 m 3; ˜ 7%). Erosion from the deflation basin is limited by surface roughness and armoring effects of a gravel lag deposit (100 m 3; ˜ 1%). Thus, the blowouts currently contribute to maintaining dune mobility because no other sediment input occurs from upwind. Sediment deposition onto the dune occurred primarily beyond the brink on the south and southeast lee slopes (5500 m 3; ˜ 80%), coinciding with the southeasterly resultant transport direction for November 2004-05. The net loss of about 2900 m 3 (˜ 29%) may be attributed to sediment carried in suspension over and beyond the dune. Correlation analysis between sediment transport and meteorological variables suggests that monthly to seasonal changes of surface conditions (e.g., vegetation cover, ground freezing, moisture) buffer the relative importance of temperature and precipitation on rates of sediment transport. Conversely, wind correlates well on a monthly to seasonal basis because it is a driver of transport under all types of surface conditions. Seasonal effects produce a complex interaction between wind, climate and surface conditions. This leads to a dynamic range of threshold velocities, which in turn causes spatial and

  18. Comparisons of the film peeling from the composite oxides of quartz sand filters using ozone, hydrogen peroxide and chlorine dioxide.

    PubMed

    Guo, Yingming; Huang, Tinglin; Wen, Gang; Cao, Xin

    2015-08-01

    To solve the problem of shortened backwashing intervals in groundwater plants, several disinfectants including ozone (O3), hydrogen peroxide (H2O2) and chlorine dioxide (ClO2) were examined to peel off the film from the quartz sand surface in four pilot-scale columns. An optimized oxidant dosage and oxidation time were determined by batch tests. Subsequently, the optimized conditions were tested in the four pilot-scale columns. The results demonstrated that the backwashing intervals increased from 35.17 to 54.33 (H2O2) and to 53.67 hr (ClO2) after the oxidation treatments, and the increase of backwashing interval after treatment by O3 was much less than for the other two treatments. Interestingly, the treatment efficiency of filters was not affected by O3 or H2O2 oxidation; but after oxidation by ClO2, the treatment efficiency was deteriorated, especially the ammonia removal (from 96.96% to 24.95%). The filter sands before and after the oxidation were characterized by scanning electron microscopy and X-ray photoelectron spectroscopy. Compared with the oxidation by O3 and H2O2, the structures on the surface of filter sands were seriously damaged after oxidation by ClO2. The chemical states of manganese on the surfaces of those treated sands were only changed by ClO2. The damage of the structures and the change of the chemical states of manganese might have a negative effect on the ammonia removal. In summary, H2O2 is a suitable agent for film peeling.

  19. Characterization of the aeolian terrain facies in Wadi Araba Desert, southwestern Jordan

    NASA Astrophysics Data System (ADS)

    Saqqa, Walid; Atallah, Mohammad

    2004-09-01

    The sand dunes in Wadi Araba Desert, southwestern Jordan, conform to the influence of two main wind systems: (1) the Shamal " north wind", the main determinant of dune patterns, and (2) the southerly winds caused by the Red Sea Trough and Khamasin winds. Wadi Araba is a narrow elongated morphotectonic depression bordered by the high eastern and western mountain ranges that would obstruct most of westerlies in winter and the hot dry easterlies in summer. Wadi Araba Desert is caused by the rain shadow of the eastern and western topographic highs, with an arid-hyperarid climate and moisture index between 0.1 and <0.05. An aeolian terrain occupies about 16% of Wadi Araba Desert divided into four sand dune fields that contain different dune types, interdunes, and sand sheet facies. The development of the aeolian terrain was more likely in the interglacial periods of latest Pleistocene-Holocene during which wind deposition and fluvial erosion were prompted. The variability of wind direction, wind speed and rates of sand supply led to a variety of simple, compound and complex dune formations. Barchanoid (barchan, barchanoid ridge, transverse dunes) are very common. Linear dunes, nabkhas and climbing dunes are less common. The dunes in Wadi Araba are either mobile (active) or stabilized. Dune fixation is primarily by desert shrubs or cementation in case of aeolianites. Interdune troughs vary from dry to damp. Sand sheets are mainly unvegetated or barren. Dune sands are well sorted to moderately well sorted with more than half the sand falling in fine-medium sand fraction. Interdune areas and sheet sands are moderately-poorly sorted with grain size between 0.06-5 and 0.1-0.5 mm, respectively. Angular-subrounded grain shapes are relatively common on all sides of barchanoid dunes. The sediments of the aeolian terrain are chiefly composed of quartz, feldspar, mica and kaolinite. Calcite and dolomite are less predominant minerals.

  20. Impacts into quartz sand: Crater formation, shock metamorphism, and ejecta distribution in laboratory experiments and numerical models

    NASA Astrophysics Data System (ADS)

    Wünnemann, Kai; Zhu, Meng-Hua; StöFfler, Dieter

    2016-08-01

    We investigated the ejection mechanics by a complementary approach of cratering experiments, including the microscopic analysis of material sampled from these experiments, and 2-D numerical modeling of vertical impacts. The study is based on cratering experiments in quartz sand targets performed at the NASA Ames Vertical Gun Range. In these experiments, the preimpact location in the target and the final position of ejecta was determined by using color-coded sand and a catcher system for the ejecta. The results were compared with numerical simulations of the cratering and ejection process to validate the iSALE shock physics code. In turn the models provide further details on the ejection velocities and angles. We quantify the general assumption that ejecta thickness decreases with distance according to a power-law and that the relative proportion of shocked material in the ejecta increase with distance. We distinguish three types of shock metamorphic particles (1) melt particles, (2) shock lithified aggregates, and (3) shock-comminuted grains. The agreement between experiment and model was excellent, which provides confidence that the models can predict ejection angles, velocities, and the degree of shock loading of material expelled from a crater accurately if impact parameters such as impact velocity, impactor size, and gravity are varied beyond the experimental limitations. This study is relevant for a quantitative assessment of impact gardening on planetary surfaces and the evolution of regolith layers on atmosphereless bodies.

  1. Transport of Strontium and Cesium in Simulated Hanford Tank Waste Leachate through Quartz Sand under Saturated and Unsaturated Flow

    SciTech Connect

    Rod, Kenton A.; Um, Wooyong; Flury, Markus

    2010-11-01

    We investigated the effects of water saturation and formation of secondary precipitates on transport of Sr and Cs through sand columns under unsaturated water flow. A series of column experiments was run at effective water saturations ranging from 0.2 to 1.0 under steady-state flow using columns filled with quartz sand. The solution phase was either 0.1 M NaNO3 or a simulated tank waste leachate (STWL), mimicking the leaks of tank wastes at the Hanford Site, Washington, USA. In STWL, the mobility of Sr was significantly reduced as the water saturation decreased, because Sr was incorporated into or sorbed to neo-formed secondary precipitates. In contrast, the transport of Cs in STWL was similar to that of a nonreactive tracer. In 0.1 M NaNO3, Sr moved like a conservative tracer, showing no retardation, whereas Cs was retarded relative to Sr. The flow regime for the 0.1 M NaNO3 columns under all water saturations could be described with the equilibrium convection-dispersion equation (CDE). However, for STWL, the Sr and Cs breakthrough curves indicated the presence of non-equilibria under unsaturated flow conditions. Such non-equilibrium conditions, caused by physical and chemical processes can reduce the mobility of radionuclides at the Hanford vadose zone.

  2. Visualization and modeling of the colonization dynamics of a bioluminescent bacterium in variably saturated, translucent quartz sand

    NASA Astrophysics Data System (ADS)

    Rockhold, M. L.; Yarwood, R. R.; Niemet, M. R.; Bottomley, P. J.; Brockman, F. J.; Selker, J. S.

    2007-06-01

    An experimental and numerical investigation was conducted to study the colonization dynamics of a bioluminescent bacterium, Pseudomonas fluorescens HK44, during growth in a porous medium under steady, variably saturated flow conditions. Experiments were conducted in a thin-slab light transmission chamber filled with uniform, translucent quartz sand. Steady, variably saturated flow conditions were established using drip emitters mounted on the top of the chamber, with glucose applied through a central dripper located directly above an inoculated region of the chamber. Periodic pulses of salicylate and a dye tracer were applied to induce bioluminescence of the bacterium to monitor colony expansion and to track changes in the hydraulic and transport properties of the sand. Changes in the apparent water saturation of the sand were quantified by monitoring light transmission through the chamber with a CCD camera. The colonized region expanded laterally by about 15 cm, and upward against the flow by 7-8 cm during the 6-day experiment while apparent saturations in the colonized region decreased by 7-9% and the capillary fringe dropped by ˜5 cm. The observed data were reproduced approximately using a numerical model that accounted for the processes of water flow, solute and bacterial transport, cell growth and accumulation, glucose and oxygen consumption, and gas diffusion and exchange. The results of this study illustrate some of the complexities associated with coupled flow, reactive transport, and biological processes in variably saturated porous media, such as localized desaturation, capillary fringe lowering effects, and upstream movement of bacterial colonization, that may not readily observable using other experimental techniques.

  3. Mineralogical and sedimentological study of gypsiferous sands from the Saharian Desert

    NASA Astrophysics Data System (ADS)

    Somma, Roberta; Bella, Francesca

    2016-04-01

    A mineralogical and sedimentological study was carried out in Quaternary aeolian sands from the Sahara Desert (Tunisia and Libya). Gypsum resulted to be the dominant mineral (65%), whereas quartz resulted to be in significant amount (25%) in all samples. Aragonite and calcite, related to marine organisms, was found especially in the Libyan sands. Gypsum grains appear in euhedral crystals or as polycrystalline twinned crystals. Crystal habitus is pseudo-octahedric or tabular. Due to the euhedral habitus, the forms of the grains is discoid or bladed but with a low roundness. Quartz grains are mostly ialin or orange as the grain surfaces are coated with thin hematite films. Quartz grains dominantly appear as subhedral crystals. Habitus is prismatic or hexagonal. Due to the subhedral habitus, quartz grain forms can be classified as bladed with a low roundness. A minor amount of quartz grains is formed by well rounded and spherical grains showing frosted and pitted surfaces. The particle size analysis indicated that the studied sediments consist of well sorted very fine sands. The studied Quaternary aeolian sands can be classified as gypsiferous sands. Notwithstanding sands are well sorted, they are immature under a mineralogical and textural point of view. Particularly, gypsum formed in present or past sabkha and the amount of marine bioclasts should suggest that the source area of the Lybian gypsum grains could be a sabkha near the sea.

  4. Virus inactivation in the presence of quartz sand under static and dynamic batch conditions

    NASA Astrophysics Data System (ADS)

    Chrysikopoulos, C. V.; Aravantinou, A. F.

    2012-04-01

    Virus inactivation is one of the most important factors that controls virus fate and transport in the subsurface. In this study the inactivation of viruses in the presence of soil was examined. The bacteriophages MS2 and ΦΧ174 were used as model viruses. Experiments were performed at 4 °C and 20 °C, under constant controlled conditions, to investigate the effect of virus type, temperature, soil particle size, and initial virus concentration on virus inactivation. The experimental virus inactivation data were satisfactorily represented by a pseudo-first order expression with time-dependent rate coefficients. Furthermore, the results indicated that virus inactivation was substantially affected by the ambient temperature and initial virus concentration. The inactivation rate of MS2 was shown to be greater than that of ΦΧ174. However, the greatest inactivation was observed for MS2 without the presence of sand, at 20 °C. Sand surfaces offered protection against inactivation especially under static conditions. However, no obvious relationship between soil particle size and virus inactivation could be established from the experimental data. Moreover, the inactivation rates were shown to increase with decreasing virus concentration.

  5. Abrasion of windblown particles on Mars - Erosion of quartz and basaltic sand under simulated Martian conditions

    NASA Technical Reports Server (NTRS)

    Krinsley, D.; Greeley, R.; Pollack, J. B.

    1979-01-01

    The results of a series of laboratory experiments initiated to simulate Martian eolian erosion are presented. Experiments were conducted under Martian atmospheric pressure and compared to natural eolian sand produced on earth. It is reported that the less dense atmosphere on Mars resulted in more energetic eolian erosion manifested by an slightly higher rate of grain rounding and surface textures that included semicircular depressions termed 'popouts'. It is suggested that physical and chemical weathering may proceed more rapidly on Mars than on earth, given a sufficient supply of water vapor. In addition, clay mineral formations should be facilitated by the presence of large amounts of disrupted material. Finally, it is noted that the disrupted material could increase the ability of the soil to act as a reservoir for water thereby provisionally explaining the large amount of bound water on the surface soil material over much of Mars.

  6. The influence of groundwater chemistry on arsenic concentrations and speciation in a quartz sand and gravel aquifer

    USGS Publications Warehouse

    Kent, D.B.; Fox, P.M.

    2004-01-01

    We examined the chemical reactions influencing dissolved concentrations, speciation, and transport of naturally occurring arsenic (As) in a shallow, sand and gravel aquifer with distinct geochemical zones resulting from land disposal of dilute sewage effluent. The principal geochemical zones were: (1) the uncontaminated zone above the sewage plume [350 ??M dissolved oxygen (DO), pH 5.9]; (2) the suboxic zone (5 ??M DO, pH 6.2, elevated concentrations of sewage-derived phosphate and nitrate); and (3) the anoxic zone [dissolved iron(II) 100-300 ??M, pH 6.5-6.9, elevated concentrations of sewage-derived phosphate]. Sediments are comprised of greater than 90% quartz but the surfaces of quartz and other mineral grains are coated with nanometer-size iron (Fe) and aluminum (Al) oxides and/or silicates, which control the adsorption properties of the sediments. Uncontaminated groundwater with added phosphate (620 ??M) was pumped into the uncontaminated zone while samples were collected 0.3 m above the injection point. Concentrations of As(V) increased from below detection (0.005 ??M) to a maximum of 0.07 ??M during breakthrough of phosphate at the sampling port; As(III) concentrations remained below detection. These results are consistent with the hypothesis that naturally occurring As(V) adsorbed to constituents of the coatings on grain surfaces was desorbed by phosphate in the injected groundwater. Also consistent with this hypothesis, vertical profiles of groundwater chemistry measured prior to the tracer test showed that dissolved As(V) concentrations increased along with dissolved phosphate from below detection in the uncontaminated zone to approximately 0.07 and 70 ??M, respectively, in the suboxic zone. Concentrations of As(III) were below detection in both zones. The anoxic zone had approximately 0.07 ??M As(V) but also had As(III) concentrations of 0.07-0.14 ??M, suggesting that release of As bound to sediment grains occurred by desorption by phosphate, reductive

  7. 26Al/10Be dating of an aeolian dust mantle soil in western New South Wales, Australia

    NASA Astrophysics Data System (ADS)

    Fisher, Adrian; Fink, David; Chappell, John; Melville, Michael

    2014-08-01

    Aeolian dust mantle soils are an important element of many landscapes in south-eastern Australia, though the age of these aeolian deposits has not been radiometrically determined. At Fowlers Gap in western New South Wales, surface cobbles of silcrete and quartz overlie a stone-free, aeolian dust mantle soil, which has a thickness of about 1.6 m. The clay-rich aeolian dust deposit in turn lies upon a buried silcrete and quartz stone layer. Modelling in-situ cosmogenic 26Al and 10Be concentrations measured in both the surface quartz stones and in the buried quartz layer of rocks, reveals that each has experienced a complex exposure-burial history. Due to the absence of quartz stones or sand at intermediate depths, our cosmogenic 26Al and 10Be modelling was not able to determine a definitive mechanism of stone pavement formation and stone burial. Various scenarios of stone formation, transport, burial and exhumation were tested that constrain the age of the deposit to range from 0.9 ± 0.2 Ma to 1.8 ± 0.2 Ma, based largely on different assumptions taken for the time-dependency of the net sedimentation rate. This corresponds with the initiation of the Simpson Desert dune fields and the deflation of lakes in central Australia, which probably responded to the shift to longer-wavelength, larger-amplitude Quaternary glacial cycles at around 1 Ma. Sensitivity analyses were carried out to identify those parameters which better constrained model outputs. Within model errors, which largely are the result of analytical errors in measured 26Al and 10Be concentrations, all three competing theories of colluvial wash, upward displacement of stones, and cumulic pedogenesis are possible mechanisms for the formation of the surface stone pavement.

  8. Comminution of Aeolian Materials on Mars

    NASA Technical Reports Server (NTRS)

    Marshall, John R.

    1998-01-01

    The research task had a two-year performance period for the investigation of aeolian processes on Mars. Specifically, we were investigating the comminution of sand grains as individual particles, and as bulk populations. Laboratory experiment were completed for the individual particles, and results led to new theory for aeolian transport that is broadly applicable to all planetary surfaces. The theory was presented at the LPSC and the GSA in 1998 and 1997 respectively. Essentially, the new theory postulates that aeolian transport is dependent upon two motion thresholds- an aerodynamic threshold and a bed-dilatancy threshold.

  9. Transport of Pseudomonas fluorescens strain P17 through quartz sand columns as a function of water content

    NASA Astrophysics Data System (ADS)

    Jewett, David G.; Logan, Bruce E.; Arnold, Robert G.; Bales, Roger C.

    1999-02-01

    Porous media column experiments were used to investigate Pseudomonas fluorescens strain P17 transport as a function of water content and the influences of the solid-liquid and gas-liquid interfaces. Retention of radiolabeled P17 in washed quartz sand was evaluated at 100, 84, and 46% water saturation. At the completion of each experiment, the porous medium was extruded and sampled directly for cell retention on the basis of a radiolabel mass balance. Maximum cell retention occurred in the top centimeter of porous media at all three water contents and decreased with depth in the column. The total fraction of cells retained ( Rt) was inversely proportional to water content, with nearly twice the cell retention at 46% saturation ( Rt=0.95) compared to retention in 100% water-saturated experiments ( Rt=0.50). Total retained cells were further divided into strongly and weakly attached fractions by settling a sample of the porous medium through groundwater to dislodge loosely adhering cells. Cells that became suspended in the solution represented the fraction retained at the gas-liquid interface or weakly attached to the solid-liquid interface ( Rg). Those that remained attached to the porous medium were defined as cells strongly attached to the solid-liquid interface ( Rs). Values of Rg/ Rt were inversely related to water content, while Rs/ Rt decreased with decreasing saturation. Bacteria thus preferentially accumulated at the gas-liquid interface with total cell removal inversely proportional to water content. The increased retention of bacteria at the gas-liquid interface indicates the presence of the interface is an important factor in limiting pathogen migration, evaluating biocolloid-facilitated transport of pollutants, and developing bioremediation strategies for unsaturated porous media.

  10. Initial insights into the age and origin of the Kubuqi sand sea of northern China

    NASA Astrophysics Data System (ADS)

    Yang, Xiaoping; Forman, Steven; Hu, Fangen; Zhang, Deguo; Liu, Ziting; Li, Hongwei

    2016-04-01

    The Kubuqi Desert is the only active sand sea in the semiarid regions of northern China and occurs along the southern margin of the Yellow River. Little is known about the age and origin of this large (17,000 km2) sand sea with a present annual precipitation of 200-480 mm. Sand drift potentials indicated net capable winds for aeolian transport are from the northwest, though winds are stronger to north beyond the dune field than within the sand sea. Geomorphic and stratigraphic observations indicate that Holocene aeolian sand often drapes over bedrock and river terraces as a palimpsest landscape. Field investigations identified four stratigraphic sections with multiple aeolian sand units and palaeosols, with age control by optically stimulated luminescence (OSL) dating of quartz grains. Palaeosols are weakly developed, mostly accumulative A horizon with organic carbon content < 1% and reflect sand sheet deposition possibly in a steppe environment. Although sediments near river channels or former lakes might give old ages, the initial formation and age of the Kubuqi sand sea should be judged from the occurrence of the sandy palimpsest of the landscape that is OSL dated to the Holocene in general. The latest period of aeolian reactivation may be related to human activity associated with grazing and farming from lost cities in the Kubuqi Desert during the Han (206 B.C. - A.D. 220) and the Tang (A.D. 608 - 907) Dynasties. Also, variable discharge of the Yellow River with local diversions for irrigation and throughout the catchment resulted in possibly an increased supply of aeolian particles for dune field expansion in the past 2 ka.

  11. Discrimination of active and inactive sand from remote sensing - Kelso dunes, Mojave Desert, California

    NASA Technical Reports Server (NTRS)

    Paisley, Elizabeth C. I.; Lancaster, Nicholas; Gaddis, Lisa R.; Greeley, Ronald

    1991-01-01

    Landsat TM images, field data, and laboratoray reflectance spectra were examined for the Kelso dunes, Mojave Desert, California to assess the use of visible and near-infrared (VNIR) remote sensing data to discriminate aeolian sand populations on the basis of spectral brightness. Results show that areas of inactive sand have a larger percentage of dark, fine-grained materials compared to those composed of active sand, which contain less dark fines and a higher percentage of quartz sand-size grains. Both areas are spectrally distinct in the VNIR, suggesting that VNIR spectral data can be used to discriminate active and inactive sand populations in the Mojave Desert. Analysis of laboratory spectra was complicated by the presence of magnetite in the active sands, which decreases their laboratory reflectance values to those of inactive sands. For this application, comparison of TM and laboratory spectra suggests that less than 35 percent vegetation cover does not influence the TM spectra.

  12. Ejecta velocity distribution of impact craters formed on quartz sand: Effect of projectile density on crater scaling law

    NASA Astrophysics Data System (ADS)

    Tsujido, Sayaka; Arakawa, Masahiko; Suzuki, Ayako I.; Yasui, Minami

    2015-12-01

    In order to clarify the effects of projectile density on ejecta velocity distributions for a granular target, impact cratering experiments on a quartz sand target were conducted by using eight types of projectiles with different densities ranging from 11 g cm-3 to 1.1 g cm-3, which were launched at about 200 m s-1 from a vertical gas gun at Kobe University. The scaling law of crater size, the ejection angle of ejecta grains, and the angle of the ejecta curtain were also investigated. The ejecta velocity distribution obtained from each projectile was well described by the π-scaling theory of v0/√{gR} =k2(x0/R)-1/μ, where v0, g, R and x0 are the ejection velocity, gravitational acceleration, crater radius and ejection position, respectively, and k2 and μ are constants mostly depending on target material properties (Housen, K.R., Holsapple, K.A. [2011]. Icarus 211, 856-875). The value of k2 was found to be almost constant at 0.7 for all projectiles except for the nylon projectile, while μ increased with the projectile density, from 0.43 for the low-density projectile to 0.6-0.7 for the high-density projectile. On the other hand, the π-scaling theory for crater size gave a μ value of 0.57, which was close to the average of the μ values obtained from ejecta velocity distributions. The ejection angle, θ, of each grain decreased slightly with distance, from higher than 45° near the impact point to 30-40° at 0.6 R. The ejecta curtain angle is controlled by the two elementary processes of ejecta velocity distribution and ejection angle; it gradually increased from 52° to 63° with the increase of the projectile density. The comparison of our experimental results with the theoretical model of the crater excavation flow known as the Z-model revealed that the relationship between μ and θ obtained by our experiments could not be described by the Z-model (Maxwell, D.E. [1977]. In: Roddy, D.J., Pepin, R.O., Merrill, R.B. (Eds.), Impact and Explosion Cratering

  13. Aerolian erosion, transport, and deposition of volcaniclastic sands among the shifting sand dunes, Christmas Lake Valley, Oregon: TIMS image analysis

    NASA Technical Reports Server (NTRS)

    Edgett, Kenneth S.; Ramsey, Michael S.; Christensen, Philip R.

    1995-01-01

    Remote sensing is a tool that, in the context of aeolian studies, offers a synoptic view of a dune field, sand sea, or entire desert region. Blount et al. (1990) presented one of the first studies demonstrating the power of multispectral images for interpreting the dynamic history of an aeolian sand sea. Blount's work on the Gran Desierto of Mexico used a Landsat TM scene and a linear spectral mixing model to show where different sand populations occur and along what paths these sands may have traveled before becoming incorporated into dunes. Interpretation of sand transport paths and sources in the Gran Desierto led to an improved understanding of the origin and Holocene history of the dunes. With the anticipated advent of the EOS-A platform and ASTER thermal infrared capability in 1998, it will become possible to look at continental sand seas and map sand transport paths using 8-12 mu m bands that are well-suited to tracking silicate sediments. A logical extension of Blount's work is to attempt a similar study using thermal infrared images. One such study has already begun by looking at feldspar, quartz, magnetite, and clay distributions in the Kelso Dunes of southern California. This paper describes the geology and application of TIMS image analysis of a less-well known Holocene dune field in south central Oregon using TIMS data obtained in 1991.

  14. Introducing a New International Society of Aeolian Research

    NASA Astrophysics Data System (ADS)

    Zobeck, T. M.; Lee, J.; Lancaster, N.; Bullard, J. E.

    2008-12-01

    Aeolian research is a long-standing and rapidly growing area of geological study where scientists of many disciplines meet to investigate the effects of wind on the surface of the Earth and other planetary bodies such as Mars and Titan. Fields of study in aeolian research cover a broad spectrum ranging from developing a basic scientific understanding of the fundamental physical processes of grain motion to the effects of soil erosion on landscape health and environmental sustainability. Aeolian research also includes studies of the effects of aeolian particles on global climate, air quality, and human health, coastal sand transport processes, land degradation, dune migration, the formation of sand seas, and much more. A growing number of international conferences have been organized to focus specifically on aeolian phenomena and a vast number of scholarly publications have been produced to support the science. One popular bibliography includes over 30,000 citations and hundreds of peer-reviewed papers are published each year. Until very recently, no scientific society specifically dealing with aeolian research has been available. The new International Society of Aeolian Research (ISAR) that has been organized to bring together aeolian scientists from around the world. The new society was created to promote contacts among researchers in aeolian processes and related subjects for discussion and comparison of research, to initiate conferences (such as the International Conference on Aeolian Research), to organize excursions, and support the publication of a peer-reviewed scientific journal. The International Society of Aeolian Research sponsors the new Elsevier journal Aeolian Research in support of these activities. This paper will provide further details about the new society and the journal. Please see www.aeolianresearch.org for details.

  15. Mid to late Holocene aeolian activity revealed by a multiproxy peat record in continental CE Europe (Northern Romania)

    NASA Astrophysics Data System (ADS)

    Panait, Andrei Marian; Feurdean, Angelica; Hutchinson, Simon Mark; Tanţǎu, Ioan

    2016-04-01

    Peat bogs, and especially ombrogenous mire, are increasingly used as continental archives of aeolian dust and sand deposition. Since ombrogenous peat is formed above ground water level all the inputs are atmospheric. Dust is more influenced by regional climatic patterns due to its small size, whereas sand tends to record local patterns in storm frequency and intensity reflecting its larger particle size. However, both size fractions are significantly underused proxies of past climate variability. Here, an ombrogenous peat profile from Tǎul Muced in the Rodnei Mountains (Northern Romanian Carpathians), located in a temperate continental climate, with Atlantic and Baltic influences, provides the very first record of mid to late Holocene aeolian activity from Romania highlighting the interplay between local and regional controls in a continental area of CE Europe. We use a multiproxy approach combining radiocarbon dating, the physical properties of the peat (loss-on-ignition, bulk density), mineral magnetic measurements (ARM, SIRM), geochemical (Ti and Zr) and particle size analysis (via both laser diffraction and the manual counting of sand particles under a steromicroscope) to determine changes in: i) atmospheric dust deposition and ii) wind velocities during the last 7800 years. We found that the aeolian particles are mainly silt (3.9-63 μm) (dust) and sand (63-1200 μm). The mineralogical composition of the aeolian sediment in peat is mainly quartz, more rarely calcite and very rarely other minerals such as feldspar, sulphur, mica (biotite and muscovite), magnetite and other melanocrate minerals. The roundness of the sand particles varies from well-rounded to sub-angular and angular, and suggests that the sand particles have different source areas. Results from this study show that over the last 7600 years the pattern of wind frequency changed several times: there are periods characterised by a low aeolian input around 6950-6550, 5000-3900, 3500-2900, 1650

  16. Effects of river regulation on aeolian landscapes, Colorado River, southwestern USA

    USGS Publications Warehouse

    Draut, Amy E.

    2012-01-01

    Connectivity between fluvial and aeolian sedimentary systems plays an important role in the physical and biological environment of dryland regions. This study examines the coupling between fluvial sand deposits and aeolian dune fields in bedrock canyons of the arid to semiarid Colorado River corridor, southwestern USA. By quantifying significant differences between aeolian landscapes with and without modern fluvial sediment sources, this work demonstrates for the first time that the flow- and sediment-limiting effects of dam operations affect sedimentary processes and ecosystems in aeolian landscapes above the fluvial high water line. Dune fields decoupled from fluvial sand supply have more ground cover (biologic crust and vegetation) and less aeolian sand transport than do dune fields that remain coupled to modern fluvial sand supply. The proportion of active aeolian sand area also is substantially lower in a heavily regulated river reach (Marble–Grand Canyon, Arizona) than in a much less regulated reach with otherwise similar environmental conditions (Cataract Canyon, Utah). The interconnections shown here among river flow and sediment, aeolian sand transport, and biologic communities in aeolian dunes demonstrate a newly recognized means by which anthropogenic influence alters dryland environments. Because fluvial–aeolian coupling is common globally, it is likely that similar sediment-transport connectivity and interaction with upland ecosystems are important in other dryland regions to a greater degree than has been recognized previously.

  17. Effects of river regulation on aeolian landscapes, Colorado River, southwestern USA

    NASA Astrophysics Data System (ADS)

    Draut, Amy E.

    2012-06-01

    Connectivity between fluvial and aeolian sedimentary systems plays an important role in the physical and biological environment of dryland regions. This study examines the coupling between fluvial sand deposits and aeolian dune fields in bedrock canyons of the arid to semiarid Colorado River corridor, southwestern USA. By quantifying significant differences between aeolian landscapes with and without modern fluvial sediment sources, this work demonstrates for the first time that the flow- and sediment-limiting effects of dam operations affect sedimentary processes and ecosystems in aeolian landscapes above the fluvial high water line. Dune fields decoupled from fluvial sand supply have more ground cover (biologic crust and vegetation) and less aeolian sand transport than do dune fields that remain coupled to modern fluvial sand supply. The proportion of active aeolian sand area also is substantially lower in a heavily regulated river reach (Marble-Grand Canyon, Arizona) than in a much less regulated reach with otherwise similar environmental conditions (Cataract Canyon, Utah). The interconnections shown here among river flow and sediment, aeolian sand transport, and biologic communities in aeolian dunes demonstrate a newly recognized means by which anthropogenic influence alters dryland environments. Because fluvial-aeolian coupling is common globally, it is likely that similar sediment-transport connectivity and interaction with upland ecosystems are important in other dryland regions to a greater degree than has been recognized previously.

  18. Effects of Aging Quartz Sand and Hanford Site Sediment with Sodium Hydroxide on Radionuclide Sorption Coefficients and Sediment Physical and Hydrologic Properties: Final Report for Subtask 2a

    SciTech Connect

    DI Kaplan; JC Ritter; KE Parker

    1998-12-04

    Column and batch experiments were conducted in fiscal year 1998 at Pacific Northwest National Laboratory to evaluate the effect of varying concentrations of NaOH on the sorptive, physical, and hydraulic properties of two media, a quartz sand and a composite subsurface sediment from the 200-East Area of the Hanford Site. The NaOH solutions were used as a simplified effluent from a low-activity glass waste form. These experiments were conducted over a limited (O-to 10-month) contact time, with respect to the 10,000-to 100,000-year scenarios described in the Immobilized Low-Activity Waste- Performance Assessment (ILAW-PA). Wheq these two solids were put in contact with the NaOH solutions, dissolution was evident by a substantial increase in dissolved Si concentrations in the leachates. Incremental increases in NaOH con- centrations, resulted in corresponding increases in Si concentrations. A number of physical and hydraulic properties also changed as the NaOH concentrations were changed. It was observed that quartz sand was less reactive than the composite sediment. Further, moisture- retention measurements were made on the quartz sand and composite sedimen$ which showed that the NaOH-treated solids retained more water than the non-NaOH-treated solids. Because the other chemical, physical, and hydraulic measurements did not change dramatically after the high-NaOH treatments, the greater moisture retention of the high-NaOH treatments was attributed to a "salt effect" and not to the formation of small particles during the dissolution (weathering). The distribution coefficients (IQ) for Cs and Sr were measured on the NaOH-treated sediments, with decreases from -3,000 to 1,000 and 1,300 to 300 mL/g noted, respectively, at the 0.01-to 1.O-M NaOH levels. There was no apparent trend for the Sr & values with contact time. The lack of such a trend sug- gests that dissolution of sediment particles is not controlling the drop in IQ rather, it is the competition of the added Na

  19. Robotic Measurement of Aeolian Processes

    NASA Astrophysics Data System (ADS)

    Roberts, S.; Duperret, J. M.; Jerolmack, D. J.; Lancaster, N.; Nikolich, G.; Shipley, T. F.; Van Pelt, R. S.; Zobeck, T. M.; Koditschek, D. E.

    2015-12-01

    Local and regional measurements of sand transport and dust emission in complex natural settings presently lack spatiotemporal resolution adequate to inform models relevant for land management, climate policy, and the basic science of geomorphology. Deployments of wind, sand and dust sensors sophisticated enough to begin unpacking the complex relations among wind turbulence, surface roughness, sand flux and dust emission remain largely stationary. Aerial observations from satellites, planes and even UAVs help fill in, but none of these modalities offer the hope of "capturing the action" by being at the right place at the right time relative to the highly localized nature of sediment transport during wind storms. We have been developing a legged robot capable of rapidly traversing desert terrain, and are now adapting it to serve as a platform for scientific instrumentation. We aim to field a semi-autonomous, reactive mobile sensory package suited to the needs of aeolian science that can address the limitations of existing alternatives. This presentation reports on early trials in the Jornada LTER and White Sands National Monument aimed at gathering measurements of airflow and rates of sand transport on a dune face, assessing the role of roughness elements such as vegetation in modifying the wind shear stresses incident on the surface, and estimating erosion susceptibility in a natural arid soil. We will solicit ideas from the audience about other potentially interesting and viable measurement targets. Future close collaboration between aeolian, cognitive and robotics scientists such as we hope to promote through this presentation may yield machines with scientifically relevant sensory suites possessing sufficient autonomy to operate in-situ at the most intense episodes of wind and sediment movement under conditions far too uncomfortable and hazardous for human presence.

  20. Holocene aeolian development in Central Spain; chronology, regional correlations and causal processes

    NASA Astrophysics Data System (ADS)

    García-Hidalgo, José F.; Temiño, Javier; Segura, Manuel

    2007-10-01

    Extensive areas in the southern part of the Duero Tertiary Basin (Central Spain) are covered by aeolian sands. Presently, the aeolian system is relict but in its origin and development it can be described as a "wet aeolian system". Climatic and environmental changes during the Holocene are typified by alternating humid and arid periods. These are recorded in the sedimentary record as either organic-rich sandy palaeosols or clean aeolian sand, respectively. Palaeosol dating (12 radiocarbon dated samples) and stratigraphical and sedimentological analysis of several dunefields in quarries and boreholes allow the distinction of four periods of palaeosol development since the Allerød. Aeolian sediments commonly rest on fluvial deposits, which were themselves the major source area for aeolian sands. These fluvial deposits have an age of about 14,000 cal yr BP. The first phase of aeolian activity postdates these fluvial sediments and has an upper age of about 12,000-11,700 cal yr BP, probably corresponding to the last cold oscillation of the Lateglacial (Younger Dryas). The second phase ranges from about 11,500 to 9500 cal yr BP, during which period the majority of dunes in the Tierra de Pinares area formed. This is also a major phase of aeolian activity in other areas of the Iberian Peninsula. A third and probably discontinuous phase of aeolian activity took place between 6800 and about 3000 cal yr BP. The age for this phase is supported by the presence of Visigothic burial sites covered by aeolian sands. The presence of charred material and degraded slipfaces clearly indicate stabilisation by vegetation and the final degradation of the aeolian system at the end of the fourth aeolian phase (990-540 cal yr BP). Minor aeolian activity has also occurred subsequently in this area, since aeolian sand movement was even reported in the 20th century. The aeolian phases can be tentatively correlated with aeolian phases in Europe. Aeolian activity tends to occur regionally during

  1. Measurements of the Coefficient of Restitution of Quartz Sand on Basalt: Implications for Abrasion Rates on Earth and Mars

    NASA Technical Reports Server (NTRS)

    Banks, M.; Bridges, N. T.; Benzit, M.

    2005-01-01

    Knowledge of the rates at which rocks abrade from the impact of saltating sand provides important input into estimating the age and degree of modification of arid surfaces on Earth and Mars. Previous work has relied on measuring mass loss rates in the field and the laboratory. The susceptibility of rocks and other natural materials has been quantified on a relative scale from laboratory studies.

  2. Observed particle sizes and fluxes of Aeolian sediment in the near surface layer during sand-dust storms in the Taklamakan Desert

    NASA Astrophysics Data System (ADS)

    Huo, Wen; He, Qing; Yang, Fan; Yang, Xinghua; Yang, Qing; Zhang, Fuyin; Mamtimin, Ali; Liu, Xinchun; Wang, Mingzhong; Zhao, Yong; Zhi, Xiefei

    2016-08-01

    Monitoring, modeling and predicting the formation and movement of dust storms across the global deserts has drawn great attention in recent decades. Nevertheless, the scarcity of real-time observations of the wind-driven emission, transport and deposition of dusts has severely impeded progress in this area. In this study, we report an observational analysis of sand-dust storm samples collected at seven vertical levels from an 80-m-high flux tower located in the hinterland of the great Taklamakan Desert for ten sand-dust storm events that occurred during 2008-2010. We analyzed the vertical distribution of sandstorm particle grain sizes and horizontal sand-dust sediment fluxes from the near surface up to 80 m high in this extremely harsh but highly representative environment. The results showed that the average sandstorm grain size was in the range of 70 to 85 μm. With the natural presence of sand dunes and valleys, the horizontal dust flux appeared to increase with height within the lower surface layer, but was almost invariant above 32 m. The average flux values varied within the range of 8 to 14 kg m-2 and the vertical distribution was dominated by the wind speed in the boundary layer. The dominant dust particle size was PM100 and below, which on average accounted for 60-80 % of the samples collected, with 0.9-2.5 % for PM0-2.5, 3.5-7.0 % for PM0-10, 5.0-14.0 % for PM0-20 and 20.0-40.0 % for PM0-50. The observations suggested that on average the sand-dust vertical flux potential is about 0.29 kg m-2 from the top of the 80 m tower to the upper planetary boundary layer and free atmosphere through the transport of particles smaller than PM20. Some of our results differed from previous measurements from other desert surfaces and laboratory wind-dust experiments, and therefore provide valuable observations to support further improvement of modeling of sandstorms across different natural environmental conditions.

  3. Interaction of aluminum projectiles with quartz sand in impact experiments: Formation of khatyrkite (CuAl2) and reduction of SiO2 to Si

    NASA Astrophysics Data System (ADS)

    Hamann, Christopher; Stöffler, Dieter; Reimold, Wolf Uwe

    2016-11-01

    We analyzed the interaction of spherical, 6.36-mm-diameter, Cu-bearing aluminum projectiles with quartz sand targets in hypervelocity impact experiments performed at NASA Ames Vertical Gun Range. Impact velocities and inferred peak shock pressures varied between 5.9 and 6.5 km/s and ∼41 and 48 GPa, respectively. Shocked particles ("impact melt particles") coated with thin crusts of molten projectile material were recovered from the floors of the ca. 33-cm-diameter craters and the respective ejecta blankets. Through petrographic and chemical (optical microscopy, FE-EMPA, SEM-EDX, and XRF) analysis we show that these particles have a layered structure manifested in distinct layers of decreasing shock metamorphism. These can be characterized by the following physical and chemical reactions and alteration products: (i) complete melting and subsequent recrystallization of the projectile, forming a distinct crystallization texture in the fused metal crust; (ii) projectile-target mixing, involving a redox reaction between Cu-bearing Al alloy und SiO2, leading to formation of khatyrkite (CuAl2), Al2O3 melt, euhedral silicon crystals, and spherical droplets of silicon; (iii) melting of quartz to lechatelierite and formation of planar deformation features in relic quartz grains; and (iv) shock lithification of quartz grains with fracturing of grains, grain-boundary melting, planar deformation features, and complete loss of porosity. To our knowledge, this is the first report of khatyrkite formed experimentally in hypervelocity impact experiments. These results have implications for the understanding of a similar redox reaction between Al-Cu metal and siliceous impact melt recently postulated for the Khatyrka CV3 carbonaceous chondrite. Moreover, these results bear on the processes that lead to layers of regolith on the surfaces of planetary bodies without atmospheres, such as asteroids in the main belt (e.g., 4 Vesta), and on the Moon. Specifically, impacts of mm

  4. Initial transport and retention behaviors of ZnO nanoparticles in quartz sand porous media coated with Escherichia coli biofilm.

    PubMed

    Jiang, Xujia; Wang, Xueting; Tong, Meiping; Kim, Hyunjung

    2013-03-01

    The significance of biofilm on the transport and deposition behaviors of ZnO nanoparticles were examined under a series of environmentally relevant ionic strength at two fluid velocities of 4 m-d(-1) and 8 m-d(-1). Biofilm enhanced nanoparticles retention in porous media under all examined conditions. The greater deposition was also observed in extracellular polymeric substances (EPS) coated surfaces by employment of quartz microbalance with dissipation (QCM-D) system. Derjaguin-Landau-Verwey-Overbeek (DLVO) failed to interpret more ZnO nanoparticles deposition on biofilm (EPS) coated silica surfaces. Chemical interaction and physical morphology of biofilm contributed to this greater deposition (retention). Biofilm affected the spacial distribution of retained ZnO nanoparticles as well. Relatively steeper slope of retained profiles were observed in the presence of biofilm, corresponding to the greater deviation from colloid filtration theory (CFT). Pore space constriction via biofilm induced more nanoparticle trapped in the column inlet, leading to greater deviations (σln k(f)) from the CFT.

  5. Sedimentological, Mineralogical and Geochemical Characterization of Sand Dunes in Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Benaafi, Mohammed; Abdullatif, Osman

    2014-05-01

    Sedimentological, mineralogical, morphological and geochemical studies of sand dunes from ten locations in Saudi Arabia were conducted in order to determine the differences between them and to find out the provenance and tectonic setting of these sand dunes. Sixty seven samples were collected from different sand dunes types ranging in morphology from linear, barchans, parabolic to stars dunes. In overall, the sand dunes are fine to coarse grained mean grain size, moderately sorted, near symmetrical skewness with mesokurtic distribution characterized sand dunes in most locations. The sand dunes grains are subrounded in all locations except in the Red sea, Qassim, central Arabia and the eastern province which showed sub-angular grains. The main mineral compositions of studied aeolian sand dunes are quartz, feldspar, calcite, and mica. Quartz is the dominant mineral in locations with significant amount of feldspars and mica in Najran, Red sea and Central Arabia locations. Moreover, calcite is present in Sakaka and NW Empty Quarter (Jafurah). Basement related sand dunes in Najran, Central Arabia and Red sea locations are sub-mature in terms of their mineralogical maturity. Whereas, sand dunes in other locations are texturally mature except those from the Red sea which showed sub-mature sand. The sands are classified as quartz arenite, except in the basement related sand dunes in Najran, central Arabia and the Red sea are ranging from sub-arkose, sub-litharenite and lithraenite. Morphologically, parallel to sub-parallel sand ridges with NE-SW orientation occurred in east and north parts of Empty Quarter (Najran and Jafurah) and NW-SE orientation in Dahna and Nafud deserts in central and north regions of Saudi Arabia. Parabolic sand dunes characterized the Nafud desert (Hail, Sakaka, Tayma locations). Barchans and star sand dunes characterize the Empty Quarter (Jafurah). Major, trace, and rare earth elements studies were carried out to determine the composition

  6. Studies in Aeolian geology

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald

    1988-01-01

    The objective of the research was to assess the significance of aeolian (windblown) processes in the evolution of planetary surfaces. The approach was to use wind tunnel simulations, field studies of possible analogs, and analyses of spacecraft data.

  7. Deposition and Release Behaviour of ZnO Nanoparticles in Saturated Quartz Sand: Role of Biofilm, Ionic Strength, and pH

    NASA Astrophysics Data System (ADS)

    Hwang, Gukhwa; Han, Yosep; Kim, Donghyun; Bradford, Scott A.; Lee, Byoungcheun; Eom, Igchun; Kim, Pil Je; Choi, Siyoung Q.; Lee, Youngsoo; Kim, Hyunjung

    2015-04-01

    The influence of biofilm, ionic strength, and pH on the deposition and release behavior of zinc oxide nanoparticles (ZnO-NPs) was systematically investigated in well-controlled saturated sand column. The results for the initial transport of the ZnO-NPs at pH 9 showed significant retention at the inlet of the column with hyper-exponential retention profiles regardless of solution ionic strength investigated (0.1 and 10 mM) and Pseudomonas putida biofilm coating; however, the increase in solution ionic strength and the presence of biofilm onto quartz sand tended to increase the retention of ZnO-NPs. The trend was likely attributed to more favorable NPs-NPs interaction and greater surface roughness, respectively. The results were well supported by the DLVO interaction energy profiles and Electron Microscopic observations. For the release tests, particle free solution at pH 6 was continuously injected into the column with the ZnO-NPs retained during the initial transport tests. The results for breakthrough curves and time-lapsed retention profiles showed that reducing solution pH led to the release of large amount of the initially retained ZnO-NPs, and the release rate was observed to be greater for bare silica than biofilm-coated sand. The release of ZnO-NPs was likely attributed to the dissolution of Zn2+ due to the change of pH. The proposed mechanism was further verified by conducting additional column tests at higher pHs (pH 9 and 10), which showed significantly reduced release of ZnO-NPs, and even nearly no release at pH 10. The findings from this study suggests that there exists high potential of complete transport of ZnO-NPs into groundwater in that the pH of various soil environments typically ranges from 5 to 9. This work was supported by the National Institute of Environmental Research, Ministry of Environment and the Energy Efficiency & Resources Core Technology Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted

  8. Publication trends in aeolian research: An analysis of the Bibliography of Aeolian Research

    NASA Astrophysics Data System (ADS)

    Stout, John E.; Warren, Andrew; Gill, Thomas E.

    2009-04-01

    An analysis of the Bibliography of Aeolian Research has provided information regarding publication trends in aeolian research. Results suggest that there has been a significant increase in the number of publications per year since the first aeolian-research publication appeared in 1646. Rates of publication have increased from only three publications in the 17th Century to nearly three publications per day in the 21st Century. The temporal distribution of publications follows a complex pattern that is influenced by many factors. In the 17th and 18th Centuries, publications appear as isolated clusters indicating limited interest in aeolian research and limited opportunities for individuals to contribute to scientific literature. With time, many new scientific societies are formed and many new scientific journals are established, opening new opportunities for scientists to contribute to scientific discourse. Landmark publications open up new research areas and define new directions for aeolian research. General advances in science and technology provide new techniques for sampling blowing sand and dust. In addition, clear signs exist that publication rates respond to major environmental and climatic events, especially large-scale disasters that focus attention on wind erosion and blowing dust. The Sirocco dust events of 1901-1903, the North American Dust Bowl of the1930s, and the recent sand and dust storm problems in China have all led to significant increases in the number of publications in aeolian research. Rates of publication are negatively influenced by major political and social upheavals, especially global conflicts such as World Wars I and II. Sudden shifts in government structure and support can also influence publication rates. A good example is the increased publication rates in China following the end of the Cultural Revolution, a trend that continues today.

  9. Bursts in discontinuous Aeolian saltation

    PubMed Central

    Carneiro, M. V.; Rasmussen, K. R.; Herrmann, H. J.

    2015-01-01

    Close to the onset of Aeolian particle transport through saltation we find in wind tunnel experiments a regime of discontinuous flux characterized by bursts of activity. Scaling laws are observed in the time delay between each burst and in the measurements of the wind fluctuations at the fluid threshold Shields number θc. The time delay between each burst decreases on average with the increase of the Shields number until sand flux becomes continuous. A numerical model for saltation including the wind-entrainment from the turbulent fluctuations can reproduce these observations and gives insight about their origin. We present here also for the first time measurements showing that with feeding it becomes possible to sustain discontinuous flux even below the fluid threshold. PMID:26073305

  10. Evidence of ancient cataclysm in modern sand: shock microstructures in detrital quartz, zircon, and monazite from the Vaal River, Vredefort Dome, South Africa

    NASA Astrophysics Data System (ADS)

    Cavosie, A. J.; Quintero-Mendez, R. R.; Radovan, H. A.; Moser, D. E.; Valley, J. W.

    2009-12-01

    The record of terrestrial meteorite impacts is highly fragmentary, as the vast majority of impact structures are removed by erosion or tectonic activity. Discovering the missing impact record, and the nature of impact targets from Hadean to present, may be advanced through identification and analysis of residual shocked detritus. As a first step towards the goal of understanding the preservation of shocked minerals in sedimentary systems, we investigate modern sands from the Vaal River in South Africa, where it crosses the 2.02 Ga Vredefort Dome, the oldest and largest terrestrial impact structure known. Samples were collected from both the Vaal channel and tributary streams within the exposed structure specifically to evaluate if shock-deformed minerals survive erosion and sedimentary transport. Here we describe the occurrence of detrital shocked quartz and zircon, and a first report of detrital shocked monazite. Detrital quartz grains (sub-rounded) preserve a single orientation of decorated planar deformation features (PDFs) in transmitted light, assumed to be Brazil twins in the basal (0001) plane as previously reported from the Vredefort Dome. Cathodoluminescence (CL) imaging reveals that the decorated PDFs are straight, sharp, continuous features with irregular spacing. Detrital zircons (euhedral to anhedral) contain up to four orientations of planar fractures (PFs), including PFs on (001), (010), and (100). In total, at least 5 orientations of PFs are observed. Offset growth zoning along PFs in some zircons is conspicuous, and produces apparent rotation of sub-grains. Some zircons contain a network of non-planar fractures (nPFs) filled with optically continuous secondary zircon. If further work establishes an impact age for the infilling, they may represent a new non-planar, shock-produced microstructure. We also report PFs in naturally shocked monazite. Large (up to 800 μm), rounded, detrital monazites preserve up to 4 orientations of PFs, with variable

  11. Mega-ripples in Iran: A new analog for transverse aeolian ridges on Mars

    NASA Astrophysics Data System (ADS)

    Foroutan, M.; Zimbelman, J. R.

    2016-08-01

    A new terrestrial analog site for transverse aeolian ridges (TARs) is described in this study. The Lut desert of Iran hosts large ripple-like aeolian bedforms, with the same horizontal length scales and patterns of TARs on Mars. Different classes of TARs and different types of other aeolian features such as sand dunes, zibars, dust devil tracks and yardangs can be found in this area, which signify an active aeolian region. This area represents a unique site to study the formation and evolution of these enigmatic features, with potential relevance toward a better understanding of TARs on Mars.

  12. Gully annealing by aeolian sediment: field and remote-sensing investigation of aeolian-hillslope-fluvial interactions, Colorado River corridor, Arizona, USA

    NASA Astrophysics Data System (ADS)

    Sankey, Joel B.; Draut, Amy E.

    2014-09-01

    Processes contributing to development of ephemeral gully channels are of great importance to landscapes worldwide, and particularly in dryland regions where soil loss and land degradation from gully erosion pose long-term land-management problems. Whereas gully formation has been relatively well studied, much less is known of the processes that anneal gullies and impede their growth. This study of gully annealing by aeolian sediment, spanning 95 km along the Colorado River corridor in Glen, Marble, and Grand Canyon, Arizona, USA, employed field and remote sensing observations, including digital topographic modelling. Results indicate that aeolian sediment activity can be locally effective at counteracting gully erosion. Gullies are less prevalent in areas where surficial sediment undergoes active aeolian transport, and have a greater tendency to terminate in active aeolian sand. Although not common, examples exist in the record of historical imagery of gullies that underwent infilling by aeolian sediment in past decades and evidently were effectively annealed. We thus provide new evidence for a potentially important interaction of aeolian-hillslope-fluvial processes, which could affect dryland regions substantially in ways not widely recognized. Moreover, because the biologic soil crust plays an important role in determining aeolian sand activity, and so in turn the extent of gully development, this study highlights a critical role of geomorphic-ecologic interactions in determining arid-landscape evolution.

  13. Aeolian modification of planetary surfaces

    NASA Technical Reports Server (NTRS)

    Greeley, R.

    1982-01-01

    Any planet or satellite having a dynamic atmosphere and a solid surface is subject to aeolian or wind processes. A survey of the solar system shows that earth, Mars, Venus, and possibly Titan meet these criteria. Attention is given to the relevance of aeolian processes to planetary geology, approaches for investigating aeolian processes, observations on Mars, conditions on Venus, and studies of Titan with the aid of the Voyager spacecraft. It is found that aeolian processes play an important role in the modification of the surfaces of earth and Mars. Indirect evidence suggests that Venus and perhaps Titan also may experience aeolian activity. Study of aeolian activity in a planetary context thus affords the opportunity to examine a fundamental process under a wide range of environmental conditions. Each planet can be viewed as a vast natural laboratory.

  14. Transport, retention, and long-term release behavior of ZnO nanoparticle aggregates in saturated quartz sand: Role of solution pH and biofilm coating

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The transport, retention, and long-term fate of zinc oxide nanoparticles (ZnO-NPs) were investigated in saturated, bare and biofilm (Pseudomonas putida) coated sand packed columns. Almost complete retention of ZnO-NPs occurred in bare and biofilm coated sand when the influent solution pH was 9 and t...

  15. Production of mineral aggregates in quartz tumbling experiments

    NASA Astrophysics Data System (ADS)

    Nørnberg, Per; Finster, Kai; Pall Gunnlaugsson, Haraldur; Knak Jensen, Svend; Merrison, Jonathan Peter

    2013-04-01

    Introduction Tumbling experiments with quartz sand with the purpose of tracing the effect of broken bonds in mineral surfaces resulted in an unexpected production of aggregates. These aggregates are a few microns in diameter, spherical and resembling tiny white "snowballs." Particle comminution by aeolian and other natural weathering processes are known in soil science and is often seen as an increase of fine particles towards the top of soil profiles (Nørnberg, P. 1987, 1988, 2002, J.S. Wright 2007). When mineral grains collide in aeolian processes they break up along weakness zones in the crystal lattice. This mechanism causes broken bonds between atoms in the crystal lattice and results in reactive groups in the mineral surface. This mechanism provides the background for experiments to investigate the oxidation processes of magnetite on the planet Mars. The primary magnetic iron oxide phase on Mars is to day known to be magnetite and the colour of the dust on Mars is most likely due to hematite. To investigate if the oxidation process could take place without going over dissolution and precipitation in water, experiments with tumbling of quartz grains in sealed glass containers along with magnetite were started. The idea was that activated bonds at the surface of quartz could oxidize magnetite and convert it to hematite over time. This proved to be the case (Merrison, J.P. et al. 2010). However, in these experiments we observed the formation of the white aggregates which has been the subject of the study that we present here. Results of tumbling experiments Commercially available quarts (Merck) was sieved to obtain the fraction between 125 and 1000 µm. This fraction was tumbled in glass containers for months and resulted in production of a significant amount of fine grained material (Merrison, J.P et al. 2010). A part of this fine fraction consists of the "snowball"-like aggregates which is a fragile element with relatively high specific surface. The physical

  16. Aeolian sediment transport in vegetation canopies

    NASA Astrophysics Data System (ADS)

    Gromke, C.; Walter, B.; Burri, K.; Graf, F.; Lehning, M.

    2011-12-01

    Wind erosion experiments in grass canopies performed in the atmospheric boundary layer wind tunnel of the WSL Institute for Snow and Avalanche Research SLF in Davos / Switzerland are presented. The experiments were made using an 8 m long vegetation on sand (grain size 0.4 - 0.8 mm) fetch such that a naturally turbulent boundary layer could develop. The vegetation canopy consisted of regularly arrayed artificial grass tussocks which adequately mimic the aerodynamic and structural characteristics of vegetation with regard to flexibility and porosity. Three canopy densities and an unplanted, bare sand surface for reference were investigated. High speed imaging techniques were employed to study aeolian sediment transport over the final meter of the wind tunnel fetch. Moving particle trajectories were analysed by means of Particle Tracking Velocimetry (PTV). Sediment mass flux and concentration profiles were analysed using Shadow Imaging. The results of the particle trajectory analysis are presented in a statistical framework in terms of ejection and impact angle, trajectory length and curvature and particle velocity. Differences between aeolian sediment transport in / over vegetation canopies and the reference bare sand surface are pointed out. The previous observations of Burri et al. (2011), which revealed characteristic differences in the sediment mass flux profiles above a bare and vegetated surface, are now quantitatively explained by the trajectory analysis. Whereas the mass flux profile was steadily decreasing with height above ground for the bare surface, a peak at about twice the canopy height was found for the vegetated surface. The particle trajectory analysis plays a key role in distinguishing the diverse mechanisms leading to this elevated peak. The sediment mass flux and concentration profiles are additionally evaluated with respect to the height-dependency of particle size distributions. The trajectory analysis results are considered to have a high

  17. Modeling aeolian erosion in presence of vegetation

    NASA Astrophysics Data System (ADS)

    Dupont, S.; Bergametti, G.; Simoëns, S.

    2014-02-01

    Semiarid landscapes are characterized by vegetated surfaces. Understanding the impact of vegetation on aeolian soil erosion is important for reducing soil erosion or limiting crop damage through abrasion or burial. In the present study, a saltation model fully coupled with a large-eddy simulation airflow model is extended to vegetated landscapes. From this model, the sensitivity of sand erosion to different arrangements and type of plants (shrub versus tree) representative of semiarid landscapes is investigated and the wind erosion reduction induced by plants is quantified. We show that saltation processes over vegetated surfaces have a limited impact on the mean wind statistics, the momentum extracted from the flow by saltating particles being negligible compared to that extracted by plants. Simulated sand erosion patterns resulting from plant distribution, i.e., accumulation and erosion areas, appear qualitatively consistent with previous observations. It is shown that sand erosion reduction depends not only on vegetation cover but also on plant morphology and plant distribution relative to the mean wind direction. A simple shear stress partitioning approach applied in shrub cases gives similar trends of sand erosion reduction as the present model following wind direction and vegetation cover. However, the magnitude of the reduction appears significantly different from one approach to another. Although shrubs trap saltating particles, trees appear more efficient than shrubs to reduce sand erosion. This is explained by the large-scale sheltering effect of trees compared to the local shrub one.

  18. Contemporary research in aeolian geomorphology

    NASA Astrophysics Data System (ADS)

    Bauer, B. O.

    2009-04-01

    The first International Conference on Aeolian Geomorphology (ICAR) was held in 1986, and every four years since then, aeolian geomorphologists from around the world have assembled to discuss their research and to showcase recent advancements in understanding and modeling of aeolian processes. A content analysis of the "Bibliography of Aeolian Research" [Stout, J.E., Warren, A., Gill, T.E., 2009. Publication trends in aeolian research: An analysis of the Bibliography of Aeolian Research. Geomorphology 105, 6-17 (this volume)] shows that the number of publications on aeolian topics has increased exponentially from the mid-20th Century with approximately 50 publications per year to about 500 publications per year when the first ICAR was held, to almost 1000 publications per year currently. Areas of focus have shifted historically from initial concerns with aeolian erosion and dust events as isolated phenomenon of localized curiosity or only regional importance, to comprehensive physically-based investigations and modeling of the mechanics of aeolian transport. Recently, more applied studies have been motivated by the recognition of the importance of aeolian processes to dust emissions into the atmosphere (with relevance for human health and for meteorological conditions and climate change) and within regional management contexts (especially on coasts where impending sea-level rise is of great concern and in arid and semi-arid environments given the dependence of sediment surface stability and remobilization on meteorological and ecological conditions). Aeolian geomorphology is a rapidly growing sub-discipline of Geomorphology that offers rich opportunities for interdisciplinary collaborations with colleagues from the Atmospheric Sciences, Climatology, Sedimentology, Quaternary Geology, Fluid Mechanics, Physics, Mathematics, Computer Science, Physical Geography, Ecology, and Agricultural Sciences, as well as our counterparts in fluvial, coastal, and arid

  19. Flood Induced Increases in Aeolian Transport Along the Missouri River

    NASA Astrophysics Data System (ADS)

    Benthem, A. J.; Strong, L.; Schenk, E.; Skalak, K.; Hupp, C. R.; Galloway, J.

    2014-12-01

    In 2011, heavy winter snow melt combined with extensive spring rains caused the Missouri River to experience the most extensive flooding since the river was dammed in the 1950s. Large sections of the river banks, islands, and floodplains experienced weeks of prolonged inundation, resulting in extensive sand deposition as up to1 km inland from the established channel. Though locally variable, deposits of up to 3m of loose sand were deposited on the floodplain and extensive areas of shrub, grasslands, and agricultural fields were completely buried or had vegetation washed away in the inundation zone. The flooding also created a number of new unvegetated islands which provide important habitat for endangered species including the Piping Plover (Charadrius melodus). These newly created sand surfaces are unconsolidated and have very little vegetation to prevent aeolian transport. Strong sustained regional winds of up to 20m/s (45mph) cause substantial sediment fluxes which modify landscape topography, shift river morphology, and increase regional dust levels. Our study monitors and quantifies the increase in aeolian transport that occurred following flooding along the Garrison Reach, a 110 km section of free flowing Missouri River in North Dakota. In 2012 and 2013 we measured sand transport and accumulation rates using Leatherman style sand traps and erosion pins to at 9 sites of varying vegetation densities. We apply these flux rates to a high resolution remote sensing vegetation map to estimate the total flux of sand for this segment of the river. We also quantify total available new sand for transport using repeat Light Detection and Ranging (LiDAR) coverage from before and after the flood and examine the relationship between sand deposition and the rate of reestablishment of vegetation. All of these results are used to estimate the scale of flood induced aeolian processes and predict where they may continue to influence the landscape.

  20. Aeolian process-induced hyper-concentrated flow in a desert watershed

    NASA Astrophysics Data System (ADS)

    Ta, Wanquan; Wang, Haibin; Jia, Xiaopeng

    2014-04-01

    Ephemeral desert channels are characterized by very high rates of sediment transport during infrequent flood events. Here we show that aeolian process-induced hyper-concentrated (AHC) flows occur in the Sudalaer desert watershed in the Ordos Plateau of China, which primarily transport 0.08-0.25 mm non-cohesive aeolian sand and have a peak suspended sediment concentration of 1.1-1.4 × 106 mg l-3. Aeolian sand supply and storage in the channel play a crucial role in causing hyper-concentrated flow. Our results indicate that non-cohesive aeolian sand can be entrained from the bed and suspended in the turbulent flow when the channel bed slope exceeds a critical threshold (0.0003). We also show that if the frequency ratio of wind-blown sandstorms to rainstorms Tw/Tp exceeds β(γ - γ0)/α (P/V3) (A/L) (where α is the wind-blown sand transport coefficient, β is the runoff coefficient, γ - γ0 is the increase in suspension concentration caused by addition of aeolian sands, P is the density of rainstorms, V is the wind speed of sandstorms, A is the runoff-generating area, L is the aeolian sand-filled channel length), an AHC flow occurs during the passage of a flood in a desert channel. Since high-frequency aeolian processes provide an adequate quantity of transportable sediment and promote AHC flow, most of the infrequent rainfall-induced floods occurring in arid zones can develop as AHC flows.

  1. Synthesis on Quaternary aeolian research in the unglaciated eastern United States

    USGS Publications Warehouse

    Markewich, Helaine Walsh; Litwin, Ronald J.; Wysocki, Douglas A.; Pavich, Milan J.

    2015-01-01

    Late-middle and late Pleistocene, and Holocene, inland aeolian sand and loess blanket >90,000 km2 of the unglaciated eastern United States of America (USA). Deposits are most extensive in the Lower Mississippi Valley (LMV) and Atlantic Coastal Plain (ACP), areas presently lacking significant aeolian activity. They provide evidence of paleoclimate intervals when wind erosion and deposition were dominant land-altering processes. This study synthesizes available data for aeolian sand deposits in the LMV, the Eastern Gulf Coastal Plain (EGCP) and the ACP, and loess deposits in the Middle Atlantic Coastal Plain (MACP). Data indicate: (a) the most recent major aeolian activity occurred in response to and coincident with growth and decay of the Laurentide Ice Sheet (LIS); (b) by ∼40 ka, aeolian processes greatly influenced landscape evolution in all three regions; (c) aeolian activity peaked in OIS2; (d) OIS3 and OIS2 aeolian records are in regional agreement with paleoecological records; and (e) limited aeolian activity occurred in the Holocene (EGCP and ACP). Paleoclimate and atmospheric-circulation models (PCMs/ACMs) for the last glacial maximum (LGM) show westerly winter winds for the unglaciated eastern USA, but do not resolve documented W and SW winds in the SEACP and WNW and N winds in the MACP. The minimum areal extent of aeolian deposits in the EGCP and ACP is ∼10,000 km2. For the LMV, it is >80,000 km2. Based on these estimates, published PCMs/ACMs likely underrepresent the areal extent of LGM aeolian activity, as well as the extent and complexity of climatic changes during this interval.

  2. Holocene aeolian sediments on the NE Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Stauch, G.; Lehmkuhl, F.; Hilgers, A.; Zhao, H.

    2012-04-01

    The semiarid climate of the northeastern Tibetan Plateau supports the formation of different types of aeolian sediments and landforms during the Holocene. Aeolians silts and sands in the catchment of the Donggi Cona in an elevation above 4000m to 4800 m asl reflect variable climate conditions during that time as well as different sediment sources. Based on 51 OSL datings and catchment wide geomorphological mapping a complex pattern of long and short distance sediment transport has been reconstructed. Only few aeolian archives are preserved from the late Pleistocene in this mountain environment indicating cold and dry climate conditions which prevented a continuous accumulation. During the early Holocene a phase of increased aeolian sedimentation of sand at the slopes of the mountains has been reconstructed. The sand originated from a large alluvial fan which was highly active during the Pleistocene. In addition, a thin loess cover is preserved at a few sites in the neighboring mountains ranges. The sedimentation of the loess started around 2000 years later than the sedimentation of the sand at the foot slope. Both archives are related to an increase in precipitation at the northern margin of the Tibetan Plateau which was related to a strengthening of the Asian Monsoon during that time. The wetter climate conditions favored the development of a vegetation cover which leads to the trapping and fixation of the aeolian sediments. However, with a further strengthening of the Monsoon systems these archives subsequently eroded due to higher run off and accumulated as colluvial and fluvial deposits in the basins. These phase lasted until 6 ka. A second aeolian period started at around 3 ka with the formation new dunes in the basins. This period can be associated with dry and cold climate of the late Holocene supporting the reactivation of the sand in the area. This might be further enhanced by an increased human impact by grazing during the late Holocene and resulting

  3. Influence of organic matter on the transport of Cryptosporidium parvum oocysts in a ferric oxyhydroxide-coated quartz sand saturated porous medium

    USGS Publications Warehouse

    Abudalo, R.A.; Ryan, J.N.; Harvey, R.W.; Metge, D.W.; Landkamer, L.

    2010-01-01

    To assess the effect of organic matter on the transport of Cryptosporidium parvum oocysts in a geochemically heterogeneous saturated porous medium, we measured the breakthrough and collision efficiencies of oocysts as a function of dissolved organic matter concentration in a flow-through column containing ferric oxyhydroxide-coated sand. We characterized the surface properties of the oocysts and ferric oxyhydroxide-coated sand using microelectrophoresis and streaming potential, respectively, and the amount of organic matter adsorbed on the ferric oxyhydroxide-coated sand as a function of the concentration of dissolved organic matter (a fulvic acid isolated from Florida Everglades water). The dissolved organic matter had no significant effect on the zeta potential of the oocysts. Low concentrations of dissolved organic matter were responsible for reversing the charge of the ferric oxyhydroxide-coated sand surface from positive to negative. The charge reversal and accumulation of negative charge on the ferric oxyhydroxide-coated sand led to increases in oocyst breakthrough and decreases in oocyst collision efficiency with increasing dissolved organic matter concentration. The increase in dissolved organic matter concentration from 0 to 20 mg L-1 resulted in a two-fold decrease in the collision efficiency. ?? 2009 Elsevier Ltd.

  4. Gully annealing by aeolian sediment: field and remote-sensing investigation of aeolian-hillslope-fluvial interactions, Colorado River corridor, Arizona, USA

    USGS Publications Warehouse

    Sankey, Joel B.; Draut, Amy E.

    2014-01-01

    Processes contributing to development of ephemeral gully channels are of great importance to landscapes worldwide, and particularly in dryland regions where soil loss and land degradation from gully erosion pose long-term land-management problems. Whereas gully formation has been relatively well studied, much less is known of the processes that anneal gullies and impede their growth. This study of gully annealing by aeolian sediment, spanning 95 km along the Colorado River corridor in Glen, Marble, and Grand Canyon, Arizona, USA, employed field and remote sensing observations, including digital topographic modelling. Results indicate that aeolian sediment activity can be locally effective at counteracting gully erosion. Gullies are less prevalent in areas where surficial sediment undergoes active aeolian transport, and have a greater tendency to terminate in active aeolian sand. Although not common, examples exist in the record of historical imagery of gullies that underwent infilling by aeolian sediment in past decades and evidently were effectively annealed. We thus provide new evidence for a potentially important interaction of aeolian–hillslope–fluvial processes, which could affect dryland regions substantially in ways not widely recognized. Moreover, because the biologic soil crust plays an important role in determining aeolian sand activity, and so in turn the extent of gully development, this study highlights a critical role of geomorphic–ecologic interactions in determining arid-landscape evolution.

  5. Ancient wet aeolian environments on Earth: Clues to presence of fossil/live microorganisms on Mars

    USGS Publications Warehouse

    Mahaney, W.C.; Milner, M.W.; Netoff, D.I.; Malloch, D.; Dohm, J.M.; Baker, V.R.; Miyamoto, H.; Hare, T.M.; Komatsu, G.

    2004-01-01

    Ancient wet aeolian (wet-sabkha) environments on Earth, represented in the Entrada and Navajo sandstones of Utah, contain pipe structures considered to be the product of gas/water release under pressure. The sediments originally had considerable porosity allowing the ingress of living plant structures, microorganisms, clay minerals, and fine-grained primary minerals of silt and sand size from the surface downward in the sedimentary column. Host rock material is of a similar size and porosity and presumably the downward migration of fine-grained material would have been possible prior to lithogenesis and final cementation. Recent field emission scanning electron microscopy (FESEM) and EDS (energy-dispersive spectrometry) examination of sands from fluidized pipes in the Early Jurassic Navajo Sandstone reveal the presence of fossil forms resembling fungal filaments, some bearing hyphopodium-like structures similar to those produced by modern tropical leaf parasites. The tropical origin of the fungi is consistent with the paleogeography of the sandstone, which was deposited in a tropical arid environment. These fossil fungi are silicized, with minor amounts of CaCO3 and Fe, and in some cases a Si/Al ratio similar to smectite. They exist as pseudomorphs, totally depleted in nitrogen, adhering to the surfaces of fine-grained sands, principally quartz and orthoclase. Similar wet aeolian paleoenvironments are suspected for Mars, especially following catastrophic sediment-charged floods of enormous magnitudes that are believed to have contributed to rapid formation of large water bodies in the northern plains, ranging from lakes to oceans. These events are suspected to have contributed to a high frequency of constructional landforms (also known as pseudocraters) related to trapped volatiles and water-enriched sediment underneath a thick blanket of materials that were subsequently released to the martian surface, forming piping structures at the near surface and

  6. Radar-aeolian roughness project

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald; Dobrovolskis, A.; Gaddis, L.; Iversen, J. D.; Lancaster, N.; Leach, Rodman N.; Rasnussen, K.; Saunders, S.; Vanzyl, J.; Wall, S.

    1991-01-01

    The objective is to establish an empirical relationship between measurements of radar, aeolian, and surface roughness on a variety of natural surfaces and to understand the underlying physical causes. This relationship will form the basis for developing a predictive equation to derive aeolian roughness from radar backscatter. Results are given from investigations carried out in 1989 on the principal elements of the project, with separate sections on field studies, radar data analysis, laboratory simulations, and development of theory for planetary applications.

  7. Geometric aeolian dune crest migration model

    NASA Astrophysics Data System (ADS)

    Swanson, T.; Mohrig, D. C.; Kocurek, G.; Pedersen, A.

    2012-12-01

    We present a geometric aeolian dune crest model that provides a predictive linkage between local lee face sediment deposition and wholesale landform change. The model is driven using an initial condition of 3D dune crest data obtained from a time series of airborne LIDAR surveys of White Sands, NM, and wind observations from nearby Holloman AFB. Transient dune migration is modeled by volume filling of a simple theoretical dune geometry with sediment flux derived using shear velocity dependent transport (Bagnold, 1941) modified by a new incidence angle dependent lee face sediment deposition function styled after Rubin and Hunter (1985). Model calibration is achieved using an azimuthal wind direction correction and threshold values for shear velocity dependent sediment transport. Agreement between observations and model results are presented using a l2 norm representing a global error estimate.

  8. Persistent Aeolian Activity at Endeavour Crater, Mars

    NASA Astrophysics Data System (ADS)

    Chojnacki, M.; Michaels, T. I.; Fenton, L. K.

    2013-12-01

    Long-term monitoring of sites that are known to have active dunes and ripples is generally limited to 3 Mars-Years (MY). Here, we discuss new results of dune activity and albedo change in Endeavour crater (EC), Meridiani Planum (MP) that record eight MY of aeolian activity. MP dune fields often show large yearly variations in albedo; EC darkened by ~12% in TES albedo between MY 24 and 26 (from 0.14 to 0.12). THEMIS VIS albedo of dunes did not change significantly from MY 26 to 29, but did decrease notably (~15 %) in MY 30. These darkening events are most likely related to aeolian-driven dust cleaning (e.g., removal by saltating sand, dust devils). For example, the Opportunity rover (poised on the western rim of EC) observed evidence for a MY 31 dune field dust-clearing event. HiRISE monitoring of MP has shown it be one of the most active regions outside of north polar latitudes. Paired images of western EC taken 3 MY apart show clear evidence for dune modification that include: ripple migration, change in dune perimeters, exposure of previously buried light-toned rock, and/or burial of rock by sand (Fig. 1a-1b). Dune slip face movement is evident for most dunes, where crests and aprons advanced (2-7 m) in the downwind direction (to the SSE) at rates of 0.7-2.3 m per MY. Small dome dunes in the eastern EC were found to have a large degree of aeolian activity (e.g., deflation and/or translation) by an earlier study that used MGS-MRO images (MY 24-30). New MY 31 images validate earlier observations, showing clear evidence for bedform deflation where dunes often occupy less area (~50%) than in earlier MY 29 images (Fig. 1c-1d). Areal removal rates are on par with earlier estimates. Bedform modification and sand streamer orientation appear to be caused by a NNW wind regime, consistent with earlier observations, mesoscale modeling, and the transport direction of barchans to the west. Dunes in EC are now known to be periodically (consistently?) active from over a decade

  9. Transport, retention, and long-term release behavior of ZnO nanoparticle aggregates in saturated quartz sand: Role of solution pH and biofilm coating.

    PubMed

    Han, Yosep; Hwang, Gukhwa; Kim, Donghyun; Bradford, Scott A; Lee, Byoungcheun; Eom, Igchun; Kim, Pil Je; Choi, Siyoung Q; Kim, Hyunjung

    2016-03-01

    The transport, retention, and long-term release of zinc oxide nanoparticle aggregates (denoted below as ZnO-NPs) were investigated in saturated, bare and biofilm (Pseudomonas putida) coated sand packed columns. Almost complete retention of ZnO-NPs occurred in bare and biofilm coated sand when the influent solution pH was 9 and the ionic strength (IS) was 0.1 or 10 mM NaCl, and the retention profiles were always hyper-exponential. Increasing the solution IS and biofilm coating produced enhanced retention of ZnO-NPs near the column inlet. The enhanced NPs retention at high IS was attributed to more favorable NP-silica and NP-NP interactions; this was consistent with the interaction energy calculations. Meanwhile, the greater NPs retention in the presence of biofilm was attributed to larger roughness heights which alter the mass transfer rate, the interaction energy profile, and lever arms associated with the torque balance; e.g., scanning electron and atomic force microscopy was used to determine roughness heights of 33.4 nm and 97.8 nm for bare sand and biofilm-coated sand, respectively. Interactions between NPs and extracellular polymeric substances may have also contributed to enhanced NP retention in biofilm-coated sand at low IS. The long-term release of retained ZnO-NPs was subsequently investigated by continuously injecting NP-free solution at pH 6, 9, or 10 and keeping the IS constant at 10 mM. The amount and rate of retained ZnO-NP removal was strongly dependent on the solution pH. Specifically, almost complete removal of retained ZnO-NPs was observed after 627 pore volumes when the solution pH was 6, whereas much less Zn was recovered when the eluting solution pH was buffered to pH = 9 and especially 10. This long-term removal was attributed to pH-dependent dissolution of retained ZnO-NPs because: (i) the solubility of ZnO-NPs increases with decreasing pH; and (ii) ZnO-NPs were not detected in the effluent. The presence of biofilm also decreased the

  10. Transport, retention, and long-term release behavior of ZnO nanoparticle aggregates in saturated quartz sand: Role of solution pH and biofilm coating.

    PubMed

    Han, Yosep; Hwang, Gukhwa; Kim, Donghyun; Bradford, Scott A; Lee, Byoungcheun; Eom, Igchun; Kim, Pil Je; Choi, Siyoung Q; Kim, Hyunjung

    2016-03-01

    The transport, retention, and long-term release of zinc oxide nanoparticle aggregates (denoted below as ZnO-NPs) were investigated in saturated, bare and biofilm (Pseudomonas putida) coated sand packed columns. Almost complete retention of ZnO-NPs occurred in bare and biofilm coated sand when the influent solution pH was 9 and the ionic strength (IS) was 0.1 or 10 mM NaCl, and the retention profiles were always hyper-exponential. Increasing the solution IS and biofilm coating produced enhanced retention of ZnO-NPs near the column inlet. The enhanced NPs retention at high IS was attributed to more favorable NP-silica and NP-NP interactions; this was consistent with the interaction energy calculations. Meanwhile, the greater NPs retention in the presence of biofilm was attributed to larger roughness heights which alter the mass transfer rate, the interaction energy profile, and lever arms associated with the torque balance; e.g., scanning electron and atomic force microscopy was used to determine roughness heights of 33.4 nm and 97.8 nm for bare sand and biofilm-coated sand, respectively. Interactions between NPs and extracellular polymeric substances may have also contributed to enhanced NP retention in biofilm-coated sand at low IS. The long-term release of retained ZnO-NPs was subsequently investigated by continuously injecting NP-free solution at pH 6, 9, or 10 and keeping the IS constant at 10 mM. The amount and rate of retained ZnO-NP removal was strongly dependent on the solution pH. Specifically, almost complete removal of retained ZnO-NPs was observed after 627 pore volumes when the solution pH was 6, whereas much less Zn was recovered when the eluting solution pH was buffered to pH = 9 and especially 10. This long-term removal was attributed to pH-dependent dissolution of retained ZnO-NPs because: (i) the solubility of ZnO-NPs increases with decreasing pH; and (ii) ZnO-NPs were not detected in the effluent. The presence of biofilm also decreased the

  11. Geochemical characterization of a Holocene aeolian profile in the Zhongba area (southern Tibet, China) and its paleoclimatic implications

    NASA Astrophysics Data System (ADS)

    Li, Tuoyu; Wu, Yongqiu; Du, Shisong; Huang, Wenmin; Hao, Chengzhi; Guo, Chao; Zhang, Mei; Fu, Tianyang

    2016-03-01

    The Zhongba area lies in the valley of the Maquan River in southern Tibet, where there are both strong modern aeolian activities and ancient aeolian sand sediments. A Holocene aeolian sand and paleosol profile in the Zhongba area was selected for study and termed (Zhuzhu (ZZ) profile). The chronology of the ZZ profile was established by optically stimulated luminescence (OSL) and accelerator mass spectrometry (AMS) 14C dating. Based on the grain size and geochemical elements of the ZZ profile, the geochemical characterization was analyzed, the Holocene aeolian activity processes were reconstructed in the study area, and the paleoclimatic implications were discussed. The major elements and the chemical indicators are highly correlated with different grain-sizes in the ZZ profile. The evolutionary sequence of the aeolian activities and the paleoclimate in Holocene reveal four stages: before 7.3 ka BP, the climate was warm and wet with weak winds when the sand paleosol developed; at 7.3-3.8 ka BP, the climate turned dry, with strong aeolian activities; at 3.8-0.7 ka BP, the climate became wetter and the winds weakened when the silt paleosol developed; and since 0.7 ka BP, it was cold and dry with strong aeolian activities.

  12. Contemporary proglacial aeolian sediment transport in West Greenland

    NASA Astrophysics Data System (ADS)

    Bullard, J. E.; Austin, M. J.

    2007-12-01

    Glacial erosion processes produce significance quantities of fine sediments that are washed out from beneath glaciers by meltwater. When deposited on the glacier floodplain they dessicate and strong ice-driven winds can entrain and transport them across the landscape resulting in the formation of sand dunes and loess, and adding very fine particles (dust) to the atmosphere. Recent studies suggest that locally-generated dust can play an important role in regulating albedo and the melting rate of glaciers. Very few field process studies have examined the relationship between sediment-delivery to the proglacial floodplain by meltwater and the subsequent aeolian erosion and deposition of these fine sediments. This research reports the use of semi-isokinetic directional sediment samplers to make an initial assessment of the rates of transport of dust and sand in Sandflugtdalen, a valley adjacent to the West Greenland ice sheet. Vertical arrays (z(m) = 0.18, 0.43, 0.85, 1.4) of samplers were deployed in a down valley transect over a distance of 4 km. Trapped sediments were retrieved after intervals of 1 week and 9 weeks. The mass of sediment collected in the traps varied from 0.002-3.62 g cm2 wk-1. As expected, near surface traps collected more, and coarser, sediment than those deployed at 1.4 m height but the decrease in mass of sediment with height was highly variable. The array closest to the glacier trapped the greatest quantity of suspended sediment and the density of suspended sediment decreased with distance down valley. The flux of aeolian sediment comprises clays, silts and sand-sized particles. Areas of aeolian entrainment, transport and deposition are closely linked to the development and distribution of sediments on the proglacial floodplain which varies considerably in terms of surface roughness. At the east end of the valley, close to the ice sheet, aeolian sediment flux is controlled by sediment supply and topography rather than wind speed. Further down

  13. Transport Behavior of Functionalized Multi-Wall Carbon Nanotubes in Water-Saturated Quartz Sand as a Function of Tube Length

    PubMed Central

    Wang, Yonggang; Kim, Jae-Hong; Baek, Jong-Beom; Miller, Gary W.; Pennell, Kurt D.

    2012-01-01

    A series of one-dimensional column experiments was conducted to examine the effects of tube length on the transport and deposition of 4-ethoxybenzoic acid functionalized multi-wall carbon nanotubes (MWCNTs) in water-saturated porous media. Aqueous MWCNTs suspensions were prepared to yield three distributions of tube lengths; 0.02–1.3 μm (short), 0.2–7.5 μm (medium), and 0.2–21.4 μm (long). Results of the column studies showed that MWCNT retention increased with increasing tube length. Nevertheless, more than 76% of the MWCNT mass delivered to the columns was detected in effluent samples under all experimental conditions, indicating that the functionalized MWCNTs were readily transported through 40–50 mesh Ottawa sand. Examination of MWCNT length distributions in the effluent samples revealed that nanotubes with lengths greater than 8 μm were preferentially deposited. In addition, measured retention profiles exhibited the greatest MWCNT deposition near the column inlet, which was most pronounced for the long MWCNTs, and decreased sharply with travel distance. Scanning electron microscope (SEM) images showed that MWCNTs were deposited on sand surfaces over the entire column length, while larger MWCNT bundles were retained at grain intersections and near the column inlet. A mathematical model based on clean bed filtration theory (CBFT) was unable to accurately simulate the measured retention profile data, even after varying the weighting function and incorporating a nonuniform attachment rate coefficient expression. Modification of the mathematical model to account for physical straining greatly improved predictions of MWCNT retention, yielding straining rate coefficients that were four orders-of-magnitude greater than corresponding attachment rate coefficients. Taken in concert, these experimental and modeling results demonstrate the potential importance of, and need to consider, particle straining and tube length distribution when describing MWCNT

  14. Aeolian deposition and its effect on soil and vegetation changes on stabilised desert dunes in northern China

    NASA Astrophysics Data System (ADS)

    Fearnehough, W.; Fullen, M. A.; Mitchell, D. J.; Trueman, I. C.; Zhang, J.

    1998-06-01

    Spatial and temporal patterns of aeolian deposition at Shapotou, northern China, were studied on a chronosequence (0, 12, 29 and 37 years) of stabilised desert dunes. Aeolian deposition markedly influenced soil and vegetation changes on the dunes. The spatial pattern of aeolian deposition was studied using dust traps and measurements of the depth of aeolian accumulation. Mean deposition from August 1993 to July 1994 was 372 g/m 2, and showed a complex spatial pattern, determined by prevailing wind direction, topography and shrub distribution. Contrasts between the topographic pattern of aeolian deposition (trap data) and accumulation (thickness of aeolian deposits) indicate that the measured pattern of aeolian deposition alone is insufficient to explain the pattern of accumulation. An accretionary surface soil or `grey sand' (containing much aeolian-derived particles) is developing on the stabilised dunes at a mean rate of 1.6 mm/year. Rapid accumulation of aeolian particles significantly changed the surface environment. Increased moisture retention by the finer `grey sand' resulted in decreased moisture penetration and subsequent desiccation of the deeper dune sands. This has led to vegetation changes, with the deep-rooted, planted xerophytic shrubs declining from 12 to only 3% cover after 37 years of stabilisation. The shrubs were replaced by a widespread microphytic crust and later by shallow-rooted annual species, which increased from 0 to approximately 12% cover over the same period. The implications of projected increases in the dustiness of arid regions on the stability of desert dunes and vegetated desert margins are discussed. Stabilised dunes may become increasingly vulnerable to deflation with the progressive decline in shrub cover.

  15. The origin of transverse instability of aeolian megaripples

    NASA Astrophysics Data System (ADS)

    Yizhaq, Hezi; Katra, Itzhak; Schmerler, Erez; Silvestro, Simone

    2016-04-01

    Two different kinds of sand ripples, normal ripples and megaripples which differ in their sizes, grain-size compositions and morphology are observed in nature. While normal ripples form almost straight lines, megaripples have greater sinuosity due to their transverse instability, a property that causes small undulations to grow in time. The physical origin of this pronounced transverse instability has remained elusive. We studied ripple development in a series of wind tunnel experiments with different mixtures of sand. For unimodal fine sand, initial differences in height diminished in time leading to straight ripples. In contrast, for bimodal sand initial perturbations in height remained and even grew in time resulting in more wavy patterns. The results indicate that the differences in sinuosity between normal and megaripples are due to grain size segregation at three dimensions with a positive feedback between coarse grains and ripples height. The accumulations of coarse particles at the crest allow further growth of the ripples at these locations thus decreasing their migration rate. This in turn allows further accumulation of coarse grains. This mechanism leads to variations of the thickness of the armoring layer along the ripple crest which correlates with crest height. Field measurements of grain size distribution and sinuosity index along megaripple crests support the findings. In addition, the sinuosity of megaripples and TARs (Transverse Aeolian Ridges) on Mars at several locations was calculated from images taken from High Resolution Imaging Science Experiment (HiRISE). These images provide the capability of obtaining orbital images of Mars with a resolution down to 25 cm/pixel. The preliminary results show that due to their bimodal grain-size distribution megaripples are more undulated than TARs. This new look at aeolian bedforms on Mars can help in a better classification of them and improve the understanding of the aeolian processes involved in their

  16. Postdam evolution of aeolian landscapes in the Colorado River corridor through Grand Canyon National Park, Arizona, USA

    NASA Astrophysics Data System (ADS)

    Draut, A. E.; Collins, B. D.; Fairley, H. C.; Rubin, D. M.

    2009-12-01

    Sediment deposits within the Colorado River corridor in Grand Canyon, USA, include fluvial sandbars and aeolian dune fields; fluvial deposits are the primary sediment source for the dune fields. We present a conceptual model describing evolution of aeolian landscapes in Grand Canyon, based upon field measurements of wind and sand transport and on surveys of vegetation and substrate properties. The data indicate that Glen Canyon Dam operations can affect geomorphic evolution above the elevation reached by river flows because of the link between fluvial deposition and aeolian transport of sediment. Evolution of aeolian landscapes, in turn, can affect the stability and preservation of archaeological material that occurs in numerous dune fields. Before closure of Glen Canyon Dam on the Colorado River in 1963, sediment-rich floods (mean annual flood 2400 m3/s) formed sandbars from which wind moved sand inland to form aeolian dunes. After dam operations reduced the amplitude and frequency of high flows, and eliminated the mainstream fluvial sediment supply, fluvial sandbars lost open sand area owing to erosion by river flows and the spread of riparian vegetation. Two types of aeolian landscapes now occur: (1) modern fluvial sourced, those downwind of postdam sandbars; and (2) relict fluvial sourced, which are not downwind of postdam sandbars and whose primary sediment source was deposits from predam floods that were larger than any postdam flows have been. Sediment supply has been reduced to type (1) dune fields because postdam sandbars are smaller than in the predam era; new sediment supply to type (2) dune fields has been essentially eliminated. Decreased aeolian sediment supply leads to increased vegetation and biologic soil crust in dune fields, and can result in greater susceptibility to gully formation during rainfall due to lack of infilling aeolian sand. Modern-fluvial-sourced dunes can receive new windblown sand from sandbars formed by controlled

  17. The potential scale of aeolian structures on Venus

    NASA Technical Reports Server (NTRS)

    Marshall, J. R.; Greeley, Ronald

    1991-01-01

    Simulations of the Venusian aeolian environment with the Venus Wind Tunnel have shown that microdunes are formed during the entrainment of sand-sized material. These structures are several tens of centimeters long (2-3 cm high) and combine the morphological and behavioral characteristics of both full-scale terrestrial dunes and current ripples formed in subaqueous environments. Their similarity to both reflects the fact that the Venusian atmosphere has a density intermediate between air and water. Although the development of microdunes in the wind tunnel experiments was limited by tunnel dimensions, it is possible to make some predictions about their potential size on Venus, and the potential size of related aeolian structures. Microdunes are fluid-filled structures (as are dunes and current ripples) and as such have no theoretical upper limit to their size from a fluid dynamics viewpoint. Limitations to size observed in subaqueous structures are set by, for example, water depth; limitations to the size of dunes are set by, for example, sand supply. It is therefore reasonable to suppose that the microdunes on Venus could evolve into much larger features than those observed in experiments. In addition, the researchers note that current ripples (which are closely related to microdunes) are often found in association with giant ripples that have dimensions similar to aeolian dunes. Thus, it may be reasonable to assume that analogous large scale structures occur on Venus. Both (terrestrial) aeolian and subaqueous environments generate structures in excess of one hundred meters in wavelength. Such dimensions may therefore be applicable to Venusian bedforms. Analysis of Magellan data may resolve the issue.

  18. The effects of water content and water resistivity on the dispersion of resistivity and dielectric constant in quartz sand in the frequency range 10^2 to 10^8 Hz

    USGS Publications Warehouse

    Eberle, W.R.

    1983-01-01

    Using modifications of previously developed methods, measurements were made of the resistivity and the dielectric constant of two similar quartz sands of different porosity over the frequency range 102-108 Hertz for various water contents and water resistivities. Dispersion is pronounced in all the resistivity data above 106 Hz. As water content decreases, resistivity dispersion becomes noticeable at lower frequencies. The resistivity data at all frequencies, however, fit an empirical prediction formula relating observed resistivity to water saturation and resistivity of the saturated sample. The data suggest that the dispersion of resistivity of some earth materials with frequency may be predicted on the basis of curve matching of the data obtained in this investigation with the resistivity of the material at a frequency of 100 Hz or lower. The dispersion of dielectric constant with frequency is pronounced at all frequencies, being more pronounced with increasing water content. The shape of the dispersion curve is dependent on the resistivity of the water in the sample.

  19. Mean flow and Reynolds stress structure over aeolian ripples

    NASA Astrophysics Data System (ADS)

    Li, Bailiang; McKenna Neuman, Cheryl; Bédard, Otto; O'Brien, Patrick

    2015-04-01

    Mean flow and turbulence structure on transverse ripples have been well documented in hydrodynamic literature. However, very few studies have described the flow characteristics over aeolian ripples. This study adopted laser Doppler anemometry (LDA) to measure the wind field above granular ripples with different bimodal particle size distributions in a wind tunnel. Multiple runs were conducted to examine the vertical profiles of time-averaged horizontal and vertical velocities and Reynolds stress above four different locations: crest, lee slope, trough, and stoss slope. The rippled sand bed has a fine beige fraction with grain size smaller than 0.542 mm concentrated in the troughs and a coarse fraction dyed in red with grain size greater than 0.542 mm concentrated in the crests. The magnitude of the ripples at equilibrium is controlled by both wind velocity and the ratio of beige sand to red sand. Freestream velocity has a range between 8-11 m/s (above the saltation threshold of beige sand and below the threshold of red sand) and the percentage coarse by mass varies from 5.2% to 27.5% with median grain size from 0.289 mm to 0.399 mm. Experimental results indicate that the ripples have the wave length ranged between 20 mm and 140 mm with a characteristic ripple index (wave length/wave height) of 15. Flow streamlines are generally parallel to the bed surface, which is inconsistent with previous hydrodynamic observations that a return flow is usually found at the lee side of the ripples. Reynolds stress has demonstrated a strong spatial differentiation near the sand surface: greatest at crests and smallest at the troughs, however, this difference diminishes with elevation. This is an exploratory study on the turbulence characteristics of air flow above aeolian ripples, and we believe the finding of this research will enhance the understanding the interaction mechanisms between the air and bed morphology.

  20. Aeolian transport pathways along the transition from Tibetan highlands towards northwestern Chinese deserts

    NASA Astrophysics Data System (ADS)

    Nottebaum, Veit; Lehmkuhl, Frank; Stauch, Georg

    2014-05-01

    The identification and semi-quantification of aeolian transport pathways enhances the understanding of aeolian sediment archive formation and thus supports reliability and explanatory power concerning palaeoenvironmental reconstructions. Grain size analysis of 279 surface sediment samples from the transition of Tibetan highlands (Qilian Shan) towards northwestern Chinese deserts allows the differentiation of contributing pathways among three types of aeolian sediments: silty loess, sandy loess, and aeolian sands. The study area exhibits a high diversity of geomorphological surfaces due to varieties in relief, elevation and climatic conditions. Therefore, it provides the opportunity to investigate the characteristics of sediments in different geomorphological settings. Using the peaks of grain size frequency's standard deviation of primary loess allows identification of the most sensitive fractions to varying accumulation conditions. mU/fS-ratio (7 - 13 μm / 58 - 84 μm) of primary silty loess relates the far-travelled dust proportion to the locally transported fine sand component. In vicinity to fluvial channels in the foreland mU/fS-values are significantly decreased, whereas mU/fS-values increase with altitude (r2 = 0.74). This indicates higher contribution of long distance transport compared to lower regions. A prominent increase of mU/fS-values above 3000 m asl likely indicates an increasing contribution of fine and medium silt particles transported by Westerlies in higher altitudes. In contrast, lower areas seem to be more strongly influenced by low altitude monsoon currents (NW-Winter- / SE-summer monsoon). The difference in grain size properties is additionally enhanced by the contrasting geomorphologic settings along the mountain declivity: Plain foreland alluvial fans support fine sand supply and availability whereas steep high mountain topography provides only limited potential for fine sand deflation. Similarly, the relatively low relief in intramontane

  1. Alluvial Fans on Dunes in Kaiser Crater Suggest Niveo-Aeolian and Denivation Processes on Mars

    NASA Technical Reports Server (NTRS)

    Bourke, M. C.

    2005-01-01

    On Earth, cold region sand dunes often contain inter-bedded sand, snow, and ice. These mixed deposits of wind-driven snow, sand, silt, vegetal debris, or other detritus have been termed Niveo-aeolian deposits. These deposits are often coupled with features that are due to melting or sublimation of snow, called denivation features. Snow and ice may be incorporated into dunes on Mars in three ways. Diffusion of water vapour into pore spaces is the widely accepted mechanism for the accretion of premafrost ice. Additional mechanisms may include the burial by sand of snow that has fallen on the dune surface or the synchronous transportation and deposition of snow, sand and ice. Both of these mechanisms have been reported for polar dunes on Earth. Niveo-aeolian deposits in polar deserts on Earth have unique morphologies and sedimentary structures that are generally not found in warm desert dunes. Recent analysis of MOC-scale data have found evidence for potential niveo-aeolian and denivation deposits in sand dunes on Mars.

  2. Terrestrial sensitivity to abrupt cooling recorded by aeolian activity in northwest Ohio, USA

    USGS Publications Warehouse

    Campbell, M.C.; Fisher, T.G.; Goble, R.J.

    2011-01-01

    Optically stimulated luminescence dated sand dunes and Pleistocene beach ridges in northwest Ohio are used to reconstruct landscape modification more than 5000. yr after deglaciation. Four of the OSL ages (13.3-11.1. ka) cluster around the Younger Dryas cold event, five ages (10.8-8.2. ka) cluster around the Preboreal, one young age (0.9-0.7. ka) records more recent aeolian activity, and one age of 15.1-13.1. ka dates a barrier spit in Lake Warren. In northwest Ohio, both landscape instability recorded by aeolian activity and a vegetation response recorded by pollen are coeval with the Younger Dryas. However, the climate conditions during the Preboreal resulting in aeolian activity are not recorded in the available pollen records. From this, we conclude that aeolian dunes and surfaces susceptible to deflation are sensitive to cooler, drier episodes of climate and can complement pollen data. Younger Dryas and Preboreal aged aeolian activity in northwestern Ohio coincides with aeolian records elsewhere in the Great Lakes region east of the prairie-forest ecotone. ?? 2011 University of Washington.

  3. Palaeoclimatic considerations of talus flatirons and aeolian deposits in Northern Fuerteventura volcanic island (Canary Islands, Spain)

    NASA Astrophysics Data System (ADS)

    Gutiérrez-Elorza, Mateo; Lucha, Pedro; Gracia, F.-Javier; Desir, Gloria; Marín, Cinta; Petit-Maire, Nicole

    2013-09-01

    Fuerteventura volcanic island has been subject to considerable aeolian activity since the Late Pleistocene. The aeolian record includes inactive aeolian deposits with interbedded entisols, whose age by OSL dating ranges between 46 and 26 ky BP. The Corralejo active dune field, where sand sheets, nebkhas, coppice dunes, blowouts, barchans and transverse dunes have been described, constitutes a more recent Aeolian deposit. Here the age is about 14 ky BP. On Fuerteventura Island aeolian dust has been deposited on valleys and slopes. This last type of accumulation has been affected by gully incision, producing talus flatirons. Samples taken on the apex of these palaeo-slopes indicate an OSL age of 30 and 50 ky BP. A palaeoclimatic succession has been interpreted during which a prevailing arid period took place in OIS 4, with the accumulation of aeolian dust. A humid period occurred in OIS 2, during which slopes were dissected and formed talus flatirons. An arid period about 14 ky BP gave rise to the Corralejo dune field, which has continued until present with slight climatic oscillations.

  4. Holocene aeolian activity in the Gonghe Basin, north-eastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Stauch, Georg; Lai, Zhongping; Lehmkuhl, Frank; Schulte, Philipp

    2016-04-01

    The Gonghe Basin is located on the north-eastern edge of Tibetan Plateau and has a mean altitude of 3000 m asl. With a size of 20.000 km² it is the largest intramontane Basin on the north-eastern Plateau. The well-studied Qinghai Basin is situated north of the Basin, while the drier central Plateau is further south-west. Previous research indicated an early onset of the aeolian accumulation in the Qinghai Basin at around 18 ka while in the areas further to the south-west aeolian archives date back only to the beginning of the Holocene. First new OSL ages from aeolian sand and loess indicate a intermediate timing of the aeolian accumulation in the Gonghe Basin at the transition from the late glacial to the Holocene. Late glacial and early Holocene ages of aeolian sediments were hitherto associated with wetter climate conditions caused by the strengthening of the Asian summer monsoon. Higher moisture availability resulted in an increased vegetation cover, leading to the permanent stabilization of the aeolian sediments. Under glacial climate conditions a constant remobilization of the sediments can be assumed. The new OSL ages from the Gonghe Basin indicate a progressive shift of the monsoonal strength in westward directions during the late glacial until the early Holocene.

  5. Monte Carlo path sampling approach to modeling aeolian sediment transport

    NASA Astrophysics Data System (ADS)

    Hardin, E. J.; Mitasova, H.; Mitas, L.

    2011-12-01

    Coastal communities and vital infrastructure are subject to coastal hazards including storm surge and hurricanes. Coastal dunes offer protection by acting as natural barriers from waves and storm surge. During storms, these landforms and their protective function can erode; however, they can also erode even in the absence of storms due to daily wind and waves. Costly and often controversial beach nourishment and coastal construction projects are common erosion mitigation practices. With a more complete understanding of coastal morphology, the efficacy and consequences of anthropogenic activities could be better predicted. Currently, the research on coastal landscape evolution is focused on waves and storm surge, while only limited effort is devoted to understanding aeolian forces. Aeolian transport occurs when the wind supplies a shear stress that exceeds a critical value, consequently ejecting sand grains into the air. If the grains are too heavy to be suspended, they fall back to the grain bed where the collision ejects more grains. This is called saltation and is the salient process by which sand mass is transported. The shear stress required to dislodge grains is related to turbulent air speed. Subsequently, as sand mass is injected into the air, the wind loses speed along with its ability to eject more grains. In this way, the flux of saltating grains is itself influenced by the flux of saltating grains and aeolian transport becomes nonlinear. Aeolian sediment transport is difficult to study experimentally for reasons arising from the orders of magnitude difference between grain size and dune size. It is difficult to study theoretically because aeolian transport is highly nonlinear especially over complex landscapes. Current computational approaches have limitations as well; single grain models are mathematically simple but are computationally intractable even with modern computing power whereas cellular automota-based approaches are computationally efficient

  6. The Icelandic volcanic aeolian environment: Processes and impacts - A review

    NASA Astrophysics Data System (ADS)

    Arnalds, Olafur; Dagsson-Waldhauserova, Pavla; Olafsson, Haraldur

    2016-03-01

    Iceland has the largest area of volcaniclastic sandy desert on Earth or 22,000 km2. The sand has been mostly produced by glacio-fluvial processes, leaving behind fine-grained unstable sediments which are later re-distributed by repeated aeolian events. Volcanic eruptions add to this pool of unstable sediments, often from subglacial eruptions. Icelandic desert surfaces are divided into sand fields, sandy lavas and sandy lag gravel, each with separate aeolian surface characteristics such as threshold velocities. Storms are frequent due to Iceland's location on the North Atlantic Storm track. Dry winds occur on the leeward sides of mountains and glaciers, in spite of the high moisture content of the Atlantic cyclones. Surface winds often move hundreds to more than 1000 kg m-1 per annum, and more than 10,000 kg m-1 have been measured in a single storm. Desertification occurs when aeolian processes push sand fronts and have thus destroyed many previously fully vegetated ecosystems since the time of the settlement of Iceland in the late ninth century. There are about 135 dust events per annum, ranging from minor storms to >300,000 t of dust emitted in single storms. Dust production is on the order of 30-40 million tons annually, some traveling over 1000 km and deposited on land and sea. Dust deposited on deserts tends to be re-suspended during subsequent storms. High PM10 concentrations occur during major dust storms. They are more frequent in the wake of volcanic eruptions, such as after the Eyjafjallajökull 2010 eruption. Airborne dust affects human health, with negative effects enhanced by the tubular morphology of the grains, and the basaltic composition with its high metal content. Dust deposition on snow and glaciers intensifies melting. Moreover, the dust production probably also influences atmospheric conditions and parameters that affect climate change.

  7. Quantifying the provenance of aeolian sediments using multiple composite fingerprints

    NASA Astrophysics Data System (ADS)

    Liu, Benli; Niu, Qinghe; Qu, Jianjun; Zu, Ruiping

    2016-09-01

    We introduce a new fingerprinting method that uses multiple composite fingerprints for studies of aeolian sediment provenance. We used this method to quantify the provenance of sediments on both sides of the Qinghai-Tibetan Railway (QTR) in the Cuona Lake section of the Tibetan Plateau (TP), in an environment characterized by aeolian and fluvial interactions. The method involves repeatedly solving a linear mixing model based on mass conservation; the model is not limited to spatial scale or transport types and uses all the tracer groups that passed the range check, Kruskal-Wallis H-test, and a strict analytical solution screening. The proportional estimates that result from using different composite fingerprints are highly variable; however, the average of these fingerprints has a greater accuracy and certainty than any single fingerprint. The results show that sand from the lake beach, hilly surface, and gullies contribute, respectively, 48%, 31% and 21% to the western railway sediments and 43%, 33% and 24% to the eastern railway sediments. The difference between contributions from various sources on either side of the railway, which may increase in the future, was clearly related to variations in local transport characteristics, a conclusion that is supported by grain size analysis. The construction of the QTR changed the local cycling of materials, and the difference in provenance between the sediments that are separated by the railway reflects the changed sedimentary conditions on either side of the railway. The effectiveness of this method suggests that it will be useful in other studies of aeolian sediments.

  8. Characterizing the instability of aeolian environments using analytical reasoning

    NASA Astrophysics Data System (ADS)

    Houser, C.; Bishop, M. P.; Dobreva, I. D.; Barrineau, C. P.; Weymer, B. A.

    2013-12-01

    Characterization of aeolian systems is complicated by rapidly changing surface-process regimes, spatio-temporal scale dependencies, and subjective interpretation of imagery and spatial data. Stability and instability of the South Texas sand sheet is addressed using an artificial intelligence approach that integrates spatial information and analytical reasoning. Specifically, the purpose of this study is to determine if landscape evolutionary sequences could be mapped and characterized based on simple conceptual relationships amongst biophysical variables including topography, vegetation, surface moisture, wind speed, and surface erosion and deposition. A digital elevation model was derived from airborne LiDAR data and combined with moisture and vegetation indices computed using Spectral feature extraction from Landsat Thematic Mapper data. Our analysis reveals unique scale dependent spatial patterns and the use of fuzzy cognitive maps provides an analytical reasoning approach to address the complexity of aeolian environments in response to changes in climate forcing. The application to other Holocene aeolian deposits and the potential for this approach to model landscape evolution are also discussed.

  9. Aeolian sedimentary processes at the Bagnold Dunes, Mars: Implications for modern dune dynamics and sedimentary structures in the aeolian stratigraphic record of Mars

    NASA Astrophysics Data System (ADS)

    Ewing, Ryan C.; Bridges, Nathan T.; Sullivan, Rob; Lapotre, Mathieu G. A.; Fischer, Woodward W.; Lamb, Mike P.; Rubin, David M.; Lewis, Kevin W.; Gupta, Sanjeev

    2016-04-01

    Wind-blown sand dunes are ubiquitous on the surface of Mars and are a recognized component of the martian stratigraphic record. Our current knowledge of the aeolian sedimentary processes that determine dune morphology, drive dune dynamics, and create aeolian cross-stratification are based upon orbital studies of ripple and dune morphodynamics, rover observations of stratification on Mars, Earth analogs, and experimental and theoretical studies of sand movement under Martian conditions. In-situ observations of sand dunes (informally called the Bagnold Dunes) by Curiosity Rover in Gale Crater, Mars provide the first opportunity to make observations of dunes from the grain-to-dune scale thereby filling the gap in knowledge between theory and orbital observations and refining our understanding of the martian aeolian stratigraphic record. We use the suite of cameras on Curiosity, including Navigation Camera (Navcam), Mast Camera (Mastcam) and Mars Hand Lens Imager (MAHLI), to make observations of the Bagnold Dunes. Measurements of sedimentary structures are made where stereo images are available. Observations indicate that structures generated by gravity-driven processes on the dune lee slopes, such as grainflow and grainfall, are similar to the suite of aeolian sedimentary structures observed on Earth and should be present and recognizable in Mars' aeolian stratigraphic record. Structures formed by traction-driven processes deviate significantly from those found on Earth. The dune hosts centimeter-scale wind ripples and large, meter-scale ripples, which are not found on Earth. The large ripples migrate across the depositional, lee slopes of the dune, which implies that these structures should be present in Mars' stratigraphic record and may appear similar to compound-dune stratification.The Mars Science Laboratory Curiosity Rover Team is acknowledged for their support of this work.

  10. Studies in Martian Aeolian Geology

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald

    2001-01-01

    This report gives the results from the investigation through March 15, 1999 for the first two years of the three year investigation (year 3 runs from March 1, 1999 to February 27, 2000). The investigation included three tasks, all involving windblown dust (particles a few micrometers in diameter) to simulate the aeolian regime on Mars. Experiments were conducted primarily in the Mars Surface Wind Tunnel (MARSWIT) at NASA-Ames Research Center.

  11. Microtopography-Induced Lag Formation on Bedforms and Biogenic Structures in Aeolian Settings

    NASA Astrophysics Data System (ADS)

    Buynevich, I. V.

    2010-12-01

    In a variety of sand-dominated depositional settings, high-energy events typically culminate with the formation of a lag deposit, expressed as an increase in coarse fraction, accumulation of shell fragments, or a concentration of heavy minerals (density >2.9) beyond their background values. In aeolian settings, grain impact plays a greater role in sediment transport than under subaqueous conditions, but there is a similar segregation of minerals by size and density due to different threshold entrainment and fall velocities of sand grains. For fine-to-medium sand transition, near-surface wind velocities increase from 4.5 m/s for quartz to 6.5 m/s for magnetite, which has twice the density. Most heavy minerals occur in a finer fraction of the surface sediment layer, which further increases their entrainment threshold due to high pivot angles and sheltering by the lighter minerals. Prolonged periods of increased wind activity generate heavy-mineral-enriched horizons ranging in thickness from a few grain diameters to more than 10-20 cm, producing distinct marker horizons and placers of economic importance. However, even under relatively low wind regime, localized density lag may form due to minor variations in topography and bed roughness. This process was exemplified along Revere Beach (Massachusetts, USA), where a series of 15-cm-high steps were installed at the base of a low seawall to prevent the formation of aeolian ramp that facilitated frequent overtopping. During the following months, a clear trend was established where the heavy-mineral fraction (primarily almandine garnet) progressively increased in a landward direction, toward higher substrate elevations. In natural settings with even a small background fraction of heavy minerals (2-5%), microtopographic highs of less than 1 cm are sufficient for the formation of a density lag. In a backshore area of Assateague Island (Maryland, USA), a clear increase in heavy-mineral content (mostly magnetite) was observed

  12. Atlas of Dutch drift sands

    NASA Astrophysics Data System (ADS)

    Riksen, Michel; Jungerius, Pieter

    2013-04-01

    The Netherlands is well known for its aeolian landscapes. Frequent storms during the High Middle Ages (1000-1300 AD) reactivated Pleistocene coversands and river dunes and are responsible for the formation of the Holocene drift sands at a scale which is unique for Europe. A hypothesized relationship with farmer practices for making plaggensoils has recently been refuted, because drift sand formation began centuries earlier. The coastal dune belt with their parabolic dunes dates from the same period as the drift sand. An estimate of the extent of drift sands can be made from soil maps: drift sands are too young to show much profile development (Regosols). With this method Koster estimated the maximum extent of Holocene drift sands in the Netherlands to be about 800 km2 (Koster 2005). Laser altimetry allows a more precise estimate of the total surface affected by wind from the characteristic relief patterns produced by the Holocene wind, which is different from the smooth surface of cover sand deposits. Laser altimetry has been used before to investigate the mechanism of drift sand formation (Jungerius & Riksen 2010). Most of the surface affected by wind is not active anymore, but the tell-tale rough surface survived ages of different landuse. The total affected surface amounts to 825 km2. It is noteworthy that both methods give comparable results. We recorded a total number of 367 of affected areas of varying shapes, ranging in size from 1.6 ha to a large complex of drif sands of 7,119.5 ha. As is to be expected from their mode of origin, most occurrences are associated with cover sands, and with river dunes along the river Meuse and smaller rivers in other parts of the country. Particularly the final phases of cover sand and river dunes that show more relief as parabolic dunes were affected. There are also small aeolian deposits at the lee side blown from fallow agricultural fields but they are (sub)recent. Most of the relief is irregular, but the larger

  13. Publication trends in Aeolian research: An analysis of the biblography of Aeolian research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An analysis of the Bibliography of Aeolian Research has provided information regarding publication trends in aeolian research. Overall, results suggest that there has been a significant increase in the number of publications per year since the first aeolian-research publication appeared in 1646. P...

  14. Selective deposition response to aeolian-fluvial sediment supply in the desert braided channel of the upper Yellow River, China

    NASA Astrophysics Data System (ADS)

    Wang, H.; Jia, X.; Li, Y.; Peng, W.

    2015-09-01

    Rivers flow across aeolian dunes and develop braided stream channels. Both aeolian and fluvial sediment supplies regulate sediment transport and deposition in such cross-dune braided rivers. Here we show a significant selective deposition in response to both aeolian and fluvial sediment supplies in the Ulan Buh desert braided channel. The Ulan Buh desert is the main coarse sediment source for this desert braided channel, and the mean percentage of the coarser (> 0.08 mm) grains on the aeolian dunes surface is 95.34 %. The lateral selective deposition process is developed by the interaction between the flows and the aeolian-fluvial sediment supplies, causing the coarser sediments (> 0.08 mm) from aeolian sand supply and bank erosion to accumulate in the channel centre and the finer fluvial sediments (< 0.08 mm) to be deposited on the bar and floodplain surfaces, forming a coarser-grained thalweg bed bounded by finer-grained floodplain surfaces. This lateral selective deposition reduces the downstream sediment transport and is a primary reason for the formation of an "above-ground" river in the braided reach of the upper Yellow River in response to aeolian and fluvial sediment supplies.

  15. The geomorphology and evolution of aeolian landforms within a river valley in a semi-humid environment: A case study from Mainling Valley, Qinghai-Tibet Plateau

    NASA Astrophysics Data System (ADS)

    Zhou, Na; Zhang, Chun-Lai; Wu, Xiao-Xu; Wang, Xun-ming; Kang, Li-qiang

    2014-11-01

    This paper systematically analyzes a valley's aeolian landforms in a semi-humid region and presents a model of its contemporary evolution. Mainling Valley of the Yarlung Zangbo River on the Qinghai-Tibet Plateau was chosen as the case study for the analysis of morphometric characteristics and the evolution sequence of aeolian landforms via field data and remote sensing images. The aeolian landforms were primarily composed of aeolian sand belts on river terraces and dunes (sheets) on hillside slopes. Three types of aeolian sand belts were identified based on their dune types. In type I belts, an erosive air stream combined with relatively high vegetation cover (10%) produced sparsely distributed parabolic dunes with a high variability of dune heights; in type II belts, the continual reworking by the erosive air stream in combination with low vegetation cover (3%) formed more densely distributed barchans and transitional dunes with a moderate variability of dune heights; and in type III belts, the gradual evolution from an erosive sand-laden air stream to a saturated sand-laden air stream in combination with low vegetation cover (2%) produced the densest crescentic dunefields but with the least variability in dune heights. Dune sizes increase, dune shapes become uniform, and dune distribution becomes close from type I to III belts. Lateral linking and merging of the dunes were also observed within the belts. Together this evidence indicates that an evolution sequence may exist. Aeolian dunefields in the belt appear to evolve from embryonic parabolic dunefields to adolescent barchan dunefields and, subsequently, to mature compound crescentic dunefields. As the aeolian sand belt evolves into the mature stage, sand accumulations at the foot of the mountain valley can be steps for sand accumulation on valley-side slopes.

  16. Aeolian features and processes at the Mars Pathfinder landing site

    USGS Publications Warehouse

    Greeley, Ronald; Kraft, Michael; Sullivan, Robert; Wilson, Gregory; Bridges, Nathan; Herkenhoff, Ken; Kuzmin, Ruslan O.; Malin, Michael; Ward, Wes

    1999-01-01

    The Mars Pathfinder landing site contains abundant features attributed to aeolian, or wind, processes. These include wind tails, drift deposits, duneforms of various types, ripplelike features, and ventifacts (the first clearly seen on Mars). Many of these features are consistant with formation involving sand-size particles. Although some features, such as dunes, could develop from saltating sand-size aggregates of finer grains, the discovery of ventifact flutes cut in rocks strongly suggests that at least some of the grains are crystalline, rather than aggregates. Excluding the ventifacts, the orientations of the wind-related features correlate well with the orientations of bright wind steaks seen on Viking Orbiter images in the general area. They also correlate with wind direction predictions from the NASA-Ames General Circulation Model (GCM) which show that the strongest winds in the area occur in the northern hemisphere winter and are directed toward 209°. Copyright 1999 by the American Geophysical Union.

  17. 10 years of aeolian geomorphology at the EGU: past achievements and future challenges

    NASA Astrophysics Data System (ADS)

    Baas, Andreas C. W.; Wiggs, Giles F. S.; Claudin, Philippe

    2016-04-01

    On this tenth anniversary of the Aeolian Processes & Landforms session at the EGU the original conveners review and reflect on the recent achievements and expansion in aeolian geomorphological research, focussing on advances in our understanding of sand transport processes, dune development and dynamics, and the mechanisms and scalings involved. This talk will highlight the variety and impact of the dramatic increase in the extent and interest of research on aeolian processes and landforms in the last ten years, including the increasingly strong community presence at international meetings, the diversity and extent of collaborations across subject boundaries, and the application of new measurement technologies and mathematical approaches. We conclude with a forward-looking prospectus of exciting future challenges and open research questions.

  18. Vegetation and substrate properties of aeolian dune fields in the Colorado River corridor, Grand Canyon, Arizona

    USGS Publications Warehouse

    Draut, Amy E.

    2011-01-01

    This report summarizes vegetation and substrate properties of aeolian landscapes in the Colorado River corridor through Grand Canyon, Arizona, in Grand Canyon National Park. Characterizing these parameters provides a basis from which to assess future changes in this ecosystem, including the spread of nonnative plant species. Differences are apparent between aeolian dune fields that are downwind of where modern controlled flooding deposits new sandbars (modern-fluvial-sourced dune fields) and those that have received little or no new windblown sand since river regulation began in the 1960s (relict-fluvial-sourced dune fields). The most substantial difference between modern- and relict-fluvial-sourced aeolian dune fields is the greater abundance of biologic soil crust in relict dune fields. These findings can be used with similar investigations in other geomorphic settings in Grand Canyon and elsewhere in the Colorado River corridor to evaluate the health of the Colorado River ecosystem over time.

  19. Optical dating of aeolian dynamism on the West African Sahelian margin

    NASA Astrophysics Data System (ADS)

    Stokes, S.; Bailey, R. M.; Fedoroff, N.; O'Marah, K. E.

    2004-04-01

    The Sahelian Margin of West Africa is widely recognised as an area of recent environmental catastrophe and human suffering arising from food shortage and land degradation associated with prolonged drought. The propensity of this region to suffer drought has been related, using environmental data collected during the period of instrumental records, to a combination of low mean annual rainfall levels and a high degree of rainfall variability which relates to sea surface temperature anomalies in the adjacent tropical Atlantic Ocean. Despite the significant environmental and human consequences of such droughts, there is a paucity of long-term environmental data for the West African Sahel. Aeolian dune reactivations in this area are a potentially highly useful environmental archive of past periods of extended drought conditions, which may have resulted in localised or widespread dune reactivation. Here we describe the initial results from an ongoing programme of research, which seeks to develop a detailed record of past dune reactivations in Mali. We find evidence for repeated Holocene dune reactivation events and a significant number of reactivations, which commenced at the time of onset of the last major drought cycle in the early 1970s. We obtain ages as young as 20-30 years for some significant dune units (thickness up to 1 m) and describe the results of experiments which test the performance of our dating exercise. We specifically test for the significance of preheat temperature on single aliquot regeneration (SAR) equivalent dose determinations and recycling ratios; neither are found vary significantly as a function of preheating. Optical dating of sand sized quartz could provide a useful tool for palaeogeographical mapping of ancient and historical dune reactivations in this region and elsewhere.

  20. Late Pleistocene and Holocene aeolian sedimentation in Gonghe Basin, northeastern Qinghai-Tibetan Plateau: Variability, processes, and climatic implications

    NASA Astrophysics Data System (ADS)

    Qiang, Mingrui; Jin, Yanxiang; Liu, Xingxing; Song, Lei; Li, Hao; Li, Fengshan; Chen, Fahu

    2016-01-01

    Although stratigraphic sequences of aeolian deposits in dryland areas have long been recognized as providing information about past environments, the exact nature of the environmental processes they reflect remains unclear. Here, we report the results of a detailed investigation of eight outcrop sections in the Gonghe Basin, northeastern Qinghai-Tibetan Plateau. Measurements of sediment grain-size and chemical composition indicate that the deposits are primarily of aeolian origin, consisting of interbedded, well-sorted sand, silty sand, loess and/or palaeosol; however, their occurrence varies from site to site. Fossil dune sands mainly occur in or close to the currently stabilized or semi-stabilized dune fields, whereas loess is distributed along the downwind marginal areas. This pattern of basin-scale differentiation was controlled mainly by spatial variability of sediment supply due to the antecedent sedimentary patterns within the basin. Together with previously-published optically stimulated luminescence (OSL) ages, 24 new OSL dates are used to elucidate the history of aeolian activity and its relationship to climatic changes. There is no apparent relationship between past dune activity and downwind loess deposits. Deposition of silty sand probably occurred during past phases of windy, dry and cold climate in the Late Pleistocene. However, climatic factors alone cannot explain the occurrence of silty sand deposition. This is because the deposition of silty sand was always preceded by episodes of fluvial deposition prior to river incision, thereby indicating the importance of an 'activated' sediment supply associated with fluvial processes. Deposition of well-sorted sand occurred episodically, not only during the Late Pleistocene, but also during the early- to mid-Holocene. Vegetation conditions, controlled either by the occurrence of intervals of moisture deficit during the Late Pleistocene or by changes in the balance between precipitation and

  1. An integrated coastal model for aeolian and hydrodynamic sediment transport

    NASA Astrophysics Data System (ADS)

    Baart, F.; den Bieman, J.; van Koningsveld, M.; Luijendijk, A. P.; Parteli, E. J. R.; Plant, N. G.; Roelvink, J. A.; Storms, J. E. A.; de Vries, S.; van Thiel de Vries, J. S. M.; Ye, Q.

    2012-04-01

    Dunes are formed by aeolian and hydrodynamic processes. Over the last decades numerical models were developed that capture our knowledge of the hydrodynamic transport of sediment near the coast. At the same time others have worked on creating numerical models for aeolian-based transport. Here we show a coastal model that integrates three existing numerical models into one online-coupled system. The XBeach model simulates storm-induced erosion (Roelvink et al., 2009). The Delft3D model (Lesser et al., 2004) is used for long term morphology and the Dune model (Durán et al., 2010) is used to simulate the aeolian transport. These three models were adapted to be able to exchange bed updates in real time. The updated models were integrated using the ESMF framework (Hill et al., 2004), a system for composing coupled modeling systems. The goal of this integrated model is to capture the relevant coastal processes at different time and spatial scales. Aeolian transport can be relevant during storms when the strong winds are generating new dunes, but also under relative mild conditions when the dunes are strengthened by transporting sand from the intertidal area to the dunes. Hydrodynamic transport is also relevant during storms, when high water in combination with waves can cause dunes to avalanche and erode. While under normal conditions the hydrodynamic transport can result in an onshore transport of sediment up to the intertidal area. The exchange of sediment in the intertidal area is a dynamic interaction between the hydrodynamic transport and the aeolian transport. This dynamic interaction is particularly important for simulating dune evolution at timescales longer than individual storm events. The main contribution of the integrated model is that it simulates the dynamic exchange of sediment between aeolian and hydrodynamic models in the intertidal area. By integrating the numerical models, we hope to develop a model that has a broader scope and applicability than

  2. Preservation of hanging aeolian deposits in insular karst depressions: Sediment sources and implications for the Pleistocene palaeogeography of the SE Adriatic archipelago

    NASA Astrophysics Data System (ADS)

    Babić, Ljubomir; Zupanič, Jožica; Vidović, Jelena; Razum, Ivan; Lužar-Oberiter, Borna; Crnjaković, Marta

    2013-12-01

    This study examines how and why the accumulation and preservation of aeolian sands are influenced by the character of karstic basement landforms. The studied examples are Late Pleistocene aeolian sands and underlying karstified carbonates of Southeastern Adriatic islands. To address this issue the spacial relationship between karstified bedrock and aeolian cover, aeolian and associated fluvial facies, as well as the petrography of sands, including heavy minerals and bioclasts (especially foraminifera) have been studied. Specific landforms of the carbonate basement originated as a consequence of deformation, karstification and locally with additional influence of fluvial processes. They are located at different elevations above today’s sea-level, as well as above ancient sand pathways towards the islands, which are now below sea-level. The karst depressions critically influenced the accumulation and preservation of aeolian sands. The depressions represented traps for accumulation and shelters for preservation of these sands. The closed type karst depressions include large examples which contain successions displaying the most complete stratigraphic record, located in the approximate centre of the depression. The open type karst depression is characterised by a partial removal of sands which were exported down-valley. The complex arrangement of the islands and closely located mainland coasts governed the location of primary sand transport paths. They included both aeolian and marine transport depending on the extent of exposed land versus submerged areas related to sea-level fluctuation. Marine settings along the sand pathways included shallow, sandy sea bottoms partly covered by sea-grass, as well as sand beaches and restricted environments. From low inter-island areas which hosted the primary sand pathways, the sands were uplifted and deposited over the islands by wind action thus producing hanging aeolian accumulations. The most influential Pleistocene winds

  3. Quartz ball value

    NASA Technical Reports Server (NTRS)

    Goetz, C.; Ingle, W. M.

    1979-01-01

    Quartz ball valve consisting of two quartz joints sealed back-to-back and seated in quartz sockets perform at temperatures of up to 1,250 C and in corrosive chemical environments without contamination or degradation.

  4. The Karakum and Kyzylkum sand seas dynamics; mapping and palaeoclimatic interpretations

    NASA Astrophysics Data System (ADS)

    Maman, Shimrit; Blumberg, Dan G.; Tsoar, Haim; Porat, Naomi

    2015-04-01

    Sand seas are large basins in deserts that are mantled by wind-swept sand and that exhibit varying degrees of vegetation cover. Wilson (1973) was the first to globally map and classify sand seas. Beyond Wilson's maps, however, little research has been published regarding the Karakum and Kyzylkum sand seas of Central Asia. Wilson's maps delineate active ergs from inactive ergs based solely on precipitation. His assumption of annual average rainfall as a factor determining mobility vs. stability of sand seas is too simplistic and does not take into consideration other factors such as biogenic soil crusts and wind power, both of which are known to have major effects on the dynamics of sand dunes. Literature related to mapping and classifying the Central Asian ergs by remote sensing or sand sea classification state (stable/active) is lacking. Moreover, the palaeoclimatic significance of dunes in Central Asia is difficult to assess, as there has been few studies of dune stratigraphy and numerical ages are lacking. Optically stimulated luminescence (OSL) is a firm optical dating method that is used to determine the elapsed time since quartz grains were last exposed to sunlight, thus, their burial. Yet, absolute ages indicating mobilization and stabilization of these sands, are still inadequately known and are here under discussion. The broad concern of this research was to determine the dynamics of the Central Asian sand seas and study the palaeoclimatic changes that brought to their stabilization. As there are no reliable maps or aeolian discussion of these sands, establishment of a digital data base was initially conducted, focusing on identifying and mapping these sand seas. The vast area and inaccessibility make traditional mapping methods virtually impossible. A variety of space-borne imagery both optical and radar, with varying spectral and spatial resolutions was used. These images provided the basis for mapping sand distribution, dune forms, and vegetation cover

  5. Facies architecture and stratigraphic evolution of aeolian dune and interdune deposits, Permian Caldeirão Member (Santa Brígida Formation), Brazil

    NASA Astrophysics Data System (ADS)

    Jones, Fábio Herbert; Scherer, Claiton Marlon dos Santos; Kuchle, Juliano

    2016-05-01

    The Permian Caldeirão Member (Santa Brígida Formation), located in the Tucano Central Basin, northeast region of Brazil, is characterized by a sandstone succession of aeolian origin that comprises the preserved deposits of dunes and interdunes. Grainflow and translatent wind-ripple strata, and frequent presence of reactivation surface, compose the cross-bedding of crescent aeolian dune deposits. The aeolian cross-strata show a mean dip toward the ENE. In places, interlayered with dune cross-beds, occur interdune units composed of facies indicative of dry, damp and wet condition of the substrate, suggesting spatial and/or temporal variations in the moisture content of the interdune accumulation surface. The presence of NNW current ripple cross-lamination in wet interdune areas indicates streamflows confined to interdune corridors and oriented perpendicular to aeolian transport direction. Lenses of damp and wet interdune strata exhibit mainly interdigitated and transitional relationships with the toe-sets of overlying aeolian dune units in sections parallel to aeolian transport, indicating that dune migration was contemporaneous with accumulation in adjacent interdunes. Lateral variations in the preserved thickness of the interdune units and the associated rare occurrence of abrupt and erosive contacts between interdune and overlying dune sets, suggest temporal variations in the angle of dune and interdune climb that may be related to high-frequency changes in water table position. Four stratigraphic intervals in the Caldeirão Member can be identified, two intervals showing cross-bedding of aeolian dunes without wet interdune areas and two intervals exhibiting aeolian dunes separated by wet interdune areas, marking the transition between dry aeolian systems (Intervals I and III) and wet aeolian systems (Intervals II and IV). The temporal alternations between dry and wet aeolian systems reflect changes in the availability of dry sand and/or the rate in the water

  6. Downslope coarsening in aeolian grainflows of the Navajo Sandstone

    NASA Astrophysics Data System (ADS)

    Loope, David B.; Elder, James F.; Sweeney, Mark R.

    2012-07-01

    Downslope coarsening in grainflows has been observed on present-day dunes and generated in labs, but few previous studies have examined vertical sorting in ancient aeolian grainflows. We studied the grainflow strata of the Jurassic Navajo Sandstone in the southern Utah portion of its outcrop belt from Zion National Park (west) to Coyote Buttes and The Dive (east). At each study site, thick sets of grainflow-dominated cross-strata that were deposited by large transverse dunes comprise the bulk of the Navajo Sandstone. We studied three stratigraphic columns, one per site, composed almost exclusively of aeolian cross-strata. For each column, samples were obtained from one grainflow stratum in each consecutive set of the column, for a total of 139 samples from thirty-two sets of cross-strata. To investigate grading perpendicular to bedding within individual grainflows, we collected fourteen samples from four superimposed grainflow strata at The Dive. Samples were analyzed with a Malvern Mastersizer 2000 laser diffraction particle analyser. The median grain size of grainflow samples ranges from fine sand (164 μm) to coarse sand (617 μm). Using Folk and Ward criteria, samples are well-sorted to moderately-well-sorted. All but one of the twenty-eight sets showed at least slight downslope coarsening, but in general, downslope coarsening was not as well-developed or as consistent as that reported in laboratory subaqueous grainflows. Because coarse sand should be quickly sequestered within preserved cross-strata when bedforms climb, grain-size studies may help to test hypotheses for the stacking of sets of cross-strata.

  7. The developmental trend and influencing factors of aeolian desertification in the Zoige Basin, eastern Qinghai-Tibet Plateau

    NASA Astrophysics Data System (ADS)

    Hu, Guangyin; Dong, Zhibao; Lu, Junfeng; Yan, Changzhen

    2015-12-01

    The Zoige Basin is located in the northeastern region of the Qinghai-Tibet Plateau and covers an area of 19,400 km2. At a mean altitude of 3500 m, the basin is highly sensitive to global environmental change and human disturbance due to its high elevation and fragile cold environment. The process of aeolian desertification in the basin can be clearly recognized in Landsat images that show the development of sand sheets and dunes over time. To monitor the spatial and temporal changes of aeolian desertification in the Zoige Basin, we analyzed Landsat images recorded in 1975, 1990, 2000, 2005, and 2010. Results showed that aeolian desertification increased rapidly from 1975 to 1990, was stable from 1990 to 2000, decreased slightly from 2000 to 2005, and decreased sharply from 2005 to 2010. Increasing temperature, overgrazing, rodent damage, and drainage of wetlands were considered the key driving factors of the expansion of aeolian desertification. A number of political measures were initiated in the 1990s to slow desertification, but the countermeasures of grazing prohibition, enclosures, and paving straw checkerboard barriers were not implemented until around 2005. These measures resulted in a dramatic recovery of aeolian desertified land between 2005 and 2010. Based on the cause analysis, anthropogenic factors were identified as the dominant driving force for both development and recovery of aeolian desertified land.

  8. Central Asian sand seas climate change as inferred from OSL dating

    NASA Astrophysics Data System (ADS)

    Maman, Shimrit; Tsoar, Haim; Blumberg, Dan; Porat, Naomi

    2014-05-01

    Luminescence dating techniques have become more accessible, widespread, more accurate and support studies of climate change. Optically stimulated luminescence (OSL) is used to determine the time elapsed since quartz grains were last exposed to sunlight, before they were buried and the dune stabilized. Many sand seas have been dated extensively by luminescence, e.g., the Kalahari, Namib the Australian linear dunes and the northwestern Negev dune field, Israel. However, no ages were published so far from the central Asian sand seas. The lack of dune stratigraphy and numerical ages precluded any reliable assessment of the paleoclimatic significance of dunes in central Asia. Central Asian Sand seas (ergs) have accumulated in the Turan basin, north-west of the Hindu Kush range, and span from south Turkmenistan to the Syr-Darya River in Kazakhstan. These ergs are dissected by the Amu-Darya River; to its north lies the Kyzylkum (red sands) and to its south lies the Karakum (black sands). Combined, they form one of the largest sand seas in the world. This area is understudied, and little information has been published regarding the sands stabilization processes and deposition ages. In this study, OSL ages for the Karakum and Kyzylkum sands are presented and analysis of the implications of these results is provided. Optical dates obtained in this study are used to study the effects climatic changes had on the mobility and stability of the central Asian sand seas. Optically stimulated luminescence ages derived from the upper meter of the interdune of 14 exposed sections from both ergs, indicate extensive sand and dune stabilization during the mid-Holocene. This stabilization is understood to reflect a transition to a warmer, wetter, and less windy climate that generally persisted until today. The OSL ages, coupled with a compilation of regional paleoclimatic data, corroborate and reinforce the previously proposed Mid-Holocene Liavliakan phase, known to reflect a warmer

  9. Cosmic iron, a new factor in podsolization in aeolian sandy deposits in NW-Europe (part 1, senior)

    NASA Astrophysics Data System (ADS)

    van Mourik, Jan; de Vet, Sebastiaan

    2013-04-01

    In Netherlands is podzolization is the dominant soil forming process in medium fine sand deposits as Late-glacial coversand and Holocene driftsand. The natural soil evolution in such deposits tended to cambic podzols in xeromorphic and gleyic podzols in hydromorphic field conditions. Historical land use accelerated the soil acidification and transferred the majority of the cambic podzols in carbic podzols. The natural free iron content of coversand and driftsand deposits is very low (< 0,05 %). Before deposition the sand grains survived a long history of weathering, fluvial, glacial and finally aeolian transport. Consequently, the mineral composition is dominated by Quartz and the fraction of hydrolysable minerals is very low. However, the presence of iron is very clear in the spodic B horizons of cambic and carbic podzols. Sometimes carbic podzols and acid gleyic podzols show placic properties, due to the formation of iron crusts. If a soil profile is affected by iron rich groundwater, originating from fluvial, glacial or periglacial sediments which a higher free iron content, (the situation in brook valleys and some depressions) the concentrations of iron are probably sufficient to explain the presence of iron cutans in the Bs horizon and iron-rich gleyic mottles in the Cg horizon of a podzolic soil. However, if a soil profile is not affected by iron-rich groundwater (the situation in coversand ridges) the iron concentrations of the sand deposits are insufficient to explain the iron cutans in the Bs horizon. After abolition of the plaggic agriculture around 1900 AD, extensive parts of the Calluna heath have been reforested with Scotch pine. The mormoder humus forms, developed under these Pine plantations, are excellent soil records of the last century. Soil micromorphological analyses of thin sections of mormoder profiles indicate the presence of olivinic and other heavy mineral and opaque particles that have not received much attention in studies. Their presence

  10. Quartz cement in sandstones: a review

    NASA Astrophysics Data System (ADS)

    McBride, Earle F.

    Quartz cement as syntaxial overgrowths is one of the two most abundant cements in sandstones. The main factors that control the amount of quartz cement in sandstones are: framework composition; residence time in the "silica mobility window"; and fluid composition, flow volume and pathways. Thus, the type of sedimentary basin in which a sand was deposited strongly controls the cementation process. Sandstones of rift basins (arkoses) and collision-margin basins (litharenites) generally have only a few percent quartz cement; quartzarenites and other quartzose sandstones of intracratonic, foreland and passive-margin basins have the most quartz cement. Clay and other mineral coatings on detrital quartz grains and entrapment of hydrocarbons in pores retard or prevent cementation by quartz, whereas extremely permeable sands that serve as major fluid conduits tend to sequester the greatest amounts of quartz cement. In rapidly subsiding basins, like the Gulf Coast and North Sea basins, most quartz cement is precipitated by cooling, ascending formation water at burial depths of several kilometers where temperatures range from 60° to 100° C. Cementation proceeds over millions of years, often under changing fluid compositions and temperatures. Sandstones with more than 10% imported quartz cement pose special problems of fluid flux and silica transport. If silica is transported entirely as H 4SiO 4, convective recycling of formation water seems to be essential to explain the volume of cement present in most sandstones. Precipitation from single-cycle, upward-migrating formation water is adequate to provide the volume of cement only if significant volumes of silica are transported in unidentified complexes. Modeling suggests that quartz cementation of sandstones in intracratonic basins is effected by advecting meteoric water, although independent petrographic, isotopic or fluid inclusion data are lacking. Silica for quartz cement comes from both shale and sandstone beds within

  11. Variation and Distribution of Sediments in a Mixed Glacifluvial-Aeolian System in West Greenland

    NASA Astrophysics Data System (ADS)

    Austin, M. J.; Bullard, J. E.

    2007-12-01

    There is a clear association between the distribution of wind-blown sediments and the former extent of ice sheets and glaciers. Glacial erosion processes produce significant quantities of fine sediments that are washed out from beneath glaciers by meltwater. Once deposited and desiccated, aeolian processes may transport them across the landscape resulting in the formation of sand dunes and loess, and adding dust to the atmosphere. This research reports the use of digital imaging and laser sizing to obtain the grain size distribution and textural attributes of sand and dust in Sandflugtdalen, a valley adjacent to the West Greenland ice sheet. An initial assessment of the rates of sand and dust transport, made using semi-isokinetic directional sediment samplers, indicate that the flux of aeolian sediment comprises clays, silts and sand-sized particles. Digital imaging of the surficial sediment deposits provides a rapid means of sampling the large, spatially and temporally variable, proglacial valley. Sediments were initially photographed during June 2007 and then resampled after a 9-week interval. The grain size distribution and surface texture were computed using a calibrated autocorrelation method. It is estimated that individual particles may be resolved down to a size of 0.045 mm. The regions of aeolian entrainment, transport and deposition are directly linked to the development and distribution of sediments on the proglacial floodplain, which varies considerably in terms of surface roughness. On the floodplain close to the ice sheet, aeolian flux is controlled by sediment supply and lag formation and the total surface roughness is determined by the combination of grain-scale roughness and topography. Further down valley, recycling of sediments by aeolian and fluvial activity is significant and wind speed becomes an important controlling factor. Within the dunefields, surface roughness is principally determined by topography and vegetation. Close to the ice sheet

  12. Aeolian cliff-top deposits and buried soils in the White River Badlands, South Dakota, USA

    USGS Publications Warehouse

    Rawling, J. E.; Fredlund, G.G.; Mahan, S.

    2003-01-01

    Aeolian deposits in the North American Great Plains are important sources of Holocene palaeo-environmental records. Although there are extensive studies on loess and dune records in the region, little is known about records in aeolian cliff-top deposits. These are common on table (mesa) edges in the White River Badlands. These sediments typically have loam and sandy-loam textures with dominantly very fine sand, 0.5-1% organic carbon and 0.5-5% CaCO3. Some of these aeolian deposits are atypically coarse and contain granules and fine pebbles. Buried soils within these deposits are weakly developed with A-C and A-AC-C profiles. Beneath these are buried soils with varying degrees of pedogenic development formed in fluvial, aeolian or colluvial deposits. Thickness and number of buried soils vary. However, late-Holocene soils from several localities have ages of approximately 1300, 2500 and 3700 14C yrs BP. The 1300 14C yr BP soil is cumulic, with a thicker and lighter A horizon. Soils beneath the cliff-top deposits are early-Holocene (typically 7900 but as old as 10000 14C yrs BP) at higher elevation (???950 m) tables, and late-Holocene (2900 14C yrs BP) at lower (???830 m) tables. These age estimates are based on total organic matter 14C ages from the top 5 cm of buried soils, and agreement is good between an infrared stimulated luminescence age and bracketing 14C ages. Our studies show that cliff-top aeolian deposits have a history similar to that of other aeolian deposits on the Great Plains, and they are another source of palaeoenvironmental data.

  13. Aeolian geomorphology from the global perspective

    NASA Technical Reports Server (NTRS)

    Greeley, R.

    1985-01-01

    Any planet or satellite having a dynamic atmosphere and a solid surface has the potential for experiencing aeolian (wind) processes. A survey of the Solar System shows at least four planetary objects which potentially meet these criteria: Earth, Mars, Venus, and possibly Titan, the largest satellite of Saturn. While the basic process is the same among these four objects, the movement of particles by the atmosphere, the aeolian environment is drastically different. It ranges from the hot (730 K), dense atmosphere of Venus to the extremely cold desert (218 K) environment of Mars where the atmospheric surface pressure is only approximately 7.5 mb. In considering aeolian processes in the planetary perspective, all three terrestrial planets share some common areas of attention for research, especially in regard to wind erosion and dust storms. Relevant properties of planetary objects potentially subject to aeolian processes are given in tabular form.

  14. Dune-like dynamic of Martian Aeolian large ripples

    NASA Astrophysics Data System (ADS)

    Silvestro, S.; Vaz, D. A.; Yizhaq, H.; Esposito, F.

    2016-08-01

    Martian dunes are sculpted by meter-scale bed forms, which have been interpreted as wind ripples based on orbital data. Because aeolian ripples tend to orient and migrate transversely to the last sand-moving wind, they have been widely used as wind vanes on Earth and Mars. In this report we show that Martian large ripples are dynamically different from Earth's ripples. By remotely monitoring their evolution within the Mars Science Laboratory landing site, we show that these bed forms evolve longitudinally with minimal lateral migration in a time-span of ~ six terrestrial years. Our observations suggest that the large Martian ripples can record more than one wind direction and that in certain cases they are more similar to linear dunes from a dynamic point of view. Consequently, the assumption of the transverse nature of the large Martian ripples must be used with caution when using these features to derive wind directions.

  15. The physics of wind-blown sand and dust.

    PubMed

    Kok, Jasper F; Parteli, Eric J R; Michaels, Timothy I; Karam, Diana Bou

    2012-10-01

    The transport of sand and dust by wind is a potent erosional force, creates sand dunes and ripples, and loads the atmosphere with suspended dust aerosols. This paper presents an extensive review of the physics of wind-blown sand and dust on Earth and Mars. Specifically, we review the physics of aeolian saltation, the formation and development of sand dunes and ripples, the physics of dust aerosol emission, the weather phenomena that trigger dust storms, and the lifting of dust by dust devils and other small-scale vortices. We also discuss the physics of wind-blown sand and dune formation on Venus and Titan.

  16. Persistent aeolian activity at Endeavour crater, Meridiani Planum, Mars; new observations from orbit and the surface

    NASA Astrophysics Data System (ADS)

    Chojnacki, Matthew; Johnson, Jeffrey R.; Moersch, Jeffrey E.; Fenton, Lori K.; Michaels, Timothy I.; Bell, James F., III

    2015-05-01

    Aeolian-driven bedform activity is now known to occur in many regions of Mars, based on surface and orbital observation of contemporary martian ripple and dune mobility events. Many of these sites have only been monitored with sufficient resolution data for the last few Mars years, when the High Resolution Imaging Science Experiment (HiRISE) began acquiring images of Mars. One exception is the well-monitored Endeavour crater in Meridiani Planum, which was one of the first known sites of unambiguous dune activity (migration and deflation). However, those early detections used lower resolution images over longer temporal baselines (versus the HIRISE data now available), leaving some measurements poorly constrained. New orbital and surface observations of Endeavour show multiple spatial (cm, m, km) and temporal (seasons, Mars year) scales of aeolian-driven surface change, which confirms earlier reports. Dome dunes in the eastern portion of the crater persistently deflate, disseminating dark sand across lighter-toned regolith and/or eroded bright dust, and likely contribute to the crater interior's episodic decreases in orbital albedo measurements. Other dome dunes are detected with the highest migration rates (4-12 m per Mars year) and volumetric sand fluxes reported yet for Mars. Estimated dune construction times or "turnover times" here and elsewhere on Mars are significantly shorter than martian obliquity cycles, implying that it is not necessary to invoke paleoclimate wind regimes to explain current dune morphologies. Located on the crater rim, the Opportunity rover detected evidence for near- and far-field aeolian-driven activity, with observations of spherules/sand movement in the rover workspace, bedform albedo alteration, and dust-lifting events. Observations of intracrater dunes show periodic shifting dark streaks that significantly constrain local wind regimes (directionality and seasonality). Constraints on wind directions from surface and orbital images

  17. A Fuzzy Cognitive Model of aeolian instability across the South Texas Sandsheet

    NASA Astrophysics Data System (ADS)

    Houser, C.; Bishop, M. P.; Barrineau, C. P.

    2014-12-01

    Characterization of aeolian systems is complicated by rapidly changing surface-process regimes, spatio-temporal scale dependencies, and subjective interpretation of imagery and spatial data. This paper describes the development and application of analytical reasoning to quantify instability of an aeolian environment using scale-dependent information coupled with conceptual knowledge of process and feedback mechanisms. Specifically, a simple Fuzzy Cognitive Model (FCM) for aeolian landscape instability was developed that represents conceptual knowledge of key biophysical processes and feedbacks. Model inputs include satellite-derived surface biophysical and geomorphometric parameters. FCMs are a knowledge-based Artificial Intelligence (AI) technique that merges fuzzy logic and neural computing in which knowledge or concepts are structured as a web of relationships that is similar to both human reasoning and the human decision-making process. Given simple process-form relationships, the analytical reasoning model is able to map the influence of land management practices and the geomorphology of the inherited surface on aeolian instability within the South Texas Sandsheet. Results suggest that FCMs can be used to formalize process-form relationships and information integration analogous to human cognition with future iterations accounting for the spatial interactions and temporal lags across the sand sheets.

  18. Semiarid landscapes response to Aeolian processes during Holocene in Baikal Region

    NASA Astrophysics Data System (ADS)

    Dan'ko, Lidia; Opekunova, Marina

    2010-05-01

    Arid and semiarid landscapes play a significant role in global climate, biogeochemical, and hydrological processes. Regional analysis of the past aeolian processes is essential for improve our understanding of how various landscape and ecosystems responded to climate change in the past. Our investigation presents details on sand dunes and on loess-like sediments. The study areas are situated in the northern part of Baikal Region (Eastern Siberia). In its depressions, the so-called Barguzinskaya and Tunkinskaya Valley surrounded mountain ranges local dunefieds and loess-like sediments have developed. Present climate in the study areas is continental, characterized by low precipitation(mean annual 250-450 mm) and wide annual range of temperature. Field investigations indicate that the Holocene deposits of the Barguzinskaya and Tunkinskaya Valley are sealed the pedo-sedimentary interface. The analytical results suggest that one's represents a changeover from intensified soil formation to accelerated aeolian dust accumulation. The original content of calcium carbonate and gypsum at the base of some sections of loess-like sediments indicates the aeolian origin of these sediments. In whole, the soil horizons are a proof for humid phases. The change was forced by climatic aridity. Absolute dating of the organogenic components of soils (14C) indicate the age positions of the arid and humid climate phases. Our results indicate not only 1-4 long-time episodes of aeolian dust accumulation during the Holocene, but shot-time aeolian accumulation episodes, that were specific for Late Holocene. For example, in the Tunkinskaya Valley the Late Holocene soil formation replaced by aeolian deposit at 1700 - 1900, 800 and 200-250 years ago, in the Barguzinskaya Valley - about 3100 - 2900, 2300 and 600 years ago. It can be concluded that a periodical formation of the aeolian deposits in the semiarid landscapes during Holocene can be postulated. Aeolian and loess-like sediments of the

  19. Deflated rims along the Xiangshui River on the Xiliaohe Plain, Northeast China: A case of active fluvial-aeolian interactions

    NASA Astrophysics Data System (ADS)

    Han, Guang; Zhang, Guifang; You, Li; Wang, Yong; Yang, Lin; Yang, Ji; Zhou, Liang; Yuan, Minghuan; Zou, Xueyong; Cheng, Hong

    2016-03-01

    Riverine source-bordering sand dunes, as a result of active fluvial-aeolian interactions, are a pronounced feature on the semiarid Xiliaohe Plain, Northeast China. By means of satellite imagery analysis, and both field survey and observation, this paper presents a new type of riverine source-bordering sand dunes - deflated rims, on the downwind margins of the Xiangshui River. They largely result from the deflation of escarpments on the downwind side of valley by local prevailing winds of NW direction, not from the reworking of point bars on floodplain by wind. In general, a rim is primarily composed of three distinct zones: 1) the upwind frontal escarpment zone with variable plan-form shape, gradient and relief, which is formed by either active lateral erosion by river or significant erosion by wind and transient slope runoff; 2) the deflation zone with gentle slopes of 8-18° and small-scale aeolian bedforms, i.e. ripples of fine sand, ridges of coarse sand; and 3) the downwind dynamic deposition zone with distinctive bedforms with variable superficial texture and slip faces. The sand mass on rims derives overwhelmingly from underlying loose late Quaternary sediments, is sufficient and sustainable by successive retreats of the escarpment, and is gradually transported downwind by pulse motions of bedforms, coupled with high wind events. Essentially, deflated rims are a starting point and the incipient phase of mature riverine dunefields. The superimposed bedforms on rims are fundamentally governed by windflow dynamics, sand sediments and antecedent bedform, exhibiting in turn the manner and intensity of rim development. Consequently, the upwind river valley and downwind deflated rim can jointly stimulate marked wave-like motion of both windflow and aeolian bedforms at different scales, especially when high wind events occur. This study sheds some light on the understanding of the origin and development of riverine source-bordering dunefields, and offers new

  20. Theoretical analysis of particle number density in steady aeolian saltation

    NASA Astrophysics Data System (ADS)

    Kang, Liqiang; Zou, Xueyong

    2014-01-01

    Particle number density or particle concentration in aeolian saltation is one important input parameter to calculate the sand flux, kinetic energy and mid-air collision probability in the aeolian saltation and particle concentration is also related to the wind erosion capacity, hence, in the present paper, the vertical distribution of particle number density in steady aeolian saltation is analyzed based on two different types of probability density functions of vertical lift-off velocity of saltating particles: one is the PDF (probability density function) of vertical velocity of lift-off particles in the three-dimensional space defined as a type-A PDF which considers the number of particles in various velocity bins per unit volume; and the other is the PDF of vertical velocity of lift-off particles ejected from the sand bed surface in a period of time as a type-B PDF which considers the number flux of particles in various velocity bins per unit surface area. These two types of PDFs are from two different perspectives (i.e., volume- and surface-based perspectives, respectively), and can be deduced from each other. The half-normal and exponential distributions are recommended for the type-A PDF, and the corresponding type-B PDF is expressed by Rayleigh and Gamma(2) distributions. The PDF distribution pattern of vertical velocity of lift-off particles has an important influence on the vertical profile of particle number density. If the type-A PDF of vertical velocity of ejected particles is a half-normal distribution, the particle number density decays exponentially with height. If the type-A PDF is an exponential distribution, the particle number density also decreases with height. If the type-A PDF is Gamma(3) and Rayleigh distributions, the particle number density first increases, then decreases with height. The type-A and type-B height parameters, which are calculated according to the mean vertical lift-off velocity from the type-A and type-B PDFs, respectively

  1. Aeolian sediment transport and landforms in managed coastal systems: A review

    NASA Astrophysics Data System (ADS)

    Jackson, Nancy L.; Nordstrom, Karl F.

    2011-11-01

    Humans modify beaches and dunes and aeolian transport potential by building structures, walking or driving, extracting resources, accommodating recreation, increasing levels of protection, removing storm deposits, or restoring landforms and habitats. The effects of human adjustments are reviewed here in terms of cross-shore zones because humans tend to compartmentalize landforms and habitats through their actions and regulations. Common human modifications in the beach zone include nourishing beaches, constructing shore protection structures and raking to remove litter. Modifications affecting the dune zone include altering the location, size and stability of dunes using sand-trapping fences, vegetation plantings and bulldozers or replacing dunes with shore-parallel structures. Modifications affecting the landward zone include buildings, roads, and parking lots. Landform and habitat resilience requires levels of dynamism and geomorphic complexity not often found in managed systems. Preserving or enhancing dynamism and complexity requires emphasis on innovative designs rooted in geomorphological and aeolian research. Future studies are suggested for: (1) quantifying the effect of small and large scale beach nourishment designs and sediment characteristics on dune initiation, development, and evolution; (2) quantifying the extent to which size and spacing of human structures and landform alterations inhibit sediment transfers alongshore or onshore; (3) identifying the advantages or disadvantages of "niche" dunes formed by structures; (4) providing quantitative data on the effects of raking or driving on the beach; (5) identifying the role of aeolian landforms on private properties; and (6) identifying alternative ways of employing sand fences and vegetation plantings to increase topographic and habitat diversity.

  2. Sands at Gusev Crater, Mars

    USGS Publications Warehouse

    Cabrol, Nathalie A.; Herkenhoff, Kenneth E.; Knoll, Andrew H.; Farmer, Jack D.; Arvidson, Raymond E.; Grin, E.A.; Li, Ron; Fenton, Lori; Cohen, B.; Bell, J.F.; Yingst, R. Aileen

    2014-01-01

    Processes, environments, and the energy associated with the transport and deposition of sand at Gusev Crater are characterized at the microscopic scale through the comparison of statistical moments for particle size and shape distributions. Bivariate and factor analyses define distinct textural groups at 51 sites along the traverse completed by the Spirit rover as it crossed the plains and went into the Columbia Hills. Fine-to-medium sand is ubiquitous in ripples and wind drifts. Most distributions show excess fine material, consistent with a predominance of wind erosion over the last 3.8 billion years. Negative skewness at West Valley is explained by the removal of fine sand during active erosion, or alternatively, by excess accumulation of coarse sand from a local source. The coarse to very coarse sand particles of ripple armors in the basaltic plains have a unique combination of size and shape. Their distribution display significant changes in their statistical moments within the ~400 m that separate the Columbia Memorial Station from Bonneville Crater. Results are consistent with aeolian and/or impact deposition, while the elongated and rounded shape of the grains forming the ripples, as well as their direction of origin, could point to Ma'adim Vallis as a possible source. For smaller particles on the traverse, our findings confirm that aeolian processes have dominated over impact and other processes to produce sands with the observed size and shape patterns across a spectrum of geologic (e.g., ripples and plains soils) and aerographic settings (e.g., wind shadows).

  3. Sands at Gusev Crater, Mars

    NASA Astrophysics Data System (ADS)

    Cabrol, Nathalie A.; Herkenhoff, Kenneth; Knoll, Andrew H.; Farmer, Jack; Arvidson, Raymond; Grin, Edmond; Li, Ronxing; Fenton, Lori; Cohen, Barbara; Bell, James F.; Aileen Yingst, R.

    2014-05-01

    Processes, environments, and the energy associated with the transport and deposition of sand at Gusev Crater are characterized at the microscopic scale through the comparison of statistical moments for particle size and shape distributions. Bivariate and factor analyses define distinct textural groups at 51 sites along the traverse completed by the Spirit rover as it crossed the plains and went into the Columbia Hills. Fine-to-medium sand is ubiquitous in ripples and wind drifts. Most distributions show excess fine material, consistent with a predominance of wind erosion over the last 3.8 billion years. Negative skewness at West Valley is explained by the removal of fine sand during active erosion, or alternatively, by excess accumulation of coarse sand from a local source. The coarse to very coarse sand particles of ripple armors in the basaltic plains have a unique combination of size and shape. Their distribution display significant changes in their statistical moments within the ~400 m that separate the Columbia Memorial Station from Bonneville Crater. Results are consistent with aeolian and/or impact deposition, while the elongated and rounded shape of the grains forming the ripples, as well as their direction of origin, could point to Ma'adim Vallis as a possible source. For smaller particles on the traverse, our findings confirm that aeolian processes have dominated over impact and other processes to produce sands with the observed size and shape patterns across a spectrum of geologic (e.g., ripples and plains soils) and aerographic settings (e.g., wind shadows).

  4. Modern Graywacke-Type Sands.

    PubMed

    Hollister, C D; Heezen, B C

    1964-12-18

    A preliminary study of more than 100 deep-sea cores from abyssal plains has revealed two examples of recent muddy sands of the graywacke type which, together with the microcrystalline matrix, form a bimodal-size distribution sands have a well-sorted framework of quartz, feldspar, and rock fragments which, together with the microcrystalline matrix, form a bimodal-size distribution that is also typical of ancient graywackes. The matrix is considered to be primary. PMID:17775982

  5. Tracking aeolian transport patterns across a mega-nourishment using video imagery

    NASA Astrophysics Data System (ADS)

    Wijnberg, Kathelijne; van der Weerd, Lianne; Hulscher, Suzanne

    2014-05-01

    Coastal dune areas protect the hinterland from flooding. In order to maintain the safety level provided by the dunes, it may be necessary to artificially supply the beach-dune system with sand. How to best design these shore nourishments, amongst others with respect to optimal dune growth on the long-term (decadal scale), is not yet clear. One reason for this is that current models for aeolian transport on beaches appear to have limited predictive capabilities regarding annual onshore sediment supply. These limited capabilities may be attributed to the lack of appropriate input data, for instance on moisture content of the beach surface, or shortcomings in process understanding. However, it may also be argued that for the long-term prediction of onshore aeolian sand supply from the beach to the dunes, we may need to develop some aggregated-scale transport equations, because the detailed input data required for the application of process-scale transport equations may never be available in reality. A first step towards the development of such new concepts for aggregated-scale transport equations is to increase phenomenological insight into the characteristics and number of aeolian transport events that account for the annual volume changes of the foredunes. This requires high-frequency, long-term data sets to capture the only intermittently occurring aeolian transport events. Automated video image collection seems a promising way to collect such data. In the present study we describe the movement (direction and speed) of sand patches and aeolian bed forms across a nourished site, using video imagery, to characterize aeolian transport pathways and their variability in time. The study site is a mega-nourishment (21 Mm3 of sand) that was recently constructed at the Dutch coast. This mega-nourishment, also referred to as the Sand Motor, is a pilot project that may potentially replace current practice of more frequently applying small scale nourishments. The mega

  6. Reconciling historical and contemporary evidence of aeolian-based, gully annealing processes in Glen, Marble, and Grand Canyon, USA

    NASA Astrophysics Data System (ADS)

    Sankey, J. B.; Draut, A. E.

    2013-12-01

    In the absence of large Colorado River floods in Glen, Marble, and Grand Canyons since the completion of Glen Canyon Dam, the geomorphic process most able to counteract the effects of gully incision on terraces and slopes above the contemporary active Colorado River channel is aeolian sand transport that can partially or entirely fill (anneal) small gullies. Whereas gully-formation processes have been much studied, relatively little is known about processes of gully annealing. Aeolian-based annealing has been observed in several instances in the modern Colorado River corridor operating on time scales of months. However, individual, short-term occurrences of aeolian deposition that counteract gully erosion have not yet been expanded into a landscape-scale evaluation of the prevalence of gully-annealing processes over longer time scales (years-decades) along the post-dam corridor. The extent that aeolian or other annealing processes might slow, or temporarily reverse, gully incision and erosion is important in this system because of the propensity for erosion damage to locations of cultural significance that are extensive on terraces and slopes above the contemporary active Colorado River channel. Moreover, the reduction of mainstem fluvial sediment inputs to the system since completion of Glen Canyon Dam might impact the potential of aeolian redistribution of Colorado River-derived sediment as an effective gully annealing mechanism on upper slopes and terraces. We present an investigation of the extent that observations of (i) historical annealing and (ii) contemporary annealing potential, reconcile with (iii) literature and/or model-based estimates of relative rates of gully formation and aeolian deposition in this system. The central question of this work is whether these complimentary lines of evidence support aeolian infilling as a viable mechanism for annealing gullies in Glen, Marble, and Grand Canyons, and analogous systems. We examine the evidence for

  7. Aeolian transport of biota with dust: A wind tunnel experiment

    NASA Astrophysics Data System (ADS)

    Rivas, J. A., Jr.; Gill, T. E.; Van Pelt, R. S.; Walsh, E.

    2015-12-01

    Ephemeral wetlands are ideal sources for dust emission, as well as repositories for dormant stages of aquatic invertebrates. An important component of invertebrate dispersal and colonization to new areas is the ability to be entrained into the atmosphere. Aquatic invertebrate eggs fall within the size of dust and sand grains (30-600μm), are less dense and aerodynamically shaped. We have shown previously that aquatic invertebrates can be dispersed long distances in dust storms but the extent of transport of taxa based on diapausing egg size/morphology has not been investigated. Here, we control the wind erosion process in a wind tunnel to test entrainment of diapausing stages of brine shrimp, clam shrimp, tadpole shrimp, fairy shrimp, Daphnia, and the rotifers Brachionus plicatilis and B. calyciflorus into the air by saltation. Diapausing eggs were mixed with sterilized wind-erodible soil. The soil/egg mixture was moistened with distilled water and air dried to form a crust. Dust was generated in a wind tunnel by releasing sand grains that act as saltator material similar to wind-entrained natural sands. Maximum wind velocity was 10m/s and entrained particles were sampled through an isokinetic horizontal intake opening. Aeolian sediment was collected from three points in the system; transfer section for coarse sediment, the pan subtending a settling chamber for finer saltation-sized sediment, and two paper filters for suspension-sized sediment. Samples were then passed through 250 and 350 μm sieves to remove abrader sand and rehydrated with various sterile media depending on the type of organism. We retrieved viable brine, fairy, and tadpole shrimp, ostracods, Daphnia, and diapausing eggs of the rotifers after hydration. This experiment demonstrates that resting stages of many invertebrates can be wind-eroded due to size and egg morphology and remain viable under controlled conditions mimicking dust emission.

  8. Self-Organised Criticality at the Onset of Aeolian Sediment Transport.

    NASA Astrophysics Data System (ADS)

    McMenamin, R.; Cassidy, R.; McCloskey, J.

    2002-12-01

    Despite decades of rigorous investigation, reliable prediction of aeolian sediment transport rates remains impossible. Transport rate formulae are based on the governing principle of steady state equilibrium such that wind velocity produces a linear response in sediment flux. Field experiments, however, demonstrate a highly non-linear response and considerable deviation exists between observed and predicted transport rates. The limited predictive ability of the transport rate equations is largely attributed to crude measurement techniques that characterise wind velocity and sediment flux as time averaged values on the order of minutes, effectively concealing a time scale on the order of seconds in which the equilibrium condition is established. All attempts to resolve a characteristic time scale persistently reveal complexity. From the study of multi-component systems, it is now becoming apparent that such non-linearity is a pervasive attribute of system dynamics. Wind tunnel experiments were conducted to examine the nature of steady state sand transport under uniform forcing. Images of grains traversing an illuminated plane in the tunnel were acquired by video camera at a rate of 10 frames per second. A suite of image analysis techniques were then applied to quantify the volume of sand recorded in sequences of thousands of images and a transport time series generated. Wind velocity measurements were also acquired simultaneously with transport measurements. In contradiction to the steady state hypothesis, sand transport events obeyed a clear power-law scaling (number - size) over about 2.5 orders of magnitude, consistent with the dynamics of self-organised critical systems and suggesting that the dynamics of aeolian sediment transport are similar to those of avalanches observed in a sand pile. Such systems are inherently unpredictable - a fact which may contribute to our understanding of the intractability of the aeolian transport problem.

  9. Middle Pleistocene magnetostratigraphy and susceptibility stratigraphy: data from a carbonate aeolian system, Mallorca, Western Mediterranean

    NASA Astrophysics Data System (ADS)

    Nielsen, K. A.; Clemmensen, L. B.; Fornós, J. J.

    2004-09-01

    This study shows that successions of Pleistocene carbonate aeolian deposits can be placed successfully in a geochronologic framework using magnetostratigraphic and susceptibility stratigraphic analysis supplemented by luminescence dating, studies of wave-cut platforms, and biostratigraphic evidence. The investigated aeolian system covers a significant part of southernmost Mallorca and is exposed in impressive coastal cliff sections. At the study site at Els Bancals the aeolian system has a maximum thickness of 16 m and is composed of alternating dark red colluvial deposits and greyish red aeolian dune and sand-sheet deposits forming seven cyclostratigraphic units. Each cyclostratigraphic unit represents landscape stabilisation, colluviation, and soil formation followed by dunefield development, when marine carbonate sand was transported far inland by westerly or north-westerly winds. The aeolian system is located on top of a wave-cut marine platform 12-14 m a.s.l. This platform probably formed during a sea-level highstand in Marine Isotope Stage (MIS) 11 (427-364 ka), and renewed marine activity probably later in MIS 11 is indicated by the formation of beach deposits. Two sections at Els Bancals were sampled for a paleomagnetic study; additional samples were taken to detect variations in magnetic susceptibility (MS). The characteristic remanent magnetisation has been recovered for the most part of the succession in spite of diagenetic overprinting. There is evidence for two probably three reversal polarity excursions, possible connected to the Levantine, CR1 and CR0/Biwa III episodes. If this correlation is correct, the sampled succession represents a time interval in the Middle Pleistocene between ca 410 and ca 260 ka. This age estimate is supported by the MS study and by luminescence dates of 333±70 ka (aeolianite from lower part of the succession) and 275±23 ka (aeolianite from the top of the succession). The nature of the succession suggests deposition during

  10. Aeolian Grain Evolution on Mars: Implications for Regolith Origins

    NASA Astrophysics Data System (ADS)

    Sullivan, R. J.; Cabrol, N. A.; Golombek, M.; Herkenhoff, K. E.; Landis, G.; Mer Athena Science Team

    2010-12-01

    Early wind tunnel experiments and the Viking Lander experience led to concepts of grain evolution and regolith development on Mars. Wind tunnel experiments showed that 100-150 μm grains are easiest to entrain on Mars, but at 10 times higher wind speeds than on Earth. Even if trajectory speeds of martian saltating grains achieve smaller fractions of entraining wind speeds than on Earth, kinetic energies of these grains would be much higher, with greater potential for damage to the grains during return collisions with the particle bed. On this basis Sagan et al. [1977] JGR 82, 28, 4430 proposed that aeolian grain evolution on Mars followed a “kamikaze” pattern in which an initially coarse grain, entrained only relatively rarely by the strongest winds, would be abraded by high kinetic energy impacts and migrate through successively smaller size-frequencies at an ever-increasing rate (as entrainment became easier and thus more likely) until the grain was essentially turned to dust. On this basis it was proposed that sand-sized grains might be relatively short-lived and perhaps rare on Mars. MER observations motivate adjustments to these concepts, with implications for origins of martian regolith reworked by wind. Along both MER traverses, on opposite sides of the planet, regolith is volumetrically dominated by very fine sand mixed with unresolved finer grains. Sorting probably is poor, based on weakly cohesive remolding by rover wheel cleats. The size-frequency of this material, even if not precisely known, is consistent with grains that have evolved by attrition to sizes smaller than the most easily-moved 100-150 μm interval, to where entrainment becomes more difficult due to the increasing relative importance of inter-particle surface forces. At these smaller sizes also, kinetic energies have been reduced proportionally by the cube of the particle radius, so grain-to-grain attrition is less effective for further evolution to even smaller grain sizes

  11. Processes of debris comminution in the glacial environment and implications for quarts sand-grain micromorphology

    NASA Astrophysics Data System (ADS)

    Sharp, Martin; Gomez, Basil

    1986-01-01

    Studies of till composition, rock crushing and abrasion experiments, and detailed consideration of the mechanics of the comminution processes which occur in the subglacial environment suggest that monomineral quartz sand grains are mostly produced by the brittle fracture of larger particles. Abrasive wear is an inefficient mechanism for producing and modifying quartz sand grains because of the relatively great hardness of quartz. Viewed under the scanning electron microscope, surface textures of subglacially derived quartz sand grains are typically those associated with brittle fracture of quartz. Since the release of quartz sand grains from bedrock by mechanical weathering may also involve brittle fracture, grains which have been passively transported through a glacier may exhibit similar textures to those actively produced in the glacial environment. Hence the examination of the surface textures of quartz sand grains under the scanning electron microscope is unlikely to be a satisfactory technique for the discrimination of active and passive transport paths through glaciers.

  12. Density-lag anomaly patterns in backshore sands along a paraglacial barrier spit

    NASA Astrophysics Data System (ADS)

    Pupienis, Donatas; Buynevich, Ilya; Jarmalavičius, Darius; Fedorovič, Julija; Žilinskas, Gintautas; Ryabchuk, Daria; Kovaleva, Olga; Sergeev, Alexander; Cichon-Pupienis, Anna

    2016-04-01

    The Curonian Spit, located along the southeast Baltic Sea coast, is one of the longest paraglacial mega-barriers in the world (~100 km) and is characteried by microtidal sandy beaches and unbroken foredune ridge emplaced by human activities in historical times. Both are dominated by quartzo-feldpathic sand, with various fractions of heavy minerals that may be concentrated as density lag. Such heavy-mineral concentrations (HMCs) may be distributed weither randomly or regularly along the coast, depending on the geological framework, hydro-aeolian processes, and human activities (e.g., steel elements of coastal engineering structures, military installations, etc.). In this study, we focus on the longshore patterns in HMC distribution and relative magnitude (mainly the concentration of ferrimagnetic components). Along the entire Curonian Spit coast (Russia-Lithuania), a total of 184 surface sand samples were collected at 1 km interval from the berm and foredune toe (seaward base). HMCs were characterized in the laboratory using bulk low-field magnetic susceptibility (MS). The Wavelength and Lomb spectral analysis were used to assess the spatial rhythmicity of their longshore distribution. Generally, quartz sand is characterised by low MS values of ĸ<50 μSI, whereas higher values ĸ>150 μSI are typical for heavy mineral-rich sand. MS values on the berm and foredune toe range from 11.2-4977.9 μSI and from 9.2-3153.0 μSI, respectively. Density lag anomalies had MS values exceeding an average value by ≥3 times. Wavelength and Lomb spectral analysis allowed to identify several clusters of periodicities with wavelength varying from 2-12 km, with power spectra having statistically significant values (>95 % CI). Along the modern Curonian Spit coast, two scales of rhythmic pattern variation are evident: macroscale (≤12 km) and mesoscale (2-3 km). The former can be attributed to localized expressions of geological framework (iron-rich components) and engineering

  13. Abstracts for the Planetary Geology Field Conference on Aeolian Processes

    NASA Technical Reports Server (NTRS)

    Greeley, R. (Editor); Black, D. (Editor)

    1978-01-01

    The Planetary Geology Field Conference on Aeolian Processes was organized at the request of the Planetary Geology Program office of the National Aeronautics and Space Administration to bring together geologists working on aeolian problems on earth and planetologists concerned with similar problems on the planets. Abstracts of papers presented at the conference are arranged herein by alphabetical order of the senior author. Papers fall into three broad categories: (1) Viking Orbiter and Viking Lander results on aeolian processes and/or landforms on Mars, (2) laboratory results on studies of aeolian processes, and (3) photogeology and field studies of aeolian processes on Earth.

  14. Identification of Radar Facies and Linked Process-Based Palaeo-environmental Interpretations, Cooloola Sand Mass, Queensland, Australia

    NASA Astrophysics Data System (ADS)

    Gontz, A. M.; McCallum, A. B.; Moss, P. T.; Shulmeister, J.

    2015-12-01

    During 2015 and 2014, nearly 60 km of high-resolution ground penetrating radar data were acquired on the Cooloola Sand Mass (CSM) in southeastern coastal Queensland. The CSM is part of the world's largest downdrift sand system. It contains three of the world's largest sand islands, several National Parks, a UNESCO World Heritage Site and covers 500 km of the eastern Australian coastline in northern New South Wales and southern Queensland. The large (>200 m) composite dunes of the CSM exhibit multiple activation phases, coastally eroding bluffs and dune development is not obvious from surficial exposures. This provides an ideal environment for ground penetrating radar. The dune sequences have been provisionally dated to the mid Quaternary through present and represent the potential for a large palaeo-environmental proxy dataset. GPR imagery was collected using a MALA GeoSciences Ground Explorer (GX) system with 160 and 450 MHz antennae from the numerous physiographic and ecological provinces as well as mapped surficial soil units at the CSM. These data were used to determine the subsurface architecture, identify radar facies and develop environmental interpretations. In the clean, aeolian quartz-rich sands, radar wave penetration exceeded 30 m (radar velocity = 0.07 m/ns) with the 160 MHz antenna. From the interpreted environmental units including palaeosol, dune slip face, dune stoss face, sand blow, beach, estuarine and fluvial, we are developing maps to relate the units and focus a detailed sampling regime that includes OSL, sediment geochemistry and sedimentology, The interpreted units, stratigraphic correlation and spatial distribution of the facies is the first step in a broader project to unravel the Quaternary environmental and climate records that are archived within the sediments of the CSM.

  15. Roughness configuration matters for aeolian sediment flux

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The parameterisation of surface roughness effects on aeolian sediment transport is a key source of uncertainty in wind erosion models. Roughness effects are typically represented by bulk drag-partitioning schemes that scale the threshold friction velocity (u*t) for soil entrainment by the ratio of s...

  16. Sand Dunes in Noachis Terra

    NASA Technical Reports Server (NTRS)

    2004-01-01

    11 February 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows dark-toned sand dunes in a crater in eastern Noachis Terra. Most big martian dunes tend to be dark, as opposed to the more familiar light-toned dunes of Earth. This difference is a product of the composition of the dunes; on Earth, most dunes contain abundant quartz. Quartz is usually clear (transparent), though quartz sand grains that have been kicked around by wind usually develop a white, frosty surface. On Mars, the sand is mostly made up of the darker minerals that comprise iron- and magnesium-rich volcanic rocks--i.e., like the black sand beaches found on volcanic islands like Hawaii. Examples of dark sand dunes on Earth are found in central Washington state and Iceland, among other places. This picture is located near 49.0oS, 326.3oW. Sunlight illuminates this scene from the upper left; the image covers an area 3 km (1.9 mi) wide.

  17. A wind tunnel study of aeolian sediment transport response to unsteady winds

    NASA Astrophysics Data System (ADS)

    Li, Bailiang; McKenna Neuman, Cheryl

    2014-06-01

    Although moderate attention has been paid to the response of the aeolian mass transport rate to wind gusts, it is still unclear how the particle size and volumetric concentration affect this relation. Very little is known about the response time of the particle speed, and specifically, how the sensor scale and elevation affect measurements of this variable. The present study addresses this knowledge gap through a series of wind tunnel experiments in which a gusty wind was generated by programming the fan motor to adjust to a randomly selected rpm every 10 s. Beds consisting of either medium or coarse sand were investigated through synchronous, co-located measurements of the local wind speed and particle speed/count rate obtained via a customized laser Doppler anemometry (LDA) system. The vertically integrated sand transport rate (Q) and the wind speed in the freestream were quantified using a passive sand trap and pitot tube, respectively. The results of the experiments indicate that the response of the aeolian transport system to wind gusts is generally faster in terms of the particle speed than the mass transport rate, while the degree of correlation is found to vary with the sensor elevation, as well as with the particle size and volumetric concentration. In essence, the coupling within the transport system is demonstrated to be strongly scale dependent.

  18. Aeolian dust deposition rates in Northern French forests and inputs to their biogeochemical cycles

    NASA Astrophysics Data System (ADS)

    Lequy, Émeline; Legout, Arnaud; Conil, Sébastien; Turpault, Marie-Pierre

    2013-12-01

    This study describes the Aeolian dust deposition (ADD) in 4 sites of Northern France. Between December 2009 and March 2012, we sampled (i) Aeolian dust every four weeks, and (ii) 6 episodes of forecasted high atmospheric dust load mainly from the Saharan desert, the largest source of Aeolian dust in the world. These samples were treated with oxygen peroxide to remove organic matter so as to only compare the mineral fraction of the samples in the 4 sampling sites and to analyze their mineralogy. The solid samples contained the hardly soluble part of Aeolian dust (H-ADD). Its deposition was of 1.9 ± 0.3 g m-2 year-1 with a seasonal pattern of high deposition from spring to early autumn and a low deposition in winter. H-ADD deposition during the forecasted episodes of high atmospheric load did not systematically exceed the deposition rate during the rest of the sampling period. This indicates that such episodes little contributed to the annual H-ADD rate. The mineralogy revealed a heterogeneous set of minerals dominated by silicates with a common basis of major types (quartz, feldspars, mica, chlorite, kaolinite and interlayered clay minerals in every sample) with randomly trace minerals (Fe-oxides, sulfates, amphibole, talc, gibbsite and carbonates). The chemistry of H-ADD led to a dominant input of Si (up to 4.4 kg ha-1 year-1), while the nutrients inputs of Ca, K, Mg and P from ADD and the atmospheric organics (APD) in openfield were together of 1.5 ± 0.5 kg ha-1 year-1 with a high contribution of soluble minerals and organic matter of ca. 40% for Mg and K, and of ca. 80% for Ca and P. Nutrient inputs from APD are especially an interesting source of P for forests developed on acidic soils.

  19. Geochronology of initial soils in Late-Holocene polycyclic drift-sand deposits (Weerterbergen, S.E. Netherlands)

    NASA Astrophysics Data System (ADS)

    van mourik, J. M.; Wallinga, J.

    2012-04-01

    extracted SOM are indeed not reliable. OSL dating works excellent for aeolian sandy deposits with a high percentage of quartz grains. The OSL age is defined as the time after the last bleaching by solar radiation of mineral grains. In contrast to 14C dating, application of OSL dating provides accurate information over the age of top and bottom of deposited sand beds and consequently over the time, available for soil development. Based on OSL dates, the micropodzols developed between 1700 and 1950 AD and reflect relatively stable periods (soil formation) in the landscape development after the introduction of the deep stable management.

  20. Origin of modern quartzarenite beach sands in a temperate climate, Florida and Alabama, USA

    NASA Astrophysics Data System (ADS)

    Mehring, Joseph L.; McBride, Earle F.

    2007-10-01

    Quartzarenite coastal sands extending from eastern Louisiana eastward to Apalachee Bay, Florida, are anomalous: their position 7° north of the Tropic of Cancer contrasts with most other known modern quartzarenites, most of which are in a tropical setting. To determine the origin of these quartzarenite beach sands, we compared the mineralogy of samples taken from Alabama and Florida beaches, rivers that supply sand to the coast, and well cuttings representative of sandstone bedrock exposed in the Alabama coastal plain. To help assess the abundance of recycled quartz, and accepting the conventional wisdom that rounded sand-size quartz grains are recycled, we quantified the roundness of quartz grains in thin sections of river, beach, and well samples. We also determined the abundance of recycled grains with authigenic quartz using cathodoluminescence. River sands on Precambrian and Paleozoic bedrock in the study area have subarkose and sublitharenite compositions. However, as far as 200 km inland from the coast, river sands have attained quartzarenite composition and all rivers are presently delivering sand with at least 97% quartz to the coast. Rivers develop quartzarenite sand composition where they traverse poorly consolidated Tertiary sandstones, all of which we sampled are composed of > 95% quartz. Published experimental work indicates that abrasional rounding of sand-size quartz by rivers is insignificant and rounding in beaches is extremely slow. Hence, the abundance of quartz grains with some degree of rounding (96% for beaches; > 75% for rivers) further attests to the abundance of recycled quartz.

  1. Using Rare Earth Element (REE) tracers to identify preferential micro-sites of post-fire aeolian erosion

    NASA Astrophysics Data System (ADS)

    Van Pelt, R.; Zobeck, T. M.; Barnes, M. A.; Baddock, M.; D'Odorico, P.

    2011-12-01

    Plant communities in desert environments are spatially anisotropic. Nutrient islands develop below shrub canopies and in the bases of bunch grasses that enhance plant growth and reinforce the spatial anisotropy. Catastrophic disturbance that removes the vegetation such as fire or drought can result in the release of the trapped sediment which becomes redistributed over the landscape by wind and water. We applied Rare Earth Element (REE) tracers to different landscape positions of an anisotropic Northern Chihuahua Desert ecosystem at the Sevilleta National Wildlife Refuge in central New Mexico in an effort to study this process. We delineated three 0.5 m by 6 m plots of desert grassland and three plots of desert grassland-shrubland ecotone. Nitric acid was used to dissolve the REE oxides (Eu2O3, Dy2O3, and Pr6O11) which were then diluted in distilled water to a target concentration of 1 g REE l-1 and applied to the surface at a rate of 4 l m-2. From laboratory column studies using soil collected at the site, we estimated that this would penetrate the surface to a depth of 2.5 cm resulting in a sediment REE concentration of approximately 100 mg kg-1. Eu was applied to bare surfaces between vegetation characterized as sand with a surface covering of gravel, Pr was applied under grass clumps, and Dy was applied under Creosote Bush (Larrea tridentata (DC.). Two replicate 0.25 m2 areas of each surface type were also tagged to obtain a sample of tagged surface sediment for analysis. The area containing the plots was burned by U.S. Fish and Wildlife personnel on April 14, 2010. During the next two days, two grassland plots and two grassland-shrubland ecotone plots were tested by placing a portable boundary layer field wind tunnel over the plots and blowing them with 12 m s-1 wind for 10 minutes during which time a paired set of entrained sediment samples were captured at the outlet of the wind tunnel. This period was followed by a 30 minute test in which clean quartz sand

  2. QUARTZ FIBER ELECTROSCOPES

    DOEpatents

    Henderson, R.P.

    1957-09-17

    An instrument carried unobtrusively about the person such as in a finger ring to indicate when that person has been exposed to an unusual radiation hazard is described. A metallized quartz fiber is electrically charged to indicate a full scale reading on an etched glass background. The quartz fiber and the scale may be viewed through a magnifying lens for ease of reading. Incident radiation will ionize gaseous particles in the sealed structure thereby allowing the charge to leak off the quartz fiber with its resulting movement across the scale proportionally indicating the radiation exposure.

  3. Aeolian processes in Proctor Crater on Mars: Sedimentary history as analyzed from multiple data sets

    USGS Publications Warehouse

    Fenton, L.K.; Bandfield, J.L.; Ward, A.W.

    2003-01-01

    Proctor Crater is a 150 km diameter crater in Noachis Terra, within the southern highlands of Mars. The analysis leading to the sedimentary history incorporates several data sets including imagery, elevation, composition, and thermal inertia, mostly from the Mars Global Surveyor mission. The resulting stratigraphy reveals that the sedimentary history of Proctor Crater has involved a complex interaction of accumulating and eroding sedimentation. Aeolian features spanning much of the history of the crater interior dominate its surface, including large erosional pits, stratified beds of aeolian sediment, sand dunes, erosional and depositional streaks, dust devil tracks, and small bright bed forms that are probably granule ripples. Long ago, up to 450 m of layered sediment filled the crater basin, now exposed in eroded pits on the crater floor. These sediments are probably part of an ancient deposit of aeolian volcaniclastic material. Since then, some quantity of this material has been eroded from the top layers of the strata. Small, bright dune forms lie stratigraphically beneath the large dark dune field. Relative to the large dark dunes, the bright bed forms are immobile, although in places, their orientations are clearly influenced by the presence of the larger dunes. Their prevalence in the crater and their lack of compositional and thermal distinctiveness relative to the crater floor suggests that these features were produced locally from the eroding basin fill. Dust devil tracks form during the spring and summer, following a west-southwesterly wind. Early in the spring the dust devils are largely restricted to dark patches of sand. As the summer approaches, dust devil tracks become more plentiful and spread to the rest of the crater floor, indicating that the entire region acquires an annual deposit of dust that is revealed by seasonal dust devils. The dark dunes contain few dust devil tracks, suggesting that accumulated dust is swept away directly by saltation

  4. Aeolian processes in Proctor Crater on Mars: Sedimentary history as analyzed from multiple data sets

    NASA Astrophysics Data System (ADS)

    Fenton, Lori K.; Bandfield, Joshua L.; Ward, A. Wesley

    2003-12-01

    Proctor Crater is a 150 km diameter crater in Noachis Terra, within the southern highlands of Mars. The analysis leading to the sedimentary history incorporates several data sets including imagery, elevation, composition, and thermal inertia, mostly from the Mars Global Surveyor mission. The resulting stratigraphy reveals that the sedimentary history of Proctor Crater has involved a complex interaction of accumulating and eroding sedimentation. Aeolian features spanning much of the history of the crater interior dominate its surface, including large erosional pits, stratified beds of aeolian sediment, sand dunes, erosional and depositional streaks, dust devil tracks, and small bright bed forms that are probably granule ripples. Long ago, up to 450 m of layered sediment filled the crater basin, now exposed in eroded pits on the crater floor. These sediments are probably part of an ancient deposit of aeolian volcaniclastic material. Since then, some quantity of this material has been eroded from the top layers of the strata. Small, bright dune forms lie stratigraphically beneath the large dark dune field. Relative to the large dark dunes, the bright bed forms are immobile, although in places, their orientations are clearly influenced by the presence of the larger dunes. Their prevalence in the crater and their lack of compositional and thermal distinctiveness relative to the crater floor suggests that these features were produced locally from the eroding basin fill. Dust devil tracks form during the spring and summer, following a west-southwesterly wind. Early in the spring the dust devils are largely restricted to dark patches of sand. As the summer approaches, dust devil tracks become more plentiful and spread to the rest of the crater floor, indicating that the entire region acquires an annual deposit of dust that is revealed by seasonal dust devils. The dark dunes contain few dust devil tracks, suggesting that accumulated dust is swept away directly by saltation

  5. Cathodoluminescence of shocked quartz at the Cretaceous-Tertiary boundary

    NASA Technical Reports Server (NTRS)

    Owen, Michael R.; Anders, Mark H.

    1988-01-01

    Empirical studies have documented an association between rock type and the cathodoluminescence color of constituent quartz grains. Quartz from extrusive igneous sources luminesces uniform pale blue. Quartz from intrusive igneous and high-grade metamorphic rocks generally luminesces darker purple-blue, whereas quartz recrystallized under low-grade metamorphic conditions luminesces reddish-brown. Quartz grains in most sandstones luminesce a heterogeneous mixture of these colors because the grains were derived from a variety of ultimate source rocks. If shocked quartz found at the Cretaceous-Tertiary (K-T) boundary is volcanic in origin, its cathodoluminescence should be predominantly pale blue. Alternatively, quartz grains derived from bolide impact upon, and ejection of, mixed igneous, metamorphic, and sedimentary rocks should luminesce a variety of colors. Grain mounts of sand collected at the K-T boundary horizon from the Clear Creek North site in the Raton Basin, Colorado were examined. Shocked quartz luminesced a variety of colors and very few grains luminesced the pale blue color that is typical of volcanic quartz. It was concluded that the shocked quartz was derived from a petrologically diverse source region without substantial volcanic contribution. Most shocked grains apparently were derived from low-grade metamorphic rocks, with a slightly smaller contribution from high-grade metamorphic and intrusive igneous rocks. Rare quartz grains with brown-luminescing rims reflect a minor addition from detrital sedimentary sources. The apparent relative abundances of intrusive (and rare extrusive) igneous, metamorphic, and sedimentary ultimate source rocks suggested by CL colors of shock-deformed quartz at the K-T boundary is consistent with a crustal/supracrustal origin for the grains.

  6. Building of tropical beach ridges, northeastern Queensland, Australia: Cyclone inundation and aeolian decoration

    NASA Astrophysics Data System (ADS)

    Tamura, Toru; Nicholas, William; Brooke, Brendan; Oliver, Thomas

    2016-04-01

    Processes associated with tropical cyclones are thought responsible for building coarse sand beach ridges along the northeastern Queensland coast, Australia. While these ridges are expected to be geological records of the past cyclone, they question the general consensus of the aeolian genesis of sandy beach ridges. To explore the ridge-forming process, we carried out the GPR survey, auger drilling, pit excavation, grain-size analysis, and OSL dating for coarse sand beach ridges at the Cowley Beach, northeastern Queensland. The Cowley Beach is a mesotidal beach characterized by a low-tide terrace and steep beach face. Ten beach ridges are recognized along the survey transect that extends 700 m inland from the shore. 37 OSL ages are younger seawards, indicating the seaward accretion of the ridge sequence over the last 2700 years. The highest ridge is +5.1 m high above AHD (Australian Height Datum). Two GPR units are bounded by a groundwater surface at c. +1.5 m AHD. The upper unit is characterized by horizontal to hummocky reflectors punctuated by seaward dipping truncation surfaces. These reflectors in places form dome-like structure that appears to be the nucleus of a beach ridge. The shape and level (+2.5 m AHD) of the dome are similar to those of the present swash berm. The lower unit shows a sequence of reflectors that dip at an angle of present beach face. The sequence is dissected by truncation surfaces, some of which are continuous to those in the upper unit. Coarse sand mainly forms beach ridge deposits below +4.0 m AHD, while a few higher ridges have an upward fining layer composed of medium sand above +4.0 m, which is finer than aeolian ripples found on the backshore during the survey. In addition, pumice gravel horizons underlie the examined ridge crests. The sequence of seaward dipping reflectors indicates that the Cowley Beach, like other many sandy beaches, has prograded during onshore sand accretion by fairweather waves and has been eroded by storms

  7. Vacuum electrolysis of quartz

    DOEpatents

    King, James Claude

    1976-01-13

    The disclosure is directed to a method for processing quartz used in fabricating crystal resonators such that transient frequency change of resonators exposed to pulse irradiation is virtually eliminated. The method involves heating the crystal quartz in a hydrogen-free atmosphere while simultaneously applying an electric field in the Z-axis direction of the crystal. The electric field is maintained during the cool-down phase of the process.

  8. Simultaneous observations of the critical aeolian threshold of two surfaces

    NASA Astrophysics Data System (ADS)

    Stout, John E.

    2007-03-01

    Threshold is an important parameter in wind erosion research and in the field of aeolian research in general. A new technique was recently developed that provides a means of determining threshold with a sampling system that continuously collects wind data along with critical information regarding saltation activity. By employing two identical sampling systems, it was possible to monitor the threshold of a highly mobile sand surface while simultaneously monitoring the threshold of a less mobile playa surface. Results indicate that threshold could be measured at both locations with enough precision to establish clear differences between the surfaces. The sandy surface at the Morgenstern Dunes site was considerably more active than the Yellow Lake playa site over the 113-day sampling period because of its consistently lower threshold. The Morgenstern site tended to maintain a fairly constant threshold of around 5.4 to 5.5 m/s whereas the threshold of the Yellow Lake playa surface varied from a low of 6.4 m/s to values greater than 13.3 m/s. Limitations of this method lie in the fact that threshold can be determined only when winds are blowing sufficiently strongly to cause sediment transport.

  9. Biodiversity impact of the aeolian periglacial geomorphologic evolution of the Fontainebleau Massif (France)

    NASA Astrophysics Data System (ADS)

    Thiry, M.; Liron, M. N.

    2009-04-01

    Landscape features The geomorphology of the Fontainebleau Massif is noteworthy for its spectacular narrow ridges, up to 10 km long and 0.5 km wide, armored by tightly cemented sandstone lenses and which overhang sandy depressions of about 50m. Denudation of the sandstone pans lead to a highly contrasted landscape, with sandstone ridges ("platières") towering sandy depressions ("vallées") and limestone plateaus ("monts"). This forms the geological frame of the spectacular sceneries of the Fontainebleau Massif (Thiry & Liron, 2007). Nevertheless, there is little know about the erosive processes that have built-up these landscapes. Periglacial processes, and among them aeolian ones, appear significant in the development of the Fontainebleau Massif physiography. The periglacial aeolian geomorphology Dunes and dune fields are known since long and cover about 15% to 25% of the Fontainebleau Massif. The aeolian dunes developed as well on the higher parts of the landscape, as well as in the lower parts of the landscape. The dunes are especially well developed in the whole eastern part of the massif, whereas the western part of the massif is almost devoid of dunes. Nevertheless, detailed mapping shows that dunes can locally be found in the western district, they are of limited extension, restricted to the east facing backslope of outliers. Loamy-sand covers the limestone plateaus of the "monts". The loam cover is of variable thickness: schematically thicker in the central part of the plateaus, where it my reach 3 m; elsewhere it may thin down to 0,20-0,30 m, especially at the plateau edges. Blowout hollows are "negative" morphologies from where the sand has been withdrawed. Often these blowouts are decametric sized and well-delimited structures. Others, more complex structures, are made up of several elongated hectometric hollows relaying each other from and which outline deflation corridor more than 1 km long. A characteristic feature of these blowout hollows is the

  10. On the formation of sand ramps: A case study from the Mojave Desert

    NASA Astrophysics Data System (ADS)

    Bateman, Mark D.; Bryant, Robert G.; Foster, Ian D. L.; Livingstone, Ian; Parsons, Anthony J.

    2012-08-01

    Sand ramps are dune-scale sedimentary accumulations found at mountain fronts and consist of a combination of aeolian sands and the deposits of other geomorphological processes associated with hillslope and fluvial activity. Their complexity and their construction by wind, water and mass movement means that sand ramps potentially hold a very rich store of palaeoenvironmental information. However, before this potential can be realised a full understanding of their formation is necessary. This paper aims to provide a better understanding of the principal factors influencing the development of sand ramps. It reviews the stratigraphic, chronometric and sedimentological evidence relating to the past development of sand ramps, focussing particularly on Soldier Mountain sand ramp in the Mojave Desert, as well as using observations of the modern movement of slope material to elucidate the formation of stone horizons within sand ramps. Findings show that sand ramps cannot easily be interpreted in terms of a simple model of fluctuating palaeoenvironmental phases from aeolian dominated to soil/fluvial dominated episodes. They accumulate quickly (perhaps in < 5 ka), probably in a single phase before becoming relict. Based on the evidence from Soldier Mountain, they appear strongly controlled by a 'window of opportunity' when sediment supply is plentiful and cease to develop when this sediment supply diminishes and/or the accommodation space is filled up. Contemporary observations of stone movement both on rock and sandy sloping surfaces in the Mojave region indicate movement rates in the order of 0.6 and 11 mm yr- 1, which is insufficiently fast to explain how stone horizons could have been moved across and been incorporated into sand ramps on multiple occasions. Stone horizons found within the aeolian sediments lack evidence for soil development and are interpreted as very short-term events in which small streams moved and splayed discontinuous stone horizons across the sand

  11. Controls on quartz silt formation by crystalline defects.

    PubMed

    Kumar, R; Jefferson, I F; O'hara-Dhand, K; Smalley, I J

    2006-04-01

    Silt composed predominately of quartz occurs abundantly in the sedimentary material found in deposits worldwide. Its origin is still the subject of many debates, but one acknowledged source is due to glacial grinding. To examine this problem and test the apparent contradictory evidence in the literature, a series of experiments were performed. In these experiments, the Bromhead ring shear apparatus was used as it can simulate glacial grinding due to its uninterrupted shearing action; hence, it provides an effective reproduction of glacial grinding. Experiments conducted on unweathered sand-sized vein quartz produced little silt, while use of sand from a sedimentary deposit, Leighton Buzzard sand, produced plentiful silt. Experimental results suggest that there is an internal mineralogical control on the formation of quartz silt particles. It is argued that the processes involved in the formation of quartz introduce defects (Moss defects) into the low-quartz crystal structure, demonstrated by the presence of peaks in the particle size curve around 20 microm. This indicates that there is a lithological control for the silt yielded under weathering, and this could explain why a pronounced mode at around 20-60 micirom is commonly observed in silts, such as loess.

  12. Dynamics of sediment storage and release on aeolian dune slip faces: A field study in Jericoacoara, Brazil

    NASA Astrophysics Data System (ADS)

    Pelletier, Jon D.; Sherman, Douglas J.; Ellis, Jean T.; Farrell, Eugene J.; Jackson, Nancy L.; Li, Bailiang; Nordstrom, Karl F.; Maia, Luis Parente; Omidyeganeh, Mohammad

    2015-09-01

    Sediment transport on the lee sides of aeolian dunes involves a combination of grain-fall deposition on the upper portion of the slip face until a critical angle is exceeded, transport of a portion of those sediments down the slip face by grain flows and, finally, deposition at an angle of repose. We measured the mean critical and repose angles and the rate of slip-face avalanching using terrestrial laser scanning (TLS) on two barchans of different size in Jericoacoara, Brazil. Wind speeds and sand fluxes were measured simultaneously at the dune crests. We found that the mean critical decreased with increasing wind speed. We attribute this effect to turbulent shear stresses, the magnitude of which we quantified using 3-D large eddy simulation modeling, that randomly act down the slip face (i.e., in the direction of gravity) to trigger grain flows at lower angles than would be possible with gravity stresses alone. We developed and tested a new predictive model for the frequency of avalanching that depends on both the sediment flux delivered to the slip face and changes in the critical angle with time. In this model, increasing turbulent shear stresses drive avalanching even in the absence of sand flux delivered to the slip face if the critical angle decreases below the slope angle. We also document that the mean critical angle decreases slightly with increasing slip-face height. These results have important implications for aeolian dune evolution, interpretations of aeolian stratigraphy, and granular mechanics.

  13. Holocene environment changes around the Sara Us River, northern China, revealed by optical dating of lacustrine-aeolian sediments

    NASA Astrophysics Data System (ADS)

    Zhao, Hui; Sheng, Yongwei; Li, Bo; Fan, Yuxin

    2016-04-01

    The Sara Us River is located along the boundary of the Mu Us Desert and the Chinese Loess Plateau in northern China. The river has cut down through Quaternary sediments creating 70-80 m deep valleys with thick lacustrine/aeolian sequences exposed. We applied optical stimulated luminescence on sediments from a Holocene section of aeolian sand/lacustrine deposits in the top of the river valley. The dating results show that a humid period existed from 7.1 to 2.0 ka ago as evidenced by two layers of peat and lacustrine sediments. However, compared to other published Holocene sections in the Sara Us River valleys close to the section under studying, the local environment experienced very complicated changes during the Holocene. All of the sections recorded a period with drought and/or cold before the Holocene at around 13 ka, and an episode of aridity after about 2 ka ago as evidenced by the layers of aeolian sand. However, the ages of the lacustrine and peat layers in these sections are substantially different. Geomorphological analysis by digital elevation models does not support the existence of a mega lake covering the study area at 2 ka. The intricate environmental changes may have been caused by the meandering of the Sara Us River. Environmental changes also strongly affected human migration in this area, which is documented by Chinese historical records.

  14. Emission polarization study on quartz and calcite.

    PubMed

    Vincent, R K

    1972-09-01

    Spectral emission polarization of quartz and calcite polished plates for observation angles of 20 degrees and 70 degrees is calculated by the substitution of complex index of refraction values for each mineral into Fresnel's equations. The emission polarization is shown to be quite wavelength-dependent, demonstrating that selected narrow or medium-width (Deltalambda approximately 1.5 microm) spectral bands exhibit a significantly higher percentage of polarization than a broad spectral band (Deltalambda approximately 6microm) for these two minerals. Field measurements with a broadband infrared radiometer yield polarizations on the order of 2% for a coarse-grained granite rock and beach sand (both quartz-rich). This implies that a more sensitive detector with a selected mediumwidth filter may be capable of measuring emission polarization accurately enough to make this parameter useful as a remote sensing tool for discrimination among rocks on the basis of texture.

  15. Current kinematics of the Aeolian Islands

    NASA Astrophysics Data System (ADS)

    Anzidei, Marco; Bonforte, Alessandro; Bruno, Valentina; Esposito, Alessandra; Mattia, Mario; Pietrantonio, Grazia; Pisani, Anna Rita; Puglisi, Giuseppe; Sepe, Vincenzo

    2014-05-01

    The active volcanic arc of the Aeolian islands is located between the Southern Tyrrhenian Sea back arc basin (Marsili basin) and the Calabrian Arc, an orogenic belt affected by a Late Quaternary extensional tectonics and uplift. This region is undergoing to shallow and deep seismicity up to 550 km and active volcanism due to the subduction extensional strain and heat flow related to the slab detachment beneath the Calabrian Arc. In this geodynamic framework, the current crustal deformations detected at the ground surface by continuous and episodic GPS data collected in the archipelago and its surroundings in the time span 1996-2012, reflect both the behavior of the single volcanic islands and the regional tectonics of this complex region. Particularly, we focus on the current vertical component of land motion that indicate a diffuse subsidence that is in contrast with uplifting Quaternary geological data. GPS data show that subsiding is increasing toward north between Vulcano and Lipari Islands, but with episodic uplift at Panarea. Particularly, Lipari is rapidly subsiding at mean velocities exceeding 10 mm/yr, which the highest value among the Aeolian island. Instrumental data are in agreement with independent observations that for Lipari Marina Corta indicate a continuous subsidence with rates at at about 8 mm/yr since the last 2200 years B.P., while in Basiluzzo at about 2 mm/yr. Here we show and discuss the current geodetic strain and velocity field for the time span 1996-2012 for the Aeolian archipelago, as well as the GPS data archive. Finally, for Lipari island, the continuous land subsidence will cause a wide submersion of coastal installations by the year 2100 and represent a significant hazard within an urbanized coastal area.

  16. Introducing a New International Society of Aeolian Research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aeolian research is long-standing and rapidly growing area of study where scientists of many disciplines meet to investigate the effects of wind on the surface of the Earth and other planetary bodies, such as Mars and Titan. Fields of study in aeolian research cover a broad spectrum ranging from dev...

  17. Wind erosion and aeolian desertification in Northern China

    NASA Astrophysics Data System (ADS)

    Tao, Wang

    2013-04-01

    Aeolian desertification is land degradation characterized by wind erosion in arid, semiarid and sub-humid regions mainly resulted from the excessive human activities on natural resources in Northern China. With along the development of economy and society, aeolian desertification/land degradation exerted increasingly profound influences on natural environment and social development. The aeolian desertification mostly occurs in the interlacing agro-pastoral region, grassland, semiarid rainfed cropland and oasis irrigated cropland regions in Northern China and the whole situation of aeolian desertification comes to depravation as well as only part of the desertified land had been controlled. China, as one of the countries facing with severe desertification problems, has made some progresses in understanding and combating the process of aeolian desertification through many years of hard work. Based on existing experiences and research achievements, this paper briefly discusses the causes, developmental processes, assessment and control mechanism of aeolian desertification in Northern China so as to provide some basic experiences for the further study and combating the aeolian desertification. Keywords: aeolian desertification, cause and process, assessment, desertified land control

  18. A review of the chronologies and geomorphology of the aeolian landforms in the northwestern Negev dunefield (Israel)

    NASA Astrophysics Data System (ADS)

    Roskin, Joel

    2015-04-01

    The northwestern (NW) Negev Desert dunefield covering an area of only 1,300 km2, comprises the eastern end of the northern Sinai Peninsula - NW Negev erg and is probably the most densely dated dune body in the INQUA Dunes Atlas chronologic database. Over 230 luminescence ages (TL, IRSL, and mainly OSL) and radiocarbon dates have been retrieved over the past course of 20 years from calcic and sandy palaeosols serving as dune substrates, sand sheets, vegetated linear dunes (VLDs), fluvial deposits, and archaeological sites. Despite being from different deposit types and aeolian morphologies, and based on different methodologies, the chronologies usually show good compatibility. By reviewing and reassessing the significance of the Eastern Mediterranean INQUA Dunes Atlas chronologies, along with detailed stratigraphic, structural and geomorphologic data and understandings, the major, and possibly extreme, episodes of aeolian activity and stability are outlined. Repetitive chronostratigraphic sequences in VLDs indicate that this dune type, at least in the Negev, comprises a reliable recorder of main dune mobilization periods. This presentation demonstrates that certain combinations of research finds, using different OSL dating strategies and other regional and local late Quaternary records and in particular aeolian ones, are required assets for providing for acceptable local and regional palaeoclimatic interpretations. The distribution of the VLD chronologies points to rapid mobilization during the Heinrich 1 and Younger Dryas, characterized by powerful winds, though VLDs also form in late Holocene palaeoenvironments. Time slices illustrate the different sensitivities of the studied aeolian landforms to the source, availability, and supply of sediment; long- and short-term climate change, local human-induced environmental changes and also their joint effects, that enable evaluation of aeolian responses to future environmental and climate changes.

  19. Multi-Resolution Analysis of LiDAR data for Characterizing a Stabilized Aeolian Landscape in South Texas

    NASA Astrophysics Data System (ADS)

    Barrineau, C. P.; Dobreva, I. D.; Bishop, M. P.; Houser, C.

    2014-12-01

    Aeolian systems are ideal natural laboratories for examining self-organization in patterned landscapes, as certain wind regimes generate certain morphologies. Topographic information and scale dependent analysis offer the opportunity to study such systems and characterize process-form relationships. A statistically based methodology for differentiating aeolian features would enable the quantitative association of certain surface characteristics with certain morphodynamic regimes. We conducted a multi-resolution analysis of LiDAR elevation data to assess scale-dependent morphometric variations in an aeolian landscape in South Texas. For each pixel, mean elevation values are calculated along concentric circles moving outward at 100-meter intervals (i.e. 500 m, 600 m, 700 m from pixel). The calculated average elevation values plotted against distance from the pixel of interest as curves are used to differentiate multi-scalar variations in elevation across the landscape. In this case, it is hypothesized these curves may be used to quantitatively differentiate certain morphometries from others like a spectral signature may be used to classify paved surfaces from natural vegetation, for example. After generating multi-resolution curves for all the pixels in a selected area of interest (AOI), a Principal Components Analysis is used to highlight commonalities and singularities between generated curves from pixels across the AOI. Our findings suggest that the resulting components could be used for identification of discrete aeolian features like open sands, trailing ridges and active dune crests, and, in particular, zones of deflation. This new approach to landscape characterization not only works to mitigate bias introduced when researchers must select training pixels for morphometric investigations, but can also reveal patterning in aeolian landscapes that would not be as obvious without quantitative characterization.

  20. Optical contacting of quartz

    NASA Technical Reports Server (NTRS)

    Payne, L. L.

    1982-01-01

    The strength of the bond between optically contacted quartz surfaces was investigated. The Gravity Probe-B (GP-B) experiment to test the theories of general relativity requires extremely precise measurements. The quartz components of the instruments to make these measurements must be held together in a very stable unit. Optical contacting is suggested as a possible method of joining these components. The fundamental forces involved in optical contacting are reviewed and relates calculations of these forces to the results obtained in experiments.

  1. Quartz ball valve

    NASA Technical Reports Server (NTRS)

    Goetz, C.; Ingle, W. M. (Inventor)

    1980-01-01

    A ball valve particularly suited for use in the handling of highly corrosive fluids is described. It is characterized by a valve housing formed of communicating segments of quartz tubing, a pair of communicating sockets disposed in coaxial alignment with selected segments of tubing for establishing a pair of inlet ports communicating with a common outlet port, a ball formed of quartz material supported for displacement between the sockets and configured to be received alternately thereby, and a valve actuator including a rod attached to the ball for selectively displacing the ball relative to each of the sockets for controlling fluid flow through the inlet ports.

  2. Mars Aeolian Features and Processes Observed Concurrently From Orbit and the Ground

    NASA Astrophysics Data System (ADS)

    Greeley, R.; Arvidson, R.; Cabrol, N.; Christensen, P.; de Souza, P.; Geissler, P.; Goetz, W.; Landis, G.; Lemmon, M.; Malin, M.; McEwen, A.; Neukum, G.; Pendleton Hoffer, M.; Squyres, S.; Sullivan, R.; Waller, D.; Williams, D.

    2008-12-01

    , revealed by Spirit to be composed of grains larger than a few hundred microns in diameter. Imaging of Spirit's deck after periods of aeolian activity showed the presence of similar grains, as well as the bounce marks of their passage in the deposited dust suggesting emplacement by saltation; showing that at least some sands currently are active. This interpretation was verified by a sequence of images from Spirit which showed active movement of small ripples across the surface. Despite these results, questions remain regarding current versus relict aeolian features, and the specific pathways of aeolian transport in complex terrains, such as the Columbia Hills in Gusev crater. These questions are being addressed through current research and the acquisition of new data from both the ground and orbit.

  3. Aeolian beach ridges and their significance for climate and sea level: Concept and insight from the Levant coast (East Mediterranean)

    NASA Astrophysics Data System (ADS)

    Mauz, B.; Hijma, M. P.; Amorosi, A.; Porat, N.; Galili, E.; Bloemendal, J.

    2013-06-01

    Relict beach ridges of aeolian origin and associated soils are often used for inferring relative sea level and climate with contrasting results. Most studies link the aeolian coastal deposits to regressive phases, some to high sea-level stands, and a few to intermediate relative sea-level positions. We interpret the apparent contradictions as indicating the lack of an over-arching concept and the inconsistent usage of sea level-related terms. In this paper we present an integrated morpho-sedimentological concept for a microtidal, mid-latitudinal coast and review existing data from the Levant (East Mediterranean) coast to evaluate the concept and to eliminate nomenclatural confusion. A coastal depositional environment in a semi-arid environment consists of shallow-marine, aeolian and alluvial facies which together form an aeolian beach-ridge complex as a package of strata which respond simultaneously to sea-level change. A transgressive complex forms through reworking or overstepping of the coastal foredune and a regressive complex forms by downstepping. Under transgression the aeolian beach ridge represents the highstand deposit and its adjacent shallow marine sediment is the transgressive deposit. Under regression the complex represents the falling stage and the associated downdip surface marks the lowstand. On the Levant coast we find chronologically well-constrained, offlapping aeolian beach ridges as parts of six downstepping beach ridge complexes formed between ~ 200 ka and 10 ka. The complexes represent the falling stage systems tract (FSST) of a short-lived (5th-order) depositional sequence when the shoreline shifted from a position close to the modern coastline to the shelf or below the shelf edge. Three of these FSSTs and their up dip and down dip super bounding surface together form the 4th order (~ 100 ka) sequence of the last interglacial/glacial cycle. The absence of transgressive, highstand and lowstand systems tract is explained by the poor

  4. Mars sampling strategy and aeolian processes

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald

    1988-01-01

    It is critical that the geological context of planetary samples (both in situ analyses and return samples) be well known and documented. Apollo experience showed that this goal is often difficult to achieve even for a planet on which surficial processes are relatively restricted. On Mars, the variety of present and past surface processes is much greater than on the Moon and establishing the geological context of samples will be much more difficult. In addition to impact hardening, Mars has been modified by running water, periglacial activity, wind, and other processes, all of which have the potential for profoundly affecting the geological integrity of potential samples. Aeolian, or wind, processes are ubiquitous on Mars. In the absence of liquid water on the surface, aeolian activity dominates the present surface as documented by frequent dust storms (both local and global), landforms such as dunes, and variable features, i.e., albedo patterns which change their size, shape, and position with time in response to the wind.

  5. Characteristics of aeolian dust across northwest Australia

    NASA Astrophysics Data System (ADS)

    Karlson, L. R.; Greene, R. S. B.; Scott, K. M.; Stelcer, E.; O'Loingsigh, T.

    2014-03-01

    South easterly trade winds have long been thought to transport aeolian dust across northwest Australia, but very little is known about the chemical and particle size characteristics of this material. From July 2008 to May 2009, 36 aeolian dust samples were collected monthly at four sites across Australia's northwest. The results of ion beam analysis indicate that the samples consisted of four major elemental groups, one of which appeared to be transported across the sites during months in winter and summer. This group (characterised by higher ratios of Fe, Ti and Mn/Si than the Earth's Crustal Average) also showed a decrease in particle sizes towards the west. This suggests that the dust may have had a central Australian source, while other groups richer in Si appear to have been locally derived. These results support previous models of seasonal dust transport, and may have relevance in regional climate modelling, the transport of nutrients into the Indian Ocean, mineral exploration and studies of respiratory health.

  6. The provenance of Taklamakan desert sand

    NASA Astrophysics Data System (ADS)

    Rittner, Martin; Vermeesch, Pieter; Carter, Andrew; Bird, Anna; Stevens, Thomas; Garzanti, Eduardo; Andò, Sergio; Vezzoli, Giovanni; Dutt, Ripul; Xu, Zhiwei; Lu, Huayu

    2016-03-01

    Sand migration in the vast Taklamakan desert within the Tarim Basin (Xinjiang Uyghur Autonomous region, PR China) is governed by two competing transport agents: wind and water, which work in diametrically opposed directions. Net aeolian transport is from northeast to south, while fluvial transport occurs from the south to the north and then west to east at the northern rim, due to a gradual northward slope of the underlying topography. We here present the first comprehensive provenance study of Taklamakan desert sand with the aim to characterise the interplay of these two transport mechanisms and their roles in the formation of the sand sea, and to consider the potential of the Tarim Basin as a contributing source to the Chinese Loess Plateau (CLP). Our dataset comprises 39 aeolian and fluvial samples, which were characterised by detrital-zircon U-Pb geochronology, heavy-mineral, and bulk-petrography analyses. Although the inter-sample differences of all three datasets are subtle, a multivariate statistical analysis using multidimensional scaling (MDS) clearly shows that Tarim desert sand is most similar in composition to rivers draining the Kunlun Shan (south) and the Pamirs (west), and is distinctly different from sediment sources in the Tian Shan (north). A small set of samples from the Junggar Basin (north of the Tian Shan) yields different detrital compositions and age spectra than anywhere in the Tarim Basin, indicating that aeolian sediment exchange between the two basins is minimal. Although river transport dominates delivery of sand into the Tarim Basin, wind remobilises and reworks the sediment in the central sand sea. Characteristic signatures of main rivers can be traced from entrance into the basin to the terminus of the Tarim River, and those crossing the desert from the south to north can seasonally bypass sediment through the sand sea. Smaller ephemeral rivers from the Kunlun Shan end in the desert and discharge their sediment there. Both river run

  7. Galileo quartz clock

    NASA Technical Reports Server (NTRS)

    Block, M.; Meirs, M.; Rosenfeld, M.; Garriga, P. C.

    1979-01-01

    A quartz oscillator for use in the Galileo experiment (orbiter and Probe) for Jupiter mission 1982 are described. This oscillator has achieved significant performance breakthroughs by the use of an SC cut, double rotated, crystal in a titanium dewar flask. Some of the performance parameters as well as the design feature of the oscillator are presented.

  8. Laboratory studies of aeolian sediment transport processes on planetary surfaces

    NASA Astrophysics Data System (ADS)

    Rasmussen, Keld R.; Valance, Alexandre; Merrison, Jonathan

    2015-09-01

    , but not all, older or recent wind tunnel observations. Similarly some measurements performed with uniform sand samples having grain diameters of the order of 0.25-0.40 mm indicate that ripple spacing depends on friction velocity in a similar way as particle jump length. The observations are thus in agreement with a recent ripple model that link the typical jump length to ripple spacing. A possible explanation for contradictory observations in some experiments may be that long observation sequences are required in order to assure that equilibrium exists between ripple geometry and wind flow. Quantitative understanding of saltation characteristics on Mars still lacks important elements. Based upon image analysis and numerical predictions, aeolian ripples have been thought to consist of relatively large grains (diameter > 0.6 mm) and that saltation occurs at high wind speeds (> 26 m/s) involving trajectories that are significantly longer than those on Earth (by a factor of 10-100). However, this is not supported by recent observations from the surface of Mars, which shows that active ripples in their geometry and composition have characteristics compatible with those of terrestrial ripples (Sullivan et al., 2008). Also the highest average wind speeds on Mars have been measured to be < 20 m/s, with even turbulent gusts not exceeding 25 m/s. Electrification is seen as a dominant factor in the transport dynamics of dust on Mars, affecting the structure, adhesive properties and detachment/entrainment mechanisms specifically through the formation of aggregates (Merrison et al., 2012). Conversely for terrestrial conditions electric fields typically observed are not intense enough to significantly affect sand transport rates while little is known in the case of extra-terrestrial environments.

  9. Aeolian removal of dust from photovoltaic surfaces on Mars

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Perez-Davis, Marla E.; Marabito, Mark

    1990-01-01

    It is well documented that Mars is totally engulfed in huge dust storms nearly each Martian year. Dust elevated in these global dust storms, or in any of the numerous local dust storms could settle on photovoltaic surfaces and seriously hamper photovoltaic power system performance. Using a recently developed technique to uniformly dust simulated photovoltaic surfaces, samples were subjected to Martian-like winds in an attempt to determine whether natural aeolian processes on Mars would sweep off the settled dust. The effects of wind velocity, angle of attack, height off the Martian surface, and surface coating material were investigated. Principles which can help to guide the design of photovoltaic arrays bound for the Martian surface were uncovered. Most importantly, arrays mounted with an angle of attack approaching 45 deg show the most efficient clearing. Although the angular dependence is not sharp, horizontally mounted arrays required significantly higher wind velocities to clear off the dust. From the perspective of dust-clearing it appears that the arrays may be erected quite near the ground, but previous studies have suggested that saltation effects can be expected to cause such arrays to be covered by sand if they are set up less than about a meter from the ground. Providing that the surface chemistry of Martian dusts is comparable to our test dust, the materials used for protective coating may be optimized for other considerations such as transparency, and chemical or abrasion resistance. The static threshold velocity is low enough that there are regions on Mars which experience winds strong enough to clear off a photovoltaic array if it is properly oriented. Turbulence fences proved to be an ineffective strategy to keep dust cleared from the photovoltaic surfaces.

  10. Earth and planetary aeolian streaks: A review

    NASA Astrophysics Data System (ADS)

    Cohen-Zada, Aviv Lee; Blumberg, Dan Gabriel; Maman, Shimrit

    2016-03-01

    Wind streaks are abundant aeolian features that have been observed on planetary surfaces by remote sensing means. They have been widely studied, particularly on Mars and Venus and to a much lesser extent on Earth. In imagery, these streaks appear as elongated features that are easily distinguishable from their surroundings. Geomorphologically, these streaks have, thus far, been interpreted as the presence or absence of small loose particles on the surface, deposited or eroded, respectively, by wind. However, the use of different (optical and radar) remote-sensing tools to study wind streaks has led to uncertain interpretations of these features and has hindered their geomorphological definition. Since wind streaks indicate the prevailing wind direction at the time of their formation, they may be used to map near-surface winds and to estimate atmospheric circulation patterns. The aim of this article is to review the main studies focusing on wind streaks and to present the most up-to-date knowledge on this topic. Moreover, a new perspective for wind streak research is suggested: As 'wind streak' is a collective term for a variety of aeolian features that when viewed from above appear as distinctive albedo surface patterns, we suggest that the term should not be used to refer to a geomorphological feature. Since the definition of wind streaks is constrained to remote sensing rather than to geomorphology and is affected by the inherent biases of remote sensing methods, we suggest that 'wind streaks' should be used as a collective term for aeolian surfaces that are discernable from above as bright and dark patterns due to alterations in the characteristics of the surface or to the presence of bedforms. To better understand the mechanisms, time-frames, climate compatibility of wind streaks and the influences of remote sensing on their appearance, we have compiled a new database containing more than 2,900 Earth wind streaks. A comprehensive study of these Earth wind

  11. Quartz grain assessment for reconstructing the coastal palaeoenvironment

    NASA Astrophysics Data System (ADS)

    Vieira Machado, Giseli Modolo; Albino, Jacqueline; Leal, Arthur Pereira; Bastos, Alex Cardoso

    2016-10-01

    This study proposes a combination of sedimentological techniques as a tool to understand depositional palaeoenvironments. Grain size, mineralogy, compositional data, stratigraphic framework, degree of rounding, optical appearance and microtextures of quartz grains were analyzed; sub-surface sediments were collected from 4 boreholes spaced across coastal settings, from the beach towards the continent, from locations on the south-central coast of the state of Espírito Santo, southeast Brazil. Five palaeoenvironments were identified: fluvial (characterized by gravelly sand facies, composed predominantly of sub-angular and sub-rounded dirty quartz grains with microtexures caused by sudden impact and grain surfaces modified by chemical action, as well as other non-quartz terrigenous minerals); continental deposit with marine influence, such as an estuary (characterized by muddy sand facies, composed of immature grains with natural glow and non-abraded grains with a "fresh" clean surface, little to no chemical change, a few bioclastic fragments, carbonate nodules and grains embedded with carbonate); modern estuary (characterized by sandy mud facies, composed of mixed mature and immature quartz grains, chemically frosted, bioclastic fragments, carbonate nodules, and high organic matter content); bay (characterized by sandy mud and mud facies, composed predominantly of mature grains, highly chemically frosted, with microtextures clearly associated with post-depositional alteration, many bioclastic fragments, and organic matter); and beach (characterized by gravelly sand facies, composed predominantly of sub-rounded dirty grains, followed by shiny grains, with smooth edges, signs of former impact, little chemical dissolution on the quartz grain, and bioclastic fragments). The association between the degree of rounding, optical aspect and microtextures of quartz grains was essential to estimate the extent and strength of seawater intrusion in filling of the sedimentation

  12. Constraints on aeolian sediment transport to foredunes within an undeveloped backshore enclave on a developed coast

    NASA Astrophysics Data System (ADS)

    Kaplan, Kayla L.; Nordstrom, Karl F.; Jackson, Nancy L.

    2016-10-01

    Landforms present in undeveloped beach enclaves located between properties developed with houses and infrastructure are often left to evolve naturally but are influenced by the human structures near them. This field study evaluates how buildings and sand-trapping fences change the direction of wind approach, reduce wind speed, and restrict fetch distances for sediment entrainment, thereby reducing the potential for aeolian transport and development of dunes in enclaves. Field data were gathered in an 80 m long, 44 m deep beach enclave on the ocean shoreline of New Jersey, USA. Comparison of wind characteristics in the enclave with a site unaffected by buildings revealed that offshore winds in the enclave are reduced in strength and altered in direction by landward houses, increasing the relative importance of longshore winds. Vertical arrays of anemometers on the foredune crest, foredune toe and berm crest in the enclave revealed increasing wind speed with distance offshore, with strongest winds on the berm crest. Vertical cylindrical traps on the foredune crest, foredune toe, mid-backshore, berm crest and upper foreshore revealed the greatest rate of sediment transport on the berm crest. Sediment samples from the beach and from traps revealed limited potential for aeolian transport because of coarse grain sizes. Strong oblique onshore winds are common in this region and are normally important for transporting sand to dunes. The length of an enclave and the setback distance on its landward side determine the degree to which sediment delivered by oblique winds contributes to dune growth. The landward edge of the enclave (defined by a sand fence near the dune toe) is sheltered along its entire length from winds blowing at an angle to the shoreline of 25° or less. A foredune set back this distance in an enclave the length of an individual lot (about 20 m) would be sheltered at an angle of 57° or less, reducing the opportunity for dune building by onshore winds

  13. Quartz crystal growth

    DOEpatents

    Baughman, Richard J.

    1992-01-01

    A process for growing single crystals from an amorphous substance that can undergo phase transformation to the crystalline state in an appropriate solvent. The process is carried out in an autoclave having a lower dissolution zone and an upper crystallization zone between which a temperature differential (.DELTA.T) is maintained at all times. The apparatus loaded with the substance, solvent, and seed crystals is heated slowly maintaining a very low .DELTA.T between the warmer lower zone and cooler upper zone until the amorphous substance is transformed to the crystalline state in the lower zone. The heating rate is then increased to maintain a large .DELTA.T sufficient to increase material transport between the zones and rapid crystallization. .alpha.-Quartz single crystal can thus be made from fused quartz in caustic solvent by heating to 350.degree. C. stepwise with a .DELTA.T of 0.25.degree.-3.degree. C., increasing the .DELTA.T to about 50.degree. C. after the fused quartz has crystallized, and maintaining these conditions until crystal growth in the upper zone is completed.

  14. Sands-on Learning.

    ERIC Educational Resources Information Center

    Vandervoort, Frances S.

    1989-01-01

    Provides information for the development of a lesson which teaches students about sand, discusses facts about sands, sand studies, life in the sands, and sand activities. Includes diagrams showing the range in sand grain shape, formation of sand ripples, and sand samples from around the world. (RT)

  15. Colorado quartz: occurrence and discovery

    USGS Publications Warehouse

    Kile, D.E.; Modreski, P.J.; Kile, D.L.

    1991-01-01

    The many varieties and associations of quartz found throughout the state rank it as one of the premier worldwide localities for that species. This paper briefly outlines the historical importance of the mineral, the mining history and the geological setting before discussing the varieties of quartz present, its crystallography and the geological enviroments in which it is found. The latter include volcanic rocks and near surface igneous rocks; pegmatites; metamorphic and plutonic rocks; hydrothermal veins; skarns and sedimentary deposits. Details of the localities and mode of occurrence of smoky quartz, amethyst, milky quartz, rock crystal, rose quartz, citrine, agate and jasper are then given. -S.J.Stone

  16. Cathodoluminescent textures and the origin of quartz silt in Oligocene mudrocks, south Texas

    SciTech Connect

    Milliken, K.L. . Dept. of Geological Sciences)

    1994-07-01

    In subsurface mudrocks of the Oligocene Frio Formation in South Texas, a substantial proportion of silt-size quartz (10--62 [mu]m) manifests cathodoluminescence (CL) that varies greatly in intensity within each particle, giving rise to textures that differ greatly from grain to grain. In contrast, most quartz grains of sand size ([ge] 62 [mu]m) have CL that is relatively homogeneous within individual grains. A substantial percentage of the quartz within silt grains is very weakly luminescent. No depth trend in the occurrence of luminescent textures in detrital quartz is observed, suggesting that the component of dark, possibly low-temperature silt-size quartz is not related to chemical processes in the present burial setting. Paleogene rhyolites of West Texas are a partial model for the source rocks that supplied sediment to the Frio Formation. Phenocrystic quartz in these volcanics has uniform CL similar to that observed in the Frio sand fraction, whereas complex CL structure seen in the associated groundmass bears many similarities to the CL textures observed in Frio silts. This observation further supports the idea that CL structure of detrital quartz in the Frio is most likely an inherited feature. If the quartz with dark CL is of low-temperature origin, it would help to elucidate the relatively [sup 18]O-enriched isotopic values reported for mudrock quartz in the Frio.

  17. Measurement uncertainties in quantifying aeolian mass flux: evidence from wind tunnel and field site data

    PubMed Central

    Keijsers, Joep G.S.; Maroulis, Jerry; Visser, Saskia M.

    2014-01-01

    Aeolian sediment traps are widely used to estimate the total volume of wind-driven sediment transport, but also to study the vertical mass distribution of a saltating sand cloud. The reliability of sediment flux estimations from such measurements are dependent upon the specific configuration of the measurement compartments and the analysis approach used. In this study, we analyse the uncertainty of these measurements by investigating the vertical cumulative distribution and relative sediment flux derived from both wind tunnel and field studies. Vertical flux data was examined using existing data in combination with a newly acquired dataset; comprising meteorological data and sediment fluxes from six different events, using three customized catchers at Ameland beaches in northern Netherlands. Fast-temporal data collected in a wind tunnel shows that the median transport height has a scattered pattern between impact and fluid threshold, that increases linearly with shear velocities above the fluid threshold. For finer sediment, a larger proportion was transported closer to the surface compared to coarser sediment fractions. It was also shown that errors originating from the distribution of sampling compartments, specifically the location of the lowest sediment trap relative to the surface, can be identified using the relative sediment flux. In the field, surface conditions such as surface moisture, surface crusts or frozen surfaces have a more pronounced but localized effect than shear velocity. Uncertainty in aeolian mass flux estimates can be reduced by placing multiple compartments in closer proximity to the surface. PMID:25071984

  18. Geographical Detector-Based Identification of the Impact of Major Determinants on Aeolian Desertification Risk

    PubMed Central

    Du, Ziqiang; Xu, Xiaoming; Zhang, Hong; Wu, Zhitao; Liu, Yong

    2016-01-01

    Arid and semi-arid areas in North China are facing the challenge of a rising aeolian desertification risk (ADR) due to the intertwined effects of complex natural processes and intensified anthropogenic activities. An accurate quantitative assessment of the relationship between ADR and its determinants is beneficial for understanding the driving mechanisms of aeolian desertification and for controlling future desertification. Previous studies have failed to quantify the relative role of determinants driving ADR and have been limited in assessing their interactive impacts. In this study, a spatial variance analysis-based geographical detector methodology is used to quantify the effects of geological, physical, and human factors on the occurrence of ADR in an area characterized by mountains and hills in northern China. It is found that soil type, precipitation, and wind velocity are the major determinants of ADR, which implies that geological and physical elements (e.g., soil attribute) and climatic factors (e.g., precipitation and wind velocity) rather than human activities have played a greater role in the incidence of ADR. Particularly, the results show that the interaction of various determinants causes significant non-linearly enhanced impacts on the ADR. The findings of our study will assist local inhabitants and policy makers in developing measures for wind prevention and sand control to mitigate the effects of desertification in the region. PMID:26987114

  19. Geographical Detector-Based Identification of the Impact of Major Determinants on Aeolian Desertification Risk.

    PubMed

    Du, Ziqiang; Xu, Xiaoming; Zhang, Hong; Wu, Zhitao; Liu, Yong

    2016-01-01

    Arid and semi-arid areas in North China are facing the challenge of a rising aeolian desertification risk (ADR) due to the intertwined effects of complex natural processes and intensified anthropogenic activities. An accurate quantitative assessment of the relationship between ADR and its determinants is beneficial for understanding the driving mechanisms of aeolian desertification and for controlling future desertification. Previous studies have failed to quantify the relative role of determinants driving ADR and have been limited in assessing their interactive impacts. In this study, a spatial variance analysis-based geographical detector methodology is used to quantify the effects of geological, physical, and human factors on the occurrence of ADR in an area characterized by mountains and hills in northern China. It is found that soil type, precipitation, and wind velocity are the major determinants of ADR, which implies that geological and physical elements (e.g., soil attribute) and climatic factors (e.g., precipitation and wind velocity) rather than human activities have played a greater role in the incidence of ADR. Particularly, the results show that the interaction of various determinants causes significant non-linearly enhanced impacts on the ADR. The findings of our study will assist local inhabitants and policy makers in developing measures for wind prevention and sand control to mitigate the effects of desertification in the region. PMID:26987114

  20. The compression pathway of quartz

    SciTech Connect

    Thompson, Richard M.; Downs, Robert T.; Dera, Przemyslaw

    2011-11-07

    The structure of quartz over the temperature domain (298 K, 1078 K) and pressure domain (0 GPa, 20.25 GPa) is compared to the following three hypothetical quartz crystals: (1) Ideal {alpha}-quartz with perfectly regular tetrahedra and the same volume and Si-O-Si angle as its observed equivalent (ideal {beta}-quartz has Si-O-Si angle fixed at 155.6{sup o}). (2) Model {alpha}-quartz with the same Si-O-Si angle and cell parameters as its observed equivalent, derived from ideal by altering the axial ratio. (3) BCC quartz with a perfectly body-centered cubic arrangement of oxygen anions and the same volume as its observed equivalent. Comparison of experimental data recorded in the literature for quartz with these hypothetical crystal structures shows that quartz becomes more ideal as temperature increases, more BCC as pressure increases, and that model quartz is a very good representation of observed quartz under all conditions. This is consistent with the hypothesis that quartz compresses through Si-O-Si angle-bending, which is resisted by anion-anion repulsion resulting in increasing distortion of the c/a axial ratio from ideal as temperature decreases and/or pressure increases.

  1. The origin and distribution of soluble salts in the sand seas of northern China

    NASA Astrophysics Data System (ADS)

    Zhu, Bingqi; Yang, Xiaoping

    2010-11-01

    Based on samples taken from four large sand seas of northern China, this paper first provides basic data about the concentrations and chemistries of soluble salts in deserts of northern China and then discusses the origins and parameters triggering geographical variations. The total concentration of soluble salts in the aeolian sands of four large sand seas in northern China ranges between 0.14‰ and 1.32‰, with the pH of the soluble salts solution (mixing ratio of sand and water 1:5) changing between 8.4 and 9.6, confirming alkaline soil conditions in these regions. Sodium chloride and bicarbonate are the dominant salts occurring as soluble salts in the aeolian deposits of these sand seas. The geographical changes of soluble salts' concentration display a clear correlation with regional climatic parameters, i.e., precipitation and temperature. The domination of sedimentation of soluble salts in the aeolian sands deposited via atmospheric processes is discussed, which are heavily associated with dry deposition. The mean percentages of Na and Cl, derived from dry depositions, are estimated to be > 90% in both Badain Jaran and Taklamakan deserts.

  2. Incident Angle of Saltating Particles in Wind-Blown Sand

    PubMed Central

    Fu, Lin-Tao; Bo, Tian-Li; Gu, Hai-Hua; Zheng, Xiao-Jing

    2013-01-01

    Incident angle of saltating particles plays a very important role in aeolian events. In this paper, the incident angles of sand particles near the sand bed were measured in wind tunnel. It reveals that the incident angles range widely from 0° to 180° and thereby the means of angles are larger than published data. Surprisingly, it is found the proportion that angles of 5°–15° occupy is far below previous reports. The measuring height is probably the most important reason for the measurement differences between this study and previous investigations. PMID:23874470

  3. Biodiversity impact of the aeolian periglacial geomorphologic evolution of the Fontainebleau Massif (France)

    NASA Astrophysics Data System (ADS)

    Thiry, M.; Liron, M. N.

    2009-04-01

    Landscape features The geomorphology of the Fontainebleau Massif is noteworthy for its spectacular narrow ridges, up to 10 km long and 0.5 km wide, armored by tightly cemented sandstone lenses and which overhang sandy depressions of about 50m. Denudation of the sandstone pans lead to a highly contrasted landscape, with sandstone ridges ("platières") towering sandy depressions ("vallées") and limestone plateaus ("monts"). This forms the geological frame of the spectacular sceneries of the Fontainebleau Massif (Thiry & Liron, 2007). Nevertheless, there is little know about the erosive processes that have built-up these landscapes. Periglacial processes, and among them aeolian ones, appear significant in the development of the Fontainebleau Massif physiography. The periglacial aeolian geomorphology Dunes and dune fields are known since long and cover about 15% to 25% of the Fontainebleau Massif. The aeolian dunes developed as well on the higher parts of the landscape, as well as in the lower parts of the landscape. The dunes are especially well developed in the whole eastern part of the massif, whereas the western part of the massif is almost devoid of dunes. Nevertheless, detailed mapping shows that dunes can locally be found in the western district, they are of limited extension, restricted to the east facing backslope of outliers. Loamy-sand covers the limestone plateaus of the "monts". The loam cover is of variable thickness: schematically thicker in the central part of the plateaus, where it my reach 3 m; elsewhere it may thin down to 0,20-0,30 m, especially at the plateau edges. Blowout hollows are "negative" morphologies from where the sand has been withdrawed. Often these blowouts are decametric sized and well-delimited structures. Others, more complex structures, are made up of several elongated hectometric hollows relaying each other from and which outline deflation corridor more than 1 km long. A characteristic feature of these blowout hollows is the

  4. Aeolian processes and dune morphology in the Gobi and Badain Jaran Desert using LandSat Imagery.

    NASA Astrophysics Data System (ADS)

    Cardinale, Marco; Cannito, Arturo; Marinangeli, Lucia

    2014-05-01

    The Gobi and Badain Jaran Deserts are parts of the vast sand sea of the Alashan Region, one of the greatest dunefield in China [1]. They lie between the southern Mongolia and the northern China (latitude 37° 06'N - 41°50'N; longitude 99°10'E - 107°09'E) [2]. The studied area is characterized by an arid climate with low average annual rainfall between 50-60mm, extreme fluctuation in temperature, very strong winds and by the occurrence of mega dunes and permanent lakes within the dunefield [3]. According to our morphological analysis, wind action has been one of the main factors that have shaped the surface features inside the investigated area. We produce a detailed geomorphological map of the desertic zone, highlighting the aeolian morphologies, in order to characterize aeolian deposits and processes. The LandSat ETM+ data [4], providing a continuous coverage of the dune fields with no gaps, were processed using ENVI software and then ingested in a GIS project. We also used DTMs (30m / pixel) from Aster data [5]. The dune morphology was classified using McKee criteria [6] and we interpreted the pattern of the complex ergs as the result of self - organization within complex systems [7]. Compound transverse mega dunes and barchanoid dunes developed under a variable wind regime, star dunes in the northern area near the mountain have been formed under a multi directional wind regime. The area covered by mega dunes suggests a complex evolution of these features dominated by the wind activity. Different episodes of deposition, erosion and motion, could explain the height of these dunes measured by the DTMs. The diverse aeolian features identified in the investigated area suggest that aeolian activity play a key role for the evolution of the surface morphologies of the Gobi Desert. To understand the local dynamics of aeolian processes, we are currently comparing these features with meteorological data from mesoscale wind models. References: [1] E. D.McKee. A Study of

  5. 3D numerical simulation of the evolutionary process of aeolian downsized crescent-shaped dunes

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaosi; Zhang, Yang; Wang, Yuan; Li, Min

    2016-06-01

    A dune constitutive model was coupled with a large eddy simulation (LES) with the Smagorinsky subgrid-scale (SGS) model to accurately describe the evolutionary process of dunes from the macroscopic perspective of morphological dynamics. A 3D numerical simulation of the evolution of aeolian downsized crescent-shaped dunes was then performed. The evolution of the 3D structure of Gaussian-shaped dunes was simulated under the influence of gravity modulation, which was the same with the vertical oscillation of the sand bed to adjust the threshold of sand grain liftoff in wind tunnel experiments under the same wind speed. The influence of gravity modulation intensity on the characteristic scale parameter of the dune was discussed. Results indicated that the crescent shape of the dune was reproduced with the action of gravity during regulation of the saturation of wind-sand flow at specific times. The crescent shape was not dynamically maintained as time passed, and the dunes dwindled until they reached final decomposition because of wind erosion. The height of the dunes decreased over time, and the height-time curve converged as the intensity of modulation increased linearly. The results qualitatively agreed with those obtained from wind tunnel experiments.

  6. QUARTZ FIBER ELECTROSCOPES

    DOEpatents

    Henderson, R.P.

    1956-04-17

    This patent pertains to quartz fiber electroscopes of small size for use by personnel to monitor nuclear radiation. The invention resides tn a novel way of charging the electroscope whereby the charging of the electroscope whereby the charging of the electroscope is carried out without obtaining contact with the fiber system or its support and the electroscope can therefore be constructed without a protective cap to prevent wrongful discharge. The electroscope is charged by placing a voltage between an electrode located in close proximity to the element to be charged and the electroscope me metallic case. ABSTRACTS

  7. Mineral resource of the month: industrial sand and gravel

    USGS Publications Warehouse

    Dolley, Thomas P.

    2007-01-01

    With many diverse uses, industrial sand and gravel, also known as silica sand, is one of the most important nonmetallic minerals in the world. Industrial sand and gravel is a mining industry term used for sands that have a very high percentage of silicon dioxide, or greater than 95 percent quartz. Deposits of industrial sand and gravel can be found virtually everywhere on Earth, but are less widespread than deposits of common construction sand and gravel. Industrial sand and gravel is distinctive in grain size, hardness, inertness and resistance to high temperature and chemical action. Beverage containers, fiberglass insulation, fiber-optic cables and light bulbs are just some of today’s many products produced from industrial sand and gravel.

  8. An analytical framework for aeolian saltation

    NASA Astrophysics Data System (ADS)

    Reitz, M. D.; Jerolmack, D. J.

    2011-12-01

    The process of aeolian saltation has been a focus of extensive research, but analytical solutions for the balance between the flux of grains and the adjustment of the wind velocity profile have yet to be described. Because several of the functional relationships between variables could not be known a priori, as for example the splash functions of the impact-induced ejection of grains from the bed, the process has been studied primarily through experiments and numerical modeling. Grain-scale experiments have now however yielded robust empirical relationships for functions such as splash function distributions, and we can use these relationships to make the aeolian saltation process analytically tractable. We construct an analytical framework for steady state saltation in terms of a threshold height, above which the wind velocity is strong enough to carry a grain from reptation to saltation. This threshold height is raised as the wind profile magnitude is lowered by the increasing number of saltating grains being accelerated by the wind, until the number of grains being demoted below this threshold equals the number being promoted. Grain demotion results from the loss of energy to collisions with the bed, while grain promotion results from the distribution of splash-ejected grains that exceed the threshold height. The balance of these populations at steady state determines both the total number of grains in saltation and the saturated wind velocity profile, while the approach to this balance describes the transient evolution to this state. We also formulate the critical impact Shields stress, defined as the stress below which transport ceases (as opposed to the higher critical fluid Shields stress at which transport is initiated). The difference between the critical fluid and impact Shields stresses also implies the existence of a minimum population of saltating grains. Finally, we extend our developed framework to comment on related open questions. We test the

  9. Sonic anemometers in aeolian sediment transport research

    NASA Astrophysics Data System (ADS)

    van Boxel, J. H.; Sterk, G.; Arens, S. M.

    2004-04-01

    Fast-response wind and turbulence instruments, including sonic anemometers, are used more and more in aeolian sediment transport research. These instruments give information on mean wind, but also on fluctuations and turbulent statistics, such as the uw covariance, which is a direct measure of Reynolds' stress (RS) and friction velocity. This paper discusses the interpretation of sonic anemometer data, the transformations needed to get proper results and turbulence spectra, and how they are influenced by instrument size, sampling frequency, and measurement height. Turbulence spectra characterize how much the different frequencies in the turbulent signals contribute to the variance of wind speed, or to the covariance of horizontal and vertical wind speed. They are important in determining the measurement strategy when working with fast-response instruments, such as sonic anemometers, and are useful for interpreting the measurement results. Choices on the type of sonic anemometer, observation height, sampling period, sampling frequency, and filtering can be made on the basis of expected high and low-frequency losses in turbulent signals, which are affected by those variables, as well as wind speed and atmospheric stability. Friction velocity and RS, important variables in aeolian sediment transport research, are very sensitive to tilt or slope errors. During a field experiment, the slope sensitivity of the RS was established as 9% per degree of slope, which is 1.5 times the value reported in literature on the basis of theoretical considerations. An important reason for the difference probably is the large influence of streamline curvature on turbulence statistics and thereby on the slope sensitivity of the RS. An error of 9% per degree of slope in the RS will translate into an error of approximately 4% per degree of slope in the calculated friction velocity. Space-time correlation of the horizontal wind speed is much larger than that of the vertical wind speed and

  10. Quartz Crystal Microbalance Data

    SciTech Connect

    Baxamusa, S H

    2011-11-16

    We are using a Qpod quartz crystal microbalance (manufactured by Inficon) for use as a low-volume non-volatile residue analysis tool. Inficon has agreed to help troubleshoot some of our measurements and are requesting to view some sample data, which are attached. The basic principle of an NVR analysis is to evaporate a known volume of solvent, and weigh the remaining residue to determine the purity of the solvent. A typical NVR analysis uses 60 g of solvent and can measure residue with an accuracy of +/- 0.01 mg. The detection limit is thus (0.01 mg)/(60 g) = 0.17 ppm. We are attempting to use a quartz crystal microbalance (QCM) to make a similar measurement. The attached data show the response of the QCM as a 5-20 mg drop of solvent evaporates on its surface. The change in mass registered by the QCM after the drop evaporates is the residue that deposits on the crystal. On some measurements, the change in mass in less than zero, which is aphysical since the drop will leave behind {>=}0 mass of residue. The vendor, Inficon, has agreed to look at these data as a means to help troubleshoot the cause.

  11. Numerical modeling of wind-blown sand on Mars.

    PubMed

    Huang, HaoJie; Bo, TianLi; Zheng, XiaoJing

    2014-09-01

    Recent observation results show that sand ripples and dunes are movable like those on Earth under current Martian climate. And the aeolian process on Mars therefore is re-attracting the eyes of scientific researchers in different fields. In this paper, the spatial and temporal evolution of wind-blown sand on Mars is simulated by the large-eddy simulation method. The simulations are conducted under the conditions of both friction wind speed higher and lower than the "fluid threshold", respectively. The fluid entrainment of the sand particles, the processes among saltation sand particles and sand bed, and the negative feedback of sand movement to flow field are considered. Our results show that the "overshoot" phenomenon also exists in the evolution of wind-blown sand on Mars both temporally and spatially; impact entrainment affects the sand transport rate on Mars when the wind speed is smaller or larger than the fluid threshold; and both the average saltation length and height are one order of magnitudes larger than those on Earth. Eventually, the formulas describing the sand transport rate, average saltation length and height on Mars are given, respectively.

  12. Trajectories of saltating sand particles behind a porous fence

    NASA Astrophysics Data System (ADS)

    Zhang, Ning; Lee, Sang Joon; Chen, Ting-Guo

    2015-01-01

    Trajectories of aeolian sand particles behind a porous wind fence embedded in a simulated atmospheric boundary layer were visualized experimentally, to investigate the shelter effect of the fence on sand saltation. Two sand samples, one collected from a beach (d = 250 μm) and the other from a desert (d = 100 μm), were tested in comparison with the previous studies of a 'no-fence' case. A wind fence (ε = 38.5%) was installed on a flat sand bed filled with each sand sample. A high-speed photography technique and the particle tracking velocimetry (PTV) method were employed to reconstruct the trajectories of particles saltating behind the fence. The collision processes of these sand particles were analyzed, momentum and kinetic energy transfer between saltating particles and ground surface were also investigated. In the wake region, probability density distributions of the impact velocities agree well with the pattern of no-fence case, and can be explained by a log-normal law. The horizontal component of impact velocity for the beach sand is decreased by about 54%, and about 76% for the desert sand. Vertical restitution coefficients of bouncing particles are smaller than 1.0 due to the presence of the wind fence. The saltating particles lose a large proportion of their energy during the collision process. These results illustrate that the porous wind fence effectively abates the further evolution of saltating sand particles.

  13. Luminescence quartz dating of lime mortars. A first research approach.

    PubMed

    Zacharias, N; Mauz, B; Michael, C T

    2002-01-01

    Lime mortars mixed with sand are well suited for connecting structural materials, like stones and bricks, due to the mechanical properties this material exhibits. Their extensive use in architectural and decorative works during the last 4000 years motivated the introduction of the 'Luminescence clock' for age determination of mortars. The same principles as for quartz optically stimulated luminescence (OSL) dating of sediments were applied for age estimation of a mortar fragment removed from a Byzantine church monument dated by archaeological means to 1050-1100 years ago (the first half of the 10th century). The OSL from the quartz was monitored under blue light stimulation and UV detection, using a single-aliquot-regenerative-dose protocol. The quartz-OSL dating of the mortar resulted in 870 +/- 230 a. TL polymineral fine grain dating was also performed on a brick fragment which was connected to the mortar, resulting in a TL age of 1095 +/- 190 a.

  14. ORIGIN OF QUARTZ IN COAL.

    USGS Publications Warehouse

    Ruppert, Leslie F.; Cecil, C. Blaine; Stanton, Ronald W.

    1984-01-01

    Both a scanning electron microscope and an electron microprobe (EMP) were used in this study to analyze the cathodoluminescence properties of quartz grains in samples of the Upper Freeport coal bed because quartz grains in coal are small (silt sized) and below the resolution capabilities of a standard luminoscope. Quartz grains were identified by the detection of silicon alone with energy dispersive X-ray units attached to both the SEM and the EMP.

  15. Shelf-bypass route for lower Whiterockian quartz sandstones of Vinini Formation in Roberts Mountains, central Nevada

    SciTech Connect

    Finney, S.C. . Dept. of Geological Sciences)

    1993-04-01

    The Lower Member of the Vinini Formation in the Roberts Mountains is characterized by voluminous turbiditic quartz sandstones and associated hemipelagic strata. These rocks record the construction of a submarine fan on the western margin of North America in response to a major drop in relative sea level during the early Whiterockian. It has been demonstrated that the quartz sand was derived from the North American craton. In its dispersal, this sand must have crossed a contemporaneous carbonate peritidal platform in its delivery to the more outboard Vinini basin. All lower Whiterockian strata deposited on the platform are shallow-water carbonates. Quartz silt is common in them locally, but medium quartz sand that is so distinctive of the Vinini is lacking. For this reason and the fact that the submarine fan appears to have been constructed from a point source, it is concluded that the sand crossed the carbonate platform along a narrow, well-defined route, e.g. a shelf channel. This bypass route, however, has yet to be discovered. Quartz sand was spreading southward along the shelf in Idaho during the early Whiterockian. The Tooele Arch and its western extension into central Nevada may have served to divert the sand towards the shelf margin. Although stratigraphic data for lower Whiterockian strata are poor in this proposed location for the shelf channel, it is interesting that the greatest thickness of the Mohawkian Eureka Quartzite is found in this same area where Eureka sands were also diverted westward off the shelf.

  16. The Compression Pathway of Quartz

    NASA Astrophysics Data System (ADS)

    Dera, P. K.; Thompson, R. M.; Downs, R. T.

    2011-12-01

    The important Earth material quartz may constitute as much as 20% of the upper continental crust. Quartz is composed solely of corner-sharing SiO4 silica tetrahedra, a primary building block of many of the Earth's crustal and mantle minerals, lunar and Martian minerals, and meteoritic minerals. Quartz is therefore an outstanding model material for investigating the response of this fundamental structural unit to changes in P, T, and x. These facts have spawned a vast literature of experimental and theoretical studies of quartz at ambient and non-ambient conditions. Investigations into the behavior of quartz at high pressure have revealed an anomalous distortion in the silicate tetrahedron with pressure not typically seen in other silicates. The tetrahedron assumes a very distinct geometry, becoming more like the Sommerville tetrahedron of O'Keeffe and Hyde (1996) as pressure increases. Traditionally, this distortion has been considered a compression mechanism for quartz, along with Si-O-Si angle-bending and a very small component of bond compression. However, tetrahedral volume decreases by only 1% between 0.59 GPa and 20.25 GPa, while unit cell volume decreases by 21%. Therefore, most of the compression in quartz is happening in tetrahedral voids, not in the silicate tetrahedron, and the distortion of the silicate tetrahedron may not be the direct consequence of decreasing volume in response to increasing pressure. The structure of quartz at high temperature and high pressure, including new structural refinements from synchrotron singe-crystal data collected to 20.25 GPa, is compared to the following three hypothetical quartz crystals: (1) Ideal quartz with perfectly regular tetrahedra and the same volume and Si-O-Si angle as its observed. (2) Model quartz with the same Si-O-Si angle and cell parameters as its observed equivalent, derived from ideal by altering the axial ratio. (3) BCC quartz with a perfectly body-centered cubic arrangement of oxygen anions and

  17. Dual quartz crystal microbalance

    SciTech Connect

    Dunham, G.C.; Benson, N.H.; Petelenz, D.; Janata, J. )

    1995-01-15

    Construction and performance of a dual quartz crystal microbalance is described. The final probe has a dipstick configuration that is particularly suitable for sensing and monitoring applications in viscous and/or conducting liquids. The differential (heterodyned) frequency measurement substantially eliminates the deleterious effects of viscosity, temperature, and conductivity. The corresponding performance coefficients are temperature df/dT = 1.5 Hz/[degree]C, viscosity df/d[eta][sub L] = 103 Hz/cP, and conductivity df/dM = 108 Hz/M, where conductivity is expressed in terms of molarity of sodium chloride. As an example, the etching of a 2000-A-thick layer of aluminum has been monitored as a function of time. 13 refs., 8 figs., 1 tab.

  18. Quartz resonator processing system

    DOEpatents

    Peters, Roswell D. M.

    1983-01-01

    Disclosed is a single chamber ultra-high vacuum processing system for the oduction of hermetically sealed quartz resonators wherein electrode metallization and sealing are carried out along with cleaning and bake-out without any air exposure between the processing steps. The system includes a common vacuum chamber in which is located a rotatable wheel-like member which is adapted to move a plurality of individual component sets of a flat pack resonator unit past discretely located processing stations in said chamber whereupon electrode deposition takes place followed by the placement of ceramic covers over a frame containing a resonator element and then to a sealing stage where a pair of hydraulic rams including heating elements effect a metallized bonding of the covers to the frame.

  19. Quartz Knapping Strategies in the Howiesons Poort at Sibudu (KwaZulu-Natal, South Africa)

    PubMed Central

    de la Peña, Paloma; Wadley, Lyn

    2014-01-01

    The variability associated with Sibudu's Howiesons Poort Industry highlights the unpredictable trajectory of technology in the Middle Stone Age. We reach this conclusion through a study of the technology on quartz from one of the Howiesons Poort layers (Grey Sand) from Sibudu rock shelter. Quartz bifacial technology has previously been described at the site, but this new in-depth study of the quartz technology reveals other strategies. First is the recurring employment of bipolar knapping, formerly considered as a defining feature of the Later Stone Age. Secondly, we highlight a laminar technology with emphasis on small quartz bladelets. Bipolar cores are most common, followed by prismatic cores. The knapping strategies in Grey Sand seem to involve systematic recycling and the deliberate production of microliths. PMID:25014352

  20. Aeolian Slipface Processes on Earth and Mars

    NASA Astrophysics Data System (ADS)

    Cornwall, Carin; Jackson, Derek; Bourke, Mary; Cooper, Andrew

    2016-04-01

    The surface of Mars is dominated by aeolian features and many locations show ripple and dune migration over the past decade with some sediment fluxes comparable to terrestrial dunes. One of the leading goals in investigating aeolian processes on Mars is to explore the boundary conditions of sediment transport, accumulation, and dune mor-phology in relation to wind regime as well as to quantify migration rates and sediment flux. We combine terrestrial field observations, 3D computational fluid dynamics (CFD) modeling and remote sensing data to investigate com-plex, small scale wind patterns and grainflow processes on terrestrial and martian dunes. We aim to constrain grain flow magnitudes and frequencies that occur on slipface slopes of dunes in order to improve estimates of martian dune field migration and sediment flux related to wind velocity and flow patterns. A series of ground-based, high resolution laser scans have been collected in the Maspalomas dune field in Gran Canaria, Spain to investigate grainflow frequency, morphology and slipface advancement. Analysis of these laser scans and simultaneous video recordings have revealed a variety of slipface activity. We identify 6 different grain-flow morphologies including, hourglass shape (classic alcove formation with deposit fan below), superficial flow (thin lenses), narrow trough (vertical lines cm in width), sheet, column (vertical alcove walls), and complex (combi-nation of morphologies triggered simultaneously in the same location). Hourglass grainflow morphologies were the most common and occurred regularly. The superficial and narrow trough morphologies were the second most com-mon and frequently occurred in between large grain flows. Sheet grainflows were rare and unpredictable. These flows involved large portions of the slipface (metres across) and mobilized a substantial amount of sediment in one event. We have compared these grainflow morphologies from Maspalomas to those in martian dune fields and

  1. Effect of Holocene sea level change on aeolian activity in the coastal plain of Ras El Hekma area, NW coast of Egypt

    NASA Astrophysics Data System (ADS)

    Farghaly, Enas; Torab, Magdy

    2015-04-01

    Ras El Hekma area located in north western coast of Egypt, west of Alexandria city for about 220 km, in this area, environmental changes during the Holocene can be interpreted based on morphological and sedimentological similarities between Holocene geomorphic features such as cemented beaches and fossilized dunes with recent coastal features. Sand dunes and nebkhas are the most common aeolian landforms and they occur in semi-arid climatic conditions. The active separated coastal dunes and nebkhas dunes of Ras El-Hekma area are located between the swash zone and the coastal limestone ridges as well as in the coastal sabkhas. The effect of waves during storms reaches far beyond the actual beach and can cause great changes to sandy beaches at an exceptional speed. Sand accumulated by swash drifts with the wind on open beaches and bays. The aeolian sand, which originates from fluvial-marine sediments washed by sea waves. the available sediment depends on fluvial transport to the littoral zone and on biological activity in the carbonate environments as well as on longshore and cross-shore currents. This paper treats the coastal dunes in Ras El Hekma area in their entirety and defines the effects of sea level change on coastal sand dunes and sabkhas dunes, it depends upon field geomorphic surveying, sampling and mapping as well as satellite image interpretation using ENVI software and GIS techniques.

  2. Aeolian dust as a transport hazard

    NASA Astrophysics Data System (ADS)

    Baddock, M. C.; Strong, C. L.; Murray, P. S.; McTainsh, G. H.

    2013-06-01

    The effects of blowing dust on transport operations are often mentioned as one of the significant impacts of aeolian processes on human welfare. However, few studies have been presented to demonstrate this impact. This research examined official air traffic incident reports in Australia for inclusively 1969-2010 to characterise the hazard of blowing dust to aviation in the country, the first such study of its kind. For the 42 year record, 61 incidents were identified (mean 1.4 per annum), with the large majority occurring in the first half of the 1970s. Only 20% of incidents occurred from 1984 onwards. Australian dust activity has not decreased over time, and the reduction in incidents is partly explained by improvements in aviation technology. The centralisation of Air Traffic Control operations to major coastal cities may however have reduced pilot reporting of dust-induced aviation incidents. By type of dust activity, dust storms were associated with nearly half of the reported incidents and dust hazes produced around a quarter. Only 5% of incidents resulted in any physical damage to aircraft and only one case involving personal injury was reported. The majority of the adverse effects on aviation due to dust (nearly 60% of reported incidents) were related to difficulties for navigation and completion of scheduled journey. Since aircraft damage and bodily harm were rare, the impact of dust in Australia is mostly that of inconvenience and associated raised economic costs. From 1990, the temporal pattern of incidents does not show any significant increase despite several intensely dusty years associated with recent droughts. This suggests that Australian aviation safety may be relatively resistant to the adverse effects of atmospheric dust as a hazard.

  3. Measuring sand flux on Mars using HiRISE Images

    NASA Astrophysics Data System (ADS)

    Ayoub, F.; Bridges, N. T.; Avouac, J.; Leprince, S.; Lucas, A.; Mattson, S.

    2011-12-01

    As wind is the major agent of sediment transport on Mars, a quantitative estimate of aeolian processes is therefore essential to assess recent geological evolution and current climate. We adapted the Co-registration of Optically Sensed Image and Correlation (COSI-Corr) toolbox to the MRO HiRISE imager specifications to produce a dense map of the ripples migration on the surface of the Martian dunes on the Nili Patera area. The ripple migration rate, along with an estimate of the ripple height, were used to derive the sand flux, a key quantity that controls the style and rate of landscape evolution. Using the dunes shape, size, and height, which were extracted from a DEM of the dune field, we show that the dunes are near steady state, and we observe that dune migration rate varies inversely with size and position within the dune field. The time scale associated with the formation and evolution of the Nili Patera dune field, estimated from comparing the sand volume with the sand flux and the dunes migration rates with the length scale of the dune field, is on the order of 10s to 100s of thousands Earth years. However, sand fluxes at the dune crests are 0.7 - 4.8 m3 m-1 per Earth year, which is comparable to that of dunes in Victoria Valley, Antarctica. This implies that rates of landscape modification from aeolian abrasion on Mars may be comparable to that on Earth.

  4. A linear dune dam - a unique late Pleistocene aeolian-fluvial archive bordering the northwestern Negev Desert dunefield, Israel

    NASA Astrophysics Data System (ADS)

    Roskin, Joel; Bookman, Revital; Friesem, David; Vardi, Jacob

    2016-04-01

    Interactions between aeolian and fluvial processes, known as aeolian-fluvial (A-F) interactions, play a fundamental role in shaping the surface of the Earth especially in arid zones. The blocking of wadis by dunes (dune-damming) is an A-F interaction that is perceived to be an archive of periods of aeolian 'superiority' on fluvial transport power and has had a strong impact on arid landscapes and prehistoric man since the late Quaternary. The southern fringes of the northwestern Negev dunefield are lined with discontinuous surfaces of light-colored, playa-like, low-energy, fine-grained fluvial deposits (LFFDs). Abundant Epipalaeolithic camp sites mainly border the LFFDs. The LFFDs are understood to be reworked loess-like sediment deposited in short-lived shallow water bodies during the late Pleistocene. These developed adjacently upstream of hypothesized dune dams of wadis that drain the Negev highlands. However, no dune dam structures by the LFFDs have been explicitly identified or analyzed. This paper presents for the first time the morphology, stratigraphy and sedimentology of a hypothesized dune dam. The studied linear-like dune dam structure extends west-east for several hundred meters, has an asymmetric cross-section and is comprised of two segments. In the west, the structure is 3-5 m high, 80 m wide, with a steep southern slope, and is covered by pebbles. Here, its morphology and orientation resembles the prevailing vegetated linear dunes (VLDs) of the adjacent dunefield though its slope angles differ from VLDs. To the south of the structure extends a thick LFFD sequence. In the east the structure flattens and is covered by nebkhas with its southern edge overlapped by LFFD units. The structures' stratigraphy is found to be comprised of a thick LFFD base, overlaid by aeolian and fluvially reworked sand, a thin middle LFFD unit, and a crest comprised of LFFDs, fluvial sand and pebbles. Carbonate contents and particle size distributions of the sediments easily

  5. Curiosity at Gale crater, Mars: characterization and analysis of the Rocknest sand shadow.

    PubMed

    Blake, D F; Morris, R V; Kocurek, G; Morrison, S M; Downs, R T; Bish, D; Ming, D W; Edgett, K S; Rubin, D; Goetz, W; Madsen, M B; Sullivan, R; Gellert, R; Campbell, I; Treiman, A H; McLennan, S M; Yen, A S; Grotzinger, J; Vaniman, D T; Chipera, S J; Achilles, C N; Rampe, E B; Sumner, D; Meslin, P-Y; Maurice, S; Forni, O; Gasnault, O; Fisk, M; Schmidt, M; Mahaffy, P; Leshin, L A; Glavin, D; Steele, A; Freissinet, C; Navarro-González, R; Yingst, R A; Kah, L C; Bridges, N; Lewis, K W; Bristow, T F; Farmer, J D; Crisp, J A; Stolper, E M; Des Marais, D J; Sarrazin, P

    2013-09-27

    The Rocknest aeolian deposit is similar to aeolian features analyzed by the Mars Exploration Rovers (MERs) Spirit and Opportunity. The fraction of sand <150 micrometers in size contains ~55% crystalline material consistent with a basaltic heritage and ~45% x-ray amorphous material. The amorphous component of Rocknest is iron-rich and silicon-poor and is the host of the volatiles (water, oxygen, sulfur dioxide, carbon dioxide, and chlorine) detected by the Sample Analysis at Mars instrument and of the fine-grained nanophase oxide component first described from basaltic soils analyzed by MERs. The similarity between soils and aeolian materials analyzed at Gusev Crater, Meridiani Planum, and Gale Crater implies locally sourced, globally similar basaltic materials or globally and regionally sourced basaltic components deposited locally at all three locations. PMID:24072928

  6. Curiosity at Gale Crater, Mars: Characterization and Analysis of the Rocknest Sand Shadow

    NASA Technical Reports Server (NTRS)

    Blake, David F.; Morris, Richard V.; Kocurek, G.; Morrison, S. M.; Downs, R. T.; Bish, D.; Ming, D. W.; Edgett, K. S.; Rubin, D.; Goetz, W.; Madsen, M. B.; Sullivan, R.; Gellert, R.; Campbell, I.; Treiman, A. H.; McLennan, S. M.; Yen, A. S.; Grotzinger, J.; Vaniman, D. T.; Chipera, S. J.; Achilles, C. N.; Rampe, E. B.; Sumner, D.; Meslin, P. -Y.; Maurice, S.; Forni, O.; Gasnault, O.; Fisk, M.; Schmidt, M.; Mahaffy, P.; Leshin, L. A.; Glavin, D.; Steele, A.; Freissinet, C.; Navarro-Gonzalez, R.; Yingst, R. A.; Kah, L. C.; Bridges, N.; Lewis, K. W.; Bristow, T. F.; Farmer, J. D.; Crisp, J. A.; Stolper, E. M.; DesMarais, D. J.; Sarrazin, P.

    2013-01-01

    The Rocknest aeolian deposit is similar to aeolian features analyzed by the Mars Exploration Rovers (MER) Spirit and Opportunity. The fraction of sand <150 micron in size contains approx. 55% crystalline material consistent with a basaltic heritage, and approx. 45% X-ray amorphous material. The amorphous component of Rocknest is Fe-rich and Si-poor, and is the host of the volatiles (H2O, O2, SO2, CO2, and Cl) detected by the Surface Analysis at Mars (SAM) instrument and of the fine-grained nanophase oxide (npOx) component first described from basaltic soils analyzed by MER. The similarity between soils and aeolian materials analyzed at Gusev crater, Meridiani Planum and Gale crater implies locally sourced, globally similar basaltic materials, or globally and regionally sourced basaltic components deposited locally at all three locations.

  7. Curiosity at Gale crater, Mars: characterization and analysis of the Rocknest sand shadow.

    PubMed

    Blake, D F; Morris, R V; Kocurek, G; Morrison, S M; Downs, R T; Bish, D; Ming, D W; Edgett, K S; Rubin, D; Goetz, W; Madsen, M B; Sullivan, R; Gellert, R; Campbell, I; Treiman, A H; McLennan, S M; Yen, A S; Grotzinger, J; Vaniman, D T; Chipera, S J; Achilles, C N; Rampe, E B; Sumner, D; Meslin, P-Y; Maurice, S; Forni, O; Gasnault, O; Fisk, M; Schmidt, M; Mahaffy, P; Leshin, L A; Glavin, D; Steele, A; Freissinet, C; Navarro-González, R; Yingst, R A; Kah, L C; Bridges, N; Lewis, K W; Bristow, T F; Farmer, J D; Crisp, J A; Stolper, E M; Des Marais, D J; Sarrazin, P

    2013-09-27

    The Rocknest aeolian deposit is similar to aeolian features analyzed by the Mars Exploration Rovers (MERs) Spirit and Opportunity. The fraction of sand <150 micrometers in size contains ~55% crystalline material consistent with a basaltic heritage and ~45% x-ray amorphous material. The amorphous component of Rocknest is iron-rich and silicon-poor and is the host of the volatiles (water, oxygen, sulfur dioxide, carbon dioxide, and chlorine) detected by the Sample Analysis at Mars instrument and of the fine-grained nanophase oxide component first described from basaltic soils analyzed by MERs. The similarity between soils and aeolian materials analyzed at Gusev Crater, Meridiani Planum, and Gale Crater implies locally sourced, globally similar basaltic materials or globally and regionally sourced basaltic components deposited locally at all three locations.

  8. Mechanics of aeolian processes: Soil erosion and dust production

    NASA Technical Reports Server (NTRS)

    Mehrabadi, M. M.

    1989-01-01

    Aeolian (wind) processes occur as a result of atmosphere/land-surface system interactions. A thorough understanding of these processes and their physical/mechanical characterization on a global scale is essential to monitoring global change and, hence, is imperative to the fundamental goal of the Earth observing system (Eos) program. Soil erosion and dust production by wind are of consequence mainly in arid and semi arid regions which cover 36 percent of the Earth's land surface. Some recent models of dust production due to wind erosion of agricultural soils and the mechanics of wind erosion in deserts are reviewed and the difficulties of modeling the aeolian transport are discussed.

  9. Records of human occupation from Pleistocene river terrace and aeolian sediments in the Arneiro depression (Lower Tejo River, central eastern Portugal)

    NASA Astrophysics Data System (ADS)

    Cunha, Pedro P.; Almeida, Nelson A. C.; Aubry, Thierry; Martins, António A.; Murray, Andrew S.; Buylaert, Jan-Pieter; Sohbati, Reza; Raposo, Luis; Rocha, Leonor

    2012-09-01

    In the uppermost reach of the Lower Tejo River (eastern central Portugal), where the river crosses two quartzite ridges that separate the Ródão (upstream) and Arneiro (downstream) depressions, Palaeolithic artefacts have been recovered from three lower river terrace levels and a cover unit of aeolian sands. This paper presents data on the discovery of archaeological artefacts from the terrace levels and the aeolian sands that can be linked to Middle and Upper Palaeolithic industries from new field sites at Tapada do Montinho and Castelejo. The archaeological data when placed in a geomorphological, sedimentary and chronological framework, contribute new information on the understanding of human occupation in western Iberia during cold-climate episodes of the last 62 to 12 ka; and especially during the cooler and driest conditions that occurred between 32 and 12 ka, when the climate favoured aeolian sediment transport. In the Lower Tejo River, the integration of absolute age datasets with archaeological, geomorphological and sedimentary data indicate that in westernmost Iberia the first appearance of artefacts in river terrace sediments suggests that the earliest marker for human occupation dates from the lower Acheulian (Lower Palaeolithic), probably corresponding to an age of ~ 340 ka. Data also suggest, for the first time, that Acheulian lithic industries were replaced by Middle Palaeolithic ones (namely the Levallois stone knapping technique) by ~ 160 ka (~ MIS6). Middle Palaeolithic industries were later replaced by Upper Palaeolithic industries at 32 ka. The post 32 ka period, dominated by aeolian sediment transport, is related to the onset of cold-dry climate conditions which resulted in low river flow discharges, floodplain exposure and reworking by NW winds. This cold-dry period is coeval with the disappearance of Megafauna and associated Neanderthal communities, and the replacement of the Middle Palaeolithic industries by Upper Palaeolithic ones in this

  10. Spatial pattern of grain-size distribution in surface sediments as a result of variations in the aeolian environment in China's Shapotou railway protective system

    NASA Astrophysics Data System (ADS)

    Zhang, Jiaqiong; Zhang, Chunlai; Zhou, Na; Ma, Xiaojie

    2011-12-01

    China's Shapotou railway protective system provides effective protection against the region's mobile sands, but little quantitative evidence is available about how it affects the aeolian environment surrounding the railway. In the present study, we analyzed the grain-size distribution in surface sediments as a result of variations in the aeolian environment at different spatial scales: the scale of a cross-section of the protective system along the prevailing wind direction (from the northwest to southeast), of individual stabilized sand dunes in the area protected by straw checkerboards and unirrigated vegetation, of the area around individual plants in the protective system, and of individual straw checkerboards. Surface sediments were sampled to define the spatial pattern of the grain-size distribution at these four scales. Along the transect from the area of mobile dunes through the protective system, sediment particles became finer (silt and clay contents increased) and sorting decreased. This indicated that the protective system is a deposition-dominated aeolian environment, with sediment characteristics stabilizing with increasing distance inside the protected area. In such an environment, dune topographic relief also played an important role in determining the deposition pattern; the dune top is particularly fragile and subject to wind erosion if the straw checkerboards or planted vegetation are destroyed. The influences of the straw checkerboards and the plant canopies on the grain size of the surface sediments within a single checkerboard or near a single plant were limited. However, the combination of straw checkerboards and planted vegetation has synergistically produced a deposition-dominated aeolian environment.

  11. Hydrogen speciation in synthetic quartz

    USGS Publications Warehouse

    Aines, R.D.; Kirby, S.H.; Rossman, G.R.

    1984-01-01

    The dominant hydrogen impurity in synthetic quartz is molecular H2O. H-OH groups also occur, but there is no direct evidence for the hydrolysis of Si-O-Si bonds to yield Si-OH HO-Si groups. Molecular H2O concentrations in the synthetic quartz crystals studied range from less than 10 to 3,300 ppm (H/Si), and decrease smoothly by up to an order of magnitude with distance away from the seed. OH- concentrations range from 96 to 715 ppm, and rise smoothly with distance away from the seed by up to a factor of three. The observed OH- is probably all associated with cationic impurities, as in natural quartz. Molecular H2O is the dominant initial hydrogen impurity in weak quartz. The hydrolytic weakening of quartz may be caused by the transformation H2O + Si-O-Si ??? 2SiOH, but this may be a transitory change with the SiOH groups recombining to form H2O, and the average SiOH concentration remaining very low. Synthetic quartz is strengthened when the H2O is accumulated into fluid inclusions and cannot react with the quartz framework. ?? 1984 Springer-Verlag.

  12. Lunar and Planetary Science XXXV: Martian Aeolian and Mass Wasting Processes: Blowing and Flowing

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session Martian Aeolian and Mass Wasting Processes: BLowing and Flowing included the following topics: 1) Three Decades of Martian Surface Changes; 2) Thermophysical Properties of Isidis Basin, Mars; 3) Intracrater Material in Eastern Arabia Terra: THEMIS, MOC, and MOLA Analysis of Wind-blown Deposits and Possible High-Inertia Source Material; 4) Thermal Properties of Sand from TES and THEMIS: Do Martian Dunes Make a Good Control for Thermal Inertia Calculations? 5) A Comparative Analysis of Barchan Dunes in the Intra-Crater Dune Fields and the North Polar Sand Sea; 6) Diluvial Dunes in Athabasca Valles, Mars: Morphology, Modeling and Implications; 7) Surface Profiling of Natural Dust Devils; 8) Martian Dust Devil Tracks: Inferred Directions of Movement; 9) Numerical Simulations of Anastomosing Slope Streaks on Mars; 10) Young Fans in an Equatorial Crater in Xanthe Terra, Mars; 11) Large Well-exposed Alluvual Fans in Deep Late-Noachian Craters; 12) New Evidence for the Formation of Large Landslides on Mars; and 13) What Can We Learn from the Ages of Valles Marineris Landslides on Martian Impact History?

  13. Relationships between topographic roughness and aeolian processes

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald; Lancaster, N.; Gaddis, L.; Rasmussen, K. R.; White, B. R.; Saunders, R. S.; Wall, S.; Dobrovolskis, Anthony R.; Iversen, J. D.

    1991-01-01

    The interaction between winds and desert surfaces has important implications for sediment transport on Earth, Mars, and Venus, and for understanding the relationships between radar backscatter and aerodynamic roughness as part of the NASA Shuttle Imaging radar (SIR-C) Mission. Here, researchers report results from measurements of boundary layer wind profiles and surface roughness at sites in Death Valley and discuss their implications. The sites included a flat to undulating gravel and sand reg, alluvial fans, and a playa. Estimates of average particle size composition of Death Valley sites and arithmetic mean values of aerodynamic roughness are given in tabular form.

  14. The role of aeolian dust in ecosystems

    NASA Astrophysics Data System (ADS)

    McTainsh, Grant; Strong, Craig

    2007-09-01

    The recent upsurge in research attention to aeolian dust has shown that dust transport systems operate on very large spatial and temporal scales, and involve much larger quantities of sediment than was previously realized. An inevitable consequence of this is that researchers from a range of neighbouring disciplines, including ecology, are beginning to realize that this new knowledge has important implications for their study areas. In the present paper, we examine the ecological implications (real and potential) of this expanding knowledge of dust transport systems, with a particular emphasis upon the Australian dust transport system. We track these ecological effects from source to sink. At source, wind erosion-soil-vegetation relationships are often dominated by temporal changes in rainfall. Nine years of measurements in the Channel Country of the Lake Eyre Basin, Australia show that vegetation and soils in dune fields can recover from drought, whereas on inter-fluve grasslands uni-directional and negative successional vegetation changes can result from wind erosion during drought. On floodplains, both wind erosion and vegetation responses are complicated by flood frequency. Up to 1999 flooding of saline claypans did not increase vegetation but did increase wind erosion through the supply of alluvial fines. However, after three floods within as many months vegetation became established and wind erosion rates were dramatically reduced. Wind erosion research attention is now gradually turning from the physical to the organic content of eroded dusts. In Australia organic matter content can reach 65% by mass, but this cannot be explained by removal of soil organic matter alone. Biological soil crusts not only stabilize soils against wind erosion but contribute to some of the organic dusts. The role of dust as a vector for pathogens is an area which deserves greater research attention in the future. Downwind from source, we show that dust contributions to soils are

  15. Aeolian sediment transport over gobi: Field studies atop the Mogao Grottoes, China

    NASA Astrophysics Data System (ADS)

    Tan, Lihai; Zhang, Weimin; Qu, Jianjun; Wang, Junzhan; An, Zhishan; Li, Fang

    2016-06-01

    This paper reports on field studies of aeolian sediment transport over a rough surface-gobi atop the Mogao Grottoes, China, in relation to sediment entrainment, saltation mass flux and transport rate prediction. Wind speeds were measured with five cup anemometers at different heights and sediment entrainment and transport measured with horizontal and vertical sediment traps coupled to weighing sensors, where sediment entrainment and transport were measured synchronously with wind speeds. Four sediment transport events, with a measurement duration ranging between 2.5 and 11 h, were studied. The entrainment threshold determined by the horizontal sediment trap varied between 0.28 and 0.33 m s-1, and the effect of non-erodible roughness elements-gravels increased the entrainment threshold approximately by 1.8 times compared to a uniform sand surface. Unlike the non-monotone curve shape of sediment flux density profile over gobi measured in wind tunnels, the flux density profile measured in the field showed an exponential form. Aeolian sediment transport over gobi could be predicted by an Owen-type saltation model: q = Aρ /gu∗ (u∗2- u∗t2) , where q is sediment transport rate, A is a soil-related dimensionless factor, u∗ is the friction velocity, u∗t is the threshold friction velocity, g is the gravitational acceleration, ρ is the air density. This study indicates that the sediment flux sampling using horizontal and vertical sediment traps coupled to weighing sensors provides a practical method to determine values for A in this model that can provide good estimates of sediment transport rates in gobi areas.

  16. Thermoelectrically-cooled quartz microbalance

    NASA Technical Reports Server (NTRS)

    Mckeown, D.

    1975-01-01

    Temperature of microbalance can be maintained at ambient temperature or held at some other desired temperature. Microbalance has tow-stage thermoelectric device that controls temperature of quartz crystal. Heat can be pumped to or from balance by Peltier effect.

  17. HIGH-ANGLE AEOLIAN CROSSBEDDING AT TRAIL RIDGE, FLORIDA.

    USGS Publications Warehouse

    Force, Eric; Garnar, Tom

    1985-01-01

    This paper described new evidence concerning the origin of the Trail Ridge mineral sands deposit in Florida. Rarely exposed sections of the orebody exhibit structures indicative of sand dune formation rather than coastal beach sand accumulation. The implications for mineral sands exploration, and therefore resources, in the southeastern USA are highlighted.

  18. Optical Properties of Aeolian Dusts Common to West Texas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Both recent models and historical events such as the Dust Bowl and volcanic eruptions have illustrated aerosols can play a significant role in climate change through direct and indirect optical effects. Soil dust aerosols generated by Aeolian processes represent a significant fraction of the total ...

  19. Industrial sand and gravel

    USGS Publications Warehouse

    Dolley, T.P.

    2011-01-01

    Domestic production of industrial sand and gravel in 2010 was about 26.5 Mt (29.2 million st), a 6-percent increased from 2009. Certain end uses of industrial sand and gravel, such as sand for container glass, golf course sand, recreational sand, specialty glass and water filtration, showed increased demand in 2010.

  20. Braidplain, floodplain and playa lake, alluvial-fan, aeolian and palaeosol facies composing a diversified lithogenetical sequence in the permian and triassic of South Devon (England)

    NASA Astrophysics Data System (ADS)

    Mader, Detlef

    flat seaming the toes of the fan chain. Sedimentation is characterized by flashy discharge with many episodic flood pulses of short periodicity and mainly rapid waning of high-water phases with quick underrunning of the threshold velocity for keeping the large clasts rolling. Pronounced slack water episodes allow occasionally the draping of gravel sheets with thin veneers of waning-flow and stagnant-water fines. Spectacular invertebrate burrows in finer breccias underline the flashy nature of most of the flood and flow events, allowing the colonization of the sediments with ground-living invertebrates during interruptions of transport and accumulation. Some peculiar dewatering structures being infilling of crack systems in breccias with wash-load sand are probably induced by earthquake shocks thus pointing to the active tectonic setting of the depositional area. Aeolian sands originate as transverse dune ridges in restricted dune fields and extensive sand seas and as sheet sands in interdune playa depressions. Associated mudstones and ventifact gravel form in wet interdunes or in playa lakes and in deflationary interdunes, respectively. Accumulation of aeolian dunes and interdune sheet sands takes place by both spreading out of drapes on flats and infilling of abandoned fluvial channels which enhance the trapping of sand by topographical effects. The dunes and wind ripple trains migrate across dry interdune floors under predominantly unidirectional winds. Sedimentary processes are grainfall and grainflow on the lee slope of dunes and subcritical climbing of wind ripples. Episodical wetting and dampening of dry interdune flats by intermittent rainfall, periodical dew and even ephemeral fluvial or alluvial-fan incursions allow formation of adhesion-rippled sands on damp surfaces and origin of sandy and silty-clayey lacustrine sediments in shallow water veneers of the flooded playa. Aquatic modification of aeolian sands by invading flood surges of atmospheric or alluvial

  1. Aeolian sediment transport on a beach: Surface moisture, wind fetch, and mean transport

    NASA Astrophysics Data System (ADS)

    Bauer, B. O.; Davidson-Arnott, R. G. D.; Hesp, P. A.; Namikas, S. L.; Ollerhead, J.; Walker, I. J.

    2009-04-01

    speed, unsteadiness, approach angle, flow compression, boundary layer development). Moisture content is widely acknowledged as an important factor in controlling release of sediment from the beach surface. All other things being equal, the rate of sediment transport over a wet surface is lesser than over a dry surface. On this beach, the moisture effect has two important influences: (a) in a temporal sense, the rate of sediment transport typically decreases in association with rainfall and increases when surface drying takes place; and (b) in a spatio-temporal sense, shoreline excursions associated with nearshore processes (such as wave run-up, storm surge, and tidal excursions) have the effect of constraining the fetch geometry of the beach—i.e., narrowing the width of the beach. Because saturated sand surfaces, such as found in the swash zone, will only reluctantly yield sediments to aeolian entrainment, the available beach surface across which aeolian transport can occur becomes narrower as the sea progressively inundates the beach. Under these constrained conditions, the transport system begins to shut down unless wind angle becomes highly oblique (thereby increasing fetch distance). In this study, maximum sediment transport was usually measured on the mid-beach rather than the upper beach (i.e., closer to the foredunes). This unusual finding is likely because of internal boundary layer development across the beach, which yields a decrease in near-surface wind speed (and hence, transport capacity) in the landward direction. Although widely recognized in the fluid mechanics literature, this decrease in near-surface shear stress as a by-product of a developing boundary layer in the downwind direction has not been adequately investigated in the context of coastal aeolian geomorphology.

  2. Beach sands

    SciTech Connect

    Fairbridge, R.W.; Lowrie, A.

    1988-01-01

    Beach sands are the residual of climatic and sea level processes interacting in an oscillating geologic continuum. The location of a shoreface is the result of tectonic, sedimentary, oceanographic, and climatic processes, all interweaving to create a single location. The combining processes include passive continental margin subsidence, lithospheric flexuring and epirogenic uplift, depositional processes, fluvial transportation traits, sediment compaction and lithostatic pressure, global wind and ocean currents, global average temperature, and insolation rate. These mechanisms are either synergistic or algebraically additive, positive or negative, and act with periodicities ranging from 10/sup 8/ to 10/sup 0/ years. Sea level oscillations have maximal impact, with climate-weather characteristics and associated oscillation ranges occurring at different periods: plate margin rifted-basin tectonics at 10/sup 8/ years, characterized by periods of major glacial activity lasting 10/sup 7/ years and sea level oscillation ranges of up to 0.5 km; regional basin evolution at 10/sup 7/ years and oscillation ranges of several hundreds of meters; local basin tectonics and sedimentation patterns and long-term sets of climate and sea level oscillation patterns at 10/sup 6/ years, with oscillation ranges of up to 125 m and averaging 50 m; individual glacial and sea level cycles (controlled by planetary orbital motions and insolation) at 10/sup 5/ and 10/sup 4/ years, and oscillation ranges of up to 125 m and averaging 50 m; medium-term climate cycles at 10/sup 3/ years, characterized by peaks of storminess and oscillation ranges of meters to decameters; short-term climate-weather cycles at 10/sup 2/, 10/sup 1/, and 10/sup 0/ years, and oscillation ranges of meters to centimeters. All of these processes impact on sea level oscillations, thus, on the shoreface, leaving a residuum of beach sands.

  3. Role of Substrate on Quartz Cementation in Quartz Aggregates

    NASA Astrophysics Data System (ADS)

    Farver, J. R.; Winslow, D.; Onasch, C.

    2010-12-01

    Quartz cementation in quartz aggregates has been experimentally investigated. The starting material was disaggregated detrital quartz grains from the well-sorted, mature St. Peter Sandstone. The ‘as-is’ grains have patches of iron oxide coatings and some have euhedral overgrowths that contain iron oxide dust rims. In addition a set of experiments was run using grains that were cleaned by soaking in sodium hydrosulfite and sodium bisulfate solutions to remove exposed iron oxide coatings. Experimental charges consisted of amorphous silica powder (≈30 mg) to provide a source of silica for the quartz cement, AlCl3 powder (≈3 mg) to provide a tracer for Cathodoluminescence (CL) identification of cement formed during the experiment, 25 wt% NaCl brine solution (≈25 mg) to increase the silica solubility and to better mimic oil field brines, and the natural quartz grains (100-130 mg). The charges were weld-sealed in Au capsules and run in cold-seal pressure vessels at 250°C to 450°C at 150 MPa confining pressure for up to 8 weeks. After the experiments, the samples were vacuum impregnated with a low viscosity epoxy containing a blue dye. After curing, the sample charge was sawn in half along its long axis and one half was polished (to 1 micron diamond paste) for analysis. The nature and amount of quartz cement in the samples were determined by a combination of CL, light microscopy, and scanning electron microscopy. Photomosaics of the samples were created and the amount of cement, porosity, and average grain sizes were determined by point-counting. The cement formed during the experiment was easily recognized from the quartz grains (and previous overgrowths) by the difference in luminescence. The results indicate the amorphous silica powder provides a ready source for silica for quartz cementation due to its greater solubility than the quartz. The cementation rates are rapid (>14% cement formed in 2 weeks at 450°C and >7% in 8 weeks at 250°C). Compared to

  4. Southern high latitude dune fields on Mars: Morphology, aeolian inactivity, and climate change

    USGS Publications Warehouse

    Fenton, L.K.; Hayward, R.K.

    2010-01-01

    In a study area spanning the martian surface poleward of 50?? S., 1190 dune fields have been identified, mapped, and categorized based on dune field morphology. Dune fields in the study area span ??? 116400km2, leading to a global dune field coverage estimate of ???904000km2, far less than that found on Earth. Based on distinct morphological features, the dune fields were grouped into six different classes that vary in interpreted aeolian activity level from potentially active to relatively inactive and eroding. The six dune field classes occur in specific latitude zones, with a sequence of reduced activity and degradation progressing poleward. In particular, the first signs of stabilization appear at ???60?? S., which broadly corresponds to the edge of high concentrations of water-equivalent hydrogen content (observed by the Neutron Spectrometer) that have been interpreted as ground ice. This near-surface ground ice likely acts to reduce sand availability in the present climate state on Mars, stabilizing high latitude dunes and allowing erosional processes to change their morphology. As a result, climatic changes in the content of near-surface ground ice are likely to influence the level of dune activity. Spatial variation of dune field classes with longitude is significant, suggesting that local conditions play a major role in determining dune field activity level. Dune fields on the south polar layered terrain, for example, appear either potentially active or inactive, indicating that at least two generations of dune building have occurred on this surface. Many dune fields show signs of degradation mixed with crisp-brinked dunes, also suggesting that more than one generation of dune building has occurred since they originally formed. Dune fields superposed on early and late Amazonian surfaces provide potential upper age limits of ???100My on the south polar layered deposits and ???3Ga elsewhere at high latitudes. No craters are present on any identifiable dune

  5. 3D Airflow patterns over coastal foredunes: implications for aeolian sediment transport

    NASA Astrophysics Data System (ADS)

    Jackson, Derek W. T.; Cooper, Andrew G.; Baas, Andreas C. W.; Lynch, Kevin; Beyers, Meiring

    2010-05-01

    A fundamental criterion for the development of coastal sand dunes is usually highlighted as a significant onshore wind component of the local wind field. The presence of large sand dune systems on coasts where the predominant wind blows offshore is therefore difficult to explain and usually they are attributed to the past occurrence of onshore winds and, by implication, subsequent changes in climate. Recent studies have shown that offshore winds can be deflected or 'steered' by existing dunes so that their direction changes. This can occur to such an extent that a process known as 'flow reversal' can arise, whereby the initially offshore wind actually flows onshore at the beach. This process is important because it can cause sand to be blown from the beach and into the dunes, causing them to grow. This may be central in explaining the presence of extensive dunes on coasts where the dominant wind is offshore, but is also important in how dunes recover after periods of wave erosion during storms. Offshore winds have traditionally been excluded from sediment budget calculations for coastal dunes, but when they do transport sand onshore, this may have been an important oversight leading to significant underestimates of the volume of sand being transported by wind. This work investigates the controls on the processes and the mechanisms involved in deformation of the flow and resulting sediment transport at coastal foredunes in Northern Ireland. We use a combination of field measurement of wind and sediment transport coupled with state-of-the-art aerodynamic modelling using computational fluid dynamics (CFD) and 3-D sonic anemometry. Our working hypothesis is that offshore winds contribute substantially to foredune behaviour on leeside coasts. Preliminary results show strong reverse flow eddies in the seaward side of the foredunes during offshore wind events. These secondary flow reversals have been above velocity threshold and are transport capable. Using CFD modelling

  6. Late Quaternary environmental changes in the Taklamakan Desert, western China, inferred from OSL-dated lacustrine and aeolian deposits

    NASA Astrophysics Data System (ADS)

    Yang, Xiaoping; Preusser, Frank; Radtke, Ulrich

    2006-05-01

    Sediment records from the Tarim Basin of western China are of great importance for understanding Late Quaternary climatic variability in Central Asia. A chronology of aeolian and lacustrine deposits from the centre and southern margin of the Taklamakan Desert, central Tarim Basin, has been established using optical dating methods. Distinct variations in humidity during the last 40,000 a in this extremely arid inland basin have been identified. Lacustrine sediments were deposited in the centre of the Taklamakan during two periods of wetter than present day conditions at around 2000 and 30,000 a ago. Another humid period is recorded between 40,000 and 30,000 a ago. Aeolian processes, the development of large migrating dune fields dominated during periods of more arid conditions. Sand wedges at the southern margin of the Taklamakan are dated at ca 40,000 a and ca 18,000 a, and imply a significant temperature decrease in that area. Sedimentological evidence for a late Holocene humid period are consistent with records in ancient Chinese literature. Wetter environmental conditions in the past within the Taklamakan, as indicated by the presence of lacustrine deposits, are also supported by data from adjacent regions. It is assumed that changes of global westerlies and of the mobile polar high triggered the fluctuations of precipitation in the study area. However, variations in temperature in the Taklamakan Desert are presumed to be mainly controlled by the intensity of the winter monsoon.

  7. Towards a phoenix phase in aeolian research: shifting geophysical perspectives from fluvial dominance

    SciTech Connect

    Whicker, Jeffrey J; Field, Jason P; Breshears, David D

    2008-01-01

    Aeolian processes are a fundamental driver of earth surface dynamics, yet the importance of aeolian processes in a broader geosciences context may be overshadowed by an unbalanced emphasis on fluvial processes. Here we wish to highlight that aeolian and fluvial processes need to be considered in concert relative to total erosion and to potential interactions, that relative dominance and sensitivity to disturbance vary with mean annual precipitation, and that there are important scale-dependencies associated with aeolian-fluvial interactions. We build on previous literature to present relevant conceptual syntheses highlighting these issues. We then highlight the relative investments that have been made in aeolian research on dust emission and management relative to that in fluvial research on sediment production. Literature searches highlight that aeolian processes are greatly understudied relative to fluvial processes when considering total erosion in different environmental settings. Notably, within the USA, aeolian research was triggered by the Dust Bowl catastrophe of the 1930s, but the resultant research agencies have shifted to almost completely focusing on fluvial processes, based on number of remaining research stations and on monetary investments in control measures. However, numerous research issues associated with intensification of land use and climate change impacts require a rapid ramping up in aeolian research that improves information about aeolian processes relative to fluvial processes, which could herald a post-Dust Bowl Phoenix phase in which aeolian processes are recognized as broadly critical to geo- and environmental sciences.

  8. Aeolian Coastal Landscapes in changes (a study from Tahkuna, Estonia)

    NASA Astrophysics Data System (ADS)

    Anderson, A.

    2012-04-01

    The openness of the coast to the winds and storm waves has an important part in changing aeolian coastal landscapes as well as anthropogenic factor. The aeolian coastal landscapes are probably the most dynamic areas. Occurrence of aeolian coastal landscapes in Estonia is limited. They consist of sandy beaches, sandy beach ridges and dunes. The coastal ecosystems are strongly affected by their topography, based on the character of deposits and moisture conditions. The majority of their ecosystems are quite close to the specific natural habitat. These ecosystems are represented in the list of the European Union Habitats (Natura 2000). In recent decades human influence has changed the landscape over time in different activities (recreation, trampling, off-road driving) and their intensities, which has led to destruction or degradation of various habitats. Previously coastal landscapes were used for forestry and pasture. Nowadays one of the most serious threats to open landscape is afforestation. This study examines the relationships between landscape components during last decades. Trying to find out how much aeolian coastal landscapes are influenced by natural processes or human activities. The results are based on cartographic analysis, fieldwork data. The method of landscape complex profile was used. The profiles show a cross-sections of landforms and interrelationships between landscape components, most frequently describing the relations between soils and vegetation. In each sample point the mechanical composition of sediments, vegetation cover and soil is determined. Results show that changes in landscapes are induced by their own development as well as changes in environmental factors and human activities. Larger changes are due to increase of coastal processes activity. These processes can be observed in sandy beaches, which are easily transformed by waves. Higher sea levels during storm surges are reaching older beach formation, causing erosion and creating

  9. Influence of (bi)carbonate on bacterial interaction with quartz and metal oxide-coated surfaces.

    PubMed

    Park, Seong-Jik; Kim, Song-Bae

    2010-03-01

    This study investigated the influence of (bi)carbonate on the adhesion of bacteria (Bacillus subtilis ATCC 6633) to quartz, aluminum oxide-coated, and iron oxide-coated surfaces. Column experiments were conducted at various NaHCO(3) concentrations. Bacterial breakthrough curves were obtained by monitoring effluent, and mass recoveries were quantified from these curves. With NaHCO(3) concentrations varying from 0 to 200mM, the corresponding effective ionic strength varied from 0 to 149.0mM and solution pH from 6.2 to 8.7. Results show that at low and intermediate NaHCO(3) concentrations (1 and 10mM), bacterial adhesion to negatively charged quartz sand increased with increasing NaHCO(3) concentration, due to compression of the electrical double layers. At high NaHCO(3) concentrations (100 and 200mM), however, bacterial attachment to quartz sand decreased compared to the case of 10mM, possibly due to formation of short-range forces (steric repulsion/hydration force) by high ionic strength. In aluminum-coated sand, bacterial adhesion decreased gradually with increasing NaHCO(3) concentrations, due to charge modification from positive to negative by adsorbed (bi)carbonate ions. At low concentrations of 0.1 and 1mM, bacterial attachment to iron-coated sand surfaces decreased with increasing NaHCO(3) concentration, due to charge modification of coated sand surfaces from positive to negative. At intermediate concentration of 10mM, iron-coated sand surfaces were negatively charged like quartz sand, and so the presence of (bi)carbonate ions resulted in the increment of bacterial adhesion due to compression of the electrical double layers. At high concentrations of 100 and 200mM (pH 8.5-8.6), where iron-coated surfaces were negatively charged, bacterial deposition decreased compared to the case of 10mM, possibly due to the same phenomenon observed in quartz sand (short-range forces). This study demonstrates that bacterial adhesions to quartz and metal oxide-coated surfaces

  10. Formation of parting in quartz

    NASA Astrophysics Data System (ADS)

    Jørgen Kjøll, Hans; Eske Sørensen, Bjørn

    2014-05-01

    This paper presents hydrothermal quartz with macroscopic planar parting from the Mesoproterozoic Modum complex in southern Norway. Similar macroscopic parting in hydrothermal quartz with macroscopic planar structures has only been described from two localities in the world; Madagascar (Flörke et al., 1981) and Southern California (Murdoch et al., 1938). The study area consists of well foliated and banded sillimanite- garnet- amphibolite- mica gneiss that is cut at high angle by hydrothermal veins containing albite, chlinoclore, hornblende, hydroxyl apatite and quartz. The rim of the veins is generally made up of almost pure end-member euhedral albite. Then there is vugs with euhedral hornblende (10-25cm long) and euhedral hydroxyl apatite with size ranging from mm scale to several cm. Some places the quartz encloses apatite and hornblende. The quartz is anhedral, inequigranular with undulose extinction bordering sub grain rotation. It has large planar penetrative parting faces with pearly luster; however this is not consistent throughout the outcrop and some places the penetrative faces disappears and the quartz has a conchoidal fracture. The planar faces continue throughout the specimens with a few mm spacing. Thin sections oriented perpendicular to the most pronounced planar structure show lamellas that extinguishes at small angles (2 degrees) to each other. EBSD mapping of the planar faces shows two orientations {0-111} and {1-101}, corresponding to the r- and z-faces respectively, separated by irregular boundaries. The misorientation between these two crystallographic orientations on the parting is a 60 degree rotation on [0 0 1] in correspondence to the dauphiné twin law. Investigations conducted on thin sections cut orthogonal to the parting shows that the parting cuts and offsets the dauphiné twins, indicating a late genesis of the parting. However some internal stress induced movement of the twins are visible. SEM-CL documents three generations of quartz

  11. Stratigraphic Architecture of Aeolian Dune Interactions

    NASA Astrophysics Data System (ADS)

    Brothers, S. C.; Kocurek, G.

    2015-12-01

    Dune interactions, which consist of collisions and detachments, are a known driver of changing dune morphology and provide the dynamics for field-scale patterning. Although interactions are ubiquitous in modern dune fields, the stratigraphic record of interactions has not been explored. This raises the possibility that an entire class of signature architectures of bounding surfaces and cross-strata has gone misidentified or unrecognized. A unique data set for the crescentic dunes of the White Sands Dune Field, New Mexico, allows for the coupling of dune interactions with their resultant stratigraphic architecture. Dune interactions are documented by a decadal time-series of aerial photos and LiDAR-derived digital elevation models. Plan-view cross-strata in interdune areas provide a record tying past dune positions and morphologies to the current dunes. Three-dimensional stratigraphic architecture is revealed by imaging of dune interiors with ground-penetrating radar. The architecture of a dune defect merging with a target dune downwind consists of lateral truncation of the target dune set by an interaction bounding surface. Defect cross-strata tangentially approach and downlap onto the surface. Downwind, the interaction surface curves, and defect and adjacent target dune sets merge into a continuous set. Predictable angular relationships reflect field-scale patterns of dune migration direction and approach angle of migrating defects. The discovery of interaction architectures emphasizes that although dunes appear as continuous forms on the surface, they consist of discrete segments, each with a distinct morphodynamic history. Bedform interactions result in the morphologic recombination of dune bodies, which is manifested stratigraphically within the sets of cross-strata.

  12. Soil Response to Aeolian Disturbance in West Greenland

    NASA Astrophysics Data System (ADS)

    Heindel, R. C.; Culler, L. E.; Chipman, J. W.; Virginia, R. A.

    2015-12-01

    Arctic soils are a critical ecological resource, yet are increasingly vulnerable to global change. In the Kangerlussuaq region of West Greenland, aeolian disturbance is the greatest threat to soil stability, with strong katabatic winds eroding vegetation and soil down to the underlying glacial till or bedrock. Little is known about what controls the distribution and rate of the aeolian erosion, which initially results in a state change from tundra to a deflated and nearly unvegetated ground. It is unclear if vegetation can eventually reestablish after erosion occurs, potentially aided by the biological soil crust (BSC) that develops within the eroded areas, or if this soil loss is an irreversible change in vegetation and soil carbon (C) and nitrogen (N) cycling. Our analysis of high-resolution satellite imagery shows that across the entire study region, deflated ground covers 22% of the terrestrial landscape. Aeolian erosion occurs more frequently closer to the Greenland Ice Sheet and on S-facing slopes. Using lichenometry, we estimate that erosional fronts move across the landscape at rates of 2.5 cm yr-1, leaving unproductive ground in their wake. The onset of widespread aeolian erosion occurred roughly 700-1000 years ago, pointing toward regional cooling and aridity as the drivers behind erosion. Finally, we consider whether the BSCs can improve soil quality enough to allow for full vegetation regrowth. Preliminary results show that while the BSCs fix atmospheric N and increase C storage, the rate of soil quality recovery is extremely slow. Understanding the thresholds between vegetated tundra and eroded ground is critical for predicting how the Kangerlussuaq landscape will respond to anticipated changes in climate and ice sheet dynamics.

  13. Formation of cordierite-bearing lavas during anatexis in the lower crust beneath Lipari Island (Aeolian arc, Italy)

    USGS Publications Warehouse

    Di, Martino C.; Forni, F.; Frezzotti, M.L.; Palmeri, R.; Webster, J.D.; Ayuso, R.A.; Lucchi, F.; Tranne, C.A.

    2011-01-01

    Cordierite-bearing lavas (CBL;~105 ka) erupted from the Mt. S. Angelo volcano at Lipari (Aeolian arc, Italy) are high-K andesites, displaying a range in the geochemical and isotopic compositions that reflect heterogeneity in the source and/or processes. CBL consist of megacrysts of Ca-plagioclase and clinopyroxene, euhedral crystals of cordierite and garnet, microphenocrysts of orthopyroxene and plagioclase, set in a heterogeneous rhyodacitic-rhyolitic groundmass containing abundant metamorphic and gabbroic xenoliths. New petrographic, chemical and isotopic data indicate formation of CBL by mixing of basaltic-andesitic magmas and high-K peraluminous rhyolitic magmas of anatectic origin and characterize partial melting processes in the lower continental crust of Lipari. Crustal anatectic melts generated through two main dehydration-melting peritectic reactions of metasedimentary rocks: (1) Biotite + Aluminosilicate + Quartz + Albite = Garnet + Cordierite + K-feldspar + Melt; (2) Biotite + Garnet + Quartz = Orthopyroxene + Cordierite + K-feldspar + Melt. Their position into the petrogenetic grid suggests that heating and consequent melting of metasedimentary rocks occurred at temperatures of 725 < T < 900??C and pressures of 0.4-0.45 GPa. Anatexis in the lower crust of Lipari was induced by protracted emplacement of basic magmas in the lower crust (~130 Ky). Crustal melting of the lower crust at 105 ka affected the volcano evolution, impeding frequent maficmagma eruptions, and promoting magma stagnation and fractional crystallization processes. ?? 2011 Springer-Verlag.

  14. Industrial sand and gravel

    USGS Publications Warehouse

    Dolley, T.P.

    2013-01-01

    Domestic production of industrial sand and gravel in 2012 was about 49.5 Mt (55 million st), increasing 13 percent compared with that of 2011. Some important end uses for industrial sand and gravel include abrasives, filtration, foundry, glassmaking, hydraulic fracturing sand (frac sand) and silicon metal applications.

  15. Industrial sand and gravel

    USGS Publications Warehouse

    Dolley, T.P.

    2012-01-01

    Domestic production of industrial sand and gravel in 2011 was about 30 Mt (33 million st), increasing slightly compared with 2010. Some important end uses for industrial sand and gravel include abrasives, filtration, foundry, glassmaking, hydraulic fracturing sand (frac sand) and silicon metal applications.

  16. Influence Of Carboxymethyl Cellulose For The Transport Of Titanium Dioxide Nanoparticles In Clean Silica And Mineral-Coated Sands

    EPA Science Inventory

    The transport properties of titanium dioxide (anatase polymorph) nanoparticles encapsulated by carboxymethyl cellulose (CMC) were evaluated as a function of changes in the solute chemical properties in clean quartz, amorphous aluminum and iron hydroxide-coated sands. While prist...

  17. Laser welding of fused quartz

    DOEpatents

    Piltch, Martin S.; Carpenter, Robert W.; Archer, III, McIlwaine

    2003-06-10

    Refractory materials, such as fused quartz plates and rods are welded using a heat source, such as a high power continuous wave carbon dioxide laser. The radiation is optimized through a process of varying the power, the focus, and the feed rates of the laser such that full penetration welds may be accomplished. The process of optimization varies the characteristic wavelengths of the laser until the radiation is almost completely absorbed by the refractory material, thereby leading to a very rapid heating of the material to the melting point. This optimization naturally occurs when a carbon dioxide laser is used to weld quartz. As such this method of quartz welding creates a minimum sized heat-affected zone. Furthermore, the welding apparatus and process requires a ventilation system to carry away the silicon oxides that are produced during the welding process to avoid the deposition of the silicon oxides on the surface of the quartz plates or the contamination of the welds with the silicon oxides.

  18. Pervasive aeolian activity along Curiosity's traverse in Gale Crater on Mars

    NASA Astrophysics Data System (ADS)

    Silvestro, S.; Vaz, D.; Ewing, R. C.; Rossi, A.; Flahaut, J.; Fenton, L. K.; Geissler, P. E.; Michaels, T. I.

    2012-12-01

    The NASA Mars Science Laboratory (MSL) has safely landed in Gale Crater (Mars). This crater has been severely modified by the action of the wind which has led to the development of several dark dune fields. One of these fields crosses the landing ellipse from the NE to the SW, and despite its fresh appearance, no evidence of sand movement has been detected until recently. Here we present evidence of current aeolian activity in the form of ripple and dune migration close to the expected traverse of the MSL rover, Curiosity. We calculate a minimum ripple displacement of 1.16 m and a dune migration rate of 0.4 meters/Earth year. Both ripples and dunes migrated toward the SW, suggesting winds above the saltation threshold from the NE. Such winds are predicted by the MRAMS atmospheric model (Fig. 1). The dunes are undergoing changes on a timescale of weeks to a few years that should be detectable by rover instruments. Using theoretical and experimental considerations, we calculate a wind gust velocity of 35 m/s at 1.5 m of height. In addition, we estimate that saltating grains would reach a distance of ~27 m and extend a maximum height of 2 m above the surface. Our constraints on the wind regime provide a unique opportunity to use ground measurements from MSL to test the accuracy of winds predicted from orbital data.RAMS modeled winds in the MSL landing site

  19. Conditions and processes affecting sand resources at archeological sites in the Colorado River corridor below Glen Canyon Dam, Arizona

    USGS Publications Warehouse

    East, Amy E.; Collins, Brian D.; Sankey, Joel B.; Corbett, Skye C.; Fairley, Helen C.; Caster, Joshua

    2016-05-17

    We conclude that most of the river-corridor archeological sites are at elevated risk of net erosion under present dam operations. In the present flow regime, controlled floods do not simulate the magnitude or frequency of natural floods, and are not large enough to deposit sand at elevations that were flooded at annual to decadal intervals in predam time. For archeological sites that depend upon river-derived sand, we infer elevated erosion risk owing to a combination of reduced sand supply (both fluvial and aeolian) through (1) the lower-than-natural flood magnitude, frequency, and sediment supply of the controlled-flooding protocol; (2) reduction of open, dry sand area available for wind redistribution under current normal (nonflood) dam operations, which do not include flows as low as natural seasonal low flows and do include substantial daily flow fluctuations; and (3) impeded aeolian sand entrainment and transport owing to increased riparian vegetation growth in the absence of larger, more-frequent floods. If dam operations were to increase the supply of sand available for windblown transport—for example, through larger floods, sediment augmentation, or increased fluvial sandbar exposure by low flows—and also decrease riparian vegetation, the prevalence of active aeolian sand could increase over time, and the propensity for unmitigated gully erosion could decrease. Although the evolution of river-corridor landscapes and archeological sites has been altered fundamentally by the lack of large, sediment-rich floods (flows on the order of 5,000 m3/s), some combination of sediment-rich flows above 1,270 m3/s, seasonal flows below 226 m3/s, and riparian-vegetation removal might increase the preservation potential for sand-dependent archeological resources in the Colorado River corridor.

  20. Thermal Stability of Volcanic Ash versus Turbine Ingestion Test Sands: an Experimental Investigation

    NASA Astrophysics Data System (ADS)

    Cimarelli, C.; Kueppers, U.; Hess, K.; Dingwell, D. B.; Rickerby, D. S.; Madden, P. C.

    2010-12-01

    Volcanic eruptions are an inevitable natural threat. The range of eruptive styles is large and short term fluctuations of explosivity or vent position pose a large risk not necessarily confined to the immediate vicinity of a volcano. Explosive eruptions rather may also affect aviation, infrastructure and climate, regionally as well as globally. The recent eruption of Eyjafjallajökull drastically brought into common awareness how volcanic activity can affect every day’s life and disrupt air traffic. The presence of solid particles in the air ingested in jet turbines may cause harm as it 1) may deposit on surfaces upon being heated up and 2) abrade upon impact. Particles suspended in the atmosphere may have different origins, including volcanic ash, aeolian sand, or incineration residues, each of them having different chemical and physical characteristics. To date, aircraft turbine operability has been investigated - amongst other tests - through the ingestion of sands whose grains have different mineralogical nature. Due to high cooling rates, volcanic ash is usually made up of glass, i.e. an amorphous phase lacking crystallographic order. Glass and crystal behave very differently to heating up. Glass will soften - and accordingly change shape or stick to surfaces - at temperatures as low as 700 °C, depending on the chemical composition. Crystals however need higher melting temperatures; quartz for example has a melting point at around 1700 °C. Accordingly, the effect of ash on the operational reliability of aircraft turbines may not be judged solely based on knowledge commonly derived from mineral sand ingestion testing. In order to investigate the behaviour upon heating, we performed a series of experiments at ten temperature steps between 700 and 1600 °C. We used three different samples: 1) Ash from the explosive phase of Eyjafjallajökull; 2) MIL E-5007C test sand (MTS), and 3) Arizona Test Dust (ATD). MTS and ATD are commonly used for aircraft turbine

  1. Anomalous quartz from the Roter Kamm impact crater, Namibia: Evidence for post-impact hydrothermal activity

    SciTech Connect

    Koeberl, C. Univ. of Vienna ); Fredriksson, K. ); Goetzinger, M. ); Reimold, W.U. )

    1989-08-01

    Centimeter-sized quartz pebbles have been found on the rim of the Roter Kamm impact crater. The Roter Kamm crater has a diameter of about 2.5 km and is situated in the Namib Desert, SWA/Namibia. Because of the sand coverage, impact products are exposed exclusively in the form of ejecta on the crater rim. The quartz pebbles were found close to the main deposits of the impact breccias and show signs of wind abrasion. Thin sections revealed that the pebbles consist of individual quartz domains that are up to 1 mm in size. Under crossed nicols (polarized light), all individual domains show extinction almost simultaneously within {plus minus}2{degree}, which is a rare phenomenon. Microprobe studies, neutron activation analyses, and X-ray diffractometry confirmed that the material consists of pure quartz. The quartz contains three different types of fluid inclusions: primary inclusions that record the formation conditions of the quartz, very small (<1 {mu}m) secondary inclusions associated with the grain boundaries, and late inclusions of irregular size. Freezing point depression measurements of the primary inclusions indicate fluid salinities between 18.3 and 19.6 wt% NaCl. Homogenization temperatures (T{sub h}) for the primary inclusions range from 165 to 250{degree}C. The quartz and the primary inclusions may provide evidence for a post-impact phase of extensive hydrothermal activity, generated by the residual heat from the kinetic energy of the impact.

  2. Seasonal and directional variations of aeolian sediment transport on the coarse-grained zibar surface of the Kumtagh Desert, NW China

    NASA Astrophysics Data System (ADS)

    Qian, Guangqiang; Yang, Zhuanling; Dong, Zhibao; Luo, Wanyin; Zhang, Zhengcai; Lu, Junfeng

    2016-04-01

    The aeolian process over fine to medium sand beds has been thoroughly discussed based on short-term, in-situ observations and wind tunnel tests. However, little is known about the long period variation of aeolian sediment transport as well as the geomorphological significance of saltating process, in particular, on the coarse-grained surface. By means of a segmented, eight-directional sand trap (SEDST) designed by the authors, the aeolian sediment transport on zibar surface was measured in the Kumtagh Desert of NW China. The SEDST has eight sub-traps faced to eight directions, each sub-trap contains a vertical array of samplers with four openings at 0 - 0.1 m, 0.1 - 0.2 m, 0.2 - 0.4 m and 0.4 - 1.0 m, respectively. Each opening is connected with an underground sand chamber. During the 1-yr field observation since May 2014, sediments were collected for six times with an interval of 1 to 3 months depending on the wind strength. The total weight of the captured sediments is 314.76 kg and most of them (54%) were transported within 0.1 m above the ground. The sediment transport rate ranges from 0.43 to 64.47 g/m.min for the six runs, the maximum transport rate occurred during the period of Aug to Oct 2014 with sediments from the north direction. The annual mean transport rate changes between 11.81 and 28.49 g/m.min and the sediments are mainly blown from the N, NE and NW directions. The resultant sediment transport direction (net transport) is SSE (172.92°), which implies the major sediment source direction. The sediment flux profiles can be fitted with the exponential decay function for six runs and all directions. Three groups can be identified from the gradients of the fitting curves, i.e. the N, NE and NW cluster, the S and SE cluster, as well as the E, SE and W cluster. Each cluster represents a particular combination of sediment source features and geomorphological settings that may significantly affect the formation process of zibars. The sediment transport

  3. Origin of the quartz in Antrim Shale

    SciTech Connect

    Hathon, C.; Sibley, D.; Cambray, F.W.

    1980-02-15

    Study of the macroscopic and microscopic properties of the Antrim Shale indicated an important anomaly, the quartz. The Antrim Shale (Devonian, Michigan Basin) contains a large, but quantitatively undertermineable volume of authigenic quartz. The shale contains approximately 50% quartz by weight of which, in the >500 mesh size fraction, 56% is polycrystalline. This is approximately 2X the amount of quartz in most shales and 10X the amount of polycrystalline quartz in the silt-size fraction of sandstones and shales. Scanning electron microscopy reveals an authigenic surface composed of hexagonal tabular plates which coalesce to form smooth grain surfaces. These plates have not been previously reported on quartz grains. Oxygen isotopes of quartz and carbonate phases are interpreted to indicate a gradual isotopic lightening of the pore fluids, from approximately -4/sup 0///sub 00/. Most of the authigenic quartz has a delta/sup 18/O = 22/sup 0///sub 00/ (SMOW).

  4. Distinguishing the Asian dust sources based on cathodoluminescence analysis of single quartz grain

    NASA Astrophysics Data System (ADS)

    Nagashima, K.; Nishido, H.; Kayama, M.; Tada, R.; Isozaki, Y.; Sun, Y.; Igarashi, Y.

    2009-12-01

    Numerous tracers, such as mineralogical component, strontium (87Sr/86Sr) and neodymium (eNd(0)) isotopes (Liu et al., 1994; Biscaye et al.,1997; Bory et al., 2002, 2003; Kanayama et al., 2002, 2005), rare earth element composition (e.g., Svensson et al., 2000), oxygen isotope (Mizota et al., 1992; Hou et al., 2003) and ESR intensity of quartz (Ono et al., 1998; Sun et al., 2007), have been investigated to discriminate source areas of Asian dust. However, these analyses need large volume of samples (mostly more than 10 mg) and the applications to the dust samples are limited. Then, here we developed a provenance-tracing method by using a cathodoluminescence (CL) spectral of “single” quartz grain for applying it to small volume of aeolian dust samples, such as aeolian dust in the ice cores and marine sediments with the location of long distance from the Asian deserts. CL is the emission from a material which is excited by electron beam. Since CL spectroscopy and microscopy provide information on the existence and distribution of defects and trace elements in minerals, CL analyses have potential to characterize dust-source areas. CL spectra of quartz have been demonstrated to show different patterns between the quartz from hydrothermal, plutonic, volcanic and metamorphic origins (e.g., Zinkernagel, 1978; Götze et al., 2001), suggesting the spectra reflect the condition of the quartz formation and the local environment. Then, here we conducted CL spectral analysis of silt size quartz in the surface samples from the major Asian deserts, such as the Taklimakan Desert and Gobi Desert in southern Mongolia (hereafter Mongolian Gobi). CL spectra were measured in the areas of approximately 4 micron square for each quartz grain by a Scanning Electron Microscope-Cathodoluminescence (SEM-CL) at the Okayama University of Science, a SEM (Jeol: JSM-5410) attached with a grating monochromator (Oxford Instruments: Mono CL2), where EDS system can be used in combination with SEM

  5. Holocene aeolian sedimentation and episodic mass-wasting events recorded in lacustrine sediments on Langøya in Vesterålen, northern Norway

    NASA Astrophysics Data System (ADS)

    Nielsen, Pål Ringkjøb; Dahl, Svein Olaf; Jansen, Henrik Løseth; Støren, Eivind N.

    2016-09-01

    In this study, the frequency of mass-wasting events and past storminess has been reconstructed throughout the Holocene (11,500 cal yr BP to present) from lacustrine sediments in lake Trehynnvatnet (33 m a.s.l.), which is located in a glacially carved valley at Nykvåg on the outmost coast of western Langøya, Vesterålen, northern Norway. Sediment cores (∼2-5 m long) have been examined by use of high-resolution magnetic susceptibility and XRF-scanning as well as grain size and loss-on-ignition analysis. In total 35 episodic event layers have been identified throughout the Holocene. The majority of these events are characterized as discrete coarse-grained sediment layers followed by normal grading, and are related to past mass-wasting activity within the catchment. Periods with high mass-wasting activity are dated to 11,000-10,500, 5500-4500, 4000-3500, 3000-2500, 2000-1000 and 500-0 cal yr BP. The continuous input of sand grains (>250 μm) has been systematically investigated throughout the sediment cores. The sand grains are related to catchment samples from the sandy beach deposits in Sandvikbukta c. 750 m away in SW direction, and are suggested to indicate (niveo-) aeolian influx to the lake. The content of sand grains varies greatly throughout the record, although there is a clear increase in influx of sand during the last 2800 years. Periods with high aeolian influx are proposed to indicate increased storminess, which occurred between 1600 and 1550 (350-400 CE), 1400-1300 (450-550 CE), 750-550 (1200-1400 CE) and 250-20 cal yr BP (1700-1930 CE), which to some degree coincides with periods of increased storminess and winter precipitation recorded in other studies around the North Eastern Atlantic region.

  6. The effect of chrome adhesion layer on quartz resonator aging.

    SciTech Connect

    Wessendorf, Kurt O.; Ohlhausen, James Anthony

    2011-03-01

    This SAND report documents a late start LDRD designed to determine the possible aging effects of a quartz resonator gold adhesion layer. Sandia uses quartz resonators for applications. These applications require a very stable frequency source with excellent aging (low drift) characteristics. These parts are manufactured by one of our qualified vendors outside Sandia Laboratories, Statek Corp. Over the years we, Sandia and the vendor, have seen aging variations that have not been completely explained by the typical mechanisms known in the industry. One theory was that the resonator metallization may be contributing to the resonator aging. This LDRD would allow us to test and analyze a group of resonators with known differentiating metallization and via accelerated aging determine if a chrome adhesion layer used to accept the final gold plating may contribute to poor aging. We worked with our main vendor to design and manufacture a set of quartz resonators with a wide range of metallization thickness ratios between the chrome and gold that will allow us determine the cause of this aging and which plating thickness ratios provide the best aging performance while not degrading other key characteristics.

  7. Internal geometry of sand waves: a comparison between modern and fossil examples

    SciTech Connect

    Berne, S.; Homewood, P.

    1988-08-01

    Recent developments in acquiring and processing very high-resolution geophysical data help us better understand large subtidal sand waves of the French continental shelf. They are compared with ancient analogs, especially from the Miocene Swiss Molasse. Internal structure, interpreted from seismic sections, vibracorings, and large outcrops, shows a hierarchy comparable to aeolian dunes. (1) Steep (25/degree/-30/degree/) reflectors, dipping leeward, are interpreted as foreset beds. Vibracoring shows that in modern cases they consist of alternating layers of medium- and coarse-grained sand, similar to those produced by sand avalanching. These deposits give the highest porosity values in the central body of the sand wave. They are comparable to the Miocene sand waves of the Swiss Molasse. (2) Erosional reflectors, dipping at lower angles cut across the foresets, are interpreted as reactivation surfaces created by high-energy events (equinox tides, added tidal and wave effects) rather than by the semidiurnal currents occasionally preserved in fossil sand waves. (3) Subhorizontal reflectors were probably created by truncation of sand waves during major storms. Fossil analogs more like larger present-day sand waves might be difficult to recognize due to the complex internal architecture of the sand body.

  8. Measuring the kinetic parameters of saltating sand grains using a high-speed digital camera

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Wang, Yuan; Jia, Pan

    2014-06-01

    A high-speed digital camera is used to record the saltation of three sand samples (diameter range: 300-500, 200-300 and 100-125 μm). This is followed by an overlapping particle tracking algorithm to reconstruct the saltating trajectory and the differential scheme to abstract the kinetic parameters of saltating grains. The velocity results confirm the propagating feature of saltation in maintaining near-face aeolian sand transport. Moreover, the acceleration of saltating sand grains was obtained directly from the reconstructed trajectory, and the results reveal that the climbing stage of the saltating trajectory represents an critical process of energy transfer while the sand grains travel through air.

  9. Shock metamorphism of deformed quartz

    NASA Technical Reports Server (NTRS)

    Gratz, Andrew J.; Christie, John; Tyburczy, James; Ahrens, Thomas; Pongratz, Peter

    1988-01-01

    The effect produced by shock loading (to peak pressures of 12 and 24) on deformed synthetic quartz containing a dislocation and abundant bubbles and small inclusions was investigated, and the relationships between preexisting dislocation density shock lamellae in the target material were examined. The resultant material was found to be inhomogeneously deformed and extremely fractured. Results of TEM examinations indicate that no change in dislocation density was caused by shock loading except in regions containing shock lamellae, where the dislocation density was lowered. The shock-induced defects tend to nucleate on and be controlled by preexisting stress concentrators; shock lamellae, glassy veins, and most curviplanar defects form in tension, presumably during release. An extremely mobile silica fluid is formed and injected into fractures during release, which forcibly removes crystalline fragments from vein walls. It is concluded that shock deformation in quartz is dominated by fracture and melting.

  10. Vibration resistant quartz crystal resonators

    NASA Astrophysics Data System (ADS)

    Goldfrank, B.; Warner, A.

    1982-11-01

    The principal objectives of this investigation were to provide doubly rotated quartz crystal resonators that exhibit low "g' sensitivity on the order of 1 superscript 10 per "g', and fast warm-up on the order of 1 superscript 9 in three minutes. Effects of changes in the mounting orientation have been investigated with respect to the magnitude of the acceleration sensitivity vector, for 0 angles of 21.95, 23.75 and 25.00, using 5 MHz/5th overtone plano-convex and bi-convex quartz crystal blanks. The mounting technique was three-point thermo-compression bonding; the mounts were 90 degrees apart. A new thermo-compression bonding ribbon was evaluated and instituted. 5 MHz and 10 MHz, third overtone crystals and 20 MHz fifth overtone crystals were measured for the magnitude of the acceleration sensitivity vector. Improved methods of X-ray orientation were also investigated.

  11. Quartz substrates for EUVL reticles

    SciTech Connect

    Kania, D.R.; Weber, F.J.; Vernon, S.P.; Hawryluk, A.; Baker, S.L.; Golub, A.M.; Shikata, A.; Grady, E.C.

    1995-02-10

    A EUVL reticle blank was fabricated on a specially polished quartz blank. The stress-induced distortion of the multilayer coating was unacceptably large. The distortion can be effectively eliminated by coating the backside of the reticle blank with an identical coating. This strategy has the potential to eliminate multilayer induced stress distortion for the reticle blank in a manner which is compatible with the existing reticle fabrication infrastructure.

  12. Aeolian Abrasion at the Curiosity Landing Site: Clues to the Role of Wind in Landscape Modification

    NASA Astrophysics Data System (ADS)

    Bridges, N. T.; Le Mouélic, S.; Hallet, B.; Newman, C. E.; Rice, M. S.; Blaney, D. L.; Calef, F. J.; Herkenhoff, K. E.; Langevin, Y.; Lewis, K. W.; Maurice, S.; Pinet, P. C.; Wiens, R. C.; de Pablo, M.; Renno, N. O.

    2013-12-01

    The broad scale geomorphology of Gale Crater reflects diverse aeolian processes, from airfall settling that likely deposited much of the upper and some of the lower units of Mt. Sharp, to evidence of extensive wind exhumation and removal of material exterior to the mound, to active dunes on the crater floor. The integrated effect of aeolian sand transport can also be examined on a much smaller scale by the study of ventifacts, rocks that have been abraded by windborne particles. A diversity of ventifacts are found along Curiosity's traverse through the upper 'hummocky' (HY) geomorphic unit and the lower Yellowknife Bay (YKB) sedimentary rocks. The textures are analogous to abrasion features found on Earth and include cm-scale facets, keels, elongated pits, grooves, flutes, and basal sills. High-resolution images from ChemCam's Remote Micro-Imager also show mm-scale lineations. Evidence of differential erosion is common, with HY conglomerates (e.g., Hottah, Link) and the YKB Sheepbed mudstone unit containing distinct wind tails in the lee of resistant pebbles, and bedding features within Rocknest 3, the YKB Shaler sandstone unit, and other layered rocks displaying prominent ridge-groove topography. ChemCam LIBS depth profile data so far show no strong evidence for chemical differences in the elemental composition between abraded and non-abraded surfaces (as determined from qualitative assessment), as might be expected if there were rock coatings or weathering rinds undergoing active abrasion. Preliminary measurements of ventifact texture and wind tail orientations indicate sandblasting in HY and YKB from predominantly southwesterly and northerly directions, respectively. Based on meso-scale models of current winds and REMS results, SW flow is uncommon whereas N winds are frequent. Compositional and textural information from the suite of MSL instruments indicate that HY rocks are dominated by various types of basalt (either as whole rocks or the resistant clasts in

  13. Electron Irradiation Damage in Quartz

    NASA Astrophysics Data System (ADS)

    Ayensu, Akwasi; Ocran, John

    2002-03-01

    Transmission electron microscopy for observing highly beam sensitive materials had been used to study the microstructure of deformed quartz crystals. At 100 kV accelerating voltage and electron flux of 3 x 10^8 e/cm2/s, beam spots damage appeared within five minutes of exposure to the electron beam. The rate of damage was found to depend on the crystal type; in particular, on the OH content and initial defect density, since these factors controlled the plasticity of quartz. The electron irradiation damage was manifested as black spots, prismatic dislocation loops, defect clusters, hairpin shaped images of dislocations and long segements of dislocation loops. The observed microstructure indicate that during electron beam irradiation, the primary defects in quartz attained sufficiently high mobilities permitting large-scale recombination and clustering leading to rapid creation of secondary defects from the clustering processes. The number of electrons that are lost by the recombination process is determined by the density of the recombination centres and the probability that an electron will interact with the centre.

  14. Downwind changes in grain size of aeolian dust; examples from marine and terrestrial archives

    NASA Astrophysics Data System (ADS)

    Stuut, Jan-Berend; Prins, Maarten

    2013-04-01

    Aeolian dust in the atmosphere may have a cooling effect when small particles in the high atmosphere block incoming solar energy (e.g., Claquin et al., 2003) but it may also act as a 'greenhouse gas' when larger particles in the lower atmosphere trap energy that was reflected from the Earth's surface (e.g., Otto et al., 2007). Therefore, it is of vital importance to have a good understanding of the particle-size distribution of aeolian dust in space and time. As wind is a very size-selective transport mechanism, the sediments it carries typically have a very-well sorted grain-size distribution, which gradually fines from proximal to distal deposition sites. This fact has been used in numerous paleo-environmental studies to both determine source-to-sink changes in the particle size of aeolian dust (e.g., Weltje and Prins, 2003; Holz et al., 2004; Prins and Vriend, 2007) and to quantify mass-accumulation rates of aeolian dust (e.g., Prins and Weltje 1999; Stuut et al., 2002; Prins et al., 2007; Prins and Vriend, 2007; Stuut et al., 2007; Tjallingii et al., 2008; Prins et al., 2009). Studies on modern wind-blown particles have demonstrated that particle size of dust not only is a function of lateral but also vertical transport distance (e.g., Torres-Padron et al., 2002; Stuut et al., 2005). Nonetheless, there are still many unresolved questions related to the physical properties of wind-blown particles like e.g., the case of "giant" quartz particles found on Hawaii (Betzer et al., 1988) that can only originate from Asia but have a too large size for the distance they travelled through the atmosphere. Here, we present examples of dust particle-size distributions from terrestrial (loess) as well as marine (deep-sea sediments) sedimentary archives and their spatial and temporal changes. With this contribution we hope to provide quantitative data for the modelling community in order to get a better grip on the role of wind-blown particles in the climate system. Cited

  15. A comprehensive method for aeolian particle granulometry and micromorphology analyses.

    PubMed

    Zaady, E; Dody, A; Weiner, D; Barkai, D; Offer, Z Y

    2009-08-01

    The aim of this study was to use a new approach to investigate aeolian particle granulometry and micromorphology. Taking total aeolian deposition into account, we used parameters such as, particle area, perimeter, shape analysis for particle roughness (area/perimeter) and elongation (long/short axis). These parameters were analyzed on temporal and spatial scales at four study sites in the eastern Negev Desert, Israel. The total collection of particles was sorted into three size groups based on particle area to facilitate comparison. The classic definition of particle size (equating particle length with particle diameter) produced relatively small variations among the three size classes (25-38.6%). Our proposed comprehensive method demonstrated significant variation among the three size classes (13.9-60.8%), e.g. the classic method placed 36.4% of the particles in size class two while the new method placed 60.8% of the particles in this size class; the differences were even more significant regarding size class 3 (38.6% vs. 13.9%, respectively). The classic method did not facilitate investigation of particle roughness and elongation. With this new approach, it was possible to clearly define the particles by size class, based on these characteristics. With roughness, the variation among size classes 2 and 3 was about 27%. With elongation, the variation among size classes two and three was about 21%. Applying similar investigation method to study the aeolian particle granulometry and micromorphology can better facilitate more detailed calculation of particle size distribution, roughness and elongation. PMID:18618283

  16. Atmospheric significance of aeolian salts in the sandy deserts of northwestern China

    NASA Astrophysics Data System (ADS)

    Zhu, B.-Q.

    2016-02-01

    Large sandy deserts in the middle latitudes of northwestern China were investigated for soluble salt variations in modern and ancient aeolian sediments, aiming to explore the environmental significance of "aeolian salts". Results revealed that aeolian salt variations have a clear relationship with the changing meridional and zonal gradients of the desert locations and the aeolian differentiation effect, but are weakly linked to local geological conditions. Atmospheric depositions of water-soluble chemical species are an important process/source contributing to aeolian salt. Sequential variations of soluble salts in sedimentary profiles interbedded with aeolian and non-aeolian deposits and their palaeoenvironmental implications in the hinterland areas of these deserts were further evaluated, based on the constraints of OSL dating and radiocarbon dating data. The results indicate that inorganic salts may be a latent geoproxy in revealing regional palaeoclimatic changes in desert areas for sediments deposited under a single depositional environment, but the interpretation should be more cautious for sediments deposited under diverse depositional conditions. This study presents evidence of the atmospheric origin of aeolian salt in sandy deserts, with limited climatic significance in palaeoenvironmental reconstruction.

  17. Bathymetry,submarine geomorphology and tectonics of the Aeolian Islands

    NASA Astrophysics Data System (ADS)

    Favalli, M.; Karatson, D.; Mazzuoli, R.; Pareschi, M. T.; Ventura, G.

    2003-04-01

    On the basis of a new DEM of the submarine portions of the Aeolian Island Arc, Southern Italy, we discuss the offshore geomorphology, morphometry and tectonics of the seven major volcanic edifices and their surroundings. Bathymetric data have been compiled from various sources. Geomorphological maps reveal important details of the submerged volcanic structures as well as tectonic lineaments that are related to the most evident on land pattern. Geomorphological and morphomnetrical data have allowed us to get an insight into the evolution of the submarine volcanoes and the relationship between tectonics and volcanism in the archipelago.

  18. Responses of aeolian desertification to a range of climate scenarios in China

    NASA Astrophysics Data System (ADS)

    Wang, Xunming; Hua, Ting; Ma, Wenyong

    2016-06-01

    Aeolian desertification plays an important role in earth-system processes and ecosystems, and has the potential to greatly impact global food production. The occurrence of aeolian desertification has traditionally been attributed to increases in wind speed and temperature and decreases in rainfall. In this study, by integrating the aeolian desertification monitoring data and climate and vegetation indices, we found that although aeolian desertification is influenced by complex climate patterns and human activities, increases in rainfall and temperature and decreases in wind speed may not be the key factors of aeolian desertification controls in some regions of China. Our results show that, even when modern technical approaches are used, different approaches to desertification need to be applied to account for regional differences. These results have important implications for future policy decisions on how best to combat desertification.

  19. Validation of OSL and 14C dating of initial soils in Late-Holocene polycyclic drift-sand deposits (Weerterbergen, S.E. Netherlands)

    NASA Astrophysics Data System (ADS)

    van Mourik, J. M.; Schilder, M. L. M.; Wallinga, J.

    2009-04-01

    soil formation. Micromorphological analysis of thin sections of micropodzols provide more information about the composition of SOM of the humic horizons. SOM consists of post sedimentary compounds, related to soil formation. We can identify soil fungi, fragmented litter and fecal pellets as the results of litter decomposition. But SOM contains also sin sedimentary compounds, related to sand drifting. We can identify transported and rounded organic aggregates, mineral grains with organic cutans and charcoal fragments, originating from eroded (older) soil horizons. Consequently, the 14C dates of extracted SOM are not reliable. Recently the optical stimulated luminescence (OSL) dating technique was introduced in earth science. OSL dating works excellent for aeolian sandy deposits with a high percentage of quartz grains. The OSL age is defined as the time after the last bleaching by solar radiation of mineral grains. In contrast to 14C dating, application of OSL dating provides accurate information over the age of top and bottom of deposited sand beds and consequently over the time, available for soil development. Based on OSL dates, the micropodzols developed between 1700 and 1900 AD. Application of OSL dating improves the knowledge of geochronology of polycyclic driftsand sequences in cultural sandy landscapes.

  20. The Effect of Air Density on Sand Transport Structures and the Adobe Abrasion Profile: A Field Wind-Tunnel Experiment Over a Wide Range of Altitude

    NASA Astrophysics Data System (ADS)

    Han, Qingjie; Qu, Jianjun; Dong, Zhibao; Zu, Ruiping; Zhang, Kecun; Wang, Hongtao; Xie, Shengbo

    2013-11-01

    Aeolian sand transport results from interactions between the surface and the airflow above. Air density strongly constrains airflow characteristics and the resulting flow of sand, and therefore should not be neglected in sand transport models. In the present study, we quantify the influence of air density on the sand flow structure, sand transport rate, adobe abrasion profiles, and abrasion rate using a portable wind-tunnel in the field. For a given wind speed, the flow's ability to transport sand decreases at low air density, so total sand transport decreases, but the saltation height increases. Thus, the damage to human structures increases compared with what occurs at lower altitudes. The adobe abrasion rate by the cloud of blowing sand decreases exponentially with increasing height above the surface, while the wind erosion and dust emission intensity both increase with increasing air density. Long-term feedback processes between air density and wind erosion suggest that the development of low-altitude areas due to long-term deflation plays a key role in dust emission, and will have a profound significance for surface Aeolian processes and geomorphology.

  1. Percolation of Blast Waves though Sand

    NASA Astrophysics Data System (ADS)

    Proud, William

    2013-06-01

    Previous research has concentrated on the physical processes occurring when samples of sand, of varying moisture content, were shock compressed. In this study quartz sand samples are subjected to blast waves over a range of pressure and duration. Aspects of particle movement are discussed; the global movement of a bed hundreds of particles thick is a fraction of particle width. The main diagnostics used are pressure sensors and high-speed photography. Results are presented for a range of particle sizes, aspect ratio, density and moisture content. While the velocity of the percolation through the bed is primarily controlled by density and porosity the effect of moisture reveals a more complex dependence. The ISP acknowledges the support of the Atomic Weapons Establishment and Imperial College London.

  2. Optical properties of Aeolian dusts common to West Texas

    NASA Astrophysics Data System (ADS)

    Ma, Lulu; Zobeck, Ted M.; Hsieh, Daniel H.; Holder, Dean; Morgan, Cristine L. S.; Thompson, Jonathan E.

    2011-11-01

    Both recent models and historical events such as the Dust Bowl and volcanic eruptions have illustrated aerosols can play a significant role in climate change through direct and indirect optical effects. Soil dust aerosols generated by Aeolian processes represent a significant fraction of the total mass burden of atmospheric particles. Central to a better understanding of the climate effects of dust aerosols is knowledge of their optical properties. This research study utilized a dust generator and several instruments to determine certain optical properties of Aeolian dust mimics created by the Amarillo and Pullman soil types native to the panhandle of Texas, USA. Values for the mass-extinction coefficient ranged between 1.74 and 2.97 m 2 g -1 at 522 nm depending on how mass concentration was determined. Single-scatter albedo (SSA) for both soil types ranged from 0.947 to 0.980 at visible wavelengths with SSA increasing at longer wavelengths. Angstrom absorption exponents were measured as 1.73 for Pullman and 2.17 for Amarillo soil. Observed Angstrom extinction exponents were 0.110 and 0.168 for the Pullman and Amarillo soil types. The optical properties reported may be of use for optical based estimates of soil erosion and aid in understanding how regional soil dusts may alter radiative transport presently and during historical events such as the Dust Bowl era.

  3. Mars Rover Curiosity Traverses of Sand Ripples

    NASA Astrophysics Data System (ADS)

    Stein, N.; Arvidson, R. E.; Zhou, F.; Heverly, M.; Maimone, M.; Hartman, F.; Bellutta, P.; Iagnemma, K.; Senatore, C.

    2014-12-01

    Martian sand ripples present a challenge for rover mobility, with drives over ripples often characterized by high wheel sinkage and slippage that can lead to incipient embedding. Since landing in Gale Crater, Curiosity has traversed multiple sand ripples, including the transverse aeolian ridge (TAR) straddling Dingo Gap on sols 533 and 535. On sol 672, Curiosity crossed backward over a series of sand ripples before ending its drive after high motor currents initiated visual odometry (VO) processing, which detected 77% slip, well in excess of the imposed 60% slip limit. At the end of the drive, the right front wheel was deeply embedded at the base of a ripple flank with >20 cm sinkage and the rear wheels were near a ripple crest. As Curiosity continues its approach to Mount Sharp it will have to cross multiple ripples, and thus it is important to understand Curiosity's performance on sol 672 and over similar ripples. To this end the sol 672 drive was simulated in ARTEMIS (Adams-Based Rover Terramechanics Interaction Simulator), a software tool consisting of realistic rover mechanical models, a wheel-terrain interaction module for deformable and non-deformable surfaces, and realistic terrain models. ARTEMIS results, Dumont Dunes tests performed in the Mojave Desert using the Scarecrow test rover, and single wheel tests performed at MIT indicate that the high slip encountered on sol 672 likely occurred due to a combination of rover attack angle, ripple geometry, and soil properties. When ripple wavelength approaches vehicle length, the rover can reach orientations in which the leading wheels carry minimal normal loads and the trailing wheels sink deeply, resulting in high slippage and insufficient thrust to propel the rover over ripples. Even on relatively benign (i.e. low tilt) terrains, local morphology can impose high sinkage, thus impeding rover motion. Work is underway to quantify Curiosity's drive performance over various ripple geometries to retrieve soil

  4. Fusion of arkosic sand by intrusive andesite

    USGS Publications Warehouse

    Bailey, Roy A.

    1954-01-01

    An andesite dike in the Valles Mountains of northern New Mexico has intruded and partly fused arkosic sediments for a distance of 50 feet from its contacts. The dike is semi-circular in form, has a maximum width of about 100 feet, and is about 500 feet long. Small associated arcuate dikes are arranged in spiral fashion around the main dike, suggesting that they were intruded along shear fractures similar to those described by Burbank (1941). The fused rocks surrounding the andesite dike are of three general types: 1) partly fused arkosic sand, 2) fused clay, and 3) hybrid rocks. The fused arkosic sand consists of relict detrital grains of quartz, orthoclose, and plagioclase, imbedded in colorless glass containing microlites of tridymite, cordierite, and magnetite. The relict quartz grains are corroded and embayed by glass; the orthoclase is sanidinized and partly fused; and the plagioclase is inverted to the high temperature form and is partly fused. The fused clay, which was originally a mixture of montmorillonite and hydromica, consists primarily of cordierite but also contains needle-like crystals of sillimanite (?) or mullite (?). The hybrid rocks originated in part by intermixing of fused arkosic sediments and andesitic liquid and in part by diffusion of mafic constituents through the fused sediments. They are rich in cordierite and magnetite and also contain hypersthene, augite, and plagioclase. The composition of pigeonite in the andesite indicates that the temperature of the andesite at the time of intrusion probably did not exceed 1200?C. Samples of arkosic sand were fused in the presence of water in a Morey bomb at 1050?C. Stability relations of certain minerals in the fused sand suggest that fusion may have taken place at a lower temperature, however, and the fluxing action of volatiles from the andesite are thought to have made this possible.

  5. Morphometrics of aeolian blowouts from high-resolution digital elevation data: methodological considerations, shape metrics, and scaling

    NASA Astrophysics Data System (ADS)

    Hamilton, T. K.; Duke, G.; Brown, O.; Koenig, D.; Barchyn, T. E.; Hugenholtz, C.

    2011-12-01

    Aeolian blowouts are wind erosion hollows that form in vegetated aeolian landscapes. They are especially pervasive in dunefields of the northern Great Plains, yielding highly pitted or hummocky terrain, and adding to the spatial variability of microenvironments. Their development is thought to be linked to feedbacks between morphology and airflow; however, few measurements are available to test this hypothesis. Currently, a dearth of morphology data is limiting modeling progress. From a systematic program of blowout mapping with high-resolution airborne LiDAR data, we used a GIS to calculate morphometrics for 1373 blowouts in Great Sand Hills, Saskatchewan, Canada. All of the blowouts selected for this investigation were covered by grassland vegetation and inactive; their morphology represents the final stage of evolution. We first outline methodological considerations for delineating blowouts and measuring their volume. In particular, we present an objective method to enhance edge and reduce operator error and bias. We show that blowouts are slightly elongate and 49% of the sample blowouts are oriented parallel to the prevailing westerly winds. We also show that their size distribution is heavy-tailed, meaning that most blowouts are relatively small and rarely increase in size beyond 400 m3. Given that blowout growth is dominated by a positive feedback between sediment transport and vegetation erosion, these results suggest several possible mechanisms: i) blowouts simultaneously evolved and stabilized as a result of external climate forcing, ii) blowouts are slaved to exogenous biogenic disturbance patterns (e.g., bison wallows), or iii) a morphodynamic limiting mechanism restricts blowout size. Overall, these data will serve as a foundation for future study, providing insight into an understudied landform that is common in many dunefields.

  6. Aeolian to shallow-marine shelf architecture off a major desert since the Late Pleistocene (northern Mauritania)

    NASA Astrophysics Data System (ADS)

    Hanebuth, T. J. J.; Mersmeyer, H.; Kudrass, H. R.; Westphal, H.

    2013-12-01

    Continental shelves off major desert regions are not expected to host substantial amounts of sediments due to long-lasting and unfocused material supply and a high re-mobilization potential of aeolian material. This study, in contrast, demonstrates that significant volumes of sediments have accumulated on the northern Mauritanian shelf under the arid climate conditions and prevail over consecutive climatic cycles. Eight late Pleistocene to Holocene depositional units, each formed under contrasting depositional conditions, are identified in high-resolution seismo-acoustic data and dated sediment cores. These are: (1) a highly differentiated Pleistocene paleo-landscape older than the past climatic cycle, (2) a continental dune complex (MIS-4), (3) a thick regressive shallow-water clinoform (late MIS-3), (4) a regressive to lowstand shore deposit (latest MIS-3), and (5) a local transgressive cover (LGM to deglacial). Additionally, (6) an open-shelf highstand cover, (7) an outer-shelf highstand wedge and (8) mid-shelf mud depocenters have formed during the Holocene sea-level highstand. The common local offshore formation and preservation of confined stratigraphic units, in particular from during MIS-3, mark the interplay of: a) episodes of pronounced arid climatic conditions resulting in enhanced aeolian and coastal sediment input, b) shelf current patterns focusing sediment deposition locally, and c) early post-depositional sediment stabilization providing protection against erosion. Prominent internal surfaces at 63 and 115 m modern water depths indicate widespread and intense erosional activity during late MIS-3 regression and MIS-2 lowstand to post-LGM transgression, hosting coarse shell sands and gravels from beach and shoreface paleo-environments. The reasons for the high preservation potential of confined stratigraphic units are: a) carbonaceous cementation, b) sediment composition (massive widespread shore-related gravel and shell beds with subtle minor

  7. NMR characterization of shocked quartz

    SciTech Connect

    Boslough, M.B.; Cygan, R.T.; Assink, R.A.; Kirkpatrick, R.J.

    1994-03-01

    We have characterized experimentally and naturally-shocked quartz (both synthetic and natural samples) by solid state nuclear magnetic resonance (NMR) spectroscopy. Relaxation analysis of experimentally-shocked samples provides a means for quantitative characterization of the amorphous/disordered silica component NMR spectra demonstrate that magnetization in both the amorphous and crystalline components follows power-law behavior as a function of recycle time. This observation is consistent with the relaxation of nuclear spins by paramagnetic impurities. A fractal dimension can be extracted from the power-law exponent associated with each phase, and relative abundances can be extracted from integrated intensities of deconvolved peaks. NMR spectroscopy of naturally-shocked sandstone from Meteor Crater, Arizona (USA) led to the discovery of a new amorphous hydroxylated silica phase. Solid state NMR spectra of both experimentally and naturally shocked quartz were unexpectedly rich in microstructural information, especially when combined with relaxation analysis and cross-polarization studies. We suggest solid state NMR as a potentially useful tool for examining shock-induced microstructural changes in other inorganic compounds, with possible implications for shock processing of structural ceramics.

  8. Windblown sand on Mars: The effect of saltation threshold on drift potentials derived from Mars GCM

    NASA Technical Reports Server (NTRS)

    Xu, P.; Greeley, R.; Williams, S.; Pollack, J. B.

    1994-01-01

    The rate at which the wind can redistribute sedimentary material is an important part of any planet's sedimentologic cycle, particularly for Mars, where the competing effects of other gradational processes are less than on Earth. The aeolian drift potential (DP) is a measure of the amount of material capable of being moved through a unit length by the wind for a given period of time. DP is a useful measure of the potential redistribution rate of windblown material on regional scales. The Martian aeolian DP was calculated from laboratory studies of sand movement conducted at Martian atmospheric densities and from surface stress, temperature, and pressure values for that region as determined from the Mars General (Atmospheric) Circulation Model (GCM) developed at the NASA/Ames Research Center. In our simulations for Mars, DP changes in both magnitude (as expected) and direction if the saltation threshold is altered.

  9. Impact polymorphs of quartz: experiments and modelling

    NASA Astrophysics Data System (ADS)

    Price, M. C.; Dutta, R.; Burchell, M. J.; Cole, M. J.

    2013-09-01

    We have used the light gas gun at the University of Kent to perform a series of impact experiments firing quartz projectiles onto metal, quartz and sapphire targets. The aim is to quantify the amount of any high pressure quartz polymorphs produced, and use these data to develop our hydrocode modelling to enable the predict ion of the quantity of polymorphs produced during a planetary scale impact.

  10. Physical abrasion of mafic minerals and basalt grains: application to Martian aeolian deposits

    USGS Publications Warehouse

    Cornwall, Carin; Bandfield, Joshua L.; Titus, Timothy N.; Schreiber, B. C.; Montgomery, D.R.

    2015-01-01

    Sediment maturity, or the mineralogical and physical characterization of sediment deposits, has been used to locate sediment source, transport medium and distance, weathering processes, and paleoenvironments on Earth. Mature terrestrial sands are dominated by quartz, which is abundant in source lithologies on Earth and is physically and chemically stable under a wide range of conditions. Immature sands, such as those rich in feldspars or mafic minerals, are composed of grains that are easily physically weathered and highly susceptible to chemical weathering. On Mars, which is predominately mafic in composition, terrestrial standards of sediment maturity are not applicable. In addition, the martian climate today is cold, dry and sediments are likely to be heavily influenced by physical weathering rather than chemical weathering. Due to these large differences in weathering processes and composition, martian sediments require an alternate maturity index. Abrason tests have been conducted on a variety of mafic materials and results suggest that mature martian sediments may be composed of well sorted, well rounded, spherical basalt grains. In addition, any volcanic glass present is likely to persist in a mechanical weathering environment while chemically altered products are likely to be winnowed away. A modified sediment maturity index is proposed that can be used in future studies to constrain sediment source, paleoclimate, mechanisms for sediment production, and surface evolution. This maturity index may also provide details about erosional and sediment transport systems and preservation processes of layered deposits.

  11. Physical abrasion of mafic minerals and basalt grains: Application to martian aeolian deposits

    NASA Astrophysics Data System (ADS)

    Cornwall, C.; Bandfield, J. L.; Titus, T. N.; Schreiber, B. C.; Montgomery, D. R.

    2015-08-01

    Sediment maturity, or the mineralogical and physical characterization of sedimentary deposits, has been used to identify sediment sources, transport medium and distance, weathering processes, and paleoenvironments on Earth. Mature terrestrial sands are dominated by quartz, which is abundant in source lithologies on Earth and is physically and chemically stable under a wide range of conditions. Immature sands, such as those rich in feldspars or mafic minerals, are composed of grains that are easily physically weathered and highly susceptible to chemical weathering. On Mars, which is predominately mafic in composition, terrestrial standards of sediment maturity are not applicable. In addition, the martian climate today is cold and dry and sediments are likely to be heavily influenced by physical weathering rather than chemical weathering. Due to these large differences in weathering processes and composition, martian sediments require an alternate maturity index. This paper reports the results of abrasion tests conducted on a variety of mafic materials and results suggest that mature martian sediments may be composed of well sorted, well rounded, spherical polycrystalline materials, such as basalt. Volcanic glass is also likely to persist in a mechanical weathering environment while more fragile and chemically altered products are likely to be winnowed away. A modified sediment maturity index is proposed that can be used in future studies to constrain sediment source, paleoclimate, mechanisms for sediment production, and surface evolution. This maturity index may also provide insights into erosional and sediment transport systems and preservation processes of layered deposits.

  12. Sedimentology and stratigraphy of tidal sand ridges southwest Florida inner shelf

    SciTech Connect

    Davis, R.A. Jr.; Klay, J.; Jewell, P. )

    1993-01-01

    Detailed investigation of linear shelf sand ridges located off the southwest coast of Florida shows them to be tide-dominated sand bodies. These ridges are remarkably similar to the large sand ridges of the North Sea, and they have abundant apparent analogs in the stratigraphic record, many of which are important petroleum producers. The Florida ridges are asymmetric in profile, about 10 km long, 1 km wide, with relief of 3-4 m with the adjacent sea bed. Extensive tidal current monitoring, sediment distribution patterns and side scan sonar surveys permit characterizing their morphodynamics. Tidal currents show distinct bidirectional patterns with speeds up to 70 cm/s. There is slight flood-dominance, and currents show much higher velocities in the troughs as compared to the crests of the ridges. Megaripples and sand waves are widespread and migrate obliquely across the ridges at opposite directions on the gentle and steep side of the ridge. Shallow, high-resolution seismic data and 39 vibracores din the area of the ridges show a consistent sequence characterized by three ascending Holocene lithofacies: (1) muddy quartz sand with limestone clasts; (2) bioturbated muddy shelly quartz sand; and (3) well-sorted, cross-stratified quartz sand that characterizes the sand ridges themselves. Each of the tidal sand ridges displays a coarsening-upward sequence of fine, well-sorted sand. Small-scale, multidirectional, cross stratification dominates the stratigraphy of the cores in this facies, but megaripple cross stratification is also present. All data indicate that these tidal ridges are good modern analogs for many of the shelf sand bodies in the ancient record, especially the Mesozoic of the mid-continent area.

  13. Evaluation of aeolian emissions from gold mine tailings on the Witwatersrand

    NASA Astrophysics Data System (ADS)

    Ojelede, M. E.; Annegarn, H. J.; Kneen, M. A.

    2012-01-01

    The Witwatersrand is known for the high frequency of aeolian dust storm episodes arising from gold mine tailings storage facilities (TSFs). Source and ambient atmosphere are poorly characterized from the point of view of particle size distribution and human health risk assessment. For years, routine monitoring was limited to sampling of dust fallout ⩾30 μm. Sampling and analyses of source and receptor material was conducted. Thirty-two bulk soils were collected from TSF along the east-west mining corridor, and size distribution analysis was performed in the range 0.05-900 μm using a Malvern® MS-14 Particle Size Analyser. Ambient aerosols in the range 0.25-32 μm were monitored at two separate locations using a Grimm® aerosol monitor, in the vicinity of three large currently active and a dormant TSF. Statistical analyses indicate that TSFs are rich in fine erodible materials, particularly active TSFs. Concentration of ⩽PM5 and ⩽PM10 components in source material was: recent slimes (14-24 vol.%; 22-38 vol.%), older slimes (6-17 vol.%; 11-26 vol.%) and sand (1-8 vol.%; 2-12 vol.%). Concentrations of airborne aerosols were below the South African Department of Environmental Affairs 24-h limit value of 120 μg m -3. With wind speeds exceeding 7 ms -1, ambient concentration reached 2160 μg m -3. This maximum is several times higher than the limit value. Erosion of tailings storage facilities is a strong driver influencing ambient particulate matter loading with adverse health implications for nearby residents.

  14. A Single-Crystalline Mesoporous Quartz Superlattice.

    PubMed

    Matsuno, Takamichi; Kuroda, Yoshiyuki; Kitahara, Masaki; Shimojima, Atsushi; Wada, Hiroaki; Kuroda, Kazuyuki

    2016-05-10

    There has been significant interest in the crystallization of nanostructured silica into α-quartz because of its physicochemical properties. We demonstrate a single-crystalline mesoporous quartz superlattice, a silica polymorph with unprecedentedly ordered hierarchical structures on both the several tens of nanometers scale and the atomic one. The mesoporous quartz superlattice consists of periodically arranged α-quartz nanospheres whose crystalline axes are mostly oriented in an assembly. The superlattice is prepared by thermal crystallization of amorphous silica nanospheres constituting a colloidal crystal. We found that the deposition of a strong flux of Li(+) only on the surface of silica nanospheres is effective for crystallization.

  15. A High Resolution Look at Black Sand Particles from Sand Dunes of Saudi Arabia Using Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Hussain, M. M.; Aburizaiza, O. S.; Siddique, A.; Hershey, D. L.; Guerrieri, D. A.; Qurashi, J.; Abbass, M.; Blake, D. R.; Khwaja, H. A.

    2013-12-01

    Particulate air pollution is a problem of health concern. The microscopic make-up of different varieties of sand particles found and collected at a sand dune site in Badr, Saudi Arabia has been determined. Primary emphasis is given to the use of multiple high resolution electron microscopy (viz., Scanning Electron Microscopy with Energy Dispersive X-ray spectrometry (SEM/EDS) and Laser Scanning Microscopy (LSM)) to study the morphologies, emission source types, size, and elemental composition of the particles, and to evaluate the presence of ';coatings or contaminants' adsorbed or carried on by the black sand particles. White sand contains natural coarse particles associated with wind-blown releases from crustal surfaces, weathering of an igneous/metamorphic rock source, and volcanic activities. Silicates (alumino-silicates) and quartz (clear, milky, rose) dominate white sand and rest appears to contain calcite, olivine, feldspar, and magnetite. Black sand particles exhibit very different morphologies and microstructures (surface roughness) compared with white sand and volcanic ash. Morphological analyses have shown that the black sand contain ultrafine particles. Black sand is strongly magnetic, which indicates the mineral magnetite (strongly magnetic) or elemental iron. Iron, C, O, Ti, Si, V, and S particles dominate the black sand. Natural and anthropogenic sources have been implicated for the observed particles. Analysis revealed that the surface of white sand particles is mainly covered with the fine particles. It is known that emissions from combustion contain carbon soot and other contaminants that are easily absorbed by soil particles during a long-range transport.

  16. Pleistocene sand ramp deposits in the Aegean (Cyclades, Greece)

    NASA Astrophysics Data System (ADS)

    Draganits, E.; Zuschin, M.; Gier, S.; Bickel, L.

    2010-05-01

    Yellowish calcarenite is found abundantly on Despotiko, a small, unpopulated island in the central Aegean. Up to several meters thick layers of this sandstone is found as discordant cover above greenschist to amphibolite grade metamorphic rocks of the Attic-Cycladic Crystalline of the Central Hellenides. In some cases reddish soil is found below the sandstone. The calcarenite preferably fills preexisting relief of the underlying crystalline, therefore the thickest occurrences are found in the intermittent creeks. The sandstone can be traced from below sea-level up to around 90 m altitudes with abundant occurrences, but is most common at the north and northwest coast of the island. Generally, the sandstone layers and the internal lamination are parallel or at shallow angles to the slopes of the underlying crystalline without forming any morphological terraces. In some cases continuous layers of the sandstone can be traced for more than 20 m altitude. Cross-bedding has been observed in very rare cases and dips steeply towards the SE. The calcarenite (locally called "lithos poros") is strongly dominated by marine bioclasts (Corallinaceae, foraminifera, gastropod and bivalve fragments, etc.) with only minor siliciclastic components hardly exceeding 20%. The grains well-rounded and well-sorted with rain sizes range between medium sand to granule sizes. Based on the sandstone distribution in a high range of altitudes, sedimentary structures (e.g. pin-stripe lamination, high-angle cross bedding, rhizoliths, occurrence of terrestrial gastropod shells and correlation with almost identical sandstones in the Mediterranean) we conclude an aeolian origin and probably Pleistocene age of this sandstone. Horizons containing dm-sized, angular metamorphic clasts within well-rounded and well-sorted aeolian layers point to interaction of wind-blown and talus processes. Therefore these sediments are interpreted as sand ramps that formed during increased aeolian activity during the

  17. Sand Furrows: A new surface feature on martian dunes

    NASA Astrophysics Data System (ADS)

    Bourke, Mary

    2013-04-01

    Planetary geomorphology is at the forefront of today's Geoscience endeavours. A characteristic of frontier science is the discovery of new landforms and processes. Sand furrows are a new geomorphic feature that has not been previously described. They are ubiquitous and occur on 95% of polar dune images. Furrows are shallow and narrow erosion forms which can extend up to 300 m along a dune surface. Patterns are reminiscent of fluid flow, perhaps even fluvial flow (e.g., sinuosity, braiding and anastomosing) and are often slope-normal. However, furrows also display attributes that defy gravity (e.g., upslope trending flow paths) and they are not associated with terminal deposits. This suggests that the formative fluid is likely to be a pressurised gas. Cryo-venting has been proposed to explain the formation of dark spots and fans in the seasonal ice cap. It has also been linked to the formation of araniform. Here it is proposed to be the process by which aeolian sediment is eroded to form sand furrows. During the Martian spring, basal sublimation of the seasonal CO2 ice cap occurs on dune surfaces. Weaknesses in the ice allow pressurised gas and some dune sediment to be transported through vents to the surface. Furrows are eroded along the gas flow paths as it moves towards the vent. Cryo-venting is therefore identified as a new style of sediment transport on aeolian dunes in our solar system, and one that is, so far, unique to Mars. An estimate of the sand volume eroded from a sample dune during one Mars' spring is geomorphologically significant and is equivalent to that of a small dome dune on Mars (500m^3). The deposits are diffuse and extend into the interdune as well as back onto the source dune. The geomorphic efficacy of cryo-venting as a mechanism of aeolian dune erosion is dependent on the magnitude and frequency of venting, the location of vents and the scale of the source dune. Small dunes may undergo accelerated erosion rates as the ability to intersect

  18. Armoring and vertical sorting in aeolian dune fields

    NASA Astrophysics Data System (ADS)

    Gao, Xin; Narteau, Clément; Rozier, Olivier

    2016-04-01

    Unlike ripples, there are only few numerical studies on grain-size segregation at the scale of dunes in aeolian environments. Here we use a cellular automaton model to analyze vertical sorting in granular mixtures under steady unidirectional flow conditions. We investigate the feedbacks between dune growth and the segregation mechanisms by varying the size of coarse grains and their proportion within the bed. We systematically observe the development of a horizontal layer of coarse grains at the top of which sorted bed forms may grow by amalgamation. The formation of such an armor layer controls the overall sediment transport and availability. The emergence of dunes and the transition from barchan to transverse dune fields depend only on the grain size distribution of the initial sediment layer. As confirmed by observation, this result indicates that armor layers should be present in most arid deserts, where they are likely to control dune morphodynamics.

  19. 2D DEM model of sand transport with wind interaction

    NASA Astrophysics Data System (ADS)

    Oger, L.; Valance, A.

    2013-06-01

    The advance of the dunes in the desert is a threat to the life of the local people. The dunes invade houses, agricultural land and perturb the circulation on the roads. It is therefore very important to understand the mechanism of sand transport in order to fight against desertification. Saltation in which sand grains are propelled by the wind along the surface in short hops, is the primary mode of blown sand movement [1]. The saltating grains are very energetic and when impact a sand surface, they rebound and consequently eject other particles from the sand bed. The ejected grains, called reptating grains, contribute to the augmentation of the sand flux. Some of them can be promoted to the saltation motion. We use a mechanical model based on the Discrete Element Method to study successive collisions of incident energetic beads with granular packing in the context of Aeolian saltation transport. We investigate the collision process for the case where the incident bead and those from the packing have identical mechanical properties. We analyze the features of the consecutive collision processes made by the transport of the saltating disks by a wind in which its profile is obtained from the counter-interaction between air flow and grain flows. We used a molecular dynamics method known as DEM (soft Discrete Element Method) with a initial static packing of 20000 2D particles. The dilation of the upper surface due to the consecutive collisions is responsible for maintaining the flow at a given energy input due to the wind.

  20. Late Amazonian aeolian features, gradation, wind regimes, and Sediment State in the Vicinity of the Mars Exploration Rover Opportunity, Meridiani Planum, Mars

    NASA Astrophysics Data System (ADS)

    Fenton, Lori K.; Michaels, Timothy I.; Chojnacki, Matthew

    2015-03-01

    The 2° × 2° region surrounding the landing site and traverse of Mars Exploration Rover (MER) Opportunity is richly blanketed with several generations and classes of aeolian features, including coarse-grained ripples, large dark dunes (LDDs), transverse aeolian ridges (TARs), erosional scars, depositional wind streaks of two types, and a new class of wind streak comprised entirely of coarse-grained ripples. The extensive observation campaigns from orbiting spacecraft in support of the MER and 2016 ExoMars missions, as well as in situ data from Opportunity, have provided unprecedented coverage of the region, permitting further interpretation of the local aeolian history than is typically possible on Mars. We present an analysis of bedform construction, sediment-transporting wind patterns, crater gradation and resulting erosion rate, sand provenance, and sediment state resulting from surficial mapping and geomorphic backstripping of aeolian features. Coarse-grained ripples on the intercrater plains formed from local sediments, with induration and low wind speeds preventing them from migrating more than roughly one bedform wavelength from their source region. Limited migration and a likely local, planar sand source of plains bedforms suggests their provenance is previously-eroded layers within the underlying Burns Formation. Although the bedform stabilization process is different from that of Earth, these ripples appear to be analogous to coarse-grained ripples that form and quickly stabilize on the Argentinean Puna. Some small craters (<100 m) exhibit inverted topography as high as ∼1 m, produced by an armoring effect of the indurated coarse-grained ripples. The erosion rate leading to this relief is ∼0.014 m/Myr over the past 71 ± 2 Ma, falling between values estimated for younger and older surfaces. Present-day winds are not represented uniformly in the region, with most active sandy wind streaks on the plains formed by a southeasterly wind and intracrater

  1. Industrial sand and gravel

    USGS Publications Warehouse

    Dolley, T.P.

    2006-01-01

    In 2005, domestic production of industrial sand and gravel was about 31 Mt, a 5% increase from 2004. This increase was bouyed by robust construction and petroleum sectors of the US economy. Based on estimated world production figures, the United States was the world's leading producer and consumer of industrial sand and gravel. In the short term, local shortages of industrial sand and gravel will continue to increase.

  2. The petrography of some Illinois pleistocene and recent sands

    USGS Publications Warehouse

    Hunter, R.E.

    1967-01-01

    Some Recent and Pleistocene sands of Illinois and the nearby Missouri River were separated into three groups by petrographic characteristics that reflect source material. The sands derived largely or entirely from the glacial material of Illinois and the upper Mississippi, Wabash, and Lake Michigan drainage basins contain types of feldspars and rock fragments that indicate derivation from the Precambrian metamorphic rocks of the Canadian Shield. The sands of the Ohio River at the southern boundary of Illinois contain relatively large amounts of polycrystalline quartz and nonfeldspathic rock fragments that may have been derived from Paleozoic sedimentary rocks largely of Appalachian derivation, from glacial drift of the eastern states, or from both sources. A significant portion of the Missouri River sands and the Mississippi River sands below the mouth of the Missouri River consists of feldspars and rock fragments derived from the Cretaceous and Tertiary igneous rocks of the western United States. The volcanic rock fragments are especially indicative of a western source. Petrographic characteristics of 23 samples of these sands were determined. The sources of the sands were interpreted principally from their rock fragments and light minerals, especially the feldspars, taking into account the variation in composition with changing grain size. Much of the plagioclase was untwinned, but certain varietal features proved useful in its identification. ?? 1967.

  3. The Quartz Analog Watch: A Wonder Machine.

    ERIC Educational Resources Information Center

    Crane, H. Richard, Ed.

    1993-01-01

    Summarizes how a quartz watch works. Discusses the quartz crystal, its form, and how its frequency is set to a standard; the integrated circuit chip that drives the crystal in vibration, scales its frequency down, and forms pulses that turn the motor; and the motor that drives the gear train that turns the hands. (ZWH)

  4. Precise Sealing of Fused-Quartz Ampoules

    NASA Technical Reports Server (NTRS)

    Debnan, W. J. J.; Clark, I. O.

    1982-01-01

    New technique rapidly evacuates and seals fused-quartz ampoule with precise clearance over contents without appreciably thinning ampoule walls. Quartz plug is lowered into working section of ampoule after ampoule has been evacuated. Plug is then fused to ampoule walls, forming vacuum seal. New technique maintains wall strength and pumping speed.

  5. Sealed-in-quartz resistance heater

    NASA Technical Reports Server (NTRS)

    Miller, C. G.; Stephens, J. B.

    1980-01-01

    Electric resistance quartz heater operates at 1,400 F without developing excessively hot spots that can fail prematurely. Since resistance element is sealed in quartz, heater can be used in hostile environments. Sealed construction also keeps heater from contaminating heated object.

  6. Fluid inclusion analyses of detrital quartz grains - new Provenance Tool

    SciTech Connect

    Bloch, J.D.

    1985-02-01

    Preliminary analyses by microthermometry of fluid inclusions in detrital quartz of the Upper Cambrian Lamotte Sandstone revealed the occurrence of 2 distinct groups of aqueous fluid inclusions. Specific salinity signatures and homogenization temperatures may be used to distinguish specific granite types of the source rock terrain. The inclusions chosen for analysis occur in isolated clusters or are randomly distributed within a grain, commonly in association with mineral inclusions of zircon, sphene, rutile, and/or tourmaline. Secondary inclusions are present in the Lamotte but are not included in this study. The first group of inclusions is characterized by low salinities (< 1.0-8.0 wt.% eq. NaCl), the second by high salinities (12.1-29.6 wt. % eq. NaCl). Final melting temperatures as low as -30.6/sup 0/C indicate the presence of divalent ions in these inclusions. Both groups yield homogenization temperatures of between 150/sup 0/C and 220/sup 0/C. The low-salinity inclusions occur predominantly in subrounded to well-rounded sand less than 1.0 mm in size that is derived from a distal source. The brine inclusions occur exclusively in subangular to angular gravel 2.0-3.0 mm in size, implying a more proximal source area. A comparison of these inclusions with inclusions found in the granites of the apparent source terrain indicates that a medium-silica amphiboleorthoclase granite (Slabtown type) or a low-silica amphibole-plagioclase granite (Sivermines type) or both are the primary source rocks for this quartz. These granite types have limited areal distribution in the present day St. Francois mountains and the identification of these granite types as the source rock for the locally derived quartz has broad implications for reconstructing Cambrian depositional environments and paleostructure of the ancient St. Francois mountains.

  7. Exploring how sand ramps respond to Quaternary environmental change in Southern Africa

    NASA Astrophysics Data System (ADS)

    Rowell, Alex; Thomas, David; Bailey, Richard

    2014-05-01

    The current climate of southern Africa is particularly complex and interesting due to the interaction of several climatic systems. However, reconstructions of how these systems behaved in the past, and how the environment responded, have been hampered by a general paucity of records and poor chronological control. Sand ramps may provide the potential to improve palaeoenvironmental reconstructions of southern Africa (and beyond). Formed against a topographic barrier, sand ramps include a combination of aeolian, fluvial and colluvial deposits in varying proportions. Therefore, they have the potential to record changes in moisture availability, circulation patterns and sediment supply which can be independently dated using luminescence dating. Nevertheless relatively little attention has been paid to these features and thus the environmental controls on their formation are not yet fully understood. In particular, there is debate as to whether they reflect deposition during a 'window of opportunity' in which high-magnitude, low-frequency events are recorded (Bateman et al. 2012) or whether they record more gradual, cyclic climate change (Bertram, 2003) or even if there is a uniform control on their formation. This research aims to investigate how sand ramps respond to environmental change and what they can tell us about the paleoenvironment of southern Africa. This poster displays preliminary results based on initial field investigation. This confirmed sand ramps to be ubiquitous in southern Africa and that they record a complex interaction of aeolian, fluvial and colluvial deposits which appears to differ between sand ramps. Preliminary luminescence dating results and sedimentology are displayed for two sand ramps, one from south west Namibia the other from the Karoo region of South Africa.

  8. Preface to the Eighth International Conference on Aeolian Research - ICAR 8

    NASA Astrophysics Data System (ADS)

    Dong, Zhibao; Huang, Ning

    2015-12-01

    The papers in this special issue of Aeolian Research arise from the Eighth International Conference on Aeolian Research (ICAR8), held on July 21-25, 2014 at Lanzhou University, China. The conference was sponsored by the International Society for Aeolian Research, convened by Zhibao Dong and Ning Huang, and supported by several institutions from China. The conference was well attended by 284 participants from 20 nations. 138 oral presentations, 142 posters and 296 abstracts were organized into six sessions. The 13 papers that appear in this special issue are drawn from the post-conference submissions, which were successfully reviewed by peers, revised and accepted. Those papers that have not completed review will become regular submissions to Aeolian Research and published (if accepted) when they pass review process.

  9. Thermal Conductivity of Standard Sands II. Saturated Conditions

    NASA Astrophysics Data System (ADS)

    Tarnawski, V. R.; Momose, T.; Leong, W. H.

    2011-05-01

    A non-stationary thermal probe technique was used to measure the thermal conductivity of three saturated standard sands (Ottawa sand C-109, Ottawa sand C-190, and Toyoura sand) in a range of soil porosities ( n) from 0.32 to 0.42, and temperatures ( T) from 25 °C to 70 °C. The sand thermal conductivities at full saturation ( λ sat) increased with decreasing n (increasing compaction, 1 - n). In addition, a declining λ sat( T) n=const trend was observed. The peak λ sat values and highest decreasing rate of λ sat with T were observed at the heaviest compaction and lowest tested T. This trend gradually diminished with increasing T and expanding volume of water (larger n) due to the markedly lower ability of water to conduct heat than quartz. A series-parallel model, containing three parallel paths of heat flow (through continuous solids, continuous fluid, and solids plus fluid in series), was successfully applied to predicted λ dry and λ sat data. The model by de Vries, with new fitted grain shape values, also closely followed measured λ sat data. The corresponding square root of the relative mean squared errors varied from 2.9 % to 3.4 % for C-109, from 1.9 % to 3.0 % for C-190, and from 2.3 % to 2.4 % for Toyoura sand. The use of a weighted geometric mean model also provided good λ sat estimates with errors ranging from 3.1 % to 3.5 % for C-109 and C-190 and 8.3 % for Toyoura sand. This paper also discusses a successful attempt to model λ sat as a product of thermal conductivity of the solid fraction (quartz plus other minerals) and a thermal conductance factor of water.

  10. Hydrological indications of aeolian salts in mid-latitude deserts of northwestern China

    NASA Astrophysics Data System (ADS)

    Zhu, Bing-Qi

    2016-06-01

    Large sandy deserts in middle latitude of northwestern China were studied on salt variations in modern and ancient aeolian sediments, aiming to explore their hydrological indications at the present and past. Globally, sulphate is rich in arid to semi-arid deserts, including the aeolian loess sediments in China and soils in low-latitude deserts, but is less common in the aeolian sediments from the mid-latitude deserts in this study. The compositional differences between aeolian salts and local natural waters is evident, indicating the chemistry of aeolian salts and the associated parent brines may be significantly different than that predicted for hydrologically closed systems. The formation of aeolian salts in the studied deserts is strongly controlled by earth surface processes in a large scale but not in a local scale. Vertical changes in facies and salinities are abrupt in the studied palaeo-aeolian sediment samples, which were interbedded by lacustrine/fluvial sediments with OSL and 14C ages ranging between 40 and 2 ka BP, reflecting rapid high-amplitude changes in hydrological settings during late Pleistocene to later Holocene in these ancient playa systems. A great difference in salt composition between aeolian and lacustrine sediments suggests that the inorganic salt is a latent geoproxy in revealing local hydrological variations and climate change in the desert areas. But the environmental indications could be amphibolous for the sedimentary sequences with dual/multiple depositional end-members; under this situation an increase in sequence salinity does not always represent an enhanced environmental aridity. Ancient playas are arid or humid at the same time based on several sporadic records is not a valid approach to correlation of salt deposits in adjacent saline playa basin in the studied areas. Effects of earth surface processes including erosion, deposition and other processes on sediment properties will bias the hydrological implications of sediment

  11. Steam sand dryer in northeast part of sand tower. View ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Steam sand dryer in northeast part of sand tower. View to northeast - Duluth & Iron Range Rail Road Company Shops, Sand Tower, Southwest of downtown Two Harbors, northwest of Agate Bay, Two Harbors, Lake County, MN

  12. An Affair with Sand.

    ERIC Educational Resources Information Center

    Stroud, Sharon

    1980-01-01

    Described is a resource idea developed for the teaching of oceanography to junior high students. Sand is studied to help make the study of beaches more relevant to students who may have never seen an ocean. Sand samples are brought into the classroom from various coastal cities, then analyzed and compared. (Author/DS)

  13. China Dust and Sand

    Atmospheric Science Data Center

    2013-04-16

    ... article title:  Dust and Sand Sweep Over Northeast China     View Larger Image ... these views of the dust and sand that swept over northeast China on March 10, 2004. Information on the height of the dust and an ...

  14. Changes in soil aggregation and dust emission potential in response to aeolian processes

    NASA Astrophysics Data System (ADS)

    swet, Nitzan; Katra, Itzhak

    2016-04-01

    Aeolian (wind) dust emission has high environmental and socioeconomic significances due to loss of natural soil and air pollution. Dust emission involves complex interactions between the airflow and the soil surface. The soil aggregates were dust particles are held determine the topsoil erodibility in aeolian erosion. Although the key role of soil aggregation in dust emission mechanisms, information on changes in soil aggregate size distribution (ASD) due to aeolian erosion is lucking. This study is focused on quantitative ASD analyses before and after aeolian processes (saltation). Aeolian experiments and soil analyses were conducted on semiarid loess topsoils with different initial conditions of aggregation. The results show that saltation rates and PM emissions depend on the initial ASD and shear velocity. In all initial soil conditions, the content of aggregates at saltator-sized 63-250 μm was increased by 10-34 % following erosion of macro-aggregates > 500 μm. It revealed that the aggregate-saltator production increases with the shear velocity (up to 0.61 m s-1) for soils with available macro-aggregates. The findings highlight the dynamics in soil aggregation in response to aeolian transport and therefore its significance for determining the mechanisms of dust emission from soil aggregates.

  15. Characteristics Of Basaltic Sand: Size, Shape, And Composition As A Function Of Transport Process And Distance

    NASA Astrophysics Data System (ADS)

    Craddock, R. A.; Needell, Z. A.; Rose, T. R.

    2012-04-01

    Overview: The chemical and physical characteristics of sedimentary material can provide valuable clues about transport processes, distance traveled, and provenance, all of which are aspects of Martian geography that we would like to better understand. For a typical sedimentary deposit on Earth, for example, it has been shown that the ratio of feldspar to quartz can be used to assess the maturity (or transport distance) of a terrestrial deposit, because feldspar is more vulnerable to weathering than quartz. Further, chemical analysis can also be used to determine potential sediment sources, and grain-size sorting can be used to distinguish aeolian sediments (typically well-sorted) from fluvial sediments (poorly sorted in high energy environments). It is also common to use the shapes of individual quartz particles to determine transport process and distance, all of which can help us better understand the history of a sample of sedimentary material and the geological processes that created and emplaced it. These traditional sedimentological concepts are now being applied to our interpretation of Martian surface materials. Sullivan et al. [2008], for example, used grain-size and shape to assess eolian processes and to qualify transport distances of deposits found at the Spirit landing site in Gusev Crater. Stockstill-Cahill et al. [62008 used variations in mineral abundances observed in multispectral data to determine the provenance of dark dunes found in Amazonis Planitia craters. While applying our understanding of terrestrial sedimentary materials to Martian surface materials is intuitively sound and logical, the problem is that most of our current understanding is based on sediments derived from felsic materials (e.g., granite) primarily because that is the composition of most of the landmass on the Earth. However, the Martian surface is composed primarily of mafic material, or basalt, which generates much different sedimentary particles as it weathers. Instead of

  16. Behavior and identification of ephemeral sand dunes at the backshore zone using video images.

    PubMed

    Guimarães, Pedro V; Pereira, Pedro S; Calliari, Lauro J; Ellis, Jean T

    2016-09-01

    The backshore zone is transitional environment strongly affected by ocean, air and sand movements. On dissipative beaches, the formation of ephemeral dunes over the backshore zone plays significant contribution in the beach morphodynamics and sediment budget. The aim of this work is to describe a novel method to identify ephemeral dunes in the backshore region and to discuss their morphodynamic behavior. The beach morphology is identified using Argus video imagery, which reveals the behavior of morphologies at Cassino Beach, Rio Grande do Sul, Brasil. Daily images from 2005 to 2007, topographic profiles, meteorological data, and sedimentological parameters were used to determine the frequency and pervasiveness of these features on the backshore. Results indicated that coastline orientation relative to the dominant NE and E winds and the dissipative morphological beach state favored aeolian sand transport towards the backshore. Prevailing NE winds increase sand transportation to the backshore, resulting in the formation of barchans, transverse, and barchanoid-linguiod dunes. Precipitation inhibits aeolian transport and ephemeral dune formation and maintains the existing morphologies during strong SE and SW winds, provided the storm surge is not too high.

  17. Behavior and identification of ephemeral sand dunes at the backshore zone using video images.

    PubMed

    Guimarães, Pedro V; Pereira, Pedro S; Calliari, Lauro J; Ellis, Jean T

    2016-09-01

    The backshore zone is transitional environment strongly affected by ocean, air and sand movements. On dissipative beaches, the formation of ephemeral dunes over the backshore zone plays significant contribution in the beach morphodynamics and sediment budget. The aim of this work is to describe a novel method to identify ephemeral dunes in the backshore region and to discuss their morphodynamic behavior. The beach morphology is identified using Argus video imagery, which reveals the behavior of morphologies at Cassino Beach, Rio Grande do Sul, Brasil. Daily images from 2005 to 2007, topographic profiles, meteorological data, and sedimentological parameters were used to determine the frequency and pervasiveness of these features on the backshore. Results indicated that coastline orientation relative to the dominant NE and E winds and the dissipative morphological beach state favored aeolian sand transport towards the backshore. Prevailing NE winds increase sand transportation to the backshore, resulting in the formation of barchans, transverse, and barchanoid-linguiod dunes. Precipitation inhibits aeolian transport and ephemeral dune formation and maintains the existing morphologies during strong SE and SW winds, provided the storm surge is not too high. PMID:27598845

  18. The Hatu gold anomaly, Xinjiang-Uygur Autonomous Region, China - testing the hypothesis of aeolian transport of gold

    USGS Publications Warehouse

    Smith, D.B.; Theobald, P.K.; Shiquan, S.; Tianxiang, R.; Zhihui, H.

    1993-01-01

    In 1987, a cooperative project between the U.S. Geological Survey and the Institute of Geophysical and Geochemical Exploration was initiated to evaluate the origin of the Hatu gold anomaly. The anomaly is located in the Hatu mining district in the northwest corner of Xinjiang-Uygur Autonomous Region in northwest China. The climate is semiarid to arid and wind erosion predominates. A regional soil survey of the Hatu district, based on samples collected on a 200 by 500 m grid and composited prior to chemical analysis to a density of one sample per square km, delineated a series of south-southeast-trending Au anomalies. Anomalous Au values range from 5 ppb to more than 700 ppb. The Hatu anomaly, the most prominent of these anomalies, is more than 30 km long and about 5 km wide. The mining town of Hatu and the economic gold deposits of Qiqu 1 and Qiqu 2 are at the northern end of this anomaly. The axis of the Hatu anomaly cuts across mapped structure and stratigraphy in the district, but is parallel to the prevailing wind direction. This observation led to the hypothesis that the Hatu anomaly is the result of acolian dispersion of gold from the vicinity of Qiqu 1 and Qiqu 2. The alternative interpretation, that the anomalies reflected additional primary gold occurrences, was not consistent with existing information on the known occurrences and the geology. The investigation led to the identification of three types of gold in heavy-mineral concentrates derived from stream sediments that were collected along the axis of the Hatu anomaly: (1) free gold, (2) gold in pyrite, and (3) gold included in quartz. Gold in quartz was only observed within 2 km of Qiqu 1. The size of the gold particles and the number of gold particles in these samples did not decrease with distance from Qiqu 1 as would be expected from aeolian or fluvial dispersion from a point source. Instead, both the size and amount of gold increased significantly at a distance of 3.5 km from Qiqu 1 and this

  19. Mechanical twinning in small quartz crystals

    NASA Astrophysics Data System (ADS)

    Laughner, J. W.; Newnham, R. E.; Cross, L. E.

    1982-02-01

    Quartz is known to be ferrobielastic; that is, quartz crystals have domain states (Dauphiné twins) which differ in their elastic compliance values and which can be switched by an appropriately oriented stress. Polycrystalline quartz has also been reported (Tullis 1970) to show preferential orientation of these domains following application of large uniaxial stresses. These experiments were designed to study twinning of synthetic quartz “grains” (minimum size 0.07×0.07×0.02 cm) in specially-constructed composites and of grains in three natural quartz aggregates — a quartzite, a novaculite, and a jasper. Backreflection X-ray techniques were used to verify twinning in the composite grains, while special electroding and electrical detection allowed the twinning processes to be examined in “real time.” Small synthetic quartz crystals were found to behave identically to the massive samples previously studied. Electrical pulses due to the reversal of piezoelectric coefficient d 11 in twinned quartz were detected from quartzite and from the man-made composites. Novaculite also gave electrical pulses which were probably from twinning (evidenced by the correlation of expected and observed pulse sizes and shapes), while no pulses from the jaspers indicative of twinning were detected. Grain size distribution differences are considered the main structural reason for the different behaviors.

  20. Aeolian dust experiment on climate impact: An overview of Japan China joint project ADEC

    NASA Astrophysics Data System (ADS)

    Mikami, M.; Shi, G. Y.; Uno, I.; Yabuki, S.; Iwasaka, Y.; Yasui, M.; Aoki, T.; Tanaka, T. Y.; Kurosaki, Y.; Masuda, K.; Uchiyama, A.; Matsuki, A.; Sakai, T.; Takemi, T.; Nakawo, M.; Seino, N.; Ishizuka, M.; Satake, S.; Fujita, K.; Hara, Y.; Kai, K.; Kanayama, S.; Hayashi, M.; Du, M.; Kanai, Y.; Yamada, Y.; Zhang, X. Y.; Shen, Z.; Zhou, H.; Abe, O.; Nagai, T.; Tsutsumi, Y.; Chiba, M.; Suzuki, J.

    2006-07-01

    The Aeolian Dust Experiment on Climate Impact (ADEC) was initiated in April 2000 as a joint five-year Japan-China project. The goal was to understand the impact of aeolian dust on climate via radiative forcing (RF). Field experiments and numerical simulations were conducted from the source regions in northwestern China to the downwind region in Japan in order to understand wind erosion processes temporal and spatial distribution of dust during their long-range transportation chemical, physical, and optical properties of dust and the direct effect of radiative forcing due to dust. For this, three intensive observation periods (IOP) were conducted from April 2002 to April 2004. The in situ and network observation results are summarized as follows: (1) In situ observations of the wind erosion process revealed that the vertical profile of moving sand has a clear size dependency with height and saltation flux and that threshold wind velocity is dependent on soil moisture. Results also demonstrated that saltation flux is strongly dependent on the parent soil size distribution of the desert surface. (2) Both lidar observations and model simulations revealed a multiple dust layer in East Asia. A numerical simulation of a chemical transport model, CFORS, illustrated the elevated dust layer from the Taklimakan Desert and the lower dust layer from the Gobi Desert. The global-scale dust model, MASINGAR, also simulated the dust layer in the middle to upper free troposphere in East Asia, which originated from North Africa and the Middle East during a dust storm in March 2003. Raman lidar observations at Tsukuba, Japan, found the ice cloud associated with the dust layer at an altitude of 6 to 9 km. Analysis from lidar and the radio-sonde observation suggested that the Asian dust acted as ice nuclei at the ice-saturated region. These results suggest the importance of dust's climate impact via the indirect effect of radiative forcing due to the activation of dust into ice nuclei

  1. Aeolian dust deposition during the Eocene-Oligocene in central to eastern Asia

    NASA Astrophysics Data System (ADS)

    Vandenberghe, Jef; Abels, Hemmo; van Cappelle, Marijn

    2015-04-01

    Aeolian dust deposition during the Eocene-Oligocene in central to eastern Asia Jef Vandenberghe1, Hemmo Abels2 and Marijn van Cappelle3 1Dept. of Earth Sciences, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands 2Dept. of Earth Sciences, Universiteit Utrecht, 3584 CD, Utrecht, The Netherlands 3Dept. of Earth Science and Engineering, Imperial College London, London, SW7 2AZ, U.K. The deposition of loess is generally attributed to a monsoonal climate system. Recently it has been shown that such a system existed already at the end of the Eocene on the northeastern Tibetan Plateau (Licht et al., 2014). One of the main arguments to prove the supply of loess by monsoonal winds is the use of grain size properties. The lower part of the Shuiwan section (Eocene) consists of metre-scale alternations of mudstone and gypsum beds; the upper part (Oligocene) is mainly mudstone (Dupont-Nivet et al., 2007; Abels et al., 2010). Sediments are categorized in six grain-size types based on the grain-size distribution and the mode of the silt grain sizes as measured using laser diffraction. Sediments of type 1, the only type with a unimodal grain-size distribution, consist exclusively of clay-sized particles (modal value of 2-2.5 µm). Types 2-6 have a multimodal composition. They contain an additional silt-sized fraction with a modal size of c. 16 µm in type 2; c. 26 µm in type 3 and c. 31 µm in type 4. Type 5 is a mixture of previous types, and type 6 contains in addition a slight amount of sand. Similar bimodal grain-size distributions occur in the Neogene Red Clay and in the Pleistocene loess of the Chinese Loess Plateau. All three silt fractions (with modal sizes 16, 26 and 31 µm) represent typical loess sediments, transported by dust storms in suspension at different altitudes. Their exact grain size depends on wind velocity, source material and transport distance. The 'clay component' may have settled from high suspension clouds in the air down to dry ground or to

  2. Granulometric profiling of aeolian dust deposits by automated image analysis

    NASA Astrophysics Data System (ADS)

    Varga, György; Újvári, Gábor; Kovács, János; Jakab, Gergely; Kiss, Klaudia; Szalai, Zoltán

    2016-04-01

    Determination of granulometric parameters is of growing interest in the Earth sciences. Particle size data of sedimentary deposits provide insights into the physicochemical environment of transport, accumulation and post-depositional alterations of sedimentary particles, and are important proxies applied in paleoclimatic reconstructions. It is especially true for aeolian dust deposits with a fairly narrow grain size range as a consequence of the extremely selective nature of wind sediment transport. Therefore, various aspects of aeolian sedimentation (wind strength, distance to source(s), possible secondary source regions and modes of sedimentation and transport) can be reconstructed only from precise grain size data. As terrestrial wind-blown deposits are among the most important archives of past environmental changes, proper explanation of the proxy data is a mandatory issue. Automated imaging provides a unique technique to gather direct information on granulometric characteristics of sedimentary particles. Granulometric data obtained from automatic image analysis of Malvern Morphologi G3-ID is a rarely applied new technique for particle size and shape analyses in sedimentary geology. Size and shape data of several hundred thousand (or even million) individual particles were automatically recorded in this study from 15 loess and paleosoil samples from the captured high-resolution images. Several size (e.g. circle-equivalent diameter, major axis, length, width, area) and shape parameters (e.g. elongation, circularity, convexity) were calculated by the instrument software. At the same time, the mean light intensity after transmission through each particle is automatically collected by the system as a proxy of optical properties of the material. Intensity values are dependent on chemical composition and/or thickness of the particles. The results of the automated imaging were compared to particle size data determined by three different laser diffraction instruments

  3. Quantification of Iron Oxides and Hydroxides in Desert Aeolian Particles

    NASA Astrophysics Data System (ADS)

    Lafon, S.; Rajot, J.; Alfaro, S.; Gaudichet, A.

    2002-12-01

    Long range transport of desert dust over oceans constitute a source of iron for the surface water. Assessing the iron cycle and its biogeochemical implications in oceanic areas requires determination and quantification of the iron status in aeolian particles. Indeed, in such aerosols, the iron is either trapped in the silicate structure or present under the form of oxides and hydroxides (free iron). We propose a method to apportion iron between free and entrapped forms in mineral aerosols. It consists in the adaptation of a well known method used for soil characterization to the treatment of aerosol samples, which represent less than 1 mg of material collected by air filtration on polycarbonate filters. The iron oxides and hydroxides are extracted selectively using the combined action of reductive and complexant agents in a buffered solution. The iron content is measured before and after this chemical extraction using X ray fluorescence spectrometry. We attempt to give some values for three main desert source areas using aerosol samples collected near Niamey (Niger) either during Harmattan events or during local erosion events, and samples collected downwind of the Gobi desert in China. Results emphasize firstly that iron trapped in the structure of silicate minerals represents an important part of total iron content. This suggests that, regarding dissolution processes in sea water, total elemental iron content of aeolian dust can not be used directly to calculate the flux of iron available. Secondly, our results show that the free iron content vary according to the origin of dusts. Niger samples have contents in free iron of 4.4 % (SD = 0.8) for local erosion and 2.8 % (SD = 1.0) for Harmattan. Chinese samples contain 3.7 % (SD = 0.5) of free iron. These differences could be linked to the parent soil mineralogical composition that varies with geographical location, but for some of our samples it also could be linked to a size fractionation process occurring first

  4. A new turbulence-based model for sand transport

    NASA Astrophysics Data System (ADS)

    Mayaud, Jerome; Wiggs, Giles; Bailey, Richard

    2016-04-01

    Knowledge of the changing rate of sediment flux in space and time is essential for quantifying surface erosion and deposition in desert landscapes. While many aeolian studies have relied on time-averaged parameters such as wind velocity (U) and wind shear velocity (u*) to determine sediment flux, there is increasing evidence that high-frequency turbulence is an important driving force behind the entrainment and transport of sand. However, turbulence has yet to be incorporated into a functional sand transport model that can be used for predictive purposes. In this study we present a new transport model (the 'turbulence model') that accounts for high-frequency variations in the horizontal (u) and vertical (w) components of wind flow. The turbulence model is fitted to wind velocity and sediment transport data from a field experiment undertaken in Namibia's Skeleton Coast National Park, and its performance at three temporal resolutions (10 Hz, 1 Hz, 1 min) is compared to two existing models that rely on time-averaged wind velocity data (Radok, 1977; Dong et al., 2003). The validity of the three models is analysed under a variety of saltation conditions, using a 2-hour (1 Hz measurement resolution) dataset from the Skeleton Coast and a 5-hour (1 min measurement resolution) dataset from the southwestern Kalahari Desert. The turbulence model is shown to outperform the Radok and Dong models when predicting total saltation count over the three experimental periods. For all temporal resolutions presented in this study (10 Hz-10 min), the turbulence model predicted total saltation count to within at least 0.34%, whereas the Radok and Dong models over- or underestimated total count by up to 5.50% and 20.53% respectively. The strong performance of the turbulence model can be attributed to a lag in mass flux response built into its formulation, which can be adapted depending on the temporal resolution of investigation. This accounts for the inherent lag within the physical

  5. Basaltic island sand provenance

    SciTech Connect

    Marsaglia, K.M. . Dept. of Geological Sciences)

    1992-01-01

    The Hawaiian Islands are an ideal location to study basaltic sand provenance in that they are a series of progressively older basaltic shield volcanoes with arid to humid microclimates. Sixty-two sand samples were collected from beaches on the islands of Hawaii, Maui, Oahu and Kauai and petrographically analyzed. The major sand components are calcareous bioclasts, volcanic lithic fragments, and monomineralic grains of dense minerals and plagioclase. Proportions of these components vary from island to island, with bioclastic end members being more prevalent on older islands exhibiting well-developed fringing reef systems and volcanic end members more prevalent on younger, volcanically active islands. Climatic variations across the island of Hawaii are reflected in the percentage of weathered detritus, which is greater on the wetter, northern side of the island. The groundmass of glassy, basaltic lithics is predominantly black tachylite, with lesser brown sideromelane; microlitic and lathwork textures are more common than holohyaline vitric textures. Other common basaltic volcanic lithic fragments are holocrystalline aggregates of silt-sized pyroxene or olivine, opaque minerals and plagioclase. Sands derived from alkalic lavas are texturally and compositionally indistinguishable from sands derived from tholeiitic lavas. Although Hawaiian basaltic sands overlap in composition with magmatic arc-derived sands in terms of their relative QFL, QmPK and LmLvLs percentages, they are dissimilar in that they lack felsic components and are more enriched in lathwork volcanic lithic fragments, holocrystalline volcanic lithic fragments, and dense minerals.

  6. One-dimensional compression of sands at high pressures

    SciTech Connect

    Yamamuro, J.A.; Bopp, P.A.; Lade, P.V.

    1996-02-01

    A one-dimensional testing apparatus was developed to test soils to axial stresses up to 850 MPa. The apparatus was instrumented with strain gauges such that lateral soil stresses, and therefore K{sub 0}, could be inferred from measured circumferential strains. Three different initial densities of quartz, Cambria, and gypsum sands were tested and it was found that the effect of initial density was eliminated at high stress magnitudes. This stress magnitude was higher for mineralogically harder grains than for softer grains. The inferred values of K{sub 0} for the mineralogically harder Cambria sand was found to be constant at high pressures, but slightly below that indicates by Jaky`s equation. However, the softer gypsum sand indicated increasing values of K{sub 0} as the stress magnitude increased. This apparently was caused by inelastic, viscous flow during shearing.

  7. Aeolian sediment reconstructions from the Scottish Outer Hebrides: Late Holocene storminess and the role of the North Atlantic Oscillation

    NASA Astrophysics Data System (ADS)

    Orme, Lisa C.; Reinhardt, Liam; Jones, Richard T.; Charman, Dan J.; Barkwith, Andrew; Ellis, Michael A.

    2016-01-01

    Northern Europe can be strongly influenced by winter storms driven by the North Atlantic Oscillation (NAO), with a positive NAO index associated with greater storminess in northern Europe. However, palaeoclimate reconstructions have suggested that the NAO-storminess relationship observed during the instrumental period is not consistent with the relationship over the last millennium, especially during the Little Ice Age (LIA), when it has been suggested that enhanced storminess occurred during a phase of persistent negative NAO. To assess this relationship over a longer time period, a storminess reconstruction from an NAO-sensitive area (the Outer Hebrides) is compared with Late Holocene NAO reconstructions. The patterns of storminess are inferred from aeolian sand deposits within two ombrotrophic peat bogs, with multiple cores and two locations used to distinguish the storminess signal from intra-site variability and local factors. The results suggest storminess increased after 1000 cal yrs BP, with higher storminess during the Medieval Climate Anomaly (MCA) than the LIA, supporting the hypothesis that the NAO-storminess relationship was consistent with the instrumental period. However the shift from a predominantly negative to positive NAO at c.2000 cal yrs BP preceded the increased storminess by 1000 years. We suggest that the long-term trends in storminess were caused by insolation changes, while oceanic forcing may have influenced millennial variability.

  8. Relations between rainfall–runoff-induced erosion and aeolian deposition at archaeological sites in a semi-arid dam-controlled river corridor

    USGS Publications Warehouse

    Collins, Brian; Bedford, David; Corbett, Skye; Fairley, Helen; Cronkite-Ratcliff, Collin

    2016-01-01

    Process dynamics in fluvial-based dryland environments are highly complex with fluvial, aeolian, and alluvial processes all contributing to landscape change. When anthropogenic activities such as dam-building affect fluvial processes, the complexity in local response can be further increased by flood- and sediment-limiting flows. Understanding these complexities is key to predicting landscape behavior in drylands and has important scientific and management implications, including for studies related to paleoclimatology, landscape ecology evolution, and archaeological site context and preservation. Here we use multi-temporal LiDAR surveys, local weather data, and geomorphological observations to identify trends in site change throughout the 446-km-long semi-arid Colorado River corridor in Grand Canyon, Arizona, USA, where archaeological site degradation related to the effects of upstream dam operation is a concern. Using several site case studies, we show the range of landscape responses that might be expected from concomitant occurrence of dam-controlled fluvial sand bar deposition, aeolian sand transport, and rainfall-induced erosion. Empirical rainfall-erosion threshold analyses coupled with a numerical rainfall–runoff–soil erosion model indicate that infiltration-excess overland flow and gullying govern large-scale (centimeter- to decimeter-scale) landscape changes, but that aeolian deposition can in some cases mitigate gully erosion. Whereas threshold analyses identify the normalized rainfall intensity (defined as the ratio of rainfall intensity to hydraulic conductivity) as the primary factor governing hydrologic-driven erosion, assessment of false positives and false negatives in the dataset highlight topographic slope as the next most important parameter governing site response. Analysis of 4+ years of high resolution (four-minute) weather data and 75+ years of low resolution (daily) climate records indicates that dryland erosion is dependent on short

  9. Gravel and sand resources of the New England-New York region

    USGS Publications Warehouse

    Currier, Louis W.

    1955-01-01

    Deposits of sand and gravel are widespread in the New England-New York regions and constitute one of its principal mineral resources. Most of the pits are operated intermittently to supply local needs. Because of the great number and variety of known deposits, and because they have been worked at countless points it is impracticable to describe in detail either the deposits or the individual pits. On the other hand, a broad description of the geologic modes of occurrence with relation to the regional geology will serve adequately to indicate the importance of the resource in the regional economy and development. Except for some special sands, such as "glass sand", certain molding and foundry sands, et. al., for which restrictive textural, compositional and physical properties are required, sand and gravel are used chiefly for local construction and are not commonly transported for long distances. Sand and gravel deposits of the region fall into four principal genetic categories - e.g., glacial, alluvial, marine, and aeolian. Of these, deposits of glacial origin are by far the most widespread and important.

  10. Late Quaternary history of the coastal Wahiba Sands, Sultanate of Oman

    NASA Astrophysics Data System (ADS)

    Preusser, Frank; Radies, Dirk; Driehorst, Frauke; Matter, Albert

    2005-05-01

    Continental sediments and geomorphological features of the coastal Wahiba Sands, Sultanate of Oman, reflect environmental variability in southeastern Arabia during the late Quaternary. Weakly cemented dune sands, interdune deposits and coastal sediments were dated by luminescence methods to establish an absolute chronology of changes in sedimentary dynamics. The dating results confirm previous assumptions that during times of low global sea level sand was transported by southerly winds from the exposed shelf onto the Arabian Peninsula. Two prominent phases of sand accumulation in the coastal area took place just before and after the last glacial maximum (LGM). A final significant period of dune consolidation is recognised during the early Holocene. However, no major consolidation of dunes appears to have occurred during the LGM and the Younger Dryas. In the northern part of the Wahiba Sands, these two periods are characterised by substantial sand deposition. This discrepancy is explained by the lack of conservation potential for dunes in the coastal area, probably caused by a low groundwater table due to low sea level and decreased precipitation. While the times of aeolian activity reflect arid to hyper-arid conditions, lacustrine and pedogenically altered interdune deposits indicate wetter conditions than today caused by increased monsoonal circulation during the Holocene climatic optimum. Copyright

  11. Industrial sand and gravel

    USGS Publications Warehouse

    Dolley, T.P.

    2010-01-01

    Domestic production of industrial sand and gravel in 2009 was about 27 Mt (30 million st), declining by 10 percent compared with 2008. Certain end uses of industrial sand and gravel, such as foundry and glassmaking sand, may have declined by a factor greater than 10 percent in 2009. U.S. apparent consumption was 24.7 Mt (27.2 million st) in 2009, down by 10 percent from the previous year, and imports declined to 83 kt (91,000 st).

  12. Quartz-enhanced photoacoustic spectroscopy: a review.

    PubMed

    Patimisco, Pietro; Scamarcio, Gaetano; Tittel, Frank K; Spagnolo, Vincenzo

    2014-03-28

    A detailed review on the development of quartz-enhanced photoacoustic sensors (QEPAS) for the sensitive and selective quantification of molecular trace gas species with resolved spectroscopic features is reported. The basis of the QEPAS technique, the technology available to support this field in terms of key components, such as light sources and quartz-tuning forks and the recent developments in detection methods and performance limitations will be discussed. Furthermore, different experimental QEPAS methods such as: on-beam and off-beam QEPAS, quartz-enhanced evanescent wave photoacoustic detection, modulation-cancellation approach and mid-IR single mode fiber-coupled sensor systems will be reviewed and analysed. A QEPAS sensor operating in the THz range, employing a custom-made quartz-tuning fork and a THz quantum cascade laser will be also described. Finally, we evaluated data reported during the past decade and draw relevant and useful conclusions from this analysis.

  13. Quartz Mountain/Oklahoma Summer Arts Institute.

    ERIC Educational Resources Information Center

    Frates, Mary Y.; Madeja, Stanley S.

    1982-01-01

    Describes the Quartz Mountain Oklahoma Summer Arts Institute program. It is designed to nurture artistic talent and to provide intensive arts experiences in music, dance, theater, and the visual arts for talented students aged 14-18. (AM)

  14. Quartz-Enhanced Photoacoustic Spectroscopy: A Review

    PubMed Central

    Patimisco, Pietro; Scamarcio, Gaetano; Tittel, Frank K.; Spagnolo, Vincenzo

    2014-01-01

    A detailed review on the development of quartz-enhanced photoacoustic sensors (QEPAS) for the sensitive and selective quantification of molecular trace gas species with resolved spectroscopic features is reported. The basis of the QEPAS technique, the technology available to support this field in terms of key components, such as light sources and quartz-tuning forks and the recent developments in detection methods and performance limitations will be discussed. Furthermore, different experimental QEPAS methods such as: on-beam and off-beam QEPAS, quartz-enhanced evanescent wave photoacoustic detection, modulation-cancellation approach and mid-IR single mode fiber-coupled sensor systems will be reviewed and analysed. A QEPAS sensor operating in the THz range, employing a custom-made quartz-tuning fork and a THz quantum cascade laser will be also described. Finally, we evaluated data reported during the past decade and draw relevant and useful conclusions from this analysis. PMID:24686729

  15. Quartz crystal microbalance use in biological studies

    NASA Technical Reports Server (NTRS)

    Green, R. H.; Godfrey, J. F.; Laue, E. G.; Laue, T. M.; Paik, W. W.; Wardle, M. D.

    1972-01-01

    Design, development, and applications of quartz crystal microbalance are discussed. Two types of crystals are used. One serves as reference and other senses changes in mass. Specific application to study of bacterial spores is described.

  16. Wind tunnel and field calibration of six aeolian dust samplers

    NASA Astrophysics Data System (ADS)

    Goossens, Dirk; Offer, Zvi Y.

    The efficiency of six aeolian dust samplers was tested via wind tunnel experiments and field measurements. In the wind tunnel, four samplers designed to measure the horizontal dust flux and one sampler designed to measure the vertical dust flux (in the downward direction, i.e., deposition) were calibrated against an isokinetic reference sampler. The horizontal dust flux samplers were: the big spring number eight sampler (BSNE), the modified Wilson and Cooke sampler (MWAC), the suspended sediment trap (SUSTRA), and the wedge dust flux gauge (WDFG). Vertical deposition flux was measured using a marble dust collector (MDCO). A modified Sartorius SM 16711 dust sampler with adjustable flow rate (SARTORIUS) was used as isokinetic reference sampler. In the field experiments, the WDFG was replaced by a Sierra ultra high volume dust sampler (SIERRA). Wind tunnel calibrations were carried out at five wind velocities ranging from 1 to 5 m s -1. Field calibrations were conducted during seven periods of two weeks each. The most efficient samplers are the MWAC and the SIERRA, followed by the BSNE and the SUSTRA. The WDFG is more effective than the BSNE at velocities below 3 m s -1, but its efficiency drops quickly at higher wind speeds. The most recommendable sampler for field measurements is the BSNE, because its efficiency varies only very slightly with wind speed. In the absence of horizontal flux samplers, the MDCO collector can be used as an alternative to assess horizontal dust flux and airborne dust concentration provided the appropriate calibrations are made.

  17. The birth and death of transverse aeolian ridges on Mars

    USGS Publications Warehouse

    Geissler, Paul E.

    2014-01-01

    Transverse aeolian ridges (TARs) are small bright windblown deposits found throughout the Martian tropics that stand a few meters tall and are spaced a few tens of meters apart. The origin of these features remains mysterious more than 20 years after their discovery on Mars. This paper presents a new hypothesis, that some of the TARs could be indurated dust deposits emplaced millions of years ago during periods of higher axial obliquity. It suggests that these TARs are primary depositional bed forms that accumulated in place from dust carried by the winds in suspension, perhaps in a manner comparable to antidunes on Earth, and were subsequently indurated and eroded to their current states by eons of sandblasting. It points out examples of modern dust drifts and dune-like features that appear to have been recently formed by dust accumulating directly onto the surface from atmospheric suspension. It shows how these pristine dust deposits could evolve to explain the range of morphologies of the TARs. Finally, it explains how the known properties of many TARs are consistent with this hypothesis, including their composition, thermal behavior, and distribution.

  18. Aeolian Processes at the Mars Exploration Rover Opportunity Landing Site

    NASA Technical Reports Server (NTRS)

    Sullivan, R.; Bell, J. F., III; Calvin, W.; Fike, D.; Golombek, M.; Greeley, R.; Grotzinger, J.; Herkenhoff, K.; Jerolmack, D.; Malin, M.

    2005-01-01

    The traverse of the Mars Exploration Rover Opportunity across its Meridiani Planum landing site has shown that wind has affected regolith by creating drifts, dunes, and ubiquitous ripples, by sorting grains during aeolian transport, by forming bright wind streaks downwind from craters seen from orbit, and by eroding rock with abrading, wind-blown material. Pre-landing orbiter observations showed bright and dark streaks tapering away from craters on the Meridiani plains. Further analysis of orbiter images shows that major dust storms can cause bright streak orientations in the area to alternate between NW and SE, implying bright wind streak materials encountered by Opportunity are transient, potentially mobilized deposits. Opportunity performed the first in situ investigation of a martian wind streak, focusing on a bright patch of material just outside the rim of Eagle crater. Data from Pancam, the Miniature Thermal Emission Spectrometer (Mini-TES), the Alpha-Particle X-Ray Spectrometer (APXS), and the Mossbauer spectrometer either are consistent with or permit an air fall dust interpretation. We conclude that air fall dust, deposited in the partial wind shadow of Eagle crater, is responsible for the bright streak seen from orbit, consistent with models involving patchy, discontinuous deposits of air fall dust distributed behind obstacles during periods of atmospheric thermal stability during major dust storms.

  19. Natural gamma-radiation in the Aeolian volcanic arc.

    PubMed

    Chiozzi, P; Pasquale, V; Verdoya, M; Minato, S

    2001-11-01

    Pulse-height distributions of gamma-rays, obtained with a field NaI(Tl) scintillation spectrometer in numerous sites of the Lipari and Vulcano islands (Aeolian volcanic arc, Italy), were measured to determine the U, Th and K concentrations of the bedrock and the relative values of the air absorbed dose rate. U is spatially related to both Th and K and the Th/U ratio is on average 3.1-3.5. The magmatic evolution is reflected by the concentration of the three radioelements, as they are more abundant within the more felsic units of the volcanic series. The higher values of U (15.7-20.0 ppm) coincide with higher Th (48.3-65.9 ppm) and K (4.9-6.1%) concentrations associated with rhyolitic rocks of the third cycle (< 50 ky). The air absorbed dose rate varies from 20 to 470 nGy h(-1). The highest values (> 350 nGy h(-1)) are observed on outcrops of rhyolitic obsidian lava flows. The cosmic-ray contribution is also evaluated to estimate the total background radiation dose rate. PMID:11573810

  20. Shallow Submarine Hydrothermal Systems in the Aeolian Volcanic Arc, Italy

    NASA Astrophysics Data System (ADS)

    Monecke, Thomas; Petersen, Sven; Lackschewitz, Klas; Hügler, Michael; Hannington, Mark D.; Gemmell, J. Bruce

    2009-03-01

    The majority of known high-temperature hydrothermal vents occur at mid-ocean ridges and back-arc spreading centers, typically at water depths from 2000 to 4000 meters. Compared with 30 years of hydrothermal research along spreading centers in the deep parts of the ocean, exploration of the approximately 700 submarine arc volcanoes is relatively recent [de Ronde et al., 2003]. At these submarine arc volcanoes, active hydrothermal vents are located at unexpectedly shallow water depth (95% at <1600-meter depth), which has important consequences for the style of venting, the nature of associated mineral deposits, and the local biological communities. As part of an ongoing multinational research effort to study shallow submarine volcanic arcs, two hydrothermal systems in the submerged part of the Aeolian arc have been investigated in detail during research cruises by R/V Poseidon (July 2006) and R/V Meteor (August 2007). Comprehensive seafloor video surveys were conducted using a remotely operated vehicle, and drilling to a depth of 5 meters was carried out using a lander-type submersible drill. This research has resulted in the first detailed, three-dimensional documentation of shallow submarine hydrothermal systems on arc volcanoes.

  1. Natural gamma-radiation in the Aeolian volcanic arc.

    PubMed

    Chiozzi, P; Pasquale, V; Verdoya, M; Minato, S

    2001-11-01

    Pulse-height distributions of gamma-rays, obtained with a field NaI(Tl) scintillation spectrometer in numerous sites of the Lipari and Vulcano islands (Aeolian volcanic arc, Italy), were measured to determine the U, Th and K concentrations of the bedrock and the relative values of the air absorbed dose rate. U is spatially related to both Th and K and the Th/U ratio is on average 3.1-3.5. The magmatic evolution is reflected by the concentration of the three radioelements, as they are more abundant within the more felsic units of the volcanic series. The higher values of U (15.7-20.0 ppm) coincide with higher Th (48.3-65.9 ppm) and K (4.9-6.1%) concentrations associated with rhyolitic rocks of the third cycle (< 50 ky). The air absorbed dose rate varies from 20 to 470 nGy h(-1). The highest values (> 350 nGy h(-1)) are observed on outcrops of rhyolitic obsidian lava flows. The cosmic-ray contribution is also evaluated to estimate the total background radiation dose rate.

  2. Aeolian Removal of Dust Types from Photovoltaic Surfaces on Mars

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Perez-Davis, Marla E.

    1990-01-01

    Dust elevated in local or global dust storms on the Martian surface could settle on photovoltaic (PV) surfaces and seriously hamper their performance. Using a recently developed technique to apply a uniform dust layer, PV surface materials were subjected to simulated Martian winds in an attempt to determine whether natural aeolian processes on Mars would sweep off the settled dust. Three different types of dust were used. The effects of wind velocity, angle of attack, height above the Martian surface, and surface coating material were investigated. It was found that arrays mounted on an angle of attack approaching 45 deg show the most efficient clearing. Although the angular dependence is not sharp, horizontally mounted arrays required much higher wind velocities to clear off the dust. From this test it appears that the arrays may be erected quite near the ground, but previous studies have suggested that saltation effects can be expected to cause such arrays to be covered by soil if they are set up less than about a meter from the ground. Particle size effect appear to dominate over surface chemistry in these experiments, but additional tests are required to confirm this.

  3. Boundary-layer turbulence characteristics during aeolian saltation

    NASA Astrophysics Data System (ADS)

    Li, Bailiang; McKenna Neuman, Cheryl

    2012-06-01

    A great deal of effort has been expended in measuring turbulence phenomena in clean air flows. However, no previous measurements have been successfully made of the vertical distributions of turbulence intensity and Reynolds stress in a fully adjusted boundary-layer flow saturated with saltating particles. The present wind tunnel study addresses this knowledge gap using a custom designed laser-Doppler anemometer (LDA). The amount of turbulence is found to increase with the introduction of saltating particles to the airflow. Over the lowest 15% of boundary layer, vertical profiles of the streamwise wind speed provide friction velocities that lie well within the narrow range of those derived from direct measurement of the Reynolds stress. Relative to clean air, aeolian saltation is demonstrated to increase the magnitude but not the frequency of burst-sweep events that primarily contribute to the total fluid stress. Within several millimeters above the bed surface, all vertical profiles of wind speed converge upon a focal point, as the local fluid stress declines toward the mobile bed.

  4. Boundary-layer turbulence characteristics during aeolian saltation

    NASA Astrophysics Data System (ADS)

    Li, B.; McKenna Neuman, C. L.

    2012-12-01

    A great deal of effort has been expended in measuring turbulence phenomena in clean air flows. However, no previous measurements have been successfully made of the vertical distributions of turbulence intensity and Reynolds stress in a fully adjusted boundary-layer flow saturated with saltating particles. The present wind tunnel study addresses this knowledge gap using a custom designed laser-Doppler anemometer (LDA). The amount of turbulence is found to increase with the introduction of saltating particles to the airflow. Over the lowest 15% of boundary layer, vertical profiles of the streamwise wind speed provide friction velocities that lie well within the narrow range of those derived from direct measurement of the Reynolds stress. Relative to clean air, aeolian saltation is demonstrated to increase the magnitude but not the frequency of burst-sweep events that primarily contribute to the total fluid stress. Within several millimeters above the bed surface, all vertical profiles of wind speed converge upon a focal point, as the local fluid stress declines toward the mobile bed.

  5. Laboratory studies of dune sand for the use of construction industry in Sri Lanka

    NASA Astrophysics Data System (ADS)

    de Silva Jayawardena, Upali; Wijesuriya, Roshan; Abayaweera, Gayan; Viduranga, Tharaka

    2015-04-01

    With the increase of the annual sand demand for the construction industry the excessive excavation of river sand is becoming a serious environmental problem in Sri Lanka. Therefore, it is necessary to explore the possibility for an alternative to stop or at least to minimize river sand mining activities. Dune sand is one of the available alternative materials to be considered instead of river sand in the country. Large quantities of sand dunes occur mainly along the NW and SE coastal belt which belong to very low rainfall Dry Zone coasts. The height of dune deposits, vary from 1m to about 30 meters above sea level. The objective of this paper is to indicate some studies and facts on the dune sand deposits of Sri Lanka. Laboratory studies were carried out for visual observations and physical properties at the initial stage and then a number of tests were carried out according to ASTM standards to obtain the compressive strength of concrete cylinders and mortar cubes mixing dune sand and river sand in different percentages keeping a constant water cement ratio. Next the water cement ratio was changed for constant dune sand and river sand proportion. Microscopic analysis shows that the dune sand consist of 95 % of quartz and 5 % of garnet, feldspar, illmenite and other heavy minerals with clay, fine dust, fine shell fragments and organic matters. Grains are sub-rounded to angular and tabular shapes. The grain sizes vary from fine to medium size of sand with silt. The degree of sorting and particle size observed with dune sands are more suited with the requirement of fine aggregates in the construction industry. The test result indicates that dune sand could be effectively used in construction work without sieving and it is ideal for wall plastering due to its'-uniformity. It could also be effectively used in concrete and in mortars mixing with river sand. The best mixing ratio is 75% dune sand and 25% river sand as the fine aggregate of concrete. For mortar the mixing

  6. Landscape evolution on Mars - A model of aeolian denudation in Gale Crater

    NASA Astrophysics Data System (ADS)

    Day, M. D.; Kocurek, G.; Grotzinger, J. P.

    2015-12-01

    Aeolian erosion has been the dominant geomorphic agent to shape the surface of Mars for the past ~3.5 billion years. Although individual geomorphic features evidencing aeolian activity are well understood (e.g., yardangs, dune fields, and wind streaks), landscapes formed by aeolian erosion remain poorly characterized. Intra-crater sedimentary mounds are hypothesized to have formed by wind deflation of craters once filled with flat-lying strata, and, therefore, should be surrounded by landscapes formed by aeolian erosion. Here we present a landscape evolution model that provides both an initial characterization of aeolian landscapes, and a mechanism for large-scale excavation. Wind excavation of Gale Crater to form the 5 km high Mount Sharp would require removal of 6.4 x 104 km3 of sediment. Imagery in Gale Crater from satellites and the Mars Science Laboratory rover Curiosity shows a surface characterized by first-cycle aeolian erosion of bedrock. The overall landscape is interpreted to represent stages in a cycle of aeolian deflation and excavation, enhanced by physical weathering (e.g., thermal fracturing, cratering). Initial wind erosion of bedrock is enhanced along fractures, producing retreating scarps. Underlying less resistant layers then erode faster than the armoring cap rock, increasing relief in scarps to form retreating mesas. As scarp retreat continues, boulders from the armoring cap unit break away and cover the hillslopes of less resistant material below the scarps. Eventually all material from the capping unit is eroded away and a boulder-capped hill remains. Winnowing of fine material flattens hillslope topography, leaving behind a desert pavement. Over long enough time, this pavement is breached and the cycle begins anew. This cycle of landscape denudation by the wind is similar to that of water, but lacks characteristic subaqueous features such as dendritic drainage networks.

  7. Rapid anthropogenic response to short-term aeolian-fluvial palaeoenvironmental changes during the Late Pleistocene-Holocene transition in the northern Negev Desert, Israel

    NASA Astrophysics Data System (ADS)

    Roskin, Joel; Katra, Itzhak; Agha, Nuha; Goring-Morris, A. Nigel; Porat, Naomi; Barzilai, Omry

    2014-09-01

    Archaeological investigations along Nahal Sekher on the eastern edge of Israel's northwestern Negev Desert dunefield revealed concentrations of Epipalaeolithic campsites associated respectively with ancient water bodies. This study, aimed at better understanding the connections between these camps and the water bodies, is concerned with a cluster of Natufian sites. A comprehensive geomorphological study integrating field mapping, stratigraphic sections, sedimentological analysis and optically stimulated luminescence (OSL) ages was conducted in the vicinity of a recently excavated Natufian campsite of Nahal Sekher VI whose artifacts directly overlay aeolian sand dated by OSL to 12.4 ± 0.7 and 11.7 ± 0.5 ka. Residual sequences of diagnostic silty sediments, defined here as low-energy fluvial fine-grained deposits (LFFDs), were identified within the drainage system of central Nahal Sekher around the Nahal Sekher VI site. LFFD sections were found to represent both shoreline and mid-water deposits. The thicker mid-water LFFD deposits (15.7 ± 0.7-10.7 ± 0.5 ka) date within the range of the Epipalaeolithic campsites, while the upper and shoreline LFFD units that thin out into the sands adjacent to the Nahal Sekher VI site display slightly younger ages (10.8 ± 0.4 ka-7.6 ± 0.4 ka). LFFD sedimentation by low-energy concentrated flow and standing-water developed as a result of proximal downstream dune-damming. These water bodies developed as a result of encroaching sand that initially crossed central Nahal Sekher by 15.7 ± 0.7 ka and probably intermittently blocked the course of the wadi. LFFD deposition was therefore a response to a unique combination of regional sand supply due to frequent powerful winds and does not represent climate change in the form of increased precipitation or temperature change. The chronostratigraphies affiliate the Natufian sites to the adjacent ancient water bodies. These relations reflect a rapid, but temporary anthropogenic response to a

  8. Method of making a quartz resonator

    DOEpatents

    Vig, John R.; Filler, Raymond L.; Peters, R. Donald; Frank, James M.

    1981-01-01

    A quartz resonator is made from a chemically polished quartz plate. The plate is placed in an enclosure fitted with at least three mounting clips to receive the plate. The plate is secured to the clips with an electrically conductive adhesive capable of withstanding operation at 350 degrees C. The assembly is cleaned and a metallic electrode deposited onto the plate until the desired frequency is reached. The enclosure is then hermetically sealed. The resulting resonator can consistently withstand extremely high shocks.

  9. Quartz resonator fluid monitors for vehicle applications

    SciTech Connect

    Cernosek, R.W.; Martin, S.J.; Wessendorf, K.O.; Terry, M.D.; Rumpf, A.N.

    1994-09-01

    Thickness shear mode (TSM) quartz resonators operating in a new {open_quotes}Lever oscillator{close_quotes} circuit are used as monitors for critical automotive fluids. These monitors respond to the density and viscosity of liquids contacting the quartz surface. Sensors have been developed for determining the viscosity characteristics of engine lubricating oil, the state-of-charge of lead-acid storage batteries, and the concentration variations in engine coolant.

  10. Quartz resonator fluid monitors for vehicle applications

    NASA Astrophysics Data System (ADS)

    Cernosek, R. W.; Martin, S. J.; Wessendorf, K. O.; Terry, M. D.; Rumpf, A. N.

    Thickness shear mode (TSM) quartz resonators operating in a new 'Lever oscillator' circuit are used as monitors for critical automotive fluids. These monitors respond to the density and viscosity of liquids contacting the quartz surface. Sensors have been developed for determining the viscosity characteristics of engine lubricating oil, the state-of-charge of lead-acid storage batteries, and the concentration variations in engine coolant.

  11. New hole centers in natural quartz

    NASA Astrophysics Data System (ADS)

    Maschmeyer, D.; Lehmann, G.

    1983-11-01

    In natural citrines five new hole centers were detected and analyzed by electron paramagnetic resonance. An additional one was observed in rose-colored quartz crystals with radiation defects as the cause of coloration. Characteristic hyperfine patterns due to an adjacent aluminum impurity were resolved in the spectra of three of these centers. Their relations to other hole centers of well-known structure in quartz and fused silica are discussed and possible models for their structures are proposed.

  12. ESR studies on bleached sedimentary quartz

    NASA Astrophysics Data System (ADS)

    Walther, R.; Zilles, D.

    Some ESR signals in quartz are reported to be bleachable by sunlight and so they promise to be useful for dating sediments (Grün, 1989). The Ge signal in quartz is the only one that shows bleaching effects with UV light in short time scales (hours). Therefore we used quartz samples from the sites of Mauer ( 'Homo erectus heidelbergensis'), samples from a borehole in the Neckar valley ('Entensee', Ladenburg near Heidelberg) and samples from a pegmatite for basic studies on the Ge signal. The results show that with our standard sample preparation procedure for quartz separation (using red light as for TL samples), the natural Ge signal is not detectable, but rises clearly with gamma irradiation. Several experiments for examination of the stability and sensitivity of the Ge centre in quartz were carried out. For comparison with the behaviour of the Ge signal we measured the Al signal as well. Our experiments show that the Al signal is bleachable in long time scales (weeks). The behaviour on bleaching, irradiation and thermal annealing is very complicated, as the Al centre is a hole centre (it possibly interacts with several electron centres in the quartz and so the processes are of higher order).

  13. The Flow of Sand.

    ERIC Educational Resources Information Center

    Yersel, Metin

    2000-01-01

    Describes a simple demonstration of the flow of sand through an orifice at the bottom of a sandbox. Advocates the experiment's use with dimensional analysis for students in an introductory physics course. (WRM)

  14. North Polar Sand Dunes

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-417, 10 July 2003

    The martian north polar ice cap is surrounded by fields of dark, windblown sand dunes. This March 2003 Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows dunes near 76.5oN, 264.7oW. The steep dune slip faces indicate wind transport of sand from the lower left toward the upper right. Sunlight illuminates the scene from the lower left.

  15. Intensity of quartz cathodoluminescence and trace-element content in quartz from the porphyry copper deposit at Butte, Montana

    USGS Publications Warehouse

    Rusk, B.G.; Reed, M.H.; Dilles, J.H.; Kent, A.J.R.

    2006-01-01

    Textures of hydrothermal quartz revealed by cathodoluminescence using a scanning electron microscope (SEM-CL) reflect the physical and chemical environment of quartz formation. Variations in intensity of SEM-CL can be used to distinguish among quartz from superimposed mineralization events in a single vein. In this study, we present a technique to quantify the cathodoluminescent intensity of quartz within individual and among multiple samples to relate luminescence intensity to specific mineralizing events. This technique has been applied to plutonic quartz and three generations of hydrothermal veins at the porphyry copper deposit in Butte, Montana. Analyzed veins include early quartz-molybdenite veins with potassic alteration, pyrite-quartz veins with sericitic alteration, and Main Stage veins with intense sericitic alteration. CL intensity of quartz is diagnostic of each mineralizing event and can be used to fingerprint quartz and its fluid inclusions, isotopes, trace elements, etc., from specific mineralizing episodes. Furthermore, CL intensity increases proportional to temperature of quartz formation, such that plutonic quartz from the Butte quartz monzonite (BQM) that crystallized at temperatures near 750 ??C luminesces with the highest intensity, whereas quartz that precipitated at ???250 ??C in Main Stage veins luminesces with the least intensity. Trace-element analyses via electron microprobe and laser ablation-ICP-MS indicate that plutonic quartz and each generation of hydrothermal quartz from Butte is dominated by characteristic trace amounts of Al, P, Ti, and Fe. Thus, in addition to CL intensity, each generation of quartz can be distinguished based on its unique trace-element content. Aluminum is generally the most abundant element in all generations of quartz, typically between 50 and 200 ppm, but low-temperature, Main Stage quartz containing 400 to 3600 ppm Al is enriched by an order of magnitude relative to all other quartz generations. Phosphorous

  16. Sand Volcano Following Earthquake

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Sand boil or sand volcano measuring 2 m (6.6 ft.) in length erupted in median of Interstate Highway 80 west of the Bay Bridge toll plaza when ground shaking transformed loose water-saturated deposit of subsurface sand into a sand-water slurry (liquefaction) in the October 17, 1989, Loma Prieta earthquake. Vented sand contains marine-shell fragments. Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. Mechanics of Granular Materials (MGM) experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditions that carnot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. (Credit: J.C. Tinsley, U.S. Geological Survey)

  17. The characterization and role of aeolian deposition on water quality, McMurdo Dry Valleys, Antarctica

    NASA Astrophysics Data System (ADS)

    Deuerling, K. M.; Lyons, W. B.; Welch, S. A.; Welch, K. A.

    2014-06-01

    The connection of ecosystems by wind-driven transport of material has become a topic of increasing interest and importance. Less than 1% of dust transported worldwide is exported to the Southern Ocean and Antarctic cryosphere; however, aeolian transport on the Antarctic continent is predominantly locally derived from the abrasion of bedrock. The deposition of the aeolian material is integral to nutrient and solute dispersal in the Antarctic ecosystem. This is particularly true in the ice-free areas of Antarctica, such as the McMurdo Dry Valleys (MDV), where aeolian material deposited in the aquatic system is solubilized during the melt season. The material is predominantly locally-derived from the abrasion of bedrock. In this study, a two-step leaching experiment simulates the melt season and we quantify the flux of solutes and nutrients to the aquatic ecosystem. Soluble salts were removed from the aeolian material first during cold water leaching followed by an increase in carbonate and silicate dissolution during freeze-thaw. Major ion fluxes on glaciers and lakes are at least two orders of magnitude greater than nutrient fluxes. However, the fluxes derived from these experiments are less than the estimated flux from streams to lakes and probably represent minima. Aeolian redistribution of local soils is important because they are the only source of new solutes and nutrients to the aquatic ecosystem of the MDV.

  18. Aeolian and fluvial processes in dryland regions: the need for integrated studies

    USGS Publications Warehouse

    Belnap, Jayne; Munson, Seth M.; Field, Jason P.

    2011-01-01

    Aeolian and fluvial processes play a fundamental role in dryland regions of the world and have important environmental and ecological consequences from local to global scales. Although both processes operate over similar spatial and temporal scales and are likely strongly coupled in many dryland systems, aeolian and fluvial processes have traditionally been studied separately, making it difficult to assess their relative importance in drylands, as well as their potential for synergistic interaction. Land degradation by accelerated wind and water erosion is a major problem throughout the world's drylands, and although recent studies suggest that these processes likely interact across broad spatial and temporal scales to amplify the transport of soil resources from and within drylands, many researchers and land managers continue to view them as separate and unrelated processes. Here, we illustrate how aeolian and fluvial sediment transport is coupled at multiple spatial and temporal scales and highlight the need for these interrelated processes to be studied from a more integrated perspective that crosses traditional disciplinary boundaries. Special attention is given to how the growing threat of climate change and land-use disturbance will influence linkages between aeolian and fluvial processes in the future. We also present emerging directions for interdisciplinary needs within the aeolian and fluvial research communities that call for better integration across a broad range of traditional disciplines such as ecology, biogeochemistry, agronomy, and soil conservation.

  19. Direct Production of Silicones From Sand

    SciTech Connect

    Larry N. Lewis; F.J. Schattenmann: J.P. Lemmon

    2001-09-30

    Silicon, in the form of silica and silicates, is the second most abundant element in the earth's crust. However the synthesis of silicones (scheme 1) and almost all organosilicon chemistry is only accessible through elemental silicon. Silicon dioxide (sand or quartz) is converted to chemical-grade elemental silicon in an energy intensive reduction process, a result of the exceptional thermodynamic stability of silica. Then, the silicon is reacted with methyl chloride to give a mixture of methylchlorosilanes catalyzed by cooper containing a variety of tract metals such as tin, zinc etc. The so-called direct process was first discovered at GE in 1940. The methylchlorosilanes are distilled to purify and separate the major reaction components, the most important of which is dimethyldichlorosilane. Polymerization of dimethyldichlorosilane by controlled hydrolysis results in the formation of silicone polymers. Worldwide, the silicones industry produces about 1.3 billion pounds of the basic silicon polymer, polydimethylsiloxane.

  20. PTV measurement of the spanwise component of aeolian transport in steady state

    NASA Astrophysics Data System (ADS)

    O'Brien, Patrick; McKenna Neuman, Cheryl

    2016-03-01

    This paper outlines and validates an improved particle tracking technique (PTV-EPAS) with automated trajectory detection capabilities, and then reports on a novel set of wind tunnel experiments aimed at measuring all three velocity components simultaneously. In order to study a fully adjusted particle cloud, the entire floor of the tunnel was filled with quartz sand (median diameter 550 μm) and the freestream velocity set to 8 ms-1 at an elevation of 0.35 m, above the threshold for particle entrainment at 6.5 ms-1. This produced a friction velocity (u∗) of ∼0.38 ms-1 with u∗/u∗t = 1.3. Measurement of particle trajectories aligned at a spanwise angle (θ) relative to the mean airflow along the center-line of the wind tunnel involved incrementally adjusting the light sheet orientation from 0° to 60°. Three replicate experiments were carried out for each of 13 angles. Only 12% of all 2 × 105 trajectories sampled were strictly aligned with the mean streamwise air flow, while 95% were contained within 45°. As θ increases, a greater proportion of the particle transport consists of slow moving ejecta that ascend from and then impact the bed surface at higher angles than observed for saltation.

  1. Cathodoluminescence characterization of quartz grains from the Upper Cretaceous of dinosaur fossil localities in the Gobi desert, Mongolia

    NASA Astrophysics Data System (ADS)

    Saneyoshi, M.; Nishido, H.; Masuda, R.; Tsogtbaatar, K.; Chinzorig, T.

    2013-12-01

    The Upper Cretaceous eolian sediments in Mongolia's Gobi desert are one of the most important occurrences of the dinosaurs in the world. Large numbers of confiscated dinosaur fossils illegally worked out by poachers has been stored in the Mongolian Paleontological Center at Ulaanbaatar. In most cases, their localities are unknown. The purpose of this study is to identify their localities by cathodoluminescence (CL) features of quartz grains attached to the dinosaur specimens by comparing to the quartz samples collected from the sediments of circumjacent resources in this area. This study focuses on the confiscated specimen which makes up the nest with the babies' Protoceratops. Most of all Protoceratops in every growth process, have been discovered from the Djadokhta Formation in the Gobi desert. This formation crops out at Tugrikin Shireh and Bayn Dzak in the central part of the Gobi desert, and is derived from medium- to fine-grained sand mainly composed of quartz grains, of which sedimentary environments should be obvious to be eolian. The formation age of the sand beds at Tugrikin Shireh and Bayn Dzak has been estimated to be Middle Campanian. CL spectra of quartz have been demonstrated to show different features between the quartz from hydrothermal, plutonic, volcanic and metamorphic origins, suggesting the spectra reflect the condition of the quartz formation and the local environment. Therefore, we have applied the CL characterization of quartz grains to the evaluation of the provenance of the desert sediments. The quartz grains after sieving (#60-80 mesh size) were embedded in the brass holders with non-luminescent epoxy resin, and their surfaces were polished with 1 μm diamond abrasive. Color CL images obtained by the Luminoscope exhibit blue, violet and red emissions in the grains, suggesting various types of emission centers in the quartz. SEM-CL analysis was conducted using an SEM (JSM-5410) combined with a grating monochromator (Mono CL2) to measure

  2. Numerical modeling of basaltic sand ripples on Eagle crater as indirect evidence for the hysteresis effect in Martian saltation

    NASA Astrophysics Data System (ADS)

    Yizhaq, H.; Kok, J. F.; Michaels, T. I.

    2012-12-01

    Aeolian ripples, which form regular patterns on sand beaches and desert floors and also on Mars, indicate the instability of flat sand surfaces under the wind-induced transport of sand grains. The opportunity rover documented small normal basaltic sand ripples at the bottom of Eagle crater in Meridinai planum. These ripples are composed of fine basaltic sand (100 micron) and their average wavelength and height are 10 cm and 1 cm respectively. Such light particles are thought to be easily suspended by turbulence at the fluid threshold, such that the wind speed at which these bedforms developed must be substantially below the fluid threshold. The occurrence of these bedforms on the Martian surface thus requires the impact threshold to be substantially smaller than the fluid threshold. Recently, it was suggested that saltation on Mars can be maintained at much lower wind speeds than the fluid threshold which is needed to initiate it (Kok, 2010). We used simulations of the steady state saltation model COMSALT together with a dynamic model for sand ripples (Yizhaq et al., 2004) to show that the small basaltic ripples can develop under wind speeds below the threshold for suspension. We used COMSALT to give the basic values of the parameters that used by the ripple model for saltation on Mars with and without cohesion: 1. The average number of reptating grains per impact of one saltating grain. 2. The number density of impact saltating grains on flat surface. 3. The probability distribution of reptation lengths. We used COMSALT results to calculate the sand flux on Mars for different shear velocities and used GCM models simulations for prediction of the sand flux under predicted wind regime and compare it with recent estimations (Bridges et al., 2012). Our numerical simulations (Fig. 1) show that ripples like the basaltic ripples on Eagle crater can be developed by shear velocity much below the fluid threshold by the impact mechanism. These findings can be regarded as an

  3. Sand dunes on the central Delmarva Peninsula, Maryland and Delaware

    USGS Publications Warehouse

    Denny, Charles Storrow; Owens, James Patrick

    1979-01-01

    Inconspicuous ancient sand dunes are present in parts of the central Delmarva Peninsula, Maryland and Delaware. Many dunes are roughly V-shaped, built by northwest winds, especially on the east sides of some of the large rivers. On the uplands, the form and spacing of the dunes are variable. A surficial blanket composed mainly of medium and fine-grained sand-the Parsonsburg Sand-forms both the ancient dunes and the broad plains between the dunes. The sand that forms the dunes is massive and intensely burrowed in the upper part; traces of horizontal or slightly inclined bedding appear near the base. Quartz is the dominant mineral constituent of the sand. Microline is abundant in the very fine to fine sand fraction. The heavy-mineral assemblages (high zircon, tourmaline, rutile) are more mature than in most of the possible source rocks. The most abundant minerals in the clay-sized fraction are dioctahedral vermiculite, kaolinite, illite, montmorillonite, and gibbsite. The first four minerals are common in deposits of late Wisconsin and Holocene age. The gibbsite may be detrital, coming from weathered rocks of Tertiary age. The soil profile in the dune sand is weakly to moderately developed. At or near the base of the Parsonsburg Sand are peaty beds that range in age from about 30,000 to about 13,000 radiocarbon years B.P. Microfloral assemblages in the peaty beds suggest that the dunes on the uplands formed in a spruce parkland during the late Wisconsin glacial maximum. The river dunes may also be of late Wisconsin age, but could be Holocene.

  4. Wind-blown sand on beaches: an evaluation of models

    NASA Astrophysics Data System (ADS)

    Sherman, Douglas J.; Jackson, Derek W. T.; Namikas, Steven L.; Wang, Jinkang

    1998-03-01

    Five models for predicting rates of aeolian sand transport were evaluated using empirical data obtained from field experiments conducted in April, 1994 at a beach on Inch Spit, Co. Kerry, Republic of Ireland. Measurements were made of vertical wind profiles (to derive shear velocity estimates), beach slope, and rates of sand transport. Sediment samples were taken to assess characteristics of grain size and surface moisture content. Estimates of threshold shear velocity were derived using grain size data. After parsing the field data on the basis of the quality of shear velocity estimation and the occurrence of blowing sand, 51 data sets describing rates of sand transport and environmental conditions were retained. Mean grain diameter was 0.17 mm. Surface slopes ranged from 0.02 on the foreshore to about 0.11 near the dune toe. Mean shear velocities ranged from 0.23 m s -1 (just above the observed transport threshold) to 0.65 m s -1. Rates of transport ranged from 0.02 kg m -1 h -1 to more than 80 kg m -1 h -1. These data were used as input to the models of Bagnold [Bagnold, R.A., 1936. The Movement of Desert Sand. Proc. R. Soc. London, A157, 594-620], Kawamura [Kawamura, R., 1951. Study of Sand Movement by Wind. Translated (1965) as University of California Hydraulics Engineering Laboratory Report HEL 2-8, Berkeley], Zingg [Zingg, A.W., 1953. Wind tunnel studies of the movement of sedimentary material. Proc. 5th Hydraulics Conf. Bull. 34, Iowa City, Inst. of Hydraulics, pp. 111-135], Kadib [Kadib, A.A., 1965. A function for sand movement by wind. University of California Hydraulics Engineering Laboratory Report HEL 2-8, Berkeley], and Lettau and Lettau [Lettau, K. and Lettau, H., 1977. Experimental and Micrometeorological Field Studies of Dune Migration. In: K. Lettau and H. Lettau (Eds.), Exploring the World's Driest Climate. University of Wisconsin-Madison, IES Report 101, pp. 110-147]. Correction factors to adjust predictions of the rate of transport to account

  5. Characterization of desert sand as a sensible thermal energy storage medium

    NASA Astrophysics Data System (ADS)

    Diago, Miguel; Iniesta, Alberto Crespo; Delclos, Thomas; Soum-Glaude, Audrey; Shamim, Tariq; Calvet, Nicolas

    2016-05-01

    Desert sand from the United Arab Emirates (UAE) is considered as a possible sensible heat, thermal energy storage (TES) material. Its thermal stability, specific heat capacity and tendency to agglomerate are studied at high temperatures. The analyses show that it is possible to use desert sand as a TES material up to 800-1000 °C. Above 800 °C, weak agglomeration effects start to become significant. The samples become solid above 1000 °C. This may represent a major operating limit depending on the handling mechanism in place for the possible transport of the sand. The sand chemical composition is analyzed with the XRF and XRD techniques, which reveal the dominance of quartz and carbonates. Finally, the spectral absorptivity of the samples is measured before and after a thermal cycle, as it may be possible to use the desert sand not only as a TES material but also as a direct solar absorber.

  6. Map showing high-purity silica sand of Middle Ordovician age in the Midwestern states

    USGS Publications Warehouse

    Ketner, Keith B.

    1979-01-01

    Certain quartz sands of Middle Ordovician age in the Midwestern States are well known for their purity and are exploited for a wide variety of industrial uses. The principal Middle Ordovician formations containing high-purity sands are the St. Peter Sandstone which crops out extensively from Minnesota to Arkansas; the Everton Formation principally of Arkansas; and the Oil Creek, McLish, and Tulip Creek Formations (all of the Simpson Group) of Oklahoma. The St. Peter and sandy beds in the other formations are commonly called "sandstones," but a more appropriate term is "sands" for in most fresh exposures they are completely uncemented or very weakly cemented. On exposure to air, uncemented sands usually become "case hardened" where evaporating ground water precipitates mineral matter at the surface; but this is a surficial effect. This report summarizes the available information on the extent of exposures, range of grain size, and chemical composition of the Middle Ordovician sands.

  7. Aeolian dunes as ground truth for atmospheric modeling on Mars

    USGS Publications Warehouse

    Hayward, R.K.; Titus, T.N.; Michaels, T.I.; Fenton, L.K.; Colaprete, A.; Christensen, P.R.

    2009-01-01

    Martian aeolian dunes preserve a record of atmosphere/surface interaction on a variety of scales, serving as ground truth for both Global Climate Models (GCMs) and mesoscale climate models, such as the Mars Regional Atmospheric Modeling System (MRAMS). We hypothesize that the location of dune fields, expressed globally by geographic distribution and locally by dune centroid azimuth (DCA), may record the long-term integration of atmospheric activity across a broad area, preserving GCM-scale atmospheric trends. In contrast, individual dune morphology, as expressed in slipface orientation (SF), may be more sensitive to localized variations in circulation, preserving topographically controlled mesoscale trends. We test this hypothesis by comparing the geographic distribution, DCA, and SF of dunes with output from the Ames Mars GCM and, at a local study site, with output from MRAMS. When compared to the GCM: 1) dunes generally lie adjacent to areas with strongest winds, 2) DCA agrees fairly well with GCM modeled wind directions in smooth-floored craters, and 3) SF does not agree well with GCM modeled wind directions. When compared to MRAMS modeled winds at our study site: 1) DCA generally coincides with the part of the crater where modeled mean winds are weak, and 2) SFs are consistent with some weak, topographically influenced modeled winds. We conclude that: 1) geographic distribution may be valuable as ground truth for GCMs, 2) DCA may be useful as ground truth for both GCM and mesoscale models, and 3) SF may be useful as ground truth for mesoscale models. Copyright 2009 by the American Geophysical Union.

  8. Sedimentology of coastal chevron deposits - tsunamigenic versus aeolian origin

    NASA Astrophysics Data System (ADS)

    Garcia Garcia, A.; Spiske, M.; Tsukamoto, S.; Schmidt, V.

    2012-12-01

    The genesis of v-shaped coastal chevrons is currently controversially discussed. So far, chevrons are only described regarding their morphology, but not in terms of their origin. Two possible origins of chevrons are proposed: both aeolian transport and tsunami inundation are discussed as depositing processes. We present initial results of a detailed sedimentological survey of Holocene coastal chevrons from the American and Australian west coasts. The chevrons were measured and levelled using a differential GPS system. Large scale internal structures were recorded by ground penetrating radar imaging. Trenches were dug for sampling and analyzing small scale internal structures. The sediment samples were used for the analysis of grain-size distributions, mineral composition and content of marine microorganisms. Additional samples were taken for optically stimulated luminescence (OSL) and radiocarbon dating. Furthermore, we took reference samples from beaches, cliffs and rivers, which could act as potential sediment sources for the surveyed chevrons. Tsunami deposits are commonly polymodal, exhibit a grain-size decrease and tend to show better sorting in landward direction. Such trends are not present in the surveyed chevrons. Most samples are well to moderately well sorted and unimodal. The OSL ages decrease in transport direction and indicate a long term generation process, such as dune migration, rather than a short term event like a tsunami. This fact is additionally underlined by land snails found in different stratigraphic levels within the Australian chevrons. Furthermore, the occurrence of intercalated soil horizons implies a change of stable and active migration phases. The initial results of this study point out to an aoelian origin of coastal chevrons and do not support the previously supposed thesis of a tsunamigenic origin.

  9. The Origin of Transverse Aeolian Ridges on Mars

    NASA Astrophysics Data System (ADS)

    Geissler, P.

    2015-12-01

    Transverse aeolian ridges, or TARs, are found throughout the tropics of Mars and typically appear as rows of bright ripples that are several meters tall and spaced semi-regularly several tens of meters apart. The origin of these features remained mysterious for decades after their discovery in Viking and Mars Global Surveyor images. A new hypothesis (Geissler, 2014, 10.1002-2014JE004633) suggests that TARs might be deposits left behind by dusty turbidity currents in the Martian atmosphere. The hypothesis assumes that the micron-sized dust particles are transported in suspension in turbulent flows, driven both by the winds and by gravity. The dust is concentrated near the surface, much like turbidity currents on Earth. Because of the difference in density, however, the dust clouds behave as a fluid distinct from the clear sky above. In particular, waves can appear at the surface of the dense "fluid" when the flows encounter topographic obstacles along their paths. Such gravity waves travel at speeds that are determined by gravity and the thickness of the flow, much like waves in shallow water on Earth. When the wave propagation speed matches the speed of the flow, stationary waves are produced that persist in fixed locations. The bedforms deposited by such stationary waves are called "antidunes" (Gilbert, 1914, USGS Prof. Paper 86) because, unlike dunes, they can migrate upstream in a supercritical flow. Antidunes are commonly seen in shallow, high energy fluvial deposits on Earth. They are usually destroyed as quickly as they form, and are rarely preserved. The Martian TARs survive because the dust is sticky; TARs are deposited by currents that are much slower than the wind speeds needed to lift the dust again. Subaerial antidunes are much rarer on Earth and less well studied, and so the giant subaerial stationary antidunes of Mars, if that is what the TARs turn out to be, may teach us much about a geological process that is poorly known on our planet.

  10. Aeolian Removal of Dust Types from Photovoltaic Surfaces on Mars

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Perez-Davis, Marla E.; Marabito, Mark

    1990-01-01

    Dust elevated in local or global dust storms on the Martian surface could settle on photovoltaic (PV) surfaces and seriously hamper their performance. Using a recently developed technique to apply a uniform dust layer, PV surface materials were subjected to simulated Martian winds in an attempt to determine whether natural Aeolian processes on Mars would sweep off the settled dust. Three different types of dust were used; an optical polishing powder, basaltic "trap rock", and iron (III) oxide crystals. The effects of wind velocity, angle of attack, height above the Martian surface, and surface coating material were investigated. It was found that arrays mounted with an angle of attack approaching 45 degrees show the most efficient clearing. Although the angular dependence is not sharp, horizontally mounted arrays required significantly higher wind velocities to clear off the dust. From this test it appears that the arrays may be erected quite near the ground, but previous studies have suggested that saltation effects can be expected to cause such arrays to be covered by soil if they are set up less than about a meter from the ground. Particle size effects appear to dominate over surface chemistry in these experiments, but additional tests are required to confirm this. Providing that the surface chemistry of Martian dusts is not drastically different from simulated dust and that gravity differences have only minor effects, the materials used for protective coatings for photovoltaic arrays may be optimized for other considerations such as transparency, and chemical or abrasion resistance. The static threshold velocity is low enough that there are regions on Mars which experience winds strong enough to clear off a photovoltaic array if it is properly oriented. Turbulence fences proved to be an ineffective strategy to keep dust cleared from the photovoltaic surfaces.

  11. Erupted cumulate fragments in rhyolites from Lipari (Aeolian Islands)

    NASA Astrophysics Data System (ADS)

    Forni, Francesca; Ellis, Ben S.; Bachmann, Olivier; Lucchi, Federico; Tranne, Claudio A.; Agostini, Samuele; Dallai, Luigi

    2015-12-01

    Over the last ~267 ky, the island of Lipari has erupted magmas ranging in compositions from basaltic andesites to rhyolites, with a notable compositional gap in the dacite field. Bulk geochemical and isotopic compositions of the volcanic succession, in conjunction with major and trace elemental compositions of minerals, indicate that the rhyolites were dominantly generated via crystal fractionation processes, with subordinate assimilation. Radiogenic (Sr, Nd, and Pb) and stable (O) isotopes independently suggest ≤30 % of crustal contamination with the majority of it occurring in mafic compositions, likely relatively deep in the system. Within the rhyolites, crystal-rich, K2O-rich enclaves are common. In contrast to previous interpretations, we suggest that these enclaves represent partial melting, remobilization and eruption of cumulate fragments left-over from rhyolite melt extraction. Cumulate melting and remobilization is supported by the presence of (1) resorbed, low-temperature minerals (biotite and sanidine), providing the potassic signature to these clasts, (2) reacted Fo-rich olivine, marking the presence of mafic recharge, (3) An38-21 plagioclase, filling the gap in feldspar composition between the andesites and the rhyolites and (4) strong enrichment in Sr and Ba in plagioclase and sanidine, suggesting crystallization from a locally enriched melt. Based on Sr-melt partitioning, the high-Sr plagioclase would require ~2300 ppm Sr in the melt, a value far in excess of Sr contents in Lipari and Vulcano magmas (50-1532 ppm) but consistent with melting of a feldspar-rich cumulate. Due to the presence of similar crystal-rich enclaves within the rhyolites from Vulcano, we propose that the eruption of remobilized cumulates associated with high-SiO2 rhyolites may be a common process at the Aeolian volcanoes, as already attested for a variety of volcanic systems around the world.

  12. OSL-based lateral progradation and aeolian sediment accumulation rates for the Apalachicola Barrier Island Complex, North Gulf of Mexico, Florida

    NASA Astrophysics Data System (ADS)

    Rink, W. J.; López, G. I.

    2010-11-01

    Vertical sediment cores in five separate beach ridge complexes along the north-east Gulf of Mexico Coast were recovered and dated using optically stimulated luminescence (OSL) dating of quartz: these are located on Cape San Blas (CSB), Little St. George Island (LSGI), Richardson's Hammock (RH), St. Joseph Peninsula (SJP) and Saint Vincent Island (SVI). All of these landforms are coastal barrier systems situated along a 100 km stretch of the Florida Panhandle, U.S.A. Two samples were collected for dating from each core. Ridge accumulation rates (RAR) associated with lateral progradation were calculated from the dated samples. We also determined average sediment accumulation rates (ASAR) for two intervals within each sediment core. All OSL ages within the sediment cores were found to be in stratigraphic order or in a few cases statistically indistinguishable. Moreover, all dated ridges were found to be in correct temporal sequence based on their geomorphic positions. Rapidly accreted sequences were found to be backed by St. Joseph Bay in the western region of the study area. More slowly accreted sequences were associated with the more eastern stretches of the study area backed by St. Vincent Sound and Apalachicola Bay. Our ASAR results are in accord with an Australian study of modern dune accumulation. Perhaps our most important finding is that in the barrier island environments of this north-eastern Gulf Coast region, aeolian sedimentation continues well after full vegetative cover develops and stranding of landward ridges takes place. This confirms our similar earlier observation on SVI (López and Rink, 2008). We find that up to approximately one order of magnitude lower sedimentation rates occur after an initial period of more rapid aeolian accumulation for the vertical intervals studied in foredune ridges. Lateral progradation rates of ridge sequences were highly variable within the study area, ranging from 92 to 848 m/100 years, but we did find agreement

  13. Surprises from the field: Novel aspects of aeolian saltation observed under natural turbulence

    NASA Astrophysics Data System (ADS)

    Martin, R. L.; Kok, J. F.; Chamecki, M.

    2015-12-01

    The mass flux of aeolian (wind-blown) sediment transport - critical for understanding earth and planetary geomorphology, dust generation, and soil stability - is difficult to predict. Recent work suggests that competing models for saltation (the characteristic hopping of aeolian sediment) fail because they do not adequately account for wind turbulence. To address this issue, we performed field deployments measuring high-frequency co-variations of aeolian saltation and near-surface winds at multiple sites under a range of conditions. Our observations yield several novel findings not currently captured by saltation models: (1) Saltation flux displays no significant lag relative to horizontal wind velocity; (2) Characteristic height of the saltation layer remains constant with changes in shear velocity; and (3) During saltation, the vertical profile of mean horizontal wind velocity is steeper than expected from the Reynolds stress. We examine how the interactions between saltation and turbulence in field settings could explain some of these surprising observations.

  14. Charge-to-mass Ratio of Saltating Particles in Wind-Blown Sand

    PubMed Central

    Bo, Tian-Li; Zhang, Huan; Zheng, Xiao-Jing

    2014-01-01

    The electrification of sand particles plays an important role in aeolian events. In this paper, the charge-to-mass ratio vertical profiles of saltating particles in wind-blown sand were measured by a field experiments. By combining the results of field measurements with our previous wind-tunnel measurements, we discussed the factors affecting the charge-to-mass ratio of saltating particles. It reveals that the magnitude of the charge-to-mass ratio increases exponentially with height above the surface. In addition, the charge polarity of saltating particles depends on the relative size between saltating and creeping particles, and the magnitude of charge-to-mass ratio is determined by wind velocity and the relative size difference ratio between saltating and creeping particles. PMID:24998641

  15. Aeolian dust in Colorado Plateau soils: nutrient inputs and recent change in source.

    PubMed

    Reynolds, R; Belnap, J; Reheis, M; Lamothe, P; Luiszer, F

    2001-06-19

    Aeolian dust (windblown silt and clay) is an important component in arid-land ecosystems because it may contribute to soil formation and furnish essential nutrients. Few geologic surfaces, however, have been characterized with respect to dust-accumulation history and resultant nutrient enrichment. We have developed a combination of methods to identify the presence of aeolian dust in arid regions and to evaluate the roles of this dust in ecosystem processes. Unconsolidated sandy sediment on isolated surfaces in the Canyonlands region of the Colorado Plateau differs greatly in mineralogical and chemical composition from associated bedrock, mainly aeolian sandstone. Detrital magnetite in the surficial deposits produces moderately high values of magnetic susceptibility, but magnetite is absent in nearby bedrock. A component of the surficial deposits must be aeolian to account for the abundance of magnetite, which formed originally in far-distant igneous rocks. Particle-size analysis suggests that the aeolian dust component is typically as much as 20-30%. Dust inputs have enriched the sediments in many elements, including P, Mg, Na, K, and Mo, as well as Ca, at sites where bedrock lacks calcite cement. Soil-surface biologic crusts are effective dust traps that apparently record a change in dust sources over the past several decades. Some of the recently fallen dust may result from human disturbance of land surfaces that are far from the Canyonlands, such as the Mojave Desert. Some land-use practices in the study area have the potential to deplete soil fertility by means of wind-erosion removal of aeolian silt.

  16. Evaluation of a new model of aeolian transport in the presence of vegetation

    USGS Publications Warehouse

    Li, Junran; Okin, Gregory S.; Herrick, Jeffrey E.; Belnap, Jayne; Miller, Mark E.; Vest, Kimberly; Draut, Amy E.

    2013-01-01

    Aeolian transport is an important characteristic of many arid and semiarid regions worldwide that affects dust emission and ecosystem processes. The purpose of this paper is to evaluate a recent model of aeolian transport in the presence of vegetation. This approach differs from previous models by accounting for how vegetation affects the distribution of shear velocity on the surface rather than merely calculating the average effect of vegetation on surface shear velocity or simply using empirical relationships. Vegetation, soil, and meteorological data at 65 field sites with measurements of horizontal aeolian flux were collected from the Western United States. Measured fluxes were tested against modeled values to evaluate model performance, to obtain a set of optimum model parameters, and to estimate the uncertainty in these parameters. The same field data were used to model horizontal aeolian flux using three other schemes. Our results show that the model can predict horizontal aeolian flux with an approximate relative error of 2.1 and that further empirical corrections can reduce the approximate relative error to 1.0. The level of error is within what would be expected given uncertainties in threshold shear velocity and wind speed at our sites. The model outperforms the alternative schemes both in terms of approximate relative error and the number of sites at which threshold shear velocity was exceeded. These results lend support to an understanding of the physics of aeolian transport in which (1) vegetation's impact on transport is dependent upon the distribution of vegetation rather than merely its average lateral cover and (2) vegetation impacts surface shear stress locally by depressing it in the immediate lee of plants rather than by changing the bulk surface's threshold shear velocity. Our results also suggest that threshold shear velocity is exceeded more than might be estimated by single measurements of threshold shear stress and roughness length

  17. Evaluation of a new model of aeolian transport in the presence of vegetation

    NASA Astrophysics Data System (ADS)

    Li, Junran; Okin, Gregory S.; Herrick, Jeffrey E.; Belnap, Jayne; Miller, Mark E.; Vest, Kimberly; Draut, Amy E.

    2013-03-01

    Aeolian transport is an important characteristic of many arid and semiarid regions worldwide that affects dust emission and ecosystem processes. The purpose of this paper is to evaluate a recent model of aeolian transport in the presence of vegetation. This approach differs from previous models by accounting for how vegetation affects the distribution of shear velocity on the surface rather than merely calculating the average effect of vegetation on surface shear velocity or simply using empirical relationships. Vegetation, soil, and meteorological data at 65 field sites with measurements of horizontal aeolian flux were collected from the Western United States. Measured fluxes were tested against modeled values to evaluate model performance, to obtain a set of optimum model parameters, and to estimate the uncertainty in these parameters. The same field data were used to model horizontal aeolian flux using three other schemes. Our results show that the model can predict horizontal aeolian flux with an approximate relative error of 2.1 and that further empirical corrections can reduce the approximate relative error to 1.0. The level of error is within what would be expected given uncertainties in threshold shear velocity and wind speed at our sites. The model outperforms the alternative schemes both in terms of approximate relative error and the number of sites at which threshold shear velocity was exceeded. These results lend support to an understanding of the physics of aeolian transport in which (1) vegetation's impact on transport is dependent upon the distribution of vegetation rather than merely its average lateral cover and (2) vegetation impacts surface shear stress locally by depressing it in the immediate lee of plants rather than by changing the bulk surface's threshold shear velocity. Our results also suggest that threshold shear velocity is exceeded more than might be estimated by single measurements of threshold shear stress and roughness length

  18. Aeolian dust in Colorado Plateau soils: Nutrient inputs and recent change in source

    USGS Publications Warehouse

    Reynolds, R.; Belnap, Jayne; Lamothe, Paul; Luiszer, Fred

    2001-01-01

    Aeolian dust (windblown silt and clay) is an important component in arid-land ecosystems because it may contribute to soil formation and furnish essential nutrients. Few geologic surfaces, however, have been characterized with respect to dust-accumulation history and resultant nutrient enrichment. We have developed a combination of methods to identify the presence of aeolian dust in arid regions and to evaluate the roles of this dust in ecosystem processes. Unconsolidated sandy sediment on isolated surfaces in the Canyonlands region of the Colorado Plateau differs greatly in mineralogical and chemical composition from associated bedrock, mainly aeolian sandstone. Detrital magnetite in the surficial deposits produces moderately high values of magnetic susceptibility, but magnetite is absent in nearby bedrock. A component of the surficial deposits must be aeolian to account for the abundance of magnetite, which formed originally in far-distant igneous rocks. Particle-size analysis suggests that the aeolian dust component is typically as much as 20a??30%. Dust inputs have enriched the sediments in many elements, including P, Mg, Na, K, and Mo, as well as Ca, at sites where bedrock lacks calcite cement. Soil-surface biologic crusts are effective dust traps that apparently record a change in dust sources over the past several decades. Some of the recently fallen dust may result from human disturbance of land surfaces that are far from the Canyonlands, such as the Mojave Desert. Some land-use practices in the study area have the potential to deplete soil fertility by means of wind-erosion removal of aeolian silt.

  19. Microfractures in Quartz Grains as a Measurement of Maximum Effective Stress in Sandstone Reservoirs

    NASA Astrophysics Data System (ADS)

    Mehrkian, K.; Aubourg, C.; Girard, J. P.; Teinturier, S.; Hoareau, G.

    2015-12-01

    Effective stress, defined as the load transmitted from particle to particle in the solid framework of a rock, plays a significant role in controlling mechanical compaction and thus reservoir quality in sandstones. Mechanical compaction in sandstones takes place through rearrangement and ductile/ brittle deformation of framework grains during progressive burial. It is primarily dependent on the magnitude and evolution of effective stress during burial, and on the nature and textural properties of framework grains (mineralogy, grain size/shape, sorting…) and pore-filing solid cements when present. Here, we propose a method to directly evaluate maximum effective stress in sandstone reservoirs by quantifying the brittle deformation of quartz grains evidenced through the development of microfractures. Quartz microfracturing is documented and quantified by examining thin sections of core samples under SEM CL microscopy. Previous published experimental studies and observations made on natural samples indicate that quartz burial-induced microfracturing in sandstones is mainly affected by effective stress, but also reflects other factors such as grain size, sorting and proportion of ductile grains (clays, micas…). In order to investigate the quantitative impact of such factors altogether, we have conducted compaction experiments (>30 tests) on 10 types of sands at 25°C, under dry conditions and pressures up to 55 Mpa. The resulting compressed sands were studied by optical microscopy to quantify fractured quartz grains. Results were processed using R statistical computing language via a multi input model to define a simple equation that provides correction constants for each influencing factor. The resulting equation will then be used to calculate the maximum effective stress recorded by a sandstone reservoir during its burial history, based on the petrographic/mineralogical characteristics (thin section point-counting) and the fractured-grain ratio (obtained by SEM CL

  20. Examining the Effect of Water on the Strength of Quartz Using Polycrystalline Quartz Aggregates

    NASA Astrophysics Data System (ADS)

    Barbery, A. M.; Holyoke, C. W., III; Kronenberg, A. K.; Fukuda, J. I.

    2015-12-01

    Quartzite rheology has been extensively studied to model the strength of continental crust. Previous studies have shown that the presence of water in fluid inclusions weakens polycrystalline quartz, and this weakening is usually related to water fugacity. However, no attempt has been made to determine the effect of water content on the strength of quartz. We have deformed hot-pressed quartz aggregates with low water contents at a pressure of 1.5 GPa, a temperature of 1200°C, and strain rates of 1